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Preface

Gravity interpretation involves inversion of data into models, but it is more. Gravity
interpretation is used in a “holistic” sense going beyond “inversion”. Inversion is
like optimization within certain a priori assumptions, i.e., all anticipated models
lie in a limited domain of the a priori errors. No source should exist outside the
anticipated model volume, but that is never literally true. Interpretation goes beyond
by taking “outside” possibilities into account in the widest sense. Any neglected
possibility carries the danger of seriously affecting the interpretation.

Gravity interpretation pertains to wider questions such as the shape of the Earth,
the nature of the continental and oceanic crust, isostasy, forces and stresses, geolog-
ical structure, finding useful resources, climate change, etc. Interpretation is often
used synonymously with modelling and inversion of observations toward models.
Interpretation places the inversion results into the wider geological or economic
context and into the framework of science and humanity. Models play a central role
in science. They are images of phenomena of the physical world, for example, scale
images or metaphors, enabling the human mind to describe observations and rela-
tionships by abstract mathematical means. Models served orientation and survival
in a complex, partly invisible physical and social environment.

Inversion of gravity anomalies is the mathematical derivation of density distribu-
tions and their confidence limits. This is a notoriously non-unique problem, while
the so called forward problem of finding the gravity effects of given mass distribu-
tions is perfectly unique. The ambiguity of inversion simply results from the fact
that knowledge of a sum does not imply knowledge of the addends. If you know
c = a + b, but nothing about a and b, c reveals neither a nor b. There is always
an infinite model space; the infinity of answers can be reduced only by invoking a
priori information. It can be of any nature and depends on the problem at hand. If
for example b = 2a, you get a = c/3 and b = 2c/3.

This treatise attempts to give a perspective of the problem and to prepare readers
for finding their way to solutions. A priori information is central to gravity inversion.
It ranges from “hard” geological and geophysical data, such as seismic results, to
general ideas based on experience and to models of processes which would produce
gravity signals. Generally the additional knowledge will be limited, but often very
important aspects will be revealed. If the a priori information were complete, there
would be no problem left to be solved.
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vi Preface

This touches the question: what does gravity tell and what not? To endeavour
along these lines is the exciting business of approaching the truth, but one can never
be absolutely sure. Nature has built in too many obstacles. If gravity is measured on
or above the Earth’s surface, one cannot truly look inside. The signals come largely
from within, though. There is a philosophical extension of these ideas about gravity
interpretation: in our general intellectual human condition we are in a very similar
situation concerning our world views including that of ourselves. We observe and
receive signals from within and without, and we communicate. We build our virtual
worlds that should be consistent. This aim feeds back into our approach to gravity
interpretation.

Texts of Applied Geophysics generally have an “exploration outlook”; the present
book has also a strong geodynamic “inclination”. Gravity is active and passive: a
force doing work toward equilibrium from a disturbed state and generating a field
with observable signals to be interpreted. In many geological situations gravity has
done work and we try to find out what happened. For example, a valley has been ex-
cavated and refilled by lower-density sediments, giving a negative gravity anomaly.
Or hot, low-density mass has risen or is rising, and cold, high-density mass has
sunk or is sinking and working against viscous forces and deflecting density sur-
faces from their equilibrium level. The density distributions generated give gravity
signals which can be interpreted only in view of such model ideas. Without them,
models of a totally different nature can “explain” the anomalies.

This situation causes confusion. Is it worth at all to interpret gravity? Some
seem to think: not. This view is definitively wrong. Gravity plays two fundamen-
tally useful roles in the earth sciences: it helps to inexpensively detect “anomalies”
worth studying, and it falsifies and eliminates models by forward computations. The
methodological side is the theory and practice of data gathering, forward modelling
and of Bayesian inversion, including the various preliminary steps of measurement
and data preparation. The practical side is the presentation of applications and case
histories. The philosophical side is that it wants to teach general aspects of applying
observations to science and to life.

Presentation of observational techniques is kept to a minimum, but some discus-
sion is unavoidable. Gravity or geoid observations are affected by errors or confi-
dence limits. Errors have an important effect on what can be learnt from gravity,
so their discussion is carried through all chapters. With the development of new
methods of terrestrial, marine, airborne and satellite-based observational methods,
and with increasing accuracy of the observations the scope of interpretation widens.
Many methods of forward calculation of gravity effects are well known and refer-
ence is given to other texts; but some aspects of the basic approach in this treatise
are novel.

Much of a textbook is concerned with the reader learning to work in geophysi-
cal “practice”. Many today, especially science administrators on all levels, suggest
that teaching is the main function of universities, and efforts in “pure science” and
conveying in-depth understanding is not so important. This attitude is short-sighted.
Only deep understanding will produce reliable results, also in limited exploration
projects. Good self-critical judgement, for example of the probability and possibility
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of errors in an interpretation, requires knowledge beyond technical skills. This our
own experience we wish to share. Indeed, we endeavour to make readers wonder
about problems.

Probably the best way of learning is from mistakes and from independent efforts
in problem solving. We therefore include, as a CD, a collection of tasks or prob-
lems with some instructions for how to approach solutions. This will give readers
the chance to make their own mistakes and to correct them. Answers are listed at
the end, including discussion of the problems and solutions. Some of the tasks are
applications of inversion (Chap. 7) to geological or theoretical modelling which add
principal aspects discussed at some length.

One of our own examples serves as an illustration: when working out the solid-
angle solution for a cube at one of its corners (see Sect. 2.9.6), the assumption that
the gravitational vector effect points to the centre of mass led to the surprisingly
beautiful result that the vertical gravity effect would be precisely 1/6 of that of the
infinite Bouguer slab of the same thickness and density. But beauty is no proof,
and the result did not stand the test. The mistake was that, contrary to widespread
belief, the gravitational vector does not generally point to the centre of mass, ex-
cept in certain cases of special symmetry (see Sect. 2.9.1.2) which should have been
immediately evident, for example, from the Earth’s ellipsoid or the geoid. The mis-
conception arose from a mix-up with mechanics where the action of a force on a
body is described by action on its barycentre, i.e. centre of mass or balance point.

The authors have consulted other texts covering the subject, especially the clas-
sical book (in German) by Karl Jung (1961), Schwerkraftverfahren in der Ange-
wandten Geophysik (Gravity methods in Applied Geophysics; it will be referred to
as KJ61), and the book Interpretation Theory in Applied Geophysics by F.S. Grant
and G.F. West (1965) (referred to as GW65). Many useful ideas have been taken up
and partly expanded. In those early days of computing machines their possibilities
had been clearly seen and the foundations had been laid down for their application.

One of the authors (WJ) studied physics, geophysics and more and more geol-
ogy and considers himself a geophysically guided geologist, interested in how the
Earth works and concerned about how mankind treats its home planet. The other
author (PS) studied geodesy and became more and more involved in geophysics and
geology when working with WJ on his PhD thesis on gravity inversion, develop-
ing the program package INVERT, of which an executable copy is attached to this
book on a CD. The thesis is also the basis of the most important last chapter of
the book on optimization and inversion. The cooperation led to a synthesis of the
geological-geophysical approach to the problems of interpretation and the geodetic,
more mathematically inclined approach. It is the combination of geological imagi-
nation and experience, on the one hand, and abstract geophysical-mathematical rea-
soning, on the other, that is the basis of Earth science. Experience-based intuition
must be checked by mathematical validation. Indeed, science is suspended between
the two extremes of freedom of thinking and rigorous checking. Scientists surely
endeavour to approach the truth in such suspense.

Many colleagues and friends in various institutions, not only from our own
study field, have participated in teaching us this lesson, from our parents, families
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and some school teachers to our academic teachers, Karl Jung†, Kiel, and Reiner
Rummel, Delft, and to our later colleagues and students. Every one of them has
chosen her/his own way and none is responsible for ours, but the – hopefully –
mutual benefit has been immense. The intellectual challenges by colleagues and
students are gratefully acknowledged. Geological teaching by Eugen Seybold, Kiel,
and exchange with Richard Walcott, Richard Gibb, Alan Goodacre and Imre Nagy
in Canada and with Gerhard Müller†, Frankfurt (Main), were important. In Mainz,
Georg Büchel, Evariste Sebazungu, Tanya Fedorova, Ina Müller, Chris Moos,
Michaela Bock, Herbert Wallner, Hasan Çavşak, Tanya Smaglichenko and many
others were influential on both of us.

Herbert Wallner helped intellectually by many discussions, with calculations and
quite a number of figures. Tanya Fedorova provided some of the gravity inversion
models. Evariste Sebazungu, in his own PhD thesis on potential field inversion,
developed original ideas which entered into this treatise. Hasan Çavşak provided
gravity calculations for various polyhedral bodies and helped discovering errors in
some theoretical derivations. Pierre Keating provided information on some of the
free modelling software. Discussions with Markus Krieger (Terrasys, Hamburg) led
to several ideas and insights into the practical solution of interpretation problems.

All of them and many more contributed thought-provoking ideas and thus in-
fluenced the present treatise. Most importantly, the mutual discussions between the
authors through the whole time of their cooperation were beneficial to both. Finally,
lecturing on gravity (and magnetics) taught us more than anything else to endeavour
to present the ideas clearly.

Petra Sigl was always helpful and did an excellent job in preparing most of
the figures in this book. The book could hardly have been completed without the
many forms of support by the Institut für Geowissenschaften, Johannes Gutenberg-
Universität Mainz, various grants by Deutsche Forschungsgemeinschaft, Bonn,
and by Stiftung Rheinland-Pfalz für Innovation, Mainz, the Terrasys company,
Hamburg.

Bettie Higgs, Stefan Bürger, Herbert Wallner, Mark Pilkington, Pierre Keating
critically proofread parts of the draft and partly checked the mathematics. The re-
sponsibility for any errors remains, however, exclusively with the authors. All help
by persons and institutions is gratefully acknowledged, including the many that are
not named.

Mainz, Germany Wolfgang Jacoby
Peter L. Smilde
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2.8 The Gravity Tensor (Eötvös Tensor) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9 Gravity Effects and Anomalies – Summation and Integration . . . . . . 46

2.9.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.9.2 Coordinate Systems and Integration . . . . . . . . . . . . . . . . . . . . . 50
2.9.3 Special Mass Elements: Integration in One and Two

Dimensions, Mass Lines and Mass Planes . . . . . . . . . . . . . . . . 53
2.9.4 Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.9.5 Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.9.6 Uniform Massive Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.9.7 Two-Dimensional Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.9.8 Two-and-a-half Dimensional Models (2 1

2 D) . . . . . . . . . . . . . . 84
2.10 Some Theoretical Aspects of Anomaly Analysis . . . . . . . . . . . . . . . . . 86

2.10.1 Goals of Post-reduction Data Analysis . . . . . . . . . . . . . . . . . . 86
2.10.2 Smoothing of Spatial Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.10.3 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.10.4 The Field Quantities: Differentiation and Integration . . . . . . . 89
2.10.5 Harmonic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.10.6 Special Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.10.7 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.10.8 Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.10.9 Stochastic Representation of Anomalies . . . . . . . . . . . . . . . . . 104

2.11 Aspects of Magnetostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3 Observations and Field Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.2 Principles of Gravity Measurement and Instrument Types . . . . . . . . . 114

3.2.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.2.2 Pendulums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



Contents xi

3.2.3 Spring Gravimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.2.4 Vibrating String Gravity Meters . . . . . . . . . . . . . . . . . . . . . . . . 119
3.2.5 Beam Balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.2.6 Absolute Gravity Meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.2.7 Superconducting Gravity Meters . . . . . . . . . . . . . . . . . . . . . . . 120
3.2.8 Artificial Satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.2.9 Torsion Balance and Gradiometer . . . . . . . . . . . . . . . . . . . . . . 122
3.2.10 Special Task Gravity Meters . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.3 Scale and Drift of Gravimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.3.1 Instrument Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.3.2 Instrumental Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.4 Planning a Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.4.2 Base Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.4.3 Base Station Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.4.4 Field Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.5 Field Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.5.1 Setting Up Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.5.2 Surveying Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.6 Additional Field Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.6.1 Instrument Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.6.2 Surveying or Levelling and Recording of Earth Tides . . . . . . 131
3.6.3 Rock Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.7 Preparing the Data for Reductions and Analysis . . . . . . . . . . . . . . . . . 138
3.8 Error Assessment and Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

3.8.1 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.8.2 Systematic Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.8.3 Random Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4 Gravity Anomalies and Disturbances: Reductions and Analyses . . . . . 151
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.2 Earth Tide Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.3 The Time-Invariant Gravity Anomalies and Their Fundamental

Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.4 Components of Observed Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.4.1 Normal Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.4.2 Deviations From the Normal Earth . . . . . . . . . . . . . . . . . . . . . . 159

4.5 The Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.5.1 The Normal Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.5.2 The Height Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.5.3 Topographic Mass Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.6 The Result of the Reductions: Gravity Anomalies
and Gravity Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.6.1 FA: Free Air Anomaly, Faye Anomaly . . . . . . . . . . . . . . . . . . . 164



xii Contents

4.6.2 BA: Bouguer Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.6.3 IA: Isostatic Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.7 Preliminary Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.7.1 General Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.7.2 Data Snooping or Identifying Outliers . . . . . . . . . . . . . . . . . . . 166
4.7.3 Smoothing, Averaging, Filtering . . . . . . . . . . . . . . . . . . . . . . . . 167
4.7.4 Functional Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.7.5 Statistical Approach, Correlations, Regression . . . . . . . . . . . . 171
4.7.6 Derived Field Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.7.7 Regional-Residual Separation . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.7.8 Directional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.8 Evaluation of Reduction Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5 Qualitative Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.1 Fundamental Ideas, Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.1.1 Qualitative and Quantitative Interpretation . . . . . . . . . . . . . . . 181
5.1.2 The Ambiguity Problem and a priori Information . . . . . . . . . 182
5.1.3 Information Content of Gravity Anomalies . . . . . . . . . . . . . . . 184
5.1.4 Data Representation and Interpretation Constraints . . . . . . . . 185
5.1.5 Anomaly and Model Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.2 Digital and Visual Modes of Representation . . . . . . . . . . . . . . . . . . . . 188
5.3 Geometrical Constraints: Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.3.1 Three-Dimensional – Two-Dimensional . . . . . . . . . . . . . . . . . 189
5.3.2 Spatial Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.4 Physical Constraints: Realistic Limits, Integral Relations . . . . . . . . . 191
5.5 Geological Constraints: Visual and Statistical Analyses,

Structures, Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.5.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.5.2 Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.5.3 Gravity in Relation with Other Geological Quantities . . . . . . 192

5.6 Some Simple Estimates of Gravity Effects . . . . . . . . . . . . . . . . . . . . . . 193
5.6.1 Bouguer Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.6.2 Scale Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.6.3 Half Width Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.6.4 Use of the Solid Angle Ω : Vertical Templates . . . . . . . . . . . . 198
5.6.5 Undulated Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.6.6 Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.6.7 Maximum Depth Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.6.8 Edge Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.6.9 Vertical Dipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.7.1 Messel Maar Crater and Fault Zone (MFZ)

and Meerfeld Maar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210



Contents xiii

5.7.2 Salt Diapir: Helgoland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.7.3 Granite Batholiths: Bancroft Area, Canada . . . . . . . . . . . . . . . 215
5.7.4 Rhine Graben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
5.7.5 SE Iceland Shelf Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.7.6 Spreading Ridges, Reykjanes Ridge . . . . . . . . . . . . . . . . . . . . . 220
5.7.7 Plumes, the Iceland Plume . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
5.7.8 Tonga-Kermadec Trench, Subduction and Back arc Basin . . 224
5.7.9 Mantle Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

5.8 Error Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6 Quantitative Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.1 Introduction: From Qualitative to Quantitative Interpretation . . . . . . 233

6.1.1 Principal Considerations: Qualitative
and Quantitative Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 234

6.1.2 General Methodological Aspects . . . . . . . . . . . . . . . . . . . . . . . 235
6.1.3 Philosophy of Modelling: Detailed Description

Versus Catching the Fundamental Features
and Their Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.1.4 Model Types: Two and Three-Dimensional; Large Model
Bodies Versus Small Mass Elements . . . . . . . . . . . . . . . . . . . . 237

6.1.5 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
6.2 Two-Dimensional (2D) Approximations and Modelling . . . . . . . . . . . 241

6.2.1 Few Large 2D Model Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
6.2.2 Many Small 2D Model Units . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.2.3 Two-and-a-Half Dimensional (2 1

2 D) Models . . . . . . . . . . . . . 246
6.3 Three-Dimensional (3D) Approximation and Modelling . . . . . . . . . . 247

6.3.1 Few Large 3D Model Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.3.2 Many Small 3D Model Units . . . . . . . . . . . . . . . . . . . . . . . . . . 251

6.4 Summary: Strategies of Model Building; from Trial and Error to
Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
6.5.1 Messel Maar Crater and Fault Zone (MFZ) . . . . . . . . . . . . . . . 254
6.5.2 Salt Structure of Helgoland . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
6.5.3 Anstruther Batholith: Bancroft Area, Canada . . . . . . . . . . . . . 258
6.5.4 Rhine Graben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
6.5.5 The SE Iceland Shelf Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
6.5.6 Spreading Ridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
6.5.7 Mantle Plumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
6.5.8 Tonga-Kermadec Trench, Subduction and Back Arc Basin . . 265
6.5.9 Mantle Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

6.6 Summary of Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268



xiv Contents

7 Optimization and Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

7.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
7.2.2 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

7.3 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
7.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
7.3.2 Direct Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
7.3.3 Other Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

7.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
7.4.1 Meerfeld Maar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
7.4.2 SE Iceland Shelf: Edge Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 362

7.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Appendix: Analytical Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387



Symbols Used

Symbols as used in this book are grouped in the fields: general rules, mathematics
(differentiation, coordinates, geometry), physics (properties), gravity. Special ex-
pressions are explained in the text, particularly if exceptionally deviating from the
general usage. The same applies to some constants used with different meanings in
different connections.

General rules
Italics: variables x, y, a, ξ , etc.
Normal: physical properties, state, units etc. (exception density ρ, V p, V s)

Bold italics; vectors as: r
Scalars shown as: r
Subscripts have different meanings:
(1) vector components, as in δgx or δgi, the x or i component of the vector δδδg(i =

1, 2, 3),
(2) counting, e.g., station numbers i, as in δgi where the δgi can be considered

components of the different vector δδδg of all gravity values,
(3) partial derivatives (see below)
i, j, k, l, m, n, p. . . running indices, m, n, p often as upper limit. Written in italics in

text, normal as subscripts or superscripts.
Δ usually indicates a finite part or segment or a finite difference of a quantity, as in

Δx, Δy, Δz finite intervals of x, y, z or lengths
δ usually indicates an anomaly of a quantity
Generally SI units (Systeme International)

Mathematics (differentiation, coordinates, geometry)
General
=! symbolizes a definition
×, •, · signify multiplication
∗ signifies convolution
Underlining: arithmetic mean or average, as in ρ = mean density.
w weight or weighting, as in weighted mean; W Fourier transform of w

xv



xvi Symbols Used

Differentials
d f /dx or D f /Dx total differential of f after x etc.
∂ f /∂x partial differential, abbreviated as ∂x f or fx, etc., e.g. in Wx, Wzz etc.

Partial derivatives with respect to a coordinate are mostly self-explaining from
the context; if not, as in the case of the x derivative of gravity as the norm of the
vector g, specifically defined: g(x) = ∂Wz/∂x = ∂ 2W/∂ z∂x.

Coordinates, geometry:
O = (0, 0, 0) origin of coordinate system
P = (x, y, z) point of observation or calculated effect; often P ≡ O
Q = (x, y, z) point of a source, e.g. a point mass
x,y,z ≡ x1,x2,x3 ordinary Cartesian coordinates, z vertical
i = (1, 0, 0), j = (0, 1, 0),k = (0, 0, 1): unit vectors in x, y, z direction.
ξ , η , ζ (alternative) Cartesian coordinates in special cases
X , Y, Z centre of gravity (of an anomalous mass)
r = (x2 + y2 + z2)1/2 distance from O or P (see above) to an arbitrary point (x, y, z)

[r also spherical coordinate, residual gravity anomaly or a number, e.g. of unreg-
ularized variables in 7.2.2.2.4].

a, b, c dimensions in x, y, z directions, respectively, e.g., of Cartesian prism [also
Earth ellipsoid axes]

r∗ = (x2 + z2)1/2 sometimes used for “2D” distance from P to an arbitrary point
(x, y, z)

R, Z, Λ : vertical cylinder coordinates [R also radius of Earth or of a sphere of mass]
r, ϕ, λ: spherical coordinates (especially: terrestrial), r radius, ϕ latitude, λ longi-

tude [r also distance or number of unregularized variables in 7.2.2.2.4; ϕ also
function or dip or plunge angle of r from P to Q; λ also 21/2D half length,
Tikhonov regularization parameter]

φ = colatitude = π/2−ϕ , also geocentric latitude of Earth’s normal ellipsoid (4.4.1)

Length, surface, volume, vector, tensor
r (if not otherwise stated) absolute distance in any direction [also spherical coordi-

nate or number of unregularized variables in 7.2.2.2.4]
rijk triple index notation: distance from P (0, 0, 0) to point (x, y, z) where i, j, k = 0

if x, y, z = 0 or 1 if x, y, z �= 0 (2.8.3.3)
L general length
λ wavelength [or longitude or regularization parameter]
k wavenumber [also counting index]
κ radius of curvature [also susceptibility]
S, s, ds surface, surface element, respectively [also variance]
E or (E) sometimes used for finite surface element [also Eötvös unit]
V volume, dV infinitesimal volume element (e.g. dV = dxdydz)

n normal unit vector, e.g., surface-normal vector
s, ds = sn, dsn normal vector of planar surface, surface element, respectively
ds, ds infinitesimal surface element, its normal vector



Symbols Used xvii

s, ds also used for path of integration
p normal vector of surface or straight line (Appendix M1)
a = (a1, a2, a3) vector by components
aT transposed vector
a−1 inverse vector
ab (or a ·b, or a×b) product of scalars
Scalar product of vectors ab or a b or a ·b or a•b
Vector product a×b or a×b
{Wij} or W matrix, tensor
W−1 inverse matrix
WT transposed matrix {Wji}

Angles
α, β , γ, φ , ϕ, θ , ψ angles, if not otherwise specified (α, β , γ corresponding to

x, y, z)
ϕ dip or plunge angle of r from P to Q [also least-squares function]
ψ = ϕ−π/2 complementary angle
(a, b) may mean the angle between vectors a and b, as in sin(a, b) or also in

sin(x, X).
Ω, δΩ or ΔΩ solid angle
WT transposed matrix {Wji}

Physics (properties)
f force [also gravimeter scale factor, earth flattening, number of degrees of freedom,

function]
M, M mass of a body [m also index; M also “total mass” causing a gravity anomaly]
m general; M or ΔM = Δρ ·V as determined by the gravity surface integral (2.6.6)

[or index]
Mearth or M⊕ mass of Earth, may be called M, if meaning obvious.
dm infinitesimal mass element
ρ = m/V density (kg/m3).
ρ∗ surface density (kg/m2).
ρ+ line density (kg/m).
δρ# circular average
Δρ = ρ−ρo: density contrast relative to a reference density ρo (6.1.4, Fig. 6.1 – 1).
t time (units: s, a, Ma) [also thickness of wall, dyke, etc.]
T period of oscillation or. . .
T temperature
α thermal expansivity
ω angular velocity vector, especially that of Earth; ω its scalar value
V p, V s seismic compressional, shear velocities (usually in km/s)
K, μ elastic bulk, shear moduli, respectively
m mean atomic weight
B⊕ Earth’s magnetic field strength



xviii Symbols Used

m specific magnetization (vector) = magnetic moment of volume element divided
by volume

μ permeability, μo = p. of vacuum, μr = relative p.
κ susceptibility = μr −1, B = μF = μrμo H. (B magnetic flux density, F mag. field

strength) [also radius of curvature]
Q Königsberger ratio

Gravity
General
mGal = milliGal = 10−3 Gal
Gal = cm/s2 = 10−2 m/s2

E = 10−9s−2 unit of gravity gradient
G universal gravitational constant:

G = 6.6742±0.001 ·10−11 m3kg
−1

s−2 (Nm2kg
−2) (or 6.6742 10−8cm3g

−1
s−2)

g gravity vector; g its scalar value
z centrifugal acceleration of point P, z its scalar value
go time-averaged gravity felt at point P
ao time-averaged gravitational attraction felt at P
zo time averaged centrifugal acceleration of point P
ak gravitational attraction by cosmic masses felt at P
ad gravitational attraction by Earth mass deformation felt at P (deformed minus

average)
ac acceleration of coordinate system in inertial system
zo time-averaged gravitational centrifugal acceleration felt at point P
bc acceleration of P in an inertial system, undetermined
a, b, c, f lengths of earth ellipsoid semi-axes and flattening, minor, intermediate,

major, f = (a−c)/a (see 4.4.1) [also x, y, z dimensions, e.g., of Cartesian prism]
m geodetic parameter (4.4 – 4) [also mass, index]
go or gb reference gravity value (gb at base station)
δgi gravity value at point i, relative to some reference (mGal)
goi gravity value it station i versus gb

f gravimeter scale factor [also force, earth flattening, number of degrees of freedom]
ei error at station i, observed minus true value; sometimes synonymous to ri [also

eigen-vector].
εg closure error in gravity network
δgobs specifically: observed gravity anomaly value (mGal); the term “anomaly”

often refers to ensemble of observed gravity values that represent a distinct geo-
metrical feature.

δgo reference gravity value, sometimes also δgo = δgobs if indicated
δgm gravity effect calculated for a model.
δge = extreme value of a gravity anomaly or a gravity effect
gt = gt(t) time-dependent gravity value; δgt = ∂g/∂ t rate of temporal gravity

variation (mGal/a)
δg(s) gravity effect of a surface element s as superscript
δδδg = (δgx, δgy, δgz) vector of gravitational effect or a gravity anomaly (mGal)
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δgp, δgq gravity component in directions p and q parallel to s, δgn normal to s
(mGal)

δgc = δgx + iδgz complex gravity effect (mGal) (see 2.8.7.4.3)
δg∗ non-dimensional gravity effect rate
δg# circular average of δg
h height, elevation above geoid or just h = −z upward
TOP topography, topographic height
BA Bouguer anomaly
FA free air anomaly
IA isostatic anomaly
rBA residual BA
w half width of gravity anomaly; δge extreme value, either along a profile or on

a map; w distance between the points where δg = δge/2. Some authors call
w/2 half width, i.e. distance from the extreme to half of it [also weighting in
averaging]

w∗ width of a model, e.g., of a 2D strip
2D, 3D short for two-dimensional, three-dimensional; in 2D usually y is very large

(∂/∂y = 0).
t thickness of wall, dyke, etc. [also time]
λ 21/2D model length [also wavelength, longitude, parametrization parameter]

U ≡Ug, ΔU, δU gravitational potential at P (not including the centrifugal potential)
Uz, ΔUz, δUz potential of centrifugal force field at P
W = Ug +Uz, ΔW, δW potential of gravity field at P [W or w also weighting]
N geoid undulation [also index]

Γ gravitational flux

Optimization and inversion (Chap.7)
Simplified vector and matrix notation; if unambiguous, symbolized by italics

(e.g. Ax = y)
x̃, ỹ: observed, a priori, input, estimated values
x̂, ŷ: adjusted, a posteriori, output, resulting values
A: matrix of linear observation equations, also meaning model or model relationship

(7.1.2)
AAA : matrix of non-linear observation equations.
x, xk, x; variables of models (general, numbered, vector) equivalent to parameters
p, pk, p: parameters of models (general, numbered, vector) equivalent to variable

[also penalty function; normal vector of surface or straight line]
‖ . . .‖2 = a, L2 norm of vector a
Ln: norm, statistics of distribution of residuals to the power of n.
φ(y|ỹ): probability of y if an actual observation ỹ is given with the covariance ma-

trix Cy.
x∝ N(μ , C) normally distributed vector variables x with the expectations μ and the

covariance matrix C



xx Symbols Used

r residual gravity anomaly: r = δgo − δgm [also distance vector from O, spherical
coordinate]

r number of unregularized variables in 7.2.2.2.4
rab correlation coefficient between a(x) and b(x)
f number of degrees of freedom [also force, earth flattening, scale factor]
ei eigen-vector [also error at station i]
S variance [also surface]
ϕ function describing a least-squares solution [also angle]
σi: genuine standard deviation [also called si if specified, see below]
si: criterion standard deviation, computational quantity for the evaluation of inver-

sion results (if specified, ordinary standard deviation, see above)
λ Tikhonov regularization parameter [or longitude or wavelength or 21/2D length]



Chapter 1
Introduction

1.1 The Subject and Scope

1.1.1 Gravity

Gravity interpretation is an important endeavour in the quest for understanding the
Earth. This is so for several reasons. The shape and mass distribution of the Earth
are governed by the central force of gravity counteracted mainly by the molecular
and atomic forces against compression and deformation. Ongoing geodynamic pro-
cesses are driven mainly by thermal disturbances of the equilibrium which gravity
tries to achieve, to maintain or to restore. The processes generate density distri-
butions which produce observable gravity signals which are the target of gravity
study. Near the surface in the Earth’s crust geological structures resulting from
past geodynamic processes are “frozen in” and preserved over long periods, as
the gravitationally driven forces inherent in the structures are too weak for the
strength of the material to be overcome. Natural resources of all kinds are hidden
in the structures. Gravity is an economic tool for exploring and discovering the
resources.

The relationship between mass and effect is “asymmetric”, the effect directly
calculable but not vice versa. The resulting notorious ambiguity is the main draw-
back of gravity interpretation and gives it a “poor reputation”. However, in many re-
spects the reservation is not justified if gravity interpretation is seen in perspective.
In the first place, information gained from gravity is not in every respect ambiguous;
the ambiguity is in the geometrical density distribution, in particular the important
parameter of depth. No ambiguity exists in the presence of an object of potential
interest inferred from the presence of an observed gravity anomaly, although the
opposite is not true: the lack of a gravity anomaly does not necessarily mean that no
mass anomalies exist underneath. Equally, the horizontal location (coordinates) of
the “centre of gravity” and the total amount of the anomalous mass are unambigu-
ously obtained from the gravity anomaly. The depth of the anomalous mass and its
shape or distribution are ambiguous. However, the ambiguity is reduced, even by
only qualitative arguments, and some aspects of the interpretations can be highly
probable. The ambiguity is further reduced by additional “a priori” information
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from many other sources such as other geological and geophysical data. If such
data with uncertainty limits are well known, the problem of gravity interpretation
can be “solved” by inversion, especially by “Bayesian inversion” which attempts
to achieve the best compromise between all pieces of available information within
their particular uncertainty limits, usually called “errors”.

An important related aspect is that any data manipulation motivated by many
different purposes is explicitly or implicitly an act of interpretation or at least af-
fects the subsequent modelling, inversion and interpretation. Often data on a pro-
file or a map are filtered or smoothed, perhaps to emphasize certain geologically
interesting features or simply to render a clearer picture. It must be kept in mind
that this does not go without effects on the final geological models. It is advis-
able to check the results, e.g. by filtering the inverted results with the same filter
as applied to the original data. If the filtered results and the unfiltered ones are
the same, then filtering is independent from the inversion results. Otherwise fil-
tering did remove some effect present in the model itself which means that the
residuals (unfiltered observations minus model effects) increase and the results are
distorted.

1.1.2 Motivation

Passing on the experience gained with this type of gravity interpretation, and the
insight into the teaching and learning processes involved, are the prime motivation
for writing this book. An overview is attempted of the whole field as we know it
at the beginning of the 21st century, both from the perspective of basic research
and from the application to problems of exploration. Many new developments have
taken place, partly in industry with its financial and technical capabilities not avail-
able to universities. It seems timely to write such a treatise, although it is difficult to
obtain an overview of all the new developments.

The classical 1961 book by K. Jung: “Schwerkraftverfahren in der Angewandten
Geophysik” (Gravity methods in Applied Geophysics, KJ61) is long out of print;
it is still quoted even in the English language literature, because of its in-depth
and far-sighted treatment of the subject, including topics which became really use-
ful only with increasing computing power. We attempt to follow Karl Jung’s foot-
steps and to present a concise treatise covering subjects from potential field theory,
the observation techniques, reductions and data analysis to quantitative interpreta-
tion methods and inversion. KJ61 has, indeed, been an important guide in writing
the present book. Naturally the authors (WJ and PS) have taken advantage of their
knowledge, not only of Jung’s book but also from personal study and advice. WJ
had Karl Jung as his PhD advisor and PS did his PhD thesis on inversion with WJ as
advisor.

There is a lack of recent texts in gravity interpretation. One exception is Blakely
(1995), though his emphasis differs. Of course, the numerous books published on
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applied geophysics in general over the years, devote one or two chapters to gravity,
and the other potential field of magnetics. Of these, the two classic books by Grant
and West (1965), (GW65) and Telford et al. (1990) have been consulted extensively.

1.1.3 Aims

The aim of this treatise is to give students and professionals insights into poten-
tial field interpretation, based on the fundamental theory, especially the gravity field
(Chap. 2). The interest in potential field theory goes back to astronomy and geodesy
and was summarized in Newton’s laws. Gravity is the main subject, but a brief intro-
duction into the theory of magnetics (2.11) is added. While the emphasis is on geo-
physics and its geological applications, geodesy is intimately connected to gravity,
and it is an important goal to bridge the gap between these different specializations.

It is the intention of the authors to give an overview of gravity observation
(Chap. 3) as well as reduction and data analysis (Chap. 4). The principal aim of shar-
ing our experience with, and insights into, gravity interpretation leads us to struc-
ture its discussion into three chapters: qualitative interpretation (Chap. 5), quanti-
tative interpretation (Chap. 6) and optimization and inversion (Chap. 7). The no-
tion of gravity anomaly is central to the whole subject and must be carefully re-
flected upon, and it usually means an ensemble of differing values in space, i.e.
more than a single anomalous point value; it is an important aspect to which we
shall return many times, especially in 1.4; 2.6 and 2.9; 3.4; 4.3, 4.6 and 4.77; and
of course, in Chaps. 5, 6 and 7 as interpretation always concerns fields, not single
points.

Interpretation involves, beside the determination of the source distributions, also
their geological implications. “Geological” refers to any aspect of Earth structures
and processes, irrespective of scale. In view of the double role of gravity in driv-
ing processes and generating useful signals, geodynamics is an important aspect.
These aspects are closely related to each other and must be envisioned together
when interpreting gravity anomalies, the more so, the bigger the volumes consid-
ered. They must be especially taken into account in problems of gravity inversion
which attempts interpretation on a rigorous mathematical basis, by models within
quantifiable error bounds.

It is our aim to show that in spite of the notorious ambiguity of the inverse prob-
lem in potential field theory, gravity is a very useful tool for studying the Earth’s in-
terior. True: only the forward problem has unique solutions, and the inverse problem
is non-unique. If the source distribution is known, the field distribution is uniquely
determined by mathematical relations involving integrals over the mass distribu-
tions or convolution of the mass with certain kernel functions. However, there are
infinite numbers of mass (or magnetisation) distributions which generate the same
gravity (or magnetic) “image”. It is emphasized that the solution or model space (or
domain) can be reduced with the aid of additional a priori information, and only
with it, no matter whether it provides tight or loose constraints. It must thus be
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carefully evaluated. The task will be to find solutions that are reasonable, plausi-
ble or probable compromises between all pieces of information, even if they are in
mutual conflict.

The task involves more than mathematical methods and requires more than
knowledge of available methodologies. What is needed is something like feeling or
intuition based on experience of successful solutions of the problem of gravity inter-
pretation. Intuition may be defined (Wikipedia) as the gift of forming spontaneous,
subconscious ideas, for example, insights into complex relationships or inventions –
without explicit analytical deduction. Intuition involves an element of chance, but as
Louis Pasteur is quoted: “chance in a prepared mind”. It is also called “serendipity”.
It is hoped that the reader will gain some of this through studying this book. But
intuition has also the other side of experience generally being guided by “current
wisdom” and thus not without bias which may block the imagination. Imaginative
minds are needed to transgress such limitations to open up new avenues of thinking
about gravity interpretation. Quite often gravity anomalies do guide researchers to
well constrained geological solutions or models.

1.1.4 Special Aspects

Some aspects are somewhat unconventional and novel. For example, in the inte-
gration of gravity effects of extended mass volumes (Sect. 2.8) a special approach
is taken. The long known principle of integration along “rays” from the observa-
tion point to mass elements contained within a solid angle from the observation
point P (KJ61, 148-155) is exploited systematically. Because this does not generally
give the wanted vector effect, it has to be complemented by considering the gravi-
tational components parallel to causative straight mass lines and planes. This way,
many of the occurring forward problems are conceptually more easily treated than
by schematic classical integration over customarily defined bodies. The widespread
misconception that the gravity vector effect of an arbitrary body principally points
to its centre of mass was mentioned in the Preface.

Although gravity is central to this treatise, observations of other field quantities
(Sect. 2.7.2) are included and need not be transformed into gravity before modelling.
As additional errors affect the transformations, it is principally better to model the
observations directly; the expressions are provided in Sect. 2.7.2. For purposes of
aiding creative imagination, transformations remain, of course, useful, as maps re-
main important when most data analysis and interpretation are done digitally, i.e.
“invisibly”.

1.1.5 The Book and the Reader

Experience is acquired by doing, not by theoretical or exclusively technical learn-
ing. Experience can be shared. Experience is gained by practicing problem solving.
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Feeling and intuition grow with experience possibly guided by a book like this
one. It provides the necessary theoretical and practical foundations and includes
exercises. Practical problems of gravity inversion are posed and readers can do them.
That will lead to surprises and failures as well as successes.

Students new to the field may follow the book and do the exercises along the
way. Remember that some patience is needed when, in the beginning, a problem
seems unfamiliar and complex. Early attempts to understand a section or to solve a
problem may be fraught with mistakes, but with persistence the misunderstandings
disappear and solutions fall into place. Or it may become clear that a problem posed
cannot be solved. The authors themselves have gone, and are still going, through
such a process, and the book can be a guide or a map helping the wanderer to find
her/his own way with her/his own short-cuts and detours. For some of us it may
be very helpful to always have a pencil and a piece of paper at hand and immedi-
ately sketch the situation described in the text. The human mind, while individually
very variable, seems to strongly cooperate with the whole person and her/his body;
maybe, it is the time and effort spent on sketching which gives the brain the time
needed to grasp an idea fully.

Readers familiar with the basics can begin with the chapter on inversion and
consult the earlier chapters when necessary; cross references are given frequently.
Chapters 2–4 introduce the basic concepts of potential theory, of measuring grav-
ity and of data treatment and analysis. Chapters 5 and 6 deal with qualitative and
quantitative interpretation and Chap. 7 discusses gravity inversion extensively.

One last word about how to find more on gravity and new developments driven
by new technologies of observation and computation or other earth science aspects.
Today the internet is a source of useful science information, but can be difficult to
use discriminately by those lacking basic knowledge and judgement in the fields
of enquiry. The individual cannot hold all the wanted details in mind, but basic
knowledge is the precondition for judging the available information and making use
of it. This book wishes to provide the basic knowledge and understanding for further
studying and applying the science of gravity interpretation.

1.2 Historical Review

1.2.1 Astronomy, Geodesy, Geophysics, 18th and 19th Centuries

Gravity is an everyday experience so that it is hardly noticed in daily life. Only if
we have to lift a heavy weight or climb a steep mountain do we feel gravity, and we
observe the notorious falling apple. Weight and gravity are not the same, gravity
abstracts weight from mass; weight is the product of gravity and mass. Galileo
Galilee may have been the first to clearly understand that gravity is the common
acceleration all masses experience in free fall, i.e. “free” from any obstruction, air
included. Isaac Newton, the first to postulate central forces acting through empty
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space, explained the observations, especially Kepler’s three laws of planetary mo-
tion, and derived mathematically his two fundamental laws of mass gravitation and
inertia. Gravitational attraction decreases with distance r as 1/r2. This can be un-
derstood as a quality of Euclidian space with the assumption of a constant gravita-
tional flux (see Sect. 2.1 and 2.7.5; Eq. 2.1.1), emanating from any massive body,
and evenly spreading over spherical surfaces which grow in area proportional to
r2. In contrast to magnetic flux, the notion of gravitational flux is not established,
but nevertheless equally useful. Modern space and satellite geodesy must consider
relativistic aspects; however, this subject does not affect today’s down-to earth geo-
physics where, generally, classical Newtonian physics in space and time is fully
adequate.

That gravity varies along the Earth’s surface was experienced by the early ex-
plorers who took pendulum clocks along their voyages and noticed that, near the
equator, the clocks ran late. With time, systematic variations of gravity were discov-
ered all over and compared to the gravitational attraction of large masses calculated
from Newton’s law. Measuring the Earth, for example, the length of the meridian,
in the 18th and 19th centuries clearly demonstrated the importance which gravity
has for the figure of the Earth and for measuring it. Observation of deflections of
the vertical by astronomical and geodetic means, gravity measurements with pen-
dulums, since P. Bouguer (1698–1758), and measurement of gravity gradients with
the torsion balance became the domain of geodesy. They also brought insights into
the principles of mass layering, isostasy was suggested by G.B. Airy (1801–1892)
and J.H. Pratt (1809–1871) as the Himalayan masses appeared to be compensated
by a mass deficit at depth (a review, as an example of internet-based information is
given in http://www.univie.ac.at/Wissenschaftstheorie/heat/heat-3/heat393f.htm).

1.2.2 20th Century

Measuring gravity directly, in the 20th century, became an important tool for mineral
and hydrocarbon exploration. These achievements made it necessary to work out
applications of Newton’s law theoretically which is the essential basis for all gravity
interpretation. Thus, gravity on Earth can be safely founded on classical Newtonian
physics (although observations with the aid of satellites are bringing us into the age
of Einsteinian relativity). Theory for gravity interpretation has been laid down in
many classical works on geodesy and geophysics; the present treatise attempts a
condensated presentation of the essential aspects in Chap. 2.

Progress in gravity research is closely linked to the observational precision,
which is driven by the advance of experimental physics. Methods of gravity observa-
tion evolved slowly in the 18th and 19th centuries, when pendulums, telescopes and
torsion balances were the exclusive tools. The 20th century brought an explosion of
new instrumental developments, especially the gravity meters. Rather recently, bore-
hole gradiometers of highest sensitivity have been constructed, tested and employed
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in exploration. Since artificial satellites have been launched, a new era of gravity ob-
servation from space has begun, and the best knowledge of the Earth’s gravity field
is now being gained by combinations of terrestrial and space observations of differ-
ent nature. Beside gravity itself, the gravitational potential has become observable
indirectly by radar satellites that measure the ocean surface topography which, to a
first approximation, is the equipotential surface of the geoid. Measuring accuracies
are reaching levels permitting the distinction of the sea surface topography from the
geoid such that the effects of ocean currents, temperature and salinity variations can
be isolated which is of high relevance for oceanography and climate research. A
brief account of today’s methods is given in Chap. 3.

Gravity measurements need to be reduced (Chap. 4) by numerically removing
several calculable effects which obstruct their efficient interpretation. For the re-
ductions, the geodetic coordinates or locations, including height or elevation are
needed. Thus, the recent tools of satellite geodesy, especially GPS and GLONASS
and future improved systems, as the European GALILEO, have an immense impact
on gravity measurement, analysis and interpretation.

Besides, a contemporaneous technological development of great consequence to
gravity research is the dramatic increase of computation power. The basic theory
was worked out and many applications were formulated long before the advent of
efficient numerical computation, but its possibilities have made it necessary to de-
sign new program tools that considerably enhance the usefulness of gravity studies.
They involve handling of large digital data sets, their representation and analysis by
spherical harmonics and Fourier series, modelling of complex structures (Chap. 6)
and visualization. But that has not made simple modelling superfluous, because
complex models can be applied reasonably only with the aid of good human imagi-
nation and intuition which are strongly aided by developing a feeling for the nature
and size of model effects (Chap. 5). For this, i.e. the interaction of the human mind
with computing power, visualisation is essential. It is not just nice, but is a tool
for uncovering problems, suggesting solutions and also facilitating communication
between scientists of different fields.

The reliability of gravity interpretation strongly depends on the accuracy of all
data input. The more the errors are reduced and the more reliably they are estimated,
the more successful can gravity inversion (Chap. 7) become, provided that also
the additional or a priori information from other sources has a similarly improved
quality.

