




Applied and Numerical Harmonic Analysis

Series Editor
John J. Benedetto
University of Maryland

Editorial Advisory Board

Akram Aldroubi
Vanderbilt University

Ingrid Daubechies
Princeton University

Christopher Heil
Georgia Institute of Technology

James McClellan
Georgia Institute of Technology

Michael Unser
Swiss Federal Institute
of Technology, Lausanne

M. Victor Wickerhauser
Washington University

Douglas Cochran
Arizona State University

Hans G. Feichtinger
University of Vienna

Murat Kunt
Swiss Federal Institute
of Technology, Lausanne

Wim Sweldens
Lucent Technologies,
Bell Laboratories

Martin Vetterli
Swiss Federal Institute
of Technology, Lausanne



Ole Christensen

Functions, Spaces,
and Expansions

Mathematical Tools in Physics and Engineering

Birkhäuser
Boston • Basel • Berlin



Ole Christensen
Technical University of Denmark
Department of Mathematics
2800 Lyngby
Denmark
Ole.Christensen@mat.dtu.dk

ISBN 978-0-8176-4979-1 e-ISBN 978-0-8176-4980-7
DOI 10.1007/978-0-8176-4980-7
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010928840

Mathematics Subject Classification (2010): 40-01, 41-01, 42-01, 46-01

c© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper

Birkhäuser is part of Springer Science+Business Media (www.birkhauser.com)



ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims
to provide the engineering, mathematical, and scientific communities with
significant developments in harmonic analysis, ranging from abstract har-
monic analysis to basic applications. The title of the series reflects the
importance of applications and numerical implementation, but richness
and relevance of applications and implementation depend fundamentally
on the structure and depth of theoretical underpinnings. Thus, from our
point of view, the interleaving of theory and applications and their creative
symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flour-
ished, developed, and deepened over time within many disciplines and by
means of creative cross-fertilization with diverse areas. The intricate and
fundamental relationship between harmonic analysis and fields such as sig-
nal processing, partial differential equations (PDEs), and image processing
is reflected in our state-of-the-art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas
such as wavelet theory, Banach algebras, classical Fourier analysis, time-
frequency analysis, and fractal geometry, as well as the diverse topics that
impinge on them.

For example, wavelet theory can be considered an appropriate tool to
deal with some basic problems in digital signal processing, speech and
image processing, geophysics, pattern recognition, biomedical engineering,
and turbulence. These areas implement the latest technology from sam-
pling methods on surfaces to fast algorithms and computer vision methods.

v



vi ANHA Series Preface

The underlying mathematics of wavelet theory depends not only on clas-
sical Fourier analysis, but also on ideas from abstract harmonic analysis,
including von Neumann algebras and the affine group. This leads to a study
of the Heisenberg group and its relationship to Gabor systems, and of
the metaplectic group for a meaningful interaction of signal decomposition
methods. The unifying influence of wavelet theory in the aforementioned
topics illustrates the justification for providing a means for centralizing and
disseminating information from the broader, but still focused, area of har-
monic analysis. This will be a key role of ANHA. We intend to publish with
the scope and interaction that such a host of issues demands.

Along with our commitment to publish mathematically significant works
at the frontiers of harmonic analysis, we have a comparably strong com-
mitment to publish major advances in the following applicable topics in
which harmonic analysis plays a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications
Digital signal processing Sampling theory

Fast algorithms Spectral estimation
Gabor theory and applications Speech processing

Image processing Time-frequency and
Numerical partial differential equations time-scale analysis

Wavelet theory

The above point of view for the ANHA book series is inspired by the
history of Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering
and scientific phenomena, and on the solution of some of the most impor-
tant problems in mathematics and the sciences. Historically, Fourier series
were developed in the analysis of some of the classical PDEs of mathe-
matical physics; these series were used to solve such equations. In order to
understand Fourier series and the kinds of solutions they could represent,
some of the most basic notions of analysis were defined, e.g., the concept
of “function.” Since the coefficients of Fourier series are integrals, it is no
surprise that Riemann integrals were conceived to deal with uniqueness
properties of trigonometric series. Cantor’s set theory was also developed
because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phe-
nomena, such as sound waves, can be described in terms of elementary
harmonics. There are two aspects of this problem: first, to find, or even
define properly, the harmonics or spectrum of a given phenomenon, e.g.,
the spectroscopy problem in optics; second, to determine which phenomena
can be constructed from given classes of harmonics, as done, for example,
by the mechanical synthesizers in tidal analysis.
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Fourier analysis is also the natural setting for many other problems in en-
gineering, mathematics, and the sciences. For example, Wiener’s Tauberian
theorem in Fourier analysis not only characterizes the behavior of the prime
numbers, but also provides the proper notion of spectrum for phenomena
such as white light; this latter process leads to the Fourier analysis asso-
ciated with correlation functions in filtering and prediction problems, and
these problems, in turn, deal naturally with Hardy spaces in the theory of
complex variables.

Nowadays, some of the theory of PDEs has given way to the study of
Fourier integral operators. Problems in antenna theory are studied in terms
of unimodular trigonometric polynomials. Applications of Fourier analy-
sis abound in signal processing, whether with the fast Fourier transform
(FFT), or filter design, or the adaptive modeling inherent in time-
frequency-scale methods such as wavelet theory. The coherent states of
mathematical physics are translated and modulated Fourier transforms,
and these are used, in conjunction with the uncertainty principle, for deal-
ing with signal reconstruction in communications theory. We are back to
the raison d’être of the ANHA series!

John J. Benedetto
Series Editor

University of Maryland
College Park
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Preface

The purpose of this book is to present some mathematical tools that play
key roles in mathematics as well as in applied mathematics, physics, and en-
gineering. The treatment is mathematical in nature, and we do not go into
concrete applications; but it is important to stress that all the considered
topics are selected because they actually play a role outside pure mathe-
matics. The hope is that the book will be useful for students in many fields
of science and engineering, and professionals who want a deeper insight in
some of the topics appearing in the scientific literature.

A central theme throughout the work is the structure of various vec-
tor spaces (most importantly, normed vector spaces and Hilbert spaces)
and expansions of elements in these spaces in terms of bases. Particular
attention is given to the space of square-integrable functions, L2(R).

The goal is twofold. Besides the interest in these subjects by themselves,
the book will also contribute to a deeper understanding of several themes
from calculus and linear algebra, because these themes appear here again
and are tied together. For example, we discuss Fourier series in the correct
setting of an expansion in a Hilbert space, similar to the one that is obtained
via an orthonormal basis in C

n.

xiii



xiv Preface

Before we go into detail about the content of the book, let us spend a
few lines on the prerequisites. We expect the reader to

• Have a profound understanding of linear algebra, as well in R
n and

C
n as in general vector spaces;

• Be familiar with the basic concepts of calculus and real analysis,
including (Riemann) integration and infinite series of real or complex
numbers.

The core of the book is formed by Chapters 2–7. Chapter 1 is a survey on
topics from elementary mathematics courses, and Chapters 8–11 describe
concrete functions and settings where the key concepts treated in Chapters
2–7 play a central role. Each chapter ends with a collection of exercises.

Let us describe the content in more detail. Chapter 1 collects some basic
results from linear algebra and calculus, e.g., concerning topology in C

n

and continuity of functions. We expect the reader to be familiar with most
of the topics in this chapter. All results are stated without proofs, but in
many cases a guide to a proof can be found in the exercises.

Chapters 2 and 3 deal with particular types of vector spaces on an ab-
stract level. The aim is a detailed mathematical description. All results are
presented either with a proof or the proof left as an exercise. In the first
of these chapters, Chapter 2, the key concept of a normed vector space is
presented. We discuss linear operators on such spaces, and infinite series
consisting of vectors in normed spaces. Chapter 3 deals with Banach spaces,
in particular the sequence spaces �p(N), and operators hereon. Chapter 4
specializes in the important case of a norm arising from an inner product.
This leads to the concept of a Hilbert space. We continue the analysis of
linear operators initiated in Chapter 3, now with focus on results that are
particular for Hilbert spaces. The key concept of an orthonormal basis is
introduced.

While Chapters 2–4 are abstract in nature, Chapter 5 marks the begin-
ning of a more concrete part of the book. There is still emphasis on the
mathematical formalism. However, we do not insist on a complete treat-
ment: we skip discussions of certain technical issues, and some results are
presented without a proof.

In Chapter 5 we consider an important class of Banach spaces consisting
of functions, the so-called Lp-spaces. Special emphasis is given to the space
L1(R) and integration techniques on that space. Chapter 6 specializes in the
case p = 2, which leads to a Hilbert space. We consider various operators on
L2(R). We also consider L2-spaces on an interval, and relate these spaces to
Fourier analysis. Chapter 7 deals with the Fourier transform, convolution,
and the sampling problem.

The final part of the book discusses special classes of functions that ap-
pear in many areas of applied mathematics and are related to the themes
presented in the book. All the considered functions naturally lead to bases
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for L2(R) or subspaces hereof. Chapter 8 provides a short description of
wavelet theory in L2(R), based on Fourier analysis. A more detailed anal-
ysis of the key tool in wavelet theory, multiresolution analysis, is given in
Chapter 9. Chapter 10 introduces the important B-splines and their main
properties. In Chapter 11 we consider certain functions (typically polyno-
mials) that arise as solutions to various differential equations appearing,
for example, in physics. It turns out that for special differential equations,
the collection of some particular solutions form an orthonormal basis for a
certain L2-space; that brings us back to the main theme of the book.

Appendix A collects certain proofs that are particularly long and techni-
cal. Appendix B contains a list of the vector spaces considered in the book
and their main properties, as well as a list of some of the special functions
considered in Chapter 11.

For use in a course at the master’s level, the natural starting point is
Chapter 2; to the extent that the results in Chapter 1 are unknown, they
can be presented section by section during the course whenever relevant.
Depending on the anticipated content of the course, one can proceed in
various ways. For a course focusing on Hilbert spaces, one can skip most
of Chapter 3 (except the definition of a Banach space) and move directly
to Chapters 4–7; on the other hand, a profound understanding of general
Banach spaces requires inclusion of Chapter 3. Concrete manifestations
of the abstract concept of an orthonormal basis appear in Chapters 8–10
(wavelets, in particular, based on B-splines) and Chapter 11 (orthonormal
bases consisting of solutions to special differential equations).

The list of references contains articles and books at several levels. In
order to be more informative, we have introduced the following ranking
system to the references: (A) elementary; (B) undergraduate level; (C)
graduate level; (D) research paper; (H) historical paper.

I would like to thank Robert Burckel and Christopher Heil for many
constructive comments to an earlier version of the manuscript. Their help
greatly improved the presentation. I also thank the many students at the
Technical University of Denmark who helped me by finding print errors
and spotting unclear formulations in the preliminary manuscripts I used
in the spring semesters of 2008 and 2009. Finally, I thank the staff at
Birkhäuser, especially Tom Grasso and Patrick Keene, for their help and
careful copyediting of the manuscript.

Ole Christensen
Kgs. Lyngby, Denmark
January 2010





Prologue: Spaces and Expansions

In brief, the content of this book is captured by the two themes spaces
and expansions. The purpose of this prologue is to relate the key topics to
physics and engineering.

In engineering and signal processing, a signal means a function f, typi-
cally with the time as variable. For example, the signal might be the current
running in the loudspeaker cable when a certain recording is played. Such a
signal is shown in Figure 1. In order to extract relevant features in the sig-
nal, the signal is often considered in a transformed domain: in the example
with the recording, if we want to extract information about the frequencies
appearing in the signal, one would consider the Fourier transform of the
signal. The Fourier transform of f is formally defined as the function

f̂(γ) =
∫ ∞

−∞
f(x)e−2πixγ dx, γ ∈ R. (1)

For the function in Figure 1, the absolute value of the Fourier transform
is depicted in Figure 2. It shows that the signal has a large content of
frequencies around 500 Hz, which is close to the frequency 440 Hz that is
used to tune the instruments in an orchestra.

xvii
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Figure 1. A speech signal. One can regard such a signal as the current in the
cable to the loudspeaker when a recording of the speech is played. The actual
signal is a recording of the word “alone”.
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Figure 2. The absolute value of the Fourier transform of the signal in Figure 1.

However, the expression (1) only makes sense under certain restrictions
on the function f. In other words: we have to specify the applicable signals.
Mathematically, this is done by requiring all considered signals f to belong
to certain vector spaces: in the concrete case discussed here, the relevant
spaces are the (Banach) spaces L1(R) and L2(R). These spaces play a
central role in the book.
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The concept an expansion is known from elementary linear algebra: it is
merely another name for a representation of a vector v in a vector space
in terms of a basis {ek},

v =
∑

ckek.

We know that the choice of a convenient basis is crucial: for example,
the representation of a linear operator might be very complicated with
respect to some unfortunate bases, but very easy with respect to a well-
chosen basis. One of the key concepts of the book is to discuss bases and
expansions in infinite-dimensional vector spaces. Readers having knowledge
about quantum mechanics and coherent states already know about series
expansions in terms of eigenfunctions for certain differential equations; such
expansions appear as special cases of the general theory presented in this
book.

Already in Example 1.1.3 we will introduce the discrete Fourier transform
basis for C

n. Paying close attention to that example will help the reader
to see the motivation behind much of the material to be presented later in
the book.





1
Mathematical Background

This introductory chapter collects basic results from linear algebra and
real analysis that will be needed throughout the book. The chapter has
the status of a tool box, and the presentation is more compressed than in
the rest of the book. None of the stated results are proved, but most of
the definitions and key results are illustrated by examples. In many cases
a guide to a proof is stated as an exercise.

Some basic concepts from linear algebra in R
n and C

n are reviewed in
Section 1.1. The discrete Fourier transform is introduced as an example
of an orthonormal basis in C

n. The setting of abstract vector spaces is
discussed in Section 1.2, and Section 1.3 deals with finite-dimensional vector
spaces. Section 1.4 gives a short introduction to topology in R

n, a subject
that later is discussed in general normed spaces. Section 1.5 presents the
concepts of supremum and infimum; they play a key role already in the
subsequent Section 1.6 about continuity of functions. Section 1.7 states
several useful inequalities related to integration and summation. Section
1.8 defines various special types of functions. Finally, Section 1.9 states the
principles for proof by induction.

1.1 R
n and C

n

Formally, the vector space R
n is defined as the set consisting of all sequences

of n real numbers:

R
n =

{
(x1, x2, . . . , xn) | xk ∈ R, k = 1, . . . , n

}
.

O. Christensen, Functions, Spaces, and Expansions: Mathematical Tools 1
in Physics and Engineering, Applied and Numerical Harmonic Analysis,

DOI 10.1007/978-0-8176-4980-7 1, c© Springer Science+Business Media, LLC 2010



2 1. Mathematical Background

Similarly,

C
n = {(x1, x2, . . . , xn) | xk ∈ C, k = 1, . . . , n}.

Usually a vector belonging to R
n or C

n is written as

x = (x1, x2, . . . , xn).

Whenever convenient we will also write the vector x as a column,

x =

⎛
⎜⎜⎜⎜⎝

x1

x2

·
·
xn

⎞
⎟⎟⎟⎟⎠ .

We expect the reader to know the definition of inner products on these
spaces (if not, look at the definition in general vector spaces in Definition
4.1.1). The canonical inner product in R

n is

〈x,y〉 =
n∑

k=1

xkyk, x,y ∈ R
n, (1.1)

and the canonical inner product in C
n is

〈x,y〉 =
n∑

k=1

xkyk, x,y ∈ C
n. (1.2)

The spaces R
n and C

n can also be equipped with other inner products, but
we will always use the inner products in (1.1) and (1.2). In both spaces,
the length (later to be called the norm) of a vector x is

||x|| =

(
n∑

k=1

|xk|2
)1/2

. (1.3)

We will focus on the vector space C
n; the theory for R

n is parallel, except
that we do not have the complex conjugation in the inner product.

In the theory for C
n, the concept of a basis plays a crucial role. We state

the formal definition:

Definition 1.1.1 (Basis in C
n) Consider a collection of vectors {ek}m

k=1

in C
n.

(i) {ek}m
k=1 is a basis for C

n if span{ek}m
k=1 = C

n and the vectors
{ek}m

k=1 are linearly independent.

(ii) {ek}m
k=1 is an orthonormal basis for C

n if {ek}m
k=1 is a basis and

〈ek, e�〉 := δk,� =

{
1 if k = �,

0 if k �= �.



1.1 R
n and C

n 3

It is well-known that any basis for C
n contains exactly m = n elements.

If {ek}n
k=1 is a basis for C

n, any vector v ∈ C
n has a unique representation

v =
n∑

k=1

ckek (1.4)

for some scalars ck, k = 1, . . . , n; in case {ek}n
k=1 is an orthonormal basis

this representation takes the form (Exercise 1.1)

v =
n∑

k=1

〈v, ek〉ek. (1.5)

Example 1.1.2 (Canonical orthonormal basis for C
n) Let the vectors

{ek}n
k=1 in C

n be defined by

e1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
·
·
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, e2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
·
·
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, . . . , en =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
·
·
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Then {ek}n
k=1 forms an orthonormal basis for C

n with respect to the canon-
ical inner product. This basis is usually called the canonical orthonormal
basis for C

n. �

Let us present another orthonormal basis for C
n, the discrete Fourier

transform basis. An understanding of this basis will motivate our later
study of Fourier series and the Fourier transform:

Example 1.1.3 (Discrete Fourier transform basis) For k = 1, . . . , n,
define the vectors ek ∈ C

n by

ek =
1√
n

⎛
⎜⎜⎜⎜⎜⎜⎝

1
e2πi(k−1)/n

e4πi(k−1)/n

·
·

e2πi(n−1)(k−1)/n

⎞
⎟⎟⎟⎟⎟⎟⎠
. (1.6)

That is, the �th coordinate of ek is

(ek)� =
1√
n
e2πi(�−1)(k−1)/n, � = 1, . . . , n.

We will prove that the vectors {ek}n
k=1 defined by (1.6) constitute an

orthonormal basis for C
n. Since {ek}n

k=1 are n vectors in an n-dimensional
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vector space, it is enough to prove that they constitute an orthonormal
system; in fact, this implies that they are linearly independent and therefore
span C

n. Direct calculation reveals that ||ek|| = 1 for all k. Now, given
k �= j, the definition of ek and a change of summation index show that

〈ek, ej〉 =
1
n

n∑
�=1

e2πi(�−1)(k−1)/ne−2πi(�−1)(j−1)/n

=
1
n

n∑
�=0

e2πi�(k−1)/ne−2πi�(j−1)/n

=
1
n

n−1∑
�=0

e2πi�(k−j)/n.

Using the formula (1−x)(1+x+ · · ·+xn−1) = 1−xn with x = e2πi(k−j)/n,
we get

〈ek, ej〉 =
1
n

1 − (e2πi(k−j)/n)n

1 − e2πi(k−j)/n
= 0,

as desired.
The basis {ek}n

k=1 is called the discrete Fourier transform basis. Using
this basis, every sequence v ∈ C

n,

v =

⎛
⎜⎜⎜⎜⎝

v1
v2
·
·
vn

⎞
⎟⎟⎟⎟⎠ ,

has the representation

v =
n∑

k=1

〈v, ek〉ek (1.7)

=
1√
n

n∑
k=1

n∑
�=1

v� e
−2πi(�−1)(k−1)/nek. (1.8)

Written out in coordinates, this means that the jth coordinate is

vj =
1
n

n∑
k=1

n∑
�=1

v� e
−2πi(�−1)(k−1)/ne2πi(j−1)(k−1)/n

=
1
n

n∑
k=1

n∑
�=1

v� e
2πi(j−�)(k−1)/n, j = 1, . . . , n.

The vector v̂ := {〈v, ek〉}n
k=1 consisting of the coefficients in (1.7) is

called the discrete Fourier transform (DFT) of v. We return to the discrete
Fourier transform in Section 7.5. �
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From linear algebra we know many equivalent conditions for a set
of vectors to constitute a basis for C

n. Let us list the most important
characterizations:

Theorem 1.1.4 (Characterization of basis for C
n) Consider n vectors

in C
n,

e1 =

⎛
⎜⎜⎜⎜⎝

e11
e21
·
·
en1

⎞
⎟⎟⎟⎟⎠ , e2 =

⎛
⎜⎜⎜⎜⎝

e12
e22
·
·
en2

⎞
⎟⎟⎟⎟⎠ , . . . , en =

⎛
⎜⎜⎜⎜⎝

e1n

e2n

·
·
enn

⎞
⎟⎟⎟⎟⎠ ,

and write them as columns in an n× n matrix,

E =

⎛
⎜⎜⎜⎜⎝

e11 e12 · · e1n

e21 e22 · · e2n

· · · · ·
· · · · ·
en1 en2 · · enn

⎞
⎟⎟⎟⎟⎠ .

Then the following are equivalent:

(i) The columns in E (i.e., the given vectors) constitute a basis for C
n.

(ii) The rows in E constitute a basis for C
n.

(iii) The determinant of E is nonzero.

(iv) E is invertible.

(v) E defines an injective mapping from C
n into C

n.

(vi) E defines a surjective mapping from C
n onto C

n.

(vii) The columns in E are linearly independent.

(viii) E has rank equal to n.

Example 1.1.5 (Basis for C
2) Consider the matrix

E =
(

1 2
3 4

)
.

The operator associated with E acts on R
2 by matrix multiplication. That

is, for x = (x1, x2) ∈ R
2,

Ex =
(

1 2
3 4

)(
x1

x2

)
=
(

x1 + 2x2

3x1 + 4x2

)
.

Since det(E) = −2, the equivalent conditions stated in Theorem 1.1.4 are
satisfied. Thus, the columns in the matrix E form a basis for C

2. �
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1.2 Abstract vector spaces

All the central concepts of linear algebra can be extended to abstract vector
spaces, from now on just called vector spaces. A vector space is a nonempty
set V that has been equipped with two operations, called addition and
scalar multiplication, satisfying certain rules. The operation“addition” as-
sociates to each pair of elements v,w ∈ V an element in V that will be
denoted by v+w. The operation “scalar multiplication” associates to each
v ∈ V and each α ∈ C an element in V that will be denoted by αv or vα.
These operations have to satisfy the following requirements:

Definition 1.2.1 (Vector space) Consider a nonempty set V, equipped
with operations of addition and scalar multiplication. Assume that the
following rules are satisfied:

(i) For all v,w ∈ V , we have that v + w = w + v;

(ii) For all v,w,u ∈ V , we have that (v + w) + u = v + (w + u);

(iii) There exists an element, called 0, in V , such that for all v ∈ V ,

v + 0 = v;

(iv) For each v ∈ V there exists an element, called −v, in V , with the
property that

v + (−v) = 0;

(v) For all α, β ∈ C and all v ∈ V ,

α(βv) = (αβ)v;

(vi) For all α, β ∈ C and all v ∈ V ,

(α + β)v = αv + βv;

(vii) For all α ∈ C and all v,w ∈ V ,

α(v + w) = αv + αw;

(viii) For all v ∈ V ,

1v = v.

In that case we say that V , equipped with the operations of addition and
scalar multiplication, forms a vector space.

It is immediate to check that the sets R
n and C

n, equipped with the usual
operations of addition and scalar multiplication, satisfy the conditions in
Definition 1.2.1.

Because the scalar multiplication in Definition 1.2.1 is allowed to be by
complex numbers, one frequently speaks about a complex vector space. A
real vector space is defined the same way, except that the scalars C are
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replaced by the real numbers R. Except R
n, all vector spaces appearing in

this book are complex. For this reason, all definitions will be formulated
for the complex case.

Example 1.2.2 (Functions on a set A) Let A denote an arbitrary
nonempty set, and let V denote the collection of all functions f : A → C.
Given functions f, g ∈ V, we define the function f + g ∈ V by

(f + g)(x) := f(x) + g(x), x ∈ A.

Also, given f ∈ V and α ∈ C, define the function αf ∈ V by

(αf)(x) := αf(x), x ∈ A.

Direct verification shows that V equipped with these definitions of addition
and scalar multiplication satisfies all the conditions in Definition 1.2.1.
Thus, the set V forms a (complex) vector space. �

Example 1.2.3 (Polynomials on R) Let W denote the set of polyno-
mials on R of degree at most N for some N ∈ N. That is, the elements in
W have the form

P (x) = aNx
N + aN−1x

N−1 + · · · + a0, x ∈ R,

for some scalar coefficients a0, a1, . . . , aN ∈ C. Given a polynomial P of
that form and another polynomial Q of the same form,

Q(x) = bNx
N + bN−1x

N−1 + · · · + b0,

we define the polynomial P +Q by

(P +Q)(x) = (aN + bN )xN + (aN−1 + bN−1)xN−1 + · · · + (a0 + b0).

Also, for α ∈ C, we define the polynomial αP by

(αP )(x) = αaNx
N + αaN−1x

N−1 + · · · + αa0.

We see that P +Q ∈ W and that αP ∈W ; furthermore, direct verification
shows that all the conditions in Definition 1.2.1 are satisfied. Thus, with
our definitions of addition and scalar multiplication, the set W forms a
(complex) vector space. �

Given a collection of vectors {vk}N
k=1 in a (complex) vector space V , a

linear combination is a vector of the form

α1v1 + α2v2 + · · · + αNvN (1.9)

for some α1, α2, . . . , αN ∈ C. If we put α1 = α2 = · · · = αN = 0, then
the linear combination (1.9) yields the zero vector. In case no other linear
combination yields the zero vector, we say that the vectors {vk}N

k=1 are
linearly independent:
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Definition 1.2.4 (Linear independence) Let {vk}N
k=1 be a collection of

vectors in V . If

α1v1 + α2v2 + · · · + αNvN = 0 ⇒ α1 = α2 = · · · = αN = 0,

then {vk}N
k=1 are linearly independent; if not, the vectors are linearly

dependent.

Example 1.2.5 (Linear independence of polynomials) Consider the
vector space V in Example 1.2.3. Note that the polynomials

1, x, . . . , xN (1.10)

belong to V. Now, assume that for some α0, α1, . . . , αN ∈ C, we have that

α0 + α1x+ · · · + αNx
N = 0 for all x ∈ R.

Since a nontrivial polynomial of degree N at most can have N roots, this
implies that

α0 = α1 = · · · = αN = 0.

Thus, the polynomials in (1.10) are linearly independent. �

Often, we encounter subsets of vector spaces having themselves the
structure of a vector space:

Definition 1.2.6 (Subspace) Let V be a vector space. A subset W ⊆ V
which itself is a vector space (when equipped with the operations of addition
and scalar multiplication in V ), is called a subspace of V .

The set just containing the element 0 is always a subspace of V . Fur-
thermore, V is a subspace of itself. Any subspace W for which W �= 0 and
W �= V , is called a nontrivial subspace.

In practice, one often verifies that a subset W of V is a subspace via the
following lemma. The reader is asked to provide the proof in Exercise 1.4.

Lemma 1.2.7 (Characterization of subspace) A nonempty subset W
of a vector space V is a subspace of V if and only if

αv + βw ∈W for all v,w ∈ W, α, β ∈ C. (1.11)

Example 1.2.8 (Subspace of polynomials) Let V denote the vector
space consisting of all functions f : R → C, i.e., V is the space in Example
1.2.2 with A := R. The space W considered in Example 1.2.3 is a subset
of V. Furthermore, any linear combination of two polynomials of degree at
most N is again a polynomial of degree at most N, i.e., (1.11) holds. Thus,
W is a (nontrivial) subspace of V. �
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1.3 Finite-dimensional vector spaces

Let V be a (complex) vector space. Given a collection of vectors {vk}N
k=1

of vectors in V , we define the span of the vectors as the set of all linear
combinations:

span{vk}N
k=1 := {α1v1 + α2v2 + · · · + αNvN |α1, α2, . . . , αN ∈ C}.

In general, span{vk}N
k=1 will be a nontrivial subspace of V . However, for

special choices of the vectors {vk}N
k=1 it might happen that the span of the

vectors equals V . This leads to a definition:

Definition 1.3.1 (Dimension) A vector space V has dimension N,
N ∈ N, if there exists a collection of linearly independent vectors {vk}N

k=1

such that

V = span{vk}N
k=1.

A vector space, for which the condition in Definition 1.3.1 is satisfied for
some number N ∈ N, is said to be finite-dimensional; otherwise, the vector
space is infinite-dimensional.

We now define the concept of a basis in a finite-dimensional vector space.
In Section 2.5 we treat the infinite-dimensional case.

Definition 1.3.2 (Basis in finite-dimensional vector space) A collec-
tion of vectors {ek}n

k=1 in V is a basis for V if span{ek}n
k=1 = V and the

vectors {ek}n
k=1 are linearly independent.

Example 1.3.3 (Basis for vector space of polynomials) The vector
space V in Example 1.2.3 is finite-dimensional. In fact, as we have seen in
Example 1.2.5, the polynomials

1, x, x2, . . . , xN (1.12)

are linearly independent, and each polynomial P of degree at most N is a
linear combination of these, i.e.,

V = span{1, x, . . . , xN}.
The argument shows that V has dimension N + 1, and that the vectors in
(1.12) form a basis for V . �

In this book we will mainly consider vector spaces consisting of functions
— and most of them will actually be infinite-dimensional.
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1.4 Topology in R
n

As we have seen in (1.3), the length (later to be called the norm) of a vector
x = (x1, . . . , xn) ∈ R

n is

||x|| =

(
n∑

k=1

|xk|2
)1/2

.

Given a point x = (x1, . . . , xn) ∈ R
n, the ball centered at x and with

radius r > 0 is defined as the set

B(x, r) :=
{
y ∈ R

n | ||y − x|| < r
}

=
{
y ∈ R

n |
(

n∑
k=1

|yk − xk|2
)1/2

< r

}
.

Definition 1.4.1 (Open and closed sets in R
n) Consider a subset U

of R
n.

(i) The subset U is open if for each x ∈ U there exists a number δ > 0
such that B(x, δ) ⊆ U .

(ii) The complement of the subset U is defined as the set

U c := R
n \ U.

(iii) The subset U is said to be closed if the complement U c is open.

(iv) The closure of U , to be denoted U, is the smallest closed set in R
n

that contains U .

Note that it is easy to find sets in R
n that are neither open nor

closed. Intuitively, the closure of a subset of R
n is obtained by adding

the “boundary”:

Example 1.4.2 (Subsets of R and R
2) We consider some subsets of R

and R
2 :

(i) The subset ] − 1, 1[ of R is open; the closure of the set is [−1, 1].

(ii) The subset [−1, 1[ of R is neither open nor closed; its closure is the
set [−1, 1].

(iii) The set ]0, 1[×]4, 7[ is open in R
2; its closure is [0, 1] × [4, 7].

(iv) The set [0, 1[×]4, 7[ is neither open nor closed in R
2; its closure is

[0, 1] × [4, 7]. �
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1.5 Supremum and infimum

We now introduce the concepts supremum and infimum for subsets of R.

Definition 1.5.1 (Supremum) Consider a subset E of R.

(i) E is bounded above if there exists a number β ∈ R such that

x ≤ β, ∀x ∈ E. (1.13)

(ii) If E is bounded above, the smallest number β satisfying (1.13) is
called the supremum of E, and is written using one of the following
three equivalent notations:

supE = sup
x∈E

x = sup{ x | x ∈ E}.

(iii) For a set E that is not bounded above, we put supE = ∞.

Definition 1.5.2 (Infimum) Consider a subset E of R.

(i) E is bounded below if there exists a number α ∈ R such that

α ≤ x, ∀x ∈ E. (1.14)

(ii) If E is bounded below, the largest number α satisfying (1.14) is called
the infimum of E, and is written using one of the following three
equivalent notations:

inf E = inf
x∈E

x = inf{ x | x ∈ E}.

(iii) For a set E that is not bounded below, we put inf E = −∞.

Example 1.5.3 (Supremum and infimum) By inspection, we see that

sup]0, 4] = 4, sup[−2, 5[= 5, inf] − 2, 1] = −2, inf(Q ∩ [π, 7]) = π. �

In the particular case of a function f defined on a set A and taking real
values, f : A→ R, we can consider the set

E := { f(x) | x ∈ A}. (1.15)

The set A is called the domain of the function f , and E is the range or
image. Now,

supE = sup
x∈A

f(x) = sup{ f(x) | x ∈ A}.

A warning is in order. In general, the number supx∈A f(x) does not need
to be a function value for the function f ; that is, there might not exist an
x0 ∈ A such that

f(x0) = sup
x∈A

f(x). (1.16)
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In case an x0 ∈ A satisfying (1.16) exists, we write

max
x∈A

f(x) = sup
x∈A

f(x).

The expression maxx∈A f(x) is only used if the supremum’s value appears
as a function value.

Similarly, still under the assumption that f is real valued and with the
set E as in (1.15), we have that

inf E = inf
x∈A

f(x) = inf{ f(x) | x ∈ A}.

In case there exists an x0 ∈ A such that

f(x0) = inf
x∈A

f(x),

we write

min
x∈A

f(x) = inf
x∈A

f(x).

Example 1.5.4 (Supremum and infimum for functions)

(i) Put f(x) = x2, x ∈ [0, 2]; then

sup
x∈[0,2]

f(x) = 4 = f(2).

The supremum value is attained, so

sup
x∈[0,2]

f(x) = max
x∈[0,2]

f(x).

(ii) Put f(x) = x2, x ∈ [0, 2[; then

sup
x∈[0,2[

f(x) = 4.

The supremum value is not attained.

(iii) Put f(x) = x− x2 = x(1 − x), x ∈]0, 1[; then

sup
x∈]0,1[

f(x) =
1
4

= f(
1
2
).

The supremum value is attained, so

sup
x∈]0,1[

f(x) = max
x∈]0,1[

f(x).

�

The concept of supremum is also used for sequences, e.g., indexed by N;
in fact, they appear as special cases of the above by letting A = N. Let us
consider such a case:
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Example 1.5.5 (Supremum for a sequence) Direct inspection shows
that

sup
n∈N

n2 + 4
n2 + 121

= 1;

the supremum is not attained. �

For any sequence {ck}∞k=1 of real numbers, the sequence {dk}∞k=1 given by

dk := inf
n≥k

cn = inf{ck, ck+1, . . . }

is increasing. If the sequence {ck}∞k=1 is bounded above, this implies that
limk→∞ dk exists. In case {ck}∞k=1 is unbounded, we put limk→∞ dk = ∞.
In any case, limk→∞ dk is called limes inferior, or lim inf of the given
sequence:

Definition 1.5.6 (lim inf and lim sup) Given a sequence {ck}∞k=1 of
real numbers, define

lim inf
k→∞

ck := lim
k→∞

(
inf
n≥k

cn

)
.

Similarly, define

lim sup
k→∞

ck := lim
k→∞

(
sup
n≥k

cn

)
.

In case lim supk→∞ ck and lim infk→∞ ck are real numbers, they have
the property that infinitely many elements from the sequence {ck}∞k=1 are
located in arbitrarily small neighborhoods around these numbers. In order
to give an exact description of this, we need the concept accumulation point.

Definition 1.5.7 (Accumulation point) Let {ck}∞k=1 be a sequence of
real numbers. A number c ∈ R is an accumulation point for {ck}∞k=1 if the
set

{k ∈ N
∣∣ ck ∈ [c− ε, c+ ε]}

is infinite for all ε > 0.

Definition 1.5.8 (Bounded set, compact set) Consider a subset E of
R or C.

(i) E is bounded if E is bounded above and below, i.e., if there exists a
number α > 0 such that

|x| ≤ α, ∀x ∈ E.

(ii) E is compact if E is bounded and closed.
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In particular, a sequence {ck}∞k=1 consisting of real or complex numbers
is bounded if there exists a constant C > 0 such that

|ck| ≤ C, ∀k ∈ N.

Any bounded sequence of real numbers has at least one accumulation
point:

Lemma 1.5.9 (lim inf and lim sup are accumulation points) Let
{ck}∞k=1 be a bounded sequence of real numbers. Then the following hold:

(i) lim infk→∞ ck and lim supk→∞ ck are accumulation points for {ck}∞k=1.

(ii) If limk→∞ ck exists, then

lim inf
k→∞

ck = lim
k→∞

ck = lim sup
k→∞

ck.

We ask the reader to prove Lemma 1.5.9 in Exercise 1.11.
Given a bounded sequence {ck}∞k=1 of real numbers, put

c := lim sup
k→∞

ck.

Given any ε > 0, Lemma 1.5.9 implies that for all N ∈ N there exists a
k > N such that

|c− ck| ≤ ε.

In particular, there exists a k1 ∈ N such that

|c− ck1 | ≤
1
2
;

and there exists a k2 > k1 such that

|c− ck2 | ≤
1
4
.

Continuing this way, we obtain a sequence

· · · > kn > kn−1 > · · · > k2 > k1 ≥ 1

such that for any n ∈ N,

|c− ckn | ≤
1
2n
.

The sequence {ckn}∞n=1 is said to be a subsequence of {ck}∞k=1. By definition,

ckn → c as n→ ∞.

This proves the so-called Bolzano–Weierstrass Lemma:
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Lemma 1.5.10 (Bolzano–Weierstrass lemma) Every bounded se-
quence {ck}∞k=1 of real numbers has a convergent subsequence.

Example 1.5.11 (Convergent subsequence) Let

ck := (−1)k k + 1
k + 100

, k ∈ N.

The sequence {ck}∞k=1 does not converge. But the subsequence

{ckn}∞n=1 := {c2n}∞n=1 =
{

2n+ 1
2n+ 100

}∞

n=1

is convergent. �

The concepts lim inf and lim sup are also applied to functions: given a
sequence of real-valued functions

fk : A→ R, k = 1, 2, . . . ,

we define the functions lim infk→∞ fk and lim supk→∞ fk by

lim inf
k→∞

fk(x) = lim
k→∞

(
inf
n≥k

fn(x)
)
, x ∈ A,

and

lim sup
k→∞

fk(x) := lim
k→∞

(
sup
n≥k

fn(x)
)
, x ∈ A.

Note that with our definitions of supremum and infimum, the functions
lim infk→∞ fk and lim supk→∞ fk might assume the values ±∞.

At a few instances we will use the following inequality, which is a discrete
version of the so-called Fatou’s Lemma:

Lemma 1.5.12 (Fatou’s lemma) Let fk : N → [0,∞[, k ∈ N, be a
sequence of functions. Then

∞∑
j=1

lim inf
k→∞

fk(j) ≤ lim inf
k→∞

∞∑
j=1

fk(j), ∀j ∈ N.

We guide the reader through a proof of Lemma 1.5.12 in Exercise 1.12.

1.6 Continuity of functions on R

In this section we consider functions f defined on R or subintervals hereof,
and taking values in R or C. First we state an exact definition of the concept
of continuity, as well as the related definition of uniform continuity.
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Definition 1.6.1 (Continuity and uniform continuity) Let I ⊆ R be
an interval, and consider a function f : I → C.

(i) The function f is continuous at the point x0 ∈ I if for each ε > 0
there exists a δ > 0 such that

|f(x) − f(x0)| < ε for all x ∈ I for which |x− x0| < δ. (1.17)

(ii) The function f is continuous if f is continuous at every point in I.

(iii) The function f is uniformly continuous if for each ε > 0 there exists
a δ > 0 such that

|f(x) − f(y)| < ε for all x, y ∈ I for which |x− y| < δ. (1.18)

Observe the difference between (1.17) and (1.18): in the first case x0 is
a fixed point in the interval I, while in the second case we allow x as well
as y to vary. Therefore, uniform continuity is a more restrictive condition
than continuity.

We state some of the important properties for continuous functions on
bounded and closed intervals:

Theorem 1.6.2 (Uniform continuity) A continuous function on a
bounded and closed interval [a, b] is uniformly continuous.

A function f defined on a set A, f : A→ C, is bounded if the range

E := {f(x)
∣∣ x ∈ A}

is bounded, i.e., if there exists a constant K > 0 such that

|f(x)| ≤ K, ∀x ∈ A.

If no such constant K exists, the function f is unbounded.
Under certain conditions on the domain, a continuous function is

bounded. We ask the reader to provide the proof of the following result
in Exercise 1.13:

Theorem 1.6.3 (Continuous functions on [a, b]) Consider a continu-
ous real-valued function f defined on a bounded and closed interval [a, b].
Then the following hold:

(i) f is bounded.

(ii) f attains its supremum, i.e., there exists x0 ∈ [a, b] such that

f(x0) = sup {f(x) | x ∈ [a, b] } .
(iii) f attains its infimum.

In Theorems 1.6.2 and 1.6.3 it is assumed that the function f is defined on
a bounded and closed interval. The conclusions might fail if this hypothesis
is removed:
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Example 1.6.4 We illustrate the necessity of the hypotheses in Theorems
1.6.2 and 1.6.3:

(i) Let f(x) = x−1, x ∈ ]0, 1[. The interval ]0, 1[ is bounded, but not
closed. The function f is continuous, but not uniformly continuous.
The function is unbounded.

(ii) Let f(x) = x2, x ∈ [0,∞[. The interval [0,∞[ is closed, but not
bounded. The function f is continuous, but not uniformly continuous.
The function is unbounded. �

We will now consider a sequence of functions {fk}∞k=1, all of them defined
on an interval I. Related to such a sequence one can introduce various types
of convergence:

Definition 1.6.5 (Pointwise convergence, uniform convergence)
Let {fk}∞k=1 be a sequence of functions defined on an interval I and
f : I → C a given function.

(i) If for each x ∈ I and each ε > 0 there exists an N ∈ N such that

|f(x) − fk(x)| < ε

for all k ≥ N, then {fk}∞k=1 is said to converge pointwise to f .

(ii) If for each ε > 0 there exists an N ∈ N such that

sup
x∈I

|f(x) − fk(x)| < ε

for all k ≥ N, then {fk}∞k=1 is said to converge uniformly to f .

Note that the difference between the two types of convergence is rather
subtle:

• In order to check pointwise convergence, we fix x and ask for fk(x)
being close to f(x) for large values of k;

• In order to check uniform convergence, we ask for fk(x) being close
to f(x) for large values of k, simultaneously for all x.

Note also that if (i) in Definition 1.6.5 holds, then necessarily

f(x) = lim
k→∞

fk(x), x ∈ I.

The limit of a sequence of continuous functions might not be continuous
itself. On the other hand, the limit of a uniformly convergent sequence of
continuous functions is continuous:

Theorem 1.6.6 (Continuity of uniform limit) Assume that {fk}∞k=1

is a sequence of continuous functions defined on an interval I. If {fk}∞k=1

converges uniformly to a function f : I → C, then f is continuous.
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We guide the reader through a proof of Theorem 1.6.6 in Exercise 1.15.
For later use we state the definition of piecewise continuous functions

formally:

Definition 1.6.7 (Piecewise continuous function) Let I ⊆ R be an
interval. A function f : I → C is piecewise continuous if the interval I can
be split into a finite collection of subintervals on which f is continuous.

We note that the results for continuous functions considered in this sec-
tion do not extend to piecewise continuous functions. The following example
illustrates this.

Example 1.6.8 (Piecewise continuous function) The function

f : [−1, 3] → R, f(x) :=

⎧⎪⎨
⎪⎩

0 if x ∈ [−1, 0],
x−1 if x ∈]0, 2],
x if x ∈]2, 3],

is piecewise continuous. However, f is unbounded and not uniformly
continuous. We ask the reader to prove these claims in Exercise 1.14. �

1.7 Integration and summation

The (Riemann) integral allows us to integrate scalar-valued piecewise con-
tinuous functions over closed and bounded intervals. For certain functions
f we can also perform integration over unbounded intervals. For example,
assume that the function f is defined on [0,∞[ and that the expression

∫ α

0

f(x) dx

has a limit as α→ ∞. Then the improper Riemann integral∫ ∞

0

f(x) dx

is defined by ∫ ∞

0

f(x) dx := lim
α→∞

∫ α

0

f(x) dx.

Similarly, assuming that the limits

lim
α→∞

∫ α

0

f(x) dx and lim
β→−∞

∫ 0

β

f(x) dx



1.7 Integration and summation 19

exist, we define
∫ ∞

−∞
f(x) dx := lim

α→∞

∫ α

0

f(x) dx+ lim
β→−∞

∫ 0

β

f(x) dx.

In this section we collect some basic inequalities concerning integrals.
Three types of integrals will appear in this book:

(i) The (Riemann) integral, concerning integration of bounded and
piecewise continuous functions over bounded intervals;

(ii) The improper Riemann integral, concerning integration of piecewise
continuous functions over unbounded domains;

(iii) The Lebesgue integral, to be discussed in Section 5.2.

The following results hold in all the settings (i)–(iii). We do not specify
these assumptions on the functions and the intervals in the statements of
the results.

Theorem 1.7.1 (Hölder’s inequality and Minkowski’s inequality)
Let I ⊆ R be an interval and consider functions f, g : I → C. Then the
following inequalities hold:

(i) (Hölder’s inequality) For any numbers p, q ∈]1,∞[ with 1/p+1/q = 1,
∫

I

|f(x)g(x)| dx ≤
(∫

I

|f(x)|p dx
)1/p (∫

I

|g(x)|q dx
)1/q

. (1.19)

(ii) (Minkowski’s inequality) For any p ∈ [1,∞[,

(∫
I

|f(x) + g(x)|p dx
)1/p

≤
(∫

I

|f(x)|p dx
)1/p

+
(∫

I

|g(x)|p dx
)1/p

.

Proofs of these inequalities are outlined in Exercises 1.16 and 1.17. We
state another important inequality that is valid under the same type of
assumptions on the function f and the interval I:

Lemma 1.7.2 (Absolute integrability implies integrability) Let I
be an interval, and consider a function f : I → C. Assume that∫

I

|f(x)| dx <∞.

Then f is integrable, and∣∣∣∣
∫

I

f(x) dx
∣∣∣∣ ≤

∫
I

|f(x)| dx.

The results in Theorem 1.7.1 and Lemma 1.7.2 have discrete versions,
reading as follows (Exercises 1.18 and 1.19):
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Theorem 1.7.3 (Hölder’s inequality, Minkowski’s inequality)
Consider any scalar sequences {xk}∞k=1, {yk}∞k=1. Then the following
inequalities hold:

(i) (Hölder’s inequality) For any numbers p, q ∈]1,∞[ with 1/p+1/q = 1,

∞∑
k=1

|xkyk| ≤
( ∞∑

k=1

|xk|p
)1/p ( ∞∑

k=1

|yk|q
)1/q

.

(ii) (Minkowski’s inequality) For any p ∈ [1,∞[,
( ∞∑

k=1

|xk + yk|p
)1/p

≤
( ∞∑

k=1

|xk|p
)1/p

+

( ∞∑
k=1

|yk|p
)1/p

.

Lemma 1.7.4 (Absolute convergence implies convergence) Let
{xk}∞k=1 be a scalar sequence. If

∑∞
k=1 |xk| is convergent, then

∑∞
k=1 xk

is convergent, and ∣∣∣∣∣
∞∑

k=1

xk

∣∣∣∣∣ ≤
∞∑

k=1

|xk|.

1.8 Some special functions

In this section we define some special functions that are used in the book.

Definition 1.8.1 (Characteristic function) Given a subset E ⊆ R, let

χE(x) =

{
1 if x ∈ E,

0 if x /∈ E.
(1.20)

The function χE is called the characteristic function for the set E.

Usually, the set E will be an interval. Characteristic functions for inter-
vals play a role in the description of signals that only take place over a
limited time interval, e.g., a physical experiment that has a well-defined
starting time and end time. For example, an electrical current that has the
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shape of a sine-function but only runs over a time interval of length 2π,
might be described by a function of the type

f(x) = sinx χ[0,2π](x).

Definition 1.8.2 (Trigonometric polynomial) A trigonometric poly-
nomial is a finite linear combination of complex exponential functions
having period 1, i.e., an expression

H(x) =
N2∑

k=N1

cke
2πikx (1.21)

for some N1 ≤ N2 and some ck ∈ C.

Note that a trigonometric polynomial can be rewritten as

H(x) = a0 +
N∑

k=1

(ak cos(2πkx) + bk sin(2πkx)) (1.22)

for N = max(|N1|, |N2|) and some coefficients ak, bk ∈ C, see Exercise 1.20.
Trigonometric polynomials correspond to partial sums of Fourier series.

They can also be considered with other periods than 1; for example, the
expression

H(x) =
N2∑

k=N1

cke
ikx = a0 +

N∑
k=1

(ak cos(kx) + bk sin(kx))

defines a trigonometric polynomial with period 2π.

Example 1.8.3 (Trigonometric polynomials) The set of trigonometric
polynomials with period 2π is a subspace of

L2(−π, π) :=
{
f :] − π, π[→ C

∣∣∣∣
∫ π

−π

|f(x)|2 dx <∞
}
. (1.23)

In order to see this, we note that the trigonometric polynomials are contin-
uous, so the integral in (1.23) is finite for such functions; this shows that
the trigonometric polynomials form a subset of L2(−π, π). Now, a sum of
two trigonometric polynomials is again a trigonometric polynomial, and a
scalar multiple of a trigonometric polynomial is a trigonometric polyno-
mial. According to Lemma 1.2.7 this implies that the set of trigonometric
polynomials is a subspace of L2(−π, π). �
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1.9 A useful technique: proof by induction

Suppose that we want to prove that a certain statement, involving a number
n, holds true for all n ∈ N. This can be done by showing that

(i) The statement holds for n = 1,

and

(ii) For an arbitrary n ∈ N it holds that if the statement is true for n,
then it is also true when n is replaced by n+ 1.

Part (ii) is called the induction step; the assumption that the considered
statement holds for the value n is called the induction hypothesis. One can
think about a proof by induction as climbing an infinitely high ladder: we
can climb as high as we want if we can take the first step, and make sure
that we always can go from one level to the next.

Example 1.9.1 (Induction) We will prove that for all n ∈ N,

1 + 2 + · · · + n =
n(n+ 1)

2
. (1.24)

The statement certainly holds for n = 1. Now, assume that (1.24) holds for
a certain value of n, and let us consider the statement with n replaced by
n+ 1: we want to verify that

1 + 2 + · · · + n+ (n+ 1) =
(n+ 1)(n+ 2)

2
.

In order to do so, we use that the hypothesis holds for n to derive that

1 + 2 + · · · + n+ (n+ 1) =
n(n+ 1)

2
+ n+ 1

=
n(n+ 1)

2
+

2(n+ 1)
2

=
(n+ 1)(n+ 2)

2
.

This completes the proof of the induction step. �

Let us complete this section with a result that will be used at several
instances. For �, k ∈ N0 with � ≥ k, define the binomial coefficient

(
�
k

)
:=

�!
k!(�− k)!

.

The binomial formula states the following:
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Lemma 1.9.2 (The binomial formula) For all y, z ∈ R and any � ∈ N,

(y + z)� =
�∑

k=0

(
�
k

)
zky�−k.

A guide to a proof of Lemma 1.9.2 is given in Exercise 1.26.

1.10 Exercises

1.1 Show that if {ek}n
k=1 is an orthonormal basis for C

n, then the
representation (1.4) takes the form (1.5).

1.2 Do the vectors

e1 =

⎛
⎝ 1

2
0

⎞
⎠ , e2 =

⎛
⎝ 0

1
3

⎞
⎠ , e3 =

⎛
⎝ 1

2
4

⎞
⎠

form a basis for C
3?

1.3 Consider a bounded interval [a, b] ⊂ R, and let C[a, b] denote the
set of continuous functions f : [a, b] → C, i.e.,

C[a, b] = {f : [a, b] → C | f is continuous}. (1.25)

(i) Show how to define appropriate operations of addition and scalar
multiplication such that C[a, b] equipped with these operations
become a vector space.

(ii) Is C[a, b] finite-dimensional? (Hint: for any n ∈ N, xn ∈ C[a, b].)

1.4 Prove Lemma 1.2.7.

1.5 Give a geometric description (e.g., via a figure) of the set in R
2 given

by

W = {c1v1 + c2v2 | c1, c2 ∈ [0, 1[},

where

v1 =
(

2
1

)
, v2 =

(
1
3

)
.

Describe also the closure W .
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1.6 Let m ∈ N be given, and assume that we for each � ∈ {0, 1, . . . ,m}
have chosen a polynomial P� of degree �. Show that the collection
of polynomials {P�}m

�=0 is a linearly independent set, and that

span{P�}m
�=0 = span{x�}m

�=0.

1.7 Consider the function

f(x) := −xe−x, x ∈ R.

Calculate the number

inf{f(x)
∣∣ x ∈ [0,∞[}.

Can “infimum” be replaced by “minimum”?

1.8 Determine the following numbers, and decide in each case whether
“supremum” can be replaced by “maximum”:

(i) supx∈R sinx;

(ii) supx∈R
e−|x|;

(iii) supx∈]1,∞[
1
x ;

(iv) supn∈N
(−1)n n+1

n+100 .

1.9 Determine the following numbers, and decide in each case whether
“infimum” can be replaced by “minimum”:

(i) infx∈R sinx;

(ii) infx∈R e
−|x|;

(iii) infx∈]1,∞[
1
x ;

(iv) infn∈N(−1)n n+1
n+100 .

1.10 Determine the following numbers, and decide in each case whether
“lim inf” resp. “lim sup” can be replaced by “limes”:

(i) lim infn→∞(−1)n n+1
n+100 ;

(ii) lim supn→∞(−1)n n+1
n+100 ;

(iii) lim infn→∞(−1)n n+1
n2+100 ;

(iv) lim supn→∞(−1)n n+1
n2+100 .
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1.11 This exercise is related to Lemma 1.5.9 and its hypotheses.

(i) Prove Lemma 1.5.9.

(ii) Find a sequence {ck}∞k=1 of real numbers that does not have
an accumulation point.

1.12 The purpose of this exercise is to prove Lemma 1.5.12. Under the
conditions in Lemma 1.5.12, prove the following:

(i) For each K ∈ N there exists a number m(K) such that

lim inf
n→∞ fn(k) ≤ fm(k) +

1
K2

for all k = 1, . . . ,K and all m ≥ m(K).

(ii) With m(K) chosen as in (i), show that for all k = 1, . . . ,K
and all m ≥ m(K),

K∑
k=1

lim inf
n→∞ fn(k) ≤

∞∑
k=1

fm(k) +
1
K
.

(iii) Conclude that for all k = 1, . . . ,K,

K∑
k=1

lim inf
n→∞ fn(k) ≤ lim inf

m→∞

∞∑
k=1

fm(k) +
1
K
.

(iv) Conclude the proof by letting K → ∞.

1.13 Prove Theorem 1.6.3. Hint: take a sequence of numbers {xk}∞k=1 ⊂
[a, b] such that

f(xk) → sup
x∈[a,b]

f(x) as k → ∞.

Use Lemma 1.5.10 to select a convergent subsequence {xkn}∞n=1 of
{xk}∞k=1 ⊂ [a, b], and let

x0 := lim
n→∞xkn .
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1.14 Make a draft of the function f in Example 1.6.8, and argue that it
is piecewise continuous. Argue further that f is unbounded and
not uniformly continuous.

1.15 The purpose of this exercise is to prove Theorem 1.6.6. Assume
that the hypotheses are satisfied, and let x0 ∈ I and ε > 0 be
given.

(i) Argue that there exists an N ∈ N such that

|f(x) − fN(x)| ≤ ε/3, ∀x ∈ I.

(ii) Argue that we can choose δ > 0 such that

|fN (x) − fN (x0)| ≤ ε/3 whenever x ∈ I and |x− x0| ≤ δ.

(iii) Use the triangle inequality to show that for x ∈ I with
|x− x0| ≤ δ,

|f(x) − f(x0)| ≤ ε.

1.16 The purpose of this exercise is to prove Theorem 1.7.1(i).

(i) Prove Young’s inequality: for any a, b > 0 and any p, q > 1 with
p−1 + q−1 = 1,

ab ≤ 1
p
ap +

1
q
bq.

Hint: consider the xy-plane, the graph of the function y = xp−1,
and the lines x = a, y = b.

(ii) Prove Theorem 1.7.1(i). Hint: put

||f ||p =
(∫ ∞

−∞
|f(x)|p dx

)1/p

, ||g||q =
(∫ ∞

−∞
|g(x)|q dx

)1/q

,

use Young’s inequality with

a =
|f(x)|
||f ||p , b =

|g(x)|
||g||q ,

and perform an integration.
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1.17 The purpose of this exercise is to prove Theorem 1.7.1(ii).

(i) Prove Theorem 1.7.1(ii) for p = 1.

We now assume that p > 1. Choose q > 1 such that p−1+q−1 = 1.

(ii) Show that q(p− 1) = p.

(iii) Show that

|f(x) + g(x)|p ≤ |f(x)| |f(x) + g(x)|p−1 + |g(x)| |f(x) + g(x)|p−1.

