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Preface

The requirement of causality in system theory is inevitably accompanied by
the appearance of certain mathematical operations, namely the Riesz projec-
tion, the Hilbert transform, and the spectral factorization mapping. A classical
example illustrating this is the determination of the so-called Wiener filter (the
linear, minimum means square error estimation filter for stationary stochastic
sequences [88]). If the filter is not required to be causal, the transfer function
of the Wiener filter is simply given by H(ω) = Φxy(ω)/Φxx(ω), where Φxx(ω)
and Φxy(ω) are certain given functions. However, if one requires that the es-
timation filter is causal, the transfer function of the optimal filter is given
by

H(ω) =
1

[Φxx]+(ω)
P+

(
Φxy(ω)

[Φxx]−(ω)

)
, ω ∈ (−π, π] .

Here [Φxx]+ and [Φxx]− represent the so called spectral factors of Φxx, and
P+ is the so called Riesz projection. Thus, compared to the non-causal filter,
two additional operations are necessary for the determination of the causal
filter, namely the spectral factorization mapping Φxx �→ ([Φxx]+, [Φxx]−), and
the Riesz projection P+.

In applications the two functions Φxx(ω) and Φxy(ω) are usually not per-
fectly known but disturbed by measurement errors, or their values are only
given at a finite number of sampling points {ωk}N

k=1. The question arises, how
these errors in the given data influence the calculation of the optimal filter
H(ω). The answer will depend strongly on the metric in which the errors are
measured, i.e. on the function spaces on which these problems are considered,
and an answer requires the investigation of the continuity and boundedness
of the involved operations (Riesz projection and spectral factorization) on the
desired function spaces.

This monograph is intended primarily for engineers working on such ro-
bustness problems under a causality constraint. At the beginning, it presents
the mathematical methods, necessary to approaching these problems. Then
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some related classical results concerning the boundedness and continuity of
the Hilbert transform and Riesz projection are presented. Finally, these meth-
ods and results are applied to selected topics from signal processing.

The first part of the this monograph gives a very brief introduction to the
main mathematical methods used later in the book. This part serves primarily
as a review of results needed in later chapters, so that the work becomes
essentially self-contained. The different topics are only covered as far as they
will be needed and proofs are sometimes omitted. Appropriate reference are
given for those who want a more detailed introduction to the different topics.
This work presupposes a working knowledge of real and complex analysis
(roughly as contained in [70]) as well as some basic elements of functional
analysis (e.g. as in [54]).

The second part collects the basic abstract results concerning the conti-
nuity and the boundedness of the Hilbert transform and the Riesz projection
on different Banach spaces. These results are the basis for the applications
discussed in the third part of this monograph. Here four applications from
signal processing are investigated in some detail, namely the expansions of
transfer functions in orthonormal bases in Chapter 7, the linear approxima-
tion from measured data in Chapter 8, the calculation of the Hilbert transform
in Chapter 9, and the spectral factorization in Chapter 10. All these topics
are essentially problems of recovery or approximation of causal function from
measured data, which are generally corrupted by small errors. It is investi-
gated how these errors influence the possibility of recovering the desired signal
from the measurements under the restriction that this recovery is based only
on past and present measurements, i.e. under the requirement of causality.

The authors are very grateful to Brendan Farrell and Sander Wahls of the
Technical University Berlin for reading the manuscript and for many helpful
comments and suggestions on it. Parts of the book were written when the
first author was staying at the Department of Electrical Engineering of the
Technion in Haifa. He is very thankful to his host, Prof. Yonina Eldar and her
whole group for their hospitality and help.

Haifa and Berlin Volker Pohl
June 2009 Holger Boche
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Part I

Mathematical Preliminaries



1

Function Spaces and Operators

This first chapter recalls shortly the most basic facts from analysis, and in-
troduces the basic notations used throughout the whole book. The proofs of
these standard results are almost always omitted and can be found in numer-
ous textbooks.

1.1 Banach and Hilbert spaces

Let X be a complex vector space. A non-negative, real valued functional ‖·‖X
on X is said to be a norm on X if

1. ‖x‖X = 0 if and only if x = 0
2. ‖αx‖X = |α| ‖x‖X
3. ‖x1 + x2‖X ≤ ‖x1‖X + ‖x2‖X

for all x1, x2 ∈ X and all scalars α ∈ C. A complex vector space X together
with a certain norm ‖·‖X is called a normed vector space.

A subset Y ⊂ X is called a subspace of X if Y is itself a vector space. This
is the case if and only if

0 ∈ Y and α y1 + β y2 ∈ Y

for all scalars α, β ∈ C and every y1, y2 ∈ Y.
A vector space Y is said to be of dimension N if every y ∈ Y has a unique

representation of the form y = α1 φ1 + · · · + αN φN for a fixed collection
{φk}N

k=1 of elements in Y and with certain α1, . . . , αN ∈ C. The dimension
of a vector space may be finite or infinite.

Let {xk}∞k=1 be a sequence of elements of X . If

lim
m,k→∞

‖xm − xk‖X = 0

then {xk}∞k=1 is said to be a Cauchy sequence in X . The sequence {xk}∞k=1

converges in X , if there exists an element x ∈ X such that

V. Pohl, H. Boche, Advanced Topics in System and Signal Theory, Foundations
in Signal Processing, Communications and Networking 4,
DOI 10.1007/978-3-642-03639-2_1, c© Springer-Verlag Berlin Heidelberg 2009



4 1 Function Spaces and Operators

lim
k→∞

‖x − xk‖X = 0 .

A normed linear space X is said to be complete if every Cauchy sequence
converges in X . A complete normed vector space is called a Banach space.

Let H be a complex vector space. A mapping 〈·, ·〉H : H×H → C, which
assigns to every pair of vectors in H a scalar, is called an inner product on H
if for all x1, x2, x3 ∈ H and all scalars α, β ∈ C the following conditions are
satisfied

1. 〈x1, x2〉H = 〈x2, x1〉H
2. 〈α x1 + β x2, x3〉H = α 〈x1, x3〉H + β 〈x2, x3〉H
3. 〈x1, x1〉H ≥ 0 and 〈x1, x1〉H = 0 if and only if x1 = 0 .

Such a vector space H together with a specific inner product 〈·, ·〉H is called
an inner product space. The inner product on such a space induces a norm on
H by

‖x‖H :=
√
〈x, x〉H .

If H is complete with respect to this norm, one says that H is a Hilbert space.

Example 1.1 (Euclidean Vector Spaces). Let C
N be the N -dimensional Eu-

clidean vector space of N -tuples x = (x1, x2, · · · , xN ) of complex numbers
and define by

‖x‖
CN :=

√
|x1|2 + |x2|2 + · · · + |xN |2

a norm on C
N . Since C

N is finite dimensional, it is clear that C
N is a Banach

space. On this Banach space one can also define an inner product by

〈x, y〉
CN := x1 y1 + x2 y2 + · · · + xN yN .

for all x, y ∈ C
N . This inner product is compatible with the above defined

norm, which means that ‖x‖CN =
√
〈x, x〉

CN . Therefore C
N is also a Hilbert

space.

Example 1.2 (�p-Spaces). Let 1 ≤ p ≤ ∞ be a real number and let x =
{xk}∞k=−∞ be a double infinite sequence of complex numbers and define

‖x‖�p :=

⎧⎨
⎩
(∑∞

k=−∞ |xk|p
)1/p if 1 ≤ p < ∞

supk∈Z |xk| if p = ∞ .

Then �p = �p(C) denotes the Banach space of all double infinite complex
sequences x = {xk}∞k=−∞ for which the norm ‖x‖�p is finite, and �p

+ = �p
+(C)

is the Banach space of all infinite sequences x = {xk}∞k=0 with ‖x‖�p < ∞.
On the particular spaces �2(C) and �2+(C) one can define the inner product

〈x, y〉�2 :=
∑∞

k=−∞ xk yk

which is compatible with the norm ‖·‖�p and which makes �2(C) and �2+(C)
to Hilbert spaces.
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Example 1.3 (Lp-Spaces). Let T := {z ∈ C : |z| = 1} be the unit circle in the
complex plane. Choose a number 1 ≤ p < ∞ and denote by Lp the set of all
Lebesgue measurable functions f defined on T with

‖f‖p :=
(

1
2π

∫ π

−π

∣∣f(eiθ)
∣∣p dθ

)1/p

< ∞ .

Together with this norm, Lp is a Banach space. The space L∞ is the set of
all essentially bounded Lebesgue measurable functions on T with the norm

‖f‖∞ := ess supθ∈[−π,π]

∣∣f(eiθ)
∣∣ .

Or more generally, let μ be an arbitrary finite positive measure on the unit
circle T. Then Lp(μ) with 1 ≤ p < ∞ denotes the set of all measurable
functions on T with ‖f‖p :=

∫
T
|f(ζ)|p dμ(ζ) < ∞, and L∞(μ) is the set of all

essentially bounded (with respect to μ) functions.
For the particular case p = 2 one defines for arbitrary f, g ∈ L2 an inner

product in L2 by

〈f, g〉L2 :=
(

1
2π

∫ π

−π
f(eiθ) g(eiθ) dθ

)1/2

(1.1)

which is compatible with the norm on L2. With this inner product L2 becomes
a Hilbert space.

Example 1.4. The set of all continuous functions f on the unit circle T

equipped with the supremum (uniform) norm

‖f‖∞ = supζ∈T |f(ζ)|

is a Banach space and will be denoted by C(T).

Compared to Banach spaces, Hilbert spaces possess some nice geometrical
properties which are very similar to the finite dimensional Euclidean spaces.
A particularly useful concept is orthonormal bases.

Definition 1.5. Let H be an inner product space. Two vectors x, y ∈ H are
called orthogonal if 〈x, y〉H = 0. A family S = {xk} of non-zero vectors in
H is called an orthogonal set if any two distinct vectors in this family are
orthogonal. If in addition ‖xk‖H = 1 for all xk ∈ S, the family S is called an
orthonormal set.

Let M be a subset of the Hilbert space H. Then M⊥ denotes the set of all
y ∈ H which are orthogonal to every x ∈ M:

M⊥ := { y ∈ H : 〈y, x〉H = 0 for every x ∈ M} .

Note that an orthogonal set may contain a finite or an infinite number of
elements. The notation x⊥y will be used to indicate that the vectors x and y
are orthogonal.
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Theorem 1.6 (Bessel’s inequality and equality). Let {xk}N
k=1 be an or-

thonormal set in an inner product space H where N may be infinity. Then for
every x ∈ H holds

∑N
k=1 |〈x, xk〉|2H ≤ ‖x‖2

H (1.2)

with equality for all x in the subspace spanned by x1, · · · , xN . Moreover
∥∥∥x −

∑N
k=1 〈x, xk〉H xk

∥∥∥2
H

= ‖x‖2
H −

∑N
k=1 |〈x, xk〉H|2 (1.3)

for all x ∈ H.

Assume that S = {xk}∞k=1 is an orthogonal sequence in an inner product
space H. For any x ∈ H, we define its generalized Fourier coefficients (with
respect to S) by ck := 〈x, xk〉H. Then we consider the truncated generalized
Fourier series of x with respect to the orthonormal system S given by

sN :=
∑N

k=1 〈x, xk〉H xk =
∑N

k=1 ck xk .

It is clear that sN ∈ span{x1, · · · , xN}. Therefore Theorem 1.6 shows that
‖sN‖H =

∑N
k=1 |ck|2H. Moreover, Bessel’s inequality (1.2) implies that the

infinite series
∑∞

k=1 |〈x, xk〉|2H converges for every x ∈ H and its sum is upper
bounded by ‖x‖2

H. Thus the sequence c = {ck}∞k=1 is an element of �2 and
consequently for all N > M , one has that

‖sN − sM‖2
H =

∑N
k=M+1 |〈x, xk〉|2H

which shows that sN is a Cauchy sequence in H. Therefore, if one additionally
assumes that H is complete, i.e. if H is a Hilbert space, the partial sum sN

converges in H as N → ∞. However sN needs not to converge to x, in general.
This only happens if the orthonormal system S is complete.

Definition 1.7 (Orthonormal base). An orthonormal sequence S =
{xk}∞k=1 in a Hilbert space H is called a complete orthonormal system or
an orthonormal basis of H if the generalized Fourier series

∑∞
k=1 〈x, xk〉H xk

converges to x for every x ∈ H.

For a complete orthonormal sequence S = {xk}∞k=1, the left hand side of
Bessel’s equality (1.3) converges to zero as N → ∞. This gives immediately
the following result.

Theorem 1.8 (Parseval’s identity). Let {xk}∞k=1 be a complete orthonor-
mal basis of a Hilbert space H. Then

‖x‖2
H =

∑∞
k=1 |〈x, xk〉H|2 (1.4)

for every x ∈ H.
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A Hilbert space is called separable if it contains a complete orthonormal
sequence and it can be shown that every basis contains only a countable
number of elements. Parsval’s identity implies that every (infinite dimensional)
separable Hilbert space H is isometricly isomorphic to the Hilbert space �2+. To
see this let {xk}∞k=1 be a complete orthonormal basis of H and define the linear
operator T x = {ck}∞k=1, where ck = 〈x, xk〉H, for all x ∈ H. Then Parseval’s
identity shows that T maps H to �2+ with ‖T x‖�2 = ‖x‖H. Conversely every
sequence c = {ck}∞k=1 ∈ �2+ defines by xN =

∑N
k=1 ck xk a Cauchy sequence in

H. Since the basis {xk}∞k=1 is complete, xN converges to an x ∈ H as N → ∞,
and again by Parseval’s identity one has ‖x‖H = ‖c‖�2

The following example of an orthonormal system is the case we are most
interested in throughout this book. This example will be discussed in more
detail in Sec. 2.

Example 1.9 (Fourier series). Consider the Hilbert space H = L2 of Lebesque
square-integrable functions on the unit circle T with the inner product (1.1).
Define for k = 0,±1,±2, · · · the functions ϕk(eiθ) := eikθ in L2. Then it is easy
to verify that the set S = {ϕk}∞k=−∞ is an orthonormal set in L2. Moreover
S is complete in L2. In this case, for every f ∈ L2 the coefficients

f̂(k) := 〈f, ϕk〉L2 = 1
2π

∫ π

−π
f(eiτ ) e−ikτ dτ

are called Fourier coefficients of f and the formal series
∑∞

k=−∞ f̂(k)ϕk =
∑∞

k=−∞ 〈f, ϕk〉L2 ϕk

is the Fourier series of f , which converges in L2 to f by Bessel’s equality. If
f̂ = {f̂(k)}∞k=−∞ denotes the set of all Fourier coefficients of f , then Parseval’s
identity shows that ‖f̂‖�2 = ‖f‖L2 , and the previous two equations establish
an isometric isomorphism between L2 and �2.

1.2 Operators on Banach spaces

Let X and Y be normed vector spaces. We consider mappings T : x �→ y,
defined on a linear subspace D(T) of X , which assign to each x ∈ D(T) an
element y = T(x) ∈ Y. The subspace D(T) ⊂ X is called the domain of T

and

R(T) := { y ∈ Y : y = T(x) for some x ∈ D(T) }
N (T) := { x ∈ X : T(x) = 0 }

denote the range and the null space (the kernel) of a mapping T : D(T) → Y,
respectively. It is easily verified that R(T) and N (T) are subspaces of Y and
X , respectively. If not mentioned otherwise, all mappings are always defined
on the whole space X in the following. For us, the boundedness and continuity
of such mappings will be of particular interest.
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Definition 1.10 (Boundedness). A mapping T : X → Y is said to be
bounded if there exists a constant C such that

‖T(x)‖Y ≤ C for all x ∈ X with ‖x‖X ≤ 1 .

Definition 1.11 (Continuity). A mapping T : X → Y is said to be con-
tinuous at the point x0 ∈ X if to every ε > 0 there exists a δ > 0 such
that

‖T(x) − T(x0)‖Y < ε for all x ∈ X with ‖x − x0‖X < δ .

T is said to be continuous, if it is continuous at every point x ∈ X .

The continuity of a mapping T : X → Y is in general a local property, i.e. it
may be continuous at certain points x ∈ X but discontinuous at other points.
Moreover the boundedness and the continuity of a mapping are in general two
completely different properties which depend strongly on the vector spaces
X , Y and especially on the norm on these spaces. This general behavior will
become evident in Section 10 where the spectral factorization mapping is
investigated on different Banach spaces.

Definition 1.12. A mapping T : X → Y is said to be linear, if

T(α x1 + β x2) = α T(x1) + β T(x2)

for all x1, x2 ∈ X and all scalars α and β.

If the mapping T is linear, we will also write T x instated of T(x). For linear
mappings there is a direct relation between the boundedness and continuity
of these mapping:

Theorem 1.13. Let T : X → Y be a mapping between the normed vector
spaces X and Y. If T is linear then the following statements are equivalent:

(a) T is continuous at 0.
(b) T is continuous.
(c) T is bounded.
(d) There exists a constant C such that

‖Tx‖Y ≤ C ‖x‖X for all x ∈ X . (1.5)

Statement (d) of the previous theorem motivates the definition of the norm
of a linear continuous mapping T : X → Y as the minimal possible constant
C for which (1.5) holds.

Definition 1.14. Let T : X → Y be a linear mapping. Then

‖T‖X→Y := sup
x∈X
x�=0

‖T x‖Y
‖x‖X

= sup
x∈X

‖x‖X≤1

‖T x‖Y . (1.6)

is the called the operator norm of T.
The set of all bounded linear operators from X to Y together with the norm

(1.6) is again a normed linear space and will be denoted by B(X ,Y).
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One easily verifies that (1.6) indeed defines a norm on the set of all linear
mappings from X to Y. Moreover, if Y is a complete normed space then
B(X ,Y) is a Banach space as well.

Particularly important is the case where Y = C. Then B(X , C) contains
all bounded linear functionals on X . This space is called the dual space of X
and it is usually denoted by X ∗. In the case of a Hilbert space H, the dual H∗

can be identified with the space H itself, since Riesz representation theorem
states that to every bounded linear functional c ∈ H∗ there exists a unique
f ∈ H such that c(h) = 〈h, f〉H for all h ∈ H.

It is also worth to notice that the null space of a bounded linear mapping
is a closed subspace of its domain.

Theorem 1.15. Let T : X → Y be a bounded linear operator on a Banach
space X . Then N (T) is a closed subspace of X .

Proof. Let x1, x2 ∈ N (T), then T(α x1 +β x2) = α Tx1 +β Tx2 = 0 and since
0 ∈ N (T), N (T) is a subspace of X . It remains to show that N (T) is closed.
Let {xn}n∈N with xn ∈ N (T) for all n ∈ N and with xn → x in X . Then

‖Tx‖Y = ‖Txn − Tx‖Y ≤ ‖T‖X→Y ‖xn − x‖X .

for every n ∈ N. Since ‖xn − x‖X → 0 and ‖T‖X→Y < ∞ this implies Tx = 0
and consequently x ∈ N (T). �

Let H and K be two Hilbert spaces and let T ∈ B(H,K) be a bounded
linear operator between H and K. Then the adjoint T∗ : K → H is defined by
the relation

〈T h, k〉K = 〈h,T∗ k〉H for all h ∈ H and k ∈ K .

It is not hard to prove that the adjoint T∗ is also a linear operator with
‖T∗‖K→H = ‖T‖H→K. The operator T is called an isometry, if

〈T h1,T h2〉K = 〈h1, h2〉H for all h1, h2 ∈ H

which is equivalent to T∗T = IH, where IH denotes the identity mapping on
H. The operator T is called unitary if T is an isometry and if R(T) = K,
which is equivalent to

T∗ T = IH and T T∗ = IK ,

which means T∗ = T−1.
We will also need the notation of a derivative of a mapping T : X → Y

from an arbitrary normed vector space X into an other normed vector space
Y. This derivative is defined in a way that is similar as for usual functions.

Definition 1.16 (Fréchet Derivative). Let X and Y be two normed linear
spaces, and let V be an open subset of X . A mapping T : V → Y is said to
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be (Fréchet) differentiable at x ∈ V if there exists a bounded linear mapping
A : X → Y such that

lim
h→0

‖T(x + h) − T(x) − Ah‖Y
‖h‖X

= 0 . (1.7)

The linear operator A is called the (Fréchet) derivative of T at x and its value
at h will also be denoted by Ah = T′(x)h.

Thus the (Fréchet) derivative of a mapping T : X → Y is a bounded linear
operator T′(x) : X → Y. In usual calculus, the derivative of a function f is a
number f ′(x) which represents the slope of the tangent on the graph of f at a
point x. Thus, it gives the best linear approximation of f in a neighborhood
of x. Similarly, the Fréchet derivative gives the best linear approximation
T′(x) : X → Y of the operator T : X → Y in a neighborhood of x. If T is
linear, it follows from the above definition that T′(x)h = T h, i.e. the Fréchet
derivative of T is equal to T. Thus, the best linear approximation of a linear
operator is the operator itself. For the special case X = Y = C, the above
definition consides with the usual derivate of complex functions. It is not hard
to see that if the Fréchet derivative of T exists, it is unique. If T is Fréchet
differentiable at some point x, T is continuous at x.

Proposition 1.17. If a mapping T : X → Y, defined in an open subset V of
X , has a Fréchet derivative at a point x ∈ V, then it is continuous at x.

Proof. Since V is open and x ∈ V, the triangle inequality gives

‖T(x + h) − T(x)‖Y ≤ ‖T(x + h) − T(x) − T′(x)h‖Y + ‖T′(x)‖Y ‖h‖X

for all h in a certain neighborhood of zero, where we have also used that
the Fréchet derivative T′(x) is a bounded operator. Since T has a Fréchet
derivative at x, for every ε > 0 there exists a δ > 0 such that ‖T(x + h) −
T(x) − T′(x)h‖Y ≤ ε ‖h‖X for all ‖h‖X ≤ δ. Therewith, the above inequality
becomes

‖T(x + h) − T(x)‖Y ≤ (ε + ‖T′(x)‖Y) ‖h‖X

which shows that T is continuous at x. �

Subsequently, we will be mainly interested in the case where the mapping
T is defined on subsets Ω of the complex numbers C, i.e. where X = C. Thus,
we will consider functions over C with values in a certain normed vector space
Y. In this case, all linear mappings A : C → Y have the form Ah = Ah with a
certain vector A ∈ Y. Therefore, the Fréchet derivative of T can be identified
with a corresponding vector T′(x) = A(x) ∈ Y, and this vector will be called
the (Fréchet) derivative of T. Moreover, if the function T : C → Y is (Fréchet)
differentiable at every point z ∈ Ω, one says that T is holomorphic (complex
differentiable) in Ω.
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1.3 Spaces of Smooth Functions

Let Ω ⊂ C be a compact set in the complex plane and let f : Ω → C be a
complex function defined on Ω. Then the real function ωf (δ) defined by

ωf (δ) := sup
|z1−z2|≤δ

|f(z1) − f(z2)| for all z1, z2 ∈ Ω

is called the modulus of continuity of f . As we will see later, this modulus of
continuity of a function plays an important roll in analysis since it character-
izes certain properties of f . For example, ωf determines how fast the Fourier
coefficients f̂(k) of f decrease as |k| increases and in turn how well f can be
approximated by polynomials. We state some almost obvious properties of the
modulus of continuity.

(a) ωf (δ1) ≤ ωf (δ2) whenever δ1 < δ2.
(b) A function f is uniformly continuous if and only if ωf (δ) → 0 as δ → 0.
(c) Let N ∈ N be a natural number, then ωf (N δ) ≤ N ωf (δ). Indeed, assume

that |z1 − z2| ≤ N δ, and divide the line connecting z1 and z2 into N
equal intervals (z(k−1), z(k)) with z(k) = z1 + k (z2 − z1)/N and with
k = 1, 2, . . . , N . Then |z(k) − z(k−1)| ≤ δ for all k and consequently

|f(z1) − f(z2)| ≤
N∑

k=1

∣∣∣f(z(k)) − f(z(k−1))
∣∣∣ ≤ N ω(δ) ,

from what follows that

ωf (N δ) = sup
|z1−z2|≤N δ

|f(z1) − f(z2)| ≤ N ω(δ) .

(d) Let α be an arbitrary positive real number. Then ωf (α δ) ≤ (α+1)ωf (δ).
Indeed let N be the largest integer not exceeding α, i.e. N ≤ α < (N +1).
Then it follows from properties (a) and (b) that

ωf (α δ) ≤ ωf ([N + 1] δ) ≤ (N + 1)ωf (δ) ≤ (α + 1)ωf (δ) .

These properties of the modulus of continuity motivate the following defini-
tion:

Definition 1.18. A continuous, increasing, real valued function ω(τ) defined
on the interval [0, π] is called a majorant if ω(0) = 0 and if the function
ω(τ)/τ is non increasing.

Given a majorant ω and a bounded domain Ω ⊂ C, one denotes by Cω(Ω) the
set of all functions f : Ω → C for which

‖f‖ω := sup
z1 �=z2

|f(z1) − f(z2)|
ω (|z1 − z2|)

< ∞ . (1.8)
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It is clear from this definition that every f ∈ Cω(Ω) is continuous on Ω because
there exists a constant C such that |f(z1) − f(z2)| ≤ C ω(|z1 − z2|) for all
z1, z2 ∈ Ω, and since ω(τ) → 0 as τ → 0 it follows that f is continuous.
Moreover there exists a constant C(ω), dependent only on the majorant ω,
such that ‖f‖∞ ≤ C(ω) ‖f‖ω for all f ∈ Cω(Ω). Indeed, let f ∈ Cω(Ω) and
define for some arbitrary z0 ∈ Ω the function f0(z) := f(z) − f(z0). For this
function holds obviously f0(z0) = 0, ‖f0‖ω = ‖f‖ω, and ‖f‖∞ ≤ 2‖f0‖∞.
Therewith, one obtains for an arbitrary z ∈ Ω

|f0(z)| = |f0(z) − f0(z0)| ≤ ‖f0‖ω ω(|z − z0|) ≤ ω(|Ω|) ‖f0‖ω

where |Ω| = supz1,z2∈Ω |z1 − z2| which is finite since Ω is compact. Altogether
one obtains ‖f‖∞ ≤ C(ω) ‖f‖ω. However, the functional (1.8) defines not a
norm on Cω(Ω) since for every constant function f , one has ‖f‖ω = 0. For
this reason, one defines the norm on Cω(Ω) by

‖f‖Cω(Ω) := ‖f‖∞ + ‖f‖ω = ‖f‖∞ + sup
z1 �=z2

|f(z1) − f(z2)|
ω (|z1 − z2|)

(1.9)

which is finite for every f ∈ Cω(Ω) since ‖f‖Cω(Ω) ≤ [1 + C(ω)] ‖f‖ω. It
follows in particular that Cω(Ω) equipped with the norm (1.9) is continuously
embedded into the space C(Ω) of all continuous functions on Ω with ‖f‖∞ ≤
‖f‖Cω(Ω). Moreover it follows from (1.9) that ‖f‖ω ≤ ‖f‖Cω(Ω) such that for
every f ∈ Cω(Ω) the definition (1.8) gives

|f(z1) − f(z2)| ≤ ‖f‖Cω(Ω) ω (|z1 − z2|) . (1.10)

This relation shows that the modulus of continuity ωf of every f ∈ Cω(Ω) is
upper bounded by the majorant ω:

ωf (δ) ≤ ‖f‖Cω(Ω) ω(δ) . (1.11)

Thus the majorant ω characterizes the smoothness of the functions in Cω(Ω).
For a given majorant ω, the space Cω(Ω) will be not separable, in general.

Therefore, we will also need the separable subspace Cω,0(Ω) which is defined as
the closure of all polynomials defined in Ω with respect to the corresponding
Cω-norm (1.9).

We will distinguish between different classes of majorants.

Definition 1.19. A majorant ω is called regular if there exists a constant C
such that ∫ x

0

ω(τ)
τ

dτ + x

∫ π

x

ω(τ)
τ2

dτ ≤ C ω(x), 0 < x < 1 .

Moreover, we say that a majorant ω is weak regular of type 1 (or fast) if
there exists a constant C such that
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∫ x

0

ω(τ)
τ

dτ ≤ C ω(x), 0 < x < 1 (1.12)

and ω is said to be weak regular of type 2 (or slow) if there exists a constant
C such that

x

∫ π

x

ω(τ)
τ2

dτ ≤ C ω(x), 0 < x < 1 . (1.13)

Thus a majorant ω is regular if it is weak regular of type 1 and weak regular of
type 2. Conversely, it is clear that every regular majorant is also weak regular
of type 1 and type 2.

Example 1.20 (Hölder continuous functions Λα). Consider the majorant
ω(τ) = τα with 0 < α < 1. It is easily verified that

∫ x

0

ω(τ)
τ

dτ =
1
α

ω(x) and x

∫ π

x

ω(τ)
τ2

dτ ≤ 1
1 − α

ω(x) .

The first equality shows that ω is weak regular of type 1, whereas the second
inequality proves that ω is also weak regular of type 2. Therefore ω is a
regular majorant. The space Cω(Ω) with this special majorant will be denoted
by Λα(Ω). It is the set of all Hölder continuous functions of exponent α on Ω.

Example 1.21 (Lipschitz continuous functions LipK). Consider now the ma-
jorant ω(τ) = τ . Exactly as in the previous example, one verifies that ω is
weak regular of type 1. However, now it holds that

x

∫ π

x

ω(τ)
τ2

dτ = [log(1/x) + log π] ω(x)

which shows that there exists no constant C such that (1.13) is satisfied.
Therefore ω is not weak regular of type 2. With this particular majorant
Cω(Ω) is denoted by Λ1(Ω) and the elements of Λ1(Ω) are Lipschitz continuous
functions on Ω.

In the case of Lipschitz continuous functions, the proportionality constant
(cf. (1.11)) between the majorant ω and the actual modulus of continuity ωf

is sometimes of importance. Whereas Λ1(Ω) contains all functions f for which
there exits a constant C < ∞ such that

|f(z1) − f(z2)| ≤ C |z1 − z2| , z1, z2 ∈ Ω (1.14)

we define the set LipK(Ω) as the set of all functions f which satisfy (1.14)
with C = K. Finally, we note that every function f differentiable on Ω belongs
to Λ1(Ω) and every differentiable function f whose first derivative |f ′(z)| is
upper bounded for all z ∈ Ω by M belongs to LipM (Ω).

We will also need the following generalization of the class Λα of Hölder
continuous functions. Let Ω be an open set in C, and let α = k + β be a
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positive real number with an integer k ≥ 0 and with 0 < β ≤ 1. Then the
Hölder-Zygmund class Λα(Ω) is defined as the set of all k-times continuously
differentiable functions f : Ω → C for which the k-th derivative f (k) satisfies
a Hölder (-Zygmund) condition of order β, i.e. for which

|f (k)(θ + τ) − f (k)(θ)| ≤ C |τ |β for 0 < β < 1
|f (k)(θ + τ) + f (k)(θ − τ) − 2 f (k)(τ)| ≤ C |τ | for β = 1 .

and for all θ ∈ Ω.

Notes

The material in this section can be found in any introductory analysis or func-
tional analysis textbook, e.g. [28, 70] The classes of smooth function charac-
terized by regular majorants as described in Sect. 1.3 where extensively used
by Dyakonov in [32] and the distinction between fast and slow majorants (cf.
Def. 1.19) follows [31].
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Fourier Analysis and Analytic Functions

2.1 Trigonometric Series

One of the most important tools for the investigation of linear systems is
Fourier analysis. Let f ∈ L1 be a complex-valued Lebesgue-integrable func-
tion on the unit circle T. Then the Fourier coefficients of f are the complex
numbers

f̂(n) =
1
2π

∫ π

−π

f(eiθ) e−inθ dθ , n = 0,±1,±2, . . . . (2.1)

Let B be an arbitrary subspace of L1. Then we define by

B+ := { f ∈ B : f̂(n) = 0 for all n < 0 }

the subspace of all functions in B for which all Fourier coefficients with nega-
tive index are equal to zero.

Definition 2.1 (Conjugate function). Let B ⊂ L1 and f ∈ B. The function
f̃ ∈ B is called the conjugate function of f in B if it satisfies the conditions

f + if̃ ∈ B+ and 1
2π

∫ π

−π
f̃(eiθ) dθ = 0 .

In general, a function f ∈ B need not possess a conjugate function according
to the above definition. However, for every f ∈ B ⊂ L1 it is always possible
to define a conjugate functions f̃ which exists almost everywhere on T but
which does not necessarily belong to B (see e.g. [41] and also the discussion
in Section 5). The second condition on f̃ in the above definition is only a
normalization of f̃ ensuring that f̃ is unique if it exists.

The importance of the Fourier coefficients (2.1) originates from the fact
that they determine the function f uniquely. In saying this, f is considered as
an element of L1 and functions which differ only on a set of Lebesgue measure
zero are identified as equivalent. The interesting question is now, how can we

V. Pohl, H. Boche, Advanced Topics in System and Signal Theory, Foundations
in Signal Processing, Communications and Networking 4,
DOI 10.1007/978-3-642-03639-2_2, c© Springer-Verlag Berlin Heidelberg 2009
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recapture f and its conjugate function f̃ from the Fourier coefficients f̂(n).
This is usually done by partial sums of the form

(S(w)
N f)(eiθ) =

N∑
n=−N

w(n) f̂(n) einθ (2.2)

in which the sequence {w(n)}N
n=−N of complex numbers is an arbitrary window

function which weights the Fourier coefficients. The series

(S̃(w)
N f)(eiθ) =

N∑
n=−N

−i sgn(n)w(n) f̂(n) einθ (2.3)

with the sign function

sgn(k) =

⎧⎨
⎩

1 , k > 0
0 , k = 0

−1 , k < 0

and with the same window {w(n)}N
n=−N and the same degree N is called the

series conjugate to S
(w)
N f . The usage of the name conjugate series is justified

by Definition 2.1 and by the fact that series

(S(w)
N f)(eiθ) + i (S̃(w)

N f)(eiθ) = w(0) f̂(0) + 2
N∑

k=1

w(n) f̂(n) einθ (2.4)

has only nonnegative Fourier coefficients.
The question is whether the series (2.2) and (2.3) converge as N tends to

infinity, and if they do converge, do they converge to f and f̃ , respectively?
The answer depends on the window {w(n)}N

n=−N and on the actual topology,
i.e. one may ask whether (2.2) and (2.3) converge pointwise, uniformly, or in
some type of norm to f and f̃ , respectively. Here, we discuss only some of the
most important windows {w(n)}N

n=−N which are needed in this book. All of
these windows will be symmetric, in the sense that w(−n) = w(n) for all n.

To investigate the convergence behavior of (2.2) and (2.3), it is sometimes
more convenient to write those series in closed form by inserting the Fourier
coefficients (2.1) into (2.2) and (2.3). This gives the following integral repre-
sentations

(S(w)
N f)(eiθ) =

1
2π

∫ π

−π

f(eiτ )K
(w)
N (θ − τ) dτ (2.5)

and
(S̃(w)

N f)(eiθ) =
1
2π

∫ π

−π

f(eiτ ) K̃
(w)
N (θ − τ) dτ . (2.6)

with the kernels
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K
(w)
N (τ) = w(0) + 2

N∑
n=1

w(n) cos(nτ) (2.7)

K̃
(w)
N (τ) = 2

N∑
n=1

w(n) sin(nτ). (2.8)

Of course, these kernels depend on the (symmetric) window {w(n)}N
n=−N

which is indicated by the superscript (w). It is immediately clear that the
kernels (2.7) and (2.8) are 2π-periodic. Next, three special windows and the
corresponding series are discussed.

2.1.1 Fourier Series

The most simple and best known window is the rectangular window given by

w(n) = 1 , n = 0,±1,±2, . . . ,±N . (2.9)

In this case, the partial sums (2.2) and (2.3) are just the truncated Fourier
and the conjugate Fourier series of f , and will be denoted by sN and s̃N

respectively. The kernel (2.7) of this particular series is called the Dirichlet
kernel given by

DN (τ) = 1 + 2
N∑

n=1

cos(nτ) =
sin
(
[N + 1

2 ]τ
)

sin(τ/2)
. (2.10)

Similarly, the kernel (2.8) of the conjugate series is called conjugate Dirichlet
kernel given by

D̃N (τ) = 2
N∑

n=1

sin(nτ) =
1

tan(τ/2)
−

cos
(
[N + 1

2 ]τ
)

sin(τ/2)
.

Therewith the partial Fourier series are given by

sN (f ; eiθ) =
N∑

n=−N

f̂(n) einθ =
1
2π

∫ π

−π

f(eiτ )DN (θ − τ) dτ (2.11)

and likewise for s̃N .
If the function f belongs to L2 then it is well known that the partial

sums sN and s̃N of the Fourier series converge to f and f̃ in the L2-norm,
respectively (cf. Example 1.9). However, if f belongs only to L1, the partial
sums sN and s̃N do not converge to f and f̃ in the L1-norm, in general.
Moreover if f is a continuous function on T, one might require that sN and
s̃N converge uniformly to f and f̃ , respectively, i.e. that

lim
N→∞

‖f − sN (f ; ·)‖∞ = 0 and lim
N→∞

‖f̃ − s̃N (f ; ·)‖∞ = 0
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for all f ∈ C(T). However, the partial sums sN and s̃N do not show such nice
behavior. It even happens that for some continuous functions f , the truncated
Fourier series sn(f ; ·) does not even converge pointwise. More precisely, one
has the following result.

Theorem 2.2. To every θ ∈ [−π, π), there corresponds a set E(θ) ⊂ C(T) of
second category which is dense in C(T) such that

sup
N∈N

|sN (f ; eiθ)| = ∞

for every f ∈ E(θ).

Proof. Let θ ∈ [−π, π) be arbitrary but fixed. Then for every N (2.11) defines
a linear functional sN (f ; eiθ) = DNf on C(T), for which holds

|DNf | ≤ ‖f‖∞ 1
2π

∫ π

−π
|DN (τ)|dτ = ‖f‖∞ ‖DN‖1

which shows that ‖DN‖ ≤ ‖DN‖1. Actually, equality holds. To see this, we
define the function

gN (eiτ ) :=

{
1 for all τ for which DN (θ − τ) ≥ 0

−1 for all τ for which DN (θ − τ) < 0

for which certainly holds ‖gN‖∞ = 1 and |DN gN | = ‖DN‖1 for all N ∈ N.
Moreover, by Lusin’s Theorem (see e.g. [70, §2.24]), for every ε > 0 there
exists an fN ∈ C(T) with ‖fN‖∞ ≤ 1 such that

‖fN − gN‖∞ = ess sup
ζ∈T

|fN (ζ) − gN (ζ)| < ε .

Therewith, one obtains

|DN fN | = |DN gN − DN (gN − fN )| ≥ |DN gN | − |DN (gN − fN )|
≥ ‖DN‖1 − ε ‖DN‖1

such that

‖DN‖ = sup
f∈C(T)
‖f‖∞≤1

|DNf | ≥ |DNfN | ≥ (1 − ε) ‖DN‖1

which shows that ‖DN‖ = ‖DN‖1. Next, it is shown that ‖DN‖1 diverges as
N → ∞. Since the kernel DN , given by (2.10), is an even function and since
sin(τ/2) ≤ τ/2 for all 0 ≤ τ < π, one obtains

‖DN‖1 ≥ 2
π

∫ π

0

|sin([N + 1/2]τ)| dτ

τ
=

2
π

∫ [N+1/2]π

0

|sin(τ)| dτ

τ

>
2
π

N∑
k=1

∫ kπ

[k−1]π

| sin(τ)|
τ

dτ ≥ 2
π

N∑
k=1

2
k π

≥ 4
π2

log(N + 1) (2.12)
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which shows that ‖DN‖ = ‖DN‖1 → ∞ as N → ∞. This divergence of the
operator norm ‖DN‖ implies by the Banach-Steinhaus theorem (see e.g. [70,
§5.8]) that there exists a dense subset E(θ) ⊂ C(T) of second category such
that supN∈N |DN f | = ∞ for all f ∈ E(θ). �

The previous proof showed that the divergence of the Fourier series
sN (f ; eiθ) at some points θ ∈ [−π, π) is caused by the slow decay of the
envelope of the Dirichlet kernel DN (τ) as τ → ∞. It decreases only propor-
tional to 1/τ which causes the divergence of ‖DN‖1 as N → ∞ (cf. (2.12) and
Fig. 2.2). Thus, to obtain an approximation series (2.2) which converges uni-
formly, one needs a window w(n) such that the corresponding kernel K

(w)
N (τ)

(2.7) decreases faster than 1/τ as τ → ∞. Two such methods will be discussed
in the next subsections.

2.1.2 First arithmetic means – Fejér series

The unfavorable convergence behavior of the partial sums (2.11) is resolved if
one considers the (first) arithmetic means of the partial sums (2.11)

σN (f ; eiθ) :=
1
N

N−1∑
k=0

sk(f ; eiθ) . (2.13)

If (2.11) is inserted into this arithmetic mean, a straight forward calculation
gives the representations

σN (f ; eiθ) =
N∑

n=−N

w(n) f̂(n) einθ =
1
2π

∫ π

−π

f(eiτ )FN (θ − τ) dτ (2.14)

with the window function

w(n) = 1 − |n|
N , n = 0,±1,±2, · · · ± N . (2.15)

and with the kernel

FN (τ) =
1
N

N−1∑
k=0

Dk(τ) =
1
N

sin2(N τ/2)
sin2(τ/2)

. (2.16)

This first arithmetic mean (2.14) will be called the Fejér series of f with
the Fejér kernel (2.16). For illustration, the window function (2.15) and the
corresponding kernel (2.16) are plotted in Fig. 2.1 and 2.2, respectively. Sim-
ilarly, forming the arithmetic mean of the conjugate partial sums sN (f ; eiθ),
one obtains the conjugate Fejér mean σ̃N (f ; eiθ) with the same window (2.15)
and with the conjugate Fejér kernel

F̃N (τ) =
1
N

N−1∑
k=0

D̃k(τ) =
1

tan(τ/2)
− 1

N

sin(N τ)
2 sin2(τ/2)

.
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It turns out that the Fejér series posses a much better convergence be-
havior with respect to continuous functions than the Fourier series. This will
follow immediately from the observation that the Fejér kernel is a so called
approximate identity :

Proposition 2.3. The Fejér kernel (2.16) is an approximate identity, i.e. it
satisfies for all N ∈ N the following three properties
(a) FN (τ) ≥ 0 for all τ ∈ [−π, π)

(b) 1
2π

∫ π

−π
FN (τ) dτ = 1

(c) limN→∞ FN (τ) = 0 for all 0 < |τ | ≤ π

Proof. Property (a) is obvious from (2.16) and (b) follows at once from (2.16)
and (2.10). To verify (c) choose an arbitrary but fixed 0 < ε < π. Then one
obtains from (2.16) that

|FN (τ)| ≤ 1
N

1
| sin2(τ/2)|

≤ 1
N

1
| sin2(ε/2)|

for all ε ≤ |τ | ≤ π

where the right had side goes to zero as N → ∞. �

Remark. Sometimes, kernels with the three properties (a), (b), and (c) are also
called positive kernels. However, the proof of the following theorem will show
that the definition of an approximate identity seems to be more appropriate.
Moreover, we will call a kernel positive if it satisfies only property (a). With
this definitions, a positive kernel need not be an approximate identity, in
general, but an approximate identity is always positive.

Theorem 2.4. Let f ∈ C(T) be a continuous function on T. Then its Fejér
series (2.14) converges uniformly to f , i.e.

lim
N→∞

‖σN (f ; ·) − f‖∞ = 0 .

Proof. Since f is given on the unit circle, the integral representation on the
right hand side of (2.14) may be written as

σN (f ; eiθ) =
1
2π

∫ π

−π

f(ei(θ−τ))FN (τ) dτ .

Therewith and using Properties (a) and (b) of the Fejér kernel, one gets

|σN (f ; eiθ) − f(eiθ)| ≤ 1
2π

∫ π

−π

|f(ei(θ−τ)) − f(eiθ)| FN (τ) dτ . (2.17)

We have to show that to every ε > 0 there exists an N0 ∈ N such that
|σN (f ; eiθ) − f(eiθ)| < ε for all N ≥ N0 and for all θ ∈ [−π, π). To this end,
we fix ε > 0 and choose δ > 0 such that
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sup
−δ≤τ≤δ

|f(ei(θ−τ)) − f(eiθ)| ≤ ε
2 for each θ ∈ [−π, π) . (2.18)

This is always possible since f is continuous at every θ. Next we split up the
integral in (2.17) into an integration over the interval [−δ, δ] and over the
interval δ ≤ |τ | ≤ π. Using (2.18) to upper bound the integral over [−δ, δ],
one obtains for an arbitrary θ ∈ [−π, π)

|σN (f ; eiθ) − f(eiθ)|

≤ ε

2
1
2π

∫ δ

−δ

FN (τ) dτ + 2 ‖f‖∞
1
2π

∫
|τ |≥δ

FN (τ) dτ . (2.19)

By properties (a) and (b) of the Fejér kernel, the first term on the right hand
side is certainly smaller than ε/2. Since ‖f‖∞ < ∞, Property (c) of the Fejér
kernel shows that there exists an N0 such that FN (τ) < ε/(4 ‖f‖∞) for all
N > N0 and all δ ≤ |τ | < π. Therewith also the second term in (2.19) is
upper bounded by ε/2 such that

|σN (f ; eiθ) − f(eiθ)| ≤ ε for all N ≥ N0 and all θ ∈ [−π, π) .

This is what we wanted to show. �

Since C(T) is dense in every Lp with 1 ≤ p < ∞, the previous theorem
implies that for every f ∈ Lp the Fejér series σN (f ; ·) converges to f in Lp.

2.1.3 Delayed first arithmetic means – de-la-Vallée-Poussin Series

As we will see, it is favorable in some sense, to introduce a delay K in
the first arithmetic mean (2.13) and to take the mean of the partial sums
sK , sK+1, . . . , sK+N−1. This gives the so-called delayed first arithmetic mean

σN,K(f ; eiθ) :=
1
N

K+N−1∑
k=K

sk(f ; eiθ) . (2.20)

wherein sk(f ; ·) is again the partial Fourier series (2.11) of f . For K = 0,
one obtains again the first arithmetic mean (2.13), i.e. σN,0 = σN . It is clear
that the delayed arithmetic mean can be expressed as the difference of the
two (not-delayed) arithmetic means σK+N and σK . Since N σK,N = (K +
N)σK+N − K σK one has the representation

σN,K(f ; eiθ) = (1 + K
N )σK+N (f ; eiθ) − K

N σK(f ; eiθ) (2.21)

for the delayed arithmetic means. Subsequently we consider mainly the par-
ticular case where K = N . Then the delayed arithmetic mean becomes

σN,N (f ; eiθ) = 2σ2N (f ; eiθ) − σN (f ; eiθ) . (2.22)
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For the particular case (K = N), we insert the partial sums (2.11) into (2.20).
A straight forward calculation gives the representations

σN,N (f ; eiθ) =
2N∑

n=−2N

w(n) f̂(n) einθ =
1
2π

∫ π

−π

f(eiτ )VN (θ − τ) dτ (2.23)

with the trapezoid window function

w(n) =

{
1 0 ≤ |n| ≤ N

2 (1 − n
2N ) N + 1 < |n| ≤ 2N

(2.24)

and with the kernel

VN (τ) = 2F2N (τ) −FN (τ) =
1
N

cos(Nτ) − cos(2Nτ)
2 sin2(τ/2)

. (2.25)

This particular (K = N) delayed first arithmetic mean (2.23) is called the
de-la-Vallée-Poussin series of f and (2.25) is the de-la-Vallée-Poussin kernel.

Similarly, forming the delayed arithmetic mean of the conjugate par-
tial sums s̃N (f ; eiθ), one obtains the conjugate de-la-Vallée-Poussin series
σ̃N,N (f ; eiθ) with the same window (2.24) and with the conjugate de-la-Vallée-
Poussin kernel

ṼN (τ) = 2 F̃2N (τ) − F̃N (τ) =
1

tan(τ/2)
− 1

N

sin(Nτ) − sin(2Nτ)
2 sin2(τ/2)

.

It should be noted, that the de-la-Vallée-Poussin series σN,N (f ; ·) of a function
f involves 4N − 1 Fourier coefficients of f whereas the Fejér series σN (f ; ·)
uses only 2N − 1 Fourier coefficients of f .

The Fejér series σN (f ; ·) of a continuous function f converges uniformly to
f . Since by (2.22) the de-la-Vallée-Possin series σN,N (f ; ·) is just the difference
of two Fejér series one has immediately the following corollary of Theorem 2.4.

Corollary 2.5. Let f ∈ C(T) be a continuous function on T. Then its de-la-
Vallée-Poussin series (2.23) converges uniformly to f , i.e.

lim
N→∞

‖σN,N (f ; ·) − f‖∞ = 0 .

Proof. By Theorem 2.4, the Fejér series σN (f ; eiθ) converges to f(eiθ), uni-
formly in θ and therefore, it is a Cauchy sequence (uniformly in θ). Using the
representation (2.22) of the de-la-Vallée-Poussin series, one obtains

|σN,N (f ; eiθ) − f(eiθ)| ≤ |σ2N (f ; eiθ) − f(eiθ)| + |σ2N (f ; eiθ) − σN (f ; eiθ)|

where the right hand side goes to zero as N → ∞, uniformly in θ. �
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Fig. 2.1. Window functions corresponding to the Fourier series, the first arithmetic
means, and the delayed first arithmetic mean for the order N = 100.

Fig. 2.2. Dirichlet, Fejér, and de-la-Vallée-Poussin kernel for the order N = 20.
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Figures 2.1 and 2.2 show the window functions and the kernels, respec-
tively, of the three weighted trigonometric series discussed above. The window
function w(n) determines primarily the convergence behavior of the partial
sums (2.2) and (2.3) as N → ∞. In the next subsection, for example, we will
show that the de-la-Vallée-Poussin mean possesses the property that the ap-
proximation error decreases almost as fast as possible as N → ∞. However, in
applications other properties of the approximation series may also be of some
importance. Therefore there does not exist an "optimal" window function,
in general, but for different applications, different window functions may be
favorable. Consequently, there exists many more possible window functions.
In Section 10.5 we will discuss the optimal kernel for the approximation of
spectral densities in some detail.

2.1.4 Best approximation by trigonometric polynomials

In what follows, P(N) denotes the set of all trigonometric polynomials with
degree at most N , i.e. the set of all functions of the form

f(eiθ) =
a0

2
+

N∑
k=1

ak cos(k θ) + bk sin(k θ) , θ ∈ [−π, π)

with real coefficients {ak}N
k=0 and {bk}N

k=1. The subset of all f ∈ P(N) with a
zero constant term a0 i.e. all f ∈ P(N) for which

∫ π

−π
f(eiθ) dθ = 0 is denoted

by P0(N).
Theorem 2.4 and Corollary 2.5 imply that every continuous function f ∈

C(T) can be uniformly approximated by a trigonometric polynomial, e.g. by
the Fejér or de-la-Vallée-Poussin mean. Thus given an ε > 0 one always finds
a polynomial p ∈ P(N) of sufficiently large degree N such that ‖f − p‖∞ < ε.
Of course, for practical reasons, it is desirable to find the polynomial with the
smallest degree N which satisfies the error requirement. We want to show that
in a sense the de-la-Vallée-Poussin means are such approximation polynomials
with an almost minimal degree.

Given a continuous function f ∈ C(T) and a fixed degree N ≥ 0, the best
approximation of f of degree N is defined as the number

BN [f ] := inf
pN∈P(N)

‖f − pN‖∞ . (2.26)

It is clear that BN [f ] tends to zero as N → ∞. This follows from letting
σN (f ; ·) be the Fejér series of f . Then BN [f ] ≤ ‖f − σN (f ; ·)‖∞ and the
right hand side converges to zero by Theorem 2.4. Next we observe that the
infimum in (2.26) is attained in P(N).

Proposition 2.6. To every f ∈ C(T) there exists a polynomial p∗N ∈ P(N)
such that ‖f − p∗N‖∞ = BN [f ].
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Proof. Let f ∈ C(T) be arbitrary and fix a degree N . Then by definition (2.26)
of BN [f ], there exists a sequence {p(k)

N }∞k=1 of polynomials in P(N) such that
to every ε > 0 there exists a K0 such that

‖f − p
(k)
N ‖∞ ≤ BN [f ] + ε . (2.27)

for all k ≥ K0. In particular, all trigonometric polynomials p
(k)
N are uniformly

bounded which implies that all Fourier coefficients p̂
(k)
N (n), n = 0,±1,±2, . . .

of these polynomials are uniformly bounded. By the theorem of Bolzano-
Weierstrass, for every n there exists a subsequence of p̂

(ki)
N (n) which converges

to a limit p̂∗N (n). The corresponding subsequence of trigonometric polynomials
converges uniformly to the polynomial

p∗N (eiθ) =
∑N

n=−N p̂∗N (n) einθ , θ ∈ [−π, π)

for which (2.27) gives ‖f − p∗N‖∞ ≤ BN [f ]. Since the reverse inequality is
obvious, one gets the desired statement. �

Even though we know that the best approximation is attained, it will be
difficult, in general, to determine the optimal polynomial p∗N . However, the
next theorem will show that the de-la-Vallée-Poussin mean σN,N (f ; ·) of f is
always near the optimal polynomial, in the sense that the approximation error
‖f − σN,N (f ; ·)‖∞ is upper bounded by four times the best approximation.

Theorem 2.7. Let f ∈ C(T) and let σN,K(f ; ·) with K ≥ N ≥ 0 be its delayed
arithmetic mean. Then

‖f − σN,K(f ; ·)‖∞ ≤ 2 (1 + K
N )BN [f ]

and in particular ‖f − σN,N (f ; ·)‖∞ ≤ 4BN [f ].

Proof. Fix the degree N and denote by pN ∈ P(N) the trigonometric poly-
nomial which attains the best approximation according to Proposition 2.6.
Write f as

f(eiθ) = pN (eiθ) + r(eiθ) , θ ∈ [−π, π) . (2.28)

It follows for the rest term that

|r(eiθ)| = |f(eiθ) − pN (eiθ)| ≤ ‖f − pN‖∞ = BN [f ]

for all θ ∈ [−π, π), which implies for the Fejér mean of r that

|σk(r; eiθ)| ≤ 1
2π

∫ π

−π

|r(eiτ )| Fk(θ − τ) dτ ≤ BN [f ]

for all θ ∈ [−π, π) and for every arbitrary k ≥ 0, using that Fk is an approx-
imate identity. Applying (2.21) one obtains for the delayed arithmetic mean
of r that
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|σN,K(r; eiθ)| ≤ (1 + K
N ) |σK+N (f ; eiθ)| + K

N |σK(f ; eiθ)|

≤ (1 + 2 K
N )BN [f ] (2.29)

for all θ ∈ [−π, π) and arbitrary K,N ≥ 0.
Consider the partial Fourier series (2.11) of the polynomial pN and assume

that k ≥ N . Then sk(pN ; eiθ) = pN (eiθ) for all θ. Therefore, it follows from
(2.28) for the partial Fourier series of f that

sk(f ; eiθ) = pN (eiθ) + sk(r; eiθ) , θ ∈ [−π, π)

for all k ≥ N , and for an arbitrary K ≥ N . The delayed first arithmetic mean
of f becomes

1
N

K+N−1∑
k=K

sk(f ; eiθ) = pN (eiθ) +
1
N

K+N−1∑
k=K

sk(r; eiθ) ,

which is equivalent to

σN,K(f ; eiθ) = pN (eiθ) + σN,K(r; eiθ) , θ ∈ [−π, π) . (2.30)

Finally, one obtains for all K ≥ N

|f(eiθ) − σN,K(f ; eiθ)| ≤ |f(eiθ) − pN (eiθ)| + |pN (eiθ) − σN,K(f ; eiθ)|

≤ BN [f ] + |σN,K(r; eiθ)|

≤ 2 (1 + K
N )BN [f ]

where the second inequality follows from the definition of pN and from (2.30),
whereas the last inequality is a consequence of (2.29). �

We already saw that the best approximation BN [f ] of every continuous
function f ∈ C(T) converges to zero as N → ∞. However, one would expect
that it is easier to approximate a "simple" function than a "complicated"
functions. Thus, the best approximation BN [f ] of a "simple" function should
converge more rapidly than for a complicated function. The following theorem
will show that this is indeed the case, and that in this context a "simple
function" is a smooth function, i.e. the smoother the function f , the faster
BN [f ] converges to zero.

Theorem 2.8. Let f be a k-times differentiable function on the unit circle T

whose k-th derivative f (k) has a modulus of continuity of ω. Then there exists
a constant Ck, which depends only on k, such that

BN [f ] ≤ Ck ω
(

1
N

)
N−k .

For functions from the Hölder-Zygmund class Λα(T) (cf. Section 1.3), we
obtain immediately the following corollary as a special case of Theorem 2.8.
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Corollary 2.9. If f ∈ Λα(T) for α > 0, then there exists a constant Cα such
that

BN [f ] ≤ Cα N−α .

Proof (Theorem 2.8). The proof consists of several steps. Each considers a
special case of Theorem 2.8.
1) First it is shown that if f ∈ C(T) and has modulus of continuity ω, then
BN [f ] < 12ω(1/N). To this end, we use the following approximation

fN (eiθ) =
1
2π

∫ π

−π

f(eiτ )JN (θ − τ) dτ (2.31)

with the so-called Jackson kernel

JN (τ) =
3

N (2N2 + 1)

(
sin(N t/2)
sin(t/2)

)4

. (2.32)

This approximation method has the following three properties1 which are used
throughout the rest of the proof.

(a) fN ∈ P(2N −2), i.e. fN is a trigonometric polynomial of degree 2N −2.
(b) fN ∈ P0(2N − 2) whenever

∫ π

−π
f(eiθ) dθ = 0.

(c) The kernel (2.32) satisfies the relation

1
2 π

∫ π

−π
JN (τ) dτ = 1 . (2.33)

Replacing θ − τ by s and splitting up the integral in (2.31) gives

fN (eiθ) =
1
2π

∫ 0

−π

f(ei(θ−s))JN (s) ds +
1
2π

∫ π

0

f(ei(θ−s))JN (s) ds

=
1
2π

∫ π

0

[
f(ei(θ+s)) + f(ei(θ−s))

]
JN (s) ds

where the second line follows after the change variable s �→ −s in the first
integral. Next we use property (2.33) of the kernel JN . This yields

∣∣f(eiθ) − fN (eiθ)
∣∣ =
∣∣∣∣ 1
2π

∫ π

0

[
2 f(eiθ) − f(ei(θ+s)) − f(ei(θ−s))

]
JN (s) ds

∣∣∣∣
≤ 1

2π

∫ π

0

(∣∣∣f(eiθ) − f(ei(θ+s))
∣∣∣+
∣∣∣f(eiθ) − f(ei(θ−s))

∣∣∣)JN (s) ds

≤ 1
π

∫ π

0

ω(s)JN (s) ds for every θ ∈ [−π, π) .

1 For a proof of these properties, we refer e.g. to [61, vol. 1, Chap. IV], or just note
that JN is a normalized square of the Fejér kernel (2.16).
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By the properties of the modulus of continuity (cf. Section 1.3), it holds ω(s) =
ω(N s 1

N ) ≤ (N s + 1)ω(1/N) such that

∣∣f(eiθ) − fN (eiθ)
∣∣ ≤ ω

(
1
N

) [N
π

∫ π

0

sJN (s) ds + 1
]

(2.34)

for every θ ∈ [−π, π). Next, we derive an upper bound for the integral on
the right hand side. To do this, the integration interval is divided into two
intervals as follows

∫ π

0

sJN (s) ds =
∫ π/N

0

sJN (s) ds +
∫ π

π/N

sJN (s) ds .

Now, in the first integral we use that | sin(N s/2)| ≤ N sin(s/2) and in the
second integral we apply the inequalities | sin(x)| ≤ 1 and sin(s/2) ≥ s/π for
all s ∈ [0, π). Therewith, one obtains

∫ π

0

sJN (s) ds ≤ 3
N (2N2 + 1)

{
N4

∫ π/N

0

sds + π4

∫ π

π/N

s−3 ds

}

≤ 3
N (2N2 + 1)

{
π2N2

2
+

π2N2

2

}
=

3π2N

2N2 + 1
.

Using this upper bound in (2.34), one obtains that

∣∣f(eiθ) − fN (eiθ)
∣∣ ≤
[
3π

2
+ 1
]

ω
(

1
N

)
< 6ω

(
1
N

)

for every θ ∈ [−π, π). Since fN is a trigonometric polynomial of degree 2N−2,
it follows that B2N−2[f ] < 6ω(1/N). Assume first that N = 2M is an even
natural number. Then

BN [f ] = B2 M [f ] ≤ B2 M−2[f ] < 6ω(1/M) = 6ω(2/N) ≤ 12ω(1/N) .

Similarly, if N = 2M − 1 is an odd natural number, one obtains

BN [f ] = B2 M−1[f ] ≤ B2 M−2[f ] < 6ω(1/M) = 6ω(2/[N + 1]) ≤ 12ω(1/N) .

This is what we wanted to show. Moreover, this already proves the theorem
for the case k = 0.

2) As a consequence of the first part, one obtains for the special case of
Lipschitz continuous functions f ∈ LipK that BN [f ] < 12K/N .

3) Assume now that the given function f satisfies the condition
∫ π

−π
f(eiθ) dθ = 0 . (2.35)

Then fN ∈ P0(2N − 2) by property (b) of the approximation polynomial fN .
Denote by bN [f ] the best approximation of f by polynomials in P0(N), i.e.
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bN [f ] := infpN∈P0(N) ‖f − pN‖∞ .

Following the derivation under point 1) of this proof, one obtains that bN [f ] ≤
12ω(1/N) for all f ∈ C(T) which satisfy (2.35). Moreover, as under point 2),
for all f ∈ LipK which satisfy (2.35), one obtains

bN [f ] ≤ 12K/N . (2.36)

4) Assume now that f possesses a bounded derivative f ′ and denote by
b′N = bN [f ′] the best approximation of f ′ in the class P0(N). Then there
exists a trigonometric polynomial u ∈ P0(N) such that

|f ′(eiθ) − u(eiθ)| ≤ b′N , for all θ ∈ [−π, π) . (2.37)

Integrating u gives a trigonometric polynomial v ∈ P0(N) such that v′(eiθ) =
u(eiθ). With the definition ϕ(eiθ) := f(eiθ) − v(eiθ) relation (2.37) can be
written as |ϕ′(eiθ)| ≤ b′N for all θ ∈ [−π, π). This shows in particular that ϕ ∈
Lipb′N

. Using point 2) of this proof, we get BN [ϕ] ≤ 12 b′N [f ]/N . Therefore,
by the definition of the BN [ϕ], there exists a w ∈ P(N) such that

∣∣ϕ(eiθ) − w(eiθ)
∣∣ = ∣∣f(eiθ) −

[
v(eiθ) + w(eiθ)

]∣∣ ≤ 12
N

b′N

for all θ ∈ [−π, π). Setting uN = v+w ∈ P(N), the last inequality shows that

BN [f ] ≤ 12
N

b′N . (2.38)

5) Assume now that f satisfies the conditions of the theorem. Then ac-
cording to 4), relation (2.38) holds. Moreover, the first derivative f ′ has again
a continuous and bounded derivative f ′′. Thus f ′ ∈ Lipb′′N

where b′′N denotes
the best approximation of f ′′ in P0(N). Moreover, since f is continuous on
the unit circle T, we have that

∫ π

−π
f ′(eiθ) dθ = f(π) − f(−π) = 0. Thus,

f ′ satisfies also the assumption (2.35) under point 3) of this proof. Applying
(2.36) to f ′ one obtains b′N = bN [f ′′] ≤ 12 b′′N/N . Now one applies the same
arguments to f ′′, f (3), and so forth, up to f (k−1). This gives the relations

b
(n)
N ≤ 12

N
b
(n+1)
N n = 1, 2, . . . , k − 1 . (2.39)

Finally, it follows from point 3) of this proof that b
(k)
N = bN [f (k)] ≤ 12ω(1/N).

Combining this with the inequalities (2.39) and with (2.38), one obtains the
statement of the theorem with Ck = 12k+1. �

2.2 Hardy Spaces on the Unit Disk

This section gives a short introduction to a class of function spaces which
contain analytic functions in the unit disk. Their importance for system theory
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results from the fact that their elements can be interpreted as causal transfer
functions of linear systems which are bounded in a certain Lp-norm. After
a short introduction of these so called Hardy spaces, we will present some
results which will be needed in later parts of this book.

2.2.1 Basic definitions

Denote by H the set of all functions that are analytic (i.e. holomorphic) inside
the unit disk D. Then, it is clear that every f(z) in H is bounded for all z ∈ D.
However, as |z| approaches 1, the modulus |f(z)| may go to infinity. Hardy
spaces are subsets of H whose elements satisfy a certain growth condition
toward the boundary of the unit disk.

Definition 2.10 (Hardy spaces). Let f ∈ H be an analytic function inside
the unit disk D. For 0 < p < ∞, we set

‖f‖p := sup
0<r<1

(
1
2π

∫ π

−π

|f(reiθ)|p dθ

)1/p

and for p = ∞, we define

‖f‖∞ := sup
z∈D

|f(z)| .

Then for 0 < p ≤ ∞ the Hardy class Hp is defined as the set of all functions
f analytic in D for which ‖f‖p < ∞.

It is not hard to verify that H∞ ⊂ Hq ⊂ Hp for all 0 < p < q < ∞. The Hardy
spaces were defined by their behavior inside the unit disk D. The following
theorem2 characterizes the radial limits of functions in Hp.

Theorem 2.11. Let f ∈ Hp with 1 ≤ p ≤ ∞. Then the radial limit

f̃(eiθ) := lim
r↗1

f(reiθ)

exists for almost all θ ∈ [−π, π). Moreover f̃ ∈ Lp with ‖f̃‖Lp = ‖f‖Hp .

Thus, the radial limit of every f ∈ Hp exists. From now on, this radial limit
will also be denoted by f . As a consequence Hp can be considered as a closed
subspace of Lp and therefore every Hp with 1 ≤ p ≤ ∞ is a Banach space by
itself. Moreover, since H2 is a closed subspace of the Hilbert space L2, it is
also Hilbert space with the inner product

〈f, g〉 = lim
r↗1

1
2π

∫ π

−π

f(reiθ) g(reiθ) dθ =
1
2π

∫ π

−π

f(eiθ) g(eiθ) dθ .

2 For a proof, we refer e.g. to [70, § 17.11], [30, § 3.2]
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Conversely, let f ∈ Hp. Then Cauchy’s theorem implies that all Fourier co-
efficients f̂(n) with negative index n vanish, because f is analytic inside the
unit disk D and therefore

f̂(n) =
1

2πi

∮
T

f(ζ) ζ−(n+1) dζ = 0 for all n < 0

where the integration over T has to be done counter-clockwise. Consequently,
Hp could be defined as the subspace of those Lp functions for which all neg-
ative Fourier coefficients are equal to zero:

Hp = {f ∈ Lp : f̂(n) = 0 for all n < 0} .

Therefore every f ∈ Lp with the Fourier series f(eiθ) =
∑∞

n=0 f̂(n) einθ can
be identified with the Hp-function

f(z) =
∑∞

n=0 f̂(n) zn

which is analytic for every z ∈ D.
As explained in Example 1.9, there is a natural isometric isomorphism

between L2 and �2(Z), given by associating every f ∈ L2 with the sequence
{f̂(n)}∞n=−∞ of its Fourier coefficients. In the same way, the Hardy space H2

is isometricly isomorphic to the sequence space �2(Z+) because �2(Z+) may
be considered as the subspace of all sequences {αk}∞k=−∞ in �2(Z) for which
αk = 0 for k < 0.

The next theorem gives a useful characterization of the Fourier coefficients
of H1 functions, which will be used frequently in the following. The proof is
omitted but may be found in [30] or [41], for example.

Theorem 2.12 (Hardy’s inequality). Let f ∈ H1 with Fourier expansion
f(z) =

∑∞
k=0 f̂(k) zk. Then its Fourier coefficients satisfy the inequality

‖f‖1 =
1
2π

∫ π

−π

|f(eiθ)|dθ ≥ 1
π

∞∑
k=0

|f̂(k)|
k + 1

. (2.40)

2.2.2 Zeros of Hp-functions

Let f ∈ Hp be an arbitrary function in a certain Hardy space Hp. Define by

Z(f) := {z ∈ T : f(z) = 0}

the zero set of f , i.e. the set of all those points in D where f is zero. For
every function f holomorhic in the unit disk D, it is well known that either
Z(f) = D, or Z(f) has no limit point in D. In the first case f is identically zero
which is of little interest. Thus, the zeros of a non-zero holomorphic function
f in D are isolated points in T, and if the number of zeros is infinite, the limit
points of the zeros have to lie outside of D, i.e. on the boundary T of D. If we
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only assume that f is holomorphic in D, this is all we can say about the zeros
of f , by the Theorem of Weierstrass (see e.g. [70, Chapter 15]). However, if we
consider functions in the Hardy spaces Hp which are not only holomorphic in
D but satisfy a certain growth behavior toward the boundary of D, more can
be said about the distribution of the zeros in D, namely that the zeros have to
converge with a certain rate toward the limit points on T (if they exist). The
basis of deriving these conditions on the zeros of Hp functions is the following
Jensen’s formula.