1.2.3 Geodesy and Geophysics

Geodesy and geophysics have diverged in their development accommodating to
their individual need and emphasis. Separate terminologies are now in existence
which hamper communication and mutual learning from each other. Examples
are “gravity anomaly”, “gravity disturbance”, “correlation”, “nullspace”, etc. The
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central theme of geodesy is measuring Earth and thus questions of errors or accu-
racy are of paramount concern; typically, a geodesist will ask a geophysicist, how
accurately (s)he wants to have certain observations to be made. But the geophysicist
is concerned with the more or less inaccessible interior of Earth and cannot generally
anticipate what is needed, so may not be able to answer such a question precisely,
except saying: “as accurate as possible”. Moreover, the existence of uncontrollable
effects, for example, of local density variations, limits the required precision. Only if
both sides have a basic common understanding of each other’s problems and think-
ing, will they be able to unite their efforts. It is time to attempt bridging the gap.
As the present authors come from these two fields, geophysics and geodesy, they
hope to be in a good position for such an attempt. It must include geology that is
the object of much of geophysical research and has incorporated most of the geo-
physical insights into Earth’s interior. The view of the triple geodesy – geophysics –
geology is to be complemented by all other branches of the earth sciences which
as a whole might best be called “geology” in the widest sense as the study of the
Earth.

1.3 Purposes of Gravity Measurements

Today’s aims of measuring gravity, as in the past, have a wide scope which extends
with increased precision and in combination with other improved measurements,
e.g., of distances and coordinates. Applications are inherent in geodesy – paramount
for defining the Earth’s shape, for example, in combination with levelling and other
methods of surveying. This is especially evident with the Global Positioning System
GPS which gives the radius of a point from the Earth’s centre and requires knowl-
edge of the geoid – the gravitational equipotential surface – to provide the point
elevation above sea level. In geophysics and geology the aim is exploration of the
Earth’s interior and gravity has also important bearing on oceanography, archaeol-
ogy, engineering and even on theoretical physics. In geodynamics temporal gravity
change is becoming a topical subject as the space-time behaviour reflects processes
as loading or unloading and flow inside the Earth. Precise recording of temporal
gravity variation can reveal mechanical properties and even deep processes as Earth
core oscillations.

A division is usually made between general geophysics and applied geophysics.
It is rather artificial, since geophysical gravity observations are frequently applied
to problems outside gravity. Nevertheless, a gap in outlook and terminology has de-
veloped also between these branches or communities of geophysics because there
are differences in emphasis and aims of research in industry which must pro-
duce economic value, and university motivated by fundamental science. Both are
equally important in human culture. Different motivations unavoidably influence
thinking, but seeing this should also stimulate learning from each other. Thus, this
book wants to serve both communities and to provide a basis for many kinds of
application.
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1.4 Gravity and Gravity Anomalies

“Gravity interpretation” means precisely “interpretation of gravity anomalies”. As
emphasized in Sect. 1.1.3, gravity anomalies are the very object of interest, although
an anomaly always requires two things: an observation and a norm or reference or
something expected to represent a normal field. We consider anomalous the devia-
tion of the observation from the expected. The gross variation of gravity on Earth
quite closely corresponds to what is expected from an idealized Earth with no lateral
variations of structure and density, such as would be the case if a fluid would per-
fectly accommodate to the forces originating only from self-gravitation and rotation.
One has come to call such an Earth the “normal earth”. But, beyond the parameters
of the normal earth and its gravity field, there are deviations, and it is these devi-
ations from the norm that are here of interest, i.e. the gravity anomalies which are
to be interpreted. The deviations from the ideal are, however, not large, indeed, if
relative scales are considered.

The raw observations of gravity are not easily interpretable, if at all. They must
first be reduced, i.e. referred to the reference normal gravity model, i.e., to the
normal earth. The various ways of treating the normal earth and the visible devi-
ations from it are subject of the various kinds of reductions and further data analysis
(Chap. 4). In order to understand the gravity treatment better, a brief overview of
the gravity variations or anomalies encountered on Earth will be given in the next
Sect. 1.5.

Gravity anomalies are variations in space (and in time), and relative gravity me-
ters can perfectly provide the wanted information; even absolute gravity observa-
tions are interesting in their variations for gravity interpretation. Variation implies an
ensemble of points or a continuous field, and it has become customary to understand
the term “anomaly” in the sense of “anomalous field”. One isolated value of gravity
is useless for interpretation as envisaged here (Sect. 1.1.3). An ensemble of discrete
points of gravity values is not identical with a continuous anomaly field, indeed,
generally field is an idea, and in this sense, defining an “anomaly” from discrete
points is an act or part of interpretation. “Field” and interpretation thus mutually in-
fluence each other and the data points are but one part of this. Defining an anomaly
from a limited set of points is thus not generally a trivial task. The theory chapter
(2) deals with gravity effects usually in the form of continuous functions of coordi-
nates, derivatives, relations in space and the possibilities of exploiting them for their
interpretation. In the observation chapter (3) planning surveys (Sect. 3.4) is shown
to be guided by expectations of anomalies. In the reduction chapter (4) the emphasis
is on making anomalies “visible”; especially Sect. 4.7 on the analysis of anomalies,
deals with the concrete construction of an anomaly from discrete points and with
the notion of their errors (Sect. 4.7.1); and as a frequent task, Sect. 4.7.7 discusses
the separation of regional and residual fields. The interpretation Chaps. 5, 6 and 7
are anyway always concerned with anomalies in space; in Sect. 5.1.5, in particular,
the notions of anomalies and of gravity effects are confronted with each other and
their mutual dependence is considered; they should be clearly kept apart.
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1.5 Some Important Aspects of the Terrestrial Gravity
Field and Internal Mass Distribution

1.5.1 General Considerations

Gravity interpretation does not happen in isolation, but in the world of shallow
subsurface investigation, of mineral exploration, and of whole Earth geodynamics.
Basic knowledge of the essential features of terrestrial gravity and mass or den-
sity distribution is therefore a precondition for a reasonable approach to the tasks at
hand. Moreover, the fundamental ambiguity in gravity interpretation makes a priori
knowledge mandatory for reducing this ambiguity to an acceptable level. However,
a priori knowledge includes both basic ideas and high precision geological and geo-
physical data. Familiarity with, or a feeling for, the subject is essential for successful
and efficient work, but thinking must go beyond the familiar limits. Questions, as
to what kind of gravity and density variations are to be expected or what are their
normal magnitudes, and hence what are the requirements of accuracy, will mutually
influence measuring, modelling and interpreting different gravity effects.

In the 19th and 20th centuries knowledge about the Earth increased and recent
progress has been fast. The dual role of gravity, as signalling density variations
inside the earth, and generating them by driving dynamic processes becomes more
and more relevant, and both are intimately interconnected. To interpret large-scale
gravity anomalies one needs to know something about the processes and the material
properties of the Earth’s interior. To successfully apply gravity to the search for
mineral resources, knowledge of the processes of mineral concentration and their
geological associations is equally essential.

In thinking about gravity it is critical to distinguish between the different kinds
of anomalies: the customary Bouguer anomaly (BA), the Free Air anomaly (FA) and
the isostatic anomalies. The different reference models used in defining the various
anomalies must be taken into account (see Chap. 4); otherwise gross misinterpreta-
tions are the result; the relations with topographical, geological and tectonic features
is very different; for example, mountain ranges are usually accompanied by gener-
ally positive, but highly scattered FA values and at the same time by a strongly
negative smooth BA; spreading ocean ridges have a similar gravity expression, ex-
cept that the BA is positive, if referenced to sea level, but negative in comparison
with the deep sea basins.

The following descriptions will necessarily be somewhat subjective. These will
include: the Earth’s figure and constitution (Sect. 1.5.2: ellipsoid, geoid, Earth’s den-
sity and shells crust, mantle, and core), continents and oceans (Sect. 1.5.3: isostasy
of large geological structures, fold mountain ranges, limits to lateral density vari-
ations), plate tectonics and mantle flow (Sect. 1.5.4: mantle dynamics: convection,
ridges, subduction), associated gravity anomalies (Sect. 1.5.5: scale laws and kind
and size of gravity variations or anomalies to be expected), other large-scale grav-
ity features (Sect. 1.5.6: loading and unloading processes, postglacial rebound),
smaller-scale gravity anomalies relevant to exploration for economic minerals
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(Sect. 1.5.7: density anomalies inside the crust: objects of general geological research
and mineral exploration), harmonic spectrum of the gravity field (Sect. 1.5.8:
Kaula’s rule, upward and downward continuation, mantle tomography).

This book is not an exhaustive treatise on geodynamics, geology, geochemistry
and geophysics of the Earth. Only a brief outline is given here to emphasize the
relations of gravity with Earth structures and processes. The reader is also re-
ferred to a number of historical and recent texts where many of these aspects are
treated in one way or the other and help the reader to form an overall picture
of the Earth (Wegener, 1915–1930, 1966, 1980; Holmes, 1944, 1993; Cox, 1973;
Press & Siever, 1974; Press et al., 2003; Turcotte & Schubert, 1982, 2002; Skin-
ner & Porter, 1989; Lowrie, 1997; Mussett and Khan, 2000; Schubert et al., 2001;
Fowler, 2004).

1.5.2 The Earth’s Figure and Constitution

As already mentioned, the Earth’s gravity field and figure are intimately related to
each other. Basically this follows from Newton’s law of gravitation, in that a given
arbitrary mass distribution generates a unique external gravity field which becomes
smoother and more spherical with distance from the source. But the regularities of
the Earth and its gravity field demonstrate that gravity played a major role in shap-
ing and structuring the Earth. It is nearly a sphere, or more accurately, an ellipsoid
of rotation and nearly exactly obeys Clairot’s principle of the equilibrium figure of
a rotating self-gravitating fluid body in space (A.C. Clairot, 1713–1765). Equilib-
rium and the deviations from it play an essential role in the whole field of gravity
interpretation and geodynamics. However, the most voluminous part of the Earth,
the mantle is not fluid; it is made of solid rock which transmits seismic transverse
shear waves. Obviously this solid material has properties of a fluid if subjected to
long-lasting forces such as gravitation and centrifugal acceleration.

The Earth’s surface topography has a relief of about ±10km, that is about
±1/600 of Earth’s radius. The ellipsoidal major and minor axes differ by the same
amount, and the flattening is about 1/300 (the flattening is defined as f = (a – c)/c
with a = equator radius and c = polar radius). This leads to a difference between
gravity at the poles and at the equator by about 0.5% or 1/200 (±1/400). The grav-
ity difference is relatively greater than the geometrical difference, because gravity
reflects both the direct centrifugal force and the effect of the ellipsoidal shape. The
exact value of flattening and gravity variation depends on the internal density struc-
ture, primarily the density depth distribution. Thus, by itself, gravity tells us about
the density increase with deptḩ supported by mechanics and astronomical observa-
tions concerning the Earth’s angular momentum and hence momentum of inertia.

Speculation about the Earth’s internal structure and material properties began
from hard surface rock and proceeded to hot molten rock to explain volcanoes and
religious ideas about a burning hell. Iron meteorites suggested to scientists that the
interior might be molten iron. Astronomical and geodetic mathematical theory and
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improving physical understanding led to the derivation of the general densification
with depth, which could be explained by pressure and chemical stratification.

A more detailed picture arose as a result of seismic studies of the propagation of
waves through the Earth’s interior, and by the early 20th century a fairly accurate
knowledge of a three-layered Earth had been gained. It became natural to imagine
crust, mantle and core as the basic “onion model”. Crust is a thin veneer of quartz-
rich rocks. Mantle, to 2900 km depth, consists of ultramafic silicate rocks, olivine
rich peridotite, transformed by pressure and temperature at depth through phase
transitions (olivine→spinel→perovskite and magnesiowüstite). The resulting layer
boundaries roughly conform to equipotential surfaces, but significant lateral devia-
tions are expected in response to dynamic processes. The core consists of iron with
impurities, the outer core is molten, and the inner core solid frozen; this somewhat
surprising situation is due to the pressure effect on melting.

Equilibrium would mean perfect density stratification, varying exclusively with
depth according to the principle of minimum potential energy. Density boundaries
would then perfectly conform to internal equipotential surfaces, and the variation
with depth would affect the Earth’s ellipticity and the normal gravity field which
varies only with latitude (see Chap. 4). The Earth would have become static and
“dead”. Non-equilibrium boundary undulations with associated gravity anomalies,
that is deviations from the normal gravitational field, can be maintained either by in-
ternal elastic strength and/or generated by dynamic processes disturbing the equilib-
rium. Thermal convection provides such a process. The gravity effects of undulating
density boundaries are indistinguishable by spectral methods from effects generated
by voluminous lateral density variations, which themselves are also caused by con-
vective currents. This process is most relevant to the mantle; however, the large
mantle viscosity makes the convection currents move slowly, probably not exceed-
ing a few decimetres per year, under normal circumstances.

1.5.3 Continents and Oceans

The Earth’s surface obviously deviates from fluid-like equilibration. Topography
is governed by continents and oceans; about 30% of the Earth’ surface are conti-
nent, including continental shelf area submerged under shallow seas, and 70% are
deep ocean basins. Only small portions are occupied by continental slopes, deep sea
trenches and active high mountain belts. The rest is mainly in two plateaus above and
below sea level. It was early realized (e.g. by Alfred Wegener, 1912; Jacoby, 2001)
that this kind of frequency distribution of elevation, called the “hypsographic curve”,
calls for a fundamental explanation with two kinds of Earth crust. Now it is known
from a multitude of seismic studies that continental crust is 20–80 km thick, 20 km
in exceptional low elevation regions as some shelf areas or plains as the Pannonian
Basin, and perhaps up to 80 km under the highest mountain ranges and plateaus, as
the Himalaya and Tibet or the Altiplano of the Andes. Continental crust contains
cores of material that solidified 4 Ga ago or even earlier. Oceanic crust is about 7 km
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thick, on average, it is much younger, 180 Ma at most in the north-western Pacific,
and it is made of rocks of basaltic composition as products of mantle melting. All
ocean basins are traversed by ocean ridges, the active, i.e. spreading ridges gently
sloping towards the abyssal plains, see below. Passive ridges, active or extinct vol-
canic islands and seamounts are partly organized in some order, along chains, which
was not understood before the advent of continental drift and plate tectonics.

The notion of crust and crustal thickness has played an essential role in under-
standing the Earth and especially its gravity field. Before detailed seismic studies
had been carried out in large style, it was clear from mechanical and gravity ar-
guments that ocean crust and mantle are in approximate isostatic equilibrium with
continental crust and mantle. It was understood that continents and oceans differed
significantly in rock density in the upper 100 km depth range, or so. Seismology
then provided proxy information on crustal densities on the basis of density-related
seismic velocities (see Chap. 3). Thus, crust and mantle were basically geophysical
notions (seismic, gravity, isostasy). But as geodynamic and petrologic knowledge
increased, particularly after the advent of plate tectonics, the notions of crust and
mantle have somewhat shifted from geophysical to petrologic definitions involving
the processes of their origin. One now speaks about differences between the seismic
(or gravity) and petrologic crust or mantle. Crustal basaltic/gabbroic material at the
base of the continental crust may suffer a phase change to eclogite which in seismic
and density properties resembles high-velocity and high-density mantle material,
such that the seismic and gravity crust may appear thinner than the petrologic crust
which includes mantle-like, but crustal eclogite at its bottom. Under the ocean basins
an opposite process seems to occur when water percolates through the basaltic crust
into the topmost mantle, peridotite reacts with the water and is transformed into
low-density and low-velocity serpentinite. Thus the seismic (and gravity) oceanic
crust may look geophysically thicker than the basaltic, i.e. petrologic crust.

1.5.4 Plate Tectonics and Mantle Flow

The discovery of the plate movements and plate tectonics has completely changed
our view of the Earth, some 50 years after Alfred Wegener proposed continental
drift in 1912. Understanding the Earth and its gravity field is intrinsically linked to
the processes of plate interaction and the underlying mantle flow. Only these on-
going endogenic processes explain Earth structure, topography, gravity and many
more features. However, large-scale geology is shaped also by exogenic processes
as erosion, sediment transport and sedimentation in a complex interaction with the
endogenic processes. High mountain ranges are actively eroded, so they must be
geologically young and rising to be and remain high for some time. Erosion dis-
turbs the isostatic equilibrium and the response is a rise; endogenic push-up or pull
down may occur simultaneously. “Tectonically active” means that these processes
are at work and this nearly always shows up in gravity anomalies. Eroded material
is transported toward the ocean basins were it is ultimately deposited as sediments.
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Continental margins, and especially deltas of big rivers, become sediment deposits
which form loads on the crust or, better, on the lithosphere, and depress it. By this
mechanism of isostatic adjustment, very thick sedimentary sequences may be laid
down to form what earlier had been called “geosynclines”.

When studied by surface geology and deep geophysical methods, old peneplaned
regions turn out to be orogenic roots of former mountain ranges. In geology, such
structural and mineralogical characteristics define an orogeny or mountain belt; the
present-day topography is not an essential feature of an orogen. In the cold rigid up-
per crust, the old orogenic structures are frozen in, the strength of the rocks prevents
flow and equilibration on the scales of the structures; this again is expressed in grav-
ity anomalies. Most continental regions have experienced a series of orogenies, the
younger overprinting the older ones and often younger mountain belts were attached
to older solidified structures, themselves having formed in a similar fashion earlier;
thus, continents look like a complex mosaic of orogenic belts with the younger one
surrounding older cores. However, an old core may directly abut an ocean basin, and
some continents have evidently been torn apart such that older geological structures
are cut abruptly just to reappear on the other side of an ocean, e.g., the Atlantic.

Basically, convergence and continental collision form new continental crust.
Convergence of lithospheric plates implies subduction of one plate under the other,
or collision of continental plates, i.e. plates carrying continental crust at the conver-
gent margin, which inhibits subduction because of the low density and large buoy-
ancy of continental crustal material.

The opposite of convergence is plate divergence at active ocean ridges and in con-
tinental rift zones which may initiate large-scale divergence, continental separation
and ocean floor spreading which may ultimately reverse and lead to convergence and
orogeny completing a “Wilson cycle”. Or rifts may fail and will then be preserved
in continents at some stage of development. In the upper crust, such structures also
freeze in and generate gravitational signals.

The third type plate interaction is that of transform faults where two plates move
horizontally past each other, as in the case of the San Andreas Fault of western
North America or the North Anatolian Fault in Turkey. The movement juxtaposes
different structures and deforms them by shearing. Active transform faults connect
other types of plate boundaries, especially offset ridge segments in the oceans, and
beyond them, they become inactive fracture zones where lithosphere of different age
is juxtaposed.

These processes are more complex than a simple description can convey. The
relative movements are rarely exactly normal or parallel to the plate boundaries but
usually oblique and encompass aspects of transpression or transtension: boundaries,
at closer look, are not clear-cut faults but complex sets of faults and wide belts
of deformation in which, more or less locally, the sense of deformation may even
reverse, involving, e.g., grabens and rifts in collision zones.

Active volcanoes occur preferentially in tectonically active zones, mostly in
plate-marginal regions. These regions are generally also seismically active, i.e., they
are belts of seismicity or earthquake occurrence. That plate divergence is accompa-
nied by volcanism is not surprising as hot material must rise into the gap. When
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rising mantle melts it produces basalt (see above) often called “MORB” (mid ocean
ridge basalt), hence the result is ocean crust. But volcanism is also dominant in
convergence zones, exactly speaking: on the upper plate above the subducted one
where its surface reaches about 100 km depth. The products are different, typically
andesitic (the term being derived from “Andes”) which is a rock type intermediate
between acid or silica-rich and basic or silica-poor. Melting of wet, i.e. H2O-rich
subducted material is a source of this type of volcanic rocks. They play an important
role in orogeny and the forming of new or recycled or mixed continental material.

Volcanism of importance also occurs far from plate boundaries. Such an anoma-
lous occurrence of volcanism is called a “hot spot”, as e.g. Hawaii. Hot spots may
also occur near or on plate boundaries as in Iceland, lying on a divergent plate
boundary. The volcanic products, called OIB (ocean island basalt), are similar to
MORB, but significant differences especially in trace elements suggest different
sources. Hot spot volcanism is interpreted by the model of heat advection from
possibly great depth. The generally accepted model is called “mantle plume” envi-
sioned as concentrated upwelling which begins to be seen by seismic tomography
(see below).

The relations of plate motion with mantle convection are also not simple, in con-
trast to early ideas that large steady convection cells encompass the mantle and
that plate divergence occurs above the upwellings and subduction occurs over the
downwellings. Actually little is known about the flow pattern in the mantle, but
seismic mantle tomography does provide 3D P and S velocity perturbations from
standard radial velocity models, as PREM (Preliminary Reference Earth Model;
Dziewonski and Anderson, 1981; for tomography see e.g. Masters et al., 1996;
Grand et al., 1997; Kennett & van der Hilst, 1998; Kennett et al., 1998, to men-
tion just a few). If it is assumed, as often has been done, that velocity and den-
sity are related, for example, through temperature and/or chemical composition
of mantle rocks, flow patterns may be implied or can be derived and related
to the surface anomalies of gravity and/or the geoid. One difficulty is that the
velocity-density relations may vary in the mantle. Theoretical relations between
the geopotential and gravity with density (and thus indirectly with tomography)
are given in Schubert et al., 2001 (pp. 279–280), and an application is mentioned
(King & Masters, 1992).

Plumes which are part of convection may rise from different depths. Verti-
cal movements imply work in the gravity field and the question of mass balance
and thus also observable gravity anomalies. A very simple isostatic “Airy plume”
model is discussed in Sect. 5.6.9.3. Mantle plumes are predicted, among others,
by high-Rayleigh number convection experiments and numerical modelling and
hence dynamic plume models need to be explored (see e.g. Schubert et al., 2001,
pp. 537–543); however, this goes beyond the present treatise. Other types of melting
anomalies or heterogeneities in the mantle, for example, inherited from former plate
subduction, may also play a role.

Especially when relating the geodynamic aspects to gravity, the notion of rhe-
ology or the laws governing material strength, deformation, fracture and flow be-
comes of paramount importance. How much stress can be sustained elastically? Are
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there limits of force and mass imbalance (in the gravity field) which the Earth can
sustain for some time or for how long time? This is immediately related to the ques-
tion of maximum possible elevation differences and slopes or maximum possible
density contrasts and dimensions of such contrasts. It is the same question, in dif-
ferent terms, as that of isostasy and its possible modes. What we observe today is
a geological snapshot and geological history can tell us something about the rele-
vant time constants of the processes involved. Some appear static (as in “isostatic”)
maintained for billions of years, some appear transient, as for example, glacial or
postglacial isostasy or better: isostatic readjustment, lasting only thousands of years,
in some hot regions as Iceland much shorter.

The above structures and processes are driven largely by gravity and thermal en-
ergy and they generate characteristic gravity anomalies or signals. Unfortunately for
the study of Earth, the processes and signals are superimposed on each other in a
complex fashion and the observed picture is very complicated. As emphasized in
this treatise, however, gravity anomalies reflect horizontal or lateral density varia-
tions, such that the study of gravity is an essential aspect of regional geology. Below,
a brief discussion follows of what may be expected.

1.5.5 Associated Gravity Anomalies

The reader is again reminded of the differences of Bouguer anomalies (BA) and Free
Air anomalies (FA) as treated in Chap. 4. In the Bouguer model topography is but
added to, or in the case of the oceans subtracted from, an otherwise idealized layered
Earth. The Free Air earth model ignores the topography on the idealized earth which
acknowledges its approximate isostatic compensation within the upper 100 km. The
BA thus emphasizes such density variations inside the Earth while the FA is rather
affected by mass excess or deficit along the vertical down to some depth.

Beside gravity as such, the gravitational potential or, as derived from it, the geoid
undulations depict large-scale regional to global anomalies or the major features of
the gravity field better than gravity itself does, because the potential as an integral
quantity emphasizes the longer wavelengths. The geoid is the equipotential surface
which coincides with the mean sea level and is, thus, the idealized shape of the Earth
as defined by its gravity field. For geoid undulation we often briefly say “geoid”.
What is meant is the geoidal height reduced by the best fitting axial ellipsoid of
rotation. The geoid resembles the FA anomaly, but is much smoother.

The longest-wavelength FA gravity variations (apart from those related to rota-
tion and ellipticity) have dimensions of 103−4 km and show little or no obvious re-
lations with the continent-ocean distribution. Shorter wavelengths of order 102 km
closely image the continental margins, especially where they are steep and marked.
Passive, i.e. non-convergent, margins are usually accompanied by a dipolar band of
distinct positive anomalies above the shelf break and less distinct negative anoma-
lies above the foot of the continental slope. The amplitudes are tens of milligals and
the width corresponds to that of the continental margin. The steeper the continental
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slope, the more pronounced the gravity anomalies. This medium-scale feature is
mostly suppressed by the Bouguer reduction by which the change from positive to
negative BA values (from ocean to continent) is brought out. The broad-scale BA is
generally negative in continents, especially in highly elevated areas, and positive in
oceans, and the regional mean BA values approximately correspond to the effects
of the Bouguer reduction, i.e. the gravity effect of the topographic mass mathemat-
ically removed or subtracted on land and added in the oceans (see Chap. 4); on the
large scale, it looks like the reduction being wrong or superfluous. The conclusion
from this is that the homogeneously layered reference earth with topography only
added or subtracted is wrong; to the contrary, elevated excess mass is compensated
by low density deeper roots and vice versa, as mentioned above. This is the mass
equilibrium principle of isostasy.

All major plate tectonic margins are accompanied by relatively short-wavelength
gravity anomalies (FA and BA), especially where elevation has significant slopes.
“Short” here means typically one to several hundred kilometres, to a large portion
similar to the width of the geological and morphological structures. However, some
of the characteristic gravity anomalies extend beyond the immediate structural lim-
its. The relation with plate boundaries or margins is not simply one-to one but varies
along the boundaries. Nevertheless, some general trends exist.

There is some obvious relation of the longest gravity wavelengths with plate
tectonics. A belt of relatively positive FA anomalies accompanies the belt of plate
convergence surrounding the Pacific and extending also to the Mediterranean-
Himalayan-Sunda belt of convergence. In the Sunda region north of Australia exist
the largest positive FA anomalies and the highest geoid undulation of order 100 m;
it is the region with the largest concentration of plate convergence on Earth. The
positive circum-Pacific belt is surrounded by a less clear belt of broad negative FA
anomalies with the deepest minimum (order –100 m) on Earth south of India (near
Sri Lanka). The gravity high accompanying convergent plate margins is a broad FA,
up to several thousand kilometres wide accompanied by a narrow deep FA low over
ocean trenches following approximately the crest of the broad high. In continental
mountainous collision zones the deep FA low is missing. In the BA the relations
with the deep sea trench or mountain belt are just reversed as the Bouguer mass
reduction mostly outweighs the FA lows or highs. Topography and the Bouguer re-
ductions vary with the broad FA gravity high, therefore strong variations occur along
convergence zones and from zone to zone.

Active ocean ridges, i.e. the diverging plate boundaries, too, have a tendency of
slightly positive FA values (order 10 mGal) broadly correlated with ridge topogra-
phy. The ratio of the ridge related FA over topography, relative, say, to adjacent deep
sea basins, is low for the broad ridges but much larger for short wavelength of, say,
ridge crest rift valleys, sea mounts (and trenches). This reflects Newton’s 1/r2 law:
shallower, nearer masses have stronger gravity effects than the deeper compensat-
ing, more distant masses; moreover, different isostatic mechanisms may support this
trend. The gravity over topography amplitude ratio, especially when systematically
measured versus wavelength λ (or wave number 1/λ or 2π/λ ), is called admittance
and its study constrains density and dynamical models more tightly than gravity
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can do alone, because the ambiguity of gravity modelling is reduced by including
topography information.

The dominant gravity anomalies in the vast ocean areas, however, seem to bear
little relation to the plate motions or ocean depth and are not those related to plate
divergence. Geoid and FA highs occur also far from plate convergence as a large
positive feature or broad anomaly belt extending from the north Atlantic, centred on
Iceland, south-eastward across Africa to the southern Indian Ocean roughly marked
by the Kerguelen hotspot. A somewhat similar, less distinct feature occupies the
Southeast Central Pacific. Analysis reveals that these positive regions are correlated
with a high spatial frequency (or density) of hotspots. It suggests some relation with
dominant mantle upwelling.

That high FA and geoid anomalies accompany mantle upwelling, on the one
hand, and plate convergence and downwelling, on the other hand, is surprising.
Obviously, the relations of gravity with plate tectonics and mantle flow are not so
simple and are probably related to the interaction between the rheological mantle
structure and the convective flow.

Transform faults have not a very consistent gravity signature as they have also a
varied morphological expression. Both depend on the local relative normal motion
which varies in space and time because the faults are not straight, i.e. great cir-
cle lines. In zones under present convergence and compression with a transpressive
character, ridges or transverse ranges are being pushed up; in zones under present
divergence and tension with a transtensional character, pull-apart basins are opening
which are filled with sediments in continents of form deep chasms in distal ocean
areas (as the 7000 m deep Romanche Deep in the equatorial Atlantic). The associ-
ated gravity anomalies (FA) very much reflect the morphology with dimensions of
the order of 101−2 km (and more in length).

Hotspots have already been mentioned to preferably occur in high geoid and FA
regions. There seems also to exist a typical shorter-wavelength signal consisting of a
positive FA core surrounded by a negative rim, however, the anomalies are relatively
weak in comparison to the regional anomaly variations so that they are not easily
detected.

1.5.6 Other Large-Scale Gravity Features

Some broad gravity anomalies are associated and caused by transient external pro-
cesses as build-up and disappearance of large ice sheets presently experienced
10 000 a after the latest ice age. Both northern North America and Fennoscandia
are characterized by negative FA anomalies of up to several tens of milligals which
roughly outline the former ice cover. Here it seems evident that isostatic equilib-
rium after melting of the ice has not yet been achieved. The observations can be
used to estimate the viscosity of the mantle material flowing back towards the ris-
ing areas; the gross viscosity estimate is about 1021 Pa s, but the subject is more
complex and not treated here. Although the basic interpretation has been debated,
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the general view is supported by many additional observations as, for example, the
present uplift rates of the order of 1 cm/a in the central regions of former glaciation.

Transient features are also related to rapid erosion and sedimentation in limited
regions as high standing young mountain belts or big river deltas. However, the rates
of vertical change are generally much slower, typically one order of magnitude or
more, than glacially driven changes, and so are the gravity effects.

1.5.7 Smaller-Scale Gravity Anomalies Relevant to Exploration
for Economic Minerals

Gravity anomalies are often instrumental in guiding the exploration geophysicist
and geologist to objects of interest. The tasks are varied, a complete account of all
possibilities is not intended. Often gravity variations give the first overview of a
previously little studied region, be it a whole country or an area, a kilometre or less
in dimension. Correspondingly anomalies of interest range from the sub-milligal
to tens of milligal amplitudes and wavelengths from meters to tens or hundreds of
kilometres.

Generalisations of the targets of exploration are as difficult. They may be, from
small to large scales: cavities, man-made construction features, faults, ore concen-
trations, synclines and anticlines to whole sedimentary basins and other large scale
promising features. In very many cases, it is not the economic mineral as such which
gives a significant gravity signal, but the geological structures which are the targets
of study and which, from experience, are loci of oil or gas accumulation. Within
a sedimentary basin, faults and anticlines or synclines may be prospective sites of
oil, gas or mineral accumulations. Anticlines sometimes have dense cores or, in the
case of salt structures, the opposite. Obviously it is essential that broad geologic and
tectonic knowledge is coupled with geophysical understanding.

Technical applications of gravity in buildings are varied, and no general rule
is evident, but modern gravity meters are accurate enough for detecting structural
aspects as, for example, deformation when large weights are installed, or unknown
inhomogeneities under the building.

As gravity interpretation is highly ambiguous, it is the combination with other
data, for example, from seismic refraction or reflection, which will narrow down
the spectrum of possible models. In some cases, gravity is used to fill in gaps of
information; structural interpolation between seismic lines or between drill holes
can gain considerably from gravity modelling, and in special cases “blind spots” of
seismic models can be filled in this way.

1.5.8 Harmonic Spectrum of the Gravity Field

Beside the variation in space, spectral aspects of the gravity field are interesting
for interpretation. In many cases the spectrum is more revealing and may disclose
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some facets of the sources. Furthermore, certain features of harmonic fields or field
components are most attractive in their properties in space and since harmonic anal-
ysis is separation of individual harmonic components it has many advantages for
gravity interpretation. Moreover, numerical treatment in the spectral domain has be-
come very efficient. Global analysis is done by spherical harmonic expansion of
the field. In small regions as in exploration geophysics, expansion in one or two-
dimensional Fourier series serves the same purpose.

The global spatial spectrum is described in spherical harmonics, i.e. a series of
Legendre polynomials to degree n in latitude ϕ multiplied by a Fourier series in
longitude λ of orders m = 0 to n (see Sect. 2.10). The complete picture includes
all terms of the series which describe superimposed waves in two coordinates,
ϕ and λ , of minimum wavelength 2rπ/n(r = earth’s radius, 2πr = 40000km),
and thus n and m play the role of the wave numbers in the Fourier spectrum. The
complete set of coefficients (Cnm, Snm) of all series terms corresponds to the am-
plitude and phase spectrum of the Fourier expansion. Often only the amplitude
spectrum or the power spectrum, is considered; its dimensionless coefficients are
Sn

2 =o ∑n(Cnm
2 +Snm

2). The power spectrum has been defined in different ways in
terms of the normalisation. The coefficients are transformed to dimensional values
through multiplication with GM/r (disturbing potential in m2/s2), r (geoid heights
in m), GM(n+1)/r2 (gravity disturbance in m/s2), GM(n – 1)/r2 (gravity anomaly in
m/s2). Kaula (1966) suggested a decrease of power in the form

Sn ≈ 10−5(2n+1)1/2/n2,

called “Kaula’s rule of thumb”.
Hipkin (2001), on the other hand, who corrected the normalisation of the (log-

arithmic) power spectrum found that it shows at least three straight-line sections
versus n which can be related to three depth levels where mass concentrations occur
preferentially (which, at those depths, would have the white spectra of delta func-
tions or effective point masses). The interpretation is that anomalous masses (vol-
ume times density contrast) move buoyantly and thus interact with the rheological
mantle structure (e.g. layering). The argument is based on the upward or downward
continuation of the field (see Sect. 2.10) leading to two competitive effects: decay of
gravity effect amplitude with depth and inhibition of sinking or rising. Since domi-
nant wavelengths of anomalies increase with distance from the source or harmonic
waves of defined wavelength decay in amplitude the more rapidly the smaller the
wavelength, one may associate probable depths to the spectrum. However, one must
not forget that long wavelength sources may exist at shallow depths.

Another aspect is the relations with the spectra of other geophysical or geological
features. Relations exist, for example, between plate sizes and related large-scale
features (expanded in harmonic series) and the low end of the gravity spectrum.
Tomographic velocity variations at different depth levels in the mantle may have
spectra similar to those of gravity and guide the associations of velocity and density.
The approach is to compare the spectra, but whether or not relations are genetic
is generally quite open; relations may have common causes or be but accidental.
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In any case, ideas of possible or even probable interpretations may be suggested
by spectral relationships between data sets, though it seems unlikely that under the
circumstances probabilities can ever be reliably quantified. The principal ambiguity
of the inverse problem of finding the source from the gravity anomalies is the same
in the spectral domain as in the space domain.

On the small scales Fourier spectra of gravity, magnetics, geological structures
and related data sets may reveal interesting relationships of exploration interest.
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Chapter 2
Fundamentals of Gravity, Elements
of Potential Theory

2.1 Introduction

Gravity is the vector ggg of gravity acceleration. Usually its norm g is called “gravity”.
It is composed of the vectorially added components of the Earth’s gravitation and
the rotational or centrifugal acceleration. Its value is roughly 9.81±0.03m/s2 at the
Earth’s surface. A small part is time-varying. Gravity decreases with distance from
the surface, both upward (Newton’s law) and from some depth also downward (as
only the masses below the observer exert gravitational attraction).

The gravitational flux is defined as

Γ = S

∫
ggg•••dddsss (2.1.1)

through a surface area S; dddsss is the vectorial surface element, i.e., its normal vec-
tor. Γ is constant for any surface S that completely encloses the same source of g,
for example, the mass of the Earth M; it is a useful concept; among other aspects,
it explains the 1/r2 relation in Newton’s law of gravitation in three-dimensional
Cartesian space (see Sect. 2.7). But gravitational flux is not as commonly used as
magnetic flux.

2.2 Units

The MKS or SI unit of g is m/s2; for very precise values sometimes 10−9 m/s2 or
nm/s2 is used; traditionally geophysicists use cm/s2 = Gal (from Galilee), 10−3 Gal
or mGal and 10−6 Gal or μGal(10nm/s2). In older literature “gravity units”, g.u.,
have been used where 1g.u. = 0.1mGal = μm/s2.

For gravity gradients (see below) the SI unit is m/s2/m = s−2. Usually
10−9 s−2 = 1E (Eötvös). The standard vertical gradient of gravity near the surface
is ∼3086E.
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2.3 Elements of g

Assume a point i on Earth (latitude ϕi, longitude λi, height hi) with an associated
value gi, which for most purposes is the value of interest. Usually a small devia-
tion δgi, from a reference gb is measured, not the total or absolute value of gravity
acceleration:

δgi = gi −gb (2.3.1)

Most gravity observations are relative to a chosen base station b (Chap. 3).
Besides, observed gravity is principally referred to theoretical reference fields by
reductions (Sect. 4.5); δgi will always refer to a standard or reference gbi and can
be converted to absolute gi if gbi is known. The symbol g may be used for δg where
the difference is irrelevant.

Gravity g slightly varies with time (tides, changes in the hydrosphere and atmo-
sphere as well as tectonics (Chaps. 3, 4)), so that:

g = go +gt(t) (2.3.2)

The time-averaged value go is composed by vector addition of the gravitational
attraction aaao (>99%) of the Earth mass and centrifugal acceleration zzzo (<1%) of
the point, both time averaged:

gggo = aaao + zzzo (2.3.3)

This statement implies that the point of observation is fixed to the rotating Earth’s
body, which is more or less true also for the hydrosphere and atmosphere, but it is
not true for satellites in space. For observation platforms moving relative to the
solid Earth the centrifugal component is affected. The difference is taken into ac-
count in marine and airborne measurements in the form of the Eötvös reduction (see
Sect. 3.2.10.3).

The time-dependent part gt(t) of gravity at point P consists of the gravitational
attraction aaak of a unit mass at P by the cosmic masses (direct effect), the effect aaad of
tidal deformation d of the Earth’s body (indirect effect), and any acceleration aaac of
the coordinate system in an inertial frame; aaac is not determined and thus neglected.
The two tidal effects (direct and indirect) are of the order of 10−7 g and usually
combined (see discussion in Chap. 3) and removed from the observations by the
reduction procedures or by interpolation between repeated base station readings.
Thus go is the aim of most practical gravity measurements.

A very concise introduction (in German) into the basic definitions has been given
by Jung (1961), referred to as KJ61, 84–89. Readers are referred to it or to more spe-
cialized literature. The main point is that every mass element in the Earth “feels” the
gravitational attraction mainly from moon and sun and the accelerations due to the
motion of the Moon-Earth system and the Sun-Earth system (analyzed separately),
while the Earth rotation about its axis is primarily neglected. The vectorial summa-
tion of attraction and acceleration renders the system of tidal forces. Now the Earth
rotation comes into play by taking any point through this system of tidal forces,
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which have two maxima and minima during each lunar day (24 h, 51 min); the su-
perposition of the lunar and solar tides (about half as strong as the former) leads to
spring tides during full and new moon and neap tides during half moon; the latter
have about one third the strength of the former. The other neighbouring celestial
bodies, especially Jupiter, have only small modifying effects.

2.4 Coordinate Systems

In practice three kinds of coordinate systems are in use: spherical, cylindrical and
Cartesian. Note that, generally, O will denote the origin of the coordinates, P gen-
erally denotes an observation point, and Q is a source point or mass element. For
many purposes it is convenient to place P at O; it simplifies the expressions and
usually does not restrict the general applicability because the coordinate system can
be shifted. Placing Q at O would be simple only when no integration over source
volumes were required.

For local problems or small regions with dimensions small relative to the Earth’s
dimensions, it is generally convenient to take local coordinates, depicted in Fig. 2.4.1
with the respective mass elements. Cartesian x, y, z are shown as reference for the
other systems. The z axis is taken positive downward, i.e. parallel to local +ggg, as
usual, upper left displays the general relation of P, Q and the distance r between
them. Vertical cylinder coordinates, R,Λ , Z, and the corresponding volume element
are presented on the right hand side. The volume element in spherical coordinates,
least common for local problems, appears in the lower left. Local vertical cylinder
coordinates are analytically simple, but only for axial points P. Most used are local
right-handed Cartesian systems for machine-based calculations.

2.4.1 Spherical Coordinates

The natural coordinate system for global gravity are the spherical coordinates of a
point: rrr outward from the Earth’s centre O, latitude ϕ , or alternatively co-latitude
φ = π/2−ϕ and longitude λ . The centre O moves irregularly by several millimetres
inside the solid Earth because of atmospheric and other mass shiftings, but in gravity
modelling that is usually neglected.

Terrestrial or global Cartesian coordinates are centred at 0, x and y in the equato-
rial plane, x pointing toward longitude λ = 0◦, y pointing toward λ = 90◦, z point-
ing toward the north pole (φ = 0 or ϕ = 90◦); for points at the (spherical) Earth’s
surface:

x = r cosϕ cosλ = r sinφ cosλ
y = r cosϕ sinλ = r sinφ sinλ (2.4.1)

z = r sinϕ = r cosφ
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Fig. 2.4.1 Local coordinates with the respective mass elements; Cartesian x, y, z (downward)
shown as reference. Upper left: general relation of P, Q and r. Right-hand side: vertical cylinder
coordinates, R, Z, λ and volume element. Lower left: volume element in spherical coordinates

The natural volume element is dV = r2dr cosϕdϕdλ = r2dr sinφdφdλ , how-
ever, it is convenient only for calculations with reference to O at the centre of the
sphere.

2.4.2 Vertical Cylinder Coordinates

Cylinder coordinates, R, Z,Λ (Z downward, parallel to gggooo, R horizontal distance and
Λ an azimuth from some arbitrary reference direction) are handy for many purposes.
While the gravitational attraction of a mass element onto the origin 0 depends on
Λ , the Z component is independent from Λ , and the problem has cylinder geometry
which is convenient. The volume element is dV = RdRdΛ dZ and r = (R2 +Z2)1/2.
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2.4.3 Cartesian Coordinates

2.4.3.1 General Remarks

A local right-handed Cartesian system x, y, z, with an arbitrary (suitable) origin
O has z pointing down (nadir), x pointing N (geographical) and y pointing E. The
most flexibly applicable mass element is dV = dx dy dz. Down or nadir means ex-
actly parallel to g. However, as the gravity vector varies spatially, influenced by the
mass distribution, generally small x and y components will exist which are mostly
neglected. With x, y, z, geometrical situations of geophysical interest can be ade-
quately described in three-dimensional (3D) space if the objects are small relative
to the Earth’s size.

In many applications of gravity interpretation, one dimension, usually y, is ne-
glected because it is actually dominant in the sense that geological structures are
elongated in this direction; along y there is little or no variation, and the geometrical
description reduces to two dimensions (2D), x, z. 2D modelling plays an important
role (see e.g. Sect. 2.9.7).

2.4.3.2 Coordinate Transformations

This section refers only to Cartesian coordinates. In the task of integrating gravity
effects over extended mass volumes, it is often necessary or at least useful to carry
out coordinate transformations as gravity effects are invariant to coordinate trans-
formations of translation and rotation. This is exploited by taking generally, in all
expressions, the origin (0, 0, 0) to represent the observation point P. For evaluation
at a point P at xi, yi, zi (or hi) a translatory coordinate transformation of (xk, yk, zk)
is carried out: xxx = (xk − xi, yk − yi, zk − zi).