(iv) Show that

∫
I

|f(x) + g(x)|p dx ≤
(∫

I

|f(x) + g(x)|p dx
)1−1/p

×
[(∫

I

|f(x)|p dx
)1/p

+
(∫

I

|g(x)|p dx
)1/p

]
,

using the result in (ii) and Hölder’s inequality applied on each
of the two terms.

(v) Complete the proof of Theorem 1.7.1(ii) via (iv).

1.18 Prove Theorem 1.7.3(i), e.g., by appropriate modifications of the
proof of Theorem 1.7.1(i) outlined in Exercise 1.16.

1.19 Prove Theorem 1.7.3(ii), e.g., by appropriate modifications of the
proofs of Theorem 1.7.1(ii) outlined in Exercise 1.17.

1.20 Show that a trigonometric polynomial on the form (1.21) can be
rewritten on the form (1.22).

1.21 Let x ∈ R \ {1}. Show by induction that for any N ∈ N,

1 + x+ · · · + xN =
1 − xN+1

1 − x
.

1.22 Show that for any n ∈ N,

1 + 23 + 33 + · · · + n3 =
1
4
n2(n+ 1)2.

1.23 Show that 7n − 4n is a multiple of 3 for all n ∈ N.



28 1. Mathematical Background

1.24 Show that the equality

1 + 3 + 5 + · · · + (2n− 1) = n2

holds for all n ∈ N.

1.25 Show that if 1 + x > 0, then the inequality

(1 + x)n ≥ 1 + nx

holds for all n ∈ N.

1.26 The purpose of this exercise is to prove Lemma 1.9.2.

(i) Let � ∈ N. Prove that for j = 0, 1, . . . , �,

(
�

j

)
+
(

�

j − 1

)
=
(
�+ 1
j

)
.

(ii) Prove Lemma 1.9.2 by induction.



2
Normed Vector Spaces

For the analysis of vector spaces, it is important to impose more structure
on the space than merely the algebraic conditions in Definition 1.2.1. The
purpose of this chapter is to consider norms on vector spaces and some of
their properties. The key concept of a norm is presented in Section 2.1.
In Section 2.2 the topological concepts treated in Section 1.4 are extended
to general normed spaces. In Section 2.3 these concepts are linked with
dense subsets, exemplified by Weierstrass’ theorem on approximation of
continuous functions by polynomials. Section 2.4 gives a short introduction
to operators on normed vector spaces, and Section 2.5 deals with expansions
in normed spaces in terms of bases.

2.1 Normed vector spaces

Our purpose in this section is to introduce norms on complex vector spaces.
Intuitively, the norm of a vector shall measure the “size” of the vector;
thus, the norm is the analogue of the concept of length of a vector x ∈ R

n,
considered in (1.3).

O. Christensen, Functions, Spaces, and Expansions: Mathematical Tools 29
in Physics and Engineering, Applied and Numerical Harmonic Analysis,

DOI 10.1007/978-0-8176-4980-7 2, c© Springer Science+Business Media, LLC 2010
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Definition 2.1.1 (Norm) Let V be a complex vector space. A norm on
V is a function

|| · || : V → R

that satisfies the following three conditions:

(i) ||v|| ≥ 0, ∀v ∈ V, and ||v|| = 0 ⇔ v = 0;

(ii) ||αv|| = |α| ||v||, ∀v ∈ V, α ∈ C;

(iii) ||v + w|| ≤ ||v|| + ||w||, ∀v,w ∈ V.

A vector space equipped with a norm is called a normed vector space.

In situations where more than one vector space appears, we will
frequently denote the norm on V by || · ||V .

Note that we have stated the definition of a norm for a complex vector
space. For a real vector space, the definition is the same, except that the
scalars α in (ii) are assumed to be real numbers.

The inequality in Definition 2.1.1(iii) is called the triangle inequality. It
has another important inequality, called the reverse triangle inequality, as
a consequence:

Lemma 2.1.2 (Reverse triangle inequality) Let V be a normed vector
space. Then

||v − w|| ≥ | ||v|| − ||w|| | , ∀v,w ∈ V. (2.1)

Proof. Let v,w ∈ V . We need to show that

||v − w|| ≥ ||v|| − ||w|| and ||v − w|| ≥ ||w|| − ||v||.
The proofs of these two inequalities are similar, so we only prove the first.
Using the condition (iii) in Definition 2.1.1,

||v|| = ||(v − w) + w|| ≤ ||v − w|| + ||w||,
as desired. �

Example 2.1.3 (Rn and C
n are normed spaces) Using Minkowski’s

inequality in Theorem 1.7.3 with p = 2, one can prove directly that the
spaces R

n and C
n can be equipped with the norm

||x|| =

(
n∑

k=1

|xk|2
)1/2

, x = (x1, x2, . . . , xn).

Alternatively, the result is a direct consequence of a result proved later,
Lemma 4.1.3, and the fact that R

n and C
n are equipped with the inner

products in (1.1) and (1.2), respectively. �
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Let us consider an important normed vector space consisting of functions:

Example 2.1.4 (Continuous functions on a bounded interval) Con-
sider a bounded interval [a, b] ⊂ R, and let C[a, b] denote the set of
continuous functions f : [a, b] → C, i.e.,

C[a, b] := {f : [a, b] → C | f is continuous}.
Equip C[a, b] with the natural operations of addition and scalar multipli-
cation, see Exercise 1.3. By Theorem 1.6.3 we know that each function
f ∈ C[a, b] is bounded and assumes a maximum value; let

||f ||∞ := max
x∈[a,b]

|f(x)|. (2.2)

We will verify that || · ||∞ defines a norm on C[a, b], i.e., that it satisfies
the requirements in Definition 2.1.1. First, it is clear that ||f ||∞ ≥ 0 for all
f ∈ C[a, b]. Also, the function f = 0 belongs to C[a, b] and satisfies that
||f ||∞ = 0. On the other hand, if ||f ||∞ = 0 for some function f ∈ C[a, b],
then the definition of ||·||∞ shows that f(x) = 0 for all x ∈ [a, b], i.e., f = 0;
this verifies (i) in Definition 2.1.1. The property (ii) is clearly satisfied.
Now, in order to verify the condition (iii), let f, g ∈ C[a, b]. Then, for each
x ∈ [a, b],

|f(x) + g(x)| ≤ |f(x)| + |g(x)|
≤ ||f ||∞ + ||g||∞;

because this holds for all x ∈ [a, b], it follows that

||f + g||∞ = max
x∈[a,b]

|f(x) + g(x)|
≤ ||f ||∞ + ||g||∞.

We have now verified that || · ||∞ defines a norm on C[a, b]. The norm || · ||∞
is called the supremums-norm.

We will use the space C[a, b] to illustrate the concepts and results
appearing in the entire chapter. �

Frequently, a vector space can be equipped with different norms. For the
case of the vector space C[a, b] an alternative norm is discussed in Exercise
6.1.

We are now ready to introduce the important concept of convergence of
a sequence of elements in a normed vector space. We will use the notation

{vk}∞k=1 = {v1,v2, . . . },
indicating that we have chosen an ordering of the vectors vk in V.
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Definition 2.1.5 (Convergence in normed spaces)A sequence {vk}∞k=1

in a normed vector space V converges to v ∈ V if

||v − vk|| → 0 as k → ∞. (2.3)

This is written as

vk → v as k → ∞,

or

v = lim
k→∞

vk.

Note that the precise meaning of the condition (2.3) is that there for all
ε > 0 exists an N ∈ N such that

||v − vk|| ≤ ε for all k ≥ N. (2.4)

Let us illustrate the concept of convergence in the setting of the vector
space C[0, 1

2 ] equipped with the norm || · ||∞ in (2.2):

Example 2.1.6 (Convergence of functions in C[a, b]) We will consider
functions f and {fk}∞k=1 defined in terms of an infinite series and its partial
sums. For k ∈ N, let

fk(x) :=
k∑

n=0

xn, x ∈] − 1, 1[.

Using that

(1 − x)(1 + x+ · · · + xk) = 1 − xk+1,

it follows that

fk(x) = 1 + x+ · · · + xk =
1 − xk+1

1 − x
, x ∈] − 1, 1[.

Thus,

fk(x) → 1
1 − x

as k → ∞.

This shows that the functions fk converge pointwise toward the function

f(x) :=
∞∑

n=0

xn =
1

1 − x
, x ∈] − 1, 1[.
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Let us now consider the interval [0, 1
2 ]. It is clear that all the functions f

and fk, k ∈ N, belong to C[0, 1
2 ]. Now, for x ∈ [0, 1

2 ],

|f(x) − fk(x)| =
∣∣∣∣ 1
1 − x

− 1 − xk+1

1 − x

∣∣∣∣
=

xk+1

1 − x

≤
(

1
2

)k

.

Thus, with the norm || · ||∞ introduced in Example 2.1.4,

||f − fk||∞ = sup
x∈[0, 12 ]

|f(x) − fk(x)|

≤
(

1
2

)k

→ 0 as k → ∞.

This shows that fk → f in C[0, 1
2 ] equipped with the norm || · ||∞. �

2.2 Topology in normed vector spaces

The concepts of open and closed subsets in R
n can be extended to arbitrary

normed vector spaces:

Definition 2.2.1 (Balls and neighborhoods) Let V be a normed vector
space.

(i) Given a point v0 ∈ V , the ball centered at v0 and with radius r > 0
is the set

B(v0, r) := {v ∈ V | ||v − v0|| < r}.
(ii) For v0 ∈ V, a neighborhood of v0 is a subset of V that contains a ball

B(v0, δ) for some δ > 0.

Definition 2.2.2 (Open and closed sets) Let V be a normed vector
space, and W a subset of V .

(i) W is open if for each v0 ∈W there exists a δ > 0 such that

B(v0, δ) ⊆W.

(ii) The complement of W is

W c := V \W.
(iii) W is closed if the complement W c is open.
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The definition explains how one can verify that a subset of a normed
vector space is open. In order to check that a subset is closed, one can
either check that the complement is open, or use the following lemma.

Lemma 2.2.3 (Closed sets) For a subset W of a normed vector space
V the following are equivalent:

(i) W is closed.

(ii) For any convergent sequence {vk}∞k=1 of elements in W, the limit
v = limk→∞ vk also belongs to W .

Proof. For the proof of (i) ⇒ (ii), assume that W is closed, i.e., that
W c is open. Let {vk}∞k=1 be a convergent sequence of elements in W. Let
v = limk→∞ vk. We will show that v ∈ W. Assume the opposite, i.e., that
v ∈ W c. Then there is a δ > 0 such that B(v, δ) ⊆ W c; but this implies
that vk ∈W c for k sufficiently large, which is a contradiction. Thus, v ∈W,
which proves (ii).

For the proof of (ii) ⇒ (i), assume that (ii) holds. We will show that
W is closed by showing that the complement W c is open. Let v ∈ W c.
We want to prove that for k ∈ N sufficiently large, B(v, 1/k) ⊆ W c. In
fact, if this was not the case, we could for infinitely many k ∈ N pick
vk ∈ B(v, 1/k) ∩W. This would yield a sequence vk ∈ W converging to
v ∈ W c. But this contradicts the assumption in (ii)! This proves that for
δ > 0 sufficiently small, the ball B(v, δ) is contained in W c. Thus, W c is
open, i.e., W is closed. �

Example 2.2.4 (The set of polynomials is not closed in C[a, b])
Consider the vector space C[0, 1

2 ] equipped with the norm || · ||∞, see Ex-
ample 2.1.4. The set W consisting of all polynomials on [0, 1

2 ] is a subspace
of C[0, 1

2 ]. We will prove that W does not form a closed set. Consider the
functions Pk ∈W, k ∈ N, given by

Pk(x) =
k∑

n=0

1
n+ 1

xn = 1 +
1
2
x+ · · · + 1

k + 1
xk, x ∈ [0,

1
2
].

The reader can check that the infinite series
∑∞

n=0
1

n+1x
n is convergent for

all x ∈ [0, 1
2 ]. Let

P (x) :=
∞∑

n=0

1
n+ 1

xn, x ∈ [0,
1
2
].
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Then, for any x ∈ [0, 1
2 ],

|P (x) − Pk(x)| =

∣∣∣∣∣
∞∑

n=k+1

1
n+ 1

xn

∣∣∣∣∣

≤
∞∑

n=k+1

1
n+ 1

(
1
2

)n

.

Thus,

||P − Pk||∞ = sup
x∈[0,1/2]

|P (x) − Pk(x)|

≤
∞∑

n=k+1

1
n+ 1

(
1
2

)n

.

Since
∑∞

n=0
1

n+1
1
2n is convergent, we infer that

||P − Pk||∞ → 0 as k → ∞.

By Theorem 1.6.6 it follows that P is a continuous function. Thus, the
sequence Pk converges in C[0, 1

2 ] with respect to the norm || · ||∞. But the
limit P is not a polynomial! By Lemma 2.2.3 this proves that W does not
form a closed subset of C[0, 1

2 ].
A slight modification of the above argument shows that W is not open

either (Exercise 2.8). �

2.3 Approximation in normed vector spaces

In the technical sense, normed vector spaces can contain elements that are
very complicated to deal with (concrete instances will occur in the context
of the Lp-spaces discussed in Chapter 5). In such cases it is important to
have concepts for approximating complicated elements by more convenient
elements. In this context we need the following concept.

Definition 2.3.1 (Dense subset) A subset W of a normed vector space
V is said to be dense in V if for each v ∈ V and each ε > 0 there exists an
element w ∈W such that

||v − w|| ≤ ε.

IfW is a dense subspace of V, then all elements in V can be approximated
arbitrarily well by elements in W . In fact, let v ∈ V and take ε = 1/k for
k ∈ N. Then the condition in Definition 2.3.1 says that we can find an
element wk ∈ W such that ||v−wk|| ≤ 1/k. By construction, the sequence
{wk}∞k=1 satisfies that

wk → v as k → ∞.
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For a subset W of a normed vector space V , it is convenient to have
a formal notation for the set of elements in V that can be approximated
arbitrarily well in norm by elements in W . This leads to the concept of the
closure of a set:

Definition 2.3.2 (Closure) Let W be a subset of a normed vector space
V . The closure of W , to be denoted W , consists of all the elements in v ∈ V
having the property that we for each ε > 0 can find an element w ∈W such
that ||v − w|| ≤ ε.

Via Lemma 2.2.3, it follows that W is a closed set; in fact, it is the small-
est closed set in V containing W, see Exercise 2.9. Combining Definition
2.3.1 and Definition 2.3.2 leads to the following fundamental observation:

Lemma 2.3.3 (Characterization of dense subset) Let W be a subset
of the normed vector space V . Then W is dense in V if and only if W = V.

We have already considered examples dealing with continuous functions
and polynomials. Let us now formulate the famous Weierstrass’ Theorem,
stating that every continuous function on a closed and bounded interval
can be approximated arbitrarily well with a polynomial:

Theorem 2.3.4 (Weierstrass’ theorem) Let [a, b] ⊂ R be a closed and
bounded interval and f a continuous function defined on [a, b]. Then, for
every ε > 0 there exists a polynomial P such that

|f(x) − P (x)| ≤ ε for all x ∈ [a, b]. (2.5)

A proof of Weierstrass’ theorem can be found in Appendix A.1. Note that
in terms of the norm || · ||∞ in (2.2), the inequality (2.5) means that

||f − P ||∞ ≤ ε.

Formulated in terms of Definition 2.3.1, Weierstrass’ theorem says that
the set of polynomials on any closed and bounded interval [a, b] is dense in
C[a, b].

Example 2.3.5 (The closure of the set of polynomials in C[a, b])
Let W be the vector space of polynomials on [0, 1

2 ], considered in Example
2.2.4. Then W consists of all functions P : [0, 1

2 ] → C for which we can find
polynomials Pk, k ∈ N, such that

||P − Pk||∞ → 0 as k → ∞.

By Theorem 1.6.6 any such function P is continuous, i.e., W ⊆ C[0, 1
2 ].

On the other hand, Theorem 2.3.4 implies that each function f ∈ C[0, 1
2 ]

belongs to W, so we conclude that

W = C[0,
1
2
]. �
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2.4 Linear operators on normed spaces

Given arbitrary (complex) vector space V1 and V2, a mapping T : V1 → V2

is linear if

T (αv + βw) = αT (v) + βT (w), ∀α, β ∈ C, v,w ∈ V1. (2.6)

In the context of normed vector spaces, it is custom to use the word
operator instead of map; we will adopt that terminology here. Usually, the
action of a linear operator T on a vector v is written Tv rather than T (v);
we will also adopt that convention. Often we will need to consider the
norms of an element v ∈ V1, as well as the norm of the image Tv ∈ V2.
In cases where V1 �= V2, we will frequently denote these norms by ||v||V1 ,
respectively ||Tv||V2 ; in cases where no confusion can arise we will omit the
subscript.

Many normed vector spaces that appear in practice are infinite-
dimensional. It is more complicated to deal with linear operators on such
spaces than linear operators on R

n. The following definition presents a con-
dition that allows us to work with linear operators on normed vector spaces
almost like with linear operators on R

n; for the case of a linear operator on
a finite-dimensional vector space, the condition is automatically satisfied.

Definition 2.4.1 (Bounded linear operator) Let V1 and V2 be normed
spaces. A linear operator

T : V1 → V2

is bounded if there exists a constant K ≥ 0 such that

||Tv||V2 ≤ K ||v||V1 , ∀v ∈ V1. (2.7)

The smallest possible value of K that can be used in (2.7) is called the norm
of the operator T , and is denoted by ||T ||.

Example 2.4.2 (The identity operator) In the case of V1 = V2, we can
consider the identity operator

I : V1 → V1, Iv := v.

The identity operator is linear and bounded, and ||I|| = 1. �

A more interesting example of a bounded linear operator on C[a, b] is
given next:

Example 2.4.3 (Integral operator) Let [a, b] be a bounded closed
interval, and

K(·, ·) : [a, b] × [a, b] → C
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a continuous function of two variables. Consider the linear operator T given
by

T : C[a, b] → C[a, b], (Tf)(x) =
∫ b

a

K(x, y)f(y) dy.

We equip the space C[a, b] with the norm || · ||∞ considered in Example
2.1.4, and want to show that T is bounded. In order to do so, we will use
the inequality ∣∣∣∣∣

∫ b

a

g(x) dx

∣∣∣∣∣ ≤
∫ b

a

|g(x)| dx,

see Lemma 1.7.2. Now, let f ∈ C[a, b]. Then,

|(Tf)(x)| =

∣∣∣∣∣
∫ b

a

K(x, y)f(y) dy

∣∣∣∣∣
≤

∫ b

a

|K(x, y)f(y)| dy

≤
∫ b

a

(
sup

(x,y)∈[a,b]×[a,b]

|K(x, y)|
)(

sup
y∈[a,b]

|f(y)|
)
dy

=

(
sup

(x,y)∈[a,b]×[a,b]

|K(x, y)|
)(

sup
y∈[a,b]

|f(y)|
)∫ b

a

dy

= (b− a)

(
sup

(x,y)∈[a,b]×[a,b]

|K(x, y)|
)(

sup
y∈[a,b]

|f(y)|
)

= (b− a)

(
sup

(x,y)∈[a,b]×[a,b]

|K(x, y)|
)

||f ||∞.

This implies that

||Tf ||∞ = sup
x∈[a,b]

|(Tf)(x)|

≤ (b − a)

(
sup

(x,y)∈[a,b]×[a,b]

|K(x, y)|
)

||f ||∞.

Thus, T is bounded and

||T || ≤ (b − a)

(
sup

(x,y)∈[a,b]×[a,b]

|K(x, y)|
)
.

An operator T of the type considered here is called an integral operator. In
the mathematical literature the operator is often analyzed on other vector
spaces than the space C[a, b] considered here. �



2.4 Linear operators on normed spaces 39

Many other types of bounded operators will be considered later, e.g., in
Sections 3.3, 4.5 and 6.2.

A linear operator that does not satisfy the requirement in Definition 2.4.1
is called an unbounded operator. We state an example of an unbounded
operator, but ask the reader to prove the claims (Exercise 2.12).

Example 2.4.4 (Differentiation operator) Consider the vector space

C1[0,
1
2
] :=

{
f : [0,

1
2
] → C

∣∣ f is differentiable and f ′ is continuous
}
.

Then C1[0, 1
2 ] is a subspace of C[0, 1

2 ]. We now equip the spaces C[0, 1
2 ] and

C1[0, 1
2 ] with the supremums-norm, and consider the mapping

D : C1[0,
1
2
] → C[0,

1
2
], (Df)(x) := f ′(x), x ∈ [0,

1
2
].

Then D is a linear unbounded operator. �

We will now define some of the central concepts related to linear op-
erators. The reader will notice that they are similar to concepts that are
studied in linear algebra.

Definition 2.4.5 (Injective and surjective operator, isometry)
Let V1 and V2 be normed spaces and T : V1 → V2 a bounded linear operator.

(i) The operator T is injective if Tv = 0 ⇒ v = 0.

(ii) The operator T is surjective if for each w ∈ V2 there exists a v ∈ V1

such that Tv = w.

(iii) The operator T is bijective if T is injective and surjective.

(iv) The operator T is an isometry if ||Tv|| = ||v|| for all v ∈ V1.

Note that the definition of injectivity given here for a linear operator
corresponds to the classical definition of an injective function:

Example 2.4.6 (Injective operator) In classical terminology, a linear
mapping (or any other mapping) T : V1 → V2 is injective if

Tv = Tw ⇒ v = w. (2.8)

Assuming that T is linear, the requirement in (2.8) amounts to the
requirement

T (v − w) = 0 ⇒ v − w = 0; (2.9)

condition (2.9) is exactly the one appearing in Definition 2.4.5(i). �
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Definition 2.4.7 (Invertible operator) Let V be a vector space. A lin-
ear operator T : V → V is invertible if there exists a linear operator
S : V → V such that

ST = TS = I.

The operator S is called the inverse operator of T, and is usually denoted
by T−1.

If V is finite-dimensional, it is enough to check either that TT−1 = I
or that T−1T = I in order to show that T−1 is the inverse of T . If V
is an infinite-dimensional vector space, both conditions must be verified
(Exercise 3.14).

2.5 Series in normed vector spaces

Eventually, we want to obtain expansions in an infinite-dimensional normed
vector space V of the type we have at hand in C

n, see (1.4). That is, we
want to consider a collection of vectors {vk}∞k=1 in V with the property
that each v ∈ V has a representation

v =
∞∑

k=1

ckvk (2.10)

for appropriately chosen coefficients ck.
The first step is to clarify what is meant by convergence of an infinite

series consisting of elements in a normed vector space. In order to avoid
confusion with the expansion (2.10) which involves the coefficients ck, we
will consider an infinite sequence {wk}∞k=1 of elements in V . As discussed
before, the notation {wk}∞k=1 indicates that we have chosen an ordering of
the vectors wk,

w1,w2, . . . ,wk, . . . .

Our first goal is to give an exact definition of the infinite series
∑∞

k=1 wk.
In order to do so, we introduce the N th partial sum by

SN :=
N∑

k=1

wk.
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Definition 2.5.1 (Convergence of infinite series in normed space)
Let {wk}∞k=1 be a sequence of elements in a normed vector space V . We
say that the infinite series

∑∞
k=1 wk is convergent with sum w ∈ V if

∣∣∣∣∣
∣∣∣∣∣w −

N∑
k=1

wk

∣∣∣∣∣
∣∣∣∣∣ → 0 as N → ∞.

If this condition is satisfied, we write

w =
∞∑

k=1

wk. (2.11)

Thus, the definition of a convergent infinite series in a normed vector
space is analogous to the definition of a convergent series of numbers.

We will now define the span of an infinite collection of vectors. In order
to avoid convergence issues, the span is defined as the collection of all finite
linear combinations of the vectors:

Definition 2.5.2 (Span) Given a sequence {vk}∞k=1 in a normed vector
space V, let span{vk}∞k=1 denote the vector space consisting of all finite
linear combinations of vectors vk, i.e.,

span {vk}∞k=1 = {α1v1 + α2v2 + · · · + αNvN |N ∈ N, α1, α2, . . . , αN ∈ C}.

The definition of convergence implies (see Exercise 2.6) that if each v ∈ V
has a representation of the type

v =
∞∑

k=1

ckvk (2.12)

for some scalars ck ∈ C, then

span{vk}∞k=1 = V. (2.13)

On the other hand, the property (2.13) does not imply that each v ∈ V
has a representation of the type (2.12), see Exercise 2.7.

Definition 2.5.3 (Total sequence) Let V be a normed vector space. A
sequence {vk}∞k=1 having the property (2.13) is said to be complete or total
in V .

We note that there exist normed spaces where no sequence {vk}∞k=1 is
complete. A normed vector space, in which a complete sequence {vk}∞k=1

exists, is said to be separable.
We will now define the crucial concept of a basis in a normed vector space

V . We will not go further into that concept now, but return to it later.
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Definition 2.5.4 (Basis in normed vector space) Consider a sequence
{vk}∞k=1 of vectors in a normed vector space V . The sequence {vk}∞k=1

is a (Schauder) basis for V if for each v ∈ V there exist unique scalar
coefficients {ck}∞k=1 such that

v =
∞∑

k=1

ckvk. (2.14)

Definition 2.5.4 is the natural extension of Definition 1.3.2 to the setting
of infinite-dimensional normed vector spaces. The infinite-dimensional case
is much more complicated than the finite-dimensional, due to the fact that
we have to deal with infinite sums. We will discuss an important class of
bases in the context of Hilbert spaces in Section 4.7. The concept of a basis
is central in Section 7.4, Chapter 8, and Chapter 11.

2.6 Exercises

2.1 Let V be a normed vector space. Show that if {vk}∞k=1 is a sequence
in V and vk → v as k → ∞, then

lim
k→∞

||vk|| = ||v||.

2.2 Let V be a normed vector space and {vk}N
k=1 a collection of vectors

in V . Assume that there exists a constant A > 0 such that the
inequality

A

N∑
k=1

|ck|2 ≤ ||
N∑

k=1

ckvk||2

holds for all scalar coefficients c1, . . . , cN . Show that the vectors
{vk}N

k=1 are linearly independent.

2.3 Consider the vector space R with the norm

||x|| = |x|, x ∈ R.

(i) Is the subset N closed in R? Describe the set N.

(ii) Is the subset Q closed in R? Describe the set Q.
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2.4 Consider the set V of trigonometric polynomials as defined in
Definition 1.8.2.

(i) Show that V is a subspace of C[0, 1].

(ii) Equip C[0, 1] with the norm || · ||∞, as in Example 2.1.4. Is V
a closed subspace of C[0, 1]?

2.5 Consider the vector space

W :=

{
f : R → C

∣∣ f is continuous, and
∑
k∈Z

||fχ[k,k+1[||∞ <∞
}
.

(i) Show that the expression || · ||W given by

||f ||W :=
∑
k∈Z

||fχ[k,k+1[||∞

defines a norm on W .

(ii) Check whether the function f(x) = ex, x ∈ R, belongs to the
vector space W or not.

2.6 Let V be a normed vector space. Show that if each v ∈ V has a
representation of the type (2.12) for some vk ∈ V , then (2.13) holds.

2.7 Consider the set W of all polynomials on [0, 1
2 ], as in Example 2.2.4.

(i) Argue that

W = span{1, x, x2, . . . }.

(ii) Argue that there exist functions f ∈ C[0, 1
2 ] that cannot be

written on the form

f(x) =
∞∑

k=0

ckx
k, x ∈]0,

1
2
[.

This proves that the property (2.13) does not imply that each v ∈ V
has a representation of the type (2.12). In fact, by Example 2.3.5
we know that span{1, x, x2, . . . } = C[0, 1

2 ], but we just saw that
not all f ∈ C[0, 1

2 ] has a representation as an infinite sum of
functions xk, k = 0, 1, . . . .
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2.8 Let W be the subspace of C[0, 1
2 ] considered in Example 2.2.4.

Given δ > 0, put

g(x) := δ

∞∑
n=1

1
n+ 1

xn, x ∈ [0,
1
2
].

(i) Show that g ∈ B(0, δ).

(ii) Use (i) to conclude that W cannot be an open subset of
C[0, 1

2 ].

2.9 Let W be a subspace of a normed vector space V. Show that the
closure W is the smallest closed subspace of V that contains W.

2.10 Consider the linear map

T : R
2 → R

2, T

(
x1

x2

)
=
(

2x1 − x2

x1 + x2

)
.

Equip R
2 with the canonical norm, and answer the following:

(i) Is T injective?

(ii) Is T surjective?

(iii) Is T an isometry?

2.11 Consider the linear map

T : R
2 → R

2, T

(
x1

x2

)
=

⎛
⎝

√
1
3x1 +

√
2
3x2

−
√

2
3x1 +

√
1
3x2

⎞
⎠ .

Equip R
2 with the canonical inner product and check the following:

(i) Is T injective?

(ii) Is T surjective?

(iii) Show that for all x,y ∈ R
2,

〈Tx, Ty〉 = 〈x,y〉.

(iv) Is T an isometry?
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2.12 Consider the vector space C1[0, 1
2 ] defined in Example 2.4.4.

(i) Show that C1[0, 1
2 ] is a subspace of C[0, 1

2 ].

Consider the mapping

D : C1[0,
1
2
] → C[0,

1
2
], (Df)(x) := f ′(x), x ∈ [0,

1
2
].

(ii) Show that D is a linear operator.

(iii) Show that D is unbounded. (Hint: consider the functions
f(x) = xn for n ∈ N.)

2.13 Let V be a normed vector space and T a bounded linear operator
on V . Let W be a subset of V , and denote the image of W by
T (W ).

(i) Show that

T (W ) ⊆ T (W ).

(ii) Assume additionally that T is invertible and that T−1 is
bounded. Show that

T (W ) = T (W ).

2.14 Let V be a normed vector space and T a bounded linear operator
on V .

(i) Assume that wk → w in V as k → ∞. Show that

Twk → Tw as k → ∞.

(ii) Assume that {vk}∞k=1 is a sequence of elements in V and that∑∞
k=1 ckvk is convergent for some scalar sequence {ck}∞k=1.

Show that

T

∞∑
k=1

ckvk =
∞∑

k=1

ckTvk.
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2.15 Let V denote a normed vector space, and let {vk}n
k=1 denote a

collection of vectors in V . Equip C
n with the canonical norm, and

consider the mapping

T : C
n → V, T {ck}n

k=1 :=
n∑

k=1

ckvk.

Show that T is a bounded linear operator with

||T || ≤
(

n∑
k=1

||vk||2
)1/2

.

Hint: use the triangle inequality on ||∑n
k=1 ckvk|| , followed by an

application of Hölder’s inequality.
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Banach Spaces

Banach spaces form a special class of normed vector spaces. Compared
with other normed spaces, Banach spaces have the advantage that it is
easier to check that a sequence of vectors in the space is convergent. We
give the formal definition of a Banach space in Section 3.1. As example
of a Banach space we consider the set of continuous functions on a closed
and bounded interval. Other important Banach spaces, the sequence spaces
�p(N), are introduced in Section 3.2. In Section 3.3 we continue the analysis
of bounded linear operators initiated in Section 2.4.

3.1 Banach spaces

Already in Definition 2.1.5 we saw the concept of convergence for a sequence
of elements in a normed vector space. We now present a related definition
that turns out to be the key to the definition of Banach spaces.

Definition 3.1.1 (Cauchy sequence) Let V be a normed vector space.
A sequence {vk}∞k=1 of elements in V is a Cauchy sequence if for each ε > 0
there exists an N ∈ N such that

||vk − v�|| ≤ ε whenever k, � ≥ N.
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Example 3.1.2 (Sequences in R) Consider the normed vector space R.
Then the reader can verify the following:

(i) The sequence {xk}∞k=1 given by xk := k2 is not a Cauchy sequence.

(ii) The sequence {xk}∞k=1 given by xk := 3 + 1/k is a Cauchy sequence
(you might verify this geometrically rather than analytically). �

In any normed vector space, a convergent sequence is automatically
a Cauchy sequence. We state the result formally, and ask the reader to
provide the proof (Exercise 3.1):

Lemma 3.1.3 (Convergent sequences are Cauchy sequences)
Assume that V is a normed vector space, and that {vk}∞k=1 is a convergent
sequence in V. Then {vk}∞k=1 is a Cauchy sequence.

The opposite does not hold in general: there are normed vector spaces, in
which there exist nonconvergent Cauchy sequences. But in many important
normed vector spaces, a sequence is convergent if and only if it is a Cauchy
sequence. Such spaces are called Banach spaces:

Definition 3.1.4 (Banach space) A normed vector space V with the
property that each Cauchy sequence {vk}∞k=1 in V converges toward some
v ∈ V, is called a Banach space.

In cases where the relevant vector space V is a subspace of a larger space,
it is important to notice that there are two requirements in Definition 3.1.4:

• Each Cauchy sequence of elements in V must be convergent;

• The limit of the Cauchy sequence must belong to V .

See Exercises 5.4 and 6.1 for natural examples of spaces that are not Banach
spaces.

Example 3.1.5 (Rn and C
n are Banach spaces) When equipped with

the norm considered in Example 2.1.3, the spaces R
n and C

n have the
property that all Cauchy sequences are convergent, so both spaces are Ba-
nach spaces. We give the proof for the space R and leave the extension to
the spaces R

n and C
n to the reader (Exercise 3.2).

Let {ck}∞k=1 be a Cauchy sequence in R. Using the definition with ε = 1,
there exists an N ∈ N such that

|ck − c�| ≤ 1

whenever k, � ≥ N. Thus, for k ≥ N,

|ck| = |ck − cN + cN | ≤ |ck − cN | + |cN | ≤ 1 + |cN |,
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which proves that {ck}∞k=N is bounded. Therefore, also {ck}∞k=1 is bounded.
By Lemma 1.5.9 the sequence {ck}∞k=1 has an accumulation point, to be
denoted by c. We will show that {ck}∞k=1 converges toward c. In order to
do so, let ε > 0 be given. Choose K ∈ N such that

|ck − c�| ≤ ε/2 whenever k, � ≥ K.

Since c is an accumulation point for {ck}∞k=1, there exists k ≥ K such that

|c− ck| ≤ ε/2.

Thus, for any � ≥ K,

|c− c�| = |(c− ck) + (ck − c�)| ≤ |c− ck| + |ck − c�|
≤ ε/2 + ε/2
= ε.

This proves that limk→∞ ck = c, and thus that R is a Banach space. �

One can actually prove a much stronger result than the one in Example
3.1.5: all normed finite-dimensional vector spaces are Banach spaces. Let
us consider an important infinite-dimensional Banach space.

Theorem 3.1.6 (Continuous functions on bounded interval) The
vector space C[a, b] is a Banach space with respect to the norm

||f ||∞ = max
x∈[a,b]

|f(x)|. (3.1)

Proof. That the expression in (3.1) defines a norm on C[a, b] is shown in
Example 2.1.4. In order to show that C[a, b] is a Banach space, consider
a Cauchy sequence of functions {fk}∞k=1 belonging to C[a, b]. According to
the definition, this means that for any given ε > 0 there exists an N ∈ N

such that

||fk − f�||∞ ≤ ε whenever k, � ≥ N. (3.2)

We need to show that the sequence {fk}∞k=1 converges to a function
f ∈ C[a, b]. In order to find the relevant function f , fix an x ∈ [a, b]. Now,
because

|fk(x) − f�(x)| ≤ ||fk − f�||∞,
we know that {fk(x)}∞k=1 is a Cauchy sequence in C; because C is a Banach
space, this means that the sequence is convergent. That is, we can define a
function f by

f(x) := lim
k→∞

fk(x), x ∈ [a, b].
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We have defined the function f as the pointwise limit of the functions fk,
but we have to prove that it even holds that fk → f in C[a, b], i.e., that

||f − fk||∞ → 0 as k → ∞.

In order to do this, let ε > 0 be given. It follows from (3.2) that we can
choose N ∈ N such that

|fk(x) − f�(x)| ≤ ε

for all x ∈ [a, b] whenever k, � ≥ N. Letting �→ ∞, it follows that

|fk(x) − f(x)| ≤ ε

for all x ∈ [a, b] whenever k ≥ N ; this proves that ||fk − f ||∞ ≤ ε if k ≥ N ,
i.e., that fk → f in C[a, b]. In the terminology used in Section 1.6 we have
proved that the sequence {fk}∞k=1 converges uniformly to f ; that f ∈ C[a, b]
is thus a consequence of Theorem 1.6.6. �

3.2 The Banach spaces �1(N) and �p(N)

With the notation used in Section 1.1, vectors x in R
n and C

n are finite
sequences,

x = (x1, x2, . . . , xn).

In this section we discuss certain important Banach spaces, consisting of
infinite sequences. For convenience, we will index the sequences by N and
write them as

x = (x1, x2, . . . , xn, . . . ).

Often we will also write a sequence as x = {xk}∞k=1. We first define the
vector space �1(N), consisting of all absolutely summable scalar sequences:

�1(N) :=

{
{xk}∞k=1 | xk ∈ C,

∞∑
k=1

|xk| <∞
}
.

Theorem 3.2.1 (The Banach space �1(N)) The space �1(N) is a
Banach space with respect to the norm

||x||1 =
∞∑

k=1

|xk|, x ∈ �1(N). (3.3)
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Proof. We leave it to the reader as Exercise 3.3 to verify that the ex-
pression (3.3) defines a norm on �1(N). In order to show that �1(N) is a
Banach space, assume that {x(�)}∞�=1 is a Cauchy sequence of elements in
�1(N). Writing x(�) := {x(�)

k }∞k=1, this means that for each ε > 0, we can
find N ∈ N such that

∣∣∣
∣∣∣x(m) − x(�)

∣∣∣
∣∣∣
1

=
∞∑

k=1

|x(m)
k − x

(�)
k | ≤ ε for all �,m > N. (3.4)

Fix k ∈ N, and consider the kth entry in the sequences x�, � ∈ N. It follows
from (3.4) that {x(�)

k }∞�=1 forms a Cauchy sequence in C. Because C is a
Banach space, each of these sequences is convergent; let

xk := lim
�→∞

x
(�)
k , k ∈ N.

Now, put x = {xk}∞k=1. In order to show that �1(N) is a Banach space, it
is enough to show that x ∈ �1(N) and that

||x − x(�)||1 → 0 as �→ ∞. (3.5)

Note that

||x − x(�)||1 =
∣∣∣
∣∣∣{xk}∞k=1 − {x(�)

k }∞k=1

∣∣∣
∣∣∣
1

=
∞∑

k=1

|xk − x
(�)
k |

=
∞∑

k=1

lim
m→∞ |x(m)

k − x
(�)
k |.

Since limm→∞ |x(m)
k −x(�)

k | exists, Lemma 1.5.9 tells us that we can replace
limm→∞ |x(m)

k −x(�)
k | by lim infm→∞ |x(m)

k −x(�)
k |. Now, given ε > 0, choose

N ∈ N as in (3.4). Then, for � ≥ N , the above calculation together with
Lemma 1.5.12 shows that

||x − x(�)||1 =
∞∑

k=1

lim inf
m→∞ |x(m)

k − x
(�)
k |

≤ lim inf
m→∞

∞∑
k=1

|x(m)
k − x

(�)
k |

= lim inf
m→∞

∣∣∣
∣∣∣x(m) − x(�)

∣∣∣
∣∣∣
1

≤ ε.

This implies that x ∈ �1(N) (why?), and that (3.5) holds. �
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Example 3.2.2 (A basis for �1(N)) Consider the vector space �1(N). For
k ∈ N, let δk ∈ �1(N) be the vector with 1 at the kth entry and 0 otherwise,
i.e.,

δk = (0, . . . , 0, 1, 0, . . .0, . . . ). (3.6)

We want to prove that {δk}∞k=1 is a basis for �1(N). According to Definition
2.5.4 we need to show that for any u ∈ �1(N), there exist unique coefficients
ck ∈ C such that

u =
∞∑

k=1

ckδk. (3.7)

Note that by definition of an infinite series in a normed vector space, (3.7)
means that ∣∣∣∣∣

∣∣∣∣∣u −
N∑

k=1

ckδk

∣∣∣∣∣
∣∣∣∣∣
1

→ 0 as N → ∞. (3.8)

Writing

u = (u1, u2, . . . ),

we see that∣∣∣∣∣
∣∣∣∣∣u−

N∑
k=1

ckδk

∣∣∣∣∣
∣∣∣∣∣
1

= ||(u1, u2, . . . , uN , uN+1, uN+2, . . . ) − (c1, c2, . . . , cN , 0, 0, . . . )||1
= ||(u1 − c1, u2 − c2, . . . , uN − cN , uN+1, uN+2, . . . )||1

=
N∑

k=1

|uk − ck| +
∞∑

k=N+1

|uk|. (3.9)

If we want (3.8) to hold, (3.9) shows that the only possibility is to let
ck := uk for all k ∈ N. With this choice, (3.9) yields that

∣∣∣∣∣
∣∣∣∣∣u −

N∑
k=1

ukδk

∣∣∣∣∣
∣∣∣∣∣
1

=
∞∑

k=N+1

|uk|

→ 0 as N → ∞.

This shows that

u =
∞∑

k=1

ukδk, (3.10)

and that {δk}∞k=1 is a basis for �1(N). �
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The statement in Theorem 3.2.1 can be extended to a result about a
class of sequence spaces, called �p-spaces. Given any number p ∈ [1,∞[, let

�p(N) :=

{
{xk}∞k=1 | xk ∈ C,

∞∑
k=1

|xk|p <∞
}
.

Theorem 3.2.3 (The Banach spaces �p(N)) For p ∈ [1,∞[, the space
�p(N) is a Banach space with respect to the norm

||x||p =

( ∞∑
k=1

|xk|p
)1/p

, x ∈ �p(N). (3.11)

The proof of Theorem 3.2.3 is similar to the proof of Theorem 3.2.1 and is
left to the reader (Exercise 3.4).

The sequence spaces �p(N) play an important role in applied mathemat-
ics. In fact, even if a concrete model is formulated in terms of functions, a
computer-based implementation will always involve a transition from the
setting of functions to the setting of discrete sequences of numbers, typically
belonging to an �p-space.

Actually, the procedure goes one step further: before a computer-based
calculation can take place, the model has to be formulated in terms of a
finite sequence of numbers. This explains the role played by the following
result, which shows that any element in �p(N) can be approximated by a
sequence {xk}∞k=1 for which only finitely many entries xk are nonzero:

Lemma 3.2.4 (Dense nonclosed subspace of �p(N)) Let

V = { {xk}∞k=1 | xk ∈C, ∀ k ∈ N, and only finitely many xk are nonzero}.
For any p ∈ [1,∞[ the following hold:

(i) V is a subspace of �p(N).

(ii) V is dense in �p(N).

(iii) V does not form a closed subset of �p(N).

We leave the proof of Lemma 3.2.4 to the reader as Exercise 3.5.
Let us finally define the space �∞(N), consisting of all bounded sequences:

�∞(N) :=
{
{xk}∞k=1 | xk ∈ C, sup

k∈N

|xk| <∞
}
. (3.12)

One can prove (Exercise 3.10) that �∞(N) is a Banach space with respect
to the norm

||x||∞ = sup
k∈N

|xk|. (3.13)

For an explanation of the name �∞(N) we refer to Exercise 3.11.



54 3. Banach Spaces

3.3 Linear operators on Banach spaces

We will now continue the analysis of bounded linear operators initiated
in Section 2.4. Let us first consider an operator on �1(N) and some of its
properties:

Example 3.3.1 (Bounded operator on �1(N)) Consider the operator
T : �1(N) → �1(N) given by

T {xk}∞k=1 =
{1
k
xk

}∞
k=1

.

Written out in coordinates, we have

T (x1, x2, . . . , xn, . . . ) =
(
x1,

1
2
x2, . . . ,

1
n
xn, . . .

)
.

We will check that T is a bounded linear operator. First, we show that T
actually maps �1(N) into �1(N). Letting x = (x1, x2, . . . , xn, . . . ) ∈ �1(N),

||T {xk}∞k=1||1 =
∞∑

k=1

∣∣∣∣1k xk

∣∣∣∣ ≤
∞∑

k=1

|xk| <∞. (3.14)

This shows that Tx ∈ �1(N), as claimed. By inspection it is clear that T is
linear; we now want to show that T is bounded. The calculation in (3.14)
shows that

||Tx||1 ≤
∞∑

k=1

|xk| = ||x||1.

Thus, the operator T is bounded and ||T || ≤ 1. In fact, since

||T (1, 0, . . . , 0, . . . )||1 = ||(1, 0, . . . , 0, . . . )||1,
we have ||T || = 1. The operator T is not isometric. For example, letting
x = (0, 1, 0, 0, . . . , 0, . . . ), we have ||x||1 = 1, but

||Tx||1 =
∣∣∣∣
∣∣∣∣
(
0,

1
2
, 0, 0, . . . , 0, . . .

)∣∣∣∣
∣∣∣∣
1

=
1
2
.

Thus, for this particular x, we see that ||Tx||1 �= ||x||1. �

Note that the first step in Example 3.3.1 was to show that T actually
maps �1(N) into �1(N): after that, the calculation immediately gave that T
is bounded. This is very typical for analysis of operators.

For technical reasons it is often difficult to define linear operators on
infinite-dimensional vector spaces. For example, if we want to define an
operator acting on �1(N) we might need to worry about convergence issues.
In such cases it is an advantage first to define the operator on a convenient
subspace, and then try to extend it to the entire space. For example, in the
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case of an operator acting on �1(N) the natural subspace to consider is the
one defined in Lemma 3.2.4.

The next result shows that under certain circumstances, such an operator
can be extended to a bounded operator acting on the entire Banach space:

Theorem 3.3.2 (Extension of bounded linear operator) Let V1 and
V2 be Banach spaces, W a dense subspace of V1, and T : W → V2 a bounded
linear operator. Then there exists a unique bounded linear operator

T̃ : V1 → V2

for which T̃v = Tv for all v ∈W. The operator T̃ satisfies that ||T̃ || = ||T ||.
Proof. Let v ∈ V1. Because W is dense in V1, we can select a sequence of
elements {vk}∞k=1 in W such that vk → v as k → ∞. Now, for k, � ∈ N,

||Tvk − Tv�|| = ||T (vk − v�)|| ≤ ||T || ||vk − v�||.
This implies that {Tvk}∞k=1 is a Cauchy sequence in V2 and therefore
convergent. We now define

T̃v := lim
k→∞

Tvk. (3.15)

One can check that this definition is independent of the choice of the se-
quence {vk}∞k=1, see Exercise 3.12. Next, we verify that the operator T̃ is
linear. Given any v,w ∈ V1 and any α, β ∈ C, take sequences {vk}∞k=1 and
{wk}∞k=1 in W such that vk → v and wk → w as k → ∞. Then

αvk + βwk → αv + βw as k → ∞,

so

T̃ (αv + βw) = lim
k→∞

T (αvk + βwk)

= lim
k→∞

(αTvk + βTwk)

= αT̃v + βT̃w.

This proves that T̃ is linear. In order to show that T̃ is bounded, let v ∈ V1

and take again a sequence {vk}∞k=1 in W such that vk → v. Then, via the
result in Exercise 2.1,

||T̃v|| = || lim
k→∞

Tvk|| (3.16)

= lim
k→∞

||Tvk||
≤ lim

k→∞
(||T || ||vk||) (3.17)

= ||T || ||v||.
This proves that T̃ is bounded and that ||T̃ || ≤ ||T ||. We leave it to the
reader to argue that ||T̃ || ≥ ||T ||, which concludes the proof. �
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3.4 Exercises

3.1 Prove Lemma 3.1.3.

3.2 Let x�, � ∈ N, be a Cauchy sequence of complex numbers.

(i) Show that the real part of the sequence as well as the
imaginary part of the sequence form a Cauchy sequence.

(ii) Using that R is a Banach space, show that C is a Banach space.

For each � ∈ N, let x(�) denote a sequence in R
n, with coordinates

(x(�)
1 , x

(�)
2 , . . . , x

(�)
n ).

(iii) Show that x(�), � ∈ N, is a Cauchy sequence in R
n if and only

if the coordinate sequences x(�)
k , � ∈ N, are Cauchy sequences

in R for each k = 1, . . . , n.

(iv) Conclude that R
n and C

n are Banach spaces.

3.3 Prove that the expression (3.3) defines a norm on �1(N).

3.4 For p ∈ [1,∞[, consider the space �p(N).

(i) Prove that (3.11) defines a norm on �p(N). (Hint: use Theorem
1.7.3.)

(ii) Prove that �p(N) is a Banach space with respect to the norm
(3.11).

3.5 The goal of the exercise is to prove Lemma 3.2.4. Fix any p ∈ [1,∞[.

(i) Show that V is a subset of �p(N).

(ii) Argue that V is a subspace of �p(N).

(iii) Show that V is dense in �p(N). (Hint: any sequence {xk}∞k=1

in �p(N) can be approximated arbitrarily well by a sequence
obtained by replacing xk by zero for sufficiently large indices.)

(iv) Show that V does not form a closed subset of �p(N).

3.6 Consider Example 3.2.2. What is the set span{vk}∞k=1?
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3.7 Let p ∈ [1,∞[. Show that the vectors {δk}∞k=1 defined in (3.6) form
a basis for �p(N).

3.8 Consider the set V defined in Lemma 3.2.4.

(i) Show that V is a subset of �∞(N).

(ii) Show that V is a subspace of �∞(N).

(iii) Show that V is not dense in �∞(N).
Hint: consider x = {xk}∞k=1 ∈ �∞(N) given by xk = 1 for all
k ∈ N and show that ||x − y||∞ ≥ 1 for all y = {yk}∞k=1 ∈ V.

(iv) Show that V does not form a closed subset of �∞(N).
Hint: consider x = {xk}∞k=1 ∈ �∞(N) given by xk = 1/k for all
k ∈ N and find sequences yn ∈ V such that ||x− yn||∞ → 0 as
n→ ∞.

3.9 Consider a sequence {wk}∞k=1 of positive real numbers, and define
the weighted �1-space �1w(N) by

�1w(N) :=

{
{xk}∞k=1 | xk ∈ C,

∞∑
k=1

|xk|wk <∞
}
.

(i) Show that the expression || · || given by

||{xk}∞k=1|| :=
∞∑

k=1

|xk|wk

defines a norm on �1w(N).
We now consider the special choice

wk := 2k, k ∈ N.

(ii) Show that �1w(N) is a subspace of �1(N).

(iii) Find a sequence {xk}∞k=1 belonging to �1(N), but not to �1w(N).

(iv) Show that the left-shift operator

T (x1, x2, . . . ) = (x2, x3, . . . )

is bounded from �1w(N) into �1w(N).

(v) Calculate the exact value of the norm of the operator T
considered in (iv).



58 3. Banach Spaces

3.10 This exercise concerns the space �∞(N) defined in (3.12).

(i) Show that �∞(N) is a vector space and that (3.13) defines a
norm.

(ii) Show that �∞(N) is a Banach space with respect to the norm
in (3.13).

3.11 The purpose of this exercise is to motivate the name �∞(N) for
the space in (3.12). We consider the vector space C

n equipped
with various norms. For x ∈ C

n, write

x = (x1, x2, . . . , xn).

(i) Show that for any p ∈ [1,∞[,

||x||p :=

(
n∑

k=1

|xk|p
)1/p

defines a norm on C
n.

(ii) Show that

||x||∞ := max
k∈{1,...,n}

|xk|

defines a norm on C
n.

(iii) Show that for any x ∈ C
n,

||x||p → ||x||∞ as p→ ∞.

3.12 Complete the proof of Theorem 3.3.2 by showing that the limit in
(3.15) is independent of the choice of the sequence {vk}∞k=1. Hint:
consider two sequences {vk}∞k=1 and {wk}∞k=1, both converging to
v, and a sequence obtained by mixing elements from {vk}∞k=1 and
{wk}∞k=1.

3.13 Consider the mapping

T : C[0, 2] → C[0, 2], (Tf)(x) := x2f(x), x ∈ [0, 2].

(i) Show that T is well defined, i.e., T actually maps C[0, 2] into
C[0, 2].

(ii) Show that T is linear and bounded.
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3.14 This exercise deals with invertible operators on finite-dimensional
and infinite-dimensional vector spaces.

(i) Assume that T : C
n → C

n is a linear operator. Show that if
there exists an operator S : C

n → C
n such that ST = I, then

it also holds that TS = I.

Now let V = �1(N), and consider the right-shift operator

T : �1(N) → �1(N), T (x1, x2, . . . , xn, . . . )= (0, x1, x2, . . . , xn, . . . ),

and the left-shift operator

S : �1(N) → �1(N), S(x1, x2, . . . , xn, . . . ) = (x2, x3, . . . , xn, . . . ).

(ii) Show that T and S are bounded linear operators.

(iii) Show that ||T || = ||S|| = 1.

(iv) Is T an isometry? Is S an isometry?

(v) Is T injective? Is S injective?

(vi) Is T surjective? Is S surjective?

(vii) Show that ST = I, but TS �= I.

3.15 Let p ∈ [1,∞[ and consider the mapping

T : �p(N) → �p(N), T {xk}∞k=1 := {xk + xk+1}∞k=1.

(i) Show that T actually maps �p(N) into �p(N).

(ii) Show that T is linear and bounded.



4
Hilbert Spaces

Hilbert spaces can be considered as infinite-dimensional analogues of R
n

and C
n: in fact, the structure imposed on Hilbert spaces imply that many

of the properties of R
n and C

n (and the ways to deal with them) can be
extended to Hilbert spaces. Most importantly, a Hilbert space is equipped
with an inner product and an associated norm that makes the Hilbert space
a Banach space.

The Hilbert spaces are introduced in Section 4.1. We prove several rela-
tionships between the inner product and the associated norm. A concrete
Hilbert space, the sequence space �2(N), is considered in Section 4.2. Section
4.3 deals with the concept of orthogonality, and proves an important decom-
position of a Hilbert space in terms of a closed subspace and its orthogonal
complement. Section 4.4 introduces functionals on Hilbert spaces and their
properties. In Section 4.5 we continue the analysis of linear operators ini-
tiated in Section 2.4, but now on Hilbert spaces. Section 4.6 introduces
Bessel sequences, which allow one to obtain convergent series expansions
in a convenient way. Orthonormal bases are considered in Section 4.7. Sev-
eral characterizations of orthonormal bases are proved. In particular, it is
shown that orthonormal bases lead to expansions that converge regardless
how the vectors are ordered. Finally, Section 4.8 gives a very short intro-
duction to series expansions in Hilbert spaces obtained via so-called frames,
a concept that is more general than orthonormal bases.
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in Physics and Engineering, Applied and Numerical Harmonic Analysis,
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4.1 Inner product spaces

The norm on C
n considered in (1.3) arises from the inner product in (1.2)

via ||x|| = 〈x,x〉1/2.We will now introduce inner products on general vector
spaces and show that they give rise to norms in the same fashion.

Definition 4.1.1 (Inner product space) Let V be a (complex) vector
space. An inner product on V is a mapping

〈·, ·〉 : V × V → C (4.1)

for which

(i) 〈αv + βw,u〉 = α〈v,u〉 + β〈w,u〉, ∀v,w,u ∈ V, α, β ∈ C;

(ii) 〈v,w〉 = 〈w,v〉, ∀v,w ∈ V ;

(iii) 〈v,v〉 ≥ 0, ∀v ∈ V , and 〈v,v〉 = 0 ⇔ v = 0.

A vector space equipped with an inner product is called an inner product
space.

The definition for a real vector space is similar, except that the inner
product takes real values, the constants α and β in (i) are assumed to be
real, and the complex conjugation in (ii) is superfluous.

The condition in Definition 4.1.1(i) is expressed by saying that the inner
product 〈·, ·〉 is linear in the first entry. It implies that the inner product is
antilinear in the second entry; in fact, using the rules (i) and (ii),

〈v, αw + βu〉 = 〈αw + βu,v〉
= α〈w,v〉 + β〈u,v〉
= α〈v,w〉 + β〈v,u〉, ∀v,w,u ∈ V, α, β ∈ C.

In various areas of science and engineering, inner products are defined
slightly different: the inner products are linear in the second entry and
antilinear in the first. See, e.g., the discussion in Example 6.1.3 in the
context of quantum mechanics.

In any vector space V with an inner product 〈·, ·〉, Cauchy–Schwarz’
inequality holds:

Theorem 4.1.2 (Cauchy–Schwarz’ inequality) Let V be a vector
space with an inner product 〈·, ·〉. Then

|〈v,w〉| ≤ 〈v,v〉1/2 〈w,w〉1/2, ∀v,w ∈ V.

Proof. The result certainly holds if v = 0 (Exercise 4.1), so we can assume
that v �= 0. We first prove the result for the case where 〈v,w〉 is real. In
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this case, the properties for the inner product imply that

0 ≤ 〈w − 〈v,w〉
〈v,v〉 v,w − 〈v,w〉

〈v,v〉 v〉

= 〈w,w〉 − 2
〈v,w〉2
〈v,v〉 +

〈v,w〉2
〈v,v〉2 〈v,v〉

=
〈w,w〉〈v,v〉 − 〈v,w〉2

〈v,v〉 .