Theorem 2.13 (Jensen’s formula). Let f ∈ H(D) be a holomorphic func-
tion in D with f(0) �= 0, let 0 < r < 1, and let α1, . . . , αN be the zeros
of f in the closed disk Dr(0) = {z ∈ C : |z| ≤ r} listed according to their
multiplicities. Then

|f(0)|
N∏

n=1

r

|αn|
= exp

(
1
2π

∫ π

−π

log
∣∣f(reiθ)

∣∣ dθ

)
. (2.41)

Remark 2.14. Since f is considered in the disk Dr(0) ⊂ D with r < 1 and
since f is holomorphic in D, the zeros of f have no limit point in Dr(0).
Consequently, the number N of zeros in Dr(0) is finite.

Remark 2.15. The assumption f(0) �= 0 is no real limitation. Because if f
has a zero of order m at 0, one can apply Jensen’s formula to the function
f(z)/zm.

Proof. One orders the zeros {αn}N
n=1 of f in Dr(0) according to their location

in Dr(0) and on the boundary of Dr(0), i.e. such that |α1| ≤ · · · ≤ |αM | < r
and |αM+1| = · · · = |αN | = r. Define the function

g(z) := f(z)
M∏

n=1

r2 − αnz

r(αn − z)

N∏
n=M+1

αn

αn − z
, z ∈ D . (2.42)

It is clear that g has no zeros in Dr(0) and since f ∈ H(D), also g ∈ H(D).
Thus, there exists a ρ > r such that g has no zeros in the open disk Dρ(0)
and is holomorphic in Dρ(0). It follows that log |g| is a harmonic function in
Dρ(0) (see e.g. [70, § 13.12]). Consequently, log |g| possesses the mean value
property

log |g(0)| =
1
2π

∫ π

−π

log
∣∣g(reiθ)

∣∣ dθ . (2.43)

To determine the right hand side of (2.43), one easily verifies that the factors
in (2.42) for 1 ≤ n ≤ M have modulus 1. For the remaining factors with
M + 1 ≤ n ≤ N holds

αn

αn − z
=

1
1 − ei(θ−τn)
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if we write αn = reiτn and z = reiθ. Therewith (2.43) becomes

log |g(0)| =
1
2π

∫ π

−π

log
∣∣f(reiθ)

∣∣ dθ −
N∑

n=M+1

1
2π

∫ π

−π

log
∣∣∣1 − ei(θ−τn)

∣∣∣ dθ

(2.44)

It is a consequence of Cauchy’s theorem that

1
2π

∫ π

−π
log
∣∣1 − eiθ

∣∣ dθ = 0

(see e.g. [70, § 15.17]) which implies that the second term on the right hand
side of (2.44) is zero. The definition (2.42) of the function g gives at once

|g(0)| = |f(0)|
∏M

n=1
r

αn
.

Taking the exponential function of (2.43) shows finally (2.41). �

The next theorem proves a necessary condition on the zeros of a function f
in order that f ∈ Hp for some 1 ≤ p ≤ ∞.

Theorem 2.16. Let f ∈ Hp with 1 ≤ p ≤ ∞ be an analytic function in D

with f(0) �= 0, and let {αn}∞n=1 be the zeros of f , listed according to their
multiplicities. Then these zeros satisfy the Blaschke condition

∞∑
n=1

(1 − |αn|) < ∞ . (2.45)

Proof. If f has only finitely many zeros condition (2.45) is satisfied. Therefore,
we assume that there are infinitely many zeros. Denote by N(r) the number
of zeros of f in the closed disk Dr(0) for a radius r < 1. Fix K ∈ N and choose
r < 1 such that N(r) > K. Then Jensen’s formula gives

|f(0)|
K∏

n=1

r

|αn|
≤ |f(0)|

N(r)∏
n=1

r

|αn|
= exp

(
1
2π

∫ π

−π

log
∣∣f(reiθ)

∣∣ dθ

)
< ∞

where the right hand side is bounded since f ∈ Hp ⊂ H1. Thus there exists a
constant C0 < ∞ such that

∏K
n=1 |αn| ≥ rK |f(0)|/C0. Since this inequality

holds for arbitrary K, it is still valid for K → ∞, i.e.

∞∏
n=1

|αn| ≥
|f(0)|
C0

> 0 .

Now we define un := 1 − |αn| for all n ∈ N and notice that the power series
expansion of the exponential function implies 1 − x ≤ exp(−x) for all x ∈ R.
Replacing x by un and multiplying the resulting inequalities gives
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0 <

∞∏
n=1

|αn| =
∞∏

n=1

(1 − un) ≤
∞∏

n=1

exp(−un)

≤ exp

(
−

∞∑
n=1

un

)
= exp

(
−

∞∑
n=1

(1 − |αn|)
)

which implies (2.45). �

Remark 2.17. Let {αn} be a sequence in D with |αn| = (n − 1)/n. This se-
quence does not satisfy the Blaschke condition (2.45) and therefore there
exists no function f in any Hp-space (1 ≤ p ≤ ∞) with zeros at αn. However,
by the Weierstrass factorization theorem there exists a holomorphic function
f ∈ H(D) with zeros at αn, but with ‖f‖p = ∞ for all 1 ≤ p ≤ ∞. Conversely,
if a function f ∈ Hp is known to have zeros at {αn}n∈N, then this function
has to be identically zero in D.

So the Blaschke condition (2.45) is a necessary condition on the zeros of a
holomorphic function f in order that f belongs to a Hardy space Hp. It even
turns out that (2.45) is also a sufficient condition for the existence of a function
f ∈ Hp, 1 ≤ p ≤ ∞ which has zeros only at the prescribed points {αn}∞n=1.
The form of such a function is characterized in the following theorem.

Theorem 2.18 (Blaschke product). Let {αn}∞n=1 be a sequence of non-
zero complex numbers in D such that {αn}∞n=1 satisfies the Blaschke condition
(2.45). Let k ≥ 0 be a nonnegative integer, and define the Blaschke product

B(z) := zk
∞∏

n=1

|αn|
αn

αn − z

1 − αn z
, z ∈ D . (2.46)

Then B ∈ H∞ ⊂ Hp, 1 ≤ p < ∞, and B has zeros only at the points αn and
a zero of order k at 0. Moreover, |B(z)| < 1 for all z ∈ D and |B(eiθ)| = 1
almost everywhere.

Remark 2.19. The term "Blaschke product" will be used for all functions of
the form (2.46) even if the product contains only a finite number of factors
and even if it contains no factor, i.e. even if B(z) = 1 for all z ∈ D.

The function B(z) in the above theorem is the product of zk and of the factors

bn(z) :=
|αn|
αn

αn − z

1 − αn z
, z ∈ D . (2.47)

Each factor bn has a zero at z = αn inside the unit disk D, and a pole at
z = α−1

n outside the closed unit disk D. Thus, each factor bn ∈ H(D) is
a holomorphic function in D with precisely one zero at αn. Moreover, it is
easily verified that each factor has the properties that |bn(z)| < 1 for all
z ∈ D and that |bn| = 1 for all |z| = 1. The Blaschke product is given by
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the infinite product B(z) = zk
∏∞

n=1 bn(z) of holomorphic functions. To prove
Theorem 2.18, we basically have to show that this product converges uniformly
to a holomorphic function. Therefore, as a preparation, the following Lemma
studies conditions for the uniform convergence of infinite products.

Lemma 2.20. Let {un}∞n=1 be a sequence of bounded complex functions on
a subset S ⊂ D of the unit disk such that the sum

∑∞
n=1 |un(z)| converges

uniformly on S. Then the product

f(z) =
∞∏

n=1

[1 + un(z)]

converges uniformly on S. Moreover f(z) = 0 at some z ∈ S if and only if
un(z) = −1 for some n ∈ N.

Proof. The assumption on {un} implies that there exists a constant C0 < ∞
such that

∑∞
n=1 |un(z)| ≤ C0 for all z ∈ S. The power series expansion

of the exponential function shows that 1 + x ≤ exp(x). Replacing x by
|u1(z)|, |u2(z)|, . . . and multiplying the inequalities yields

∞∏
n=1

(1 + |un(z)|) ≤ exp

( ∞∑
n=1

|un(z)|
)

≤ exp (C0) =: C1 < ∞ (2.48)

for all z ∈ S. Next, we define the partial products

pN (z) :=
N∏

n=1

[1 + un(z)] and qN (z) :=
N∏

n=1

[1 + |un(z)|]

and show that for every N ∈ N

|pN (z) − 1| ≤ qN (z) − 1 . (2.49)

For N = 1 this inequality is certainly satisfied. For N > 1, the statement is
proved by induction. For pN+1(z) holds obviously

pN+1(z) − 1 = pN (z) [1 + uN+1(z)] − 1

= [pN (z) − 1] [1 + uN+1(z)] + uN+1(z) .

Therewith, it follows for the modulus

|pN+1(z) − 1| ≤ |pN (z) − 1| |1 + uN+1(z)| + |uN+1(z)|
≤ (qN (z) − 1) (1 + |uN+1(z)|) + |uN+1(z)|
= qN+1(z) − 1

where for the second line we used that (2.49) holds for pN .
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Now we apply (2.49) to (2.48). This shows that |pN (z)− 1| ≤ qN (z)− 1 ≤
C1−1 for all N ∈ N and all z ∈ S. Taking C2 = C1, one obtains |pN (z)| ≤ C2

for all N ∈ N and z ∈ S. Since
∑∞

n=1 |un(z)| is assumed to converge uniformly,
for every 0 < ε < 1/2 there exists an N0 ∈ N such that

∑∞
n=N+1 |un(z)| < ε (2.50)

for all N > N0 and for all z ∈ S. Now, for M > N > N0 holds

|pM (z) − pN (z)| = |pN (z)|
∣∣∣∣∣

M∏
n=N+1

[1 + un(z)] − 1

∣∣∣∣∣
≤ |pN (z)|

(
M∏

n=N+1

[1 + |un(z)|] − 1

)

≤ |pN (z)| (eε − 1) ≤ 2 |pN (z)| ε ≤ 2C2 ε (2.51)

where the first inequality follows from (2.49), whereas the last line from (2.48),
(2.50), and from the uniform boundedness of pN . This last result shows that
pN is a Cauchy sequence in S which converges uniformly to a limit function
f on S.

Finally (2.51) implies |pM (z)| ≥ (1−2ε)|pN0(z)| for all M > N0. It follows
for the limit function f that

|f(z)| ≥ (1 − 2ε)|pN0(z)|

for all z ∈ S. This shows that f(z) = 0 if and only if pN0(z) = 0, i.e. if and
only if un(z) = −1 for some n. �

With this we are able to prove Theorem 2.18.

Proof (Theorem 2.18). Without loss of generality, we assume that k = 0.
Again, we define the individual factors bn of the Blaschke product by (2.47),
and consider the term 1 − bn inside the unit disk. Adding the term 1/|αn| −
1/|αn| followed by a straight forward rearranging yields

1 − bn(z) =
1

|αn|

(
1 − |αn|2 − αnz

1 − αnz

)
− 1 − |αn|

|αn|

= (1 − |αn|)
|αn| + αnz

(1 − αnz) |αn|
.

Remembering that all zeros αn are inside the unit disk D gives

|1 − bn(z)| ≤ (1 − |αn|)
1 + r

1 − r
, for all |z| ≤ r < 1

and consequently
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∞∑
n=1

|1 − bn(z)| ≤ 1 + r

1 − r

∞∑
n=1

(1 − |αn|) .

This shows that
∑∞

n=1 |1 − bn(z)| converges uniformly on compact subsets of
D since the zeros αn satisfy the Blaschke condition (2.45).

Setting un(z) = bn(z) − 1, Lemma 2.20 implies that B(z) =
∏∞

n=1 bn(z)
converges uniformly on compact subsets of D and that B(z) = 0 if and only
if Bn(z) = 0 for some n ∈ N. Since every bn is holomorphic in D and since
B converges uniformly on compact subsets of D, B(z) is also holomorphic in
D (see e.g. [70, Theorem 10.28]). Moreover, since each factor bn has absolute
value less than 1 in D, it follows that |B(z)| < 1 for all z ∈ D, and consequently
that B ∈ H∞ with ‖B‖∞ ≤ 1.

Since B ∈ H∞, the boundary function B(eiθ) exists almost everywhere for
θ ∈ [−π, π) , and since B(z) has absolute value smaller that 1 for all z ∈ D,
the boundary function has to satisfy |B(eiθ)| ≤ 1 almost everywhere. Now, let
BN (z) =

∏N
n=1 bn(z) the partial product of B. Then B(z)/BN (z) is again a

Blaschke product, and thus holomorphic in D. Consequently, it satisfies the
mean value property. Together with the triangle inequality, one has

B(0)
BN (0)

≤ 1
2π

∫ π

−π

∣∣∣∣ B(eiθ)
BN (eiθ)

∣∣∣∣ dθ =
1
2π

∫ π

−π

∣∣B(eiθ)
∣∣ dθ

where the last equality is a consequence of |BN (eiθ)| = 1 for all θ ∈ [−π, π).
Now, letting N → ∞, we obtain that 1 ≤ 1

2π

∫ π

−π

∣∣B(eiθ)
∣∣ dθ. Consequently,

since |B(eiθ)| ≤ 1, one gets |B(eiθ)| = 1 almost everywhere. �
Thus, given a function f ∈ Hp with 1 ≤ p ≤ ∞ with zeros at {αn}n∈N

(which will satisfy the Blaschke condition (2.45)), we can form the Blaschke
product B ∈ H∞ with the zeros of f . Now we can try to divide out the zeros
of f by dividing f by the corresponding Blaschke product B. Of course, the
resulting quotient g := f/B is again a holomorphic function in D, and since
B has absolute value 1 almost everywhere on the unit circle, we even expect
that g may have the same Hp-norm as the original f . That this reasoning is
indeed true is shown by the next theorem.

Theorem 2.21. Let f ∈ Hp with 1 ≤ p ≤ ∞, let B be the Blaschke product
(2.46) formed with the zeros of f , and set g(z) := f(z)/B(z), z ∈ D. Then
g ∈ Hp with ‖g‖p = ‖f‖p.

Proof. Let {αn}∞n=1 be the sequence of zeros of f in D, and let bn(z) be the
factor of the Blaschke product corresponding to the zero αn as defined in
(2.47). Moreover, let

BN (z) =
∏N

n=1 bn(z) , z ∈ D

be the partial Blaschke product formed by the first N zeros of f , and let
gN = f/BN . For every fixed N , BN (r eiθ) → 1 uniformly as r → 1. It follows
that gN (r eiθ) → f(eiθ) and consequently that
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‖gN‖p = ‖f‖p . (2.52)

Since |bn(z)| < 1 for all z ∈ D and all n, we have that

0 ≤ |g1(z)| ≤ |g2(z)| ≤ · · · ≤ ∞ and |gn(z)| → |g(z)|

for every z ∈ D. Fixing 0 < r < 1, set gr(z) := g(r z) and (gN )r(z) := gN (r z),
and applying Lebesgue’s monotone convergence theorem, one gets

lim
N→∞

‖(gN )r‖p
p = lim

N→∞

1
2π

∫ π

−π

|gN (r eiθ)|p dθ =
1
2π

∫ π

−π

|g(r eiθ)|p dθ = ‖gr‖p
p .

Since gN is analytic in D and because of (2.52), the left hand side is upper
bounded by ‖f‖p

p for every 0 < r < 1. Leting r → 1, we obtain ‖g‖p ≤ ‖f‖p.
However, since |B(z)| ≤ 1 for all z ∈ D, we also have that |g(z)| ≥ |f(z)| for
all z ∈ D, which shows that we even have equality, i.e. that ‖g‖p = ‖f‖p. �

2.2.3 Inner-Outer factorization

The last theorem showed that every function f ∈ Hp can be factorized into a
Blaschke product and a function without zeros in the unit disk. This section
considers a somewhat different factorization of functions in Hp into so called
inner and outer functions.

Definition 2.22 (Inner and Outer functions). An inner function is an
analytic function f ∈ H∞ such that |f(z)| ≤ 1 in the unit disk and such that
|f(eiθ)| = 1 almost everywhere on the unit circle.
An outer function is an analytic function O in the unit disk D of the form

O(z) = c exp
(

1
2π

∫ π

−π

log φ(eiτ )
eiτ + z

eiτ − z
dτ

)
. (2.53)

Here c is a constant with |c| = 1, and φ is a positive measurable function on
T such that log φ ∈ L1.

Every Blaschke product is an inner function by Theorem 2.18. However, there
exist other inner functions. The following theorem characterizes all inner func-
tions as the product of a Blaschke product and a so-called singular function.

Theorem 2.23. Let f ∈ Hp be an inner function and let B be the Blaschke
product formed with the zeros of f . Then there exists a positive Borel measure
μ on T which is singular with respect to Lebesgue measure and a complex
constant c with |c| = 1 such that

f(z) = B(z)S(z) , z ∈ D (2.54)

with

S(z) = c exp
(
−
∫ π

−π

eiτ + z

eiτ − z
dμ(τ)

)
, z ∈ D . (2.55)
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We will call the function S in the factorization (2.54) a singular function.
Thus, an inner factor is the product of a Blaschke product B and of a singular
function S, in general. Nevertheless, it may happen that B, or S, or even both
factors are identically 1.

Example 2.24. Probably the simplest singular function is obtained by taking
μ in (2.55) to be the unit mass at τ = 0 and by letting c = 1. This yields the
singular function

S(z) = exp
(

z + 1
z − 1

)
, z ∈ D .

It is a holomorphic function in D with an essential singularity at z = 1.

Proof (Theorem 2.23). Let g := f/B, then g is a holomorphic function with-
out any zeros in D, from which follows that log |g| is a harmonic function in D

(see e.g. [70, Theorem 13.12]). By Theorem 2.21 it follows that |g(z)| ≤ 1 for
z ∈ D and that |g(eiθ)| = 1 almost everywhere, which implies that log |g| ≤ 0
in D and log |g(eiθ)| = 0 a.e. on T. It is known that every bounded harmonic
function in D can be represented by the Poisson integral of a unique Borel
measure on T (see e.g. [70, Theorem 11.30]). We conclude for our case that
log |g| is the Poisson integral of −dμ with some positive Borel measure μ on
D. However, since log |g(eiθ)| = 0 a.e. on T the measure μ has to be singular
(with respect to Lebesgue measure). Now log |g|, as the Poisson integral of
−dμ, is the real part of the function

G(z) = −
∫ π

−π

eiτ + z

eiτ − z
dμ(τ)

(see e.g. Section 5.1) which implies that S has the form (2.55). �

The previous theorem clarified the general form of an inner function
whereas the general form of an outer function is given by (2.53). The next the-
orem studies basic properties of outer functions needed frequently throughout
this book.

Theorem 2.25. Let Oφ be an outer function related to a positive (real valued)
measurable function φ as in Definition 2.22. Then

(a) log |Oφ| is the Poisson integral of log φ.
(b) limr→1 |Oφ(reiθ)| = φ(eiθ) for almost all θ ∈ [−π, π).
(c) Oφ ∈ Hp if and only if φ ∈ Lp and ‖Oφ‖p = ‖φ‖p.

Proof. Statement (a) follows from the definition of the outer function (2.53)
since the exponent of Oφ can be written as

1
2π

∫ π

−π

log φ(eiτ )
eiτ + reiθ

eiτ − reiθ
dτ = (P log φ)(reiθ) + i (Q log φ)(reiθ)
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with the Poisson integral P log φ and the conjugate Poisson integral Q log φ
of log φ (cf. Section 5.1). It follows that |Oφ| = exp(P log φ) which proves (a).

The Poisson integral (Pf)(reiθ) of a function f ∈ L1 converges to f in the
L1-norm as r → 1 (see e.g. Theorem 5.3 for a proof). By this property of the
Poisson integral (a) implies (b).

Applying statement (b), we have

‖φ‖p
p =

1
2π

∫ π

−π

|φ(eiθ)|p dθ =
1
2π

∫ π

−π

lim
r→1

|Oφ(reiθ)|p dθ

≤ lim
r→1

1
2π

∫ π

−π

|Oφ(reiθ)|p dθ = ‖Oφ‖p
p

where the inequality follows from Fatou’s Lemma (see e.g. [70, § 1.28]). Thus
‖φ‖p ≤ ‖Oφ‖p. For the converse assume that φ ∈ Lp. Then Jensen’s inequality
(cf. [70, §3.3]) gives

|Oφ(reiθ)|p = exp
(

1
2π

∫ π

−π

log φp(eiτ )Pr(θ − τ) dτ

)

≤ 1
2π

∫ π

−π

φp(eiτ )Pr(θ − τ) dτ

in which the left hand side of the inequality is just the Poisson integral P log φp

with the Poisson kernel Pr (cf. also (5.5) and (5.4) for the definition). Inte-
gration of the last inequality with respect to θ and using that the Poisson
kernel Pr satisfies

∫ π

−π
Pr(θ) dθ = 1 (cf. Section 5.2) gives ‖Oφ‖p ≤ ‖φ‖p.

This finishes the proof of (c). �

Finally, the following theorem will give the desired factorization result
under point (c). It shows that every function f ∈ Hp can always be factorized
into an inner and an outer function.

Theorem 2.26. For 1 ≤ p ≤ ∞ let f ∈ Hp be a nonzero function. Then

(a) log |f | ∈ L1.
(b) the outer function defined by

Of (z) = exp
(

1
2π

∫ π

−π

log
∣∣f(eiτ )

∣∣ eiτ + z

eiτ − z
dτ

)
, z ∈ D

is an element of Hp.
(c) there exists an inner function If such that f = Of If .

Proof. We consider first the case p = 1. Assume that f ∈ H1, let B be
the Blaschke product (2.46) formed with the zeros of f , and set g = f/B.
By Theorem 2.21 g ∈ H1 and |g(eiθ)| = |f(eiθ)| for almost all θ ∈ [−π, π).
Therefore, it is sufficient to prove the theorem for g instead of f . Since g is
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holomorphic without any zero in D the function log |g| is harmonic in D (see
e.g. [70, § 13.12]) and therefore it satisfies (2.43). Since g(0) �= 0 we assume,
without loss of generality, that g(0) = 1 and define the two functions

log+ x :=
{

0 , x < 1
log x , x ≥ 1 and log− x :=

{
log(1/x) , x < 1
0 , x ≥ 1

on the positive real axis, such that obviously log x = log+ x − log− x. There-
with, it follows from (2.43) that

1
2π

∫ π

−π

log− |g(eiθ)|dθ =
1
2π

∫ π

−π

log+ |g(eiθ)|dθ ≤ 1
2π

∫ π

−π

|g(eiθ)|dθ = ‖g‖1 .

This shows that log+ |g| and log− |g| are in L1, such that log |g| ∈ L1, which
proves (a). It follows that Of is a well defined outer function, and Theo-
rem 2.25 (c) implies that Of ∈ H1, proving (b).

It remains to show (c). To this end we show next that |g(z)| ≤ |Og(z)|
for all z ∈ D. Since we know from Theorem 2.25 that log |Og| is equal to the
Poisson integral of log |g|, we have to show

log |g(z)| ≤ log |Og(z)| = (P log |g|)(z) . (2.56)

For 0 < r < 1 and z ∈ D we define gr(z) := g(r z). Since g is a holomorphic
function without zeros in D, log |gr| is harmonic in D (see e.g. [70, Theo-
rem 13.12]) and can be represented as a Poisson integral. We therefore have

log |gr(z)| = P [log |gr|] (z) = P
[
log+ |gr|

]
(z) − P

[
log− |gr|

]
(z) . (2.57)

We know from Theorem 2.11 that gr(eiθ) → g(eiθ) as r → 1. It follows that
the left hand side of (2.57) converges to log |g| and that the first term on the
right hand side converges to P

[
log+ |g|

]
(z) as r → 1. This last statement

follows from
∣∣P [log+ |gr|

]
(ρ eiθ) − P

[
log+ |g|

]
(ρ eiθ)

∣∣
≤ 1

2π

∫ π

−π

∣∣log+ |gr(eiτ )| − log+ |g(eiτ )|
∣∣ Pρ(θ − τ) dτ

≤ 1
2π

∫ π

−π

∣∣|gr(eiτ )| − |g(eiτ )|
∣∣ Pρ(θ − τ) dτ

and from the fact that gr(eiθ) → g(eiθ). Here Pρ denotes the Poisson kernel
(see (5.5) and (5.4) for the definition), and the last line was obtained using
the relation | log+ u − log+ v| ≤ |u − v| for all real numbers u, v, which may
easily be verified. Therewith, letting r → 1 in (2.57), one obtains

P
[
log− |g|

]
(z) ≤ lim

r→1
P
[
log− |gr|

]
(z) = P

[
log+ |gr|

]
(z) − log |g(z)|
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where the first inequality follows from Fatou’s Lemma (see e.g. [70, § 1.28]).
Combining log+ and log− to log, one obtains the desired relation (2.56), which
proves that |g(z)| ≤ |Og(z)| for all z ∈ D.

Now we define the function

Ig(z) :=
g(z)

Og(z)
z ∈ D .

Obviously, Ig is analytic in D, |Ig(z)| ≤ 1 for all z ∈ D and |Ig(eiθ)| = 1 almost
everywhere. Thus Ig is an inner function. �

By Theorem 2.23, every inner function can be written as the product of
a Blaschke product and an singular function. Consequently, it follows form
point (c) of the previous theorem that every f ∈ Hp may be written as

f(z) = Of (z)Bf (z)Sf (z) , z ∈ D

with an outer function Of , the Blaschke product Bf formed with the zeros of
f , and a singular function Sf .

2.3 Vector-valued Hardy Spaces

The previous section introduced the Hardy space of complex valued functions.
In general, it is possible to extend the concept of Hardy spaces to functions
taking values in arbitrary Banach spaces. To give a completely satisfactory
definition of such spaces, one needs some results from the integration theory
of functions with values in Banach spaces. Although this is a straight for-
ward generalization of the standard integration of complex valued Lebesgue
measurable functions, it would be out of the scope of our intentions here.
However, for the case of functions with values in a separable or even a finite
dimensional Hilbert spaces, almost the whole theory can be led back to the
scalar case of the previous section. Therefore, we shall restrict ourselves to
these cases. Later, we will be especially interested in the finite dimensional
case, since this is the suitable framework for modeling linear systems with a
finite number of inputs and outputs. Nevertheless, the basic definitions are
given for the slightly more general case of separable Hilbert spaces.

We start with a formal extension of �p and Lp spaces to the case of vector
valued functions. To emphasize the difference to the scalar case, vector valued
functions will be denoted by bold face letters.

Definition 2.27 (Vector-valued �p spaces). Let H be a separable Hilbert
space and let f̂ = {f̂(k)}∞k=−∞ be a double infinite sequence of elements from
H. For 1 ≤ p < ∞ and p = ∞ define

‖f̂‖�p :=

( ∞∑
k=−∞

‖f̂(k)‖p
H

)1/p

and ‖f̂‖�∞ := sup
k∈Z

‖f̂(k)‖H
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respectively.
Then, for 1 ≤ p ≤ ∞ the set �p(H) denotes the set of all double infinite
sequences f̂ = {f̂(k)}∞k=−∞ with values in H for which ‖f̂‖�p < ∞ and �p

+(H)
denotes the set of all infinite sequences f̂ = {f̂(k)}∞k=0 in H with ‖f̂‖�p < ∞.

Of course, �p
+(H) my be considered as the subspace of �p(H) in which for all

elements f̂ holds that f̂(k) = 0 for all k < 0. Moreover, it is clear that for the
special case H = C, one obtains again the usual �p spaces. As in the scalar
case, �2(H) is a Hilbert space with the inner product

〈
f̂ , ĝ
〉

�2(H)
=

∞∑
k=−∞

〈
f̂(k), ĝ(k)

〉
H .

Definition 2.28 (Vector-valued Lp spaces). Let H be a separable Hilbert
space and let f be a measurable function with values in H. For 1 ≤ p < ∞
define

‖f‖p :=
(

1
2π

∫ π

−π

‖f(eiθ)‖p
H dθ

)1/p

and for p = ∞ define

‖f‖∞ := ess sup
ζ∈T

‖f(ζ)‖H .

Then for 1 ≤ p ≤ ∞ the set Lp(H) denotes the set of all measurable functions
f with values in H for which ‖f‖p < ∞.

Of course, if the dimension of the Hilbert space H is one, the above definition
of Lp(H) coincides with the usual Lp-spaces on the unit circle, and L2(H) is
a Hilbert space with the inner product

〈f , g〉L2(H) =
1
2π

∫ π

−π

〈
f(eiθ), g(eiθ)

〉
H dθ .

Since H is assumed to be separable there exists a complete orthonormal
basis {en}∞n=1 in H such that every f ∈ H can be written as f = f1 e1 +
f2 e2 + · · · + fn en + · · · where fn := 〈f ,en〉H are the components of f with
respect to the basis {en}∞n=1 and the norm of f in H is just the �2-norm of
the sequence (f1, f2, · · · ) of its components: ‖f‖2

H =
∑∞

n=1 |fn|2. Moreover,
given a sequence f̂ = {f̂(k)}∞k=−∞ with values in the Hilbert space H, we can
define its coordinate sequences f̂n = {f̂n(k)}∞k=−∞ with n = 1, 2, . . . by

f̂n(k) = 〈f̂(k),en〉H , k ∈ Z , n ∈ N .

Similarly, given a function f on the unit circle with values in H, its coordinate
functions fn, n = 1, 2, . . . are defined by
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fn(ζ) = 〈f(ζ),en〉H , ζ ∈ T , n ∈ N .

The following proposition gives a characterization of the spaces �p(H) and
Lp(H) in terms of the individual coordinates. It will be show that �p(H) is
equivalent to the set of all sequences f̂ = {f̂n}∞n=1 whose individual entries
f̂n = {f̂n(k)}∞k=−∞ belong to �p and it will be show that Lp(H) is precisely
the set of all sequences f = {fn}∞n=1 whose individual components fn are
elements of Lp.

Proposition 2.29. Let H be a separable Hilbert space with an arbitrary or-
thonormal basis {en}∞n=1 and let 1 ≤ p ≤ ∞.
A sequence f̂ of elements in H belongs to �p(H) if and only if all coordinate
sequences f̂n = 〈f̂ ,en〉H, n ∈ N belong to �p.
A function f on the unit circle T and with values in H belongs to Lp(H) if
and only if all coordinate functions fn = 〈f ,en〉, n ∈ N belong to Lp.

Proof. We prove the statement for Lp(H). By the identification of H with �2

and with the triangle inequality, one has

‖f(ζ)‖H =
(∑∞

n=1 |fn(ζ)|2
)1/2 ≤

∑N
n=1 |fn(ζ)| for every ζ ∈ T

and provided that the right hand side exists. Therewith one gets at once
‖f‖∞ ≤

∑∞
n=1 ‖fn‖∞. For p < ∞ we take both sides to the power p, integrate

over the unit circle T, and apply Minkowski’s inequality to the right hand
side integral. This gives ‖f‖p ≤

∑∞
n=1 ‖fn‖p which proves the “if” part of the

proposition.
To verify the “only if” part, note that by the identification of H with �2 one
has that ‖f(ζ)‖p

H ≥ |fn(ζ)|p for all ζ ∈ T and for all n = N. This gives
immediately ‖f‖∞ ≥ ‖fn‖∞ and for p < ∞, the integration of both sides,
gives ‖f‖p ≥ ‖fn‖p for every 1 ≤ n ≤ N .
The analogous proof for �p(H) is left as an exercise. �

As in the scalar case, we want to consider the Fourier series expansion of
functions in Lp(H). To avoid the introduction of the integration over functions
with values in Hilbert spaces, the Fourier series are introduced in the weak
sense, as follows: Let f ∈ L1(H), we want to write f in the form

f(eiθ) =
∞∑

k=−∞
f̂(k) eikθ (2.58)

where {f̂(k)}∞k=−∞ is a sequence of elements from the Hilbert space H. We
call this expansion Fourier series of f if for every g ∈ H

〈
f(eiθ), g

〉
H =

∞∑
k=−∞

〈
f̂(k), g

〉
H eikθ
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is an ordinary Fourier series of the complex valued function
〈
f(eiθ), g

〉
H. The

coefficients of the scalar Fourier series are of course given by (2.1), thus
〈
f̂(k), g

〉
H =

1
2π

∫ π

−π

〈
f(eiθ), g

〉
He−ikθ dθ . (2.59)

It may not be immediately clear whether there exists such a sequence
{f̂(k)}∞k=−∞ of vectors in H such that (2.59) is satisfied for all g ∈ H. How-
ever, for a fixed f ∈ L1(H) and k ∈ Z the right hand side of (2.59) defines
a conjugate-linear functional Φk on H which is also continuous, since by the
Cauchy-Schwarz inequality

|Φk(g)| ≤ 1
2π

∫ π

−π

∣∣〈f(eiτ ), g
〉
H
∣∣ dτ

≤ 1
2π

∫ π

−π

‖f(eiτ )‖H ‖g‖H dτ = ‖f‖1 ‖g‖H .

But this implies by the Riesz representation theorem (for Hilbert spaces) that
there exists a unique f̂(k) ∈ H such that (2.59) holds for all g ∈ H. To
determine the coefficient vectors f̂(k) in the Fourier series (2.58), one may
choose an orthonormal basis {en} in H and write every coefficient vector in
this basis as f̂(k) =

∑
l∈N

f̂l(k)el. Plugging this representation into (2.59)
together with a g = en gives

f̂n(k) =
1
2π

∫ π

−π

fn(eiτ ) e−ikτ dτ

where fn(eiτ ) =
〈
f(eiτ ),en

〉
H is the n-th coordinate of f(eiθ) with respect to

the orthonormal basis {el}. Thus, if an orthonormal basis in H is fixed, the
Fourier coefficients f̂(k) of the series (2.58) can be determined component-
wise. Therefore, we will simply write

f̂(k) =
1
2π

∫ π

−π

f(eiτ ) e−ikτ dτ , k = 0,±1,±2, . . . (2.60)

where the integration on the right hand side means a component wise in-
tegration of every coordinate with respect to the chosen orthonormal ba-
sis. The above discussion holds in particular for the case H = C

N with
the usual orthonormal basis e1 = {1, 0, 0, · · · , 0}, e2 = {0, 1, 0, · · · , 0}, . . . ,
eN = {0, 0, 0, · · · , 1}.

Due to the separation of the Fourier series into its components, it is not
hard to verify that the Parseval theorem

‖f‖2
2 =

∞∑
k=−∞

‖f̂(k)‖2
H

holds for L2(H) because Parseval’s equality holds for every single component
fn.

With these preparations, we can introduce vector valued Hardy spaces.
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Definition 2.30 (Vector valued Hardy spaces). Let H be a separable
Hilbert space, and let 1 ≤ p ≤ ∞. Then Hp(H) denotes the subset of Lp(H) of
all f ∈ Lp(H) whose Fourier coefficients (2.60) with negative indices vanish,
thus

Hp(H) := {f ∈ Lp(H) : f̂(k) = 0 for all k < 0} .

Let {en}∞n=1 be an arbitrary orthonormal basis in H, then the above discus-
sions on the Fourier series expansion make it clear that the definition of the
Hardy spaces Hp(H) is equivalent to the following statement

Proposition 2.31. A function f ∈ Lp(H) belongs to Hp(H) if and only if all
of its coordinate functions fn = 〈f ,en〉H are elements of Hp.

Similar to the case of scalar functions, every f ∈ Hp(H) can be associated
with a function

F (z) :=
∞∑

k=0

f̂(k) zk (z ∈ D) (2.61)

which is analytic for all z ∈ D, where f̂(k) are the Fourier coefficients (2.60)
of f . As in the case of scalar functions, we need to show that the function
F (reiθ) converges to f(eiθ) in Lp(H) as r → 1. However, since the general
proof can be simply reduced to the scalar case, we just state the result, which
is completely analog to the scalar case, but omit the lengthy and technical
proof.

Theorem 2.32. Let H be a separable Hilbert space, let 1 ≤ p ≤ ∞ and let
f ∈ Hp(H). Define F r(eiθ) = F (reiθ) with F given by (2.61). Then it holds
that

lim
r→1

‖F r − f‖p = 0 .

2.4 Operator-valued Analytic Functions

Next we consider analytic functions with values in the space of bounded lin-
ear operators. Let H1 and H2 be separable Hilbert spaces and denote by
B(H1,H2) the set of all bounded linear operators H from H1 to H2. It is
known that B(H1,H2) is a Banach space with respect to the usual operator
norm

‖H‖H1→H2 := sup
f∈H1,‖f‖H1≤1

‖Hf‖H2 . (2.62)

Therewith, we define operator valued bounded analytic functions.

Definition 2.33 (Bounded analytic functions). Let H1 and H2 be two
separable Hilbert spaces, and let {Ĥ(k)}∞k=0 be a sequence of elements in
B(H1,H2). Therewith, we define the function
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H(z) =
∞∑

k=0

Ĥ(k) zk , z ∈ D . (2.63)

Now H∞(H1,H2) denotes the set of all bounded analytic functions with val-
ues in B(H1,H2), that is the set of all functions of the form (2.63) which are
uniformly bounded in D, i.e. for which

‖H‖∞ := sup
z∈D

‖H(z)‖H1→H2 < ∞ .

Equation (2.63) means that the power series on the right hand side is assumed
to converge in B(H1,H2) for every z ∈ D. It shows that H is holomorphic in
D. Since B(H1,H2) is a Banach space, the usual differentiation is defined on
H∞(H1,H2) (cf. Def. 1.16). Then, as in the scalar case, it follows from the
power series representation (2.63) that H is analytic (complex differentiable)
for all z ∈ D. For the particular case H1 = H2 = C, one obtains the usual
Hardy space H∞.

Given a bounded analytic function H with values in B(H1,H2), we will be
particularly interested in multiplication operators OH : Lp(H1) → Lp(H2),
with a certain p ∈ (1,∞), defined by

(OHf)(ζ) := H(ζ)f(ζ) , ζ ∈ T

and O+
H : Hp(H1) → Hp(H2) given by

(O+
Hf)(z) := H(z)f(z) , z ∈ D .

The bounded analytic function H ∈ H∞(H1,H2) will be called the symbol of
OH and O+

H. The norm of these operators is defined as usual by

‖OH‖ = sup
f∈Lp(H1)

‖OHf‖Lp(H2)

‖f‖Lp(H1)
and ‖O+

H‖ = sup
f∈Hp(H1)

‖O+
Hf‖Hp(Hp)

‖f‖Hp(H1)
.

The following proposition will formally prove that the norm of these two
operators are given by the norm ‖H‖∞ of the symbol H.

Proposition 2.34. Let H ∈ H∞(H1,H2) be a bounded analytic function.
Then for the norms of the multiplication operators OH and O+

H with symbol
H it holds that

‖OH‖ = ess sup
ζ∈T

‖H(ζ)‖H1→H2 = sup
z∈D

‖H(z)‖H1→H2 = ‖O+
H‖ .

Proof. First consider OH

‖OHf‖Lp(H2) =
(

1
2π

∫ π

−π

‖H(eiθ)f(eiθ)‖p
H2

dθ

)1/p

≤
(

1
2π

∫ π

−π

‖H(eiθ)‖p
H1→H2

‖f(eiθ)‖p
H1

dθ

)1/p

≤ ess sup
ζ∈T

‖H(ζ)‖H1→H2 ‖f‖Lp(H1)
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which shows that ‖OH‖ ≤ ‖H‖∞. To prove the reverse inequality, we choose
an arbitrary ε > 0 and define the set

M(ε) :=
{
θ ∈ [−π, π) : ‖H(eiθ)‖H1→H2 ≥ ‖H‖∞ − ε/2

}
and denote by χM(ε) the indicator function of M(ε). The Lebesgue measure
of M(ε) will be denoted by με := 1

2π

∫ π

−π
χM(ε)(eiθ) dθ. Moreover, to every

θ ∈ M(ε) there exists a g(eiθ) ∈ H1 such that

‖H(eiθ) g(eiθ)‖H2 ≥ (‖H‖∞ − ε) ‖g(eiθ)‖H1 . (2.64)

Now, we define the function

f ε(eiθ) := 1
με

χM(ε)(eiθ) g(eiθ)

where every g(eiθ) is chosen such that (2.64) holds for all θ ∈ M(ε). For this
function, one obtains

‖OH f ε‖Lp(H2) =

(
1
2π

∫
M(ε)

1
μp

ε
‖H(eiθ) g(eiθ)‖p

H2
dθ

)1/p

≥ (‖H‖∞ − ε)
1
με

(
1
2π

∫
M(ε)

‖g(eiθ)‖p
H1

dθ

)1/p

= (‖H‖∞ − ε) ‖f ε‖Lp(H1) .

Since ε was chosen arbitrary, this shows that ‖OH‖ ≥ ‖H‖∞ and together
with the first part of this proof, one has ‖OH‖ = ‖H‖∞.

It remains to show that ‖O+
H‖ = ‖OH‖. Since Hp(H1) ⊂ Lp(H1), it is clear

that ‖O+
H‖ ≤ ‖OH‖. To prove the reverse inequality, we consider polynomials

in Lp(H1) of the form

p(eiθ) =
N2∑

k=−N1

p̂(k) eikθ = e−iN1θ
N1+N2∑

k=0

p̂(k − N1) eikθ = e−iN1θ pc(eiθ)

with p̂(k) ∈ H1 and N1, N2 ≥ 0. However, the polynomial pc(eiθ), obtained
from p(eiθ) by factoring out e−iN1θ belongs to Hp(H1), and it is easily verified
that ‖O+

H pc‖Hp(H1) = ‖OH p‖Lp(H1). Moreover, the polynomials P(H1) of
the above form are dense in L2(H1). Therefore, to every H ∈ H∞(H1,H2)
there exist a polynomials p ∈ Lp(H1) with ‖p‖Lp(H1) = 1 so that

‖O+
H pc‖Hp(H1) = ‖OH p‖Lp(H2) ≥ ‖OH‖ − ε . (2.65)

In turn this implies that

‖O+
H‖ = sup

f∈Hp(H1)
‖f‖Hp(H1)≤1

‖O+
Hf‖Hp(H2) ≥ ‖O+

H pc‖Hp(H1) ≥ ‖OH‖ − ε

which shows that ‖O+
H‖ ≥ ‖H‖∞ and altogether that ‖O+

H‖ = ‖H‖∞. �
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Since every symbol H ∈ H∞(H1,H2) is analytic in D it is clear that
(OHf)(z) = H(z)f(z) belongs to Hp(H2) provided that f ∈ Hp(H1). For
this reason and because Hp(H1) and Hp(H2) are subspaces of Lp(H1) and
Lp(H2), respectively, the operator O+

H can be considered as the restriction of
OH to the subspace Hp(H1) of Lp(H1).

The most important case is p = 2. Then the operators OH and O+
H are

mappings from the Hilbert space L2(H1) into the Hilbert space L2(H2). In
this case, it is easily verified that the adjoint of the operator OH is given by
O∗

H = OH∗ where H∗(z) = [H(z)]∗ is the adjoint of H(z) : H1 → H2 for
every z ∈ D.

Example 2.35. Assume that the Hilbert spaces H1 and H2 both have finite
dimension. Then, without any loss of generality, we may assume that H1 = C

N

and H2 = C
M with the dimensions N,M ≥ 1 and with the usual Euclidean

norm in C
N and C

M . It is well known that every bounded linear operator
H ∈ B(CN , CM ) can be identified with a complex M × N matrix H with
M rows and N columns. Therefore, B(CN , CM ) can be identified with the
set C

M×N of all complex M × N matrices, and the norm of any matrix H ∈
C

M×N , induced by the Euclidean vector norm in C
N and C

M , is known to be

‖H‖CM×N = sup
f∈CN

‖Hf‖
CM

‖f‖CN

=
√

λmax {H∗H}

wherein λmax(H∗H) is the largest singular value of the matrix H. This norm
is also known as the spectral norm of H.

Moreover, every H ∈ H∞(CN , CM ) has the general form (2.63) in which
all Ĥ(k) ∈ C

M×N are complex M ×N matrices. To shorten the notation, the
space H∞(CN , CM ) of all matrix valued bounded analytic functions will be
denoted by H∞(CM×N ), and the norm in this space is given by

‖H‖∞ = ess sup
ζ∈T

λmax {H∗(ζ)H(ζ)} = sup
z∈D

λmax {H∗(z)H(z)} .

Notes

Still the classical reference for trigonometric series is the volume of Zygmund
[92]. Theorem 2.8 is due to Jackson [51]. Detailed proofs can also be found
in [92, Chap. III] or [61, vol. 1, Chap. IV]. There are numerous text books
containing the basic theory of Hardy spaces in different detail and various
forms. The scalar case can be found for example in [30, 41, 45, 48, 70]. The
exposition here and the given proofs are primarily taken from [70] where also
most of the omitted proofs and auxiliary results can be found. The vector val-
ued case is considered in detail in [44, 62, 83]. The notion of inner and outer
functions was introduced by Beurling in his seminal paper on shift-invariant
subspaces [7]. It seems be worthwhile to consider this original approach to
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the inner-outer factorization since it gives somewhat more descriptive i.e ge-
ometrical proofs of the theorems in Section 2.2.3. We also refer the reader to
[43, 44, 45, 57, 62, 83].



3

Banach Algebras

Let L1 be a linear system with transfer function f1. An important task in
applications is to find the transfer function f2 of a second linear system L2

such that the series connection of L1 and L2 has a prescribed transfer function
f , i.e. such that f = f1 f2. If, for example, the desired transfer function f ≡ 1
is the identity then L2 is the linear inverse system of L1.

To investigate such problems, the notion of vector spaces is not sufficient,
since in these spaces only the operation of addition is defined, but not multi-
plication. For these reasons we have to consider space on which also a multipli-
cation operation is defined. Such spaces are known as algebras. Additionally,
we still require that our spaces are complete normed linear spaces. Spaces
with these properties are called Banach algebras.

Definition 3.1 (Banach algebra). A complex algebra is a vector space A
over the complex field C in which a multiplication is defined satisfying for all
f, g, h ∈ A

1) f (g h) = (f g)h (associative law)

2) (f + g)h = f h + g h and f (g + h) = f g + f h (distributive law)

and for which
α (f g) = f (α g) = (α f) g

for every scalar α ∈ C.
If A is a normed linear space which satisfies the submultiplicative condi-

tion
‖f g‖A ≤ ‖f‖A ‖g‖A (3.1)

for all f, g ∈ A, then A is called a normed complex algebra. If, in addition,
A is complete with respect to its norm ‖ · ‖A and if A contains a unit element
e such that for all f ∈ A

fe = ef = f and ‖e‖A = 1

V. Pohl, H. Boche, Advanced Topics in System and Signal Theory, Foundations
in Signal Processing, Communications and Networking 4,
DOI 10.1007/978-3-642-03639-2_3, c© Springer-Verlag Berlin Heidelberg 2009
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then A is called a Banach algebra.
If the multiplication on A is also commutative, i.e. if fg = gf for all

f, g ∈ A, then A is a commutative Banach algebra.

Note that the required submultiplicativity (3.1) of the norm makes mul-
tiplication a continuous operation on the Banach space A. This continuity
implies that if fn → f and gn → g in A then fngn → fg in A, since by (3.1)
one has

‖fngn − fg‖A ≤ ‖fn − f‖A ‖gn‖A + ‖f‖A ‖gn − g‖A .

It should be noted that the presence of a unit element is omitted in most
of the definitions of a Banach algebra. However, for us, one of the main mo-
tivations is the investigation of the inverse of an element from A. Of course,
this only makes sense if there exists a unit in the algebra. Moreover, the most
important algebras, for our intentions, have a unit and all other algebras can
be supplied with a unit in a canonical way (see e.g. [72]).

If not mentioned otherwise, we always assume that the Banach algebras
are commutative. Even though this condition is not necessary in some of the
following results, this assumption will slightly simplifies some proofs and it
is no strong restriction for us since most of the algebras considered here are
commutative anyway.

Finally, we give some examples of Banach algebras.

Example 3.2 (L∞ and H∞). The space L∞ of all essentially bounded func-
tions on the unit circle is a Banach algebra if the multiplication of two elements
f, g ∈ L∞ is defined pointwise by

(f g)(ζ) := f(ζ) g(ζ) , ζ ∈ T . (3.2)

It is clear that the so defined multiplication satisfies the associative, distribu-
tive, and commutative law and one easily verifies that also the submultiplica-
tive condition (3.1) holds for all f, g ∈ L∞. The unit element of L∞ is the
constant function e(ζ) = 1 for all ζ ∈ T. With obvious modifications, the
Hardy space H∞ = (L∞)+ is also a commutative Banach algebra with unit
under pointwise multiplication.

Notice that the spaces Lp and Hp with p < ∞ are not Banach algebras, in
general. In the cases L2 and H2 this follows at once from the well known fact
that every f ∈ L1 can be written uniquely as the (pointwise) product of two
functions g, h ∈ L2: f(ζ) = g(ζ)h(ζ), ζ ∈ T. Thus the product of two L2

functions belongs no longer to L2, in general. Therefore the multiplication is
not submultiplicative.

Example 3.3 (Continuous functions C(T) and the disk algebra A(D)). Let
C(T) be the set of all continuous functions on the unit circle T equipped
with the supremum norm. Together with the pointwise multiplication (3.2),
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C(T) becomes a commutative Banach algebra in which the constant function
e(ζ) ≡ 1 is the unit element. The subspace

A(D) := C(T)+ = { f ∈ C(T) : f̂(n) = 0 for all n < 0 }

together with the same norm and multiplication is also Banach algebra and
it is known as the disk algebra. It contains all f ∈ H∞ which are continuous
in the closure D of the unit disk. Equivalently, A(D) is the closure of all
polynomials f(z) =

∑
k≥0 f̂(k) zk in the infinity norm.

Example 3.4 (�1). We consider the space �1 of absolutely summable series
x = {xk}k∈Z with the norm ‖x‖�1 =

∑
k∈Z

|xk| (cf. also Example 1.2). On
this space, we define the multiplication of two elements x, y ∈ �1 by the
convolution

zn = (x y)n :=
∑∞

k=−∞ xk yn−k , n ∈ Z .

One easily verifies that the usual laws of multiplication are satisfied by this
definition. Moreover, since

‖z‖�1 =
∞∑

n=−∞
|zn| =

∞∑
n=−∞

∣∣∣∣∣
∞∑

k=−∞
xk yn−k

∣∣∣∣∣
≤

∞∑
n=−∞

∞∑
k=−∞

|xk| |yn−k| =
∞∑

k=−∞
|xk|

∞∑
n=−∞

|yn−k| = ‖x‖�1 ‖y‖�1

this multiplication satisfies the submultiplicativity relation (3.1). Therefore l1

equipped with this multiplication is a commutative Banach algebra. The unit
element is obviously e = {. . . , 0, 0, 1, 0, 0, . . . }, the sequence which has only
zero entries except for the unit element at position zero.

Example 3.5 (The Wiener algebras W and W+). The Wiener algebra W is
the set of all absolutely convergent Fourier series

f(eiθ) =
∞∑

k=−∞
f̂(k) eikθ , θ ∈ [−π, π)

equipped with the norm

‖f‖W =
∞∑

k=−∞
|f̂(k)| < ∞

and with the pointwise multiplication (f g)(eiθ) = f(eiθ) g(eiθ). One easily
verifies that W is isometrically isomorphic to the previous example by iden-
tifying each f ∈ W with the sequence {· · · , f̂(−1), f̂(0), f̂(1), · · · } ∈ �1 of its
Fourier coefficients. This shows that W is a commutative Banach algebra with
the unit element e(eiθ) ≡ 1. As in Examples 3.2 and 3.3 the subspace W+ of
all series of the form f(eiθ) =

∑∞
k=0 f̂(k) eikθ together with the same norm

‖ · ‖W is also a Banach algebra.
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Example 3.6 (Linear bounded operators). Let X be an arbitrary Banach space
and let B(X ) be the Banach space of all bounded linear operators on X with
respect to the usual operator norm (1.6). If one defines for all T,U ∈ B(X ) a
multiplication in the obvious way by (T U)(x) := T(Ux) for all x ∈ X , B(X )
becomes a Banach algebra. The identity operator I is the unit element in this
algebra. Note that B(X ) is not commutative, in general.

3.1 The Invertible Elements

Let A be a commutative Banach algebra. An element f ∈ A is called invertible
in A if there exists an element f−1 ∈ A such that

f−1f = e = ff−1 .

If f ∈ A is invertible, the element f−1 ∈ A is called the inverse of f and
it is easily seen that any f ∈ A has at most one inverse in A. The set of
all invertible elements of a Banach algebra A will be denoted by G(A) . If
f, g ∈ G(A) are two invertible elements of A, then g−1f−1 ∈ G(A) is the
inverse of fg ∈ A.

Next we want to characterize the set G(A) of all invertible elements more
closely. We start with the observation that the unit element e of A is invertible
in A with e−1 = e. The following theorem will show that all elements in A,
which are close enough to e, are invertible as well.

Theorem 3.7. Let A be a Banach algebra and let f ∈ A with ‖f‖A < 1, then
e + f ∈ G(A) and e − f ∈ G(A) and it holds

(e + f)−1 =
∑∞

k=0(−1)k fk and (e − f)−1 =
∑∞

k=0 fk . (3.3)

Proof. Consider the elements gn ∈ A given by

gn =
∑n

k=0(−1)k fk = e − f + f2 − · · · + (−1)n fn , n ∈ N .

Since ‖f‖A < 1 and by the submultiplicity (3.1) of the norm, it holds that
‖fn‖A ≤ ‖f‖n

A < 1, which shows that fn → 0 in A. This implies that gn is
a Cauchy sequence in A. Because A is complete, there exists an g ∈ A such
that gn → g in A. Moreover, the identity

gn(e + f) = e + (−1)n fn+1 = (e + f) gn

and the continuity of the multiplication shows that gn(e + f) → e and that
(e + f)gn → e as n → ∞. This implies the left hand side of (3.3). The proof
of the statement for (e − f)−1 is completely analogous. �

Thus, all elements in the neighborhood of e are invertible. This result is
generalized in the following theorem: If f ∈ A is known to be invertible, then
all elements in a neighborhood of f are also invertible and the inverse f−1

depends continuously on f . Moreover, the mapping f �→ f−1 is differentiable
at any f ∈ G(A).
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Theorem 3.8. Let A be a Banach algebra.

(a) If f ∈ G(A) and h ∈ A with ‖h‖A < 1
‖f−1‖A

then f + h ∈ G(A).
(b) G(A) is an open subset of A.
(c) The inversion T : f �→ f−1 is a homomorphism of G(A) onto G(A) which

is differentiable at any f ∈ G(A). Its derivative at f ∈ G(A) is given by
the linear mapping T′[f ] : h �→ −f−1 h f−1.

Proof. Since f +h = f(e+ f−1 h), since f is invertible, and since ‖f−1 h‖A ≤
‖f−1‖A ‖h‖A < 1, Theorem 3.7 implies that f + h is invertible in A with

(f + h)−1 = (e + f−1 h)−1 f−1

=
∞∑

k=0

(−1)k(f−1 h)k f−1 = f−1 − f−1 h f−1 + · · ·

and that G(A) is an open set. Moreover, the series for (f + h)−1 implies

‖(f + h)−1 − f−1 + f−1 h f−1‖A ≤
∞∑

k=2

‖(f−1 h)k‖A ‖f−1‖A

≤
( ∞∑

k=0

‖f−1‖k
A ‖h‖k

A

)
‖f−1‖3

A ‖h‖2
A ≤ ‖f−1‖3

A
1 − ‖f−1‖A ‖h‖A

‖h‖2
A . (3.4)

Dividing both sides by ‖h‖A and let ‖h‖A → 0, the right hand side converges
to zero, which implies that the mapping h �→ −f−1 h f−1 is the derivative of
the mapping f �→ f−1 at f (cf. Def. 1.16). �

3.1.1 Basic properties of spectra

Definition 3.9 (Spectrum). Let A be a Banach algebra and let f ∈ G(A).
The spectrum of f is the set σ(f) of all λ ∈ C such that f−λe is not invertible
and the spectral radius

rσ(f) = sup
λ∈σ(f)

|λ|

of f is the radius of the smallest closed disc in C with center at 0, which
contains σ(f). The complement ρ(f) = C\σ(f) of the spectrum σ(f) in C is
the resolvent set of f .

Let f be an arbitrary element of the Banach algebra A. If we choose λ ∈ C

satisfying |λ| > ‖f‖A, then the element 1
λ f−e will be in a small neighborhood

of e. Therefore f −λe = λ( 1
λ f −e) will be invertible in A by Theorem 3.7 and

λ will not be an element of the spectrum. This indicates that the spectrum of
any f ∈ A is contained in a bounded set around zero. However, if f ∈ G(A)
then λ = 0 /∈ σ(f) and therefore it is not obvious whether the spectrum of
f is empty. The next theorem proves the non-emptiness and boundedness of
the spectrum for every f ∈ A.
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Theorem 3.10. Let A be a Banach algebra and f ∈ A. Then

(a) the spectrum σ(f) is compact and nonempty
(b) the spectral radius of f is given by

rσ(f) = lim
n→∞

‖fn‖1/n
A .

The second part of this theorem is also known as the spectral radius formula.
It belongs to the key results of the whole theory of Banach algebras since
the spectral radius formula links the purely algebraic property of invertibility
on an algebra to the metric properties of the associated Banach space. It
expresses the spectral radius of an element f ∈ A in terms of a limit of the
norms of powers of f . Theorem 3.11 below will give a consequence of the first
part of the previous theorem, i.e. of the nonemptiness of the spectrum of every
element of the algebra. It will give a characterization of those Banach algebras
in which every nonzero element is invertible.

Proof. Assume |λ| > ‖f‖A then f − λ e = −λ(e− λ−1f) is invertible in A by
Theorem 3.7 because ‖λ−1f‖A = |λ|−1‖f‖A < 1. This shows that λ /∈ σ(f)
and proves that σ(f) is bounded and that rσ(f) ≤ ‖f‖A. It shows also that

|λ| ≤ ‖f‖A if λ ∈ σ(f) . (3.5)

To prove that σ(f) is closed, we show that its complement ρ(f) is open. To this
end, define the mapping Ψ : C → A by Ψ(λ) = f−λ e. Since ‖Ψ(λ)−Ψ(μ)‖A ≤
|λ − μ| ‖e‖A, the mapping Ψ is continuous which implies that the pre-image
of every open set is open. The resolvent set of f is the pre-image of G(A):
ρ(f) = Ψ−1(G(A)). Since G(A) is open (Theorem 3.8), ρ(f) is open as well.
Therefore σ(f) is closed and consequently compact.

Define the mapping F : ρ(f) → A by F (λ) := (f − λ e)−1. Then Theo-
rem 3.8 (c) implies that F is complex differentiable (analytic). To see this,
choose λ, μ ∈ ρ(f) and set g := λe − f and g + h := μe − f . Therewith, we
have F (λ) = g−1, F (μ) = (g + h)−1, and h = (μ − λ)e. Thereby, λ and μ
are chosen such that ‖h‖A = |μ − λ| ‖e‖A < 1

2 ‖g−1‖−1
A = 1

2 ‖F (λ)‖−1
A , which

is always possible, since ρ(f) is open. As in the proof of Theorem 3.8, we
consider the series expansion of F (μ) = (g + h)−1. This implies an equation
similar to (3.4) wherein f−1 has to be replaced by g−1 = F (λ) and (f + h)−1

has to be replaced by (g + h)−1 = F (μ). Dividing the resulting equation by
|λ − μ| yields

‖F (μ) − F (λ) + F (λ)2(μ − λ)‖A
|μ − λ| ≤ ‖F (λ)‖3

A ‖e‖2 |λ − μ|
1 − ‖F (λ)‖A ‖e‖A |λ − μ|

≤ 2 ‖F (λ)‖3
A ‖e‖2

A |λ − μ| . (3.6)

The right hand side converges to zero as μ → λ which shows that F is differ-
entiable at every λ ∈ ρ(f) with the derivative F ′(λ) = −F (λ)2 (cf. Def. 1.16).



3.1 The Invertible Elements 57

Let ϕ ∈ A∗ be an arbitrary bounded linear functional on A and define

Φ(λ) := ϕ[F (λ)] = ϕ[(f − λ e)−1] , λ ∈ ρ(f) . (3.7)

Then (3.6) and the boundedness and linearity of ϕ shows that Φ(λ) is an
analytic function at every λ ∈ ρ(f) with Φ′(λ) = −ϕ[(f − λ e)−2]. For |λ| >
‖f‖A write Φ as Φ(λ) = ϕ[−(e − λ−1f)−1λ−1]. Then Theorem 3.7 implies
that the power series

Φ(λ) = − 1
λ φ
[∑∞

k=0
1

λk fk
]

= −
∑∞

k=0 λ−(k+1)ϕ(fk) .

converges in A. Since Φ is analytic in ρ(f), the Cauchy integral formula implies

ϕ(fk) =
1

2πi

∫
∂B(0,r)

λkΦ(λ) dλ , k = 0, 1, 2, . . . (3.8)

where the integration is taken counter-clockwise along the circle ∂B(0, r)
around zero with radius r > ‖f‖A. If σ(f) were empty then Φ would be
analytic in C and the Cauchy theorem would imply that all integrals in (3.8)
are zero, and in particular for k = 0 that ϕ(e) = 0. However, by the Hahn-
Banach theorem there exists a bounded linear functional with ϕ ∈ A∗ with
ϕ(e) = ‖e‖A �= 0. Since ϕ was arbitrary, this is a contradiction which shows
that the spectrum σ(f) is not empty.

It remains to prove the spectral radius formula (b). We consider again the
function Φ defined in (3.7). As it was shown, this function is analytic for every
λ ∈ ρ(f), which implies that

M(r) := sup
θ∈[−π,π)

|Φ(reiθ)| < ∞

for each r > rσ(f). Therewith (3.8) gives

∣∣ϕ(fk)
∣∣ =
∣∣∣∣r

k+1

2π

∫ π

−π

Φ(reiθ) ei(k+1)θ dθ

∣∣∣∣ ≤ rk+1M(r) . (3.9)

Now, every f ∈ A defines a linear functional on A∗ by Ψf (ϕ) := ϕ(f), ϕ ∈ A∗.
It is a consequence of the Hahn-Banach theorem (see e.g. [54]) that the norm
of f is the same as the norm of Ψf , i.e.

‖f‖A = ‖Ψf‖A∗ = sup
ϕ∈A∗, ‖ϕ‖A∗≤1

|Ψf (ϕ)| . (3.10)

Then (3.9) shows that |Ψfk(ϕ)| = |ϕ(fk)| ≤ rk+1M(r) for every ϕ ∈ A∗,
and therefore (3.10) gives ‖fk‖A ≤ rk+1M(r) for k = 1, 2, 3, . . . and for
r > rσ(f). Consequently, we obtain

lim sup
k→∞

‖fk‖1/k
A ≤ rσ(f) . (3.11)
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Conversely, let λ ∈ σ(f). Then f − λ e is not invertible and the relation

fk − λke = (f − λe)(fk−1 + λfk−2 + λ2fk−3 + · · · + λk−1e)

shows that also fk − λke is not invertible such that λk ∈ σ(fk) which then
implies by (3.5) that |λk| ≤ ‖fk‖ for all k = 1, 2, 3, . . . . Since λ ∈ σ(f), one
has |λ| ≤ rσ(f) such that the previous inequality implies

rσ(f) ≤ inf
k≥1

‖fk‖1/k (3.12)

The spectral radius formula (b) follows from (3.11) and (3.12). �

An algebra A is called a division algebra if every nonzero element of A is
invertible. The following result will show that the complex field C is essentially
the only division algebra. This observation is an easy consequence of the fact
that the spectrum σ(f) of every f ∈ A is always nonempty.

Theorem 3.11 (Gelfand-Mazur). Let A be a Banach algebra in which ev-
ery non-zero element is invertible, then A is isomorphic to C.

Proof. By Theorem 3.10 (a), for every f ∈ A there exixts a λ ∈ C such that
f − λe is not invertible in A. By the assumption of the theorem, zero is the
only noninvertible element of A. So f = λe and ‖f‖A = |λ| ‖e‖A. This shows
that f �→ λ is a bijective mapping from A onto C. Moreover, since obviously
f + g �→ λ(f) + λ(g) and f g �→ λ(f)λ(g), the mapping f �→ λ(f) defines an
algebra-isomorphism of A onto C. �

Note that the isomorphism between A and C in the previous theorem is even
an isometry if A has the additional property that ‖e‖A = 1.

3.1.2 Exponential and logarithm on Banach algebras

Let A be a Banach algebra and f ∈ A. Then fk ∈ A for every k ∈ N and
since the multiplication is continuous in A, one has ‖fk‖A ≤ ‖f‖k

A. Because of
these properties of Banach algebras, the usual functions known from analysis
(e.g. exp, log, cos, sin), which are defined by means of a power series of real
or complex numbers, can be defined also on every Banach algebra A as the
power series of an f ∈ A. This power series will converge for every f ∈ A
as long as the common series of ‖f‖A converges in R. Here, we only consider
shortly the exponential and the logarithm functions, since they will be needed
frequently in later chapters.

Let f ∈ A be an arbitrary element of a Banach algebra A. We define the
exponential of f by

ef = exp(f) :=
∑∞

k=0
1
k! fk , f ∈ A . (3.13)

Since ‖ exp(f)‖A ≤
∑∞

k=0
1
k!‖f‖k

A this exponential series converges for every
f ∈ A by the convergence of the usual exponential series and one has
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‖ exp f‖A ≤ exp ‖f‖A for every f ∈ A . (3.14)

It is not hard to verify that all the well known properties of the scalar expo-
nential function like the relation exp(x + y) = exp(x) exp(y) are still true for
the exponential function on Banach algebras. Also, similar to the scalar case,
the exponential function is continuous at every point f ∈ A. This is shown in
the following lemma which will be needed in later chapters

Lemma 3.12. Let A be a Banach algebra, let f ∈ A and h ∈ A with ‖h‖A <
1, then

‖ exp(f + h) − exp(f)‖A ≤ 2 ‖ exp f‖A ‖h‖A .

Proof. Since exp(f +h)− exp(f) = exp(f)[exp(h)− e] the power series (3.13)
gives

‖ exp(f + h) − exp(f)‖A ≤ ‖ exp(f)‖A ‖ exp(h) − e‖A

≤ ‖ exp(f)‖A ‖h‖A
∞∑

k=0

‖h‖k
A

(k + 1)!
≤ ‖ exp(f)‖A ‖h‖A

∞∑
k=0

(
‖h‖A

2

)k

≤ 2 ‖ exp(f)‖A ‖h‖A (3.15)

for all f ∈ A and all h ∈ A with ‖h‖A < 1. �
We define the set

exp(A) := { exp(f) : f ∈ A} .

Every element of exp(A) is invertible in A, i.e. exp(A) ⊂ G(A). Indeed, if
f = exp(g) arbitrary with some g ∈ A, then h = exp(−g) is also an element
of A and f h = exp(g) exp(−g) = exp(0) = e.

Let g ∈ A. If g = exp(f) for some f ∈ A, then f is said to be a logarithm
of g. From the definition of the set exp(A) it is clear that each g ∈ exp(A)
possesses a logarithm in A. As in the scalar case, the logarithm f of g is not
unique, in general, i.e. for an g ∈ A there may exist several different f ∈ A
such that g = exp(f). However, as in the scalar case, the logarithm on A can
be defined by means of the power series

log(e − f) = −
∑∞

k=1
1
k fk , f ∈ A, ‖f‖A < 1 . (3.16)

The convergence of this series follows from the convergence of the scalar series
for ‖f‖A, and one verifies the common properties of the logarithm similar as
in the scalar case. In particular, one verifies that e − g = exp[log(e − g)]. We
will frequently need the following continuity result for the logarithm.

Lemma 3.13. Let A be a Banach algebra, let f ∈ exp(A) and h ∈ A with
‖h‖A < 1

2‖f−1‖−1
A . Then log(f − h) ∈ exp(A) and

‖ log(f − h) − log(f)‖A ≤ 2 ‖f−1‖A ‖h‖A .
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Proof. Of course, log(f − h) = log f + log(e− f−1h). Both terms on the right
hand side exist since f ∈ exp(A) and ‖f−1h‖A < 1. Using the power series
(3.16), one obtains

‖ log(f − h) − log(f)‖A ≤ ‖f−1h‖A
∞∑

k=0

‖f−1h‖k
A

k + 1

≤ ‖f−1h‖A
1

1 − ‖f−1h‖A
≤ 2 ‖f−1‖A‖h‖A

using that ‖f−1h‖A ≤ ‖f−1‖A‖h‖A < 1/2. �
Note that the previous lemma shows in particular that exp(A) is an open

set.