Forward gravity modelling is further greatly simplified for uniform bodies V in
specific orientations which can be achieved by certain rotational coordinate trans-
formations. Idealized bodies have planar surface elements, for instance, polyhedra
in Cartesian coordinates limited by triangles bounded by straight lines. As shown
below (Sect. 2.9.3 onward), integrating the gravitational effects by such bodies is
simple for the components normal or parallel to the bounding planes or lines. For
arbitrarily oriented linear and planar elements a rotational coordinate transforma-
tion is carried out, based on the coordinates of point couples or triples in x, y, z.
The elementary analytical geometrical or vector operations are briefly summarized
in view of their frequent application. When needed later, reference will be made to
the required expressions.

Starting with a point Pi or vector 0 → PPPiii = rrriii = (xi,yi,zi), define a straight line
from Pi → Pj as sssiii jjj = rrr jjj − rrriii = (Δijx, Δijy, Δijz) with the components Δijx = xj −xi,
Δijy = yj − yi, Δijz = zj − zi, and sij = (Δijx2 +Δijy2 +Δijz2)1/2. The normal vector
of a triangular plane a123 (a not to be confused with acceleration) may be defined
by three non-identical and non-collinear points P1, P2, P3 (rrr1, rrr2, rrr3), for instance,
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by the two vector sides sss12 and sss13 as the vector product: a123 = sss12 × sss13. Polygons
and polyhedra (Sects. 2.9.4.2; 2.9.5.2; 2.9.6.2) are parameterized such that one side
or edge with the corners P1 and P2 defines the local X axis with the unit vector
XXX = sss12/s12 in the (x, y, z)-system; the local Z unit vector is normal to the plane
aaa123, i.e. ZZZ = sss12 × sss13/(s12 s13) and YYY = ZZZ ×XXX . The angles between the Xj (or X ,
Y , Z) and xi (x, y, z) coordinate axes are given by the components Xji of the Xj unit
vectors in the xi-system; note that i and j, here, indicate the coordinates 1–3, not
the points P1, P2 and P3 defining the local coordinates; this must be kept in mind to
avoid confusion.

A plane in x, y, z can be written in various forms, for example: z = a + bx + cy,
in the form of axis intercepts xo, yo, zo: x/xo +y/yo + z/zo = 1 or as Hessian normal
form: xpx +ypy + zpz− p = 0, where ppp = (px, py, pz) is the normal vector from the
origin O = (0, 0, 0) to the plane. The parameters of the different forms can be deter-
mined either by vector operations (above) combined with rotation (below), or they
can be found by solving the linear equations represented by the point coordinates of
P1, P2 and P3 inserted (see Appendix M1). The normal distance p is useful for some
of the integrations of this chapter. The line sssij and its normal distance from O can be
treated similarly (see Appendix M2).

When the local system Xi = (X ,Y,Z) is rotated into the global system xj =
(x,y,z), any vector in one system can be transformed into the other system by mul-
tiplication of Xi with the orthonormal rotation matrix R which combines three suc-
cessive rotations about the axes x, y and z with the Euler angles α , β , γ , individually
(see Arfken, 2001):

Rx =

⎧⎨
⎩

1 0 0
0 cosα sinα
0 −sinα cosα

⎫⎬
⎭ Ry =

⎧⎨
⎩

sinβ 0 cosβ
0 1 0

cosβ 0 −sinβ

⎫⎬
⎭

Rz =

⎧⎨
⎩

cosγ 0 sinγ
−sinγ cosγ 0

0 0 1

⎫⎬
⎭

The general rotation matrix is derived, for example, by multiplication of the three
matrices:

R =

⎧⎪⎨
⎪⎩

cosα cosγ− sinα cosβ sinγ −sinα cosγ− cosα cosβ sinγ sinβ sinγ
cosα sinγ− sinα cosβ cosγ −sinα sinγ− cosα cosβ cosγ −sinβ cosγ

cosα cosβ cosα sinβ cosβ

⎫⎪⎬
⎪⎭

(2.4.2)

If the rotation is expressed by the single angle θ of rotation about an axis in the
direction of a unit vector vvv = (v1,v2,v3):

R =

⎧⎨
⎩

cosθ + v 2
1 (1− cosθ) v1v2(1− cosθ)+ v3 sinθ v1v3(1− cosθ)− v2 sinθ

v1v2(1− cosθ)− v3 sinθ cosθ + v2
2(1− cosθ) v2v3(1− cosθ)+ v1 sinθ

v1v3(1− cosθ)− v2 sinθ v2v3(1− cosθ)− v1 sinθ cosθ + v 2
3 (1− cosθ)

⎫⎬
⎭

(2.4.3)
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The above three matrices RRRx, RRRy, RRRz can be derived from (Eq. 2.4.3) by
substituting the unit vectors iii, jjj, kkk for vi.

Back rotation into the global system is carried out after integration (see
Sect. 2.9.3) and is achieved by applying the transposed rotation matrix RRRT which
is identical to the inverse RRR−1, and the matrix product RRRRRR−1 = RRRRRRT = III, the unity
matrix. Any points and vectors (geometry and gravity components) are treated this
way. If the rules are carefully followed, no errors or confusion should occur. The
execution will generally be by corresponding subroutines in the computer codes.

2D rotation is the special case where the axis of rotation is one of the global
coordinate axes, say, Xm ≡ xm. Xi (i �= m) is correspondingly normal to xm and,
applying the same definition as above for the angle between the axes Xi and xm:
cos(Xi,xm) = 0 and cos(xm,xm) = 1. If only two-dimensional coordinates are con-
sidered, xi = (x1,x2) and Xi = (X1,X2), the rotation matrices are given as

2RRR =
(

cos(X1,x1) cos(X1,x2)
cos(X2,x1) cos(X2,x2)

)
or

(
cos(X1,x1) cos(X1,x2)
−cos(X1,x2) cos(X2,x2)

)
(2.4.4)

and

2RRRT =
(

cos(X1,x1) −cos(X2,x1)
cos(X1,x2) cos(X2,x2)

)
(2.4.5)

Determination of the normal distance p of an arbitrary straight line or an arbitrary
plane from P(0,0) or P(0, 0, 0) [or from any other point] is a related task which has
to be solved frequently; the expressions for p (Appendices M1.10, M2.3) are given
in the Appendices M1 and M2.

2.5 Newton’s Laws: Gravitation and Inertia Plus Centrifugal
Acceleration = Gravity

From Kepler’s laws of planetary orbits Newton derived his two fundamental laws of
classical mechanics. Two point-like masses M and m, at positions Q and P, respec-
tively, attract each other through space with a central force fff along the radius vector
rrr (pointing from Q to P, length r); the force acting on m is:

fff = −(GM m/r2)rrr/r (2.5.1)

The minus sign is a matter of convention, depending of the definition of rrr; in
geophysics it is usually dropped, i.e. replaced by the plus sign, as generally done
here. If uncertainties arise, the sign must be carefully considered. The notion of rrr
may be sometimes confusing (see 2.9.1.2), if used for both the vector from a given
source Q to receiver P (as in Eq. 2.5.1) and for the radius vector from the Earth’s
centre to a point P of observation. Gravity is directed against the latter rrr, but for
practical reasons, e.g. for calculating the gravitational effect of a buried mass, ggg is
taken positive downward and −rrr = zzz is the usual vertical coordinate. When we write



30 2 Fundamentals of Gravity, Elements of Potential Theory

(2.5.1) as fff = Gm/r2 rrr/r, rrr is the vector from P to Q, and its vertical component of
usual practical interest is fz/r (see Sect. 2.9.1.2).

The 1/r2 law, as mentioned above, expresses that a constant gravitational flux
Γ (Eq. 2.1.1) flows from mass through Euklidian space. Other ways of expressing
this are Gauss’ integral theorem and the Laplace and Poisson’s equations, see below
(Sect. 2.7.6).

G is the universal gravitational constant which in the SI system is (National In-
stitution of Standards and Technology, DODATA recommendation 2002):

G = 6.6742±0.001 ·10−11 m3kg−1 s−2.

Mass has inertia; it moves with constant velocity vvv if no force acts on it and
experiences an acceleration aaa if a force fff a acts on it:

fff a = m aaa (2.5.2)

Combining the two equations ( fff = fff a) we get the gravitational acceleration as m
cancels if both gravitation and inertia relate to the same mass, i.e., aaa is independent
from the test mass m:

aaa = −G M/r2rrr/r (2.5.3)

We also introduce mass density ρ (or simply density) as total mass per total
volume, V .

ρ = m/V (2.5.4)

In geophysics volume and mass include pore space. Density is usually considered
a continuum in space, i.e. atoms or elementary particles and voids are neglected.
Density is assumed to be constant or vary continuously or discontinuously across
surfaces that define step-like density changes of Δρ . For the points lying exactly on
discontinuous boundaries special care has to be taken.

Mostly in applied geophysics, only density anomalies Δρ count, i.e. density con-
trasts versus a reference density ρo, of the surrounding medium

Δρ = ρ−ρo,

where ρ is the mean density in V . Thus, geophysicists often deal with “negative
densities” which are not really negative. As a gedanken experiment, consider two
hollow spheres within water and determine their mutual gravitational interaction
(Task 2.4). The reference density ρo, is generally assumed either constant or vary-
ing only with depth z. A detailed discussion of ρo follows in Sect. 6.1.5.1. Lateral
variations themselves generate gravity variations and are therefore not generally
useful as reference.

Note, at this point, that gravity is not concerned, in practical geophysics, with
gravitational aspects of particle physics, nor are we here concerned with relativistic
effects and non-Euclidian space. We are concerned with exploration and terrestrial
as well as planetary scales.
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As a basic rule, potentials of individual source masses do not mutually influence
each other, i.e. they are independent from each other, and so are their derivatives:
hence they can be added to each other or integrated over extended volumes V . Con-
sidering mass anomalies, their Newtonian gravity effect is:

δδδggg =
∫

V
dddggg = G

∫
V
Δρ(rrr/r3) dV (2.5.5)

Although this may seem trivial, it need not be so, for in the case of magnetics
mutual induction effects cause deviations from this rule (e.g. demagnetisation).

For earth gravity, to a first approximation, we often set M = Mearth although it
is not point-like. For a homogeneous sphere (or for a radially symmetric density
depending only on r) the integration over all mass elements leads to the expression
with the total mass at the sphere centre; integration can be simplified by applying
the solid-angle principle, see Sects. 2.9.1.1, 2.9.6.3 (Task 2.1).

Newton’s laws are the basis for the whole field of geophysical gravity research
and geological interpretation, aided, e.g., by the Laplace equation (2.7.1). Newton’s
1/r2 space variation is fundamental in Cartesian geometry and physics and thus also
the basis of the Laplace and Poisson equations (2.7.1 & 2.7.5).

At this point, the other – very small – contribution to gravity must be briefly
described (although it is irrelevant for most tasks of interpretation of gravity anoma-
lies). The centrifugal acceleration zzz acts normal to the instantaneous rotation axis or
vector of angular velocity ω . It depends on the distance R from the axis of rotation
(with r = Earth’s mean radius):

zzz = ω2 RRR = ω2r cosϕ(RRR/R) = ω2 r sinφ(RRR/R) (2.5.6)

and the vectorial sum (Eq. 2.3.3) renders, in view of the smallness of z relative to
the gravitational acceleration a, zo = zcosϕ = zsinφ , such that:

zo = ω2r cos2ϕ(RRR/R) = ω2 r sin2 φ(RRR/R) (2.5.7)

Finally it is worth mentioning here, that the gross properties of the Earth’s gravity
field are described by the idealized normal gravity formula which depends only on
latitude

2.6 Gravity Potential and Equipotential Surfaces

The two components of time-averaged gravity are gravitational attraction aaaooo and
centrifugal acceleration zzzooo. Both components of the gravity field are conservative in
the sense that the amount of work dW done along a path dddsss is dW = mggg dddsss, where
m dddggg is the weight of the test mass m; the potential difference depends only on the
locations of starting and end points. In many respects the mathematical treatment of
a scalar field is simpler than that of a vector field. This can be exploited. It is also
used to measure gravity variations in the oceans by radar satellites. If no other forces
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act on the fluid particles at the surface, they will form a level surface in equilibrium;
a surface cannot maintain a slope, gravity would work and move the elements toward
equilibrium. The observation that, apart from local topography, the Earth’s shape is
close to an equilibrium ellipsoid tells us that the long-term constitution of gross
Earth material is fluid.

The gravitational potential Ug is implied in the 1/r2 law. It is most easily shown
for a single mass element Δm or point mass at rrrm attracting a unit mass at P (rrrp)
with:

ΔΔΔggg = −G Δm(rrrm − rrrp)/| rrrm − rrrp |3= −G Δm ∇∇∇(1/| rrrm − rrrp |) (2.6.1)

with the gradient operator nabla ∇= (∂/∂x,∂/∂y,∂/∂ z). The minus signs are usu-
ally dropped (see below).

Gravity is a potential field and is itself the field strength or the negative gradient
of the scalar potential Ug of Earth:

Ug = −G Mearth/ | rrro − rrrp | (2.6.2)

where rrro refers to the geocentre; hence, ggg = −∇∇∇Ug. = −G Mearth∇∇∇(1/ | rrro − rrrp |).
Again, the minus sign is dropped in geophysics for practical reasons. This sign
convention ignores the fact that the potential (to do work) increases with distance r
from a source such that Ug must vary correctly as −1/r and gravity points against rrr.
However, additional mass increases the amount of work or the potential to do work
and, analogously, the positive gravitational force on P acts towards Q.

Equation (2.6.2) holds also for the integral over the whole Earth’s body. This fact
is just another way of saying that the work done or the potential is the scalar product
of force ggg times path vector dddsss integrated across a path sss from P1 to P2:

Ug
1,2 =

∫ P2

P1
ggg•••dddsss = G Mearth (1/r2 −1/r1) (2.6.3)

or generally
Ug = G Mearth/r +C, (2.6.4)

where C is an arbitrary constant of integration. This fact demonstrates that the po-
tential is always determined only relative to some reference point or level.

The centrifugal acceleration zzz has also a potential, called here Uz, which uniquely
depends on the distance R from the axis of rotation. With RRR = 1/2∇∇∇|RRR|2, (Eq. 2.5.6)
can be written:

zzz = ∇∇∇(1/2ω2|RRR|2) and hence the potential is

Uz = 1/2ω
2|RRR|2. (2.6.5)

Finally, the gravity potential is:

W = Ug +Uz = G
∫

earth
dm/|rrrm − rrrp|+ 1/2ω

2|RRR|2 and ggg = ∇∇∇W. (2.6.6)
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Gravity anomalies δg are reduced for normal gravity which includes the
centrifugal effect (Sect. 4.4.1). Anomalies and calculated gravity effects are both
free from the centrifugal term and thus comparable. They represent only the
z-components of the gravitational effects of mass anomalies. It is then proper to
write δUg, or short: δU , but δW is more usual.

W has the physical unit m2/s2 = J/kg or cm2/s2 = erg/g and is an abstract
quantity not much used in practice. Instead of the potential W (or anomaly δW ),
an equivalent quantity which can be visualized, is generally chosen in the form of
equipotential surfaces or briefly “W -surfaces”: W or δW = const. The work done by
gravity is independent from the path (see above): one can thus construct unique sur-
faces with the potential difference between them constant and the vector ggg (or δδδggg)
being normal; thus, along paths dddsss parallel to them, no work is done: δδδggg · dddsss = 0.
The distance between surfaces separated by fixed ΔW varies and is inversely propor-
tional to average g = |ggg| between them. Outside the source region W is differentiable
and the W -surfaces are smooth. Equipotential surfaces are characterized by a scalar
potential value, relative to some reference and are representations of the gravity field
as valid as is gravity itself, but the potential emphasizes the longer wavelengths com-
pared to gravity (Sects. 2.6; 2.10.5). It is worthwhile to make an effort to visualize
the geometry of the W -surfaces as it offers several practical possibilities (see be-
low). A remark may be added in view of the concept of anomaly (see Sect. 1.4):
it is the irregularities or curvature variations (undulations) of the W -surface, which
characterize the anomalies as a principal property of point ensembles, not of single
points.

A special W -surface is the geoid which describes the potential that coincides
with mean sea level if not affected by waves, ocean currents and temperature and
salinity variations. Usually the geoid undulation N is given which represents the
geoid referenced to the normal ellipsoid of rotation. From g = ∂W/∂ z≈ΔW/N (see
Chap. 1) follows Bruns’ formula for the deviation N from the reference ellipsoid,
e.g. given in the unit meter (m):

N ≈ ΔW/g (2.6.7)

Where traditionally the value g of normal gravity is taken. In the precise relation
between gravity anomalies and geoid undulations the integral of local gravity along
its trajectory between the two surfaces has to be taken into account.

N may be regarded as the geoid surface or a point on it. In local gravity in-
terpretation the fine structure of the W-surfaces is of interest, i.e. minute small-
scale undulations. Their geometrical visualisation includes curvatures of vertical
and horizontal sections and their mutual relationships is subject to geometrical anal-
ysis. They reveal relations between different components of the gravity field and
quantities which cannot be directly measured. Curvatures, again, emphasize local
structures, i.e. shallow mass anomalies. Smooth regional field components are sup-
pressed, if not beforehand removed (see Sect. 4.7.7). Application, especially to local
anomalies δgz, is presented in the next Sect. (2.7).

Finally, in this context in spherical coordinates, the expressions at point P =
(r,ϕ,λ ) for the gravitational potential and for the gravity effect at source point
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Fig. 2.6.1 Spherical
geometry of the points
P (observation) and Q
(source dm) and distance
R between them; notations of
Eq. (2.6.10)

Q = (r∗,φ ∗,λ ∗) must be given (Fig. 2.6.1), written for the infinitesimal mass el-
ement dm = Δρ dV :

dδW = G dm/R = GΔρ dV/R (2.6.8)

and

dδg = G dδW/r = Gdm∂/∂ r(1/R)∂R/∂ r (2.6.9)

where

R = (r2 + r∗2 −2rr∗ cosα)1/2 and cosα = cosφ cosφ ∗

+ sinφ sinφ ∗(λ −λ ∗) (2.6.10)

2.7 Laplace Equation, Field Quantities, Equivalent Stratum;
Derivation of Some Field Quantities, Surface Integrals,
Poisson Equations, Gravitational Flux Γ

The potential field variation in space W (x,y,z) is governed by a simple partial
differential equation of second order. It is especially simple in source-free space
where the three second partial derivatives of W with respect to the coordinates add
to zero, while within a continuously varying source volume, i.e. in density-filled
space, the sum is proportional to density. In the first case the equation is called
after Pierre Simon Laplace (1749–1827), in the second after Siméon Denis Pois-
son (1781–1840). Especially the Laplace equation has many direct and indirect
applications in gravity analysis and interpretation. In this section, emphasis is on
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descriptions and relationships in space. The relationships are inherent in the idea
of a field (see Sect. 1.4) and are generally based on the fact that it is given as a
continuous and differentiable function of space coordinates, as Cartesian or other.
In practice discrete observations are given, and they are taken to approximate func-
tions which are then the basis for deriving other field quantities (Sect. 2.7.4) or field
integrals (Sect. 2.7.6).

2.7.1 Source-Free Space: Laplace Equation

In empty space, the gravitational field ggg = ∇∇∇Ug = ∇∇∇W is divergence-free – evi-
dently: gravity has no interior source:

ggg = div grad W = ∇∇∇∇∇∇W = Wxx +Wyy +Wzz = 0 (2.7.1)

(Laplace equation). The operator ∇∇∇∇∇∇ = Δ is called Laplace operator, in Carte-
sian coordinates: (∂ 2/∂x2

1 +∂ 2/∂x2
2 +∂ 2/∂x2

3). It is easily verified by differentiating
Ug = Gm/(x 2

1 + x 2
2 + x 2

3 )1/2. It can also be demonstrated by applying Gauss’ inte-
gral theorem

∫
v∇∇∇ggg dV =

∫
s ggg dddSSS for a point-like source at O and a sphere around

it (volume V , surface S). Volume elements dV in spherical coordinates (Fig. 2.4.1,
lower left) are bounded by six surface elements dddSSS = nnnedS (nnne = surface normal
unit vector): four planar sides containing ggg (hence ggg dddSSSnnn = 0) and two spherical
caps separated by dr and normal to ggg, hence ggg dddSSS = g dS. As S and g vary inversely
to each other and gdS has opposite signs on both caps, both contributions to the
surface integral cancel: ∫

s
gggdddnnn = 0. (2.7.2)

In other words, no net gravitational flux Γ (Eq. 2.1.1) passes through S if no mass
is enclosed by the surface S. This can be generalized to the flux through limited solid
angles for the integration over given mass bodies (see Sect. 2.9).

An empty volume, co-rotating with Earth, is not absolutely source-free, because
the centrifugal acceleration field is not divergence-free. From ∇∇∇∇∇∇Uz = ∇∇∇zzz. with
zzz = ω2RRR, the derivation is ∇2Uz = ∇∇∇zzz = ω2∇∇∇RRR = 2ω2 (from RRR = (xeeex,yeeey,0),
∇∇∇RRR = 2).

Combining the two components gives

ΔUz = 2ω2 (2.7.3)

The term 2ω2 is constant and small. If gravity anomalies are considered after
reductions for the normal gravity field, the term 2ω2 is removed, and for the anoma-
lous field, related to the mass anomalies, the Laplace equation holds. In the space
around Earth the 2ω2 term does not exist for free moving observers.

Note at this point that in so-called two-dimensional (2D) anomalous fields the
Laplace equation degenerates to:
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∇∇∇δδδggg = div grad δW = ∇∇∇∇∇∇δW = δWxx +δWzz = 0 (2.7.1.2D)

as δWyy = 0. 2D approximations are important in gravity interpretation, when a
gravity anomaly is characterized by one dominant elongation in which variations
are then neglected and W is considered constant; usually in the y direction. In that
case, the mass distribution is approximated by neglecting the dominant dimension,
and described in the x, z plane (see Sect. 2.9.7).

2.7.2 The Field Quantities

Field quantities or elements of the field are the potential δW and its space deriva-
tives. To reiterate: the Laplace equation completely describes the mutual relations
between the field quantities in source-free space. Any complete representation
as W , ggg or other spatial derivatives of W carries the same amount of informa-
tion, though emphasizing different spectral windows; higher derivatives emphasize
shorter wavelengths due to differentiation. Gravity g, as the norm of the gravity vec-
tor, alone, is an incomplete description of the gravity field, but its spatial variation
often allows to recover aspects of the vector field.

Any of the field quantities can be defined for the point mass or infinitesimal mass
element of integration. In the following, the expressions, in the three coordinate
systems used in geophysics, are listed for the potential and its first, second and
some third derivatives.

Starting with the 3D Cartesian coordinates, assume an observer at P = (0,0,0)
and a point mass m at Q = (x, y, z) separated by r = (x2 + y2 + z2)1/2. For integra-
tion the point mass is replaced by the infinitesimal mass: dm = ρdV = ρdx dy dz.
Although mostly anomalies δW , δg etc. are considered here, “δ” is dropped for
shortness, and the potential is called W , in contrast to U as in Eq. (2.6.3) used
there to emphasize gravitation versus gravity with the centrifugal field included. As
customary in geophysics, the quantities are taken to be positive. Subscripts, here,
strictly mean partial differentiation of the scalar potential W , as Wx ≡ ∂W/∂x. The
other meaning in use for an index indicating components of the vector δδδggg, as δgx,
will here not lead to confusion, but where the double meaning leads to ambiguity,
differentiation will be explicitly expressed.

Only the geometrical aspects of the integrands, expressed in coordinates and
distances r, denoted by italics, are listed below, while Gρ dV is dropped. For ex-
ample, for W we write fW and instead of the complete dW = Gρ dV/r, we write
fW = 1/r, or for dg = Gρ zdV/r3, we write fg = z/r3, etc. If density ρ is assumed
constant, it is written before the integral symbols; otherwise it must be included
in the integration. All the expressions, below, must be completed by Gρ dV , e.g.,
W = Gρ

∫
fW dV or G

∫
ρ(x,y,z) fW dV etc. The geometrical integrands are:

fW = 1/r r = (x2 + y2 + z2)1/2 (2.7.4)

fg = fgz = fWz = z/r3, fgx = fWx = x/r3, fgy = fWy = y/r3 (2.7.5)
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fWxx = ∂ fgx/∂x = 3x2/r5, fWyy = ∂ fgy/∂x = 3y2/r5, (2.7.6)

fWzz = ∂ fgz/∂ z = (2z2 − (x2 + y2))/r5, (2.7.7)

fWzx = ∂ fgz/∂x = 3xz/r5,

fWzy = ∂ fgz/∂y = 3yz/r5, fWxy = ∂ fgx/∂y = ∂ fgy/∂x = 3xy/r5 (2.7.8)

fWzzz = ∂ 2 fgz/∂ z2 = 3z(2z2 −3(x2 + y2))/r7, (2.7.9)

Note that the above differentiations pertain to the environment of the observa-
tion point P, not to the small volume source element dV = dx dydz or in spherical or
cylinder coordinates where dV = r2 sinϕ dr dϕ dΛ or dV = RdRdZ dΛ , respectively,
vary with r and ϕ or with R and change size. Confusion is to be avoided when differ-
entiating expressions contain the respective variables. When integrating the effects
the situation changes to the source where any change in element size is relevant.

In the 2D case, everything is constant for y from −∞ to +∞, and integra-
tion over y is carried out first. While generally ρ = ρ(x,z), for simplicity, ρ =
const is assumed. With r = (x2 + z2 + y2)1/2 and R = (x2 + z2)1/2, the 2D po-
tential W = Gρ−∞

∫ +∞[(1/r)dy]dxdz = 2Gρo
∫ ∞[(1/r)dy]dxdz = 2Gρ ln[(x2 + z2 +

y2)1/2 + y] |∞o = 2Gρ[∞− lnR]. This is the so-called logarithmic potential. The ad-
ditive constant ∞ is irrelevant for practical applications, as any constant is, because
the two-dimensionality is anyway not strictly realistic, and only the variations of the
second term count, for example, when dW is differentiated with respect to x or z.
Henceforth the minus sign of lnR is dropped (sign convention in geophysics), and
“R” is written “r”. Thus we write: dW = 2Gρ lnr = 2Gρ ln(x2 + z2)1/2. The other
field quantities can be derived by differentiating the potential with respect to z or by
integrating the 3D quantities over y; the latter way avoids the infinite constant of the
logarithmic potential.

As above, in the list, from the full expressions Gρdxdz has been dropped and only
the integrands are shown. The factor 2, characteristic for 2D, has been kept. For in-
tegration, the expressions must be completed, e.g. for W by writing Gρ

∫∫
fW dxdz.

fW = 2lnr r = (x2 + z2)1/2 (2.7.4.2D)

fg = f gz = fWz = 2z/r2, fgx = fWx = 2x/r2, fgy = 0 (2.7.5.2D)

fWxx = ∂ fgx/∂x = 2(x2 − z2)/r4, fWyy = ∂ fgy/∂x = 0 (2.7.6.2D)

fWzz = − fWxx = ∂ fgz/∂ z = 2(z2 − x2)/r4, (2.7.7.2D)

fWzx = ∂ fgz/∂x = 4xz/r4, fWzy = ∂ fgz/∂y ≡ 0, fWxy = ∂ fgx/∂y = ∂ fgy/∂x = 0
(2.7.8.2D)

fWzzz = ∂ 2 fgz/∂ z2 = 4z(z2 −3x2)/r6, (2.7.9.2D)

Useful variants of the above expressions are based on horizontal cylinder coordi-
nates with y as axis through P, r = (x2 +z2)1/2 as defined above, sinϕ = z/r, the 2D
volume element r dr dϕ and the density constant or ρ = ρ(r,ϕ) over which has to
be integrated. All the expressions, except fW , contain terms with z/r = sinϕ and/or
x/r = cosϕ , such that the 2D field quantities will be listed with only Gρ dr dϕ



38 2 Fundamentals of Gravity, Elements of Potential Theory

dropped (with the consequence that dW contains a factor r and that the power of r
is decreased by 1 per differentiation). Again, as an example for a full expression:
W = Gρ

∫∫
fW r dr dϕ .

fW = 2r lnr r = (x2 + z2)1/2 (2.7.4.2Da)

fg = fgz = fWz = 2sinϕ, fgx = fWx = 2cosϕ (2.7.5.2Da)

fWxx = ∂ fgx/∂x = 2cos2ϕ/r (2.7.6.2Da)

fWzz = − fWxx = ∂ fgz/∂ z = −2cos(2ϕ)/r (2.7.7.2Da)

fWzx = ∂dgz/∂x = 2sin2ϕ/r, (2.7.8.2Da)

fWzzz = ∂ 2dgz/∂ z2 = −4sin3ϕ/r2 (2.7.9.2Da)

In spherical coordinates, P at the centre of the sphere (r = 0) is the reference
point and the mass element at Q = (r,ϕ,λ ) is dm = ρ dV = ρ r2 cosϕ dr dϕ dλ ; ϕ
corresponds to latitude and λ corresponds to longitude or azimuth and for symmetry
no azimuthal components exist. The quantities of interest are the same as above, as
the x, y, z coordinates continue to be used. The relations are (Eq. 2.4.1):

x = r cosϕ cosλ ; y = r cosϕ sinλ ; z = r sinϕ.

This set-up is not designed to calculate effects of mass at Q on P, where both
points are anywhere in a sphere, for example, the globe. Again, the expressions
in italics are normalized by Gρ dV = Gρr2 cosϕdr dϕ dλ , such that, for example:
W = Gρ

∫∫∫
fW r2 cosϕ drdϕ dλ :

fW = 1/r r = r (2.7.4a)

fgz = fWz = sinϕ/r2, fgx = fWx = cosϕ cosλ/r2, fgy = fWy = cosϕ sinλ/r2

(2.7.5a)

fWxx = 3cos2ϕ cos2λ/r3, fWyy = 3cos2ϕ sin2λ/r3, (2.7.6a)

fWzz = (3sinϕ−1)/r3, (2.7.7a)

fWzx = 3sinϕ cosϕ cosλ/r3, fWzy = 3sinϕ cosϕ sinλ/r3,

fWxy = 3/2cos2ϕ sin2λ/r3 (2.7.8a)

fWzzz = (5sin3ϕ−3sinϕ)/r4, (2.7.9a)

Briefly, the radial effects are, of course, fgr = ∂ fW /∂ r = ( f 2
gx + f 2

gy + f 2
gz)

1/2 =
1/r2, fWrr = 2/r3 and fWrrr = 6/r4; differentiation with respect to ϕ and λ renders,
of course, zero. Remember that differentiations is done at the observation point P
coordinates, not at the source element dV ; confusing these leads to totally different
and inconsistent results.

The following expressions are for the vertical cylinder mass element dm =
ρRdRdZdΛ . Again, the volume element at Q grows in size with distance R, but
differentiation is carried out for P on the axis at R = 0, Z = 0, with r = (R2 +
Z2)1/2(x = RcosΛ ,y = RsinΛ ,z = Z). The example for a full expression is, again,
W = G ρ

∫∫
fW RdRdZ dΛ . The normalized integrands are:
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fW = 1/r r = (R2 +Z2)1/2 (2.7.4b)

fgz = Z/r3, fgx = RcosΛ/r3, fgy = RsinΛ/r3 (2.7.5b)

fWxx = 3R2 cos2Λ/r5, fWyy = 3R2 sin2Λ/r5, (2.7.6b)

fWzz = (2Z2 −R)/r5, (2.7.7b)

fWzx = 3ZRcosΛ/r5, fWzy = 3ZRsinΛ/r5, fWxy = 3/2sin2Λ/r5 (2.7.8b)

fWzzz = 3Z(2Z2 −3R2)/r7, (2.7.9b)

The horizontal radial components are fgR = R/r3; fWRR = 3R2/r5.

2.7.3 The Equivalent Stratum

The Laplace equation implies, that within empty space the variation of W(x,y,z) is
sufficiently defined by the values at the boundaries of the source space. Thus, the
solution of the Laplace equation is a boundary value problem which implies that the
real mass distribution behind the surface can be replaced by any equivalent mass
generating the same gravitation at the boundary. This is the ambiguity problem of
gravity inversion.

An example is the equivalent stratum, i.e. an infinitely thin surface mass layer
(Sects. 5.6.1, 5.6.5; Task 5.2) with surface density ρ∗ (kg/m2) normal to gravity,
at depth z = const below P, where, as in most following arguments and figures, P is
placed at O = (0,0,0); ρ∗ = ρ∗(x,y). Generally, as P → Q on the stratum, i.e. z → 0,
there appears a formal problem, as r → 0 and the integrand in the δg integral over
the surface mass becomes indefinite, i.e. zero divided by zero, 0/0, at r = 0. If ρ∗ is
continuous and differentiable, then always a small radius ε exists about Q such that
ρ∗(Q) can be replaced by its constant mean value ρ∗(ε), and the integral over the
whole infinite plane

∫
ρ∗(Ω)dΩ → ρ∗(xQ,yQ) Ω with Ω → 2π, i.e., the solid angle

Ω under which the stratum is seen from P is dominated by the local value of ρ∗. In
other words, with ρ∗ before the integral δg(P) → δg(Q) = δg(P→Q) → 2π G ρ∗(Q) =
2π G ρ∗, from which follows:

ρ∗ = δg(x,y)/(2πG). (2.7.10)

without causing an error greater than any pre-set small limit; if |ρ∗−ρ∗(Q)|< ε/6π,

|δg(P) −2πGρ∗(Q)| < εG (see KJ61, 112–113).
By inserting (Eq. 2.7.10) into the integrals, expressions (KJ61, 113–117) follow

for the upward continuation (see also Sect. 2.10.5.3) of the field quantities whose
normalized integrands are listed in Sect. 2.7.2 as (Eqs. 2.7.4, 2.7.5, 2.7.7 & 2.7.9)
and their variants. Some integrals are listed below in Cartesian (x, y, z) and vertical
cylinder coordinates (R, Z, Λ ), numbered as in (Eqs. 2.7.4, 2.7.5, 2.7.7 & 2.7.9). In
cylinder coordinates, the azimuthal integration (o

∫ 2π δg dΛ ) or averaging for hori-
zontal distances R = const is carried out first: δg = δg(R)≡ 1/(2π)o

∫ 2π δg(R,Λ)dΛ,
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by definition, with the vertical distance Z between P and the equivalent stratum and
r = (x2 + y2 + z2)1/2 = (R2 +Z2)1/2:

δW = 1/(2π)
∫

x

∫
y

δg(x,y)/r dxdy =
∫ ∞

o
δg R/r dR (2.7.4c)

δg = z/(2π)
∫

x

∫
y

δg(x,y)/r3 dx dy = Z
∫ ∞

o
δg R/r3 dR (2.7.5c)

δgz = 1/(2π)
∫

x

∫
y

δg(x,y)[(2z2−(x2 +y2)]/r5 dx dy =
∫ ∞

o
δg(2Z2−R2)R/r5 dR

(2.7.7c)

δgzz = 3z/(2π)
∫

x

∫
y

δg(x,y)[(2z2 −3(x2 + y2)]/r7 dx dy

= 3Z
∫ ∞

o
δg(2Z2 −3R2)R/r7 dR (2.7.9c)

The corresponding 2D expressions, by combining (Eq. 2.7.4.2D) etc. with
(Eq. 2.7.10), are, with r = (x2 + z2)1/2 (no integration over dz):

δW = 1/π
∫ ∞

o
δg(x) ln(z/r) dx (2.7.4.2Dc)

δg = z/π
∫ ∞

o
δg(x)/r2 dx (2.7.5.2Dc)

δgz = 1/π
∫ ∞

o
δg(x) (z2 − x2)/r4 dx (2.7.7.2Dc)

δgzz = 2z/π
∫ ∞

o
δg(x)(z2 −3x2)/r6 dx (2.7.9.2Dc)

2.7.4 Applications: Estimation of Field Quantities
as δWx, δWy, δWzzz

The task of estimating unobservable field quantities trains the interpreter’s imagi-
nation of geometrical relationships and constraints when analyzing observations. It
serves interpretation purposes:

(1) geometrical relations among the field quantities allow unobservable quantities to
be derived from observed ones (for a more thorough discussion (see KJ61, 5–17);

(2) equivalent mass distributions as the equivalent stratum can be used to calculate
the field quantities without knowledge of the true mass distribution and

(3) differentiable representations as expansions of the observations, for example, by
Fourier and other series, can serve the same purpose.
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Directly observable are:

• gravity: ggg = ∇δW = ∂δW/∂ z (or δg), where z points along ggg, measured by
gravimeters;

• deflection of the plumb line: δgx/g and δgy/g with the horizontal components of
ggg, δgx = ∂δW/∂x = δWx and δgy = ∂δW/∂y = δWy; deflections of the plumb
line are defined relative to a global coordinate system based on the normal ellip-
soid (see Sects. 4.3, 4.41), deflections of the local vertical, plumb line or nadir
(opposite to zenith) are measured against the normal vertical which is established
astronomically from latitude and longitude determinations;

• water surface topography as approximation of equipotential surfaces, observed
by satellite altimeters;

• δWzz only approximately by gravity measurements at points separated vertically
by Δh;

• δWzx, δWzy, δWyy − δWxx, δWxy measured with the torsion balance and all ele-
ments of the gravity tensor (Sect. 2.8) observed with appropriate gradiometers.

Elements that are unreliably observed include

• δW or W ;
• δWzz and δWxx and δWyy, separately (with the torsion balance only δWyy −

δWxx);
• Although listed above as observable, δWzx and δWy are mentioned here, since the

observation is cumbersome. Note that these are the so-called horizontal gradients
of the gravity anomalies δWz which are sometimes also written δgx and δgy

which is a case of confusion to be avoided. Some of these quantities are used in
geodesy and in gravity field analysis and interpretation.

Elements that are not directly observable include

• δWzxx, δWzyy, δWzzz, the so-called second derivatives, and similar elements.

The Laplace equation and Newton’s law offer the possibility to estimate these
latter quantities from spatial variation δg(x,y). The spatial variation is traditionally
visualized by contour lines and by computer graphics including colours and shad-
ings (see Chap. 3).

A special case is the vertical derivative of gravity, according to Ackermmann &
Dix (1955): δWzz(Z) = o

∫ ∞ δW ZZZ(R)R/rdR, where capital Z stands for the ver-
tical cylinder coordinates used. In this case, with Z → 0,δgz(0) = δWzz(0) =∫ ∞
o δW ZZZ(R)dR. If the vertical gradient of gravity, as sometimes, is called δgz, it
must be clearly said not to mean the usual vertical component of gravity.

Equipotential surfaces are also useful if visualized since their curvature implies
the existence of horizontal components of δδδggg, say, δδδgu in any direction (coordi-
nate u). Referred to point Po, where gggo = (go,0,0), the surface may have a local
maximum or minimum, a saddle point, or may be a ridge or a trench. According to
differential geometry of second order surfaces, horizontal sections through them are
conical sections, i.e. elliptical, hyperbolic or parabolic, in the latter case consisting
of two parallel straight lines. A vertical section in an arbitrary u direction through
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Fig. 2.7.1 (a) Curvature of a vertical section of the equipotential surface W = const through Po
and P1 separated by Δu (u direction arbitrary) and relationship of δδδgggo and δδδggg1. For small Δu the
section is approximated by a circular arc with centre M(u). (b) Demonstration of theorem of height
(Δu) in the right triangle PoP1Z

points Po and P1, a short distance u1−uo = Δu apart, contains gggo and approximately
ggg1 (g1 ≈ go = g, see Fig. 2.7.1). The section is a short, nearly circular arc (convex
or concave from above) with the curvature κu = 1/ru(ru = radius of curvature, sign
convention: convex positive, concave negative). The similarity (Fig. 2.7.1):

Δu/ru ≈ gu/g ≈ ΔuWuu/g

renders
ru = 1/κu ≈ g/Wuu

or
gu ≈ gΔu/ru.

Furthermore, if the circular arc of Fig. 2.7.1 is completed to a full circle, the
theorem of height in right triangles renders Δu2 = Δz(2ru −Δz) ≈ 2ruΔz.

The horizontal component of gravity gu and the corresponding plumb line deflec-
tion gu/g can be estimated from g and Wuu, measured, e.g., with the torsion balance.
If only gravity observations exist, curvature must be estimated otherwise (below).

Conical sections have two principal axes, or in the case of hyperbolae, axial sec-
tions: say, in y direction (Δ1: vertical section with maximum curvature κ1 = 1/r1)
and x direction (Δ2: minimum curvature κ2 = 1/r2); in the parabolic case Δ1 → ∞.
In the example of the ellipse, from its definition x2/Δ2

2 + y2/Δ1
2 = 1, follows that

Δu2 = (Δ1
2 + Δ2

2)/(Δ1
2 sin2ψ + Δ2

2 cos2ψ), where ψ is the angle between the
principal section I and the direction of u. Generalized to include the hyperbolic and
parabolic cases, each Δ is multiplied by +1, if curvature is positive (convex from
above), and −1, if curvature is negative (concave from above). The above relation
Δu2 ≈ 2ruΔz is true also for Δ1

2 ≈ 2r1Δz and Δ2
2 ≈ 2ruΔz, and combining these
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leads to Euler’s theorem describing the relations between κu = κ1 cos2ψ+κ2 sin2ψ
or κu = (κ1 +κ2)/2 + cos2ψ(κ1 −κ2)/2. This gives a complete description of the
curvature of the W -surface around Po in its approximation by second-order surfaces.
For a more detailed derivation and illustrations, see KJ61, 9–13.

The shape of the equipotential surfaces or W -surfaces is reflected in the curva-
ture and density of the customary contour lines of observed gravity anomalies. The
Laplace equation (2.7.1) implies: Wzzz = −∂Wzx/∂x−∂Wzy/∂ z (demonstrating, by
the way, that for very smooth linear fields Wzzz ≈ 0). The relation between the curva-
ture κ of the δg contour lines and Wzzz can be derived analytically from the implicit
or parameter form (parameter s) x = v(s) and y = w(s) with (see KJ61, 16–17):

dy/dx = ws(s)/vs(s) and κ = (vswss −wsvss)/(vs
2 +ws

2)3/2 :

κ = (2gxgygxy −gy
2gxx −gx

2gyy)/(gx
2 +gy

2)3/2.

With special coordinates t and n, locally tangential (t) and normal (n) to a contour
line, we obtain:

Wzzz = −gtt −gnn = κ∂g/∂n−∂ 2g/∂n2,

demonstrating that curvature and variation of distance between contour lines relate
to the second derivative of δg; or only the latter term: Wzzz = −∂/∂n(∂g/∂n), if
the contour lines are straight.

2.7.5 Source Space: Poisson Equation and Gravitational Flux Γ

Within space filled with a continuum of mass with density ρ , the gravitational vec-
tor field is, of course, not divergence-free. The formal mathematical problem is that
the source point Q (at r∗) and the observation point P (at rrr) approach each other
(|rrr− rrr∗| → 0) and the potential function δUg = G

∫
Vρ(rrr∗)dV/|rrr− rrr∗| becomes sin-

gular. If we consider the mass volume as divided into two parts, (1) a small sphere
around Q and (2) an outer volume (in which no problem arises with |rrr−rrr∗|→ 0) and
if the inner volume has a continuous or smooth density, such that it can be assumed
constant if r is small enough, then its mass ρdV (r) approaches zero steadily, the ex-
pression can be evaluated for continuous functions ρ(rrr∗) (e.g. Grant and West, 1965;
henceforth referred to by GW65):

∇2δUg(rrr) = div grad δUg = 4πGρ(rrr). (2.7.11)

This is Poisson’s equation stating that the source strength or divergence of grav-
itation, i.e. the gradient of the gravitational potential Ug in mass-filled space is the
product of density, G and the full solid angle 4π (= surface area of a unit sphere of
radius 1).

In terms of Gauss’ integral theorem
∫

v∇∇∇•δδδgggdV =
∫

s δgggdddSSS = Γ ; for a point
mass m within the spherical surface S : Γ = 4πm G; for constant density ρ , m =
(4πρ/3)ρr3, with r = radius of the sphere S, the relation is identical. For δUg or δδδggg
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with limited solid angles the fundamental relationships are valid accordingly with
useful applications to estimating or computing gravity effects (s. Chap. 5).