Because 〈v,v〉 > 0 we obtain that

〈v,w〉2 ≤ 〈w,w〉〈v,v〉;
this yields the result in case 〈v,w〉 is real.

We now consider the case where 〈v,w〉 is complex. Choose λ ∈ C such
that |λ| = 1 and λ〈v,w〉 ∈ [0,∞[; then

|〈v,w〉| = |λ〈v,w〉| = 〈λv,w〉.
We can now apply the partial result just proved to the vectors λv and w;
this leads to

|〈v,w〉| = 〈λv,w〉
≤ 〈λv, λv〉1/2 〈w,w〉1/2

= 〈v,v〉1/2 〈w,w〉1/2,

as desired. �

We now prove that any vector space V with an inner product 〈·, ·〉 can
be equipped with a natural norm:

Lemma 4.1.3 (Norm in inner product space) Let V be a vector space
with an inner product 〈·, ·〉. Then

||v|| :=
√
〈v,v〉, v ∈ V, (4.2)

defines a norm on V .

Proof. We verify that the expression for ||·|| in (4.2) satisfies the conditions
in Definition 2.1.1. The property (i) in Definition 2.1.1 immediately follows
from the property (iii) in Definition 4.1.1. Now, for any v ∈ V and α ∈ C,

||αv|| =
√
〈αv, αv〉 =

√
αα〈v,v〉 = |α| ||v||;

this verifies the condition (ii) in Definition 2.1.1. In order to check the
condition (iii) in Definition 2.1.1, let v,w ∈ V ; then, using the result in
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Theorem 4.1.2,

||v + w||2 = 〈v + w,v + w〉
= 〈v,v〉 + 〈w,w〉 + 〈v,w〉 + 〈w,v〉
≤ ||v||2 + ||w||2 + |〈v,w〉| + |〈w,v〉|
≤ ||v||2 + ||w||2 + 2 ||v|| ||w||
= (||v|| + ||w||)2 .

This completes the proof. �

Due to the conditions imposed on an inner product, one can derive sev-
eral general equalities and inequalities related to inner products and the
associated norm. We collect some of them here.

Theorem 4.1.4 Let V be a vector space with an inner product 〈·, ·〉 and
associated norm || · ||. Then the following hold:

(i) (Cauchy–Schwarz’ inequality) For any v,w ∈ V,

|〈v,w〉| ≤ ||v|| ||w||.
(ii) (The parallelogram law) For all v,w ∈ V,

||v + w||2 + ||v − w||2 = 2
(
||v||2 + ||w||2

)
. (4.3)

(iii) (The polarization identity in a complex vector space) If V is
a complex vector space and v,w ∈ V,

〈v,w〉 =
1
4
(||v + w||2 − ||v − w||2 + i(||v + iw||2 − ||v − iw||2)) .

(iv) (The polarization identity in a real vector space) If V is a real
vector space and v,w ∈ V,

〈v,w〉 =
1
4
(||v + w||2 − ||v − w||2) .

(v) (Norm versus inner product) For any v ∈ V ,

||v|| = sup{ |〈v,w〉| | w ∈ V, ||w|| = 1}. (4.4)

Note that (i) is a restatement of Theorem 4.1.2 in terms of the norm as-
sociated with the inner product. We ask the reader to prove (ii) in Exercise
4.2, (iii) and (iv) in Exercise 4.3, and (v) in Exercise 4.4. The interpretation
of (iii) and (iv) is that if we know the norm in a vector space with inner
product, we are able to reconstruct the inner product based on the norm.
On the other hand, (v) shows that the norm of an arbitrary element v ∈ H
can be recovered based on the inner product between v and the elements
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in the unit sphere in H. The result in (v) is frequently written in a slightly
shorter form as

||v|| = sup
||w||=1

|〈v,w〉|.

In Example 2.1.4, we considered the norm || · ||∞ on the vector space
C[a, b]. The norm || · ||∞ does not come from an inner product (Exercise
4.5). Frequently, a vector space can be equipped with different norms, with
different properties; for example, in Exercise 6.1 we ask the reader to show
that C[a, b] can be equipped with another norm, which actually comes
from an inner product. However, with respect to that norm, C[a, b] is not
a Banach space.

If an inner product space V is a Banach space with respect to the norm
in (4.2), then V is called a Hilbert space:

Definition 4.1.5 (Hilbert space) A vector space with an inner product
〈·, ·〉, which is a Banach space with respect to the norm (4.2), is called a
Hilbert space.

We reserve the letter H for Hilbert spaces. We will always assume that
H is nontrivial, i.e., that H �= {0}. The standard examples are the spaces
�2(N) discussed in Section 4.2, and L2(R) discussed in Chapter 6.

Example 4.1.6 (The Hilbert spaces R
n and C

n) In Example 3.1.5 we
saw that R

n and C
n are Banach spaces when equipped with the norm

||x|| =

(
n∑

k=1

|xk|2
)1/2

, x = (x1, x2, . . . , xn).

In both cases this norm arises from an inner product, see (1.1) and (1.2).
Thus, R

n and C
n are Hilbert spaces. �

We will say much more about general Hilbert spaces later in this chapter.
But before doing so we want to discuss the Hilbert space �2(N).

4.2 The Hilbert space �2(N)

In this section we give the first example of an infinite-dimensional Hilbert
space; it is at the same time one of the most important examples.

In Section 3.2 we introduced the sequence spaces �p(N). One of them,
�2(N), can be considered as a natural infinite-dimensional analogue of C

n:

�2(N) :=

{
{xk}∞k=1

∣∣ xk ∈ C,

∞∑
k=1

|xk|2 <∞
}
.
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Using the notation in Section 3.2, we will denote vectors in �2(N) by

x = {xk}∞k=1 = (x1, x2, . . . , xn, . . . ).

Theorem 4.2.1 (The Hilbert space �2(N)) The space �2(N) is a Hilbert
space with respect to the inner product

〈x,y〉 =
∞∑

k=1

xkyk, x,y ∈ �2(N). (4.5)

Proof. Already in Theorem 3.2.3 we saw that �2(N) is a Banach space
with respect to the norm

||x||2 =

( ∞∑
k=1

|xk|2
)1/2

.

Thus, it is enough to show that the expression in (4.5) actually defines
an inner product on �2(N). The fact that 〈·, ·〉 maps �2(N) × �2(N) into
C follows from Theorem 1.7.3, which actually shows that the infinite sum
in (4.5) converges absolutely. The verification of the properties (i)–(iii) in
Definition 4.1.1 is left to the reader. �

Note that for the space �2(N), Cauchy–Schwarz’ inequality states that
∣∣∣∣∣
∞∑

k=1

xkyk

∣∣∣∣∣
2

≤
∞∑

k=1

|xk|2
∞∑

k=1

|yk|2, ∀{xk}∞k=1, {yk}∞k=1 ∈ �2(N);

this is just a slightly different formulation of Hölder’s inequality in Theorem
1.7.3.

4.3 Orthogonality and direct sum decomposition

One of the key concepts in vector spaces with an inner product is
orthogonality. We collect some related definitions here:

Definition 4.3.1 (Orthogonality, orthonormal system) Let H be a
Hilbert space.

(i) Two elements v,w ∈ H are orthogonal if 〈v,w〉 = 0; in that case we
write v⊥w.

(ii) A collection of vectors {vk}∞k=1 in H is an orthogonal system if

〈vk,v�〉 = 0 for all k �= �.

(iii) An orthogonal system {vk}∞k=1 for which ||vk|| = 1 for all k ∈ N is
called an orthonormal system.
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We will also need a few definitions concerning vector spaces that are defined
using the concept of orthogonality:

Definition 4.3.2 (Orthogonal complement, direct sum) Let H be a
Hilbert space.

(i) The orthogonal complement of a subspace W of H consists of the
vectors in H that are orthogonal to all elements in W :

W⊥ := {v ∈ H | 〈v,w〉 = 0, ∀w ∈W}.
(ii) Given two subspaces U and W of H, the sum U +W is defined by

U +W := {v ∈ H | v = u + w for some u ∈ U,w ∈W}.

(iii) In case every v ∈ U+W has a unique representation v = u+w with
u ∈ U,w ∈ W, the sum is called a direct sum, and we write U ⊕W
instead of U +W .

Note that the sum of two subspaces again is a subspace. In this book,
when considering a direct sum U ⊕W , the spaces U and W will always be
orthogonal to each other.

A closed subspace and its orthogonal complement induce a decomposition
of the underlying Hilbert space. We will state the result in Theorem 4.3.5,
but in order to prove the result we need to introduce convex sets first:

Definition 4.3.3 (Convex set) A subset M of a vector space V is convex
if

v,w ∈M ⇒ λv + (1 − λ)w ∈M, ∀λ ∈ [0, 1].

Intuitively, a set M is convex if the line segment connecting two arbi-
trary points in M lies entirely in M (Exercise 4.13). By Lemma 1.2.7, any
subspace of a vector space is a convex set.

Lemma 4.3.4 (Nearest point to a convex set) Let M be a closed,
nonempty, and convex subset of the Hilbert space H. For any v ∈ H there
exists a uniquely determined w0 ∈M such that

||v − w0|| ≤ ||v − w|| (4.6)

for all w ∈M.

Proof. Fix v ∈ H, and let

δ := inf{ ||v − w|| ∣∣ w ∈M}.
By definition we can find a sequence of elements {wk}∞k=1 in M such that

||v − wk|| → δ as k → ∞. (4.7)
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Using the parallelogram law in (4.3),

||wk − w�||2 = ||(wk − v) + (v − w�)||2 (4.8)
= 2 ||wk − v||2 + 2 ||v − w�||2 − ||wk + w� − 2v||2

= 2 ||wk − v||2 + 2 ||v − w�||2 − 4 ||1
2

(wk + w�) − v||2.

By the assumption that M is convex, 1
2 (wk + w�) ∈M ; thus,

δ ≤ ||1
2

(wk + w�) − v||.
It follows that

||wk − w�||2 ≤ 2 ||wk − v||2 + 2 ||v − w�||2 − 4δ2. (4.9)

The left-hand side of (4.9) converges to 0 as k, � → ∞, so {wk}∞k=1 is a
Cauchy sequence in H. Since H is a Hilbert space, it follows that {wk}∞k=1

is convergent. The limit, to be denoted by w0, belongs to M because M is
assumed to be closed. It follows from (4.7) that δ = ||v − w0||, so (4.6) is
satisfied.

In order to show that w0 is unique, assume that

‖|v − u|| = ||v − w0|| = δ

for some u ∈W. Then, via the calculation in (4.8) with wk and w� replaced
by w0 and u,

||w0 − u||2 = 2 ||w0 − v||2 + 2 ||v − u||2 − 4 ||1
2

(w0 + u) − v||2

≤ 2δ2 + 2δ2 − 4δ2 = 0.

Thus u = w0, which completes the proof. �

Theorem 4.3.5 (Direct sum decomposition) For any closed subspace
W of a Hilbert space H,

H = W ⊕W⊥.

Proof. If W = {0}, then W⊥ = H and the result holds. We will therefore
for the rest of the proof assume that W �= {0}. Fix any v ∈ H, and choose
w0 ∈W as in Lemma 4.3.4. Then

v = w0 + (v − w0).

We will first show that v − w0 ∈ W⊥. In order to do this, assume that
v − w0 /∈ W⊥. Then there exists u ∈ W such that 〈v − w0,u〉 �= 0; by a
scalar multiplication we can obtain that

〈v − w0,u〉 = 1.
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For any λ ∈ R,

||v − w0 − λu||2
= 〈v − w0 − λu,v − w0 − λu〉
= 〈v − w0,v − w0〉 − λ〈v − w0,u〉 − λ〈u,v − w0〉 + λ2〈u,u〉
= ||v − w0||2 − 2λ+ λ2||u||2.

Note that

−2λ+ λ2||u||2 = −λ(2 − λ ||u||2),
which is negative for sufficiently small values of λ > 0. For λ > 0 sufficiently
small, this implies that

||v − w0 − λu|| < ||v − w0||;
in other words, the point w0 + λu in W is closer to v than w0. This
contradicts the choice of w0. Thus, we conclude that v − w0 ∈W⊥.

We have now proved that H = W + W⊥. We leave it to the reader to
show that the sum is direct (Exercise 4.7). �

The following example gives a geometrical understanding of Theorem
4.3.5.

Example 4.3.6 (Direct sum decomposition) Consider the vectors

e1 =

⎛
⎝ 1

0
0

⎞
⎠ , e2 =

⎛
⎝ 0

1
0

⎞
⎠

in R
3. Letting

W = span{e1, e2},
it follows that W⊥ is the set of scalar multiples of the vector

e3 =

⎛
⎝ 0

0
1

⎞
⎠ .

The interpretation of Theorem 4.3.5 is that every vector in R
3 in a unique

way can be decomposed as the sum of a vector in the (x, y)-plane and a
vector in the direction of the z-axis. �

4.4 Functionals on Hilbert spaces

In Section 4.5 we will continue our analysis of linear operators, now acting
on Hilbert spaces. Before we can do so, we need to consider the particular
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case of linear operators mapping the Hilbert space into the set of complex
numbers C. Such operators have a special name:

Definition 4.4.1 (Functional) Let H be a Hilbert space. A linear
operator Φ : H → C is called a functional.

We are particularly interested in functionals Φ that are bounded in
the sense of Definition 2.4.1. This means that there exists a constant K
such that

|Φv| ≤ K ||v||, ∀v ∈ H.
Considering any w ∈ H, we can define a bounded functional

Φ : H → C, Φv := 〈v,w〉, (4.10)
see Exercise 4.11. Different vectors w provide us with different functionals:

Lemma 4.4.2 (Uniqueness of vector associated with functional)
Let H be a Hilbert space. Assume that u,w ∈ H satisfy

〈v,u〉 = 〈v,w〉, ∀v ∈ H.
Then u = w.

We ask the reader to provide the proof (Exercise 4.12). The famous Riesz’
Representation Theorem states that all bounded functionals on H have the
form (4.10):

Theorem 4.4.3 (Riesz’ Representation Theorem)Given any bounded
functional Φ : H → C, there exists a unique vector w ∈ H such that (4.10)
holds.

Proof. For the sake of clarity we will frequently write Φ(v) rather than
just Φv in this proof. We first show the existence part. In case Φv = 0 for
all v ∈ H we can take w = 0. Now assume that there exists v ∈ H such
that Φv �= 0, and put

W = {v ∈ H ∣∣ Φv = 0}. (4.11)

Then W is a closed subspace of H (Exercise 4.14). Since W is a proper
subspace of H, Theorem 4.3.5 implies that W⊥ �= {0}; thus, we can choose
a vector u ∈ W⊥ with ||u|| = 1. Now, for any v ∈ H, consider the vector

z := [Φ(v)] u − [Φ(u)] v ∈ H.
Applying the functional Φ to the vector z and using the linearity yields

Φz = Φ([Φ(v)] u− [Φ(u)] v) = Φ(v)Φ(u) − Φ(u)Φ(v) = 0.

This shows that z ∈ W. Since u ∈ W⊥ by assumption,

〈z,u〉 = 〈[Φ(v)] u − [Φ(u)] v,u〉 = 0.
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Using the rules for calculations with inner products,

0 = Φ(v) ||u||2 − Φ(u) 〈v,u〉.
Since ||u|| = 1, this leads to

Φ(v) = Φ(u) 〈v,u〉 = 〈v,Φ(u)u〉.
Thus, the claimed result holds with w := Φ(u)u. The uniqueness follows
from Lemma 4.4.2. �

Let us state a result concerning Hilbert spaces that will be used repeat-
edly during the book. It is related to the operator Φ in (4.10). The proof
is left to the reader as Exercise 4.15.

Lemma 4.4.4 (Completeness of {vk}∞k=1) For a sequence {vk}∞k=1 in
a Hilbert space H the following are equivalent:

(i) {vk}∞k=1 is complete.

(ii) If v ∈ H and 〈v,vk〉 = 0 for all k ∈ N, then v = 0.

4.5 Linear operators on Hilbert spaces

Continuing our analysis of linear operators in Sections 2.4 and 3.3, we will
now have a closer look at linear operators on Hilbert spaces. In particu-
lar, we will introduce the adjoint of an operator and discuss some of its
properties.

For the sake of complete generality, we will consider two Hilbert spaces
H and K, and a bounded linear operator T : K → H. Denote the inner
products on H and K by 〈·, ·〉H and 〈·, ·〉K, respectively. In order to define
the adjoint operator associated with T, fix any w ∈ H; then the linear
mapping

Φ : K → C, Φv := 〈Tv,w〉H (4.12)

defines a bounded functional on the Hilbert space K (Exercise 4.16). By
Theorem 4.4.3, there exists a unique element in K, to be called T ∗w, such
that

Φv = 〈v, T ∗w〉K, ∀v ∈ K.
That is,

〈Tv,w〉H = 〈v, T ∗w〉K, ∀v ∈ K. (4.13)

For each w ∈ H we have now associated an element T ∗w ∈ K. Thus, we
can consider T ∗ as a mapping, T ∗ : H → K. The mapping T ∗ is called
the adjoint operator of T. We will now prove that T ∗ actually is linear and
bounded:
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Theorem 4.5.1 (Adjoint operator) The mapping T ∗ : H → K defined
by (4.13) is linear and bounded.

Proof. Given any w,u ∈ H and α, β ∈ C, we need to show that

T ∗(αw + βu) = αT ∗w + β T ∗u. (4.14)

In order to do this, consider any v ∈ K; then, by definition of T ∗ and the
properties of the inner product,

〈v, T ∗(αw + βu)〉K = 〈Tv, αw + βu〉H
= α 〈Tv,w〉H + β 〈Tv,u〉H
= α 〈v, T ∗w〉K + β 〈v, T ∗u〉K
= 〈v, αT ∗w + βT ∗u〉K.

By Lemma 4.4.2 this implies that (4.14) holds.
We now prove that T ∗ is bounded. For that purpose, consider any w ∈ H.

Then Theorem 4.1.4(v) shows that

||T ∗w|| = sup{ |〈v, T ∗w〉K|
∣∣ v ∈ K, ||v|| = 1}

= sup{ |〈Tv,w〉H| ∣∣ v ∈ K, ||v|| = 1}.
Via Cauchy–Schwarz’ inequality combined with the definition of the norm
of T, this implies that

||T ∗w|| ≤ sup
||v||=1

(||Tv|| ||w||)

≤ sup
||v||=1

(||T || ||v|| ||w||)

= ||T || ||w||. (4.15)

This proves that T ∗ is bounded. �

Note that the estimate (4.15) implies that

||T ∗|| ≤ ||T ||.
The following result shows that T and T ∗ actually have the same norm; we
ask the reader to provide the proof in Exercise 4.18.

Lemma 4.5.2 (Properties of the adjoint operator) Let T : K → H
be a bounded linear operator. Then the following hold:

(i) (T ∗)∗ = T ;

(ii) ||T || = ||T ∗||.

Let us calculate T ∗ explicitly for a concrete operator:
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Example 4.5.3 (Calculation of the adjoint operator) In Exercise
3.14 we considered the right-shift and left-shift operators on �1(N). We
will now consider these operators on the Hilbert space �2(N). That is, we
define

T : �2(N) → �2(N), T (x1, x2, . . . , xn, . . . ) := (0, x1, x2, . . . , xn, . . . ),

and

S : �2(N) → �2(N), S(x1, x2, . . . , xn, . . . ) := (x2, x3, . . . , xn, . . . ).

It is obvious that the operators T and S are linear; we will now show that
the operators are bounded, and find the adjoint T ∗.

In order to show that T is bounded, let x = (x1, x2, . . . ) ∈ �2(N); then

||Tx||2 = ||(0, x1, x2, . . . , xn, . . . )||2

=

( ∞∑
k=1

|xk|2
)1/2

= ||x||2.
This shows that T is bounded (and, in fact, an isometry). A similar
argument shows that S is bounded but not an isometry, see Exercise 4.22.

In order to find the adjoint operator T ∗, let x = (x1, x2, . . . ) and
y = (y1, y2, . . . ) be vectors in �2(N). Using the definition of T ∗,

〈x, T ∗y〉 = 〈Tx,y〉 = 〈

⎛
⎜⎜⎜⎜⎝

0
x1

x2

·
·

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

y1
y2
y3
·
·

⎞
⎟⎟⎟⎟⎠〉

=
∞∑

k=1

xkyk+1

= 〈

⎛
⎜⎜⎝

x1

x2

·
·

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

y2
y3
·
·

⎞
⎟⎟⎠〉

= 〈x, Sy〉.
Via Lemma 4.4.2 we conclude that

T ∗y = T ∗(y1, y2, . . . ) = (y2, y3, . . . ).

Note that this actually shows that

T ∗ = S. �
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We now define some central concepts related to the interplay between
the linear operators T and T ∗:

Definition 4.5.4 (Self-adjoint and unitary operators) Let H be a
Hilbert space and T : H → H a bounded linear operator.

(i) The operator T is self-adjoint if T = T ∗.

(ii) The operator T is unitary if TT ∗ = T ∗T = I.

Note that if a bounded operator T is self-adjoint, then

〈Tv,w〉 = 〈v, Tw〉, ∀v,w ∈ H;

if T is unitary, then

〈Tv, Tw〉 = 〈v,w〉, ∀v,w ∈ H. (4.16)

In particular, if 〈v,w〉 = 0 for some v,w ∈ H and T is a unitary operator,
then also 〈Tv, Tw〉 = 0; that is, a unitary operator preserves orthogonality
between two vectors. We also see directly from the definition that a unitary
operator T is invertible, with

T−1 = T ∗. (4.17)

A special role is played by operators projecting elements in a Hilbert
space onto a subspace. One might think, e.g., at the operator that maps a
vector (x, y, z) in R

3 onto the vector (x, y, 0) belonging to a two-dimensional
subspace of R

3. The general definition of an orthogonal projection is based
on the direct sum decomposition in Theorem 4.3.5:

Definition 4.5.5 (Orthogonal projections) Let V be a closed subspace
of a Hilbert space H. Write v ∈ H as v = v1 +v2, where v1 ∈ V, v2 ∈ V ⊥.
The orthogonal projection P onto V is defined by

P v := v1.

We leave the proof of the following properties of orthogonal projections to
the reader (Exercise 4.24).

Lemma 4.5.6 (Properties of orthogonal projections) Let V �= {0}
be a closed subspace of a Hilbert space H. Then the orthogonal projection
P of H onto V has the following properties:

(i) P is linear and bounded, with ||P || = 1;

(ii) P is self-adjoint;

(iii) P 2 = P.
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4.6 Bessel sequences in Hilbert spaces

The purpose of this section is to clarify convergence issues for infinite series
in Hilbert spaces.

Let H be a separable Hilbert space. Recall from Section 2.1 that when
speaking about a sequence {vk}∞k=1 in H, we mean an ordered set, i.e.,

{vk}∞k=1 = {v1,v2, . . . }.
In the formulation of the following results, we will use the hypothesis

that

T : �2(N) → H, T {ck}∞k=1 :=
∞∑

k=1

ckvk

defines a bounded linear operator. When doing so, we consider it as part
of the condition that the infinite series

∑∞
k=1 ckvk actually converges for

all {ck}∞k=1 ∈ �2(N).

Lemma 4.6.1 (Adjoint of the operator T ) Let {vk}∞k=1 be a sequence
in H, and suppose that

T : �2(N) → H, T {ck}∞k=1 :=
∞∑

k=1

ckvk (4.18)

defines a bounded linear operator. Then the adjoint operator is given by

T ∗ : H → �2(N), T ∗v = {〈v,vk〉H}∞k=1. (4.19)

Furthermore,
∞∑

k=1

|〈v,vk〉H|2 ≤ ||T ||2 ||v||2H, ∀v ∈ H. (4.20)

Proof. In order to find the expression for T ∗, consider any v ∈ H and
{ck}∞k=1 ∈ �2(N). Using the result in Exercise 4.25,

〈v, T {ck}∞k=1〉H = 〈v,
∞∑

k=1

ckvk〉H =
∞∑

k=1

ck 〈v,vk〉H. (4.21)

We know that T ∗ is a bounded linear operator from H to �2(N). We can
write T ∗v in terms of its coordinates as

T ∗v = {(T ∗v)k}∞k=1, v ∈ H;

because T ∗ is bounded, we have that

||T ∗v||2 =

( ∞∑
k=1

|(T ∗v)k|2
)1/2

≤ ||T ∗|| ||v||H, ∀ v ∈ H.
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This implies that for each k ∈ N,

|(T ∗v)k| ≤ ||T ∗|| ||v||H, ∀ v ∈ H,
i.e., that the kth coordinate function v �→ (T ∗v)k is bounded from H to
C. By Riesz’ representation theorem, (T ∗v)k therefore has the form

(T ∗v)k = 〈v,wk〉H, v ∈ H
for some fixed wk ∈ H. That is, T ∗v has the form

T ∗v = {〈v,wk〉H}∞k=1

for some fixed sequence {wk}∞k=1 in H. By definition of T ∗,

〈v, T {ck}∞k=1〉H = 〈T ∗v, {ck}∞k=1〉�2(N)

= 〈{〈v,wk〉H}∞k=1, {ck}∞k=1〉�2(N)

=
∞∑

k=1

ck 〈v,wk〉H, ∀{ck}∞k=1 ∈ �2(N), v ∈ H.

Together with (4.21), this shows that
∞∑

k=1

ck 〈v,wk〉H =
∞∑

k=1

ck 〈v,vk〉H, ∀{ck}∞k=1 ∈ �2(N), v ∈ H. (4.22)

It follows from here that vk = wk, see Exercise 4.27. Thus, we have shown
that T ∗ has the form announced in (4.19).

By Lemma 4.5.2, the adjoint of a bounded operator T is itself bounded,
and ||T || = ||T ∗||. Under the assumption in Lemma 4.6.1, we therefore have
that

||T ∗v||2 ≤ ||T ||2 ||v||2, ∀v ∈ H,
which leads to (4.20). �

Sequences {vk}∞k=1 for which an inequality of the type (4.20) holds will
play a crucial role in Sections 4.7 and 4.8, so it is convenient to give them
a name:

Definition 4.6.2 (Bessel sequences) A sequence {vk}∞k=1 in H is called
a Bessel sequence if there exists a constant B > 0 such that

∞∑
k=1

|〈v,vk〉|2 ≤ B ||v||2, ∀v ∈ H. (4.23)

Any number B satisfying (4.23) is called a Bessel bound for {vk}∞k=1.

We can characterize Bessel sequences in terms of the operator T
appearing in (4.18):
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Theorem 4.6.3 (Characterization of Bessel sequences) Let {vk}∞k=1

be a sequence in H and B > 0 be given. Then {vk}∞k=1 is a Bessel sequence
with Bessel bound B if and only if

T : �2(N) → H, T {ck}∞k=1 =
∞∑

k=1

ckvk

defines a bounded linear operator and ||T || ≤ √
B.

Proof. First assume that {vk}∞k=1 is a Bessel sequence with Bessel bound
B. Let {ck}∞k=1 ∈ �2(N). First we want to show that T {ck}∞k=1 is well-
defined, i.e., that

∑∞
k=1 ckvk is convergent. Consider n,m ∈ N, n > m.

Then ∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

ckvk −
m∑

k=1

ckvk

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣

n∑
k=m+1

ckvk

∣∣∣∣∣
∣∣∣∣∣ .

Using Theorem 4.1.4(v) and Cauchy–Schwarz’ inequality, it follows that∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

ckvk −
m∑

k=1

ckvk

∣∣∣∣∣
∣∣∣∣∣ = sup

||w||=1

∣∣∣∣∣〈
n∑

k=m+1

ckvk,w〉
∣∣∣∣∣

≤ sup
||w||=1

n∑
k=m+1

|ck〈vk,w〉|

≤
(

n∑
k=m+1

|ck|2
)1/2

sup
||w||=1

(
n∑

k=m+1

|〈vk,w〉|2
)1/2

≤
√
B

(
n∑

k=m+1

|ck|2
)1/2

.

Since {ck}∞k=1 ∈ �2(N), we know that
{∑n

k=1 |ck|2
}∞

n=1
is a Cauchy se-

quence in C. The above calculation now shows that {∑n
k=1 ckvk}∞n=1

is
a Cauchy sequence in H and therefore convergent. Thus, T {ck}∞k=1 is
well-defined. Clearly T is linear; since

||T {ck}∞k=1|| = sup
||w||=1

|〈T {ck}∞k=1,w〉|,

a calculation as above shows that T is bounded and that ||T || ≤ √
B.

For the opposite implication, suppose that T defines a bounded opera-
tor with ||T || ≤ √

B. Then Lemma 4.6.1 shows that {vk}∞k=1 is a Bessel
sequence with Bessel bound B. �

Let us consider an important example of a Bessel sequence:
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Lemma 4.6.4 (Bessel’s inequality for orthonormal systems) Let
{vk}∞k=1 be an orthonormal system in H. Then the following hold:

(i) The infinite series
∑∞

k=1 ckvk is convergent for all {ck}∞k=1 ∈ �2(N).

(ii) For any v ∈ H,
∞∑

k=1

|〈v,vk〉|2 ≤ ||v||2.

(iii) With the operator T defined as in (4.18),

TT ∗v =
∞∑

k=1

〈v,vk〉vk, v ∈ H.

Proof. In order to prove (i), let {ck}∞k=1 ∈ �2(N). For any m,n ∈ N with
n > m,

∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

ckvk −
m∑

k=1

ckvk

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣

n∑
k=m+1

ckvk

∣∣∣∣∣
∣∣∣∣∣
2

= 〈
n∑

k=m+1

ckvk,

n∑
�=m+1

c�v�〉

=
n∑

k=m+1

n∑
�=m+1

ckc�〈vk,v�〉.

Using that

〈vk,v�〉 = δk,�, k, � ∈ N,

it follows that∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

ckvk −
m∑

k=1

ckvk

∣∣∣∣∣
∣∣∣∣∣
2

=
n∑

k=m+1

ckck =
n∑

k=m+1

|ck|2. (4.24)

Since {ck}∞k=1 ∈ �2(N), we know that
n∑

k=m+1

|ck|2 → 0 as m→ ∞.

Together with (4.24) this implies that
{∑n

k=1 ckvk

}∞
n=1

is a Cauchy se-
quence in H, and therefore convergent. In order to prove (ii), we can
repeat the above calculations (Exercise 4.31) with

∑n
k=m+1 ckvk replaced

by
∑∞

k=1 ckvk, and hereby show that

∣∣∣∣∣
∣∣∣∣∣
∞∑

k=1

ckvk

∣∣∣∣∣
∣∣∣∣∣
2

=
∞∑

k=1

|ck|2, {ck}∞k=1 ∈ �2(N).
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By Theorem 4.6.3 this implies that {vk}∞k=1 is a Bessel sequence with bound
B = 1. Finally, (iii) is a direct consequence of (4.18) and (4.19). �

For later use we note that it is enough to check the Bessel condition
(4.23) on a dense subset of H:

Lemma 4.6.5 (Bessel sequences) Suppose that {vk}∞k=1 is a sequence
of elements in H and that there exists a constant B > 0 such that

∞∑
k=1

|〈v,vk〉|2 ≤ B ||v||2

for all v in a dense subset V of H. Then {vk}∞k=1 is a Bessel sequence with
bound B.

We leave the proof to the reader (Exercise 4.26).

4.7 Orthonormal bases

In Definition 2.5.4 we defined bases in infinite-dimensional normed spaces.
In Hilbert spaces the most important bases are the orthonormal bases:

Definition 4.7.1 (Orthonormal basis) A basis {ek}∞k=1 in a Hilbert
space H is an orthonormal basis for H if {ek}∞k=1 is an orthonormal system.

The next theorem gives equivalent conditions for an orthonormal system
{ek}∞k=1 to be an orthonormal basis.

Theorem 4.7.2 (Characterization of orthonormal bases) For an
orthonormal system {ek}∞k=1, the following are equivalent:

(i) {ek}∞k=1 is an orthonormal basis.

(ii) v =
∑∞

k=1〈v, ek〉ek, ∀v ∈ H.

(iii) 〈v,w〉 =
∑∞

k=1〈v, ek〉〈ek,w〉, ∀v,w ∈ H.
(iv)

∑∞
k=1 |〈v, ek〉|2 = ||v||2, ∀v ∈ H.

(v) span{ek}∞k=1 = H.
(vi) If v ∈ H and 〈v, ek〉 = 0, ∀k ∈ N, then v = 0.

Proof. For the proof of (i) ⇒ (ii), let v ∈ H. If {ek}∞k=1 is an orthonormal
basis, there exist coefficients {ck}∞k=1 such that v =

∑∞
k=1 ckek. Given any

j ∈ N, we have

〈v, ej〉 = 〈
∞∑

k=1

ckek, ej〉 =
∞∑

k=1

ckδk,j = cj,
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and (ii) follows (note that the argument involved moving an infinite sum
out from the inner product: this is justified by (4.35) in Exercise 4.25).

For the proof of (ii) ⇒ (iii), consider the inner product 〈v,w〉 between
two arbitrary vectors in H, and expand v as in (ii):

〈v,w〉 = 〈
∞∑

k=1

〈v, ek〉ek,w〉

=
∞∑

k=1

〈v, ek〉〈ek,w〉.

This proves that (ii) ⇒ (iii). Letting v = w, we see that (iv) is a special
case of (iii), i.e., (iii) ⇒ (iv).

In order to prove the implication (iv) ⇒ (v), assume that (iv) holds. If
v ∈ H is orthogonal to all ek, k ∈ N, (iv) implies that v = 0. By Lemma
4.4.4 we can now conclude that span{ek}∞k=1 = H, i.e., that (v) holds. The
implication (v) ⇒ (vi) also follows from Lemma 4.4.4.

For the proof of (vi)⇒ (i), let v ∈ H. We know from Lemma 4.6.4 that

w :=
∞∑

k=1

〈v, ek〉ek

is well defined. For any j ∈ N,

〈v − w, ej〉 = 〈v, ej〉 − 〈w, ej〉 = 〈v, ej〉 − 〈
∞∑

k=1

〈v, ek〉ek, ej〉

= 〈v, ej〉 −
∞∑

k=1

〈v, ek〉〈ek, ej〉

= 0.

By (vi), this proves that

v = w =
∞∑

k=1

〈v, ek〉ek.

To prove that {ek}∞k=1 is a basis, we only need to show that no other linear
combination of {ek}∞k=1 can be equal to v, and this follows by the argument
we used to prove that (ii) follows from (i). �

The equality in Theorem 4.7.2(iv) is called Parseval’s equation. The
property in Theorem 4.7.2(ii) is the main reason for considering orthonor-
mal bases: usually one refers to this property by saying that all elements
f ∈ H can be expanded in terms of the vectors ek in an orthonormal basis.

Later, we will encounter orthonormal bases that are not indexed by N.
For this reason it is important to realize that the expansion property is
independent of the indexing of the vectors. In order to make this statement
precise we need the next definition:
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Definition 4.7.3 (Reordering) Let {vk}∞k=1 be a sequence in a vector
space V. Given a bijective mapping σ : N → N, the vectors

{vσ(k)}∞k=1 = {vσ(1),vσ(2), . . . ,vσ(n), . . . }
are called a reordering of {vk}∞k=1.

The vectors {vσ(k)}∞k=1 are also called a permutation of {vk}∞k=1: the two
sequences consist of exactly the same vectors, but in a different order.

Example 4.7.4 (Reordering) The mapping σ : N → N given by

σ(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k, if k = 1, 5, 9, . . . ,
k + 1, if k = 2, 6, 10, . . . ,
k − 1, if k = 3, 7, 11, . . . ,
k, if k = 4, 8, 12, . . . ,

is a bijection. By inspection,

{vσ(k)}∞k=1 = {v1,v3,v2,v4,v5,v7,v6,v8, . . . }.
�

Note that the property of being an orthonormal system is independent
of how the vectors are ordered. The condition (vi) in Theorem 4.7.2 is also
independent on the order! This shows that if {ek}∞k=1 is an orthonormal
basis, then {eσ(k)}∞k=1 is an orthonormal basis for any permutation σ. In
particular, the expansion

v =
∞∑

k=1

〈v, eσ(k)〉eσ(k) (4.25)

holds for all v ∈ H. That is, the expansion property is independent
on the order of the vectors ek. We say that the series (4.25) converges
unconditionally, and state the result formally:

Corollary 4.7.5 (Expansion via orthonormal basis) If {ek}∞k=1 is an
orthonormal basis, then each v ∈ H has an expansion

v =
∞∑

k=1

〈v, ek〉ek. (4.26)

The series in (4.26) converges unconditionally.

The unconditional convergence of the series in (4.26) implies that we can
order the vectors ek as we want. We can also choose to index the vectors by
another index set than N. This will be important in our analysis of wavelets
in Chapter 8, where the index set is

Z × Z = {(j, k) ∣∣ j, k ∈ Z}.
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Orthonormal bases exist in all separable Hilbert spaces:

Theorem 4.7.6 (Existence of orthonormal bases) Every separable
Hilbert space H has an orthonormal basis.

Proof. Since H is assumed separable, we can choose a sequence {vk}∞k=1

in H such that span{vk}∞k=1 = H. By passing down to a subsequence
if necessary, we can assume that for each n ∈ N,vn+1 /∈ span{vk}n

k=1.
By applying the Gram–Schmidt process (see Exercise 4.9) to {vk}∞k=1, we
obtain an orthonormal system {ek}∞k=1 in H for which

span{ek}∞k=1 = span{vk}∞k=1 = H.
The result now follows from Theorem 4.7.2. �

In the Hilbert space �2(N), we have an orthonormal basis given by a
particularly simple expression:

Example 4.7.7 (Orthonormal basis for �2(N)) For k ∈ N, let δk be the
sequence in �2(N) whose kth entry is 1, and all other entries are 0. Then
{δk}∞k=1 is an orthonormal basis for �2(N), see Exercise 4.28; it is called the
canonical orthonormal basis. �

Based on Theorem 4.7.6, we will now prove that every separable Hilbert
space H can be identified with �2(N). The exact meaning of this statement
is that there exists a bijection U : H → �2(N) for which ||Uv|| = ||v|| for
all v ∈ H. We say that the spaces H and �2(N) are isometrically ismorphic.

Theorem 4.7.8 (Identification of Hilbert spaces) Every separable
infinite-dimensional Hilbert space H is isometrically isomorphic to �2(N).

Proof. Let {ek}∞k=1 be an orthonormal basis for H. In Lemma 4.6.4 we
have observed that

∑∞
k=1 ckek is convergent for all {ck}∞k=1 ∈ �2(N). Fur-

thermore, Lemma 4.6.4 together with Theorem 4.7.2 imply that each v ∈ H
has a unique expansion with �2-coefficients, namely, v =

∑∞
k=1〈v, ek〉ek.

Letting {δk}∞k=1 be the canonical orthonormal basis for �2(N), we can define
the operator

U : H → �2(N), U

( ∞∑
k=1

ckek

)
:=

∞∑
k=1

ckδk, ∀{ck}∞k=1 ∈ �2(N).
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Then U maps H bijectively onto �2(N). For v ∈ H,v =
∑∞

k=1〈v, ek〉ek, we
have

||Uv||2 = ||
∞∑

k=1

〈v, ek〉δk||2

=
∞∑

k=1

|〈v, ek〉|2

= ||v||2;
thus, U is an isometry. �

The following theorem characterizes all orthonormal bases for H starting
with one arbitrary orthonormal basis.

Theorem 4.7.9 (Characterization of orthonormal bases)Let {ek}∞k=1

be an orthonormal basis for H. Then the orthonormal bases for H are
precisely the sets {Uek}∞k=1, where U : H → H is a unitary operator.

Proof. Let {vk}∞k=1 be an orthonormal basis for H. Define the operator

U : H → H, U
( ∞∑

k=1

ckek

)
:=

∞∑
k=1

ckvk, ∀{ck}∞k=1 ∈ �2(N).

Then U maps H boundedly and bijectively onto H, and vk = Uek. For
v,w ∈ H, write v =

∑∞
k=1〈v, ek〉ek and w =

∑∞
k=1〈w, ek〉ek; then, via

the definition of U and Theorem 4.7.2,

〈U∗Uv,w〉 = 〈Uv, Uw〉

=

〈 ∞∑
k=1

〈v, ek〉vk,
∞∑

k=1

〈w, ek〉vk

〉

=
∞∑

k=1

〈v, ek〉〈w, ek〉 = 〈v,w〉.

This implies that U∗U = I. Since U is bijective, we know that U−1 exists;
and

U∗ = U∗I = U∗UU−1 = IU−1 = U−1.

This shows that U is unitary.
On the other hand, if U is a given unitary operator, then

〈Uek, Uej〉 = 〈U∗Uek, ej〉 = 〈ek, ej〉 = δk,j ,

i.e., {Uek}∞k=1 is an orthonormal system. To show that it is a basis, assume
that 〈v, Uek〉 = 0 for all k ∈ N. Then 〈U∗v, ek〉 = 0 for all k ∈ N, so
U∗v = 0. But the operator U∗ = U−1 is invertible, so we conclude that
v = 0. Now the result follows from Theorem 4.7.2. �
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In practice, orthonormal bases are certainly the most convenient bases
to use: for other types of bases, the representation (4.26) has to be replaced
by a more complicated expression. In fact, given any basis {vk}∞k=1 for a
Hilbert space H it is known that there exists another basis {wk}∞k=1 such
that

v =
∞∑

k=1

〈v,wk〉vk, ∀v ∈ H.

See Exercise 4.30 for a discussion of a class of bases {vk}∞k=1 and associ-
ated bases {wk}∞k=1. Unfortunately, it might be complicated to calculate
{wk}∞k=1; see, e.g., [19] or [5] for more information.

4.8 Frames in Hilbert spaces

We will now give a short introduction to an active research area dealing
with a generalization of the concept of an orthonormal basis. Formally, the
concept of a frame is defined by considering Bessel sequences having an
additional lower bound:

Definition 4.8.1 (Frames) A sequence of elements {vk}∞k=1 in a Hilbert
space H is a frame if there exist two positive numbers A and B such that

A ||v||2 ≤
∞∑

k=1

|〈v,vk〉|2 ≤ B ||v||2, ∀v ∈ H.

The frame is said to be tight if we can choose A = B.

Note that by Theorem 4.7.2, any orthonormal basis {ek}∞k=1 is a frame
with A = B = 1; this shows that frames generalize the concept of an
orthonormal basis. In more advanced literature, e.g., [19], [10], [5], it is
proved that if {vk}∞k=1 is a frame, there exists another frame {wk}∞k=1

such that

v =
∞∑

k=1

〈v,wk〉vk, ∀v ∈ H. (4.27)

At a first glance, this expansion is very similar with the one we saw for
orthonormal bases in Theorem 4.7.2(iii). The crucial difference is that the
coefficients appearing in (4.27) are given as inner products between the
element v and a new sequence {wk}∞k=1. Unfortunately, in practice it might
be difficult to find an appropriate sequence {wk}∞k=1. This is the reason for
considering tight frames: if {vk}∞k=1 is a tight frame, one can prove that
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the complicated expansion (4.27) can be replaced by

v =
1
A

∞∑
k=1

〈v,vk〉vk, ∀v ∈ H. (4.28)

Except for the factor A−1, this expansion looks exactly like the one we
obtained for orthonormal bases! That is, tight frames can be used without
any extra computational effort compared with the use of orthonormal bases.

One advantage of frames is that they might be overcomplete: one can
prove that unless {vk}∞k=1 is a basis, various choices of a family {wk}∞k=1

satisfying (4.27) are possible. This implies that one has the option to choose
the one that fits a certain application best! Also, since frames are more
general than orthonormal bases, there are cases where one can construct a
frame with features that cannot be combined with the orthonormal basis
condition. It will go too far to discuss such cases, so we refer to the book
[5] for more information.

4.9 Exercises

4.1 Let V be a vector space with an inner product 〈·, ·〉. Show that

〈0,v〉 = 0, ∀ v ∈ V.

4.2 Prove Theorem 4.1.4(ii). See Exercises 6.3 and 4.5 for some
important consequences.

4.3 Prove Theorem 4.1.4(iii)+(iv).

4.4 Prove Theorem 4.1.4(v).

4.5 Show that the norm || · ||∞ on C[0, 2] does not come from an
inner product. Hint: show that the norm || · ||∞ does not satisfy
the parallelogram law, e.g., for

f(x) =

{
x if x ∈ [0, 1],
2 − x if x ∈ [1, 2],

g(x) =

{
1 − x if x ∈ [0, 1],
x− 1 if x ∈ [1, 2].

The function f is a so-called B-spline, see Chapter 10.
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4.6 Consider the vector space �p(N) for some p ∈ [1,∞[, equipped with
the usual norm

||{xk}∞k=1||p =

( ∞∑
k=1

|xk|p
)1/p

.

(i) Consider the vectors

x = (1, 0, 0, . . . ), y = (0, 1, 0, 0, . . . ),

and show that

||x||p = ||y||p = 1, ||x + y||p = ||x − y||p = 21/p.

(ii) Assume that p �= 2. Show that the norm || · ||p does not come
from an inner product.

4.7 Assume that U and W are two subspaces of a Hilbert space H, and
that u⊥w for all u ∈ U,w ∈ W. Show that then the sum U +W is
direct.

4.8 Equip R
3 with the usual inner product, and consider the vectors

v1 =

⎛
⎝ 1

4
0

⎞
⎠ , v2 =

⎛
⎝ 4

1
0

⎞
⎠ ,v3 =

⎛
⎝ 1

2
4

⎞
⎠ .

(i) Compute the vectors e1 := v1
||v1|| , and

e2 :=
v2 − 〈v2, e1〉e1

||v2 − 〈v2, e1〉e1|| .

(ii) Plot the vectors v1 and v2, as well as e1 and e2.

(iii) Compute

e3 :=
v3 −

∑2
k=1〈v3, ek〉ek

||v3 −
∑2

k=1〈v3, ek〉ek||
.

(iv) Plot the vectors v1,v2, and v3, as well as e1, e2, and e3.

The procedure described here is called Gram–Schmidt orthonor–
malization, and is treated in Exercise 4.9.
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4.9 Let {vk}∞k=1 be a set of linearly independent vectors in a Hilbert
space H. We will show how one can construct an orthonormal set
{ek}∞k=1 for which

span{vk}∞k=1 = span{ek}∞k=1. (4.29)

Let e1 := v1
||v1|| , and

e2 :=
v2 − 〈v2, e1〉e1

||v2 − 〈v2, e1〉e1|| . (4.30)

(i) Show that e1 and e2 are orthonormal, and that

span{ek}2
k=1 = span{vk}2

k=1. (4.31)

We will now proceed with an inductive construction. Assume that
we for some n ∈ N have constructed an orthonormal system {ek}n

k=1

such that span{ek}n
k=1 = span{vk}n

k=1. Then we want to put

en+1 :=
vn+1 −

∑n
k=1〈vn+1, ek〉ek

||vn+1 −
∑n

k=1〈vn+1, ek〉ek|| . (4.32)

(ii) Show that en+1 is well defined, i.e., that

vn+1 −
n∑

k=1

〈vn+1, ek〉ek �= 0.

(iii) Show that {ek}∞k=1 is an orthonormal system and that for all
n ∈ N,

span{ek}n
k=1 = span{vk}n

k=1. (4.33)

(iv) Conclude that (4.29) holds.

The above procedure is called Gram–Schmidt orthonormalization.

4.10 Let H be a Hilbert space and {vk}∞k=1 a sequence of vectors in H
with ||vk|| = 1. Consider the mapping

Φ : H → C, Φv :=
∞∑

k=1

1
k2

〈v,vk〉.

(i) Show that Φ is well defined, i.e., that
∑∞

k=1
1
k2 〈v,vk〉 is

convergent if v ∈ H.
(ii) Show that Φ is linear and bounded.

(iii) Determine the vector w ∈ H such that

Φv = 〈v,w〉, v ∈ H.
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4.11 Show that Φ in (4.10) defines a bounded functional on H.

4.12 Prove Lemma 4.4.2.

4.13 Define analytically an example of a convex subset as well as a
nonconvex subset of R

2. Make a draft of these subsets.

4.14 Under the assumptions in Theorem 4.4.3, prove that the set W
in (4.11) is a closed subspace of H.

4.15 Let {vk}∞k=1 denote a sequence in a Hilbert space H. We want to
prove Lemma 4.4.4, which claims that (a) and (b) below are
equivalent:

(a) {vk}∞k=1 is complete;

(b) If v ∈ H and 〈v,vk〉 = 0 for all k ∈ N, then v = 0.
Proceed as follows:

(i) Show that if v ∈ H and 〈v,vk〉 = 0 for all k ∈ N, then 〈v,w〉 = 0
for all w ∈ span{vk}∞k=1.

(ii) Use (i) to show that if (a) holds, then (b) holds.

(iii) Prove that if (a) does not hold, then (b) does not hold.
Hint: let W := span{vk}∞k=1, and use Theorem 4.3.5 to argue
that if (a) does not hold, then W⊥ �= {0}.

4.16 Show that the mapping Φ in (4.12) defines a bounded functional
on the Hilbert space K.

4.17 Let S and T be bounded linear operators on a Hilbert space H
with inner product 〈·, ·〉.
(i) Show that for all v,w ∈ H,

〈STv,w〉 = 〈v, T ∗S∗w〉.

(ii) Based on the result in (i), show that

(ST )∗ = T ∗S∗.
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4.18 Prove Lemma 4.5.2. Hint: for (i), use formula (4.13) to show that

〈Tv,w〉 = 〈(T ∗)∗v,w〉, ∀v,w ∈ H,
and use Lemma 4.4.2. For (ii), the inequality ||T ∗|| ≤ ||T || is a
consequence of the proof of Theorem 4.5.1.

4.19 Let A be an n× n matrix,

A =

⎛
⎜⎜⎜⎜⎝

a11 a12 · · a1n

a21 a22 · · a2n

· · · · ·
· · · · ·
an1 an2 · · ann

⎞
⎟⎟⎟⎟⎠ .

We assume that the entries aij are complex numbers, and consider
A as a linear mapping from C

n into C
n.

(i) Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be vectors
in C

n, and show that

〈Ax,y〉 =
n∑

k=1

n∑
j=1

akjxjyk.

(Hint: the kth entry in the vector Ax is
∑n

j=1 akjxj .)

Let A
T

be the matrix obtained by transposing and complex
conjugating of the matrix A, i.e.,

A
T

=

⎛
⎜⎜⎜⎜⎝

a11 a21 · · an1

a12 a22 · · an2

· · · · ·
· · · · ·
a1n a2n · · ann

⎞
⎟⎟⎟⎟⎠ .

(ii) Show that

〈x,A T
y〉 =

n∑
j=1

n∑
k=1

akjxjyk.

(Hint: the jth entry in the vector A
T
y is

∑n
k=1 akjyk.)

(iii) Conclude that A∗ = A
T
.
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4.20 Consider the mapping

T : �2(N) → �2(N), T {xk}∞k=1 := {xk + xk+1}∞k=1.

In Exercise 3.15 it is proved that T is linear and bounded.

(i) Find the adjoint operator T ∗.

(ii) Is T self–adjoint?

(iii) Is T unitary?

4.21 Consider the mapping T : �2(N) → �2(N) given by

T (x1, x2, x3, x4, x5 . . . ) := (3x2, 2x1, x3, x4, x5, . . . ).

(i) Show that T is linear and bounded.

(ii) Find the adjoint operator T ∗.

4.22 Consider the left-shift operator on �2(N),

S : �2(N) → �2(N), S(x1, x2, . . . ) := (x2, x3, . . . ).

(i) Show that S is a bounded linear operator.

(ii) Show that S is not an isometry.

(iii) Find the adjoint operator S∗.

4.23 Let U be a unitary operator on a Hilbert space H.

(i) Show that 〈Uu, Uv〉 = 〈u,v〉, ∀u,v ∈ H.
(ii) Show that U j is unitary for all j ∈ Z.

4.24 Prove Lemma 4.5.6.

4.25 Let {vk}∞k=1 be a sequence in a Hilbert space H, and let
{ck}∞k=1 ∈ �2(N). Assume that

∑∞
k=1 ckvk is convergent. Prove that

for all v ∈ H,

〈v,
∞∑

k=1

ckvk〉H =
∞∑

k=1

ck 〈v,vk〉H (4.34)

and

〈
∞∑

k=1

ckvk,v〉H =
∞∑

k=1

ck 〈vk,v〉H. (4.35)
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4.26 Prove Lemma 4.6.5.

4.27 Show that the condition in (4.22) implies that vk = wk for all
k ∈ N.

4.28 Prove the result stated in Example 4.7.7.

4.29 Let V be a closed subspace of a Hilbert space H and {ek}∞k=1 an
orthonormal basis for V. Show that the orthogonal projection P of
H onto V is given by

Pv =
∞∑

k=1

〈v, ek〉ek, v ∈ H.

4.30 Let H denote a Hilbert space with inner product 〈·, ·〉. Let U be a
bijective, bounded, and linear operator on H, let {ek}∞k=1 be an
orthonormal basis for H, and define the vectors {vk}∞k=1 by

vk := Uek, k = 1, 2, . . . .

(i) Let v ∈ H. Show that

Uv =
∞∑

k=1

〈v, ek〉vk.

(ii) Let v ∈ H. Show that

v =
∞∑

k=1

〈v, (U−1)∗ek〉vk.

(Hint: use that v = UU−1v.)

(iii) Show that {vk}∞k=1 is a basis for H.

A basis of the type considered here is called a Riesz basis. See, e.g.,
[19] or [5] for more information about such bases.

4.31 Let {ek}∞k=1 be an orthonormal system in a Hilbert space H. Show
that for all {ck}∞k=1 ∈ �2(N),

∣∣∣∣∣
∣∣∣∣∣
∞∑

k=1

ckek

∣∣∣∣∣
∣∣∣∣∣
2

=
∞∑

k=1

|ck|2.
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4.32 Let {ek}∞k=1 be an orthonormal system in a Hilbert space H. Show
that

∞∑
k=1

ckek is convergent ⇔ {ck}∞k=1 ∈ �2(N).



5
The Lp-spaces

In this chapter we introduce and analyze an important class of Banach
spaces consisting of functions, the so-called Lp-spaces, where p is a param-
eter that specifies a particular space. First, in Section 5.1 we discuss some
vector spaces and concepts that play a role in the analysis of the Lp-spaces.
In Section 5.2 we introduce the space L1(R), and show how to make it a
normed space. Integration techniques in L1(R) are discussed in Section 5.3;
in particular, we consider techniques for interchanging an integral and an
infinite sum. For p ∈]1,∞], the spaces Lp(R) are introduced in Section 5.4;
their counterparts Lp(a, b) concerning functions defined on a subinterval
]a, b[⊂ R are discussed in Section 5.5.

In the definition and analysis of the Lp-spaces, we are at some points
forced to skip the discussion of certain subtle details. In fact, a complete
mathematical treatment of these spaces would require us to deal with the
concept of measurable functions; it is outside the scope of the book to do
that (see, e.g., [17] for a detailed presentation). Fortunately, all “natural”
functions, e.g., all piecewise continuous functions and even all functions that
we can just write down “by hand,” are measurable. Thus, this shortcoming
will not have any influence in practice.

O. Christensen, Functions, Spaces, and Expansions: Mathematical Tools 93
in Physics and Engineering, Applied and Numerical Harmonic Analysis,

DOI 10.1007/978-0-8176-4980-7 5, c© Springer Science+Business Media, LLC 2010
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5.1 Vector spaces consisting of continuous
functions

In this chapter, we are mainly interested in functions defined on the set R.
For technical reasons it is often necessary to approximate such functions by
continuous functions that are zero outside a bounded interval, or, at least,
decay to zero as the variable tends to ±∞. We will therefore introduce
vector spaces consisting of such functions first.

Definition 5.1.1 (Support, classes of continuous functions)
Consider a function f : R → C.

(i) The support of the function f is the smallest closed set outside which
the function is equal to zero:

supp f =
{
x ∈ R | f(x) �= 0

}
.

(ii) If supp f is a bounded set, i.e., contained in an interval of the form
[a, b] for some a, b ∈ R, we say that f has compact support.

(iii) The vector space Cc(R) consists of all continuous functions having
compact support:

Cc(R) :=
{
f : R → C | f is continuous and has compact support

}
.

(iv) The vector space C0(R) consists of all continuous functions that tends
to zero as x→ ±∞:

C0(R) :=
{
f : R → C | f is continuous and f(x) → 0 as x→ ±∞}

.