3.2 Complex Homomorphisms and Ideals

Linear functionals which preserve the multiplication operation of the algebra
play a very important roll in the theory of Banach algebras. Linear functionals
with this property are known as homomorphisms.

Definition 3.14 (Complex homomorphisms). Let A be a complex algebra
and let γ : A → C be a linear functional on A which is not identical to zero.
Then γ is called a complex homomorphism on A if it is a multiplicative
complex linear functional, i.e. if it is linear and satisfies

γ(fg) = γ(f) γ(g) for all f, g ∈ A .

The set of all complex homomorphisms on A will be denoted by Γ (A).

It should be noted that the above definition does not require that the multi-
plicative linear functionals on A are continuous. The next theorem gives basic
properties of homomorphisms on Banach algebras, in particular it will show
that every multiplicative linear functional on an algebra A is continuous.

Theorem 3.15. Let A be a Banach algebra and let γ ∈ Γ (A) be an arbitrary
complex homomorphism on A. Then

(a) γ(e) = 1

(b) γ(f) �= 0 for all f ∈ G(A)

(c) ‖γ‖ = sup
f∈A, ‖f‖A≤1

|γ(f)| = 1 .

For part (a) and (b) of this theorem, A needs only to be a complex algebra, but
not a normed algebra. Statement (b) shows that for every invertible element
f ∈ A, γ(f) is non-zero for all complex homomorphisms on A. We will see
later that this property actually uniquely characterizes all invertible elements
of A. Statement (c) implies that all complex homomorphisms of a Banach
algebra are bounded and therefore continuous.
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Proof. Let g ∈ A with γ(g) �= 0. Then

γ(g) = γ(ge) = γ(g)γ(e) ,

which proves (a). Assume now that f ∈ G(A). Then (a) gives the identity

1 = γ(e) = γ(ff−1) = γ(f)γ(f−1)

so that γ(f) �= 0.
Now, let f ∈ A with ‖f‖A ≤ 1 arbitrary and let λ ∈ C with |λ| > 1. Then

‖λ−1f‖A < 1 and Theorem 3.7 shows that e − λ−1f is invertible in A such
that parts (b) and (a) give

γ(e − λ−1f) = 1 − λ−1γ(f) �= 0 .

Hence γ(f) �= λ for |λ| > 1. This shows that |γ(f)| ≤ 1 where equality holds
for f = e. This finally gives statement (c). �

Closely related to the complex homomorphisms of a Banach algebra A are
the maximal ideals of A.

Definition 3.16 (Ideals). A subset I of a commutative complex algebra A
is said to be an ideal if

(a) I is a subspace of A
(b) f g ∈ I whenever f ∈ I and g ∈ A .

If I �= A then I is said to be a proper ideal. A proper ideal which is not
contained in any larger proper ideal is called a maximal ideal.

Without proof, we give some basic properties of ideals of a commutative Ba-
nach algebra A.

Proposition 3.17. Let A be a commutative Banach algebra.

(a) A proper ideal I of A does not contain any invertible element of A.
(b) Let I be an ideal of A, then the closure I is also an ideal of A.
(c) Every proper ideal of A is contained in a maximal ideal of A.
(d) Every maximal ideal of A is closed.

The verification of (a) and (b) is almost trivial, whereas (c) follows immedi-
ately from the Hausdorf maximality principle. To verify (d) one uses addition-
ally that G(A) is open together with (a).

To show the close relation between the homomorphisms on a Banach al-
gebra A and the maximal ideals on A, we need to recall shortly the notion of
quotient spaces and quotient algebras. To this end, assume at the beginning
that A is an arbitrary vector space over C and M is a subspace of A. Then
with every f ∈ A one associates the coset

χ(f) := f + M = {f + g : g ∈ M} .
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This definition implies that χ(f) = χ(g) whenever f − g ∈ M and that
χ(f) ∩ χ(g) = ∅ whenever f − g /∈ M. The set of all cosets of M is usually
denoted by A/M. If one defines the addition and the scalar multiplication on
A/M, respectively by

χ(f) + χ(g) = χ(f + g) and α χ(f) = χ(α f)

for all f, g ∈ A and α ∈ C, then the set A/M becomes a vector space with
the zero element χ(0) = M. If A is even a normed space and if M is a closed
subspace of A, then one defines the so called quotient norm on A/M

‖χ(f)‖ := inf
g∈M

‖f + g‖A . (3.17)

With this norm, A/M becomes a normed linear space and if A is a Banach
space, so will be A/M:

Lemma 3.18. Let A be a commutative Banach algebra and let M be a closed
subspace of A. Then A/M is a Banach space.

Proof. We first show that A/M with the norm (3.17) is indeed a normed
linear space . Let f ∈ M (i.e. f belongs to the zero element χ(0) of A/M),
then ‖χ(f)‖ = 0 because −f ∈ M. Conversely, let f /∈ M. Since M is closed
A\M is open and there exists an ε > 0 and neighborhood Bε(f) := {g ∈ A :
‖f − g‖A < ε} of f with Bε(f) ∩M = ∅, which implies that ‖χ(f)‖ ≥ ε > 0.
To verify the triangle inequality, let f1, f2 ∈ A, and let ε > 0 arbitrary. Then
there exist h1, h2 ∈ M such that

‖f1 + h1‖A ≤ ‖χ(f1)‖ + ε/2 and ‖f2 + h2‖A ≤ ‖χ(f2)‖ + ε/2 . (3.18)

Therewith, one gets

‖χ(f1 + f2)‖ = inf
h∈M

‖f1 + f2 + h‖A ≤ ‖f1 + h1 + f2 + h2‖A
≤ ‖f1 + h1‖A + ‖f2 + h2‖A ≤ ‖χ(f1)‖ + ‖χ(f2)‖ + ε ,

which proves the triangle inequality since ε was arbitrary.
Let χ(fn) be a Cauchy sequence in A/M. Then to every ε > 0 there exists

an N0 ∈ N such that

‖χ(fn) − χ(fm)‖ = inf
h∈M

‖fn − fm + h‖A < ε for all n,m ≥ N0

which shows that there exist gn, gm ∈ A with fn − gn ∈ M and fm − gm ∈ M
such that ‖gn−gm‖A < 2ε for all n,m ≥ N0. Thus, {gn} is a Cauchy sequence
in the Banach space A which converges to a g ∈ A. It follows that

‖χ(gn) − χ(g)‖ = inf
h∈M

‖gn − g + h‖A ≤ ‖gn − g‖A ≤ 2ε

which implies that χ(gn) converges to χ(g) in A/M. Consequently A/M is
complete. �
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Assume next that A is even a commutative Banach algebra and that M
is a closed ideal of A. Then one can define a multiplication on A/M by

χ(f)χ(g) = χ(f g) for all f, g ∈ A . (3.19)

In this way also A/M becomes a commutative algebra with unit element χ(e).
This is proved in the following lemma.

Lemma 3.19. Let A be a commutative Banach algebra. If M is a proper
closed ideal then A/M is a commutative Banach algebra.

Proof. First it is shown that the multiplication (3.19) is well defined. Assume
that χ(f1) = χ(f2) and χ(g1) = χ(g2) then there exist h1, h2 ∈ M such that
f1 = f2 + h1 and g1 = g2 + h2. Therewith

f1 g1 = f2 g2 + h1 g2 + f2 h2 + h1 h2 = f2 g2 + h

with h = h1 g2 + f2 h2 + h1 h2. Since h1, h2 ∈ M and because M is an ideal,
it follows that h ∈ M which shows that χ(f1 g1) = χ(f2 g2).

Lemma 3.18 implies that A/M is a Banach space, and it remains to show
that the multiplication (3.19) on A/M satisfies the submultiplicity relation
(3.1). To this end, let f1, f2 ∈ A and ε > 0 arbitrary. As in the proof of
Lemma 3.18, there exist h1, h2 ∈ M such that (3.18) holds. Note that (f1 +
h1)(f2 + h2) = f1 f2 + h0 with h0 := h1 f2 + f1 h2 + h1 h2 ∈ M, since M is
an ideal. Then

‖χ(f1)χ(f1)‖ = ‖χ(f1 f2)‖ = inf
h∈M

‖f1 f2 + h‖A ≤ ‖f1 f2 + h0‖A
= ‖(f1 + h1)(f2 + h2)‖A ≤ ‖f1 + h1‖A ‖f2 + h2‖A
≤ ( ‖χ(f1)‖ + ε

2 )( ‖χ(f2)‖ + ε
2 )

= ‖χ(f1)‖ ‖χ(f2)‖ + ε
2 ( ‖χ(f1)‖ + ‖χ(f2)‖ + ε

2 ) .

For ε → 0 the right hand side converges to ‖χ(f1)‖ ‖χ(f2)‖, but this is what
we had to prove. Finally, from the definition (3.19) follows that χ(f)χ(e) =
χ(fe) = χ(f) for every f ∈ A, which shows that χ(e) is the multiplicative
unity in A/M. �

It should be noted that one necessarily needs that M is closed in order for
χ to be a homomorphism of A onto A/M.

The next theorem reveals the close relation between the maximal ideals
and the homomorphisms of a commutative Banach algebra.

Theorem 3.20. Let A be a commutative Banach algebra and let Γ (A) be the
set of all complex homomorphisms on A. A subset M of A is a maximal ideal
of A if and only if there exists a γ ∈ Γ (A) such that M is the null space of
γ, i.e. M = N (γ).
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Proof. If M is a maximal ideal of A, then M is closed (Proposition 3.17)
and A/M is a Banach algebra (Lemma 3.19). Next, it is shown that A/M
is even a division algebra (cf. Theorem 3.11). To this end, choose f ∈ A but
with f /∈ M and consider the set K = {g f + h : g ∈ A, h ∈ M}. It is
easily seen that K is an ideal of A which contains M (M is the subset of K,
obtained by setting g = 0). Since M is assumed to be maximal, this shows
that K = A. Consequently there exists a certain g ∈ A and h ∈ M such
that g f + h = e. If χ : A → A/M denotes again the quotient map, then the
last equation gives χ(g)χ(f) = χ(e). Since χ(e) is the unit element of A/M
this shows that every nonzero element f ∈ A is invertible in A/M and by
Theorem 3.11 there exists an isomorphism k : A/M → C. Finally, define the
linear functional γ : A → C by γ(f) = k(χ(f)). It is easily seen that γ ∈ Γ (A)
and that M = N (γ) = {f ∈ A : k(χ(f)) = 0}.

Conversely, let γ1 ∈ Γ (A) be an arbitrary homomorphism on A and let
M = N (γ1) = {f ∈ A : γ1(f) = 0} be its null space. By Theorem 1.15,
M is a closed subspace of A. Since γ1(f g) = γ1(f) γ1(g) = 0 for all g ∈ A,
f g ∈ M which shows that M is a closed ideal. It is proper because M contains
no invertible element of A, by Theorem 3.15–(b). �

As an important application of the previous theorem, we have the following
characterization of all invertible elements of a Banach algebra.

Theorem 3.21. Let A be a commutative Banach algebra, and let Γ (A) be the
set of all complex homomorphisms of A. An element f ∈ A is invertible in A
if and only if γ(f) �= 0 for all γ ∈ Γ (A).

Proof. If f ∈ A is invertible, Theorem 3.15–(b) implies that γ(f) �= 0 for
every γ ∈ Γ (A). Conversely, assume that f is not invertible and define the
set K = {f g : g ∈ A}. This K is a proper ideal since it contains no invertible
element. Therefore K is contained in a maximal ideal M (Proposition 3.17)
and Theorem 3.20 shows that there exists a γ ∈ Γ (A) such that γ(g) = 0 for
all g ∈ M, and in particular γ(f) = 0. �

Definition 3.22 (Gelfand Transform). Let A be a commutative Banach
algebra and Γ (A) the set of all complex homomorphisms of A. Then to every
f ∈ A one assigns a function f̆ : Γ (A) → C by the formula

f̆(γ) := γ(f) , γ ∈ Γ (A) .

The so defined function f̆ is called the Gelfand transform of f and the set of
all Gelfand transforms f̆ of elements f ∈ A will be denoted by Ă.

Thus the Gelfand transform of an f ∈ A is defined on the set Γ (A) of all
homomorphisms of A and has values in the complex field C. Sometimes, the
term "Gelfand transform" is also applied to the mapping f �→ f̆ .
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3.3 Involutions

Definition 3.23 (Involution). A mapping f �→ f∗ of a complex algebra A
into A which satisfies the following four properties, for all f, g ∈ A, and λ ∈ C

(a) (f + g)∗ = f∗ + g∗

(b) (λf)∗ = λf∗

(c) (fg)∗ = g∗f∗

(d) f∗∗ = f .

is called an involution on A.

Example 3.24. Consider the algebras L∞, C(T), or W of functions on T, in-
troduces in the Examples 3.2-3.5. Then the operation f �→ f which is the
pointwise complex conjugate, i.e. f(ζ) = f(ζ) for all ζ ∈ T, defines an involu-
tion on these algebras.

The previous example of an involution, is the involution we will be most con-
cerned with in later sections. However, there are other examples of involutions:

Example 3.25. Let H be a Hilbert space with scalar product 〈·, ·〉H and denote
by B(H) the Banach algebra of all bounded linear operators on H. Then, it
can be shown that to every T ∈ B(H) there exists a unique T∗ ∈ B(H), the
adjoint of T, such that

〈T x, y〉H = 〈x,T∗ y〉H for all x, y ∈ H .

The operation T �→ T∗ is an involution on B(H).

For us, it will be important that the involution f �→ f∗ is a continuous map-
ping. The following theorem gives sufficient conditions on the algebra A such
that every involution on A is continuous.

Theorem 3.26. Let A be a commutative Banach algebra and let Γ (A) be the
set of all complex homomorphisms on A. If the intersection of the null spaces
of all γ ∈ Γ (A) contains only the zero element of A, i.e. if

⋂
γ∈Γ (A)

N (γ) = {0} (3.20)

then every involution on A is continuous.

An algebra which satisfies (3.20) is called semisimple.

Proof. The theorem is proved using the closed graph theorem, which states
that every linear and closed operator between two Banach spaces is contin-
uous. Since the involution mapping is linear, we have to show that the set
G = {(f, f∗) : f ∈ A} is closed in A×A.
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To this end, let {fn} be a sequence in A such that fn → f and such
that f∗

n → g in A. We have to show that g = f∗. Let γ ∈ Γ (A) be an
arbitrary complex homomorphism on A, and define η(f) := γ(f∗). Using the
properties of the involution in Def. 3.23, it is easily verified that η is linear
and multiplicative, i.e. that η is a complex homomorphism on A. Because of
part c) of Theorem 3.15, γ and η are continuous, and therefore one has the
following identity

γ(f∗) = η(f) = lim
n→∞

η(fn) = lim
n→∞

γ(f∗
n) = γ(g) .

This implies that g = f∗ + hγ with hγ ∈ N (γ). However, since γ was chosen
arbitrary and because of (3.20), hγ = 0 so that g = f∗. �

Notes

We refer to standard textbooks (e.g. [40, 60, 68] or [70, Chap. 18],[72, Chap. 10
and 11]) for a detailed introduction to Banach algebras.
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Signal Models and Linear Systems

Nowadays, signal processing uses almost exclusively digital techniques. The
majority of applications such as communications, television, speech and im-
age processing, radar, sonar, to name just some, are based on digital signal
processing. The major advantage of digital methods over analog ones is the
availability of high-speed digital computers at low costs which allow for very
efficient and flexible implementation of advanced signal processing algorithms
along with decreasing implementation effort and costs. Therefore, we will dis-
cuss only digital systems in the present and in all of the following sections.

4.1 Signal Models

We consider digital systems with N input ports and M outputs. The input
and output signal of such a system is a sequence x̂ = {x̂(k)}∞k=−∞ and ŷ =
{ŷ(k)}∞k=−∞ of vectors in C

N and C
M , respectively. Thus, at a certain time

instant k the signals x̂(k) = [ x̂1(k), x̂2(k), · · · , x̂N (k) ] are applied to the N
inputs of the digital system L and the signals ŷ(k) = [ ŷ1(k), ŷ2(k), · · · , ŷM (k) ]
can be observed on the output ports of L. If N = M = 1, the system L will
said to be a single-input single-output (SISO) system.

Apart from this time-domain description of the input and output signals
of the linear system L, it is often advantageous to also consider the signals in
the so-called frequency domain. We recall from Section 2 that given a sequence
x̂ = {x̂(k)}∞k=−∞, the Fourier series of x̂ is given by

x(eiθ) =
∞∑

k=−∞
x̂(k) eikθ , θ ∈ [−π, π) (4.1)

provided that the series converges in a certain sense. This Fourier series of the
time domain sequence x̂ is sometimes called its (frequency) spectrum.

Conversely, given the spectrum x(eiθ), θ ∈ [−π, π) of a signal, the time
domain symbols are obtained as the Fourier coefficients of x:

V. Pohl, H. Boche, Advanced Topics in System and Signal Theory, Foundations
in Signal Processing, Communications and Networking 4,
DOI 10.1007/978-3-642-03639-2_4, c© Springer-Verlag Berlin Heidelberg 2009
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x̂(k) =
1
2π

∫ π

−π

x(eiθ) e−ikθ dθ , k = 0,±1,±2, . . . . (4.2)

If x ∈ L1(T), this integral exists for every k ∈ Z.
Besides the frequency spectrum of a time domain sequence x̂ =

{x̂(k)}∞k=−∞ one considers also the so called D-transform of x̂, which is given
by

x(z) =
∞∑

k=−∞
x̂(k) zk , z ∈ C . (4.3)

Setting z = eiθ, θ ∈ [−π, π) in the D-transform x(z), one obtains again the
frequency spectrum x(eiθ). Of course, the sum in (4.3) does not exit for all
z ∈ C. However, a minimal requirement on a signal x̂ will always be that its
frequency spectrum (4.1) exists for almost all θ ∈ [−π, π). This implies that
the D-transform exists at least for almost all z ∈ T. However, in many cases
we will consider so called causal signals (see below). Then the D-transform in
(4.3) converges for all z ∈ D.

Remark 4.1 (Notation). Note that the notations used here differ from the
common notations in system theory. Usually, the spectrum of signal is defined
as the (discrete) Fourier transform of its time domain representation, and
the reverse transformation from the frequency to the time domain is usually
done by the inverse Fourier transform. These transformations are obtained
from (4.1) and (4.2) by replacing θ with −θ. Moreover, usually the frequency
representation of the signal is denoted by a ”hat”, or something similar, and
not the time domain signal as it is done here.

4.1.1 Causal Signals

A digital signal x̂ = {x̂(k)}∞k=−∞ with values in C
N is said to be causal if

x̂(k) = 0 for all k < 0. The spectrum of such a causal signal is given by
x(eiθ) =

∑∞
k=0 x̂(k) eikθ and its D-transform is given by a power series

x(z) =
∞∑

k=0

x̂(k) zk , z ∈ D (4.4)

which converges for every z ∈ D (provided that the spectrum exist) and which
is analytic for all z ∈ D. Thus, the D-transform of every causal signal is an
analytic function inside the unit disk D, i.e. x ∈ H(CN ).

4.1.2 Bounded Signals

A minimal requirement on useful signals is certainly that every symbol
x̂(k), k = . . . ,−2,−1, 0, 1, 2, . . . has to be finite. Thus, a digital signal
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x̂ = {x̂(k)}∞k=−∞ with values in C
N is called a bounded signal if there ex-

ists a constant C < ∞ so that

‖x̂(k)‖CN ≤ C for all k ∈ Z .

Thus, �∞(CN ) can be interpreted as the set of all bounded signals with values
in C

N and �∞+ (CN ) can be identified with the set of all causal and bounded
signals. Sometimes bounded signals are called finite-power signals.

4.1.3 Energy Signals

The requirement that the signals should be bounded is too weak in some
applications. Instead, one requires that the energy of the signal remains finite.
This results in the notation of finite-energy signals: A digital signal x̂ =
{x̂(k)}∞k=−∞ with values in C

N is called an energy signal if

‖x̂‖�2 =

( ∞∑
k=−∞

‖x̂(k)‖2
CN

)1/2

< ∞ . (4.5)

In other words, every energy signal belongs to �2(CN ) and the set of all causal
energy signals can be identified with �2+(CN ). Since �2(CN ) ⊂ �∞(CN ), it is
clear that every energy signal has to be bounded. Additionally, the symbols
x̂(k) of an energy signal have to vanish as |k| → ∞. Because the convergence of
the series (4.5) implies that

∑n
k=0 ‖x̂(k)‖2

CN is a Cauchy sequence in C
N . Con-

sequently, to every ε > 0 there exists an N ∈ N such that
∑m

k=n ‖x̂(k)‖2
CN < ε

for all m ≥ n ≥ N . It follows in particular for m = n that ‖x̂(k)‖2
CN < ε for

all k ≥ N , and it is clear that a similar relation holds for the anti-causal part
(k < 0) of the series. All this implies that

lim
|k|→∞

‖x̂(k)‖2
CN = 0

for every energy signal. So energy signals are concentrated in time (in the
above sense) since the signal components x̂(k) die away as |k| → ∞.

By Parseval’s identity and in view of Example 1.9, it holds that ‖x̂‖�2 =
‖x‖2. Thus, x̂ is an energy signal if and only its frequency spectrum x satisfies

‖x‖2 =
(

1
2π

∫ π

−π

‖x(eiθ)‖2
CN dθ

)1/2

< ∞ .

Therefore L2(CN ) can be considered as the set of all spectra of energy signals,
whereas the Hardy space H2(CN ) contains the spectra of all causal energy
signals. It is worth noting that �2(CN ) and �2+(CN ), as well as L2(CN ) and
H2(CN ), are Hilbert spaces, which makes working with energy signals in some
respects easier than with other signal models.
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4.2 Linear Systems – Properties and Representation

A digital system L is a transformation that takes any digital input signal
x̂ = {x̂k}∞k=−∞ to a digital signal ŷ = {ŷk}∞k=−∞ = L[x̂] at the output of
the system. Similarly, one may consider the signals in the frequency domain.
Then the system L takes the spectrum x of the input signal to the spectrum
y = L[x] of the output signal.

Usually the input and output signals have certain specified or required
properties (causality, boundedness, finite energy, etc.). These properties are
characterized by the Banach space from which these signals are taken. Thus,
a (digital) system is a mapping

L : B1 → B2

which maps all signals in a certain Banach space B1 onto another Banach space
B2. In the following we consider in particular systems L : �∞+ (CN ) → �∞+ (CM )
mapping causal bounded signals at the input onto causal bounded signals at
the output of L, and we consider systems L : H2(CN ) → H2(CM ) mapping
causal energy signals onto causal energy signals.

4.2.1 Basic System Properties

The above definition of a digital system is still quite general. In applications,
additional assumptions on the properties of L are usually made. Some of these
properties will be discussed next.

Definition 4.2 (Linearity). A digital system L is said to be linear if

L[α x̂1 + β x̂2] = αL[x̂1] + β L[x̂2]

for all input signal x̂1 and x̂2 and arbitrary complex numbers α and β.

Of course, this linearity condition can be formulated equivalently in the fre-
quency domain as L[α x1 +β x2] = αL[x1]+β L[x2]. If not mentioned other-
wise, all systems considered in the following are assumed to be linear digital
systems.

Definition 4.3 (Stability). Let L : B1 → B2 be a linear system mapping
signals from a Banach space B1 to signals in a Banach space B2. The linear
system L is called stable, if the linear mapping L : B1 → B2 is bounded, i.e. if

‖L‖B1→B2 = sup
x∈B1

‖Lx‖B2

‖x‖B1

< ∞ .

The stability of L implies that there exists a constant C = ‖L‖B1→B2 such
that

‖Lx‖B2 ≤ C ‖x‖B1 for all x ∈ B1 .
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Thus, if the system is stable, then the norm of the output signal Lx can always
be controlled by the norm ‖x‖B1 of the input signal. The above definition
shows that the stability of a linear system depends strongly on the Banach
spaces B1 and B2 of the input and output signals. In many cases, the signal
spaces of the input and output signal are equal. We consider in particular the
following two particular cases:

(a) If B1 = H2(CN ) and B2 = H2(CM ) for some dimensions N,M ∈ N, i.e. if
the input and output of the linear system are signals of finite energy, and
if L : H2(CN ) → H2(CM ) is bounded, then the linear system L is called
energy stable.

(b) If B1 = �∞(CN ) and B2 = �∞(CM ) for some dimensions N,M ∈ N, i.e. if
the input and and output of L are bounded signals, and if L : �∞(CN ) →
�∞(CM ) is bounded, then the linear system L is called bounded input
bounded output (BIBO) stable.

Definition 4.4 (Causality). A linear system L is said to be causal if for
every input signal x̂ with x̂(k) = 0 for all k < 0, (Lx̂)(k) = 0 for all k < 0.

In other words, we cannot influence the past of the output by present or future
inputs. Thus, a causal linear system maps causal input signals onto causal
output signals. Since the D-transform of every causal signal is an analytic
function in D, every causal linear system with N inputs and M -outputs can be
considered as a mapping L : H(CN ) → H(CM ) which maps analytic functions
x ∈ H(CN ) with values in C

N onto analytic functions Lx ∈ H(CM ).
A linear system L is called time-invariant, if the output of the system does

not depend on the absolute time, but only on the input signal. Thus, whether
one applies an input signal x̂ to the system L now or K time instances later,
the output x̂ = Lx̂ will be identical, except for a time delay of the K time
slots. To get a proper formal definition, we introduce the (right) shift operator
R : �∞+ (CN ) → �∞+ (CN ) on the space of all bounded and causal input signals.
It is defined by

R{x̂(0), x̂(1), x̂(2), . . .} = {0, x̂(0), x̂(1), . . .} , {x̂(k)}∞k=0 ∈ �∞(CN ) .

Applying the right shift operator n − times consecutively on the sequence
x̂ ∈ �∞(CN ) yields obviously

Rn{x̂(0), x̂(1), x̂(2), . . . } = {0, . . . , 0,︸ ︷︷ ︸
n−times

x̂(0), x̂(1), . . . } .

This right shift operator R has also a natural D-domain description. Let
x(z) =

∑∞
k=0 x̂(k) zk be a function in a certain Hp(CN )-space. Then the

right shift of x is given by

(Rx)(z) =
∞∑

k=1

x̂(k) zk = z x(z) , z ∈ D

and (Rnx)(z) = zn x(z).
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Example 4.5 (Unit pulses). Let δ̂0 = {1, 0, 0, · · · } be the sequence that con-
tains a one at the first position and is zero elsewhere. We call this particular
sequence unit pulse. Then Rn δ̂0 is the sequence which contains a one at po-
sition n and zeros elsewhere, and in the D-domain one has (Rn δ0)(z) = zn.

Using the right shift operator we define now the time-invariance of a linear
system.

Definition 4.6 (Time-invariance). A linear system L is called time-
invariant, if it commutes with the right shift operator R, i.e. if

RLx̂ = LRx̂, for all x̂ ∈ D(L)

wherein D(L) ⊂ �∞+ (CN ) is the domain of L, i.e. the set of all possible input
signals.

4.2.2 Linear Time-invariant Systems

In future sections, we consider almost exclusively linear and time-invariant
(LTI) systems L. It is well known that the input-output relation of an LTI
systems can be characterized by the so called transfer function or equivalently
by the impulse response of the system. However, to obtain such a simple
description of the system L it is generally necessary to require that the system
L is stable. The following theorem establishes these two characterizations of
the input-output relation of an LTI systems. This theorem is derived for causal
systems, since such systems are considered primarily in the following.

Theorem 4.7. Let 1 < p < ∞ and L : Hp(CN ) → Hp(CM ) be a system with
input f ∈ Hp(CN ) and output g = Lf ∈ Hp(CM ). Then L is linear, stable,
causal, and time-invariant if and only if there exists a bounded analytic matrix
function H(z) =

∑∞
k=1 Ĥ(k) zk in H∞(CM×N ) such that

(Lf)(z) = (O+
H f)(z) = H(z)f(z) , z ∈ D . (4.6)

for all f ∈ Hp(CN ), or equivalently that

ĝ(k) =
∞∑

n=0

Ĥ(n) f̂(k − n) , k = 0, 1, 2, . . . (4.7)

for all f ∈ Hp(CN ). Moreover ‖L‖ = ‖OH‖ = ‖H‖∞.

Proof. First we show that (4.6) and (4.7) are equivalent if the statement of
the theorem is true. Thus, assume that there exists H ∈ H∞(CM×N ) such
that g(z) = H(z)f(z) for all z ∈ D. Let {em}M

m=1 be a basis of the Hilbert
space C

M . We consider the individual components gm(z) = 〈g(z),em〉
CM .

Their Fourier coefficients are given by
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ĝm(k) =
1
2π

∫ π

−π

〈
H(eiτ )f(eiτ ) , em

〉
CM e−ikτ dτ ,

which exist for all k, since OHf ∈ Hp(CM ). Now, we insert the power series
expansion of H. Since this series converges absolutely, one can interchange
the integration with the summation and obtain

ĝm(k) =
∞∑

n=0

1
2π

∫ π

−π

〈
Ĥ(n)f(eiτ ) , em

〉
CM

e−i(k−n)τ dτ

=
∞∑

n=0

1
2π

∫ π

−π

〈
f(eiτ ) , Ĥ∗(n)em

〉
CM

e−i(k−n)τ dτ

(a)
=

∞∑
n=0

〈
f̂(k − n) , Ĥ∗(n)em

〉
CM

=

〈 ∞∑
n=0

Ĥ(n) f̂(k − n) , em

〉

CM

where Ĥ∗(n) denotes the adjoint of the complex matrix Ĥ(n) and where (a)
follows from the definition of the Fourier series for vector valued functions,
see (2.59). Collecting all equations for the individual components ĝm(k), m =
1, 2, . . . ,M into one vector, one obtains (4.7). This shows that (4.6) and (4.7)
are equivalent.

Assume now that there exists an H ∈ H∞(CM×N ) such that (4.6) respec-
tively (4.7) describes the input-output relation of L. Then it follows at once
from (4.6) and (4.7) that L is linear, causal, and time-invariant. Moreover,
Proposition 2.34 implies that ‖O+

H‖ = ‖H‖∞ < ∞.
For the “only if part”, we have to show that if L is linear, stable, causal,

and time-invariant, then there exists an H ∈ Hp(CM×N ) with the prescribed
properties. To this end we consider first the SISO case N = M = 1: Let
δ0 be the unit pulse (cf. Example 4.5) and set H(z) := (L δ0)(z). It is clear
that H ∈ Hp and in particular that H is an analytic function in D. Now, let
δk = Rkδ0 with k = 0, 1, 2, . . . be the unit pulse at time instance k. Since L
is time-invariant, we have

(L δk)(z) = (LRk δ0)(z) = (Rk L δ0)(z) = zk H(z) .

The span of {δk}∞k=0 is dense in Hp. Therefore, the partial sum fK =∑K
k=0 f̂(k) δk converges to f as K → ∞ for every f ∈ Hp. Applying L to

fK gives

(L fK)(z) =
K∑

k=0

f̂(k) (Lδk)(z) = H(z)
K∑

k=0

f̂(k) zk = H(z) fK(z) .

Since ‖L fK − L f‖Hp(CM ) ≤ ‖L‖ ‖fK − f‖Hp(CN ) and because of the bound-
edness of L follows that L fK converges to L f as K → ∞. Since L is assumed
to be bounded, Proposition 2.34 implies that h ∈ H∞. Thus in the SISO case,
the so constructed transfer function H has all the desired properties.
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The vector valued case is readily obtained from the scalar case by consid-
ering the individual components of the signals in Hp(CN ) and Hp(CM ) and
the individual operators [L]j,i between the i-th input and the j-th output of
the system L. Clearly, every [L]j,i is a bounded time-invariant causal linear
operator which is characterized by an analytic transfer function Hj,i(z). Thus,
by the linearity of the system L, we have that (Lf)(z) = H(z)f(z) for every
f ∈ Hp(CN ) in which H is an M × N matrix with the individual entries
[H(z)]j,i = Hj,i(z) ∈ H∞. Proposition 2.34 implies that H is an element of
H∞(CM×N ), because ‖L‖ = ‖OH‖ = ‖H‖∞ and ‖L‖ < ∞ by the assumption
of the theorem. �

The previous theorem showed that every stable time-invariant causal linear
system L : Hp(CN ) → Hp(CM ) is uniquely determined by a matrix valued
bounded analytic function H ∈ H∞(CM×N ) with power series expansion
(2.63) in such a way that the input-output relation of L can be written as
(4.6) in the D-domain or as (4.7) in the time domain. Thereby, the bounded
analytic function H is called the (matrix) transfer function of the linear system
L and the corresponding sequence Ĥ = {Ĥ(k)}∞k=0 of Fourier coefficients is
called the (matrix) impulse response of L.

Especially in later chapters, we will always identify a matrix transfer func-
tion H ∈ L∞(CM×N ) with the multiplication operator OH : L2(CN ) →
L2(CM ) defined by (OH f)(ζ) = H(ζ)f(ζ) for all ζ ∈ T. Thus, speaking for
example of the range or null space of H, we always mean the range or null
space of OH.

Of particular interest are linear systems L : H2(CN ) → H2(CM ) which
map energy signals onto energy signals. For these particular systems, Theo-
rem 4.7 contains the following well known result as a special case:

Corollary 4.8. A causal, linear, and time-invariant system L is energy stable
if and only if its transfer function H is a bounded analytic function H ∈
H∞(CM×N ).

Theorems 4.7 holds for linear systems L : Hp(CN ) → Hp(CM ) with 1 <
p < ∞. However, it cannot be applied for systems L mapping bounded signals
f̂ ∈ �∞+ (CN ) onto bounded signals L f̂ ∈ �∞+ (CM ) since f̂ ∈ �∞+ (CN ) does not
imply that f ∈ Hp(CN ), in general. To see this, assume that f̂ = {f̂(k)}∞k=0

is an element of �∞+ (which means that supk≥0 |f̂(k)| = ‖f̂‖∞ < ∞) and let
f(z) =

∑∞
k=0 f̂(k) zk be the corresponding D-transform. Then for an arbitrary

z ∈ D, we have

|f(z)| ≤
∞∑

k=0

|f̂(k)| |z|k ≤ ‖f̂‖�∞

∞∑
k=0

|z|k =
1

1 − |z| ‖f̂‖�∞

where equality holds for some f̂ ∈ �∞+ and z ∈ D. Since the right hand side
diverges as |z| → 1, it is clear that f need not be an element of any Hp space.
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However, for causal linear systems L : �∞+ (CN ) → �∞+ (CM ) the following result
is obtained.

Theorem 4.9. Let L : �∞+ (CN ) → �∞+ (CM ) be a system with input f̂ ∈
�∞+ (CN ) and output ĝ = L f̂ ∈ �∞+ (CM ). Then L is linear, stable, causal,
and time-invariant if and only if there exists an M × N matrix H(z) whose
individual entries Hi,j(z) = [H(z)]i,j have the form

Hi,j(z) =
∞∑

k=0

Ĥi,j(k) zk with ‖Ĥi,j‖�1 =
∞∑

k=0

∣∣∣Ĥi,j(k)
∣∣∣ < ∞

for all i = 1, . . . ,M and j = 1, . . . , N , and such that (4.6) and (4.7) hold for
every f̂ ∈ �∞+ (CN ).

Proof. As in the proof of Theorem 4.7, it is clear that (4.6) and (4.7) are
equivalent. Given H with the specified properties, (4.6) and (4.7) show that
L is linear, causal, and time-invariant. It remains to show that L is also
bounded. To this end, we consider an arbitrary component ĝi of the system
output ĝ = L f̂ . According to (4.7) its is given by

ĝi(k) =
N∑

j=1

∞∑
n=0

Ĥi,j(n) fj(k − n) , i = 1, . . . , M ; k = 1, 2, . . . .

For its modulus, one finds the upper bound

|ĝi(k)| ≤
N∑

j=1

∞∑
n=0

∣∣∣Ĥi,j(n)
∣∣∣ |fj(k − n)| ≤ N max

i,j
‖Ĥi,j‖�1+

‖f̂‖�∞+ (CN )

for all i = 1, . . . ,M and all k ∈ N. Define the constant C0 :=
N maxi,j ‖Ĥi,j‖�1+

which depends on the impulse response matrix Ĥ and
which is finite, one obtains for the norm of the output signal

‖ĝ(k)‖2
CM =

M∑
i=1

|gi(k)|2 ≤ M C2
0 ‖f̂‖2

�∞+ (CN ) .

Since this last bound holds for all k ∈ N, it shows that L is bounded.
For the “only if part” we start again with the SISO case (N = M = 1)

and define Ĥ := L δ̂0, in which δ̂0 = {1, 0, 0, · · · } ∈ �∞+ is the unit pulse (cf.
Example 4.5) and where Ĥ = {Ĥ(0), Ĥ(1), Ĥ(2), · · · } is the impulse response
of the (SISO) system L. Applying the unit pulse at time instant k to L gives
the output signal

L δ̂k = LRk δ̂0 = Rk L δ̂0 = Rk Ĥ = {0, · · · , 0︸ ︷︷ ︸
k−times

, Ĥ(0), Ĥ(1), · · · } ,
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using that L is time-invariant. Of course, every f̂ ∈ �∞+ can be written as
f̂ =

∑∞
k=0 f̂(k) δ̂k. Applying the operator L to this function gives

Lf̂ = L
( ∞∑

k=0

f̂(k) δ̂k

)
=

∞∑
k=0

f̂(k)Lδ̂k =
∞∑

k=0

f̂(k)RkĤ . (4.8)

Next, we consider the n-th symbol in the output sequence Lf̂ , which is equal
to

(Lf̂)(n) =
n∑

k=0

f̂(k) Ĥ(n − k) =
∞∑

m=0

Ĥ(m) f̂(n − m) ,

using for the last equation that f̂(k) = 0 for all k < 0. Moreover, for the
modulus of the output symbols hold

∣∣∣(Lf̂)(n)
∣∣∣ ≤

∞∑
m=0

|Ĥ(m)| |f̂(n − m)| ≤ ‖f̂‖�∞

∞∑
m=0

|Ĥ(m)| < ∞ , (4.9)

since L was assumed to be bounded. This shows that ‖Ĥ‖�1 < ∞, and that
the right hand side of (4.8) converges uniformly for all time instances n.
This justifies the interchange of L with the infinite sum in (4.8). Thus, it
was shown that if the SISO system L is linear, causal, time-invariant, and
bounded then the output ĝ of L is obtained by the convolution of the input f̂
with the impulse response Ĥ of L (4.7), and Ĥ ∈ �1. If L has several inputs
and outputs, the statement of the theorem follows from the SISO case by the
linearity of L. �

Unlike Theorem 4.7 for energy stable systems, the previous Theorem 4.9
makes no statement on the norm ‖L‖ of the linear system L in terms of the
transfer function H or in terms of the impulse response Ĥ of L. In the case
of BIBO stable systems only the obvious upper bound

‖L‖�∞+ (CN )→�∞+ (CM ) ≤
∞∑

n=0

‖Ĥ(n)‖CN→CM (4.10)

can be given, in general. It follows at once from the representation (4.7) of L,
since

‖(Lf̂)(k)‖CM ≤
∞∑

n=0

‖Ĥ(n)‖CN→CM ‖f̂(k − n)‖CN

≤ ‖f̂‖�∞(CN )

∞∑
n=0

‖Ĥ(n)‖CN→CM .

Therein ‖Ĥ(n)‖CN→CM is the operator norm of the matrices Ĥ(n) : C
N →

C
M , which is known to be equal to the spectral norm, i.e. largest singular

value of Ĥ(n):
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‖Ĥ(n)‖CN→CM =
√

λmax

{
Ĥ∗(n) Ĥ(n)

}
.

However, in the case of a SISO system (N = M = 1) even equality holds in
(4.10). This is proved in the following theorem.

Theorem 4.10. Let L : �∞+ → �∞+ be a linear, stable, causal, and time-
invariant SISO system with impulse response Ĥ = {Ĥ(k)}∞k=0. Then the norm
of L is given by

‖L‖ = ‖Ĥ‖�1 =
∞∑

k=0

∣∣∣Ĥ(k)
∣∣∣ .

Proof. Equation (4.9) implies that ‖L f̂‖�∞ ≤ ‖Ĥ‖�1‖f̂‖�∞ which shows that
‖L‖ ≤ ‖Ĥ‖�1 . To show that also the inverse inequality holds, we write every
individual element Ĥ(k) of the impulse response as Ĥ(k) = |Ĥ(k)| eiΦH(k) and
define a sequence of input signals by

f̂n(k) :=

{
e−iΦH(n−k) k = 0, 1, 2, . . . , n

0 otherwise
, for n = 1, 2, . . . .

For these functions, it obviously holds that ‖f̂n‖�∞ = 1 and that

(L f̂n)(n) =
n∑

m=0

|Ĥ(m)| eiΦH(m) f̂n(n − m) =
n∑

m=0

|Ĥ(m)| .

Therefore supn∈N |(L f̂n)(n)| = ‖Ĥ‖�1 , which gives

‖L‖ = sup
f̂∈�∞+ , ‖f̂‖�∞≤1

‖Lf̂‖�∞ ≥ sup
n∈N

‖L f̂n‖�∞ = ‖Ĥ‖�1

and which proves that ‖L‖ = ‖Ĥ‖�1 . �

Theorem 4.7 and 4.9 establish that the input-output relation of a linear
system can be represented by a convolution of the input signal with the im-
pulse response of the system, or equivalently in the frequency domain by a
multiplication of the spectrum of the input signal with the transfer function
of the system. This result is considered as one of the cornerstones of liner
system theory and consequently discussed in depth in almost any textbook
on this topic (e.g. [63, 67] among many others). It should be noted however,
that this statement is not true in general, i.e. there exists linear systems whose
input-output map is not entirely characterized by its impulse response. For
a discussion of such cases, we refer to a series of papers published by Irvine
Sandberg [73, 75, 76], and to [26, 74], in which the time continuous systems
are considered.
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Notes

[65]



Part II

Fundamental Operators



5

Poisson Integral and Hilbert Transformation

Given the transfer function f(eiθ) =
∑∞

k=−∞ f̂(k) eikθ with θ ∈ [−π, π) of a
non causal system. Then the operation P+ : f �→

∑∞
k=0 f̂(k) eikθ, which cuts

off the anti-causal part of the transfer function, is called the Riesz projec-
tion. This operation plays a prominent roll in system theory, as soon as the
causality of certain system has to be enforced. For example, in estimation and
detection problems, the determination of the causal linear filter which mini-
mizes the means square error criterion (the so called Wiener filter) involves
the Riesz projection, and also the so called spectral factorization comprises a
Riesz projection (cf. Section 10). In Section 6 we will investigate the analytic
behavior of the Riesz projection on different Banach spaces in some detail.
However, in the present section, we first investigate the behavior of the Pois-
son and the conjugate Poisson integrals, since the real and the imaginary part
of the Riesz projection are essentially given by these two integrals, respec-
tively. However, these results are also of considerable interest by themselves
since these integral transforms are very important in many different areas of
physics and engineering.

5.1 Definitions

Suppose f ∈ L1 is a function on the unit circle T with Fourier coefficients
f̂(k), k ∈ Z given by (2.1) and consider the function defined by

(Rf)(z) := f̂(0) + 2
∞∑

k=1

f̂(k) zk , z ∈ D . (5.1)

Using the definition of the Fourier coefficients (2.1) in the above series of Rf
and interchanging the order of integration and summation, one obtains

(Rf)(reiθ) =
1
2π

∫ π

−π

f(eiτ )
1 + rei(θ−τ)

1 − rei(θ−τ)
dτ (5.2)

V. Pohl, H. Boche, Advanced Topics in System and Signal Theory, Foundations
in Signal Processing, Communications and Networking 4,
DOI 10.1007/978-3-642-03639-2_5, c© Springer-Verlag Berlin Heidelberg 2009
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with 0 ≤ r < 1 and −π ≤ θ < π. Taking the modulus of (5.2) and applying
the triangle inequality one obtains

|(Rf)(reiθ)| ≤ 1
2π

∫ π

−π

|f(eiτ )| 1 + r

1 − r
dτ =

1 + r

1 − r
‖f‖1 . (5.3)

This shows that (5.1), and equivalently (5.2), defines for every f ∈ L1 a
function (Rf)(z) in the unit disk z ∈ D. Moreover (5.1) shows that (Rf)(z)
is analytic at every z ∈ D. The mapping R : L1(T) → H(D) is called the
Herglotz-Riesz transform.

The kernel

Hr(τ) :=
1 + reiτ

1 − reiτ

of the Herglotz-Riesz transform (5.2) is a complex function of r and τ . It can
be written as Hr(τ) = Pr(τ) + iQr(τ) wherein the real part Pr(τ) is known
as the Poisson kernel and the imaginary part Qr(τ) is called the conjugate
Poisson kernel. It is easily verified that they are given by

Pr(τ) :=
1 − r2

1 − 2r cos τ + r2
and Qr(τ) :=

2 r sin τ

1 − 2 r cos τ + r2
(5.4)

respectively. With these one defines the Poisson integral

(Pf)(reiθ) :=
1
2π

∫ π

−π

f(eiτ )Pr(θ − τ) dτ (5.5)

and the conjugate Poisson integral

(Qf)(reiθ) :=
1
2π

∫ π

−π

f(eiτ )Qr(θ − τ) dτ . (5.6)

Consequently, the Herglotz-Riesz transform can be written as

(Rf)(reiθ) = (Pf)(reiθ) + i (Qf)(reiθ) . (5.7)

Since Rf is an analytic function in D, the Poisson and the conjugate Poisson
integral Pf and Qf are harmonic functions in D and Qf is the harmonic
conjugate of Pf .

Given f ∈ L1, it follows from (5.3) that (Rf)(z), (Pf)(z), and (Qf)(z)
are bounded at every z ∈ D. However, these functions need not to exist on
the unit circle T, in general. The boundary behavior of Rf , Pf , and Qf
will be investigated in the following subsections separately for these three
operators. More precisely, given a function f ∈ B from a certain Banach
space B ⊂ L1 of functions on the unit circle, we ask whether the boundary
functions (Pf)(eiθ) := limr→1(Pf)(reiθ), (Qf)(eiθ) := limr→1(Qf)(reiθ), and
(Rf)(eiθ) := limr→1(Rf)(reiθ) exist and whether they belong again to B.



5.2 The Poisson Integral 83

5.2 The Poisson Integral

Assume at the moment that f ∈ L2 is a real valued function. Then its Fourier
series and the Herglotz-Riesz transform (5.1) converge (in L2). Moreover, since
f is real, its Fourier coefficients satisfy f̂(−k) = f̂(k) for all k ∈ N. Therefore,
it follows immediately from the definition of the Herglotz-Riesz transform that
the Poisson integral (P f)(reiθ) converges to f for r → 1. We will first show
that this behavior of the Poisson integral also holds in a much wider sense. As
a preparation, we note that the Poisson kernel Pr is an approximate identity,
which means that:

(a) Pr(τ) > 0 for all τ ∈ [−π, π) and 0 ≤ r < 1

(b)
1
2π

∫ π

−π

Pr(τ) dτ = 1 for all 0 ≤ r < 1

(c) lim
r→1

Pr(τ) = 0 for all 0 < |τ | ≤ π

Moreover, Pr is a continuous function for all 0 ≤ r < 1, and even, i.e.
Pr(−τ) = Pr(τ). Properties (a) and (b) are easily verified, whereas prop-
erty (c) results from the inequality cos(τ) ≤ 1 − 2

π2 τ2 for all τ ∈ [−π, π].
Then, one gets for an arbitrary ε > 0 that

Pr(τ) ≤ 1 − r2

(1 − r)2 + 4r
π2 ε2

for all ε ≤ |τ | ≤ π

where the right hand side converges to zero as r → 1.
The first theorem investigates the boundary behavior of the Poisson inte-

gral for all continuous functions on the unit circle.

Theorem 5.1. Let f ∈ C(T) be arbitrary and set Fr(eiθ) := (Pf)(reiθ). Then

‖Fr‖∞ ≤ ‖f‖∞ for all 0 ≤ r < 1 (5.8)

and

lim
r→1

‖Fr − f‖∞ = 0 . (5.9)

Proof. The first statement (5.8) follows from Property (b) of the Poisson
kernel, because by the definition of the Poisson integral one has
∣∣Fr(eiθ)

∣∣ ≤ 1
2π

∫ π

−π
|f(eiθ)| Pr(θ − τ) dτ ≤ ‖f‖∞ 1

2π

∫ π

−π
Pr(θ − τ) dτ = ‖f‖∞

for all θ ∈ [−π, π].
The second statement, i.e. the uniform convergence of the Poisson integral,

can be proven exactly as it was done for the Fejér series (Theorem 2.4) using
that the Poisson kernel Pr is an approximate identity. Therefore, this part of
the proof is left as an exercise. �
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Let f ∈ C(T) be an arbitrary continuous function on the unit circle T

and define the function F (reiθ) := (Pf)(reiθ) in the unit disk D, i.e for all
0 ≤ r < 1 and θ ∈ [−π, π). This function F is a harmonic function in the
open unit disk D, and the second statement of Theorem 5.1 implies that

lim
r→1

F (reiθ) = f(eiθ) for each θ ∈ [−π, π) .

Therefore, F is called the harmonic extension of f into the unit disk D, and
we can define the function

f(reiθ) :=
{

f(eiθ) for r = 1
(Pf)(reiθ) for 0 ≤ r < 1

which is harmonic in the open unit disk D and continuous in the closed unit
disk D. The first statement (5.8) of Theorem 5.1 shows that the Poisson inte-
gral P is a bounded operator on C(T) and that the maximum modulus of the
extended function f is attained on the unit circle T.

Remark 5.2. The Poisson integral plays a very important role in a variety of
areas of engineering and physics since the above theorem provides a solution to
the important boundary value problem: Let Ω be an open set in the complex
plane with the boundary ∂Ω. One looks for a function F (z) with z = x+i y ∈ Ω
which satisfies Laplace’s equation

ΔF =
∂2F

∂x2
+

∂2F

∂y2
= 0

at every point z ∈ Ω and whose boundary values on ∂Ω are equal to a given
continuous function f ∈ C(∂Ω). For Ω = D, the solution to this problem is
given by Theorem 5.1. For arbitrary sets Ω, a solution can also be obtained
from Theorem 5.1 using a conformal mapping from Ω onto D.

Assume now that the given boundary function f is not continuous but
belongs to Lp for 1 ≤ p ≤ ∞. Then the Poisson integral F (z) = (Pf)(z)
still defines a harmonic and continuous function for all z ∈ D. But since f is
not continuous, the Poisson integral F = Pf does not converge pointwise to
the boundary values f , in general. Nevertheless, the pointwise convergence in
the case of f ∈ C(T) was just a consequence of the norm-convergence (5.9).
The next theorem will show that the Poisson integral (Pf)(z) shows the same
behavior on Lp with 1 ≤ p ≤ ∞. Namely, it converges to f in Lp as |z| → 1.

Theorem 5.3. Let f ∈ Lp with 1 ≤ p ≤ ∞ and set Fr(eiθ) := (Pf)(reiθ),
then

‖Fr‖p ≤ ‖f‖p for all 0 ≤ r < 1 . (5.10)

Moreover, if 1 ≤ p < ∞ then

lim
r→1

‖Fr − f‖p = 0 . (5.11)
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Proof. For a fixed r and θ, the Poisson kernel defines a positive measure
dμr,θ(τ) := 1

2π Pr(θ − τ) dτ on [−π, π) with
∫ π

−π
dμr,θ(τ) = 1 by the second

property of the Poisson kernel. Therewith, one sees that

|Fr(eiθ)| ≤
∫ π

−π
|f(eiτ )|dμr,θ(τ) ≤

(∫ π

−π
|f(eiτ )|p dμr,θ(τ)

)1/p

where the second inequality was obtained by applying Hölder’s inequality with
an arbitrary 1 ≤ p < ∞. One obtains

‖Fr‖p
p =

1
2π

∫ π

−π

|Fr(eiθ)|p dθ ≤ 1
2π

∫ π

−π

∫ π

−π

|f(eiτ )|p dμr,θ(τ) dθ

=
1
2π

∫ π

−π

|f(eiθ)|p dθ = ‖f‖p
p

using Fubini’s theorem (to exchange the order of integration) and∫ π

−π
dμr,θ(τ) = 1. This proves (5.10) for p < ∞. The statement for p = ∞

follows directly from

|Fr(eiθ)| ≤
∫ π

−π
|f(eiτ )|dμr,θ(τ) ≤ ‖f‖∞

∫ π

−π
dμr,θ(τ) = ‖f‖∞ .

To prove (5.11), we use that C(T) is dense in Lp and apply Theorem 5.1.
Let ε > 0 arbitrary and choose g ∈ C(T) such that ‖g − f‖p < ε/3 and set
Gr(eiθ) := (Pg)(reiθ). Then

‖Fr − f‖p ≤ ‖Fr − Gr‖p + ‖Gr − g‖p + ‖g − f‖p

Since Fr(eiθ) − Gr(eiθ) = (P[f − g])(reiθ), it follows from (5.10) that ‖Fr −
Gr‖p ≤ ‖f−g‖p < ε/3. Moreover ‖Gr−g‖p ≤ ‖Gr−g‖∞ and by Theorem 5.1,
there exists an R0 < 1 such that ‖Gr − g‖∞ < ε/3 for all r > R0. Altogether
this shows that ‖Fr − f‖p < ε for all r > R0 which proves (5.11). �

Finally, we consider the Poisson integral on spaces Cω(T) of smooth func-
tions on the unit circle, as introduced in Section 1.3. Here, it will depend on
the majorant ω whether the Poisson integral is bounded or not. The following
theorem gives necessary and sufficient conditions on the majorant ω such that
P : Cω(T) → Cω(D) is bounded.

Theorem 5.4. Let ω be a majorant. Then the Poisson integral P : Cω(T) →
Cω(D) is bounded if and only if ω is a weak regular majorant of type 2. In
other words, there exists a constant C = C(ω) such that

‖Pf‖Cω(D) ≤ C(ω) ‖f‖Cω(T) (5.12)

for all f ∈ Cω(T) if and only if ω is a weak regular majorant of type 2.

This theorem states that if f ∈ Cω(D) is given with a regular majorant of
type 2 then the modulus of continuity of the Poisson integral Pf is always
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upper bounded by the same majorant ω in the closed unit disk D. At all
points z ∈ D, the Poisson integral (Pf)(z) is holomorphic. It easily follows
(see proof) that Pf belongs to all spaces Cω(D) with an arbitrary majorant ω.
Thus, the non-trivial statement of this theorem is that the boundary function
(Pf)(eiθ), θ ∈ [−π, π) again belongs to Cω(T) as long as ω is weak regular
of type 2. For the proof of this theorem, we will need the following auxiliary
lemma.

Lemma 5.5. Let ω be a weak regular majorant of type 2. Then there exists a
constant C such that

1
2π

∫ π

−π

ω(|eiτ − eit|)(1 − r2)
1 − 2r cos(τ − t) + r2

dτ ≤ C
ω(1 − r)

r
(5.13)

for 0 < r ≤ 1 and for all t ∈ [−π, π).

Proof. It is not hard to see that |eiτ − eit| ≤ |τ − t| and that there exists a
constant C1 = 4/π2 such that 1− 2r cos(τ − t)+ r2 ≥ (1− r)2 +C1 r (τ − t)2.
Therewith, the following upper bound for the left-hand side of (5.13), denoted
by L(t), is obtained

L(t) ≤ 1 − r2

2π

∫ π

−π

ω(|τ − t|)
(1 − r)2 + C1 (τ − t)2

dτ

≤ 1 − r2

π

∫ π

0

ω(s)
(1 − r)2 + C1 s2

ds (5.14)

for all t ∈ [−π, π). The last inequality was obtained by the substitution s =
τ − t and using that the integrand is a positive function. Now, the right hand
side of (5.14) is split up into a sum of an integral from 0 to 1 − r, denoted
by L1, and an integral from 1 − r to π, denoted by L2. To obtain an upper
bound for L1, it is used that ω(s) is a monotone increasing function and that
C1 s2 ≥ 0:

L1 ≤ (1 − r2)ω(1 − r)
π (1 − r)2

∫ 1−r

0

ds ≤ (1 + r) r

π

ω(1 − r)
r

≤ 2
π

ω(1 − r)
r

Similarly, the following upper bound for L2 is obtained

L2 ≤ 1 + r

π C1 r
(1 − r)

∫ π

1−r

ω(s)
s2

ds ≤ 2
π

C2

C1

ω(1 − r)
r

using that ω is a weak regular majorant of type 2. These two upper bounds
together with (5.14) give statement (5.13) of the lemma. �

Proof (Theorem 5.4). 1) Sufficiency: In the first part, it is shown that if ω is
weak regular of type 2 then P is continuous. To this end, we have show that
there exists a constant C(ω), which depends only on the majorant ω such that
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|(Pf)(z1)− (Pf)(z2)| ≤ C(ω)ω(|z1 − z2|) for all z1, z2 in the closed unit disk
D if and only if ω is weak regular of type 2.

First, we note that for all z1, z2 strictly inside the unit disk such a constant
C(ω) exists for every arbitrary majorant ω. This follows easily from the fact
that (Pf)(z) is harmonic in D. Indeed, we know that Pf is the real part
of the Herglotz-Riesz transform Rf (cf. (5.7)), which is an analytic function
inside the unit disk. Moreover, by the maximum modulus principle for analytic
function |(Rf)(z)| ≤ ‖f‖∞ ≤ C1(ω) ‖f‖Cω(T) for all z ∈ D, where the last
inequality follows from the properties of functions in Cω(T) with a certain
constant C1(ω), which depends only on the majorant ω (cf. Section 1.3). By
a simple application of Schwarz Lemma (see e.g. [70, § 12.5]), the modulus of
the the first derivative of Rf can be upper bounded as follows

|(Rf)′(z)| ≤ 2 ‖f‖∞
1 − |z|2 ≤ 2C1(ω)

1 − |z|2 ‖f‖Cω(T) , for all z ∈ D .

Consequently, for all points z1, z2 with |z1|, |z2| ≤ 1/2, we obtain

|(Rf)(z1) − (Rf)(z2)| ≤ 8C1(ω) ‖f‖Cω(T) |z1 − z2| .

Finally, we use that ω(τ)/τ is non-increasing and that |z1 − z2| ≤ 1. This
implies that ω(|z1 − z2|)/‖z1 − z2| ≥ ω(1). Noting again that Pf is the real
part of Rf , we get

|(Pf)(z1) − (Pf)(z2)| ≤
8C1(ω)
ω(1)

‖f‖Cω(T) ω(|z1 − z2|)

for all z1, z2 with |z1|, |z2| ≤ 1/2, and for every arbitrary majorant ω.
It remains to study the behavior at points z1, z2 lying close to the boundary

of the unit disk. Thus, without loss of generality, we consider three point
z1 = r1eit1 , z2 = r2eit2 , and z = r1eit2 with 1/2 ≤ r1, r2 ≤ 1 and with
t1, t2 ∈ [−π, π). The triangle inequality gives

|(Pf) (z1) − (Pf) (z2)|
≤ |(Pf) (z1) − (Pf) (z)| + |(Pf) (z) − (Pf) (z2)| . (5.15)

The first term on the right hand side becomes

∣∣(Pf) (r1eit1) − (Pf) (r1eit2)
∣∣ ≤ 1

2π

∫ π

−π

∣∣∣f(ei(τ+t1)) − f(ei(τ+t2))
∣∣∣Pr1(τ) dτ

≤ ‖f‖Cω(T) ω
(
|eit1 − eit2 |

)
≤ 2 ‖f‖Cω(T) ω (|z1 − z|) . (5.16)

Here, the last inequality follows from the obvious relation |z1−z| ≤ |eit1 −eit2 |
and by using that ω(t)/t is non-increasing. Note that this result implies that
the function defined by g(eit) := (Pf)(r1eit) is an element of Cω(T).
Next, the second term on the right hand side of (5.15) is investigated. Without
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loss of generality, it is assumed that r2 ≥ r1. First, we consider the case that z2

lies on the unit circle, i.e. that r2 = 1. Using that limr→1 (Pf) (reit2) = f(eit2)
and that

∫ π

−π
Pr(τ) dτ = 2π for all 0 ≤ r ≤ 1, the second term on the right

hand side of (5.15) becomes

∣∣(Pf)(r1eit2) − f(eit2)
∣∣ =
∣∣∣∣ 1
2π

∫ π

−π

[
f(eiτ ) − f(eit2)

]
Pr1(t2 − τ) dτ

∣∣∣∣
≤ ‖f‖Cω(T)

1
2π

∫ π

−π

ω
(
|eiτ − eit2 |

)
Pr1(t2 − τ) dτ

≤ 2C2 ‖f‖Cω(T) ω (1 − r1) ≤ 2C2 ‖f‖Cω(T) ω (|z − z1|) . (5.17)

Here, the first inequality is a consequence of f ∈ Cω(T) whereas the second
inequality follows from Lemma 5.5 with a certain constant C2, and using
that r1 ≥ 1/2. Now we consider the case r2 < 1 and define the function
g(eit) := (Pf)(r2eit). As a consequence of the first part of this proof, g ∈ Cω(T)
with ‖g‖Cω(T) ≤ 2 ‖f‖Cω(T). Therewith, the second term on the right hand side
of (5.15) can be written as

|(Pf) (z) − (Pf) (z2)| =
∣∣∣(Pg) ( r1

r2
eit2) − (Pg) (eit2)

∣∣∣
≤ 4C2 ‖f‖Cω(T) ω(1 − r1

r2
) ,

using (5.17) for the last inequality. Since r2 ≥ 1/2 and because the majo-
rant ω(t) is an increasing function, it holds that ω( r2−r1

r2
) ≤ ω(2 [r2 − r1]) ≤

2ω(r2 − r1), whereas the last inequality follows from the fact that ω(t)/t is
non-increasing. Because |z − z2| = r2 − r1 we therefore have

|(Pf) (z) − (Pf) (z2)| ≤ 8C2‖f‖Cω(T) ω(|z − z2|) . (5.18)

Using (5.16) and (5.18) in (5.15) gives

|(Pf) (z1) − (Pf) (z2)| ≤ 2 ‖f‖Cω(T) ω (|z1 − z|) + 8C2 ‖f‖Cω(T) ω(|z − z2|) .

Since |z1−z| ≤ |z1−z2| and |z−z2| ≤ |z1−z2| and because ω(t) is an increasing
function, this gives |(Pf) (z1) − (Pf) (z2)| ≤ (2 + 8C2) ‖f‖Cω(T) ω(|z1 − z2|),
and this is what we wanted to show.

2) Necessity: It will be shown that if P : Cω(T) → Cω(T) is continuous
then ω is weak regular of type 2. We assume that there exists a constant C
such that (5.12) holds. This implies in particular that Pf ∈ Cω(T) for all
f ∈ Cω(T). Next, the special function f1(eiτ ) := ω(|τ |) is considered. Using
the properties of a majorant, it can be verified that f1 ∈ Cω(T) and therefore
that Pf1 ∈ Cω(T). This implies that there exists a constant C3 such that for
all 0 ≤ r ≤ 1 and all −π ≤ τ < π

∣∣(Pf1)(reiτ ) − (Pf1)(eiτ )
∣∣ ≤ C3 ω(1 − r)
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holds. This last inequality holds in particular for τ = 0, i.e.
|(Pf1)(r) − (Pf1)(1)| ≤ C3 ω(1 − r). Because (Pf1)(1) = f1(1) = ω(0) = 0
and because f1 is non-negative and even, this last inequality becomes

1
π

∫ π

0

f1(eiτ )
1 − r2

1 − 2r cos τ + r2
dτ ≤ C3 ω(1 − r) .

Next, we derive a lower bound for the Poisson integral on the left hand side,
which will finally show that ω is weak regular of type 2. To this end, the
denominator of the kernel is written as (1 − r)2 + 2r [1 − cos τ ] and upper
bounded using the inequality 1 − cos τ ≤ τ2/2. The nominator of the kernel
is lower bounded by 1 − r ≤ 1 − r2 and by increasing the lower integration
limit the value of the integral decreases since the integrand is non negative.
All this gives finally

1 − r

π

∫ π

1−r

f1(eiτ )
dτ

(1 − r)2 + τ2
≤ C5 ω(1 − r) .

Since the integration variable τ is greater than (1−r), it follows that (1−r)2+
τ2 ≤ 2τ2. Using this in the above inequality and recalling that f1(eiτ ) = ω(τ)
for all τ ≥ 0 gives

(1 − r)
∫ π

1−r

ω(τ)
τ2

dτ ≤ 2π C3 ω(1 − r)

which shows that ω is weak regular of type 2. �

5.3 The Conjugate Poisson Integral

The Poisson integral (Pf)(z) converges (in norm) to f as |z| → 1 for all
functions f in the spaces Lp, C(T). This result was obtained in the pre-
vious section easily from the fact that the kernel of the Poisson integral
is an approximate identity. The kernel of the conjugate Poisson integral
does not behave like an approximate identity. In particular, it holds that
1
2π

∫ π

−π
|Qr(τ)|dτ = 2

π log[(r + 1)/(r − 1)], which goes to infinity as r → 1.
However, one can show that for every f ∈ L1 the conjugate Poisson integral
(Pf)(reit) has non-tangential limits

f̃(eit) = lim
r→1

(Qf)(reit) for almost all t ∈ [−π, π) .

The linear mapping H : f �→ f̃ is called the conjugate mapping or the Hilbert
transform of f . Starting with (5.6), one can show (see e.g. [41, Chapter III])
that f̃ is given by the principal value integral

f̃(eit) = (Hf)(eit) := lim
ε→0

1
2π

∫
ε<|τ |≤π

f(ei(t+τ))
tan(τ/2)

dτ (5.19)
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for almost all t ∈ [−π, π). Since the kernel of the Hilbert transform

H(τ) =
1

tan(τ/2)
=

sin τ

1 − cos τ
(5.20)

has a singularity at τ = 0, the truncated Hilbert transform

(Hεf)(eit) :=
1
2π

∫
ε<|τ |≤π

f(ei(τ+t))
tan(τ/2)

dτ (5.21)

is used in the following to investigate the existence and boundedness of the
Hilbert transform. Here, the integration over the singularity is left out, and
the Hilbert transform is obtained by letting ε → 0, i.e.

f̃(eit) = (Hf)(eit) = lim
ε→0

(Hεf)(eit) .

5.3.1 Boundedness of the Hilbert transform

As in the case of the Poisson integral, we consider the boundedness behavior
of the Hilbert transform on the spaces Lp, C(T), and Cω(T) and start again
with Lp. Suppose that f ∈ Lp for some 1 ≤ p ≤ ∞. Does it follow that the
conjugate function f̃ = Hf belongs also to Lp? The answer is affirmative if
1 < p < ∞.

Theorem 5.6 (M. Riesz). Let 1 < p < ∞. Then there exists a constant
C(p), which depends only on p, such that

‖f̃‖p = ‖Hf‖p ≤ C(p) ‖f‖p for every f ∈ Lp(T) .

The proof of this classical theorem, due to Marcel Riesz, can be found in many
standard textbooks (e.g. [41, 48, 70, 92]). Therefore it is not presented here.
However it is important to note that for p = 1 and p = ∞ the above theorem
does not hold. This can be verified by considering some counter examples.

Example 5.7 (counter example for p = ∞). In the case of p = ∞, we consider
the partial sums fN and its conjugate f̃N given by

fN (eiτ ) = − 2
π

∑N
k=1

sin(kτ)
k and f̃N (eiτ ) = 2

π

∑N
k=1

cos(kτ)
k

respectively. The function fN is just the partial Fourier series of the function

f(t) :=

⎧⎪⎨
⎪⎩

1
π τ + 1 , τ ∈ [−π, 0)
0 , τ = 0
1
π τ − 1 , τ ∈ (0, π]

which is known to be uniformly bounded by ‖fN‖∞ ≤ 1.117 for all N ∈ N.
Consequently, the limit f = limN→∞ fN is an element of L∞. However, for
the partial sums of the conjugate functions f̃(eiτ ) at τ = 0 holds
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|f̃N (1)| =
∑N

k=1
1
k ≥

∫ N+1

1
d x
x = log(N + 1) −−−−→

N→∞
∞ .

Therefore, the conjugate function Hf = f̃ = limN→∞ f̃N of f cannot be an
element of L∞.