If Cartesian coordinates are used in limited regions, the earth is replaced by a
semi-infinite mass with radius r → ∞, but such that g is as observed. In this case,
the plane z = 0 divides the source volume below (z > 0) from source-free space
(z < 0, upward). The plane z = 0 is only half of the full containing surface and the
gravitational flux Γ through z = 0 is Γ = 2πGm, where m is the total mass. As
explained, m can be replaced by a surface mass of identical magnitude.

2.7.6 Surface Integrals: Total Mass, Centre of Mass

An application of Poisson’s equation coupled with Gauss’ theorem is the cal-
culation of the total mass, here called M, generating an anomaly by integrating
the anomaly over the whole (infinite) surface. In the Cartesian idealisation of the
world, in x,y,z space, with P at O and all density anomalies below the surface,
Δρ = ρ(x,y,z)−ρo(ρo = reference density, constant or only depth-dependent), the
surface area integral over a gravity anomaly is

I =
∫

x,y
δg(x,y)dxdy = 2πGM (2.7.12)

where M =
∫

VΔρ dV. The solid angle is 2π, half of the full 4π. If gravity is known
on a closed surface, as a sphere or ellipsoid, the integral leads to the total gravimetric
flux Γ = 4πGM of the anomalous mass M to be determined. The 2π value on the
plane can be understood intuitively when the x,y plane at z = 0 is considered half of
a closed surface which fully confines M; the other half surface may have any shape,
it may be another infinite parallel x,y plane at z = zb where M is limited between
these planes which intersect at infinity. For proof, application of Gauss’ integral
theorem

∫
v∇∇∇δδδgggdV =

∫
s δδδgggdddSSS is discussed, e.g. by GW65, 228.

Simpler proof is obtained by writing δg(x,y) = G
∫∫∫

VΔρ(x’, y’, z’)
dx’ dy’ dz’ in (Eq. 2.7.12), where the prime indicates integration over the source:
I =

∫∫
x,y(G

∫∫∫
V′ Δρz′dV ′/r′3)dxdy, and reversing the sequence of integration by

first carrying out the integration over the infinite x,y surface for an infinitesi-
mal, i.e. point-like mass element dm = Δρ(x’ y’, z’); it must then be shown that∫ ∞

∞
∫ ∞

∞ x,yz′r′−3dxdy = 2π (without proof). We then obtain again (Eq. 2.7.12):
I = 2πG

∫∫∫
V′ ΔρdV ′. Another simple proof can be written for the equivalent stra-

tum (Sect. 2.7.3) and Eq. (2.7.10) for surface density ρ∗. It leads to the result that
the total surface mass M∗ = M, the equivalent volume mass.

Without repeating the deduction which is quite similar, the surface anomaly inte-
gral can be generalized to horizontal anomaly moments to arrive at similar expres-
sions for the horizontal centre of gravity Xc, Yc of the gravity anomaly, and Xc, Yc are
identical for the mass anomaly itself; the reader may work this out for her/himself.
The depth coordinate Zc is, however; not resolved this way. With coordinate indices
i = 1,2:
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Xci = I−1
∫

x,y
δg(x,y)xidxdy (2.7.13)

This is extendable to higher moments, i.e. products of δg with xn and ym, n, m
arbitrary, with some useful applications to gravity interpretation (GW65).

Application to the 2D case refers only to 2D density ρ∗ or mass M∗ per section
area, but in this case ρ∗ refers to the vertical x,z plane, and the 2D equivalent stratum
density (kg/m) is ρ+ per length unit x. While the total mass below the infinite x,y
plane is infinite, the 2D mass is M∗ = x,z

∫
ρ∗(x,z)dxdz =

∫ ∞
−∞ ρ+(x)dx. With these

definitions, (2.7.10) is valid also in 2D:

I∗ =
∫ ∞

−∞
δg(x)dx = 2πGM∗ (2.7.12.2D)

formally identical to (Eq. 2.7.12). Similarly, the centre of gravity of the 2D anomaly
and that of the anomalous mass M∗ follow from

Xc = I∗−1
∫

x
δg(x)xdx (2.7.13.2D)

The higher moments can be treated accordingly.
Note that M is only the anomalous mass of a geological body of volume V ,

defined by the density anomaly Δρ : M = ΔρV . The total mass is Mtot = (ρo +
Δρ)V , which is the quantity relevant, for example, to estimate the total of minable
ore. V can be estimated from M if Δρ is known or assumed: V = M/Δρ . Note also
that the integral I, and hence M, is a quantity in gravity analysis not subject to the
principal ambiguity of interpretation. However, it is subject to other uncertainties
as that of defining anomalous gravity which involves the separation of fields and
the definition of “regional” and “local” or residual anomalies (see Sects. 2.10.2 &
2.10.3, 4.7.7).

2.8 The Gravity Tensor (Eötvös Tensor)

The second derivatives of the gravity potential (also called gravity gradients, see
below) are used in many ways in geodesy and geophysics.

In a local orthogonal coordinate system (see above) we have 9 elements of which
only 6 are independent. With Cartesian coordinates xi(i = 1,2,3) corresponding to
(x,y,z) we write:

∂ 2W/∂xi∂xj = Wij where Wij = Wji as the sequence of differentiation is inter-
changeable.

The 9 elements are traditionally ordered as

{Wij} =

⎧⎨
⎩

W11 W12 W13

W21 W22 W23

W31 W32 W33

⎫⎬
⎭ (2.8.1)
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In two-dimensional fields with ∂/∂y ≡ 0, the Eötvös tensor reduced to 4 (3 in-
dependent) components which simplifies the operations:

{Wij} =
{

W11 W13

W31 W33

}
(2.8.1.2D)

The elements or combinations of some of them have physical meaning and im-
portant applications. Elements of the gravity tensor can be measured with the torsion
balance and even in a satellite moving in free fall, i.e. with gravity and centrifugal
acceleration cancelling each other at its centre of gravity. This principle is realized
in recent gravity missions as CHAMP, GRACE and GOCE; the latter, especially,
will carry accelerometers at 0.5 m distance in three coordinate directions: radial,
i.e. pointing away from the Earth’s centre, forward and to the side, i.e. pointing
in the direction of the local vector of angular velocity (Sect. 3.2.8). Recent devel-
opments of terrestrial measurements measuring the full gravity tensor have found
intensive application in the exploration industry (Sect. 3.2.9). Differential geometry
of equipotential surfaces has been applied extensively in connection with the torsion
balance and is again needed with the new gravity tensor devices. Since at present
measurements are nearly always done with gravity meters readers are referred to the
older literature, e.g. KJ61.

Generally the second derivatives describe curvature which is related to the close-
ness to compact (point-like) sources. A vertical section of an equipotential surface
is approximated, near a point P, by a circle with the radius of curvature rk =−g/Wkk

where k denotes an arbitrary horizontal direction (not necessarily x or y).
The vertical variation of gravity g = |W3| is described by the vertical potential

gradient W33. The horizontal gradients W31 and W32 (observable with the torsion bal-
ance) in map view point normal to gravity contour lines along (locally) the direction
of maximum change with a magnitude inverse to distance between the contours.
The term “gravity gradient” is not strictly correct because of the vector nature of
gravity, but it is justified in view of g being treated as the magnitude of ggg.

2.9 Gravity Effects and Anomalies – Summation and Integration

2.9.1 General Considerations

As has been emphasized, effects are distinguished from anomalies, the former being
usually calculated for given masses and the latter being derived from observations.
The two are referred to each other in the course of gravity interpretation; remember,
however, that anomalies are not uniquely determined by limited discrete observa-
tions (Sect. 1.4; for a more thorough discussion, see Sect. 5.15).

Geological mass anomalies are three-dimensional (3D) volumes or bodies of
anomalous density Δρ , generally irregular in shape, i.e. not easily describable by
mathematical expressions. To compute gravity effects of geological bodies they
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must be made tractable by analytical description, i.e. as idealized forms, in most
cases with uniform density ρ or simple space relationships, for example, linear de-
pendencies on the coordinates. In a way, the situation is aggravated by the fact,
that what counts is the density contrasts Δρ = ρ −ρo where the reference density
ρo of the surrounding medium is generally also heterogeneous so that assuming
ρo constant or otherwise too simple is problematic. Models are usually idealized
bodies and the most appropriate kind of idealization must be guessed. A popular
idealisation is two-dimensionality, 2D, where only the cross section of a structure is
considered; this is appropriate, i.e. fairly accurate, if one dimension is dominant in
the sense of strong elongation of the structures and related gravity anomalies.

Coordinate systems in which integrations are to be carried out affect the strate-
gies chosen. For geological gravity effects embedded into the Earth’s normal gravity
field, the azimuthal independence of the vertical component δgz sometimes makes
vertical cylinder coordinates natural and appropriate, but the emphasis here is on
Cartesian coordinates appropriate for sufficiently small scales relative to the Earth’s
size and more easily applied to calculations at many observation points P. On the
other hand, large scales require that the shape of the globe must be taken into ac-
count, and spherical coordinates are adequate or mandatory.

This section is divided into subsections on general aspects (Sects. 2.9.1, 2.9.1.1,
2.9.1.2, 2.9.2) and handling of 3D (Sects. 2.9.3–2.9.6) and 2D (Sect. 2.8.7) as
well as 2 1

2 D cases (Sects. 2.8.7–8). Integration in terrestrial spherical coordinates
is deferred to subsections on some general aspects (Sect. 2.10.7.2) and on Gauss-
Legendre quadrature (Sect. 2.10.7.3).

2.9.1.1 Integration of Effects of Finite Dense Masses

The main aspect of this section is the general aspect of integration of model gravity
effects. Detailed applications are treated in Chaps. 5 and 6. The classical schemes
to idealize, subdivide and/or approximate natural density distributions are univer-
sal, but the emphasis here differs from other texts. It is on a number of principal
rules of simplification and outlook, which are not new as such but were not treated
systematically elsewhere. The rules are listed below.

1. Most importantly, the solid angle ΔΩ under which planar mass elements are seen
from P offers conceptual and practical advantages to gravity effect integration.
The solid angle is defined as the area of the projection onto the unit sphere around
P. It directly gives the gravitational component normal to the plane considered,
for example, the vertical effect Δgz if the plane is horizontal. The approach
is identical to building the kernel z/r3 into the volume element of integration
(Fig. 2.9.1).

2. If any other component of the gravitational vector effect is needed to define δgz,
it is necessary to calculate also the components parallel to the planar mass ele-
ments. As in the case of the solid angle the planar elements can also be limited or
defined by rays from P so that the 1/r2 relation can still be exploited. The basic
mass element of integration is the mass line parallel to the component considered,
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e. g., for δgz it is the vertical mass line as an element of a vertical plane. Two
orthogonal plane-parallel components combined with the plane-normal compo-
nent (above) define the vector effect. Vertical orientation or simply “vertical”
(in quotes) is used to nickname the orientation parallel to the vector component
sought, i.e. ggg-parallel, which need not be vertical.

3. Vector calculus is often easier for defining trigonometric functions, e.g. cosα =
aaa bbb/ab than applying trigonometry itself.

4. It is often profitable to calculate the effect on the gravitational potential δW and
then find δg by differentiation.

5. Generally the best basic body for composing more arbitrary model geometries is
the simplest model body of its kind. For example, the rectangular prism expanded
from P at (0,0,0) to arbitrary Cartesian coordinates x, y, z is the simpler than the
commonly used prism (Δx ·Δy ·Δz) somewhere in Cartesian space. Any such
prism can be constructed of several x, y, z-prisms with P at one corner, appropri-
ately subtracted or added to each other. In vertical cylinder coordinates the corre-
sponding basic body is the cylinder with radius R and depth Z, instead of a cylin-
der ring sector between R = Ri

∗, Ri+1
∗, Z = Zj

∗, Zj+1
∗, and ΔΛ ∗ = Λk+1 −Λk.

Or a dyke can be composed of two steps.
6. The gravity anomaly δg is proportional to the length scale L, as will be evident

below. In most expressions for δg the length scale, L, is explicitly L4/L3, as in the
basic expression below (Eq. 2.9.2.4). However, L or L2 are hidden in the defini-
tions of surface density (kg/m2) or line density (kg/m). The linear L-dependence
of the δg expressions has the useful advantage that δg = Lδg∗(L), where the lat-
ter means that the geometrical variables are normalized by L, as x/L, r/L, R/L
etc., for example,

δg = Lδg∗(x/L,y/L,z/L) (2.9.1)

i.e., dependent on shape and scale L. The effect δW of the gravity potential is
given by integration of gravity over distance which leads to and augments the
power of length by 1: δW scales with L2. Conversely, differentiation decreases
the power of length by 1: the first derivatives of δg scale with L4/L4 = 1 and are
independent from L, the second derivatives scale with L−1, etc.

7. Integrals of analytical expressions are taken from the tables of Gröbner &
Hofreiter (1949, 1950), referred to as GH49 and GH50 with the number of the
integral type, e.g. “GH49, 342,3c”.

The aim of the following is to provide procedures and expressions for the task of
calculating the gravitational effects of voluminous geometrical or geological bod-
ies. Various parametrizations offer themselves. Horizontal disks lend themselves
directly to approximate geological masses described by contours. Often bodies are
divided into other types of uniform massive elements, as prisms and polyhedra.
The elements of integration are points, lines and planes. Curved surfaces may be
approximated by finite or infinitesimal planar elements, in the latter case analyti-
cal integration may be possible for mathematically defined surfaces. The class of
parametrization in two dimensions (2D) is treated separately (Sect. 2.9.7). The most
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Fig. 2.9.1 The solid angle-based volume element r2dΩdh. Left: three-dimensional (3D) case; the
solid angle dΩ is depicted as a thick line on the unit sphere. Right: two-dimensional (2D) case; the
solid angle dΩ = 2ϕ is a bi-angle on the unit sphere seen from the side

profitable approximations must be chosen from case to case. The above rules 1–6
are applied where possible.

2.9.1.2 Direction of the Vector of the Gravitational Effect

The gravitational vector effect δδδggg at P of a mass anomaly Δm at point Q is directed
from P towards Q. If the mass Δm has a finite volume, the vector δδδggg does not
generally point toward its centre of gravity, in the sense of centre of mass (defined
by Xi

∫
dm =

∫
xidm; compare Task 2.2), only in cases of special symmetry it does.

Note that this is contrary to customary thinking. Special symmetry is, for example,
that of a homogeneous sphere, as will be shown below. That the horizontal centre
of gravity of the gravity anomaly, δgz, is equal to that of the mass anomaly (see
Sect. 2.7.6), is not to be confused with the vector direction.

In practice gravity interpretation is usually concerned with scalar values δg as
deviations from a reference go ≈ 10m/s2 of the terrestrial gravity vector ggg. Gen-
erally the anomalous vector points in a direction different from normal gggo and the
gravity effect is not the anomalous vector but only the ΔΔΔggg component in ggg-direction.
Here we admit that the direction of ggg is affected by the anomalous vector, but the
directional variation is very small indeed, as |δggg| << g, certainly <10−3 g, and
mostly much smaller. Consequently in practice, the directional variation of ggg is ne-
glected. If in a fixed Cartesian coordinate system x, y, z (e.g. x to north, y to east and
z vertical), assumed for a given limited region, earth curvature is neglected and z is
assumed to be parallel to reference gggo at the origin; the gravity effect is then defined
by δgz, where δgz = δgcosϑ = δgz/r, where ϑ is the angle enclosed by zzz and rrr
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from P to Q. In large scales the standard ggg direction is assumed to be that of the
(negative) radius vector of a standardized earth model, −−−rrr. Beware of the confusion
which may arise from the two meanings of rrr.

The plumb line deflections are proportional to δgx and δgy and are usually
neglected in the interpretation. This represents a loss of information which is
insignificant in many terrestrial applications. Vector effects come into play, if ar-
bitrary components are to be calculated for special purposes. The centrifugal com-
ponent of observed gravity is also neglected, as it does not pertain to mass anomalies
and has been essentially removed in the reductions which precede interpretation.

2.9.2 Coordinate Systems and Integration

The coordinate systems and the respective volume elements were shown above in
Fig. 2.4.1. Since the emphasis is on tasks in geological modelling Cartesian coor-
dinates are used here mostly. Spherical and cylinder coordinates, as mentioned in
Sect. 2.4, are treated more briefly.

2.9.2.1 Spherical Coordinates

Spherical coordinates (Fig. 2.4.1a) are, of course, best suited to problems in which
the sphericity of earth must be taken into account. The mass element is dV =
r2dr cosϕ dϕ dλ = r2dr sinφ dφ dλ . The local vertical z coordinate at a point P cor-
responds to −−−rrr in global spherical coordinates. Several possibilities to integrate
gravity effects of extended density anomalies are briefly outlined in Sects. 2.10.7.2
& 2.10.7.3.

2.9.2.2 Vertical Cylinder Coordinates: Cylinder Ring Sectors

Cylinder coordinates (Fig. 2.4.1, rhs).: Z parallel to gggo, R horizontal, longitudeΛ are
most appropriate to the symmetry of the problem about the vertical ggg axis because
the gravity effect is independent from azimuth. At points P at the cylinder axis the
integration of dδg is easy because on the boundaries of the volume elements, which
are cylinder ring segments, dV = RdRdΛdZ, r = (R2 + Z2)1/2, the coordinates are
constant:

δg = Gρ Δ Λ ∗
∫

R

∫
Z
[1/(R2 +Z2)3/2]RdRZ dZ (2.9.2)

If rule 5 is followed, the simplest mass element (and formula) is the cylinder
(radius R∗, bottom at Z∗, density ρ , sector angle 2π or Δλ ∗) with axial P at its
surface (Z = 0). Integration renders:
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Fig. 2.9.2 Scheme of cal-
culating the gravity effect at
P = (0, 0) of the cylinder
ring between R = Ri

∗,Ri+1
∗,

Z = Zj
∗, Zj+1

∗ from ba-
sic elements (R = 0−Rk,
Z = 0−Zj); hachures rising
to the right: elements added
(positive density), rising to
the left: elements subtracted
(“negative density”)

δg = GρΔλ ∗
∫

R

∫
Z
[1/(R2 +Z2)3/2]RdRZ dZ = Gρ Δ λ ∗(Z∗ +R∗ − r∗)

with r∗ = (R∗2 +Z∗2)1/2
(2.9.3)

A cylinder ring sector element between R = Ri
∗, Ri+1

∗, Z = Zj
∗, Zj+1

∗, and
Δλ ∗ =Λk+1−Λk follows by adding elements with appropriate parameters and signs
according to the scheme sketched in Fig. 2.9.2. (In this case, rule 5 has only little
advantage over integration directly of a cylinder ring between R and R +ΔR and
between Z and Z +ΔZ). The expression

δgijk = GρΔΛk,k+1
∗(−rij

∗ + ri+1,j
∗ − ri+1,j+1

∗ + ri,j+1) (2.9.4)

is but the sum of the radii from P to the corners of the ring section with alternating
signs (Fig 2.9.2). Finally; it is also easy to integrate the effect for the infinite Bouguer
plate, with (r2 = R2 +Z2), Δh = d: δg = G ρ∗ ∫ ∞

R=0 Λ=0

∫ 2πZ RdRdΛ/r3 = 2π G
ρ∗ ∫ ∞

0 Z RdR/r3 = 2πGρ∗z/r0|∞ = 2π G ρ∗ = 2π G ρ d (see below Sect. 2.9.3.3).
In practice, dividing the source volume into point P-based cylinder coordinates

must be repeated individually for each observation point P. This leads to tedious
labour and is not very suitable for rapid gravity effect calculations, but was much
used before the times of powerful computing, e.g., for estimating terrain effects.
Alternatively, for non-axial P, elliptical integrals must be evaluated (Nagy, 1965)
which is also difficult.
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2.9.2.3 Cartesian Coordinates

Integration of gravity effects is mostly carried out in Cartesian coordinates x, y, z,
with z parallel ggg, x pointing N and y pointing E, but arbitrary orientation of the or-
thogonal x and y axes is often chosen. The mass element was depicted in Fig. 2.4.1c,
and integration rests on the description of bodies in x, y, z.

2.9.2.4 Point Mass and Mass Element

The point mass m is an unphysical idealisation. It is readily justified for planetary
astronomy where the planets appear from Earth nearly as points in the sky. A finite
mass distribution of perfect radial symmetry, as a homogeneous sphere, has exactly
the same external effect as all the mass condensed at its centre at P (this is always
said and rarely demonstrated; here it has been posed as a problem; Task 2.1).

The mass element dm of integration is infinitesimal or point-like, treated like
a point: dx, dy, dz << r = (x2 + y2 + z2)1/2. If the mass element dm = ρ dV =
ρ dxdydz is located at rrr = (x,y,z) and P is located at (0,0,0), its gravity effect is:

dg = Gdmz/r3dV = G ρ dxdy dz z/r3 (2.9.5)

dg = dgz is the vertical or z component of the infinitesimal gravitational vec-
tor effect dddggg. Placing P at the coordinate origin does not limit generality because
translational coordinate transformation is always possible.

2.9.2.5 Integration

Integration of Eq. (2.9.3) is based on the mutual independence of gravitating masses
such that their effects can be summed:

δg =
∫∫∫

V
dg = G

∫∫∫
V
ρ(rrr)z/r3.dV (2.9.6)

or, if ρ = const,

δg = Gρ
∫∫∫

V
z/r3.dV (2.9.6a)

Integration can be approximated by summation of the effects of finite mass
elements. A body may be discretized by a grid of small finite mass elements
ρΔV (ΔV = ΔxΔyΔz) which are represented by equivalent mass points or spheres
with radius, R = (3ΔxΔyΔz/4π)1/3 of equal volume at their centres of mass, if ef-
fects of non-spherical shape and partial overlap are negligible. Even simpler is it
to approximate sufficiently sphere-like or compact geological masses by spheres of
equivalent location, radius R and density Δρ; tolerable non-spherical deviations de-
pend on the distance from the observer. Note, that observed effects are not those
of the total mass, but only of the mass excess: Δm = ΔρV and V = 4πR3/3 (see
Sect. 2.7.6).
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Explicit volume integration is limited by boundaries, i.e. surfaces, leading to
some kind of surface integration. In Cartesian coordinates, the distance r in
(Eq. 2.9.6) is generally not constant along the surfaces x, y, or z = const. More gen-
eral surface geometries pose additional analytical difficulties. Special definitions of
the volume elements (besides those treated in Sects. 2.9.2.1, 2.9.2.2) facilitate the
integration considerably, but they usually require also suitable orientation of the
volume boundaries which cannot generally be achieved. This then will require co-
ordinate transformations, before integration is carried out, and back transformation
into gravity orientation. Since this task will be frequently encountered, it has been
treated above in connection with the Cartesian coordinates (Sect. 2.4.3) and the ex-
pressions derived will be referred to in the subsequent text.

In the following subsections Eq. 2.9.12, the more general three-dimensional
(3D) case is treated, while the more specialised and simpler 2D case is presented
in Sect. 2.9.7. A compromise between 2D and 3D is the so-called 2 1

2 D case of
Sect. 2.9.8.

2.9.3 Special Mass Elements: Integration in One and Two
Dimensions, Mass Lines and Mass Planes

Integration can be carried out for volume elements that are not infinitesimal in all co-
ordinates, but may be finite, even infinite, in one or two directions, in which density
does not vary, at least not significantly. Such mass elements are semi-infinitesimal,
e.g., mass lines and surfaces. Finite or semi-infinite mass line elements may be writ-
ten: ρdV = ρ Δzdxdy and surface masses are ρ xydz, where x and y stand for any de-
sired finite values. A mass line carries a constant line-density in kg/m: ρ+ = ρdxdz,
and surface density is given, e.g. as ρ∗ = ρ dz in kg/m2. Generally, the introduction
of semi-infinitesimal mass elements means that part of the integration is carried out
at a preliminary step. For lines the preliminary integration covers one coordinate,
for example, in case of two-dimensional models; for planar elements integration is
carried out for two directions, and here we encounter the solid angle (rule 1).

2.9.3.1 Horizontal Uniform Mass Line

Two-dimensional models (see below) consist of infinite horizontal mass lines along
one dimension, say y. The line density ρ+ is constant. “Horizontal” implies that,
as usual, the vertical gravity effect δgz is considered. More generally, it is the case
of mass lines normal to the component of gravitation under consideration; in some
applications it may be any oblique direction.

To get from the standard infinitesimal volume element dxdydz to the element
dxdz, the integration is carried out over y from −∞ to +∞ beforehand such that we
obtain dV = dxdzy(→∞). The standard approach is that the effect of the infinite mass
line at (x, y−∞∞, z) on P = (0,0,0) is calculated by integrating the effect of the point
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mass ρ+dy along the line from −∞ to +∞. With r∗ = (x2 + z2)1/2

δg = Gρ+
∫ +∞

−∞
zdy/r3 = 2Gρ+

∫ +∞

o
zdy/r3 = 2Gρ+z/r∗2 (2.9.7)

It differs from the point mass effect by the characteristic factor 2 and the 1/r2

dependence on distance from the line, instead of 1/r3 from the point.
The horizontal line mass of finite length 2λ (λ to each side from y = 0) has the

effect:

δg(2 1
2 .) = 2Gρ+z/r∗2a with a = λ/(x2 +λ 2 + z2)1/2 (2.9.8)

where 0 < a < 1. The superscript (2 1
2 ) refers to the so-called 2 1

2 dimensional mod-
elling or (2 1

2 D) which takes the finite length of elongated structures into account
(see Sect. 2.9.8). Any generalization of these definitions to other orientations and
coordinate systems is possible.

The gravitational potential of the infinite mass line, as defined above in
Sect. 2.7.2, is

δU = 2G ρ+
∫ +∞

o
dy/r = −2G ρ+ ln(y+(x2 + y2 + z2)1/2)|∞0

= 2Gρ+ ln(z/(x2 + y2)1/2)−∞ (2.9.9)

The constant, −∞, is irrelevant, as any potential is relative to some reference, only
the variations in a limited region are of interest, and so are they for differentiation
δg = ∂δU/∂ z which again leads to (Eq. 2.9.7).

2.9.3.2 Vertical Mass Line

Another important linear mass element is called the “vertical mass line” or “vertical
rod” (in view of the usually needed vertical component δgz) or the “parallel rod” (in
view of the δg-component parallel to the line). The line-parallel component of the
gravitational effect of a uniform mass line is required, for example, as an integration
element for parallel walls (Sect. 2.9.3.4). Located at x, y and extending from zo (top)
to bottom at infinity and with ρ+ = ρdxdy and ro = (x2 +y2 +zo

2)1/2, the rod exerts
on P at (0,0) the effect:

δg(l) = Gρ+
∫ ∞

zo
zdz/r3 = Gρ+/ro (2.9.10)

By combining the effects of lines at x, y with tops at z1 and z2, the line extending
from z1 to z2 has the effect:

δg(l) = Gρ+[1/r1 −1/r2] = Gρ+(r2 − r2)/r1r2 = Gρ[1/r1 −1/r2]dxdy (2.9.11)

These equations break down when r1 → 0, because Gρ+/r1 → ∞. With ρdxdy
this is uncritical, and assuming, for the start, vertical cylinder geometry, Eqs. (2.9.2)
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Fig. 2.9.3 Infinitesimal ver-
tical rod of cross section
dxdy and finite length z with
P at one end (z = 0). The
triple indices are explained in
Sect. 2.9.3.3 and Fig. 2.9.6

and (2.9.3), with top Z = 0, bottom Z >> dR (infinitesimal) renders dδg = G
ρ 2πdR = GρC where C = 2πdR is the circumference of the infinitesimally thin
vertical cylinder.

Another example is the infinitesimally thin Cartesian rod or prism with the finite
vertical extent z and the horizontal cross section dxdy, where dy = dx. At the centre
of its top surface, the effect δg(rod xy)

z is:

δgz
(rod xy) → Gρ dx/2ln[1+1/

√
2] = 0.881Gρ×4dx = 0.881GρC

where C = 4dx is, again, the circumference of the rod.
For the derivation, the expressions (2.9.6.1) in Sect. 2.7.6 are applied which

describe the components of the gravitational effect of a finite massive cuboid on
one of its corner points P. The present rod is therefor divided into 4 equal rods or
prisms with cross section dx/2 dy/2 (Fig. 2.9.3) for the limit a → dx, b → dy and
dx = dy << z. In the limit

δgz
(x) = δgz

(y) → Gρ dx/2ln[1+1/
√

2] = 0.881Gρ dx/2

δgz
(z) → Gρ c(arcsin[1/

√
2]+ arcsin[1/

√
2]−π/2) → 0.

The total rod effect is the sum of the effects of the 4 equal quarter rods with two
contributions of each. Details may be worked out in Task 2.5.

This expression is, however, valid only for the special location of P on a thin
rod and not applicable for integration over finite x or y (see below Sects. 2.9.3.4 &
2.9.5.1).

2.9.3.3 Horizontal Mass Plane or Floor: The Solid Angle ΔΩ

Horizontal planes S of surface density ρdz = ρ∗ in kg/m2 form an important versa-
tile class of infinitesimally thin surface mass elements which can be exploited for the
integration of the gravity effect δgz of arbitrary geological bodies. The advantage
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of this type of mass element is that its gravity effect is proportional to the solid angle
Ω under which it is seen from P (Sect. 2.9.1.1: rule 1). The solid angle is the surface
area of the projection of S onto the unit sphere around P. Horizontal planar surface
mass elements S most readily render the vertical gravity component; this is true for
the plane-normal gravitational component in any orientation of the plane. This has
long been known in gravity modelling, but a more generalized application is pro-
posed here. Ω can often be derived by elementary geometrical arguments which
avoids cumbersome analytical integrations.

If Ω defines a volume V by rays emanating from P, the surface area grows with
distance r2, compensating the Newtonian 1/r2 relationship. The projection of a hor-
izontal area onto the unit sphere around P involves a cosψ = h/r term, where h is
the normal distance between P and the plane and cosψ is the angle between the
radius vector rrr and the plane normal vector sss: cosψ = sss · rrr/sr.

A mass element dV defined by dΩ cutting out a horizontal surface element dS
of a layer of thickness dz and density ρ (Fig. 2.9.1), automatically has built in the
kernel z/r3 of the integral in (Eq. 2.9.5). This type of dV is, hence, tailored for grav-

ity integration: dΩ = cosψ dS/r2 = dSh/r3 and dg(s)
n = Gρ dhdsh/r3 = Gρ dhdΩ ;

dg(s)
n is the dddggg(s) component normal to dS or parallel to dddsss. In other words, dV grows

with r2r/h when ds (and dV ) are limited by rays from P:

dm∗ = ρ∗ dΩ r3/h = ρ dhdΩ r3/h (2.9.12)

The basic integral (Eq. 2.9.5) for the component Δgn normal to the surface takes
the form:

δgn = Gρ
∫
Ω

∫
h

dhdΩ (2.9.13)

With the projection ΔΩ of a finite planar element:
∫
Ω

∫
h

dhdΩ = ΔΩΔh. (2.9.14)

Thus integration is reduced to the determination of ΔΩ and to measure the dis-
tances Δh within, and normal to, the mass volume ρΔV . For simple shapes as tri-
angles and rectangles this is easy; remember the infinite Bouguer slab: ΔΩ = 2π;
we exploit the fact that the quadrature of the circle or sphere has long been solved
by invoking the transcendental number π. The situation can be used to design mass
approximations accordingly.

The gravitational component normal to the surface considered cannot be gener-
ally used to infer the vector modulus δg(E) = δgn

(E)/cosψ(E), only if the direction
ψ(E) of the vector is known its size is found by back projection (Fig. 2.9.4). The
idea that δδδggg(E) always points to the centre of gravity C of E, is incorrect, though
often implicitly assumed. If ψ(E) is not known, three components of the gravita-
tional attraction must be calculated, ΔΔΔggg(s) = (Δgp

(s), Δgq
(s), Δgn

(s)), for example,
to project it onto another coordinate system; two plane-parallel components orthog-
onal to each other are treated in Sect. 2.9.3.4.
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Fig. 2.9.4 Back projection of
the plane-normal component
δgn onto the vector δδδggg of
known a priori direction

Horizontal Rectangular Plane Element

The special case of a rectangular horizontal plane mass element of thickness dz
is presented as an example and in preparation for treating the rectangular prism or
cuboid. For that also the rectangular planes normal to the other coordinate directions
x, y are included. The planes are assembled into a box or hollow cuboid a× b× c
with P = (0,0,0) at one corner (Fig. 2.9.5). Thus the box is made up of 6 planes:
x = 0 and x = a, y = 0 and y = b, z = 0 and z = c, i.e. the infinitesimally thin
rectangles dx × b × c, dy × a × c and dz × a × b. The prism dimensions may be
normalized with the vertical c (rule 6), i.e. we let c = 1, and the edges are then a, b, 1.
For these elements the solid angles from P: ΔΩ (x), ΔΩ (y) and ΔΩ (z) are determined
(Fig. 2.9.5a,b), and the plane-normal gravitational components (Eq. 2.9.13) are

δg(x)
x = GρΔΩ (x)dx

δg(y)
y = GρΔΩ (y)dy

δg(z)
z = GρΔΩ (z)dz

⎫⎬
⎭ (2.9.15)

where the bracketed superscripts indicate the respective planes. ΔΩ is derived by
basic geometrical arguments. The opposite planes, i.e. those through P intersect the
unit sphere as great circles, hence ΔΩ (o) = 0.

The projection of a corner point x, y, z of the cuboid from P onto the unit sphere
is called x′, y′, z′. The following notation is introduced: corners and their projections
from P = (0,0,0) are characterized by index triples of zeroes and ones, depending
whether x, y, or z = 0 or �= 0; for example, 100 means a point (x,0,0), especially
(a, 0, 0); or 111: (x, y, z) or (a, b, c) – diagonally opposite P. This notation is also
shown on Fig. 2.9.6. Lengths are called:

r000 = 0,
r100 = a,r010 = b,r001 = c or 1,
r110 = (a2 +b2)1/2,r101 = (a2 + c2)1/2 or (a2 +1)1/2

r111(a2 +b2 + c2)1/2 or (a2 +b2 +1)1/2,
r011 = (b2 + c2)1/2 or (b2 +1)1/2,
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Fig. 2.9.5 The rectangular prism or cuboid with P at one corner. (a) Prism and unit sphere;
sketched projection of prism edges onto unit sphere; (b) more detailed projection of prism edges
onto unit sphere with symbols shown

The projection of a face onto the P unit sphere is a spherical quadrangle. The
three spherical quadrangles have each three rectangular corners, only at x′, y′, z′ the
full circle is divided into three, usually unequal, corner angles, as x′, y′, z′ is the
intersection of three great circles (Fig. 2.9.5b). ΔΩ is equal to the spherical excess
ε , i.e. the excess over 180◦ of the sum of the inner corner angles in a spherical
triangle: ε = ΔΩ for each quadrangle. Consider the triangles made of the diagonal
and two quadrangle sides and determine the angles α , β , γ , where α+β + γ = π:

ΔΩ (x) = β + γ−π/2, ΔΩ (y) = α+ γ−π/2, ΔΩ (z) = α+β −π/2 (2.9.16)
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Fig. 2.9.6 Three digit notation for cuboid with P at one corner

For each spherical triangle all sides are defined from prism geometry
(Fig. 2.9.5b), e. g.

H(x) = arcsin(r010/r110), H(y) = arcsin(r100/r110r111),etc.,

and α , β , γ are found by the law of sines and:

α = arcsin([r100r111]/[r110r101]), β = arcsin([r010r111]/[r011r110]),
γ = arcsin([r001r111]/[r101r011]). (2.9.17)

Hence, from (Eqs. 2.9.15, 2.9.16, 2.9.17), the plane-normal gravitational compo-
nents are:

δg(x)
x = G ρ dx(arcsin[r010r111/r011r110]+ arcsin[r001r111/r101r011]−π/2)

δg(y)
y = Gρdy(arcsin[r100r111/r110r101]+ arcsin[r001r111/r101r011]−π/2)

δg(z)
z = Gρdz(arcsin[r100r111/r110r101]+ arcsin[r010r111/r011r110]−π/2)

⎫⎪⎬
⎪⎭

(2.9.18)

2.9.3.4 Vertical Plane or Wall: The Logarithmic Effect

Walls are vertical planar surface mass elements exerting a gravity effect, i.e. the ver-
tical component of their gravitational effect. “Vertical” can be generalized to imply
“parallel to gravity”, and the wall element is especially designed here to calculate
the plane-parallel effect in any orientation. Together with the plane-normal effect
(Sect. 2.9.3.3) two plane-parallel effects describe the vector effect δδδggg which, for ex-
ample, if the plane is oblique, is needed, to calculate δgz in an Earth-bound system.
Parallel wall elements, which are defined by rays from P, grow in area as r2 and thus
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preserve the advantage of compensating at least the 1/r2 part of the z/r3 kernel of
integration.

The plane-parallel effect is derived by integrating vertical mass line effects
(Eq. 2.9.10) or (Eq. 2.9.11) of mass density ρ+ = ρdxdy (see Sect. 2.9.3.2) over
the appropriate plane; here again, the rectangular plane is taken. Take a vertical
plane normal to x, at x = a, extending from y = 0 to b and z = 0 to c (or c = 1) and
let ρ+ = ρ∗dy with ρ∗ = ρdx:

δg∗(x)
z =

∫ c

0
dy/(y2 +A2)1/2 = ln(y+(y2 +A2)1/2)|b0

where A2 stands for a2 or a2 + c2, alternatively a2 + 1. Written dimensionally with
r1 = a,r2 = (a2 +b2)1/2,r3 = (a2 +b2 + c2)1/2 and r4 = (a2 + c2)1/2:

δgz
(x) = −Gρ[lnr1 − ln(b+ r2)+ ln(b+ r3)− lnr4]dx or

δgz
(x) = −Gρdxln[r1(b+ r3)/(b+ r2)r4] = Gρdx ln[r4(b+ r2)/(b+ r3)r1]

(2.9.19)

With the notation, introduced above (Fig. 2.9.6) for the corners of a cuboid that
is expanded from P = (0, 0, 0):

δgz
(x) = Gρ dx ln[r101(r010 + r110)/(r010 + r111)r100] (2.9.20)

A remark on the vertical wall is inserted here: it is a model of a geological dyke.
With b → ∞, (b + r2)/(b + r3) → 1, and from −∞ to ∞, i.e. the effect of the two-
dimensional dyke is (see Sect. 2.9.7.1.2):

δg∞ = 2Gρ dx ln[r4/r1] = 2Gρ dx ln[r101/r100] (2.9.21)

If b finite, but c → ∞, r4/(b+ r3) → 1, and from −b to +b, the double effect is

δg = 2Gρ dx ln[(b+ r2)/r1] = 2Gρ dx ln[b+(a2 +b2)1/2/a]
= 2Gρ dx ln[(r010 + r110)/r100] (2.9.22)

If b and c→∞, r4/(b+r3)→ 1, division of the numerator and denominator by bc
leaves the former finite while the latter goes to zero, thus the 2D bottomless vertical
dyke generates an infinite gravity anomaly.

Also plane-parallel is the y component δgy
(x) of gravitational attraction of the

same rectangle; the expression is derived analogously:

δgy
∗(x)

=
∫ c

0
dz/(z2 +B2)1/2 = ln(z+(z2 +B2)1/2)|c0

where B2 = a2 or a2 +b2, and dimensionally, as above

δgy
(x) = Gρ dx ln([(r001 + r101)r110]/[r100(r001 + r111)]) (2.9.23)
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The planes y = b and z = 1 (or z = c) are treated identically for their plane-parallel
effects (y: δgx

(y) and δgz
(y); z: δgx

(z) and δgy
(z)). Beginning with the plane face

normal to x, at x = a, from y = 0 to b and z = 0 to 1 or c (Fig. 2.9.5). δgz
(x) =

cGρ dxδgz
(x)∗ can be written:

δgz
(x) = Gρ dx[ln(b+(a2 +b2)1/2)− lna+ ln(a2 +1)1/2− ln(b+(a2 +b2 +1)1/2)].

All expressions for the rectangular prism, with, of course, ln1 = 0, contain for
each rectangular plane, the arguments of the logarithms of the 4 radii from P to the
4 corner points:

δgy
(x) = Gρ[ln(1+(a2 +1)1/2)− lna+ ln(a2 +b2)1/2 − ln(1+(a2 +b2 +1)1/2)]dx

δgz
(x) = Gρ[ln(b+(a2 +b2)1/2)− lna+ ln(a2 +1)1/2 − ln(b+(a2 +b2 +1)1/2)]dx

δgx
(y) = Gρ[ln(1+(b2 +1)1/2)− lnb+ ln(a2 +b2)1/2 − ln(1+(a2 +b2 +1)1/2)]dy

δgz
(y) = Gρ[ln(a+(a2 +b2)1/2)− lnb+ ln(b2 +1)1/2 − ln(a+(a2 +b2 +1)1/2)]dy

δgx
(z) = Gρ[ln(b+(b2 +1)1/2)− ln1+ ln(a2 +1)1/2 − ln(b+(a2 +b2 +1)1/2)]dz

δgy
(z) = Gρ[ln(a+(a2 +1)1/2)− ln1+ ln(b2 +1)1/2 − ln(a+(a2 +b2 +1)1/2)]dz

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.9.24)

or, in the triple-index notation (Fig. 2.9.6):

δgy
(x) = Gρ dxln([(r001 + r101)r110]/[(r001 + r111)r100])

δgz
(x) = Gρ dxln([(r010 + r110)r101]/[(r010 + r111)r100])

δgx
(y) = Gρ dyln([(r001 + r011)r110]/[(r001 + r111)r010])

δgz
(y) = Gρ dyln([(r100 + r110)r011]/[(r100 + r111)r010])

δgx
(z) = Gρ dzln([(r010 + r011)r101]/[(r010 + r111)r001])

δgy
(z) = Gρ dzln([(r100 + r101)r011]/[(r100 + r111)r001])

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.9.25)

For P → the corner of the wall, the distances in the above denominators, r100,
r010, r001 → 0 and the respective logarithms, for example, in the case of δgz

(x), ap-
proach ln[2c/(1 +(1 +(c/b)1/2)dx/2)]. However, limdx→0(dx ln(1/dx)) → 0, and,
for example:

δgz
(x) → Gρ dx/2(ln[2c/(1+(1+(c/b)1/2))]− ln[dx/2])

where the second terms are small. These expressions are used below for rectangular
shells (Sect. 2.9.5.1) and extended to massive rectangular prisms (Sect. 2.9.6.1).
Horizontal planar mass elements have, however, more diverse applications.

2.9.4 Disks

Horizontal disks are useful as parametrization of geological bodies given by con-
tour lines, e.g., in case for topography. Arbitrary orientations do occur and then
disk-parallel components are required. Based on the above (Sects. 2.9.3.3 floors and
2.9.3.4 walls) where ρdh = ρ∗(kg/m2), small finite thicknesses Δh are
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handled likewise – with caution. Three cases are distinguished: (1) rectangular disks,
(2) disks bounded by polygonal contours and (3) disks with continuously curved
boundaries or contours. Case (1) has essentially been treated above; case (2) is the
most common approximation of arbitrary contours and case (3) is presented as a
general approach which allows integration in closed form if the curve is mathemat-
ically defined.

2.9.4.1 Horizontal Rectangular Disk

The horizontal rectangle of density ρ and thickness Δz at depth z below P = (0,
0, 0) is treated as an example. The vertically oriented rectangles of Sects. 2.9.3.3
and 4 are analogous; for obliquely oriented disks coordinate transformations are re-
quired; as discussed for the case of oblique polygons (Sects. 2.9.4.2) and polyhedra,
2.9.5.2). Applying rule 5, we regard the rectangle with one corner at P′′ = (0,0,z)
and calculate general rectangles from 4 rectangles of the basic type by adding and
subtracting their effects appropriately. Based on (Eqs. 2.9.16, 2.9.17, 2.9.18), the
vertical component is given as

δgz
(z) = Gρ Δz(arcsin[r100r111/r110r101]+ arcsin[r010r111/r011r110]−π/2)

(2.9.26)
Analogous relations for the other rectangles or other components can be taken

from the above sections.

2.9.4.2 Horizontal Polygon

The polygon is a special case of a contour c made of straight line segments. It repre-
sents the classical approximation of an arbitrary empirical curve. The gravity effect
δgz can be integrated along the straight lines and summed for the whole polygon
with surface mass ρ∗ = ρdz (Talwani & Ewing, 1960).