The verification that the spaces Cc(R) and C0(R) actually are vector spaces
with respect to the usual operations of addition and scalar multiplication is
left to the reader. Note that a function having compact support is equivalent
to the function being zero outside some finite interval. We illustrate the
definitions with some examples:

Example 5.1.2 (The vector spaces Cc(R) and C0(R)) We suggest that
the reader make a sketch of the following functions.

(i) For the function

f(x) =

⎧⎨
⎩

x if x ∈ [0, 1[,
2 − x if x ∈ [1, 2],
0 otherwise,

we see that {
x ∈ R | f(x) �= 0

}
=]0, 2[.
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Thus, supp f = [0, 2], i.e., f has compact support. Because f is
continuous, we conclude that f ∈ Cc(R). The function f is called a
B-spline, see Chapter 10.

(ii) The function

f(x) =

⎧⎨
⎩

2x if x ∈ [0, 1[,
2 − x if x ∈ [1, 2],
0 otherwise,

is not continuous, so it does not belong to Cc(R). However, it has
compact support, supp f = [0, 2].

(iii) The function

f(x) =
{

1 if x ∈ [−1, 1],
1
|x| if x ∈ R \ [−1, 1],

does not have compact support, so it does not belong to Cc(R).
However, f is continuous and f(x) → 0 as x→ ±∞, i.e., f ∈ C0(R).

�

We now state some of the central properties for the spaces Cc(R) and
C0(R). We begin with C0(R) :

Lemma 5.1.3 (Norm on C0(R)) The expression

||f ||∞ = max
x∈R

|f(x)| (5.1)

defines a norm on C0(R) that makes it a Banach space.

Proof. We first show that the expression in (5.1) makes sense and is finite
for all f ∈ C0(R). The result is obvious for the function f = 0, so consider
any function f ∈ C0(R) \ {0}. Choose x0 ∈ R such that δ := |f(x0)| > 0.
By definition of C0(R), there exists a number K > 0 such that

|f(x)| ≤ δ/2 whenever |x| ≥ K.

Also, according to Theorem 1.6.3, there exists an x1 ∈ [−K,K] such that

|f(x1)| = max
x∈[−K,K]

|f(x)|.

Due to the choice of K, we necessarily have that x0 ∈]−K,K[. Therefore,
|f(x1)| ≥ |f(x0)| = δ; thus, the maximum value for |f(x)| for x ∈ R exists
and equals |f(x1)|.

Now, that (5.1) is a norm on C0(R) is proved exactly like the correspond-
ing result for C[a, b] in Example 2.1.4. In order to show that C0(R) is a
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Banach space, let {fk}∞k=1 be a Cauchy sequence of functions belonging to
C0(R). Thus, for any ε > 0 there exists an N ∈ N such that

||fk − f�||∞ ≤ ε whenever k, � ≥ N.

Fix any x ∈ [a, b]. Since

|fk(x) − f�(x)| ≤ ||fk − f�||∞,
we infer that {fk(x)}∞k=1 is a Cauchy sequence in C. Since C is a Banach
space the sequence is convergent, and we can define a function f by

f(x) := lim
k→∞

fk(x).

Exactly like in the proof of Theorem 3.1.6 it follows that f is continuous
and

||f − fk||∞ → 0 as k → ∞. (5.2)

Thus, we only need to show that

f(x) → 0 as x→ ±∞. (5.3)

The exact meaning of (5.3) is that for each ε > 0 there exists an M > 0
such that

|f(x)| ≤ ε whenever |x| ≥M.

Now, given ε > 0, it follows from the above considerations that we can
choose N ∈ N such that

||f − fk||∞ ≤ ε/2 whenever k ≥ N.

For the chosen N , consider the function fN : since this function belongs to
C0(R), we can find an M > 0 such that

|fN(x)| ≤ ε/2 whenever |x| ≥M.

Thus, for |x| ≥M,

|f(x)| = |f(x) − fN(x) + fN(x)| ≤ |f(x) − fN (x)| + |fN (x)|
≤ ||f − fN ||∞ + |fN (x)|
≤ ε/2 + ε/2
= ε.

This concludes the proof. �

The norm

||f ||∞ = max
x∈R

|f(x)| (5.4)

is called the supremum-norm, or infinity-norm. It also defines a norm on
Cc(R), but the resulting normed space is not a Banach space:
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Lemma 5.1.4 (Norm on Cc(R)) The vector space Cc(R) is a subspace
of C0(R). It is a normed vector space with respect to the norm

||f ||∞ = max
x∈R

|f(x)|,

but not a Banach space.

Proof. That Cc(R) is a subset of C0(R) follows directly from the definition;
and that it is a subspace follows from Lemma 1.2.7. Since || · ||∞ is a norm
on C0(R), it is also a norm on the subspace Cc(R).

We will now show that Cc(R) cannot be a Banach space with respect
to the norm || · ||∞. In order to do so, we use the characteristic functions
defined in (1.20), and define a collection of functions {fk}∞k=1 by

fk(x) :=

⎧⎨
⎩

sinx
x

χ[−kπ,kπ](x) if x �= 0,

1 if x = 0.
(5.5)

Note that the function fk has compact support, supp fk = [−kπ, kπ]. Be-
cause sin(kπ) = 0 for all k ∈ Z and x−1 sinx→ 1 as x→ 0, we see that fk

is continuous, i.e., fk ∈ Cc(R) for all k ∈ N. Define the function f : R → R

by

f(x) :=

⎧⎨
⎩

sinx
x

if x �= 0,

1 if x = 0.

Then f ∈ C0(R) \ Cc(R). Note further that for all x ∈ R and all k ∈ N,

|f(x) − fk(x)| =
∣∣∣∣ sinxx χR\[−kπ,kπ](x)

∣∣∣∣
≤ 1

kπ
;

thus,

||f − fk||∞ ≤ 1
kπ
.

We conclude that

||f − fk||∞ → 0 as k → ∞.

The same argument (Exercise 5.1) shows that {fk}∞k=1 is a Cauchy sequence
in Cc(R). Thus, we have a Cauchy sequence {fk}∞k=1 of functions in Cc(R)
that converges to a function not belonging to Cc(R); this shows that Cc(R)
cannot be a Banach space. �

In Exercise 5.4, we ask the reader to consider the vector space Cc(R) with
another norm than the || · ||∞-norm. This alternative norm comes from an
inner product, but Cc(R) is not a Hilbert space with respect to that norm.
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5.2 The vector space L1(R)

We will now introduce one of the central vector spaces in mathematical
analysis. Unfortunately, a completely axiomatic treatment would require
that we introduce measure theory and Lebesgue integration, two topics
that are outside the scope of this book. Thus, at a few points, we are forced
to explain the theory in words rather than providing a completely exact
presentation. In particular, we will not explain the meaning of a measurable
function; since every function one can write down “by hand,” e.g., each
piecewise continuous function, actually is measurable, this shortcoming is
not critical. In fact, the existence of nonmeasurable functions is completely
nonconstructive, and as a practical matter the measurability will never be
an issue.

As integrability issues will play a role at several instances, we do need to
spend a few words on the meaning of the formal expression∫ ∞

−∞
f(x) dx. (5.6)

Whenever f : R → C is a piecewise continuous function, the integral
appearing in (5.6) is the improper Riemann integral, discussed shortly in
Section 1.7. The theory for measurable functions allows us to integrate a
larger class of functions in terms of the so-called Lebesgue integral. Since
the Riemann integral and the Lebesgue integral coincide for piecewise con-
tinuous functions this does not lead to any ambiguity in the definition of
(5.6). We will not discuss the exact meaning of the integral for functions
that are Lebesgue integrable but not Riemann integrable.

All concrete calculations in this book will be performed on piecewise
continuous functions, i.e., on functions that are Riemann integrable. Just
to satisfy the curiosity of the reader, we mention that the function

χQ(x) =

{
1 if x ∈ Q,

0 if x /∈ Q,
(5.7)

is an example of a measurable function that is not piecewise continuous;
the function is Lebesgue integrable, but not Riemann integrable.

Definition 5.2.1 (Integrable functions) A (measurable) function
f : R → C is said to be integrable if∫ ∞

−∞
|f(x)| dx <∞. (5.8)

The set consisting of all integrable functions on R is denoted by L1(R):

L1(R) :=
{
f : R → C

∣∣ ∫ ∞

−∞
|f(x)| dx <∞

}
.
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We will only consider integrals
∫∞
−∞ f(x) dx under the assumption that

f ∈ L1(R). We leave it to the reader to verify that L1(R) is a vector space
(Exercise 5.5). For piecewise continuous functions f, we verify the condition
(5.8) using the Riemann integral:

Example 5.2.2 (The L1(R)-condition) We consider various functions
and check whether they belong to L1(R).

(i) For the function

f(x) =

⎧⎨
⎩

2x if x ∈ [0, 1[,
2 − x if x ∈ [1, 2],
0 otherwise,

(considered in Example 5.1.2(ii)) we see that
∫ ∞

−∞
|f(x)| dx =

∫ 1

0

|2x| dx+
∫ 2

1

|2 − x| dx

=
3
2
<∞;

thus, f ∈ L1(R). The same type of argument shows that the B-spline in
Example 5.1.2(i) belongs to L1(R).

(ii) Consider the function

f(x) =
{

1 if x ∈ [−1, 1],
1
|x| if x ∈ R \ [−1, 1],

also appearing in Example 5.1.2(iii). First, we note that for any α > 1,∫ α

1

1
|x| dx =

∫ α

1

1
x
dx = lnα→ ∞ as α→ ∞;

this shows that ∫ ∞

1

|f(x)| dx = ∞.

It follows that f /∈ L1(R).

(iii) Consider the function

f(x) =
{ 1

2
√

x
if x ∈]0, 4],

0 otherwise.

Then ∫ ∞

−∞
|f(x)| dx =

∫ 4

0

1
2
√
x
dx =

[√
x
]4
0

= 2 <∞;

thus, f ∈ L1(R). See Figure 5.1.
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(a) (b)

Figure 5.1. (a): The graph of the function f in Example 5.2.2(iii). (b): The
function f in Example 5.2.2(iv).

(iv) For the function

f(x) =

⎧⎨
⎩

0 if x ∈] −∞, 0],
2x if x ∈ [0, 1],
x−2 if x ∈]1,∞[,

we see that∫ ∞

−∞
|f(x)| dx =

∫ 1

0

2x dx+
∫ ∞

1

1
x2

dx = 1 +
∫ ∞

1

1
x2
dx.

Now, ∫ α

1

1
x2

dx =
[−1
x

]α

1

= 1 − 1
α

→ 1 as α→ ∞;

thus, ∫ ∞

−∞
|f(x)| dx = 2,

i.e., f ∈ L1(R). See Figure 5.1. �

We have now introduced three vector spaces of functions, namely,
Cc(R), C0(R), and L1(R). One might wonder what the advantages of the
various spaces are. At a first glance, the space Cc(R) is the most convenient
space to use: in practical implementations one can only consider functions
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on a bounded interval, so the compact support of the functions in Cc(R) is
convenient. However, the space Cc(R) also has severe disadvantages:

(i) The space Cc(R) is not a Banach space with respect to the natural
norm || · ||∞;

(ii) The functions in Cc(R) are continuous, but discontinuous functions
appear in all areas of science and engineering.

The comment in (ii) also explains why C0(R) should not be chosen as our
favorite space. Motivated by these considerations, we will consider the space
L1(R). Later, in Theorem 5.4.2, we will see that our “favorite” vector space
Cc(R) is closely related with L1(R): it actually forms a dense subspace of
L1(R).

Our goal now is to show how L1(R) can be equipped with a norm that
makes it a Banach space. We first note that the norm || · ||∞ in (5.4) on
the spaces Cc(R) and C0(R) does not define a norm on L1(R):

Example 5.2.3 ( ||·||∞ does not form a norm on L1(R) ) The function
f ∈ L1(R) in Example 5.2.2(iii) is unbounded, so

sup
x∈R

|f(x)| = ∞.

But one of the requirements in Definition 2.1.1 is that the norm of any
vector is a finite real number; thus, || · ||∞ does not define a norm on
L1(R). �

We will now consider an alternative “guess” for how a norm can be
chosen. We define the mapping || · ||1 : L1(R) → R by

||f ||1 :=
∫ ∞

−∞
|f(x)| dx, f ∈ L1(R). (5.9)

The advantage of this definition is that || · ||1 takes finite and nonnegative
real values by definition of L1(R). Unfortunately, the expression || · ||1 does
not define a norm on L1(R): it does not satisfy condition (i) in Definition
2.1.1! In fact, it is clear that the function

f = 0

satisfies that ||f ||1 = 0; but there exist functions f that are not identically
zero and still have the property that ||f ||1 = 0. For example, the function
f̃ given by

f̃(x) =

{
1 if x = 0,
0 if x ∈ R \ {0}, (5.10)

also satisfies that ||f̃ ||1 = 0.
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Mathematically, there is a way to circumvent this problem. The exact
way of doing it is described in books on measure theory (see, e.g., [17]). We
define a so-called equivalence relation ∼ between the functions in L1(R) by

f ∼ g ⇔
∫ ∞

−∞
|f(x) − g(x)| dx = 0. (5.11)

We will say that two functions f, g ∈ L1(R) are equivalent if f ∼ g in the
sense of (5.11); in that case we will also say that f and g are identical
almost everywhere. This is in accordance with the use of this wording in
measure theory.

We will now identify functions that are equivalent; that is, we will not
distinguish between functions f and g for which f ∼ g. Strictly speaking,
the identification in (5.11) implies that the elements in L1(R) are no longer
functions: they are (equivalence) classes of functions.

The following important result presents a criterion implying equivalence
of two given functions. It is based on the concept of countable sets, which
is explained in Exercise 5.6.

Lemma 5.2.4 (Equivalence of functions) Assume that Γ ∈ R is a
countable set, and let f and g be two functions from R to C. If

f(x) = g(x) for all x ∈ R \ Γ,

then f ∼ g.

For the purpose in the current book it is enough to know that the set
Γ = Z and any subset hereof are countable (Exercise 5.6). The set R is
uncountable.

Example 5.2.5 (Equivalence of functions) We illustrate the identifi-
cation of functions with some examples.

(i) The function f̃ in (5.10) differs from the zero function only for x = 0;
thus, f̃ ∼ 0. That is, we will not distinguish between the zero function
and the function f̃ .

(ii) Let

f(x) = x, g(x) =

{
x if x ∈ R \ {1, 2},
0 if x ∈ {1, 2}.

Then f(x) = g(x), except for x ∈ {1, 2}. Thus, f ∼ g.

(iii) The sets N,Z, and Q are countable (Exercise 5.6). In particular, the
functions

f(x) = x and h(x) =

{
x if x ∈ R \ Z,

0 if x ∈ Z,

are equivalent, f ∼ h.
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(iv) Consider the function χQ in (5.7). It follows from the results in
Exercise 5.6 that χQ ∼ 0.

�

With the identification in (5.11), there is exactly one element f satisfying
||f ||1 = 0, and || · ||1 defines a norm:

Theorem 5.2.6 (Norm on L1(R)) Identifying functions which are
equivalent in the sense of (5.11), the expression

||f ||1 :=
∫ ∞

−∞
|f(x)| dx (5.12)

defines a norm on L1(R).

Proof. It is clear that || · ||1 satisfies the condition (ii) in Definition 2.1.1.
Also, for f, g ∈ L1(R), the triangle inequality shows that

||f + g||1 =
∫ ∞

−∞
|f(x) + g(x)| dx

≤
∫ ∞

−∞
(|f(x)| + |g(x)|) dx

=
∫ ∞

−∞
|f(x)| dx +

∫ ∞

−∞
|g(x)| dx

= ||f ||1 + ||g||1,
i.e., condition (iii) in Definition 2.1.1 is also satisfied. As we have seen, the
equation ||f ||1 = 0 only holds for the functions in the equivalence class
with f = 0; this concludes the proof. �

5.3 Integration in L1(R)

Integration is a central tool in mathematical analysis. At several instances
we need to integrate functions in L1(R) that are given in terms of infinite
series; in such a case, the integral can often be evaluated by an exchange
of the order of integration and summation. In the literature, several tech-
niques have been introduced in order to do so. We state the results in the
full generality of measurable functions, and suggest that the reader without
knowledge about measure theory simply assumes the functions to be piece-
wise continuous instead. Since the proofs are measure-theoretic by nature,
we skip them.
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Before we state the main result in Theorem 5.3.5, we mention Fatou’s
Lemma:

Lemma 5.3.1 (Fatou’s lemma) Let fn : R → [0,∞[, n ∈ N, be
a sequence of integrable functions. Then the function lim infn→∞ fn is
integrable, and∫ ∞

−∞
lim inf
n→∞ fn(x) dx ≤ lim inf

n→∞

∫ ∞

−∞
fn(x) dx. (5.13)

Observe the inequality in (5.13)! The next example exhibits a case where
strict inequality appears:

Example 5.3.2 (Strict inequality in Fatou’s lemma) For n ∈ N, let

fn(x) =

{
nx if x ∈ [0, 1/n],
0 if x /∈ [0, 1/n].

We suggest that the reader makes a draft of a few of these functions. Note
that limn→∞ fn(x) = 0 for all x ∈ R. It follows that

lim inf
n→∞ fn(x) = 0, x ∈ R,

so ∫ ∞

−∞
lim inf
n→∞ fn(x) dx = 0.

On the other hand, for all n ∈ N,∫ ∞

−∞
fn(x) dx =

1
2
, (5.14)

so

lim inf
n→∞

∫ ∞

−∞
fn(x) dx =

1
2
.

Thus, in this particular case,∫ ∞

−∞
lim inf
n→∞ fn(x) dx < lim inf

n→∞

∫ ∞

−∞
fn(x) dx. �

As stated in the introduction to this section, we want to find conditions
on a sequence of functions {hk}∞k=1 on R implying that

∫ ∞

−∞

∞∑
k=1

hk(x) dx =
∞∑

k=1

∫ ∞

−∞
hk(x) dx. (5.15)
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For a monotone increasing sequence of positive functions such conditions
follow from Lebesgue’s Monotone Convergence Theorem:

Theorem 5.3.3 (Lebesgue’s monotone convergence theorem) Sup-
pose that fn : R → R, n ∈ N, is an increasing sequence of (measurable)
functions, i.e., that

f1(x) ≤ f2(x) ≤ · · · , for all x ∈ R. (5.16)

Then

lim
n→∞

∫ ∞

−∞
fn(x) dx =

∫ ∞

−∞
lim

n→∞ fn(x) dx.

Theorem 5.3.3 is often used to justify an exchange of the order of
summation and integration for positive functions:

Example 5.3.4 (Exchange of the order of integral and sum) For
any sequence of (measurable) positive-valued functions hn, n ∈ N, Theorem
5.3.3 implies that (Exercise 5.7)

∫ ∞

−∞

∞∑
k=1

hk(x) dx =
∞∑

k=1

∫ ∞

−∞
hk(x) dx. �

For functions fn that are not necessarily positive, we need extra condi-
tions in order for (5.15) to hold. Such conditions can be derived based on
Lebesgue’s Dominated Convergence Theorem:

Theorem 5.3.5 (Lebesgue’s dominated convergence theorem)
Let f : R → C be given. Suppose that fn : R → C, n ∈ N, is a sequence of
(measurable) functions such that

(i) fn(x) → f(x) pointwise as n→ ∞;

(ii) There exists a positive, integrable function g such that

|fn(x)| ≤ g(x) for all n ∈ N, x ∈ R. (5.17)

Then f is integrable, and

lim
n→∞

∫ ∞

−∞
fn(x) dx =

∫ ∞

−∞
f(x) dx.

Before we show how to apply Theorem 5.3.5, we state an alternative ver-
sion, where the sequence of functions fn is replaced by a family of functions
fδ, parametrized by δ > 0:



106 5. The Lp-spaces

Theorem 5.3.6 (Lebesgue’s dominated convergence theorem)
Let f : R → C be given. Suppose that for each δ > 0 a (measurable) function
fδ : R → C is given and that

(i) fδ(x) → f(x) pointwise as δ → 0;

(ii) There exists a positive, integrable function g such that

|fδ(x)| ≤ g(x) for all δ > 0, x ∈ R.

Then f is integrable, and

lim
δ→0

∫ ∞

−∞
fδ(x) dx =

∫ ∞

−∞
f(x) dx.

Let us now return to the issue of how to verify (5.15). There is a standard
procedure to do that, based on Theorems 5.3.3 and 5.3.5:

Theorem 5.3.7 (Exchange of the order of integral and sum)
Assume that hn, n ∈ N, is a sequence of (measurable) functions and that

∞∑
k=1

∫ ∞

−∞
|hk(x)| dx <∞. (5.18)

Then ∫ ∞

−∞

∞∑
k=1

hk(x) dx =
∞∑

k=1

∫ ∞

−∞
hk(x) dx. (5.19)

Proof. We will demonstrate how the result follows from Theorems 5.3.3
and 5.3.5, but skip the measure-theoretic parts. Put

f(x) :=
∞∑

k=1

hk(x).

Let the functions fn, n ∈ N, be defined by

fn(x) :=
n∑

k=1

hk(x), x ∈ R.

Then

fn(x) → f(x) as n→ ∞,

and

|fn(x)| =

∣∣∣∣∣
n∑

k=1

hk(x)

∣∣∣∣∣ ≤
n∑

k=1

|hk(x)|

≤
∞∑

k=1

|hk(x)| .
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Putting

g(x) :=
∞∑

k=1

|hk(x)| , (5.20)

this means that (5.17) is satisfied. That g actually defines a function (i.e.,
that the infinite sum in (5.20) is convergent for a.e. x ∈ R) can be shown
to be a consequence of (5.18). Using the result in Example 5.3.4 and (5.18)
again,

∫ ∞

−∞
|g(x)| dx =

∫ ∞

−∞

∞∑
k=1

|hk(x)| dx =
∞∑

k=1

∫ ∞

−∞
|hk(x)| dx <∞,

i.e., g ∈ L1(R). It now follows from Theorem 5.3.5 that

lim
n→∞

∫ ∞

−∞
fn(x) dx =

∫ ∞

−∞
f(x) dx,

i.e., that

∫ ∞

−∞

∞∑
k=1

hk(x) dx = lim
n→∞

∫ ∞

−∞

n∑
k=1

hk(x) dx

= lim
n→∞

n∑
k=1

∫ ∞

−∞
hk(x) dx

=
∞∑

k=1

∫ ∞

−∞
hk(x) dx.

This completes the proof. �

Let us apply the procedure in Theorem 5.3.7 on a concrete case:

Example 5.3.8 (Exchange of the order of integral and sum)
Consider the function

f(x) =
∞∑

k=1

(−1)k+1

k2
χ[k,k+1[(x).

Looking carefully at the definition of that function (do that!) we see that

f(x) =

{
(−1)k+1

k2 if x ∈ [k, k + 1[, k ∈ N,

0 if x /∈ [1,∞[.
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We suggest that the reader makes a draft of the function. Note that
∫ ∞

−∞

∞∑
k=1

∣∣∣∣ (−1)k+1

k2
χ[k,k+1[(x)

∣∣∣∣ dx =
∫ ∞

−∞

∞∑
k=1

1
k2
χ[k,k+1[(x) dx

=
∞∑

k=1

∫ ∞

−∞

1
k2
χ[k,k+1[(x) dx

=
∞∑

k=1

∫ k+1

k

1
k2
dx

=
∞∑

k=1

1
k2
. (5.21)

Any series of the form
∑∞

k=1 k
−α with α > 1 is convergent, so we conclude

that (5.21) is finite. By Theorem 5.3.7 we now conclude that the function
f is integrable, and that

∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
lim

n→∞ fn(x) dx

= lim
n→∞

∫ ∞

−∞
fn(x) dx

= lim
n→∞

∫ ∞

−∞

n∑
k=1

(−1)k+1

k2
χ[k,k+1[(x) dx

= lim
n→∞

n∑
k=1

∫ ∞

−∞

(−1)k+1

k2
χ[k,k+1[(x) dx

=
∞∑

k=1

(−1)k+1

k2
.

�

Note that there are cases where the dominating function g does not
belong to L1(R), i.e., cases where the above procedure does not work:

Example 5.3.9 (Exchange of the order of integral and sum) With
the functions fn defined in Example 5.3.2, we have

f(x) := lim
n→∞ fn(x) = 0, ∀x ∈ R.

Thus,
∫ ∞

−∞
f(x) dx = 0.
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Together with (5.14) this shows that

lim
n→∞

∫ ∞

−∞
fn(x) dx �=

∫ ∞

−∞
f(x) dx.

This does not contradict Theorems 5.3.3 and 5.3.5. In fact, the sequence
fn is not increasing in the sense of (5.16) — and no dominating integrable
function g as in (5.17) exists. �

Later, e.g., in the context of the Fourier transform and convolution, we
will see cases where one has to integrate a function of two variables. Very
often, it is a computational simplification to switch the order of integration.
Technically, this can be done via Fubini’s Theorem:

Theorem 5.3.10 (Fubini’s theorem) Given a function f : R × R → C,
assume that ∫ ∞

−∞

(∫ ∞

−∞
|f(x, y)| dx

)
dy <∞.

Then ∫ ∞

−∞

(∫ ∞

−∞
f(x, y) dx

)
dy =

∫ ∞

−∞

(∫ ∞

−∞
f(x, y) dy

)
dx.

5.4 The spaces Lp(R)

We are now ready to define the Banach spaces Lp(R) for 1 < p < ∞. For
1 < p <∞, Lp(R) is the space of functions f for which |f |p is integrable:

Lp(R) :=
{
f : R → C

∣∣ ∫ ∞

−∞
|f(x)|p dx <∞

}
. (5.22)

As in the special case of L1(R), we can define a norm on Lp(R). Define
the equivalence relation between the functions in Lp(R) by

f ∼ g ⇔
∫ ∞

−∞
|f(x) − g(x)|p dx = 0.

Identifying equivalent functions similarly to what we did for L1(R), one
can show the following important result (Exercise 5.8):

Theorem 5.4.1 (Norm on Lp(R)) For each p ∈ [1,∞[, the expression

||f ||p =
(∫ ∞

−∞
|f(x)|p dx

)1/p

(5.23)

defines a norm on Lp(R) that makes Lp(R) a Banach space.
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Technically, it is complicated to deal with functions in Lp(R) : they might
be unbounded, and they do not need to have compact support. Therefore,
it is important that all functions in Lp(R) can be approximated arbitrarily
well by continuous functions with compact support:

Theorem 5.4.2 (Cc(R) dense in Lp(R)) For each p ∈ [1,∞[, the vector
space Cc(R) is a dense subspace of Lp(R).

Theorem 5.4.2 can be proved based on properties of the approximating
identities discussed in Section A.2, see [18]. Readers who want to under-
stand how to approximate functions in L1(R) by functions in Cc(R) are
referred to Exercise 5.14. Also, in Exercise 5.15 we ask the reader to show
that Cc(R) is a subspace of Lp(R) for all p ∈ [1,∞[.

The conclusion of Theorem 5.4.2 means that if g ∈ Lp(R) for some
p ∈ [1,∞[, there exists a sequence {gk}∞k=1 of continuous functions with
compact support, for which

||g − gk||p =
(∫ ∞

−∞
|g(x) − gk(x)|p dx

)1/p

→ 0 as k → ∞. (5.24)

It should be noted that (5.24) does not imply that the function values gk(x)
converge to g(x) for all x ∈ R! We come back to this issue in the context
of Fourier series in Section 6.4.

So far, we have defined the Banach spaces Lp(R) for all p ∈ [1,∞[. In
the mathematical analysis one also encounters the space L∞(R), which we
introduce now. Let

L∞(R) :=
{
f : R → C

∣∣ f is bounded
}
. (5.25)

The vector space L∞(R) is a Banach space with respect to the norm

||f ||∞ = sup
x∈R

|f(x)|. (5.26)

Note that a completely exact definition of the space L∞(R) and the
associated norm would require us to replace “bounded functions” by func-
tions that are bounded almost everywhere, and the supremum-norm by the
essential supremum-norm. An understanding of these concepts requires
knowledge of measure theory, so we are not able to go into the details
here.

5.5 The spaces Lp(a, b)

In this chapter we have only dealt with function spaces consisting of func-
tions defined on all of R. Similar results can be derived for functions defined
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on subintervals of R. Given any interval ]a, b[⊆ R and any p ∈ [1,∞[, we
can consider the vector space

Lp(a, b) :=

{
f :]a, b[→ C

∣∣ ∫ b

a

|f(x)|p dx <∞
}
. (5.27)

The vector space Lp(a, b) is a Banach space with respect to the norm

||f ||Lp(a,b) =

(∫ b

a

|f(x)|p dx
)1/p

. (5.28)

In cases where it is clear from the context what the interval ]a, b[ is, the
norm will frequently just be denoted by || · ||p.

5.6 Exercises

5.1 This exercise concerns the proof of Lemma 5.1.4. Consider the
functions {fk}∞k=1 defined in (5.5).

(i) Make a draft of the functions f1, f2, and f3.

(ii) Make a draft of the functions f2 − f1 and f3 − f2.

(iii) Show that {fk}∞k=1 is a Cauchy sequence in Cc(R).

5.2 Consider the functions

f1(x) = e−|x|, f2(x) = min(0, x2 − 1).

Make a sketch of the functions f1 and f2, and check for each of the
functions whether it belongs to the vector spaces Cc(R), C0(R), or
L1(R).
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5.3 Consider the following functions defined on R:

f1(x) = e−x2
,

f2(x) = e−x,

f3(x) = x3 + 2x+ 4,
f4(x) = sin(x),
f5(x) = sin(x)χ[−2,2](x),
f6(x) = sin(x)χ[−2π,2π](x),

f7(x) =
1

1 + x2
,

f8(x) =

⎧⎨
⎩

x if x ∈] − 1, 1],
2 − x if x ∈ [1, 3],
0 otherwise.

(i) Make a rough sketch of the graph of each of the functions.

(ii) Determine the support for each of the functions. Which
functions have compact support?

(iii) Which functions belong to C0(R)?

(iv) Which functions belong to Cc(R)?

(v) Which functions belong to L1(R)?

5.4 We consider the vector space Cc(R), equipped with the || · ||2-norm.

(i) Show that

〈f, g〉 =
∫ ∞

−∞
f(x)g(x) dx

defines an inner product on Cc(R).

(ii) Show that Cc(R) does not form a Hilbert space with respect
to the norm ||f ||2 =

√〈f, f〉.

5.5 Verify that L1(R) is a vector space.

5.6 A set Γ ⊂ R is countable if its elements can be written as a list,

Γ = {x1, x2, . . . }.
Note that in order to show that a set Γ is countable, we need to
specify a procedure guaranteeing that each element in Γ appears
somewhere in the list. Show that the sets N,Z, and Q are countable.
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5.7 Prove the result in Example 5.3.4.

5.8 Show that for p ∈ [1,∞[, the expression (5.23) defines a norm on
Lp(R). (Hint: use Minkowski’s inequality, see Theorem 1.7.1.)

5.9 This exercise relates L2(R) and L1(R).

(i) Show that L1(R) is not a subspace of L2(R) (Hint: find a concrete
function belonging to L1(R) but not to L2(R).)

(ii) Show that L2(R) is not a subspace of L1(R) (Hint: find a
concrete function belonging to L2(R) but not to L1(R).)

(iii) Assume that f ∈ L2(R) has compact support. Show that
f ∈ L1(R); in particular, this shows that

L2(R) ∩ Cc(R) ⊂ L1(R).

5.10 This exercise relates L1(0, 1) and L2(0, 1).

(i) Show that L2(0, 1) ⊂ L1(0, 1).

(ii) Show that if a sequence of functions fk in L2(0, 1) converges to
0 in L2(0, 1) as k → ∞, then fk → 0 in L1(0, 1) as k → ∞.

5.11 Consider the functions fk, k ∈ N, defined by

fk(x) =

{
1/k if x ∈ [0, k],
0 otherwise.

(i) Make a sketch of the first few functions fk.

(ii) Show that fk → 0 in L∞(R) as k → ∞.

(iii) Show that fk ∈ L1(R) for all k.

(iv) Does it hold that

fk → 0 in L1(R) as k → ∞?
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5.12 Consider a subinterval ]a, b[⊆ R, and functions f, f1, f2, f3, . . .
defined on ]a, b[. Assume that

||f − fk||L∞(a,b) → 0 as k → ∞. (5.29)

(i) Assume that the interval ]a, b[ is finite. Show that for all
p ∈ [1,∞[, the assumption (5.29) implies that

||f − fk||Lp(a,b) → 0 as k → ∞. (5.30)

(ii) Assume that ]a, b[= R. Show that regardless of the choice of
p ∈ [1,∞[, the assumption (5.29) does not imply that (5.30)
holds.

5.13 Consider the following functions defined on R:

f1(x) = exχ[0,∞[(x),

f2(x) = e−xχ[0,∞[(x),

f3(x) =
1√
x
χ[1,∞[(x),

f4(x) =
1√
x
χ]0,1[(x).

(i) Which functions belong to L∞(R)?

(ii) For each of the functions fk, k = 1, . . . , 4, determine the exact
range of parameters p ∈ [1,∞[ for which fk ∈ Lp(R).

5.14 The purpose of the exercise is show how certain functions in L1(R)
can be approximated by functions in Cc(R).

(i) Let f(x) := χ[0,1](x). Argue that for any ε > 0 there exists a
function g ∈ Cc(R) such that ||f − g||1 ≤ ε.

(ii) The function f(x) := (1 + x2)−1 belongs to L1(R) by the
result in Exercise 5.3. Show that for any ε > 0 there exists a
function g ∈ Cc(R) such that ||f − g||1 ≤ ε.

(iii) Argue (in words) how any bounded piecewise continuous
function in L1(R) can be approximated by a function in Cc(R).

5.15 This exercise relates the spaces C0(R), Cc(R), and Lp(R).

(i) Show that Cc(R) is a subspace of Lp(R) for all p ∈ [1,∞[.

(ii) Show that C0(R) is not a subspace of Lp(R) for any p ∈ [1,∞[.
(Hint: show first the result for p = 1.)
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5.16 (Weighted Lp-spaces) Let w : R →]0,∞[ be a continuous
function, and define for p ∈]1,∞[ the vector space Lp

w(R) by

Lp
w(R) =

{
f : R → C |

∫ ∞

−∞
|f(x)|pw(x) dx <∞

}
.

(i) Show that

||f ||Lp
w(R) :=

(∫ ∞

−∞
|f(x)|pw(x) dx

)1/p

(5.31)

defines a norm on Lp
w(R).

(ii) Use the fact that Lp(R) is a Banach space to show that Lp
w(R)

equipped with the norm in (5.31) is a Banach space.

5.17 Let p ∈ [1,∞[ and consider the mapping

T : Lp(R) → Lp(R), (Tf)(x) := f(3x+ 2).

(i) Show that T indeed maps Lp(R) into Lp(R).

(ii) Show that T is linear and bounded.

(iii) Consider the function

f(x) :=
1
x2

χ[1,∞[(x),

and show that f ∈ Lp(R) for all p ∈ [1,∞[.

5.18 Let p ∈ [1,∞[ and consider the dilation operator

D : Lp(R) → Lp(R), (Df)(x) = 21/2f(2x).

(i) Show that D actually maps Lp(R) into Lp(R).

(ii) Show that D is linear and bounded.

(iii) Find, as a function of p, the norm of the operator D.

5.19 Consider the mapping

T : L1(0, 2) → L1(0, 2), (Tf)(x) :=
∫ x

0

tf(t)dt.

(i) Show that T indeed maps L1(0, 2) into L1(0, 2).

(ii) Show that T is linear and bounded.
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5.20 Let p ∈ [1,∞[ and consider the mapping

T : Lp(−2, 2) → Lp(−2, 2), (Tf)(x) := xf(x).

(i) Show that T indeed maps Lp(−2, 2) into Lp(−2, 2).

(ii) Show that T is linear and bounded.

(iii) Calculate the norm of the operator T .
Hint: let f = χ[2−ε,2] for some ε > 0 and consider

||Tf ||p
||f ||p

as ε→ 2.

5.21 Let c > 0 be given and consider the mapping

Dc : Cc(R) → Cc(R), (Dcf)(x) :=
1√
c
f(
x

c
), x ∈ R.

(i) Argue that Dc actually maps Cc(R) into Cc(R).

(ii) Show that Dc is linear.

(iii) Show that Dc is bounded as operator from Cc(R) into Cc(R)
(as usual, Cc(R) is equipped with the || · ||∞-norm).

In Section 6.2 the operator Dc will be considered on L2(R).



6
The Hilbert Space L2

In Chapter 5, we introduced the general Lp(R)-spaces. Among the Lp(R)-
spaces, the case p = 2 has a very special status: L2(R) is a Hilbert space,
and in fact the only Lp(R)-space with that property. The space L2(R)
is discussed in Section 6.1. As a continuation and specialization of the
previous sections on operators, some fundamental operators on L2(R) are
considered in Section 6.2. The considered operators will play important
roles in the later chapters on the Fourier transform and wavelets. Section
6.3 deals with the Hilbert space L2(a, b); in particular it is shown that the
polynomials form a dense subspace of L2(a, b). Section 6.4 discusses Fourier
expansions in the framework of the Hilbert space L2(−π, π).

6.1 The Hilbert space L2(R)

In (5.22) we defined the Banach spaces Lp(R) for all p ∈ [1,∞[. The case
p = 2 plays a very special role. We first prove that the space

L2(R) =
{
f : R → C

∣∣
∫ ∞

−∞
|f(x)|2 dx <∞

}

can be equipped with an inner product:

O. Christensen, Functions, Spaces, and Expansions: Mathematical Tools 117
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Theorem 6.1.1 (The Hilbert space L2(R)) The vector space L2(R) is
a Hilbert space with respect to the inner product

〈f, g〉 =
∫ ∞

−∞
f(x)g(x) dx, f, g ∈ L2(R). (6.1)

Proof. The general result in Theorem 5.4.1 shows that L2(R) is a Banach
space with respect to the norm

||f ||2 =
(∫ ∞

−∞
|f(x)|2 dx

)1/2

. (6.2)

Thus, we only have to show that (6.1) actually defines an inner product on
L2(R). The first step is to verify that the integral in (6.1) is well-defined,
i.e., that the function

x �→ f(x)g(x) (6.3)

belongs to L1(R). Using Hölder’s inequality (1.19) with p = q = 2, we see
that for all f, g ∈ L2(R),

∫ ∞

−∞
|f(x)g(x)| dx ≤

(∫ ∞

−∞
|f(x)|2 dx

)1/2 (∫ ∞

−∞
|g(x)|2 dx

)1/2

< ∞.

Thus, the function in (6.3) is in L1(R), and the expression in (6.1) is
well-defined. The next step is to verify that 〈·, ·〉 actually defines an inner
product on L2(R). This is left to the reader (Exercise 6.2). �

The status of L2(R) is really outstanding among the Lp(R)-spaces: for
none of the other spaces, the norm comes from an inner product, see
Exercise 6.3.

In manipulations involving integrals of functions in L2(R), Cauchy–
Schwarz’ inequality plays a prominent role. The result in L2(R) is a special
case of the general inequality in Theorem 4.1.2:

Theorem 6.1.2 (Cauchy–Schwarz’ inequality) For all f, g ∈ L2(R),
∣∣∣∣
∫ ∞

−∞
f(x)g(x) dx

∣∣∣∣ ≤
(∫ ∞

−∞
|f(x)|2 dx

)1/2 (∫ ∞

−∞
|g(x)|2 dx

)1/2

.

When dealing with functions in L2(R), convergence issues shall in general
be understood in the sense of that norm; thus, to say that a sequence of
functions {gk}∞k=1 in L2(R) converges to g ∈ L2(R) means that

||g − gk||2 =
(∫ ∞

−∞
|g(x) − gk(x)|2 dx

)1/2

→ 0 as k → ∞. (6.4)

Convergence in L2 is different from pointwise convergence: that is, (6.4)
does not imply that gk(x) → g(x) for all x ∈ R. We will discuss this issue
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in the context of Fourier series in Section 6.4. However, one can prove
that any convergent sequence in L2(R) has a subsequence that converges
pointwise for almost all x ∈ R; this fundamental result is called Riesz’
Subsequence Theorem.

The Hilbert space L2(R) plays a central role in many areas of science, e.g.,
electrical engineering and physics. In signal processing, many time-varying
signals are interpreted as functions in L2(R); and in quantum mechanics,
the term “Hilbert space” often simply means L2(R). The notation used in
quantum mechanics differs slightly from the one used here, so in the next
example we connect the notation used in quantum mechanics with the one
used here. We refer to [9] for an introduction to quantum mechanics.

Example 6.1.3 (Bracket notation) The theory for quantum mechanics
is formulated using the so-called Dirac bracket notation. The inner product
between two elements f, g ∈ L2(R) is written as

〈f |g〉 =
∫ ∞

−∞
f(x)g(x) dx.

We note that physicists often define the inner product to be linear in the
second entry rather than the first, so they put the complex conjugation on
the first function f in the inner product instead of the second function g. A
more significant difference between the notation used in quantum mechan-
ics and mathematics is that physicists associate independent meaning to
the symbols 〈f | and |g〉; in fact, these symbols are used to denote vec-
tors (that is, functions in L2(R)). We will now explain how these symbols
should be interpreted.

In quantum mechanics, the symbol |g〉 is used to denote a vector,
exactly like we have used the symbol v in Chapter 4. The symbol 〈f | is
also used to denote a vector; however, now the symbol is interpreted as a
functional, acting on a vector |g〉 by taking inner product between 〈f |
and |g〉. That is, the operator P := 〈f |, acting on L2(R) and taking values
in C, is given by

P |g〉 := 〈f |g〉, |g〉 ∈ L2(R).

Recall from Riesz’ representation theorem that all bounded functionals P
on L2(R) can be written this way for an appropriate choice of the vector
〈f |. Thus, the bracket notation 〈f | is simply a convenient way to describe
all bounded functionals on L2(R) in a short way.

In particular, in quantum mechanical terms an orthonormal system is a
collection of vectors { |gk〉 } for which

〈g�|gk〉 =

{
1 if � = k,

0 if � �= k.
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Similarly, the symbol P := |f〉〈g| is used to denote the linear operator
from L2(R) into L2(R) which acts on a vector |h〉 via

P |h〉 = |f〉〈g|h〉 = 〈g|h〉 |f〉, |h〉 ∈ L2(R);

that is, we obtain the image of the vector |h〉 by forming the inner
product with 〈g| and multiplying the resulting scalar by the vector |f〉.
More generally, P :=

∑ |fk〉〈gk| denotes the linear operator from L2(R)
into L2(R) given by

P |h〉 =
∑

|fk〉〈gk|h〉 =
∑

〈gk|h〉 |fk〉, |h〉 ∈ L2(R).

Thus, the notation ∑
|fk〉〈fk| = 1 (6.5)

simply means that for all |h〉 ∈ L2(R),

|h〉 =
∑

|fk〉〈fk|h〉 =
∑

〈fk|h〉 |fk〉. (6.6)

In other words: if { |fk〉 } is an orthonormal system and (6.5) holds, then,
according to Theorem 4.7.2, { |fk〉 } is an orthonormal basis for L2(R). �

6.2 Linear operators on L2(R)

There are only a few natural ways of defining linear operators on general
Hilbert spaces. With a concrete Hilbert space at hand it is much easier! In
this section, we consider some important operators on L2(R).

Definition 6.2.1 (Translation, modulation, dilation) Consider the
following classes of linear operators on L2(R) :

(i) For a ∈ R, the operator Ta, called translation by a, is defined by

(Taf)(x) := f(x− a), x ∈ R. (6.7)

(ii) For b ∈ R, the operator Eb, called modulation by b, is defined by

(Ebf)(x) := e2πibxf(x), x ∈ R. (6.8)

(iii) For c > 0, the operator Dc, called dilation by c, is defined by

(Dcf)(x) :=
1√
c
f(
x

c
), x ∈ R. (6.9)

A comment about notation: we will often skip the parentheses and simply
write Taf(x) instead of (Taf)(x), and similarly for the other operators.
Frequently, we will also let Eb denote the function x �→ e2πibx; that is,

Eb(x) := e2πibx.
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(a) (b)

(c) (d)

Figure 6.1. The figures illustrate the action of the operators Ta and Dc.

(a) ψ(x) = e−x2
; (b) T1ψ(x) = e−(x−1)2 ; (c) D1/4ψ(x) = 2ψ(22x) = 2e−16x2

;

and (d) D2ψ(x) = 2−1/2ψ(2−1x) = 1√
2
e−x2/4.

Figure 6.1 illustrates how the translation operators and the dilation
operators act. We collect some of the most important properties for the
operators in (6.7)–(6.9):

Lemma 6.2.2 (Translation, modulation, dilation) The operators
Ta, Eb, and Dc are unitary linear operators of L2(R) onto L2(R), and the
following relations hold:

(i) T−1
a = T−a = (Ta)∗,

(ii) E−1
b = E−b = (Eb)∗,

(iii) D−1
c = D1/c = (Dc)∗.

Proof. We give a complete proof for the operator Ta and leave the cases
of Eb and Dc to the reader (Exercise 6.4).
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We first prove that Ta is a bounded linear operator mapping L2(R) into
L2(R). Given any f, g ∈ L2(R) and α, β ∈ C,

Ta(αf + βg)(x) = (αf + βg)(x− a)
= αf(x− a) + βg(x− a)
= αTaf(x) + βTag(x).

This shows that

Ta(αf + βg) = αTaf + βTag,

i.e., that Ta is linear. Also, if f ∈ L2(R), the change of variable z = x − a
shows that∫ ∞

−∞
|Taf(x)|2 dx =

∫ ∞

−∞
|f(x− a)|2 dx =

∫ ∞

−∞
|f(z)|2 dz <∞;

this proves that Ta actually maps L2(R) into L2(R). As a consequence of
this calculation, we see that

||Taf ||2 = ||f ||2, ∀f ∈ L2(R),

i.e., Ta is bounded.
We will now prove that Ta is unitary. First, for all f, g ∈ L2(R), the

change of variable z = x− a yields that

〈Taf, g〉 =
∫ ∞

−∞
f(x− a)g(x) dx =

∫ ∞

−∞
f(z)g(z + a) dz

= 〈f, T−ag〉.
From the definition of the adjoint operator T ∗

a we know that

〈Taf, g〉 = 〈f, T ∗
a g〉;

thus, via Lemma 4.4.2, it follows that T ∗
a = T−a. Thus,

TaT
∗
a = TaT−a = I,

and

T ∗
aTa = T−aTa = I.

By definition, we conclude that Ta is unitary. Furthermore, the calculations
show that

(Ta)−1 = T ∗
a = T−a.

This concludes the proof for the operator Ta. �

Operators defined by composition of some of the operators Ta, Eb, andDc

appear in several branches of mathematics and engineering. For example,
the so-called Schrödinger representation essentially consists of a compo-
sition of translation operators and modulation operators; and wavelet
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systems, to be considered in Chapter 8, consist of scaled and translated
versions of a fixed function. For analysis of such cases, the following
commutation relations are useful (Exercise 6.5):

Lemma 6.2.3 (Commutation relations) For all a, b ∈ R and c > 0,
the following commutation relations hold:

(i) (TaEbf)(x) = e2πib(x−a)f(x− a) = e−2πiba(EbTaf)(x), x ∈ R;

(ii) (TaDcf)(x) = 1√
c
f(x

c − a
c ) = (DcTa/cf)(x), x ∈ R;

(iii) (DcEbf)(x) = 1√
c
e2πixb/cf(x

c ) = (E b
c
Dcf)(x), x ∈ R.

In wavelet analysis, to be considered in Chapter 8, the dilation operator
D1/2 plays a special role; for this reason we will simply denote this operator
by D, i.e.,

(Df)(x) := 21/2f(2x), x ∈ R. (6.10)

This implies (Exercise 6.7) that for any j ∈ Z,

(Djf)(x) = 2j/2f(2jx), x ∈ R. (6.11)

With this notation, the commutation relations in Lemma 6.2.3 in
particular imply the following result (Exercise 6.6):

Lemma 6.2.4 (Commutation relations) For all j, k ∈ Z, the following
commutation relations hold:

(i) TkD
j = DjT2jk;

(ii) DjTk = T2−jkD
j;

(iii) (Dj)∗ = D−j.

We state one more property for the operators Ta, Eb, and Dc that will
turn out to be needed later:

Lemma 6.2.5 (Translation, modulation, dilation) Let f ∈ L2(R).
Then

||Taf − f ||2 → 0 as a→ 0.

Similar statements hold for the operators Eb, b ∈ R, and Dc, c > 0.

Proof. We first prove the result for functions f that are continuous and
have compact support, say, contained in the bounded interval [c, d]. We will
prove that for any ε > 0, an estimate of the form

||Taf − f ||2 ≤ ε

holds if a is sufficiently close to 0. First, for y ∈] − 1
2 ,

1
2 [ the function

φ(x) := (Tyf)(x) − f(x) = f(x− y) − f(x), x ∈ R,
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has support in the interval [− 1
2 + c, d+ 1

2 ]. By Theorem 1.6.2, the function
f is uniformly continuous; thus, for a given ε > 0 we can find δ > 0 such
that

|f(x− y) − f(x)| ≤ ε for all x ∈ R whenever |y| ≤ δ.

With this choice of δ, we obtain that for |a| ≤ δ,

||Taf − f ||2 =
(∫ ∞

−∞
|f(x− a) − f(x)|2 dx

)1/2

=

(∫ 1
2+d

− 1
2+c

|f(x− a) − f(x)|2 dx
)1/2

≤ ε
√
d− c+ 1.

This proves the result for functions f ∈ Cc(R). The case of an arbitrary
function f ∈ L2(R) follows by an approximation argument, using the fact
that the continuous functions with compact support are dense in L2(R);
this part of the argument is left to the reader as Exercise 6.8. The proofs
of the statements for Eb and Dc are similar. �

The result in Lemma 6.2.5 is often formulated by saying that the mapping
y �→ Tyf is continuous from R to L2(R); see Exercise 6.9 for an explanation
of this terminology.

6.3 The space L2(a, b)

So far, we have been dealing with square-integrable functions defined on
all of R. We will now consider functions that are square-integrable on a
subinterval ]a, b[⊆ R. Let

L2(a, b) :=

{
f : ]a, b[→ C

∣∣
∫ b

a

|f(x)|2 dx <∞
}
.

Like in the case of L2(R), one can prove that L2(a, b) is a Hilbert space
when equipped with the inner product

〈f, g〉 =
∫ b

a

f(x)g(x) dx, f, g ∈ L2(a, b).

The associated norm is

||f ||L2(a,b) =

√∫ b

a

|f(x)|2 dx, f ∈ L2(a, b).

There are two reasons to consider spaces L2(a, b) in cases where ]a, b[ is
a finite interval. First, many applications naturally lead to functions on a



6.3 The space L2(a, b) 125

finite interval: for example, we can think of the function f as a measure-
ment, related to an experiment starting at the time x = a and running
until x = b. The second reason is that the space L2(a, b) forms a conve-
nient framework for dealing with periodic signals; in that case, a function
defined on ]a, b[ will usually be extended to a periodic function on R.

Already in Theorem 5.4.2 we saw that the continuous functions with
compact support are dense in L2(R). A consequence of this fact is that if
]a, b[ is a finite interval, then the set of continuous functions on ]a, b[ are
dense in L2(a, b); see Exercise 6.13. We will use this to derive that the set
of polynomials on ]a, b[ is dense in L2(a, b).

Theorem 6.3.1 The set of polynomials is dense in L2(a, b).

Proof. We have to prove that for each f ∈ L2(a, b) and each ε > 0 we can
find a polynomial P such that

||f − P ||L2(a,b) =

(∫ b

a

|f(x) − P (x)|2 dx
)1/2

≤ ε.

In order to do so, we notice that we can extend any function f ∈ L2(a, b)
to a function in L2(R) by putting f(x) = 0 for x /∈ [a, b]. Now, according
to Theorem 5.4.2, we can find a function g ∈ Cc(R) such that

||f − g||L2(R) ≤ ε/2.

This implies that

||f − g||L2(a,b) =

√∫ b

a

|f(x) − g(x)|2 dx

≤
√∫ ∞

−∞
|f(x) − g(x)|2 dx

≤ ε/2.

The restriction of the function g to the interval [a, b] is still a continuous
function; thus, according to Theorem 2.3.4, there exists a polynomial P
such that

|g(x) − P (x)| ≤ ε

2
√
b− a

, ∀ x ∈ [a, b]. (6.12)

The choice of P implies that

||g − P ||L2(a,b) =

√∫ b

a

|g(x) − P (x)|2 dx

≤
√∫ b

a

(
ε

2
√
b− a

)2

dx

≤ ε/2.
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Thus, putting everything together,

||f − P ||L2(a,b) = ||(f − g) + (g − P )||L2(a,b)

≤ ||f − g||L2(a,b) + ||g − P ||L2(a,b)

≤ ε.

This completes the proof. �

6.4 Fourier series revisited

Fourier series are a useful tool for representation and approximation of pe-
riodic functions via trigonometric functions. We expect the reader to have
a basic knowledge of Fourier series and their properties, e.g., concerning
pointwise convergence. The purpose of this section is to place Fourier se-
ries in the context of the Hilbert space L2(−π, π) and clarify the exact
convergence properties of Fourier series in that setting. The starting point
is the fact that L2(−π, π) is a Hilbert space when equipped with the inner
product

〈f, g〉 =
∫ π

−π

f(x)g(x)dx, f, g ∈ L2(−π, π). (6.13)

In the context of Fourier series, one thinks about functions in L2(−π, π)
as periodic functions with period 2π. That is, the functions f ∈ L2(−π, π)
are functions on R for which

f(x+ 2π) = f(x), x ∈ R.

The Fourier series of a 2π-periodic function f expands the function in
terms of the trigonometric functions cos kx, sin kx, k ∈ N0. Formally, the
Fourier series of f is defined by

f ∼ 1
2
a0 +

∞∑
k=1

(ak cos kx+ bk sin kx), (6.14)

where the Fourier coefficients are given by

ak :=
1
π

∫ π

−π

f(x) cos(kx) dx, k = 0, 1, 2, . . . ,

bk :=
1
π

∫ π

−π

f(x) sin(kx) dx, k = 1, 2, . . . .

We note that so far, our definition of the Fourier series is purely for-
mal: we have not shown any relationship between the function f and the
associated Fourier series yet! This is the reason for the use of the symbol
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“∼” in (6.14). From elementary Fourier analysis we know that the question
of convergence of the Fourier series is quite complicated: for example, the
Fourier series might not converge pointwise for all x ∈ R. We come back to
the issue of convergence for the Fourier series later in this section.

All the trigonometric functions appearing in the Fourier series have pe-
riod 2π. It is natural to think of a Fourier series as a decomposition of
the given function f into harmonic oscillations, i.e., sine and cosine func-
tions, with frequencies k

2π , k = 0, 1, ...; the size of the contributions at these
frequencies are given by the Fourier coefficients ak and bk.

The Fourier series of a function f can be rewritten in complex form as

f ∼
∞∑

k=−∞
cke

ikx; (6.15)

here, the coefficients ck are given by

ck =
1
2π

∫ π

−π

f(x)e−ikx dx.

For later use we remind the reader about Parseval’s equation:

Lemma 6.4.1 (Parseval’s equation) If the function f ∈ L2(R) has the
Fourier coefficients ck, k ∈ Z, then

1
2π

∫ π

−π

|f(x)|2 dx =
∑
k∈Z

|ck|2.

We will now show that the expression in (6.15) actually is the expansion
of f ∈ L2(−π, π) in terms of a certain orthonormal basis for L2(R). In the
proof we use the Nth partial sum of the Fourier series, given by

SN (x) =
N∑

k=−N

cke
ikx.

Theorem 6.4.2 (Orthonormal basis for L2(−π, π)) The functions{
1√
2π
eikx

}
k∈Z

(6.16)

form an orthonormal basis for L2(−π, π).

Proof. A complete proof is technical, so we will not present all details.
However, we will provide the key steps. The idea is to show that

(i) The functions in (6.16) form an orthonormal system in L2(−π, π);

(ii) The functions in (6.16) are dense in L2(−π, π).
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After proving (i) and (ii), the result follows from the equivalence between
(i) and (v) in Theorem 4.7.2.

In order to show that the functions in (6.16) form an orthonormal system
in L2(−π, π), we need to show that∫ π

−π

eimxe−ikx dx = 0 if k �= m, (6.17)

1
2π

∫ π

−π

|e−ikx|2 dx = 1 for all k ∈ Z. (6.18)

This is left to the reader (Exercise 6.14).
In order to show that the functions in (6.16) are dense in L2(−π, π), we

must show that for any function f ∈ L2(−π, π) and any ε > 0, there exists
a function g ∈ span

{
1√
2π
eikx

}
k∈Z

such that

||f − g||L2(−π,π) ≤ ε.