Example 5.8 (counter example for p = 1). For the case p = 1, one considers
the functions fN with the conjugate functions f̃N given by

fN (eiτ ) =
∑N

k=2
cos(kτ)
log k and f̃N (eiτ ) =

∑N
k=2

sin(kτ)
log k

respectively. The series {1/ log k}∞k=2 is convex and converges to zero as k →
∞. Therefore, Proposition 5.15 in the appendix implies that fN converges to
a nonnegative function in L1 as N → ∞. However, the limit of f̃N is not an
integrable function. To see this, we consider the functions

gN (eiτ ) = fN (eiτ ) + i f̃N (eiτ ) =
∑N

k=2
eikτ

log k .

By this construction gN (z) is an analytic function for every z ∈ D and all
N ∈ N, but Hardy’s inequality (Theorem 2.12) shows that the limit function
limN→∞ gN is not an element of H1 because
∑N

k=2
1

(k+1) log k ≥
∑N+1

k=3
1

k log k ≥
∫ N+1

3
dx

x log x ≥ log log(N + 2) −−−−→
N→∞

∞ .

This implies that ‖gN‖1 → ∞ as N → ∞, and since ‖gN‖1 ≤ ‖fN‖1 + ‖f̃N‖1,
it follows that ‖f̃N‖1 → ∞ as N → ∞ and limN→∞ f̃N is not in L1.

The above result of M. Riesz also does not hold for the space of continuous
function. This is again verified by a counter example.

Example 5.9 (counter example for C(T)). Consider the functions fN with the
corresponding conjugate functions f̃N given by

fN (eiτ ) =
∑N

k=2
sin(kτ)
k log k and f̃N (eiτ ) = −

∑N
k=2

cos(kτ)
k log k .

The series fN converges uniformly for all θ ∈ [−π, π) as N → ∞ (by Theo-
rem 1.3 in Chapter V of [92]). Therefore the function f(eiτ ) =

∑∞
k=2

sin(kτ)
k log k

is a continuous function on T.
However, the corresponding conjugate function f̃ is not continuous on

C(T). To see this, consider the partial sums

gN (eiτ ) = fN (eiτ ) + i f̃N (eiτ ) = 1
i

∑N
k=2

eikτ

k log k .

Then the same calculation as in Example 5.8 shows that

|gN (1)| =
∑N

k=2
1

k log k −−−−→
N→∞

∞ ,

which implies that gN , and consequently f̃N , does not converge to a continuous
function as N → ∞.
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Thus if the function f is continuous, the Hilbert transform Hf need not be
continuous and may even be unbounded at some points. By restricting the
domain of the Hilbert transform to a subset of C(T) one may achieve that the
Hilbert transform of all functions from this subset is a continuous function.
In the following we consider the subspaces Cω(T) ⊂ C(T) of smooth functions,
and the subsequent lemma gives sufficient conditions on the majorant ω such
that the Hilbert transform of every f ∈ Cω(T) is a continuous function.

Lemma 5.10. If ω is a weak regular majorant of type 1 and if f ∈ Cω(T)
then the Hilbert transform f̃(eit) = (Hf)(eit) exists for all t ∈ [−π, π) and is
continuous.

Proof. Let ε > 0 and consider the truncated Hilbert transform Hεf (5.21)
which may be written as

(Hεf)(eit) =
1
2π

∫ π

ε

f(ei(t+τ)) − f(ei(t−τ))
tan(τ/2)

dτ .

Using the assumption that f ∈ Cω(T), one obtains an upper bound for the
modulus of Hεf by

∣∣(Hεf)(eit)
∣∣ ≤ 1

2π

∫ π

ε

∣∣f(ei(t+τ)) − f(eit)
∣∣+ ∣∣f(eit) − f(ei(t−τ))

∣∣
tan(τ/2)

dτ

≤ ‖f‖Cω(T)

1
π

∫ π

ε

ω(|ei(t+τ) − eit|)
tan(τ/2)

dτ

using that |eiτ − 1| ≤ τ and that ω(τ) is an increasing function. With
tan(τ/2) ≥ τ/2 for all 0 ≤ τ ≤ π, the upper bound becomes finally

∣∣(Hεf)(eit)
∣∣ ≤ ‖f‖Cω(T)

2
π

∫ π

0

ω(τ)
τ

dτ ≤ ‖f‖Cω(T)

2
π

C ω(π) .

The last integral always exists, since ω is a weak regular majorant of type 1.
This result shows that

∣∣(Hεf)(eit)
∣∣ is uniformly bounded for all t and ε. There-

fore, Hεf converges to the Hilbert transform Hf as ε → 0.
The continuity of Hf follows from the fact that f is Dini continuous. Let

ωf be the modulus of continuity of f . Then f is said to be Dini continuous if
there exists an a > 0 such that∫ a

0

ωf (τ)
τ

dτ < ∞ .

Since f ∈ Cω(T), we have that ωf (τ) ≤ ‖f‖Cω(T) ω(τ) (cf. Section 1.3). There-
fore the Dini continuity of f follows from the weak regularity (of type 1) of
the majorant ω. The proof that the Hilbert transform of every Dini contin-
uous function is continuous omitted here. But a proof can be found in [41,
Chapt. III, Theorem 1.3]. �
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Thus, for every f ∈ Cω(T) with a weak regular majorant ω of type 1, the
Hilbert transform f̃ = Hf will always exist and f̃ will be a continuous function.
However, the conjugate function f̃ does not belong to Cω(T), in general, under
these conditions on ω. Nevertheless, the next theorem will show that if ω is
additionally weak regular of type 2, the Hilbert transform Hf will always
belong to Cω(T), and H : Cω(T) → Cω(T) will even be a continuous mapping.

Theorem 5.11. Let H be the Hilbert transform on the domain Cω(T). If ω is
a regular majorant, then there exists a constant C(ω), which depends only on
the majorant ω, such that

‖Hf‖Cω(T) ≤ C(ω) ‖f‖Cω(T) for every f ∈ Cω(T) .

For the proof of this theorem we need an auxiliary lemma which characterizes
the smoothness of the truncated Hilbert transform (5.20).

Lemma 5.12. Let ω be a regular majorant and let f ∈ Cω(T). Then there
exists a constant C such that

∣∣(Hεf) (eit1) − (Hεf) (eit2)
∣∣ ≤ C ‖f‖Cω(T) ω(ε) .

Proof. Since the kernel H(τ), given in (5.20), has a singularity at τ = 0. It
will be advantageous to separate the integration of the Hilbert transform into
a regular part and a singular part. Therefore, the kernel (5.20) of the Hilbert
transform is written as

1
tan(τ/2)

=
2
τ

+ K(τ) with K(τ) =
τ − 2 tan(τ/2)

τ tan(τ/2)
,

and it is easily verified that K(τ) is continuous and bounded by |K(τ)| < 2
π

for all τ ∈ [−π, π]. With this separated kernel one obtains

∣∣(Hεf) (eit1) − (Hεf) (eit2)
∣∣ ≤
∣∣∣∣∣
1
π

∫
ε<|τ |≤π

f(ei(τ+t1)) − f(ei(τ+t2))
τ

dτ

∣∣∣∣∣+

+

∣∣∣∣∣
1
2π

∫
ε<|τ |≤π

[
f(ei(τ+t1)) − f(ei(τ+t2))

]
K(τ) dτ

∣∣∣∣∣ .

The first and the second term on the right hand side of this inequality are
denoted by |T1| and |T2|, respectively. For |T2| an upper bound is immediately
found using that f ∈ Cω(T) and that K(τ) is integrable

|T2| ≤ 2
π ‖f‖Cω(T) ω (|t1 − t2|)

∫ π

0

|K(τ)| dτ = CT2 ‖f‖Cω(T) ω (|t1 − t2|) .

Now ε is chosen to be ε = |t1 − t2| /2. Therewith the previous bound becomes

|T2| ≤ 2 CT2 ‖f‖Cω(T) ω (ε) . (5.22)
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The first term |T1| is written as the difference of two integrals. After a variable
substitution in both integrals, |T1| becomes

|T1| ≤
∣∣∣∣ 1π
∫

I0

[
f(eiτ ) − f(eit1)

] (
1

t1−τ − 1
t2−τ

)
dτ

∣∣∣∣+

+

∣∣∣∣∣
1
π

∫
Iε(t2)

f(eiτ ) − f(eit1)
t1 − τ

dτ

∣∣∣∣∣+
∣∣∣∣∣
1
π

∫
Iε(t1)

f(eiτ ) − f(eit1)
t2 − τ

dτ

∣∣∣∣∣ .

The three terms on the right hand side of the last inequality are denoted by
|L1|, |L2| and |L3|, respectively. The integration intervals in these integrals
are defined as Iε(ti) := {τ : ti − ε ≤ τ ≤ ti + ε} and I0 = {τ ∈ [−π, π) : τ /∈
Iε(t1), τ /∈ Iε(t2). Now upper bounds are derived for all three terms separately.
First, |L1| is considered. Because of the special choice for ε, it is |t1 − t2| = 2ε
and it holds that |τ − t2| ≥ |τ − t1| /3 for all τ ∈ I0. Therewith, the following
upper bound for |L1| is obtained

|L1| ≤
2ε

π

∫
I0

∣∣f(eiτ ) − f(eit1)
∣∣

|(t1 − τ)(t2 − τ)| dτ ≤ 6ε
π ‖f‖Cω(T)

∫
ε≤|τ−t1|≤π

ω(|τ − t1|)
|τ − t1|2

dτ

(5.23)
using the assumption that f ∈ Cω(T). After the substitution s := τ − t1 this
bound becomes

|L1| ≤ 12
π ‖f‖Cω(T) ε

∫ π

ε

ω(s)
s2

ds ≤ 12
π ‖f‖Cω(T) C ω(ε) (5.24)

using that ω is weak regular of type 2 and in particular that ω satisfies (1.13).
For the term |L2| the upper bound

|L2| ≤ 1
π ‖f‖Cω(T)

∫ t2+ε

t2−ε

ω(|τ − t1|)
|τ − t1|

dτ ≤ 1
π ‖f‖Cω(T)

∫ 3ε

ε

ω(s)
s

ds

is obtained using again that f ∈ Cω(T) and that |t1 − t2| = 2ε. Since ω is a
regular majorant, it holds that ω(3ε)/3ε ≤ ω(ε)/ε and there exists a constant
C such that (1.12) is fulfilled. Therewith the upper bound becomes

|L2| ≤ 3
π ‖f‖Cω(T) C ω(ε) . (5.25)

With similar arguments and using again that |τ − t2| ≥ |τ − t1| /3, an upper
bound for the last term |L3| is obtained

|L3| ≤ 6
π ‖f‖Cω(T) C ω(ε) . (5.26)

The three bounds (5.24),(5.25),(5.26) give an upper bound for |T1|:

|T1| ≤ CT1 ‖f‖Cω(T) ω(ε) with CT1 = 21
π C .

Together with (5.22) one obtains the desired statement with C = CT1 +2CT2 .
�
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Proof (Theorem 5.11). It has to be shown that there exists a constant C1 such
that for an arbitrary f ∈ Cω(T)

|f̃(eit1) − f̃(eit2)| ≤ C1 ‖f‖Cω(T) ω(|eit1 − eit2 |) for all t1, t2 ∈ [−π, π) .

By the triangle inequality, it holds that

∣∣f̃(eit1) − f̃(eit2)
∣∣ ≤ ∣∣f̃(eit1) − (Hεf)(eit1)

∣∣
+
∣∣(Hεf)(eit1) − (Hεf)(eit2)

∣∣+ ∣∣(Hεf)(eit2) − f̃(eit2)
∣∣ . (5.27)

At the beginning, we consider the first and the third term on the right hand
side of this inequality. By Lemma 5.10 the Hilbert transform f̃ exists under
the above conditions. This means in particular that the integral in (5.21) exists
for ε → 0 and therefore it holds that

f̃(eit) − (Hεf)(eit) =
1
2π

∫ ε

−ε

f(ei(t+τ)) − f(eit)
tan(τ/2)

dτ

using that tan(τ/2) is an odd function. Applying similar arguments as in the
proof of Lemma 5.10, and using that ω is weak regular of type 1, one easily
obtains

∣∣f̃(eit) − (Hεf)(eit)
∣∣ ≤ ‖f‖Cω(T)

2
π

∫ ε

0

ω(τ)
τ

dτ ≤ 2
π ‖f‖Cω(T) ω(ε)

for all t ∈ [−π, π). This is an upper bound for the first and the third term
on the right hand side of (5.27). Moreover, by Lemma 5.12, the second term
on the right hand side of (5.27) is upper bounded by C3 ‖f‖Cω(T) ω(ε) with a
certain constant C3. By choosing ε = |eit1 − eit2 |/2, (5.27) becomes

∣∣f̃(eit1) − f̃(eit2)
∣∣ ≤ (C2 + C3 + C2) ‖f‖Cω(T) ω(ε) .

This is what we wanted to show. �

5.3.2 Boundedness of the Conjugate Poisson Integral

To every function f on the unit circle T the Poisson integral Pf defines
a harmonic function in D. If f belongs to C(T), Lp with 1 ≤ p ≤ ∞, or
Cω(T) with a weak regular majorant of type 2, then, as it was shown in
Section 5.2, the Poisson integral (Pf)(reit) converges to the boundary function
f as r → 1 in the norm of the actual Banach space. Moreover, the conjugate
Poisson integral Qf is the harmonic conjugate of Pf in the unit disk. Also this
harmonic function is uniquely defined by the Poisson integral of its boundary
values on the unit circle, and since the Hilbert transform was defined as the
limit of (Qf)(reiθ) as r → 1, the conjugate Poisson integral of f may be
written as the Poisson integral P of the conjugate function f̃ = Hf , i.e.
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(Qf)(z) = (Pf̃)(z) = (PHf)(z) , z ∈ D .

Since we already characterized the boundedness behavior of the Poisson inte-
gral P and of the Hilbert transform H, we get immediately the following two
results on the boundedness of the conjugate Poisson integral. We start again
with the classical result on Lp-spaces:

Theorem 5.13. Let f ∈ Lp with 1 < p < ∞ and set F̃r(eiθ) := (Qf)(reiθ).
Then there exists a constant C(p) which only depends on p such that

‖F̃r‖p ≤ C(p) ‖f‖p for all 0 ≤ r < 1 .

Proof. Since F̃r(eiθ) = (Pf̃)(reiθ), Theorem 5.3 and 5.6 imply that

‖F̃r‖p ≤ ‖f̃‖p ≤ C(p) ‖f‖p

for every f ∈ Lp and all 0 ≤ r < 1. �

Since the Hilbert transform is unbounded in the case of p = 1 and p = ∞
also the conjugate Poisson integral is unbounded in these cases. For the same
reason, Q is an unbounded operator on C(T). However, for the subspace Cω(T)
of smooth functions on the unit circle, we have sufficient conditions for the
boundedness of the conjugate Poisson integral.

Corollary 5.14. Let ω be a regular majorant. Then the conjugate Poisson
integral Q : Cω(T) → Cω(D) is bounded, i.e. there exists a constant C = C(ω)
such that

‖Qf‖Cω(D) ≤ C(ω) ‖f‖Cω(T) for all f ∈ Cω(T) . (5.28)

Proof. The statement follows from Theorem 5.4 and 5.11. Because if ω is weak
regular of type 1 and type 2 then there exist two constants C4(ω) and C5(ω)
which depend only on the majorant ω such that

‖Qf‖Cω(D) = ‖Pf̃‖Cω(D) ≤ C4(ω) ‖f̃‖Cω(T) ≤ C4(ω)C5(ω) ‖f‖Cω(T)

for all f ∈ Cω(T). �

Thus, if ω is weak regular of type 1 and 2, the conjugate Poisson integral
is bounded on Cω(T). Thereby, the weak regularity of type 2 of the majorant
ω guarantees the boundedness of the Poisson integral, whereas the weak regu-
larity of type 1 is additionally necessary to guarantee the boundedness of the
Hilbert transform.

Notes

Textbooks related to this section include [1, 41, 48, 70, 92], among many
others. Some of the results concerning the Cω spaces appeared in [20].
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Appendix – An Auxiliary Result

Proposition 5.15. Let {a(k)}∞k=0 be a real and convex sequence with
limk→∞ a(k) = 0. Then the series

a0

2
+

∞∑
k=1

a(k) cos(kτ) (5.29)

converges for all τ ∈ [−π, π) except τ = 0 to a nonnegative function φ ∈ L1

with Fourier series (5.29).

Remark 5.16. The convexity of the series {a(k)}∞k=0 means that for all k the
following always holds

a(k + 1) ≤ 1
2 [a(k) + a(k + 2)] .

Proof. Let Δak = a(k + 1) − a(k) and Δ2ak = Δ(Δak). Then the convexity
of {a(k)} implies that Δ2ak = Δak+1 − Δak ≥ 0 which shows that Δak is
a monotone increasing sequence. Since a(k) → 0 also Δak → 0. Therefore
Δak ≤ 0 for all k.

Let SN (τ) = a0
2 +

∑N
k=1 a(k) cos(kτ) be the N -th partial sum of (5.29).

Two successive summations by parts give

SN (τ) =
1
2

N−2∑
k=0

Δ2ak (k + 1)Fn(τ)

− 1
2 ΔaN−1 N FN−1(τ) + 1

2 a(N)DN (τ) (5.30)

in which DN and FN are the Dirichlet and Fejér kernel given by (2.10) and
(2.16), respectively. Let ε > 0 arbitrary and set Iε := (−ε, ε). The DN (τ) as
well as N FN−1(τ) are obviously uniformly bounded for every τ /∈ Iε, and
since a(k) → 0 as well as Δak → 0 as k → ∞, the last two terms in (5.30)
vanish as N → ∞. Consequently SN (τ) tends to

s(τ) = 1
2

∑∞
k=0 Δ2ak (k + 1)Fn(τ) .

Since (k + 1)Fn(τ) is uniformly bounded for every τ /∈ Iε and since∑N
k=0 Δ2ak = ΔaN+1 − Δa0 → −Δa0 ≥ 0, the series of s(τ) converges uni-

formly for every τ /∈ Iε. Therefore, s(τ) represents a non-negative continuous
function for every τ �= 0. Moreover, s is integrable on [−π, π], because

1
2π

∫ π

−π

|s(τ)|dτ =
1
4π

∞∑
k=0

Δ2ak (k + 1)
∫ π

−π

Fn(τ) dτ =
1
2

∞∑
k=0

Δ2ak (k + 1)

using the approximate identity property of the Fejér kernel (cf. Proposi-
tion 2.3), and it remains to show that the last sum converges. To this end, we
consider the equation
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a(n + 1) − a(0) = Δa0 + Δa1 + · · · + Δan

=
n+1∑
k=0

(n + 1)Δ2ak + (n + 1)Δan

where the second line was obtained by partial summation. Now we let n →
∞ and obtain

∑n+1
k=0(n + 1)Δ2ak = a(0) < ∞ using that a(k) → 0, that

Δan → 0, and that nΔan → 0. The later statement follows from Abel’s
classical theorem and from the fact that the sequence Δak is non-positive and
monotone increasing. �
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Causal Projections

Let B ⊂ L1 be a Banach space. Then to every f ∈ B the Fourier coefficients
{f̂(k)}∞k=−∞ exist, and one can define the causal subspace

B+ := {f ∈ B : f̂(k) = 0 for all k < 0} (6.1)

and the anticausal subspace

B− := {f ∈ B : f̂(k) = 0 for all k ≥ 0}

of B. In this chapter, we consider the decomposition of a transfer function
f ∈ B into its causal part fc and its anti-causal part fac, given by

fc =
∑∞

k=0 f̂(k) eikθ and fac =
∑−1

k=−∞ f̂(k) eikθ (6.2)

respectively. It is clear that f is the algebraic sum of its causal and anti-
causal part: f = fc + fac. However, it is not clear at the outset whether this
decomposition defines two functions fc and fac which belong again to B, i.e.
it is not clear whether the sums in (6.2) converge in the norm of B for each
f ∈ B. This depends strongly on the space B. For illustration, we consider
two examples.

Example 6.1. Let B = L2, the space of all square integrable functions on the
unit circle T. Let f ∈ L2 be an arbitrary element of L2 with its Fourier series
f(eiθ) =

∑∞
k=−∞ f̂(k) eikθ. By Parseval’s identity it follows immediately that

‖fc‖2 =

√√√√ ∞∑
k=0

|f̂(k)|2 ≤ ‖f‖2 and ‖fac‖2 =

√√√√ −1∑
k=−∞

|f̂(k)|2 ≤ ‖f‖2

which shows that f ∈ L2 always implies that fc ∈ L2 and fac ∈ L2.

Example 6.2. Let B = C(T) the set of all continuous functions on the unit
circle and consider the function

V. Pohl, H. Boche, Advanced Topics in System and Signal Theory, Foundations
in Signal Processing, Communications and Networking 4,
DOI 10.1007/978-3-642-03639-2_6, c© Springer-Verlag Berlin Heidelberg 2009
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f(eiθ) =
∑∞

k=2
sin(kθ)
k log k , θ ∈ [−π, π) .

This series converges uniformly for all θ ∈ [−π, π) (by Theorem 1.3 in Chap-
ter V of [92]), and therefore f ∈ C(T). It causal part is obviously given by

fc(eiθ) = 1
2 i

∑∞
k=2

1
k log k eikθ , θ ∈ [−π, π) .

As it was already shown in Example 5.9, this series diverges at θ = 0, and
therefore, the causal part fc of a continuous function f is not necessarily a
continuous functions on T.

This chapter characterizes Banach spaces B on which every f ∈ B can
be decomposed into its causal and anticausal part such that fc ∈ B+ and
fac ∈ B−. The question whether or not such a decomposition is always possible
is equivalent to the question whether the projection f �→ fc is bounded. This
relation is discussed at the beginning in Section 6.1. Then Section 6.2 considers
the decomposition of Lp spaces with 1 ≤ p ≤ ∞. The situation we shall
discuss in more detail is that in which B is a subset of C(T). Example 6.2
already showed that C(T) itself cannot be decomposed into a direct sum of
C(T)+ and C(T)−. Section 6.3 will give necessary and sufficient conditions on
the smoothness of the functions in C(T) such that such a decomposition is
possible.

6.1 Complemented Subspaces and Projections

Definition 6.3. Let B be a Banach space and let M be a closed subspace of
B. A closed subspace N of B is called the direct complement of M in B if

B = M + N and M∩N = {0} .

In this case, we say that M is complemented in B and that B is the direct
sum of M and N , which is written as

B = M⊕N .

In the above definition, it is important that the two subspaces M and N
are closed in B. It should be noted that the direct complement of a closed
subspace is not uniquely defined, in general. Moreover, not every closed sub-
space of a Banach spaces possesses a direct complement. Lindenstrauss and
Tzafiri [58] even showed that in every Banach space which is not isomorphic
to a Hilbert space there always exist closed subspaces which have no direct
complement. Later we will see several examples of closed subspaces which can
not be complemented. At the moment, we start with an important example
of subspaces which always have a direct complement.

Theorem 6.4. Let B be a Banach space and let M be a finite-dimensional
subspace of B. Then M is complemented in B.
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Proof. Assume that the dimension of M is N . Then there exists a basis
{φk}N

k=1 ∈ M and a system of biorthonormal bounded linear functionals
{ck}N

k=1 ∈ B∗ such that every f ∈ M can be written as

f =
∑N

k=1 ck(f)φk . (6.3)

Define the subspace

N := {f ∈ B : ck(f) = 0 for all k = 1, 2, . . . , N} .

It is easily verified that N is closed in B and that M ∩ N = {0}. Indeed,
assume that f ∈ M∩N is given by (6.3), then

cn(f) =
∑N

k=1 ck(f) cn(φk) = cn(f) = 0 for every n = 1, 2, . . . , N

by the biorthonormality of {φk}N
k=1 and {ck}N

k=1. But this implies f = 0.
Finally, for an arbitrary f ∈ B, define

f1 :=
∑N

k=1 ck(f)φk and f2 := f −
∑N

k=1 ck(f)φk

It is clear that f1 ∈ M, and since cn(f2) = cn(f)−
∑N

k=1 ck(f) cn(φk) = 0 for
all n = 1, 2, · · · , N , it follows that f2 ∈ N . This proves that B = M⊕N . �

There exists a close relation between complemented subspaces and projec-
tions. This relation is considered next:

Definition 6.5. Let X be a vector space. A linear mapping P : X → X is
called a projection if

P(Pf) = Pf for all f ∈ X .

It is easily verified that if P is a projection on X then the operator Q =
I−P is also a projection on X . The projection Q is called the complementary
projection of P. The following lemma collects some properties of the range
and null space of projections and complementary projections.

Lemma 6.6. Let X be a vector space, let P be a projection on X , and let
Q = I − P be the complementary projection. Then
(a) R(P) = N (Q) = {f ∈ X : Pf = f}
(b) N (P) = R(Q)

(c) R(P) ∩ N (P) = {0} and R(P) + N (P) = X
The simple verification of the statements is left as an exercise. Note that the
above lemma only assumes that X is a vector space which need not be normed.
Point (c) of Lemma 6.6 states that X is the algebraic sum of the range and
the null space of the projection P. However, if one considers projections on
a Banach space B, the subspaces R(P) and N (P) need not be closed, in
general, such that B is not necessarily the direct sum of R(P) and N (P).
The next theorem gives a sufficient condition on the projection P in order for
the range and kernel to be closed.
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Theorem 6.7. Let P be a projection on a Banach space B. If P is continuous
on B then

B = R(P) ⊕ N (P) .

Proof. The algebraic part of the statement is equivalent to part (c) of
Lemma 6.6. The null space N (P) is closed by Theorem 1.15 and since by
part (a) of Lemma 6.6 R(P) = N (I − P), and since the operator I − P is
linear and bounded whenever P is linear and bounded, Theorem 1.15 implies
also that R(P) is closed. �

Conversely, assume that the Banach space B is the direct sum of two closed
subspaces M and N , and let f = f1 + f2 with f1 ∈ M and f2 ∈ N be an
arbitrary element of B. Define the operator P on B by the equation Pf = f1

for all f ∈ B. It is easy to see that R(P) = M, that N (P) = N and that
P(Pf) = Pf for every f ∈ B. Thus, P is a projection of B onto M with null
space N . Moreover, since the direct sum of R(P) and N (P) is the whole B,
it follows that the so defined projection P is even continuous. This is shown
by the next theorem.

Theorem 6.8. Let B = M ⊕ N be a Banach space which is the direct sum
of two closed subspaces M and N . Then the projection P with range M and
null space N is continuous.

Proof. The theorem is proved with the aid of the closed graph theorem. Let
{fn}n∈N be a sequence in B with fn → f and Pfn → g. Since Pfn ∈ M for
all n ∈ N and since M is assumed to be closed, one has that g ∈ M. Similarly,
since fn −Pfn = (I−P)fn ∈ N for all n ∈ N and since N is closed, we have
that f − g ∈ N . It follows that Pf = Pg = g. Therefore, the graph of P is
closed in B and by the closed graph theorem P is continuous. �

As a consequence of the previous two theorems, we have

Corollary 6.9. A closed subspace M of a Banach space B is complemented
in B if and only if M is the range of a bounded linear projection P : X → M.

As a first application of this corollary we prove that in a Hilbert space every
closed subspace is complemented.

Theorem 6.10. Let H be a Hilbert space and M be a closed subspace of H.
Then M is complemented in H with H = M⊕M⊥.

Proof. Since M is a closed subspace of H, there exists an orthonormal basis
Φ = {φk}∞k=1 of M and there exists an orthonormal basis S of H which
contains Φ as a subset: S = Φ ∪ {ψk}∞k=1. Thus, every f ∈ H can be written
as

f =
∑∞

k=1 ak φk +
∑∞

k=1 bk ψk .

By Parseval’s identity, ‖f‖2
H =

∑∞
k=1 |ak|2 +

∑∞
k=1 |bk|2 and the linear oper-

ator P : H → M defined by P : f �→
∑∞

k=1 akφk is obviously a projection
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with R(P) = M and N (P) = M⊥. Since ‖Pf‖2
H =

∑∞
k=1 |ak|2 ≤ ‖f‖2

H,
the projection P is bounded and the statement of the theorem follows from
Corollary 6.9. �

6.2 Projections from Lp to Hp

The Banach spaces Lp with 1 ≤ p ≤ ∞, p �= 2 are not Hilbert spaces. By a
result of Lindenstrauss and Tzafiri [58] there always exist closed subspaces of
Lp, p �= 2 which are not complemented in Lp. For our applications, the causal
subspace Hp = Lp

+ is of particular interest. Therefore, we ask in the following
whether this particular subspace is complemented in Lp. By Corollary 6.9,
this is equivalent to the question whether there is a bounded projection T :
Lp → Hp.

We start by deriving a result, which allows us to consider only the "natu-
ral" projection from Lp → Hp. For f ∈ Lp, one possible projection Lp → Hp

is the natural projection P+ which is defined formally by

P+ :
∞∑

k=−∞
f̂(k) eikθ �→

∞∑
k=0

f̂(k) eikθ (6.4)

and which is called Riesz projection. Inserting the Fourier coefficients (2.1) of
f into the sum of the right hand side of (6.4) gives a closed form expression
for the Riesz projection

(P+f)(z) =
1

2πi

∫
T

f(ζ)
ζ − z

dζ =
1
2π

∫ π

−π

f(eiτ )
eiτ

eiτ − z
dτ , z ∈ D . (6.5)

Among all bounded projections Lp → Hp, the Riesz projection has the re-
markable property that it is the projection with the least operator norm. This
will be proved in the next theorem. Therein, we use the following notation. If
f is an arbitrary function on the unit circle T and λ ∈ R, then fλ will denote
the right-shifted (or rotated) function defined by fλ(eit) = f(ei(t−λ)).

Theorem 6.11. Let 1 ≤ p < ∞ and let T : Lp → Hp be an arbitrary bounded
projection, i.e. Tf = f for all f ∈ Hp and ‖Tf‖p ≤ C ‖f‖p for all f ∈ Lp

with a positive constant C. Then

(P+f)(ρeiτ ) =
1
2π

∫ π

−π

(Tfλ)(ρei(τ+λ)) dλ (6.6)

and
‖P+‖Lp→Hp ≤ ‖T‖Lp→Hp . (6.7)

Proof. First, consider for a fixed f ∈ Lp the mapping λ �→ fλ from the unit
circle T into Lp. This mapping is continuous. To see this, we use that C(T) is
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dense in Lp for all 1 ≤ p < ∞, i.e. to every ε > 0 there exists a g ∈ C(T) such
that ‖f − g‖p < ε/2. Therewith, one obtains

‖f − fλ‖p ≤ ‖f − g‖p + ‖g − gλ‖p + ‖gλ − fλ‖p ≤ ‖g − gλ‖∞ + ε .

Since g is continuous, there exists a constant C such that ‖g − gλ‖∞ ≤ C λ
which finally proves the continuity of the mapping λ �→ fλ on Lp. Moreover,
since T is assumed to be continuous, the mapping λ �→ (Tfλ)−λ is continuous
as well. This shows that the integral on the right hand side of (6.6) is well
defined.

Next, we prove the identity (6.6). Let φk(ζ) = ζk, ζ ∈ T. Since T is a
projection Lp → Hp, it holds that Tφk = φk for all k ≥ 0. For k < 0 we set
gk := T φk. Of course gk ∈ Hp. Consider the function f ∈ Lp given by

f(ζ) =
∑∞

k=−∞ ck ζk =
∑∞

k=−∞ ck φk(ζ) , z ∈ T .

Applying the projection T onto the function fλ(eit) := f(ei(t−λ)), one obtains
at z = ρ ei(τ+λ), 0 ≤ ρ < 1 the Hp-function

(Tfλ)(ρ ei(τ+λ)) =
−1∑

k=−∞
ck e−ikλ gk(ρ ei(τ+λ)) +

∞∑
k=0

ck ρ eikτ .

This term is integrated with respect to λ, which gives

1
2π

∫ π

−π

(Tfλ)(ρ ei(τ+λ)) dλ =
∞∑

k=0

ck ρ eikτ+
−1∑

k=−∞
ck

1
2π

∫ π

−π

gk,τ (ρ eiλ) e−ikλ dλ

where gk,τ (ρeiλ) := gk(ρei(τ+λ)) with gk,τ ∈ Hp and ‖gk,τ‖p = ‖gk‖p. Since
the functions gk,τ are analytic in D, the Cauchy integral theorem shows that
the integrals in the last sum are equal to zero for all k < 0. But the first term
is the Riesz projection of f such that (6.6) is obtained.

Relation (6.7) follows immediately from representation (6.6), noting that
T is bounded and that the rotation f �→ fλ does not change the Lp norm.
Therefore, for every fixed λ, one has ‖(Tfλ)−λ‖p ≤ ‖T‖Lp→Hp ‖f‖p. Using
this in (6.6), one obtains (6.7). �

Thus, the Riesz projection has the least operator norm among all bounded
projection Lp → Hp. Therefore, to investigate whether Hp is a complemented
subspace in Lp, we only have to investigate the boundedness of the Riesz
projection P+. Because, if P+ is bounded, then Corollary 6.9 implies that
Hp is a complemented subspace. If on the other hand, P+ is unbounded, the
previous theorem shows that there exist no other bounded projector Lp → Hp,
and so Hp would not complemented in this case.

Thus, we have to investigate the Riesz projection P+ on the spaces Lp.
We note at the beginning that P+ is closely related to the Herglotz-Riesz
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transform R defined in Section 5.1. Comparing the definition (5.1) of Rf
with the definition of the Riesz projections (6.4) shows that

(P+f)(z) = 1
2

[
(Rf)(z) + f̂(0)

]

= 1
2

[
(Pf)(z) + i (Qf)(z) + f̂(0)

]
, z ∈ D . (6.8)

Theorem 6.12 (M. Riesz). Let f ∈ Lp for 1 < p < ∞ be a function on the
unit circle. Then there exists a constant K(p) such that

‖P+ f‖Hp ≤ K(p) ‖f‖Lp

where the constant K(p) depends only on p, but not on f .

Proof. For an arbitrary 0 ≤ r < 1 define the function Fr(eiθ) := (Pf)(reiθ),
F̃r(eiθ) := (Qf)(reiθ), and Gr(eiθ) := (P+f)(reiθ). Therewith relation (6.8)
becomes

Gr(eiθ) = 1
2

[
Fr(eiθ) + i F̃r(eiθ) + f̂(0)

]
, θ ∈ [−π, π) .

By the definition (2.1) of the Fourier coefficient f̂(0), it is clear that |f̂(0)| ≤
‖f‖1 ≤ ‖f‖p and since, according to Theorem 5.4 and 5.13, the Poisson and
the conjugate Poisson integrals are bounded on Lp, one obtains

‖Gr‖Lp ≤ 1
2

[
‖Fr‖Lp + ‖F̃r‖Lp + |f̂(0)|

]
≤ 1

2

[
‖f‖p + C(p) ‖f‖p + ‖f‖p

]
with the boundedness constant C(p) of the conjugate Poisson integral, which
only depends on p. Therewith, one obtains finally

‖P+ f‖Hp = sup
0≤r<1

‖Gr‖Lp ≤ K(p) ‖f‖p

with the constant K(p) = 1 + 1
2 C(p). �

We still have to consider the cases p = 1 and p = ∞. In both cases, it is no
longer true the the Riesz projection P+ is bounded. Consequently, we have

Theorem 6.13. There is no bounded causal projection of L1 onto H1 and
there is no bounded causal projection of L∞ onto H∞.

Proof. The unboundedness of P+ is proved with the same counter examples
as used in Example 5.7 and 5.8: In the case p = 1 consider the function
f(eiτ ) =

∑∞
k=2

cos(kτ)
log k and its Riesz projection (P+f)(eiτ ) =

∑∞
k=2

exp(ikτ)
log k .

It was shown in Example 5.8 that f ∈ L1 but that P+f /∈ H1.
In the case p = ∞ one considers g(eiτ ) = 2

π

∑∞
k=2

sin(kτ)
k with its Riesz pro-

jection (P+g)(eiτ ) = 1
iπ

∑∞
k=2

exp(ikτ)
k , and its was shown in Example 5.7 that

‖g‖∞ < ∞ whereas (P+g)(eiτ ) is unbounded at τ = 0. �
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6.3 Projections in Spaces of Smooth Functions

We saw that there exists no bounded projection of L∞ onto H∞. In other
words, given an energy stable (non-causal) transfer function f ∈ L∞ of the
form

f(eiτ ) =
∑∞

k=−∞ f̂(k) eikτ , τ ∈ [−π, π)

with impulse response {f̂(k)}∞k=−∞, then a simple truncation of the noncausal
part of f by fc = P+f yields a causal but in general not a stable transfer
function fc.

The space L∞, and in particular the causal subspace H∞, contains quite
complicated functions, such that it may not be surprising at first glance that
there exist some problems with the boundedness of the Riesz projection on
L∞ – maybe just these complicated functions cause the unboundedness of
the Riesz projection. In the following, we investigate the Riesz projection
on subspaces of L∞ with smooth function. The first subspace which we will
consider is the set of all continuous functions C(T) ⊂ H∞ on the unit circle.

Theorem 6.14. There exists no bounded causal projection C(T) onto A(D).
Equivalently, A(D) is not complemented in C(T).

Proof. It is clear that Theorem 6.11 holds also for projections from C(T) to
A(D). The proof is even much more direct. Therefore, it remains to show that
the Riesz projection P+ is unbounded on C(T), but this follows already from
the counter example given in Example 5.9. �

Next, we consider causal projections on the spaces Cω(T) ⊂ C(T) of smooth
functions and derive necessary and sufficient conditions on the majorant ω
such that there exists a bounded causal projection of Cω(T) onto Aω(D). Our
approach is similar as for the Lp spaces. At the beginning, it is shown that the
Riesz projection P+ has the least operator norm among all bounded causal
projections T from Cω(T) onto Aω(D). Afterwards, necessary and sufficient
condition on ω are derived such that P+ is a bounded projection Cω(T) →
Aω(D).

Theorem 6.15. Let ω be a majorant and let T be an arbitrary bounded pro-
jection T : Cω(T) → Aω(D). Then P+ can be written as in (6.6) and

‖P+‖Cω(T)→Aω(D) ≤ ‖T‖Cω(T)→Aω(D) . (6.9)

Proof. The representation (6.6) of the Riesz projection is verified in the same
way as it was done in the proof of Theorem 6.11.

Let f ∈ Cω(T), then by (6.6) and by the linearity of T, one obtains
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∣∣(P+f)(eiτ1) − (P+f)(eiτ2)
∣∣ ≤ 1

2π

∫ π

−π

∣∣∣Tfλ(ei(τ1+λ)) − Tfλ(ei(τ2+λ))
∣∣∣ dλ

≤ 1
2π

∫ π

−π

‖Tfλ‖Aω(D)ω(|τ1 − τ2|) dλ

≤ ‖T‖Cω(T)→Aω(D) ‖f‖Cω(T) ω(|τ1 − τ2|) .

Therein fλ is defined by fλ(eiτ ) = f(ei(τ−λ)), and for the last line it was
used that f ∈ Cω(T) such that fλ ∈ Cω(T) with ‖f‖Cω(T) = ‖fλ‖Cω(T). The
above inequality shows that ‖P+f‖Cω(T) ≤ ‖S‖Cω(T)→Aω(D) ‖f‖Cω(T) for all
f ∈ Cω(T) which is equivalent to (6.9). �

It remains to investigate the boundedness of the Riesz projection P+. By
Theorem 6.14, P+ is unbounded on C(T). However, by restricting the domain
of the operator to a certain subset of C(T), P+ may become continuous on
this subset. This is shown by the following theorem. It gives necessary and
sufficient condition on the smoothness of the functions in C(T) such that the
Riesz projection is always bounded and consequently continuous.

Theorem 6.16 (Boundedness of the Riesz projection). Let ω be a ma-
jorant. Then P+ is a bounded projection from Cω(T) onto Aω(D) if and only
if ω is a regular majorant. Thus, there exists a constant C = C(ω) such that
‖P+f‖Cω(D) ≤ C(ω) ‖f‖Cω(T) for all f ∈ Cω(T) if and only if ω is a regular
majorant.

Proof. According to (6.8), the Riesz projection P+ can be expressed in terms
of the Herglotz-Riesz transform R given by (5.1). By the definition of the norm
in the Cω-spaces (1.9), it is clear that |f̂0| ≤ ‖f‖∞ ≤ ‖f‖Cω(T). Therefore,
the Riesz projection P+ is continuous if and only if the HR-transform R is
continuous, because

‖P+f‖Cω(D) ≤ 1
2

(
|f̂0| + ‖Rf‖Cω(D)

)
≤ 1

2 (1 + C1) ‖f‖Cω(T)

and conversely

‖Rf‖Cω(D) ≤ |f̂0| + 2 ‖P+f‖Cω(D) ≤ (1 + 2C2) ‖f‖Cω(T) .

Therein, C1 and C2 are the continuity constants of R and P+, respectively.
Therefore, it remains to prove that R : Cω(T) → Cω(D) is bounded if and only
if ω is a regular majorant.

1) Sufficiency: The first part will show that if ω is regular then R is con-
tinuous. To this end, let Rf = Pf + iQf be the decomposition of R into its
real and imaginary parts as in (5.7). By Theorem 5.4 there exists a constant
C3 such that (5.12) holds for all f ∈ Cω(T), and by Theorem 5.14 there exists
a constant C4 such that (5.28) holds for all f ∈ Cω(T). Consequently

‖Rf‖Cω(D) ≤ ‖Pf‖Cω(D) + ‖Qf‖Cω(D) ≤ (C3 + C4) ‖f‖Cω(T)
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for all f ∈ Cω(T) which shows that R is continuous.
2) Necessity: We show that if R : Cω(T) → Cω(D) is continuous then

ω is a regular majorant. Assume that there exists a constant C5 such that
‖Rf‖Cω(D) ≤ C5 ‖f‖Cω(T) for all f ∈ Cω(T). Since

‖Pf‖Cω(D) ≤ ‖Pf + iQf‖Cω(D) = ‖Rf‖Cω(D) ≤ C5 ‖f‖Cω(T)

it follows that also P is continuous, and from a similar inequality follows that
Q is continuous. Theorem 5.4 shows then that ω is weak regular of type 2.

It remains to show that ω is also weak regular of type 1. To this end, we
consider the odd function defined by

f2(eiτ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ω(π/2) sin(τ) π/2 < τ ≤ π

−ω(τ) 0 < τ ≤ π/2
ω(−τ) −π/2 < τ ≤ 0
ω(π/2) sin(−τ) −π < τ ≤ −π/2

and study the conjugate Poisson integral (Qf2)(reit) = 1
2π

∫ π

−π
f2(eiτ )Qr(t −

τ) dτ . Since f2 and Qr are odd functions, Qf2 can be written at t = 0 as

(Qf2)(r) =
1
π

∫ π

0

f2(eiτ )Qr(−τ) dτ . (6.10)

Using the properties of a majorant, it can be verified that the function f2

belongs to Cω(T). Since Q is also continuous it follows that there exists a
constant C6 such that

|(Qf2)(r) − (Qf2)(1)| ≤ C6 ω(1 − r) . (6.11)

Next we consider (Qf2)(1). For this term holds

(Qf2)(1) ≥ 1
π

∫ 1−r

0

f2(eiτ )
− sin τ

1 − cos τ
dτ ≥ 4

π2

∫ 1−r

0

ω(τ)
τ

dτ (6.12)

where the first inequality is a consequence of the positivity of the integrand
and the second inequality follows from the relations sin τ ≥ 2

π τ and 1−cos τ ≤
1
2 τ2 for all 0 ≤ τ ≤ π and from the definition of f2. Note that the term on
the right hand side is equivalent to the definition of a weak regular majorant
of type 1. Therewith, it remains to show that there exists a constant C7 such
that the middle term in (6.12) is upper bounded by C7 ω(1− r). To this end,
the middle term in (6.12) is written as

∣∣∣∣ 1π
∫ 1−r

0

f2(eiτ )Q1(−τ) dτ

∣∣∣∣ ≤
∣∣∣∣ 1π
∫ π

0

f2(eiτ )Q1(−τ) dτ − (Qf2)(r)
∣∣∣∣+

+
∣∣∣∣(Qf2)(r) −

1
π

∫ π

1−r

f2(eiτ )Q1(−τ) dτ

∣∣∣∣ . (6.13)
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Because of (6.10), the first term on the right hand side is equal to
|(Qf2)(1) − (Qf2)(r)| which is upper bounded by C6 ω(1−r) as (6.11) shows.
It remains to investigate the second term on the right hand side, which will
be denoted by T0. In it, the integral which belongs to (Qf2)(r) is split up into
an integration over [0, 1 − r] and an integration over [1 − r, π]. This gives

|T0| ≤
∣∣∣∣ 1π
∫ 1−r

0

f2(eiτ )Qr(−τ) dτ

∣∣∣∣+
∣∣∣∣ 1π
∫ π

1−r

f2(eiτ ) [Qr(−τ) − Q1(−τ)] dτ

∣∣∣∣ .

(6.14)
The two terms on the right hand side are denoted by T1 and T2 and in-
vestigated separately. First, T1 is considered. It should be noted that it can
be written as 1

2π

∫
|τ |≤1−r

f2(eiτ )Qr(−τ) dτ . Since Qr(τ) is an odd function,
an arbitrary constant can be added to f2 without changing the value of the
integral. Therefore, the following chain of upper bounds for T1 is obtained

|T1|
(a)

≤ 1
2π

∫
|τ |≤1−r

∣∣f2(eiτ ) − f2(ei0)
∣∣ |Qr(−τ)| dτ

(b)

≤‖f2‖Cω(T)
1
π

∫ 1−r

0

ω(|eiτ − ei0|) |Qr(−τ)| dτ

(c)

≤‖f2‖Cω(T) ω(1 − r)
2
π

∫ 1−r

0

r sin τ

1 − 2r cos τ + r2
dτ

(d)

≤4 ‖f2‖Cω(T) ω(1 − r)

In it, the triangle inequality was used to obtain (a), and (b) follows from
f2 ∈ Cω(T). For (c), it was used that

∣∣eiτ − ei0
∣∣ ≤ |τ |, that ω is non-decreasing,

and that τ ≤ 1−r. To obtain (d), observe that sin τ is a monotonic increasing
function on [0, 1 − r] such that sin(τ) ≤ sin(1 − r) ≤ 1 − r. Therewith, the
numerator of the integrand can be upper bounded by r sin τ ≤ r(1−r) ≤ 1−r2,
such that the integrand becomes the Poisson kernel. This shows that the
integral is always smaller that 2π.
Next, we consider the second term |T2| on the right hand side of (6.14).
Plugging in the kernels Qr and Q1 and applying triangle inequality gives

|T2| =
1
π

∫ π

1−r

|f2(eiτ )| (1 − r)2 sin τ

[1 − cos τ ] [1 − 2r cos τ + r2]
dτ .

The second bracket in the denominator may be written as (1 − r)2 + 2r(1 −
cos τ). Next, the inequality 1

2 τ2(1 − 1
12 τ2) ≤ 1 − cos τ is used. Since τ ≤ π,

it follows that c0
2 τ2 ≤ 1 − cos τ with the constant c0 = 1 − π2

12 . Using this
inequality in the above equation for |T2| gives

|T2| ≤
2

c0 π

∫ π

1−r

|f2(eiτ )| (1 − r)2 sin τ

τ2[(1 − r)2 + c0 r τ2]
dτ . (6.15)
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Now, we distinguish two cases. First we assume that r ≥ R0 > 0 for an
arbitrary R0 < 1. Then we use that (1− r)2 + c0 r τ2 ≥ c0 r τ2, that sin τ ≤ τ ,
and that τ ≥ 1 − r. Therewith, |T2| can be upper bounded by

|T2| ≤
2

c2
0 R0 π

(1 − r)
∫ π

1−r

|f2(eiτ )|
τ2

dτ .

Now, we use the definition of f2 and split up the integral into an integration
from 1 − r to π/2 and an integration from π/2 to π. By the definition of f2,
the integration over [−π/2, π] will only give a certain constant C8. Therefore,
we obtain

|T2| ≤
2

c2
0 R0 π

[
(1 − r)

∫ π/2

1−r

ω(τ)
τ2

dτ + C8 (1 − r)

]
.

It was already shown in the first step of this proof that the majorant ω is
weak regular of type 2. Therefore, the first term in the brackets is upper
bounded by C9 ω(1 − r). Moreover, since ω(τ)/τ is non-increasing it holds
that (1 − r) ≤ ω(1 − r)/ω(1). Altogether, we get that |T2| ≤ C10 ω(1 − r)
with a certain constant C10. It remains to consider the case that r ≤ R0 < 1.
To this end we use the following obvious relations in (6.15): sin τ ≤ 1 and
(1 − r)2 + c0 r τ2 ≥ (1 − r)2. This yields the upper bound

|T2| ≤
2

c0 π

1 − r

1 − R0

∫ π

1−r

|f2(eiτ )|
τ2

dτ .

Now we can proceed as in the case r ≥ R0 > 0 and also obtain |T2| ≤
C11 ω(1 − r) with a certain constant C11.

Collecting the upper bounds for |T2|, |T1|, and |T0| and substitute them in
(6.13) and (6.12) shows that there exists a constant C12 such that

∫ 1−r

0

ω(τ)
τ

dτ ≤ C12 ω(1 − r)

which proves that ω is weak regular of type 1. �

Since the Riesz projection simply truncates the left side of the Fourier se-
ries, the theorem implies that the truncation error ‖f −P+f‖Cω(T) is bounded
for all f ∈ Cω(T), because

‖f−P+f‖Cω(T) ≤ ‖f‖Cω(T)+‖P+f‖Cω(T) ≤
(
1 + ‖P+‖Cω(T)→Aω(D)

)
‖f‖Cω(T)

where the last inequality is a consequence of the continuity of P+.
Note that Theorem 6.16 does not say that f+ = P+f becomes necessarily

unbounded if f ∈ Cω(T) with a non-regular majorant ω. If ω is not regular,
it is only no longer possible to control the modulus of continuity of f+. For
instance, if f ∈ Cω,0(T) with a weak regular majorant ω of type 1, then
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an analysis of the proof of Theorem 6.16 shows that f+ is always bounded
(‖f‖∞ < ∞) and therefore an element of A(D), but f+ does not belong to
Aω(D), in general. However, if f is assumed to be only continuous then f+

may become unbounded. It can be shown [8] that to every set E ⊂ [−π, π) of
measure zero there exists a function f ∈ C(T) such that

lim
r→1

|f+(reiτ )| = ∞ for all τ ∈ E . (6.16)

According to a classical result of Kolmogorov [55], it holds for every f ∈ L1(T)
that the set E ⊂ T for which (6.16) holds is of measure zero. Thus, with re-
gard to the divergence behavior toward T, the Riesz projection of continuous
functions behaves as bad as for L1-functions. Even if f is absolute continuous,
no improvement of this divergence behavior can be observed [11]. This bad
convergence behavior of f+ has important consequences for several applica-
tions. In the determination of the Wiener filter, for instance, this divergence
of f+ may result in an unbounded (i.e. unstable) Wiener filter if the given
spectrum is only continuous [11]. All this emphasizes again the importance of
the spaces Cω(T) of smooth functions in which such a complicated behavior
of the causal projections does not occur.

6.4 Inner-Outer Factorization on Subspaces of H∞

As an application of the previous results, this section considers the inner-outer
factorization in subspaces of H∞. Every f ∈ H∞ possesses a unique (up to a
unitary constant) inner-outer factorization f = fI fO into an inner function
fI and an outer function fO which both belong again to H∞ (cf. Sec. 2.2).
However, if one considers subspaces of A ⊂ H∞, this result may no longer
hold. Of course any f ∈ A ⊂ H∞ has an inner-outer factorization in H∞

but the factors fI and fO do not belong to A, in general. For example, if
f ∈ A(D) ⊂ H∞, its outer functions fO may not belong to the disk algebra
A(D). In this section, we characterize subspaces A ⊂ H∞ such that the inner
and outer factors of every f ∈ A belong again to A.

6.4.1 Scalar Case

The subspaces of H∞ on which the inner-outer factorization exists, will be
characterized in terms of two properties of certain Banach algebras which are
formulated using Toeplitz operators. Given a function ϕ ∈ L∞, the Toeplitz
operator Tϕ associated with ϕ is defined by

(Tϕf) (z) =
1

2πi

∫
T

ϕ(ζ)f(ζ)
ζ − z

dζ = (P+ϕf) (z) (6.17)

for all f ∈ H1 and z ∈ D, where P+ is again the orthogonal Riesz-
projection (6.5) from L2 to H2.
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Definition 6.17 (I-property). A subalgebra A ∈ H∞ is said to have the
I-property if all f ∈ A which are invertible in H∞ are also invertible in A,
i.e. if from f−1 ∈ H∞ always follows that f−1 ∈ A.

Definition 6.18 (K-property). A subalgebra A ⊂ H∞ is said to have the
K-property if for all ϕ ∈ H∞ hold that Tϕ(A) ⊂ A. It is said that A has the
strong K-property if in addition there exists a constant C such that

‖Tϕf‖A ≤ C ‖ϕ‖∞ ‖f‖A . (6.18)

The next two theorems show under which conditions on the majorant ω,
the spaces Aω(D) posses the I- and the K-property, respectively.

Theorem 6.19. Let ω be an arbitrary majorant. Then Aω(D) has the I-
property.

Theorem 6.20. Let ω be a regular majorant. Then Aω(D) has the strong K-
property, i.e. for all ϕ ∈ H∞ and f ∈ Aω(D) holds

‖Tϕf‖Aω(D) ≤ C ‖ϕ‖H∞ ‖f‖Aω(D) . (6.19)

Proof (Theorem 6.19). We assume f ∈ Aω(D) and f−1 ∈ H∞. This means
that sup|z|<1

∣∣f−1(z)
∣∣ < ∞, which shows that there exists a constant δ > 0

such that |f(z)| ≥ δ for all z ∈ D. It follows that there exists a constant C
such that for all z1, z2 ∈ D∣∣∣∣ 1

f(z1)
− 1

f(z2)

∣∣∣∣ ≤ 1
δ2

|f(z1) − f(z2)| ≤ Cω (|z1 − z2|)

using that f ∈ Aω(D). This shows that indeed f−1 ∈ Aω(D). �
Theorem 6.20, concerning the K-property of Aω(D), will be proved using

a technique which is called pseudoanalytic extension. To this end, we need
some further notations. In what follows, D− = C \ D denotes the outside of
the closed unit disk. Furthermore, let z = x+iy be a complex number, then we
write z∗ := 1/z for all z ∈ C \ {0}. The Cauchy-Riemann differential operator
is defined, as usual, by ∂ := 1

2 (∂/∂x + i ∂/∂y), and C1(D−) is the set of all
continuously differentiable functions on D−.

The following lemma gives a characterization of the functions in Aω(D),
in terms of the existence of a so called pseudoanalytic extension of f onto the
outside of the unit disk D−. The proof of this lemma is omitted here but it
can be found in [32, Lemma 7].

Lemma 6.21 (Pseudoanalytic extension). Let ω be a regular majorant
and f ∈ H∞. Then f ∈ Aω(D) if and only if there exists a function F ∈
C1(D−) ∩ L∞ and a constant C such that

lim
z∈D−, z→ζ

F (z) = f(ζ) , a.e. ζ ∈ T (6.20)

∣∣∂F (z)
∣∣ ≤ C

ω (|z| − 1)
|z| − 1

, for all z ∈ D− . (6.21)
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Remark 6.22. By (6.20) F is an extension of the function f given on T to
the outside of the unit disk. However, by (6.21) this extended function F is
not (quite) analytic in D− since ∂F �= 0. This is the reason for the notion
of "‘pseudoanalytic extension"’. Such pseudoanalytic extensions also exist for
other classes of smooth functions (see e.g. [34]).

With the help of the pseudoanalytic extension, we are able to prove the
strong K-property of Aω(D).

Proof (Theorem 6.20). Set g := Tϕf . It has to be shown that g ∈ Aω(D) for
any f ∈ Aω(D). Since g is the orthogonal projection of ϕf onto H2, g can be
written as

g = ϕf − h , a.e. on T (6.22)

where h ∈ H2 with h(0) = 0. Now let F be the pseudoanalytic extension of
f according to Lemma 6.21, and define by Φ(z) := ϕ(z∗) and H(z) := h(z∗)
two analytic functions for z ∈ D−. Finally set

G(z) := F (z)Φ(z) − H(z) for all z ∈ D− .

We show that G is a pseudoanalytic extension of g according to Lemma 6.21.
Clearly, G is continuously differentiable in D− and by the properties of the
Riesz-projector P+, G is bounded in D−(R) = {z ∈ C : |z| > R} for all R > 1.
Thus, G ∈ C1(D−)∩L∞(D−(R)) and because of (6.22) and the definitions of
F , Φ, and H it holds that G|T = g|T. Since Φ and H are analytic in D−, it
follows that ∂G = Φ · ∂F and therefore

∣∣∂G(z)
∣∣ ≤ ‖Φ‖H∞(D−) ·

∣∣∂F (z)
∣∣ ≤ c1

ω (|z| − 1)
|z| − 1

(6.23)

for all z ∈ D− and with a certain constant c1, where it was used that F
satisfies (6.21). Thus, G satisfies the conditions of Lemma 6.21 which shows
that g ∈ Aω(D).

It remains to show that for g = Tϕf the upper bound (6.19) exists. It
follows from (6.23) that g′(z) ≤ ‖ϕ‖H∞ |f ′(z)| for all z ∈ D, using that∣∣∂G(z)

∣∣ = |g′(z∗)| · |z∗|2. Now, we define

‖f‖PE := sup
|z|<1

|f ′(z)| 1 − |z|
ω(1 − |z|) .

Therewith, it is clear that ‖g‖PE ≤ ‖ϕ‖H∞ ‖f‖PE . Moreover, it is clear that
|g(0)| ≤ ‖ϕ‖H∞ |f(0)|. Therefore, it is sufficient to consider the case |g(0)| =
|f(0)| = 0. It remains to show that for this case ‖f‖Aω(D) ≤ c0 ‖f‖PE for all
f ∈ Aω(D) and with a constant c0 which is independent on f . Assume that
f ∈ Aω(D) is given with ‖f‖PE < ∞, then it holds

|f ′(z)| ≤ ‖f‖PE
ω(1 − |z|)

1 − |z| , for all z ∈ D . (6.24)
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Now, we consider two points z1 = eiθ1 and z2 = eiθ2 on the unit circle with
|z1 − z2| ≤ δ and define rδ := 1 − δ. For these two points holds
∣∣f(eiθ1) − f(eiθ2)

∣∣ ≤ ∣∣f(eiθ1) − f(rδeiθ1)
∣∣+

+
∣∣f(rδeiθ1) − f(rδeiθ2)

∣∣+ ∣∣f(rδeiθ2) − f(eiθ2)
∣∣ . (6.25)

Using that f satisfies (6.24) one gets for the first term on the right hand side

∣∣f(eiθ1) − f(rδeiθ1)
∣∣ ≤

∫ 1

rδ

∣∣f ′(ρeiθ1)
∣∣ dρ ≤ ‖f‖PE

∫ 1

rδ

ω(1 − ρ)
1 − ρ

dρ

≤ c2 ‖f‖PE ω(1 − rδ) = c2 ‖f‖PE ω(δ)

where for the second line the weak regularity (1.12) of ω was used. The con-
stant c2 depends only on the majorant ω. Of course, the same relations holds
also for the last term in (6.25). Similarly, for the middle term on the right
side of (6.25) one gets

∣∣f(rδeiθ1) − f(rδeiθ2)
∣∣ ≤
∫ θ1

θ2

∣∣f ′(rδeiθ)
∣∣ dθ ≤ ‖f‖PE

ω (1 − rδ)
1 − rδ

|θ2 − θ1|

≤ c3 ‖f‖PE ω(δ) .

using (6.24) and the inequality |θ2 − θ1| ≤ π√
2

∣∣eiθ2 − eiθ1
∣∣ ≤ π√

2
δ. Altogether,

we get
∣∣f(eiθ1) − f(eiθ2)

∣∣ ≤ c0 ‖f‖PE ω(δ) with a constant c0 independent of
f , which shows that indeed ‖f‖PE ≤ c0 ‖f‖Aω(D). �

The next theorem will show that the I- and the K-property are sufficient
conditions for the existens of an inner-outer factorization on a certain Banach
algebra A.

Theorem 6.23. Let A ⊂ H∞ be a Banach algebra which has the I- and K-
properties and let f ∈ A. Then f has an inner-outer factorization f = fI fO

with fO, fI ∈ A. If A also has the strong K-property, then there exists a
constant C such that ‖fO‖A ≤ C ‖f‖A.

Proof. Since A ⊂ H∞, there exists an inner-outer factorization with fI , fO ∈
H∞. From the properties of these factors follows that fO(ζ) = fI(ζ) f(ζ) for
almost all ζ ∈ T and that P+(fO) = fO. Therewith, we get

fO = P+

(
fI f
)

= TfI
f . (6.26)

Since f ∈ A and because of the K-property of A this shows that fO ∈ A. The
I-property shows that f−1

O ∈ A and since fI = f−1
O · f , it follows that fI ∈ A.

The upper bound for ‖fO‖A follows directly from (6.26) using that A has the
strong K-property (6.18) and that ‖fI‖∞ = 1. �

This result shows in particular that the mapping f �→ fO is bounded on
every Banach algebra with the I- and the K-property.
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6.4.2 Matrix functions

In the previous subsection we characterized sub-algebras A of H∞ such that
the inner and outer factor of an arbitrary function f ∈ A belongs again to
A. These investigation should now be extended to matrix valued functions
H ∈ H∞(CM×N ). Throughout this section, we use the notations introduced
in Section 2.3 and 2.4.

First, we recall the general notion of inner- and outer functions for bounded
analytic functions with values in the space B(H1,H2) of bounded operators
from a Hilbert space H1 into a Hilbert space H2, as introduced in the previous
section.

Definition 6.24 (Inner and outer functions). Let H1,H2 be separable
Hilbert spaces, and let H ∈ H∞(H1,H2) be a bounded analytic function with
values in B(H1,H2). Then H is called

(a) inner, if O+
H is an isometry from H2(H1) into H2(H2).

(b) outer, if the image of O+
H on H2(H1) is dense in H2(H2), i.e. if

O+
H H2(H1) = H2(H2) .

The definition of an inner function can be based directly on the analytic
function H rather than on OH.

Proposition 6.25. The bounded analytic function H ∈ H∞(H1,H2) is an
inner function if and only if H(ζ) is an isometry from H1 into H2, i.e.

H∗(ζ)H(ζ) = IH1 for almost all ζ ∈ T . (6.27)

Proof. We have to show that O+
H is an isometry H2(H1) → H2(H1) if and

only if (6.27) holds. The “if part” is trivial. To prove the “only if part”, we
note first that if O+

H is an isometry, also OH will be an isometry. To see this,
let

p(eiθ) =
∑N2

k=N1
p̂(k) eikθ = e−iN1θ

∑N1+N2
k=0 p̂(k − N1) eikθ = e−iN1θ pc(eiθ)

with p̂(k) ∈ H1 for all k, be a trigonometric polynomial in L2(H1). Then
it is clear that pc ∈ H2(H1) and that ‖pc‖H2(H1) = ‖p‖L2(H1). An obvious
calculation gives

‖OHp‖L2(H2)
= ‖OHpc‖L2(H2)

=
∥∥O+

Hpc

∥∥
H2(H2)

= ‖p‖L2(H1) .

Since the trigonometric polynomials are dense in L2(H1) this holds for all
f ∈ L2(H1).
Next, we choose the special function f = χ[τ,τ+δ](θ) g with g ∈ H1 arbitrary,
and where χ[τ,τ+δ] is the indicator function of the interval [τ, τ + δ]. For this
function, one obtains
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1
δ

∫ τ+δ

τ
‖H(eiθ)g‖2

H2
dθ = ‖g‖2

H1

which implies for δ → 0 that ‖H(eiθ)g‖2
H2

= ‖g‖2
H1

for almost all θ ∈ [−π, π).
Therefore, H(ζ) is an isometry for almost all ζ ∈ T. �

We start with the inner-outer factorization result in H∞(CM×N ), i.e. in
the space of M ×N matrices with entries from H∞. For this space, it follows
in particular from the above definition that every HI ∈ H∞(CN×N ) is an
inner function if

H∗
I(ζ)HI(ζ) = IN for almost all ζ ∈ T .

Moreover, it is clear that every outer function HO ∈ H∞(CN×N ) is invertible
in H∞(CN×N ), which means that there exists an H−1

O ∈ H∞(CN×N ) such
that H−1

O (z)HO(z) = HO(z)H−1
O (z) = IN for all z ∈ D.

Theorem 6.26. Let H ∈ H∞(CM×N ) and assume that there exists a δ > 0
such that

H∗(z)H(z) ≥ δ2IN for all z ∈ D . (6.28)

Then there exists an inner function HI ∈ H∞(CM×N ) and an outer function
HO ∈ H∞(CN×N ) such that

H(z) = HI(z)HO(z) for all z ∈ D .

Moreover, let H ∈ H∞(CM×N ) and assume that there exists a δ > 0 such
that

H(z)H∗(z) ≥ δ2IN for all z ∈ D . (6.29)

Then there exists an inner function HI ∈ H∞(CN×M ) and an outer function
HO ∈ H∞(CM×M ) such that

H(z) = HO(z)HI(z) for all z ∈ D .

These factorizations are unique up to a constant unitary matrix.

Note that M ≥ N is a necessary requirement for (6.28) to hold. Similarly,
(6.29) can be satisfied only if N ≤ M . Subsequently, we consider only the
case that M ≥ N , but it will always be clear how the argumentation has to
be changed for the case M ≤ N .

What happens, if the entries of the matrix H belongs to a certain subalge-
bra A ⊂ H∞? By the previous theorem, it is clear that there exists an inner-
outer factorization of H with HI ∈ H∞(CM×N ) and with HO ∈ H∞(CN×N ).
But do the entries of the inner and outer functions belong again to A ∈ H∞?
In general, the answer will be negative. However, there exist subspaces A of
H∞ such that all entries of the inner and outer factors belong again to A.
We will show in the following that Banach algebras A with the I and the K
properties (cf. Def. 6.17 and 6.18) are such subspaces of H∞. Matrices of the
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size M ×N with entries of a certain algebra A will be denoted in the following
by AM×N . With this notations, it is clear that (H∞)M×N = H∞(CM×N ).

As a preparation, we present an auxiliary lemma, which shows that for
subalgebras A ⊂ H∞ with the I-property every quadratic matrix H ∈ AM×M

which is invertible in H∞ is also invertible in A.

Lemma 6.27. Let A be a subalgebra of H∞ which has the I-property and let
H ∈ AN×N . If H−1 ∈ (H∞)N×N then H−1 ∈ AN×N for all N ≥ 1.

Proof. Assume that the matrix H ∈ AN×N is invertible in (H∞)N×N then its
inverse can be written as H−1 = (detH)−1 Hadj. It is clear that for the adjunct
matrix holds Hadj ∈ AN×N since the entries of Hadj are products and sums
of functions from A. Because H−1 ∈ (H∞)N×N , we have (detH)−1 ∈ H∞

and from the I-property of A follows that (detH)−1 ∈ A. Altogether we have
H−1 ∈ AN×N . �

Next we state the result on the inner-outer factorization in subalgebras of
H∞ with the I- and the (strong) K-property.

Theorem 6.28. Let A be a subalgebra of H∞ which has the I- and the K-
property. Then for all H ∈ AM×N for which there exists an δ > 0 such that

H∗(z)H(z) ≥ δ2ICN , for all z ∈ D (6.30)

there exists a (left) inner-outer factorization H = HI HO in A which is unique
up to a constant unitary matrix, with the inner factor HI ∈ AM×N and the
outer factor HO ∈ AN×N . If A has additionally the strong K-property, then
there exists a constant C such that

∥∥ [HO]m,n

∥∥
A ≤ C ·

∑M
k=1

∥∥ [H]k,n

∥∥
A (6.31)

for all m = 1, 2, . . . , M and all n = 1, 2, . . . , N .

Proof. Since A ⊂ H∞ the matrix H belongs to (H∞)M×N and therefore
there exists an inner-outer factorization H = HI HO with HI ∈ (H∞)M×N ,
for which H∗

I(ζ)HI(ζ) = ICN a.e. ζ ∈ T, and with the matrix HO ∈ (H∞)N×N

which is invertible in H∞. Since this factorization is unique in H∞ (up to a
constant unitary matrix), it is unique (if it exists) in every subalgebra of H∞.
For ζ ∈ T follows HO(ζ) = H∗

I(ζ)H(ζ), or in more detail

[HO]m,n =
∑N

k=1 [H∗
I ]m,k [H]k,n , 1 ≤ m,n ≤ N .