The deduction of δgz with the solid angle from the observation point P = (0, 0,
0) at a distance z or h above (or below) the plane is illustrated in Fig. 2.9.7. A local
coordinate system X , Y , Z is chosen with X parallel to the straight line AB from A
to B. The normal distance p or n can be derived from (Appendices M2.3); in two
coordinates X , Y , or global x, y (n is invariant to the coordinate transformation) it is
simpler:

n = P′′N = (ΔxyA −ΔyxA)/(Δx2 +Δy2)1/2 (2.9.27)

where P′′N is the straight line from P′′ to N and Δx = xA −xB, Δy = yA −yB. Local
Y is parallel to P′′N, and Z ≡ z; X , Y , Z form a right-handed system. The coordinate
transformation, according to (Eq. 2.4.4) is a rotation about z through an anticlock-
wise angle α of X versus x with the aid of the rotation matrix:

RRRX,x :=
(

cosα −sinα
sinα cosα

)
(2.9.28)
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with cosα =Δx/(Δx2 +Δy2)1/2, sinα =Δy/(Δx2 +Δy2)1/2. Any point XXX = (X ,Y )
is found by XXX = RRRX,xxxx. The back transformation is xxx = RRRx,XXXX where RRRx,X = RRRT

X,x.,
i.e. RRRx,X transposed.

Each straight line segment of the polygon at Z = const expands with P′′, the
projection of P onto the plane, a triangle AP′′B. The right triangle AP′′N (or BP′′N)
is the basic element, as shown as the triangle projection onto the unit sphere in
perspective by Fig. 2.9.7. The effect of the triangle AP′′B, δgz(AB), is obtained as
the difference between the effects of BP′′N and AP′′N, where only the value of X
must be changed:

δgz(AB) = δgz(A) −δgz(B).

With the above triple index notation (Fig. 2.9.6), N ↔ r011, A ↔ r111, δgz(A)
proceeds in analogy to that of the rectangular prism. On the unit sphere around P
the projected triangle corners are 111′, 001′, 011′ (Fig. 2.9.7, sphere); the spherical
sides are a, b, c and the corner angles α , β , γ = π/2; b, c and α are defined directly
by the given geometry (Fig. 2.9.7):

b = arcsin(r010/r011);c = arcsin(r110/r111);α = arcsin(r100/r110).

The law of sines gives

sinβ = sinb/sinc = r010r111/(r011r110).

Fig. 2.9.7 Integration scheme for the normal gravity effect of an arbitrary n-cornered horizontal
polygon ABCDEF perspective overview; X , Y , Z ≡ z represent the local system with X parallel to
the side AB. Projection of the polygon side AB onto the unit sphere around the origin P = (0, 0, 0)
for the calculation of the plane-normal effect. The basic triangles for the δgz calculation are AP′′N
and BP′′N, and the effect of the polygon triangle ABP′′ is the difference between the two
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The solid angle is equal to the spherical excess ε = ΔΩ = α +β +π/2−π =
α+β −π/2;

ΔΩ = arcsin(r100/r110)+ arcsin(r010r111/(r011r110))−π/2. (2.9.29)

and, as before,

δgZ = ΔΩ Gρ dZ = Gρ dZ(arcsin(r100/r110)+ arcsin(r010r111/(r011r110))−π/2).
(2.9.30)

The sign of (Eq. 2.9.29) takes care of any possible location of A and B.
The sides of a polygon must then be treated consecutively. Each corner point is

treated twice, once for each adjoining side. Encircling the polygon will automati-
cally give its effect only. – A different, though somewhat similar, derivation of ΔΩ
for a polygon is given by Goguel (1961); see KJ61, 330–334.

2.9.4.3 Oblique Polygon

The complete vector effect δδδggg = (δgx,δgy,δgz) is needed if the polygon has an
oblique orientation for rotation into the global x, y, z system. The coordinates must
first be rotated according to (Eq. 2.4.2) into X , Y , Z, such that, again, the side AB
(vector AAABBB) is parallel to the X axis XXX ; the rotation axis through P = (0, 0, 0) is given
by xxx×AAABBB. The plane-normal component δgZ is calculated as in Sect. 2.9.3.3, and
the plane-parallel components, δgX, δgY, are calculated according to 2.8.3.4 (wall:
Eqs. 2.9.24 & 2.9.25). The calculated components are then rotated back about the
same axis with the aid of the inverse of (2.4.2).

In the triangular case the plane-parallel rod integration differs from the rectan-
gular wall case. One side of the triangle in question (Figs. 2.9.7, 2.9.8) is a straight
line from P′′ to A. The effect δgX is calculated for the plane strip between Y = 0
to Y = YA by integrating the X-parallel rod effect from P′′A, where X = cY to
X → ∞, i.e. integration renders (non-dimensional), with r = (c2Y 2 +Y 2 + h2)1/2 =
(1+ c2)1/2(Y 2 +h2/(1+ c2))1/2:

Fig. 2.9.8 Integration scheme
of the plane-parallel
components δgX and δgY for
basic elements of the
polyhedron side AB. The
element is defined by the
X- and Y -parallel strips,
respectively, between the
straight line PPP′′BBB (or PPP′′AAA)
and infinity. The effect of the
triangular element AP′′B is
the difference of the effects of
BP′′N and AP′′N
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δgx
∗ =

∫ YA

o
dY/r = (1+c2)−1/2[ln(YA +(Y 2

A +h2/(1+c2))1/2)−ln(h/(1+c2)1/2)]

(2.9.31)
The Y -parallel effect δgY∗ is obtained in the same way, but the straight line is

y = x/c:

δgy
∗ = c(1+ c2)−1/2[ln(yA +(y2

A + c2h2/(1+ c2))1/2)− ln(ch/(1+ c2)1/2)]
(2.9.32)

Dimensionally the gravitational components are δgi = δgi
∗Gρ∗ = δgi

∗Gρ dh.
Evaluation for the point B (or YB) is analogous. Subtraction of the effect from that
for A leads to the effects of the triangle AP′′N. The sides of a polygon are treated
consecutively; each time an individual rotation of the x, y, z components into a local
X , Y , Z system and a back rotation of the results into the global system are carried
and the sum of all contributions is formed.

2.9.4.4 Plane Horizontal Disc with Smoothly Curved Boundary

Treatment of a disc with a smooth, continuous boundary c and of thickness dh and
density ρ (or surface density ρ∗) starts from (Eq. 2.9.13): δgn = Gρ

∫
Ω
∫

h dhdΩ ,
the infinitesimal integration element is taken as the triangular surface (Fig. 2.9.9a)
extended from P′′ to the boundary element dc. P′′ is the projection of P onto the

Fig. 2.9.9 Integration of the plane-normal (a) and plane-parallel (b) effects of infinitesimal trian-
gular surface element from P′′ to the element dc of a smooth boundary. P′′ is the vertical projection
of P onto the plane. The infinitesimal plane-normal effect dδgn (a) is derived directly from dΩ ,
while the plane-parallel effect dδgp (b) of the infinitesimally narrow triangle of angle dλ at P must
be integrated with the surface element da = Rdrdλ
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plane. The radii R from P′′ to ds limit the incremental azimuth dλ = dc/(Rcosθ).
The projection onto the unit sphere around P is the infinitesimal cap sector dΩ =
dλ (1−h/r). Hence dδgn = Gρ∗dΩ = Gρ∗(1−h/r)dλ , and

δgn = Gρ∗
∫

c
(1−h/r(λ ))dλ = Gρ∗

(∫
c
dλ −

∫
c
h/r(λ )dλ

)

= Gρ∗
(

C−
∫

c
h/r(λ )dλ

)
(2.9.33)

where

C =

⎧⎪⎨
⎪⎩

0 if P outside contoured planar disc

π if P exactly on the contour (if smooth or continuous)

2π if P inside the contour.

Integration along a closed contour line takes automatically care of the finite
disc by the sign of the dλ increments along the contour. Analytical integration of
(Eq. 2.9.33) requires h/r(λ ) to be expressed in mathematical terms (see below).

Alternatively, contours c can be defined by sequential points Q′
i, i.e. approxi-

mated by small finite segments Δc and the corresponding angular increments Δλ
(Jacoby, 1967). Effects of contour shape and of the finite thickness d are negligible,
and if P lies close to a contour line, special measures have to be taken, as for exam-
ple, filling in a gap along c with points Q′. The solid angle ΔΩ is estimated for the
triangular part of the disc expanded by P and Δc given by two neighbouring points
Q′

i and Q′
i+1, where ϕ is the dip angle of r from P to Q′, h is the depth of the disc

below P, and Δx = xQ′ − xP,Δy = yQ′ − yP,ri = (Δx2 +Δy2 +h2)1/2:

ΔΩ ≈ Δλ (1− (sinϕi + sinϕi+1)/2) = Δλ [2−h(ri + ri+1)/(riri+1)]/2 (2.9.34)

and
Δgz ≈ ΔΩρd

to be added up for the whole contour.

2.9.4.5 Arbitrarily Orientated Plane Disk with Smoothly Curved Boundary

In the case of arbitrary disc orientation in x, y, z (i.e. not horizontal or no coordi-
nate axis parallel to ggg), plane-oriented coordinates X , Y , Z are defined first. Two
orthogonal, arbitrarily oriented in-plane vectors, XXX ′′′ and YYY ′′′ may be selected, such
that the unit axis vectors XXX = XXX ′′′/X ′ and YYY = YYY ′′′/Y ′; ZZZ = XXX ×YYY is then normal
to the plane. The global x, y, z coordinates are transformed into X , Y , Z by es-
tablishing and evaluating the rotation matrix (Eq. 2.4.2). The calculation of the
disc-normal component δgn is then done as above with Eq. (2.9.33), but does not
suffice for obtaining the vector components needed for back transformation into
the Earth-bound x, y, z system; it requires also the plane-parallel components δgX

and δ gY.
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The plane-parallel component δgp exerted by the dλ planar element can be inte-
grated along the radius R, but the surface element, da, is only the small quadrangle
of incremental R and λ : da = dRRdλ ; with ρ∗ as before and r = (R2 + h2)1/2

(Fig. 2.9.9b), the infinitesimal gravity contribution is dδgp = Gρ∗daR/r3 = G
ρ∗dλ R2dR/(R2 + h2)3/2. If the variables R and λ are independent, the integration
over R gives:
∫

R2dR/(R2 +h2)3/2 = ln(R+(R2 +h2)1/2)−R/(R2 +h2)1/2 = ln(R+ r)−R/r

= lnR(1+ cosϕ)− cosϕ

where ϕ = arctan(h/R) is the dip angle under which dc is seen from P (Fig. 2.9.9b).
If R → ∞,cosϕ → 1 and even the infinitesimal element with the opening angle
dλ , generates dδg → ∞. This is not surprising, as the mass element RdRdy grows
linearly with RRR while the gravitational effect decreases as 1/R2. Hence the effect of
da decreases only as 1/R, and the integral of the type

∫
dR/R renders the logarithm

of R.
If R is given as an analytical function of λ on a curve c, the integration can be

carried out and Δgp can be evaluated in closed form:

δgp = Gρ∗
∫

(ln(R(λ )+ r(λ ))−R(λ )/r(λ ))dλ (2.9.35)

If the curves c are circles, the solution leads to elliptic integrals. Alternatively
the integration may be carried out numerically or approximated in some appropriate
way for any special case.

Finally the three components δgX, δgY and δgZ are back-transformed into the x,
y, z system by applying the inverse of (Eq. 2.4.2).

2.9.5 Shells

Shells are hollow bodies treated as a preliminary step to the massive bodies.

2.9.5.1 The Rectangular Shell or Box

The box with P at its upper corner (0, 0, 0) is composed of two rectangular hor-
izontal floors and 4 rectangular vertical walls (Eqs. 2.9.18 & 2.9.25). The three
near sides have P at one corner such that the expressions for the δg(j)

i effects must
be re-evaluated for the case of one of the distances r → 0. The expression for the
far side effects exactly correspond to (Eqs. 2.9.18 & 2.9.25) with the infinitesimal
thicknesses replaced by the small but finite thickness t, i.e. t << a, b, c (or 1),
respectively. Remember that the superscripts (x), (y) or (z) denote the effects as-
sociated with box walls or surfaces whose exterior normal vectors point in x, y or
z directions, respectively; in the text these surfaces are named “facing (x)” or “(x)
facing”, etc.
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The far side effects are in the i jk notation (Fig. 2.9.6):

δgx
(x) = Gρ t(arcsin[r010r111/r011r110]+ arcsin[r001r111/r101r011]−π/2)

δgy
(x) = Gρ t ln([(r001 + r101)r110]/[(r001 + r111)r100])

δgz
(x) = Gρ t ln([(r010 + r110)r101]/[(r010 + r111)r100])

δgx
(y) = Gρ t ln([(r001 + r011)r110]/[(r001 + r111)r010])

δgy
(y) = Gρ t(arcsin[r100r111/r110r101]+ arcsin[r001r111/r101r011]−π/2)

δgz
(y) = Gρ t ln([(r100 + r110)r011]/[(r100 + r111)r010])

δgx
(z) = Gρ t ln([(r010 + r011)r101]/[(r010 + r111)r001])

δgy
(z) = Gρ t ln([(r100 + r101)r011]/[(r100 + r111)r001])

δgz
(z) = Gρ t(arcsin[r100r111/r110r101]+ arcsin[r010r111/r011r110]−π/2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9.36)

In evaluating the near side effects applying (Eq. 2.9.36), each side is considered a
rectangular plate of thickness t << a, b, c. For example, the plate facing x is defined
by x = 0 and x = t with the surface area b× c. In the above case, the plate has the
dimension t × b× c. Full evaluation requires for each component consideration of
three elements, one plane-normal and two plane-parallel, i.e. 9 elements for each
side. It turns out that the large faces, in the above case, b× c, expand the dominant
mass to exert significant effects relative to those of the narrow faces b× t and c× t,
in the above case. The detailed evaluation is based on the effect of the vertical rod
as presented in Sect. 2.9.3.2 which, in turn, is best treated as a special case of the
massive cuboid considered in Sect. 2.7.6 below; Task 2.5 is meant to substantiate
the derivation.

Take for the above plate, e.g., the vertical component xnearδgz
(x) = Gρ t(ln[2bc/

(b + <b,c>)]− ln t) where <b,c> = (b2 + c2)1/2 and terms as <t,b> ≈ b; with
t → 0, ln t → −∞, while the product (t ln t) → 0, such that this term is uncriti-
cal; nevertheless, the expression must be fully evaluated. The two narrow faces

of the plate (y) and (z) contribute xnearδg(y)
z = Gρb(ln[b<b,c>/(b<b,c>)] →

ln1 = 0, and xnearδgz
(z) = Gρc(arcsin[t<b,c>)/(bc)]+arcsin[b<b,c>/(<b,c>b]

−π/2)→ π/2−π/2 = 0. Summarizing all the significant effects, the (x) facing near
plate contributes:

xnearδgx
(x) = Gρ tπ/2

xnearδgy
(x) = Gρ t(ln[2bc/(c+ < b,c >)]− lnt)

xnearδgz
(x) = Gρ t(ln[2bc/(b+ < b,c >)]− lnt)

⎫⎪⎬
⎪⎭ (2.9.37a)

the (y) facing near plate contributes:

ynearδgx
(y) = Gρ t(ln[2ac/(c+ < a,c >)]− lnt)

ynearδgy
(y) = Gρ tπ/2

ynearδgz
(y) = Gρ t(ln[2ac/(a+ < a,c >)]− lnt)

⎫⎪⎬
⎪⎭ (2.9.37b)

and the (z) facing near plate contributes:
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znearδgx
(z) = Gρ t(ln[2ab/(b+ < a,b >)]− lnt)

znearδgy
(z) = Gρ t(ln[2ab/(a+ < a,b >)]− lnt)

znearδgz
(z) = Gρ tπ/2

⎫⎪⎬
⎪⎭ (2.9.37c)

The above expressions (Eqs. 2.9.36 & 2.9.37) are ordered by the vector effects
of each side (x), (y) and (z). The effect of the whole box with thin walls of mass
density ρ∗ = ρt is found by summing component wise.

2.9.5.2 Polyhedral Shell

The polyhedron is composed of contagious plane polygons, usually triangles. At
edges and corners the surface orientation changes discontinuously. As in the case
of the horizontal polygon (Sect. 2.9.4.2), the basic surface elements are the right
triangles (Fig. 2.9.7), whose solid angle contributions ΔΩ are to be calculated with
Eq. (2.9.30).

Since the planes have generally oblique orientations in the x, y, z system, appli-
cation of the above procedure requires first a coordinate rotation about a generally
oblique axis and furthermore, for the determination of the gravitational vector con-
tribution, also the plane-parallel gravitational components must be known as dis-
cussed above for the polygon (Sect. 2.9.4.2). The three dimensionless components
δgX

∗, δgY
∗, δgZ

∗ (Eqs. 2.9.4–2.9.7) in the local coordinates X , Y , Z for each poly-
hedral plane surface must be back rotated into the global system and added up for
the whole polyhedron. The dimensional values of δgx, δgy, δgz are obtained by
multiplying each of the components δgx

∗, δgy
∗, δgz

∗ values by G ρΔh with Δh be-
ing the finite thickness of each of the planes. – The details of the calculation for the
hollow polygonal shell are not given here, since the case has little practical value;
coordinate transformations and the resulting specific formulae can be worked out
from Sects. 2.9.3 to 2.9.4.3.

2.9.5.3 Generalized Smoothly Curved Surface or Shell

For arbitrary curved surfaces the element is the infinitesimal surface dddsss which
is continuously changing direction (Fig. 2.9.10a,b). The infinitesimal vector con-
tribution is dddggg, with dΩ = dscosψ/r2,cosψ = dddsss.rrr/(ds.r), and dh or Δh as in
Fig. 2.9.10b is:

dddggg(r) = GρΔh dΩ/cosψ (2.9.38)

pointing towards −−−rrr; dh is the thickness of the curved shell. Integration over dΩ ,
i.e. ds, is then done by components (rrr = (x, y, z)) with φx, etc. the angles of−r with
x and cosφx = x/r, etc.:
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Fig. 2.9.10 Surface element
of smooth shell, solid angle
dΩ and gravitational
attraction δgr. Top: 3D view;
bottom: geometrical relations

δgx = Gρ
∫

SΔhcosφx/cosψdΩ = −GρΔh
∫

S x/(r cosψ)dΩ
δgy = −GρΔh

∫
S y/(r cosψ)dΩ

δgz = −GρΔh
∫

S z/(r cosψ)dΩ

⎫⎬
⎭ (2.9.39)

If the direction of δg is known beforehand (from P, e.g., to centre of a uniform
sphere), the corresponding dddggg component can be integrated directly:

δg = Gρ Δh
∫

S
cosφ/cosϑ dΩ (2.9.40)

where φ is the angle of −−−rrr relative to ΔΔΔggg.

2.9.6 Uniform Massive Volumes

Massive bodies are the main subject of gravity forward calculations. They are as-
sumed to be uniform in density Δρ . If a geological body is non-uniform, it has
to be modelled by several uniform bodies, either superimposed, i.e. fully, partly
or not overlapping, contagious or separated. Variations of the density contrast
Δρ within a geological body may originate from external variations of the ref-
erence density ρo. Again, the principal approach is that which uses the solid an-
gle. The expressions are, however, designed to apply to parametrizations of the
model volume independent from the individual observation points such that effec-
tive modelling is possible. The solid angle ΔΩ must be easily calculable from the
given global coordinates. Remember the arbitrarily oriented surface element with
dV = dr ds = dr dΩr3/h, for which the normal component Δgn takes the form
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(Eq. 2.9.13):
∫
Ω
∫

h dhdΩ = ΔΩ Δh. If the solid angle ΔΩ has been found, integra-
tion of massive bodies means only measuring the distances Δh within, and normal
to, the mass volume ρΔV . For example, a two-dimensional horizontal strip of sur-
face density ρdz seen from P = (0, 0, 0) between two planes intersecting each other
at P at an angle of Δψ has the effect at P of δgz = 2Gρ Δψ dz, while the effect of a
thick (Δz) body of trapezoid cross section is δgz = 2Gρ ΔzΔψ .

As above, three types of bodies are presented here: the rectangular prism, the
polyhedron and the lump of mass with a smoothly curved surface.

2.9.6.1 Massive Rectangular Prism or Cuboid

The calculation of the effect of a massive rectangular prism on one of its corners
P = (0, 0, 0) is now easy, i.e. it has already been prepared in Sects. 2.9.3.3 (floor),
2.9.3.4 (wall) and 2.9.5.1 (rectangular box). The last missing step is the integration
over the thickness of the mass elements now extended from x = 0, y = 0, z = 0 to a,
b, c (or 1).

The massive rectangular prism is thus a special case of the box where in
Eq. (2.9.36) for the floor and the walls the thickness t is replaced by the dimen-
sions, for x, y, z: t = a, b, c, respectively.

δgx
(x) = Gρ a (arcsin[r010r111/r011r110]+ arcsin[r001r111/r101r011]−π/2)

δgy
(x) = Gρ a ln([(r001 + r101)r110]/[(r001 + r111)r100])

δgz
(x) = Gρ a ln([(r010 + r110)r101]/[(r010 + r111)r100])

δgx
(y) = Gρ b ln([(r001 + r011)r110]/[(r001 + r111)r010])

δgy
(y) = Gρ b(arcsin[r100r111/r110r101]+ arcsin[r001r111/r101r011]−π/2)

δgz
(y) = Gρ b ln([(r100 + r110)r011]/[(r100 + r111)r010])

δgx
(z) = Gρ c ln([(r010 + r011)r101]/[(r010 + r111)r001])

δgy
(z) = Gρ c ln([(r100 + r101)r011]/[(r100 + r111)r001])

δgz
(z) = Gρ c(arcsin[r100r111/r110r101]+ arcsin[r010r111/r011r110]−π/2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9.41)

As above: δgi = Gρ ∑(k) δg(k)
i , where i, j, k correspond to x, y, z:

According to rule 5, an arbitrary prism with P �= (0, 0, 0) somewhere outside or
inside, is composed of prisms of the same type but different dimensions by subtrac-
tion and/or addition. For this it is more convenient to number the corner points, or
better: the discrete coordinate intervals, e.g. xl, ym, zn of the arbitrary prism and to
re-order the above expressions (Eq. 2.9.41) by functions of individual corner points
or radii from P to these corners. The component effect Δgi

(p)
lmn of an arbitrary prism

(Δxl,l+1 ·Δym,m+1 ·Δzn,n+1) is then expressed by cyclic summation with alternating
signs of flmn = f (xl, ym, zn), for all corner with r = (x2 + y2 + z2)1/2 and:

f (x, y, z) = y ln(x+ r)+ x ln(y+ r)− z arctan(xy/zr) (2.9.42)

δglmn = Gρ( fl,m,n − fl+1,m,n + fl+1,m+1,n,− fl,m+1,n + fl,m+1,n+1 − fl,m,n+1

+ fl+1,m,n+1 − fl+1,m+1,n+1) (2.9.43)
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Fig. 2.9.11 Scheme of
summing the corner functions
(Eq. 2.9.42) constituting
the gravity effect δgz at
P = (0,0,0) for an arbitrary
rectangular prism with
alternating signs; the corners
(x, y, z) are counted as x, y,
z = 1 or 2, 1 indicating the
smaller numerical value

This is also obtained by conventional integration for (Δxl,l+1 ·Δym,m+1 ·Δzn,n+1).
The scheme of summation is shown in (Fig. 2.9.11), where the corners are numbered
as 111, 112, 211, etc. instead of showing the indices l, m, n, l +1, m+1, n+1.

Rounding errors may become large, if r greatly exceeds the side lengths, because
Δglmn (see below) is expressed as a very small difference between large numbers
flmn and the number of volume elements becomes large. Tests are necessary to in-
vestigate from where on the point approximation renders better results. Alternatively
small elements may be combined to bigger ones.

2.9.6.2 Massive Polyhedron

Massive polyhedra are flexible approximations to arbitrarily shaped geological bod-
ies. Their treatment somewhat differs from that of polyhedral shells (Sect. 2.9.5.2).
The difference is in the infinitesimal mass elements. The size of the shell mass ele-
ment ρ∗ds depends on its orientation relative to the radius vector rrr, see (Eq. 2.9.12),
and the arguments leading to it. In contrast, the mass element of the massive
polyhedron is the oblique cone or pyramid expanded from ds and P (0, 0, 0); its
volume is generally large relative to the infinitesimal dimensions of its base ds
which, hence, is negligible and independent from the orientation of ds. Therefore
the integration proceeds with mass elements ρdV , where dV is the volume of the
infinitesimally thin cone defined by the solid angle dΩ whose volume grows with
dr as dV = r2dr dΩ ; dΩ depends on the orientation as dΩ = cosψ ds/r2. If ds is at
a given arbitrary ro, dV = cosψ dsdr, and the volume of the cone ΔV depends on r
as cosψ ds0

∫ ro dr = cosψ ds ro.
The basic finite polyhedral elements Δs are the variably oriented right tri-

angles which, from P, expand massive oblique tetrahedra. For the plane-normal
components, the planar elements are projected, as above, onto the unit sphere at
P to directly render ΔΩ .
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In the special case that the direction ψ(E) of the vector effect δδδggg(E) is known,
the components in x, y, z are found by back projection (Fig. 2.9.4): δgn

(E) =
δg(E) cosψn, δgn

(E) cosψh/cosψ(E). Generally, the vector or its direction is not
known, and thus also the plane-parallel components must be calculated. The pro-
cedure is described by that for the polygon (Sects. 2.9.4.2 & 2.9.4.3; Figs. 2.9.7
& 2.9.8; Eqs. 2.9.29, 2.9.30, 2.9.31); integration of the massive oblique pyramid
is reduced to

∫
dh = h, because the planar dh elements grow as h2, compensating

1/r2. For each polyhedron triangle the vector is calculated in the local coordinates
(X , Y , Z): δδδggg = (δgX,δgY,δgZ) and rotated into the global coordinates: δgx, δgy,
δgz and added up component wise for the whole polyhedron, with i = 1, 2, 3 for
x, y, z:

δgi =∑Sk δgik

Another approach to calculating the gravity effect of a polyhedron(Çavşak, 1992)
is first to integrate the disturbing potential effect ΔU of an arbitrarily oriented
pyramid from similar volume elements as used here and then calculating the ver-
tical derivative δgz = ∂ΔU/∂ z. It requires coordinate transformations. The ap-
proach is facilitated by using vector calculus. Several solutions and algorithms of
gravity integration over uniform polyhedra have been published, at least since the
1960s. Pohánka (1988) and Holstein and co-workers in a series of papers (Holstein,
2002a,b; Holstein et al., 1999) summarized and compared them with each other,
especially in view of computational precision. Polyhedra are treated with the aim
to unify the calculations of what is called the “gravimagnetic effects” and to make
optimal use of similarities common to all these related potential field problems. The
methods may be distinguished as vertex, line and surface methods. The formula-
tions are essentially all alike, but the approach is different: abstract, mathematical,
based on the application of Gauss’ and Stokes’ integral theorems. In contrast, it
is here attempted to design tailored mass elements (solid angle and vertical mass
line, both growing with r2) in a more visual approach. It encompasses special cases
where mass elements degenerate to zero (on a polyhedron facet, an edge or a ver-
tex) where analytical treatment has problems. Computational aspects are discussed
in Chap. 6.

2.9.6.3 Lumps of Mass with Smoothly Curved Surfaces

If a uniform body is defined by a continuously curved closed surface S (Fig. 2.9.10)
the mass parametrization is similar to that for the polyhedron (Sect. 2.9.6.2). The
infinitesimal surface element ds is the same, it expands a dense cone of infinitesi-
mal solid angle dΩ opening from P. In contrast to the polyhedron, the gravitational
vector effect dddggg points in the direction of the axial radius vector rrr from P to ds;
since the deviation from this at the generally oblique surface dddsss is negligible rela-
tive to the mass of the finite-length cone. (The approach is basically that of Pois-
son’s equation ΔU = 4πGρ = div grad U = divggg, combined with Gauss’ theorem∫

V divgggdV =
∫

S ggg ••• dddsss, where dddsss is the surface vector, but the direction is reversed
to that from the source Q to the observation point P). Letting ψ = 0, i.e. ds normal
to rrr:
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|ΔΔΔggg| = G
∫∫∫

V
dm/r2 = Gρ

∫
Ω

∫
r
r2 dr dΩ/r2 = Gρ

∫
Ω

∫
r
dr dΩ = Gρ ΔΩ Δr

(2.9.44)
This is exact in the case of spherical surfaces for which r = const, but for dif-

ferent shapes the difference is negligible. However, the orientation of dddsss does enter
the solid angle dΩ calculation. The infinitesimal vector contribution δδδggg, from an
element dr r2 dΩ can be written, with dΩ = dscosψ/r2 and cosψ = dddsss ··· rrr/(ds r):

δδδggg = Gρdr cosψ ds/r2(rrr/r) = GρdrdΩ(rrr/r) (2.9.45)

Integration of δg over r leads to the, yet infinitesimal, vector contribution dddggg(r)
from the dΩ cone or ray (r) expanded by P and ds:

dddggg(rrr) = Gρ r dΩ(rrr/r) (2.9.46)

No problem arises from the zero distance of mass to P. Integration over S or Ω is
done by components (rrr = (x, y, z) with ϕx, the angle of rrr with x, and cosϕx = x/r,
and ϕy, ϕz accordingly):

δgx = Gρ
∫

S r cosϕxdΩ = Gρ
∫

S r (x/r) dΩ = Gρ
∫

S x dΩ
δgy = Gρ

∫
S y dΩ

δgz = Gρ
∫

S z dΩ

⎫⎬
⎭ (2.9.47)

If the direction of δg is known beforehand (from P, e.g., to the centre of a homo-
geneous sphere), the corresponding δg component can be integrated directly:

δg = Gρ
∫

S
r cosϕdΩ (2.9.48)

where ϕ is the angle of rrr relative to ΔΔΔggg.
Analytical integration is possible if the quantities r = (x,y,z) and ψ can be de-

scribed mathematically. Integrating over the whole closed surface S takes care of
the mass inside s. The equation expresses that the lengths of rays r associated with
mass (ρ) are to be intergrated multiplied with cosφ . In Task 2.1 this is applied to a
homogeneous sphere and r means the secant lengths of the rays. It proves the well
known fact that the gravitational attraction of a homogeneous sphere is identical to
that of its mass concentrated at its centre. Even easier is it to show that nowhere
inside a homogeneous spherical shell a test mass feels its attraction (Task 2.3).

2.9.7 Two-Dimensional Bodies

Two-dimensional (2D) mass distributions vary in two dimensions (usually x, z) and
are uniform in the third dimension (y); 2D models play an important role in grav-
ity interpretation (Chap. 6), mostly because they are much easier visualized and
handled than three dimensions, imagination of 2D sections is easier than that of
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three-dimensional (3D) bodies, and 2D density variations ρ(x, z) are conveniently
drawn on two dimensional paper. If a gravity anomaly is characterized by one dom-
inant elongation the mass distribution is approximated by neglecting the dominant
dimension. Principally unrealistic, as it extends beyond even the limited universe
and has an infinite gravitational potential, it nevertheless generates a realistic grav-
ity effect, essentially because the effects of distant parts are negligible. The term
“two-dimensional” has become popular and is generally understood correctly by the
users although it is somewhat misleading: the structure is really three-dimensional
but the one infinite dimension with no variation is uninteresting.

2.9.7.1 Two-Dimensional Mass Elements

2.9.7.1.1 Mass Line Elements

What is called “two-dimensional geometry” is described in Cartesian coordinates.
The solid angle and rod approach correspond to horizontal cylinder coordinates. In
analogy to the 3D mass elements, mass lines and mass planes, both horizontal and
vertical are needed for the calculation of the gravitational components which are
line-normal (or plane-normal) and parallel.

The infinite uniform horizontal mass line with density ρ+ = ρ dx dz (kg/m) is
the fundamental mass element of 2D modelling. Its effect (Eq. 2.9.3.1) has been
calculated in Cartesian coordinates in 2.8.3.1. The correction factor (Eq. 2.9.8) a =
λ/(x2 + λ 2 + z2)1/2 for finite length λ , instead of ∞ (see Sect. 2.9.3.1), depends
only on the ratio η = λ/z and approaches 1 quickly: for η = 0.5, 1, 2, 5: a = 0.4,
0.7, 0.9, 0.98, respectively.

The gravitational potential of the infinite mass line, δU (Eq. 2.9.9) is of interest
in interpreting satellite radar measurements of ocean surface topography which, to a
first approximation, follows the equipotential surface of the geoid, i.e. δN ≈ δU/go,
where go is normal gravity at the Earth’s surface.

For 2D geometry the solid-angle approach is simple. The mass line corresponds
to an infinitesimally thin horizontal strip, infinite in y, seen from P under the angle
dϕ; it projects onto the unit sphere as a great circle bi-angle whose area is dΩ = 2dϕ
(Fig. 2.9.1). The 2D volume element is thus chosen dV = dz ds = dz dΩr3/h =
2dz dϕr3/z, hence the vertical line-normal effects is:

dδgn = dδgz = 2Gρ dzdϕ (2.9.49)

If the y axis is taken as a horizontal cylinder axis, ϕ as the azimuth corresponds
to horizontal cylinder coordinates, where r = R, the axial distance of a point or line;
Eqs. (2.9.9) and (2.9.49) thus describe axis-normal effects. Equation (2.9.49) is in-
tegrated for planes, arbitrarily shaped pipes (e.g., of wall thickness t) and to massive
beams of density ρ (Fig. 2.9.12), for example, defined by closed 2D contours c (i.e.
infinite pipe-like surfaces) or polygons in cross section. As in 3D, the discussion is
ordered from disks to hollow pipes and massive beams.
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Fig. 2.9.12 Definition of
symbols for ΔΩ integration
of δgz of horizontal 2D
cylindrical bodies of smooth
cross section (not necessarily
circular cylinders)

The rod or line-parallel effect, δgy, along the infinite dimension has been calcu-
lated in Sect. (2.9.3.1) as (Eqs. 2.9.10, 2.9.11), however, for symmetry from −∞ to
+∞, both sides cancel each other. The semi-infinite case, as in (Eqs. 2.9.10, 2.9.11),
is not 2D and does not belong here.

The other line-parallel component is dδgx which can be formulated in analogy
to (Eq. 2.9.49) with dV = dxds = dxdΩr3/x = 2dxdϕr3/x, hence the horizontal
line-normal effect is dδgx = 2Gρ dxdϕ . The line extends vertically along z and has
been formulated in Sect. 2.9.3.1 – Vertical mass line: (Eq. 2.9.10) and integrated as
(Eq. 2.9.11): dδgp = dδgz = Gρ [1/r1 −1/r2] dx dy. The plane-parallel component
is needed for defining the vector δδδggg.

2.9.7.1.2 Planar Mass Elements

Planar mass elements normal or parallel to gravity, as in 3D modelling, render the
effects δgn and δgp, or in x, y, z: δgz and δgx, while δgy = 0. The derivation is
based on the solid angle and the rod integration. The plane normal effect is the
integral (Eq. 2.9.49) over the finite solid angle

∫
dϕ = Δϕ where Δϕ = ϕ2 −ϕ1,

ϕ1 = arctan(x1/z) = arcsin(x1/r1), ϕ2 = arctan(x2/z) = arcsin(x2/r2), r1 = (x2
1 +

z2)1/2, r2 = (x2
2 + z2)1/2:

δgn = δgz = 2Gρ dzΔϕ (2.9.50)

The plane-parallel effect is obtained by integration of G ρ [1/r1−1/r2] dx dy over
y from −∞ to +∞, with distance to top r1 = (x2 + z1

2)1/2 and distance to bottom
r2 = (x2 + z2

2)1/2:
δgp = δgz = 2Gρ ln(r2/r1) dx. (2.9.51)

see also (Sect. 2.9.3.4) for the effect of a finite rectangular wall (Eq. 2.9.21) extended
to infinity in one horizontal direction.
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2.9.7.2 Two-Dimensional Horizontal Disks

The two-dimensional horizontal disk is identical to the above uniform planar strip,
except for a finite thickness. The strip is a trapezoid defined by two horizontal
planes, separated by Δz = t and two planes through P and the y axis intersecting
at an angle of Δϕ . Then ΔΩ = 2Δϕ , and:

δg = 2Gρ ΔϕΔz. (2.9.52)

For the Bouguer slab Δϕ = π. Strips are simple means for quick estimates of
gravity effects (see Chap. 5 & Sect. 6.2.1.1 (3)).

2.9.7.3 Hollow Structures: Pipes

Hollow structures or pipes are built of contagious finite or infinitesimal narrow strips
enclosing an area or two-dimensional volume. The formulations for rectangular,
polygonal and smoothly curved cross sections have mostly been derived above.

2.9.7.3.1 2D Rectangular Cross Sections

Rectangular pipes consist of two element types: horizontal and vertical strips for
which the plane-normal and plane-parallel components, respectively, are given by
(Eqs. 2.9.50 & 2.9.51); the thickness of the pipe wall may be assumed finite t, where
t is much smaller than any of the dimensions. Rule 6 could be applied by beginning
with a pipe with P at its upper left-hand corner and subtracting and adding ap-
propriate pipes of the same type but of different dimensions, however, it is of no
advantage in this case. Instead, the pipe is here defined by x1, x2 and z1, z2 and
the corner radii are r11 = (x1

2 + z1
2)1/2, r12 = (x1

2 + z2
2)1/2, r21 = (x2

2 + z1
2)1/2,

r22 = (x2
2 + z2

2)1/2, such that Eqs. (2.9.50) & (2.9.51) give for the top, bottom and
two side strips with the indices i, j = 1, 2 of the corners xi, zj:

δgz(pipe) = 2Gρ t[(ϕ11 −ϕ21 +ϕ12 −ϕ22)+ ln[r12r22/r11r21)] (2.9.53)

Such pipes are artificial but may be used to model structures built of shells with
systematically varying density.

2.9.7.3.2 2D Polygonal Cross Sections

Polygonal cross sections describe 2D polyhedra, and the treatment is analogous to
that of 3D polyhedra. The faces are strips of arbitrary orientation. Therefore plane-
normal and plane-parallel components are derived for each face, in order to en-
able the vector projection onto the Earth-bound x, y, z system to be calculated.
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As the section, i.e. its corner points xk, zk are originally given in this system, for
each face the coordinates are first rotated about the y axis such that X is parallel to
the face and Z is normal to it (see Sect. 2.9.4.2, where rotation about the z axis is
described).

The plane-normal and parallel components (δgZ, δgX) are calculated in the ro-
tated system with Eqs. (2.9.50) & (2.9.51) and then back-rotated into the Earth-
bound x, y, z system. It is important to simply reverse the original rotation to avoid
ambiguity. Finally the contributions (δgx, δgz) are summed for the whole polygonal
section.

2.9.7.3.3 Arbitrarily Shaped Pipes of Continuous Smooth Cross Section

For pipes of surface density ρ t and smooth cross section the procedure is the same
as in 3D shells. The infinitesimal 2D surface strip mass element ρ t dddsss continuously
changes direction along S (Fig. 2.9.13, compare Figs. 2.9.12 & 2.9.10b, where Δh
corresponds to t). Because of the smallness of ds, the infinitesimal gravitational
vector effect dddδδδggg pointing toward P, has the direction −−−rrr, given by the centre of
gravity of ds, such that dΩ = dscosψ/r2:

dddδδδggg(r) = Gρ t ds/r2 = Gρ tdΩ/cosψ = 2Gρ tdϕ/cosψ (2.9.54)

where ϕ is the angle of rrr with x. Integration by components with rrr = (x,0,z) and
cosϕ = x/r leads to:

δgx = −2Gρ t
∫

S(cosϕ/cosψ)dϕ = −2Gρ t
∫

S x/(r cosψ)dϕ
δgy = 0
δgz = −2Gρ t

∫
S z/(r cosψ)dϕ

⎫⎬
⎭ (2.9.55)

or, if ϕo is known a priori as the angle of δδδggg relative to −−−rrr, as is the case of a
circular cylinder, for example, where δg points to its axis:

Fig. 2.9.13 Definition of
symbols for ΔΩ integration
of δgz of horizontal 2D
cylindrical pipes of smooth
cross section (not necessarily
circular cylinders)
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δδδggg = Gρ t
∫

S
cosϕo/cosψdΩ (2.9.56)

For other integrable mathematical expressions, the integration must be carried
out component-wise.

2.9.7.4 Massive Beams and Steps

Massive beams are the most generally applicable 2D approximations of elongated
geological bodies. The integration can be carried out in several ways. One is based
on stacking planar mass elements (see Eqs. 2.9.50 & 2.9.51) defined by steps, verti-
cal or oblique (Fig. 2.9.14). Integration over the full distance d from P to the plane
under consideration now simply renders ρ d (instead of ρ t in the case of pipes).

Fig. 2.9.14 Steps: (a) left: vertical; right: oblique; parametrization is by horizontal layers shown
by horizontal hachures. (b) Left: the oblique step is defined by the inclined straight line (2D plane)
between B and A as well as the horizontal planes z = zB and z = zA; it is an element of a 2D
polygonal cross section. Right: the step extending upward to z = 0 is the basic body of the solid
angle approach between 0 and zA or zB; it is composed of: (1) the semi-infinite plate bounded to the
left by the oblique radii from O to A and B, [OA∞] and [OB∞] (horizontal hachures, marking the
degenerated triangles with one corner at infinity, and (2) the triangular beams [OAN] and [OBN]
marked in grey. The effect of body (2) is subtracted from that of body (1). (c) Definition of symbols
used in text
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No singularity exists at P where r → 0 as shown for the Poisson equation (2.7.11).
Another way is to use complex integrands (see Sect. 2.9.7.4.3). Below, vertical steps,
rectangular sections, oblique steps, polygonal sections and smoothly curved cross
sections are presented in turn.

2.9.7.4.1 Vertical Steps

According to rule 6 the most basic body is the vertical step at position x from
depth z to 0 which, alternatively can be considered a semi-infinite horizontal plate
(Fig. 2.9.14a, left). Its effect, from (Eqs. 2.9.50 & 2.9.51), is:

δg(step) = 2Gρ[zϕ− x ln(r/x)] = 2Gρ[zarctan(z/x)− x ln(r/x)] (2.9.57)

with r = (x2 +z2)1/2 and the distance to the step top at (x, 0) is r1 = x in (Eq. 2.9.51).
Note that (Eq. 2.9.57) combines two basically different bodies: (1) the horizontal,
laterally semi-infinite plate, limited by the plane through the y axis and point (x,
z), expressed in (Eq. 2.9.57) by the term [zϕ = zarctan(z/x)], and (2) the triangular
cross section, defined by the same plane, the horizontal plane z = 0 and the vertical
plane of the step, expressed by [−x ln(r/x)], “minus” signifying that this effect is
subtracted from the first. The two types of bodies are used in a generalized way
when treating the oblique step (Sect. 2.9.7.4.3).

The effect of the step can also be obtained by integrating over the infinitesimal
solid angle ΔΩ = 2ϕ directly (see GH49, 342,3c):

∫
ϕ(z)dz =

∫ z

0
arctan(z/x)dx = z arctan(z/x)− x ln(r/x)

The effect of a vertical step from z2 to z1 is the difference between two basic step
effects (Eq. 2.9.57) with z = z2 and z = z1, respectively.

A simpler, though less accurate, approximation of a step is to concentrate the
mass of the step onto the horizontal plane at its mean depth z/2 or (z1 + z2)/2, from
which follows the simple halfwidth rule in Sect. 2.5.6.3.2. The effect is:

δgcondens = 2Gρ zϕ1/2 = 2Gρ z arctan(z/2x) = 2Gρ z arctan(z1 + z2)/2x (2.9.58)

Vertical steps of semi-infinite width and density Δρ are special beams which can
be used to approximate steep faults or to compose horsts and grabens of finite width.
The term beam implies a free structure in mass-free space. Since any horizontally
layered density distribution may be superimposed, the half space below may have
the same density as the beam which thus becomes a horst, and if the density below
is that of the surrounding mass, the beam becomes a graben. Furthermore, reversing
the sign of the density contrast Δρ also reverses the tectonic nature of the beam.
These considerations do not affect the calculations and equally apply to oblique
steps and polygonal Sects. (see 2.9.7.4 & 2.9.7.4).
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2.9.7.4.2 Rectangular Cross Sections

The effect of a rectangular beam is the difference between two basic steps (either
from z to 0 or from z2 to z1), but can be derived also directly from the rectangular
hollow pipe (Sect. 2.9.7.3).