One can prove that the 2π-periodic, continuous and piecewise differen-
tiable functions are dense in L2(−π, π); note that this result is stronger
than the fact that the continuous functions are dense in L2(−π, π). For
any 2π-periodic, continuous and piecewise differentiable function h, it is
known that the Fourier series converges uniformly to the function; that is,
given any ε > 0, we can find an N0 ∈ N such that for all N ≥ N0,

|h(x) − SN (x)| ≤ ε√
8π

for all x ∈] − π, π[.

It follows that for all N ≥ N0,∫ π

−π

|h(x) − SN (x)|2 dx ≤
∫ π

−π

ε2

8π
dx =

ε2

4
.

This proves that

||h− SN ||L2(−π,π) ≤ ε

2
.

Since SN ∈ span
{

1√
2π
eikx

}
k∈Z

, we conclude that any continuous and

piecewise differentiable function on ]−π, π[ can be approximated arbitrarily
well by a function in span

{
1√
2π
eikx

}
k∈Z

. Now, take an arbitrary function

f ∈ L2(−π, π), and let ε > 0 be given. Then we can find a continuous and
piecewise differentiable function h such that ||f −h||L2(−π,π) ≤ ε/2. By the
result we just proved, we can find a trigonometric polynomial SN such that
||h− SN ||L2(−π,π) ≤ ε/2. Putting these results together, we arrive at

||f − SN ||L2(−π,π) = ||(f − h) + (h− SN )||L2(−π,π)

≤ ||f − h||L2(−π,π) + ||h− SN ||L2(−π,π)

≤ ε.
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This implies that the complex exponentials in (6.16) are dense in L2(−π, π),
and completes the sketch of the proof. �

For notational convenience, define the functions {ek}k∈Z by

ek(x) = eikx, x ∈ R.

With this notation, the orthonormal basis in (6.16) can be written as
{ 1√

2π
ek}k∈Z. Using (4.26) on this orthonormal basis leads to

f =
∑
k∈Z

〈f, 1√
2π

ek〉 1√
2π

ek

=
∑
k∈Z

ckek, (6.19)

where

ck :=
1
2π

∫ π

−π

f(x)e−ikx dx.

This is exactly the expression that is used as definition of the Fourier
series in complex form! This shows that the Fourier series for a function
f actually is the expansion of f in terms of the orthonormal basis (6.16).
This coincidence explains the troubles one has with pointwise convergence
of Fourier series: viewed as a Hilbert space-identity, the exact meaning of
the identity (6.19) is that

∥∥∥∥∥f −
N∑

k=−N

cke
ikx

∥∥∥∥∥
L2(−π,π)

→ 0 as N → ∞,

i.e., that

∫ π

−π

∣∣∣∣∣f(x) −
N∑

k=−N

cke
ikx

∣∣∣∣∣
2

dx→ 0 as N → ∞; (6.20)

this is different from requiring pointwise convergence of the Fourier series
to f(x).

We will frequently need Fourier series on other intervals than ]−π, π[. For
later reference we state the Fourier series explicitly for 1-periodic functions:

Example 6.4.3 (Orthonormal basis for L2(0, 1)) By a scaling of the
interval, the reader can check that the functions {e2πikx}k∈Z form an
orthonormal basis for L2(−1/2, 1/2) and for L2(0, 1). Writing

ek(x) := e2πikx,



130 6. The Hilbert Space L2

the Fourier series of f ∈ L2(0, 1) is

f ∼
∑
k∈Z

ckek,

where the Fourier coefficients are

ck =
∫ 1/2

−1/2

f(x)e−2πikx dx =
∫ 1

0

f(x)e−2πikx dx.

The Fourier series converges toward f in the sense that

∫ 1

0

∣∣∣∣∣f(x) −
N∑

k=−N

cke
2πikx

∣∣∣∣∣
2

dx→ 0 as N → ∞. (6.21)

�

6.5 Exercises

6.1 We continue the analysis of the vector space C[a, b] considered in
Exercise 1.3 and Example 2.1.4. For convenience, let a = 0, b = 2.

(i) Show that

〈f, g〉 :=
∫ 2

0

f(x)g(x) dx

defines an inner product on C[0, 2].

We now consider the norm associated with the inner product in (i),
i.e.,

||f || =

√∫ 2

0

|f(x)|2 dx.

We will show that C[0, 2] equipped with this norm does not satisfy
the condition for being a Hilbert space. Consider the functions

fn(x) = min(xn, 1), n ∈ N, and f(x) =

{
0 if x ∈ [0, 1[,
1 if x ∈ [1, 2].

(ii) Show that ||f − fn|| → 0 as n→ ∞.

(iii) Conclude that C[0, 2] equipped with the norm || · || cannot be
a Hilbert space.
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6.2 Complete the proof of Theorem 6.1.1, showing that the
expression (6.1) defines an inner product on L2(R).

6.3 Consider the Banach space Lp(R) for some p ≥ 1, and the functions

f = χ[0,1[, g = χ[1,2[.

(i) Calculate the numbers

||f ||p , ||g||p , ||f + g||p , ||f − g||p.

(ii) Use Theorem 4.1.4 to conclude that Lp(R) does not form a
Hilbert space for p �= 2.

6.4 Prove Lemma 6.2.2 for the operators Eb, b ∈ R, and Dc, c > 0.

6.5 Prove Lemma 6.2.3.

6.6 Prove Lemma 6.2.4.

6.7 Consider the operator D introduced in (6.10). The purpose of the
exercise is to give a rigorous proof of the formula

(Djf)(x) = 2j/2f(2jx), j ∈ Z. (6.22)

(i) Show that (6.22) holds for j ∈ N.

(ii) For any bounded operator T on a Hilbert space, one define

T 0 := I,

where I is the identity operator. Show that this is in accordance
with (6.22) for j = 0.

(iii) Show that the inverse operator D−1 is given by the expression
in (6.22) with j = −1.

(iv) For any invertible operator T on a Hilbert space and any k ∈ N,
the operator T−k is defined by T−k := (T−1)k. Show that
this definition leads to (6.22) for j ∈ {−1,−2, . . .}.
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6.8 Complete the proof of Lemma 6.2.5 by showing the result for
general functions f ∈ L2(R).

6.9 Let f ∈ L2(R). Show that if {yn}∞n=1 is a sequence of real numbers
that converges to y ∈ R, then

||Tynf − Tyf ||2 → 0 as n→ ∞.

In analogy with the wording used for functions, the result is
expressed by saying that the function y �→ Tyf is continuous from
R into L2(R).

6.10 Consider mapping

U : L2(R) → L2(R), (Uf)(x) = f(2x− 2), x ∈ R.

(i) Show that U indeed maps L2(R) into L2(R).

(ii) Show that U is linear and bounded.

(iii) Compute the adjoint operator U∗.

6.11 Consider the linear mapping

(Tf)(x) := xf(x).

Show that T does not map L2(R) into L2(R).

6.12 (Weighted L2-spaces) Let r : R →]0,∞[ be a continuous
function, and define the vector space L2

r(R) by

L2
r(R) :=

{
f : R → C |

∫ ∞

−∞
|f(x)|2r(x) dx <∞

}
.

(i) Show that

〈f, g〉L2
r(R) :=

∫ ∞

−∞
f(x)g(x)r(x) dx (6.23)

defines an inner product on L2
r(R).

(ii) Using that L2(R) is a Hilbert space, show that L2
r(R) equipped

with the inner product in (6.23) is a Hilbert space.
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6.13 Show that if ]a, b[ is a finite interval, then the set of continuous
functions on ]a, b[ is dense in L2(a, b).

6.14 Prove (6.17) and (6.18).

6.15 For f ∈ L2(−π, π), the complex Fourier coefficients are defined by

ck :=
1
2π

∫ π

−π

f(x)e−ikx dx, k ∈ Z.

Show that the integral defining ck is well defined for f ∈ L2(−π, π),
i.e., that ∫ π

−π

∣∣f(x)e−ikx
∣∣ dx <∞.



7
The Fourier Transform

The Fourier transform is one of the main tools for analyzing functions
in L2(R). It appears in all contexts where one wants to extract the fre-
quencies appearing in a given signal. The definition and main properties
of the Fourier transform of functions in L1(R) are considered in Section
7.1. An extension of the Fourier transform to a unitary operator on L2(R)
is discussed in Section 7.2. Convolution and its interplay with the Fourier
transform is described in Section 7.3. Section 7.4 introduces the sampling
problem and the Paley–Wiener space. In particular, it is shown how to
recover arbitrary functions in the Paley–Wiener space based on their func-
tion values on the discrete set Z. Finally, we relate the Fourier transform
to the discrete Fourier transform in Section 7.5.

7.1 The Fourier transform on L1(R)

We have already seen that Fourier series are useful for representation and
approximation of periodic functions via trigonometric functions. For the
case of L2(−π, π), the Fourier series is an infinite sum of functions sinnx
and cosnx, n ∈ N0, i.e., oscillations with frequencies n

2π . For aperiodic
functions we need to search for other methods. The classical tool is the
Fourier transform, which we introduce here.

If we want to expand aperiodic functions, the situation is more compli-
cated than for periodic functions. All frequencies can appear in the signal,
and the Fourier series must be replaced by an integral over all frequencies.

O. Christensen, Functions, Spaces, and Expansions: Mathematical Tools 135
in Physics and Engineering, Applied and Numerical Harmonic Analysis,
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The so-called inversion formula, to be presented later in this section, ex-
plains how to represent aperiodic functions in terms of their frequency
content. The frequency content itself is described via the Fourier transform:

Definition 7.1.1 (Fourier transform) The Fourier transform asso-
ciates to each function f ∈ L1(R) a new function f̂ : R → C given
by

f̂(γ) :=
∫ ∞

−∞
f(x)e−2πixγ dx, γ ∈ R. (7.1)

The Fourier transform of f is also denoted by

(Ff)(γ) := f̂(γ). (7.2)

Note that the Fourier transform is well defined: due to the assumption
f ∈ L1(R), Lemma 1.7.2 implies that∫ ∞

−∞

∣∣f(x)e−2πixγ
∣∣ dx =

∫ ∞

−∞
|f(x)| dx <∞.

The notation (7.2) indicates that we can look at the Fourier transform as
an operator F that maps the function f to the function f̂ . For the moment
we do not specify the range for the operator F ; we come back to this issue in
Corollary 7.1.6. It is clear that the operator F is linear. So far, the Fourier
transform is defined on L1(R); later, we will see that it has an extension
to a bounded operator that maps L2(R) onto L2(R).

As already mentioned, the Fourier transform contains information about
the frequency content of the function f . We will demonstrate this in Ex-
ample 7.1.4, based on a chain of rules for calculations with the Fourier
transform to be presented now. All these rules are based on the translation
operators and modulation operators

Taf(x) = f(x− a), Ebf(x) = e2πibxf(x), x ∈ R,

considered in Section 6.2. We ask the reader to provide the proofs of the
following result in Exercise 7.4:

Theorem 7.1.2 (Calculations with the Fourier transform)
Given f ∈ L1(R), the following hold:

(i) If f is an even function, then

f̂(γ) = 2
∫ ∞

0

f(x) cos(2πxγ)dx.

(ii) If f is an odd function, then

f̂(γ) = −2i
∫ ∞

0

f(x) sin(2πxγ)dx.
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(iii) The Fourier transform of the function Taf, a ∈ R, is

(FTaf)(γ) = f̂(γ)e−2πiaγ = E−af̂(γ).

In operator language this is expressed as FTa = E−aF .

(iv) The Fourier transform of the function Ebf, b ∈ R, is

(FEbf)(γ) = f̂(γ − b).

In operator language this is expressed as FEb = TbF .
(v) If f(x) → 0 as x→ ±∞, f is differentiable, and f ′ ∈ L1(R), then

(Ff ′)(γ) = 2πiγf̂(γ).

Note in particular the rules (iii) and (iv); in words rather than symbols,
they say that

• taking the Fourier transform of a translated version of f is done by
multiplying f̂ with a complex exponential function;

• taking the Fourier transform of a function f which is multiplied with
a complex exponential function, corresponds to a translation of f̂ .

We will also need a commutation relation for the Fourier transform and
the dilation operators Dc and D, introduced in (6.9) and (6.10). We leave
the proof to the reader (Exercise 7.5).

Lemma 7.1.3 (Commutation relation) For each c �= 0,

FDc = D1/cF ;

in particular,

FD = D−1F .
Let us show how we can use some of these rules to find the Fourier

transform of a cosine function on an interval:

Example 7.1.4 (Fourier transform of oscillation) Given constants
a, ω > 0, we want to calculate the Fourier transform of the function

f(x) = cos(2πωx)χ[− a
2 , a

2 ](x). (7.3)

This signal corresponds to an oscillation which starts at the time x = −a/2
and lasts till x = a/2. If x is measured in seconds, we have ω oscillations
per second, i.e., the frequency is ν = ω. Note that we can write

f(x) =
e2πiωx + e−2πiωx

2
χ[− a

2 , a
2 ](x)

=
1
2
e2πiωxχ[−a

2 , a
2 ](x) +

1
2
e−2πiωxχ[−a

2 , a
2 ](x)

=
1
2
Eωχ[− a

2 , a
2 ](x) +

1
2
E−ωχ[−a

2 , a
2 ](x).
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That is, in order to find f̂ , it is enough to calculate the Fourier transform
of the function χ[−a

2 , a
2 ] and apply Theorem 7.1.2(iv). Now, because χ[− a

2 , a
2 ]

is an even function, Theorem 7.1.2(i) shows that for γ �= 0,

Fχ[− a
2 , a

2 ](γ) = 2
∫ ∞

0

χ[−a
2 , a

2 ](x) cos(2πxγ) dx

= 2
∫ a

2

0

cos(2πxγ) dx

=
2

2πγ
[sin(2πxγ)]x=a

2
x=0

=
sinπaγ
πγ

.

Via Theorem 7.1.2(iv) it follows that

f̂(γ) = F
(

1
2
Eωχ[−a

2 , a
2 ] +

1
2
E−ωχ[− a

2 , a
2 ]

)
(γ)

=
1
2
Fχ[− a

2 , a
2 ](γ − ω) +

1
2
Fχ[− a

2 , a
2 ](γ + ω)

=
1
2

(
sin(πa(γ − ω))
π(γ − ω)

+
sin(πa(γ + ω))
π(γ + ω)

)
.

Figure 7.1 shows the function f̂ for ω = 10 and different values of a. A
larger value of a corresponds to the oscillation cos(2πωx) being present in
the signal over a larger time interval; we see that this increases the peak of
f̂ at the frequency γ = ν = 10.

The figures show that other frequencies than just γ = 10 appear in the
signal. This is perhaps surprising, because the cosine function by itself only
contains the frequency γ = 10. The explanation is that the multiplication
with the characteristic function in (7.3) introduces other frequencies in the
signal as well. �

We will now describe some of the important properties of the Fourier
transform. The first is called Riemann–Lebesgue’s Lemma:

Theorem 7.1.5 (Riemann–Lebesgue’s lemma) For f ∈ L1(R), f̂ is
a continuous function which tends to zero as γ → ±∞; that is, f̂ ∈ C0(R).

Proof. Let γ ∈ R. Using Lemma 1.7.2, for any δ ∈ R we have that

|f̂(γ + δ) − f̂(γ)| =
∣∣∣∣
∫ ∞

−∞
f(x)

(
e−2πix(γ+δ) − e−2πixγ

)
dx

∣∣∣∣
≤

∫ ∞

−∞

∣∣∣f(x)
(
e−2πix(γ+δ) − e−2πixγ

)∣∣∣ dx

=
∫ ∞

−∞
|f(x)| ∣∣e−2πixδ − 1

∣∣ dx. (7.4)
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(a) (b)

Figure 7.1. (a): The Fourier transform of the function f in (7.3) for ω = 10, a = 2,
corresponding to a signal with frequency ν = 10 which is present during a time
interval of length 2. (b): The Fourier transform of the function f in (7.3) for
ω = 10, a = 6, corresponding to a signal with frequency ν = 10 which is present
during a time interval of length 6.

We want to show that

f̂(γ + δ) → f̂(γ) as δ → ∞.

For that purpose, consider the functions

fδ(x) = |f(x)| ∣∣e−2πixδ − 1
∣∣ .

Note that

fδ(x) → 0 as δ → 0,

and that for all δ > 0,

|fδ(x)| ≤ 2 |f(x)|.
By Theorem 5.3.6 this implies that

lim
δ→0

∫ ∞

−∞
|f(x)| ∣∣e−2πixδ − 1

∣∣ dx =
∫ ∞

−∞
0 dx = 0.

Using (7.4), we conclude that

f̂(γ + δ) − f̂(γ) → 0 as δ → 0,

i.e., the function f̂ is continuous at the arbitrarily chosen point γ ∈ R.
In order to prove the second part of the result, let γ ∈ R \ {0}. We first

perform the change of variable y = x − 1
2γ in the definition of the Fourier



140 7. The Fourier Transform

transform:

f̂(γ) =
∫ ∞

−∞
f(x)e−2πixγ dx

=
∫ ∞

−∞
f(y +

1
2γ

)e−2πi(y+ 1
2γ )γ dy

= e−πi

∫ ∞

−∞
f(y +

1
2γ

)e−2πiyγ dy

= −
∫ ∞

−∞
f(y +

1
2γ

)e−2πiyγ dy.

Combined with the definition of f̂(γ), the above calculation yields that

f̂(γ) =
1
2
(
f̂(γ) + f̂(γ)

)

=
1
2

(∫ ∞

−∞
f(y)e−2πiyγ dy −

∫ ∞

−∞
f(y +

1
2γ

)e−2πiyγ dy

)

=
1
2

∫ ∞

−∞

(
f(y) − f(y +

1
2γ

)
)
e−2πiyγ dy.

Via Lemma 1.7.2 this implies that

|f̂(γ)| ≤ 1
2

∫ ∞

−∞

∣∣∣∣f(y) − f(y +
1
2γ

)
∣∣∣∣ dy

=
1
2
||f − T 1

2γ
f ||1. (7.5)

Exactly as in the proof of Lemma 6.2.5, but with the L1-norm instead of
the L2-norm, one can show that

||f − Txf ||1 → 0 as x→ 0;

we leave this part of the argument to the reader as Exercise 7.6. Via (7.5)
we now conclude that f̂(γ) → 0 as γ → ±∞, as desired. �

Note that Theorem 7.1.5 immediately shows that the Fourier transform
can be considered as an operator mapping L1(R) into C0(R):

Corollary 7.1.6 The Fourier transform can be considered as a bounded
linear operator,

F : L1(R) → C0(R),

and

||Ff ||∞ ≤ ||f ||1, f ∈ L1(R). (7.6)

Proof. That the Fourier transform maps L1(R) into C0(R) follows from
Theorem 7.1.5. The norm estimate (7.6) is a consequence of the definition
of the Fourier transform and Lemma 1.7.2. �
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It turns out that under certain assumptions, the values of the Fourier
transform f̂ contain enough information to reconstruct the function f : that
is, based on knowledge of the Fourier transform f̂ we can determine the
function f . In operator language, this says that the Fourier transform is
invertible. The result is known as the inversion formula. We state a version
of this result here, and outline a proof in Appendix A.2:

Theorem 7.1.7 (Inversion formula for L1(R)-functions) Assume
that f ∈ L1(R) and that also f̂ ∈ L1(R). Then

f(x) =
∫ ∞

−∞
f̂(γ)e2πixγdγ for almost all x ∈ R. (7.7)

If f is continuous, the formula (7.7) holds pointwise for all x ∈ R.

Let us discuss the role of the Fourier transform in a concrete case:

Example 7.1.8 The current running in the loudspeaker cable as a record-
ing is played can be considered as a function f . If the playback starts at the
time x = 0 and lasts till x = a, we can consider f as a continuous function
with compact support on [0, a]. The function f represents the recording in
the time-domain: by looking, e.g., at the graph of the function f we can
see how the signal changes as a function of the time, but we cannot imme-
diately see which frequencies are present. Look, e.g., at the speech signal
depicted in the prologue.

Looking at the Fourier transform f̂ , we obtain information about the fre-
quencies appearing in the signal. However, f̂ does not tell at what time the
frequencies appear! Look, e.g., at the figure in the prologue that shows the
absolute value of the Fourier transform of the speech signal. In that sense,
the Fourier transform yields a representation in the frequency-domain.

The (surprising) content of the inversion formula is that we can recon-
struct the signal f based on information on the Fourier transform. That is,
just by knowing the frequency content, we can recover the piece of music
that is played.

Note, however, that in order for the inversion formula to apply, we need
knowledge of f̂(γ): it is not enough to know the amplitude of the frequen-
cies, i.e., the function |f̂(γ)|. The interpretation of this is that it is the
phase of the Fourier transform that contains the information about what
time the various frequencies appear. �
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7.2 The Fourier transform on L2(R)

So far, we have only defined the Fourier transform of functions belonging to
L1(R). It turns out that the Fourier transform can be considered on several
other spaces as well. We limit ourselves to a discussion of an important
extension to the Hilbert space L2(R).

We begin with a lemma concerning the Fourier transformation on the
subspace Cc(R) of L1(R).

Lemma 7.2.1 (The Fourier transform on Cc(R)) For any f ∈ Cc(R),∫ ∞

−∞
|f̂(γ)|2 dγ =

∫ ∞

−∞
|f(x)|2 dx. (7.8)

Proof. The starting point is Parseval’s equation for Fourier series, see
Lemma 6.4.1. Let us first assume that the considered function f is sup-
ported on [−π, π]. Then the Fourier coefficients on complex form for f
are

ck =
1
2π

∫ π

−π

f(x)e−ikx dx

=
1
2π

∫ ∞

−∞
f(x)e−ikx dx

=
1
2π
f̂(

k

2π
).

Thus, by Lemma 6.4.1,∫ ∞

−∞
|f(x)|2 dx =

∫ π

−π

|f(x)|2 dx = 2π
∑
k∈Z

|ck|2

=
1
2π

∑
k∈Z

∣∣∣∣f̂(
k

2π
)
∣∣∣∣
2

. (7.9)

Let Eb denote the modulation operator, see (6.8). Then ||f ||2 = ||Ebf ||2.
Using (7.9) with f replaced by Ebf for some b ∈ R, Theorem 7.1.2 gives
that

∫ ∞

−∞
|f(x)|2 dx =

1
2π

∑
k∈Z

∣∣∣∣FEbf(
k

2π
)
∣∣∣∣
2

=
1
2π

∑
k∈Z

∣∣∣∣f̂(
k

2π
− b)

∣∣∣∣
2

. (7.10)

Note that∫ ∞

−∞
|f(x)|2 dx =

∫ (2π)−1

0

2π
(∫ ∞

−∞
|f(x)|2 dx

)
db;
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applying (7.10) to the inner integral followed by an interchange of the
integral and the sum (justified by the result in Example 5.3.4) yields that

∫ ∞

−∞
|f(x)|2 dx =

∫ (2π)−1

0

∑
k∈Z

∣∣∣∣f̂(
k

2π
− b)

∣∣∣∣
2

db

=
∑
k∈Z

∫ (2π)−1

0

∣∣∣∣f̂(
k

2π
− b)

∣∣∣∣
2

db. (7.11)

The change of variable γ = k
2π − b shows that

∫ (2π)−1

0

∣∣∣∣f̂(
k

2π
− b)

∣∣∣∣
2

db = −
∫ (k−1)(2π)−1

k(2π)−1

∣∣∣f̂(γ)
∣∣∣2 dγ

=
∫ k(2π)−1

(k−1)(2π)−1

∣∣∣f̂(γ)
∣∣∣2 dγ.

Inserting this in (7.11), we finally arrive at
∫ ∞

−∞
|f(x)|2 dx =

∑
k∈Z

∫ k(2π)−1

(k−1)(2π)−1

∣∣∣f̂(γ)
∣∣∣2 dγ

=
∫ ∞

−∞
|f̂(γ)|2 dγ

as desired. The proof of Lemma 7.2.1 for the case where f is supported
outside [−π, π] is left to the reader (Exercise 7.7). �

Lemma 7.2.1 shows that if we equip Cc(R) with the L2(R)-norm, the
Fourier transform is an isometry from Cc(R) into L2(R). Using that the
vector space Cc(R) is dense in L2(R) we can prove the following important
result:

Theorem 7.2.2 (Fourier transform as unitary operator)TheFourier
transform can be extended to a unitary mapping of L2(R) onto L2(R). In
particular, this extension (also called the Fourier transform and denoted by
Ff = f̂) satisfies the following:

(i) For all f ∈ L2(R),

||f̂ ||2 = ||f ||2. (7.12)

(ii) For all f, g ∈ L2(R),

〈f̂ , ĝ〉 = 〈f, g〉. (7.13)
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Proof. As we have seen in Lemma 7.2.1,

||Ff || = ||f ||2, ∀f ∈ Cc(R). (7.14)

By Theorem 3.3.2 and the fact that Cc(R) is dense in L2(R), this implies
that the Fourier transform in a unique way can be extended to a bounded
operator F from L2(R) into L2(R). It follows from the construction in
Theorem 3.3.2 that the equality in (7.14) holds for all f ∈ L2(R), see
Exercise 7.8. This proves (i).

The result in (ii) follows from (i) and the polarization identity in Theorem
4.1.4 (Exercise 7.8). That the considered extension of the Fourier transform
is unitary follows from the fact that it is surjective and an isometry; we
skip the proofs of these facts. �

Recall that a unitary operator is invertible (see (4.17)). Thus, the result
in Theorem 7.2.2 allows us to speak about the inverse Fourier transform,
F−1, as a mapping from L2(R) onto L2(R).

The equation (7.13) is called Parseval’s equation, and the equation (7.12)
is called Plancherel’s equation.

The inversion formula in Theorem 7.1.7 for the Fourier transform has a
similar version for L2(R)-functions:

Theorem 7.2.3 (Inversion formula for L2(R)-functions) Assume
that f ∈ L2(R) and that f̂ ∈ L1(R). Then

f(x) =
∫ ∞

−∞
f̂(γ)e2πixγdγ for almost all x ∈ R. (7.15)

If f is continuous, the formula (7.15) holds pointwise for all x ∈ R.

The proof of Theorem 7.2.3 is almost identical with the proof of the in-
version formula for L1(R)-functions outlined in Appendix A.2: the only
difference is that the result in Lemma A.2.4 needs to be replaced by a
similar statement for f ∈ L2(R) rather than f ∈ L1(R).

In the literature, one finds several extensions of the Fourier transform to
other spaces, e.g., to Lp(R). The extension to L2(R) is particularly conve-
nient because L2(R) is a Hilbert space, and because of the special properties
stated in Theorem 7.2.2. Due to the various possible domains for the Fourier
transform, it is necessary to pay close attention to the assumptions when
dealing with the properties of the Fourier transform. For example, Theorem
7.1.5 does not hold if the assumption f ∈ L1(R) is replaced by f ∈ L2(R).
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7.3 Convolution

In manipulations with the Fourier transform, the concept of convolution is
very useful. Given two functions f, g ∈ L1(R), the convolution is defined as
a new function, denoted by f ∗ g:

Definition 7.3.1 (Convolution) For two functions f, g ∈ L1(R), the
convolution f ∗ g : R → C is defined by

(f ∗ g)(y) :=
∫ ∞

−∞
f(y − x)g(x) dx, y ∈ R. (7.16)

In order for this to be a valid definition, we have to check that the integral
appearing in (7.16) exists. This is the case if f, g ∈ L1(R), but also under
other assumptions as well, e.g., if f ∈ L2(R), g ∈ L1(R):

Lemma 7.3.2 For g ∈ L1(R), the following hold:

(i) If f ∈ L1(R), the convolution (f ∗ g)(y) is well defined for all y ∈ R,
and defines a function in L1(R). Furthermore,

||f ∗ g||1 ≤ ||f ||1 ||g||1. (7.17)

(ii) If f ∈ L2(R), the convolution (f ∗ g)(y) is well defined for almost all
y ∈ R, and defines a function in L2(R). Furthermore,

||f ∗ g||2 ≤ ||f ||2 ||g||1. (7.18)

Proof. The arguments below actually imply that the convolution f ∗ g
is well defined under the stated assumptions, but this will only be clear
for a reader with knowledge of measure theory. Thus, for the sake of the
reader without that knowledge, we note that at least if f, g ∈ Cc(R), the
convolution (f ∗ g)(y) is well defined for all y ∈ R. In fact, for any fixed
y ∈ R, the function x �→ f(y − x)g(x) is continuous and has compact
support, and therefore belongs to L1(R).

Now let f, g ∈ L1(R). Assuming for the moment that f ∗g is well-defined,
we need to show that f ∗ g ∈ L1(R), i.e., that

∫ ∞

−∞
|(f ∗ g)(y)| dy <∞. (7.19)
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Now,

|(f ∗ g)(y)| =
∣∣∣∣
∫ ∞

−∞
f(y − x)g(x) dx

∣∣∣∣ ≤
∫ ∞

−∞
|f(y − x)g(x)| dx. (7.20)

If we can show that∫ ∞

−∞

(∫ ∞

−∞
|f(y − x)g(x)| dx

)
dy <∞, (7.21)

measure theory will tell us that the expression
∫ ∞

−∞
|f(y − x)g(x)| dx

is finite for (almost all) y ∈ R, i.e., that the mapping x → f(y − x)g(x) is
integrable. This means that the convolution f ∗ g is well defined. Due to
(7.20), (7.21) will also give us that (7.19) holds. Thus, all we have to do is
to verify (7.21).

In order to do that we will use Fubini’s theorem and first consider the
expression (7.21) with the order of the integrals interchanged. Using the
change of variable z = y − x and the fact that

∫ ∞

−∞
|f(y − x)| dy =

∫ ∞

−∞
|f(z)| dz = ||f ||1,

we see that∫ ∞

−∞

(∫ ∞

−∞
|f(y − x)g(x)| dy

)
dx =

∫ ∞

−∞
|g(x)|

(∫ ∞

−∞
|f(y − x)| dy

)
dx

=
∫ ∞

−∞
|g(x)| ||f ||1 dx

= ||f ||1 ||g||1
< ∞.

Using first (7.20) and then Fubini’s theorem, we arrive at

∫ ∞

−∞
|(f ∗ g)(y)| dy =

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
f(y − x)g(x) dx

∣∣∣∣ dy

≤
∫ ∞

−∞

(∫ ∞

−∞
|f(y − x)g(x)| dx

)
dy

=
∫ ∞

−∞

(∫ ∞

−∞
|f(y − x)g(x)| dy

)
dx

= ||f ||1 ||g||1
< ∞.
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That is, f ∗ g ∈ L1(R), and (7.17) holds. This proves (i). In order to prove
(ii), assume that f ∈ L2(R) and g ∈ L1(R). We will prove that

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
|f(y − x)| |g(x)| dx

∣∣∣∣
2

dy ≤ ||g||21 ||f ||22. (7.22)

As in (i), this implies that∫ ∞

−∞
|f(y − x)| |g(x)| dx

is finite for a.e. y ∈ R, i.e., that the convolution f ∗ g is well defined. The
estimate (7.22) will also imply that (7.18) holds.

Let us first consider the inner term in (7.22). By Cauchy–Schwarz’
inequality,

(∫ ∞

−∞
|f(y − x)| |g(x)| dx

)2

=
(∫ ∞

−∞
|f(y − x)| |g(x)|1/2 |g(x)|1/2 dx

)2

≤
∫ ∞

−∞
|f(y − x)|2 |g(x)| dx

∫
|g(x)| dx

= ||g||1
∫ ∞

−∞
|f(y − x)|2 |g(x)| dx.

Inserting this and using a calculation like in the proof of (i),

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
|f(y − x)| |g(x)| dx

∣∣∣∣
2

dy

≤
∫ ∞

−∞
||g||1

(∫ ∞

−∞
|f(y − x)|2 |g(x)| dx

)
dy

= ||g||1
∫ ∞

−∞

(∫ ∞

−∞
|f(y − x)|2 |g(x)| dy

)
dx

≤ ||g||1
∫

|g(x)|
(∫ ∞

−∞
|f(y − x)|2 dy

)
dx

≤ ||g||21 ||f ||22.
This implies that (7.22) holds, as desired. �

Lemma 7.3.2 has an extension to functions f ∈ Lp(R), see Exercise 7.10.
For later reference we state the following result, which tells us that

convolution is commutative (Exercise 7.11):

Lemma 7.3.3 If f, g ∈ L1(R), then f ∗ g = g ∗ f.
The Fourier transform and convolution are related by the following

important result.
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Theorem 7.3.4 (Fourier transform and convolution)

(i) If f, g ∈ L1(R), the formula

f̂ ∗ g(γ) = f̂(γ)ĝ(γ) (7.23)

holds for all γ ∈ R;

(ii) If f ∈ L2(R) and g ∈ L1(R), the formula (7.23) holds for almost all
γ ∈ R.

Proof. Let f, g ∈ L1(R). In the proof of Lemma 7.3.2, we saw that∫ ∞

−∞

∫ ∞

−∞
|f(y − x)g(x)| dx dy <∞.

Because |e−2πiyγ | = 1, this implies that∫ ∞

−∞

∫ ∞

−∞

∣∣f(y − x)g(x)e−2πiyγ
∣∣ dx dy <∞.

Via Fubini’s theorem,

f̂ ∗ g(γ) =
∫ ∞

−∞
(f ∗ g)(y)e−2πiyγ dy

=
∫ ∞

−∞

(∫ ∞

−∞
f(y − x)g(x) dx

)
e−2πiyγ dy

=
∫ ∞

−∞

(∫ ∞

−∞
f(y − x)e−2πiyγ dy

)
g(x) dx.

Writing

e−2πiyγ = e−2πi(y−x)γe−2πixγ ,

it follows that

f̂ ∗ g(γ) =
∫ ∞

−∞

(∫ ∞

−∞
f(y − x)e−2πi(y−x)γe−2πixγ dy

)
g(x) dx

=
∫ ∞

−∞

(∫ ∞

−∞
f(y − x)e−2πi(y−x)γ dy

)
g(x)e−2πixγ dx.

Now, by the change of variable z = y − x in the inner integral,

f̂ ∗ g(γ) =
∫ ∞

−∞

(∫ ∞

−∞
f(z)e−2πizγ dz

)
g(x)e−2πixγ dx

=
(∫ ∞

−∞
f(z)e−2πizγ dz

)(∫ ∞

−∞
g(x)e−2πixγ dx

)

= f̂(γ)ĝ(γ).

This proves (i). We skip the proof of (ii). �
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7.4 The sampling theorem

A short and not yet precise formulation of the sampling problem is: How
can we recover a function f : R → C if we only know a countable set of
function values {f(λk)}k∈I? Here, “recover” means to be able to determine
completely what function we are dealing with. Formulated this way the
problem is ill-posed: there are infinitely many functions that take the same
prescribed values on a given countable set, so we need to impose some
condition on the function f for the problem to make sense. Traditionally,
this is done by requiring f to belong to a certain function space. A classical
example is to consider a space of band-limited functions:

Definition 7.4.1 (Band-limited functions, Paley–Wiener space)

(i) A function f ∈ L2(R) is band-limited if the Fourier transform f̂ has
compact support.

(ii) The Paley–Wiener space PW is the subspace of L2(R) defined by

PW :=
{
f ∈ L2(R)

∣∣ supp f̂ ⊆ [− 1
2
,
1
2
]}

. (7.24)

We begin with a lemma that will be used repeatedly. We ask the reader to
provide the proof in Exercise 7.12:

Lemma 7.4.2 If f ∈ PW, then f̂ ∈ L1(R).

As always when dealing with L2-functions, the Paley–Wiener space really
consists of equivalence classes of functions. However, due to the fact that
the Fourier transform of functions in PW has compact support, each of
these equivalence classes contains a continuous function:

Theorem 7.4.3 (Continuity of functions in PW ) Assume that
f ∈ PW . Then f is equivalent to a continuous function.

Proof. Lemma 7.4.2 shows that f̂ ∈ L1(R) if f ∈ PW. Thus, by Theorem
7.1.5, the function

F f̂(x) =
∫ ∞

−∞
f̂(γ)e−2πiγx dγ

is continuous. This clearly implies that the function

g(x) := F f̂(−x) =
∫ ∞

−∞
f̂(γ)e2πiγx dγ

is continuous as well. By the inversion formula for L2(R)-functions,
Theorem 7.2.3,

f(x) =
∫ ∞

−∞
f̂(γ)e2πiγx dγ
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Figure 7.2. The sinc-function defined in (7.25).

holds for almost all x; that is, f is equal to the continuous function g almost
everywhere. �

We will now show that the Paley–Wiener space has an orthonormal basis
consisting of translates of a single function. The relevant function is called
the sinc-function:

Definition 7.4.4 (Sinc-function) The sinc-function is given by

sinc(x) :=
{

sin(πx)
πx if x �= 0,

1 if x = 0.
(7.25)

Shannon’s sampling theorem states that any continuous function f in the
Paley–Wiener space can be fully recovered from its samples at the integers.
That is, if we know the values f(k) for all k ∈ Z, we can determine the
function f completely:
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Theorem 7.4.5 (Shannon’s sampling theorem) The functions
{sinc(· − k)}k∈Z form an orthonormal basis for PW. If f ∈ PW is
continuous, then

f(x) =
∑
k∈Z

f(k) sinc(x− k), (7.26)

with two interpretations of the convergence of the infinite series:

(i) The symmetric partial sums converge pointwise, i.e.,

lim
N→∞

N∑
k=−N

f(k) sinc(x− k) = f(x), ∀x ∈ R;

(ii) The symmetric partial sums converge in L2(R), i.e.,

∫ ∞

−∞

∣∣∣∣∣f(x) −
N∑

k=−N

f(k) sinc(x− k)

∣∣∣∣∣
2

dx → 0 as N → ∞.

Proof. The proof is based on classical Fourier analysis. Because of our
definition of the Paley–Wiener space, it will be convenient to work with
Fourier series in the space L2(−1/2, 1/2).

We first show that the functions {sinc(· − k)}k∈Z form an ortho-
normal sequence in L2(R). As noted in Example 6.4.3 the functions
{e2πik(·)χ]−1/2,1/2[(·)}k∈Z form an orthononormal sequence in L2(R).
Taking the Fourier transform of these functions, we arrive at

F
(
e2πik(·)χ]−1/2,1/2[(·)

)
(γ) =

∫ 1/2

−1/2

e2πikxe−2πixγdx

=
∫ 1/2

−1/2

e−2πi(γ−k)xdx

=
[

1
−2πi(γ − k)

e−2πi(γ−k)x

]1/2

x=−1/2

= sinc(γ − k).

Because the Fourier transformation is unitary, (4.16) implies that the
functions {sinc(· − k)}k∈Z are orthonormal as well.

Now let f ∈ PW be the continuous representative for a given equivalence
class. On the interval ]−1/2, 1/2[ we can apply the results in Example 6.4.3
to expand f̂ in a Fourier series,

f̂(·) =
∑
k∈Z

cke
2πik(·), (7.27)

where

ck =
∫ 1/2

−1/2

f̂(γ)e−2πikγdγ. (7.28)
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According to Example 6.4.3 the partial sums of the Fourier series converge
in the norm of L2(−1/2, 1/2), i.e.,

∫ 1/2

−1/2

∣∣∣∣∣f̂(γ) −
N∑

n=−N

cke
2πikγ

∣∣∣∣∣
2

dγ → 0 as N → ∞.

Because we are dealing with a finite interval, convergence in L2(−1/2, 1/2)
implies convergence in L1(−1/2, 1/2), see Exercise 5.10. So

∫ 1/2

−1/2

∣∣∣∣∣f̂(γ) −
N∑

n=−N

cke
2πikγ

∣∣∣∣∣ dγ → 0 as N → ∞. (7.29)

By Lemma 7.4.2, we know that f̂ ∈ L1(R). Thus, the expression for ck in
(7.28) implies by Theorem 7.2.3 that

ck =
∫ 1/2

−1/2

f̂(γ)e−2πikγdγ =
∫ ∞

−∞
f̂(γ)e−2πikγdγ = f(−k).

Thus, via (7.27),

f̂(·) =
∑
k∈Z

f(−k)e2πik(·).

Using Theorem 7.2.3 once more, we arrive at the following formula, valid
pointwise for all x ∈ R:

f(x) =
∫ ∞

−∞
f̂(γ)e2πixγdγ =

∫ 1/2

−1/2

(∑
k∈Z

f(−k)e2πikγ

)
e2πixγdγ.

Note that via Lemma 1.7.2 and (7.29),∣∣∣∣∣f(x) −
N∑

k=−N

f(−k)
∫ 1/2

−1/2

e2πi(x+k)γdγ

∣∣∣∣∣
∣∣∣∣∣
∫ ∞

−∞
f̂(γ)e2πixγdγ −

N∑
k=−N

f(−k)
∫ 1/2

−1/2

e2πi(x+k)γdγ

∣∣∣∣∣

=

∣∣∣∣∣
∫ ∞

−∞

(
f̂(γ) −

N∑
k=−N

f(−k)e2πikγ

)
e2πixγdγ

∣∣∣∣∣

≤
∫ ∞

−∞

∣∣∣∣∣
(
f̂(γ) −

N∑
k=−N

f(−k)e2πikγ

)
e2πixγ

∣∣∣∣∣ dγ

=
∫ ∞

−∞

∣∣∣∣∣f̂(γ) −
N∑

k=−N

f(−k)e2πikγ

∣∣∣∣∣ dγ
→ 0 as N → ∞.
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This shows that

f(x) = lim
N→∞

N∑
k=−N

f(−k)
∫ 1/2

−1/2

e2πi(x+k)γdγ

=
∑
k∈Z

f(−k)
∫ 1/2

−1/2

e2πi(x+k)γdγ

=
∑
k∈Z

f(−k)
[

1
2πi(x+ k)

e2πi(x+k)γ

]1/2

γ=−1/2

=
∑
k∈Z

f(−k) sinc(x+ k)

=
∑
k∈Z

f(k) sinc(x− k).

We have now proved (i). In order to prove (ii), we rewrite the result obtained
in (i) as

f(x) −
N∑

n=−N

f(k) sinc(x− k) =
∑

|n|>N

f(k) sinc(x− k).

Note that because {f(k)}k∈Z are Fourier coefficients, we know that
{f(k)}k∈Z ∈ �2(Z). Since {sinc(· − k)}k∈Z is an orthonormal system, the
result in Exercise 4.31 shows that∣∣∣∣∣

∣∣∣∣∣f −
N∑

n=−N

f(k) sinc(· − k)

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

|n|>N

f(k) sinc(· − k)

∣∣∣∣∣∣

∣∣∣∣∣∣
2

=
√ ∑

|n|>N

|f(k)|2,

which converges to 0 as N → ∞ because {f(k)}k∈Z ∈ �2(Z). This implies
that

span{Tk sinc}k∈Z = PW.

We have already seen that {sinc(· − k)}k∈Z is an orthonormal sequence, so
by Theorem 4.7.2 we can now also conclude that {sinc(· − k)}k∈Z forms an
orthonormal basis for PW. �

Via an appropriate scaling, the result in Theorem 7.1.7 can be extended
to functions whose Fourier transform has support in an arbitrary fixed in-
terval (Exercise 7.13). In fact, if supp f̂ ⊆ [−α/2, α/2], Shannon’s sampling
theorem takes the form

f(x) =
∑
k∈Z

f(
k

α
) sinc(αx − k), x ∈ R. (7.30)
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The principle in Shannon’s sampling theorem is the basis for modern
communication technology. Most signals appearing in practice depend on
a continuous variable (very often, the time). Processing of such a signal is
facilitated greatly if it can be stored and handled in terms of a sequence
of samples. Under the assumptions in Theorem 7.4.5 this is possible: all
information about a function f ∈ PW is contained in the scalar sequence
{f(k)}k∈Z.

Example 7.4.6 Consider a recording of a piece of music. In principle,
all frequencies might appear, but the human ear can only hear frequencies
belonging to a certain range (at most up to 20000 Hz). Thus, we can remove
the high frequencies and consider the resulting signal f as band-limited,
e.g., with supp f̂ ⊆ [− 40000

2 , 40000
2 ] = [−20000, 20000].Formula (7.30) shows

that this signal can be recovered from its samples at the points k
40000 , k ∈ Z.

Thus, all information about the signal is contained in a discrete sequence
of numbers! This principle is used in CD players and other places where a
conversion of an analog signal to a digital signal is needed. �

7.5 The discrete Fourier transform

We have now introduced the Fourier transform on L1(R) and L2(R), and
seen a few cases of its use. Unfortunately, the definition of the Fourier trans-
form shows that it is difficult to calculate f̂ explicitly for most functions
f ; usually, we need to use numerical methods. We will now shortly discuss
the role of the discrete Fourier transform considered in Example 1.1.3 in
this context. The presentation is inspired by the book [4], to which we also
refer for a much more detailed description of the DFT and its applications.

In order to calculate or approximate the Fourier transform of a real-life
signal f, we need to assume that f has compact support. Assuming that
supp f ⊆ [0, A] for some A > 0, we have that

f̂(γ) =
∫ ∞

−∞
f(x)e−2πixγ dx

=
∫ A

0

f(x)e−2πixγ dx. (7.31)

Let n ∈ N. We will now split the interval [0, A] into n subintervals of length
Δx = A/n; the grid points, i.e., the end points of the subintervals, are

x� = (�− 1)Δx, � = 1, . . . , n+ 1.

Fix γ ∈ R, and let

g(x) := f(x)e−2πixγ .
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We will assume that g(0) = g(A). If this is not the case, an extra correction
term has to be added below; however, as n→ ∞, this term will disappear.
The trapezoid rule for approximation of the integral in (7.31) gives that

f̂(γ) ≈ Δx
2

(
g(0) + 2

n∑
�=2

g(x�) + g(A)

)
= Δx

n∑
�=1

g(x�).

We are considering functions f supported on [0, A]. If we want such a
function to be periodic, with a period fitting exactly in [0, A], the largest
possible period is exactly A; that is, the smallest possible frequency that
can appear in the function f is 1/A. For this reason we will consider the
frequency content in f with frequencies γk := (k − 1)/A, k = 1, . . . , n.
Observing that

x�yk = (�− 1)
A

n

k − 1
A

=
(�− 1)(k − 1)

n
,

we see that

f̂(γk) ≈ A

n

n∑
�=1

f(x�) e−2πix�γk

=
A

n

n∑
�=1

f(x�) e−2πi(�−1)(k−1)/n. (7.32)

Recall from Example 1.1.3 that the discrete Fourier transform of a se-
quence v ∈ C

n is defined as v̂ := {〈v, ek〉}n
k=1 with ek as in (1.6).

Writing

v =

⎛
⎜⎜⎜⎜⎝

v1
v2
·
·
vn

⎞
⎟⎟⎟⎟⎠ ,

the coordinates of v̂ are

〈v, ek〉 =
1√
n

n∑
�=1

v� e
−2πi(�−1)(k−1)/n, k = 1, . . . , n.

Thus, up to the multiplicative factor A/
√
n, the term in (7.32) used

to approximate the sequence {f̂(γk)}n
k=1 is precisely the discrete Fourier

transform of the sequence {f(xk)}n
k=1. That is, we can approximate the

sequence {f̂(γk)}n
k=1 via a discrete Fourier transform. Letting n→ ∞, the

exact values for f̂(γk) appear in the limit.
In practice, the discrete Fourier transform is usually calculated using an

algorithm known as the fast Fourier transform, abbreviated FFT.
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7.6 Exercises

7.1 Calculate the Fourier transform of the function χ[0,1].

7.2 Calculate the Fourier transform of the function

f(x) = e−xχ[0,1](x).

7.3 Calculate the Fourier transform of the functions

g(x) = e−xχ[0,∞[(x)

and

f(x) = e−|x|.

7.4 Prove Theorem 7.1.2.

7.5 Prove Lemma 7.1.3.

7.6 Complete the proof of Theorem 7.1.5 by showing that

||Tyf − f ||1 → 0 as y → 0

for all f ∈ L1(R).

7.7 Complete the proof of Lemma 7.2.1 by proving (7.8) for functions
f ∈ Cc(R) that are not necessarily supported on [−π, π].
Hint: let as usual Dc denote the dilation operator. For sufficiently
small values of c > 0 the function g := Dcf will be supported on
[−π, π]. Argue for each of the following equalities:

||f ||2 = ||Dcf ||2 = ||Fg||2 = ||DcFg||2 = ||FDc−1g||2 = ||Ff ||2.

7.8 This exercise concerns some of the steps in the proof of Theorem
7.2.2.

(i) Consider the extension of the Fourier transform from Cc(R)
to L2(R), as described in the proof of Theorem 7.2.2. Argue
that (7.14) holds for all f ∈ L2(R).
Hint: consider the first part of (3.16) with T being the Fourier
transform, and apply the result in Exercise 2.1.

(ii) Prove Theorem 7.2.2(ii).
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7.9 We consider a convolution of two characteristic functions.

(i) Calculate the function χ[0,1] ∗ χ[0,2].

(ii) Make a sketch of the function χ[0,1] ∗ χ[0,2].

(iii) Calculate the Fourier transform of the function χ[0,1] ∗ χ[0,2].

7.10 (Young’s inequality) Generalize the proof of Lemma 7.3.2 to
show that if f ∈ Lp(R), p ∈]1,∞[, and g ∈ L1(R), the convolution
f ∗ g defines a function in Lp(R), and

||f ∗ g||p ≤ ||f ||p ||g||1. (7.33)

7.11 Prove Lemma 7.3.3.

7.12 Prove Lemma 7.4.2.

7.13 Let f ∈ L2(R) be a continuous function for which

supp f̂ ⊆ [−α/2, α/2]

for some α > 0. Show that f can be recovered from its samples
{f(k/α)}k∈Z via

f(x) =
∑
k∈Z

f(
k

α
) sinc(αx − k), x ∈ R.

7.14 Prove Lemma A.2.2.

7.15 Consider the setup in Lemma A.2.4.

(i) Prove that the integral in (A.20) is finite.

(ii) Prove Lemma A.2.4(ii).



8
An Introduction to Wavelet Analysis

In Section 4.7 we introduced orthonormal bases in general Hilbert spaces.
The purpose of the current chapter is to present a general way of con-
structing orthonormal bases with a particular structure in the Hilbert space
L2(R). In contrast to the other topics treated in the book, wavelet analysis
is a quite new topic: although the first constructions appeared about 100
years ago, the systematic analysis began around 1982. In 1987, the key
concept of a multiresolution analysis was introduced, and shortly hereafter
Daubechies used it to construct a special class of orthonormal bases with
attractive properties, e.g., in the context of data compression.

The present chapter gives a quick overview of the key ideas in wavelet
analysis. The subsequent Chapter 9 provides the technical details in the
construction of a wavelet orthonormal basis for L2(R).

The basic definitions in wavelet analysis are considered in Section 8.1.
Section 8.2 is devoted to the main tool in wavelet analysis, the multiresolu-
tion analysis. Section 8.3 describes certain properties that are desirable for
concrete wavelet constructions, as well as the construction of Daubechies’
wavelets. Section 8.4 discusses a few aspects of the role of these wavelets
in applications.
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in Physics and Engineering, Applied and Numerical Harmonic Analysis,
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8.1 Wavelets

Wavelet theory provides us with a way of constructing orthonormal bases
in L2(R). Compared to our description of general orthonormal bases in
Section 4.7 there are two new issues:

• We now deal with a concrete Hilbert space consisting of functions,
namely, L2(R);

• We want the functions in the basis to have a special structure: all of
them will be scaled and translated versions of a fixed function.

That the analysis shall take place in L2(R) is motivated by the fact that
many applications, e.g., in signal processing, actually take place within this
framework. The special structure of the functions in the basis is also moti-
vated by applications. In fact, if {ek} is an orthonormal basis for L2(R), we
know from Theorem 4.7.2 that all functions f ∈ L2(R) have an expansion

f =
∑

ckek

for suitable coefficients ck. In general, the index set of the sum is infinite.
However, in order for this representation to be of practical use, it is im-
portant that the relevant functions f can be approximated well by finite
partial sums, preferably with just a few nonzero coefficients ck. In Section
8.3 we will see that it often is possible to construct bases with wavelet
structure that satisfies this requirement; see Theorem 8.3.3.

The technical definition of a wavelet basis is as follows:

Definition 8.1.1 (Wavelet) Let ψ ∈ L2(R).

(i) For j, k ∈ Z, define the function ψj,k by

ψj,k(x) := 2j/2ψ(2jx− k), x ∈ R. (8.1)

(ii) The function ψ is called a wavelet if the functions {ψj,k}j,k∈Z form
an orthonormal basis for L2(R).

In terms of the translation operators Tk and the dilation operator D
introduced in Section 6.2, we can write the functions ψj,k as (Exercise 6.7)

ψj,k = DjTkψ, j, k ∈ Z.

The systematic study of wavelet bases began around 1985, but the first
example of a wavelet appeared much earlier:

Example 8.1.2 (Haar wavelet) The Haar function is defined by

ψ(x) =

⎧⎨
⎩

1 if 0 ≤ x < 1
2 ,

−1 if 1
2 ≤ x < 1,

0 otherwise.
(8.2)
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Already in 1910 it was proved by Haar that the functions {ψj,k}j,k∈Z

constitute an orthonormal basis for L2(R) for this choice of ψ. The proof
of the basis property is quite technical and will be skipped (see [8] or [12]).
For the orthonormality one can argue as follows. We first consider ψj,k and
ψj,k′ , i.e., elements with the same dilation parameter. By Lemma 6.2.2 we
know that the dilation operator D is unitary; by Exercise 4.23 this implies
that Dj is unitary for all j ∈ Z. Using (4.16) and that suppψ = [0, 1],

〈ψj,k, ψj,k′〉 = 〈DjTkψ,D
jTk′ψ〉 = 〈Tkψ, Tk′ψ〉

=
∫ ∞

−∞
ψ(x − k)ψ(x− k′) dx

= δk,k′ .

Now assume that j′ �= j, say, j′ > j. Using Lemma 6.2.2 and the
commutation relations in Lemma 6.2.4,

〈ψj,k, ψj′,k′〉 = 〈DjTkψ,D
j′Tk′ψ〉 = 〈(Dj′ )∗DjTkψ, Tk′ψ〉

= 〈Dj−j′Tkψ, Tk′ψ〉
= 〈T−k′Dj−j′Tkψ, ψ〉
= 〈Dj−j′T−k′2j−j′+kψ, ψ〉.

The function ψ has support on the interval [0, 1], so T−k′2j−j′+kψ has sup-
port on the interval [−k′2j−j′ + k,−k′2j−j′ + k + 1]; this implies that
Dj−j′T−k′2j−j′+kψ has support on the interval

I : = [2j′−j(−k′2j−j′ + k), 2j′−j(−k′2j−j′ + k + 1)]

= [−k′ + 2j′−jk,−k′ + 2j′−j(k + 1)].

The length of I is 2j′−j , which can take the values 2, 4, 8, .... Now, the
support of ψ has length 1, and is contained in an interval on which
Dj−j′T−k′2j−j′+kψ is constant (make a picture!); it follows that

〈ψj′,k′ , ψj,k〉 =
∫ ∞

−∞

(
Dj−j′T−k′2j−j′+kψ

)
(x)ψ(x) dx = 0.

This concludes the proof of the orthonormality of {ψj,k}j,k∈Z. �

Example 8.1.2 illustrates how complicated it is to verify directly that
a function ψ is a wavelet: just to show the orthonormality of the func-
tions {ψj,k}j,k∈Z is quite involved. In the next section we present a general
method for construction of such a function.
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8.2 Multiresolution analysis

In 1986, Mallat and Meyer introduced multiresolution analysis as a general
tool to construct wavelet orthonormal bases. A multiresolution analysis
consists of a collection of conditions on certain subspaces of L2(R) and
an associated function φ ∈ L2(R). We note already now that it will take
some work before we can show how to use the concept to construct an
orthonormal basis for L2(R) in Theorem 8.2.7.

Definition 8.2.1 (Multiresolution analysis) A multiresolution analy-
sis for L2(R) consists of a sequence of closed subspaces {Vj}j∈Z of L2(R)
and a function φ ∈ V0, such that the following conditions hold:

(i) The spaces Vj are nested, i.e.,

· · ·V−1 ⊂ V0 ⊂ V1 · · · .
(ii) ∪j∈ZVj = L2(R) and ∩j∈ZVj = {0}.
(iii) For all j ∈ Z, Vj+1 = D(Vj).

(iv) f ∈ V0 ⇒ Tkf ∈ V0, ∀k ∈ Z.

(v) {Tkφ}k∈Z is an orthonormal basis for V0.