By the properties of the outer function holds [HO]m,n = P+([HO]m,n) and
therefore follows that

[HO]m,n =
∑N

k=1 P+

(
[H∗

I ]m,k [H]k,n

)

=
∑N

k=1 T[H∗
I ]m,k

(
[H]k,n

)
. (6.32)
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Since all [H]k,n ∈ A and since A has the K-property, it follows that [HO]m,n ∈
A and therefore HO ∈ AN×N . Since HO is invertible in H∞, Lemma 6.27
shows that H−1

O ∈ AN×N . Since HI = HH−1
O it follows finally that HI ∈

AM×N .
Using that ‖[HI ]m,n‖∞ = 1 for all m,n and applying Def. 6.18 of the strong
K-property, the upper bound (6.31) follows at once from (6.32). �

Note that the previous theorem states in particular that the mapping
H �→ HO is bounded (if it exists) in every Banach algebra with the I- and
the strong K−property. It was proved in Theorem 6.19 and Theorem 6.19
that the spaces Aω(D) of smooth and analytic functions in D possesses the
I as well as the strong K-property, provided that the majorant ω is regular.
Therefore, Theorem 6.28 holds in particular for A = Aω(D) with a regular
majorant ω.

Notes

The result of M. Riesz on the boundedness of the Riesz projection on Lp

can be found e.g. in [48, 92]. Theorem 6.11 is a variant of results for poly-
nomial operations (see e.g. [54, Chapter VII]). Equation (6.6) is a variant of
the Zygmund-Martsinkevich-Berman identity for polynomial operations which
was proved in [6] and the related result to (6.7) was established in [59].

More on the pseudoanalytic extension, used in Subsection 6.4 can be found
in [34]. Lemma 6.21 is due to Dyakonov [32].
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Disk Algebra Bases

This chapter considers the approximation of the transfer function of a linear
system in terms of a causal filter bank. Assume that f(eiθ) with θ ∈ [−π, π)
is the transfer function of an arbitrary discrete-time linear system L, and let
Φ = {ϕk}∞k=1 be a set of transfer functions of an orthonormal filterbank. It is
assumed that f as well as all ϕk are elements of a certain Banach algebra B
which characterizes the system theoretical properties of L and of the filterbank
Φ. Moreover, since f as well as {ϕk}∞k=1 should represent causal systems, these
transfer functions have to belong to the causal subspace B+ of B. Then, it is
desirable to obtain an approximation of f in this filterbank of the form

(ANf)(eiθ) =
N∑

k=1

ck(f)ϕk(eiθ) , θ ∈ [−π, π) (7.1)

with constants ck(f) which are uniquely determined by f . From this approxi-
mation, we require that ANf ∈ B+ represents the transfer function of a causal
and stable linear system, and we wish that every causal and stable transfer
function f ∈ B+ can be approximated arbitrarily well in the filterbank Φ, i.e.

‖f − ANf‖B → 0 as N → ∞ . (7.2)

If such a system Φ = {ϕk}∞k=1 of functions in B exists such that (7.2) holds
for every f ∈ B+, one says that Φ is a basis in B+.

Here, we consider almost exclusively the approximation of causal and en-
ergy stable linear systems, i.e. the case B = H∞. However, since H∞ is not a
separable space it is clear that no basis exists in H∞. Therefore we consider
the disk algebra A(D) ⊂ H∞ which is equal to the closure of all polynomials
in H∞-norm and which is separable.

This chapter considers three problems connected with bases in the disk
algebra. First, the question of the existence of a disk algebra basis is discussed,
then the robustness of such basis expansions with respect to errors in the
given data is analyzed, and finally the existence of uniformly stable bases is
discussed.

V. Pohl, H. Boche, Advanced Topics in System and Signal Theory, Foundations
in Signal Processing, Communications and Networking 4,
DOI 10.1007/978-3-642-03639-2_7, c© Springer-Verlag Berlin Heidelberg 2009
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7.1 On the Existence of Disk Algebra Bases

Definition 7.1 (Schauder Base). Let B be an arbitrary Banach space. A
sequence {ϕk}∞k=1 of elements of B is called a (Schauder) basis for B if for
every f ∈ B there exists a unique sequence {ηk}∞k=1 of complex numbers such
that

f =
∞∑

k=1

ηk ϕk (7.3)

where the equality sign means that the sum converges to f in the norm of the
Banach space B.

The coefficients ηk in the basis representation (7.3) are given by bounded
linear functionals ck : f �→ ηk. This important property of Schauder bases is
proved in the following proposition.

Proposition 7.2. Let {ϕk}∞k=1 be a Schauder basis in a Banach space B.
Then the coefficients ηk in the basis representation (7.3) are given by

ηk = ck(f) , k = 1, 2, . . . and for all f ∈ B

where ck ∈ B∗ , k = 1, 2, . . . are bounded linear functionals on B. Moreover
the sequences {ck}∞k=1 and {ϕk}∞k=1 are biorthogonal, which means that

ck(ϕn) =
{

1 k = n
0 k �= n

. (7.4)

Proof. Denote by S the set of all sequences η = {ηk}∞k=1 for which the series
(7.3) converges in B, and define by

‖η‖S := supN≥1 ‖
∑N

k=1 ηk ϕk‖B

a norm in S. It is easily verified that S is complete with respect to this norm.
Consider now the linear mapping M : S → B defined by Mη =

∑∞
k=1 ηkϕk

for every η ∈ S. By the definition of a Schauder base and the set S, the
mapping M is one-to-one and onto, and by the definition of the norm ‖ · ‖S ,
it is clear that ‖Mη‖B ≤ ‖η‖S , i.e. M is bounded. Consequently, the open
mapping theorem shows that also the inverse M−1 : B → S is a bounded
linear operator.

Now for an arbitrary k ∈ N the linear functional ck on B defined by

ck(f) := ηk where f =
∑∞

k=1 ηk ϕk

is considered. Since ηn ϕn = f −
∑

k �=n ηk ϕk it follows easily that ‖ηn ϕn‖B ≤
2 ‖f‖B ≤ 2 ‖η‖S . Therewith, one gets

|cn(f)| = |ηn| =
‖ηn ϕn‖B
‖ϕn‖B

≤ 2‖η‖S
‖ϕn‖B

≤ 2‖M−1‖
‖ϕn‖B

‖f‖B (7.5)
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which shows that the linear functionals {ck}∞k=1 are bounded. Thus, we have

f =
∑∞

k=1 ck(f)ϕk for all f ∈ B (7.6)

where the sequence {ck}∞k=1 of bounded linear functionals of B is obviously
uniquely determined. Because of the uniqueness of the representation (7.6), it
follows from cn(f) =

∑∞
k=1 ck(f) cn(ϕk) that (7.4) holds. �

Example 7.3 (Classical Fourier series). Let B = Lp with 1 < p < ∞ the
set of all Lebesgue integrable functions on the unit circle. The sequence of
functions ϕk(eiθ) = 1√

2π
eikθ with k = 0,±1,±2, . . . forms a basis of B and

the biorthogonal coefficient functionals cn ∈ B∗ are given by

ck(f) = 1
2π

∫ π

−π
f(eiθ) e−ikθ dθ .

Whereas the classical Fourier series of the previous example is a basis for
many function spaces, it is not a basis for some other important spaces, e.g.
L1. The Fourier series is also not a basis for C(T), because it is well known
that there exist continuous functions on T for which the classical Fourier series
fails to converge at some points on the unit circle.

Example 7.4 (Faber-Schauder system). Define the continuous functions

φ0(τ) :=

⎧⎪⎨
⎪⎩

1 + τ
π , τ ∈ [−π, 0)

1 − τ
π , τ ∈ [0, π]

0 , otherwise

φn(τ) := φ0(2n τ) , n = 1, 2, . . . .

Therewith, one defines Faber-Schauder system {ξn}∞n=0

ξ0(eiθ) := 1

ξn(eiθ) := φk

(
θ − π + 2l+1

2k π
)

with n = 2k + l

where k = 0, 1, 2, . . . and 0 ≤ l < 2k. It is well known that this Faber-Schauder
system {ξn}∞n=0 is a basis for C(T). In fact, the Faber-Schauder system was the
first example of a basis for the space of continuous functions [36, 79]. Note that
the definition given above is just one possible way to define a Faber-Schauder
system.

Every function ϕ ∈ C(T) defines by

〈f, ϕ〉 :=
1
2π

∫ π

−π

f(eiθ)ϕ(eiθ) dθ for all f ∈ C(T) (7.7)

a linear functional on C(T). A basis {ϕn}∞n=1 in C(T) is called an orthogonal
basis in C(T) if the basis functions {ϕn} define by (7.7) a sequence of coefficient
functionals cn(f) = 〈f, ϕn〉 such that
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f =
∑∞

n=1 〈f, ϕn〉 ϕn for all f ∈ C(T) . (7.8)

Since the sequence of coefficient functionals {cn}n∈N is biorthogonal to the
sequence of basis functions {ϕn}n∈N, it holds for every orthonormal basis in
C(T) that

〈ϕn, ϕk〉 =
{

1 n = k
0 n �= k

.

Example 7.5 (Franklin system). Take the Faber-Schauder system {ξn}∞n=0 de-
fined in Example 7.4 and apply the Gram-Schmidt orthogonalization to this
system. This gives the orthogonal system {ψn}∞n=0, where

ψ0(eiθ) = ξ0(eiθ)

ψn+1(eiθ) =

[
ξn+1 −

n∑
k=0

〈ξn+1, ψk〉ψk

]
/
√
〈ξn+1, ξn+1〉 .

The so defined Franklin system Ψ = {ψn}∞n=0 is an orthogonal basis for C(T)
[39], and it is the basis for the following considerations in this section.

For an arbitrary Banach space B, it is generally not easy to determine
whether or not there exists a basis for B. Here, we consider the special case
B = A(D), i.e. we consider bases in the disk algebra A(D). The question
whether there exists a basis in the disk algebra was posed by Banach [5]
and an affirmative answer was given by Bockarev [23] forty years later. Since
A(D) ⊂ C(T), it is not surprising that the basis in A(D) can be constructed
from the basis in C(T) by an analytic continuation inside the unit disk.

7.2 Robust Approximation in Disk Algebra Bases

As mentioned at the end of the previous section, there exist orthogonal bases
in the disk algebra A(D). Given such a basis Φ = {ϕk}∞k=1, it is possible to
approximate every f ∈ A(D) by the partial sum

(ANf)(z) =
∑N

k=1 〈f, ϕk〉 ϕk(z) , z ∈ D (7.9)

such that the approximation error ‖ANf − f‖∞ can be made arbitrary small
by increasing the approximation degree N . In this section, we investigate the
robustness behavior of such basis expansions in A(D). However, first we will
discuss some general properties of such basis approximations, which will be
needed subsequently.
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Properties of basis expansions in A(D)

1. Let Φ = {ϕk}∞k=1 be an arbitrary orthonormal basis in A(D). Since for
every f ∈ A(D) it always holds that ‖f‖2 ≤ ‖f‖∞. It follows that {ϕk}∞k=1

is orthogonal sequence in H2. Moreover, since A(D) is dense in H2 it
follows that Φ is a complete orthonormal sequence in H2. Thus Φ is also
a base for H2.

2. Let f be an arbitrary function in L2 and let f = f+ + f− with f+ = P+f
its decomposition into its causal and anticausal part. We already know
that the Riesz projection P+ : f �→ f+ is a bounded operator from L2

onto H2 (cf. Theorem 6.12). Moreover, a simple calculation shows that P+

is a selfadjoint operator on L2, i.e. 〈P+f, g〉2 = 〈f,P+g〉2 for all f, g ∈ L2.
3. Let Φ = {ϕk}∞k=1 be an orthogonal base in A(D), then the approximation

operator AN is an orthogonal projection from L2 onto the subspace of
A(D) which is spanned by ϕ1, · · · , ϕN . Since this subspace is contained
in the range of P+ (which is equal to H2), the relation P+AN f = AN f
holds for all f ∈ L2. Moreover, because P+ is selfadjoint, one gets

〈f+, ϕk〉2 = 〈P+f, ϕk〉2 = 〈f,P+ϕk〉2 = 〈f, ϕk〉2 .

Using this relation in the representation (7.9) of AN f and ANf+ one
obtains also that AN f = ANP+ f for all f ∈ L2. Thus, altogether

P+ANf = ANP+f = ANf for all f ∈ L2 . (7.10)

Note that this relation implies immediately that ANf− = 0 for all f ∈ L2.
4. A function in H2 need not belong to H∞, in general. However, all functions

in H2 are bounded on any disk with a radius smaller than 1. This follows
from the following inequality which holds for all f ∈ H2.

|f(z)| ≤ ‖f‖2√
1 − |z|2

for |z| < 1 . (7.11)

To see this, write f as its Fourier series f(z) =
∑∞

k=0 f̂(k) zk. Applying
the Cauchy-Schwartz inequality and the Parseval’s identity yields

|f(z)|2 ≤
( ∞∑

k=0

∣∣∣f̂k

∣∣∣2
)( ∞∑

k=0

|z|2k

)
= ‖f‖2

2

1
1 − |z|2 for all |z| < 1 .

Robustness behavior

Assume that the actual function f ∈ A(D) is disturbed by an error g ∈ C(T)
such that only the function f̃ = f + g is known. Then for the approximation
error holds

‖AN f̃ − f‖∞ ≥ | ‖ANg‖∞ − ‖ANf − f‖∞ | . (7.12)
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The second term can be made as small as desired since Φ = {ϕn}∞n=1 is a
basis in A(D) whereas the first term, due to the disturbance g, will remain
larger than zero as long as g �= 0. The question, we want to investigate in the
following is whether the residual error ‖AN g‖∞ remains bounded for every
g ∈ C(T), i.e. whether AN satisfies

sup
N∈N

‖AN g‖∞ < ∞ for all g ∈ C(T) . (7.13)

If this condition is satisfied, we will say that the basis Φ allows a robust
approximation of any f ∈ A(D). Otherwise the approximation error (7.12)
might get unbounded for some disturbances g ∈ C(T). By the theorem of
Banach-Steinhaus condition (7.13) is satisfied if and only if the operators
AN : C(T) → A(D) are uniformly bounded, i.e. if there is a constant C < ∞
such that

‖AN‖C(T)→A(D) = sup
g∈C(T)
‖g‖∞≤1

‖AN g‖∞ ≤ C for all N ∈ N .

Thus we have to analyze the norm of the approximation operators AN . To
this end, the coefficient functionals (7.7) are inserted in the definition (7.9) of
the approximation operators. This gives the following integral representation
of the approximation operators

(AN f)(z) =
1
2π

∫ π

−π

f(eiθ) KN (eiθ, z) dθ (7.14)

with the kernel

KN (ζ, z) =
N∑

k=1

ϕk(z)ϕk(ζ) (7.15)

corresponding to the given disk algebra basis Φ = {ϕk}∞k=1. The numbers

LN := sup
|z|<1

(
1
2π

∫ π

−π

∣∣KN (eiθ, z)
∣∣ dθ

)
= sup

|z|<1

‖KN (·, z)‖1 , N ∈ N .

are the so-called Lebesgue constants of the basis Φ. These Lebesgue constants
play an important role in our considerations because of the following result.

Proposition 7.6. The operator norm ‖AN‖C(T)→A(D) of the basis expansion
(7.9) is given by the Lebesgue constant of the basis Φ, i.e.

‖AN‖C(T)→A(D) = sup
|z|<1

‖KN (·, z)‖1 .

Proof. From the integral representation (7.14) of the approximation operator
follows at once that
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‖AN‖C(T)→A(D) = sup
|z|<1

sup
f∈C(T)
‖f‖∞≤1

|(AN f)(z)|

≤ sup
|z|<1

(
1
2π

∫ π

−π

∣∣KN (eiθ, z)
∣∣ dθ

)
(7.16)

= sup
|z|<1

‖KN (·, z)‖1 .

To see that there exists an f ∈ C(T) with ‖f‖1 ≤ 1 for which equality holds,
write the kernel as KN (eiθ, z) =

∣∣KN (eiθ, z)
∣∣ eiφ(θ,z) and set f(eiθ) = e−iφ(θ,z).

Since all basis function ϕk are continuous, also the kernel KN and the
above defined f are continuous in θ for every z ∈ D. Using this f one gets
|(AN f)(z)| = 1

2π

∫ π

−π

∣∣KN (eiθ, z)
∣∣ dθ which shows that equality holds in (7.16).

�

Thus to assess whether a certain basis Φ = {ϕk}∞k=1 allows a robust ap-
proximation in the form (7.9), one has to investigate its Lebesgue constants.
The next theorem will show that the Lebesgue constants LN of every arbitrary
orthogonal basis in A(D) diverge as N tends to infinity.

Theorem 7.7. Let Φ = {ϕk}∞k=1 be an arbitrary orthogonal basis in A(D)
with the kernel KN given by (7.15), then

lim
N→∞

sup
|z|<1

‖KN (·, z)‖1 = ∞ . (7.17)

Proof. The theorem is proved by contradiction in three steps.
1) Contrary to the statement of the theorem, it is assumed that (7.17)

does not hold. Thus, by going to a subsequence if necessary, we may suppose
without loss of generality that there exists a constant C1 such that

sup
|z|<1

1
2π

∫ π

−π

∣∣KN (eiθ, z)
∣∣ dθ ≤ C1 (7.18)

for all N ∈ N. Then Proposition 7.6 implies that the norms of the operators
AN : C(T) → A(D) are uniformly bounded by C1: ‖AN‖C(T)→A(D) ≤ C1.

2) Let f be an arbitrary function in L2. Since {ϕk}k∈N is a basis in H2

the sequence AN f+ = ANP+ f converges to f+ = P+ f in H2. Because of
(7.10), the relation AN f = AN f+ holds such that

lim
N→∞

‖AN f − f+‖2 = 0 .

Define the sequence gN := AN f − f+ in H2 which converges to zero (in H2)
as N tends to infinity. Let 0 < R < 1, then (7.11) shows that

sup
|z|≤R

|gN (z)| ≤ ‖gN‖2√
1 − R2
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and since ‖gN‖2 converges to zero, it follows limN→∞ sup|z|<R |gN (z)| = 0
which finally shows that

lim
N→∞

(AN f)(z) = f+(z) for all |z| < 1 . (7.19)

Thus for every f ∈ L2, the approximation (AN f)(z) converges to the causal
part f+(z) at all points z inside the unit disk.

3) In particular (7.19) holds for all f ∈ C(T) ⊂ L2 and implies for every
z ∈ D that

|f+(z)| = lim
N→∞

|(AN f)(z)|

≤ lim sup
N→∞

‖AN‖C(T)→A(D) ‖f‖∞ ≤ C1 ‖f‖∞ (7.20)

using that the norms ‖AN‖C(T)→A(D) are upper bounded by C1, because of
assumption (7.18). Inequality (7.20) shows that the causal part f+(z) of every
f ∈ C(T) is upper bounded by C1 ‖f‖∞ inside the unit disk. However Theo-
rem 6.14 implies that there exist functions f ∈ C(T) with ‖f‖∞ ≤ 1 such that
the causal part f+ = P+f is unbounded, i.e. to every constant C2 > 0 there
exists a function f ∈ C(T) with ‖f‖∞ ≤ 1 such that sup|z|<1 |f+(z)| > C2.
This is contradictory to (7.20), and it follows that the initial assumption (7.18)
was wrong. �

Taking into account Proposition 7.6, the previous theorem implies that the
norms ‖AN‖C(T)→A(D) are unbounded as N → ∞ for every orthogonal basis
Φ in A(D). As an immediate consequence, we have

Corollary 7.8. Let Φ = {ϕk}∞k=1 be an arbitrary orthogonal basis in A(D).
Then there are continuous functions g ∈ C(T) with ‖g‖∞ ≤ 1 such that

lim
N→∞

‖ANg‖∞ = ∞ .

This result is a consequence of the theorem of Banach Steinhaus, which implies
also that the set of continuous functions for which this corollary holds is of
second category (a "nonmeager set", see e.g. [72]). In turn, this corollary
implies that there is no orthogonal basis in A(D) for which the approximation
operator (7.9) is robust against disturbances of continuous functions.

Corollary 7.9. Let Φ = {ϕk}∞k=1 be an arbitrary orthogonal basis in A(D).
To every f ∈ A(D) there are disturbances g ∈ C(T) with ‖g‖∞ ≤ 1 such that
for the approximation error of f̃ = f + δ · g holds

lim
N→∞

‖AN f̃ − f‖∞ = ∞

for every number δ > 0.
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Of course, this corollary follows immediately from inequality (7.12) and
Corollary 7.8. It shows that it is not possible to control the approximation er-
ror by means of the degree N of the approximation operator AN , because even
though an increase in N reduces the second term of the approximation error
in (7.12), there always exist disturbances g ∈ C(T) such that an increasing of
N increases the whole approximation error ‖AN f̃ − f‖∞.

7.3 Bases in Spaces of Smooth Functions

We saw in the previous section that there exists no basis in A(D) such that
the approximation (7.9) is robust against disturbances of continuous func-
tions. The question arises for which kind of disturbances it will be possible
to control the approximation error by means of the approximation degree N?
Of course, since Φ = {ϕk}∞k=1 is assumed to be a basis in A(D), it would be
sufficient that the disturbance g is an element of A(D) in order that the term
‖ANg‖∞ in (7.12) remains always bounded. However, this would imply that
the disturbance g has to be an analytic function in D.

In this section we characterize subspaces of C(T) such that for all distur-
bances from these subspaces, the approximation error can be controlled by
the approximation degree N . This characterization is done in terms of the
smoothness of the functions. It will turn out that it is sufficient that the
disturbance f belongs to Cω(T) with a regular majorant ω (cf. Section 1.3).

Bases in Cω(T)

Throughout this section we consider a special set of orthonormal functions
on T, the so-called Franklin system. The functions of this system are always
denoted as ψk with k = 0, 1, 2, . . . and the construction of ψk is given in the
following example.

Example 7.10 (Franklin system). For an integer k = 2n+l, with n = 0, 1, 2, . . .
and 0 ≤ l < 2n define τk = 2π 2l+1

2n+1 and put τ0 = 0. Then, the Franklin system
on T is the orthonormal set of real valued, continuous, and piecewise linear
functions {ψk}∞k=0 such that ψk has nodes at {eiτl}l≤k.

At the beginning, it will be shown that this Franklin system is a basis for
the space Cω(T) afterward it will be shown that there exists a basis in Aω(D)
which can easily be obtained from the Franklin system. We consider functions
f given on the unit circle T. The generalized Fourier coefficients with respect
to the Franklin system {ψn}∞n=0 are always denoted by ck(f) = 〈f, ψk〉. The
first theorem gives necessary and sufficient conditions on the coefficients ck(f)
such that f belongs to the space Cω(T) with a regular majorant ω.

Theorem 7.11. Let ω be a regular majorant. A function f given on T belongs
to Cω(T) if and only if there exists a constant C such that
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|ck(f)| ≤ C√
k+1

ω( 1
k+1 ) . (7.21)

for all k = 0, 1, 2, . . . . A function f belongs to Cω,0(T) if and only if

lim
k→∞

|ck(f)|
√

k + 1
ω( 1

k+1 )
= 0 . (7.22)

This theorem gives a characterization of all functions f ∈ Cω(T) with a
regular majorant ω. If the coefficients ck(f) = 〈f, ψk〉 of a function f with
respect to the Franklin system are known then it can be ascertained by the
above theorem whether f belongs to Cω(T) or Cω,0(T). Note that such a simple
characterization of f is in general not possible if f belongs only to C(T).

The following proof of Theorem 7.11 follows closely the proof of Theo-
rem 27 in [90, III.D]. There spaces of Lipschitz continuous functions were
considered whereas Theorem 7.11 makes a statement on general smoothness
classes Cω(T). However, we will need the following auxiliary lemma.

Lemma 7.12. Let ω be a regular majorant. Then there exist two constants
C1 and C2 such that

1
2n

n∑
k=0

ω(1/2k)
1/2k

≤ C1 ω( 1
2n ) and

∞∑
k=n

ω( 1
2k+1 ) ≤ C2 ω( 1

2n ) . (7.23)

Proof. We start with the inequality on the left hand side of (7.23). Writing
the sum on the left hand side in a slightly different form, one obtains

1
2n

n∑
k=0

ω(1/2k)
1/2k

=
ω(1)
2n

+ 2
1
2n

n∑
k=1

ω(1/2k)
1/2k

1
2

≤ ω(1)
2n

+
1

2n−1

n∑
k=1

ω(1/2k)
1/2k

∫ 1/2k

1/2k+1

dτ

τ
. (7.24)

The second line follows from the fact that the last integral is equal to log 2
which is larger than 1/2. Recall that the function ω(τ)/τ is non-increasing.
Therefore it follows

ω(b)
b

∫ b

a

dτ

τ
≤
∫ b

a

ω(τ)
τ2

dτ for all 0 ≤ a ≤ b ≤ 1 .

Using this inequality in (7.24), one gets

1
2n

n∑
k=0

ω(1/2k)
1/2k

≤ ω(1)
2n

+
1

2n−1

n∑
k=1

∫ 1/2k

1/2k+1

ω(τ)
τ2

dτ

=
ω(1)
2n

+ 4
1

2n+1

∫ 1/2

1/2n+1

ω(τ)
τ2

dτ ≤ ω(1)
2n

+ 6C ω(1/2n) .
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For the last inequality it was used that ω is a regular majorant and satisfies
(1.13) with a certain constant C and that ω(τ/2) ≤ (3/2)ω(τ) (cf. Sec. 1.3).

Next the right inequality in (7.23) is proved. One easily verifies that

∞∑
k=n

ω(1/2k+1) =
∞∑

k=n

ω(1/2k+1)
1/2k+1

(
1
2k

− 1
2k+1

)
. (7.25)

Since ω(τ)/τ is a non-increasing function, it follows that
∫ b

a
ω(τ)

τ dτ ≥ ω(a)
a

∫ b

a
dτ = ω(a)

a (b − a) for all 0 ≤ a ≤ b ≤ 1 .

Set a = 1/2k+1 and b = 1/2k and using it in (7.25), one gets

∞∑
k=n

ω(1/2k+1) ≤
∞∑

k=n

∫ 1/2k

1/2k+1

ω(τ)
τ

dτ =
∫ 1/2n

0

ω(τ)
τ

dτ .

Since ω is a regular majorant and satisfies (1.12), one obtains finally that the
last term is smaller or equal than C2 ω(1/2n) with a certain constant C2. �

Proof (Theorem 7.11). For the "only if" part, it can be shown as in [90, III.D]
that ∣∣∣∣ 1

2π

∫ π

−π

f(eiτ )ψk(eiτ ) dτ

∣∣∣∣ ≤ C0 ‖f‖Cω(T)

1√
k + 1

ω( 1
k+1 )

with a certain constant C0. But this is equivalent to (7.21). The second state-
ment (7.22) follows from (7.21) by standard arguments using that the poly-
nomials are dense Cω,0(T).
It remains to show that for every sequence of coefficients {ck(f)}∞k=0 with
property (7.21) the corresponding function f belongs to Cω(T). To this end
we write f as

f(eit) = c0 ψ0(eit) +
∞∑

k=0

Fk(eit) (7.26)

with the functions Fk(eit) =
∑2k+1−1

n=2k cn(f)ψn(eit). Moreover, as in [90], there
exists a constant C such that

∣∣Fk(eit)
∣∣ ≤

2k+1−1∑
n=2k

|cn(f)|
∣∣ψn(eit)

∣∣ ≤ C ω( 1
2k ) (7.27)

and such that
∣∣Fk(eit1) − Fk(eit2)

∣∣ ≤ C ω( 1
2k ) 2k+1|eit1 − eit2 | . (7.28)

Let t1, t2 ∈ [−π, π) and choose N such that 1/2N+1 < |eit1 − eit2 | ≤ 1/2N .
Now one gets from (7.26)



132 7 Disk Algebra Bases

∣∣f(eit1) − f(eit2)
∣∣ ≤ |c0| |eit1−eit2 |+

N∑
k=0

∣∣Fk(eit1) − Fk(eit2)
∣∣+2

∞∑
k=N+1

‖Fk‖∞

where the first term on the right hand side follows from the special properties
of the functions ψk of the Franklin system. Next the relations (7.27) and (7.28)
are used in the above inequality. This gives

∣∣f(eit1) − f(eit2)
∣∣ ≤ |c0| |eit1 − eit2 |

+ C
N∑

k=0

ω
(

1
2k

)
2k+1|eit1 − eit2 | + 2C

∞∑
k=N+1

ω
(

1
2k

)

To get an upper bound for the second and third term, Lemma 7.12 is used.
This finally gives

∣∣f(eit1) − f(eit2)
∣∣ ≤ |c0| |eit1 − eit2 | + (C1 + C2)ω(1/2N )

which shows that there exists a constant C3 such that
∣∣f(eit1) − f(eit2)

∣∣ ≤
C3 ω(|eit1 − eit2 |). This proves that f ∈ Cω(T). �

Based on these preparations, we will show in the next theorem that for
every regular majorant ω all function f ∈ Cω,0(T) can be approximated
uniformly in the Franklin system {ψk}∞k=0. It follows in particular that the
Franklin system is a basis for Cω,0(T).

Theorem 7.13. Let ω be a regular majorant. Then there exists a constant C
such that ∥∥∥∑N

k=0 ck(f)ψk

∥∥∥
Cω(T)

≤ C(ω) ‖f‖Cω(T)

for all N ∈ N. For all f ∈ Cω,0(T) holds

limN→∞

∥∥∥f −
∑N

k=0 ck(f)ψk

∥∥∥
Cω(T)

= 0 .

Corollary 7.14. Let ω be a regular majorant, then the Franklin system
{ψk}∞k=0 is a basis in Cω,0(T).

Proof (Theorem 7.13). From the proof of Theorem 7.11 we already know that

|ck(f)| ≤ C0 ‖f‖Cω(T)
1√
k+1

ω( 1
k+1 ) .

Therewith (7.27) and (7.28) show that

|Fk(t)| ≤ C1 ‖f‖Cω(T) ω( 1
2k )

|Fk(t1) − Fk(t2)| ≤ C2 ‖f‖Cω(T) ω( 1
2k ) 2k+1|eit1 − eit2 | .
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Therewith, one gets similar to the proof of [90, III.D.27] that

∥∥∑2k

l=0 cl(f)ψl

∥∥
Cω(T)

≤ C3

∥∥f∥∥Cω(T)
.

This is the statement of the theorem only for a subsequence of the generalized
Fourier sequence. For the general case n = 2k+m a longer extension is needed,
which is left as an exercise. �

Bases in Aω(D)

Next we investigate the existence of a basis in the spaces Aω(D) = [Cω(T)]+
and Aω,0(D) = [Cω,0(T)]+ of all smooth and analytic functions inside the
unit disk D. It turns out that a basis in Aω,0(D) can be obtained by an
analytic extension of the Franklin system {ψk}∞k=0 inside the unit disk by
means of the Heglotz-Riesz transform, R, defined in (5.1). To this end we set
for k = 0, 1, 2 . . .

ϕk(z) := (R ψk)(z) , z ∈ D .

Then it can be shown that Φ = {ϕk}∞k=0 is a basis in Aω,0(D). This follows
easily from the result of the previous paragraph and from the fact that the
Riesz projection, and consequently the Herglotz-Riesz transform, is a contin-
uous operator on Cω(T) → Aω(D) provided that ω is a regular majorant (cf.
Theorem 6.16). For this reason, we left the technical details as an exercise and
state only the results.

Similar to the previous paragraph, we give first a characterization of the
functions in Aω(D) in terms of the generalized Fourier coefficients ck(f) =
〈f, ϕk〉 with respect to the orthonormal system Φ = {ϕk}∞k=0.

Theorem 7.15. Let ω be a regular majorant. The sequence {ck}∞k=0 of com-
plex numbers is a series of Fourier coefficients of a function f ∈ Aω(D) with
respect to the orthonormal system {ϕk}∞k=0 if and only if there exists a con-
stant C such that

|ck| ≤
C√
k + 1

ω

(
1

k + 1

)
.

The sequence {ck}∞k=0 represents the Fourier coefficients of a function f ∈
Aω,0(D) with respect to the orthonormal system {ϕk}∞k=0 if and only if

lim
k→∞

|ck|
√

k + 1
ω( 1

k+1 )
= 0 .

This theorem is equivalent to Theorem 7.11 for Cω(T). Based on the prop-
erties of the coefficients ck(f) = 〈f, ϕk〉, the above theorem allows us to decide
whether f belongs to Aω(D) or Aω,0(D). Note that without the requirement
that ω is regular, this will not be possible. Based on this characterization of
the functions in Aω,0(D), it can be shown that {ϕk}∞k=0 is a basis in Aω,0(D).
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Theorem 7.16. Let ω be a regular majorant, then the sequence Φ = {ϕk}∞k=0

is a (Schauder) basis for the space Aω,0(D), i.e. for all f ∈ Aω,0(D) holds

limN→∞
∥∥f −

∑N
k=0 ck(f)ϕk

∥∥
Aω(D)

= 0

with ck(f) = 〈f, ϕk〉, and the representation

f(z) =
∑∞

k=0 ck(f)ϕk(z) , z ∈ D

of f in the basis Φ is unique.

Remark 7.17. By a simple normalization ϕ̃k :=
√

k + 1 ϕk, it can be achieved
that all ϕ̃k are uniformly bounded by a common constant ‖ϕ̃k‖∞ ≤ C for all
k. Then {ϕ̃k}∞k=0 is said to be a uniformly stable basis in Aω,0(D). Such bases
are considered in more detail in the next chapter.

7.4 Uniformly Stable Basis Representations

We saw in Section 7.1 that there exists bases Φ = {ϕk}∞k=1 in A(D) such that
the partial sums

∑N
k=1 〈f, ϕk〉ϕk converges uniformly to f for all f ∈ A(D).

Since Φ is a basis in A(D), it is clear that ϕk ∈ A(D) for all k and consequently
that ‖ϕk‖∞ < ∞ for all basis functions ϕk. Thus, the stability norm of all
individual filters ϕk is bounded such that every ϕk represents the transfer
function of a causal and stable filter by itself. Next, we ask whether or not it
is possible to upper bound the stability norm of the individual filters ϕk by
a universal constant C0, i.e. does there exists a constant C0 < ∞ such that
‖ϕk‖∞ ≤ C0 for all k ∈ N? If such a constant C0 exists, we will speak of a
uniformly stable basis Φ. However, the next theorem shows that there exists
no uniformly stable basis in A(D).

Theorem 7.18. Let Φ = {ϕk}k∈N be a system of orthogonal functions in
A(D) and assume that there exists a constant C0 < ∞ such that ‖ϕk‖∞ ≤ C0

for all k ∈ N. Then there always exists a function f ∈ A(D) such that

lim supN→∞
∥∥f −

∑N
k=0 〈f, ϕk〉ϕk

∥∥
∞ = ∞ . (7.29)

Thus, if the elements of the orthonormal system Φ are uniformly bounded
then Φ can not be a basis in A(D) since the above theorem shows that there
always exists an f ∈ A(D) such that its generalized Fourier series (with respect
to Φ) does not converge to f in A(D).

Proof. Let Φ = {ϕk}∞k=1 be a fixed orthogonal system in A(D) and consider
the partial sum (7.9) of an arbitrary function f ∈ A(D) in its integral repre-
sentation (7.14) with the kernel (7.15). For a fixed z ∈ D, the approximation
operator AN defines a linear functional on A(D) with norm given by
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sup‖f‖∞≤1 |(ANf)(z)| = ‖KN (·, z)‖A(D)∗ (7.30)

and wherein A(D)∗ is the dual space of the disk algebra A(D).
Now a result of Bourgain [24, Theorem in Section 0] is used. It states that

for a fixed N ∈ N there exists a ẑ ∈ D such that

1
N

∑N
n=1 ‖Kn(·, ẑ)‖A(D)∗ > c(C0) log N .

with a constant c(C0) which depends only on the upper bound C0 of the
stability norms of the basis functions ϕk. It follows that for every N ∈ N

there exists an n such that

‖Kn(·, ẑ)‖A(D)∗ > c(C0) log N .

Using (7.30), it follows that there exists an f∗ ∈ A(D) with ‖f∗‖∞ ≤ 1 such
that

max
1≤n≤N

‖Anf∗‖∞ > c(C0) log N . (7.31)

Let {εn}n∈N be a monotone decreasing sequence with limn→∞ εn = 0 and
limn→∞ εn log n = ∞. Then (7.31) shows that

lim sup
N→∞

1
εN log N

max
1≤n≤N

‖Anf∗‖∞ = ∞ (7.32)

and in particular that ‖ANf∗‖∞ → ∞ as N → ∞.
Since ‖f∗ − ANf∗‖∞ ≥ | ‖ANf∗‖∞ − ‖f∗‖∞ | and because ‖f∗‖∞ ≤ 1, it fol-
lows from (7.32) that f∗ satiesfies (7.29). �

The previous theorem proved that there exists no uniformly stable basis
in A(D). However, if subsets of A(D) are considered, a uniformly stable basis
may exist. As an example, we consider again bases in the space Aω(D) of
analytic functions in D of which the modulus of continuity is upper bounded
by a regular majorant ω. For this subset the following result is obtained.

Theorem 7.19. Consider the orthonormal system Φ = {ϕk(z) = zk}∞k=0 in
A(D) and let ω be a regular majorant. Then

limN→∞
∥∥f −

∑N
k=0 〈f, ϕk〉ϕk

∥∥
∞ = 0 for all f ∈ Aω,0(D) .

It is clear that the basis functions ϕk(z) = zk in this theorem are uniformly
bounded by ‖ϕk‖∞ ≤ 1 for all k and the above theorem shows that every
sufficiently smooth function in A(D) can be approximated arbitrary well (with
respect to the stability norm ‖ · ‖∞) in this system Φ of orthogonal functions.
However, Φ is not a basis of A(D).

A proof of this result for the special case of Hölder continuous functions,
i.e. for majorants of the form w(τ) = τα with 0 < α < 1 can be found in [92,
Chapter II, Sect. 10]. The extension to regular majorants is merely a technical
exercise. Therefore the proof of Theorem 7.19 is left out.
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Notes

Textbooks related to this section include [5, 90, 91, 92]. The proofs in Sec-
tion 7.3 and 7.4 use mainly ideas from Wojtaszczyk’s book [90]. The existence
of a basis in the disk algebra was first shown by Bockarev [23]. The classical
references to the Faber-Schauder and Franklin system, used extensive in this
chapter, are [36, 79] and [39], respectively. The interest of the authors [9, 18]
for this topic was inspired by some works of Akcay e.g. [2, 3].
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Causal Approximations

The previous chapter considered the approximation of causal transfer func-
tions in bases of the disk algebra in the form (7.1). There, it was important
that the coefficients ηk = ck(f) depend only on the given function f which
should be approximated, but not on the approximation degree N .

The present chapter considers the causal approximations of causal transfer
functions by means of a sequence {ϕk}∞k=1 of the form

(ANf)(z) =
∑N

n=1 cn,N (f)ϕn(z) , z ∈ D (8.1)

with certain numbers cn,N (f) which are uniquely determined by the given
function f . In contrast to a basis expansion, the coefficients cn,N depend now,
in general, on the approximation degree N . Thus, the approximation method
(8.1) is more general than the basis expansion. However, we still will require
that the coefficient functionals depend linearly on the given function f .

In Section 7.1, it was shown that there exist bases in the disk algebra A(D),
which implies of course, that there exist sequences Φ = {ϕn}∞n=1 in A(D) such
that the approximation (8.1) converges uniformly to f for all f ∈ A(D).
However, it was shown in Section 7.2 that there exists no disk algebra basis
which is robust against errors in the given data f . In this section, we want
to investigate whether the more general approximation method (8.1) allows a
robust approximation of functions in A(D). We require that the approximation
method (8.1) has the following three natural properties.

(A) Robustness: The approximation error ‖g − ANg‖∞ should decrease as
the approximation degree N increases, and supN∈N ‖ANg‖∞ ought to be
bounded for all g ∈ C(T).

(B) Causality : The approximation ANf should represent a causal transfer
function. This is certainly achieved if all individual transfer functions ϕn

are causal.
(C) Linearity : The calculation of the coefficients cn(f,N) should be sufficiently

simple. Therefore, we require that the coefficients depend linearly on f .

V. Pohl, H. Boche, Advanced Topics in System and Signal Theory, Foundations
in Signal Processing, Communications and Networking 4,
DOI 10.1007/978-3-642-03639-2_8, c© Springer-Verlag Berlin Heidelberg 2009
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Since the functions f are assumed to be continuous, the Riesz representa-
tion theorem (see e.g. [70]) implies that the coefficient functionals cn have
the following general form

cn(f,N) =
1
2π

∫ π

−π

f(eiθ) dμn,N (eiθ) (8.2)

with unique Borel measures μn,N which depend on the approximation
degree N , in general. We will distinguish between two cases. In the first
place, it is assumed that all measures μn,N are absolute continuous (with
respect to the Lebesgue measure on T). In this case, there exist functions
γn,N ∈ L1 such that the coefficient functionals (8.2) can be written as
cn(f,N) = 1

2π

∫ π

−π
f(eiθ) γn,N (eiθ) dθ. This case is of interest for filterbank

and wavelet applications. There, the two systems of functions {ϕ}∞n=1

and {γ}∞n=1 are biorthonormal to each other and they are usually called
synthesis and analysis filterbank, respectively.
Secondly, we consider the case where the measures μn,N are concentrated
on finite sets Tn,N = {eiθ1(n,N), eiθ2(n,N), · · · , eiθM (n,N)} of discrete points
on the unit circle. This is certainly the practically relevant case since in
applications the function f is only known at discrete points (samples)
and the calculation of the coefficients cn(f,N) has to be based on these
samples only.

Of course, for any causal approximation AN in A(D), one wants to have that

lim
N→∞

‖f − ANf‖∞ = 0 for all f ∈ A(D) . (8.3)

Thus, it should be possible to approximate every causal function f arbitrarily
close by ANf . A necessary condition for (8.3) to hold is the following property
of the approximation method.

Definition 8.1 (M–property). We say that an approximation method AN

possesses the M–property if for all polynomials of the form pm(z) = zm holds

lim
N→∞

‖pm − AN pm‖∞ = 0 for all m = 0, 1, 2, . . . .

In the following, we only require that the approximation methods possess
this M–property but we do not require explicitly (8.3). Thus the class of ap-
proximation methods under consideration is somewhat larger than necessary.
Nevertheless, we are going to show that even in this larger class there exists
no approximation operator on A(D) which possesses all three properties (A),
(B), and (C). Consequently, there is also no robust, causal, and linear approx-
imation method of the form (8.1) which satisfies (8.3). Before we are going to
prove this, we show that there exists approximation methods with only two
out of the three properties (A), (B), (C).
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8.1 Non-linear and Causal Approximations

For f ∈ C(T), we look for a causal and stable transfer function g ∈ H∞

which approximates f as closely as possible. Moreover, if we require that the
approximative transfer function g is also continuous, we have to look for an
optimal g in the disk algebra A(D). It is known [41] that

E[f,A(D)] = inf
g∈A(D)

‖f − g‖∞ = inf
g∈H∞

‖f − g‖∞ = E[f,H∞]

in which E[f,A(D)] and E[f,H∞] are called the best approximation of f in
A(D) and H∞, respectively [92]. Thus, the best approximation is equal in
A(D) and H∞, which means that the residual approximation error ‖f − g‖∞
coincides in both spaces. However, it was shown in Chapter 6 that A(D) is
not complemented in C(T) (cf. Theorem 6.14). This implies that the optimal
g, for which the best approximation is attained, belongs only to H∞ but not
to A(D), in general. Thus, to every f ∈ C(T) there exists a unique function
gopt ∈ H∞ such that

E[f,A(D)] = E[f,H∞] = ‖f − gopt‖∞ .

But this gopt is not a continuous function on T, in general. To ascertain that
the best causal approximation gopt is again continuous on T, one has to con-
sider the approximation problem on subspaces of C(T). For example, it follows
from Theorem 6.16 that A(D) is complemented in the space of smooth func-
tions Cω(T) if ω is a regular majorant. Consequently, if f is assumed to belong
to Cω(T), the best causal approximation gopt will belong to A(D) (actually, it
even belongs to Aω(D)).

In the following, we proceed from the assumption that the given function f
belongs to such a subset of Cω(T) ⊂ C(T) for which the optimal approximation
gopt belongs to A(D). How does gopt depend on the given f and does there
exist a linear mapping Mopt

+ : f �→ gopt which gives to every f ∈ Cω(T)
the optimal approximation gopt ∈ A(D)? The general relation between f and
gopt is quite complicated. However, it is known [41, Section IV] that to every
f ∈ C(T) ⊂ L∞ there exists an F ∈ H1

0 such that f − gopt = E[f,A(D)] F
|F | .

Consequently, the causal and stable transfer function, which approximates the
given f best, can be written as

gopt = Mopt
+ f = f − E[f,A(D))] e−i arg(F )

with a certain function F ∈ H1
0 . This last relation shows that 1) Mopt

+ f = f

whenever f ∈ A(D) and 2) that the mapping Mopt
+ is non-linear, in general.

Similarly, one can consider the approximation of f ∈ C(T) by polynomials
of a certain maximal degree N . Then the best approximation by a (causal)
polynomial in PN is given by

E+[f,N ] = inf
p∈PN

‖f − p‖∞ = ‖f − popt
N ‖∞ (8.4)
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where the best approximation E+[f,N ] is always attained by a polynomial
popt

N ∈ PN . The mapping Mopt
+,N : f �→ popt

N is unique but again Mopt
+,N is a

non-linear operator, in general. We summarize this without a formal proof in
the following lemma.

Lemma 8.2. There exists an approximation method Mopt
+,N : C(T) → PN

which maps every f ∈ C(T) onto a unique causal polynomial popt
N ∈ PN which

satisfies (8.4). This method has the properties (A) and (B) but it is non-linear.

Consequently, there exist non-linear approximation methods which have
the desired properties (A) and (B). In particular it holds for the FIR approx-
imation (8.4) that the residual approximation error decreases with increasing
approximation degree N and that limN→∞ E+[f,N ] = E[f,A(D)]. However,
we note again that the optimal causal polynomial approximation popt

N only
converges to a function gopt ∈ H∞ as N → ∞, in general.

8.2 Non-causal, Linear Approximations

Next we consider linear approximations of the form

(A(w)
N f)(z) =

∑N
n=−N w(n/N) f̂(n) zn , z ∈ D (8.5)

where f̂(n) are the usual Fourier coefficients (2.1) of f , and w(x) is a window
function defined for −1 ≤ x ≤ 1 and with w(x) = 0 for all |x| > 1. Since the
above approximation A

(w)
N f contains non-zero negative Fourier coefficients, it

is clear that this approximation is non-causal. It is obvious that the coefficients
cn(f,N) = w(n/N) f̂(n) depend linearly on f . Therefore, the approximation
(8.5) has property (C).

As discussed in Section 2.1, there exist several window functions w such
that A

(w)
N f converges uniformly to f as N → ∞ for all z ∈ D, i.e. there exists

windows such that limN→∞ ‖f −A
(w)
N f‖∞ = 0 for all f ∈ C(T). Examples are

the Fejér or the de la Vallée-Poussin window. This shows that the approxi-
mation method (8.5) also possesses property (A). We summarize this in the
following lemma.

Lemma 8.3. There exist approximation methods A
(w)
N : C(T) → A(D) which

are stable (A) and linear (C) but which are non-causal.

Given an approximation method (8.5) with property (A) and (C), it seems
to be reasonable to cut off the non-causal part of the series to obtain a method
which also has property (B) (i.e. causality). However, if this is done, the
approximation series will no longer be stable. This is shown in the next section.
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8.3 Behavior of Causal Approximations

This section investigates approximation methods of the form (8.1) with prop-
erties (B) and (C). Thus, we assume that the functions {ϕn}∞n=1 in (8.1) rep-
resent the transfer functions of causal and stable linear systems (ϕn ∈ A(D)
for all n ∈ N) and that the coefficients cn(f,N) are of the form (8.2). More-
over, if not mentioned otherwise, it is always assume that the approximation
methods (8.1) have the M–property defined Def. 8.1.

Absolute continuous measures

In the first part of this section, we investigate the case that all measures
μn,N in the coefficient functionals (8.2) are absolute continuous. Then, by the
Radon-Nikodym theorem, the coefficients cn(f,N) can always be written as

cn(f,N) =
1
2π

∫ π

−π

f(eiθ) γn,N (eiθ) dθ . (8.6)

with functions γn,N ∈ L1 which are uniquely defined by the measures μn,N .
If these coefficients are plugged into the definition (8.1) of the approximation
operator, an integral representation of AN is obtained:

(ANf)(z) =
1
2π

∫ π

−π

f(eiθ)KN (eiθ, z) dθ , z ∈ D (8.7)

with the reproducing kernel

KN (eiθ, z) =
N∑

n=1

ϕn(z) γn(eiθ) . (8.8)

Example 8.4. Approximation methods with coefficients of the form (8.6) and
with property (B) and (C), can easily be derived from the non-causal linear
approximation methods considered in Section 8.2, simply by truncating the
anti-causal part in these series (8.5). As a concrete example, we consider the
causal Fejér means: Let the basis function ϕk and the functions γn,N in the
coefficient functionals (8.6) be given by

ϕn(z) = zn and γn,N (eiθ) = (1 − n
N ) einθ

respectively, for n = 0, 1, 2, . . . , N − 1. It is clear that all ϕk ∈ A(D) and all
γn,N ∈ L1. Therewith, the integral representation (8.7) of the approximation
operator has the kernel

KN (eiθ, z) =
∑N−1

n=0

(
1 − n

N

) (
z e−iθ

)n
.

Since A(D) ⊂ C(T), it is clear from the behavior of the non-causal Fejér mean
as discussed in Section 8.2 that limN→∞ ‖f − ANf‖∞ = 0 for all f ∈ A(D).
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This shows in particular that this approximation method has property M .
Thus, the causal Fejér mean is a perfect approximation method for all f ∈
A(D). However, in order that AN also has property (A) (i.e. stability) this
should hold for all f ∈ C(T).

By the above definition of the approximation method, it possesses the
property (B) and (C) and it remains to investigate whether this method has
also property (A), i.e. whether it is robust. To do this, we follow the approach
of Section 7.2 and investigate the Lebesgue constant of the approximation
method AN . The question is whether supN∈N ‖ANf‖∞ < ∞ for all f ∈ C(T).
By the uniform boundedness principle (Theorem of Banach-Steinhaus) this
will be satisfied if and only if the operators AN : C(T) → A(D) are uniformly
bounded (see e.g. [70]), i.e. if there exists a constant C < ∞ such that

‖AN‖C(T)→A(D) = sup
f∈C(T)
‖f‖∞≤1

‖ANf‖∞ ≤ C for all N ∈ N .

As in the case of the basis expansion (cf. Proposition 7.6), the norm of the
approximation operators AN : C(T) → A(D) is equal to its Lebesgue constant:

‖AN‖C(T)→A(D) = sup
|z|<1

( 1
2π

∫ π

−π

|KN (eiθ, z)|dθ

︸ ︷︷ ︸
=:LN (z)

)
= sup

|z|<1

LN (z) . (8.9)

In order to decide whether the approximation method AN : C(T) → A(D)
is robust, we investigate the uniform boundedness of the Lebesgue constant.
As a preparation, we give an auxiliary proposition on a relation between the
Fourier coefficients ϕ̂n(k) of the basis functions ϕn and the Fourier coefficients
γ̂n,N (k) of the functions γn,N in the coefficient functionals (8.6). This relation
is a direct consequence of the required property M of the approximation
method, and will be needed for the proof of Theorem 8.7 below.

Proposition 8.5. Let AN be an approximation method of the form (8.1) with
ϕn ∈ A(D) for all n and in which the coefficients cn(f,N) are given by the
functionals (8.6) with γn,N ∈ L1 for all n = 1, 2, . . . , N . If AN has property M,
then it holds that

lim
N→∞

N∑
n=1

ϕ̂n(l) γ̂n,N (m) =
{

1 for l = m
0 for l �= m

. (8.10)

Proof. For a fixed integer m ≥ 0, we consider the approximation (ANpm)(z) =∑N
n=1 cn(pm)ϕn(z) of the polynomial pm(z) = zm. According to (8.6), the

coefficients cn(pm, N) are given by

cn(pm, N) =
1
2π

∫ π

−π

eimθ γn,N (eiθ) dθ = γ̂n,N (m) (8.11)



8.3 Behavior of Causal Approximations 143

where the right hand side is the conjugate complex of the m-th Fourier coeffi-
cient of γn,N . Since all basis functions ϕn belong to A(D), they can be written
as ϕn(z) =

∑∞
l=0 ϕ̂n(l) zl. Using this representation in (8.1) and taking into

account (8.11), one gets

(ANpm)(z) =
N∑

n=1

cn(pm, N)ϕn(z) =
∞∑

l=0

(
N∑

n=1

ϕ̂n(l) γ̂n,N (m)

)
zl .

Since AN possesses the M–property, it holds that limN→∞(ANpm)(z) = zm,
which gives (8.10). �

Example 8.6. Consider the causal Fejér means given in Example 8.4. This ap-
proximation method possesses property M and consequently, it has to satisfy
(8.10). Indeed, it is easy to verify that for this example holds

lim
N→∞

N∑
n=1

ϕ̂n(l) γ̂n,N (m) = lim
N→∞

ϕ̂l(l) γ̂m,N (m) = lim
N→∞

(1 − n
N ) = 1 .

After these preparations, we are able to show that every approximation
method (8.1) with coefficient functionals cn(f,N) of the form (8.6) will be
non-robust against continuous errors in the given data.

Theorem 8.7. For every approximation method AN : C(T) → A(D) of the
form (8.1) with ϕn ∈ A(D) and with coefficients cn(f,N) of the form (8.6)
there exist functions f ∈ C(T) such that supN∈N ‖ANf‖∞ = ∞ and such that
lim supN→∞ ‖f − ANf‖∞ = ∞.

Proof. We have to show that the operator norms ‖AN‖C(T)→A(D) are not uni-
formly bounded. To this end, the Lebesgue constant sup|z|<1 LN (z), with
LN (z) = 1

2π

∫ π

−π
KN (eiθ, z) dθ and with the kernel (8.8) is considered. But

first, the expression

1
2π

∫ π

−π

|LN (ρeiτ )|dτ =
1

4π2

∫ π

−π

∫ π

−π

|KN (eiθ, ρeiτ )|dτ dθ (8.12)

with 0 < ρ < 1 is investigated, where in the last term the order of integra-
tion has been interchanged. First, the inner integral is analysed. Inserting the
expression (8.8) for the kernel and replacing the basis functions by its Taylor
series ϕn(z) =

∑∞
l=0 ϕ̂n(l) zl gives

1
2π

∫ π

−π

|KN (eiθ, ρeiτ )|dτ =
1
2π

∫ π

−π

∣∣∣
∞∑

l=0

[ N∑
n=1

γn,N (eiθ) ϕ̂n(l)
]
ρl eilτ

∣∣∣ dτ .

The integrand of the last expression is an H1-function. Therefore, we can
apply Hardy’s inequality (2.40) and obtain
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1
2π

∫ π

−π

|KN (eiθ, ρeiτ )|dτ ≥ 1
π

∞∑
l=0

ρl

l + 1

∣∣∣
N∑

n=1

γn,N (eiθ) ϕ̂n(l)
∣∣∣ .

Using this result in (8.12) and interchanging integration and summation, one
obtains

1
2π

∫ π

−π

|LN (ρeiτ )|dτ ≥ 1
π

∞∑
l=0

ρl

l + 1
1
2π

∫ π

−π

∣∣∣
N∑

n=1

γn,N (eiθ) ϕ̂n(l) eilθ
∣∣∣ dθ

where we introduced an additional term eilθ in the integrand, which certainly
does not change the value of the integral. Next, the operation of taking the
modulus is pulled out of the integral. In this way, the value of the integration
becomes smaller or remains unchanged. Afterwards, the inner summation is
interchanged with the integration, which finally yields

1
2π

∫ π

−π

|LN (ρeiτ )|dτ ≥ 1
π

∞∑
l=0

ρl

l + 1

∣∣∣∣∣
N∑

n=1

ϕ̂n(l)
1
2π

∫ π

−π

γn,N (eiθ) eilθ dθ

∣∣∣∣∣

=
1
π

∞∑
l=0

ρl

l + 1

∣∣∣∣∣
N∑

n=1

ϕ̂n(l) γ̂n,N (l)

∣∣∣∣∣ .

Now, we take the limit inferior of the last expression and apply Proposition 8.5.
This gives

lim inf
N→∞

1
2π

∫ π

−π

|LN (ρeiτ )|dτ ≥ 1
π

∞∑
l=0

ρl

l + 1
=

1
π ρ

log
1

1 − ρ

for all 0 < ρ < 1. It is clear that

sup
|z|<1

|LN (z)| ≥ sup
|z|<ρ

|LN (z)| ≥ 1
2π

∫ π

−π

|LN (ρeiτ )|dτ . (8.13)

Together with (8.9) one obtains therefore

lim inf
N→∞

‖AN‖C(T)→A(D) = lim inf
N→∞

sup
|z|<1

∣∣∣∣ 1
2π

∫ π

−π

KN (eiθ, z) dθ

∣∣∣∣ = ∞

which shows that the operators AN : C(T) → A(D) are not uniformly
bounded, and by the uniform boundedness principle this implies that
supN∈N ‖ANf‖∞ = ∞ for all f belonging to a dense subset of C(T). �

It follows in particular, that to every such approximation operator AN ,
characterized in Theorem 8.7, there exist continuous functions f ∈ C(T) such
that the approximation error ‖f − ANf‖∞ increases as the approximation
degree N is increased. In conclusion, Theorem 8.7 shows that there exists no
robust, causal and linear approximation method on C(T).
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Discrete measures

As in the previous paragraph, we consider approximation methods (8.1) with
property (B), (C), and with the M–property. But now, it is assumed that
every measure μn,N in the coefficient functionals (8.2) is discrete, i.e. every
μn,N is concentrated on a finite sampling set

Tn,N = {eiθ1(n,N), eiθ2(n,N), · · · , eiθM (n,N)}

of points on the unit circle. Note that both the sampling points θm(n,N)
as well as the number of sampling points M(n,N) may be different for ev-
ery measure μn,N and for different degrees N . With these assumptions, the
coefficient functionals (8.2) become

cn(f,N) =
M(n,N)∑

m=0

f(eiθm(n,N)) νn,N (m) (8.14)

in which νm(n,N) = μn,N (eiθm(n,N)) denotes the measure of the point
eiθm(n,N).

First, we derive a representation of the approximation operator AN which
is similar to the integral representation (8.7) in the case of absolute continuous
measures. To this end, we plug the coefficients (8.14) into the approximation
(8.1). This gives

(ANf)(z) =
N∑

n=1

M(n,N)∑
m=1

f(eiθm(n,N)) νn,N (m)ϕn(z) . (8.15)

In this representation, there may exist sampling points which appear several
times in the above double sum. Thus, there may exist indices m1 �= m2 �=
· · · �= mq and indices n1 �= n2 �= · · · �= nq but such that θm1(n1, N) =
θm2(n2, N) = · · · = θmq

(nq, N) for some q ≥ 1. Of course, also the indi-
vidual measures νn,N (m) are different in this case for different indices, i.e.
νn1,N (m1) �= νn2,N (m2) �= · · · �= νnq,N (mq), in general. For such indices
n,m for which the sampling points θm(n,N) are equal, we define θk(N) :=
θm1(n1, N) = · · · = θmq

(nq, N) in which the index k = 1, 2, · · · ,K(N) num-
bers all distinguished sampling points θk(N), such that now θk1(N) �= θk2(N)
whenever k1 �= k2. Moreover, we define the new kernel functions

κk,N (z) := νn1,N (m1)ϕn1(z) + νn2,N (m2)ϕn2(z) + · · · + νnq,N (mq)ϕnq
(z)

for k = 1, 2, · · · ,K(N). With these kernel functions, the approximation oper-
ator (8.15) can be rewritten with only one summation over all distinguished
sampling points as

(ANf)(z) =
∑K(N)

k=1 f(eiθk(N))κk,N (z) . (8.16)
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Note that the kernel functions κk,N are elements of the disk algebra A(D)
since they are linear combinations of the basis functions ϕn ∈ A(D). More-
over, from (8.16) follows at once that ANf1 = ANf2 for all functions f1 and
f2 which coincide on all sampling points eiθk(N), k = 1, 2, · · · ,K(N). The
representation (8.16) of AN , which is the discrete equivalent of the integral
representation (8.7), will be used subsequently.

Example 8.8. Discrete operators of the form (8.16) arise naturally in practical
applications from the continuous case (8.7), due to the numerical integration of
(8.7) on digital computers. For example, assume that a certain approximation
method of the form (8.7) with a corresponding kernel (8.8) is given (e.g. the
method in Example 8.4). Then, the integral in (8.7) may be approximated
by its Riemann sum at the equidistant sampling points θk(N) := 2πk

2N+1 with
k = 0, 1, 2, · · · , 2N . Therewith, an approximation

(ÃNf)(z) =
1

2N + 1

2N∑
k=0

f(ei 2πk
2N+1 )KN (ei 2πk

2N+1 , z)

of (8.7) is obtained. With κk,N (z) := 1
2N+1 KN (ei 2πk

2N+1 , z), this operator has
exactly the form (8.16). It is clear that by increasing the number of sampling
points, the error due to the numerical integration can be made as small as
desired, and one would expect that if the continuous operator (8.7) converges
to f , than also the discrete operator ÃNf converges to f as N → ∞ (at most
with finite approximation error limN→∞ ‖f − ÃNf‖∞).

As in the case of the absolute continuous measures in the coefficient func-
tionals, we present at the beginning a consequence of the required M–property
of the approximation method AN .

Proposition 8.9. Let AN be a discrete approximation operator of the form
(8.16). If AN satisfies the property M then it holds for the Fourier coefficients
κ̂k,N (l) of the kernel functions in (8.16) that

lim
N→∞

K(N)∑
k=1

κ̂k,N (l) eiθk(N)·m =
{

1 for l = m
0 for l �= m

.

Proof. Since the kernel functions κk,N are elements of A(D), they can be
written as a Taylor series κk,N (z) =

∑∞
l=0 κ̂k,N (l) zl. Now, for a fixed integer

m ≥ 0, we apply (8.16) to the polynomial pm = zm, and replace the kernel
functions κk,N by the corresponding Taylor series. This yields

(ANpm)(z) =
∞∑

l=0

(K(N)∑
k=1

κ̂k,N (l) eiθk(N)·m
)
zl (8.17)

Since AN satisfies the M -property, it holds that limN→∞ ANpm(z) = zm.
Therewith the statement of the proposition follows from (8.17). �
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The following theorem is the discrete equivalent to Theorem 8.7. It will
show that every discrete approximation operator (8.16) with property (B) and
(C) will not be robust, i.e. it will not have property (A).

Theorem 8.10. To every discrete approximation operator AN : C(T) → A(D)
of the form (8.16) there exist functions f ∈ C(T) such that supN∈N ‖ANf‖∞ =
∞ and such that lim supN→∞ ‖f − ANf‖∞ = ∞.

Proof. The operator norm of AN : C(T) → A(D) is given as

‖AN‖C(T)→A(D) = sup
f∈C(T)
‖f‖∞≤1

‖ANf‖∞ = sup
f∈C(T)
‖f‖∞≤1

sup
|z|<1

∣∣∣
K(N)∑
k=1

f(eiθk(N))κk,N (z)
∣∣∣ .

Write the kernel functions as κk,N (z) = |κk,N (z)| ei arg[κk,N (z)] and choose for
an arbitrary z ∈ D the function f ∈ C(T) for which holds that f(eiθk(N)) =
exp(−i arg[κk,N (z)]) and which is continuous between the the sampling points
eiθk(N). For this function holds obviously that f ∈ C(T) and that ‖f‖∞ ≤ 1.
Using this function in the above relation for the operator norm, one sees that

‖AN‖C(T)→A(D) ≥ sup
|z|<1

(K(N)∑
k=1

|κk,N (z)|
)

︸ ︷︷ ︸
=:LN (z)

= sup
|z|<1

LN (z) .

Instead of the infinity norm, we consider first the L1-norm of LN (ρiτ ):

1
2π

∫ π

−π

|LN (ρeiτ )|dτ =
K(N)∑
k=1

1
2π

∫ π

−π

|κk,N (ρeiτ )|dτ .

Since all κk,N belong to the disk algebra, we can apply Hardy’s inequality to
obtain a lower bound on the L1-norm of LN (ρeiτ ) for any fixed 0 < ρ < 1.
This gives

1
2π

∫ π

−π

|LN (ρeiτ )|dτ ≥
K(N)∑
k=1

1
π

∞∑
l=0

ρl

l + 1
|κ̂k,N (l)|

≥ 1
π

∞∑
l=0

ρl

l + 1

∣∣∣
K(N)∑
k=1

κ̂k,N (l) eiθk(l)
∣∣∣ .

To obtain the second line, we first interchanged the order of the summations,
than we insert the term eiθk(l) inside the modulus operation, which does not
change the value of the expression. Finally, the triangle inequality was applied
in reverse direction. Now, we proceed exactly as in the proof of Theorem 8.7.
Applying Proposition 8.9 and using the relation (8.13) one finally obtains
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lim inf
N→∞

‖AN‖C(T)→A(D) ≥ lim inf
N→∞

sup
|z|<1

⎛
⎝K(N)∑

k=1

|κk,N (z)|

⎞
⎠ = ∞ .

Together with the uniform boundedness principle, this proves the theorem.
�

Thus, the discrete operators AN : C(T) → A(D) of the form (8.16) show
the same behavior as the operators (8.7) which correspond to an absolute
continuous measure. In particular, to every discrete operator there exist func-
tions f ∈ C(T) (in fact a whole dense subset of functions in C(T)) such that
the approximation error ‖f − ANf‖∞ tends to infinity as the approximation
degree is increased. However, the discrete approximation operators show an
even worse behavior than the operators of the form (8.7). This is because
in the latter case, there exist approximation methods of the form (8.7) with
property (B) and (C) which are stable as operators from A(D) → A(D). This
means that there exist linear and causal approximation methods AN of the
form (8.7) such that limN→∞ ‖f − ANf‖∞ = 0 for all f ∈ A(D) ⊂ C(T). In
the discrete case however, all approximation operators AN of the form (8.16)
with property (B) and (C) are unstable, even if they are restricted to the
disk algebra A(D). This is a straight forward consequence of the previous re-
sult and of the fact that the approximation operator is defined on a set (the
sampling set) of measure zero.

Corollary 8.11 (Somorjai). For every discrete approximation operator AN :
A(D) → A(D) of the form (8.16) there exist functions f ∈ A(D) such that
supN∈N ‖ANf‖∞ = ∞ and such that lim supN→∞ ‖f − ANf‖∞ = ∞.

Proof (Corollary 8.11). The operators AN are defined only on the sampling
sets TN =

⋃N
n=1 Tn,N . These sets are of (Lebesgue) measure zero and closed.

Moreover, since every function which is defined on a discrete set is continuous
there, we can apply a theorem of Rudin [71], which states that for every
continuous function defined on a compact subset TN ⊂ T of measure zero,
there exists a function F ∈ A(D) with F (z) = f(z) for all z ∈ TN and
with ‖F‖∞ = supz∈TN

|f(z)|. Since f and F coincide on the sampling sets
TN , it holds that ANF = ANf , and consequently ‖ANF‖∞ = ‖ANf‖∞ ≤
‖AN‖A(D)→A(D) ‖F‖∞ = ‖AN‖A(D)→A(D) ‖f‖∞. Therewith, one obtains on
the one hand that

‖AN‖C(T)→A(D) = sup
f∈C(T)
‖f‖≤1

‖ANf‖∞

≤ sup
f∈C(T)
‖f‖≤1

‖AN‖A(D)→A(D)‖f‖∞ = ‖AN‖A(D)→A(D) .

On the other hand, because A(D) ⊂ C(T), it is clear that



8.3 Behavior of Causal Approximations 149

‖AN‖C(T)→A(D) = sup
f∈C(T)
‖f‖≤1

‖ANf‖∞ ≥ sup
f∈A(D)
‖f‖≤1

‖ANf‖∞ = ‖AN‖A(D)→A(D) .

Altogether ‖AN‖A(D)→A(D) = ‖AN‖C(T)→A(D) and the corollary follows from
Theorem 8.10. �

If the previous proof (together with the proofs of Theorem 8.7 and 8.10) is
carefully analyzed, one sees that we even have a lower bound on the maximum
amplitude of the approximation ANf inside the unit disk

lim inf
N→∞

sup
f∈A(D)
‖f‖∞≤1

sup
|z|≤ρ

|(ANf)(z)| ≥ 1
π ρ

log
1

1 − ρ

for all 0 ≤ ρ < 1.
Theorem 8.7 showed that the approximation operators ‖AN‖C(T)→A(D) of

the form (8.7) are always unbounded as N → ∞. However, this does not in
general mean that the operator norms ‖AN‖A(D)→A(D) are also always un-
bounded. Quite the contrary, Example 8.4 for instance gave an example of an
approximation operator for which supN∈N ‖AN‖A(D)→A(D) < ∞.