The normal gravitational component generated by the beam is obtained from
(Eq. 2.9.53) by replacing the constant wall thickness t by the appropriate thicknesses
in depth z or horizontal distance x between P and the 4 faces and (instead of adding
the effects of all 4 walls) by adding or subtracting the contributions related to each
face such that the effective mass is only that enclosed by the rectangle:

δgz = 2Gρ [z2(ϕ12 −ϕ22)− z1(ϕ11 −ϕ21)+ x2 ln(r22/r21)− x1 ln(r12/r11)]
(2.9.59)

This can be rewritten as the sum of functions of the 4 corners xizj, i, j = 1, 2,
with

fij = (−1)i+j(xi lnrij − zjϕij)δgz beam = 2Gρ∑i∑j fij (2.9.60)

2.9.7.4.3 Oblique Steps

The basic oblique step (Fig. 2.9.14b, left) is defined by an inclined straight plane
face (line) between the points (xB, zB) and (0, 0) and the horizontal planes z = 0 and
z = zB, extending to infinity. The effect of the step has been obtained by Talwani
et al. (1959) by integrating over infinitesimally thin (mass density ρdz) horizontal
planes extending from x of the step face to ∞, expanding with P the solid angle Ω =
2ϕ = 2 arcsin(z/(x2 +z2)1/2): A

∫ Bϕdz; ϕ is defined by the straight line (face) from
z = zA to zB. The step is the basic element of a 2D polygonal cross Sect. (2.9.7.4) and
the corresponding method of forward gravity modelling is known as the “Talwani
method”.

The gravity effect of the step can be obtained directly from the solid angle
(Fig. 2.9.14b, right). First, the most basic body is chosen as the step extending to
z = 0. The notation [ABC] indicates the body of triangular cross section or simply
2D triangle defined by the corners A, B and C, including degenerated triangles with
one corner at infinity. Physically and computationally, the step between depths zB

and zA, [AB∞], can be considered as the difference between the two equivalent ba-
sic steps extending to z = 0, i.e. [NB∞] and [NA∞]. For each, (in the figure: [NB∞])
two bodies are considered: (1) the semi-infinite plate [OB∞] limited by the plane
through O and B, and (2) the triangular beam [OBN], expanded by the step face and
O. The effect of body (2) has to be subtracted from the effect of (1). The effect of
(1) follows directly from the solid angle under which the body is seen from O, with

Ω = 2ϕ and ϕ = arcsin(zB/(x2
B + z2

B)1/2): Ω = 2ϕ , δg(plate)
z = 2Gρ ϕzB.

Body (2), i.e., the triangular beam [OBN] has been treated by analytical integra-
tion (KJ61, 201, Eq. (146)). Its effect is at O = (0,0), with α = arctan(zB/(xN−xB))
and rB = (xB

2 + zB
2)1/2, (for the symbols see Fig. 2.9.14c):
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Fig. 2.9.15 Perspective view
of the oblique step and
coordinate systems: global
x, y, z (z along ggg) and X , Y , Z
(X along step slope, Y ≡ y).
The radii rN′ and rB appear
only in the integration of the
step along Y , not in the result
of the calculation of the step
slope-parallel component δgX

δg(tri)
z = 2Gρ xN sinα[ln(rB/xN)sinα+ϕB cosα] (2.9.61)

Application of the Ω approach to [OBN] renders only the gravitational com-
ponent normal to the step face such that also the face-parallel component must be
determined by rod integration. This requires rotation of x, z about y ≡ Y into X , Z:
X is parallel to BBBAAA or BBBNNN. The geometry of the integration scheme is illustrated
in Fig. 2.9.15. The step face between B at zB and N at z = 0, which lie in the x, z
section (y = 0), is composed of rods along slope lines, generally expanded between
B′ and N′ at arbitrary y values. Integration of the X-parallel rod effects from y = 0
to ∞ leads to the face-parallel effect as given by (Eq. 2.9.51):
δgX

(tri) = 2Gρ Zo ln(xN/rB) where Zo = xN sinα (Fig. 2.9.14c). The face-normal
effect follows from (Eq. 2.9.50): δgZ

(tri) = 2Gρ ZoϕB. Back projection or rotation
renders:

δgx
(tri) = δgX

(tri) cosα+δgZ
(tri) sinα ,δgz

(tri) = −δgX
(tri) sinα+δgZ

(tri) cosα , hence :

δgZ
(tri) = 2Gρ Zo[ln(rB/xN)sinα+ϕB cosα ]

which is, with Zo inserted, identical to Eq. (2.9.61), and:

δgz
(step) = δgz

(plate) −δgZ
(tri) = 2Gρ [ϕBzB − xN sinα(ln(xN/rB)sinα+ϕB cosα)]

= 2Gρ xB tanα [ϕB(sin2α− xB/xN)− ln(xN/rB)cosα)].

Conversion to expressions of the corner point coordinates xB, zB, xN is achieved
by simple arithmetic operations. The expressions for steps [NB∞] and [NA∞] con-
tain the identical quantities α and xN.

Complex integrands. An alternative approach is to use complex integrands (KJ61,
199-204). The complex gravity effect δgc = δgx − iδgz (i =

√
−1) is a representa-

tion of the 2D vector:
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δgc = 2Gρ
∫

x

∫
z

dxdz/(x+ iz) = 2Gρ
∫
ϕ

∫
r
r(ϕ)dr dϕ/reiϕ = 2Gρ

∫
ϕ

r(ϕ)e−iϕdϕ.

(2.9.62)
(multiply enumerator and denominator with x − iz!). From the sine law
(Fig. 2.9.14c):

r = xN sinα/sin(α+ϕ) = xN sinα2i/[exp(i(α+ϕ))− exp(−i(α+ϕ))].
Hence

δgc = 2Gρ xN sinαϕA

∫ ϕB
(2ie−iϕdϕ)/(ei(α+ϕ) − e−i(α+ϕ))

= 2Gρ xNe−iα
∫

d(2iϕ)/(e2iϕ − e−2iα) = e−iα I.

The integral I is of the type
∫

dx/(ex − a) = a−1(ln(ex − a)x), thus, after some
elementary steps:

I = ln[(sin(α+ϕB)e2iϕB)/(sin(α+ϕA)e2iϕA)].

Invoking the sine law again:

δgc = 2Gρ xN sinαeiα ln[rBeiϕB/(rAeiϕA)] (2.9.63)

Separating the real and imaginary parts, we get

δgz = 2Gρ xN sinα[sinα ln[rB/rA]+ cosα(ϕB −ϕA)] (2.9.64)

This expression is identical to (Eq. 2.9.61) applied to the difference between the
triangular beams: [OBN] – [OAN], where the identical quantities α and xN cancel.
For numerical calculations, rB, rA, ϕB, ϕA have to be expressed as functions of the
coordinates xA, zA, xB, zB.

Which approach to the integration is preferred depends on personal taste. The
solid angle approach has close affinity to complex analysis, as KJ61 remarks,
which can be applied to calculating the gravitational vector effect δδδggg and to
projecting it on any component direction which, however, is not followed
up here.

2.9.7.4.4 Polygonal Beams

Infinite 2D beams of polygonal cross section (degenerated 3D polyhedra) can be
composed either of steps (1) or triangular beams (2) (Fig. 2.9.13b). In encircling
the polygon, the external masses are removed. Which expression for the individ-

ual step is chosen is irrelevant, but while Δδg(step)
x → ∞, Δδg(tri)

x can be calcu-
lated. The faces, i.e. the polygon sides, are defined consecutively by xk, zk and
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xk+1, zk+1. Each side is composed of two basic steps where zN = 0: δg(face,k)
z =

δg(step,k+1)
z − δg(step,k)

z . The parameters in (Eq. 2.9.61) are α → αk with tanαk =
(zk+1 − zk)/(xk+1 − xk) and xN → xNk = zk(tanα+ xk/zk). Hence:

δg(face,k)
z = 2Gρ xNk sinαk[ln(rk+1/rk)sinα+(ϕk+1 −ϕk)cosα] (2.9.65)

For each face k, i.e. k → k + 1, ΔδgXk and ΔδgZk, are calculated, as above in
face-oriented X , Z coordinates, transferred back to Earth-oriented x, z coordinates
and added to the total sum. The polygonal cross section is encircled, for example,

clockwise: δg(polygon)
z = ∑k δg(face,k)

z . The procedure is repeated for all m stations
at xi, i = 1, n, after in each case the x coordinates are shifted, such that P is at 0, 0:
xk = xk,global − xi,global. – For detailed applications see Chap. 6.

2.9.7.4.5 Arbitrarily Shaped Beams with Smooth Cross Section

For the massive beam with arbitrary smooth boundaries (Fig. 2.9.12), the general
equations are equivalent to those of the 3D case of a volume enclosed by an arbitrary
closed surface S (Eqs. 2.9.47 & 2.9.48):

δgx = 2Gρ
∫

S r cosϕxdϕ = −2Gρ
∫

S xdϕ
δgy = 0
δgz = 2Gρ

∫
S zdϕ

⎫⎬
⎭ (2.9.66)

If the vector direction is known (e.g., from P to the axis of a homogeneous hori-
zontal spherical cylinder, with the angle α of rrr relative to ΔΔΔggg:

δg = Gρ
∫

S
r cosαdΩ (2.9.67)

Evaluation is possible for curves c for which z = z(ϕ) can be expressed
analytically or numerically. They can, of course, be generalized to any wanted
oblique component of the attraction vector at P by rotating the coordinates ac-
cordingly and replacing z(ϕ) in (Eq. 2.9.66) by the distance h(ϕ) in the rotated
coordinates.

2.9.8 Two-and-a-half Dimensional Models (21
2D)

Two-dimensionality leads to significant errors of gravity calculation, if the length
over depth ratio is not large. It is therefore advisable to estimate the errors. For this
purpose, one can calculate the end corrections for finite length λ , i.e. by the factor
a (Eq. 2.9.8) or construct simple 3D models for comparison.
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It is tempting to save the simplicity of the 2D modelling by formulations gen-
erally applying end corrections of the 2D models and performing what has been
called 21/2 dimensional modelling. However, while infinite length is never realis-
tic, the limited lengths are usually difficult to define. The lateral extent of geological
structures is often roughly known or can be inferred from the gravity maps, but it
is generally uncertain what lies beyond the limited body and usually varies in three
dimensions with significant gravity effects. In many cases it is best to immediately
construct 3D models, but these aspects are the topic of Chap. 6.

Remark 1
It should be noted that the Bouguer slab as any infinite mass plane generates a
finite gravity effect proportional to its density ρ and thickness Δz, i.e. constant and
independent from h above the plane. Hence, for such a slab the potential is simply
δU =

∫ z+h
z δgdz = 2πGρ hΔz. A laterally homogeneous mass, for example, one-

dimensional ρ(z), varying only with depth z, generates no gravity variations and is
not seen and, hence, neglected. Since this is true only for lateral infinity, one must
be cautious in the real world. The situation is the same on a perfect sphere with only
radial density variation ρ(r); even the ellipticity of the earth leads to deviations
from the rule (Clairot’s theorem), but for local to regional studies, the effects are
negligible.

Note, however, that the gravitational invisibility of ρ(z) or ρ(r) is true only for
observations above the masses. It is not true for stations inside the masses, for ex-
ample, in mines or basements of buildings below the nearby mean earth’s surface.
And, of course, it is never true for lateral variations as, for example, the topographic
relief.

Remark 2
Çavşak’s (1992) integration of δgz for polyhedra is based on the basic tetrahedra
expanded from P to the arbitrarily oriented plane triangles (corners A, B, C, equiv-
alent to vectors AAA,BBB,CCC) taken as the basic mass elements ρΔV . First the potential
δU of the mass element is calculated in a suitable Cartesian coordinate system (X ,
Y , Z) before δg = ∂δU/∂ z is derived. X is chosen parallel to the side AAABBB, Z parallel
to AAABBB×××BBBCCC and Y normal to X and Z, i.e. parallel to the plane ABC. Integration
is then fairly simple, being similar to the solid angle approach. To derive δgz re-
quires a rotational coordinate transformation (2.3.3.1) from (X , Y , Z) back to (x, y,
z), for which we need the matrix of the components of the vector xxx = (x,y,z) or
xi(i = 1,2,3) in the XXX = (X ,Y,Z) or Xk (k = 1, 2, 3) system; the matrix elements
are cos(xxxi,XXXk) of the angles between all xxxi,XXXk. Since the XXXk are defined in (x, y,
z), their x, y, z components cos(xxxi,XXXk) = cos(XXXk,xxxi) are known. Numerical routines
for elementary vector and tensor (or matrix) operations facilitate the calculations.
The potential and gravity effects (δU , δg) of a polyhedron of triangles are derived
by summing the contributions of all tetrahedra with a proper sign convention. Each
edge separates two triangles and occurs thus twice. The final expression is princi-
pally the sum of functions of all corner points, i.e. their x, y, z coordinates, with the
sign depending on the orientation of each triangle or the sign of the scalar product
of rrr.nnn, where nnn is the outward surface normal vector. Details are in the dissertation
by Çavşak (1992).
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2.10 Some Theoretical Aspects of Anomaly Analysis

2.10.1 Goals of Post-reduction Data Analysis

The anomalies need to be analyzed further in view of the ultimate goal of interpre-
tation. Again, it is mentioned that the subject are continuous fields which in practice
are derived from discrete point values and that this is not trivial (see Sects. 1.4,
discussion in 5.15) and must be kept in mind throughout this whole section which
assumes the existence of fields.

Some of the important theoretical relationships are presented here that are to be
exploited along the path from observations to models. Humans are guided by ideas
and images. Images are continua in colour or contoured. Visualization on the basis
of discrete data requires transformation of the discrete data to tractable represen-
tations (see Chap. 5). For the start graphical methods are valuable, but analytical
methods are often more efficient. The latter usually require regular data grids or
spatial series (like time series), but observations are only rarely obtained at regu-
larly spaced stations. Conversion to equidistant data values, either along profiles
(one-dimensional) or on grids (two-dimensional) by interpolation, however, leads
to some loss of authenticity and accuracy.

Mathematical and numerical tractability is facilitated by expansion into continu-
ous functions of the coordinates or series of functions. Fitting functions to the data
by minimizing the residuals is a common procedure where the residuals are consid-
ered random errors. Continuous functions permit various mathematical and numer-
ical treatments, for instance, filtering and transformation into other field quantities.
Alternatively a stochastic approach may be taken by which the most likely values
are estimated for a continuum of points.

There are many suitable functions. In some cases single functions may fit de-
sired features of the data. Functional families or series of functions, systematically
ordered, are more flexible in describing arbitrary spatial variations. Series expansion
is a formal procedure which requires convergence. Examples are polynomials, the
orthogonal harmonic series of sine and cosine functions; they are of infinite extent,
while wavelets are defined only in finite domains and vanish outside; other more
specialized series may be chosen. Orthogonality guarantees that the included terms
are independent from each other.

Series expansion of data serves more purposes. Smoothing of inaccurate (scat-
tered) observations with errors of no geophysical interest is a useful application. An
important application is the exploitation of the properties of the functions, for in-
stance, of their known space derivatives. This is, for instance, true for the harmonic
functions sinkx, coskx which permit easy upward and downward continuation (see
below).

Functions can be chosen especially to express gravimetric effects of certain types
of geological mass distributions and can be applied to gravity analysis. Then fitting
becomes inversion or modelling (Chap. 7). Such methods of interpretation have been
termed “direct” because a single mathematical operation renders a source model, in
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contrast to the “indirect” methods of trial and error (see Chap. 5). Actually, all func-
tions chosen for gravity analysis have the aspect of representing idealized source
distributions which are more or less capable of describing geological structures (see
remarks below). A caveat about all interpretative efforts is that the ambiguity is, and
remains, principal and unsolvable.

Functional series representation of the anomalies opens, in addition, new totally
different functional domains, for example, as frequency spectra of amplitude and
phase, instead of spatial variations. The anomaly description in the spectral domain
is as valid as that in the space domain if complete transformation between the do-
mains is possible both ways. Spatial spectra are not so familiar as acoustic spectra
of time functions which we directly hear. Spectral qualities in geometrical space
are, e.g., smoothness, roughness, waviness etc., Moreover, one can learn, and spa-
tial spectra can be used in data analysis and interpretation, for example, for arbitrary
spectral filtering (by wavelengths or scales) and frequency analysis, as customary in
acoustics or seismology.

This section begins with the usual concepts of smoothing and of deterministic
functions as polynomials, Fourier series, spherical harmonics, wavelets as well as
a few geophysically motivated special functions. The theory is applied to practical
tasks of data reduction and analysis in Chap. 4 as preparation for interpretation
and inversion (Chaps. 5, 6, 7). For an exhaustive treatment the reader is referred to
texts quoted below. The approach involves probabilistic and stochastic aspects as
common averaging and smoothing, but a more general stochastic treatment of field
representation and interpretation is briefly discussed at the end (Sect. 2.10.9).

2.10.2 Smoothing of Spatial Series

Dividing a data set into a smooth component and irregular residuals generally de-
pends on subjective judgement on what is considered a “random” error or “noise”
and what a meaningful signal. Errors are considered irrelevant to the study but must
be judged critically. They may be of observational nature and/or stem from uncon-
trollable local density variations. What is called “local anomalies” in contrast to
“regional anomalies” (which one may want to isolate from them) does not belong
into the realm of random errors. The related operations of smoothing and filtering
do serve the separation of different components of the data or the field, but as such
these operations can usually not distinguish noise from signals.

Simple smoothing in the above sense can be achieved by several methods
(Sects. 4.8.3 & 4.8.4) including various spatial averaging schemes or by functional
fitting. They are usually chosen by intuition and experience, and the behaviour of
the residuals should be analysed a posteriori. Overlapping averaging schemes usu-
ally apply some spatial weighting function. In spectral filter theory (Sect. 2.10.5)
the procedure is, as any filtering, “convolution” of the anomaly δg(x) or δg(x,y)
with the space-shifted weighting function w(x) or w(x,y). The filtered value δg∗ is
given by the cross covariance function, KOV, of δg(x) and w(−x):
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δg∗(x) =
∫ ∞

−∞
w(x)δg(x−ξ )dξ =

∫ ∞

−∞
w(x−ξ )δg(x)dξ = w(x)∗δg(x)

= KOV (w,δg) (2.10.1)

In the spectral domain (see Sect. 2.10.5), convolution is transformed into a multi-
plication of the (complete) spectra of the weighting function and the anomaly; “com-
plete” means amplitude and phase, for example, in complex form, with k = 2π/L:

δg∗(k) = W (k)•δg(k) (2.10.2)

A famous continuous filter function w(x,y) is the Gaussian exp[−(x2 +y2)/4L2],
the Fourier transform (see Sect. 2.10.5) of which is also a Gaussian: W (kx,ky,L) =
exp[−k2L2], where k2 = kx

2 +ky
2, and L characterizes the width of the filter (in the

sense of the standard deviation). By choosing kx and ky differently, one can design
anisotropic filters. The discrete case is treated in Sect. 4.7.4.2.

Triangular filter functions have been used for simplicity: f (x)= x/B2 +1/B(−B≤
x ≤ 0) and −x/B2 +1/B(0 ≤ x ≤ B); everywhere outside f (x) = 0. The convolution
integral leads to W (k) = [sin(kB/2)/(kB/2)]2, i.e. the squared sink/k function with
zero crossings at k = 2nπ/B or λ = B/n(n �= 0).

Thus, filter theory permits a better insight into the behaviour of overlapping av-
eraging, and (Eqs. 2.10.1) and especially (2.10.2) reveal the essential spectral prop-
erties of the averaging schemes.

2.10.3 Polynomials

Traditional polynomial fitting renders coefficients with mostly no physical meaning,
because ordinary polynomials are non-orthogonal. For example, while in a linear
polynomial as y = a+bx, b is the physical mean gradient of the data y, b looses this
meaning in y = a + bx + cx2. Therefore the theoretical basis is only formal. Nev-
ertheless, gravity anomaly profiles (δgi values at locations xi) can be expressed as:
δg(x) = ao + a1x + a2x2 + a3x3 + . . .+ r(x), where the ak are constant coefficients
and r is the residual, but as stated, the coefficients change when the polynomial de-
gree is changed. If the ri values can be assumed to behave as random errors ei, one
may determine the ak from the least-squares condition Φ2 =∑i e2

i = min by solving
the linear normal equations (see Chap. 7). If a low maximum degree is assumed, the
polynomial may be arbitrarily taken as a regional field with residuals representing
the local anomalies. But the latter will generally not be random as error theory de-
mands and because of the non-orthogonality a high-degree polynomial expansion
cannot be separated into a residual high-degree part and a regional low-degree part.
In any case, note the many caveats concerning regional-residual separation in later
chapters.

Two-dimensional polynomials are equivalent and can be written as:
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δg(x,y) = a00 +a10x+a20x2 +a30x3 + . . .

+a01y+a11xy+a21x2y+ . . .

+a02y2 +a12xy2 +a22x2y2+

+a03y3 + . . . . . . . . . . . . . . . . . . .+ r(x,y) (2.10.3)

fully analogous to the one-dimensional case.
Polynomials can be orthogonalized by enforcing the condition of orthogonality:

integrals over the study region (or sums over all occupied coordinates) of mixed
products of any of the polynomial terms (or any functions applied) must vanish
which defines a set of equations for orthogonalizing coefficients. It is facilitated if
the points are on a regular grid. The condition that the interval integral or sum over
the squared orthogonalized functions be 1 normalizes the coefficients. The normal
equations (Chap. 7) resolve into independent equations for each unknown for the
fitting of δg(x) or δg(x,y). The extra work is not justified, if effective comput-
ing facilities offer more general functions for fitting gravity anomalies (see below).
Special cases are the Legendre polynomials and the Hermite polynomials treated in
Sect. 2.10.6, below.

2.10.4 The Field Quantities: Differentiation and Integration

The gravity field, usually observed as δg (not the vector), can be expressed in the
form of other field quantities, for example, the potential δW and its higher deriva-
tives (e.g. gravity tensor observed by gradiometers or torsion balances). As outlined
in Sect. 2.7.2, on the basis of the Laplace equation, ∇2W = 0, in source-free space,
the other quantities can be derived from boundary values. Three approaches pre-
sented in 2.6.4 are (1) a geometrical one related to the equipotential surface, (2)
application of equivalent mass distributions, (3) expanding the observations, for ex-
ample, by Fourier and other series, and exploiting the known derivatives or integrals
of these functions. The operations involve numerical differentiations and integra-
tions of the given data sets (irregular or gridded).

The anomalous potential at the origin (0,0,0), zo above an equivalent stratum
in Cartesian coordinates, with r = (x2 + y2 + zo

2)1/2 and Δρ∗(x,y,zo) = δg/(2πG)
(Eq. 2.10.3), is:

δW (0,0,0) = G
∫ ∞

−∞

∫ ∞

−∞
(Δρ∗/r)dxdy, (2.10.4)

or in vertical cylinder coordinates and dropping the asterisk it is, with r = (R2 +
Zo

2)1/2:

δW (0,0,0) = G
∫ 2π

o

∫ ∞

o
(Δρ(R,λ ,Zo)/r)dRRdλ (2.10.5)
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and the circular average Δρ# = (2πR)−1 ∫ 2π
o Δρ∗(R,λ ,Zo)dλ :

δW (0,0,0) = G
∫ ∞

o
Δρ#(R,Zo)dR = (2π)−1

∫ ∞

o
δg#(R,Zo)dR. (2.10.6)

This operation is an upward continuation of the field, away from the source into
mass-free space, here in terms of the anomalous potential which can be converted
to gravity δWz by differentiation. But δWz can also be derived directly in an anal-
ogous manner. However, in the inverse direction approaching the source or into the
source volume is not possible in this general form; it is solved below by invoking
the harmonic functions (Sect. 2.10.5).

There is no general analytical solution for the integrals over arbitrary δg#. The
potential increment dδW = 2πGΔρ∗dz = δgdz for continuous δg, immediately
above the equivalent stratum is locally proportional to δg; the second derivatives
δWxx, δWyy and δWzz describe the curvature (or shape) of the equipotential surfaces
(Sect. 2.7.4). In the close neighbourhood to the equivalent stratum δW and δWz are
correlated with δρ∗, i.e. not phase shifted, and δWzz = 0, but as one moves away
from the stratum, δWzz grows and its value is also correlated to δρ∗. This permits
the relative curvature of δW to be estimated numerically from second differences
(or more sophisticated schemes). Only for demonstration, the one-dimensional case
of δg = δWz leads to δWxx ∝ (δWi−1 +δWi+1 −2δWi)/Δx2. Curvature can also be
estimated by functional fitting; one possibility is the function describing the effect of
a point mass which is discussed for illustration purposes: assume that locally the lin-
ear trend of δg(x,y) is removed and that the effect of a point source it fitted (depth
z and mass m determined), then all the local field quantities are δWz = Gmz/r3,
δW = Gm/r, δWzz = Gm(r2 − 3z2)/r5, and analysis could go on from here. The
most popular kind, however, are the harmonic functions (see below).

2.10.5 Harmonic Functions

2.10.5.1 Introduction to Plane Harmonic Functions

In many ways, series of harmonic functions are especially suited to describe vari-
ations in space. As is the case with the point mass effect (this is always true if
the source is known), all field quantities are automatically defined in mass-free
space (through the Laplace equation; but again the equivalent stratum is the known
source). Through the Fourier theorem, any space variation, for example, at the sur-
face, can be described as a Fourier series. Moreover, harmonic functions are orthog-
onal, the elements of the function family are independent, so that inclusion or dele-
tion of any element (of a certain frequency) does not alter the amplitudes and phases
of the other included elements. Along profiles with one variable x, anomalies δg(x)
are analogues of time series and can be treated the same way by employing series
of sin( jkx) and cos( jkx). The corresponding 2D density variation at depth would
consist of distributions in x and z. Extension to more than one variable, e.g. x, y,
is easy, and two-dimensional harmonic descriptions of δg(x,y) would correspond
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to 3D density distributions ρ(x,y,z). Time series analysis has become a stan-
dard procedure (Morse & Feshbach, 1953; Byerly, 1959; Moon & Spencer, 1988;
Klingen, 2001).

The Fourier theorem states that a physical function varying periodically with
wavelength λ or angular frequency k = 2π/λ can be expressed as a sum or series of
sinusoidal components of frequencies k, 2k, 3k, 4k, etc.: δg(x) ≈ j∑∞

0 Aj cos( jkx+
ϕj) = j∑∞

0 (aj cos( jkx)+bj sin( jkx)), each wave of the series having its own ampli-
tude Aj and phase ϕj. The two sets of parameters or coefficients are related by:

A = (a2 +b2)1/2 and tanϕ = b/a.

The functional fit lies in the calculation of the coefficients aj, bj; the procedure is
also called “Fourier analysis” or “frequency analysis”:

aj = (2/λ )
∫ λ

0
δg(x)cos( jkx)dx

bj = (2/λ )
∫ λ

0
δg(x)sin( jkx)dx (2.10.7)

The harmonic functions can be expressed through Euler’s formula by complex
exponential functions where phase and amplitude are coded by the two “coordi-
nates”, real and imaginary:

eix = cosx+ i sinx, and e−ix = cosx− i sinx.

The reverse is Moivre’s formula:

cosx = (eix + e−ix)/2 and sinx = (eix − e−ix)/(2i).

The Fourier series is written with the complex coefficients Cj, as:

δg(x) ≈j∑∞
0 Cje

i jkx =j∑∞
0 Cj exp(ikjx) (2.10.8)

with jk ≡ k j. Again, the coefficients:

Cj = (1/λ )
∫ λ

0
δg(x)exp(−ikjx)dx (2.10.9)

represent the spectral domain. To be useful, the fit of arbitrary gravity variations is,
of course, required to converge which is no problem for wavy fields but is for edgy
features as abrupt steps. The above expressions are valid for continuous functions
δg(x). In practice the integrals are numerically evaluated as sums over equidistant
discrete points (see Sect. 4.7.4) The description is valid in Cartesian space. For
planetary-scale problems, in spherical coordinates, the analogue are the spherical
harmonics (see below).

The fact that gravity anomalies δg(x) are generally non-periodic and defined in
limited intervals, while the harmonic functions are unlimited or infinite, has no in-
fluence on the series expression within the given interval of fundamental wavelength
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λo outside which the anomalies are neglected, but problems arise in modelling or
upward continuation (see below). One can also extend the fundamental wavelength
λo to infinity (but that does not change the fact that the data are limited). Then the
Fourier series becomes the Fourier integral:

δg(x) =
∫ ∞

−∞
F(k)eikxdk (2.10.10)

where the coefficients Cj become a continuous function F(k) and δg(x) is expressed
as the convolution of F(k) with eikx.

As mentioned, the anomaly spectrum F(k) in the frequency domain is an alterna-
tive view of an anomaly. The relation between the space domain and the frequency
domain is expressed by the above Fourier integral. The inverse, i.e. the definition of
the complex spectrum F(k) from the given spatial function δg(x) is expressed by the
inverse Fourier integral which is called the Fourier-transform, i.e. the convolution
of δg(x) with e−ikx:

F(k) = (2π)−1
∫ ∞

−∞
δg(x)e−ikxdk (2.10.11)

Negative wave numbers refer to waves in negative x direction. In the case of
gravity, negative wave numbers are superfluous or redundant (in the above sine and
cosine series: a−j = aj, b−j = bj, bo = 0), and it is sufficient to consider only waves
in x direction. The integration is then performed only from 0 to ∞.

Of course, infinity is an unrealistic idealisation, and neither is δg(x) defined be-
tween −∞ and +∞, nor is it known as an analytically integrable function f (x). A
fundamental wavelength λo with the wave number ko = 2π/λo and its integer mul-
tiples k1, k2, limits the spatial resolution. Integration is approximated by finite sums
and efficient numerical schemes exist (Chap. 4).

In upward continuation the spatially infinite periodicity of the harmonic func-
tions implies an unrealistic existence of gravity variations and their sources outside
the interval of definition, and that affects the results. It is sometimes considered as
the main problem posed by the use of harmonic functions. However, any other un-
realistic assumption about the anomalies and their sources outside the interval of
definition creates corresponding problems. In this respect, the limited wavelets do
not really solve the fundamental problem of truncation in space, time or frequency
since they imply zero gravity outside the region of study which is equally unrealis-
tic. But generally, it is possible and advisable to test the effects of the truncations in
space and spectrum of given gravity (or other) data.

2.10.5.2 Differentiation and Integration of Harmonic Components

In source-free space the order of integration and differentiation can be changed,
and the mathematical operations on the given anomaly as a function in space can be
carried out on the harmonic components before subsequent synthesis of the function.
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The practical advantages are enormous because the solutions are known for the
harmonic functions. Essentially it means that the outer field generated by a harmonic
source is completely defined analytically and this is exploited. Caution must be
exercised, however, with respect to convergence and resolution.

Differentiation after the explicit coordinates x (and y) is straightforward and leads
only to a change in amplitude and phase. The argument kx (or kxx and kyy) results in
factors of k (kx and/or ky) for the first derivative and k2(= kx

2 + ky
2) for the second

derivative. Integration has the opposite effect, i.e. the factor is 1/k. Factors of i, −i
or −1 and exchange of sine and cosine describe phase shifts of ±π/2 and ±π.

δW at the equivalent stratum (depth z), for simplicity, is δW (x,0,z) =
−1/k cos(kx),

δWx(x,0,z) = sin(kx),δWxx(x,y,z) = k cos(kx) (2.10.12)

Differentiation after z cannot be obtained directly from δg(x,y) with no explicit z
dependency at the surface z = const, but the Laplace equation in free space, δWxx +
δWyy +δWzz = 0, implies the vertical derivative through the horizontal derivatives.
At level z = 0, i.e. elevated by z above the surface at z, with (2.10.15):

δWz(x,0,0) = e−kz coskx,δWzz(x,0,0) = −ke−kz coskx (2.10.13)

where, for z = 0, e−kz = 1, and the equivalent stratum at depth z has a surface density
ρ∗

o = cos(kx)/(2πG). The Laplace equation at the surface is obviously satisfied as
∇δW = δWxx +δWyy +δWzz = kcos(kx)+0−k cos(kx) = 0. It is nearly as easy to
show this for two-dimensional harmonic fields.

2.10.5.3 Upward and Downward Continuation

Upward continuation into mass-free space has been mentioned above in connection
with the Laplace equation and the harmonic functions. It is a frequent task in gravity
field analysis and interpretation, and it is an unambiguous forward problem. The
inversion, i.e. the downward continuation is the real problem, most naturally solved
by expanding gravity anomalies into harmonic series (Fourier transform).

The basic operations are demonstrated for an individual component F(k)eikx

of a one-dimensional series (in two dimensions x, y: F(k)exp(i(kxx + kyy)) =
F(k)exp(ikxx)exp(ikyy), with k = (kx

2 + ky
2)1/2).

Starting from the convolution integrals (similar to the above) over the equivalent
stratum:

δWz(0,0,0) = (zo/2π)
∫ ∞

−∞
∫ ∞

−∞ (δg(x,y,zo)/r3)dxdy with r = (x2 +y2 +zo
2)1/2,

and assuming δg(x,y,zo) = eikx, we write in vertical cylinder coordinates (x =
r cosϕ , y = r sinϕ):

δWz(0,0,0) = (zo/2π)
∫ 2π

0

∫ ∞

o
(eik cosϕr/(r2 +z2

o)
3/2)dr r dϕ with r = (R2 +z2

o)
1/2,

(2.10.14)
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and the ϕ integral has the solution 2πJo(k,r) with the Bessel function of order zero
Jo(k,r). This can be shown by expanding the exponential function into series and
integrating by terms. The r integration from −∞ to +∞ is carried out similarly and
leads to the final and general solution (where the index 0 of zo is dropped, and
remember: P is elevated by z above the source):

δg(x,0,0) = zeikxe−kz/z = eikxe−kz. (2.10.15)

It means that the amplitude of the sine wave decays exponentially with distance
z from the equivalent stratum and equally with the wave number k = 2π/λ , and nat-
urally no phase shift occurs. This result is obvious for harmonic functions which –
intuitively – can change only in amplitude.

Inversion of the above expression is trivial by inverting the sign of the exponen-
tial in the decay function, and it is correct outside the source volume. It is still in
order within a homogeneous body generating no gravity variations except vertical.
In practice (see Chaps. 4 & 5), inhomogeneities (and data errors) are ubiquitous and
lead to convergence problems. Downward continuation is an act of interpretation or
inversion in terms of source distributions as surface mass layers, possibly converted
to undulations with a density contrast, and this must be used with caution (Task 5.2).
Practical frequency analysis and applications are treated in application sections of
Chaps. 4–6 in connection with data analysis and modelling.

2.10.6 Special Functions

Special cases of invoking the harmonic functions are based on analytical functions
f(x) or f(x,y) that have certain properties suitable for gravity problems and to which
the Fourier transform is applied analytically instead of treating the given discrete
anomaly values numerically. The first step is to expand a given gravity anomaly
δg(x) or δg(x,y) in terms of, e.g.:

δg(x) =
∞

∑
1=0

al fl(x).

The coefficients a1 carry the information on the given gravity anomaly. The rest
then follows from the Fourier transform or the harmonic functions, i.e. their capa-
bilities of field continuation.

2.10.6.1 Legendre Polynomials

A brief description of the Legendre polynomials is given in view of their importance
for gravity description, for example, with spherical harmonics (Sect. 2.10.7) and in-
terpretation and in large dimensions (see Sect. 2.10.7.3). Legendre polynomials Pn

(order n) are orthogonal power series. A function f (x) is orthogonal in the interval
A, B if

∫ B
A fn(x) fm(x)dx = 0 for n �= m; the integral is �= 0, if n = m: The term “or-

thogonal” has been taken from the three independent coordinates in Euclidian space;
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orthogonality of other useful functions, as sine and cosine, has been mentioned and
exploited before. As power series, Legendre polynomials are orthogonalized in the
limits A =−1, B = +1 from the basis functions xo, x1, x2, . . .xn, . . ., with Po = 1 by
successive application of

∫ +1

−1
PnPmdx = 0; this renders : P1 = x, P2 = 1/2(3x2 −1), P3 = 1/2(5x3 −3x),

P4 = 1/8(35x4 −30x2 +3),etc.

with the generally useful recurrence formula

Pn = (2−1/n) x Pn−1 − (1−1/n)Pn−2, or derivable from:

Pn(x) = (1/2nn!)dn/dxn(x2 −1)n.

In this form the Pn can be considered normalized for all n by the condition
Pn(1) = Pn(−1) = 1 (Weisstein, 1999). Another normalisation on the basis of the
area under P2

n (x), i.e.:

∫ +1

−1
P2

n (x)dx = 1 (KJ61,275), leads to Pn(x) = KnPn(x), with the factor

Kn = (n+1/2)−1/2

which ensures that computed coefficients (as in Eq. 2.10.25) are comparable among
each other and physically meaningful. This normalisation is achieved directly if Pn

is defined by letting

∫ +1

−1
PnPmdx = (n+1/2)−1δnm,

where δnm is the Kronecker delta (Weisstein, 1999).
An important class are the orthogonal associated Legendre functions Pnm(x),

which are solutions of a differential equation with two integer parameters, n and
m and are part of the spherical harmonics which describe longitudinal variations
beside the colatitudinal ones. The Pnm(x) also follow from power series expansion
(powers of cosα) of 1/R where R is the distance between point P and source point
Q (Fig. 2.6.1 and Eq. 2.6.10):

R = (r2 + r∗2 −2rr∗ cosα))1/2 and cosα = cosϕ cosϕ∗ + sinϕ sinϕ∗(λ −λ ∗);
if P or Q are at the Earth′s north pole,α = ϕ.

The Pnm can also be defined by differentiation of the ordinary or unassociated
Legendre polynomials Pno(x) = Pn(x), but attention must be paid to different sign
conventions:

Pnm(x) = (−1)m(1− x2)m/2dm/dxm(Pn(x)) = (−1)m(2nn!)−1(1− x2)m/2dm+n/dxm+n(x2 −1)n.
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If (−1)m is dropped, one often writes Pm
n . A recurrence relation is:

(n−m)Pn
m(x) = x(2n−1)Pn−1

m(x)− (n+m−1)Pn−2
m.

Normalisation is accomplished by defining
∫ +1

−1 Pn
mP1

mdx = (n+1/2)−1[(n+
m)!/(n−m)!]δn1 (Weisstein, 1999), but again, caution is necessary in view of dif-
ferent normalisations. If, in the case of spherical harmonics, x = cosφ , with co-
latitude φ (see Eqs. 2.10.23–2.10.25), dPn

m(cosφ)/dφ = (1− cos2 φ)−1/2[ncosφ
Pn

m(cosφ)− (n+m)Pn−1
m(cosφ)] and the recurrence relation follows:

(2n+1)cosφPn
m(cosφ) = (n+m)Pn−1

m(cosφ)+(n+m+1)Pn+1
m(cosφ).

Legendre polynomials have wide applications in physics and geophysics, and
an extensive mathematical literature exists, e.g. Abramowitz & Stegun (1972);
Arfken (2001); Sansone (1991); Weisstein (1999): http://mathworld.wolfram.com/
LegendrePolynomial.html.

2.10.6.2 Hermite Polynomials

A classical method (Tsuboi & Fuchida, 1937) is called after the orthogonal Her-
mite polynomials Hl(x) which are part of a family of orthogonal functions based
on the Gaussian and products with x, x2, etc. The method is useful for downward
continuation and interpretation of locally limited anomalies. The functions f1 de-
rive from the orthogonalizing integrals (−∞ to +∞) of exp(−x2/2), x exp(−x2/2),
x2 exp(−x2/2), etc. In these expressions the variable x is normalized with a length s
such that x′ = sx, but the prime has been dropped here. All the functions are of bell
shape ( fo is the Gaussian) or oscillate within such an envelope approaching zero
with growing x:

f�(x) = (πa−1/22��!)−1/2H�(x)exp(−x2/2).

The Hermite polynomials are:

Ho = 1, H1 = 2x, H2 = 4x2 −2, H3 = 8x2 −12x, . . .

H� = (2x)� − �(�−1)/�!(2x)�−2 + �(�−1)(�−2)(�−3)/2!(2x)�−4 −+ . . . .
(2.10.16)

or with the recursion formula: H� = 2xH�−1 −2�H�−2; it is derived from

H� = (−1)� exp(x2)∂ �/∂x�[exp(−x2)]. (2.10.17)

The Fourier transform in the cosine and sine forms, cF(k) and sF(k), respec-
tively, is

for even j:
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cF(k) = (2/π) ∑∞
j=0 aj

∫ ∞

0
f j(x)cos(kx)dx and sF(k) = 0, (2.10.18)

and for odd j:

cF(k) = 0 and sF(k) = (2/π) ∑∞
j=0 aj

∫ ∞

0
f j(x)sin(kx)dx. (2.10.19)

The integrals can be calculated and render the final results:

c,sF(k) = (2/π)1/2 ∑∞
j=0 (−1)jaj fj(k) for even and odd j.

Here k′ = sk = 2πs/λ is the non-dimensional wave number, but again the prime
has been dropped. Hence:

δg(x,0) =(2/π)1/2 ∑∞
j=0 (−1)jaj

∫ ∞

o
fj(cos(kx)) | (sin(kx))dk (even | odd j)

δg(x,z) =(2/π)1/2 ∑∞
j=0 (−1)jaj

∫ ∞

o
fj(cos(kx)) | (sin(kx))ekzdk (even | odd j)

[kz = kz]
ρ∗(x,z) =δg(x,z)/(2πG) (2.10.20)

The integrals must be evaluated numerically.
Briefly, consider fo(x), i.e. a Gaussian gravity anomaly δg(x,0) = ao fo(x) =

aexp(−x2/2):

δg(x,z) = (2/π)1/2a
∫ ∞

o
exp(−k2/2)exp(kz)cos(kx)dk = (2/π)1/2a

∫ ∞

o
exp(−k2/2+ kz)cos(kx)dk

The function resembles a Gaussian, but it oscillates with growing x, and the am-
plitudes grow exponentially with z and k.

Again, the result follows from the fact that the field is fully determined and cal-
culable in source-free space above a boundary at which δg is described by the
above functions. The downward continuation has the aspect of a direct interpre-
tation method, but the results must be – cautiously – translated into realistic geo-
logical models. Anomalies varying in two spatial variables x and y can be treated
in an analogous manner; the formalism is the same, only some of the constants are
modified.

2.10.6.3 The sin x/x Function

A similar method based on the sin x/x function can also be used for describing
localized gravity anomalies. The function has a similar shape to that of the above
fo, in that it is maximum (= 1) at x = 0 and approaches zero with growing |x| ;
it also oscillates about zero with decaying amplitudes. Again, lengths x and z are
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normalized with s: x′ = x/s; k′ = ks (primes dropped); then

δg = C sin(kx)/(kx)

Application of the Fourier transform in cosine, sine form is convolution with
cos(px) and sin(px), where p = 2π/Δ :

cG(p) =2C/π
∫ ∞

o
[sin(kx(/(kx)]cos(px)dx = Cs/π{1 |1/2|0} for

{k > p|k = p|k < p};s G(p) = 0.

Then

δg(x,z) = C s/π
∫ k

o
cos(px) epzdx = C s/π epz/(x2 + z2)(zcos(px)+ xsin(px))|k0

= C ekz/(k2(x2 + z2))(kz cos(kx)− ke−kz + kx sin(kx))

If all lengths and wave numbers are normalized with s (z′ = z/s, x′ = x/s, primes
dropped),

δg(x,z) = C ekz/(π(x2 + z2))(zcos(kx)− e−kz/s+ xsin(kx))

Again, the method can be extended to two coordinates x, y:

δg(x,y,0) = C sin(kxx)sin(kyy)/(kxxkyy).