The condition ∪j∈ZVj = L2(R) in Definition 8.2.1(ii) means that ∪j∈ZVj

is dense in L2(R), i.e., that for any f ∈ L2(R) and any ε > 0 we can find a
function g ∈ ∪j∈ZVj such that ||f − g|| ≤ ε. The function g will belong to
some space VJ , J ∈ Z, and therefore by condition (i) to all spaces Vj with
j ≥ J.

We also note that the condition (iii) means that

Vj+1 = {Df | f ∈ Vj}.
A closer look at the conditions in Definition 8.2.1 reveals that the choice

of the function φ in a multiresolution analysis actually determines the
spaces Vj uniquely:

Lemma 8.2.2 (The spaces Vj) Assume that the conditions (iii) and (iv)
in Definition 8.2.1 are satisfied. Then the following hold:

(i) Vj = Dj(V0) for all j ∈ Z.

(ii) Vj = span{DjTkφ}k∈Z for all j ∈ Z.

Proof. For j ∈ N, an iteration of (iii) in Definition 8.2.1 yields that

Vj = D(Vj−1) = DD(Vj−2) = · · · = Dj(V0).

For the case where j ∈ {−1,−2, . . .},
Vj = D−1(Vj+1) = D−1D−1(Vj+2) = · · · =

(
D−1

)−j
(V0) = Dj(V0).



8.2 Multiresolution analysis 163

This proves (i). For the proof of (ii), the condition (v) in Definition 8.2.1
implies by Theorem 4.7.2 (with H := V0) that V0 = span{Tkφ}k∈Z. Now,
using (i), we conclude by Exercise 2.13(ii) that

Vj = Dj(V0) = Dj(span{Tkφ}k∈Z) = span{DjTkφ}k∈Z. (8.3)

This concludes the proof. �

Lemma 8.2.2(ii) shows that the spaces Vj in a multiresolution analysis
are uniquely determined by the function φ. For this reason we say that
the function φ generates the multiresolution analysis. But we have to stress
the fact that only very special functions φ can generate a multiresolution
analysis. We will come back to this issue in Theorem 8.2.11.

Our first example of a multiresolution analysis is closely related with the
Haar wavelet in Example 8.1.2:

Example 8.2.3 (Haar multiresolution analysis) We can define a
multiresolution analysis by{

φ := χ[0,1[;

Vj := {f ∈ L2(R) : f is constant on [2−jk, 2−j(k + 1)[, ∀k ∈ Z}.
We leave the verification of the details to the reader (Exercise 8.1).

It turns out that (up to an irrelevant multiplicative factor of minus 1) the
wavelet associated with this multiresolution analysis is the Haar wavelet in
(8.2). The technical tools to show this are presented later in this section,
see Exercise 8.2. Note that the Haar wavelet can be written as

ψ(x) = χ[0,1/2[(x) − χ[1/2,1[(x)
= χ[0,1[(2x) − χ[0,1[(2x− 1)

=
1√
2

(
Dχ[0,1[(x) −DT1χ[0,1[(x)

)
. (8.4)

Thus, the Haar wavelet is a finite linear combination of scaled and trans-
lated versions of the function φ = χ[0,1[. In Theorem 8.2.7 and Proposition
8.2.8 we will see that a similar result holds for any wavelet derived from
a multiresolution analysis. The multiresolution analysis considered here is
naturally called the Haar multiresolution analysis. The function φ = χ[0,1[

is called the Haar scaling function. �

We will now describe how a multiresolution analysis can be used to con-
struct an orthonormal basis for L2(R). For this purpose we need to consider
a class of vector spaces associated with {Vj}j∈Z :
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Definition 8.2.4 (The spaces Wj) Assume that Vj is a sequence of
closed subspaces of L2(R) and that the condition (i) in Definition 8.2.1
is satisfied. For any j ∈ Z, let Wj denote the orthogonal complement of Vj

with respect to Vj+1, i.e.,

Wj := {f ∈ Vj+1

∣∣ 〈f, g〉 = 0, ∀g ∈ Vj}.
We denote the orthogonal projection of L2(R) onto Wj by Qj.

It turns out that the space W0 plays a very special role in wavelet anal-
ysis. In fact, the next result shows that in order to obtain an orthonormal
basis {DjTkψ}j,k∈Z for L2(R), it is enough to find a function ψ ∈W0 such
that {ψ(·−k)}k∈Z is an orthonormal basis for W0. The proof requires some
preparation, and will be given on page 187 in Chapter 9.

Proposition 8.2.5 Assume that the function φ ∈ L2(R) generates a mul-
tiresolution analysis. Let ψ ∈ L2(R) and suppose that {Tkψ}k∈Z is an
orthonormal basis for W0. Then the following hold:

(i) For each j ∈ Z, the functions {DjTkψ}k∈Z form an orthonormal basis
for Wj.

(ii) The functions {DjTkψ}j,k∈Z form an orthonormal basis for L2(R),
i.e., ψ is a wavelet.

(iii) The functions {Tkφ}k∈Z∪{DjTkψ}j∈N,k∈Z form an orthonormal basis
for L2(R).

By Proposition 8.2.5 we can find a wavelet by constructing a function
ψ ∈ L2(R) such that {Tkψ}k∈Z is an orthonormal basis for the space W0.
Conceptually this is a simplification: the wavelet system {DjTkψ}j,k∈Z

involves the operations of scaling and translation, while {Tkψ}k∈Z just
consists of translates. The following result is a key step in the construction
of an appropriate function ψ:

Proposition 8.2.6 (Scaling equation) Assume that the function φ ∈
L2(R) generates a multiresolution analysis. Then there exists a 1-periodic
function H0 ∈ L2(0, 1) such that

φ̂(2γ) = H0(γ)φ̂(γ), γ ∈ R. (8.5)

Proof. By assumption, the functions {Tkφ}k∈Z form an orthonormal basis
for V0; in particular, φ ∈ V0. Since V0 ⊂ V1 = D(V0), this means that
φ ∈ D(V0), i.e., that D−1φ ∈ V0. Because V0 is a vector space, it follows
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that
1√
2
D−1φ ∈ V0.

Since {T−kφ}k∈Z is an orthonormal basis for V0, Theorem 4.7.2 shows that
there exist coefficients {ck}k∈Z such that

1√
2
D−1φ =

∑
k∈Z

ckT−kφ. (8.6)

By Exercise 4.32 the coefficients {ck}k∈Z belong to �2(Z). Applying the
Fourier transform and the result in Exercise 2.14(ii),

1√
2
FD−1φ = F

∑
k∈Z

ckT−kφ

=
∑
k∈Z

ckFT−kφ.

Now, the commutation relations in Theorem 7.1.2(iii) and Lemma 7.1.3
imply that

1√
2
Dφ̂(γ) =

∑
k∈Z

ckEk(γ)φ̂(γ).

Thus,

φ̂(2γ) =
∑
k∈Z

cke
2πikγ φ̂(γ).

Defining the 1-periodic function

H0(γ) :=
∑
k∈Z

cke
2πikγ , (8.7)

this shows that (8.5) is satisfied. �

The equation (8.5) is called a scaling equation or refinement equation. A
function φ that satisfies a scaling equation is called a scaling function, or
said to be refinable. Formulated in this language, Proposition 8.2.6 says
that a necessary condition for a function φ to generate a multiresolution
analysis is that φ is a scaling function. In Theorem 8.2.11 we will see that
two extra conditions on a scaling function imply that it actually generates
a multiresolution analysis.

We are now ready to present the main result for construction of an
orthonormal basis via a multiresolution analysis. The result itself can be
formulated based on knowledge of the function H0 in the scaling equation.
The proof is given in Section 9.3.
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Theorem 8.2.7 (Wavelet orthonormal basis) Assume that φ ∈ L2(R)
generates a multiresolution analysis, and let H0 ∈ L2(0, 1) be a 1-periodic
function satisfying the scaling equation (8.5). Define the 1-periodic function
H1 by

H1(γ) := H0(γ +
1
2
) e−2πiγ . (8.8)

Also, define the function ψ via

ψ̂(2γ) := H1(γ)φ̂(γ). (8.9)

Then the following hold:

(i) {Tkψ}k∈Z is an orthonormal basis for W0.

(ii) {DjTkψ}j,k∈Z is an orthonormal basis for L2(R), i.e., ψ is a wavelet.

The definition in (8.9) is quite indirect: it defines the function ψ in terms
of its Fourier transform, so we have to apply the inverse Fourier transform
in order to obtain an expression for ψ. This actually leads to an explicit
expression of the function ψ in terms of the given function φ:

Proposition 8.2.8 (Explicit expression for the wavelet) Assume
that (8.9) holds for a 1-periodic function H1 ∈ L2(0, 1),

H1(γ) =
∑
k∈Z

dke
2πikγ . (8.10)

Then

ψ(x) =
√

2
∑
k∈Z

dkDT−kφ(x) = 2
∑
k∈Z

dkφ(2x + k), x ∈ R. (8.11)

Proof. We can rewrite (8.9) as

ψ̂(γ) = H1(γ/2)φ̂(γ/2);

formulated in terms of the dilation operator D and the modulation
operators, this means that

Fψ(γ) =
∑
k∈Z

dke
πikγFφ(γ/2) =

√
2
∑
k∈Z

dkEk/2D
−1Fφ(γ).

Using Lemma 7.1.3 this yields that

Fψ(γ) =
√

2
∑
k∈Z

dkEk/2FDφ(γ),
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Invoking the commutation relations in Theorem 7.1.2 and Lemma 6.2.4
and using the linearity of the Fourier transform now leads to

Fψ(γ) =
√

2
∑
k∈Z

dkFT−k/2Dφ(γ)

=
√

2F
∑
k∈Z

dkT−k/2Dφ(γ)

=
√

2F
∑
k∈Z

dkDT−kφ(γ).

Applying the inverse Fourier transform finally yields the desired result. �

The results obtained so far show that it is easy to find the wavelet ψ
whenever the function H0 in the scaling equation has been calculated. In-
deed, based on the expression (8.7) for the function H0 we use (8.8) to find
the function H1 and bring it on the form (8.10). Hereafter we simply insert
the coefficients dk in (8.11).

In most cases of practical interest, H0 is actually a trigonometric
polynomial,

H0(γ) =
N∑

k=−N

cke
2πikγ . (8.12)

The explicit expression for the wavelet in (8.11) immediately leads to a
criterion for how to obtain a compactly supported wavelet:

Corollary 8.2.9 (Compactly supported wavelet) Assume that the
function φ ∈ L2(R) is compactly supported and generates a multiresolution
analysis. Assume further that the function H0 in the scaling equation (8.5)
is a trigonometric polynomial. Then the wavelet ψ in (8.11) is compactly
supported.

Proof. If H0 is a trigonometric polynomial, the function H1 in (8.8) is
also a trigonometric polynomial. Thus, we can write

H1(γ) =
N2∑

k=N1

dke
2πikγ

for suitable coefficients {dk}k∈Z. The proof of Proposition 8.2.8 now shows
that the wavelet is

ψ(x) = 2
N2∑

k=N1

dkφ(2x+ k), x ∈ R,

i.e., a compactly supported function. �
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Example 8.2.10 (Haar wavelet) Theorem 8.2.7 and Proposition 8.2.8
lead to the Haar wavelet (up to an irrelevant multiplicative factor of minus
1) whenever they are applied to the Haar multiresolution analysis. We ask
the reader to provide the proof in Exercise 8.2. �

As we have seen on page 163, the choice of a scaling function φ character-
izes a multiresolution analysis uniquely. This makes it natural to examine
how to formulate the multiresolution analysis conditions directly in terms
of conditions on the function φ. Such conditions are presented now:

Theorem 8.2.11 (Construction of multiresolution analysis) Let
φ ∈ L2(R). Define the spaces Vj by (8.3), and assume that the following
conditions hold:

(i) infγ∈]−ε,ε[ |φ̂(γ)| > 0 for some ε > 0;

(ii) The scaling equation

φ̂(2γ) = H0(γ)φ̂(γ), (8.13)

is satisfied for a bounded 1-periodic function H0;

(iii) {Tkφ}k∈Z is an orthonormal system.

Then φ generates a multiresolution analysis.

The proof of Theorem 8.2.11 is given in Section 9.4. We see that we still
need a characterization of the functions φ ∈ L2(R) for which {Tkφ}k∈Z is
an orthonormal system. Such a characterization is given now:

Theorem 8.2.12 (Characterization of orthonormal system
{Tkφ}k∈Z) Let φ ∈ L2(R). Then {Tkφ}k∈Z is an orthonormal system if
and only if ∑

k∈Z

|φ̂(γ + k)|2 = 1, γ ∈ R.

A guide to a proof of Theorem 8.2.12 can be found in Exercise 8.11.

8.3 Vanishing moments and the Daubechies’
wavelets

The purpose of this section is to discuss certain properties that make
wavelets useful in signal processing, and to present the construction by
Daubechies.

Assume that the wavelet ψ comes from a multiresolution analysis
generated by the function φ. By Proposition 8.2.5, the functions

{Tkφ}k∈Z ∪ {DjTkψ}j∈N,k∈Z
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form an orthonormal basis for L2(R), so we know from Theorem 4.7.2 that
any f ∈ L2(R) has the representation

f =
∑
k∈Z

〈f, Tkφ〉Tkφ+
∞∑

j=1

∑
k∈Z

〈f, ψj,k〉ψj,k. (8.14)

All information about the function f is stored in the coefficients

{〈f, Tkφ〉}k∈Z ∪ {〈f, ψj,k〉}j∈N,k∈Z, (8.15)

and (8.14) tells us how to reconstruct f based on these coefficients. In prac-
tice one cannot store an infinite sequence of nonzero numbers, so one has to
select a finite number of the coefficients to keep. In most situations of prac-
tical interest, only a finite number of entries in the sequence {〈f, Tkφ〉}k∈Z

are nonzero (see Exercise 8.4). We express this by saying that {〈f, Tkφ〉}k∈Z

is a finite sequence. Thus, the problem is how to deal with the infinite se-
quence {〈f, ψj,k〉}j∈N,k∈Z. This is usually done by thresholding: that is, we
choose a certain ε > 0 and keep only the coefficients in (8.15) for which

|〈f, ψj,k〉| ≥ ε. (8.16)

By Exercise 4.32 the coefficients {〈f, ψj,k〉}j,k∈Z belong to �2. Thus, only
a finite number of indices (j, k) ∈ Z × Z will satisfy (8.16). A key feature
of wavelet theory is that it often is possible to choose the wavelet ψ such
that many of the coefficients {〈f, ψj,k〉}j∈N,k∈Z are small for the relevant
signals f , i.e., a relatively small number of coefficients will satisfy (8.16).
Let us for the moment consider the Haar wavelet:

Example 8.3.1 (Haar wavelet) Let φ = χ[0,1[. By Exercise 8.2, the mul-
tiresolution analysis generated by φ leads to the Haar wavelet considered
in Example 8.1.2. Consider the terms in the second infinite sum in (8.14),

〈f, ψj,k〉ψj,k(x) = 2j/2〈f, ψj,k〉ψ(2jx− k).

Direct calculation (Exercise 8.7) shows that

dj,k := 2j/2〈f, ψj,k〉
=

1
2
(
average of f over 2−j [k, k + 1/2[

− average of f over 2−j [k + 1/2, k + 1[
)
. (8.17)

Thus, the coefficient dj,k is directly related to the behavior of the function
f on the interval [2−jk, 2−j(k + 1)[. If the function f is continuous, the
calculation (8.17) implies that many coefficients dj,k are small: since

〈f, ψj,k〉 = 2−j/2dj,k, j ≥ 1, k ∈ Z,

this implies that only few coefficients {〈f, ψj,k〉}j∈N,k∈Z satisfy (8.16).
Slight modifications extend the above argument to discontinuous func-

tions. Assume that f is continuous, except at a point x0. Then if j, k are



170 8. An Introduction to Wavelet Analysis

chosen such that x0 /∈ 2−j [k, k + 1[, the above argument still works. Thus,
many of the associated coefficients dj,k will be small. On the other hand,
if j, k are chosen such that x0 ∈ 2−j [k, k+ 1[, then dj,k can be expected to
be approximately half the size of the jump

f(x+
0 ) − f(x−0 ),

at least whenever j is large (Exercise 8.7). Thus, large values for the coef-
ficients dj,k that persist through the scales, indicate a discontinuity in the
function f . In other words: just by looking at the coefficients dj,k we can
detect that there is a discontinuity in the function f ! �

As explained above, it is desirable to consider a wavelet ψ for which the
sequence {〈f, ψj,k〉}j∈N,k∈Z contains many small entries for the relevant
signals f . There exist wavelets that perform much better than the Haar
wavelet in that regard. The key property turns out to be the vanishing
moments:

Definition 8.3.2 (Vanishing moments) Let N ∈ N. A function ψ has
N vanishing moments if

∫ ∞

−∞
x�ψ(x) dx = 0 for � = 0, 1, . . . , N − 1.

The Haar wavelet has only one vanishing moment (Exercise 8.6). If ψ
has a large number of vanishing moments, the following result shows that
only relatively few coefficients 〈f, ψj,k〉 will be large. A proof can be found,
e.g., in [18].

Theorem 8.3.3 (Decay of wavelet coefficients) Assume that the func-
tion ψ ∈ L2(R) is compactly supported and has N vanishing moments.
Then, for any N times differentiable function f ∈ L2(R) for which the N th
derivative f (N) is bounded, there exists a constant C > 0 such that

|〈f, ψj,k〉| ≤ C 2−jN2−j/2, ∀j ≥ 1, k ∈ Z. (8.18)

Looking at the estimate (8.18), we see that a high number of vanishing
moments implies that the numbers 〈f, ψj,k〉 decay quickly as j → ∞: the
higher number of vanishing moments a wavelet has, the fewer coefficients
{〈f, ψj,k〉}j∈N,k∈Z in (8.15) remain after the thresholding.

It turns out that a condition for obtaining wavelets with a certain num-
ber of vanishing moments can be expressed in terms of the function H0

appearing in the scaling equation (8.5). The proof of the following result
can be found in [18, Theorem 9.11].
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Theorem 8.3.4 (Vanishing moments) Let φ be a compactly supported
scaling function associated with a multiresolution analysis, and let ψ be the
associated wavelet as in (8.9). Then the following are equivalent:

(i) ψ has N vanishing moments;

(ii) The function H0 can be factorized

H0(γ) =
(

1 + e−2πiγ

2

)N

L(γ) (8.19)

for some 1-periodic trigonometric polynomial L.

Combining Theorems 8.2.11 and 8.3.4, we see that one approach to con-
struct a wavelet ψ having N vanishing moments is to search for a 1-periodic
function H0 ∈ L2(0, 1) for which

• The function H0 is associated with a multiresolution analysis, gener-
ated by a compactly supported function φ; in particular, the scaling
equation (8.5) should be satisfied.

• The condition (8.19) is satisfied for some 1-periodic trigonometric
polynomial L.

As soon as we have the function H0 and the associated scaling function
φ at hand, we define the wavelet ψ as in Theorem 8.2.7. Observe that if
we have determined a function H0, we can actually find the only (up to
a scalar multiplication) candidate for the associated scaling function φ. In
fact, the scaling equation shows that

φ̂(γ) = H0(γ/2)φ̂(γ/2) = H0(γ/2)H0(γ/4)φ̂(γ/4)

= H0(γ/2)H0(γ/4)H0(γ/8)φ̂(γ/8).

Iterating this equation shows that for any K ∈ N,

φ̂(γ) = H0(γ/2)H0(γ/4)H0(γ/8) · · ·H0(γ/2K)φ̂(γ/2K).

Letting
K∏

j=1

H0(γ/2j) := H0(γ/2)H0(γ/4)H0(γ/8) · · ·H0(γ/2K),

this result can be written

φ̂(γ) = φ̂(γ/2K)
K∏

j=1

H0(γ/2j).

One can prove that φ̂ is continuous at zero and that
∏K

j=1H0(γ/2j) has a
limit as K → ∞. Writing

∞∏
j=1

H0(γ/2j) := lim
K→∞

K∏
j=1

H0(γ/2j),
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it follows that

φ̂(γ) = lim
K→∞

⎛
⎝φ̂(γ/2K)

K∏
j=1

H0(γ/2j)

⎞
⎠

= φ̂(0)
∞∏

j=1

H0(γ/2j).

This shows that as soon as we have fixed a value for φ̂(0), all other values
for the function φ̂ are determined; that is, up to a scalar multiplication,
the function φ is unique. The remaining work now consists in a proof of
the fact that the function φ actually generates a multiresolution analysis,
and this can be done using Theorem 8.2.11.

The Daubechies’ wavelets are the best known constructions based on the
above idea. Except for N = 1, the Daubechies’ wavelets are not given by
an explicit formula, but it is known that the smoothness of the wavelets
increases with N . The construction of wavelets by Daubechies is based on
a family of polynomials PN−1, N ∈ N, given by

PN−1(y) =
N−1∑
k=0

(2N − 1)!
k!(2N − 1 − k)!

yk(1 − y)N−1−k. (8.20)

The construction works as follows:

Theorem 8.3.5 (Daubechies’ wavelets) For any N ∈ N, there exists a
trigonometric polynomial L such that

|L(γ)|2 = PN−1(sin2 πγ). (8.21)

With such a choice for L, the following hold:

(i) The function H0 given by (8.19) is associated with a multiresolution
analysis;

(ii) With H0 as in (i), the wavelet ψ given in Theorem 8.2.7 has N
vanishing moments, and support in [0, 2N − 1].

The proof of Theorem 8.3.5 can be found in [8].

Example 8.3.6 It is easy to calculate the first few polynomials PN−1

explicitly:

• P0(y) = 1

• P1(y) = 1 + 2y

• P2(y) = 1 + 3y + 6y2. �
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Figure 8.1. Some of Daubechies’ wavelets.

In order to apply Theorem 8.3.5, we need to be able to find the trigono-
metric polynomial L satisfying (8.21). There exists a procedure, called
spectral factorization, to do this; see [8]. The special case N = 1 is easy:

Example 8.3.7 For N = 1, the condition (8.21) means that |L(γ)|2 = 1,
which is satisfied for L(γ) = −1 (we could also have taken L(γ) = 1). Via
(8.19) this leads to

H0(γ) =
1 + e−2πiγ

2
L(γ) =

−1 − e−2πiγ

2
.

Following Theorem 8.2.7, we now calculate

H1(γ) = H0(γ +
1
2
) e−2πiγ

=
−1 − e−2πi(γ+1/2)

2
e−2πiγ

=
1 − e−2πiγ

2
.

That is,

H1(γ) =
0∑

k=−1

dke
2πikx,
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where d0 = 1/2, d−1 = −1/2. By Proposition 8.2.8, the associated wavelet
is

ψ(x) =
√

2
0∑

k=−1

dkDT−kφ(x) =
1√
2

(√
2φ(2x) −

√
2φ(2x− 1)

)

= φ(2x) − φ(2x− 1).

This is exactly the expression for the Haar wavelet in Examples 8.1.2 and
8.2.3. �

8.4 Wavelets and signal processing

We will now shortly discuss how the wavelet results discussed in the
previous sections play a role in various areas of signal processing.

Example 8.4.1 (Image compression) In Example 8.3.1 we saw how
the wavelet representation (8.14) can be used to detect singularities in the
signal f : large coefficients dj,k := 2j/2〈f, ψj,k〉 that persist for all scales j
suggest the presence of a discontinuity in f.

The above principle is applied in image compression. Black/white im-
ages are defined by the collection of their pixels, together with the values
for the color intensity at each pixel; the intensity measures the color on
a scale going from for example 0 (completely white) to 512 = 29 (com-
pletely black). When performing a wavelet analysis on an image, it is done
separately on each row of pixels, one by one. Images have large parts of
almost constant intensity that can be interpreted as the smooth part of
the signal, separated by edges, that can be interpreted as the non-smooth
part. Performing a wavelet analysis with a wavelet ψ that has a high num-
ber of vanishing moments, considerations like the ones we did in Example
8.3.1 show that the wavelet representation of the pixels in each row of the
image will have a few large coefficients corresponding to the edges, and
many small coefficients corresponding to regions with small changes. This
implies that many coefficients can be discarded by thresholding, i.e., that
an efficient compression is obtained. �

Due to the efficiency of wavelets as described in Example 8.4.1, wavelets
are implemented in, e.g., digital cameras. In fact, wavelets are part of the so-
called JPEG2000 standard for image compression. They are also used by the
FBI (Federal Bureau for Investigation) to store fingerprints electronically:

Example 8.4.2 (Fingerprints) With reasonable accuracy, it uses about
10 Mb to store a fingerprint electronically. The FBI has more than 30 mil-
lion sets of fingerprints (each consisting of 10 fingers) and receives about
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30000 new fingerprints each day. We are speaking about enormous data
sets, and it is necessary to do some compression in order to be able to
handle them. This has to be done in a way such that the structure of the
fingerprints is kept. The FBI uses a variant of Daubechies’ wavelets dis-
cussed in Section 8.3 for that purpose. In the concrete case it is enough to
represent a fingerprint using about 8% of the original information. The com-
pression method has the impressive name The Wavelet Scalar Quantization
Gray-scale Fingerprint Image Compression Algorithm, usually abbreviated
WSQ. �

We note that compression of fingerprints (or any other image) in principle
also can be performed using Fourier analysis. However, Fourier methods
are bad at representing edges (think, e.g., of the Gibb’s phenomena for the
Fourier series of a function having a discontinuity). As a consequence, this
classical method is less efficient: at the rate of compression the FBI uses for
the wavelet method, it would no longer be possible to follow the contours in
a reconstructed fingerprint, and the result would be useless in this special
context.

Example 8.4.3 (Noise reduction) Assume that the signal f represents
a piece of music. Looking again at the representation (8.14), it is natural
to consider the functions ψj,k to contain the high-frequency information of
f for j large and the low-frequency information for j small. Noise is often
contained in the high-frequency range. Thus, by replacing (8.14) by

f =
∑
k∈Z

〈f, Tkφ〉Tkφ+
J∑

j=1

∑
k∈Z

〈f, ψj,k〉ψj,k

for an appropriately chosen value of J , an efficient noise reduction of the
signal f is obtained. Observe that J needs to be chosen with great care:
if J is too small, a substantial part of the information in the signal (i.e.,
music piece) is removed as well!

An application of this principle led to an amazing conclusion within music
science. In 1889, the composer Johannes Brahms “recorded” his playing of
one of his piano pieces using piano rolls. Later, the recording was transferred
to an LP-disc; unfortunately, the result was so noisy that it was impossible
to hear that it was a piano recording! Using wavelet methods, J. Berger
and C. Nichols managed to get rid of so much noise that it became possible
to hear the music and obtain an idea about how Brahms played his own
compositions. Somewhat surprisingly it turned out that he did not follow
his own score very closely, but rather took the score as a starting point for
an improvisation. �
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8.5 Exercises

8.1 (Haar multiresolution analysis) Let{
φ := χ[0,1[;

V0 := {f ∈ L2(R) : f is constant on [k, k + 1[, ∀k ∈ Z}.

(i) Describe the spaces Vj := Dj(V0).

(ii) Show that the spaces Vj and the function φ satisfy the conditions
(i) and (iii)–(v) in the definition of a multiresolution analysis.

(iii) Use Corollary 9.1.3 and Proposition 9.4.3 to argue that the
spaces Vj satisfy condition (ii) in the definition of a
multiresolution analysis.

8.2 (Haar multiresolution analysis) For the multiresolution analysis
in Exercise 8.1, calculate the functions H0 and H1 in Theorem 8.2.7
and find the expression for the wavelet ψ.

8.3 Assume that two subspaces V0 and V1 of L2(R) satisfy that

(i) V1 = D(V0);

(ii) f ∈ V0 ⇒ Tkf ∈ V0, ∀k ∈ Z.

Show that if g ∈ V1, then Tkg ∈ V1 for all k ∈ Z.

8.4 Assume that a compactly supported function φ ∈ L2(R) generates
a multiresolution analysis with associated wavelet ψ, and consider
the expansion (8.14) of functions f ∈ L2(R). Argue that if f has
compact support, the term∑

k∈Z

〈f, Tkφ〉Tkφ

is actually a finite sum.

8.5 Assume that φ ∈ L2(R) satisfies the scaling equation

φ̂(2γ) = H0(γ)φ̂(γ)

with

H0(γ) =
∑
k∈Z

cke
2πikγ .
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According to Proposition 8.2.8 this means that

φ(x) = 2
∑
k∈Z

ckφ(2x+ k).

Now define the function ψ as in Theorem 8.2.7, and show that

ψ(x) = 2
∑
�∈Z

c−1−�(−1)�+1φ(2x+ �).

8.6 (Haar wavelet) Show that the number of vanishing moments for
the Haar wavelet is N = 1.

8.7 (Haar wavelet) Let φ := χ[0,1] and let ψ denote the Haar wavelet.
We consider the second term in the representation of functions
f ∈ L2(R) in (8.14),

∞∑
j=1

∑
k∈Z

〈f, ψj,k〉ψj,k(x) =
∞∑

j=1

∑
k∈Z

2j/2〈f, ψj,k〉ψ(2jx− k). (8.22)

Assume that f is real-valued, and let

dj,k := 2j/2〈f, ψj,k〉. (8.23)

(i) For j = 0, 1, 2, make a sketch of the intervals

Ij,k := 2−j [k, k + 1[, k ∈ Z.

(ii) Given an arbitrary x ∈ R, we can only obtain a nonzero
contribution in the sum in (8.22) for the values of j ∈ N and
k ∈ Z for which 2jx− k ∈ [0, 1[. Show that for any j ∈ N this
happens for exactly one value of k ∈ Z.

(iii) Show that

dj,k =
1
2
(
average of f over 2−j[k, k + 1/2[

− average of f over 2−j[k + 1/2, k+ 1[
)
. (8.24)

Hint: the average of a real function f over an interval [a, b] is

1
b− a

∫ b

a

f(x) dx.

(iv) For j = 0, 1, 2, make a sketch of the intervals

Mj,k := 2−j[k, k + 1/2[, M̃j,k := 2−j[k + 1/2, k + 1[, k ∈ Z.

The exercise continues!
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(v) Assume that f is continuous at a given point x ∈ R, and consider
the values of (j, k) ∈ N × Z that give contributions in (8.22).
Argue that

dj,k → 0 as j → ∞. (8.25)

(vi) Explain in words how fast the convergence in (8.25) is for
functions f that oscillate fast around x, compared to the speed
of convergence for functions that are almost constant around x.

(vii) Assume that f is discontinuous at a given point x ∈ R, and that
x = 2−j(k + 1/2) for some k ∈ Z and a large value of j ∈ N.
Argue that we can expect that

|dj,k| ≈ 1
2

∣∣f(x+) − f(x−)
∣∣ .

(viii) Generalize (vii) as follows. Assume that f is discontinuous at
a given point x ∈ R and assume that 2jx− k ∈ [0, 1[ for some
k ∈ Z and a large value of j ∈ N. Argue that we can still
expect dj,k to be “large,” i.e., of the size

|dj,k| ≈ C
∣∣f(x+) − f(x−)

∣∣ .

8.8 (Haar wavelet) We continue Exercise 8.7, now with the aim of
a concrete analysis of the function

f(x) :=
{
x if x ∈ [0, 3

4 ],
0 if x /∈ [0, 3

4 ].

(i) Let x = 1/2, and consider the values of j ∈ N and k ∈ Z for
which 2jx− k ∈ [0, 1[ (see Exercise 8.7(i)). Show via (8.24)
that for j ≥ 1, the coefficients dj,k in (8.23) satisfy that

|dj,k| =
1
4
2−j.

(ii) Let x = 3/4. Consider the values of j ∈ N and k ∈ Z for
which 2jx− k ∈ [0, 1[. Calculate dj,k in (8.23) for j = 1, 2, 3.

8.9 (Haar wavelet) We continue Exercise 8.7, now with the aim of
a concrete analysis of the function

f(x) :=
{
x if x ∈ [0, π

4 ],
0 if x /∈ [0, π

4 ].

Let x = π/4. Consider the values of j ∈ N and k ∈ Z for which
2jx− k ∈ [0, 1[. Calculate dj,k for j = 1, 2, 3.
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8.10 Let φ ∈ L2(R), and denote its Fourier transform by φ̂. Define the
function Φ by

Φ(γ) :=
∑
n∈Z

|φ̂(γ + n)|2.

The purpose of the exercise is to show that

〈φ, Tkφ〉 =
∫ 1

0

Φ(γ)e2πikγ dγ, k ∈ Z. (8.26)

(i) Argue that Φ ∈ L1(0, 1).
Hint: use the result in Example 5.3.4.

(ii) Show that

〈φ, Tkφ〉 =
∫ ∞

−∞
e2πikγ |φ̂(γ)|2 dγ, k ∈ Z.

Hint: use formula (7.13).

(iii) Show that
∫ ∞

−∞
e2πikγ |φ̂(γ)|2dγ =

∑
n∈Z

∫ 1

0

e2πikγ |φ̂(γ + n)|2dγ.

Hint: use that∫ ∞

−∞
e2πikγ |φ̂(γ)|2dγ =

∑
n∈Z

∫ n+1

n

e2πikγ |φ̂(γ)|2dγ.

(iv) Show that for any k ∈ Z,

∑
n∈Z

∫ 1

0

e2πikγ |φ̂(γ + n)|2dγ =
∫ 1

0

Φ(γ)e2πikγ dγ, k ∈ Z.

Hint: fix k ∈ Z. Let

fN(γ) := e2πikγ
N∑

n=−N

|φ̂(γ + n)|2

and

f(γ) := e2πikγ
∑
n∈Z

|φ̂(γ + n)|2,

and apply Theorem 5.3.5.

(v) Combine (ii)–(iv) to conclude the proof of (8.26).
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8.11 Let φ ∈ L2(R), and denote its Fourier transform by φ̂. The purpose
of the exercise is to prove Theorem 8.2.12.

(i) Show that {Tkφ}k∈Z is an orthonormal system if and only if

〈φ, Tkφ〉 =

{
1 if k = 0,
0 if k �= 0.

Let

Φ(γ) :=
∑
n∈Z

|φ̂(γ + n)|2.

One can show (Exercise 8.10) that

〈φ, Tkφ〉 =
∫ 1

0

Φ(γ)e2πikγ dγ.

(ii) Show that {Tkφ}k∈Z is an orthonormal system if and only if

Φ(γ) = 1, γ ∈ R.

Hint: by Example 6.4.3, the numbers
∫ 1

0
Φ(γ)e2πikγ dγ are

Fourier coefficients for the function Φ.

8.12 Assume that the function φ ∈ L2(R) generates a multiresolution
analysis. Show that the 1-periodic function H0 ∈ L2(0, 1)
satisfying the scaling equation (8.5) is uniquely determined.
Hint: by the result in Theorem 8.2.12 there exists for any γ ∈ R

a k ∈ Z such that φ̂(γ + k) �= 0. Now apply the scaling equation
with γ replaced by γ + k.



9
A Closer Look at Multiresolution
Analysis

In this chapter we provide the technical details in the construction of a
wavelet orthonormal basis for L2(R). In Section 9.1 we prove a few immedi-
ate consequences of the conditions in a multiresolution analysis. Section 9.2
proves several results concerning the spaces Vj and Wj , and the construc-
tion of a wavelet is presented in Section 9.3. Finally, Section 9.4 proves that
the conditions in Theorem 8.2.11 are sufficient for a function φ to generate
a multiresolution analysis.

9.1 Basic properties of multiresolution analysis

On page 163 we saw that a multiresolution analysis is uniquely defined
by the choice of the function φ. For this reason we will use the following
definition throughout the chapter:

Definition 9.1.1 (The spaces Vj) Given a function φ ∈ L2(R), define
the spaces Vj , j ∈ Z, by

Vj = span{DjTkφ}k∈Z. (9.1)

We will denote the orthogonal projection of L2(R) onto Vj by Pj.

Recall that orthogonal projections are defined in Definition 4.5.5 and that
their main properties are stated in Lemma 4.5.6.
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Lemma 9.1.2 Let φ ∈ L2(R), and define the spaces Vj by (9.1). Assume
that {Tkφ}k∈Z is an orthonormal basis for V0, and fix any j ∈ Z. Then the
following hold:

(i) {DjTkφ}k∈Z is an orthonormal basis for Vj .

(ii) limj→−∞ Pjf = 0, ∀f ∈ L2(R).

Proof. Fix j ∈ Z. In order to prove (i), we first show that {DjTkφ}k∈Z

is an orthonormal system. By Lemma 6.2.2, the operator D is unitary. For
any k, � ∈ Z, the results in Exercise 4.23 imply that

〈DjTkφ,D
jT�φ〉 = 〈Tkφ, T�φ〉 = δk,�,

where we used that {Tkφ}k∈Z is an orthonormal system.
We have now verified that {DjTkφ}k∈Z is an orthonormal system. In

order to show that {DjTkφ}k∈Z is an orthonormal basis for Vj , it is enough
to verify that the condition (ii) in Theorem 4.7.2 is satisfied with H := Vj .
Let f ∈ Vj . By Lemma 8.2.2, f = Djg for some g ∈ V0. Because {Tkφ}k∈Z

is an orthonormal basis for V0, Theorem 4.7.2 shows that

g =
∑
k∈Z

〈g, Tkφ〉Tkφ.

It follows that

f = Djg = Dj
∑
k∈Z

〈g, Tkφ〉Tkφ =
∑
k∈Z

〈g, Tkφ〉DjTkφ,

where the result in Exercise 2.14 was used to move the operator Dj under
the sum sign. Applying the results in Exercise 4.23 again yields that

f =
∑
k∈Z

〈Djg,DjTkφ〉DjTkφ

=
∑
k∈Z

〈f,DjTkφ〉DjTkφ.

Thus, condition (ii) in Theorem 4.7.2 is satisfied, which proves (i).
In order to prove (ii), we will first consider a function f ∈ L2(R) with

compact support, supp f ⊆ [−N,N ] for some N > 0. By (i) and the result
in Exercise 4.29, the orthogonal projection of f on Vj is

Pjf =
∑
k∈Z

〈f,DjTkφ〉DjTkφ.
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Using the result in Exercise 4.31, it follows that

||Pjf ||22 =
∑
k∈Z

|〈f,DjTkφ〉|2

=
∑
k∈Z

∣∣∣∣
∫ ∞

−∞
f(x)2j/2φ(2jx− k) dx

∣∣∣∣
2

=
∑
k∈Z

∣∣∣∣∣
∫ N

−N

f(x)2j/2φ(2jx− k) dx

∣∣∣∣∣
2

.

Using Cauchy–Schwarz’ inequality and the change of variable y = 2jx− k
it follows that

||Pjf ||22 ≤
∑
k∈Z

(∫ N

−N

|f(x)|2 dx
)(∫ N

−N

2j |φ(2jx− k)|2 dx
)

= ||f ||22
∑
k∈Z

∫ 2jN−k

−2jN−k

|φ(y)|2 dy. (9.2)

We want to show that the expression in (9.2) tends to 0 as j → −∞. Given
ε > 0, choose K ∈ N such that∫

|y|≥K−1/2

|φ(y)|2 dy ≤ ε

2
. (9.3)

We can write

∑
k∈Z

∫ 2jN−k

−2jN−k

|φ(y)|2 dy

=
∑

|k|<K

∫ 2jN−k

−2jN−k

|φ(y)|2 dy +
∑

|k|≥K

∫ 2jN−k

−2jN−k

|φ(y)|2 dy. (9.4)

We will analyze the two terms in (9.4) separately. First, for j chosen small
enough, i.e., such that 2jN < 1

2 , we note that

[−2jN − k, 2jN − k] ⊂ [−1
2
− k,

1
2
− k].

Thus, the choice of K in (9.3) implies that

∑
|k|≥K

∫ 2jN−k

−2jN−k

|φ(y)|2 dy ≤
∑

|k|≥K

∫ 1/2−k

−1/2−k

|φ(y)|2 dy

=
∫
|y|≥K−1/2

|φ(y)|2 dy ≤ ε

2
.

We now look at the first term in (9.4), where we only need to worry about
k = −K + 1,−K + 2, . . . ,K − 1. First we note that for each k ∈ Z, the
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integration interval [−2jN − k, 2jN − k] is a symmetric interval around k.
As j → −∞, the length of the interval tends to 0, so

lim
j→−∞

∫ 2jN−k

−2jN−k

|φ(y)|2 dy = 0.

Thus, we can choose j ∈ Z sufficiently small (still such that 2jN < 1
2 ) such

that

∑
|k|<K

∫ 2jN−k

−2jN−k

|φ(y)|2 dy ≤ ε

2
.

With this choice for j, (9.4) shows that

∑
k∈Z

∫ 2jN−k

−2jN−k

|φ(y)|2 dy ≤ ε

2
+
ε

2
= ε.

It now follows from the estimate (9.2) that

||Pjf ||22 ≤ ε ||f ||22.
The above proof implies that ||Pj′f ||22 ≤ ε ||f ||22 for all j′ ≤ j. Since ε > 0
was arbitrary, it follows that

lim
j→−∞

||Pjf ||2 = 0.

This proves the result for compactly supported functions f. We now con-
sider an arbitrary function f ∈ L2(R). By Theorem 5.4.2 the set of functions
in L2(R) with compact support forms a dense subspace of L2(R). Given
any ε > 0, we can therefore find a function g ∈ L2(R) with compact support
such that ||f − g||2 ≤ ε/2. By the result we just proved, we can find J ∈ Z

such that ||Pjg||2 ≤ ε/2 if j ≤ J. Using the triangle inequality and that
any orthogonal projection has norm at most 1, it follows that for j ≤ J,

||Pjf ||2 = ||Pj(f − g) + Pjg||2
≤ ||Pj(f − g)||2 + ||Pjg||2
≤ ||f − g||2 + ||Pjg||2
≤ ε

2
+
ε

2
= ε.

As before, this implies that limj→−∞ ||Pjf ||2 = 0. �

Lemma 9.1.2 implies that the second condition in Definition 8.2.1(ii) is
superfluous – it is automatically satisfied if the conditions in (i), (iii), and
(v) hold:



9.2 The spaces Vj and Wj 185

Corollary 9.1.3 Let φ ∈ L2(R), and define the spaces Vj by (9.1). Assume
that condition (v) in Definition 8.2.1 holds. Then

∩j∈ZVj = 0.

Proof. Assume that f ∈ ∩j∈ZVj . Then f ∈ Vj for all j ∈ Z, i.e., Pjf = f
for all j ∈ Z. Thus, by Lemma 9.1.2(ii),

||f ||2 = lim
j→−∞

||Pjf ||2 = 0.

We conclude that f = 0. �

The proof of the next result is similar to the last part of the proof for
Lemma 9.1.2, and is left to the reader (Exercise 9.3).

Lemma 9.1.4 Assume that the conditions (i) and (ii) in Definition 8.2.1
are satisfied. Then limj→∞ Pjf = f, ∀f ∈ L2(R).

9.2 The spaces Vj and Wj

In the entire section we assume that the function φ ∈ L2(R) generates a
multiresolution analysis and that the spaces Vj are given by (9.1). Based on
the condition (i) in Definition 8.2.1, let Wj denote the orthogonal comple-
ment of Vj relative to Vj+1 (see Definition 8.2.4). We note that by Theorem
4.3.5,

Vj+1 = Vj ⊕Wj . (9.5)

Recall also from Definition 8.2.4 that we denote the orthogonal projection
of L2(R) onto Wj by Qj .

We will now provide a detailed analysis of the spaces Vj and Wj . Along
the way we prove Proposition 8.2.5. The final goal for the section is to
obtain a characterization of the space W0. Hereby we will be able to find
a function ψ ∈ L2(R) such that {Tkψ}k∈Z is an orthonormal basis for W0,
which by Proposition 8.2.5 means that ψ is a wavelet.

Lemma 9.2.1 (Decomposition of VK) Assume that condition (i) in
Definition 8.2.1 is satisfied. For any J,K ∈ Z with K > J, the following
hold:

(i) The vector space VK can be decomposed as an orthogonal direct sum,

VK = VJ ⊕WJ ⊕WJ+1 ⊕ · · · ⊕WK−1. (9.6)

(ii) In terms of the orthogonal projections Pj onto Vj and Qj onto Wj ,

PK = PJ +
K−1∑
j=J

Qj .
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Proof. The result in (i) follows by iteration of (9.5):

VK = VK−1 ⊕WK−1

= VK−2 ⊕WK−2 ⊕WK−1

= · · ·
= VJ ⊕WJ ⊕WJ+1 ⊕ · · · ⊕WK−1.

Similarly, iterating the result in Exercise 9.2,

PK = PK−1 +QK−1

= PK−2 +QK−2 +QK−1

= · · ·

= PJ +
K−1∑
j=J

Qj .

This concludes the proof. �

The spaces Wj satisfy the same dilation relationship as Vj :

Lemma 9.2.2 For each j ∈ Z,

Wj = Dj(W0). (9.7)

Proof. Fix j ∈ Z. Since W0 ⊂ V1, we have

Dj(W0) ⊆ Dj(V1) = Vj+1. (9.8)

Also, because W0 ⊥V0, and D is unitary, we have Dj(W0)⊥Dj(V0), i.e.,
Dj(W0)⊥Vj . Put together, these two observations show that

Dj(W0) ⊆Wj .

In order to complete the proof, we need to show that Wj ⊆ Dj(W0).
Thus, let f ∈ Wj . Since Wj ⊆ Vj+1 = Dj(V1), we can write f = Djg for
some g ∈ V1. Write g = v + w for some v ∈ V0, w ∈W0. Then

f = Djg = Djv +Djw.

Since Djv ∈ Vj and f ∈ Wj , we have

0 = 〈f,Djv〉 = 〈Djv +Djw,Djv〉 = 〈Djv,Djv〉 + 〈Djw,Djv〉
= ||Djv||2,

i.e., Djv = 0. Thus, f = Djv +Djw = Djw ∈ Dj(W0), as desired. �

We will now show that the spaces Wj are the key to obtain an orthogonal
decomposition of L2(R):
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Lemma 9.2.3 (Decomposition of L2(R)) Assume that φ ∈ L2(R) gen-
erates a multiresolution analysis. Define the spaces Wj and the orthogonal
projection Qj as in Definition 8.2.4. Then the following hold:

(i) For any j, j′ ∈ Z with j �= j′, the spaces Wj and Wj′ are orthogonal.

(ii) Each f ∈ L2(R) has a representation f =
∑

j∈Z
Qjf .

Proof. Let j, j′ ∈ Z with j �= j′ be given; we can assume that j > j′.
Lemma 9.2.1 implies that

Vj+1 = Vj′ ⊕Wj′ ⊕ · · · ⊕Wj ,

which proves (i).
In order to prove (ii), we use that for K > J,

PKf = PJf +
K−1∑
j=J

Qjf

by Lemma 9.2.1(ii). Letting J → −∞, Lemma 9.1.2 implies that

PKf =
K−1∑

j=−∞
Qjf.

Finally, letting K → ∞, Lemma 9.1.4 leads to the result stated in (ii). �

In brief, the properties of the spacesWj described in (i) and (ii) in Lemma
9.2.3 are often expressed as

L2(R) =
⊕
j∈Z

Wj . (9.9)

We are now ready for the announced proof of Proposition 8.2.5.

Proof of Proposition 8.2.5: The proof of (i) is identical to the proof of
Lemma 9.1.2(i).

For the proof of (ii), we first show that the functions {DjTkψ}j,k∈Z form
an orthonormal system. By the result in (i) the functions {DjTkψ}k∈Z

form an orthonormal basis for Wj for any given j ∈ Z. Also, for j �= j′,
the functions {DjTkψ}k∈Z and {Dj′Tkψ}k∈Z are orthogonal by Lemma
9.2.3(i). Thus, {DjTkψ}j,k∈Z form an orthonormal system. In order to prove
that {DjTkψ}j,k∈Z forms an orthonormal basis for L2(R) we will now use
Theorem 4.7.2. The result in (i) together with Exercise 4.29 implies that
for any f ∈ L2(R),

Qjf =
∑
k∈Z

〈f,DjTkψ〉DjTkψ.



188 9. A Closer Look at Multiresolution Analysis

Thus, by Lemma 9.2.3,

f =
∑
j∈Z

Qjf =
∑
j∈Z

∑
k∈Z

〈f,DjTkψ〉DjTkψ.

The conclusion in (ii) now follows from Theorem 4.7.2.
By Lemma 9.2.1, all the spaces Wj , j ≥ 1, are orthogonal with V0. This

implies that the functions {Tkφ}k∈Z∪{DjTkψ}j∈N,k∈Z form an orthonormal
system. By an argument like in the proof of Lemma 9.2.3(ii), the reader
can show (Exercise 9.4) that for any f ∈ L2(R),

f = P0f +
∞∑

j=0

Qjf (9.10)

=
∑
k∈Z

〈f, Tkφ〉Tkφ+
∞∑

j=0

∑
k∈Z

〈f,DjTkψ〉DjTkψ. (9.11)

Again, we conclude from Theorem 4.7.2 that the functions

{Tkφ}k∈Z ∪ {DjTkψ}j∈N,k∈Z

form an orthonormal basis for L2(R). �

In Proposition 8.2.6 we saw that if the function φ ∈ L2(R) generates a
multiresolution analysis, there exists a 1-periodic function H0 ∈ L2(0, 1)
satisfying the scaling equation

φ̂(2γ) = H0(γ)φ̂(γ), γ ∈ R. (9.12)

Note that the result in Exercise 8.12 shows that the function H0 is uniquely
determined. We will now show that H0 satisfies an equation that will be
crucial in the sequel:

Lemma 9.2.4 Assume that {Tkφ}k∈Z is an orthonormal basis for V0 and
that the 1-periodic function H0 ∈ L2(0, 1) satisfies the scaling equation
(9.12). Then

|H0(γ)|2 + |H0(γ +
1
2
)|2 = 1, γ ∈ R. (9.13)

Proof. The scaling relation (9.12) implies that

∑
k∈Z

∣∣∣φ̂(γ + k)
∣∣∣2

=
∑
k∈Z

∣∣∣∣H0(
γ + k

2
)φ̂(

γ + k

2
)
∣∣∣∣
2

=
∑

k even

∣∣∣∣H0(
γ + k

2
)φ̂(

γ + k

2
)
∣∣∣∣
2

+
∑

k odd

∣∣∣∣H0(
γ + k

2
)φ̂(

γ + k

2
)
∣∣∣∣
2

.



9.2 The spaces Vj and Wj 189

Writing the even indices as 2k, k ∈ Z, the periodicity of H0 shows that

H0(
γ + 2k

2
) φ̂(

γ + 2k
2

) = H0(
γ

2
+ k) φ̂(

γ

2
+ k) = H0(

γ

2
) φ̂(

γ

2
+ k).

Similarly, writing the odd indices as 2k + 1, k ∈ Z,

H0(
γ + 2k + 1

2
) φ̂(

γ + 2k + 1
2

) = H0(
γ

2
+

1
2
) φ̂(

γ

2
+

1
2

+ k).

Thus, the above calculation implies that

∑
k∈Z

∣∣∣φ̂(γ + k)
∣∣∣2

= |H0(
γ

2
)|2

∑
k∈Z

∣∣∣φ̂(
γ

2
+ k)

∣∣∣2 + |H0(
γ

2
+

1
2
)|2

∑
k∈Z

∣∣∣∣φ̂(
γ

2
+

1
2

+ k)
∣∣∣∣
2

.

By the result in Theorem 8.2.12(ii), the assumption that {Tkφ}k∈Z is an
orthonormal basis for V0 implies that

∑
k∈Z

∣∣∣φ̂(γ + k)
∣∣∣2 = 1, γ ∈ R.

Thus, the above calculation implies that

1 = |H0(
γ

2
)|2 + |H0(

γ

2
+

1
2
)|2, γ ∈ R;

replacing γ by 2γ leads to the desired result. �

By Proposition 8.2.5 we can construct an orthonormal basis
{DjTkψ}j,k∈Z for L2(R) by finding a function ψ ∈W0 such that {Tkψ}k∈Z

is an orthonormal basis for W0. Our aim now is to characterize the space
W0 and hereby find such a function ψ. The starting point is to characterize
the spaces V0 and V−1:

Lemma 9.2.5 (Characterization of V−1 and V0) Assume that the func-
tion φ ∈ L2(R) generates a multiresolution analysis with scaling function
H0. Then the following hold:

(i) The space V−1 can be characterized as

V−1

= {f ∈L2(R) | f̂(γ)=m(2γ)H0(γ)φ̂(γ) for some 1-periodic m∈L2(0, 1)}.

(ii) The space V0 can be characterized as

V0 = {f ∈ L2(R) | f̂(γ) = m(γ)φ̂(γ) for some 1-periodic m ∈ L2(0, 1)}.
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Proof. By Lemma 9.1.2 the functions {D−1Tkφ}k∈Z form an orthonormal
basis for V−1. Thus, given any f ∈ V−1 we can write

f =
∑
k∈Z

ckD
−1Tkφ

for some coefficients {ck}k∈Z. Note that by Exercise 4.32 we know that
{ck}k∈Z ∈ �2(Z). Using the commutation relations in Theorem 7.1.2 and
Lemma 7.1.3,

f̂(γ) = F
∑
k∈Z

ckD
−1Tkφ(γ)

=
∑
k∈Z

ckFD−1Tkφ(γ)

=
∑
k∈Z

ckDE−kFφ(γ)

=
√

2
∑
k∈Z

cke
−4πikγ φ̂(2γ). (9.14)

Via the scaling equation (9.12) this implies that

f̂(γ) =
√

2
∑
k∈Z

cke
−4πikγ H0(γ) φ̂(γ). (9.15)

Defining the function m by

m(γ) :=
√

2
∑
k∈Z

cke
−2πikγ , (9.16)

we have that m is a 1-periodic function belonging to L2(0, 1), and

f̂(γ) = m(2γ)H0(γ) φ̂(γ), (9.17)

as desired. On the other hand, assume that f is any function for which f̂
can be written on the form (9.17) for some 1-periodic function m ∈ L2(0, 1).
We want to show that f ∈ V−1. Observe that for such a function m, the
function

γ �→ m(2γ)H0(γ)

belongs to L2(0, 1) because m ∈ L2(0, 1) and H0 is bounded by (9.13).
We will now show that therefore the function f defined by (9.17) actually
belongs to L2(R). In order to do this, we first calculate
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∫ ∞

−∞
|f̂(γ)|2 dγ =

∫ ∞

−∞
|m(2γ)H0(γ) φ̂(γ)|2 dγ

=
∑
k∈Z

∫ k+1

k

|m(2γ)H0(γ) φ̂(γ)|2 dγ

=
∑
k∈Z

∫ 1

0

|m(2(γ + k))H0(γ + k) φ̂(γ + k)|2 dγ.

Using that the functionsm andH0 are 1-periodic and the result in Example
5.3.4, it follows that

∫ ∞

−∞
|f̂(γ)|2 dγ =

∑
k∈Z

∫ 1

0

|m(2γ)H0(γ) φ̂(γ + k)|2 dγ

=
∫ 1

0

|m(2γ)H0(γ)|2
∑
k∈Z

|φ̂(γ + k)|2 dγ.

Because {Tkφ}k∈Z is an orthonormal system, the result in Theorem 8.2.12
shows that ∑

k∈Z

|φ̂(γ + k)|2 dγ = 1.

Therefore, we conclude that
∫ ∞

−∞
|f̂(γ)|2 dγ =

∫ 1

0

|m(2γ)H0(γ)|2 dγ <∞,

showing that f̂ ∈ L2(R). Because the Fourier transform is a bijection from
L2(R) onto L2(R) we conclude that f ∈ L2(R), as claimed. Now, taking
(9.17) as the starting point and writing the function m as in (9.16), we can
reverse the calculation leading to (9.14) and conclude that f ∈ V−1. This
completes the proof of (i). The proof for (ii) is similar (but does not use
the scaling equation). In fact, we get immediately that for any f ∈ V0 we
can write

f =
∑
k∈Z

ckTkφ (9.18)

for some coefficients {ck}k∈Z ∈ �2(Z), and therefore

f̂ =
∑
k∈Z

ckE−kφ̂ = mφ̂ (9.19)

with

m(γ) :=
∑
k∈Z

cke
−2πikγ . (9.20)

Again, reversing the calculations leads to the announced result. �
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The result in Lemma 9.2.5(ii) shows that for any function f ∈ V0 we can
find a 1-periodic function mf ∈ L2(0, 1) such that

f̂(γ) = mf (γ)φ̂(γ), γ ∈ R. (9.21)

The function mf associated with f is actually uniquely determined. In fact,
the result in Theorem 8.2.12 implies that for any γ ∈ R we can find k ∈ Z

such that φ̂(γ + k) �= 0; thus, the relation (9.21) implies that

mf (γ) = mf (γ + k) =
f̂(γ + k)

φ̂(γ + k)
.