Corollary 8.11 shows now that in the discrete case also the norms of the
approximation operators AN : A(D) → A(D) are always unbounded. This
means that there exists no discrete linear, causal, and stable approximation
method for all f ∈ A(D) ⊂ C(T).

Note that especially the discrete approximation operators are of practical
importance because even if there exists an approximation method of the form
(8.7) for which supN∈N ‖AN‖A(D)→A(D) is bounded, a numerical integration
method has to be applied to calculate (8.7). If this numerical integration is
done on a digital computer, one ends up with a discrete approximation opera-
tor (cf. Example 8.8) for which supN∈N ‖AN‖A(D)→A(D) is always unbounded,
according to the above corollary.

Finally (and without any proof), we remark that if one requires addition-
ally that for all polynomials p ∈ PM(N) with a degree of at most M(N) the
approximation method is perfect, i.e. if one requires that ANp = p for all
p ∈ PM(N), then one can even derive a lower bound on the growth behavior
of the operator norms [22], namely that

‖AN‖A(D)→A(D) ≥ 1
π log M(N) .

Theorems 8.7 and 8.10 show that one cannot have all three desired prop-
erties (robustness, causality, and linearity) for the approximation methods
(8.1). However, the discussions in Section 8.1 show that there always exist ro-
bust and causal, but non linear approximation methods, whereas Section 8.2
showed that one can always have linear, and causal, but non robust methods.
We summarize this observation by the following corollary.
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Corollary 8.12. There exists no linear, causal, and robust approximation
method of the form (8.1) and with coefficients of the form (8.2). If one of
the three constraints is relaxed, an approximation method with the remaining
two properties always exits.

8.4 Causal Approximations for Smooth Functions

It was shown in the last section that for all linear and causal approximation
methods AN : C(T) → A(D) of the form (8.1) there exist continuous functions
g ∈ C(T) such that supN∈N ‖ANg‖∞ = ∞. This implies that the approxi-
mation operator is not robust against errors in the given data. To see this,
assume that f ∈ A(D) is a causal function which should be approximated
as ANf . However, due to disturbances only f̃ = f + g with a disturbance
g ∈ C(T) is known. Therefore, the approximation error ‖AN f̃ − f‖∞ is lower
bounded by (7.12) which shows that the approximation error may become
infinite due to the first term on the right hand side of (7.12). This implies in
particular that the approximation error cannot be controlled by the size of
the disturbance ‖g‖∞. Even for very small values of ‖g‖∞, the term ‖ANg‖∞
may get arbitrarily large.

To ensure that the error term ‖ANg‖∞ remains bounded, the disturbance
g has to be from a subset of C(T). The following result shows that under the
assumption g ∈ Cω(T) with a regular majorant ω, the error ‖ANg‖∞ remains
always bounded for every linear and causal approximation operator.

Theorem 8.13. Let ω be a regular majorant. Then there exist approximation
methods AN : Cω(T) → Aω(D) of the form (8.2) with property (B) and (C)
such that

‖AN g‖∞ ≤ ‖AN g‖Cω(T) < ∞ for all g ∈ Cω(T) .

Proof. Let g ∈ Cω(T) and consider the non-causal approximation gN in terms
of the Fejér means (cf. Section 2.1.2) given by

gN (eiθ) = (FNg)(eiθ) =
1
2π

∫ π

−π

g(ei(θ−τ))FN (τ) dτ

where FN is the Fejér kernel defined in (2.16). Using that FN is an approxi-
mate identity (Prop. 2.3) it follows for arbitrary θ1, θ2 ∈ [−π, π) that

|gN (eiθ1) − gN (eiθ2)| ≤ 1
2π

∫ π

−π

|g(ei(θ1−τ)) − g(ei(θ2−τ))| FN (τ) dτ

≤ ‖g‖Cω(T) ω(|θ1 − θ2|) .

This shows that ‖FNg‖Cω(T) ≤ ‖g‖Cω(T) for every g ∈ Cω(T). Next, we consider
the causal operator defined by
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(ANg)(eiθ) = (P+ FN g)(eiθ) , θ ∈ [−π, π)

with the Riesz projection P+. Using Theorem 6.16 on the boundedness of the
Riesz projection on Cω(T), one obtains

‖ANg‖Cω(T) ≤ ‖P+‖Cω(T)→Cω(T) ‖FNg‖Cω(T) ≤ C(ω)‖g‖Cω(T)

with a certain constant C(ω), dependent only on the majorant ω. Since Cω(T)
is continuously embedded in C(T), one has therefore ‖ANg‖∞ < ∞ for all
g ∈ Cω(T). By the construction of AN , it has obviously properties (B) and
(C) as well as the M–property. �

Note that by the properties of the Fejér means, the approximation operator
AN used in the previous proof satisfies also (8.3). Thus there exist linear
and causal approximation methods which are robust with respect to smooth
functions in Cω(T) with a regular majorant ω.

Notes

Some of the results of this section can also be found in in the book of Part-
ington [64]. Corollary 8.11 is due to Somorjai [82].
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On Algorithms for Calculating the Hilbert
Transform

Corollary 8.11 of the previous chapter shows that there exists no robust lin-
ear approximation method for causal and stable transfer functions f ∈ A(D)
which are defined only on a finite set of discrete sampling points. It was dis-
cussed that these convergence problems of the approximation methods are a
consequence of the fact that the approximation operator is only defined on
a finite, discrete sampling set. However, the sampling of the given data is
essential in practical applications, since nowadays numerical calculations are
(almost) exclusively carried out on digital computers and such digital com-
puters can process only a finite number of input data. For these reasons, the
present chapter will discuss the consequences of the sampling of the given data
for the behavior of certain numerical algorithms, a little bit more. Thereby,
we will mainly focus on the calculation of the Hilbert transform from sampled
data. However, these results carry over directly to algorithms for the calcula-
tion of the spectral factorization, Wiener filter or any other algorithm which
involves explicitly or implicitly the determination of the algebraic conjugate
of a given function.

Thus, we investigate algorithms which determine the Hilbert transform
f̃ = Hf of a function f given on the unit circle1. Since both f and f̃ are defined
only on T, we will write f(θ) instead of f(eiθ) with θ ∈ [−π, π], throughout this
chapter, to simplify the notations. Moreover, T will now stand for the interval
[−π, π) of the real axis R and C(T) denotes the set of all continuous functions
f on T with f(−π) = f(π) or equivalently for all continuous, 2π-periodic
functions on R.

We consider linear operators T which determine an approximation of the
Hilbert transform f̃ = Hf from the values f(τk) of the given function f on a
finite set S = {τk ∈ T : k = 1, 2, · · · , N} of sampling points τk, only. Denote
by TN such a linear operator which approximates the Hilbert transform based
on a sampling set S of cardinality N . Then we say that a sequence {TN}N∈N of
such operators approximates the conjugate function f̃ of f ∈ C(T) arbitrarily

1 See Section 5.3 for the definition of the Hilbert transform.

V. Pohl, H. Boche, Advanced Topics in System and Signal Theory, Foundations
in Signal Processing, Communications and Networking 4,
DOI 10.1007/978-3-642-03639-2_9, c© Springer-Verlag Berlin Heidelberg 2009
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well (in the norm of C(T)), if

lim
N→∞

∥∥f̃ − TNf
∥∥
∞ = 0 .

In the following it is assumed that the operators T have the following two
natural properties.

Definition 9.1 (Property I). We say that an operator T has the property I
if it is linear, i.e.

T(f1 + f2) = Tf1 + Tf2 and T(λf) = λT(f)

for all λ ∈ C, and if T is concentrated on the set S of sampling points, i.e.
if two functions f1 and f2 coincide on the sampling point f1(τk) = f2(τk) for
all τk ∈ S then (Tf1)(t) = (Tf2)(t) for all t ∈ T.

This property requires the linearity of the operator T and the concentra-
tion of the operator on the finite set S, i.e. if two functions f1 and f2 coincide
on the sampling set S, the operator T will give the same result for both func-
tions. It is immediately clear that all practical algorithms for the calculation
of the conjugate function f̃ from f which can be implemented on a digital
computer, have to satisfy this property since generally only a finite number of
values can be taken into account during the calculation on such a computer.
Therefore, this property is practically no limitation on the linear operators
under consideration.

Example 9.2. The conjugate Shannon sampling series, given by

(SNf)(t) =
1

2N + 1

2N∑
k=0

f( 2πk
2N+1 )

cos 2N+1
2 (t − 2πk

2N+1 ) − cos 1
2 (t − 2πk

2N+1 )

sin 1
2 (t − 2πk

2N+1 )

is one example of such an operator. It calculates an approximation of the
conjugate function f̃ based on the function f given only at the points of the
sampling set S = {τk = 2πk/(2N + 1) : k = 0, 1, . . . , 2N}.

Example 5.9 shows that there exist continuous functions f ∈ C(T) such
that the conjugate f̃ = Hf is not continuous on T. For this reason, it cannot be
expected that a linear operator T approximates the Hilbert transform of such
functions arbitrary well, in general. Therefore the operators T are considered
only on the set B of all continuous functions which have a continuous Hilbert
transform:

B :=
{
f ∈ C(T) : f̃ = Hf ∈ C(T)

}
The norm in B is defined by ‖f‖B := max(‖f‖∞, ‖f̃‖∞). Thus, the Hilbert
transform H maps every function f ∈ B onto the continuous function f̃ = Hf
which shows that H : B → C(T) is a continuous mapping with ‖H‖B→C(T) ≤ 1.
Note, that if a function f ∈ B is approximated by a trigonometric polynomial
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PNf of degree N , then the Hilbert transform P̃Nf of this trigonometric poly-
nomial is an approximation of the conjugate function f̃ . This property of the
set B is used later.

Thus we consider operators T : B → C(T) with property I and which map
every function f ∈ B to a continuous function Tf ∈ C(T). The corresponding
operator norm is defined, as usual, by

‖T‖B→C(T) := sup
f∈B

‖Tf‖∞
‖f‖B

.

In particular sequences {TN}∞N=1 of such linear operators are considered. For
these sequences of operators, we will require the following property II.

Definition 9.3 (Property II). We say that a sequence {TN}∞N=1 of linear
operators has the property II if there exists a dense subsets M ⊂ B such that

lim
N→∞

∥∥f̃ − TNf
∥∥
∞ = 0 , for all f ∈ M .

This property requires the desired approximation behavior of the sequence
of operators for a dense subset of B. Clearly, this is no restriction on the
operators since this behavior should hold for the whole set B and therefore
also at least for a dense subset.

Example 9.4. Let f ∈ C(T) and let

(VNf)(t) =
2

2N + 1

2N∑
k=0

f
(

2πk
2N+1

)
VN

(
t − 2πk

2N+1

)

with the de la Vallée-Poussin kernel VN given in (2.25), be the de la Vallée-
Poussin series of f . Then ṼNf := H(VNf) = ṼNf defines an operator
sequence {ṼN}∞N=1, in which every single operator ṼN has property I. More-
over, if PN denotes the set of all trigonometric polynomials with a degree of
at most N , then it holds ṼNf = f̃ for all f ∈ PN/2. This shows that this
sequence has also property II since it approximates the conjugate function f̃
arbitrarily well for every polynomial in B, and since this set of polynomials is
a dense subset of B.

Example 9.5. Let ϕN (τ) := max(1 − N |τ |
π , 0) and define by

(LNf)(t) :=
2N∑
k=0

f( 2πk
2N+1 )ϕN (t − 2πk

2N+1 ) (9.1)

an operator which linearly interpolates the function f between the sampling
points {(2πk)/(2N + 1)}2N

k=0. It is clear that the Hilbert transform of LNf
always exists. Therefore,
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L̃Nf := H(LNf) = L̃Nf

defines a sequence of linear operators with property I. To show that this
operator sequence has also property II is more complicated to show. This will
be done later.

Continuous functions

First we investigate whether it is always possible to calculate the conjugate
function f̃ arbitrarily well for all f ∈ B from a finite set of sampled values
{f(τk)}N

k=1 by a linear method. That this is actually not possible is a direct
consequence of the following theorem.

Theorem 9.6. Let {TN}N∈N
be a sequence of operators with property I and

II, then the set of all f ∈ B for which

lim sup
N→∞

‖TNf‖∞ = ∞

is of second category (a non-meager set) and dense in B.

Thus even though the sequence {TN}N∈N
approximates the conjugate

function for a dense subset of B (as assumed by property II), it fails to con-
verge for all functions f in another dense subset B. Two direct consequences of
this result with respect to the operator norms of {TN} and the approximation
behavior of the conjugate function are formulated in the next two corollaries.

Corollary 9.7. Let {TN}N∈N
be a sequence of operators with property I and

II. Then limN→∞ ‖TN‖B→C(T) = ∞.

Corollary 9.8. Let {TN}N∈N
be a sequence of operators with property I. Then

there exists a dense subset E of B such that

lim sup
N→∞

∥∥f̃ − TNf
∥∥
∞ > 0

for all f ∈ E.

Now we prove the above results. To this end, the following auxiliary lemma
is needed. It shows that to every continuous function f there exists a function
ϕ ∈ B such that f and ϕ coincide at the finite sampling set S and such that
the norm of ϕ is at most twice the norm of f .

Lemma 9.9. Let {τk}N
k=1 be an arbitrary finite set of sampling points in T.

Then to every function f ∈ C(T) there exists a function ϕ ∈ B such that
ϕ(τk) = f(τk) for all k = 1, 2, . . . , N and with ‖ϕ‖B ≤ 2 ‖f‖∞.

The main problem in finding such a function ϕ is that not only the behavior
of ϕ but also the behavior of the conjugate ϕ̃ has to be controlled so that ‖ϕ‖B
does not become larger than 2‖f‖∞.
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Proof. For a given function f ∈ C(T), we construct an fη0 ∈ B which satisfies
the lemma. For an arbitrary 0 < η ≤ 1 consider the function

gη(τ) = max
(
1 − |τ |

η π , 0
)

, τ ∈ [−π, π) .

This function can also be written as a Fourier series

gη(τ) = a0(η)
2 +

∑∞
k=1 ak(η) cos(kτ)

with a0 = η and

ak(η) = 2
ηπ2k2 [1 − cos(ηkπ)] , k = 1, 2, . . . .

Note that all Fourier coefficients ak(η) are non-negative. Moreover, it holds
that ‖gη‖�1 = 1 because

∥∥gη

∥∥
�1

= a0/2 +
∑

k>1 |ak(η)| = gη(0) = 1, using
that all ak are non-negative. The conjugate function g̃η is then

g̃η(τ) =
∑∞

k=1 ak(η) sin(kτ) .

It follows that

|g̃η(τ)| ≤
∑∞

k=1 |ak(η)| = 1 − η (9.2)

for all τ ∈ [−π, π), where the last inequality follows from ‖gη‖�1 = 1.
Consider now the function fη(τ) =

∑N
k=1 f(τk) gη(τ − τk) with the corre-

sponding conjugate function given by

f̃η(τ) =
∑N

k=1 f(τk) g̃η(τ − τk) . (9.3)

It is clear that for sufficiently small η (η π ≤ mink |τk+1 − τk|) it can be
achieved that ‖fη‖∞ ≤ ‖f‖∞. Since gη(τ) is zero for |τ | ≥ ηπ, the conjugate
functions g̃η can be written as

g̃η(τ) =
1
2π

∫ ηπ

−ηπ

gη(s) tan−1
(

s−τ
2

)
ds

provided that |τ | ≥ η π. A straight forward calculation gives

|g̃η(τ)| ≤ 1
2π

∫ ηπ

−ηπ

ds

tan
(

|τ |−s
2

) =
1
π

log
sin
(

|τ |+ηπ
2

)

sin
(

|τ |−ηπ
2

)

for all τ with |τ | ≥ η π, where the first inequality follows from ‖g̃η‖∞ ≤ 1 by
(9.2). From this, it becomes clear that for a fixed δ > η π and for an arbitrary
ε > 0 there exists an η0 = η(ε, δ) such that

|g̃η0(τ)| < ε/N (9.4)
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for all δ ≤ |τ | ≤ π and all 0 < η ≤ η0. Now choose δ0 such that for all k �= l

[τk − δ0, τk + δ0] ∩ [τl − δ0, τl + δ0] = ∅. (9.5)

For this δ0 and an arbitrary ε > 0 choose η0 = η(ε, δ0) such that (9.4) holds.
Finally, we consider

∣∣fη0(τ)
∣∣ and

∣∣f̃η0(τ)
∣∣ at an arbitrary τ ∈ [−π, π).

Because of (9.5), there exists at most one τk such that τ ∈ [τk − δ0, τk + δ0],
and from (9.3) follows

∣∣f̃η0(τ)
∣∣ ≤ ‖f‖∞

∑N
k=1 |g̃η0(τ − τk)| (9.6)

and a similar inequality holds also for |fη0(τ)|. From the inequality for |fη0(τ)|
follows at once that ‖fη0‖∞ ≤ ‖f‖∞, but for

∣∣f̃η0(τ)
∣∣ we have to distinguish

two cases: First τ ∈ [τl − δ0, τl + δ0] for a certain l. Then (9.6) becomes

∣∣f̃η0(τ)
∣∣ ≤ ‖f‖∞

( N∑
k=1,k �=l

|g̃η0(τ − τk)| + |g̃η0(τ − τl)|
)

≤ ‖f‖∞
[

ε
N (N − 1) + 1 − η0

]
≤ 2 ‖f‖∞

using (9.2) and (9.4). In the second case, τ /∈ [τl − δ0, τl + δ0] for every l =
1, 2, . . . , N . Then (9.6) together with (9.4) show that

∣∣f̃η0(τ)
∣∣ ≤ ε ‖f‖∞. This

proves that ‖f̃η0‖∞ ≤ 2 ‖f‖∞ and gives the statement of the lemma. �

With these preparations we prove Theorem 9.6.

Proof (Theorem 9.6). The theorem is proved by contradiction. Assume that
there exists a set B0 ⊂ B of second category which is dense in B and a constant
C0 < ∞ such that

lim supN→∞ ‖TNf‖∞ ≤ C0 (9.7)

for all f ∈ B0. The norm ‖TNf‖∞ is finite for finite N . Therefore, it follows
from (9.7) that there exists a constant C1 < ∞ such that supN∈N ‖TNf‖∞ ≤
C1 for all f ∈ B0, and from the uniform boundedness principle (theorem of
Banach-Steinhaus, see e.g. [54]) follows that the operator norms are uniformly
bounded, i.e. there exists a constant C2 < ∞ such that

‖TN‖B→C(T) ≤ C2 (9.8)

for all N ∈ N. Next it is shown that from the uniform boundedness of the
operators TN and from property II follows that the conjugate function f̃ of
every f ∈ B can be approximated arbitrarily well by TNf . To this end let
f ∈ B and g ∈ M arbitrary, where M is a dense subset of B. Then it holds

∥∥f̃ − TNf
∥∥
∞ ≤

∥∥f̃ − g̃
∥∥
∞ +

∥∥g̃ − TNg
∥∥
∞ +

∥∥TN (g − f)
∥∥
∞ (9.9)

≤ (1 + C2)
∥∥f − g

∥∥
B +
∥∥g̃ − TNg

∥∥
∞



9 On Algorithms for Calculating the Hilbert Transform 159

using (9.8) and the obvious relation ‖f̃ − g̃‖∞ ≤ ‖f −g‖B. Let ε > 0 arbitrary
and choose g ∈ M such that ‖f − g‖B < ε. Then it follows from (9.9) that
lim supN→∞

∥∥f̃−TNf
∥∥
∞ ≤ (1+C2) ·ε using that {TN} has property II. Since

the left hand side is independent of ε, and ε was chosen arbitrary, we have

limN→∞
∥∥f̃ − TNf

∥∥
∞ = 0 for all f ∈ B . (9.10)

Lemma 9.9 shows that to every f ∈ C(T) there exists a ϕ ∈ B with
‖ϕ‖B ≤ 2 ‖f‖∞ such that ϕ(τk) = f(τk) for all k = 1, 2, · · · , N . Since the
sequence {TN} has property I it follows that TNϕ = TNf . Therewith, we get

‖TN‖C(T)→C(T) = sup
f∈C(T)
‖f‖∞≤1

‖TNf‖∞ ≤ sup
ϕ∈B

‖ϕ‖B≤2

‖TNϕ‖∞ ≤ 2 ‖TN‖B→C(T) .

Since B ⊂ C(T) and using (9.8), we thus have ‖TN‖B→C(T) ≤ ‖TN‖C(T)→C(T) ≤
2C2. Since ϕ ∈ B also ϕ̃ ∈ B and it holds

∥∥ϕ̃∥∥∞ ≤
∥∥ϕ̃ − TNϕ

∥∥
∞ +

∥∥TN

∥∥
B→C(T)

∥∥ϕ∥∥∞
≤
∥∥ϕ̃ − TNϕ

∥∥
∞ + 2C2

∥∥ϕ∥∥∞ .

Because of (9.10) we get for N → ∞ that
∥∥ϕ̃∥∥∞ ≤ 2C2

∥∥ϕ∥∥∞ . (9.11)

Finally, we consider for an arbitrary N ∈ N a special function ϕN ∈ B and its
conjugate function ϕ̃N given by

ϕN (τ) = 1
π

∑N
k=1

sin(kτ)
k and ϕ̃N (τ) = − 1

π

∑N
k=1

cos(kτ)
k

respectively. It is well known [92, Chapter II.9 ] that ‖ϕN‖∞ ≤ 1 and for the
modulus of ϕ̃N holds at τ = 0 the inequality |ϕ̃N (0)| = 1

π

∑N
k=1

1
k ≥ 1

π log N .
This gives together with (9.11) the inequality

1
π log N ≤

∥∥ϕ̃N

∥∥
∞ ≤ 2C2 ‖ϕN‖∞ ≤ 2C2 .

But this is a contradiction for sufficiently large N > exp(2πC2). �

Proof (Corollary 9.7). It was already shown in the proof of Theorem 9.6 that
‖TN‖1 ≤ 2 ‖TN‖B→C(T). Assume now (in contradiction to the statement of
the corollary) that there exists a constant C2 such that

limN→∞ ‖TN‖B→C(T) ≤ C2 . (9.12)

Then it follows that lim infN→∞ ‖TN‖1 ≤ 2C2. But this means that there
exists a sequence Nk such that ‖TNk

‖1 ≤ 2C2 for all k ∈ N. Now, we can
proceed with this sequence {TNk

} as in the proof of Theorem 9.6. Again, this
results in a contradiction which shows that assumption (9.12) was wrong. �
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Proof (Corollary 9.8). This corollary was proved implicitly in the proof of
Theorem 9.6. Because if we assume that the statement of the corollary is
wrong, equation (9.10) holds. Following the above proof, starting with (9.10),
shows that this assumption yields a contradiction for all {TN} with property I.
This shows that the assumption was wrong and proves the statement of the
corollary. �

Smooth functions

Assume that ω is a regular majorant and let f ∈ Cω(T). Since the Hilbert
transform is a continuous operator on Cω(T) (cf. Section 6) it is clear that
Cω(T) as well as Cω,0(T) are subsets of B. For the later, the following positive
result is obtained.

Theorem 9.10. Let ω be a regular majorant and let {L̃N} be the sequence of
operators defined in Example 9.5. Then there exists a constant C such that

∥∥L̃Nf
∥∥
Cω(T)

≤ C ‖f‖Cω(T) (9.13)

and for all f ∈ Cω,0(T), and it holds

lim
N→∞

∥∥f̃ − L̃Nf
∥∥
Cω(T)

= 0 (9.14)

for all f ∈ Cω,0(T).

This result shows that for functions f which are sufficiently smooth, the
corresponding conjugate function f̃ can always be approximated arbitrarily
well from the values f(τk) at the N sampling points {τk} by means of the linear
operator L̃N which was given in Example 9.5. The theorem is proved using an
auxiliary lemma which characterizes the behavior of the linear interpolation
operator LN defined in Example 9.5, Equation (9.1).

Lemma 9.11. Let ω be an arbitrary majorant and let LN be the interpolation
operator defined by (9.1). Then there exists a constant C such that

‖LNf‖Cω(T) ≤ C ‖f‖Cω(T) (9.15)

for all f ∈ Cω(T). Moreover, for all f ∈ Cω,0(T) holds

lim
N→∞

‖f − LNf‖Cω(T) = 0 . (9.16)

Proof (Lemma 9.11). Let δ > 0 arbitrary and consider two points t1, t2 ∈ T

with t1 < t2 and with |t1 − t2| = δ. The function (LNf)(t) is piecewise linear
on certain disjoint intervals Tk ⊂ T. Two cases have to be distinguished: 1)
t1 and t2 belong to the same interval Tk or 2) t1 and t2 belong to different
intervals.
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1) Assume that t1, t2 ∈ T = [tl0, t
u
0 ] belong to the same interval T . Since

LNf is linear over T , it follows at once that

|(LNf)(t1) − (LNf)(t2)| =

∣∣f(tl0) − f(tu0 )
∣∣∣∣tl0 − tu0

∣∣ |t1 − t2| ≤
∣∣f(tl0) − f(tu0 )

∣∣
≤ ‖f‖Cω(T) ω

(∣∣tl0 − tu0
∣∣) (9.17)

where for the second line it was used that f ∈ Cω(T). Because t1, t2 ∈ T
there exists a constant K ≥ 1 such that

∣∣tl0 − tu0
∣∣ = K |t1 − t2|, and since ω

is a majorant, the function ω(x)/x is not increasing, from which follows that
ω(K x) ≤ K ω(x) provided that K ≥ 1. Allowing for these relations, it follows
from (9.17)

|(LNf)(t1) − (LNf)(t2)| ≤ K ‖f‖Cω(T) ω (|t1 − t2|) ≤ K ‖f‖Cω(T) ω (δ) .

(9.18)

2) Next it is assumed that t1 ∈ T1 = [tl1, t
u
1 ] and t2 ∈ T2 = [tl2, t

u
2 ] belong

to disjoint intervals. Then it follows

|(LNf)(t1) − (LNf)(t2)| ≤ |(LNf)(t1) − (LNf)(tu1 )|+∣∣(LNf)(tu1 ) − (LNf)(tl2)
∣∣+ ∣∣(LNf)(tl2) − (LNf)(t2)

∣∣ . (9.19)

Next, we consider the three terms on the right hand side. For the first and
third term, we can proceed as under point 1) since t1, t

u
1 ∈ T1 and t2, t

l
2 ∈ T2.

This will give an inequality as in (9.18) for both terms but with different
constants K1 and K3, respectively. For the second term on the right hand
side of (9.19), it is used that the operator Ln is concentrated on the boundary
points of the intervals Tk. It follows
∣∣(LNf)(tu1 ) − (LNf)(tl2)

∣∣ = ∣∣f(tu1 ) − f(tl2)
∣∣

≤ ‖f‖Cω(T) ω
(∣∣tu1 − tl2

∣∣) ≤ ‖f‖Cω(T) ω (δ) .

Altogether, (9.19) becomes |(LNf)(t1) − (LNf)(t2)| ≤ (K1 + 1 +
K3) ‖f‖Cω(T) ω (δ). This together with (9.18) shows that there exists a con-
stant C such that (9.15) holds for all f ∈ Cω(T).

It remains to show (9.16). To this end, let f ∈ Cω,0(T) fixed and ε > 0
arbitrary. Then there exists a polynomial p such that ‖f − p‖Cω,0(T) ≤ ε. The
triangular inequality gives now

‖f − LNf‖Cω(T) ≤ ‖f − p‖Cω,0(T) + ‖p − LNp‖Cω,0(T) + ‖LN (p − f)‖Cω,0(T) .

(9.20)
By the choice of p, the first term on the right hand side is smaller than or equal
to ε, and the third term is smaller than or equal to C ‖f‖Cω(T) ε, using (9.15).
Furthermore, there exists an N0 ∈ N such that the second term on the right
hand side of (9.20) becomes smaller than ε for all N > N0. Altogether, (9.20)
becomes ‖f − LNf‖Cω(T) ≤ (2 + C)ε for all N > N0 which proves (9.16). �
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Proof (Theorem 9.10). Theorem 5.11 shows that there exists a constant c1

such that ‖f̃‖Cω(T) ≤ c1 ‖f‖Cω(T) for all f ∈ Cω(T) provided that ω is a
regular majorant. Therewith and together with Lemma 9.11 follows

∥∥L̃Nf
∥∥
Cω(T)

=
∥∥L̃Nf

∥∥
Cω(T)

≤ c1

∥∥LNf
∥∥
Cω(T)

≤ c1 c2

∥∥f∥∥Cω(T)

which proves (9.13). Similarly, the second statement of the theorem follows
from ∥∥f̃ − L̃Nf

∥∥
Cω(T)

=
∥∥f̃ − L̃Nf

∥∥
Cω(T)

≤ c1

∥∥f − LNf
∥∥
Cω(T)

.

The right hand side of this inequality goes to zero as N → ∞ by Lemma 9.11
which proves (9.14). �

Notes

The results in this section was discussed in [12] by the authors.
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Spectral Factorization

Spectral factorization is an important tool in the theory of stochastic pro-
cesses, in information theory, signal processing, control theory and many other
fields. This operation factorizes a given function into a causal and an anti-
causal part. In signal processing it is necessary for example, for the determi-
nation of the causal Wiener filter. Despite a clear and simple derivation of the
spectral factorization operator, it shows a quite complicated analytic behavior.
The main reason behind this complicated behavior is the non-linearity of the
spectral factorization operator. It implies in particular that the boundedness
of the spectral factorization operator does not imply its continuity and vice
versa. In this chapter, we will investigate the relation between boundedness
and continuity of the spectral factorization mapping in detail. It turns out
that continuity and boundedness are alternative properties, i.e. the spectral
factorization mapping is either bounded or continuous, but never both, at
least on the function spaces considered in this chapter.

10.1 Regularity of Stochastic Sequences

As the name indicates, the spectral factorization is an operation usually ap-
plied to spectral densities of stochastic processes. This subsection shortly re-
views some results from the theory of stationary stochastic sequences, as far
as they will be needed. Thereby, we are especially interested in the relation
between the so called regularity of the stochastic sequence and the smoothness
of its spectral density which will get important in Subsection 10.5 and 10.6.

Let (Ω,F , ν) be a probability space, i.e. Ω is the sample space of elementary
events, F is a σ-algebra of subsets of Ω, and ν is a probability measure on
F . A random variable is an F-measurable (real or complex) function on Ω.
The expectation (or the mean) and the variance of a random variable x are
defined by

E [x] :=
∫

Ω

x(ω) dν(ω) and V[x] := E
[
(x − E [x])2

]

V. Pohl, H. Boche, Advanced Topics in System and Signal Theory, Foundations
in Signal Processing, Communications and Networking 4,
DOI 10.1007/978-3-642-03639-2_10, c© Springer-Verlag Berlin Heidelberg 2009
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respectively, and the covariance of a pair x, y of random variables is

cov[x, y] := E [ (x − E [x]) (y − E [y])] .

Two random variables x, y are said to be uncorrelated if cov[x, y] = 0. If
the variance of both random variables is nonzero, one may normalize the
covariance of x and y to obtain the so called correlation coefficient

cor[x, y] :=
cov[x, y]√
V[x]

√
V[y]

of x and y.
If not mentioned otherwise, we will always consider complex random vari-

ables x with zero mean E [x] = 0 and with finite second moments, i.e. with

E [|x|2] =
∫

Ω

|x(ω)|2 dν(ω) < ∞ .

The set of all such random variables is denoted by L2 = L2(Ω,F , ν). If one
defines for arbitrary elements x, y ∈ L2 an inner product on L2 by

〈x, y〉L2 :=
∫

Ω

x(ω) y(ω) dν(ω) = E [x y]

then L2 becomes a Hilbert space. Note that since the mean of every random
variable in L2 is zero, one has that V[x] = ‖x‖2

L2 = 〈x, x〉L2 and one obtains
particular simple realtions for the covariance and for the correlation coefficient
of two random variables x, y ∈ L2:

cov[x, y] = 〈x, y〉L2 and cor[x, y] =
〈x, y〉L2

‖x‖L2 ‖y‖L2
.

In particular, two random variables x, y ∈ L2 are uncorrelated if and only if
they are orthogonal.

A set X = {x(k)}k∈Z of random variables in L2 is called a stochastic
process with discrete time or a stochastic sequence. Such a stochastic sequence
X is called stationary (in the wide sense) if the covariance cov[x(m), x(n)]
of two of its elements depends only on the difference m − n but not on the
absolute position n in the sequence, i.e. if cov[x(n+k), x(n)] = cov[x(k), x(0)]
for all k ∈ Z and every arbitrary n ∈ Z. Thus, the covariance function of
a stationary stochastic sequence X is given by rX(m − n) = E [x(m)x(n)]
for all m,n ∈ Z. The following classical result due to Herglotz gives the so
called spectral representation of the covariance function of stationary random
sequences.

Theorem 10.1 (Herglotz). Let X be a stationary (wide sense) random se-
quence with zero mean, and let rX be its covariance function. Then there exists
a unique positive probability measure μX on T such that for every k ∈ Z

rX(k) =
∫ π

−π

eiθk dμX(eiθ) . (10.1)
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The measure μX corresponding to the stochastic sequence X is known
as the spectral measure of X. It is assumed subsequently that the spectral
measure is absolute continuous (with respect to Lebesgue measure)1. Then
by the Radon-Nikodym theorem there exists a function φX ∈ L1(T) such that
(10.1) can be written as

rX(k) =
∫ π

−π

φX(eiθ) e−iθk dθ . (10.2)

The function φX in this representation of the covariance function is the Radon-
Nikodym derivative of μX with respect to the Lebesgue measure on T, and it
is called the spectral density of the random sequence X.

Let X = {x(k)}k∈Z be a stochastic sequence in L2, i.e. every element x(k)
is an element of the Hilbert space L2. Then X spans the subspace

L2(X) := span{x(k) : k ∈ Z}

of L2 wherein span denotes the closed linear span. Moreover, every collection
{x(k)}k∈I from a certain index set I spans a subspace of L2(X). A large part
of the analysis of stationary stochastic sequences is based on the fact that
L2(X) can be identified with the Hilbert space L2(μX) of complex functions
on the unit circle with the inner product

〈f, g〉L2(μX) :=
∫ π

−π

f(eiθ) g(eiθ) dμX(eiθ) . (10.3)

Lemma 10.2. Let X = {x(k)}k∈Z be a stationary (in the wide sense) stochas-
tic sequence with spectral measure μX . Then L2(X) is isometricly isomorphic
to L2(μX).

Proof. We construct a Hilbert space isomorphism Λ : L2(X) → L2(μX) by
setting

Λx(k) = ek , k ∈ Z

where ek(eiθ) = eikθ with θ ∈ [−π, π). The mapping Λ has to be linear.
Therefore for finite linear combinations of the basis vectors, one has

Λ [
∑

k αk x(k) ] =
∑

k αk ek .

It is clear that Λ is one-to-one in the sense that
∑

k αk ek = 0 almost ev-
erywhere with respect to μX if and only if

∑
k αk x(k) = 0 almost surely.

Moreover, Λ preserves the inner product, since by (10.3) and (10.1) one has

〈Λx(k), Λ x(m) 〉L2(μX) = 〈ek, em〉L2(μX) =
∫ π

−π

ei(k−m)θ dμX(eiθ)

= rX(k − m) = 〈x(k), x(m) 〉L2

1 The singular part of the spectral measure μX can be associated with the so called
deterministic part of the random sequence X (see eg. [81, §VI.5]). This part is of
no importance in the following considerations and therefore omitted.
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and by the linearity of the inner product, this holds also for finite linear
combinations of the basis vectors.

Up to now we defined Λ only for finite linear combinations of the basis
vectors {x(k)}k∈Z. However, since the closure of {x(k)}k∈Z in L2 and the
closure of {ek}k∈Z in L2(μX) are dense in L2(X) and L2(μX), respectively, and
because Λ is continuous, it can be extended to a Hilbert space isomorphism
on the whole L2(X). In fact, let η ∈ L2(X) be arbitrary. Then there exists
a sequence {ηN}N∈N in L2(X) of the form ηN =

∑N
k=−N αk x(k) such that

‖ηN −η‖L2 → 0 as N → ∞. In particular {ηN}N∈N is a Cauchy sequence. Set
fN := ΛηN for all N ∈ N. Then ‖fN − fM‖L2(μX) = ‖Λ(ηN − ηM )‖L2(μX) =
‖ηN − ηM‖L2 since Λ is an isometry. Thus {fN}N∈N is a Cauchy sequence in
L2(μX) which converges to a unique (up to equivalences almost everywhere)
f ∈ L2(μX). Setting f := Λη gives the desired extension of Λ to L2(X). �

By the previous Lemma, it is clear that not only L2(X), spanned by the whole
stochastic sequence X, can be identified with L2(μX) but also every subspace
span{x(k) : k ∈ I} of L2(X) spanned by a certain collection of elements from
the sequence X can be identified with the subspace

{f ∈ L2(μX) : f̂(k) = 0 for all k /∈ I}

of L2(μX), wherein f̂(k) =
∫ π

−π
f(eiθ) e−ikθ dμX(eiθ) denotes the k-th Fourier

coefficients of f in L2(μX). In particular, the future of the sequence X, i.e. the
subspace span{x(k) : k ≥ 0}, can be identified with the Hardy space H2(μX).
These identifications of the different subspaces allows one to use powerful
methods from complex analysis to study several properties of stochastic se-
quences. One example where this was successfully applied is the following
characterization of completely regular stochastic sequences.

Let X be a stationary stochastic sequence, let m ∈ N be an arbitrary
positive integer, and consider the two subspaces of L2(X) defined by

P0 := span{x(k) : k < 0} and Fm := span{x(k) : k ≥ m} . (10.4)

The first subspace P0 is usually called the "past" of the sequence X whereas
Fm is said to be the "future" of X. How does the future of the stochastic
sequence X depends on its past? This question is of considerable interest in
several applications. For example, in detection and estimation or in financial
mathematics it is desired to predict future values of X from already observed
values of X. If there is a strong correlation between the past and the future,
the error of such a prediction can be made smaller (by an appropriated pre-
diction method) than if their correlation is low. If, on the other hand, the
future is almost independent of the past, it will not be possible to make any
useful prediction of future values of X. So it seems natural to measure the de-
pendency between the two subspaces P0 and Fm by the maximal correlation
between pairs of vectors from each subspace, i.e. by the expression
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ρm(X) := sup
ξ∈P0 ,η∈Fm

cor[ξ, η] = sup
ξ∈P0 ,η∈Fm

|〈ξ, η〉L2 |
‖ξ‖L2 ‖η‖L2

. (10.5)

This maximal correlation coefficient between the two subspaces P0 and Fm is
also known as regularity coefficient of X or as the angle between P0 and Fm.
The last name is obviously motivated by the right hand side expression of the
last equation2. Now let P0 and Fm be the orthogonal projection from L2(X)
onto P0 and Fm, respectively. Therewith the angle ρm(X) between the past
and future of the stochastic sequence X can be expressed as

ρm(X) = sup
x,y∈L2(X)

‖x‖≤1,‖y‖≤1

∣∣∣〈P0 x,Fm y〉L2(X)

∣∣∣ = sup
x∈L2(X) ,‖x‖≤1

∣∣∣〈x,P0 Fm x〉L2(X)

∣∣∣

= ‖P0 Fm‖L2(X)→L2(X)

where it was only used that every projection is self adjoint. Thus the angle
between past and future of the stochastic sequence X is given by the operator
norm of P0 Fm. It is clear from the definition that ρm(X) = 0 if both subspaces
are disjoint and that for a fixed P0 the angle ρm(X) is maximized if Fm = P0.
Based on the angle between past and future, one classifies stochastic sequences
as follows.

Definition 10.3 (Completely Regular Stochastic Sequences). Let X
be a stationary (in the wide sense) stochastic sequence and let ρm(X) be its
regularity coefficient (10.5). Then X is called completely regular (or strong
mixing) if limm→∞ ρm(X) = 0, and it is called completely regular of order α
(fast mixing) if there exists a constant C such that

ρm(X) ≤ C m−α , α > 0 .

Thus the order α of a completely regular sequence characterizes how fast the
correlation between past and future ρm(μX) approaches zero as m → ∞.

It is natural to ask whether it is possible to characterize the completely
regular sequences in terms of their spectral densities. Such a characterization
was obtained by Ibragimov [49] for fast mixing sequences and by Helson and
Sarason [46, 77] for strong mixing sequences. The results are given (without
proof) in the following theorem.

Theorem 10.4. Let X be a stationary stochastic sequence with density φX .

(a) X is completely regular if and only φX admits a representation of the form

φX = |p|2 ef (10.6)

with a polynomial p which has zeros only on T and with f ∈ V MO.

2 Of course, strictly speaking it is the cosine of the angle between P0 and Fm.
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(b) X is completely regular of order α if and only if φX admits a representation
of the form (10.6) with a polynomial p with zeros on T and with a real
function f ∈ Λα.

Therein, V MO is the space of vanishing mean oscillation. Since part (a)
of the above theorem will not be needed subsequently, we only refer to cor-
responding textbooks (e.g. [41]) for a definition of this space. The Hölder-
Zygmund class Λα, appearing in part (b) of the theorem was defined at the
end of Section 1.3.

In some cases, the spectral density φX is assumed to have no zeros on the
unit circle. For example, assuming that φX has no zeros on T is sufficient (not
necessary) to guaranty the existence of the spectral factorization of φX (cf.
also the discussion in Section 10.2 below). Then the polynomial p in (10.6)
is a constant function and part (b) (and likewise part (a)) of Theorem 10.4
states that X is completely regular of order α if and only if φX ∈ Λα.

10.2 Definition and Basic Properties

In this subsection, we collect the main definitions and properties of the spectral
factorization mapping. Let A ⊂ L1 be a Banach algebra of integrable functions
on the unit circle T with unity e. Then for every φ ∈ A the Fourier coefficients
{φ̂(k)}∞k=−∞ exist and we define the causal and the anti-causal subspaces A+

and A− of A, respectively, by

A+ := {φ ∈ A : φ̂(k) = 0 for all k < 0}
A− := {φ ∈ A : φ̂(k) = 0 for all k > 0} .

Note3 that the intersection A+ ∩ A− contains all constant functions of A. In
the particular case of A = Lp, 1 ≤ p ≤ ∞ the causal subspace Lp

+ coincides
with the Hardy space Hp and if A = C(T) then C(T)+ = A(D) is the disk
algebra. Note that every function φ+ ∈ A+ and φ− ∈ A− can be identified
with the function

φ+(z) =
∑∞

k=0 φ̂(k) zk and φ−(z) =
∑∞

k=0 φ̂(−k) z−k

which is analytic for all z ∈ D and all z ∈ C\D, respectively. Moreover, the
natural projection A → A+ is the Riesz projection P+ which was studied in
detail in Section 6.

Definition 10.5 (Spectral factorization). Let A ⊂ L1 be a Banach algebra
of functions on T, and let φ ∈ A be a real valued function. Then φ is said to
possess a spectral factorization if theres exists a φ+ ∈ A+ with φ+(z) �= 0 for
all z ∈ D and a φ− ∈ A− with φ−(z) �= 0 for all z ∈ C\D such that
3 Note also that this definition of the subspaces A+ and A− differs slightly from

the definition given at the beginning of Section 6.
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φ(ζ) = φ+(ζ)φ−(ζ) for all ζ ∈ T .

Every φ ∈ A which possesses a spectral factorization is said to be a spectral
density and the functions φ+ and φ− are called the spectral factors of φ. The
mapping S : φ �→ φ+ is the spectral factorization mapping.

Remark 10.6. It is clear that the above definition specifies the spectral factors
φ+ and φ− (if they exist) only up to a unitary constant because φ+ and φ−
may be multiplied by certain factors eiθ0 and e−iθ0 , respectively. To make the
factorization unique, one often considers the canonical spectral factorization
which requires additionally that φ+(0) is real and positive.

Which elements of a Banach algebra A posses a spectral factorization and
how can we obtain the spectral factors for a given spectral density? To get a
first idea, we consider the special case that the given function φ is a trigono-
metric polynomial of a certain degree N . Then the spectral factorization is
equivalent to the following celebrated result of L. Fejér and M. Riesz.

Theorem 10.7 (Theorem of Fejér-Riesz). Let φ ∈ Ppos(N) be a nonnega-
tive trigonometric polynomial. Then there exists a unique analytic polynomial
φ+ ∈ P+(N) such that

φ(ζ) = |φ+(ζ)|2 for all ζ ∈ T

and such that φ+(z) �= 0 for all z ∈ D.

Thus, every non-negative trigonometric polynomial φ ∈ Ppos(N) possesses a
spectral factorization. One spectral factor is the polynomial

φ+(z) =
∑N

k=0 ak zk , z ∈ D

with certain complex coefficients {ak}N
k=0. The second spectral factor φ− is

obtained as the parahermitian conjugate φ�
+ of φ+:

φ−(z) = φ�
+(z) := φ+(1/z) =

∑N
k=0 ak z−k . (10.7)

Also for a non-polynomial function φ, the spectral factorization can easily
be derived formally: Let φ ∈ A and assume that log φ is again an element
of the algebra A. Then log φ can be written as a Fourier series log φ(eiθ) =∑∞

k=−∞ α(k) eikθ with θ ∈ [−π, π) and with the Fourier coefficients

α(k) =
1
2π

∫ π

−π

log φ(eiτ ) e−ikτ dτ , k ∈ Z .

Since log φ is a real valued function, the Fourier coefficients satisfy the relation
α(−k) = α(k) for all k = 1, 2, . . . . Next we define the functions

g+(z) = α(0)
2 +

∑∞
k=1 α(k) zk and g−(z) = α(0)

2 +
∑∞

k=1 α(−k) z−k .
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Assuming that g+ and g− are again elements of A, it is clear that g+ ∈ A+

and g− = g�
+ ∈ A− and it holds log φ = g+ + g−. Taking the exponential

function of both sides, gives finally φ = exp(g+) exp(g−), which shows that
φ+ = exp(g+) and φ− = exp(g−) both of which are candidates for the spectral
factors of φ. Inserting the Fourier coefficients αk into the series of g+ gives
the following closed form formula for the spectral factorization mapping

φ+(z) = (Sφ)(z) = exp
(

1
4π

∫ π

−π

log φ(eiτ )
eiτ + z

eiτ − z
dτ

)
, z ∈ D (10.8)

and φ− is obtained from φ+ by (10.7). In order that (10.8) is well defined, φ
has to satisfy the so called Paley-Wiener (or Szegö) condition

∫ π

−π
log φ(eiτ ) dτ > −∞ . (10.9)

However, this condition guarantees only that (Sφ)(z) exists for every z ∈ D.
For an arbitrary φ ∈ A which satisfies the Szegö condition, it is not necessarily
true that Sφ belongs again to the algebra A. Nevertheless, the above formal
derivation of the spectral factorization mapping shows immediately sufficient
conditions for the existence of the spectral factorization mapping in arbitrary
Banach algebras A ⊂ L1.

Lemma 10.8. Let A ⊂ L1 be a Banach algebra on which the Riesz projection
P+ : A → A+ is bounded. Then every real valued function φ ∈ exp(A)
possesses a spectral factorization in A, and one spectral factor is given by
(10.8).

Proof. Assume φ ∈ exp(A) is an arbitrary real valued function. Then there
exists a g ∈ A such that φ = exp(g) and the spectral factorization mapping
(10.8) becomes

(Sφ)(z) = exp
(

1
4π

∫ π

−π

g(eiτ )
eiτ + z

eiτ − z
dτ

)
= exp

(
1
2
(Rg)(z)

)

with the the Herglotz-Riesz transform R, defined in (5.2), of g. Since g ∈
A ⊂ L1 it is well defined. Using relation (6.8) between the Herglotz-Riesz
transform and the Riesz projection P+, the spectral factorization mapping of
φ can be written as

(Sφ)(z) = exp
(
− 1

2 ĝ(0)
)

exp [(P+g)(z)] , z ∈ D .

From which follows that ‖Sφ‖A ≤ exp
(
− 1

2‖g‖1

)
exp ‖P+ g‖A < ∞ since P+

is assumed to be bounded and using (3.14). Consequently Sφ ∈ A for every
φ ∈ exp(A). �

Definition 10.9 (Decomposing Banach algebra). A Banach algebra A ⊂
L1 on which the Riesz projection P+ : A → A+ is bounded is said to be
decomposing.



10.3 Factorization on Algebras of Continuous Functions 171

The notation of a decomposing Banach algebra is motivated by the state-
ment of Theorem 6.7 which shows that A+ is a complemented subspace in
every decomposing Banach algebra A and A = A+ ⊕ A− where A− is the
complement of A+ in A. In the context of spectral factorization, the decom-
posing property of an algebra A guarantees the existence of the spectral factor
(10.8) for every f ∈ exp(A) by Lemma 10.8.

We saw in Section 6 that there exist important Banach algebras on which
the Riesz projection is unbounded. For these algebras, the above lemma cannot
be applied. However, for the important case of A = L∞ (on which, according
to Theorem 6.13, P+ is unbounded) we have the following result

Lemma 10.10. Every real valued φ ∈ L∞ which satisfies the Paley-Wiener
condition (10.9) posseses a spectral factorization in L∞ and one spectral factor
is given by (10.8).

Proof. Defining the spectral factor φ+ by (10.8), it is clear that φ+ is an
outer function (cf. Definition 2.22) which is well defined since log φ ∈ L1.
Consequently φ+ is analytic in D, and by Theorem 2.25, φ+ ∈ H∞ and
|φ+(eiθ)|2 = φ(eiθ) for all θ ∈ [−π, π). Thus, φ+ is indeed the spectral factor
of φ and φ−(z) = φ�

+(z). �

10.3 Factorization on Algebras of Continuous Functions

In this section, we investigate the boundedness and continuity of the spectral
factorization mapping. To obtain a quite general framework, we consider the
spectral factorization on a class of Banach algebras B ⊂ L1 which are defined
by the following four axioms.

Definition 10.11 (S–algebra). A commutative Banach algebra B ⊂ L1 is
called an S–algebra if

(B1) B is a Banach algebra with respect to pointwise multiplication.
(B2) If f ∈ B, then f ∈ B.
(B3) The set of all trigonometric polynomials is dense in B.
(B4) Every multiplicative functional on B coincides with a functional f �→

f(ζ) defined as the value of f at some point ζ ∈ T.

Remark 10.12. The above axioms are similar to the set of axioms introduced
by Peller and Khrushchev [66] in the context of best approximation of ana-
lytic functions4. Algebras satisfying the axioms of Peller and Khrushchev are
sometimes called decomposing Banach algebras [27, 52] (which should not be
confused with Def. 10.9), and Jacob and Partington [52] studied the spectral
factorization mapping on such algebras, in detail. The S-algebras as defined
above, contain the class of decomposing Banach algebras, but an S–algebras
needs not be decomposing in the sense of Def. 10.9.
4 There one requires additionally to (B1)–(B4) that f ∈ B implies P+f ∈ B.
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Throughout this section, the symbol B will always stand for an S–algebra.
The four axioms (B1)–(B4) of an S–algebra imply certain properties on its
elements. Some of these properties are given in the following propositions.

Proposition 10.13. Let B be an S–algebra. Every φ ∈ B with φ(ζ) �= 0 for
all ζ ∈ T belongs to G(B), i.e. is invertible in B.

Proof. Let h be an arbitrary multiplicative functional on B. By axiom (B4)
there exists a ζ ∈ T such that h(φ) = φ(ζ) for all φ ∈ B, and by (B1)

h(φ ψ) = (φ ψ)(ζ) = φ(ζ)ψ(ζ) = h(φ)h(ψ) for all φ, ψ ∈ B .

This shows that h is even a homomorphism on B and (B4) shows that all
homomorphisms on B are obtained in this way. Therefore the proposition
follows from Theorem 3.21. �

Proposition 10.14. Every S–algebra B is continuously embedded in C(T)
with ‖φ‖∞ ≤ ‖φ‖B for all φ ∈ B.

Proof. Let φ be an arbitrary element of B. By (B1) and (B4), to every ζ ∈ T

there exists an homomorphism h ∈ Γ (B) such that φ(ζ) = h(φ). Since the
norm of each complex homomorphism on B is upper bounded by 1 (see Part c
of Theorem 3.15), one obtains

|φ(ζ)| = |h(φ)| ≤ ‖h‖ ‖φ‖B = ‖φ‖B .

This relation holds for arbitrary ζ ∈ T. Therefore it implies ‖φ‖∞ ≤ ‖φ‖B
which shows that the embedding is continuous. It remains to show that φ ∈
C(T). By (B3), to every ε > 0 there exists a trigonometric polynomial ψN

such that
‖φ − ψN‖∞ ≤ ‖φ − ψN‖B < ε

which shows that φ is continuous on T. �

The next proposition shows that the operation of taking the parahermitian
conjugate is a continuous operation on every S–algebra.

Proposition 10.15. Let B be an S–algebra, then there exists a constant m1 >
0 such that

‖φ�‖B ≤ m1 ‖φ‖B for all φ ∈ B .

Proof. The elements of an S-algebra are functions defined on T. Therefore,
the parahermitian conjugate f� corresponds to a pointwise conjugate complex
of f : f�(ζ) = f(ζ) for every ζ ∈ T. It is easily verified that the operation
φ �→ φ is an involution on B (cf. Def. 3.23). Moreover, by axiom (B4), every
multiplicative functional hζ ∈ Γ (B) is defined by a point ζ ∈ T on the unit
circle, according to hζ(φ) := φ(ζ). The null space of such a homomorphisms
is obviously given by ker hζ = {φ ∈ B : φ(ζ) = 0}. Therefore, the intersection
of all null spaces contains only the zero function:
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⋂

hζ∈Γ (B)

ker hζ =
⋂
ζ∈T

{φ ∈ B : φ(ζ) = 0} = {φ ≡ 0} .

Thus, B is a semisimple commutative algebra and the continuity of the invo-
lution φ �→ φ follows form Theorem 3.26. �

Next we give some examples of S–algebras. More examples may be found
in [52] or [66].

Example 10.16 (Continuous functions on T). The set of all continuous func-
tions on T is obviously an S–algebra. However, it is not decomposing since
the Riesz projection is unbounded on C(T) (cf. Theorem 6.14).

Example 10.17 (Wiener algebra). The Wiener algebra (cf. Example 3.5) is an
S–algebra which is also decomposing.

Example 10.18 (Hölder continuous functions). For a certain 0 < α < 1 denote
by Λα the set of all Hölder continuous functions (cf. Section 1.3). This is a non-
separable space and therefore the axiom (B3) of S–algebras is not satisfied.
However, if λα denotes the closure of all trigonometric polynomials under the
norm ‖ · ‖α of Λα then this space satisfies axiom (B3) and one can verify that
also the other axioms of an S–algebra are satisfied. Moreover, it follows from
Theorem 6.16 that the Riesz projection is bounded on Λα, such that λα is a
decomposing S algebra.

10.3.1 Continuity of the spectral factorization mapping

In this section, we want to characterize S–algebras on which the spectral
factorization mapping S is continuous. Since the trigonometric polynomials
are dense in every S–algebra B, we know from the theorem of Fejér-Riesz that
the spectral factorization exists at least for all non-negative trigonometric
polynomials in B and that one spectral factor is given by (10.8). However,
since we do not know whether S is continuous, it is not clear at the outset
whether the spectral factorization exists in B for non-polynomials. For this
reason, we will assume in the following that the spectral factorization exists
at least in a small neighborhood of the unity e(ζ) ≡ 1, for which the spectral
factorization is known. Then, it is shown that if the spectral factorization
mapping is continuous at e, it will exist for all real valued functions in exp(B)
and will be continuous there.

Since e ∈ exp(B) and since exp(B) is open, there exists an ε > 0 such that
the neighborhood Uε(e) := {φ = eg : g ∈ B, ‖g‖B < ε} of e is an open subset
of exp(B).

Definition 10.19. Let B be an S–algebra. The spectral factorization mapping
S is said to be continuous at e if there exists an ε > 0 such that for every
sequence {φn}n∈N ⊂ Uε(e) with φn → e in B the sequence {Sφn}n∈N of
spectral factors exists in B and converges to Se = e in B.
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Theorem 10.20. Let B be an S–algebra on which the spectral factorization
mapping S is continuous at e. Then the Riesz projection P+ is a bounded
mapping B → B+.

Proof. Since S is assumed to be continuous at e, there exists an ε > 0
such that the spectral factorization exists for each φ ∈ Uε(e), i.e. for each
φ = eg with g ∈ B and ‖g‖B < ε. Let {gn}n∈N ∈ B be an arbitrary se-
quence of real valued functions with ‖gn‖B < ε and with limn→∞ ‖gn‖B = 0.
Then the continuity of the exponential function (cf. Lemma 3.12) implies that
limn→∞ ‖ exp(gn) − e‖B = 0 and the continuity of S at e implies

lim
n→∞

‖(exp gn)+ − e‖B = 0 (10.10)

for every such sequence {gn}n∈N with ‖gn‖B < ε and ‖gn‖B → 0.
We choose an arbitrary g ∈ B and define gμ := μ g with a positive real

number μ ∈ R+ with μ < ε. Obviously it holds that ‖gμ‖B → 0 as μ → 0. By
(10.10) to every δ > 0 there exists a μ0 > 0 such that

‖(exp gμ)+ − e‖B < δ (10.11)

for all μ ≤ μ0. Set φμ := exp gμ and consider

hN :=
∑N

k=1
(−1)k

k [(φμ)+ − e]k .

Then for all M > N and all μ ≤ μ0, it holds

‖hM − hN‖B ≤
M∑

k=N+1

1
k ‖(φμ)+ − e‖k

B

≤ 1
N + 1

M∑
k=N+1

δk ≤ 1
N + 1

1
1 − δ

which shows that {hN}N∈N is a Cauchy sequence in B which converges to the
function log[(φμ)+] in B.
On the other hand, the spectral factor (φμ)+ exists and it is given by (10.8).
Therewith, one has

[log(φμ)+] (ζ) =
μ

2
1
2π

∫ π

−π

g(eiτ )
eiτ + ζ

eiτ − ζ
dτ =

μ

2
(Rg)(ζ) , ζ ∈ T

with the Herglotz-Riesz transform Rg of g. Since we already saw that
log[(φμ)+] ∈ B, this shows that Rg ∈ B for every g ∈ B. The Herglotz-
Riesz transform can also be written as (5.7) in terms of the Poisson and the
conjugate Poisson integral. On the unit circle T, this relation becomes (see
Section 5).

(Rg)(ζ) = g(ζ) + i (Hg)(ζ) , ζ ∈ T (10.12)
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with the Hilbert transform Hg of g which is given by

(Hg)(ζ) =
∑∞

k=−∞ −i sgn(k) ĝ(k) ζk , ζ ∈ T

or which may be expressed as the principal value integral (5.19). Since Rg ∈ B
for every g ∈ B, (10.12) shows that Hg ∈ B whenever g ∈ B. Moreover, since
HHg = −g for all g ∈ B0 := {g ∈ B : ĝ(0) = 0}, it is clear that to every f ∈ B0

there exists a g ∈ B0 such that f = Hg. Thus H : B0 → B0 is one-to-one and
onto which implies that the graph of H is closed, and the closed graph theorem
shows that H : B0 → B0 is continuous, which in turn implies the continuity
of R by (10.12). The Herglotz-Riesz transform R can also be expressed in
terms of the Riesz projection (see (6.8)) (Rg)(ζ) = 2 (P+g)(ζ)− ĝ(0) with the
zeroth Fourier coefficient ĝ(0) of g. Since |ĝ(0)| ≤ ‖g‖∞ ≤ ‖g‖B and since R

is bounded on B0, the Riesz projection P+ is bounded on B. �

We already saw in Lemma 10.8 that if the Riesz projection P+ is bounded
on an Banach algebras A ⊂ L1 then the spectral factorization exists for every
φ ∈ exp(A). Therewith, the assumed continuity of S at e in the previous
theorem can be extended to the continuity of S at every point φ ∈ exp(B).

Theorem 10.21. Let B be an S-algebra. If the spectral factorization mapping
S is continuous at e in B, then φ+ = Sφ exists for every real valued φ ∈
exp(B). Moreover, S is locally continuous on B, i.e. to every φ ∈ exp(B)
there exist constants C(φ) and r(φ) such that

‖Sφ − Sψ‖B ≤ C(φ) ‖φ − ψ‖B

for all ψ ∈ exp(B) with ‖φ − ψ‖B < r(φ).
In particular, the theorem is satisfied by the constants

C(φ) = 2 (1 + 1
2 ‖e‖B) ‖P+‖ ‖φ−1‖B ‖Sφ‖B and r(φ) =

‖Sφ‖B
C(φ)

. (10.13)

Proof. By Theorem 10.20, the Riesz projection is bounded on B. Therefore
Lemma 10.8 implies that every real valued φ ∈ exp(B) possesses a spectral
factorization φ+ = Sφ in B which is given by

(Sφ)(z) = exp[(P+ log φ)(z) − 1
2 (P+ log φ)(0)] . (10.14)

Choose φ1, φ2 ∈ exp(B) arbitrary, and denote the corresponding argument of
the exponential function in the representation (10.14) of the spectral factor
with q1 and q2, respectively. Then Sφ2 −Sφ1 = exp(q1)[exp(q2 − q1)− e] and
the continuity of the exponential function (cf. Lemma 3.12) implies

‖Sφ2 − Sφ1‖B ≤ ‖ exp q1‖B ‖ exp(q2 − q1) − e‖B (10.15)
≤ 2 ‖Sφ1‖B ‖q2 − q1‖B (10.16)

provided that ‖q2 − q1‖B < 1. Next, we investigate the term ‖q2 − q1‖B. For
it holds obviously
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‖q2 − q1‖B ≤ ‖P+[log φ2 − log φ1]‖B − 1
2 |P+[log φ2 − log φ1](0)| ‖e‖B

using only the linearity of P+. To get an upper bound for the second term
on the right hand side, we note that |(P+f)(0)| ≤ ‖P+f‖∞ ≤ ‖P+f‖B for
every f ∈ B using the maximum modulus principle for analytic functions and
that B is continuously embedded in C(T). Therefore and together with the
boundedness of the Riesz projection one obtains

‖q2 − q1‖B ≤
(
1 + 1

2 ‖e‖B
)
‖P+‖ ‖ log φ2 − log φ1‖B (10.17)

where ‖P+‖ is the common operator norm of P+ : B → B+. Next, set f = φ1

and f −h = φ2 in Lemma 3.13 on the continuity of the logarithm. This shows

‖ log φ2 − log φ1‖B ≤ ‖φ−1
1 ‖B ‖φ2 − φ1‖B (10.18)

for all φ1, φ2 ∈ expB with ‖φ2−φ1‖B < ‖φ−1
1 ‖−1

B . Combining (10.15), (10.17),
and (10.18) one obtains the statement of the theorem with the constants
(10.13). �

The previous proof implies in particular that the spectral factorization
mapping is continuous on every decomposing S–algebra.

Corollary 10.22. The spectral factorization mapping S is continuous on an
S–algebra B if and only if B is decomposing, i.e. if and only if P+ : B → B+

is bounded.

10.3.2 Boundedness of the Spectral Factorization mapping

Since S is a non-linear operator, the continuity of S does not imply the
boundedness of S. Therefore, the boundedness of the spectral factorization
mapping has to be investigated separately. This will be done in the present
section. In particular, we want to characterize S–algebras on which the spec-
tral factorization mapping S is bounded.

Let B be an arbitrary S–algebra. Since the trigonometric polynomials are
dense in B, the spectral factorization exists in B at least for all non-negative
trigonometric polynomials, and we define the boundedness of S, at the mo-
ment, only on the set P(N) of trigonometric polynomials of degree N . To this
end, we define for every N ∈ N the boundedness constant of S on P(N) by

C(N,B) := sup
φ∈Ppos(N) , ‖φ‖B≤1

‖Sφ‖B . (10.19)

By this definition, it is clear that C(N + 1,B) ≥ C(N,B) for all N . Based
on these constants, we define the boundedness of the spectral factorization
mapping on B.

Definition 10.23. Let B be an S–algebra, then the spectral factorization map-
ping S is said to be p-bounded on B if

C(B) := sup
N∈N

C(N,B) < ∞ . (10.20)
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Of course, the p-boundedness of S is a necessary requirement for the
boundedness of S on B. Obviously limN→∞ C(N,B) = C(B), and by the
definition of C(N,B), it is clear that

‖φ+‖B = ‖Sφ‖B ≤ C(N,B) for all φ ∈ Ppos(N) with ‖φ‖B ≤ 1 . (10.21)

Let φ ∈ Ppos(N) be arbitrary, set ψ := φ/‖φ‖B, and apply (10.21) to ψ. This
shows that

‖φ+‖2
B ≤ C(N,B)2 ‖φ+ φ�

+‖B (10.22)

for all spectral factors φ+ ∈ F [P(N)] in P+(N). We define for every N ∈ N

the constants

D+(N,B) := inf
φ+∈F [P(N)]
‖φ+‖B=1

‖φ+ φ�
+‖B and D+(B) := lim

N→∞
D+(N,B) .

By this definition, it is clear that the sequence D+(N,B) is monotone decreas-
ing and in view of (10.22) one sees that

C(N,B) =
1√

D+(N,B)
and C(B) =

1√
D+(B)

.

Therewith, the boundedness condition (10.20) can be stated also in terms of
D+(B).

Lemma 10.24. The spectral factorization mapping S is p-bounded on B if
and only if D+(B) > 0.

The difficulty in the definition of D+(N,B) is that the infinium is taken
over the set F [P(N)] of all functions φ+ ∈ P+(N) which are obtained by
a spectral factorization from a polynomial spectra φ ∈ P(N), but this set
is unknown in general. However, we will show next that the p-boundedness
condition remains unchanged even if one takes the infimum over all analytic
polynomials φ ∈ P+(N) instead of F [P(N)]. To this end, we define the con-
stants

D(N,B) := inf
φ∈P+(N)
‖φ‖B=1

‖φ φ�‖B and D(B) := inf
φ∈B+

‖φ‖B=1

‖φ φ�‖B . (10.23)

It is immediately clear that D(N,B) ≤ D+(N,B) and D(B) ≤ D+(B). More-
over D(B) = limN→∞ D(N,B).

Therewith, we are able to give necessary and sufficient conditions for the
p-boundedness of the spectral factorization mapping S on S–algebras in the
following proposition.

Proposition 10.25. Let B be an S–algebra. Then the spectral factorization
mapping S is p-bounded on B if and only if

D(B) = inf
φ∈B+ , ‖φ‖B=1

‖φ φ�‖B > 0 . (10.24)
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Proof. If (10.24) is satisfied, then D+(B) ≥ D(B) > 0 and Lemma 10.24
implies the p-boundedness of S.

The necessity of (10.24) for the p-boundedness of S is shown by contra-
diction. We assume that S is p-bounded but that D(B) = 0. Let N ∈ N be
a fixed degree and let D(N,B) be the constant defined by (10.23). Then to
every δ > 0 there exists a φ ∈ P+(N) with ‖φ‖B = 1 and

‖φ φ�‖B ≤ D(N,B) + δ . (10.25)

Moreover, since |φ(ζ)φ(ζ)| = |φ(ζ)|2 for all ζ ∈ T, Proposition 10.14 implies
that ‖φ‖2

∞ = ‖φ φ�‖∞ ≤ ‖φ φ�‖B. Together with (10.25) this gives

‖φ‖∞ ≤
√

D(N,B) + δ . (10.26)

Let μ > 0 be arbitrary and define the function

φμ :=
φ + ‖φ‖∞ + μ

‖φ + ‖φ‖∞ + μ‖B
.