2.10.6.4 The z/(x2 + zo
2) Function

The function f (x) = z/(x2 + zo
2) has a similar bell shape but no oscillations. It can

be treated the same way. Since f (x) is proportional to the effect of a horizontal
mass line at x = 0, z = zo, the result of the treatment will not be surprising. From
sG(k) = 0, cG(k) = 2/πzo it follows that

∫ ∞

o
cos(kx)/(x2 + zo

2) dx = 2/πzo π/(2zo)exp(−k zo) = exp(−kzo),

and:

g∗(x, z) =
∫ ∞

o
cos(kx)exp(−kzo − z) = exp(−kzo) dk = (zo − z)/(x2 +(zo − z)2)

(2.10.21)
which describes the effect at depth z of the same mass line. At z = zo the re-
sult degenerates to the delta function. The example shows that the method works.
However, it is not really necessary, because fitting data to the function f (x) gives
δg(x) = Gρ+z/(x2 + z2

o), with the line density ρ+ (kg/m), from which the parame-
ters ρ+ and zo and any wanted field quantities can be worked out directly.
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2.10.6.5 Summary of Special Functions

Especially the last example demonstrates that the above analytical functions applied
to gravity anomaly analysis, represent idealized mass distributions (mass line, spe-
cial equivalent strata). This means that their application is equivalent to anomaly
inversion and interpretation (direct methods). The success lies in eliminating the
principal inversion ambiguity by drastic reduction of the number of unknown pa-
rameters. Any mass distribution whose effect can be suitably expressed analytically
may, indeed, be chosen, and this guides the way to inversion generally, where – in
the later chapters – the problems of ambiguity will be central to the whole discus-
sion.

2.10.7 Spherical Harmonics

2.10.7.1 Derivation and Expansions

The scope of gravity interpretation includes scales up to that of global mantle
dynamics, and large regional and global scales must be treated in spherical ge-
ometry. While Cartesian geometry often suffices and the emphasis in geophysi-
cal applications lies on smaller scales, large scales must be included, requiring
spherical coordinates and the corresponding spatial frequencies described by spher-
ical harmonics. However, a brief overview of some important relations is pre-
sented here; for thorough discussions the reader is referred to texts as (Byerly, 1959
[p. 244]; Moon & Spencer, 1988 [p. 26]; Morse & Feshbach, 1953 [pp. 514, 658])
and also into mathematical treatments in the internet as (Weisstein, 1999) http://
mathworld.wolfram.com/HelmholtzDifferentialEquationSphericalCoordinates.html

http://mathworld.wolfram.com/SphericalHarmonic.html
http://hyperphysics.phy-astr.gsu.edu/hbase/math/sphhar.html
http://www.google.de/search?q=spherical+harmonics+geodesy&ie=ISO-8859

-1&hl=en&btnG=Google+Search

The spherical harmonics correspond to Cartesian harmonic functions and follow
directly from the solution of the Laplace equation written in spherical coordinates
(radius r, latitude ϕ and longitude λ ), named after A.M. Legendre (1752–1833) or
H. v. Helmholtz (1821–1894) (Byerly, 1959; p. 244):

∇2W = r−2∂/∂ r(r2∂W/∂ r)+(r2 sin2ϕ)−1∂ 2W/∂λ 2

+(r2 sinϕ)−1∂/∂ϕ(sinϕ∂W/∂ϕ) (2.10.22)

The solution proceeds by separation of the variables into W (r,ϕ,λ ) =
R(r)Φ(ϕ)Λ(λ ) (http://mathworld.wolfram.com/HelmholtzDifferentialEquationSph
erical Coordinates.html).
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In spherical geometry longitudinal relations are described by harmonic functions,
i.e., normal Fourier series with the parameter λ and the base wavelength λo = 2π
(or 2πa where a = major Earth’s radius). Space restrictions on the sphere require
a different description of the latitudinal relations achieved by associated Legendre
functions Pnm(x) where x = sin(ϕ) or more commonly cos(φ) with colatitude φ =
ϕ−π/2 (see Sect. 2.10.6.1). The radial (r) relation appears in powers of r:

δW (φ ,λ ) = (GM/r) ∑N
n=2 (a/r)n ∑n

m=0 (Cnm cos(mλ )+Snm sin(mλ ))

Pnm(cosφ) (2.10.23)

with M = Earth’s mass. By differentiating with respect to −r

δg(φ ,λ ) = (GM/r2) ∑N
n=2 (n−1)(a/r)n ∑n

m=0 (Cnm cos(mλ )

+Snm sin(mλ ))Pnm(cosφ) (2.10.24)

The coefficients Cnm and Snm are defined by convolution integrals over the Earth’s
surface (δW ∗ observed):

Cnm = 1/4π
∫
ϕ

∫
λ
δW ∗(cos(mλ ))Pnm(cosφ) cosφ dφ dλ

Snm = 1/4π
∫
ϕ

∫
λ
δW ∗(sin(mλ ))Pnm(cosφ)cosφ dφ dλ (2.10.25)

where, as above, sums over finite compartments replace the integrals; n is called
order or rank (German: Grad) and m is called degree or component (German: Ord-
nung). Eqs. (2.10.23–2.10.25) express the fact that transformation works both ways
between the domains of space (φ , λ ) and harmonic spectrum (Cnm, Snm).

The associated Legendre functions Pnm(cosφ) describe generally, in conjunc-
tion with the longitudinal Fourier series of degree m, wavy tesseral patterns on the
sphere; the special case of m = 0 describes zonal patterns, as the longitudinal terms
reduce to sin0 = 0 and cos0 = 1 and Pno = Pn (see Sect. 2.10.6.1); finally the Pom

terms define sectorial patterns, as Pom = Po, where Poo = 1 and the only variations
are longitudinal waves along the latitudinal parallels.

Spherical harmonics are global orthogonal functions (just as are the Cartesian
harmonic functions). In practice, when describing the external gravity field the ex-
pansion will always be truncated at some feasible limit N. Convergence is no prob-
lem in free space, but care must be taken where the geoid (mean sea level) is below
the physical Earth’s surface.

Areal spherical harmonics for constant r or, roughly, the Earth’s surface, can be
used to describe any distribution on a sphere, but a complete description requires
degree and order to extend to infinity. Convergence may then be a problem. Prac-
tical difficulties can arise from cut-off spatial frequencies. If a truncated series is
transformed back into the space domain and plotted, for example, by colouring or
contour lines, the character will be wavy which is a feature of the functions used
rather than one of the original data. This must not be misinterpreted.
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The spherical harmonics are defined over the whole sphere, and uneven distribu-
tion of data points will lead to field descriptions unconstrained in data holes with
no relevance to the real field. It is strictly wrong to interpret such anomalies un-
constrained by observations. Therefore local instead of global functions have been
proposed to be used.

2.10.7.2 Some Remarks About Integration of Gravity Effects

For the integration of effects of mass anomalies described in spherical coordinates,
several options exist.

(1) A trivial option is to transform the given coordinates into Cartesian coordinates
with the observation point P at O (0, 0, 0) and z pointing toward the Earth’s centre
and to perform the integration with a suitable method from Sect. 2.9.

(2) Any mass anomaly can be adequately expanded into spherical harmonics. For
small bodies or abrupt variations the expansion must be extended to high degrees
and orders; the point mass which is a delta function with an infinite “white” spa-
tial spectrum. A thin mass layer (thickness b) is especially suited to expansion,
and its effects can be integrated in spherical harmonics and upward continued
such that they can be calculated at any point of interest. Such cases are the un-
dulated density contrast surfaces as, e.g., the 660 km discontinuity in the mantle
or the core mantle boundary where the contrast is called Δρb. Combined with
the boundary undulation δ rb(rb,φ ,λ ) it can be described by an equivalent sur-
face density variation ρ∗ = Δρbδ rb or the density variation, δρ = ρ∗/b, in a thin
layer of constant thickness b at the mean radius of the undulated contrast surface,
rb, hence: δρ ≈ Δρbδ rb/b or δ rb ≈ bδρ/Δρb = ρ∗/Δρb.

Expansion into spherical harmonic coefficients, ρ∗
Cnm, ρ∗

Snm, follows
(Eq. 2.10.25). Conversion into the gravity potential coefficients, i.e. integration,
is given by (Phillips & Lambeck, 1980):

Cnm

Snm

}
=

{
[3/(2n+1)][b/ρ r](rb/r)(n+2)δρCnm

[3/(2n+1)][b/ρ r](rb/r)(n+2)δρSnm

}

where ρ is the Earth’s mean density (5520kg/m3) and r is the mean radius (in
contrast to the major radius, a, in (Eqs. 2.10.23 & 2.10.24)); if δ r is known at
some point, Δρb can be derived or, vice versa, with Δρb known, the undulation
δ rb follows.
Inversion of the above relation is straightforward (Hide & Horai, 1968):

δρCnm

δρSnm

}
=

{
[(2n+1)/3][ρ r/b](r/rb)(n+2)Cnm

[(2n+1)/3][ρ r/b](r/rb)(n+2)Snm

}

Of course, also voluminous density variations in mantle space from seismic man-
tle tomography or thermal convection models can be expanded into spherical
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harmonics, for example, layer-wise or when the coefficients are expressed as
functions of radius r.

(3) A third possibility of integration is Gauss-Legendre quadrature as outlined below.

2.10.7.3 Gauss-Legendre Quadrature

Gauss-Legendre quadrature (GLQ), as a general numerical integration method is
most suitable to be applied in spherical coordinates and is supplemented here, af-
ter introduction of spherical harmonics and Legendre polynomials (Sect. 2.10.6.1),
complementing Sect. 2.9 on integration of gravity effects. The effect of an anoma-
lous mass, say, at Q (Fig. 2.6.1) depends on the distance R and the angular distance
(or colatitude in a local spherical coordinate system centred on Q or P), not on az-
imuth (Eqs. 2.6.8 & 2.6.9); (2.6.10) gives the relation of the local parameter α with
the global coordinates. Therefore, GLQ is potentially an exact integration method
applying Legendre polynomials (von Frese et al., 1981). This is an advantage over
the methods described in Sect. 2.9.

Gauss Legendre quadrature (GLQ) applies interpolation by Legendre polynomi-
als Pn(x) to approximate an integrand f (x) given by a set of n points fk = f (xk) in
the interval −1 to +1; f (xk) may be an empirical set of points, but here f (x) is cal-
culable as a precisely known function (Eqs. 2.6.8 or 2.6.9). The general summation
formula, with the weights Ak, is:

∫ +1

−1
f (x)dx = ∑n

k=1 Ak f (xk) (2.10.26)

which renders the exact integral, if f (x) is a polynomial of degree ≤2n depending
on the discretization. The orthogonality of the Legendre polynomials ensures each
higher term to fit (and integrate) only the residuals from previous fits by the lower
terms. The weights Ak are called Gaussian coefficients given to the nxk values or
nodes (zeros) (see Carnahan et al., 1969):

Ak = 2n−2(1− x2)/Pn−1
2(xk) (2.10.27)

Contrary to the standard limits, −1 to +1, applications generally have arbitrary
integration limits, say ya and yb, requiring a mapping transformation of y into x. It
involves a scaling factor 1/Δy = 2/(yb − ya) and a shift of ∑y = (yb + ya)/(2Δy);
x = (1/Δy)y−∑y which renders:

y = Δyx+∑y = x(yb − ya)/2+(yb + ya)/2 (2.10.28)

The application of GLQ to gravity interpretation is straightforward. However,
some special conditions are imposed by the nature of the terrestrial density anoma-
lies. Equations (2.6.8 & 2.6.9) describe potential and gravity effects and can be
treated likewise, as can be expressions for the higher derivatives (and for magnetic
effects, see von Frese et al., 1981). In the following, f stands for any of these
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functions of the source parameters r∗, φ ∗, λ ∗. The lower and upper limits are
denoted by a and b, which are, of course, not identical for the three parameters. In
order to apply GLQ, the coordinates must be transformed to r#, φ #, λ # with the inte-
gration boundaries −1, +1. According to (Eq. 2.10.28) the transformations are: r∗ =
Δr∗r# +∑r∗ , with Δr∗ = (r∗b − r∗a)/2 and ∑r∗ = (r∗b + r∗a)/(2Δr∗); φ ∗ = Δφ∗φ # +∑φ∗ ,
with Δφ∗ = (φ ∗

b − φ ∗
a )/2 and ∑φ∗ = (φ ∗b +φ ∗

a )/(2Δφ∗); λ ∗ = Δλ ∗λ # +∑λ ∗ , with
Δλ ∗ = (λ ∗

b −λ ∗
a )/2 and ∑λ ∗ = (λ ∗

b +λ ∗
a )/(2Δλ ∗). Hence GLQ for one parameter,

say r∗, is expressed as:

∫ r∗b

r∗a
f (r∗)dr∗ = Δr∗

∫ +1

−1
[ f (Δr∗r# +∑r∗)Δρ]dr∗ = Δr∗ ∑n

1 Ak f (r∗kΔρk)

The procedures are formally identical for the parameters, so the treatment is
nested:

∫ φ∗b

φ∗a

[ ∫ λ ∗b

λ ∗a

{ ∫ r∗b

r∗a
f (r∗,φ ∗,λ ∗)Δρ dr∗

}
dφ ∗

]
dλ ∗ =

= Δλ ∗ ∑i
[
Δφ∗ j∑{Δr∗ f (r∗k,φ ∗

k,λ
∗

k)Δρ Ak)Aj}Ai
]

(2.10.29)

Spherical prisms are most easily handled by keeping two parameters fixed when
the third one takes on the values of the assumed nodes, say, r∗k. More complicated
arbitrary shapes require special handling of the limits, for example, by approxi-
mating them by spline functions; for this and other practical aspects see von Frese
et al. (1981).

One noteworthy point is the possibility of extending the GLQ from the above
procedure with purely geometrical functions of coordinates (multiplied by constant
rock properties Δρ), to the combination with a functional property variation with
the coordinates Δρ(r∗,φ ∗,λ ∗). In that case, in (Eq. 2.10.29) f (r∗,φ ∗,λ ∗)Δρ →
f ∗ = f (r∗,φ ∗,λ ∗) Δρ(r∗,φ ∗,λ ∗) and on the rhs.

f (r∗k,φ ∗
k,λ

∗
k)Δρijk → f ∗(r∗k,φ ∗

k,λ
∗

k).

2.10.8 Wavelets

In contrast to the global harmonic functions, wavelets are local, in Cartesian or
spherical geometry, approaching zero in the outside regions and thus suited to handle
signals of local or regional extent and/or containing discontinuities (Strang, 1992).
Thus wavelets overcome the problem of finiteness outside regions of interest
(Sect. 2.10.5.1), but note the remark on the equivalent problem of assuming zero
mass outside the wavelet region. Similar to the harmonic functions, wavelets permit
analysis by different frequency components, with each component matched to its
scale. Wavelets were only recently introduced into potential theory (e.g. Freeden,
1999), relevant for scales, small relative to the Earth’s dimensions; for features
of global or continental dimensions, low-order harmonics are perfectly adequate.
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Combination of both is therefore advantageous (Schmidt et al., 2005). An important
purpose of applying wavelets is the efficient field representation and analysis, but
increasingly wavelets are applied to problems of identifying certain features and
interpreting them – with the usual caveats.

The procedure is to adopt or design a basic wavelet prototype function (“analyz-
ing wavelet” or “mother wavelet”), usually built on orthogonal basis vectors (x,y)
(as the orthogonal sine and cosine functions in the Fourier series). The original
signal is represented in terms of a wavelet expansion using coefficients in a linear
combination of the wavelet functions. Given a signal f (x) defined in a domain, say
from 0 to 1, scale-varying basis functions divide the signal into functions ranging
from 0 to 1/2 and 1/2 to 1 or functions from 0 to 1/4, 1/4 to 1/2, 1/2 to 3/4, and
3/4 to 1, etc. By truncating the coefficients below a threshold one achieves a sparse
data representation (data compression).

Many standard wavelets exist in the literature (see e.g. Schmidt et al., 2005).
In geophysics, the basic functions used depend on the purpose. It is possible to
choose them directly from the geophysical problem of gravity effects, as effects of
point or line masses; they approach zero outside the scale of interest. But gener-
ally one must compromise between effective approximation, orthogonality proper-
ties and catching the physics of the problem, as wavelets are not generally exact
solutions of the Laplace equation. An example is to emphasize structural edges
on any scale; this requires elongated wavelets, the authors called “earth worms”.
http://www.ned.dem.csiro.au/unrestricted/people/HorowitzFrank/vrml/earthworms.
html,

At the time of writing, this topic is quickly evolving, and the reader is referred to
the topical literature (see reference under heading “Wavelets”, including the relevant
page numbers), and to watch out for internet releases, as http://www.cosy.sbg.ac.at/
∼uhl/wav.html and http://www.amara.com/IEEEwave/IEEEwavelet.html

2.10.9 Stochastic Representation of Anomalies

As mentioned in Sect. 2.10.1, description and interpretation of gravity anomalies
can be addressed in a non-deterministic, stochastic or probabilistic manner. The
principal question is: Given is a set of observations at points (xi, yi) or (xi, yi, zi)
in a compact area, limited by a simple concave boundary, for example, the polygon
defined by the outer points such that all other points lie inside the polygon. If the
area degenerates to a straight or slightly curved profile line, the compact region is
defined by the end points: what is known about the anomaly value at any other point
between the observations within the limited area? It is assumed that δg exists as a
continuum of points (x, y, δg) and that the spatial distribution of the observed values
is representative of the total or continuous distribution. Such an assumption is not
necessarily true or self-evident, and sampling must take the possible spatial varia-
tions into account guided by experience and tests. It is, for example, well known
that gravity and magnetic anomalies often have very different spectral patterns such



2.11 Aspects of Magnetostatics 105

that sampling must be different, for instance, much denser in magnetics than in
gravity. What do the discrete observations tell about the continuum of points at any
(x, y)? The task can be defined as that of estimating or predicting the most proba-
ble anomaly value δg(x,y) from discrete observations δgi (not to be confused with
stochastic gravity in general relativity; see, e.g., Mowat, 1997).

The properties of the anomaly distribution can be described by the autocorrela-
tion of the data which may be reasonably approximated by the Gauss distribution
exp(r2/c2) with r2 = x2 + y2 and c called “correlation length”. It is thought to de-
pict the probable spatial correlation between anomaly values in a statistical sense.
If the anomaly character is wavy, c will indicate the dominant wavelength. A more
general approach has been called “geostatistics” and the space behaviour of discrete
data sets is analyzed by calculating variograms whose properties are then applied
to interpolating intermediate point values and estimating their uncertainties. The
method is called “Kriging”; it is described in more detail in Sect. 5.1.5.

A directional structural grain of the data can be approximated by an elliptic au-
tocorrelation detectable by a directional analysis in which the azimuth, λ , about a
given station is divided into azimuth intervals, Δλ , and the autocorrelation is cal-
culated in Δλ brackets. More elaborate azimuthal patterns may be simplified to
elliptical patterns (X/a)2 + (Y/b)2 = 1 or (bX)2 + (aY )2 = a2b2 where X , Y are
orthogonal coordinates rotated in the directions of maximum and minimum length,
respectively, and a and b are the corresponding ellipse axes. The axes a and b and
the angle λ between X and x (or Y and y) may be optimized by least-squares ellip-
tical fitting. The rotational transformation between the coordinates is described by
Eqs. (2.4.4 & 2.4.5).

The stochastic approach is of importance for the geodetic concern about errors
and confidence ranges. The geophysical aim to find source distributions emphasizes
Newton’s deterministic law. The two approaches, stochastic and deterministic func-
tional, do usually converge.

In interpretation and inversion of gravity anomalies, the stochastic approach in-
cludes methods applying Monte Carlo techniques: around a starting model or set of
model parameters a large number of models with randomly varied parameters are
calculated. The random generator usually samples from a Gauss-distribution with
an assumed standard deviation. The results are compared to the observations and
selected pre-set criteria of fitting. The successful models are collected, assembled
and visualized in the form of frequency distributions of the parameters. Efficient
computing can thus give a quick overview over the acceptable model range. This
approach will be treated again (7.3.3.2).

2.11 Aspects of Magnetostatics

A brief description is included in this text because many methods of gravity interpre-
tation are equally applicable to magnetics. Magnetostatic fields, i.e. magnetic fields
with insignificant time variation, are potential fields as the gravity field is. In contrast
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to gravity whose source is the scalar mass, the magnetic field is a dipole field, its
source consists always of dipoles. An idealized dipole is a polarized mathematical
point with no volume. It is an intimate, but not annihilating, union of a positive and
a negative scalar point source making a vector which, by definition, points from the
positive to the negative side. The dipole potential and its space derivatives (field
intensity gradients) can be considered as composed of two non-annihilating scalar
components. The superposition of these fields does not principally alter the laws
governing potential fields. Most of the laws described for gravity therefore hold
also for magnetics, except those directly related to the dipole nature.

The physical realization of a dipole is a magnetic needle, e.g. in a compass. It
consists of magnetic material and can be described as a rod with magnetic poles
at its ends, one of them being attracted to the Earth’s magnetic north pole which
lies not too far from the rotational north pole; this magnetic needle pole is therefore
called “north seeking pole” or “magnetic north pole”, its counterpart “south pole”.
Since north (or south poles) of two needles repel each other, the Earth’s pole in the
north must be a “magnetic south pole” and vice versa. Unequal poles attract each
other.

Originally these mechanical forces were used to define the strength FFF of the mag-
netic field, but it was learnt that magnetic effects, as induction, depend also on the
magnetic property of the surrounding space, called permeability μ. This is expressed
by defining the field through the alternative quantity BBB = μFFF . The permeability μo
of empty space or vacuum is a fundamental property. Matter does generally change
the permeability by magnetic induction, and it has become customary to measure the
change by a relative factor called here the “relative permeability” μr = μ/μo, such
that, generally, BBB = μrμoFFF . The affinity of a material to magnetic induction is called
susceptibility κ = (μ−μo)/μo = (μrμo −μo)/μo = μr − 1 (dimensionless). Many
magnetic anomalies of geophysical interest stem from this effect, called “magneti-
zation”. It depends on the Earth’s present local field strength B⊕ and on rock suscep-
tibility κ originating in dispersed susceptible minerals as magnetite. Rocks can also
be permanently magnetic by remnant magnetization obtained in their genesis and
history; this type of magnetization is not affected by the Earth’s present magnetic
field strength. The ratio of remnant to induced magnetization is called Königsberger
ratio Q.

The magnetic flux, φ =S
∫

BBB ··· dddsss, with S surface, dddsss vectorial surface element,
as in (Eq. 2.1.1), emanating from a dipole is zero (in this sense, the pole effects
annihilate each other) and integration over closed surfaces always gives zero total
flux.

The dipole potential follows from two point potentials of equal size and opposite
sign superimposed. The pole strength p is a fictitious quantity which cannot be
individually realized in nature. The vector ��� from p− (S) to p+ (N) approaches
zero length while the dipole moment mmm = LLLPPP remains finite (or fixed):

mmm = lim(�→0) p• ��� (2.11.1)

A = lim(�→0)(p+/r+ − p−/r−) (2.11.2)
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Fig. 2.11.1 The dipole
is defined by letting its
physical length appraoch
zero; definitions of the
geometrical quantities

where r+ and r− are the distances of both poles to the observation point P
(Fig. 2.11.1).

The relations between ���, the radii r, r+ and r− as well as the angle φ , φ+, φ−
are expressed by the cosine law:

r2 = r+
2 +(�/2)2 −2r+(�/2)cosφ = r−

2 +(�/2)2 − r−�cos(φ −π)

= r−
2 +(�/2)2 + r−�cosφ .

As � approaches zero, (�/2)2 is neglected, r+, r− → r, φ+, φ− → φ , and the
Taylor expansion of 1/r → (1± �cosφ/2r)/r for r+ and r−. From (Eqs. 2.11.1)
and (2.11.2) follows

A = −mcosφ/r2, (2.11.3)

which can also be written as
A = mmm•∇∇∇(1/r) (2.11.4)

with, in arbitrarily oriented Cartesian coordinates, rrr = (x,y,z), mmm = (mx,my,mz) or
mmm = mi(i = 1,2,3) in index notation. The gradient ∇(1/r) implies differentiation at
the source (two infinitesimally displaced poles).

Physically magnetic fields are connected with electrical currents (including elec-
tron spins in mineral magnetization); therefore it is more correct to define the mag-
netic moment without referring to poles. The dipole moment of a ring current (or a
current in a small electrical coil) is

mmm = μonIaaa (2.11.5)

where nI is the total ring current (current I in n windings) and aaa is the cross sectional
area, i.e., its normal vector if the current direction is dextral (negative electrons
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would move in sinistral direction). An infinitesimally small coil exactly corresponds
to a dipole.

The dipole field strength FFF is the gradient of the magnetic potential.

FFF = ∇∇∇A = ∇∇∇(mmm•••∇∇∇)(1/r) (2.11.6)

where mmm•••∇∇∇. = mx∂/∂x+my∂/∂y+mz∂/∂ z.
Assume the direction of m to be ααα = (αx,αy,αz) or αi = cos(α,xi);aaa is a unit

vector.
mmm ••• ∇∇∇. = m∂/∂α = m(cosαx∂/∂x + cosαy∂/∂y + cosαz∂/∂z) = mcos

αi∂/∂xi (with the sum convention, i.e. summation over index i appearing twice,
i = 1, 2, 3), and

∇∇∇(mmm•••∇∇∇)(1/r) = −∇∇∇((1/r2)(xmx + ymy + zmz)) = −∇∇∇((1/r2)(rrr •••mmm) (2.11.7)

Differentiation of ∇∇∇(xmx/r2 + ymy/r2 + zmz/r2) leads to the vector

FFF = (∂/∂x[xmx/r2 + ymy/r2 + zmz/r2],(∂/∂y[xmx/r2 + ymy/r2 + zmz/r2],

(∂/∂ z[xmx/r2 + ymy/r2 + z mz/r2])

= (mx(x2 − r2/3)+myxy+mzxz,mxxy+my(y2 − r2/3)+mzyz,mxxz

+myyz+mz(z2 − r2/3))

The 9 elements can be ordered in matrix form; the rows represent the field vec-
tor components. Thus F can be written as the product of the matrix ΔΔΔ = Δij =
{∂ (xi/r3)/∂xj} with the magnetic moment mj:

FFF = ΔΔΔ •mmm(T ) = Δijmj = {∂ (xi/r3)/∂xj}•mj

=

⎧⎨
⎩

mx(x2 − r2/3) myxy mzxz
mxxy my(y2 − r2/3) mzyz
mxxz myyz mz(z2 − r2/3)

⎫⎬
⎭•

⎧⎨
⎩

mx

my

mz

⎫⎬
⎭

(2.11.8)

In spherical coordinates: origin at the dipole source; axis parallel to the dipole axis
(from + to − or from S to N), radius r, colatitude φ and longitude λ :

F = (Fr,Fφ,0)

Fr = ∂A/∂ r = 2mcosφ/r3

Fθ = ∂A/r∂θ = msinφ/r3

(2.11.9)

The dipole field has axial symmetry and has no λ component. The relation be-
tween the spherical and Cartesian coordinates is: x = r sinφ cosλ , y = r sinφ sinλ ,
z = r cosφ ,r2 = x2 + y+ z2.

A point mass with a magnetic moment generates a gravity field and a mag-
netic field which are related to each other. Compare the gravity field FFFg = ∇∇∇U =
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GM∇∇∇(1/r), where M is mass, with the magnetic field (2.11.6) FFF =∇∇∇A =∇∇∇(mmm•∇∇∇)
(1/r) = m∇∇∇∂/∂α(1/r) with m and α constant; hence

FFF = (m/GM)∂ (FFFg)/∂α (2.11.10)

This is Poisson’s relationship between gravity and magnetics which may be
useful in cases where geological bodies are homogeneous in density and mag-
netization. In such cases the relation holds also for the integral effects δδδFFF and
δδδggg = (δgx,δgy,δgz) of extended bodies. Note that the vector gravity effect is re-
quired if the magnetic effect is to be derived from gravity. To integrate magnetic
effects of extended magnetized bodies for P at O = (0, 0, 0) begin with the potential
A = −

∫
V mmm∗∇(1/r)dV where mmm∗ = dddmmm/dV is the volume density of magnetization

and FFF = −∇∇∇V
∫
(mmm∗∇∇∇)(1/r)dV . If mmm∗ varies in space no further simplification is

possible, but for constant direction ααα , FFF =−∇∇∇∂/∂αV
∫
(mmm∗/r)dV which, again, can

be compared with gravity.
A generalization of Poisson’s relationship has been investigated thoroughly by

Holstein and co-workers (Holstein et al., 1999; Holstein, 2002a,b) for the case of
uniformly dense and uniformly magnetized polyhedra. Their effects can be calcu-
lated by sets of equations which have common features with their gravity effects,
such that a common basis for all “gravimagnetic effects” and their numerical com-
putation can be designed.

In practical cases, demagnetization can cause problems. Each magnetic volume
element of a body has a magnetizing effect on all other volume elements of the
body. Because dipole field lines turn around into the opposite direction outside the
source volume the total magnetizing effect is generally a de-magnetization. The ef-
fect is the greater, the greater the magnetic susceptibility of the material, and it may
be negligible when the susceptibility κ is small. It can be described as a magnetic
polarization where the opposite poles (N or S) concentrate at the surfaces where
the field lines enter (south poles) or exit (north poles). A special case is an infi-
nite slit in a permeable material homogeneously magnetized; a field-parallel slit is
not polarized and no magnetization effect would be measured (FFF or μoFFF = BBBo); a
field-normal slit is fully polarized and its observed effect is μrμoFFF = μrBBBo = BBB. FFF
and BBB are different sides of the same physical phenomenon, linked by the factor of
magnetic permeability μ = μrμo where μ describes the effect of matter filling the
space.

Since F is the superposition of two polar fields, the Laplace equation ∇2A = 0
is automatically satisfied in empty space. Because of the dipole nature the Poisson
equation is also ∇2A = 0 in homogeneously magnetized matter. Magnetic effects
become visible only if magnetization is space-variable such that ∇2A = ∇∇∇•mmm. For
the same reason, magnetized layers with plane horizontal boundaries generate no
external magnetic effects (anomalies) except near their lateral edges.

Integration of magnetic effects for extended magnetized bodies is usually easiest
if executed on the scalar potential (often similar to the case of the gravity effect),
and then differentiated, for example, with respect to the vertical z.
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Chapter 3
Observations and Field Activities

3.1 Introduction

The observation of gravity has become a diverse field of endeavour with many
facets and purposes. The emphasis is here on the classical gravity measurements
with gravimeters for the purpose of deriving gravity anomalies and interpreting
them in geological terms. Anomalies are characteristic gravity variations which are
to be defined or constructed from ensembles of observations at point sets, usually
at the Earth’s surface, and they are related to geological bodies or structures (see,
Sect. 1.4). This chapter is a brief introduction into the measurements in order to
help assessing their problems and limitations. New developments, for example, in
absolute gravimetry, gravity tensor measurements and ship born, airborne or space
borne methods will be only briefly presented.

Data collection methods are rapidly evolving, mostly by application of micro-
processors. The field procedures, only a decade ago still manual, are automated in
modern instruments. But “old fashioned” gravimeters are still much in use, and will
be for some time, and their handling is, in many respects, instructive. Details are left
to the specialized literature and manufacturer’s manuals. Timeless general aspects
are survey planning and accuracy of the measurements as well as error search; they
represent a through-going topic of the whole data stream (see also Chap. 4).

In most cases gravity surveys have a geological or exploration aim and are region-
ally limited. Terrestrial measurements reach high precision and spatial resolution,
but they remain frequently isolated from regional networks. This causes problems
for national and international archives and their users. The situation is improving,
for example, by current dedicated satellite missions and airborne gravimetry. Geo-
logically, the aim of gravity measurements is to determine the gravity field in space,
i.e. time-invariant gravity values at sets of stations. Slow temporal variations of geo-
dynamic nature are also of growing interest.

In measuring gravity, one must usually find some compromise between the accu-
racy requirements and economy, depending on the purpose of a survey and on the
controls of all the errors influencing the final results. Efforts should be balanced by
the gains: a reading accuracy better by more than an order of magnitude than that
of common uncontrollable errors is not reasonable; for example, in geologically
motivated surveys, 0.1 mGal uncertainties easily result from unknown nearby small
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density variations in the ground and relief irregularities. On the other hand, if tem-
poral gravity variations are the target of the measurements, precision requirements
are much higher for repeated readings at identical stations.

This chapter covers the field work and leads from survey planning and point
selection up to the wanted gravity values in space or space and time at given points
(coordinates, elevations, possibly epoch) in the form of lists (usually digital) and
perhaps graphical representation on maps. Included are the additional necessary
field operations as surveying and levelling as well as determination of rock densities
and of the neighbouring relief plus error analysis. Reductions and post-reduction
treatments as contouring, smoothing, regional – residual separation and derivation
of related quantities (KJ61, 93–121) are treated in Chap. 4. The present chapter is
divided into an instrumental part, a part covering general characteristics of surveys
and survey planning and an overview of auxiliary field measurements.

3.2 Principles of Gravity Measurement and Instrument Types

3.2.1 General Considerations

Commonly instruments are distinguished as relative or absolute. It is not a sharp dis-
tinction. “Relative” means that only small differences of gravity can be measured
accurately relative to some reference station. Accurate absolute measurements of
total gravity acceleration over the whole range from zero to terrestrial g are now
realized.

Several physical principles have been applied to measure gravity: the free pen-
dulum period, the calibrated spring balance, spring vibrations, free fall, suspension
of a conductor in a temporarily constant, spatially inhomogeneous magnetic field
and ultra-precise beam balances for special purposes. In the following, the differ-
ent types are briefly sketched. In all methods g must be extracted from the primary
observations of time and length. More and more of this is done automatically by
inbuilt processors that may also calculate the statistics of repeated observations.

Principally all types of instruments show some kind of drift. It means that the
observations on any physical scale vary when the measured physical quantity re-
mains constant. Such a drift may have any time behaviour which itself depends
on internal instrument states which, in turn, may be affected by external factors as
environmental temperature and air pressure, imposed instrument motion, etc. and
their time history. Precision instruments are constructed such as to minimize and
or control the external influences, but especially for field instruments this can not
be fully achieved. Control is possible either by protecting or shielding measures or
by calculating the corresponding corrections, if functional relations with observ-
able external parameters are known. However, some uncontrollable rest always re-
mains for which neither theory exists nor experience provides any countermeasure.
Therefore nothing can really be said about the time behaviour of the residual drift;
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it may contain time-continuous and discontinuous components, and the continu-
ous component may be more or less linear with time. Such components are usually
determined by repeated measurements of known (or estimated) physical quantities
(see, Sect. 3.3). Since the time intervals between the control measurements cannot
be arbitrarily short, little will be known about the short-term or high-frequency drift
behaviour.

3.2.2 Pendulums

Pendulums were used earliest to measure gravity, but their accuracy is limited to
some 0.5 mGal. A mathematical or ideal pendulum of a given length L swings freely
with a period:

T = 2π(L/g)1/2 (3.2.1)

i.e. the determination of g requires measuring lengths and times, mostly for many
periods which increases the precision. In practice the length measurement is a prob-
lem. A mathematical pendulum consists of a point mass suspended by a massless
string at a fixed point in constant gravity. Physical pendulums do not distinguish
between mass and string, their motion is governed by both effective translation and
rotation, and the effective pendulum length must be determined by special proce-
dures. The reversion pendulum exploits the fact that the locations of the effective
(mathematical) suspension point and of the effective point mass are exchangeable.
However, also the suspension structures and the underground which are not abso-
lutely rigid affect the period. Absolute pendulum apparatuses are particularly sen-
sitive to such uncertainties. The Potsdam absolute result around 1900 was the basis
of the world gravity system until its replacement after a systematic error of about
15 mGal had been definitively established. The error was much bigger than the sta-
tistical standard error and followed from the above problems and incorrect reduc-
tions for them. In relative pendulums the problems are reduced by the fact that the
differences of measured periods are smaller and that the uncertain pendulum length
drops out of the formulae, by comparing the observed periods Ti at point i with To

at a reference station where go is assumed to be known. From (3.2.1) follows:

gi = go(To/Ti)2 (3.2.2)

The result is immediately in m/s2 or converted to mGal.

3.2.3 Spring Gravimeters

The currently dominant instruments are based on weighing a constant mass with
an especially calibrated spring balance. Successful vertical gravity meters were in-
vented in the late 1920ies to 30ies for detecting low-density salt domes. Many types
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of gravity meters have been constructed since (brand names are L&R, Worden,
Syntrex, Sodin, etc.). As highly sensitive field instruments gravimeters are small,
light, transportable and robust. To protect the delicate sensors from damage, swing-
ing parts are either clamped during transport or limited in their motion. The mostly
mechanical devices with electric controls and reading devices are now more and
more replaced by control with microprocessors, so that nearly all field operation
is automated, from instrument levelling to running programs of repeated measure-
ments and error statistics as well as storage in data loggers. Modern gravity meters
have an internal precision of 10μGal or 10−8 g with reasonable effort, some types
may achieve 10−9 g.

A mathematical spring balance (Fig. 3.2.1) with the spring length l and constant
C and the point mass m is elongated by δ l by the gravity difference δg as

δ l C = δg m with δg = gi −go (as above) (3.2.3)

However, gravity is not constant in the volume occupied, and some kind of av-
erage is measured. Neither C nor g are constant within the range of observations,
C changes with spring elongation and depends on many environmental effects. The
extended mass, the mass of the spring and indeed the whole set-up is buoyant in the
surrounding gaseous atmosphere. Furthermore, a spring-mass system performs nat-
ural oscillations, so gravimeters must be damped. Marine and airborne gravimeters
on moving platforms need especially strong damping. The problems are tackled by,
(1) shielding the whole sensor system from environmental influences, for example,
by insulating, evacuating and thermostatting it, and (2) by some special appropriate
design.

Most instruments are set by nulling: instead of measuring the deflection δ l from
the null position, it is restored, for example, by shifting the suspension point of a
special spring, such as to leave the main spring configuration at identical length.
The position is controlled by an analogue or digital device, or it is automatically
set by a feed-back system. The observation is then the position taken by the nulling
or feed-back system, for example, by a counter of spindle revolutions or a required
electric current. In most gravimeters the sensitivity is enhanced by special design
of the springs and the geometry of the suspension; such astastic instruments are in

Fig. 3.2.1 Ideal mathematical
spring balance to measure
δg = (C/m)δ l via measuring
δ l; C elastic spring constant;
m constant mass
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equilibrium close to the neutral point where the forces or momenta of weight and of
the spring cancel, and in many instruments the sensitivity is adjustable.

Measuring δ� of the auxiliary spring accurately and controlling the sensor ori-
entation are of critical importance; levelling devices, counters, gears, markers, light
beams etc. have received much attention and irregularities have been extensively
investigated.

The instrument constants C, � and m cannot usually be measured precisely
enough. Hence empirical calibration of the whole system is necessary when fully
assembled in order to convert the raw observations to the physical unit of grav-
ity. The instrument is taken to a set of points with known gravity differences. The
measuring unit is the arbitrary division div of an instrument scale; div (not to be
confused with the divergence operator) is introduced here as the general instrument
unit before conversion into the physical unit mGal.

Optical readings of a counter, gauge or meter with a pointer moving along a scale
are in arbitrary units; tenths of the finest division can be estimated, sometimes with
the aid of a vernier. The numbers are noted on a form or in a field book. New in-
struments have built-in analogue-digital converters which avoid the somewhat sub-
jective fine estimations and gross copying mistakes. And the state of the art is to
directly store the readings in a data logger together with any additional information
provided by the observer.

A characteristic of spring gravity meters is their drift (Sect. 3.3.2): even with
constant gravity the readings change with time. Part of this is predictable or con-
trollable, other effects are not. Especially quartz glass, which is used in several
instrument brands (chosen for its thermo-elastic properties), is a visco-elastic or
Maxwell fluid, metal is to a lesser extent. This is described as a Newtonian fluid
component (dashpot) and a perfectly elastic spring in series (Fig. 3.2.2). Such a
material always flows if loaded (by gravity) even though the flow may be very
slow. The resulting drift behaviour is a slow spring lengthening, i.e. an appar-
ent gravity increase. If this component is linear and small, it can be assessed
and removed. Another kind of material behaviour is elastic afterworking charac-
terized by an elastic spring and a dashpot in parallel: the flow response of the
viscous term to short-term loading is gradually transferred to the elastic term so

Fig. 3.2.2 (a) Visco-elastic
Maxwell body, illustrating
the mechanical behaviour
of physical springs. (b)
When the force f acts, the
constant elastic lengthening is
complemented by a viscous
lengthening growing linearly
with time. (c) If dl is
prescribed, the initial elastic
force relaxes with time as the
lengthening is transferred to
the viscous term
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that the system approaches the elastic static limit slowly. Partly crystallized ma-
terials may go through sudden recystallizations, cracking or phase changes which
make the readings suddenly jump or tear. Additional disturbances may result from
malfunctions and voltage change of the power supply. Beside all these internal
effects, external environmental influences cannot be shielded off perfectly: tem-
perature, T, and air pressure p change, geomagnetism, vibrations, motions, wind
and the history of these states and processes during a survey. Protection is partly
achieved by placing the sensor into a thermostatted evacuated Dewar receptacle
and by damping its suspension. Bi-metal thermostats can be calibrated such that
thermal effects are near zero in the chosen temperature range which is determined
in the production process. The sensor device must also be insulated mechanically
from deformations resulting from thermal and pressure-induced stresses in the out-
side housing. Many of these constructional specialities are manufacturer’s secrets.
Finally, effects of instrument transportation through vibrations and irregular ac-
celerations are impossible to fully control. The drift rate may be rather steady
during a period of consistent measurements, and then, for example, during a rest
or when transport conditions change, unusual drift may result. It may be caused
by internal flow of gas (even though evacuated) or slight friction-generated tem-
perature changes integrated over some time. Such behaviour is very irregular and
unpredictable.

Without a satisfactory theory no modelling is possible (see, Sect. 3.2.1). Long se-
ries of observations at identical stations or station pairs are needed, and experienced
observers know, for example, of the instrumental individuality. Repeated readings at
some stations are therefore necessary in order to control or define the drift and pos-
sible tears (Sect. 3.3) and to assess errors (after removal of the gravity earth tides).
As a rule for exploration surveys, 1 to 2 hour intervals between base station readings
are customary, but longer intervals are often enforced by survey size, transport and
economy; shorter intervals may be realized in high-precision micro-gravity surveys:
Accordingly, the drift behaviour at very short periods remains unknown (shorter
than the instrument transport permits; if the instrument is not transported, the test
conditions are not relevant). Instrument drift is therefore one of the most serious
limitation to the measurement accuracy.

Today much of the manual field work of levelling and adjusting the instruments,
reading the scales, noting down the readings has been transferred to automated pro-
cedures. Digital storage can be combined with processors which check the perfor-
mance and calculate the statistics of many repeated measurements such that more
reliable and more accurate observations are achieved in affordable time and the sta-
tistical errors are obtained. Human errors are reduced. These advantages do, how-
ever, also have their price.

The gravimeter has met the needs of mineral and petroleum exploration for 50
years, but it was incapable of airborne operation as the gravitational signals are a
factor of < 10−7 of the aircraft accelerations. New developments include integrated
in-motion GPS and gradient measurements (see, Sect. 3.2.9).
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Spring gravimeters can be modified for recording temporal gravity variations, es-
pecially the earth tides. During the Apollo 17 mission a spring balance was adapted
to the purpose by measuring capacitor plate position (Giganti et al., 1973). The
purpose of the lunar surface gravimeter experiment was to obtain the lunar surface
gravitational acceleration (to 10−11 of lunar gravity and about 10−5 relative to Earth
gravity) and its temporal variations to determine the magnitude of lunar surface de-
formation due to tidal forces, measurement of vertical components of lunar natural
seismicity, and monitoring of free oscillations of the Moon that may be induced
by gravitational radiation from cosmic sources. The equipment consisted of spring
mass suspension capacitor plates, electronics and a sunshield. The crew deployed
this experiment by levelling and alignment within ±3◦, using the sunshield shadow,
and matching the cable to the central station. It was planned for two years opera-
tion. Temperature control had to be highly stable. Unfortunately this experiment was
only partly successful, but it demonstrated the feasibility of interplanetary gravity
measurements.