The above consideration leads to the definition of an operator, which we
state formally:

Definition 9.2.6 (The operator U) Given an orthonormal basis
{Tkφ}k∈Z for V0, define the mapping U : V0 → L2(0, 1) by

Uf := mf . (9.22)

Writing

f =
∑
k∈Z

ckTkφ,

the function mf is given explicitly by

mf (γ) =
∑
k∈Z

cke
−2πikγ . (9.23)

Let us state a few properties of the operator U :

Lemma 9.2.7 (Properties of the operator U) The mapping U defined
by (9.22) is linear and isometric. In particular,

〈Uf, Ug〉L2(0,1) = 〈f, g〉L2(R), ∀f, g ∈ V0. (9.24)

Proof. It is clear that U is linear. Using that {e−2πikγ}k∈Z is an or-
thonormal basis for L2(0, 1) and {Tkφ}k∈Z is an orthonormal basis for V0,
the result in Exercise 4.31 shows that with f =

∑
k∈Z

ckTkφ,

||Uf ||2L2(0,1) = ||mf ||2L2(0,1)

=

∣∣∣∣∣
∣∣∣∣∣
∑
k∈Z

cke
−2πikγ

∣∣∣∣∣
∣∣∣∣∣
2

L2(0,1)

=
∑
k∈Z

|ck|2

=
∣∣∣
∣∣∣∑ ckTkφ

∣∣∣
∣∣∣
2

= ||f ||2.
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This proves that U is an isometry. The result in (9.24) now follows from
the polarization identity in Theorem 4.1.4. �

Our characterizations of the spaces V−1 and V0 together with the
properties of the operator U make it possible to characterize W−1:

Lemma 9.2.8 (Characterization of W−1) If φ ∈ L2(R) generates a
multiresolution analysis with scaling function H0, then

W−1 =

{f ∈ V0|mf (γ) = e−2πiγm(2γ)H0(γ +
1
2
) for some 1-periodicm ∈ L2(0, 1)}.

Proof. By definition, the space W−1 is the orthogonal complement of V−1

with respect to V0. Thus, a function f ∈ V0 belongs to W−1 if and only if

〈f, g〉 = 0, ∀g ∈ V−1,

or, by (9.24), if and only if

〈Uf, Ug〉 = 0, ∀g ∈ V−1. (9.25)

Note that the characterization of V−1 in Lemma 9.2.5 shows that

{Ug ∣∣ g ∈ V−1} = {m(2·)H0

∣∣ m ∈ L2(0, 1) is 1-periodic}.
Let mf be the function in L2(0, 1) associated with f as in Definition 9.2.6,
i.e., mf = Uf . It follows that the condition (9.25) is equivalent with

0 = 〈mf ,m(2·)H0〉L2(0,1) = 0, ∀m ∈ L2(0, 1),

i.e., ∫ 1

0

mf(γ)m(2γ)H0(γ) dγ = 0, ∀m ∈ L2(0, 1). (9.26)

The function m(2·) is periodic with period 1/2. We rewrite (9.26) as

0 =
∫ 1/2

0

mf (γ)m(2γ)H0(γ) dγ +
∫ 1

1/2

mf (γ)m(2γ)H0(γ) dγ

=
∫ 1/2

0

mf (γ)m(2γ)H0(γ) dγ

+
∫ 1/2

0

mf (γ + 1/2)m(2(γ + 1/2))H0(γ + 1/2)dγ

=
∫ 1/2

0

mf (γ)m(2γ)H0(γ) dγ

+
∫ 1/2

0

mf (γ + 1/2)m(2γ)H0(γ + 1/2)dγ

=
∫ 1/2

0

m(2γ)
(
mf (γ)H0(γ) +mf (γ + 1/2)H0(γ + 1/2)

)
dγ.
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Note that

M(γ) := mf (γ)H0(γ) +mf (γ + 1/2)H0(γ + 1/2)

is a 1
2 -periodic function in L2(0, 1/2), and that

L2(0, 1/2) = {m(2·) ∣∣ m ∈ L2(0, 1)}.
Thus, the above calculation shows that the function M is orthogonal to
all functions in L2(0, 1/2). It now follows from Lemma 4.4.2 applied with
H := L2(0, 1/2) that

mf (γ)H0(γ) +mf (γ + 1/2)H0(γ + 1/2) = 0, γ ∈ [0, 1/2].

Due to periodicity,

mf (γ)H0(γ) +mf (γ + 1/2)H0(γ + 1/2) = 0, γ ∈ R. (9.27)

In other words, for γ ∈ R, the vectors(
mf (γ)

mf (γ + 1/2)

)
,

(
H0(γ)

H0(γ + 1/2)

)

are orthogonal in C
2. The vector space C

2 is 2-dimensional, and one vector

that is orthogonal on
(

H0(γ)
H0(γ + 1/2)

)
is given by

(
H0(γ + 1/2)
−H0(γ)

)
. Thus,

for γ ∈ R there exists a constant λ(γ) ∈ C such that(
mf (γ)

mf (γ + 1/2)

)
= λ(γ)

(
H0(γ + 1/2)
−H0(γ)

)
. (9.28)

Because the functionsmf andH0 are 1-periodic, the function λ is 1-periodic
as well. Replacing γ by γ+1/2 in (9.28) and using that mf (γ+1) = mf(γ)
and H0(γ + 1) = H0(γ), we see that(

mf (γ + 1/2)
mf (γ)

)
= λ(γ + 1/2)

(
H0(γ)

−H0(γ + 1/2)

)
. (9.29)

The results in (9.28) and (9.29) imply that

mf (γ) = λ(γ)H0(γ + 1/2) = −λ(γ + 1/2)H0(γ + 1/2) (9.30)

and

mf (γ + 1/2) = −λ(γ)H0(γ) = λ(γ + 1/2)H0(γ). (9.31)

From Lemma 9.2.4 we know that for γ ∈ R either H0(γ) �= 0 or
H0(γ + 1/2) �= 0; thus, from (9.30) and (9.31) we conclude that

λ(γ) = −λ(γ + 1/2), γ ∈ R. (9.32)

Letting

m(γ) := eπiγλ(γ/2), (9.33)
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we can write

λ(γ) = e−2πiγm(2γ).

We leave it to the reader (Exercise 9.7) to show that the function m belongs
to L2(0, 1). Via (9.33) and (9.32),

m(γ + 1) = eπi(γ+1)λ(
γ + 1

2
) = eπiγeπi

(
−λ(

γ

2
)
)

= eπiγλ(
γ

2
)

= m(γ).

This shows that the function m is 1-periodic. From (9.30) we see that

mf (γ) = λ(γ)H0(γ + 1/2)

= e−2πiγ m(2γ)H0(γ + 1/2). (9.34)

We have now shown that if f ∈ W−1, then mf has the form in (9.34) for
some 1-periodic function m. On the other hand, any function f ∈ L2(R) for
which mf has the form in (9.34) for some 1-periodic function m ∈ L2(0, 1),
will belong to V0 by Lemma 9.2.5(ii). Note that (9.34) also implies that

mf (γ)H0(γ) +mf (γ + 1/2)H0(γ + 1/2)

= e−2πiγ m(2γ)H0(γ + 1/2)H0(γ)
+e−2πi(γ+1/2)m(2(γ + 1/2))H0(γ + 1)H0(γ + 1/2)

= e−2πiγ m(2γ)H0(γ + 1/2)H0(γ) − e−2πiγ m(2γ)H0(γ + 1/2)H0(γ)
= 0,

i.e., (9.27) is satisfied. Reversing the calculation at the beginning of the
proof now shows that 〈f, g〉 = 0 for all g ∈ V−1, i.e., that f ∈ W−1. Thus,
we have proved the result. �

The result in Lemma 9.2.8 together with W0 = D(W−1) finally leads to
the desired characterization of the space W0:

Proposition 9.2.9 (Characterization of W0) If φ ∈ L2(R) generates a
multiresolution analysis with scaling function H0, then

W0 = {f ∈ L2(R)|f̂(2γ) = e−2πiγm(2γ)H0(γ +
1
2
)φ̂(γ)

for some 1-periodic m ∈ L2(0, 1)}.

The proof of Proposition 9.2.9 is left to the reader as Exercise 9.5.
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9.3 Proof of Theorem 8.2.7

We are now ready to combine all the obtained results and prove how to
construct a wavelet.

Proof of Theorem 8.2.7: By Proposition 9.2.9, the function ψ defined
in Theorem 8.2.11 belongs to W0. By Proposition 8.2.5 we can show that
{DjTkψ}j,k∈Z is an orthonormal basis for L2(R) by showing that {Tkψ}k∈Z

forms an orthonormal basis for W0. We first prove that {Tkψ}k∈Z is an
orthonormal system. Using the definition of ψ,

∑
k∈Z

|ψ̂(γ + k)|2 =
∑
k∈Z

|H0(
γ + k

2
+

1
2
)φ̂(

γ + k

2
)|. (9.35)

Splitting into even and odd values of k ∈ Z in (9.35), the fact that {Tkφ}k∈Z

is an orthonormal system together with Theorem 8.2.12 and Lemma 9.2.4
implies that

∑
k∈Z

|ψ̂(γ + k)|2 = 1, γ ∈ R, (9.36)

i.e., that {Tkψ}k∈Z forms an orthonormal system (Exercise 9.6). In or-
der to show that {Tkψ}k∈Z is an orthonormal basis for W0 we now only
need to show that {Tkψ}k∈Z spans W0. For that purpose, let g ∈ W0. By
Proposition 9.2.9 there exists a 1-periodic function m ∈ L2(0, 1) such that

ĝ(2γ) = e−2πiγm(2γ)H0(γ +
1
2
)φ̂(γ);

thus, replacing γ by γ/2 and using the definition of ψ,

ĝ(γ) = e−πiγm(γ)H0(
γ

2
+

1
2
)φ̂(γ/2)

= m(γ)H1(γ/2)φ̂(γ/2)

= m(γ)ψ̂(γ).

Writing

m(γ) =
∑
k∈Z

cke
−2πikγ ,

this implies that

g =
∑
k∈Z

ckTkψ.
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Since {Tkψ}k∈Z is an orthonormal system,

〈g, T�ψ〉 = 〈
∑
k∈Z

ckTkψ, T�ψ〉

=
∑
k∈Z

ck〈Tkψ, T�ψ〉

= c�,

i.e.,

g =
∑
k∈Z

ckTkψ =
∑
k∈Z

〈g, TkψTkψ.

By Theorem 4.7.2 this confirms that {Tkψ}k∈Z is an orthonormal basis for
W0, as desired. �

9.4 Proof of Theorem 8.2.11

The purpose of this section is to prove that the conditions in Theorem
8.2.11 are sufficient for a function φ ∈ L2(R) to generate a multiresolution
analysis. We first provide a weak condition for condition (i) in Definition
8.2.1 to hold:

Lemma 9.4.1 Assume that φ ∈ L2(R) and that {Tkφ}k∈Z is an
orthonormal sequence. Define the spaces Vj by

Vj = span{DjTkφ}k∈Z.

Then the following hold:

(i) If ψ ∈ L2(R) and there exists a bounded 1-periodic function H1 such
that ψ̂(2γ) = H1(γ)φ̂(γ), then ψ ∈ V1.

(ii) If there exists a bounded 1-periodic function H0 such that

φ̂(2γ) = H0(γ)φ̂(γ), (9.37)

then Vj ⊆ Vj+1 for all j ∈ Z.

Proof. For convenience we will assume that H0 and H1 are trigonometric
polynomials. If the conditions in (i) are satisfied, the expression for the
function ψ in Proposition 8.2.8 shows that ψ ∈ V1. This proves (i). For the
proof of (ii), we note that, via (i), φ ∈ V1. It follows that Tkφ ∈ V1 for
all k ∈ Z (Exercise 8.3). Now, because V1 is a closed vector space, we can
conclude that

span{Tkφ}k∈Z ⊆ V1,
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i.e., V0 ⊆ V1. Applying the operator Dj now implies that Vj ⊆ Vj+1 for all
j ∈ Z. �

Lemma 9.4.2 Let φ ∈ L2(R), and define as usual

Vj = span{DjTkφ}k∈Z.

Assume that Vj ⊆ Vj+1 for all j ∈ Z and that condition (v) in Definition
8.2.1 holds. Then the space

V :=
⋃
j∈Z

Vj

has the property that

f ∈ V ⇒ Tyf ∈ V, ∀y ∈ R.

Proof. Let f ∈ V. We first show that T2−�mf ∈ V for all �,m ∈ Z, i.e.,
that for any given ε > 0 there exists a function g belonging to some space
Vj , j ∈ Z, such that

||T2−�mf − g||2 ≤ ε. (9.38)

Given ε > 0, there exists a function h ∈ ∪j∈ZVj such that ||f − h||2 ≤ ε.
Then h ∈ VJ for some J ∈ Z, and thus h ∈ Vj for all j ≥ J. By Lemma
9.1.2, the sequence {DjTkφ}k∈Z is an orthonormal basis for Vj . Thus, for
any j ≥ J there exists by Theorem 4.7.2 coefficients {ck}∞k=1 such that

h(x) =
∑
k∈Z

ckφ(2jx− k).

Thus,

T2−�mh(x) =
∑
k∈Z

ckφ(2j(x− 2−�m) − k)

=
∑
k∈Z

ckφ(2jx− 2j−�m− k). (9.39)

If j ≥ �, then 2j−�m− k ∈ Z, so the functions

x �→ φ(2jx− k − 2j−�m)

belong to Vj . By (9.39) this shows that T2−�mh ∈ Vj if j ≥ max(J, �). Now,

||T2−�mf − T2−�mh||2 = ||f − h||2 ≤ ε.

Thus, the condition (9.38) is satisfied with g := T2−�mh.
So far, we have proved the result for y ∈ R of the special form y =

2−�m, �,m ∈ Z. Now consider an arbitrary y ∈ R. Given any δ > 0, there
exists �,m ∈ Z such that

|2−�m− y| ≤ δ. (9.40)
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Consider again any f ∈ V. Now,

||Tyf − T2−�mf ||2 = ||Ty(f − T2−�m−yf)||2
= ||f − T2−�m−yf ||2. (9.41)

For any ε > 0 there exists by Lemma 6.2.5 a δ > 0 such that

||f − T2−�m−yf ||2 ≤ ε if |2−�m− y| ≤ δ.

Thus, by (9.41),

||Tyf − T2−�mf ||2 ≤ ε if |2−�m− y| ≤ δ.

By the result we just proved, T2−�mf ∈ V, so we conclude that Tyf ∈ V. �

Via Lemma 9.4.2 we can now derive a sufficient condition for the spaces

Vj = span{DjTkφ}k∈Z (9.42)

to satisfy the condition (ii) in Definition 8.2.1:

Proposition 9.4.3 Let φ ∈ L2(R), and define as usual the spaces Vj by
(9.42). Assume that the function φ ∈ L2(R) satisfies that φ̂ is continuous
at 0 and that φ̂(0) �= 0. Assume furthermore that Vj ⊆ Vj+1 for all j ∈ Z

and that condition (v) in Definition 8.2.1 is satisfied. Then
⋃
j∈Z

Vj = L2(R).

Proof. Let V :=
⋃

j∈Z
Vj . To show that V = L2(R) amounts to show

that V ⊥ = {0}, see Theorem 4.3.5. Thus, let g ∈ V ⊥. Given any function
f ∈ V, Lemma 9.4.2 shows that T−yf ∈ V for all y ∈ V. By Theorem 7.2.2
together with the commutation relation in Theorem 7.1.2(iii),

0 = 〈T−yf, g〉 = 〈FT−y,Fg〉
= 〈Ey f̂ , ĝ〉
=

∫ ∞

−∞
e2πixy f̂(x)ĝ(x) dx.

This shows that

F(f̂ ĝ)(y) = 0, y ∈ R.

By Cauchy–Schwarz’ inequality, the function f̂ ĝ belongs to L1(R). Since
the Fourier transform is injective on L1(R), we conclude that

f̂(x)ĝ(x) = 0, x ∈ R. (9.43)

We will now consider a special choice of f, namely, f := Djφ for some
j ∈ R. By the commutation relations,

f̂(x) = FDjφ(x) = D−jFf(x) = 2−j/2φ̂(2−jx). (9.44)
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By the assumptions on the function φ, there exists an ε > 0 such that

φ̂(x) �= 0 for x ∈] − ε, ε[.

With f = Djφ, this implies by (9.44) that

f̂(x) �= 0 for x ∈] − 2jε, 2jε[.

Thus, via (9.43) we can now conclude that ĝ(x) = 0, x ∈] − 2jε, 2jε[.
Letting j → ∞ now shows that ĝ = 0, i.e., g = 0. Thus, we have shown
that V ⊥ = {0}, as desired. �

Via Lemma 9.4.1, Corollary 9.1.3, and Proposition 9.4.3 we obtain the
criterion in Theorem 8.2.11 for a function φ to generate a multiresolution
analysis:

Proof of Theorem 8.2.11: Assume that the conditions in Theorem 8.2.11
are satisfied, and let as usual Vj be defined by (9.42). By Lemma 9.4.1(ii)
we have that Vj ⊆ Vj+1. The definition of Vj also implies that condition
(iii) in Definition 8.2.1 holds. Corollary 9.1.3 and Proposition 9.4.3 show
that condition (ii) in Definition 8.2.1 holds as well. This clearly also implies
that Vj ⊂ Vj+1 for all j ∈ Z. Finally, condition (iv) in Definition 8.2.1 holds
by the choice of Vj . �

9.5 Exercises

9.1 Let V and W be closed subspaces of a Hilbert space H, and assume
that V ⊂W. Let PV denote the orthogonal projection of H onto
V, and PW the orthogonal projection onto W . Show that

||PV v|| ≤ ||PW v||, ∀v ∈ H.

9.2 Assume that Vj+1, Vj , and Wj are subspaces of a Hilbert space H
and satisfy that

Vj+1 = Vj ⊕Wj ,

where the sum is an orthogonal direct sum. Let Pj denote the
orthogonal projection onto Vj and Qj the orthogonal projection
onto Wj . Show that

Pj+1 = Pj +Qj .

9.3 Prove Lemma 9.1.4.
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9.4 Prove the result in (9.10).

9.5 Prove Proposition 9.2.9.

9.6 Derive (9.36) as outlined in the proof of Theorem 8.2.11.

9.7 The purpose of this exercise is to show that the function m in (9.33)
belongs to L2(0, 1).

(i) Show via (9.30) and (9.31) that the function λ introduced in
the proof of Proposition 9.2.9 belongs to L2(0, 1).

(ii) Conclude that the function m in (9.33) belongs to L2(0, 1).



10
B-splines

Splines on R are functions which are piecewise polynomials. We will not dis-
cuss general splines, but only some special splines, called B-splines. These
splines have attractive features: for example, they have compact support
and are given by explicit and quite simple formulas, in the time domain as
well as in the frequency domain. For these (and other) reasons, B-splines
play an important role in applied mathematics, geometric modelling, and
many other areas. The theoretical properties of B-splines and the broad
range of applications make them natural to include here.

In Section 10.1 we introduce B-splines supported on bounded subin-
tervals of the positive real axis. We derive explicit expressions for these
functions and their Fourier transforms. Furthermore, we prove that the
integer-translates of any B-spline possess a so-called partition of unity
property. In some cases it is more convenient to consider B-splines that
are supported on subsets of R that are symmetric around the y-axis. Such
B-splines are obtained by a simple translation of the B-splines in Section
10.1, and they are treated in Section 10.2. In Sections 10.3 and 10.4 we
briefly discuss wavelet constructions based on B-splines.

O. Christensen, Functions, Spaces, and Expansions: Mathematical Tools 203
in Physics and Engineering, Applied and Numerical Harmonic Analysis,

DOI 10.1007/978-0-8176-4980-7 10, c© Springer Science+Business Media, LLC 2010
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10.1 The B-splines Nm

A spline on R is a function f : R → R for which one can split R into
intervals in such a way that f is a polynomial on each interval. The points
where the function changes from one polynomial to another polynomial are
called knots.

Example 10.1.1 The function (make a draft!)

f(x) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if x2 ∈] −∞, 0],
2x2 if x2 ∈]0, 1],
2 − x if x ∈]1, 4],
1
16x

3 if x ∈]4,∞[,

is a spline. The knots are x = 0, x = 1, and x = 4. �

As we see, splines are not necessarily continuous and might not have
compact support. We will now introduce a class of splines with very at-
tractive features — the B-splines Nm, m ∈ N. We note in advance that
the definition does not immediately show that the B-splines actually are
splines, but this will be shown in Corollary 10.1.7. The B-splines are defined
inductively:

Definition 10.1.2 (B-splines) The B-spline N1 is defined as the charac-
teristic function for the interval [0, 1]:

N1(x) := χ[0,1](x), x ∈ R. (10.1)

Assuming that we have defined Nm for some m ∈ N, the B-spline Nm+1 is
defined by the convolution

Nm+1(x) := (Nm ∗N1)(x), x ∈ R. (10.2)

The B-spline Nm is said to have order m.

The definition of convolution shows that

Nm+1(x) =
∫ ∞

−∞
Nm(x− t)N1(t) dt =

∫ 1

0

Nm(x− t) dt. (10.3)

See Figure 10.1 for graphs of the first few B-splines. We now collect some
of their fundamental properties. In particular, the result shows that the
support of the B-splines Nm increases with m:
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Figure 10.1. The B-splines N2 and N3, respectively.

Theorem 10.1.3 (Properties of B-splines) Given m ∈ N, the B-spline
Nm has the following properties:

(i) supp Nm = [0,m] and Nm(x) > 0 for x ∈]0,m[.

(ii)
∫∞
−∞Nm(x) dx = 1.

(iii) For m ≥ 2,
∑
k∈Z

Nm(x− k) = 1 for all x ∈ R; (10.4)

for m = 1, the formula (10.4) holds for all x ∈ R \ Z.

Proof. All the statements can be proved by induction based on (10.3); we
prove (i), and leave the rest to the reader (Exercise 10.1). It is clear that (i)
holds for m = 1. Assuming that (i) holds for some m ∈ N, we now consider
the B-spline Nm+1. Whenever t ∈ [0, 1], the induction hypothesis shows
that it only is possible for Nm(x−t) to be nonzero if x ∈ [0,m+1], so (10.3)
implies that suppNm+1 ⊆ [0,m+ 1]. On the other hand, if x ∈]0,m + 1[,
then there exists t ∈]0, 1[ such that x−t ∈]0,m[; by the induction hypothesis
this implies that Nm(x− t) > 0. We would like to conclude from this that
Nm+1(x) > 0. For m = 1 this follows from (10.3) and the definition of N1;
for m ≥ 2, it also follows from (10.3), using that Nm is nonnegative and
continuous.

We have now proved that Nm+1(x) > 0 for x ∈ [0,m+ 1]. In the above
induction argument we already saw that suppNm+1 ⊆ [0,m+1], so we can
now conclude that actually supp Nm+1 = [0,m + 1]. This completes the
proof of (i). �
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The formula (10.4) shows that the integer-translates of any B-spline
pointwise add up to 1; we say that the integer-translates of Nm form a
partition of unity.

Iteration of the formula (10.2) defining Nm shows that for m ≥ 2,

Nm = N1 ∗N1 ∗ · · · ∗N1, (10.5)

with m terms in the convolution. Via Theorem 7.3.4 this leads to an
expression for the Fourier transform of Nm:

Corollary 10.1.4 (Fourier transform of B-splines) For any m ∈ N,

N̂m(γ) =
(

1 − e−2πiγ

2πiγ

)m

. (10.6)

Proof. Using the definition of the Fourier transform, we see that

N̂1(γ) =
∫ ∞

−∞
N1(x)e−2πixγ dx

=
∫ 1

0

e−2πixγ dx

=
1 − e−2πiγ

2πiγ
.

This shows that the desired result holds for the B-splineN1. Using Theorem
7.3.4 and (10.5) we now obtain the result for the general B-spline Nm:

N̂m(γ) =
(
N̂1(γ)

)m

=
(

1 − e−2πiγ

2πiγ

)m

. �

We will now state an alternative expression for the B-splines Nm. For a
real-valued function f , let

f(x)+ := max(0, f(x)).

Also, for any n ∈ N0, let

f(x)n
+ := (f(x)+)n .

Finally, for n ∈ N and j = 0, 1, . . . , n, we need the binomial coefficient(
n

j

)
=

n!
j!(n− j)!

.
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Theorem 10.1.5 (Explicit formula for the B-splines) For each
m = 2, 3, . . . , the B-spline Nm can be written

Nm(x) =
1

(m− 1)!

m∑
j=0

(−1)j

(
m

j

)
(x − j)m−1

+ , x ∈ R. (10.7)

The proof of Theorem 10.1.5 is quite lengthy and is given in Appendix
A.3. Theorem 10.1.5 has direct consequences concerning differentiability
of the functions Nm. In order to explain this we consider the following
example.

Example 10.1.6 (Differentiability of xm
+ ) For m = 2, 3, . . . , consider

the function

xm−1
+ = (max(0, x))m−1 =

{
0 if x ≤ 0,
xm−1 if x ≥ 0.

(10.8)

For the first few values of m we obtain the following:

• For m = 2,

x1
+ = max(0, x) =

{
0 if x ≤ 0,
x if x ≥ 0;

this function is continuous for all x ∈ R, but not differentiable for
x = 0.

• For m = 3,

x2
+ = (max(0, x))2 =

{
0 if x ≤ 0,
x2 if x ≥ 0;

this function is differentiable for all x ∈ R, and

(
x2

+

)′
=

{
0 if x ≤ 0,
2x if x ≥ 0.

So
(
x2

+

)′ is continuous for all x ∈ R, but not differentiable for x = 0.

• In general, for any m = 2, 3, . . . , the function xm−1
+ has derivatives

up to order m− 2, and the (m− 2)th derivative is continuous. �

Via Theorem 10.1.5 and the considerations in Example 10.1.6, we see
that the B-spline N2 is continuous for all x ∈ R, but not differentiable for
x ∈ {0, 1, 2}; and N3 is differentiable, but N ′

3 is a continuous function that
is not differentiable for x ∈ {0, 1, 2, 3}. See Figure 10.1 and Exercise 10.2.
The general statement is as follows:
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Corollary 10.1.7 (Regularity of B-splines) For m = 2, 3, . . . , the
B-spline Nm has the following properties:

(i) Nm ∈ Cm−2(R).

(ii) The restriction of Nm to each interval [k, k+1], k ∈ Z, is a polynomial
of degree at most m− 1.

Proof. The formula in Theorem 10.1.5 shows that Nm is a linear combi-
nation of translated versions of the functions xm−1

+ ; thus, the result in (i)
follows immediately from Example 10.1.6.

We now prove (ii). The expression (10.8) implies that for j = 0, 1, . . . ,m,

(x− j)m−1
+ = (max(0, x− j))m−1 =

{
0 if x ≤ j,

(x− j)m−1 if x ≥ j.
(10.9)

The result in (ii) is an immediate consequence of (10.9) and the formula in
Theorem 10.1.5. �

10.2 The centered B-splines Bm

We will now consider a centered version of the B-splines discussed in Section
10.1. That is, we will translate the B-splines such that they get centered
at the y-axis. For that purpose we will employ the translation operator
introduced in (6.7):

Definition 10.2.1 (Centered B-splines) For m ∈ N, the (centered)
B-spline Bm is defined by

Bm(x) := T−m
2
Nm(x) = Nm(x+

m

2
). (10.10)

Alternatively, the B-splines Bm can be defined by

B1 := χ[−1/2,1/2], Bm+1 := Bm ∗B1, m ∈ N; (10.11)

this definition leads to the same functions, see Exercise 10.5. Thus, for any
m ∈ N, we have that

Bm+1(x) =
∫ 1

2

− 1
2

Bm(x − t) dt.

Note that an explicit expression for Bm can be obtained via the definition
(10.10) together with Theorem 10.1.5.

We state the following consequences of Theorem 10.1.3 and Corollary
10.1.4 and ask the reader to provide the proof in Exercise 10.7:
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Corollary 10.2.2 (Properties of centered B-splines) For m ∈ N, the
B-spline Bm has the following properties:

(i) supp Bm = [−m/2,m/2].

(ii) For m ≥ 2, ∑
k∈Z

Bm(x− k) = 1 for all x ∈ R.

For m = 1, the formula holds for all x ∈ R \ {± 1
2 ,± 3

2 , . . . }.

(iii) B̂m(γ) =
(

eπiγ−e−πiγ

2πiγ

)m

=
(

sin(πγ)
πγ

)m

.

10.3 B-splines and wavelet expansions

In Example 8.2.3, we saw that the Haar wavelet can be derived based
on a multiresolution analysis with the scaling function φ = χ[0,1]. With
our knowledge from the current chapter we recognize the function φ as
the B-spline N1. This raises the natural question whether we can generate
wavelets using higher order B-splines. Indeed, the Haar wavelet is a special
case of a spline wavelet: one can consider splines Nm of arbitrary order and
define associated multiresolution analyses, which lead to wavelets of the
type

ψ(x) =
∑
k∈Z

ckNm(2x− k). (10.12)

We will now describe how to do that. We have outlined the necessary
technical steps in a series of exercises, so the purpose of the description is
just to connect the results.

The starting point is Theorem 8.2.11, which provides us with convenient
conditions for a function φ ∈ L2(R) to generate a multiresolution analysis.
The central condition in Theorem 8.2.11 is that the function φ should
satisfy a scaling equation

φ̂(2γ) = H0(γ)φ̂(γ)

for a bounded 1-periodic function H0. For the case φ = Nm, Exercise 10.8
shows that such an equation is available.

However, Theorem 8.2.11 also requires that the functions {Tkφ}k∈Z form
an orthonormal system. For φ = Nm with m ≥ 2 this condition is not
satisfied (why?). Exercise 10.11 shows how to circumvent this problem. In
fact, introducing the function

G(γ) :=
∑
k∈Z

|N̂m(γ + k)|2,



210 10. B-splines

it is shown that the function ϕ defined via its Fourier transform ϕ̂ by

ϕ̂(γ) :=
1√
G(γ)

N̂m(γ) (10.13)

satisfies all the requirements in Theorem 8.2.11. According to the general
theory outlined in Theorem 8.2.7 and Proposition 8.2.8 this leads to a
wavelet of the form

ψ =
∑
k∈Z

dkϕ(2x+ k). (10.14)

In order to come from (10.14) to (10.12) we need to show that the func-
tion ϕ is a linear combination of integer-translated versions of Nm; this
follows from (10.13) with a calculation that is similar to the one we used in
the proof of Proposition 8.2.8. Putting everything together, we have arrived
at the following result:

Theorem 10.3.1 (B-spline wavelets) For any m ∈ N, there exists a
wavelet of the form

ψ(x) =
∑
k∈Z

ckNm(2x− k). (10.15)

The wavelets constructed above are known under the name Battle–
Lemarié wavelets. The coefficients {ck}k∈Z in (10.15) are calculated, e.g.,
in [8]. Except for the case m = 1, all coefficients ck are nonzero, which im-
plies that all these wavelets have support equal to R. However, the wavelets
decay very fast: one can prove that for some C,α > 0,

|ψ(x)| ≤ Ce−α|x|, x ∈ R.

Decay of that type is called exponential decay.

10.4 Frames generated by B-splines

In Section 10.3 we saw that one can construct wavelets of the form (10.12)
for any mth order B-spline Nm. For concrete applications it is desirable to
have wavelets with compact support, but unfortunately this is not the case
for the Battle–Lemarié wavelets. Note that a finite linear combination of
the form (10.12), i.e., a function

ψ(x) =
K∑

k=−K

ckNm(2x− k) (10.16)

for some K ∈ N, does have compact support. Thus, it is natural to ask
whether a function of the form (10.16) can be a wavelet. Unfortunately,
the answer is no for m > 1.
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Figure 10.2. The function ψ1 given by (10.17), and the function ψ2 given by
(10.18).

In Section 4.8 we saw that tight frames lead to expansions that are similar
to the one we know from orthonormal bases; see (4.26) and (4.28). With
this in mind it is natural to examine whether we can construct tight frames
{DjTkψ}j,k∈Z for L2(R), for functions ψ of the form (10.12). The answer is
again no for m > 1. However, one can prove that for any choice of m ∈ N

it is possible to construct a tight frame generated by two such functions.
That is, there exist functions ψ1 and ψ2 of the form

ψ1(x) =
K∑

k=−K

ckNm(2x− k), ψ2(x) =
K∑

k=−K

dkNm(2x− k),

with the property that the functions

{DjTkψ1}j,k∈Z ∪ {DjTkψ2}j,k∈Z

form a tight frame. The construction is too complicated to be presented
here; we refer to the original article [16] or the book [5] for a more detailed
description.

If m is even, the same procedure works for the centered B-spline Bm. In
the case m = 2, one choice of the functions ψ1 and ψ2 is

ψ1(x) =
1√
2
(B2(2x+ 1) −B2(2x− 1)) (10.17)

and

ψ2(x) =
1
2

(B2(2x+ 1) − 2B2(2x) +B2(2x− 1)) . (10.18)



212 10. B-splines

The graphs of the functions ψ1 and ψ2 are shown on Figure 10.2. Similar
expressions can be obtained for any B-spline Bm: increasing m will increase
the smoothness of the functions ψ1 and ψ2, but also the size of the support.

10.5 Exercises

10.1 Prove Theorem 10.1.3(ii)–(iii).

10.2 (i) Show via the definition that the B-spline N2 is given by

N2(x) =

⎧⎨
⎩

x if x ∈ [0, 1],
2 − x if x ∈ [1, 2],
0 otherwise.

(ii) Use this to show that (10.7) holds for m = 2.

(iii) Show that

N3(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2x

2 if x ∈ [0, 1],
−x2 + 3x− 3

2 if x ∈ [1, 2],
1
2x

2 − 3x+ 9
2 if x ∈ [2, 3],

0 otherwise.

(iv) Calculate the derivative N ′
3(x) and plot it.

10.3 Show that (10.7) holds for x > m+ 1.

10.4 Show that the B-splines B2 and B3 are given by

B2(x) =

⎧⎨
⎩

1 + x if x ∈ [−1, 0],
1 − x if x ∈ [0, 1],
0 otherwise,

B3(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2x

2 + 3
2x+ 9

8 if x ∈ [− 3
2 ,− 1

2 ],

−x2 + 3
4 if x ∈ [− 1

2 ,
1
2 ],

1
2x

2 − 3
2x+ 9

8 if x ∈ [12 ,
3
2 ],

0 otherwise.

10.5 Show that the definitions of the centered B-splines Bm in (10.10)
and (10.11) coincide.
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10.6 Consider the centered B-splines B2 and B3. Find an expression for
the function B̂2 ∗B3.

10.7 Prove Corollary 10.2.2.

10.8 (B-spline scaling equation) Consider the B-spline Nm, m ∈ N.

(i) Show that the scaling equation

N̂m(2γ) = H0(γ)N̂m(γ), ∀γ ∈ R

is satisfied with

H0(γ) =
(

1 + e−2πiγ

2

)m

.

(ii) Show that H0 is periodic with period 1.

10.9 (B-spline scaling equation) Let m ∈ N and consider the
centered B-spline Bm, m ∈ N.

(i) Determine the function H0 such that

B̂m(2γ) = H0(γ)B̂m(γ), ∀γ ∈ R.

(ii) Is H0 periodic with period 1?

10.10 Consider the B-spline Nm, m ∈ N. The purpose of the exercise
is to show that there exist constants A,B > 0 such that

A ≤
∑
k∈Z

|N̂m(γ + k)|2 ≤ B, γ ∈ R. (10.19)

(i) Show that (10.19) holds for m = 1, with A = B = 1.
Hint: use the result in Theorem 8.2.12.

(ii) Show that for any m ∈ N,
∑
k∈Z

|N̂m(γ + k)|2 ≤ 1, γ ∈ R.

Hint: use the result in (i) together with Corollary 10.1.4.

The exercise continues!
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(iii) Show that the function

G(γ) :=
∑
k∈Z

|N̂m(γ + k)|2

is 1-periodic.

(iv) Show that for γ ∈ R,

∑
k∈Z

|N̂m(γ + k)|2 ≥ inf
γ∈[−1/2,1/2]

|N̂m(γ)|2.

(v) Show that for any m ∈ N,(
2
π

)2m

≤
∑
k∈Z

|N̂m(γ + k)|2, γ ∈ R.

10.11 (B-spline multiresolution analysis) Let m ∈ N, and consider
the B-spline Nm. One can show (Exercise 10.10) that there exist
constants A,B > 0 such that

A ≤
∑
k∈Z

|N̂m(γ + k)|2 ≤ B, γ ∈ R.

(i) Show that the function

G(γ) :=
∑
k∈Z

|N̂m(γ + k)|2

is 1-periodic.

Define the function ϕ ∈ L2(R) by its Fourier transform ϕ̂ via

ϕ̂(γ) :=
1√
G(γ)

N̂m(γ).

(ii) Show that∑
k∈Z

|ϕ̂(γ + k)|2 = 1, γ ∈ R.

Hint: use the result in (i).

(iii) Show that there exists a 1-periodic function M0 such that

ϕ̂(2γ) = M0(γ)ϕ̂(γ), γ ∈ R.

Hint: use the result in Exercise 10.8.

(iv) Use Theorem 8.2.11 to verify that the function ϕ generates a
multiresolution analysis.



11
Special Functions

In this chapter we introduce some classes of special functions that play
important roles in applied mathematics, physics, etc. Most of these func-
tions are polynomials, and they appear as solutions to various differential
equations. The analysis of these special functions is intimately connected
with the main theme of the book: in fact, for each of the considered
classes of differential equations, the associated polynomial solutions form
an orthonormal basis for a related L2-space. The study of the differential
equations and their solutions can easily cover an entire book. We do not
aim at a complete description with full proofs, but will focus on the rela-
tionship with the theory we have developed for series expansions in Hilbert
spaces.

Section 11.1 gives a general introduction to the relevant differential
equations, and presents some of the fundamental results concerning the so-
lutions. We focus on regular Sturm–Liouville problems. In Section 11.2, we
consider Legendre’s differential equation and derive a class of polynomial
solutions, the Legendre polynomials. It is shown that these polynomials
form an orthonormal basis for L2(−1, 1). Sections 11.3 and 11.4 give short
presentations of Laguerre polynomials, respectively, Hermite polynomials.
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11.1 Regular Sturm–Liouville problems

The special functions introduced in the following sections are solutions to
certain differential equations, typically appearing in physics and chemistry.
Most of the functions are actually polynomials. For a given differential
equation, such solutions can always be found by searching for general so-
lutions in terms of power series, i.e., functions that can be written on the
form

u(x) =
∞∑

k=0

ckx
k (11.1)

for some scalar coefficients ck. For functions of the type (11.1) it is well
known that there exists a number ρ ∈ [0,∞] such that the infinite series
is convergent for x ∈] − ρ, ρ[ and divergent for x /∈ [−ρ, ρ]; that number is
called the radius of convergence.

Functions with a representation of the form (11.1) are called analytic
functions. The class of analytic functions is very convenient: it contains all
polynomials, and the standard trigonometric functions are analytic. Thus,
a fundamental question to be answered is the following: for what kind of
differential equations can we be sure that analytic solutions exist? The
result below gives a partial answer to that question.

Theorem 11.1.1 (Analytic solutions to differential equations)
Assume that the functions a1 and a2 are analytic. Then the differential
equation

d2u

dx2
+ a1(x)

du

dx
+ a2(x)u = 0

has a nonzero solution of the form (11.1); denoting the radius of conver-
gence for the functions ai by ρi, i = 1, 2, the radius of convergence for the
solution is at least ρ = min(ρ1, ρ2).

We will now define the type of differential equations to be considered.

Definition 11.1.2 (Sturm–Liouville differential equation) Let p, q,
and r be functions on R or a subinterval of R; assume that the function
p is differentiable, and that the functions p′, q, and r are continuous. A
differential equation that can be written on the form

[p(x)u′]′ + [q(x) + λr(x)]u = 0 (11.2)

for some parameter λ ∈ R, is called a Sturm–Liouville differential equation.

We note that the Sturm–Liouville differential equation (11.2) also can
be written on the form

p(x)u′′ + p′(x)u′ + [q(x) + λr(x)]u = 0. (11.3)
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At first glance, it might seem strange that the function to be multiplied
with the function u in (11.2) is written as q(x)+λr(x) rather than just q(x).
The reason is that we often will consider classes of differential equations
of the form (11.2), with the same functions q and r, but various values for
the parameter λ.

For reasons to become clear soon, the function r is called a weight
function. We will usually impose extra conditions on the Sturm–Liouville
equations:

Definition 11.1.3 (Regular Sturm–Liouville problem) A regular
Sturm–Liouville problem consists of a differential equation of the type in
Definition 11.1.2, considered on a finite closed interval [a, b], with the
following extra constraints:

(i) p(x) > 0 and r(x) > 0 for all x ∈ [a, b];

(ii) We search for a solution u which, for given (c1, c2) �= (0, 0) and
(d1, d2) �= (0, 0), satisfies the boundary value conditions{

c1u(a) + c2u
′(a) = 0,

d1u(b) + d2u
′(b) = 0.

We will search for solutions to the Sturm–Liouville equation (11.2) that
belong to the Hilbert space

L2
r(a, b) :=

{
f : R → C |

∫ b

a

|f(x)|2r(x) dx <∞
}
.

The space L2
r(a, b) corresponds to the space L2

r(R) considered in Exercise
6.12, except that we now deal with functions on a finite interval. The inner
product in L2

r(a, b) is given by

〈f, g〉L2
r(a,b) =

∫ b

a

f(x)g(x)r(x) dx, f, g ∈ L2
r(R).

We will exclusively consider real solutions, so at many instances we can
drop the complex conjugation appearing in the inner product.

It turns out that there is a close connection between Sturm–Liouville dif-
ferential equations and the theory for orthonormal bases in Hilbert spaces.
In fact, under certain assumptions to be discussed in Theorem 11.1.10,
a special collection of solutions to a Sturm–Liouville problem forms an
orthonormal basis for the Hilbert space L2

r(a, b).
We need the concepts of eigenvalues and eigenfunctions for Sturm–

Liouville problems:
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Definition 11.1.4 (Eigenvalues and eigenfunctions for SL-problem)
If a Sturm–Liouville differential equation has a nonzero solution
u ∈ L2

r(a, b), the number λ appearing in (11.2) is called an eigenvalue;
the corresponding solution u is called an eigenfunction.

Let us relate the use of the word “eigenvalues” to the one that is known
in linear algebra:

Example 11.1.5 (Eigenvalues and eigenfunctions) Consider a Sturm-
Liouville differential equation with weight function r(x) = 1. Then a
parameter λ is an eigenvalue with associated eigenfunction u �= 0 if

− (p(x)u′′ + p′(x)u′ + q(x)u) = λu. (11.4)

Let C2[a, b] denote the set of functions on [a, b] that are twice differentiable
with a continuous second derivative. The expression

D : C2[a, b] → C[a, b], Du := − (p(x)u′′ + p′(x)u′ + q(x)u)

defines a linear operator D. Using the operator D, the Sturm-Liouville
problem (11.4) takes the form

Du = λu. (11.5)

The formulation in (11.5) shows that the concepts of eigenvalues and eigen-
vectors in Definition 11.1.4 are similar to the ones considered in linear
algebra. The differences are that in (11.5), u is a function instead of a vec-
tor in R

n, and that D is an operator on an infinite-dimensional vector space
instead of R

n. �

Let us study a concrete example, where a Sturm-Liouville equation
appears.

Example 11.1.6 (Vibrating string) We consider a string of length L,
e.g., a piano string. We fix the string at the end points x = 0 and x = L.
Assume that we act on the string with a force, pulling it away from the
equilibrium position. Releasing the string at the time t = 0, it will start
performing small vibrations: for x ∈ [0, L], we will denote the displacement
from the equilibrium position at time t by u(x, t). Since we have fixed the
string for x = 0 and x = L, we have

u(0, t) = u(L, t) = 0, t ≥ 0. (11.6)
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One can show that for an appropriate choice of the units, the function u
will satisfy the equation

∂2u

∂t2
(x, t) =

∂2u

∂x2
(x, t). (11.7)

We will search for solutions of (11.6) on the form

u(x, t) = f(x)g(t) (11.8)

for suitable functions f and g. Direct calculations (outlined in Exercise
11.1) show that for some constant λ ∈ R, the functions f and g have to
satisfy the equations

f ′′ + λ f = 0, (11.9)
g′′ + λg = 0. (11.10)

Note also that (11.6) implies that

f(0) = f(L) = 0. (11.11)

Together, (11.9) and (11.11) form a regular Sturm–Liouville problem. Di-
rect calculations (Exercise 11.1) show that we only have nonzero solutions
for λ of the form

λn =
π2n2

L2
, n ∈ N, (11.12)

and that the real solutions corresponding to λn are

fn(x) = c sin(
πnx

L
), c ∈ R.

Thus, the eigenvalues are exactly the numbers λn in (11.12). With the
choice λ = λn, the equation (11.10) has the real solutions

gn(t) = an cos(
πnt

L
) + bn sin(

πnt

L
), an, bn ∈ R.

Putting everything together, we obtain that (11.7) with the boundary
conditions (11.6) has the solutions

un(x, t) = c sin(
πnx

L
)
(
an cos(

πnt

L
) + bn sin(

πnt

L
)
)
, n ∈ N.

Note that the outcome so far is a class of solutions: for each n ∈ N we have
found a solution un. With knowledge about the force that pulls the string
away from the equilibrium position it is now possible to find the corre-
sponding unique solution of (11.7) as a linear combination of the functions
un. We will not go into the discussion about how to do that. �

We will now prove that for a regular Sturm–Liouville problem, eigen-
functions corresponding to different eigenvalues are orthogonal in L2

r(a, b).
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Theorem 11.1.7 (Orthogonality of solutions, regular case) Let um

and un be real-valued eigenfunctions for a regular Sturm–Liouville problem
corresponding to different eigenvalues λm and λn. Then un and um are
orthogonal in L2

r(a, b), i.e.,
∫ b

a

um(x)un(x)r(x) dx = 0. (11.13)

Proof. By assumption,

[p(x)u′m]′ + [q(x) + λmr(x)]um = 0,
[p(x)u′n]′ + [q(x) + λnr(x)]un = 0.

Multiplying the first equation by un and the second by um, this implies
that

([p(x)u′m]′+[q(x) + λmr(x)]um)un−([p(x)u′n]′+[q(x) + λnr(x)]un)um =0,

or

(λn − λm)r(x)umun = [p(x)u′m]′un − [p(x)u′n]′um. (11.14)

By direct calculation of the term on the right-hand side of (11.14), this
leads to

(λn − λm)r(x)umun = [(pu′m)un − (pu′n)um]′.

Integrating from a to b yields

(λn − λm)
∫ b

a

r(x)um(x)un(x) dx

=
[
(p(x)u′m(x))un(x) − (p(x)u′n(x))um(x)

]b

a

= p(b)
(
u′m(b)un(b) − u′n(b)um(b)

)
(11.15)

−p(a)
(
u′m(a)un(a) − u′n(a)um(a)

)
. (11.16)

By the boundary-value conditions, we know that

d1un(b) + d2u
′
n(b) = 0, (11.17)

d1um(b) + d2u
′
m(b) = 0, (11.18)

for some (d1, d2) �= (0, 0). Let us assume that d1 �= 0. Multiplying (11.17)
with u′m(b) and (11.18) with u′n(b), a subtraction leads to

(d1un(b) + d2u
′
n(b))u′m(b) − (d1um(b) + d2u

′
m(b))u′n(b) = 0,

i.e., that

d1(un(b)u′m(b) − um(b)u′n(b)) = 0.
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Since d1 �= 0, we conclude that the term in (11.15) vanishes. In a similar
way, one can prove that the term in (11.16) vanishes. Because λn �= λm,
this leads to the result in (11.13). �

The proof of Theorem 11.1.7 shows that a similar result holds under
modified assumptions:

Corollary 11.1.8 (Orthogonality of solutions) Consider a Sturm–
Liouville differential equation as in Definition 11.1.2, on a finite interval
[a, b]. Assuming that p(x) > 0 and r(x) > 0 for all x ∈]a, b[, the following
hold:

(i) If p(a) = p(b) = 0, the conclusion in Theorem 11.1.7 holds.

(ii) If p(a) = p(b) and we add the boundary conditions

u(a) = u(b) and u′(a) = u′(b),

the conclusion in Theorem 11.1.7 holds.

We leave the proof of Corollary 11.1.8 to the reader (Exercise 11.2).
So far, we have not discussed the question of existence of eigenvalues for

regular Sturm–Liouville problems. With more advanced tools from func-
tional analysis than we have developed here, one can show the following
general result about the existence and properties of the eigenvalues:

Lemma 11.1.9 For any regular Sturm–Liouville problem, the set of eigen-
values form a discrete set {λn}∞n=1 of real numbers. The sequence can be
ordered increasingly,

. . . λ1 < λ2 < ... < λn < . . . ,

and λn → ∞ as n→ ∞.

For a proof of Lemma 11.1.9 we refer to [3]. We note that the properties
described in Lemma 11.1.9 correspond to the eigenvalues in (11.12) for the
case of the vibrating string.

For each eigenvalue λn associated with a regular Sturm–Liouville prob-
lem, we now choose an eigenfunction un that is normalized in the Hilbert
space L2

r(a, b): this means that

||un||L2
r(a,b) =

(∫ b

a

|un(x)|2r(x) dx
)1/2

= 1.

The orthonormality of the functions un in L2
r(a, b) makes it natural to ask

whether they form an orthonormal basis for L2
r(a, b). By Theorem 4.7.2
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this is equivalent to

span{un}∞n=1 = L2
r(a, b). (11.19)

Indeed, (11.19) holds! We state the result formally, and refer again to [3]
for a proof.

Theorem 11.1.10 (Orthonormal basis of eigenfunctions) Consider
a regular Sturm–Liouville problem on a finite interval [a, b]. Let {λn}∞n=1

denote the collection of eigenvalues and {un}∞n=1 the associated eigenfunc-
tions, normalized in L2

r(a, b). Then {un}∞n=1 constitute an orthonormal
basis for L2

r(a, b). In particular, each function f ∈ L2
r(a, b) has an expansion

f =
∞∑

n=1

〈f, un〉L2
r(a,b)un, (11.20)

with convergence in L2
r(a, b). For piecewise smooth functions f , the expan-

sion (11.20) holds pointwise at all points of continuity of f ; at a point x of
discontinuity, the series in (11.20) converges to

1
2

(
lim

t→x+
f(t) + lim

t→x−
f(t)

)
.

Note that the result about pointwise convergence for the expansion
(11.20) is similar to the well-known result for pointwise convergence of
Fourier series.

In Sections 11.2–11.4, we will consider various differential equations
appearing in physics and engineering. Some of them are on the Sturm–
Liouville form; and some of them can be rewritten into differential equations
on Sturm–Liouville form that have the same solutions.

11.2 Legendre polynomials

As our first example of a Sturm–Liouville equation, we consider the
so-called Legendre’s differential equation. It is actually a collection of
differential equations: for a given and fixed parameter λ ∈ R, the equation is

(1 − x2)
d2u

dx2
− 2x

du

dx
+ λu = 0. (11.21)

The differential equation can also be written on the form

[(1 − x2)u′]′ + λu = 0. (11.22)
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This shows that Legendre’s differential equation is a Sturm–Liouville
differential equation, with parameter λ and

p(x) = 1 − x2, q(x) = 0, r(x) = 1. (11.23)

As starting point, we will relate Legendre’s differential equation to the
concepts and results in Section 11.1.

Example 11.2.1 We have not imposed any boundary conditions like the
ones in Definition 11.1.3(ii) on Legendre’s differential equation, so we are
not dealing with a regular Sturm–Liouville problem. On the other hand,
the positivity condition in Definition 11.1.3(i) is satisfied on ]a, b[ if we let
a = −1, b = 1. Since the weight function is r(x) = 1, this suggests that the
analysis of Legendre’s differential equation shall take place in the Hilbert
space

L2
1(−1, 1) = L2(−1, 1).

Note that p(−1) = p(1) = 0; thus, Corollary 11.1.8(i) implies that the eigen-
functions for (11.21) corresponding to different eigenvalues are orthogonal
in L2(−1, 1). �

One can prove that Legendre’s differential equation only has nonzero
solutions in L2(−1, 1) if λ = �(�+1) for some � ∈ N0 := N∪{0}. For this rea-
son, we will now concentrate on the class of differential equations given by

(1 − x2)
d2u

dx2
− 2x

du

dx
+ �(�+ 1)u = 0 (11.24)

for some � ∈ N0. Using the method of power series, we can find a solution
of (11.24) for each value of � ∈ N0. In the statement and proof of the result
we need to split into two cases, depending on � being even or odd:

Theorem 11.2.2 (Legendre polynomials) Let � ∈ N0; put m = �/2 if
� is even, and m = (�− 1)/2 if � is odd. Then (11.24) has the solution

P�(x) =
1
2�

m∑
k=0

(−1)k

k!
(2�− 2k)!

(�− 2k)!(�− k)!
x�−2k. (11.25)

The proof of Theorem 11.2.2 is quite lengthy and is given in Appendix A.4.
The polynomial P� in (11.25) is called the �th Legendre polynomial. 13

contains a list of the first few Legendre polynomials. Note that the factor
2−� in (11.25) appears as a matter of convenience: we would also have a
solution of the Legendre equation without that factor. We collect some of
the properties of the polynomials P�:
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Lemma 11.2.3 (Properties of Legendre polynomials) The polyno-
mials P�, � ∈ N0, have the following properties:

(i) P� is a polynomial of degree �.

(ii) If � is even, then P� is an even function; if � is odd, then P� is an
odd function. That is,

P�(−x) = (−1)�P�(x), x ∈ R, � ∈ N0.

(iii) For each m ∈ N0, the polynomials {P�}m
�=0 are linearly independent.

In particular, the span of the polynomials {P�}m
�=0 equals the vector

space of all polynomials of degree at most m:

span{P�(x)}m
�=0 = span{x�}m

�=0.

Proof. The statement (i) follows from (11.25) by considering the term
corresponding to k = 0. If � is even, the expression (11.25) shows that P� is
a linear combination of polynomials x�, x�−2, . . . , x2, 1, and hence an even
function. A similar consideration proves the second statement in (ii). In
order to prove (iii), we first note that because P� is a polynomial of degree
�, we have that

span{P�}m
�=0 ⊆ span{x�}m

�=0. (11.26)

From the fact that P� is a polynomial of degree �, it follows that the polyno-
mials {P�}m

�=0 are linearly independent (Exercise 1.6). That is, both spaces
in (11.26) have dimension m+ 1; therefore, they are equal. �

Rodrigues’ formula provides us with an alternative expression for the
Legendre polynomials:

Theorem 11.2.4 (Rodrigues’ formula) For each � ∈ N0,

P�(x) =
1

2��!
d�

dx�
(x2 − 1)�.

Proof. Applying the binomial formula, see Lemma 1.9.2, we obtain that

(x2 − 1)� =
�∑

k=0

(
�
k

)
(−1)k(x2)�−k

=
�∑

k=0

(
�
k

)
(−1)kx2(�−k). (11.27)

It follows that

d

dx
(x2 − 1)� =

�−1∑
k=0

(
�
k

)
(−1)k(2�− 2k)x2(�−k)−1.
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Notice the change in the number of terms in the summation, due to the
fact that the power series for (x2 − 1)� in (11.27) contains a constant term
corresponding to k = �. Differentiating once more, we obtain that

d2

dx2
(x2 − 1)� =

�−1∑
k=0

(
�
k

)
(−1)k(2�− 2k)(2�− 2k − 1)x2(�−k)−2;

because no constant term appears in the power series for d
dx(x2 − 1)�,

no change in the number of terms in the summation appears. Continuing
differentiating, and letting m = �/2 if � is even, and m = (� − 1)/2 if � is
odd (like in Theorem 11.2.2), we finally obtain that

d�

dx�
(x2 − 1)�

=
m∑

k=0

(
�
k

)
(−1)k(2�− 2k)(2�− 2k − 1) · · · (2�− 2k − �+ 1)x2(�−k)−�

=
m∑

k=0

(−1)k �!
k!(�− k)!

(2�− 2k)!
(�− 2k)!

x�−2k.

Thus,

1
2��!

d�

dx�
(x2 − 1)� =

1
2��!

m∑
k=0

(−1)k �!
k!(�− k)!

(2�− 2k)!
(�− 2k)!

x�−2k

=
1
2�

m∑
k=0

(−1)k

k!
(2�− 2k)!

(�− 2k)!(�− k)!
x�−2k.

This corresponds exactly to the expression for P� in Theorem 11.2.2, and
the proof is completed. �

Via the explicit formula for P� in Theorem 11.2.2 or Rodrigues’ formula
it is easy to calculate the first few Legendre polynomials — see Exercise
11.3.