By this definition, it is clear that φμ ∈ P+(N), that ‖φμ‖B = 1, and that
|φμ(z)| > 0 for all z ∈ D. Therefore φμ ∈ F [P(N)] is a spectral factor. For φμ

it holds

‖φμ φ�
μ‖B =

‖φ φ� + (‖φ‖∞ + μ)(φ + φ�) + (‖φ‖∞ + μ)2‖B
‖φ + ‖φ‖∞ + μ‖2

B

and since D+(N,B) ≤ ‖φμ φ�
μ‖B, one gets

D+(N,B) ≤ ‖φ φ�‖B + (‖φ‖∞ + μ)(1 + m1)‖φ‖B + (‖φ‖∞ + μ)2‖e‖B
‖φ + (‖φ‖∞ + μ)‖2

B
(10.27)

for every μ > 0. Moreover, since

1 = ‖φ‖B = ‖φ + ‖φ‖∞ − ‖φ‖∞ ‖B ≤ ‖φ + ‖φ‖∞ ‖B + ‖φ‖∞ ‖e‖B

one gets together with (10.26) that

‖φ + ‖φ‖∞ ‖B ≥ 1 − ‖φ‖∞ ‖e‖B ≥ 1 − ‖e‖B
√

D(N,B) + δ . (10.28)

Letting μ → 0 in (10.27), using that ‖φ‖B = 1, and applying the bounds
(10.25), (10.26), and (10.28) one obtains from (10.27) that

D+(N,B) ≤ (1 + ‖e‖B)[D(N,B) + δ] + (1 + m1)
√

D(N,B) + δ

1 − ‖e‖B
√

D(N,B) + δ
(10.29)

for arbitrary δ > 0. Since we assumed that D(B) = 0 and because
limN→∞ D(N,B) = D(B), the right hand side of (10.29) converges to zero,
which shows that
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D+(B) = lim
N→∞

D+(N,B) = 0 . (10.30)

However, this contradicts the assumption that S is bounded since by
Lemma 10.24 the boundedness implies that D+(B) > 0. This proves that
the assumption D(B) = 0 was wrong and that D(B) > 0 whenever S is
bounded. �

Assume that B is an S–algebra on which the spectral factorization mapping
is p-bounded, let f ∈ B+ be arbitrary, and define g := f/‖f‖B. For this
function obviously holds that g ∈ B+ and that ‖g‖B = 1. Since S is assumed to
be p-bounded, Proposition 10.25 implies ‖g g�‖B = ‖f‖−2

B ‖f f�‖B ≥ D(B) >
0, which shows that

D(B) ‖f‖2
B ≤ ‖f f�‖B for all f ∈ B+ . (10.31)

Recall that an inner function is a ϕ ∈ L∞
+ such that |ϕ(ζ)| = 1 for almost all

ζ ∈ T, which implies that |ϕ(ζ)ϕ�(ζ)| = |ϕ(ζ)ϕ(ζ)| = 1 for almost all ζ ∈ T.
Assume that ϕ ∈ B is an arbitrary inner function which belongs to B. Then it
is clear that ϕ ∈ B+ and that ϕϕ� = e. Since S is assumed to be p-bounded
on B, (10.31) implies that there exists a universal upper bound on the norm
for every inner function in B

‖ϕ‖B ≤
√

‖e‖B
D(B) =: C3

which depends only on the algebra B. Define for n = 0, 1, 2, · · · the functions
sn(z) := zn in the complex plane. It is clear that sn ∈ B+ for all n ∈ N and
each sn is an inner function. Moreover, the functions s−n(z) := s�

n(z) = z−n,
n ∈ N belong to B and because of Proposition 10.15 one obtains a uniform
upper bound

‖sn‖B ≤ m1 C3 for all n ∈ Z (10.32)

for the norms of these particular inner functions on every S–algebra on which
S is bounded.

Lemma 10.26. Let B be an S–algebra on which S is p-bounded. Then there
exists a constant m6 > 0 such that

m6 ‖f‖2
B ≤ ‖f f�‖B for all f ∈ B (10.33)

or equivalently that

inf
f∈B , ‖f‖B=1

‖f f�‖B ≥ m6 > 0 .

Proof. Let f ∈ B arbitrary. Since the trigonometric polynomials are dense
in B, there exists a sequence {pn}∞n=1 of polynomials pn ∈ P(n) such that
limn→∞ ‖f − pn‖B. Consequently, to every ε > 0 there exists an N0 such that



180 10 Spectral Factorization

‖f‖B − ε ≤ ‖pn‖B ≤ ‖f‖B + ε for all n ≥ N0 . (10.34)

Let sn(z) = zn and define the function gn := sn pn. Then gn ∈ P+(2n) ⊂ B+

and
‖pn‖B = ‖s�

n sn pn‖B ≤ ‖s�
n‖B ‖gn‖B ≤ m1 C3 ‖gn‖B . (10.35)

Since gn ∈ B+ and S is p-bounded, Proposition 10.25 implies

D(B) ‖gn‖2
B ≤ ‖gn g�

n‖B = ‖s�
n gn · sn g�

n‖B = ‖pn p�
n‖B . (10.36)

Next we consider the expression f f − pn p�
n. With the triangle inequality and

together with Proposition 10.15 and relation (10.34), one obtains

‖f f� − pn p�
n‖B ≤ ‖f�‖B ‖f − pn‖B + ‖pn‖B ‖(f − pn)�‖B

≤ m1 (‖f‖B + ‖pn‖B) ‖f − pn‖B
≤ m1 (2 ‖f‖B + ε) ‖f − pn‖B .

Since the right hand side of the last inequality converges to 0 as n → ∞, this
shows that for ε > 0 there exists an N1 ≥ N0 such that

‖pn p�
n‖B ≤ ‖f f�‖B + ε for all n ≥ N1 . (10.37)

Putting together all the previous steps, one obtains for an arbitrary n ≥ N1

(‖f‖B − ε)2
(10.34)
≤ ‖pn‖2

B
(10.35)
≤ m2

1 C2
3 ‖gn‖2

B
(10.36)
≤ m2

1 C2
3

D(B) ‖pn p�
n‖B

(10.37)
≤ m2

1 C2
3

D(B) (‖f f�‖B + ε)

Since ε was chosen arbitrary this shows that D(B)
m2

1 C2
3
‖f‖2

B ≤ ‖f f�‖B for all
f ∈ B, which is equivalent to the statement of the lemma with the constant
m6 = D(B)/(m1 C3)2 > 0. �

The main result of this section is the following theorem, which shows that C(T)
is essentially the only S–algebra on which the spectral factorization mapping
S is bounded.

Theorem 10.27. Let B be an S–algebra. If the spectral factorization mapping
S is p-bounded on B then there exists a constant m2 such that

‖f‖∞ ≤ ‖f‖B ≤ m2 ‖f‖∞ for all f ∈ B . (10.38)

That is, B is isomorphic to C(T).

Proof. The lower bound in (10.38) is equivalent to Proposition 10.14. At the
beginning let h ∈ B be a real valued function. Then by Lemma 10.26 it holds
that m6 ‖h‖2

B ≤ ‖hh�‖B = ‖h2‖B. Moreover, since hh ∈ B, Lemma 10.26
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can be applied to h2 which gives m6 ‖h2‖2
B ≤ ‖h4‖B. Together with the pre-

vious inequality, one gets m6 m2
6 ‖h‖4

B ≤ ‖h4‖B. Applying this upper bound
repeatedly, one obtains

‖h‖B ≤ C5 ‖h2n‖1/2n

B with C5 =

(
n−1∏
k=0

(m6)2
k

)−1/2n

= (m6)−
2n−1
2n .

By the spectral radius formula (Theorem 3.10), the spectral radius of h is given
by rσ(h) = limn→∞ ‖hn‖1/n

B , and property (B4) of an S–algebra implies that
‖h‖∞ = rσ(h). Thus, for n → ∞ one obtains

‖h‖B ≤ 1
m6

‖h‖∞ (10.39)

for every real valued h ∈ B. Let now f = f1 + i f2 be a complex function in
B with real functions f1, f2 ∈ B. Then it follows from (10.39) that ‖f‖B ≤
1

m6
(‖f1‖∞ + ‖f2‖∞) ≤ 2

m6
‖f‖∞ which is the upper bound in (10.38). �

We know that the the Riesz projection is unbounded on C(T) (cf. The-
orem 6.14). This means that there exists a sequence {fn}∞n=1 ⊂ C(T) with
‖fn‖∞ ≤ 1 for all n ∈ N but such that ‖P+fn‖∞ → ∞ as n → ∞. Then Theo-
rem 10.27 implies 1

m2
‖fn‖B ≤ ‖fn‖∞ which shows that {fn}n∈N is a uniformly

bounded sequence in every S–algebra B on which S is bounded. Moreover, by
the continuous embedding of B into C(T) one has that ‖P+fn‖∞ ≤ ‖P+fn‖B
which shows that ‖P+fn‖B → ∞ as n → ∞. Consequently, the Riesz projec-
tion P+ is also unbounded on B and we have the following corollaries.

Corollary 10.28. Let B be an S–algebra. If the spectral factorization mapping
S is bounded on B then the Riesz projection P+ is unbounded on B.

Corollary 10.29. The spectral factorization mapping S is unbounded on ev-
ery decomposing S–algebra.

Proof. Let B be an S–algebra and assume that S is bounded on B. Then
S is p-bounded and Corollary 10.28 implies that P+ is unbounded on B,
which contradicts the decomposing assumption of B. Therefore, S cannot be
bounded on B. �

To recapitulate and summarize the continuity and boundedness behavior
of the spectral factorization mapping S on S–algebras B, we see that S is
either bounded or continuous on every S–algebra but never both. Because a
necessary condition for the boundedness of S is the unboundedness of the
Riesz projection P+ on B. Conversely, the boundedness of P+ is necessary
and sufficient for the continuity of the spectral factorization mapping. This
conclusion may be summarized as follows

Corollary 10.30. Let B be an S–algebra and let S be the spectral factoriza-
tion mapping on B. Then
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• if S is continuous on B then S is unbounded.
• if S is bounded on B then S is discontinuous.

The following two subsections consider the spectral factorization on two
particular examples of an S–algebra in more detail. On the first algebra S is
bounded on the second algebra S is continuous.

10.3.3 Example A – Factorization on C(T)

If the spectral factorization mapping should be bounded on an S–algebra B,
then B has to be isomorphic to C(T) (cf. Theorem 10.27). Therefore, C(T)
is in a sense the only S–algebra on which the spectral factorization mapping
is bounded. On the other hand, since the Riesz projection P+ is unbounded
on C(T), the spectral factorization mapping is discontinuous on C(T). In this
paragraph, it is shown that the continuity behavior of S is even worse on
C(T), in the sense that every non-negative function in C(T) is a discontinuity
point of the spectral factorization mapping.

Definition 10.31 (Continuity Point). Let B be an S–algebra and let φ ∈
Bpos. Then φ is called a continuity point of the spectral factorization mapping
S : C(T) → A(D) if for all ε > 0 there exists a constant C = C(φ, ε) with
limε→0 C(φ, ε) = 0 such that

‖Sφ − Sψ‖B < C(φ, ε) . (10.40)

for all ψ ∈ Bpos and with ‖φ − ψ‖B < ε.
Conversely, φ is called a discontinuity point of the spectral factorization

mapping if there exists a constant C > 0 such that for all 0 < ε ≤ 1 there
exists a ψ ∈ Bpos with ‖φ − ψ‖B < ε such that ‖Sφ − Sψ‖B > C.

Of course, this notion of continuity is equivalent to the definition of conti-
nuity in terms of sequences, as it was used in Section 10.3.1 because if φ ∈ Bpos
is a continuity point of the spectral factorization mapping and {φn}n∈N is a
sequence of spectra which converges to φ in B, then the corresponding se-
quence {Sφn}n∈N of the spectral factors converges in B to the spectral fac-
tor φ+ = Sφ of φ. Note that in contrast to linear operators, the continuity
constant C(φ, ε) depends on the actual spectrum φ, in general. For a linear
operator, the continuity constant would be independent of φ and it would
linear in ε, i.e. it would have the form C(ε) = C0 ε, with a universal constant
C0 equal to the operator norm of S.

Theorem 10.32. Let φ ∈ Cpos(T) be a real valued continuous function on T

with φ(ζ) > 0 for all ζ ∈ T. Then φ is a discontinuity point of the spectral
factorization, i.e.

lim inf
ε→0

sup
ψ∈Cpos(T)
‖φ−ψ‖∞<ε

‖φ+ − ψ+‖∞ > 0 . (10.41)
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This theorem shows that every continuous and strictly positive function
φ on T is a discontinuity point of the spectral factorization mapping on C(T).
This means that to every φ ∈ Cpos(T) there exists a sequence {ψn}n∈N of
positive spectra in Cpos(T) which converge to φ

limn→∞ ‖φ − ψn‖∞ = 0

but for which the sequence {(ψn)+}n∈N of spectral factors does not converge
to φ+ = Sφ. Thus, there exists a constant ε > 0 such that

limn→∞ ‖φ+ − (ψn)+‖∞ > ε .

The following proof of the theorem is constructive in the sense that it con-
structs a sequence {ψn}n∈N with those properties.

Proof. Let φ ∈ Cpos(T) be an arbitrary function with φ(ζ) > 0 for all ζ ∈ T,
and denote by φmax := maxζ∈T φ(ζ) the maximum value of φ. Without loss
of generality, we assume that φ(1) = φmax.

1) In the first part, we assume that φ+(reiθ) converges as r → 1 for
all θ ∈ [−π, π). Let ε > 0 be an arbitrary number. We define a function
g ∈ Cpos(T) and an interval I ⊂ [−π, π) with 0 ∈ I such that the function g
satisfies the following three conditions

(i) φ(ζ) + g(ζ) = φmax for all ζ ∈ T

(ii) minζ∈T [φ(ζ) + g(ζ)] > 0

(iii) maxθ∈I

∣∣g(eiθ)
∣∣ < ε

2 .

Since φ is assumed to be continuous and strictly positive, it is clear that such
a g can always be found by choosing the size of the interval I appropriately.
Furthermore, let q ∈ C(T) be a real valued function with

∣∣q(eiθ)
∣∣ < ε

2 for all
θ ∈ [−π, π), with q(1) = 0, and such that

lim
r→1

1
2π

∫ π

−π

log
[
φmax + q(eiθ)

]
Qr(θ) dθ = ∞ . (10.42)

in which Qr denotes the conjugate Poisson kernel as given in (5.4). That such
functions q exist was shown in [8].
Consider now the function φε(ζ) := φ(ζ) + g(ζ) + q(ζ) for ζ ∈ T. By choosing
ε sufficiently small, it can always be achieved that φε(ζ) > 0 for all ζ ∈ T.
Moreover, for this function it holds that ‖φ − φε‖∞ < ε and φε(1) = φmax.
Now, we analyze log φε and determine the conjugate Poisson integral of log φε

at the point z = rei0

Q(log φε)(r) =
1
2π

∫
I

log φε(eiθ)Qr(−θ) dθ+
1
2π

∫
[−π,π)\I

log φε(eiθ)Qr(−θ) dθ .

Next, we let r → 1. Because of the property (10.42) of q, it follows that
the first integral over the interval I diverges for r → 1. The second integral is
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bounded, because θ = 0 does not belong to the integration region and because
φε(eiθ) > 0 in the whole integration region. It follows for φε that

lim
r→1

(Q log φε)(r) = lim
r→1

1
2π

∫ π

−π

log φε(eiθ)Qr(−θ) dθ = −∞ . (10.43)

Since the spectral factorization mapping S can be written in terms of the
Herglotz-Riesz transform (5.2), the spectral factor of φε becomes (φε)+ =
exp(1

2R[log φε]). Using the decomposition (5.7) of R into the Poisson and
conjugate Poisson integral and considering the point z = rei0, one gets

(φε)+(r) = e
1
2 (P log φε)(r)

{
cos
[
1
2 (Q log φε)(r)

]
+ i sin

[
1
2 (Q log φε)(r)

]}
.

(10.44)
Since φε is continuous and strictly positive, the Poisson integral of
log φε converges to log φε as r → 1. In particular, it follows that
limr→1 exp

[
1
2 (P log φε)(r)

]
=

√
φmax. However, as (10.43) shows, the con-

jugate Poisson integral of log φε diverges as r → 1. Therewith, (10.44) gives
for the real part of (φε)+ that there exists a constant C > 0 such that

lim sup
r→1

�{(φε)+(r)} = C
√

φmax and lim inf
r→1

�{(φε)+(r)} = −C
√

φmax

and a similar result is obtained for the imaginary part of (φε)+

lim sup
r→1

�{(φε)+(r)} = C
√

φmax and lim inf
r→1

�{(φε)+(r)} = −C
√

φmax .

It follows that

‖(φε)+ − φ+‖∞ = sup
|z|<1

|φ+(z) − (φε)+(z)| ≥ C
√

φmax .

The right hand side is independent of ε, which shows that (10.41) holds.
2) Assume now that φ+(reiθ) does not converge as r → 1. Then it holds

sup
g∈C(T), g>0
‖φ−g‖∞<ε

‖φ+ − g+‖∞ ≥ ‖φ+ − f+‖∞

in which f is such that ‖φ − f‖∞ < ε, f(ζ) > 0 for all ζ ∈ T and such that
f+ ∈ A(D). �

10.3.4 Example B – Factorization on the Wiener algebra

As a second example, we consider the spectral factorization on the Wiener
algebra W in some detail. Recall from Example 3.5 that W is the set of all
functions of the form φ(eiθ) =

∑∞
k=−∞ φ̂(k) eikθ, θ ∈ [−π, π) with ‖φ‖W =∑∞

k=−∞ |φ̂(k)| < ∞. Moreover, W+ is the subset of all φ∈W for which φ̂(k) =
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0 for all k < 0. As before, a functions in φ ∈ W+ will be identified with the
function φ(z) =

∑∞
k=0 φ̂(k) zk where z ∈ D.

Since W is a decomposing S–algebra, the spectral factorization exists at
least for each real valued φ ∈ exp(W) by Lemma 10.8, and Corollary 10.22
shows that the spectral factorization mapping S is continuous on W. On the
other hand, Corollary 10.29 states that the spectral factorization mapping S is
unbounded on W. This unboundedness of the spectral factorization mapping
S implies that the norm of the spectral factor φ+ may become arbitrarily
large even though the norm of the given spectrum is bounded by ‖φ‖W ≤ 1.
Subsequently, we will characterize subsets of W on which S is uniformly
bounded. These subsets of W are specified by the minimum value which is
attained by the spectral densities in these subsets.

We introduce the following three subsets of the Wiener algebra:

MW (c0) := {φ ∈ W : ‖φ‖W ≤ 1, |φ̂(0)| ≥ c0}
M+(c0) := {φ ∈ W+ : ‖φ‖W ≤ 1; |φ(ζ)| ≥ c0, ∀ζ ∈ T}
MR(c0) := {φ ∈ W, real valued : ‖φ‖W ≤ 1, φ(ζ) ≥ c0,∀ζ ∈ T}

in which φ̂(0) = 1
2π

∫ π

−π
φ(eiθ) dθ is the zeroth Fourier coefficient of φ and 0 <

c0 ≤ 1 is an arbitrary positive constant. The two sets M+(c0) and MR(c0) are
obviously strict subsets of MW (c0). However, they are not just the restriction
of MW (c0) to causal and real valued functions, respectively. Indeed there
exists functions φ ∈ MW (c0) ∩ W+ but with φ /∈ M+(c0), e.g. the function
φ(z) = c0−(1−c0) z, and likewise there are real valued functions φ ∈ MW (c0)
which belong not to MR(c0), e.g. the function φ(eiθ) = c0 − (1 − c0) cos(θ).

Preliminaries

To investigate the norm of the spectral factors on the above sets, it is necessary
to determine upper bounds on the logarithm of the functions from these sets.
Nevertheless, we will give here a much more general result on the Wiener
norm of a large class of functions on these sets. The logarithm will only be
one special function from this set. For that purpose the set G of functions is
defined as follows.

Definition 10.33. The symbol G denotes the set of all functions G such that
for all λ ∈ (0, 1) the function Qλ(z) := G(λ[1 − z]) is analytic for all |z| < 1
and such that the power series representation

Qλ(z) = G(λ[1 − z]) =
∑∞

k=0 qk(λ) zk

has only non-negative coefficients. That is qk(λ) ≥ 0 for all k.

Set w := λ[1− z], then G(w) is analytic for all w with |λ−w| < λ because
Qλ(z) = G(λ[1− z]) is an analytic function for all |z| < 1. Thus, every G ∈ G
is a function which is analytic inside a circle with center λ and radius λ. From
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the above definition, it is clear that Qλ(x) = G(λ[1−x]) ≥ 0 for all x ∈ [−1, 1)
whenever G ∈ G. Moreover, the function Qλ(x) is monotone increasing in x
because Q′

λ(x) ≥ 0. Consequently, the function G(x) is monotone decreasing
in x, since dQλ/dx = −λ dG/dx.

Example 10.34. The function G(z) = 1/z belongs to G, since

Qλ(z) = 1
λ

1
1−z = 1

λ

∑∞
k=0 zk .

Also the function G(z) = log(1/z) belongs to G, since

Qλ(z) = log 1
λ(1−z) = log 1

λ +
∑∞

k=1
1
k zk .

Since every function G ∈ G has a power series representation, it is clear
what is meant by the expression G(φ) for a certain φ ∈ W (cf. Section 3.1.2).
Therewith, can can formulate the following lemma.

Lemma 10.35. Let G ∈ G and let c0 be a constant with 1/2 < c0 < 1. Then

‖G(φ)‖W ≤ G(2 c0 − 1) (10.45)

for all φ ∈ MW (c0). Moreover for the function φ0(z) := c0 − (1− c0) z, which
belongs to MW (c0), even equality holds, i.e.

‖G(φ0)‖W = G(φ0(1)) = G(2 c0 − 1) .

Proof. Let φ̂(0) be the zeroth Fourier coefficient of the function φ ∈ MW (c0).
Without loss of generality, it can be assumed that φ̂(0) is real and positive.
Otherwise, if φ̂(0) = |φ̂(0)| eiα0 , we would consider the function φ e−iα0 with-
out any further change. Now G(φ) is written as

G(φ(z)) = G
(
φ̂(0)

[
1 − φ̂(0)−φ(z)

φ̂(0)

])
=

∞∑
k=0

gk[φ̂(0)]
(

φ̂(0)−φ(z)

φ̂(0)

)k

wherein all coefficients gk[φ̂(0)] are positive since G ∈ G. Using the triangle
inequality and the submultiplicative condition of the Banach algebra, the
Wiener norm of G(φ) is upper bounded by

‖G(φ)‖W ≤
∞∑

k=0

gk[φ̂(0)]
∥∥∥( φ̂(0)−φ

φ̂(0)

)k ∥∥∥
W

≤
∞∑

k=0

gk[φ̂(0)]
(
‖φ̂(0)−φ‖W

φ̂(0)

)k

.

Since ‖φ‖W ≤ 1, we hae ‖φ̂(0)− φ(·)‖W =
∑

k �=0 |φk| ≤ 1− |φ̂(0)|. Therefore,
the upper bound becomes

‖G(φ)‖W ≤
∞∑

k=0

gk[φ̂(0)]
(

1−φ̂(0)

φ̂(0)

)k

= G
(
φ̂(0)

[
1 − 1−φ̂(0)

φ̂(0)

])
= G

(
2φ̂(0) − 1

)
.
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Moreover, since it was assumed that φ̂(0) > 0 and that φ ∈ MW (c0), we have
φ̂(0) ≥ c0 and therefore 2 φ̂(0)− 1 ≥ 2 c0 − 1. Therewith and using that G(x)
is a monotone decreasing function, the upper bound (10.45) follows from the
last inequality.

Next, the function φ0(z) is considered.

G(φ0(z)) = G
(
c0

[
1 −
(

1−c0
c0

)
z
])

=
∞∑

k=0

gk(c0)
(

1−c0
c0

)k
zk .

This shows that G(φ0) ∈ W+ and therefore its norm becomes

‖G(φ0)‖W
=

∞∑
k=0

gk[c0]
(

1−c0
c0

)k

= G(φ0(1)) = G(2 c0 − 1) ,

which is indeed the equality in (10.45). �

Since M+(c0),MR(c0) ⊂ MW (c0), the upper bound (10.45) holds also
for all functions in the subsets M+(c0) and MR(c0). However, the function
φ0, defined in Lemma 10.35, is not an element of M+(c0) or MR(c0) since
φ0(1) = 2 c0−1 < c0. Therefore, it is not clear at the outset whether the upper
bound (10.45) is also sharp for M+(c0) and MR(c0). The next lemma will
prove that the bound (10.45) is also sharp for the set M+(c0). The question
whether the bound (10.45) is sharp for MR(c0) is still open.

Lemma 10.36. Let G ∈ G and let c0 be a constant with 1/2 < c0 < 1. Then

sup
φ∈M+(c0)

‖G(φ)‖W = G(2 c0 − 1) .

There exists in general no function in M+(c0) for which the supremum
is attained. However, the upper bound can be achieved arbitrarily close by
functions from M+(c0). To prove this lemma an auxiliary result is needed.

Lemma 10.37. Let μ > 0 and 0 < δ < 1 arbitrary, and let b1, b2, · · · , bN ≥
0 be arbitrary positive numbers. Then there exists a function g ∈ W+ with
‖g‖W = 1 and with ‖g‖∞ ≤ μ such that

∥∥∑N
k=0 bk gk

∥∥
W ≥ (1 − δ)

∑N
k=0 bk . (10.46)

The proof of this lemma is given in the appendix. With this lemma, we
are able to prove Lemma 10.36.

Proof (Lemma 10.36). Define λ0 := 1
c0
−1, which implies 0 < λ0 < 1. Further-

more let μ > 0, δ ∈ (0, 1), and N ∈ N be given. At the beginning let g ∈ W+

with ‖g‖W = 1 and ‖g‖∞ ≤ μ arbitrary (that such functions exist follows
from Lemma 10.37 or Lemma 10.44 below). Choose λ ≤ λ0 and consider the
function
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φλ(z) = 1
1+λ [1 − λ g(z)] . (10.47)

Clearly, for this function holds that ‖φλ‖W ≤ 1 and that

|φλ(z)| ≥ 1 − λ |g(z)|
1 + λ

≥ 1 − λμ

1 + λ
≥ 1

1 + λ0
= c0 , ∀z ∈ D .

where the last inequality holds for sufficiently small μ since λ < λ0. This
shows that φλ ∈ M+(c0).

Now G(φλ) is considered. Since G ∈ G, it has the following series repre-
sentation:

G(φλ) = G
(

1
1+λ [1 − λg]

)
=
∑∞

k=0 qk(λ)λkgk

with positive coefficients qk(λ), k ∈ N. Note that the numbers bk := qk(λ)λk

depend only on λ and the given function G but not on g. Consequently we
can apply Lemma 10.37, which shows that there exists a particular g ∈ W+

with the specified properties (‖g‖W = 1 and ‖g‖∞ ≤ μ) such that
∥∥∥∥∥

N∑
k=0

qk(λ)λk gk

∥∥∥∥∥
W

≥ (1 − δ)
N∑

k=0

qk(λ)λk . (10.48)

From now on, g is assumed to be that function for which (10.48) holds. By
the triangle inequality, we have

‖G(φλ)‖W ≥
∣∣∣
∥∥∥∑N

k=0 qk(λ)λk gk
∥∥∥
W

−
∥∥∑∞

k=N+1 qk(λ)λk gk
∥∥
W

∣∣∣
Using the lower bound (10.48) for the first term on the right hand side and
the upper bound
∥∥∑∞

k=N+1 qk(λ)λkgk
∥∥
W ≤

∑∞
k=N+1 qk(λ)λk ‖g‖k

W ≤
∑∞

k=N+1 qk(λ)λk

for the second term, one finally obtains

‖G(φλ)‖W ≥ (1 − δ)
∑N

k=0 qk(λ)λk −
∑∞

k=N+1 qk(λ)λk .

Such a lower bound exists for arbitrary δ > 0 and N ∈ N. Therefore it follows
for N → ∞ that

lim inf
N→∞

sup
g∈Γ (μ,δ,N)

‖G(φλ)‖W ≥
∞∑

k=0

qk(λ)λk = G
(

1−λ
1+λ

)

≥ G
(

1−λ0
1+λ0

)
= G(2 c0 − 1)

using that λ ≤ λ0 and that G(x) is monotone increasing in x. This last
inequality together with (10.45) gives the statement of the theorem. �
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It should be noted that the previous proof shows how the "worst case"
function φ, for which ‖G(φ)‖W becomes arbitrarily close to the upper bound
G(2 c0 − 1) given by Lemma 10.35, can be constructed. One has to choose λ
close to λ0 and define the function φλ (10.47). Then G(φλ) becomes arbitrarily
close to G(2 c0 − 1).

The following corollary is an immediate consequence of Lemma 10.35 for
the special functions G(z) = 1/z and G(z) = log(1/z).

Corollary 10.38. Let φ ∈ MW (c0) with 1/2 < c0 ≤ 1. Then log φ ∈ W and
φ−1 ∈ W with

‖log φ‖W = ‖log(1/φ)‖W ≤ log
(

1
2 c0−1

)
and

∥∥φ−1
∥∥
W ≤ 1

2 c0−1 .

Since M+(c0) ⊂ MW (c0) this corollary holds also for all φ ∈ M+(c0)
with c0 > 1/2. Moreover, Lemma 10.36 shows that the upper bounds given
in this corollary are also sharp for the smaller set M+(c0), i.e. there exist
functions φ ∈ M+(c0) for which ‖ log φ‖W and ‖φ−1‖W are arbitrary close to
the bounds in Corollary 10.38, respectively.

Boundedness behavior

Based on the previous results, we will now characterize subsets of W on which
the spectral factorization mapping S is uniformly bounded. Since W is a
decomposing S–algebra, the spectral factorization exists in W for all φ ∈
exp(W), which includes all strictly positive functions on T, i.e. the set MR(c0).

The following theorem gives a lower and upper bound for the Wiener norm
of the spectral factors φ± as a function of the minimum c0.

Theorem 10.39. Let φ ∈ MR(c0) with 1/2 < c0 < 1. Then
√
‖φ‖W ≤ ‖φ+‖W = ‖φ−‖W ≤ 1√

2c0 − 1
. (10.49)

Proof. The lower bound follows from the relations ‖φ‖W ≤ ‖φ+‖W ‖φ−‖W
and ‖φ+‖W = ‖φ−‖W .

Since φ(ζ) > 1/2 for all ζ ∈ T it follows that φ̂(0) > 1/2 and Corol-
lary 10.38 shows that log φ ∈ W. Let

(log φ)(ζ) =
∑∞

k=−∞ a(k) ζk , ζ ∈ T

be the Fourier series of log φ with the Fourier coefficients a(k). Since log φ is
real valued, it holds a(−k) = a(k) for all k. Therewith the two functions

g+(ζ) := a(0)
2 +

∑∞
k=1 a(k) ζk and g−(ζ) := a(0)

2 +
∑∞

k=1 a(−k) ζk

are defined such that log φ = g+ + g−. Obviously ‖g+‖W = ‖g−‖W and
‖log φ‖W = ‖g+‖W + ‖g−‖W . Consequently, one obtains that
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‖g+‖W = 1
2 ‖log φ‖W . (10.50)

With the two functions g+ and g−, the spectral factors become φ± = exp(g±),
and by the boundedness of the exponential function (3.14) follows ‖φ±‖W ≤
exp (‖g±‖W). With (10.50) and Corollary 10.38 the upper bound (10.49) fi-
nally follows. �

It is important to note that this theorem gives an upper bound only in
the case that φ never becomes smaller than c0 > 1/2 on T. For c0 → 1/2 the
upper bound in (10.49) goes to infinity and it is not clear whether there exists
a corresponding upper bound on the norm of the spectral factors if c0 ≤ 1/2.

Continuity behavior

Since W is decomposing, Corollary 10.22 implies that the spectral factor-
ization mapping S is continuous on W. Moreover, Theorem 10.21 gives an
explicit expression (10.13) for the continuity constant C(φ) of the spectral
factorization mapping S. This continuity constant C(φ) depends on the ac-
tual spectrum φ, which means that S is not uniformly continuous on W,
in general. In particular, C(φ) depends on ‖φ−1‖W and ‖Sφ‖W . However,
Corollary 10.38 and Theorem 10.39 gave uniform upper bounds on ‖φ−1‖W
and ‖Sφ‖W , respectively, provided that the spectrum φ belongs to MR(c0)
with c0 > 1/2. Therewith, we obtain the following corollary of Theorem 10.21.

Corollary 10.40. Let φ, ψ ∈ exp(W) be real valued functions with the spectral
factors φ+ = Sφ and ψ+ = Sψ. Then

‖φ+ − ψ+‖W ≤ 3 ‖φ−1‖W ‖φ+‖W ‖φ − ψ‖W .

for all φ, ψ ∈ exp(W) with ‖φ − ψ‖W < 1
3 ‖φ−1‖−1

W .
If even φ, ψ ∈ MR(c0) with 1/2 < c0 < 1, then

‖φ+ − ψ+‖W ≤ 3
(2 c0 − 1)3/2

‖φ − ψ‖W

for all φ, ψ ∈ MR(c0) with ‖φ − ψ‖W < 1
3 (2 c0 − 1).

Proof. The first part is just the specialization of Theorem 10.21 to the Wiener
algebra, using that ‖P+‖W→W+ = 1 and ‖e‖W = 1. The second part follows
by applying Corollary 10.38 and Theorem 10.39 to the first part. �

Altogether, on the subset MR(c0) of the Wiener algebra with c0 > 1/2,
the spectral factorization mapping is uniformly bounded (Theorem 10.39) and
uniformly continuous (Corollary 10.40). Both, the upper bound on the norm
and the continuity constant depend only on the minimum c0 of the spectra.
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10.4 Error Bounds for Polynomial Data

The previous section showed that the spectral factorization is either un-
bounded or discontinuous on S–algebras. In many practical applications how-
ever, it is assumed that the given spectra are polynomials of a certain finite
degree N . Since the set P(N) of all polynomials with a degree not larger than
N is finite dimensional, it is clear that the spectral factorization is always
bounded and continuous for all spectral densities in P(N). However, it is also
clear that then either the continuity constant or the boundedness constant
will depend strongly on the degree N of the polynomials and will go to infin-
ity as the degree N goes to infinity. This dependency of the continuity and
boundedness constant will be investigated in the present section.

In the first part, we consider the boundedness behavior of S on the Wiener
algebra W. Since the concrete dependency on the degree N is influenced by
the norm in the algebra, we do not investigate the boundedness behavior for
decomposing Banach algebras, in general, but only for the most important
example of such an algebra, the Wiener algebra. In the second part, the con-
tinuity behavior of S with respect to the supremum norm for all polynomials
is investigated in detail.

10.4.1 Factorization in the Wiener norm

We consider the spectral factorization mapping S for polynomial spectral
densities φ ∈ Ppos(N) in the Wiener algebra. By the theorem of Fejér-Riesz,
the spectral factorization exists for non-negative polynomials and the spectral
factor Sφ ∈ P+(N) is a causal polynomial of degree N . It follows immediately
that S is bounded on Ppos(N), i.e. there exists a constant C(N) < ∞ such
that

‖Sφ‖2
W ≤ C(N) ‖φ‖W for all φ ∈ Ppos(N) . (10.51)

Definition 10.41. Let S : Wpos → W+ be the spectral factorization mapping
given by (10.8). Then the constant

C(N) := sup
φ∈Ppos(N)
‖φ‖W=1

‖Sφ‖2
W (10.52)

is called the boundedness constant of the spectral factorization mapping for
polynomials of degree N on W.

Since S is unbounded on W, the boundedness constant C(N) will depend
strongly on the degree N of the given spectra and it will go to infinity as
N → ∞. We want to investigate how C(N) depends on N . In particular, we
are going to show (Theorem 10.49) that the boundedness constant C(N) is
lower and upper bounded by
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C1

√
N + 1 ≤ C(N) ≤ N + 1

with a constant C1 independent of N . Therein the upper bound is easily de-
rived, whereas the proof of the lower bound is somewhat intricate. Therefore,
we give a short outline of the main ideas and steps of this proof. Since W is a
decomposing S–algebra, the spectral factorization mapping is unbounded on
W. In view of relation (10.51) and since the trigonometric polynomials are
dense in W, this unboundedness of S implies that there exists a sequence
{φN}N∈N of polynomial spectral densities with limN→∞ ‖φN‖W = 0 but for
which the norm of spectral factors (φN )+ are uniformly lower bounded by a
positive constant c0 > 0, i.e. for which

‖SφN‖W = ‖(φN )+‖W ≥ c0 > 0 for all N ∈ N .

If such a sequence is known, a lower bound for the boundedness constant is
obtained from (10.51) by

C(N) ≥ ‖(φN )+‖2
W

‖φN‖W
=

‖(φN )+‖2
W

‖(φN )+ (φN )�
+‖W

.

To obtain as tight a bound as possible, one needs such a sequence for which
‖φN‖W converges to zero as fast as possible as N → ∞.

For these reasons, we will start our investigations by constructing a se-
quence of polynomials {gN}N∈N with gN ∈ P+(N), with ‖gN‖W = 1, and
for which ‖gN g�

N‖W converges to zero as N → ∞ with almost the fastest
possible convergence rate. However, it turns out that these polynomials might
not be spectral factors of gN g�

N , in general. Therefore, these polynomials gN

will be modified such that they belong to the set G(W+) of invertible elements
of W+. This will guarantee that they are spectral factors and still have the
desired properties. With these modified polynomials, the lower bound of the
boundedness constant C(N) is proved in Theorem 10.49.

Functions with small peak value

Consider the following problem. We look for trigonometric polynomials φN ∈
P(N) of degree N with constant Wiener norm ‖φN‖W = 1 (independent of
the degree N) but with the property that the peak value ‖φN‖∞ becomes
as small as possible. The first lemma derives a lower bound, on the minimal
achievable peak value of polynomials φN ∈ P(N).

Lemma 10.42. Let φ ∈ P(N) be a trigonometric polynomial of degree N .
Then its peak value is bounded by

1√
2N + 1

‖φ‖W ≤ ‖φ‖∞ ≤ ‖φ‖W . (10.53)
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Proof. Let φ ∈ P(N). Then by the Cauchy-Schwarz inequality and by Parse-
val’s identity it holds that

‖φ‖W =
N∑

k=−N

|φ̂(k)| ≤

√√√√ N∑
k=−N

1

√√√√ N∑
k=−N

|φ̂(k)|2

=
√

2N + 1 ‖φ+‖2 ≤
√

2N + 1 ‖φ+‖∞ ,

which gives the lower bound in (10.53). The upper bound is just a consequence
of the continuous embedding of W in C(T) (cf. Proposition 10.14). �

Remark 10.43. Of course, if one considers analytic polynomials φ(eiω) =∑N
k=0 φ̂(k) eikω in P+(N), the lower bound in (10.53) becomes ‖φ‖∞ ≥ ‖φ‖W√

N+1
.

Thus for a fixed degree N , the peak value of a polynomial φN ∈ P(N) with
‖φN‖W = 1 cannot be made arbitrary small, since the above lemma shows that
there exists no such polynomial with a peak value smaller than 1/

√
2N + 1.

However, as the degree N of the polynomial φN increases, the lower bound
(10.53) decreases and gets arbitrary small as N → ∞. The following lemma
gives concrete polynomials gN with a constant norm ‖gN‖W and with small
peak value ‖gN‖∞. In particular, it is shown that these polynomials achieve
almost the lower bound (10.53) for their peak value.

Lemma 10.44. Let gN ∈ P+(N) be defined by

gN (eiω) =
1

N + 1

N∑
k=0

exp
(

i
k2π

N + 1

)
eikω , ω ∈ [−π, π) . (10.54)

Then ‖gN‖W = 1 and there exists a constant C2 such that

‖gN‖∞ ≤ C2√
N + 1

(10.55)

for all N ∈ N with N ≥ N0.

The polynomials (10.54) are also known as chirp sequences. Originally they
were obtained in search for signals with a flat power spectrum and with a low
peak value [80]. Moreover, according to (10.55) these polynomials achieve
almost the fastest possible convergence rate (10.53) as N → ∞. Only the
constant C2 is not optimal, i.e. C2 > 1.

To verify (10.55), one has to find an upper bound on the modulus of an
exponential sum of the form

S[qω; a, b] :=
b∑

k=a

exp(i 2π qω(k)) . (10.56)

In our case, the particular function qω(k) is given by
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qω(k) =
k2

2(N + 1)
+

kω

2π
, ω ∈ [−π, π] , k = 0, 1, . . . , N (10.57)

and the bounds of the summation index are a = 0 and b = N . Here ω is looked
upon a fixed parameter and one has to find an upper bound on |S[qω; a, b]| for
all parameters ω ∈ [−π, π). To this end, we apply an extension of a technique
which finds an upper bound on the corresponding integral

I[qω; a, b] :=
∫ b

a

exp(i 2π qω(τ)) dτ . (10.58)

By a result of van der Corput, it is possible to control the difference
D[qω; a, b] := I[qω; a, b] − S[qω; a, b] between the sum (10.56) and the inte-
gral (10.58), under some conditions on the function qω.

Lemma 10.45 (van der Corput). If q′ω(k) is monotone and if |q′ω(k)| ≤
1 − ε for some ε > 0 and for all k ∈ [a, b], then

|D[qω; a, b]| ≤ C3
1
ε + C4 (10.59)

with C3 = 4/π and C4 = 1 + 4/π.

This lemma due to van der Corput [86] is taken from [92, Chapter V,
Lemma 4.4] where also a proof can be found. As a further preparation, we
derive an upper bound on the modulus of the integral I[qθ; a, b]. This is done
in the next lemma.

Lemma 10.46. Let I[qω; a, b] be given by (10.58) with the function qω defined
by (10.57). Then there exists a constant C5 such that

|I[qω; a, b]| ≤ C5

√
N + 1

for all ω and for arbitrary integration bounds a and b.

Proof. To see this, one only has to write the integral in another form. First,
the function qω in the exponent of the integral is written as

qω(τ) =

(
τ√

2(N + 1)
+

√
N + 1

2
ω

2π

)2

− N + 1
2

ω2

(2π)2
.

Since the last term is independent of the integration variable τ , the modulus
of the integral becomes

|I(qω; a, b)| =

∣∣∣∣∣
∫ b

a

exp

(
i 2π

[
τ√

2(N+1)
+
√

N+1
2

ω
2π

]2)
dτ

∣∣∣∣∣
=
√

N+1
2π2

∣∣∣∣∣
∫ D(b,ω)

D(a,ω)

exp(iπ
2 x2) dx

∣∣∣∣∣ (10.60)
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in which the integration limits are given by the function

D(γ, ω) =
√

2
N+1 γ +

√
N+1

2
ω
π .

It remains to investigate the integral in (10.60). For simplicity, it is denoted
by Q(α, β) :=

∫ β

α
exp(iπ

2 x2) dx with the two real numbers α = D(a, ω) and
β = D(b, ω). First, we note that Q(0, ξ) = FC(ξ) + iFS(ξ) in which

FC(ξ) =
∫ ξ

0
cos(π

2 x2) dx and FS(ξ) =
∫ ξ

0
sin(π

2 x2) dx

are the so called Fresnel integrals. And for all real number ξ ∈ R holds that

|FC(ξ)| ≤ |FC(1)| ≈ 0.779 and |FS(ξ)| ≤ |FS(
√

2)| ≈ 0.714 .

Therefore, one has that

|Q(0, ξ)| ≤
√
|FC(ξ)|2 + |FS(ξ)|2 ≤

√
|FC(1)|2 + |FS(

√
2)|2 =: C11

for all ξ ∈ R. Consequently, since Q(α, β) = Q(0, β) − Q(0, α), one obtains
that |Q(α, β)| ≤ 2C11 for arbitrary α, β ∈ R. Together with (10.60) this gives
the statement of Lemma 10.46 with C5 =

√
2 C11 ≈ 1.5. �

Note that the upper bound on |I[qω; a, b]| given by Lemma 10.46 is inde-
pendent of the integration bounds a and b. After these preparations, we are
able to prove Lemma 10.44.

Proof (Lemma 10.44). We consider the functions qω, S[qω; a, b], and I[qω; a, b]
as defined above. Therewith the function gN , defined by (10.54), can be writ-
ten as

gN (eiω) =
1

N + 1
S[qω; 0, N ] . (10.61)

Assume for the moment that qω satisfies the conditions of Lemma 10.45. Then
by applying Lemma 10.45, one obtains an upper bound for the exponential
sum

|S[qω; 0, N ]| ≤ |I[qω; 0, N ]| + C3
1
ε + C4 (10.62)

and Lemma 10.46 shows that there exists a constant C5 such that |I[qω; a, b]| ≤
C5

√
N + 1 for arbitrary integration limits a and b.

It remains to verify whether the function qω satisfies the conditions of
Lemma 10.45 and to determine the corresponding ε. Since q′ω(k) = k

N+1 + ω
2π ,

it is not hard to see that |q′ω(k)| becomes larger than 1 for certain parameters
ω ∈ [−π, π) and some k ∈ [0, N ]. Nevertheless, since the polynomials gN (eiω)
are 2π-periodic, one can consider the problem not only for ω ∈ [−π, π) but
equivalently for ω + 2π n with an arbitrary integer n. This property is used,
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and the integration I[qω; 0, N ] over the interval [0, N ] in (10.62) is split into
integrations over the intervals I1 = [0, N/2] and I2 = [N/2, N ]. Then it can be
shown that for each i ∈ {1, 2} there exists an n ∈ Z such that for ωi = ω+2π n
always

|q′ωi
(k)| =

∣∣∣∣ k

N + 1
+

ω

2π
+ n

∣∣∣∣ ≤ 1 − 1
8 for each k ∈ Ii . (10.63)

Indeed, one easily verifies that for i = 1 and if

−7
8
− ω

2π
≤ n ≤ 3

8
− ω

2π

then (10.63) is always satisfied. Similarly in the case i = 2, (10.63) is fulfilled
if n satisfies

−9
8
− ω

2π
≤ n ≤ 1

8
− ω

2π
.

This proves for both cases (i = 1, 2) that there exists an integer n ∈ Z such
that (10.63) holds. This means that Lemma 10.45 is satisfied for each interval
I1 and I2 with ε = 1/8, separately. Therefore, we can combine (10.61) and
(10.62) and apply Lemma 10.46 to obtain

|gN (eiω)| ≤ |I[qω1 ; 0, N/2]| + |I[qω2 ;N/2, N ]| + 8C3 + C4

N + 1

≤ 2C5√
N + 1

+
8C3 + C4

N + 1
.

Since this bound is independent of ω, it proves (10.55). �

The polynomials gN , defined in Lemma 10.44, have the property that the
Wiener norm ‖gN‖W = 1 is independent of the degree N , whereas the peak
value of these polynomials is upper bounded by C2/

√
N + 1 and decreases

with increasing degree N . Fig. 10.1 illustrates this behavior for three different
degrees N . Therewith, we have solved the problem of finding a function g ∈ W
with ‖g‖W = 1 and with arbitrarily small peak value. By Lemma 10.44, for
every ε > 0 there exists a degree N ∈ N such that the polynomial (10.54)
satisfies ‖gN‖∞ < ε but ‖gN‖W = 1.

Subsequently, it will be important that the Wiener norm of the polynomial
gN g�

N tends to zero as N → ∞. As the proof of the following lemma will show,
this is a direct consequence of the decreasing peak value of gN as N → ∞.

Lemma 10.47. Let gN be the polynomial defined by (10.54). Then

‖gN‖W = 1 and ‖gN g�
N‖W ≤ 3 + 2 log([N + 1]/2)

N + 1
.
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Fig. 10.1. The modulus of the polynomials gN defined in (10.54) for different degrees
N .

Proof. It remains to prove the second statement. On the unit circle T, it holds
that g�

N (eiω) = gN (eiω). We define hN ∈ P(N) by

hN (eiω) := gN (eiω) gN (eiω) =
∑N

k=−N ĥN (k) eikω . (10.64)

Since ĝN (k) = 1
N+1 exp(i k2π

N+1 ), k = 0, 1, · · · , N are the Fourier coefficients of
gN , a straight forward calculation shows that the Fourier coefficients of hN

are given by

ĥN (k) =
N−k∑
l=0

ĝN (l) ĝN (l + k)

=
exp(i πk2

N+1 )
(N + 1)2

1 − exp(−i 2πk2

N+1 ) exp(i 2πk)

1 − exp(i 2πk
N+1 )

and by ĥN (−k) = ĥN (k) for all k = 0, 1, 2, · · · , N . For the modulus of these
Fourier coefficients one obtains

|ĥN (k)| =
1

(N + 1)2

∣∣∣∣∣∣
sin
(
π k2−k[N+1]

N+1

)

− sin
(

πk
N+1

)
∣∣∣∣∣∣ ≤

1
(N + 1)2

1∣∣∣sin( πk
N+1

)∣∣∣
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for all |k| = 1, 2, · · · , N and |ĥN (0)| = 1/(N + 1). Therewith, the norm of hN

is given by ‖hN‖W = 1
N+1 + 2

∑N
k=1 |ĥN (k)|. Let LN be the largest integer

for which LN < [N + 1]/2 and note that sin(πx) ≥ 2x for all x ∈ [0, 1/2].
Therewith, one obtains the upper bound

‖hN‖W ≤ 1
N + 1

+
4

(N + 1)2

LN∑
k=1

N + 1
2k

≤ 1
N + 1

(
3 + 2

LN∑
k=2

1
k

)
≤ 3 + 2 log LN

N + 1

for the norm of hN , which is equivalent to the statement of the lemma, since
LN ≤ (N + 1)/2. �

By Lemma 10.47, ‖gN g�
N‖W tends to zero as N → ∞ with a convergence

rate which is almost as fast as possible. Because for an arbitrary φN ∈ W+,
it always holds

‖φN φ�
N‖W ≥ ‖φN‖2

∞ ≥ ‖φN‖2
W

N + 1

where the first inequality is a consequence of the continuous embedding of
W in C(T) (cf. Proposition 10.14) and the second inequality follows from
Lemma 10.42.

Bounds of the boundedness constant

The polynomials gN defined in (10.54) are not spectral factors, because gN

may have zeros inside the unit disk D. For this reason the sequence {gN}N∈N

cannot be used directly for our intention, and we have to choose a slightly
different approach. To this end, we define the functions

ϕN := gN + ‖gN‖∞ and ψN := ϕN ϕ�
N . (10.65)

By this definition, it is clear that ϕN ∈ W+ and the maximum modulus
principle implies that ϕN (z) �= 0 for all z ∈ D. Therefore ϕN = (ψN )+ is
a spectral factor of the trigonometric polynomial ψN ∈ Ppos(N). The next
lemma gives upper bounds on the ‖ · ‖W -norm of ψN and ϕN .

Lemma 10.48. Let ϕN ∈ P+(N) and ψN ∈ Ppos(N) be the polynomials
defined in (10.65). Then there exist two constants C8 and C9 such that

1 − C8√
N + 1

≤ ‖ϕN‖W ≤ 1 +
C8√
N + 1

‖ψN‖W ≤ C9√
N + 1

.
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Proof. The first statement is a consequence of Lemma 10.44. By the definition
of ϕN in (10.65) one has

‖ϕN‖W ≤ ‖gN‖W + ‖gN‖∞ ≤ 1 + C2√
N+1

and ‖ϕN‖W ≥ | ‖gN‖W − ‖gN‖∞ | ≥ 1 − C2√
N+1

.

To prove the second statement, note that by the definition of ψN one has
ψN = gN g�

N + (gN + g�
N ) ‖gN‖∞ + ‖gN‖2

∞. Applying Lemma 10.47 and 10.44
one obtains the upper bound

‖ψN‖W ≤ 3 + 2 log([N + 1]/2)
N + 1

+
2C2√
N + 1

+
C2

2

N + 1
,

which proves the lemma with an adequate constant C9. �

Lemma 10.48 shows that ‖ϕN‖W converges to 1 as N → ∞ and that
‖ψN‖W converges to 0 as N → ∞. Thus the sequences {ϕN}N∈N and
{ψN}N∈N have all the desired properties which are needed to prove our main
result on the behavior of the boundedness constant C(N) of the spectral fac-
torization mapping.

Theorem 10.49. Let S : Wpos → W+ be the spectral factorization mapping
on the Wiener algebra, and let C(N) be the boundedness constant of S defined
in (10.52). Then there exists a constant C1, independent of N , such that

C1

√
N + 1 ≤ C(N) ≤ N + 1 .

Proof. Upper bound: Let φ ∈ Ppos(N) be a spectral density and let φ+ = Sφ
its spectral factor. Lemma 10.42 implies that ‖φ+‖W ≤

√
N + 1 ‖φ+‖∞. Since

φ(eiω) = |φ+(eiω)|2 for all ω ∈ [−π, π) it follows that ‖φ+‖∞ = ‖φ‖1/2
∞ ,

and since W is continuously embedded in C(T) one obtains ‖φ+‖2
W ≤ (N +

1) ‖φ‖W , which shows that C(N) ≤ N + 1.
Lower bound: We consider the polynomial ψN ∈ P(N) and its spectral

factor ϕN = SψN ∈ P+(N), both defined in (10.65). By (10.51) and by the
boundedness of S on P(N) there exists a constant C(N) such that ‖ϕN‖2

W ≤
C(N) ‖ψN‖W . If one applies the lower and upper bound of ϕN and ψN , given
by Lemma 10.48, one obtains the lower bound

C(N) ≥
√

N + 1
C9

− 2
C8

C9
+

C2
8

C9

1√
N + 1

for the boundedness constant. This is equivalent to the statement of the lemma
with an appropriate constant C1. �

Therewith, we have found the desired lower and upper bound on the
boundedness constant (10.52) of the spectral factorization mapping in the
Wiener algebra. At the end, we want to briefly review the above approach to
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prove Theorem 10.49 and give some explanatory remarks. The most impor-
tant step was the construction of the sequence of polynomials {ϕN}N∈N with
‖ϕN‖W ≥ c0 > 0 for all N ∈ N and such that ‖ϕN ϕ�

N‖W → 0 as N → ∞ as
fast as possible. The construction of these functions was based on the polyno-
mials gN defined in (10.54). For the proof of Lemma 10.48, it was important
that these polynomials have the property that ‖gN‖∞ as well as ‖gN g�

N‖W
converges fast to zero as N → ∞. We saw that ‖gN g�

N‖W has almost the best
possible convergence behavior as N → ∞. However, the proof of Lemma 10.48
shows that the upper bound of ‖ψN‖W = ‖ϕN ϕ�

N‖W is mainly determined
by the convergence behavior of ‖gN‖∞. For this convergence behavior a very
simple upper bound can already be obtained in terms of Lemma 10.47 and by
the continuous embedding of W in C(T) as follows

3 + 2 log([N + 1]/2)
N + 1

≥ ‖gN g�
N‖W ≥ ‖gN‖2

∞ .

Therewith, one gets immediately that

‖gN‖∞ ≤
√

3 + 2 log([N + 1]/2)
N + 1

.

If this bound were used for the proof of Lemma 10.48, the lower bound in
Theorem 10.49 would only be

√
N + 1√

3 + 2 log([N + 1]/2)
≤ C(N) .

For this reason, a better upper bound for ‖gN‖∞ was derived in Lemma 10.44.
Apart from that, the functions ϕN were obtained by adding ‖gN‖∞ to the

function gN . This was necessary because gN itself was not an outer function.
But due to this definition, ‖gN‖∞ determines the convergence behavior of
‖ϕN ϕN‖W , and since ‖gN‖∞ converges to zero slower than ‖gN gN‖W (com-
pare Lemma 10.44 and Lemma 10.47), this may indicate that the lower bound
given in Theorem 10.49, is not yet the best possible lower bound. However, for
the technique which we use for the proof (adding ‖gN‖∞ to gN ), the bound
of Theorem 10.49 is the best possible bound.

Given a φ ∈ P(N) with ‖φ‖W = 1, the upper bound of Theorem 10.49
shows that the Wiener norm of the spectral factor φ+ never becomes larger
than ‖Sφ‖W ≤

√
N + 1. On the other hand, the lower bound of Theo-

rem 10.49 shows that for every degree N , there exist trigonometric polynomi-
als φ ∈ P(N) for which the norm of the spectral factor becomes larger than√

C1 (N + 1)1/4. Both, upper and lower bound tend to infinity as N → ∞,
which shows in particular that the spectral factorization is unbounded on W
since the trigonometric polynomials are dense in W.

Corollary 10.50. The spectral factorization is unbounded on the Wiener al-
gebra W.
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Of course, this result is a special case of Corollary 10.29. However, since
Corollary 10.29 holds for every decomposing S–algebra, the proof was rather
abstract. The derivation here for the Wiener algebra, as a corollary of Theo-
rem 10.49, gives concrete functions for which the factorization is unbounded
and shows explicitly the growth behavior of the norm of the spectral factor
Sφ as the degree N of the spectral data increases.

10.4.2 Factorization in the infinity norm

This section considers the spectral factorization mapping S on the space P(N)
of all trigonometric polynomials with degree of at most N , in the infinity norm
‖ · ‖∞. It follows from Theorem 10.27 that the spectral factorization mapping
is bounded in C(T). Therefore, it will be bounded a fortiori for all polynomials
P(N) with respect to the infinity norm. Theorem 10.32, on the other hand
showed that S is discontinuous on C(T). Subsequently, we want to investigate
how the continuity behavior of S depends on the degree N of the polynomials.
It turns out, that the continuity constants will also depend on the minimum
and maximum of the polynomials under consideration. Therefore we will use
the following notation: Ppos(N ; c1, c2) denotes the set of all trigonometric
polynomials φ ∈ P(N) with c1 ≤ φ(eiθ) ≤ c2 for all θ ∈ [−π, π). Throughout,
and without loss of generality, it is always assumed that c1 < c2. For c1 = c2,
the set Ppos(N ; c1, c2) contains only the constant function f(eiθ) = c1.

Assume that φ and ψ are two positive trigonometric polynomials of a
certain degree N such that the difference between them is smaller than a
certain value ε, i.e. ‖φ − ψ‖∞ < ε. What is the difference ‖φ+ − ψ+‖∞ in
the corresponding spectral factors? To answer this question, we are going to
determine two constants CS1 and CS2 such that

CS1 ‖φ − ψ‖∞ ≤ ‖φ+ − ψ+‖∞ ≤ CS2 ‖φ − ψ‖∞ (10.66)

for all polynomials φ, ψ ∈ Ppos(N ; c1, c2). In general, both constants depend
on the degree N and on the minimal and maximal values of the polynomials
under consideration. The constant CS1 can easily be determined. Since φ =
φ+φ�

+, the difference in the given spectra can be written as ‖φ − ψ‖∞ =
‖φ+φ�

+ − ψ+ψ�
+‖∞ and some straight forward algebraic manipulations show

that
∥∥φ − ψ

∥∥
∞ ≤

∥∥{φ+ − ψ+

}
φ�

+ + ψ+

{
φ�

+ − ψ�
+

}∥∥
∞

≤
∥∥φ+ − ψ+

∥∥
∞
(∥∥φ+

∥∥
∞ +

∥∥ψ+

∥∥
∞
)

.

Since we assumed that φ, ψ ∈ Ppos(N ; c1, c2), it follows that both spectral
factors are upper bounded by

√
c2 and therefore, the last inequality becomes

1
2
√

c2
‖φ−ψ‖∞ ≤ ‖φ+ −ψ+‖∞, which shows that the constant CS1 in (10.66)

is given by CS1 = 1
2
√

c2
. Thus, the lower bound in (10.66) is independent of the

degree N of the polynomials. In fact, this lower bound holds for all spectral
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densities φ (not just polynomials) which possess a spectral factorization and
which are upper bounded by c2.

Of much more interest is the upper bound on ‖φ+ − ψ+‖∞. Since we
consider trigonometric polynomials P(N) of degree N and since this space
has a finite dimension, it is clear that for every fixed N there exists a constant
CS2(N) < ∞ such that (10.66) holds.

However, does this constant depend on the degree N? If so, how does
CS2(N) depend on N? The following theorem gives an upper bound on the
error ‖φ+ − ψ+‖∞ in the spectral factor as a function of the degree N of the
spectra and as a function of the error ‖φ−ψ‖∞ in the given spectra. The same
theorem shows that there exist spectra for which this upper bound is almost
achieved. Based on this theorem, lower and upper bounds on the continuity
constant CS2(N) are derived in a subsequent corollary.

Theorem 10.51. Let S : φ �→ φ+ be the spectral factorization mapping on
the space Ppos(N ; c1, c2). Then for all φ, ψ ∈ Ppos(N ; c1, c2) holds

‖φ+ − ψ+‖∞ ≤
(

K1 + K2 log
1

sin π
2N

)
‖φ − ψ‖∞ (10.67)

with the constants

K1 =
1√
c1

+
2√
c1

(
c2

c1

)3/2

and K2 =
1

π
√

c1

(
c2

c1

)1/2

.

Moreover, to every δ > 0 there exist polynomials Φ,Ψ ∈ Ppos(N ; c1, c2) such
that

‖Φ+ − Ψ+‖∞ ≥
(

1
2π log(N + 1) − δ

)
‖Φ − Ψ‖∞ . (10.68)

The first part of this theorem shows that the error ‖φ+ − ψ+‖∞ in the
spectral factor growth proportional with the error ‖φ−ψ‖∞ in the given data,
and that the proportionality constant CS2 in (10.66) depends on the degree
N of the spectral data. For large degrees N , one has CS2 ∼ log N . The second
statement of Theorem 10.51 shows that this statement is tight with respect to
the growth behavior proportional to log N , because it shows that there exist
polynomials Φ,Ψ ∈ PN for which the error ‖φ+ − ψ+‖∞ also grows at least
proportional to log N . This observation is summarized in

Corollary 10.52. Let S be the spectral factorization mapping on the space
Ppos(N ; c1, c2). Then for the continuity constant CS2 = CS2(N) in (10.66)
holds

1
2π log(N + 1) ≤ CS2(N) ≤ K1 + K2 log N (10.69)

with the same constants K1 and K2 as in Theorem 10.51.
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The proof of Theorem 10.51 will show that the polynomials Φ,Ψ for which
(10.68) holds are very simple polynomials (the constant polynomial with a
small error). It should be noted that the lower bound in (10.68) holds only
for a sufficiently small error ‖Φ−Ψ‖∞ since the error in the spectral factor is
always upper bounded by ‖Φ+ − Ψ+‖∞ ≤ ‖Φ+‖∞ + ‖Ψ+‖∞ ≤ 2

√
c2 for all

Φ, Ψ which are upper bounded by c2. Therefore (10.68) holds only if Φ and
Ψ satisfy

‖Φ − Ψ‖∞ ≤ 2
√

c2

1
2π log(N + 1) − δ

.

It is clear that Theorem 10.51 also implies the following, already known result
(cf. Theorem 10.32).

Corollary 10.53. The spectral factorization mapping is discontinuous on
C(T).

Proof (Theorem 10.51). Without loss of generality, we assume that 0 < c1 <
1 < c2 throughout this proof.
a) Lower bound : First, the second statement of the theorem is proved. Let
N and 0 < ε < 1 be fixed and consider the two trigonometric polynomials
Φ,Ψ ∈ Ppos(N) given by

Φ(eiθ) = 1 + ε
2 gN (eiθ) and Ψ(eiθ) = 1 − ε

2 gN (eiθ) (10.70)

with the trigonometric polynomial gN ∈ P(N) given by

gN (eiθ) = 1
π

∑N
k=1

sin(kθ)
k .

The polynomial gN has the following three properties [92, Chapter II.9 and
Chapter V.1], which are needed subsequently:

i) |gN (eiθ)| ≤ 1 for all θ ∈ [−π, π)

ii) gN (eiθ) ≥ 0 for all θ ∈ [0, π]

iii) gN (e−iθ) = −gN (eiθ) for all θ ∈ [0, π]

From the first of these properties follows that

‖Φ − Ψ‖∞ ≤ ε and 1 − ε
2 ≤ |Φ(eiθ)|, |Ψ(eiθ)| ≤ 1 + ε

2 .

Thus the two spectra Φ and Ψ are separated at most by ε from each other
in the infinity norm, and we have to investigate the separation of the cor-
responding spectral factors. To this end, we consider first the difference
|Φ+(ζ) − Ψ+(ζ)| at points ζ ∈ T on the unit circle

|Φ+(ζ) − Ψ+(ζ)| = |Ψ+(ζ)|
∣∣∣∣Φ+(ζ)
Ψ+(ζ)

− 1
∣∣∣∣ (10.71)
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Next, we write the ratio of the spectral factors as

Φ+(ζ)
Ψ+(ζ)

= A(ζ) e−i 12 β(ζ) (10.72)

in which A(ζ) =
√

Φ(ζ)/Ψ(ζ) and β(ζ) = 2 [arg Ψ+(ζ) − arg Φ+(ζ)] are the
modulus and the phase of Φ+/Ψ+, respectively. Now we consider (10.71) at
the point ζ = 1 and use the representation (10.72) for the ratio of the spectral
factors. By the definition of Φ and Ψ, it holds that Φ(1) = Ψ(1) = 1 and
therefore A(1) = 1. Therewith, the difference (10.71) at ζ = 1 becomes

|Φ+(1) − Ψ+(1)| =
∣∣∣e−i 12 β(1) − 1

∣∣∣ = 2
∣∣∣sin(β(1)

4

)∣∣∣ . (10.73)

The function β has to be analyzed next. By the definition (10.8) of the spectral
factor, it holds that

Φ+(z)
Ψ+(z)

= exp
(

1
4π

∫ π

−π

[
log Φ(eiτ ) − log Ψ(eiτ )

] eiτ + z

eiτ − z
dτ

)
.

Comparing this expression with (10.72), it is clear that the function β is equal
to the conjugate Poisson integral (5.6) of log Ψ − log Φ:

β(reiθ) = − 1
2π

∫ π

−π

[
log Φ(eiτ ) − log Ψ(eiτ )

]
Qr(θ − τ) dτ . (10.74)

Using the series expansion log(1 − x) = −
∑∞

k=1
xk

k and the definition of F
and G, the argument of the above conjugate Poisson integral becomes

log Φ(eiτ ) − log Ψ(eiτ ) = −
∞∑

k=1

1
k

[
ε
2 gN (eiτ )

]k (
[−1]k − 1

)

= 2
∞∑

k=0

1
2k+1

[
ε
2 gN (eiτ )

]2k+1
. (10.75)

Note that because | ε2 gN (eiτ )| ≤ ε
2 < 1, the above series converges uniformly on

[−π, π). Therefore, (10.75) can be used in (10.74) and the order of integration
and summation can be exchanged. This gives for β the expression

β(reiθ) = −2
∞∑

k=0

1
2k + 1

(ε

2

)2k+1

(Q g2k+1
N )(reiθ)

= −ε (QgN )(reiθ) + ε3R(ε, reiθ)

where for the second line, the sum was split up into its first term (k = 0) and
all the remaining terms (k = 1, 2, . . . ) which are collected in the function

R(ε, z) := −1
4

∞∑
k=1

1
2k + 1

(ε

2

)2k−2

(Q g2k+1
N )(z) . (10.76)
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The conjugate Poisson integral (QgN )(z) of our special function gN can easily
be determined. It is given by (QgN )(reiθ) = − 1

π

∑N
k=1 rk cos(kθ)

k . Therewith,
the function β becomes

β(reiθ) =
ε

π

N∑
k=1

rk cos(kθ)
k

+ ε3R(ε, reiθ) . (10.77)

Next we analyze the term R(ε, z) given in (10.76) at the real axis, i.e. for
z = r. In particular, it will be shown that R(ε, r) is positive and bounded for
all 0 ≤ ε < 1 and all 0 ≤ r ≤ 1. Recall first that gN is an odd function and that
0 ≤ gN (ζ) ≤ 1 for all ζ ∈ T. From this follows that g2k+1

N is an odd function
and that g2k+1

N (ζ) ≤ gN (ζ) for all k ≥ 0 and for all ζ ∈ T. Furthermore, note
that also the conjugate Poisson kernel Q(τ), given in (5.4), is an odd function
and that Q(τ) is non-negative for all τ ∈ [0, π]. Therewith, it follows that

−(Q g2k+1
N )(r) ≤ 1

π

∫ π

0

gN (eiτ )
2r sin τ

1 − 2r cos τ + r2
dτ

for all k ≥ 0. Therein, the right hand side is equal to −(Q gN )(r) =
∑N

k=1
rk

k .
Using this in expression (10.76) for the remainder R(ε, z), one obtains

0 ≤ R(ε, r) ≤ 1
4

∞∑
k=1

1
2k + 1

(ε

2

)2k−2

︸ ︷︷ ︸
≤D1

N∑
k=1

rk

k

where the first sum converges uniformly for all ε/2 < 1 and it is clear that
there exists a universal upper bound D1 (independent of ε) for this sum.
Consequently, we have that

0 ≤ R(ε, r) ≤ D1 (1 + log N) .

The last inequality shows that R(ε, r) is bounded for any fixed N and for all
0 ≤ ε ≤ 1 and all 0 ≤ r ≤ 1.

We come back to (10.73). Together with (10.77) one obtains that

|Φ+(1) − Ψ+(1)| = 2
∣∣∣sin [ ε

4π

∑N
k=1

1
k + ε3

4 R(ε, 1)
]∣∣∣ . (10.78)

Next, we use that sin x ≥ x − 1
6 x3 for all x > 0. Therewith, the previous

equality becomes

|Φ+(1) − Ψ+(1)| ≥ ε

2π

N∑
k=1

1
k
− O(ε3)

≥
[

1
2π log(N + 1) − O(ε2)

]
‖Φ − Ψ‖∞ .
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Since ‖Φ+ − Ψ+‖∞ ≥ |Φ+(1) − Ψ+(1)|, this shows that

lim inf
‖Φ−Ψ‖∞→0

‖Φ+ − Ψ+‖∞
‖Φ − Ψ‖∞

≥ 1
2π

log(N + 1) .

Thus, to every δ > 0 there exist trigonometric polynomials Φ,Ψ ∈ P(N ; c1, c2)
such that (10.68) holds.

b) Upper bound : We consider two arbitrary spectra φ, ψ ∈ PN (c1, c2) with
‖φ − ψ‖∞ ≤ ε. Because of the maximum principle for analytic functions, the
maximum of the modulus of φ+−ψ+ is attained on the unit circle T. Therefore,
we consider |φ+(ζ) − ψ+(ζ)| for ζ ∈ T. A straight forward calculation shows
that

|φ+(ζ) − ψ+(ζ)| ≤ 1
2
√

c1
|φ(ζ) − ψ(ζ)| +

√
c2

2 |β(ζ)| (10.79)

wherein the function β(z) = 2 [arg φ+(z) − arg ψ+(z)] is defined as in part a)
of this proof. Next, we derive an upper bound for the modulus of β(ζ). By
the definition (10.8) of the spectral factor, β is equal to the Hilbert transform
(5.19) of the function h := log φ − log ψ.

β(eiθ) = lim
δ→0

1
2π

∫
δ<|θ−τ |≤π

h(eiτ )
1

tan θ−τ
2

dτ .

Note that because φ and ψ are trigonometric polynomials in Ppos(N ; c1, c2),
the functions log φ, log ψ, and h are 2π-periodic and infinitely differentiable.
Therefore, the Hilbert transform of h exists for all θ ∈ [−π, π), i.e. the above
integral converges for δ → 0. We are going to find an upper bound on the
Hilbert transform of h. To this end, the integral in the Hilbert transform is
split up into an integration over all τ with |θ − τ | < π/N and an integration
over all τ with |θ−τ | ≥ π/N . Since the kernel cot θ−τ

2 is an odd function with
respect to τ = θ, we can subtract the constant h(eiθ) from the argument of
the first integral (i.e. the integration over |θ − τ | < π

N ) without changing its
value. All this, together with the triangle inequality, gives

∣∣β(eiθ)
∣∣ ≤ 1

2π

∫
|θ−τ |≤ π

N

∣∣h(eiτ ) − h(eiθ)
∣∣∣∣tan θ−τ

2

∣∣ dτ

︸ ︷︷ ︸
=:T1

+
1
2π

∫
π
N ≤|θ−τ |≤π

∣∣h(eiτ )
∣∣∣∣tan θ−τ

2

∣∣ dτ

︸ ︷︷ ︸
=:T2

(10.80)

for the modulus of β. First the second term T2 is analyzed. To this end, we
note that

∣∣h(eiθ)
∣∣ =
∣∣∣∣log

φ(eiθ)
ψ(eiθ)

∣∣∣∣ ≤ 1
c1

‖φ − ψ‖∞ for all θ ∈ [−π, π)
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using the relation | log(x/y)| ≤ 1
c |x− y| with c = min(x, y), which may easily

be verified5. With this upper bound on |h(eiθ)| one obtains for T2

T2 ≤ 1
c1

‖φ − ψ‖∞
1
π

∫ π

π
N

dτ

tan(τ/2)
=

2
πc1

‖φ − ψ‖∞ log
1

sin π
2N

. (10.81)

Next T1 is analyzed. The mean value theorem states, that there exists a ξ ∈
[min(τ, θ),max(τ, θ)] such that

∣∣h(eiτ ) − h(eiθ)
∣∣ = ∣∣h′(eiξ)

∣∣ |τ − θ|. This shows
that

h′(eiξ) =
φ′(eiξ)

[
ψ(eiξ) − φ(eiξ)

]
+ φ(eiξ)

[
φ′(eiξ) − ψ′(eiξ)

]
φ(eiξ)ψ(eiξ)

.

Now we apply Bernstein’s inequality for trigonometric polynomials [92, Chap-
ter X, §3]. It states that for a trigonometric polynomial φ of order N and with
|φ(eiξ)| ≤ c2 for all ξ, the modulus of the first derivative with respect to ξ is
upper bounded by |φ′(eiξ)| ≤ N c2. Therefore

|φ′(eiξ) − ψ′(eiξ)| ≤ N |φ(eiξ) − ψ(eiξ)| ≤ N ‖φ − ψ‖∞ ≤ N ε

and one obtains finally
∣∣h′(eiξ)

∣∣ ≤ 2 c2
c2
1

N ‖φ − ψ‖∞. Therewith the upper
bound for T1 becomes

T1 ≤ c2

c2
1

N ‖φ − ψ‖∞
2
π

∫ π/N

0

τ

tan τ/2
dτ ≤ 4

c2

c2
1

‖φ − ψ‖∞ (10.82)

using that the function τ/ tan(τ/2) is positive and bounded on [0, π/N ]. If the
results (10.82) and (10.81) for T1 and T2 are plugged into (10.80), one obtains

|β(eiθ)| = 2 | arg ψ+ − arg φ+| ≤
2
c1

(
2 c2

c1
+

1
π

log
1

sin π
2N

)
‖φ − ψ‖∞

for all φ, ψ ∈ P(N). If this bound is used in (10.79) one obtains (10.67). �

Proof (Corollary 10.52). a) Lower bound : The upper bound in (10.66) should
hold for all φ, ψ ∈ Ppos(N ; c1, c2). This implies that

sup
φ,ψ∈Ppos(N ;c1,c2)

φ�=ψ

‖φ+ − ψ+‖∞
‖φ − ψ‖∞

≤ CS2(N) . (10.83)

In Theorem 10.51, it was shown that to every δ > 0 there exist polynomials
Φ,Ψ ∈ Ppos(N ; c1, c2) such that

1
2π log(N + 1) − δ ≤ ‖Φ+ − Ψ+‖∞

‖Φ − Ψ‖∞
. (10.84)

5 Without loss of generality, assume that x ≥ y and set x = α y for some α ≥ 1.
Then log(x/y) = log α ≤ α − 1 = x/y − 1 = (x − y)/y ≤ (x − y)/c.
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It is clear that the right hand side of (10.84) is always lower or equal than
the left hand side of (10.83). Therefore, combining (10.83) and (10.84) gives
1
2π log(N +1)− δ ≤ CS2(N), and since δ was arbitrary, one obtains the lower
bound in (10.69) for δ → 0.

b) Upper bound : The upper bound for CS2 follows directly from the first
statement (10.67) of Theorem 10.51. Using that sin x ≥ 2

π x for all x ≤ π/2
gives the upper bound in (10.69). �

10.5 Approximation of Spectral Densities

If the given spectral density φ is a trigonometric polynomial, there exists
a variety of different efficient methods for the determination of the spectral
factorization of φ (see e.g. the overview in [78]). Therefore, it seems to be very
natural to proceed as follows in the case of non-polynomial spectra: First one
approximates the given spectral density φ by a trigonometric polynomial φN

of a certain degree N . Secondly, one determines the spectral factorization of
φN which will (hopefully) give an approximation (φN )+ of the true spectral
factor φ+. Following this approach, the first question which arises is how do
we approximate φ by the polynomial φN? Such approximation methods

AN : φ �→ φN

of the spectral density φ are investigated in the present section in some detail.
Thereby, we consider only the approximation of spectral densities of com-
pletely regular stochastic sequences of a certain order α (cf. Section 10.1),
and we consider the approximation only in the infinity norm ‖ · ‖∞.

In order to obtain a simple representation of the approximation operator
AN , it is desirable that AN be linear. Another requirement on the approxima-
tion method is certainly that the approximation error ‖φ − φN‖∞ converges
to zero as fast as possible as the degree N of the approximation polynomial
is increased. This would allow the use of approximation polynomials φN with
small degrees, which are usually easier to factorize. Assume that φ is the spec-
tral density of a completely regular stochastic sequence of order α and assume
that φ has no zeros on T. Then it follows from Theorem 10.4 that φ is a real
valued function in the Hölder-Zygmund class Λα(T). For such densities, it was
shown in Corollary 2.9 that there exists a constant Cα, which dependents only
on the order α, such that

BN [φ] = min
φN∈PN

‖φ − φN‖∞ ≤ Cα N−α . (10.85)

Thus, the maximal rate of convergence of ‖φ − φN‖∞ is determined by the
order α. The higher the order α of the stochastic sequence X, the faster the
best possible approximation error decreases as the degree of the approxima-
tion polynomial is increased. However, the mapping φ �→ φN that gives the
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optimal approximation polynomial φN is non-linear and unknown, in general.
Nevertheless, it was shown in Theorem 2.7 that the approximation of φ by its
delayed arithmetic mean σN,N (φ) shows almost (up to a factor of at most 4)
the optimal convergence behavior according to (10.85).

Besides the desired linearity and fast convergence of the approximation
operation, there is also a more stringent property which the approximation
operator must satisfy. Since the approximated spectrum φN should be fac-
torized, it has to be non-negative. Consequently, the approximation operator
AN : φ �→ φN needs to have the property that it always maps non-negative
spectral densities onto non-negative polynomials φN . But this property of AN

may to be at odds with the desired linearity and fast convergence of AN . This
is what we want to investigate in the present section.

To make the statement precise, we require that the approximation operator
AN : Cpos(T) → P(N) satisfies the following four properties.

(A) Linearity : We require that the approximation operator AN is linear, i.e.

AN (aφ + b ψ) = a(ANφ) + b(ANψ)

for all spectral densities φ, ψ and for arbitrary complex numbers a and
b. The linearity of AN ensures a sufficiently simple calculation of the ap-
proximate spectrum φN .

(B) Translation invariance: If we write φτ (eiθ) := φ(ei(θ+τ)) for the spectrum
obtained from φ by a translation6 by τ , then AN should satisfy the relation

(ANφτ )(eiθ) = (ANφ)(ei(θ+τ)) .

(C) Positivity : To ensure that the approximated spectrum φN = AN φ pos-
sesses a spectral factorization, we have to require that AN maps every
non-negative spectrum φ onto a non-negative trigonometric polynomial.
Thus, from φ ≥ 0 should always follow that ANφ ≥ 0. This condition on
AN is obviously a minimal necessary requirement which cannot be abdi-
cated since it arises from the desired application of spectral factorization.

(D) Optimal rate of convergence: The optimal rate is determined by the regu-
larity of the stochastic sequence. We therefore require that that for every
completely regular sequence of order α > 0 with spectral density φ the
approximation error satisfies

‖φ − ANφ‖∞ ≤ C N−α (10.86)

with a certain constant C independent of φ.

6 Since the spectra φ is defined on T, and therefore 2π-periodic, the translation is
equivalent to a rotation of φ on the unit circle.
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10.5.1 General form of the approximation method

At the beginning, we derive the general from of the approximation operator
AN which is imposed by the required properties (A), (B), and (C)7. To this
end, we consider for k = 0, 1, 2, . . . the functions

ck(eiθ) := cos(k θ) and sk(eiθ) := sin(k θ) , θ ∈ [−π, π) .

A simple calculation shows that

cτ
k(eiθ) = cos(kτ) ck(eiθ) − sin(kτ) sk(eiθ)

sτ
k(eiθ) = cos(kτ) sk(eiθ) + sin(kτ) ck(eiθ) .

Next, we apply the approximation operator AN onto these two functions. By
the required linearity and translation invariance of AN follows that

(ANck)(ei(θ+τ)) = cos(kτ) (AN ck)(eiθ) − sin(kτ) (AN sk)(eiθ)
(ANsk)(ei(θ+τ)) = cos(kτ) (AN sk)(eiθ) + sin(kτ) (AN ck)(eiθ) .

If these equations are evaluated at θ = 0, one obtains the two equations

(ANck)(eiτ ) = γk(N) cos(kτ) − δk(N) sin(kτ)

(ANsk)(eiτ ) = δk(N) cos(kτ) + γk(N) sin(kτ)
(10.87)

with the constants γk(N) := (ANck)(1) and δk(N) := (ANsk)(1) which are
uniquely determined by the approximation operator AN . Thus γk(N) and
δk(N) are just the Fourier coefficients of the trigonometric polynomials ANck

and ANsk. By the definition of the approximation operation, ANφ is a trigono-
metric polynomial with a degree of at most N for every continuous spectrum
φ. Therefore equations (10.87) imply that

γk(N) = 0 and δk(N) = 0 for all k > N . (10.88)

Now let now φ ∈ C(T) be an arbitrary spectral density with the Fourier
series representation

φ(eiθ) =
a0

2
+

∞∑
k=1

ak cos(kθ) + bk sin(kθ)

=
a0

2
c0(θ) +

∞∑
k=1

ak ck(eiθ) + bk sk(eiθ) (10.89)

Applying the approximation operator onto φ and using the properties (10.87)
and (10.88) gives the following general form of ANφ

7 The following deviation is a simple variation of the so called Zygmund-
Martsinkevich-Berman identity, which may be found in [54, Chapter VII].
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(ANφ)(θ) =
a0

2
γ0(N)

+
N∑

k=1

[ak γk(N) + bk δk(N)] cos(kθ) + [bk γk(N) − ak δk(N)] sin(kθ) .

(10.90)

We summarize this result in the following lemma.

Lemma 10.54. Let AN : C(T) → P(N) be an arbitrary linear and translation
invariant approximation operator and let φ ∈ C(T) be an arbitrary continu-
ous function of the form (10.89). Then there exist uniquely defined constants
γk(N) and δk(N), k = 1, 2, . . . , N such that ANφ is equal to (10.90).

If the Fourier coefficients (2.1) of the function φ are plugged into the
general representation (10.90) of the operator AN , one obtains an integral
representation of AN

(ANφ)(eiθ) =
1

2π

∫ π

−π

φ(eiτ )AN (θ − τ) dτ , θ ∈ [−π, π) (10.91)

with the kernel

AN (θ) = γ0(N) + 2
N∑

k=1

γk(N) cos(kθ) − δk(N) sin(kθ) . (10.92)

Thus, the kernel AN is a trigonometric polynomial. For simplicity we assume
in the following that all δk(N) are equal to zero such that the approximation
methods are assumed to have the form

(ANφ)(eiθ) =
a0

2
γ0(N) +

N∑
k=1

γk(N) [ak cos(kθ) + bk sin(kθ)] . (10.93)

and such that the kernel AN in the integral representation (10.91) is a pure
cosine polynomial of the form

AN (θ) = γ0(N) + 2
N∑

k=1

γk(N) cos(kθ) . (10.94)

This restriction to cosine polynomials will result in no limitation on our re-
sults. We will see later that the optimal kernel (with respect to the convergence
rate) is a purely cosine polynomial. Moreover, among all positive kernels (see
below) the cosine polynomials always possess such an optimality behavior
among all trigonometric polynomials [37]. Notice that the particular approx-
imation methods considered in Section 2.1 had (of course) the form (10.94)
(compare with 2.7) where the sequence {γk}N

k=0 was called the window func-
tion of the particular approximation method.
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Up to now, we used only the linearity (A) and the translation invariance
(B) to obtain the representation (10.91) of AN . Next, it is shown that from
requirement (C) on AN , namely that φ(θ) ≥ 0 always implies (ANφ)(θ) ≥ 0
for all θ ∈ [−π, π), follows that the kernel AN of AN is positive.

Lemma 10.55. Let AN be a linear operator of the form (10.91) such that
φ ≥ 0 always implies that ANφ ≥ 0. Then

AN (τ) ≥ 0 for all τ ∈ [−π, π) .

Proof. This lemma is proved indirectly by contradiction. Assume that there
exists a point τ0 ∈ [−π, π) such that AN (τ0) < 0. Since AN is continuous,
there exists a whole interval I = [τ1, τ2] with τ0 ∈ I and a constant c0 > 0
such that AN (τ) ≤ −c0 < 0 for all τ ∈ I. Next, consider for an arbitrary
μ > 0 the function φμ defined by

φμ(eiτ ) :=

⎧⎪⎨
⎪⎩

μ , τ1 + 1
μ ≤ −τ ≤ τ2 − 1

μ

μ−1 , −τ /∈ I

linear , elsewhere

and such that φμ(eiτ ) is continuous for all τ ∈ [−π, π). This function satisfies
the conditions of the lemma, and we consider the approximation (ANφμ)(eiθ)
at the point θ = 0. If the integration in (10.91) is split up into an integral
over I and an integral over [−π, π)\I one obtains that

(ANφμ)(1) =
1

2π

∫
I

φμ(e−iτ )AN (τ) dτ +
1

2π

∫
[−π,π)\I

φμ(e−iτ )AN (τ) dτ

≤ −c0 μ |τ1 − τ2| +
1

μπ

∫
[−π,π)\I

AN (τ) dτ .

Since the integral of AN in the last line is finite, the last inequality shows
that for sufficiently large μ the approximation (ANφμ)(θ) becomes negative
at θ = 0 which contradicts the assumption that φ ≥ 0 always implies that
ANφ ≥ 0. Therefore, AN (τ) ≥ 0 for all τ ∈ [−π, π). �

10.5.2 No free lunch with positive approximation methods

All approximation methods AN with properties (A), (B), and (C) have the
form (10.91) with a positive kernel AN . The question arises whether there
exists an approximation method which satisfies all four requirement (A), (B),
(C), and (D). Before we answer this question, the existence of a non-linear
method with the properties (B), (C), and (D) is investigated. To this end,
we define ANφ as the polynomial φN ∈ P(N) which achieves the best ap-
proximation, i.e. which minimizes ‖φ − φN‖∞. Thus ANφ is defined by the
relation
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inf
p∈P(N)

‖φ − p‖∞ = ‖φ − ANφ‖∞ . (10.95)

Since, according to Proposition 2.6, for every continuous function φ there
exists a polynomial φN = ANφ ∈ P(N) such that (10.95) holds, ANφ is
well defined. It is clear that AN is translation invariant and that it satisfies
property (D). However, AN does not satisfy property (C), i.e. ANφ needs
not be non-negative for every non-negative φ. For this reason, we define the
operator

(A+
Nφ)(eiθ) := (ANφ)(eiθ) + ‖φ − ANφ‖∞ , θ ∈ [−π, π) . (10.96)

The so defined non-linear approximation operator has all three desired prop-
erties. This is shown by the following theorem.

Theorem 10.56. The operator A
+
N defined by (10.96) possesses property (B),

(C), and (D).

Proof. Since AN is translation invariant, so is A
+
N and therefore it satisfies

(B). Moreover, for any spectral density φ of a regular stochastic process of
order α holds that

‖φ − A
+
Nφ‖∞ = ‖φ − ANφ + ‖φ − ANφ‖∞ ‖∞ ≤ 2 ‖φ − ANφ‖∞ ≤ 2C1

Nα
.

This shows that AN satisfies property (D). Furthermore, by the definition of
A

+
N it obviously holds that

(A+
Nφ)(eiθ) = φ(eiθ) − φ(eiθ) + (ANφ)(eiθ) + ‖φ − ANφ‖∞

= φ(eiθ)︸ ︷︷ ︸
>0

+ ‖φ − ANφ‖∞ −
[
φ(eiθ) − (ANφ)(eiθ)

]
︸ ︷︷ ︸

≥0

> 0

for every φ > 0 and for all θ ∈ [−π, π). Therefore, AN satisfies property (C).
�

Thus there exists a non-linear approximation method with properties (B),
(C), and (D). Does there also exist a linear method with these three proper-
ties? The following theorem gives a negative answer, in general.

Theorem 10.57. There exists no approximation method with properties (A),
(B), (C) and which satisfies property (D) for completely regular spectral den-
sities of order α > 2. However, there exist approximation methods which sat-
isfies the properties (A), (B), (C), and (D) for spectral densities with an order
of regularity α ≤ 2.

Comparing Theorem 10.56 and 10.57 one sees that an approximation
method with properties (A), (B), (C) will not necessarily achieve the op-
timal approximation rate according to the regularity of the stochastic process
(cf. (10.86)). Only for processes with a regularity α ≤ 2 does such a method
always exist. However, if one gives up the linearity (A) of the method, the
optimal convergence rate can always be achieved for every completely regular
process of order α > 0 (cf. Theorem 10.56).
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Example 10.58. The method of the de-la-Vallée-Poussion mean (cf. Sec-
tion 2.1.3) of the Fourier series is a method which satisfies properties (A),
(B), and (D), but which is non-positive. Therefore this method may not be
applied in the present context of spectral factorization.

Proof (Theorem 10.57). For 0 < μ < 1, we consider the spectral density
φμ(eiθ) := 1 − μ cos(θ), which is positive and infinitely often differentiable,
and we consider an approximation method (10.91) with a positive kernel of
the form (10.94). Without loss of generality we assume that γ0(N) is normal-
ized to 1. From (10.90), one obtains that (ANφμ)(eiθ) = 1 − μγ1(N) cos(θ).
Therewith, the approximation error becomes

‖φμ − ANφμ‖∞ = μ [1 − |γ1(N)|] . (10.97)

It was shown by L. Fejér [37] that the first coefficient γ1(N) of every positive
trigonometric polynomial of the form (10.94) with γ0(N) = 1 satisfies

|γ1(N)| ≤ cos
π

N + 2
. (10.98)

Moreover, there exists exactly one trigonometric polynomial of the
form (10.94) for which equality holds in (10.98), and it was pointed out by
G. Szegö [84], that there exists no other trigonometric polynomial of the more
general form (10.92) for which equality holds in (10.98)8. The window function
for which equality holds in (10.98) is given by

γk(N) =

∑N−k
n=0 sin

[
(n+1)π
N+2

]
sin
[

(n+k+1)π
N+2

]
∑N

n=0 sin2
[

(n+1)π
N+2

] , k = 0, 1, . . . , N (10.99)

and the corresponding kernel (10.94) in closed form becomes (cf. [25, Sec. 1.6])
equal to

KN (θ) =
2 sin2

(
π

N+2

)
N + 2

(
cos(N + 2) θ

2

cos θ − cos π
N+2

)2

. (10.100)

This kernel is usually called Fejér-Korovkin. Using (10.98) in (10.97) shows
that

‖φμ − ANφμ‖∞ ≥ μ

(
1 − cos

π

N + 2

)
≥ μ

2
π2

(N + 1)2
(10.101)

which proves that even for the very smooth (infinitely often differentiable)
trigonometric polynomial φμ only a convergence behavior can be achieved by
which the approximation error decreases proportional to N−2.

If on the other hand, the stochastic process has a regularity of 0 ≤ α ≤
2, the approximation method (10.91) with the kernel (10.100) achieves the
optimal approximation behavior proportional to N−α [25]. �
8 This justifies by hindsight the restriction to cosine kernels of the form (10.94).
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Remark 10.59. In the above proof, it was shown that for the special density
φμ = 1−μ cos θ the approximation behavior is never better than (10.101) and
in particular never better than N−2, even though the density φμ is infinitely
often continuously differentiable. If the densities are only twice continuously
differentiable it holds [25, Sec. 1.6] that

lim
N→∞

N2
[
φ(θ) − (Aopt

N φ)(θ)
]

= π2

2 φ′′(θ)

in which A
opt
N denotes the optimal approximation method with the Fejér-

Korovkin kernel (10.100). Clearly, also in this case, the optimal approxima-
tion behavior is proportional to N−2. Only for the trivial case that φ(θ) is
constant for all θ does the approximation error become zero, independent of
the approximation degree N . However, this behavior holds also for the more
general case that φ is differentiable and that φ′ satisfies a generalized Lipschitz
condition (a Zygmund condition) [25], i.e. for spectra for which there exists a
constant C2 such that

|φ′(θ + τ) + φ′(θ − τ) − φ′(θ)| ≤ C2 |τ | for all θ ∈ [−π, π) .

It might be interesting to compare the optimal positive method given by
the window (10.99) and by the kernel (10.100) with approximation methods
studied in Section 2.1. In Fig. 10.2 and Fig. 10.3 we show again the window
function {γk(N)}∞k=0 and the corresponding kernel AN , given by (10.94), for
the de-la-Vallée-Poussin and Fejér approximation method, together with the
optimal Fejér-Korovkin kernel used in the proof of Theorem 10.57. This Figure
shows that the window function of the de-la-Vallée-Poussin method has a
passband property, i.e. the γk(N) = 1 for all k ≤ K(N) for a certain natural
number K(N) ≤ N (In the case of the de-la-Vallée-Poussin window is K =
K(N) = N/2 for even N .). Thus, the first K(N) Fourier coefficients are
unchanged by the approximation operator. Methods with such a passband
property will give the exact approximation for all polynomials with a degree
less or equal to K(N), i.e. ANp = p for all p ∈ P (K). As a further consequence,
methods with a passband property always achieve the optimal convergence
rate according to the smoothness of the given density φ. To see this, let φ
be a spectral density of a complete regular stochastic sequence of order α.
Moreover, assume for simplicity that K = K(N) = cN with an arbitrary
constant 0 < c < 1 and denote with pK ∈ P(K) that polynomial which
achieves the best approximation BK [φ] of φ. Then it holds that

‖φ − ANφ‖∞ ≤ ‖φ − pK‖∞ + ‖AN (pK − φ)‖∞

≤ (1 + ‖AN‖) ‖φ − pK‖∞ ≤ (1 + ‖AN‖) Cα

cα

1
Nα

using that ANpK = pK and property (10.85) of the best approximation. This
shows that approximation methods with a passband property achieve the
optimal convergence rate (according to the regularity of the spectral den-
sity) as long as they are uniformly bounded, i.e. as long as there exists a
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Fig. 10.2. Window functions corresponding to the de-la-Vallée-Poussin, Fejér, and
Fejér-Korovkin approximation method of order N = 100.

Fig. 10.3. De-la-Vallée-Poussin, Fejér, and Fejér-Korovkin kernel for the order N =
20.
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constant C0 < ∞ such that ‖AN‖ ≤ C0 for all N . However, the result of
Fejér (10.98), which was used in the proof of Theorem 10.57, shows that a
positive approximation method can never have a passband property because
the first coefficient γ1(N) of the window function is always smaller or equal
to cos π

N+2 < 1 if the zeroth coefficient γ0(N) is normalized to 1. As the
above proof shows, this particular decrease of the window function accord-
ing to (10.98) in the neighborhood of 0 is responsible for the approximation
behavior according to (10.101). The Fejér kernel, on the other hand, is a pos-
itive kernel (cf. Fig. 10.3). Therefore, it possesses no passband property (cf.
Fig. 10.2). Moreover, Fig. 10.2 shows that the window function of the Fejér
method decreases faster than the Fejér-Korovkin window in the neighborhood
of zero. As a consequence, the convergence rate will be worse compared with
the Fejér-Korovkin method. Indeed, it can be shown [92, Chap. III,§ 13.32]
that approximation error using the Fejér means decreases at most proportional
t0 N−1 even for densities with a regularity of α > 1.

Assume that the given spectral density φ belongs to a certain subset Cω(T)
of smooth functions on T, characterized by a majorant ω (cf. Section 1.3). Is it
true that also the approximation φN = ANφ belongs to the same class Cω(T)
of smooth functions? The affirmative answer to this question is given by the
next lemma, which will be needed in the next section.

Lemma 10.60. Let AN be an approximation operator of the form (10.91)
with a positive kernel AN , let ω be an arbitrary majorant, and let φ ∈ Cω(T)
be a spectral density. Then the approximation φN = (ANφ) also belongs to
Cω(T).

Proof. By the definition (10.91) of the approximation operator, one has that

∣∣φN (eiτ ) − φN (eiθ)
∣∣ =

∣∣∣∣ 1
2π

∫ π

−π

[
φ(ei(τ−x)) − φ(ei(θ−x))

]
AN (x) dx

∣∣∣∣
≤ 1

2π

∫ π

−π

∣∣∣φ(ei(τ−x)) − φ(ei(θ−x))
∣∣∣AN (x) dx

(a)

≤ 1
2π

∫ π

−π

ω(|τ − θ|)AN (x) dx = γ0(N)ω(|τ − θ|)

where for (a) it was used that φ ∈ Cω(T). This inequality proves that φN ∈
Cω(T). �

10.6 Spectral Factorization of Approximated Spectra

Assume that φ is a given spectral density and that φN = ANφ is an approx-
imation of degree N obtained by a linear, translation invariant, and positive
approximation method AN . In the previous section it was studied how the
approximation error ‖φ − φN‖∞ depends on the degree N and how the con-
vergence rate is influenced by the regularity of the density φ. Now, let (φN )+
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be the spectral factor of the approximated spectrum φN . What can be said
about the error ‖φ+−(φN )+‖∞ between the spectral factor φ+ and its approx-
imation (φN )+. We saw in Section 10.3 that the spectral factorization mapping
is discontinuous on the space of all continuous functions with respect to the
supremum norm. Thus, it seems not to be obvious at the outset whether the
error ‖φ+ − (φN )+‖∞ even converges for N → ∞. Although we consider here
the spectral factorization only on the subset of smooth, i.e. regular spectral
densities, one might expect at least a certain loss in the convergence rate due
to the additional spectral factorization. However, in this section we will derive
an upper bound on the error ‖φ+− (φN )+‖∞ which will show that this loss in
convergence rate (if it exists) cannot be to large, i.e. ‖φ+ − (φN )+‖∞ shows
a similar dependency on the approximation degree N as ‖φ − φN‖∞.

As before, AN : φ �→ φ+ denotes an approximation operator (10.91) with
the properties (A), (B), (C) defined in the previous section. We start with
the observation that the convergence rate of the error ‖φ+ − (φN )+‖∞ in the
spectral factor can never be better than the convergence rate of ‖φ−φN‖∞, i.e.
the error ‖φ+−(φN )+‖∞ in the spectral factor never decreases faster than the
approximation error ‖φ− φN‖∞ of the spectral density itself. In particular it
decreases never faster than proportional to N−2 as the approximation degree
N is increased, even for spectral densities with a regularity larger than 2.
Thus, we obtain a lower bound on the error in the spectral factor.

Theorem 10.61 (Lower bound). Let φ be a spectral density of a completely
regular stochastic sequence of order α > 0 and let φN = ANφ be an approx-
imation of φ by a method with the properties (A), (B), and (C). Then the
approximation error ‖φ+ − (φN )+‖∞ of the spectral factor never decreases
faster than proportional to N−2, i.e. there exists a constant C0 such that

‖φ+ − (φN )+‖∞ ≥ C0 N−2 .

Proof. Using the relation φ = φ+ φ+ for the spectral factors, a simple calcu-
lation shows that

‖φ − φN‖∞ ≤ ‖φ+ φ+ − φ+ (φN )+‖∞ + ‖φ+ (φN )+ − (φN )+ (φN )+‖∞
= (‖φ+‖∞ + ‖(φN )+‖∞) ‖φ+ − (φN )+‖∞ .

Theorem 10.57 (and its proof) show that there exists a constant C1 such that
every approximation method with property (A), (B), and (C) and for all
densities φ with a regularity α ≥ 2 always ‖φ−φN‖∞ ≥ C1/N

2 holds, and for
densities with a regularity α < 2 the approximation error is lower bounded by
C2/N

α with a certain constant C2. Altogether, this shows that there exists
a constant C0 such that C0/N

2 ≤ ‖φ+ − (φN )+‖∞ for every approximation
method with properties (A), (B), (C). �

Thus, the convergence rate for the error in the spectral factor ‖φ+ −
(φN )+‖∞ cannot be better than the rate for the approximation error ‖φ −
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φN‖∞ of the spectrum itself. The question is whether the approximation
behavior of the spectral factor is even worse due to spectral factorization
mapping, applied to the approximation φN . Note that for continuous spec-
tral densities φ ∈ C(T) and in view of Theorem 10.32, which states that
every continuous spectral density is a discontinuous point of the spectral fac-
torization mapping, it is not even clear whether the approximation series
(φN )+ = SφN = SAN φ always converges to the desired spectral factor
φ+ as N tends to infinity. However, for smooth spectral densities φ ∈ Cω(T)
with a weak regular majorant ω of type 1, we are able to show that the ap-
proximation series of the spectral factor converges to the actual φ+, and the
following theorem presents an upper bound on the error ‖φ+ − (φN )+‖∞ in-
duced by the approximation of the original spectrum. This upper bound of
the error ‖φ+ − (φN )+‖∞ decreases slightly slower than the approximation
error ‖φ − φN‖∞ as N increases.

Theorem 10.62 (Upper Bound). Let ω be a weak regular majorant of
type 1, let φ ∈ Cω(T) with 0 < c1 ≤ φ(ζ) ≤ c2 < ∞ for all ζ ∈ T, and
let φN = ANφ be an approximation of φ by a method with properties (A),
(B), and (C). Then there exist constants C1, C2, and C3, which depend on
c1, c2, and ω, such that

‖φ+ − (φN )+‖∞ ≤ (C1 + C2 log N) ‖φ − φN‖∞ + C3 ω( π
N ) . (10.102)

This upper bound on the convergence rate holds for all smooth densities φ
with a weak regular majorant of type 1. This includes in particular the spectra
of all completely regular stochastic processes with an order 0 < α ≤ 1. Thus,
the error in the spectral factor ‖φ+−(φN )+‖∞ depends on a term ω(π/N) de-
termined by the majorant ω of the spectra which approaches zero as N tends
to infinity, and on a term which depends linearly on the approximation error
‖φ − φN‖∞ and which is proportional to log N . We know from Theorem 2.8
that the convergence rate of ‖φ − φN‖∞ is upper bounded by ω(1/N). Thus,
if an optimal approximation method is used the upper bound on the con-
vergence rate of the spectral factor is proportional to ω(1/N) log N , i.e. it is
worse by the factor log N compared with the approximation error ‖φ−φN‖∞.
However, the last section showed that due to the required positivity of the
approximation operator, the optimal convergence rate of ‖φ−φN‖∞ may not
be achievable. In this case, the convergence rate of ‖φ+ − (φN )+‖∞ is de-
termined by the term log N ‖φ − φN‖∞. Thus it is determined by the used
approximation method of φ but again, it is slightly worse by the factor log N .

If for an actual approximation method AN , an upper bound on the ap-
proximation error ‖φ−φN‖∞ is known, one may express (10.102) in terms of
the smoothness of the spectra and in terms of the approximation degree N
only.

Example 10.63. Assume that the Fejér mean (cf. Sect. 2.1.2) is used as ap-
proximation method, and assume that the spectra are Hölder continuous of
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order 0 < α < 1, which means that the majorant ω is given by ω(τ) = τα.
For this case, it is known [92, Chap. 3, § 13.32] that there exists a constant
C such that ‖φ− φN‖∞ ≤ K ω(1/N) = K N−α for all φ ∈ Cω(T). Therewith,
the upper bound for the error in the spectral factor becomes

‖φ+ − (φN )+‖∞ ≤ [K1 + K2 log N ] N−α

with certain constants K1, K2. Thus, the upper bound is worse than the lower
bound by the factor log N .

Proof (Theorem 10.62). On the unit circle T, the spectral factor can be written
as φ+(eiθ) =

√
φ(eiθ) ei arg φ+(eiθ). Therefore, a straight forward calculation

shows that
∣∣φ+(eiθ) − (φN )+(eiθ)

∣∣ ≤
∣∣∣∣
√

φ(eiθ) −
√

φN (eiθ)
∣∣∣∣+
√

φN (eiθ)
∣∣∣eip(eiθ) − 1

∣∣∣
wherein p(eiθ) = arg φ+(eiθ)− arg(φN )+(eiθ). Next, it is used that |eip − 1| =
2 | sin(p/2)| and that |

√
φ−

√
φN | = |φ−φN |/(

√
φ+

√
φN ). Together with the

maximum modulus principle for analytic functions one obtains that

‖φ+ − (φN )+‖∞ ≤ 1
2
√

c1
‖φ − φN‖∞ +

√
c2 ‖p‖∞ . (10.103)

By definition (10.8) of the spectral factor, the function p is given by the Hilbert
transform of the function h(eiθ) := 1

2 [log φ(eiθ) − log φN (eiθ)], i.e

p(eiθ) = lim
ε→0

1
2π

∫
ε<|θ−τ |≤π

h(eiτ )
1

tan θ−τ
2

dτ . (10.104)

Since we assumed that φ ∈ Cω(T) with a weak regular majorant ω,
Lemma 10.60 shows that φN ∈ Cω(T), and since φ ≥ c1 > 0 the approxi-
mation φN is also strictly positive, by the assumption on the approximation
operator AN . It is easily verified, therefore, that also log φ and log φN and
consequently also h belong to Cω(T). Next we apply Lemma 5.10 which states
that the Hilbert transform of every function f ∈ Cω(T) with a weak regu-
lar majorant ω of type 1 exists and is continuous. Therefore, the integral in
(10.104) exists for ε → 0 and p is a continuous function on T. Next, we derive
an upper bound on |p|. To this end, the integral (10.104) is split up into an
integration over all τ with |θ − τ | < π/N and an integration over all τ with
|θ − τ | ≥ π/N . Since the kernel 1/ tan θ−τ

2 is an odd function with respect
to τ = θ, we can subtract the constant h(θ) from the argument of the first
integral (i.e. the integration over |θ − τ | < π/N) without changing its value.
All this, together with the triangle inequality gives

∣∣p(eiθ)
∣∣ ≤ 1

2π

∫
|θ−τ |≤ π

N

∣∣h(eiτ ) − h(eiθ)
∣∣∣∣tan θ−τ

2

∣∣ dτ

︸ ︷︷ ︸
=:T1

+
1
2π

∫
π
N ≤|θ−τ |≤π

∣∣h(eiτ )
∣∣∣∣tan θ−τ

2

∣∣ dτ

︸ ︷︷ ︸
=:T2

(10.105)
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for the modulus of p. First, we analyze the second term T2. Using the relation
| log(x/y)| ≤ (1/c)|x− y| in which c = min(x, y) and which is easily verified9,
one finds that

T2 ≤ 1
2 c1

‖φ − φN‖∞
1
2π

∫ π

π
N

dτ

tan(τ/2)

≤ 1
2π c1

‖φ − φN‖∞ log(2N/π) . (10.106)

To obtain an upper bound for T1, we notice that
∣∣h(eiτ ) − h(eiθ)

∣∣ ≤ 1
2

∣∣log φ(eiτ ) − log φ(eiθ)
∣∣+ 1

2

∣∣log φN (eiτ ) − log φN (eiθ)
∣∣ .

Therewith, T1 is upper bounded by

T1 ≤ 1
4π

∫
|θ−τ |≤ π

N

∣∣log φ(eiτ ) − log φ(eiθ)
∣∣∣∣tan θ−τ

2

∣∣ dτ+

+
1
4π

∫
|θ−τ |≤ π

N

∣∣log φN (eiτ ) − log φN (eiθ)
∣∣∣∣tan θ−τ

2

∣∣ dτ .

Since φ ∈ Cω(T) with φ(ζ) ≥ c1 > 0 for all ζ ∈ T, log φ also belongs to
Cω(T). Moreover, Lemma 10.60 shows that φN as well as log φN are elements
of Cω(T). Therewith, the upper bound for T1 becomes

T1

(a)

≤ 1
4π

∫
|θ−τ |≤ π

N

2ω(|τ − θ|)∣∣tan θ−τ
2

∣∣ dτ
(b)

≤ 1
π

∫ π/N

0

ω(x)
tan x

2

dx

(c)

≤ 2
π

∫ π/N

0

ω(x)
x

dx
(d)

≤ 2
π C ω( π

N ) . (10.107)

Therein, (a) follows from log φ, log φN ∈ Cω(T). For (b) it was used that the
integrand is an even function, and (c) follows from the inequality tan x ≥ x.
Since ω is assumed to be weak regular, one obtains (d) with a certain constant
C. Finally, one has to use the upper bounds (10.107) and (10.106) in (10.105).
Then (10.103) together with (10.105) gives the desired upper bound (10.102).
�

Sampled Data

We still investigate the approximative determination of the spectral factor φ+

of a spectral density φ by approximating first φ by a trigonometric polynomial
φN and determine afterward the spectral factor (φN )+ of the approximative
polynomial φN . Up to now, we assumed implicitly that the density φ(eiθ)
9 See footnote on page 207.
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is given on the whole unit circle, i.e. for all θ ∈ [−π.π). However, if a digital
computer is used to calculate the approximation φ �→ φN , only a finite number
of sampling points φ(eiθk), k = 1, 2, . . . ,M can be taken into account for the
determination of φN and (φN )+. Whereas in the case that φ is know on the
whole unit circle, the error in the spectral factor could be controlled by the
approximation degree N (cf. Theorem 10.62), will will show now that this is
no longer possible if φ is known only at discrete sampling points.

For technical reasons, the spectral factorization mapping is considered only
on the space of all spectral φ ∈ C(T) which posses a continuous spectral factor
φ+ ∈ C(T), i.e. on the space

B(T) = {φ ∈ C(T) : φ+ ∈ C(T)} .

Clearly, this is no restriction on the generality, because if the spectral factor
φ+ is not continuous, a uniform approximation of φ+ would not be possible,
anyway.

Since φ is given only on a discrete sampling set, we can no longer use the
approximation methods of Section 10.5. Instead, we consider in the following
sequences {AN}N∈N of linear approximation operators, with the following
three properties

(a) Concentration on a discrete sampling set : Let N ∈ N and let SN ={
θ1[N ], θ2[N ], · · · , θM(N)[N ]

}
be the set of sampling points θk[N ] ∈

[−π, π), k = 1, 2, · · · ,M(N). Then for every two densities φ1 and φ2

which coincide on SN , i.e. for which

φ1(eiθk[N ]) = φ2(eiθk[N ]) for all k = 1, 2, · · · ,M(N)

the approximation operators AN should give the same result, i.e ANφ1 =
ANφ2.

(b) Positivity : If the spectrum φ is non-negative at all sampling points,
i.e. φ(eiθk[N ]) ≥ 0, k = 1, 2, · · · ,M(N), the approximation φN (eiθ) =
(ANφ)(eiθ) should be non-negative at all θ ∈ [−π, π).

(c) Perfect approximation on B(T): The approximation method should be
perfect for all functions in B(T), i.e.

lim
N→∞

‖ANφ − φ‖∞ = 0 for all φ ∈ B(T) .

This is a minimum requirement for any useful approximation method. If
the approximation ANφ already does not converge to φ, one cannot expect
that (ANφ)+ to converge to φ+. Note that by the Theorem of Banach-
Steinhaus, this assumption on the approximation method implies that the
norm of operators AN are uniformly bounded.

Because the approximation operator AN is assumed to be concentrated on
the sampling set SN , one can give a simple canonical form of every AN . To
every N > 0, we consider functions ηk,N ∈ B(T) with the property that
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ηk,N (θl[N ]) =
{

1, l = k
0, l �= k

and define the functions Gk,N (θ) := (ANηk,N )(eiθ) with k = 1, 2, · · · ,M(N)
and for θ ∈ [−π, π). Therewith, it is clear that the approximation of an arbi-
trary spectral density φ ∈ B(T) can be written as

(ANφ)(eiθ) =
∑M(N)

k=1 φ(eiθk[N ])Gk,N (θ)

and from the required positivity (b) of AN follows that Gk,N (θ) is non-negative
and satisfies the Paley-Wiener condition. Additionally, we require that the
constant function 1(eiθ) = 1 for all θ ∈ [−π, π) is always approximated by the
constant function, i.e. we require that (AN 1)(eiθ) = 1 for all θ ∈ [−π, π) and
for all N . This property of AN clearly implies that

∑M(N)
k=1 Gk,N (θ) = 1 for

all θ and N , and that

(ANφ)(eiθ) ≥ mink φ(eiθk[N ]) and (ANφ)(eiθ) ≤ maxk φ(eiθk[N ])

for all θ ∈ [−π, π).
With these preparations we can prove the following theorem, which shows

that the error ‖φ+ − (φN )+‖∞ in the spectral factor cannot be controlled by
the approximation degree N if the given density is known only on a discrete
sampling set.

Theorem 10.64. Let {AN}N∈N be a sequence of linear discrete approxima-
tion operators with properties (a), (b), and (c). Then there exists no constant
C < ∞ such that

‖φ+ − (ANφ)+‖∞ ≤ C ‖φ − ANφ‖∞ (10.108)

for every φ ∈ B(T) with ‖φ‖∞ ≤ 1 and with φ(eiθ) ≥ c1 > 0.

Remark 10.65. Thus the relative error in the spectral factor is unbounded in
B(T), i.e. if one defines the set Bpos := {φ ∈ B(T) : φ(eiθ) > 0 , ‖φ‖∞ ≤ 1},
then the theorem shows that

lim
N→∞

sup
φ∈Bpos

‖φ+ − (ANφ)+‖∞
‖φ − ANφ‖∞

= ∞ . (10.109)

To see this, assume that (10.109) does not hold. Then there would exist a
constant K and a subsequence Nk such that

lim
k→∞

sup
φ∈Bpos

‖φ+ − (ANk
φ)+‖∞

‖φ − ANk
φ‖∞

≤ K .

But then we could define the sequence Bk := ANk
, k = 1, 2, . . . of opera-

tors which possess all properties (a), (b), and (c) assumed in the above Theo-
rem 10.64. However, this would imply that ‖φ+−(Bkφ)+‖∞ ≤ K ‖φ−Bkφ‖∞
for all φ ∈ Bpos and for all k, which contradicts the statement of Theo-
rem 10.64.
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The theorem shows that even if we have an approximation operator AN

which approximates the function φ as close as desired from the sampling
points, it will in general not be possible to control the error in the spectral
factor by the number N of sampling points. Thus, assume ε is the maximal
allowed error in the spectral factor. Then it is not possible to find a finite
number N of sampling points such that ‖φ+ − (ANφ)+‖∞ < ε. There always
exists functions φ ∈ B(T) which violate the desired error bound.

Proof (Theorem 10.64). Let c1 > 0 be an arbitrary but fixed constant. In
contradiction to the statement of the theorem, we assume that there exists a
constant C < ∞ such that (10.108) holds for all φ ∈ C∞(T) with ‖φ‖∞ ≤ 1
and φ ≥ c1. Note that C∞(T) is a dense subset of B(T). Then it holds for all
such functions φ ∈ C∞(T) that

lim sup
N→∞

‖φ+ − (ANφ)+‖∞
‖φ − ANφ‖∞

≤ C . (10.110)

Let ε > 0 and let g ∈ C∞(T) such that the function ψ := 1 − ε g satisfies
ψ(eiθ) ≥ c1 for all θ ∈ [−π, π). Clearly, for sufficiently small ε this can always
be achieved. Since AN is linear and because we assumed that AN 1 = 1, it
holds that ANψ = 1 − ε (ANg) = 1 − ε gN where gN = ANg. Therewith, it is
clear that ‖ψ − ψN‖∞ = ε ‖g − gN‖∞ and consequently

‖ψ+ − (ψN )+‖∞
‖ψ − ψN‖∞

=
1
ε

‖ψ+ − (ψN )+‖∞
‖g − gN‖∞

. (10.111)

Moreover, for the error in the spectral factor holds

‖ψ+ − (ψN )+‖∞ ≥ 2
π

√
c1 ‖p‖∞ − 1

2
√

c1
‖ψ − ψN‖∞ (10.112)

in which p := arg(ψN )+ − arg ψ+. This lower bound is obtained in a similar
way as the upper bound (10.103) in the proof of Theorem 10.62 but using the
lower bound | ‖x‖ − ‖y‖ | ≤ ‖x + x‖ of the triangle inequality instead of the
upper bound ‖x + y‖ ≤ ‖x‖ + ‖y‖. Combining (10.112) with (10.111) gives

‖ψ+ − (ψN )+‖∞
‖ψ − ψN‖∞

≥ 2
√

c1

ε π

‖p‖∞
‖g − gN‖∞

− 1
2
√

c1
.

Together with the assumption (10.110), one obtains the inequality

π

2
√

c1

(
C +

1
2
√

c1

)
‖g − gN‖∞ ≥ 1

ε
‖p‖∞ . (10.113)

Next we analyze the term ‖p‖∞. By the definition of the spectral factor, the
function p is equal to the Hilbert transform of h := (log ψN − log ψ)/2 (cf.
also the proof of Theorem 10.62). By the definition of ψ and using the power
series expansion of the logarithm, one obtains that
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h(eiτ ) =
1
2
[log ψN (eiτ ) − log ψ(eiτ )] =

1
2

∞∑
k=1

1
k

εk[gk(eiτ ) − gk
N (eiτ )]

=
1
2

ε [g(eiτ ) − gN (eiτ )] + ε2 RN (ε, τ)

in which the rest term RN is given by

RN (ε, τ) =
1
2

[
1
ε

log
1 − ε gN (eiτ )
1 − ε g(eiτ )

− g(eiτ ) + gN (eiτ )
]

=
1
2

∞∑
k=2

1
k

εk−2[gk(eiτ ) − gk
N (eiτ )] .

Therewith, the function p can be written as

p(eiθ) =
1
2π

∫ π

−π

h(eiτ )
tan θ−τ

2

dτ

=
ε

4π

∫ π

−π

g(eiτ ) − gN (eiτ )
tan θ−τ

2

dτ +
ε2

2π

∫ π

−π

RN (ε, τ)
tan θ−τ

2

dτ . (10.114)

Since g ∈ C∞(T) the Hilbert transforms g̃, g̃N exist. Also the Hilbert transform
of RN exists. To see this, we consider the first derivate of RN

R′
N (ε, τ) =

1
2 ε

[
g′(eiτ )

1 − ε g(eiτ )
− g′N (eiτ )

1 − ε gN (eiτ )
− g′(eiτ ) + g′N (eiτ )

]
.

Since g ∈ C∞(T), this shows that there exists a constant C2 such that
|R′

N (ε, τ)| ≤ C2 independent on ε and τ . Thus, RN (ε, ·) is Lipschitz con-
tinuous, which implies that it is Hölder continuous of an order α < 1, i.e.
‖RN (ε, ·)‖Λα

< ∞. Therefore, it follows from Theorem 5.11 that the mapping
f �→ f̃ is continuous on Λα. Consequently, there exists a constant C3 such
that

‖R̃N (ε, ·)‖∞ ≤ ‖R̃N (ε, ·)‖Λα
≤ C3 ‖RN (ε, ·)‖Λα

.

All this show that the integrals on the right hand side of (10.114) converge
such that the function p becomes

p(θ) = ε
2 [g̃(θ) − g̃N (θ)] + ε2 R̃N (ε, θ) .

Moreover, from (10.114) follows for its norm

1
ε ‖p‖∞ = 1

2‖[g̃(θ) − g̃N (θ)] + 2εRN (ε, ·)‖∞ .

Therewith, inequality (10.113) becomes for ε → 0 equal to

π√
c1

(
C +

1
2
√

c1

)
‖g − gN‖∞ ≥ ‖g̃ − g̃N‖∞ . (10.115)
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Since g ∈ C∞(T) ⊂ B(T) the approximation gN = ANg converges to g as N
tends to infinity by the required property (c) of the approximation method
AN . Therefore, the last inequality gives

0 = lim sup
N→∞

π√
c1

(
C +

1
2
√

c1

)
‖g − gN‖∞ ≥ lim sup

N→∞
‖g̃ − g̃N‖∞ ,

which shows that lim supN→∞ ‖g̃ − g̃N‖∞ = 0 for all g ∈ C∞(T).
Now, define the linear operator

(ÃNg)(eiθ) := (H[ANg])(eiθ) = g̃N (eiθ) , θ ∈ [−π, π)

which is concentrated on the sampling set SN . Such operators were studied in
Section 9. The above deduction shows that under the assumption (10.110), the
series ÃNg converges to the Hilbert transform g̃ for every function g ∈ C∞(T).
However, it was shown in Corollary 9.8 that for every such operator series AN ,
there exists a dense subset X in B(T) such that

lim sup
N→∞

‖ÃNf‖∞ = ∞ (10.116)

for all f ∈ X . Since also C∞(T) is a dense subset of B(T), it follows from
(10.116) that there exists a function g∗ ∈ C∞(T) ∩ X with ‖g∗‖∞ ≤ 1 and
with ‖g̃∗‖∞ ≤ 2 such that to every K > 0 there exists an N0 such that
‖g̃∗N0

‖∞ = ‖ÃN0g
∗‖∞ ≥ K, and by the triangle inequality therefore holds

that

‖g̃∗ − g̃∗N0
‖∞ ≥

∣∣ ‖g̃∗N0
‖∞ − ‖g̃∗‖∞

∣∣ ≥ K − 2 .

Since by property (c) of the approximation operator, the norms ‖AN‖ are
uniformly bounded, it holds also that

‖g∗ − g∗N0
‖∞ ≤ ‖g∗‖∞ + ‖g∗N0

‖∞ ≤ 1 + ‖AN0‖ ≤ C3 .

Using these inequalities in (10.115), one obtains that

π√
c1

(
C +

1
2
√

c1

)
(1 − ‖AN0‖) ≥ K − 2 .

Since K can be chosen arbitrarily, whereas the left hand side is a fixed con-
stant, this gives a contradiction for sufficiently large K. Therefore, the assump-
tion (10.110) cannot hold. This proves that there exists no constant C < ∞
such that (10.108) holds for all φ ∈ C∞(T) with φ ≥ c1. �

Notes

There exist numerous excellence textbooks for an introduction to stochastic
sequences e.g. [29, 33, 69, 81]. The characterization of completely regular
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stochastic sequences in terms of the regularity coefficients (10.5) goes back to
Gelfand and Yaglom [42], following by a series of publications [46, 47, 49, 50,
56, 77] which yields the characterization given in Theorem 10.4.

The spectral factorization goes back to Wiener and Hopf [89]. Later it was
applied by Wiener to estimation and prediction problems [88]. Nowadays it
is a common tool in applied mathematics and engineering and is covered in
many different textbooks, e.g. [29, 38, 53]. A survey of algorithms for spec-
tral factorization may be found in [78]. Theorem 10.7 is due to L. Fejér and
M. Riesz [37].

The S–algebras, we used in this chapter, are similar to the so called de-
composing Banach algebras introduces by Clancey and Gohberg [27]. Peller
and Khrushchev gave in [66] a similar systems of axioms as in Def. 10.11.
These axioms were also used by Jacob and Partington in [52].

The discontinuity of the spectral factorization mapping on L∞, C(T) was
shown by Anderson [4] but it follows also from the counterexample given by
Treil [85]. A detailed investigation of the continuity and boundedness of the
spectral factorization mapping on decomposing Banach algebras was done by
Jacob and Partington in [52]. In particular, they showed that the spectral
factorization is continuous on every decomposing Banach algbera. The un-
boundedness of the spectral factorization on decomposing Banach algebras
was proved in [17] using ideas from [52]. The results concerning the spectral
factorization on S-algebras were presented in [21]. The two particular exam-
ples discussed in some detail in Section 10.3, i.e. the factorization on C(T)
and W, were taken from [19] and [10], respectively. Lemma 10.35 is a gen-
eralization of a classical result of Wiener [87]. He showed the statement of
Lemma 10.35 for the special function G(z) = 1/z.

The error bounds for polynomial data in Section 10.4 were derived in [15]
for the Wiener algebra and in [14, 16] Lemma 10.46 due to van der Corput
appeared in [86]. The polynomials (10.54) used in Section 10.4.1 are also
known as chirp sequences or sequences with quadratic phase. They appear for
example in design signals with a flat power spectrum and with a low peak
value [80]. The presentation in Section 10.5 and 10.6 is basically taken from
[13].

Appendix – Proof of Lemma 10.37

This appendix contain the proof of Lemma 10.37. This proof is based on
four preparatory lemmas. These lemmas (especially the first two) are almost
classical and can also be found elsewhere, in slightly different form (see e.g.
[35]).

Lemma 10.66. Let f, g ∈ W and let sn(z) := zn, z ∈ D, then

limn→∞ ‖f + sn g‖W = ‖f‖W + ‖g‖W . (10.117)
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A similar results holds of course for n → −∞.

Remark 10.67. From the above lemma follows for every sequence {fk}k∈Z of
functions in W with

∑
k ‖fk‖W < ∞ immediately that

limn→∞
∥∥∑∞

k=−∞ sk·n fk

∥∥
W =

∑∞
k=−∞ ‖fk‖W .

Proof. Let f(ζ) =
∑∞

k=−∞ f̂(k) ζk and g(ζ) =
∑∞

k=−∞ ĝ(k) ζk where ζ ∈ T be
two arbitrary functions in W then it is clear that (sn g)(ζ) =

∑∞
k=−∞ gk−n ζk.

Using the triangle inequality, one obtains

‖f + sn g‖W ≤
∑∞

k=−∞(|f̂(k)| + |ĝ(k − n)|) = ‖f‖W + ‖g‖W

It remains to show that equality is achieved as n → ∞. To this end, let
ε > 0 then there exists a constant N0 = N0(ε) such that

∑∞
k=N0+1 |f̂(k)| < ε

and
∑−(N0+1)

k=−∞ |f̂(k)| < ε and
∑∞

k=N0+1 |ĝ(k)| < ε and
∑−(N0+1)

k=−∞ |ĝ(k)| < ε.
Moreover, for such a fixed N0 = N0(ε) there exists an n0 = n0(ε) such that
for all |k| < N0

|ĝ(k − n)| <
ε

2N0 + 1
for all n ≥ n0(ε) .

Now, we consider for n ≥ n0(ε) the obvious equation

‖f + sn g‖W =
−(N0+1)∑
k=−∞

|f̂(k) − ĝ(k − n)|
︸ ︷︷ ︸

T1

+

+
N0∑

k=−N0

|f̂(k) − ĝ(k − n)|

︸ ︷︷ ︸
T2

+
∞∑

k=N0+1

|f̂(k) − ĝ(k − n)|

︸ ︷︷ ︸
T3

(10.118)

and analyze the three terms on the right hand side separately. From the choice
of N0, one obtains for the first summand that

T1 ≤
∑−(N0+1)

k=−∞ |f̂(k)| +
∑−(N0+1+n)

k=−∞ |ĝ(k)| ≤ 2ε .

For T2, the triangle inequality gives

T2 ≥
∣∣∣∑N0

k=−N0
|f̂(k)| −

∑N0
k=−N0

|ĝ(k − n)|
∣∣∣ .

Now, the choice of N0 shows that the first sum on the right hand side is
larger or equal than ‖f‖W − 2ε whereas the choice of n > n0 shows that∑N0

k=−N0
|ĝ(k−n)| ≤ (2N0+1) ε

2 N0+1 . Therewith one obtains the lower bound

T2 ≥ ‖f‖W − 3ε
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for T2. With similar arguments, the triangle inequality and the choice of N0

and n0 show that

T3 ≥
∣∣∣∑∞

k=N0+1−n |ĝ(k)| −
∑∞

k=N0+1 |f̂(k)|
∣∣∣ ≥ ‖g‖W − 2ε .

Using the bounds for T1, T2, and T3 in (10.118), one obtains that

‖f + sn g‖W ≥ ‖f‖W + ‖g‖W − 7ε .

Since ε was chosen arbitrary, this proves (10.117). �

Lemma 10.68. Let f, g ∈ W and let fn(z) := f(zn). Then

limn→∞ ‖fn g‖W = ‖f‖W ‖g‖W .

Proof. For this proof, we use Lemma 10.66 and the functions sn(z) := zn.
Note that ‖sn‖W = 1 for every n ∈ N. Let f(ζ) =

∑∞
k=−∞ f̂(k) ζk, ζ ∈ T

then

fn(ζ) g(ζ) =

( ∞∑
k=−∞

f̂(k) ζk·n

)
g(ζ) =

∞∑
k=−∞

hk(ζ) ζk n =
∞∑

k=−∞
sk·n(ζ)hk(ζ)

with hk(ζ) := f̂(k) g(ζ) ∈ W, for which ‖hk‖W = |f̂(k)| ‖g‖W . Now Re-
mark 10.67 to Lemma 10.66 is applied. This gives

limn→∞ ‖fn g‖W = limn→∞ ‖
∑∞

k=−∞ sk·nhk‖W

=
∑∞

k=−∞ ‖hk‖W =
∑∞

k=−∞ |f̂(k)| ‖g‖W = ‖f‖W ‖g‖W .

�

Lemma 10.69. To every ε > 0 and A > 0 there exists a real valued function
u ∈ W such that ‖u‖W = 1 and such that

‖eiAu‖W > (1 − ε) eA . (10.119)

Proof. Let u0(ζ) := 1
2 (ζ +ζ−1), which simply means that u0(eiω) = cos ω, and

define

u(ζ) = 1
N

∑N
k=1 u0(ζm(k)) (ζ ∈ T)

with certain integers m(1) < m(2) < · · · < m(N) which properties are char-
acterized subsequently. It is clear that for the so defined function u holds that
‖u‖W = 1, and that

exp(iAu(z)) = exp
(
i A
N

∑N
k=1 u0(ζm(k))

)
=
∏N

k=1 exp
(
i A
N u0(ζm(k))

)
.
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Now, Lemma 10.68 shows that to every ε > 0 there exist sufficiently large
integers m(1) < · · · < m(N) such that

‖eiA u‖W ≥ (1 − ε)1/2
(
‖ei

A
N u0‖W

)N
. (10.120)

On the other hand, applying the Taylor expansion of the exponential function,
one has that

‖ei A
N u0 − (1 + i A

N u0)‖W = ‖
∑∞

k=2
1
k! (i

A
N u0)k‖W

=
∑∞

k=2
1
k! (

A
N )k ≤ ( A

N )2
∑∞

k=0
1
k! (

A
N )k .

Together with the triangle inequality, the last relation gives

‖ei A
N u0‖W ≥ ‖1 + i A

N u0‖W − ( A
N )2 eA/N = 1 + A

N − ( A
N )2 eA/N

and consequently

‖ei A
N u0‖N

W ≥
(
1 + A

N − ( A
N )2 eA/N

)N ≥ (1 − ε)1/2 eA

for sufficiently large N . Finally, we have to combine this last inequality with
(10.120) to obtain (10.119). �

Lemma 10.70. Let {fn}n∈N and {gn}n∈N be two sequences of uniformly
bounded functions in an arbitrary Banach algebra B for which holds that
limn→∞ ‖fn − gn‖B = 0. Then for every k ∈ N holds that

lim
n→∞

‖(fn)k − (gn)k‖B = 0 . (10.121)

Proof. The proof is done by induction. For k = 1, the statement is trivial.
Assume that (10.121) holds for k − 1, then the triangle inequality and the
continuity of the multiplication on B gives

‖(fn)k − (gn)k‖B ≤ ‖fn(fk−1
n − gk−1

n )‖B + ‖gk−1
n (fn − gn)‖B

≤ ‖fn‖B‖fk−1
n − gk−1

n ‖B + ‖gn‖k−1
B ‖fn − gn‖B .

The right hand side goes to zero for n → ∞ since (10.121) holds for k− 1 and
for k = 1, and because ‖fn‖B and ‖gn‖B are uniformly bounded. �

After these preparations, we are able to prove Lemma 10.37.

Proof (Lemma 10.37). Let δ > 0, set ε = δ/2, and choose a B > log(2/μ) > 0,
then Lemma 10.69 shows that there exists a u ∈ W with ‖u‖W = 1 such that

‖ei B N u‖W ≥ (1 − ε) eB N .

With this u, we define the function Q(z) := eiBu(z). Since B and u are real,
it follows that ‖Q‖∞ = 1. Then, for all 1 ≤ k ≤ N holds that
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(1 − ε) eB N ≤ ‖ei B k u‖W ‖ei B (N−k) u‖W ≤ ‖ei B k u‖W eB(N−k)

For k = 1 this gives ‖Q‖W ≥ (1 − ε) eB , and for all other k, one has

‖Qk‖W ≥ (1 − ε) eB k ≥ (1 − ε) ‖Q‖k
W . (10.122)

Next, we define for an arbitrary n > 0 the function

Gn := P+(sn Q) (10.123)

in which sn(z) = zn and where P+ denotes the Riesz projection which cuts
of the left side Fourier series, i.e. if Q(ζ) =

∑∞
k=−∞ Q̂(k) ζk, one has

(P+[sn Q])(ζ) = P+(
∑∞

k=−∞ Qk−n ζk) =
∑∞

k=0 Qk−n ζk .

By this definition of Gn ∈ W+, it is clear that limn→∞ ‖Gn − snQ‖W = 0,
and together with Lemma 10.68 one obtains that

limn→∞ ‖Gn‖W = limn→∞ ‖snQ‖W = ‖Q‖W .

This last result together with Lemma 10.70 implies also that

limn→∞ ‖(Gn)k‖W = ‖Qk‖W .

for all 1 ≤ k ≤ N . Therefore, there exists an n0 = n0(ε,N) such that

‖(Gn)k‖W ≥ (1 − ε) ‖Qk‖W (10.124)

for all 1 ≤ k ≤ N and for all n > n0 .
Now, we fix n > n0(ε,N) and define G := Gn = snQ. From ‖Q‖∞ = 1

follows that ‖G‖∞ = 1 and inequality (10.122) shows that

‖G‖W ≥ (1 − ε) eB ≥ 1
2 eB .

Let μ > 0 as given by the lemma and define the function H := G ‖G‖−1
W . By

this definition, it is clear that ‖H‖W = 1, and from the above lower bound of
‖G‖W and due to the choice B > log(2/μ), it holds that ‖H‖∞ ≤ μ. Moreover,
for its L1-norm holds

‖Hk‖W = 1
‖G‖k

W
‖Gk‖W ≥ (1 − ε) ‖G‖k

W = (1 − δ
2 ) (10.125)

using (10.124) and (10.122). The so defined function H ∈ W+ has already
the desired properties, apart from property (10.46). However, the desired g is
obtained from this H. To this end, define for an arbitrary m ≥ 0 the function
Hm(z) := zm H(z) which belongs to W+ with ‖Hm‖∞ = 1. Next we consider
the expression

∑N
k=1 bk (Hm)k =

∑N
k=1 zk·m [bk Hk] .
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Applying Lemma 10.66 to this expression, one obtains that

limm→∞ ‖
∑N

k=1 bk (Hm)k‖W =
∑N

k=1 bk‖Hk‖W .

This shows that there exists an m0 = m0(δ,N, b1, · · · , bN ) such that for all
m > m0

‖
∑N

k=1 bk (Hm)k‖W ≥
∑N

k=1 bk‖Hk‖W − δ
2

∑N
k=1 bk

= (1 − δ)
∑N

k=1 bk

using (10.125) to obtain the last line. Thus, choose m > m0 and set g := Hm

gives the desired function. �
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The numbers that follow the symbols indicate the page numbers where these
symbols where defined.

General Notations

χA indicator function of set A
i =

√
−1 imaginary unit

�(z) real part of z
�(z) imaginary part of z
z complex conjugate of z

f� 169 parahermitian conjugate of f : f�(z) = f(1/z)
f̂(n) 15 n-th Fourier coefficients of a function f
sgn(k) 16 signum function
BN [f ] 24 best approximation of a function f of degree N
⊕ 100 direct sum

Sets

C complex plane
C

N N -dimensional complex Euclidean space
C

M×N set of all complex matrices with M rows
and N columns

N natural numbers
D = {z ∈ C : |z| < 1} unit disk in C

T = {z ∈ C : |z| = 1} unit circle in C

D = D ∪ T closed unit disk in C

Dr(a) = {z ∈ C : |z − a| < r} open disk in C with center a and radius r
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Function Spaces

A(D) 52 disk algebra
B+ 99 causal subspace of the Banach space B
C(T) 5 continuous functions on T

Cω(Ω), Cω,0(Ω) 11 smooth functions on Ω
Hp 30 Hardy space of complex functions
Hp(H) 46 Hardy space of function with values in the

Hilbert space H
�p, �p

+ 4 p-summable complex sequences
Lp 5 p-integrable functions on T

Λα 14 Hölder-Zygmund class
LipK 13 Lipschitz continuous functions
P(N) 24 trigonometric polynomials of degree N
W 53 Wiener algebra

Operators

OH, O+
H 47 Multiplication operator with symbol H

R 72 Right shift
H 89 Hilbert transform
I Identity operator
P+ 103 Riesz projection
P 82 Poisson integral
Q 82 conjugate Poisson integral
R 81 Herglotz Riesz transform
S 170 Spectral factorization mapping
Tϕ 111 Toeplitz operator with symbol ϕ

Functional analytic notions

Let X ,Y arbitrary normed spaces and T a map from X into Y.

B(X ,Y) 8 set of linear bounded operators from X to Y
D(T) 7 domain of T

R(T) 7 the range of T

N (T) 7 null space (the kernel) of T

X ∗ 9 the dual space of X (the set of all bounded linear
functionals on X )

〈·, ·〉H 4 inner product on the Hilbert space H
‖ · ‖X→Y 8 norm in B(X ,Y)
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Banach algebra notions

Let A be an arbitrary Banach algebra.

G(A) 54 set of all invertible elements of A
Γ (A) 60 set of all complex homomorphism of A
exp(A) 59 set of all f ∈ A which posses a logarithm in A
σ(f) 55 spectrum of f ∈ A
ρ(f) 55 resolvent set of f ∈ A
rσ(f) 55 spectral radius of f ∈ A
f̆ 64 Gelfand transformed of f
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