With an elementary but tedious calculation based on Rodrigues’ formula,
one can show that the Legendre polynomials satisfy a recursion formula:

Lemma 11.2.5 (Recursion formula for Legendre polynomials)
For each � ∈ N,

(�+ 1)P�+1(x) − (2�+ 1)xP�(x) + �P�−1(x) = 0.

Thus, as soon as we have calculated P0 and P1, the formula tells us how to
construct all the following polynomials. A formula of the type in Lemma
11.2.5 is typical for the polynomial solutions of Sturm–Liouville equations.

We will now connect the Legendre polynomials with the theory for the
Hilbert space L2(−1, 1) considered in Section 6.3. Our goal is to show
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that the collection of all Legendre polynomials (with an appropriate nor-
malization) forms an orthonormal basis for L2(−1, 1). We start with a
lemma:

Lemma 11.2.6 (Orthogonality of Legendre polynomials)
The Legendre polynomials {P�}∞�=0 satisfy the following relations:

(i) For each � �= �′,
∫ 1

−1

P�(x)P�′(x) dx = 0. (11.28)

(ii) For each � ∈ N0, ∫ 1

−1

|P�(x)|2 dx =
2

2�+ 1
. (11.29)

Proof. We already saw in Example 11.2.1 that Corollary 11.1.8(i) implies
the orthogonality result in (i).

In order to prove (ii), we will use an induction argument. We leave it
to the reader to verify the result for � = 0 and � = 1. Now, note that by
Lemma 11.2.5, the following two equations hold for all � ≥ 2 :

(�+ 1)P�+1(x) + � P�−1(x) = (2�+ 1)xP�(x),
�P�(x) + (�− 1)P�−2(x) = (2�− 1)xP�−1(x).

Multiplying the first equation by P�−1(x) and the second by P�(x) yields
that

(�+ 1)P�+1(x)P�−1(x) + � |P�−1(x)|2 = (2�+ 1)xP�(x)P�−1(x),
� |P�(x)|2 + (�− 1)P�−2(x)P�(x) = (2�− 1)xP�−1(x)P�(x).

This implies that

1
2�+ 1

(
(�+ 1)P�+1(x)P�−1(x) + � |P�−1(x)|2

)

=
1

2�− 1
(
� |P�(x)|2 + (�− 1)P�−2(x)P�(x)

)
.

Integrating this result from −1 to 1, the orthogonality relations in (i) imply
that

1
2�+ 1

∫ 1

−1

|P�−1(x)|2 dx =
1

2�− 1

∫ 1

−1

|P�(x)|2 dx,

or,
∫ 1

−1

|P�(x)|2 dx =
2�− 1
2�+ 1

∫ 1

−1

|P�−1(x)|2 dx. (11.30)

One can now complete the proof by induction (Exercise 11.4). �
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Note that, due to the fact that the Legendre polynomials are real-valued,
we have omitted the complex conjugation on P�′(x) in (11.28). The result
shows that an appropriate normalization of the Legendre polynomials forms
an orthonormal set in L2(−1, 1). In fact, these functions are even complete
in L2(−1, 1):

Theorem 11.2.7 (Orthonormal basis of Legendre polynomials)

The functions
{√

2�+1
2 P�

}∞

�=0

form an orthonormal basis for L2(−1, 1).

In particular,

f =
∞∑

�=0

2�+ 1
2

〈f, P�〉P�, ∀f ∈ L2(−1, 1), (11.31)

with convergence in the norm of L2(−1, 1).

Proof. It follows from Lemma 11.2.6 that the functions
{√

2�+1
2 P�

}∞

�=0

form an orthonormal set in L2(−1, 1); invoking Theorem 4.7.2, we just need
to show that these functions are complete in L2(−1, 1), i.e., that

span

{√
2�+ 1

2
P�

}∞

�=0

= L2(−1, 1).

For that purpose, we notice that by Lemma 11.2.3, the vector space spanned
by all the Legendre polynomials equals the vector space of all polynomials.
According to Theorem 6.3.1, the set of polynomials is dense in L2(−1, 1).
Thus,

span

{√
2�+ 1

2
P�

}∞

�=0

= span{P�}∞�=0 = span{x�}∞�=0

= L2(−1, 1),

as desired. In particular, each f ∈ L2(−1, 1) has an expansion

f =
∞∑

�=0

〈f,
√

2�+ 1
2

P�〉
√

2�+ 1
2

P�

=
∞∑

�=0

2�+ 1
2

〈f, P�〉P�,

with convergence in the norm of L2(−1, 1). This concludes the proof. �

Note that the general result in Theorem 11.1.10 shows that for piecewise
differentiable functions f , the pointwise expansion

f(x) =
∞∑

�=0

2�+ 1
2

〈f, P�〉P�(x)
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holds at all points x ∈ [−1, 1] where f is continuous.
The Legendre equation in (11.24) is actually a special case of a class of

differential equations, called associated Legendre equations. These equations
contain an extra parameter n ∈ {0, 1, . . . , �} compared to the Legendre
equation:

(1 − x2)
d2u

dx2
− 2x

du

dx
+
(
�(�+ 1) − n2

1 − x2

)
u = 0, x ∈] − 1, 1[. (11.32)

The theory for the associated Legendre equation is very similar to the
theory for the Legendre equation, and the proofs are parallel (although
slightly more involved for the associated Legendre equation, due to the
extra term). We will state a few central results without proofs:

• For given parameters � and n ∈ {0, 1, . . . , �}, the equation (11.32) has
the solution

P�,n(x) = (1 − x2)n/2 d
nP�

dxn
(x), (11.33)

where P� is the �th Legendre polynomial.

• For any given n ∈ N0, the functions {
√

(2�+1)(�−n)!
2(�+n)! P�,n}∞�=n form an

orthonormal basis for L2(−1, 1).

The functions P�,n in (11.33) are called associated Legendre functions.
Note that P�,n is a polynomial if n is even; if n is odd, P�,n is a polyno-
mial multiplied with

√
1 − x2. 13 contains a list of the first few associated

Legendre functions.

11.3 Laguerre polynomials

For a given parameter � ∈ N0, the Laguerre equation is

x
d2u

dx2
+ (1 − x)

du

dx
+ �u = 0, x ∈]0,∞[. (11.34)

Note that a function u is solution to the Laguerre equation if and only if

xe−x d
2u

dx2
+ (1 − x)e−x du

dx
+ �e−xu = 0, x ∈]0,∞[,

or, if and only if (
xe−xu′

)′ + �e−xu = 0, x ∈]0,∞[. (11.35)

The equation (11.35) is on Sturm–Liouville form with

p(x) = xe−x, q(x) = 0, r(x) = e−x, λ = �.

Thus, we can also consider the solutions to the Laguerre equation as so-
lutions to a Sturm–Liouville problem and apply the general theory. Note,
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however, that because the interval ]0,∞[ is infinite, we are not dealing with
a regular Sturm–Liouville problem.

Using the method of power series we can derive the following expression
for a solution to the Laguerre equation (Exercise 11.6):

Theorem 11.3.1 (Laguerre polynomials) Given � ∈ N0, the equation
(11.34) has the solution

Q�(x) = �!
�∑

k=0

(−1)k

(k!)2(�− k)!
xk. (11.36)

The function Q� in (11.36) is called the �th Laguerre polynomial. 13 contains
a list of the first few Laguerre polynomials. Analogous to the proof of
Rodrigues’ formula for Legendre polynomials, one can prove that Q� also
can be written on the form (Exercise 11.5)

Q�(x) =
ex

�!
d�

dx�
(x�e−x). (11.37)

The Sturm–Liouville problem (11.35) is not regular, so we cannot im-
mediately use Theorem 11.1.7 to conclude that the Laguerre polynomials
Q� are orthogonal on the positive axis with respect to the weight function
r(x) = e−x. However, via a limit-argument and a closer look at the proof of
Theorem 11.1.7 one can show that this actually holds. We state the result
formally, and ask the reader to provide a direct proof in Exercise 11.6:

Lemma 11.3.2 (Orthogonality of Laguerre polynomials)
The Laguerre polynomials {Q�}∞�=0 satisfy the following relations:

(i) For � �= �′, ∫ ∞

0

Q�(x)Q�′(x) e−x dx = 0.

(ii) For any � ∈ N0, ∫ ∞

0

|Q�(x)|2e−x dx = 1.

Lemma 11.3.2 implies that the functions {Q�(x)e−x/2}∞�=0 form an or-
thonormal set in L2(0,∞). These functions are called Laguerre functions.
With more advanced tools at hand than developed here, one can show that
they even form an orthonormal basis for L2(0,∞):

Theorem 11.3.3 (Orthonormal basis of Laguerre polynomials)
The Laguerre functions {Q�(x) e−x/2}∞�=0 form an orthonormal basis for
L2(0,∞).

A proof of Theorem 11.3.3 can be found in [3].
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11.4 Hermite polynomials

The Hermite differential equation is given by

d2w

dx2
− 2x

dw

dx
+ (λ− 1)w = 0, (11.38)

where λ ∈ R. We will mainly consider the Hermite differential equation in
the special case λ = 2�+1, � ∈ N0; in that case, an appropriate substitution
transfers the Hermite differential equation into a Sturm–Liouville problem
(Exercise 11.7).

In Exercise 11.8, we consider solutions to (11.38) of the form

w(x) =
∞∑

k=0

ckx
k.

In particular, the exercise shows the existence of polynomial solutions in
the special case λ = 2�+ 1, � ∈ N0:

Theorem 11.4.1 (Hermite polynomials) Let λ = 2�+ 1 for some
� ∈ N0 and put m = �/2 if � is even, and m = (�− 1)/2 if � is odd. Then
(11.38) has the solution

H�(x) = �!
m∑

k=0

(−1)k

k!(�− 2k)!
2�−2kx�−2k. (11.39)

The polynomials H� are called Hermite polynomials; 13 contains a list of
the first ones. We mention some of their important properties, and ask the
reader to provide the proof in Exercises 11.9 and 11.10.

Theorem 11.4.2 (Orthogonality of Hermite polynomials)
The Hermite polynomials H� have the following properties:

(i) For � ∈ N0, H� is given by

H�(x) = (−1)�ex2 d�

dx�
e−x2

.

(ii) Letting r(x) := e−x2
, the polynomials {H�}∞�=0 are orthogonal in

L2
r(R), i.e.,

∫ ∞

−∞
H�(x)H�′ (x) e−x2

dx = 0 if � �= �′. (11.40)

(iii) For � ∈ N0, ∫ ∞

−∞
|H�(x)|2e−x2

dx =
√
π2��!
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Note that because the Hermite polynomials are real, we omit a complex
conjugation on H�′(x) in (11.40).

As in the similar case for the Laguerre polynomials, Theorem 11.4.2
implies that the functions

{
π−1/4

(
2��!

)−1/2
H�(x)e−x2/2

}∞

�=0
form an or-

thonormal system in L2(R). These functions are called Hermite functions.
We refer to [3] for a proof of the fact that the Hermite functions are
complete in L2(R):

Theorem 11.4.3 (Hermite functions) The functions{
π−1/4

(
2��!

)−1/2
H�(x)e−x2/2

}∞

�=0

form an orthonormal basis for L2(R).

The Hermite polynomials appear naturally in the context of quantum
mechanics:

Example 11.4.4 (Quantum-mechanical harmonic oscillator) In ap-
propriate units, the wave function u(x, t) describing the quantum-
mechanical harmonic oscillator in one dimension is determined by the
equation

− i
∂u

∂t
=
∂2u

∂x2
− x2u. (11.41)

The equation (11.41) is a special case of the time-dependent one-
dimensional Schrödinger wave equation, corresponding to the case where
the potential is proportional to x2. We will search for a solution of the form

u(x, t) := T (t)v(x)

for some functions T and v. Hereby, the equation (11.41) turns into

−iT ′(t)v(x) = T (t)v′′(x) − x2T (t)v(x),

or, whenever T (t) �= 0 and v(x) �= 0,

− i
T ′(t)
T (t)

=
v′′(x) − x2v(x)

v(x)
. (11.42)

Thus, the expression (11.42) is forced to be constant, independently of the
choice of x and t. Denoting this constant by −λ, the functions T and v will
satisfy the equations{

−iT ′(t) = −λT (t),

v′′(x) − x2v(x) = −λv(x),
or,

T ′(t) − iλT (t) = 0, (11.43)
v′′(x) + (λ− x2)v(x) = 0. (11.44)
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The equation (11.43) has the solutions

T (t) = Ceiλt, (11.45)

where C ∈ C.
The equation (11.44) is more complicated. We will first perform a sub-

stitution that turns the equation into the Hermite equation. We note that
an arbitrary function v can be written on the form

v(x) := w(x)e−x2/2, (11.46)

for an appropriate function w; now, a direct verification (Exercise 11.8)
shows that v solves (11.44) if and only if the function w solves the Hermite
equation (11.38).

Let us now again consider the case where λ = 2� + 1 for some � ∈ N0.
Theorem 11.4.1 shows that the Hermite equation has the solution H�, so
we conclude that the equation (11.44) has a solution

v�(x) = H�(x)e−x2/2. (11.47)

Up to a normalization factor, the functions v� in (11.47) equal the Hermite
functions. In the context of quantum mechanics they are known under the
name harmonic oscillator wave functions.

Finally, using (11.45) with C = 1, we see that equation (11.41) has the
solutions

u�(x, t) = T (t)v�(x) = ei(2�+1)tH�(x)e−x2/2, � ∈ N0. �

11.5 Exercises

11.1 (Vibrating string) We consider Example 11.1.6.

(i) Show that with the choice of u in (11.8), (11.7) takes the form

f(x)g′′(t) = f ′′(x)g(t).

(ii) Show that for some constant λ ∈ R,

f ′′(x)
f(x)

=
g′′(t)
g(t)

= −λ, (11.48)

which is equivalent with the two equations (11.9) and (11.10).

The exercise continues!
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(iii) Assume that λ < 0. Show that the real solutions of (11.9) are

f(x) = c1e
√

λ x + c2e
−√

λ x, (11.49)

where c1, c2 ∈ R.

(iv) Show that the only function of the form in (11.49) that satisfies
the boundary conditions f(0) = f(L) = 0 is f = 0.

(v) Assume that λ = 0. Show that the only solution of (11.9)
satisfying the boundary conditions f(0) = f(L) = 0 is f = 0.

(vi) Assume that λ > 0, and write λ = k2 for some k > 0. Show
that the real solutions of (11.9) are

f(x) = c1 cos(k x) + c2 sin(k x), (11.50)

where c1, c2 ∈ R.

(vii) Show that the only functions of the form in (11.50) that
satisfies the boundary conditions f(0) = 0 are the functions

f(x) = c2 sin(k x), (11.51)

where c2 ∈ R.

(viii) Consider the functions of the form (11.51) with k > 0. Show
that there exists a nonzero function of that form satisfying
f(L) = 0 if and only if k = nπ

L for some n ∈ N.

(ix) Conclude that (11.9) has a nonzero solution f with
f(0) = f(L) = 0 if and only if λ = n2π2

L2 for some n ∈ N;
and that the corresponding solutions are

f(x) = c sin(
πn

L
x).

11.2 Prove Corollary 11.1.8.

11.3 (Legendre polynomials) Show that the first few Legendre
polynomials are given by

P0(x) = 1,
P1(x) = x,

P2(x) =
1
2
(3x2 − 1),

P3(x) =
1
2
(5x3 − 3x).
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11.4 (Legendre polynomials) Using that the first Legendre
polynomial is P0(x) = 1, complete the proof of Lemma 11.2.6(ii)
based on (11.30).

11.5 (Laguerre polynomials) Prove that the Laguerre polynomials
are given by (11.37).

11.6 (Laguerre polynomials) Denote the Laguerre polynomials by
Q�, � ∈ N0.

(i) Derive the expression (11.36), e.g., as follows. First, show that
the coefficients in any power series solution u(x) =

∑∞
k=0 ckx

k

of (11.34) will satisfy that

ck+1 =
k − �

(k + 1)2
ck, k ∈ N0.

Conclude that c�+1 = c�+2 = · · · = 0; choose c0 = 1, and
show by induction that

ck =
�! (−1)k

(k!)2 (�− k)!
, k = 0, 1, . . . , �.

(ii) Show that

Q1(x) = 1 − x, Q2(x) = 1 − 2x+
x2

2
,

Q3(x) = 1 − 3x+ 3
x2

2
− x3

6
.

(iii) Prove Lemma 11.3.2. Hint: for �′ < �, Q�′(x) is a linear
combination of polynomials of degree smaller than �. Show via
k integrations by parts that for k < �,∫ ∞

0

e−xxkQ�(x) dx = 0.

11.7 (Hermite’s differential equation) Show that a function w is a
solution to Hermite’s equation (11.55) if and only if w is a solution
to the Sturm–Liouville equation(

e−x2
w′
)′

+ 2�e−x2
w = 0.
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11.8 (Hermite polynomials) Consider Hermite’s differential equa-
tion,

d2w

dx2
− 2x

dw

dx
+ (λ− 1)w = 0. (11.52)

We search for solutions of the form

w(x) =
∞∑

k=0

ckx
k. (11.53)

(i) Show that the function w in (11.53) is a solution to (11.52) if
and only if

ck+2(k + 2)(k + 1) = (2k + 1 − λ)ck, ∀ k ∈ N0. (11.54)

We will now consider the case where λ = 2�+ 1 for some � ∈ N0,
i.e., the equation

d2w

dx2
− 2x

dw

dx
+ 2�w = 0. (11.55)

(ii) Show that when � ∈ N0 is even, the equation (11.55) has an
even polynomial solution; and that if � ∈ N0 is odd, the equation
(11.55) has an odd polynomial solution. (Hint: in case � is even,
consider (11.54) with the initial condition c1 = 0.)

(iii) Put m = �/2 if � is even, and m = (�− 1)/2 if � is odd. Follow
the approach from the proof of Theorem 11.2.2 and show that
(11.55) has the solution

H�(x) = �!
m∑

k=0

(−1)k

k!(�− 2k)!
2�−2kx�−2k. (11.56)

(iv) Show that

H0(x) = 1,
H1(x) = 2x,
H2(x) = 4x2 − 2,
H3(x) = 8x3 − 12x.

11.9 (Hermite polynomials) Prove Theorem 11.4.2(i). You can, e.g.,
do the following. First, check that the result holds for � = 0. Now,
assume that the result in Theorem 11.4.2(i) holds for some � ∈ N0.
Then

d�

dx�
e−x2

= (−1)�H�(x)e−x2
,

which implies that
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d�+1

dx�+1
e−x2

= (−1)� (H ′
�(x) − 2xH�(x)) e−x2

.

Use this expression and (11.39) to calculate

(−1)�+1ex2 d�+1

dx�+1
e−x2

,

and check that the derived result corresponds to the expression
for H�+1(x) obtained via (11.39).

11.10 (Hermite polynomials) Prove Theorem 11.4.2(ii) and (iii), e.g.,
as follows. Assume that �′ ≤ �, and let φ(x) = e−x2

. Via the
formula in Theorem 11.4.2(i) and partial integration, check that

I(�, �′) :=
∫ ∞

−∞
H�(x)H�′ (x)e−x2

dx

=
∫ ∞

−∞
(−1)�H�′(x)

d�φ

dx�
(x) dx

= (−1)�+1

∫ ∞

−∞
H ′

�′(x)
d�−1φ

dx�−1
(x) dx,

and more generally, for k ≤ �,

I(�, �′) = (−1)�+k

∫ ∞

−∞
H

(k)
�′ (x)

d�−kφ

dx�−k
(x) dx. (11.57)

Now, for �′ < �, use (11.57) with k = �′ and the fact that H(�′)
�′ (x)

is constant to show that I(�, �′) = 0.
For � = �′, use (11.57) with k = �; show that H(�)

� (x) = 2��!, and
calculate I(�, �) using that∫ ∞

−∞
e−x2

dx =
√
π.

11.11 (Hermite polynomials) Assume that a function v of the form
v(x) = w(x)e−x2/2 solves the differential equation (11.44). Show
that w satisfies (11.38).
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11.12 (Chebyshev polynomials of the first kind) For � ∈ N0, let

T�(x) := cos(� arccos(x)), x ∈ [−1, 1].

(i) Show that

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1.

(ii) Show that for � = 2, 3, . . . ,

T�(x) = 2xT�−1(x) − T�−2(x).

Hint: use that

2 cos(y) cos(z) = cos(y + z) + cos(y − z) (11.58)

with y = (�− 1) arccos(x), z = arccos(x).
(iii) Show that for any � ∈ N0 the function T� is a polynomial of

degree �.
(iv) Show that for �, �′ ∈ N0,

∫ 1

−1

T�(x)T�′(x)
1√

1 − x2
dx =

⎧⎪⎨
⎪⎩

0 if � �= �′,
π if � = �′ = 0,
π
2 if � = �′ �= 0.

Hint: use again (11.58), followed by the change of variable

u = arccos(x), du =
1√

1 − x2
dx.

(v) Show that for � ∈ N0, the polynomial T� satisfies the equation

(1 − x2)
d2u

dx2
− x

du

dx
+ �2u = 0.

11.13 (Chebyshev polynomials of the second kind) For � ∈ N0,
let

U�(x) :=
sin((�+ 1) arccos(x))√

1 − x2
.

Show that

U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1, U3(x) = 8x3 − 4x.



Appendix A

A.1 Proof of Weierstrass’ theorem, Theorem 2.3.4

For the sake of simplicity we consider the interval [0, 1]; the general case
can be obtained from this case via a scaling. We define a sequence of
polynomials QN , N ∈ N, by

QN (x) =
N∑

n=0

f(
n

N
)
(
N
n

)
xn(1 − x)N−n, (A.1)

where

(
N
n

)
=

N !
n!(N − n)!

.

In order to estimate the quantity |f(x)−QN(x)| we first rewrite f(x) with
help of the binomial formula in Lemma 1.9.2. The trick is to multiply f(x)
by the number 1, which we can write as

1 = (x+ (1 − x))N

=
N∑

n=0

(
N
n

)
xn(1 − x)N−n.
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Hereby we get

f(x) = f(x) (x+ (1 − x))N

= f(x)
N∑

n=0

(
N
n

)
xn(1 − x)N−n

=
N∑

n=0

f(x)
(
N
n

)
xn(1 − x)N−n.

Thus,

f(x) −QN (x)

=
N∑

n=0

f(x)
(
N
n

)
xn(1 − x)N−n −

N∑
n=0

f(
n

N
)
(
N
n

)
xn(1 − x)N−n

=
N∑

n=0

(f(x) − f(
n

N
))
(
N
n

)
xn(1 − x)N−n. (A.2)

For a given ε > 0, we will show that the degree of polynomial QN can
be chosen such that |f(x) − QN (x)| ≤ ε for all x ∈ [0, 1]. We will use the
fact that the function f is uniformly continuous on the interval [0, 1], see
Theorem 1.6.2; by (1.18) this means that we can find a δ > 0 such that

x, y ∈ [0, 1], |x− y| < δ ⇒ |f(x) − f(y)| < ε

2
. (A.3)

Fix x ∈ [0, 1]. We first divide the index set for the sum (A.2) into two
sets:

f(x) −QN(x) =
N∑

n=0

(f(x) − f(
n

N
))
(
N
n

)
xn(1 − x)N−n (A.4)

=
∑

|x− n
N |<δ

(f(x) − f(
n

N
))
(
N
n

)
xn(1 − x)N−n (A.5)

+
∑

|x− n
N |≥δ

(f(x) − f(
n

N
))
(
N
n

)
xn(1 − x)N−n.(A.6)

In the following we investigate (A.5) and (A.6) separately. We begin by
considering (A.5). By the triangle inequality

∣∣∣∣∣∣
∑

|x− n
N |<δ

(f(x) − f(
n

N
))
(
N
n

)
xn(1 − x)N−n

∣∣∣∣∣∣
≤

∑
|x− n

N |<δ

∣∣∣f(x) − f(
n

N
)
∣∣∣
(
N
n

)
xn(1 − x)N−n.
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It follows by our choice of δ in (A.3) that
∑

|x− n
N |<δ

∣∣∣f(x) − f(
n

N
)
∣∣∣
(
N
n

)
xn(1 − x)N−n

≤ ε

2

∑
|x− n

N |<δ

(
N
n

)
xn(1 − x)N−n

≤ ε

2

N∑
n=0

(
N
n

)
xn(1 − x)N−n

=
ε

2
(x+ (1 − x))N

=
ε

2
.

Therefore, we obtain the following estimate for (A.5):∣∣∣∣∣∣
∑

|x− n
N |<δ

(f(x) − f(
n

N
))
(
N
n

)
xn(1 − x)N−n

∣∣∣∣∣∣ ≤
ε

2
. (A.7)

Next, we consider (A.6). First we notice that∣∣∣∣∣∣
∑

|x− n
N |≥δ

(f(x) − f(
n

N
))
(
N
n

)
xn(1 − x)N−n

∣∣∣∣∣∣
≤

∑
(x− n

N
)2

δ2 ≥1

∣∣∣f(x) − f(
n

N
)
∣∣∣
(
N
n

)
xn(1 − x)N−n.

Let M = maxx∈[0,1] |f(x)|. By the triangle inequality,

|f(x) − f(
n

N
)| ≤ |f(x)| + |f(

n

N
)| ≤ 2M. (A.8)

Using (A.8) it follows that
∑

(x− n
N

)2

δ2 ≥1

∣∣∣f(x) − f(
n

N
)
∣∣∣
(
N
n

)
xn(1 − x)N−n

≤ 2M
∑

(x− n
N

)2

δ2 ≥1

(
N
n

)
xn(1 − x)N−n

≤ 2M
∑

(x− n
N

)2

δ2 ≥1

(x− n
N )2

δ2

(
N
n

)
xn(1 − x)N−n = (∗);

in the last inequality we used that (x− n
N )2

δ2 ≥ 1 for all the values of n which
appear in the summation. Furthermore, the sum increases if we sum over
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all n = 0, 1, . . . , N rather than just the values of n for which (x− n
N )2

δ2 ≥ 1;
thus,

(∗) ≤ 2M
N∑

n=0

(x− n
N )2

δ2

(
N
n

)
xn(1 − x)N−n

≤ 2M
δ2

N∑
n=0

(
x− n

N

)2
(
N
n

)
xn(1 − x)N−n = (∗∗).

Note that
∑N

n=0(n − Nx)2
(
N
n

)
xn(1 − x)N−n is the variance for the

binomial distribution with parameterN and probability parameter x; thus,
it equals Nx(1 − x). Thus,

N∑
n=0

(
x− n

N

)2
(
N
n

)
xn(1 − x)N−n =

1
N
x(1 − x),

and

(∗∗) =
2M
Nδ2

x(1 − x).

Since we only consider x ∈ [0, 1],

2M
Nδ2

x(1 − x) ≤ M

2Nδ2
.

Altogether we now have that the term in (A.6) can be estimated by∣∣∣∣∣∣
∑

|x− n
N |≥δ

f(x) − f(
n

N
)
(
N
n

)
(1 − x)N−n

∣∣∣∣∣∣ ≤
M

2Nδ2
. (A.9)

Let us now return to the expression for f(x) −QN(x) in (A.4). According
to our estimates for the terms in (A.5) and (A.6) in (A.7) and (A.9), we
have that

|f(x) −QN (x)| ≤ ε

2
+

M

2Nδ2
.

This holds for all values of x. Now choose N ∈ N such that M
2Nδ2 <

ε
2 , i.e.,

N > M
δ2ε . Then

|f(x) −QN(x)| < ε for all x ∈ [0, 1]. �
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A.2 Proof of Theorem 7.1.7

The purpose of this section is to outline a proof of the inversion theorem for
the Fourier transform. As usual we will have to skip the measure-theoretic
parts, but the proof is complete for continuous functions. Our presentation
is inspired by the book by Katznelson [14]. The first step is to introduce
the so-called approximate identities.

Definition A.2.1 (Approximate identity) A collection of functions
kλ ∈ L1(R), indexed by λ > 0, is an approximate identity if the following
conditions hold:

(i) For all λ > 0,
∫∞
−∞ kλ(x) dx = 1.

(ii) There exists a constant C > 0 such that∫ ∞

−∞
|kλ(x)| dx ≤ C, ∀λ > 0.

(iii) For every δ ∈]0,∞[,

lim
λ→0

∫
|x|>δ

|kλ(x)| dx = 0.

There is a standard procedure to construct an approximate identity,
based on a single function:

Lemma A.2.2 (Construction of approximate identity)
Let k ∈ L1(R) and assume that

∫∞
−∞ k(x) dx = 1. Then the functions kλ

defined by

kλ(x) :=
1
λ
k(
x

λ
) (A.10)

form an approximate identity .

We leave the proof of Lemma A.2.2 to the reader (Exercise 7.14). We
will consider the following choice of an approximate identity, known in the
literature under the name Fejér kernel:

Example A.2.3 (Fejér kernel) Define the function k by

k(x) :=
∫ (2π)−1

−(2π)−1
(1 − 2π |y|) e2πixy dy, x ∈ R. (A.11)

Via the change of variable z = 2πy, we see that

k(x) =
1
2π

∫ 1

−1

(1 − |z|) eixz dz =
1
2π

∫ ∞

−∞
(1 − |z|)χ[−1,1](z) eixz dz. (A.12)
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There are many ways to show that k ∈ L1(R) and that ||k||1 = 1. Instead
of direct calculations we will use some of the results about B-splines that
are derived in Chapter 10.

First, (A.12) and Corollary 10.2.2 show that in terms of the B-spline B2,

k(x) =
1
2π

B̂2(− x

2π
) (A.13)

=
1
2π

(
sin x

2
x
2

)2

. (A.14)

The expression (A.14) immediately shows that k ∈ L1(R). Furthermore,
using (A.13) and the change of variable y = −x

2π ,∫ ∞

−∞
k(x) dx =

1
2π

∫ ∞

−∞
B̂2(− x

2π
) dx

=
∫ ∞

−∞
B̂2(y) dy. (A.15)

By definition of B2 and Theorem 7.3.4,

B̂2(y) = B̂1 ∗B1(y) = (B̂1(y))2.

Using (A.15) and Theorem 7.2.2, this implies that∫ ∞

−∞
k(x) dx =

∫ ∞

−∞
|B̂1(y)|2 dy =

∫ ∞

−∞
|B1(y)|2 dy = 1.

By Lemma A.2.2 we conclude that the functions

kλ(x) =
1
λ
k(
x

λ
) =

1
λ

∫ (2π)−1

−(2π)−1
(1 − 2π |y|) e2πixy/λ dy, λ > 0, (A.16)

form an approximate identity. Note that by the change of variable z = y/λ,

kλ(x) =
∫ ∞

−∞
(1 − 2πλ |z|)χ[−(2πλ)−1,(2πλ)−1](z) e2πixz dz, λ > 0. (A.17)

�

As said, the full proof of the inversion theorem requires measure theory,
so we will not give all the details. But (ii) and (iii) in Lemma A.2.4 below
give a complete proof for continuous functions f ∈ L1(R). The full state-
ment in Theorem 7.1.7 is a consequence of the (unproven) result in Lemma
A.2.4(iv) together with (ii).

Lemma A.2.4 Assume that f, f̂ ∈ L1(R) and that kλ, λ > 0, form an
approximate identity. Then the following hold:

(i) (kλ ∗ f)(x) =
∫∞
−∞(1 − 2πλ |z|)χ[−(2πλ)−1,(2πλ)−1](z) f̂(z)e2πixz dz.
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(ii) For all x ∈ R,

(kλ ∗ f)(x) →
∫ ∞

−∞
f̂(z)e2πixz dz as λ→ 0. (A.18)

(iii) If f is bounded and continuous at x, then

(kλ ∗ f)(x) → f(x) as λ→ 0.

(iv) As λ→ 0,

kλ ∗ f → f (A.19)

in L1(R).

Proof. Using (A.17) and the definition of convolution,

(kλ ∗ f)(x) =
∫ ∞

−∞
kλ(x− y)f(y) dy

=
∫ ∞

−∞

(∫ ∞

−∞
(1 − 2πλ |z|)χ[−(2πλ)−1,(2πλ)−1](z) e2πi(x−y)z dz

)
f(y) dy.

In order to continue the calculation, we would like to switch the order
of integration. By Fubini’s theorem, we know that this is possible if the
integral∫ ∞

−∞

(∫ ∞

−∞

∣∣∣(1− 2πλ |z|)χ[−(2πλ)−1,(2πλ)−1](z) e2πi(x−y)zf(y) dy
∣∣∣
)
dz (A.20)

is finite. We leave it to the reader as Exercise 7.15 to show that this actually
is the case. Thus, by Theorem 5.3.10,

(kλ ∗ f)(x)

=
∫ ∞

−∞

(∫ ∞

−∞
f(y)e−2πiyz dy

)
(1 − 2πλ |z|)χ[−(2πλ)−1,(2πλ)−1](z) e2πixz dz

=
∫ ∞

−∞
(1 − 2πλ |z|)χ[−(2πλ)−1,(2πλ)−1](z) e2πixzf̂(z) dz.

This proves (i). The proof of (ii) follows from Lebesgue’s theorem on
dominated convergence (Exercise 7.15).

For the proof of (iii), we use the property (i) in Definition A.2.1 and that
kλ ∗ f = f ∗ kλ to see that

|f(x) − (kλ ∗ f)(x)| =
∣∣∣∣f(x)

∫ ∞

−∞
kλ(y) dy −

∫ ∞

−∞
kλ(y)f(x− y) dy

∣∣∣∣
=

∣∣∣∣
∫ ∞

−∞
(f(x) − f(x− y)) kλ(y) dy

∣∣∣∣
≤

∫ ∞

−∞
|f(x) − f(x− y)| |kλ(y)| dy. (A.21)
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Let C denote the constant in Definition A.2.1(ii). Given any ε > 0, we can
use the continuity of f at x to find δ > 0 such that

|f(x) − f(x− y)| ≤ ε

2C
whenever |y| ≤ δ.

Using the estimate in (A.21) and splitting the integral in two,

|f(x) − (kλ ∗ f)(x)| ≤
∫ δ

−δ

|f(x) − f(x− y)| |kλ(y)| dy

+
∫
|y|≥δ

|f(x) − f(x− y)| |kλ(y)| dy

≤ ε

2C

∫ δ

−δ

|kλ(y)| dy + 2 ||f ||∞
∫
|y|≥δ

|kλ(y)| dy

≤ ε

2
+ 2 ||f ||∞

∫
|y|≥δ

|kλ(y)| dy.

Using property (iii) in Definition A.2.1 it follows that for λ sufficiently close
to 0,

|f(x) − (kλ ∗ f)(x)| ≤ ε,

and (iii) follows. For the proof of (iv) we refer to [14].

A.3 Proof of Theorem 10.1.5

We prove (10.7) by induction. For m = 2 the result can be proved by a
direct calculation (Exercise 10.2). Now, assume that (10.7) holds for the
B-spline Nm for some m ∈ N, and consider the B-spline Nm+1; we want to
show that

Nm+1(x) =
1
m!

m+1∑
j=0

(−1)j

(
m+ 1
j

)
(x− j)m

+ , x ∈ R. (A.22)

First we notice that for x < 0, we have Nm+1(x) = 0 and (x− j)+ = 0 for
all j = 0, . . . ,m+1; thus, the equation in (A.22) holds. Let us now consider
x ∈ [0,m+ 1]. Via the induction hypothesis we derive that

Nm+1(x) =
∫ 1

0

Nm(x− t) dt

=
1

(m− 1)!

m∑
j=0

(−1)j

(
m

j

)∫ 1

0

(x− t− j)m−1
+ dt. (A.23)

For technical reasons we will now split the interval [0,m + 1] into subin-
tervals and consider x ∈ [J, J + 1] for some arbitrary but fixed J ∈
{0, 1, . . . ,m}; if we can prove (A.22) for such x, the result holds for all
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x ∈ [0,m + 1]. In order to calculate the integrals in (A.23) we split the
index set j = 0, 1, . . . ,m into three groups:

• For j = J + 1, J + 2, . . . ,m,
∫ 1

0

(x − t− j)m−1
+ dt = 0.

• For j = J ,
∫ 1

0

(x− t− J)m−1
+ dt =

∫ x−J

0

(x − t− J)m−1 dt

=
1
m

(x− J)m.

• For j = 0, 1, . . . , J − 1,
∫ 1

0

(x− t− j)m−1
+ dt =

∫ 1

0

(x− t− j)m−1 dt

=
1
m

((x− j)m − (x − 1 − j)m) .

We now have all the information needed to calculate the sum in (A.23).
Let us first consider the partial sum corresponding to j = 0, . . . , J − 1:

J−1∑
j=0

(−1)j

(
m

j

)∫ 1

0

(x− t− j)m−1
+ dt

=
1
m

J−1∑
j=0

(−1)j

(
m

j

)
((x − j)m − (x − 1 − j)m)

=
1
m

J−1∑
j=0

(−1)j

(
m

j

)
(x− j)m − 1

m

J−1∑
j=0

(−1)j

(
m

j

)
(x− 1 − j)m = (∗).

Splitting of the sum into two and reordering of the terms leads to

(∗) =
1
m

J−1∑
j=0

(−1)j

(
m

j

)
(x− j)m +

1
m

J∑
j=1

(−1)j

(
m

j − 1

)
(x− j)m

=
1
m
xm +

1
m

J−1∑
j=1

(−1)j

((
m

j

)
+
(

m

j − 1

))
(x− j)m

+
1
m

(−1)J

(
m

J − 1

)
(x− J)m.

Using the identity (Exercise 1.26)
(
m

j

)
+
(

m

j − 1

)
=
(
m+ 1
j

)
, (A.24)
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this implies that

J−1∑
j=0

(−1)j

(
m

j

)∫ 1

0

(x − t− j)m−1
+ dt

=
1
m
xm +

1
m

J−1∑
j=1

(−1)j

(
m+ 1
j

)
(x− j)m+

1
m

(−1)J

(
m

J − 1

)
(x− J)m.

We can now find Nm+1 using (A.23):

Nm+1(x)

=
1

(m− 1)!

m∑
j=0

(−1)j

(
m

j

)∫ 1

0

(x− t− j)m−1
+ dt

=
1

(m− 1)!

J∑
j=0

(−1)j

(
m

j

)∫ 1

0

(x− t− j)m−1
+ dt

=
1

(m− 1)!

⎛
⎝ 1
m
xm +

1
m

J−1∑
j=1

(−1)j

(
m+ 1
j

)
(x− j)m

⎞
⎠

+
1

(m− 1)!
1
m

(−1)J

(
m

J − 1

)
(x− J)m

+
1

(m− 1)!
1
m

(−1)J

(
m

J

)
(x− J)m

=
1
m!
xm +

1
m!

J−1∑
j=1

(−1)j

(
m+ 1
j

)
(x − j)m

+
1
m!

(−1)J

((
m

J − 1

)
+
(
m

J

))
(x− J)m.

Using (A.24) again, this leads to

Nm+1(x) =
1
m!

J∑
j=0

(−1)j

(
m+ 1
j

)
(x− j)m

=
1
m!

m+1∑
j=0

(−1)j

(
m+ 1
j

)
(x− j)m

+ .

This proves (A.22) for x ∈ [0,m + 1]. The proof that (A.22) holds for
x > m+ 1 is left to the reader (Exercise 10.3). �
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A.4 Proof of Theorem 11.2.2

Fix � ∈ N0. We search for a solution P� in terms of a power series,

P�(x) =
∞∑

k=0

ckx
k. (A.25)

Inserting (A.25) in (11.24), we obtain the equation
∞∑

k=2

ckk(k − 1)xk−2 −
∞∑

k=2

ckk(k − 1)xk

− 2
∞∑

k=1

ckkx
k + �(�+ 1)

∞∑
k=0

ckx
k = 0,

which can be rewritten as
∞∑

k=0

ck+2(k + 2)(k + 1)xk −
∞∑

k=2

ckk(k − 1)xk − 2
∞∑

k=1

ckkx
k

+ �(�+ 1)
∞∑

k=0

ckx
k = 0.

Collecting terms corresponding to the power xk, k ∈ N0, yields the equation

[2c2 + �(�+ 1)c0] + [6c3 − c1(2 − �(�+ 1))]x

+
∞∑

k=2

[ck+2(k + 2)(k + 1) − ck(k(k + 1) − �(�+ 1))]xk = 0.

In order for this to hold for all x in some interval, we must have

c2 = c0
−�(�+ 1)

2
, c3 = c1

2 − �(�+ 1)
6

, (A.26)

and, for k ≥ 2,

ck+2 = ck
k(k + 1) − �(�+ 1)

(k + 1)(k + 2)
. (A.27)

Note that the conditions in (A.26) correspond to the expression in (A.27)
with k = 0 and k = 1; thus, we can put the requirements together as the
condition

ck+2 = ck
k(k + 1) − �(�+ 1)

(k + 1)(k + 2)
, k ∈ N0. (A.28)

At this point, the proof has to be split into two cases, depending on � being
even or odd; we give the proof in the case where � is even and leave the
modifications for the case of odd values of � to the reader.

The condition (A.28) shows that in order to determine a candidate for
a solution, we have to fix choices for the parameters c0 and c1; as soon as
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this is done, the condition (A.28) determines the rest of the coefficients ck.
We choose c1 = 0; this implies by (A.28) that ck = 0 for all odd values of
k ∈ N0.

Now, notice that any set of coefficients ck satisfying (A.28) actually yields
a polynomial solution P� of the differential equation: in fact, taking k = �,
the recursion formula (A.28) shows that c�+2 = 0, and therefore c�+2n = 0
for all n ∈ N. Keeping in mind that all coefficients ck with k odd are zero,
we thus search for a solution

P�(x) =
�∑

k=0

c2kx
2k = c0 + c2x

2 + · · · + c�x
�;

with m = �/2, such a solution can also be written as

P�(x) =
m∑

k=0

c�−2kx
�−2k = c�x

� + c�−2x
�−2 + · · · + c0. (A.29)

Comparing with (11.25), we have to show that there is a solution P�

determined by

c�−2k =
1
2�

(−1)k

k!
(2�− 2k)!

(�− 2k)!(�− k)!
, k = 0, . . . ,m. (A.30)

In order to do so, we have to show that the coefficients c�−2k in (A.30)
satisfy (A.28) for any k = 1, . . . ,m, i.e., that

c�−2k+2 =
(�− 2k)(�− 2k + 1) − �(�+ 1)

(�− 2k + 1)(�− 2k + 2)
c�−2k. (A.31)

Now, using (A.30),

c�−2k+2 = c�−2(k−1)

=
1
2�

(−1)k−1

(k − 1)!
(2�− 2(k − 1))!

(�− 2(k − 1))!(�− (k − 1))!

=
1
2�

(−1)k−1

(k − 1)!
(2�− 2k + 2)!

(�− 2k + 2)!(�− k + 1)!
.

We now rewrite this expression, in a way such that the terms in c�−2k

appear:
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c�−2k+2 =
1
2�

(−1)k(−k)
k!

× (2�− 2k + 2)(2�− 2k + 1)(2�− 2k)!
(�− 2k + 2)(�− 2k)(�− 2k)!(�− k + 1)(�− k)!

=
1
2�

(−1)k

k!
(2�− 2k)!

(�− 2k)!(�− k)!

× −k(2�− 2k + 2)(2�− 2k + 1)
(�− 2k + 2)(�− 2k + 1)(�− k + 1)

= c�−2k
1

(�− 2k + 2)(�− 2k + 1)
−k(2�− 2k + 2)(2�− 2k + 1)

(�− k + 1)
.

In order to complete the proof of (A.31), we have to show that

−k(2�− 2k + 2)(2�− 2k + 1)
(�− k + 1)

= (�− 2k)(�− 2k + 1) − �(�+ 1);

this can be done by direct calculation. �
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B.1 List of vector spaces

Vector spaces consisting of continuous functions:

C[a, b] = {f : [a, b] → C |f is continuous};
Banach space w.r.t. the norm ||f ||∞ = max

x∈[a,b]
|f(x)|;

The norm does not come from an inner product.

C[a, b] = {f : [a, b] → C |f is continuous};

Inner product space w.r.t. 〈f, g〉 =
∫ b

a

f(x)g(x) dx;

Not complete w.r.t. the norm ||f || =

√∫ b

a

|f(x)|2 dx.

C0(R) = {f : R → C | f is continuous and f(x) → 0 as x→ ±∞};
Banach space w.r.t. the norm ||f ||∞ = max

x∈[a,b]
|f(x)|.

Cc(R) = {f : R → C | f is continuous and has compact support};
Not a Banach space w.r.t. the norm ||f ||∞ = max

x∈[a,b]
|f(x)|.
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Lp-spaces:

Lp(R) =
{
f : R → C |

∫ ∞

−∞
|f(x)|p dx <∞

}
, 1 ≤ p <∞;

Banach space w.r.t. the norm ||f ||p =
(∫ ∞

−∞
|f(x)|p dx

)1/p

;

For p �= 2, the norm does not come from an inner product.

L2(R) =
{
f : R → C |

∫ ∞

−∞
|f(x)|2 dx <∞

}
;

Inner product space w.r.t. 〈f, g〉 =
∫ ∞

−∞
f(x)g(x) dx;

Hilbert space w.r.t. the norm ||f ||2 =

√∫ ∞

−∞
|f(x)|2 dx.

L∞(R) = {f : R → C |f is bounded};
Banach space w.r.t. the norm ||f ||∞ = sup

x∈R

|f(x)|;
The norm does not come from an inner product.

Discrete spaces:

�p(N) =

{
{xk}∞k=1|xk∈C for all k∈N and

∑
k∈N

|xk|p <∞
}
, 1≤p<∞;

Banach space w.r.t. the norm ||{xk}∞k=1||p =

(∑
k∈N

|xk|p
)1/p

;

For p �= 2, the norm does not come from an inner product.

�2(N) =

{
{xk}∞k=1 | xk ∈ C for all k ∈ N and

∑
k∈N

|xk|2 <∞
}

;

Inner product space w.r.t. 〈{xk}∞k=1, {yk}∞k=1〉 =
∑
k∈N

xkyk;

Hilbert space w.r.t. the norm ||{xk}∞k=1||2 =

(∑
k∈N

|xk|2
)1/2

.

�∞(N) = { {xk}∞k=1 | xk ∈ C for all k ∈ N and sup
k∈N

|xk| <∞};
Banach space w.r.t. the norm ||{xk}∞k=1||∞ = sup

k∈N

|xk|;
The norm does not come from an inner product.
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B.2 List of special polynomials

Legendre polynomials:

P�(x) =
1

2��!
d�

dx�
(x2 − 1)�

=
1
2�

m∑
k=0

(−1)k

k!
(2�− 2k)!

(�− 2k)!(�− k)!
x�−2k,

where m = �/2 if � is even, and m = (�− 1)/2 if � is odd;
P0(x) = 1,
P1(x) = x,

P2(x) =
1
2
(3x2 − 1),

P3(x) =
1
2
(5x3 − 3x).

Associated Legendre functions:

P�,n(x) = (1 − x2)n/2 d
nP�

dxn
(x)

=
1

2��!
(−1)�(1 − x2)n/2 d

n+�

dxn+�
(1 − x2)�,

P1,1(x) = (1 − x2)1/2,

P2,1(x) = 3x(1 − x2)1/2,

P2,2(x) = 3(1 − x2),

P3,1(x) =
3
2
(5x2 − 1)(1 − x2)1/2,

P3,2(x) = 15x(1 − x2),

P3,3(x) = 15(1 − x2)3/2.

Laguerre polynomials:

Q�(x) =
ex

�!
d�

dx�
(x�e−x),

Q0(x) = 1,
Q1(x) = 1 − x,

Q2(x) = 1 − 2x+
x2

2
,

Q3(x) = 1 − 3x+ 3
x2

2
− x3

6
.
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Hermite polynomials:

Hk(x) = (−1)kex2 dk

dxk
e−x2

= �!
m∑

k=0

(−1)k

k!(�− 2k)!
2�−2kx�−2k,

where m = �/2 if � is even, and m = (�− 1)/2 if � is odd,
H0(x) = 1,
H1(x) = 2x,
H2(x) = 4x2 − 2,
H3(x) = 8x3 − 12x.

Chebyshev polynomials of the first kind:

T�(x) = cos(� arccosx),
T0(x) = 1,
T1(x) = x,

T2(x) = 2x2 − 1,
T3(x) = 4x3 − 3x.

Chebyshev polynomials of the second kind:

U�(x) =
sin((�+ 1) arccosx)√

1 − x2
,

U0(x) = 1,
U1(x) = 2x,
U2(x) = 4x2 − 1,
U3(x) = 8x3 − 4x.



List of Symbols

∀ : Logical sign, meaning “for all.”
∃ : Logical sign, meaning “there exists.”
R : The real numbers.

R
+ : The strictly positive real numbers.
N : The natural numbers: 1,2,3,....

N0 : The nonnegative integers: 0,1,2,3,....
Z : The integers.
Q : The rational numbers.
C : The complex numbers.
x : The complex conjugate of x ∈ C.

X,Y : Banach spaces.
H,K : Hilbert spaces.

⊕ : Direct sum.∏∞
k=1 : Infinite product.

Lp(R) : For p ∈ [1,∞[, the space of (measurable) functions
f : R �→ C for which

∫
R
|f(x)|pdx <∞.

L∞(R) : The set of bounded functions on R.
Ck(R) : The space of k times differentiable functions with a

continuous kth derivative.
C[a, b] : The space of continuous functions f : [a, b] → C.
C0(R) : The space of continuous functions f : R → C for which

f(x) → 0 as x→ ±∞.
Cc(R) : The space of continuous functions f : R → C with

compact support.
Ff(γ) = f̂(γ) : The Fourier transform, for f ∈ L1(R) given by

f̂(γ) =
∫

R
f(x)e−2πixγdx.

�p(N) : For p ∈ [1,∞[, the space of p-summable sequences,
indexed by N.

�∞(N) : The set of bounded sequences, indexed by N.
257
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χA : The characteristic function for a set A,
χA(x) = 1 if x ∈ A, otherwise 0.

A : The closure of a set A.
A ∩B : The set of elements belonging to A and B.
A ∪B : The set of elements belonging to at least one of the sets

A and B.
A \B : The set of elements belonging to A but not to B.

Ac : The complement of a set A.
A⊥ : The orthogonal complement of a subset A in a

Hilbert space.
suppf : The support of the function f: suppf = {x ∈ R : f(x) �= 0}.
δk,j : The Kronecker delta: δk,j = 1 if k = j, δk,j = 0 if k �= j.
Ta : The translation operator (Taf)(x) = f(x− a).
Eb : The modulation operator (Ebf)(x) = e2πibxf(x).
Da : The dilation operator (Daf)(x) = 1√

a
f(x

a ), a > 0.
D : The dilation operator (Df)(x) = 21/2f(2x).

ψj,k : ψj,k(x) = DjTkψ(x) = 2j/2ψ(2jx− k).
Nm : B-spline of order m, supported on [0,m].
Bm : Centered B-spline of order m, supported on [−m/2,m/2].
P� : Legendre polynomial of order �.

P�,n : Associated Legendre functions.
Q� : Laguerre polynomial of order �.
H� : Hermite polynomial of order �.
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abstract vector space, 6
accumulation point, 13
addition in vector space, 6
adjoint operator, 74
almost everywhere, 102
analytic functions, 216
antilinear, 62
associated Legendre equation, 228
associated Legendre functions, 228,
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B-spline, 203
B-spline multiresolution, 214
B-spline scaling equation, 213
B-spline wavelets, 210
ball, 10, 33
Banach space, 48
basis, 9
basis in normed vector space, 42
Battle–Lemarié wavelets, 210
Bessel bound, 76
Bessel sequence, 76
Bessel’s inequality, 77
bijective operator, 39
binomial coefficient, 22
binomial formula, 22
Bolzano–Weierstrass lemma, 15

bounded above, 11
bounded almost everywhere, 110
bounded below, 11
bounded function, 16
bounded linear operator, 37
bounded sequence, 14
bracket notation, 119

canonical basis for �2(N), 82
Cauchy sequence, 47
Cauchy–Schwarz’ inequality, 62, 64,

118
centered B-spline, 208
characteristic function, 20
Chebyshev polynomials, 237, 256
closed set, 33
closed set in R

n, 10
closure, 36
closure, of subset of R

n, 10
coherent states, xix
commutation relations, 123
compact set, 13
compact support, 94
complement, 10, 33
complete sequence, 41
complex vector space, 6
continuous function, 16
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convergence in normed spaces, 32
convergent series, 41
convex set, 67
convolution, 145
countable set, 102, 112

Daubechies’ wavelets, 172
decay of wavelet coefficients, 170
dense subset, 35
DFT, 5
dilation operator, 120
dimension, 9
Dirac bracket notation, 119
direct sum, 67
discrete Fourier transform basis, xix,

3, 4
domain, 11

eigenfunction, 218
eigenvalue, 218
equivalence classes, 102
equivalence relation, 102
equivalent functions, 102
essential supremum-norm, 110
exponential decay, 210

Fatou’s lemma, 15, 104
Fejér kernel, 243
FFT, 155
finite sequence, 169
finite-dimensional vector space, 9
Fourier coefficients, 126
Fourier series, 126
Fourier series in complex form, 127
Fourier transform on L1(R), 136
Fourier transform on L2(R), 142
frame, 84
Fubini’s theorem, 109
functional, 70

Gram–Schmidt orthonormalization,
87

Haar function, 160
Haar multiresolution analysis, 163
Haar scaling function, 163
Haar wavelet, 160, 169
harmonic oscillator wave functions,

232

Hermite functions, 231
Hermite polynomials, 230, 235, 256
Hermite’s differential equation, 230
Hilbert space, 65
Hölder’s inequality, 19, 20

image, 11
improper Riemann integral, 18, 19, 98
induction, 22
infimum, 11
infinite sequence, 50
infinite-dimensional vector space, 9
infinity-norm, 96
injective operator, 39
inner product, 62
inner product space, 62
inverse Fourier transform, 144
inversion formula, 141
isometric isomorphic, 82
isometry, 39

JPEG2000 standard, 174

knots, 204

Laguerre equation, 228
Laguerre functions, 229
Laguerre polynomials, 229, 255
Lebesgue integral, 98
Lebesgue’s theorem on dominated

convergence, 105
Lebesgue’s theorem on monotone

convergence, 105
Legendre polynomials, 223, 255
Legendre’s differential equation, 222
length of vector, 2
lim inf, 13
lim sup, 13
linear combination, 7
linear dependence, 8
linear independence, 7
linear operator, 37

Minkowski’s inequality, 19, 20
modulation operator, 120
multiresolution analysis, 162

neighborhood, 33
nested subspaces, 162



Index 263

nontrivial subspace, 8
norm, 29
normed vector space, 30

open set, 10, 33
operator, 37
order of B-spline, 204
orthogonal, 66
orthogonal complement, 67
orthogonal projection, 74
orthonormal basis, 79
orthonormal system, 66

Paley–Wiener space, 149
parallelogram law, 64
Parseval’s equation, 80, 127, 144
partial sum, 40, 127
partition of unity, 206
period, 126
periodic function, 126
permutation, 81
piecewise continuous function, 18
Plancherel’s equation, 143
pointwise convergence, 17
polarization identity, 64

quantum mechanics, xix, 119
quantum-mechanical harmonic

oscillator, 231

range, 11
real vector space, 7
refinable function, 165
refinement equation, 165
regular Sturm–Liouville problem, 217
reordering, 81
reverse triangle inequality, 30
Riemann integral, 18
Riemann–Lebesgue’s lemma, 138
Riesz basis, 91
Riesz’ representation theorem, 70
Riesz’ subsequence theorem, 119
Rodrigues’ formula, 224

sampling problem, 149
scalar multiplication, 6
scaling equation, 165
scaling function, 165
Schauder basis, 42

Schrödinger wave equation, 231
self-adjoint operator, 74
separable normed space, 41
Shannon’s sampling theorem, 150
sinc-function, 150
span, 9, 41
spectral factorization, 173
spline, 203, 204
spline wavelet, 209
Sturm–Liouville problem, 217
subsequence, 14, 119
subspace, 8
sum of subspaces, 67
support, 94
supremum, 11
supremum-norm, 31, 96
surjective operator, 39

thresholding, 169
total sequence, 41
translation operator, 120
triangle inequality, 30
trigonometric polynomial, 21

unbounded function, 16
unbounded operator, 39
unconditional convergence, 81
uncountable set, 102
uniform continuity, 16
uniform convergence, 17
unitary operator, 74

vanishing moments, 170
vector space, 6
vector space, normed, 29
vector space, real, 6
vibrating string, 218

wavelet, 160
wavelet basis, 160
Weierstrass’ theorem, 36
weight function, 217
weighted L2-space, 132
weighted Lp-spaces, 115
WSQ, 175

Young’s inequality, 157
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