3.2.4 Vibrating String Gravity Meters

Instruments that exploit the influence of gravity on the vibration frequency of a
spring or springs in tension due to a mass (m) weight (m · g) were developed as
early as in the 1920ies; such a set-up was designed by Lord Cadman in 1925 and
later used by him to detect oil deposits in the Iranian desert. The advantage of vi-
brating string gravimeters is the wide gravity range (akin to absolute), and they are
also less sensitive to platform movements and were deployed in submarines. The
principle has been used on Apollo 17 (Traverse Gravimeter Experiment, TGE) with
a gimbal mounted, double-stringed Bosch Arma D4E vibrating string accelerome-
ter to establish an Earth-Moon gravity tie. A mass is suspended freely between two
springs. The vibration frequency of the mass is measured. For more information see:
http://www.geophysics.rice.edu/department/research/manik1/apollo17.html

3.2.5 Beam Balances

Ultra-precise beam balances have been employed to measure near field effects of
changing or moving masses, achieved by suspending two masses at different dis-
tances from the moving mass, for example, a changing water table at a dam (e.g.
Hubler et al., 1995); it is not a method applicable to usual geophysical gravity sur-
veys but aims at constraining the gravitational constant, G, in order to test for non-
Newtonian effects, i.e., a suspected distance (r) dependence of G; so far no such
effects have been discovered. The use of beam balances is somewhat similar to the
torsion balance (Sects. 2.8, 3.2.9), but it is only sensitive to differences in the vertical
component of gravitation.
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3.2.6 Absolute Gravity Meters

The development of absolute free-fall instruments was delayed until time measure-
ments became sufficiently accurate and methods were invented by which adverse
environmental effects could be neutralized. The instruments catapult prisms into a
vertical drop about its apex in a high vacuum. Laser pulse and reflection times are
measured and converted to length, i.e. location h of the prism for repeated light
pulses during flight. Absolute gravity is the acceleration g of the free fall of the
prism with the initial height ho and the initial velocity vo:

h = ho + vot −g/2 t2 (3.2.4)

High-precision measurement of a series of reflections is carried out with the aid
of nano-second pulse lasers, accurate oscillation standards and clocks, assuming
constant speed of light c. Many repeated drops can be carried out automatically and
the constants of Eq. (3.2.4), ho, vo, g, are determined in a least-squares parabola fit
to the observations giving also the statistical error. Presently small field instruments
exist (Type A10 of Microgsolutions Inc., Erie, CO, USA; for more information
see: www.microgsolutions.com) which reach an absolute accuracy of better than
10μGal. Improvements in accuracy, necessary measuring period (< 1hr), power
supply, robustness and costs can be expected in the near future.

Considerable development was invested in controlling environmental distur-
bances, as gas friction from insufficient vacuum and instability of the platform
and structure through microseismic ground noise. Successful constructions place
the evacuated free-fall tower on the inert mass of a critically damped long-period
seismometer. In the 1980ies the problems were solved in the laboratory, and the
first step toward field instruments were bulky and heavy apparatuses which had
to be assembled inside rooms and required many hours of usually overnight au-
tomatic runs of thousands of drops. They mainly served the establishment of
absolute gravity control networks. In the future, combined surveys with abso-
lute and relative gravimeters may become the optimum for controlling the instru-
ment drift and scale and economically obtaining high-precision gravity data (see,
Sect. 3.3).

3.2.7 Superconducting Gravity Meters

Stationary instruments of highest precision are the superconducting gravity meters
which are not suited for field work. They record very small temporal gravity vari-
ations, especially earth tides to 10−10 g or perhaps 10−11 g. A permanent magnetic
field is generated by an electric current in a cooled super-conducting helium ring; a
conducting sphere is suspended in the inhomogeneous region of the field and held at
a stationary position. Small variations of gravity shift the equilibrium position up or
down which is counteracted by a sensor-controlled additional ring current in a coil,
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recorded and converted to the gravity signal. Beside tides and the effects of small
mass changes, changes in Earth rotation are observed.

3.2.8 Artificial Satellites

Satellites are used to measure the gravity field in several ways, for example, by their
orbit perturbations and as carriers of radar altimeters and gradiometers. Measuring
the gravity field with satellites began with Sputnik in 1957. Orbit perturbations
are astronomically measured and used to derive models of the geopotential usually
expanded into spherical harmonics; the gravity field can be expressed as the gravity
disturbance (see, Sect. 4.3). As more satellites became available and observation and
determination of orbits became more accurate, more and more detailed solutions
were published, also in combination with terrestrial and marine data.

The next step were the radar satellites, the first being SEASAT 1978 which had
a radar altimeter onboard that measured the sea surface topography. Since, to first
order, sea level follows the geoid, its topography is an indirect measure of the gravity
potential and gravity field. The altimeter footprint is generally wide enough to more
or less average out the waves, but longer-wavelength deviations from the geoid are
generated, for example, by ocean currents (Coriolis effect), wind drag and water den-
sity variations of thermal and salinity origin. Ever improved accuracy and resolution
of the surface topography and mutual control is achieved with the altimeter satellite
TOPEX/Poseidon (1992), reinforced since 2001 by Jason-1 flying in tandem.

Current developments (Rummel et al., 2002) are dedicated satellite gravity mis-
sions as CHAMP (launched in 2000), GRACE (launched in 2002) and GOCE
(scheduled for 2008). CHAMP, on a low, nearly polar orbit, has a pair of hypersen-
sitive accelerometers onboard which measure the gravity gradient or second radial
derivative of the Earth’s potential Wrr. Nearly the whole Earth is repeatedly covered
by the satellite tracks. Integration over r and downward continuation to the Earth’s
surface render the gravity field at geoid or reference ellipsoid level. GRACE is a
tandem mission with two satellites chasing each other with the distance between
them measured by reflection of laser pulses. The distance variations are analyzed
in terms of the gravity variations. The sensitivity is improved over that of CHAMP.
A particular feature is the time resolution, as the GRACE repeats the same tracks
in shorter intervals, so that temporal gravity variations become measurable. GOCE
(ESA, 1999) carries three accelerometer pairs, each mounted 0.5 m apart on bars,
one radial, one along flight and one across flight, so that the full gravity tensor (see,
Sect. 2.8) will be measured. The orbit is particularly low requiring special feedback
and thrusters to achieve drag-free flight and high-resolution gradient measurements.
The low orbit limits the flight period of GOCE and the ability to identify tempo-
ral field changes, but GOCE is expected to render high spatial resolution. At about
100 km pixel dimension (half wavelength) a precision of about 1 mGal and 2 cm in
gravity and geoid height, respectively (GOCE, 2005) promises to distinguish the
effects of gravity and of currents on the sea surface topography.



122 3 Observations and Field Activities

Satellites orbiting the Moon and planets have rendered, mainly by tracking their
orbit perturbations, the lunar and some planetary gravity fields related to surface
features. For very small celestial bodies as planetoids and comets, estimates of their
near-surface gravitation, and hence their mass and density, can be obtained from
video-tracking particles that have been thrown up in an artificial impact. This has
been tested with some success in the NASA Deep Impact Mission to comet Tempel 1
(Richardson et al., 2005).

3.2.9 Torsion Balance and Gradiometer

The space derivatives of gravity, or better, the second derivatives of the potential are
measured with the torsion balance and, more recently, with gradiometers. The mea-
surement of gradients of gravity with the torsion balance was pioneered by Roland
von Eötvös (1896); he measured the difference between the gravitational attraction
at two points about 1 m apart and achieved high sensitivities. The torsion balance
measures some components of the gravity tensor (Sect. 2.8), i.e. second deriva-
tives of the gravitational potential. It has been used in exploration geophysics and
geodesy for 5 decades, but the procedures are slow (one measurement per day),
and very sensitive to external influences (such as temperature). For such practical
reasons the torsion balance was replaced by the gravity meter.

In the 1970s, missile launching began to require exact knowledge of the gravity
gradient at the point of launch. This led to a new generation of gravity gradiometers.
Moreover, recently ultra-high precision electrostatic accelerometers have been con-
structed and assembled to devices measuring gravity gradients: gradiometers, capa-
ble of rendering the full gravity tensor. Modern devices measure gradients across
short distances of, say, 0.5 m. Such gradiometers consisting of displaced accelerom-
eters are now employed in borehole tools, on airplanes and in satellites as CHAMP,
GRACE and GOCE. Since 1999, airborne gravity gradiometer systems have been
in operation in Canada, Australia, South Africa, etc. Gravity is derived by integra-
tion and downward continuation and is comparable to ground gravity collected on a
200m grid; flight lines are typically about 100m above ground level.

Other measurement types are in development, as a superconducting vibrating
string gradiometer, a device where the length of the string under tension of a grav-
itational field is measured by two SQUIDs at the ends of the string (a SQUID is
a Superconducting QUantum Interference Device for the precise measurement of
extremely small magnetic field variations; consult Internet for latest developments).

3.2.10 Special Task Gravity Meters

Beside different methods to measure gravity, special task instruments are of in-
terest. Standard gravimeters are modified for particular purposes, for example, for
deployment in boreholes, for underwater measurements and for ship-borne and air-
borne surveys.
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3.2.10.1 Borehole Gravimetry

The deployment in boreholes requires the instruments to be adapted to borehole ge-
ometry and environment, remote control etc. As a tool used in possibly hot drilling
mud under pressure and in rough transport conditions, the instruments must be me-
chanically and thermally well shielded. The vertical orientation must be precisely
controlled.

3.2.10.2 Underwater Gravimeters

For shallow water surveys, especially on continental shelves and in rivers, land
gravimeters have been converted by several measures. The instrument may be fitted
into a water-tight pressure casing, which is lowered to the bottom and held there
with weights. An automatic levelling device must be added. Remote controls are
used for clamping and automatic reading or data logging. Field procedures are time
consuming.

3.2.10.3 Sea Gravimeters

Gravimeters carried on moving ships require strong damping, resulting in extended
averaging times, and are mounted on gyro-stabilized platforms near the neutral point
of the ship which has minimum motion, and elevation is generally very close to sea
level. Navigation with GPS has added to ever improving performance and accuracy.
Especially the E-W component of ship velocity vE requires application of the Eötvös
reduction which takes account of the change in the platform angular velocity and
hence its centrifugal acceleration zo (see, Sect. 2.3, eq. (3.3.3)). Earth angular veloc-
ity ω ≈ 7.25 10−5 s−1 is modified for the moving gravimeter, and in eq. (3.5.7) the
ω changes to ω+δω; δ zo = 2r ω δω cos2ϕ , and with δω = vE/(r cosϕ) follows:

δ zo = 2 ω vE cosϕ (3.2.5)

If a ship moves 1 m/s (about 10 knots) eastward at the equator, the Eötvös effect
would be to reduce zo and hence increase the apparent g by about 15 mGal.

Usually surveys are planned such that the crossings of profiles allow some drift
control. This way accuracies of 0.5 to 1 mGal have been achieved

3.2.10.4 Aerogravity

Airplanes are similar mobile platforms as ships, however much faster, not at a nearly
fixed elevation and more strongly subject to erratic motions. For real-time control
of position, velocities and accelerations, GPS is of paramount importance. High fre-
quency data acquisition allows calculation of all the disturbing effects of fast and
irregular flight with reasonable precision. The Eötvös reduction is much more criti-
cal than for ship borne gravity, it will easily reach 200 to 800 mGal. Obviously the
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velocity vector must be accurately measured which today is achieved by continu-
ous GPS observations. Aerogravity is an integrated system of gravimetry measure-
ments and real-time navigation. Under certain circumstances, as in mountainous
regions, aerogravity successfully competes with land-based gravimetry; the latter
suffers from the uncertainties of the near field terrain effects. Airborne gravity gra-
diometers, on the other hand, are less sensitive to platform movement and are now
achieving high accuracies after integration of gravity gradients and downward con-
tinuation to ground level. Comparisons have been made that suggest the milligal
precision is, or will soon be, reached.

3.3 Scale and Drift of Gravimeters

Traditionally most surveys are still carried out with relative gravimeters. Such
instruments must be calibrated because their scale values, i.e., the correct grav-
ity difference per instrument division (mGal/div) cannot be precisely determined
from the constructional components directly. With field-going absolute gravity
meters (Sect. 3.2.6), combined surveys with absolute and relative gravimeters
can integrate scale and drift determination with the principal purpose of measur-
ing gravity into one single procedure and a compromise between accuracy and
economy.

3.3.1 Instrument Scale

Readings must be generally converted to gravity values, usually in milliGal (mGal),
via scale factors in mGal/div (or a sliding scale factor across the whole range). Con-
version from the scale units div, noted in the field, to milliGal is usually done in
the office, but automatic digital output can provide the wanted unit immediately.
Instrument manufacturers provide their best scale factors, which may, however,
change with time. Calibration is then necessary and mostly done by measuring
in divisions (Δdiv) known gravity differences Δg between points along a cali-
bration line and may be carried out also in gravity networks (see, Sects. 3.3.2,
3.6.1).

3.3.2 Instrumental Drift

Raw field observations are always perturbed by unwanted instrumental effects as
drift and sudden discontinuous changes (tears or jumps) and by geophysical effects
as tidal variations. To help discover mistakes, as outliers (see, Sects. 3.7.1, 4.7.2),
and correct them by new measurements, some cleaning is best done immediately
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Fig. 3.2.3 Gravimeter drift measured in scale units or divisions div and defined by the base station
(A, B, . . .) readings at tA, tB, . . . The field station (1, 2, . . .) readings at t1, t2, . . . are referenced to
the assumed drift curve; note that the smoothest drift behaviour is but an assumption

during a survey. This can be done by drawing a drift curve manually from the field
records (Fig. 3.2.3) which may, at this preliminary stage, include both instrumental
drift and tidal variations. If several base stations (Sects. 3.4.2, 3.4.3) are used, their
mutual gravity differences should be known as accurately as possible. Applying
programs as GRAVI (Smilde, unpublished, 1995; see below) is possible also be-
fore tidal effects are subtracted, but the tidal reduction (Sect. 4.2) may be included
anyway.

Although a practical borderline cannot be drawn, internal instrument effects and
external tidal effects are of principally different nature, and the correct way is to
first remove the tidal effects, usually the theoretical solid-earth tides (at this stage
converted to scale units or divisions, div, see, Sect. 4.2).

Removal of instrumental effects (in div) is, strictly speaking, not a reduction
and is described in this chapter. Fig. 3.2.3 shows the principle of the drift and
drift corrections. Two possibilities are shown: linear drift between base readings
and a smooth curve which in the case of three base readings may be a parabola.
Although there are no reasons for assuming either possibility or any other simple
time behaviour, the most practical solutions are usually chosen. Wanted is the dif-
ference between the reading divi at station i and the hypothetical reading dri f ti
at the same time ti : ΔdiviB = divi − dri f ti. If dri f ti(BC) is assumed linear be-
tween the readings at B and C, ΔdiviB = divi−divB−aΔ tiB with a = ΔdivCB/Δ tCB

(where ΔdivCB = divC −divB and Δ tCB = tC − tB). If the drift is referred to station
B, dri f tB ≡ 0 or ΔdiviB = divi −aΔ tiB.



126 3 Observations and Field Activities

Similarly, one may assume polynomials or other functionals of time for the drift,
but such assumptions are equally arbitrary. One may interpolate or approximate the
assumed drift curves between base readings; interpolation implies error-free read-
ings while approximation, for example, by a least-squares fit, implies that reading
errors are taken into account, also for the base readings. The fit may be calculated as
a Bayesian inversion, which means that the standard errors of the readings are taken
as a priori information.

The routine GRAVI (unpubl., Smilde, 1995) assumes no functional of time but is
rather probabilistic as it considers correlation lengths (in time) during which point
readings are likely to be somewhat correlated to each other; the correlation can be
described as a Gauss function W = exp(Δ t2/τ2) where τ is the correlation length
and W constitutes the weight with which a base reading affects the reference value at
the reading time ti at station i. Any station with more than a single reading is taken
into account. The reference value is thus taken as the weighted mean of all base
readings at their appropriate times. Since for |t − tB| > τ, W rapidly approaches
zero, a station i outside a correlation window of any base reading will be referenced
only to the ordinary arithmetic mean of all reference values. In GRAVI all mutual
differences between base station values dri f tk = divk are calculated by solving all
the respective observation equations simultaneously: for the reading divj(i) at t = tj
at a repeated station i: divj(i) − divi − (dri f ti + Ddri f tj) = 0 + ej, where ej is the
error of the measurement j and dri f tj is a discontinuity during the respective mea-
suring epoch, or in short: Uy = 0 + e. The vector y contains all observations (also
non-repeated ones), which naturally include drift and discontinuities, e is the error
vector and U is the coefficient matrix containing only 0,+1 and −1 values signi-
fying measurements at i and j. The errors are statistically given by the covariance
matrix C(e) which is here a diagonal matrix because the errors are assumed un-
correlated. The temporal correlations are given by the matrix C(y) containing the
above W = exp(Δ t2/τ2). The least-squares solution of the system of equations is
discussed in detail in Sect. 7.2.1.2.1.

It may be mentioned that the concept of GRAVI is closely related to the geosta-
tistical approach to spatial interpolation between measured points which is realized
in the method of “Kriging”. It is based on the assumption of a stationary stochastic
process, just as in the case of GRAVI. The statistical space behaviour of the (grav-
ity) values in a discrete point set is estimated from variograms which may represent
Gaussian or other error distributions. The method is described in more detail in
Sect. 5.1.5.

A program as GRAVI should also identify outliers (Sects. 3.8.1, 4.7.2) at re-
peated stations after the adjustment and include a tidal reduction. If more than
one gravimeter is used in a survey, the statistically uncertain scale factors should
be adjustable (see above, Sect. 3.3.1) with one instrument chosen as the master
gravimeter. Some gravimeters have non-linear scale factors (e.g. the L&R-G spring
gravimeters with their piecewise linear scale); this introduces non-linearity into
the mutual adjustment procedure which can be solved by iteration. Scale factors
can, of course, also be adjusted to fit absolute gravity observations at some points
(Sect. 3.2.6).
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3.4 Planning a Survey

3.4.1 General

The starting point of any planning is the aim of an investigation. In geophysics
nearly always, geological or geodynamic problems are to be solved, and mostly the
targets are spatial density structures, sometimes an ongoing temporal change, and
the associated gravity variations or anomalies, where a single point would be irrel-
evant. In geodesy the situation is somewhat different, as a few points with reliable
gravity values may serve as base stations for relative networks; such points may
be locally isolated or widely spaced. In order to delineate the anticipated anoma-
lies, spatially distributed gravity values are required and observed, for example,
along profiles or on point grids. It must be kept in mind that the point distribu-
tion should permit a reliable construction of the relevant anomalies; the problem
is related to the aim of the later interpretation, as stressed in Sect. 1.4 and will be
described in Sect. 5.1.5. The underlying geological mass distributions (that may
change with time) prescribe the characteristic length scales and orientations of the
anomaly structure, but during surveys unexpected features may be found which will
affect or change further planning.

A priori ideas about survey aims determine the planning. There is mostly some
preliminary knowledge of regional geology, as rock types, estimated density con-
trasts, scale and structural strike, or the processes which induce change. The more
is known, the more dedicated surveys will be planned.

Besides, logistic and related aspects are important which include the topography
of the survey area, the instrument characteristics and error sources related to them;
for example, instruments have individual properties that have to be taken into ac-
count. The higher the required accuracy, the more stringent these latter conditions
are. While regular grids may appear ideal, transport on roads, paths, tracks or the like
will usually determine the grid layout and also affect the instrument performance.
Repeat times at base stations must be considered in planning in order to recover
the instrument drift. Preliminary field inspection and assessment of problems and
possibilities are strongly recommendable.

3.4.2 Base Stations

Base stations are chosen for logistic and technical reasons as, for example, acces-
sibility, ground stability and future availability. Hence such stations will have to
be well marked, listed and archived (with point sketches). Reliable permanence is
most desirable, however, experience has shown that marked stations are quickly de-
stroyed, for example, in road construction and other activities.

Markers must allow a precision of 1 cm in height or better, corresponding to 2
to 3μGal gravity precision; for measuring temporal change of gravity millimetre
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precision is necessary. Horizontal requirements are in the decimetre range, but high
horizontal gravity gradients (100 E = 10μGal/m; for the unit E see, Sect. 2.2)
should be avoided, this means to stay away from steep slopes and massive struc-
tures. For high-precision surveys, stability requires time variations to be minimal
in nearby masses as rivers, the sea, the groundwater table, or any man-made struc-
tures as piles of material, buildings, tanks, for example, of fuelling stations, mine
workings etc. Qualitative or semi-quantitative estimates of such effects (Sect. 5.6)
usually suffice.

3.4.3 Base Station Networks

Base station networks are set up by measuring the gravity differences between the
stations in several direct ties (where the behaviour of instrument drift should be
considered). A recommended scheme is A-B-A-B-A; this can be extended along
a sequence A, B, C, . . . as A-B-A-B-C-B-C-D-C-. . .. Customarily, the stations are
connected in a triangular pattern which somewhat facilitates the network adjustment
(see below) and error controls. Several instruments may be used side by side for
mutual drift control. In order to reduce any temporal interference with spatial gravity
variation, some random sequence is recommendable; if, for example, a profile of
points 1, 2, 3, . . . , n is to be measured up a mountain, an irregular sequence is
preferred over a consecutive one.

Adjustment of networks will be necessary because errors in the gravity differ-
ences between individual base stations will lead to closure errors. Given, for exam-
ple, three stations A, B, C in a triangle, the condition is that ΔgAB +ΔgBC +ΔgCA =
0. If nothing more is known about the error probabilities, the inconsistency εg is
removed by dividing it into equal parts, i.e. by subtracting εg/3 from each gravity
difference. If A, B, C (etc.) are linked together in a larger base station network, there
are also more conditions, usually more than one for Δgik, and a network adjustment
with all the given conditions should be carried out. A least-squares procedure with
zero closure conditions to be satisfied is described in KJ61, 41–52.

Surveys that aim at measuring temporal change between stations may be car-
ried out in the same way as base station links are measured, in order to describe
the instrument drift as accurately as possible. Short repeat times at the stations are
essential. Often several instruments are used side by side. As absolute field gravity
meters with satisfactory accuracy become available, surveys may combine absolute
and relative instruments, or employ absolute gravimeters exclusively. The strategy
will, in any case, be determined by the distances between those stations and by the
available time.

3.4.4 Field Stations

Field stations are selected in view of the geological aim, but avoiding error influ-
ences is also a criterion, as instrument instability, nearby high relief etc. Accurate
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point position and height are realized by using permanent or temporary survey mark-
ers, especially surveyed pegs or simultaneous differential GPS. In unmapped re-
gions, aerial photographs, astronomical surveying and levelling or even barometry
were used in the past, and undisturbed single receiver GPS may be sufficient for a
reconnaissance survey. In well mapped regions, reliable maps provide locations, but
heights must be measured.

Normal gravity varies in N-S direction, i.e. with latitudeϕ , as∼ 800|sin2ϕ|μGal/
km, and 10 m point uncertainty (0.2 mm on a good 1:50 000 topographic map) implies
< 10μGal uncertainty. Modern theodolites (total stations with distance measurement
to retro-mirrors) and differential GPS will permit cm accuracy in height giving about
3μGal errors in the Free Air reduction and 2μGal in Free Air plus Bouguer reduction.

Nearby high relief, including buildings may have big terrain effects difficult to
determine accurately. The station distance to a steep slope should be kept as large as
possible; the effect depends on details; for example, a steep 2 m high upward slope
1m beside a gravimeter that is 1m above ground has nearly no effect as it is about
level with the instrument; if such a slope is downward it may cause −20μGal terrain
effect; even a 25 cm step down, 20 cm sideways, causes a near-field terrain effect of
about 10μGal. Hence ditches should be avoided, while walls are less critical. It is
obvious that 10μGal accuracy is difficult to achieve. Rough estimates are discussed
in Sect. 5.6. Surveyors establishing gravity stations should consider these points.

3.5 Field Procedures

3.5.1 Setting Up Stations

This section is concerned mostly with ordinary land gravimeters. Vertical instrument
orientation by levelling is obviously indispensable (in some modern instruments au-
tomatic). Gravity meters must be set stably on the ground, usually on a base plate
or a tripod. This includes the ground which must be as solid and undisturbed as
possible. If a tripod is used, it must stand firmly and the legs must be pushed in
deep enough into soft soil; asphalt (tarmac) in sunshine is unsuitable as it slowly
creeps. The instrument position must be defined (measured) relative to some perma-
nent or temporary survey marker (or GPS receiver). A plate with no legs requires
level ground (sometimes forgotten by surveyors establishing field stations). Special
instructions should be taken into account carefully.

The above considerations of station stability and accessibility are especially im-
portant for base stations (Sect. 3.4.2) or any stations that are to be measured repeat-
edly. Underground conditions must be solid and unlikely to change with time.

3.5.2 Surveying Requirements

Field procedures must be considered when planning, but unforeseen circumstances
will always force field observers to make spontaneous decisions. These may affect
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repeated readings at one or several base stations as well as normal field points.
They are usually measured along loops between base stations and are carried out as
the situation allows. Exact locations may be chosen right then or by the surveyors
beforehand. Gravity observers must consider surveying requirements as the lines of
sight, visibility of GPS satellites, etc.

3.6 Additional Field Operations

Additional field operations that are important are: instrument calibration, surveying
(just mentioned), determining the near field topographic relief and rock densities.
This information is needed for reliable measurements and their reductions and eval-
uation.

3.6.1 Instrument Calibration

Gravimeter calibration by measuring differences (with standard errors s) between
points of known absolute gravity values can be done in combination with absolute
gravimeters that theoretically need no calibration. If absolute gravity is not known,
i.e. is only estimated in the network, calibration may be carried out within given
relative networks. In this case calibration means only adjustment to an earlier accepted
scale.

Although two end points with a sufficiently large gravity difference often suf-
fice principally for calibration of a linear scale, an assessment of the uncertainties
requires more points, for example, along a calibration line or in a point network
(KJ61, 50). Such measurements permit to take into account scale variations (e.g.
periodic spindle variations in L&R gravimeters) and to better control the instrument
drift. Aliasing between the temporal instrument drift and the temporal sequence of
measuring the spatial gravity differences along calibration lines is to be avoided;
particular observation schedules have been designed which involve certain random
elements or sequences; often more than one gravimeter are used simultaneously (see
specialized literature, e.g. Kanngieser et al., 1983).

As a simple example, take gabs ± sg to be known at two points, where s is the
standard error, the difference is Δgabs ± (sg1

2
+sg2

2)1/2 or ±sg
√

2 (if sg1 = sg2 =
sg). Similarly, Δdiv±(sd1

2
+sd2

2)1/2 or ±sd
√

2. Repeated measurements improve the
error by a factor of n−1/2. Least-squares adjustment of the gravimeter scale factor f
with n absolute stations begins with the error equations for each station i:

gabs,i = c + fΔdivi − vi; i = 1, 2, . . .n, vi = correction for any of the errors at
station i. The constant c is necessary because the gravity readings are relative to
a station where gabs is not accurately known. The task is that of linear regression
with two unknowns, c and f . Writing Σ for sums over i = 1, n with the condition
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Σv2 = min (i.e. the derivatives with respect to the unknowns set zero), leads to the
linear normal equations

cn+ fΣΔdiv = Σgabs (3.6.1)

cΣΔdiv+Σ(Δdiv)2 = Σ(Δdiv.gabs)

Following Cramer’s rule, the solution is, with the determinant D

D = nΣ(Δdiv)2 − (ΣΔdiv)2

c = [Σ(gabs)Σ(Δdiv)2 −ΣΔdivΣ(Δdiv.gabs)]/D (mGal) (3.6.2)

f = [nΣ(Δdiv.gabs)−ΣΔdivΣgabs]/D (mGal/div)

With the standard deviation of the fit, s = (Σv2/(n−2))1/2 the standard errors of
c and f are given, with the matrix {N} of the normal equations, as:

sc = s(N11
−1)1/2;sf = s(N22

−1)1/2 (3.6.3)

where {N−1} is the inverse matrix {N}:

N11
−1 = Σ(Δdiv)2/D; N22

−1 = n/D. (3.6.4)

This simple example of inversion has only two unknowns. If the individual differ-
ences in g and div have different errors they should be weighted accordingly, and this
requires some reasonable assessment of the individual errors. See also Sect. 3.3.2.

3.6.2 Surveying or Levelling and Recording of Earth Tides

Coordinates and elevations are indispensable for reducing and interpreting the grav-
ity observations. With good maps, careful identification of points on the maps and
reading the coordinates from them may replace surveying. Levelling, however, is
imperative unless accuracy is sacrificed; reading elevations from maps is generally
insufficient. Till today, theodolites or total stations are used and this is more time
consuming than measuring gravity. In the past, barometers were used in reconnais-
sance surveys, but GPS has improved the situation. Determination of the near-field
neighbouring relief is still time-consuming, even if facilitated with special diagrams
(as had often used in industry for the traditional terrain reductions on the basis of
topographic maps).

During special precise surveys local earth tides in the region should be known
and observations are recommended, because the theoretical tides are often only
rough approximations to the local tidal effects. This is especially so in anoma-
lous regions of unusual geology and upper mantle properties and close to the sea
shore. Marine tides will be better defined by observation than by gross marine tidal
models.
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3.6.3 Rock Densities

Density ρ is a fundamental quantity in mass reduction, modelling and interpreta-
tion. Errors in assumed densities are critical and may interact with other errors, e.g.
of elevation. The most direct density information is determination from samples.
Another observation is the gamma ray back scatter mostly used in borehole geo-
physics (gamma-gamma log). Relationships between other geological and geophys-
ical quantities can be used as proxy, as and measured seismic velocities or rock type,
identified in the field or taken from sufficiently detailed geological maps. Density-
velocity systematics or relationships are frequently used to derive initial densities
from seismic models. Special gravity surveys may give representative density val-
ues. Note that rock density is a variable property in nature even within apparently
uniform rock units or formations and any given numerical value is preliminary and
may need adjustment in the process of gravity interpretation.

3.6.3.1 Hand Specimens

Hand specimens (also drill cores) should be routinely collected and measured in
the field or lab by weighing samples of volume V in air, wa = ρV g, and water,
ww = (ρ−ρw)V g; the density ratio is ρ/ρw = wa/(wa−ww). In view of the natural
variations the individual weighing need not be very precise, rather the number of
samples or total mass should be large for the average and the natural scatter or stan-
dard deviation to become more representative. A spring balance and a pale of water
will do, but attention must be paid to possible systematic errors (scales, influence
of weathering, dryness or water saturation, weight of sample holders, density of salt
water, etc.) which cannot generally be corrected for. Calibration by an exact test
mass is recommended. The volume measurement can be done also in a measuring
receptacle with a scale for reading the difference when the specimen is inserted.

In many cases, rather small drill cores are taken as samples, even drill chips.
While in these cases weathering is less critical, the results tend to vary erratically
and the scatter is large. And chips may be highly selective and introduce systematic
errors. If the mineral content of the rocks is known, the weighted mean density
can be calculated from (precisely known) mineral densities ρk and their proportions
pk : ρ =k Σρk pk/kΣ pk, however, the void volume must not be neglected.

3.6.3.2 Gamma Ray Back Scatter

Back scatter of gamma rays (Compton scattering) is the basis of the gamma-gamma
borehole log and also of some field instruments which are placed on planar rock
surfaces. They exploit the fact that electron density is roughly proportional to mass
density, but systematic deviations from the relevant bulk density are common. Weak
60Co gamma ray sources are commonly used combined with a caesium iodide de-
tector (CsI); if a spectral analysis is performed (CGG – Spectral Gamma-Gamma),
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even some information on the elemental composition can be derived. The volume
affected by the measurement is as small (order 1–2 liter) as that of hand specimens
and thus many individual values are necessary to obtain representative averages.

3.6.3.3 Rock Types

Rock type identification in the field or from geological maps, combined with
density-rock type tables often suffices for initial estimates. Such estimated values
are sometimes more representative than scattered and biased individual measure-
ments, since rock varies in composition and condition from one specimen to another.
Good geological background knowledge of the geophysical interpreter helps avoid
gross misjudgements. Table 3.1 (at the end of the chapter), however, demonstrates a
high variability of values given for the same rock type.

3.6.3.4 Seismic Velocities

Velocity-density relations or systematics are much used in gravity interpretation,
especially where initial models are taken from seismic information. The seismic
wave speeds V p and V s in elastic solids depend on the relevant moduli K + 4/3μ
and μ, respectively, and density ρ:

V p = ((K + 4/3μ)/ρ)1/2, V s = (μ/ρ)1/2, where K = bulk modulus, μ = shear
modulus. While this seems to suggest an inverse relationship between velocity and
density, the moduli generally increase with density and the correlation is mostly
positive with only few exceptions (velocity-density systematics). An approximate
linear relation has been derived from laboratory measurements on mostly crystalline
rocks under pressure (Birch, 1960, 1061):

ρ ≈ a+b V p or b ≈ Δρ/ΔV p (3.6.5)

b is of the order of 300 (kg/m3)/(km/s) or the inverse b′ is given in (km/s)/
(kg/m3). Similar, though less customary relations exist for V s. The exact value of
b is immaterial because of its large variation and uncertainty, it will only render
a rough first guess of density values. The relationship is influenced by chemical,
petrological and other parameters as physical state, weathering etc. resulting in con-
siderable scatter. Especially the compactness of a rock as freshness or weathering,
jointing, cracking, looseness, water saturation, etc. have a strong influence, usually
more on V p and V s than on ρ, for example, crystalline rocks, to considerable depth,
say 500 m, are mostly cracked with a large influence on V p and less on ρ . With
sufficient data and a wide range of rock types, non-linearity of the ρ-V relationship
becomes more evident. The so-called Nafe & Drake (1957) relation, mostly deter-
mined for a suite of rocks from unconsolidated marine sediments to basic igneous
rocks, is highly non-linear, as evident in the following value pairs (V p in km/s−ρ
in kg/m3): 1.5–1300; 1.6–1700; 2.3–2100; 7–2800; with the b values: 4000; 570;
150 (kg/m3)/(km/s), respectively.
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Additional parameters, as for example, mean atomic weight m can be taken into
account (Birch, 1960, 1961, 1969); a rough relationship for crystalline crustal rocks
from granite to gabbro is

V p ≈ const ρ3/2/m2, or inverse : ρ ≈V p2/3m4/3 = (V p m2)2/3. (3.6.6)

Birch’s data also show that ρ of these rocks is correlated with m, approximately
Δρ ∼ 300 Δm (kg/m3).

On the other hand, evaluation of density and velocity data from petroleum indus-
try drill holes, i.e. from sedimentary rocks renders (Gardner et al., 1974):

ρ ≈ 1740 V p1/4 in kg/m3, Vp in km/s (3.6.7)

Similarly, but in more detail, Darbyshire et al. (2000) gives different expressions
for three velocity intervals spanning the whole range of crustal rocks, for Vp ≤
4.5km/s from Zelt (1992):

ρ ≈ 1000(−0.6997+2.2302 V p−0.598 V p2 +0.0703 V p3 −0.0028311 V p4)
(3.6.8)

and from Carlson & Herrick (1990)

for 4.5 < V p ≤ 6.6 km/s : ρ ≈ 1000(3.81−6.0/V p) (3.6.9)

and for V p > 6.6 km/s : ρ ≈ 1000(5.32−15.38/V p)

The expressions encompass the effects of composition and compaction. The ex-
pressions differ in the power of V p because they pertain to very different rocks and
because, in eq. (3.6.6) m appears explicitly, while in the other expressions effects of
m are implicit.

3.6.3.5 Vertical Gravity Profiles in Boreholes and 3D Surveys in Mine
Workings and Tunnels

Vertical gravity profiles directly exploit the gravity effect of the in situ rock masses.
Mines, mine shafts, drill holes (with borehole gravimeters, see above) and tunnels
can be used for gravity surveys in three dimensions (3D). The largest effects in the
observed gravity difference between two depth values are the height effect and twice
that of the intervening Bouguer plate (4πGρΔh) which is dominated by the nearby
rock density.

Lateral density variations, as for example, the cavity itself (mine shaft and other
workings, etc.), topographic relief and geological density variations must be consid-
ered in special reductions. Both latter effects vary with position and depth and must
be estimated from a set of gravity stations in the 3D vicinity and from a special
terrain reduction. For tunnel surveys, complemented by surface stations, the 3D ge-
ometry must be fully modelled. The important point is that the gravitational effects
of the rock around the observation stations have the largest magnitude varying from
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station-to-station; hence, the best local density information can be obtained from
such 3D surveys by 3D modelling.

Vertical density profiles are obtained also by gamma-gamma density logging (see
above) in boreholes, and comparison of both sets of derived density values may
reveal specific problems of either method.

3.6.3.6 Nettleton Profiles

The Nettleton (1939) method offers a similar possibility to determine a relevant bulk
density from gravity measurements along profiles or on point grids with significant
topographic relief as mountains or valleys (KJ61, 90–92). This is another way of
introducing 3D aspects into the observations. If the topography (h or TOP) and
Bouguer anomaly (BA) calculated with an assumed Bouguer density ρB are corre-
lated it may be so because ρB differs from the local density value. The method is
to calculate the BA with a suite of ρB values (reductions for height and terrain, of
course, included) and plotted together with h; the curve showing the least correla-
tion is chosen, as the human visual system is well suited to recognize patterns. The
Nettleton principle has been modified. The idea can be expressed mathematically
in terms of correlation coefficients, the desired density defined by the condition of
zero correlation (Jung, 1943):

ρ = ρo +Σ(i)[(BAoi −BAo)(hi −ho)]/(2πGΣ(i)[(hi −ho)
2]) (3.6.10)

with ρo the originally assumed Bouguer density and underlining meaning the arith-
metic mean. Regional gravity fields can adversely affect the results and removal of
linear fields may be insufficient. Each case would have to be treated individually. In
this, the problems of spurious correlations (below) cannot be solved mathematically.

Interference with other gravity components, especially the effects of lateral den-
sity variations, may lead to an incorrect Bouguer density identification. The condi-
tion of zero correlation will never be perfectly satisfied in nature; indeed, in some
cases correlation between BA and TOP is real and caused, for example, through
dynamic processes or through erosion.

A related approach is to express the observed gravity as the sum of the elevation
related effects with unknown Bouguer density and the unrelated accidental deeper
geological effects, hence to treat them as errors in a least-squares sense (Parasnis,
1952). If the distribution of stations (in any map configuration, usually not in pro-
files) indeed satisfies the condition, the result may be reasonable, but there is little
control of this.

Jacoby (1966) attempted to reduce the effects of accidental or geological rela-
tions between the full topographic effect (of Bouguer plate and terrain) and ele-
vation (i.e. topography) and to thus estimate both, the Bouguer density and the
local vertical gradient (see, Sect. 7.3.2.1.1.2). The idea is to remove linearly re-
lated components of BA and TOP by an initial least-squares determination of lin-
ear relations; after their removal density and vertical gradients are then computed
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by fitting the residual gravity, height and mass effect values. A polynomial fit to
the unknown Bouguer anomaly from deeper sources is included. Steep slopes of
topography are advantageous for stable solutions; indeed, such a geometry ap-
proaches the 3D situations discussed in Sect. 3.6.3.5. In the particular case studied,
the island of Helgoland, with near-vertical rock walls, the results agreed remark-
ably well with carefully measured samples (> 100kg); the vertical gravity gradient
above a salt-dome is related to the negative gravity anomaly and was found to be
−0.303±0.012mGal/m. Of course, more complex relationships are not eliminated
by a linear analysis.

3.6.3.7 Discussion of Densities

3.6.3.7.1 General Considerations

The bulk density including voids (pores, joints, vesicles) is relevant to the gravity
studies, not mineral (or grain) density. Table 3.1 (at the end of the chapter) lists rock
densities as taken from various sources (listed there). The grouping and classifica-
tion of materials is chosen without attempting a thorough classification. The groups
are: (1) superficial and artificial materials, (2) sedimentary rocks, (3) volcanic rocks,
(4) plutonic and metamorphic rocks, and (5) some minerals and ores. Classification
of some materials is ambiguous, for example, in the case of monomineralic rocks.
Some order has been attempted in the listing.

Individual reliabilities are approximate, mainly because the nature of the errors
or individual scatter of values is complex. The interpreter is warned not to rely too
much on published values. A particular target geological body may easily deviate
from published mean values. On the other hand, the crustal density variability is
moderate, very rarely (and only in small volumes) do densities lie outside the range
from 1000 to 3000kg/m3 and upper mantle rocks hardly exceed 3500kg/m3. As
preliminary a priori information for inversion and optimization (Chap. 7) the uncer-
tainties permit estimates of the error bounds.

Knowledge of trends and of the possible exceptions is important for the interpreter.
Different classes of rocks have different characteristics: (1) soils and alluvium are
usually loose superficial layers of low density of minor thickness, from < 1m to
order 10m; corresponding gravity effects rarely exceed a few tenths of a milligal. (2)
Consolidated sediments of sandstone or conglomerate, clay and shale, and limestone
or dolerite composition are highly variable. (3) Volcanic rocks (which may or may
not be vesicular, jointed and fractured) and (4) plutonic and metamorphic crystalline
rocks as granite, gneiss, gabbro etc. are equivalents with correlated densities.

3.6.3.7.2 Sedimentary Rocks

Sedimentary rocks have densities at the low end of the whole density spectrum. The
effects of moisture and compaction can be large and critical if significant variations
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occur indifferent rockbodies.Their lateraldensitydifferencesusuallyvarywithdepth.
In loose rocks wet density may exceed dry density by one third, an effect which de-
creases with depth. These factors are affected by depth of earlier burial and age which
both result in closing and/or filling of pores with minerals. Shales are especially com-
pactable by settling, dehydration and recrystallization. The notion “shale” does not
predict density significantly, and the term is indeed ambiguous, including sediments
and metamorphic rocks. Limestone and sandstone vary only little in density.

3.6.3.7.3 Volcanic Rocks

Also volcanic rocks strongly vary in density with composition and, near the surface,
with texture. The more basic, the denser they are; the corresponding range is about
20%. Loose vesicular and highly broken superficial rocks, as the tops of basalt flows,
are quite light, but removal of the loose rock by erosion before burial and filling of
the voids with minerals rapidly increase the density. These effects are minor in lava
that initially cooled deeper in a flow (relative range < 10% of mean). Slight variation
occurs with crystallinity, amorphous glass being lightest. Mineralization by heavy
ores seldom has a large influence on bulk density, and if so, only in small volumes.

3.6.3.7.4 Crystalline Rocks

Density of plutonic and metamorphic crystalline rocks varies with composition and
increases with the grade of metamorphism. Since this process affects all kinds of
original rock, metamorphic rocks are a highly heterogeneous class, and some ex-
ceptions to the relation with composition occur. Metamorphism may involve migra-
tion of solutions which can form locally heterogeneous masses and aureoles, also of
density variation.

3.6.3.7.5 Assessment of Listed Rock Densities

The published rock density values listed in Table 3.1 (at the end of the chapter) show,
by comparison, a large scatter. Some serious errors and discrepancies between dif-
ferent sources occur (some mean values lie outside the ranges given elsewhere). For
some materials unbelievably narrow limits are quoted (e.g. loose soil), for others
the differences in upper and lower limits can be very large, and one gets the impres-
sion that some values are mere guesses. Evidently the scatter need not be symmetric
about the mean; large asymmetry of quoted bounds indicates a significant skew in
the distribution.

These uncertainties have probably several causes: (1) real density scatter in
rock bodies, (2) uncertainties, ambivalences and unreliability in definition of rock
types, including authors’ insufficient petrological knowledge, (3) neglect of sample
characterization, for example, of freshness or weathering, (4) deficient measuring
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procedures, (5) copying errors from any publications and (6) some arbitrariness of
the system of numbers and units used. Indeed, usually no more than two digits may
be significant. The conclusion from this state of knowledge is that published values
are unreliable information, valid only for initial model assumptions and for approx-
imate guidance after checking.

3.7 Preparing the Data for Reductions and Analysis

A number of operations are best carried out immediately after a day’s work. The
field notes must be brought into a tractable form with the additional aim to detect
large errors. Serious reading errors or mistakes can be corrected by repeating the
measurements. Wanted are the gravity values or gravity differences observed from a
chosen reference point, and they must be prepared for further post-survey treatment,
as for example, refined drift and tidal analysis and reductions. Each individual point
must be handled, but also all the measurements of a day or of a whole survey. The
following is largely a summary of the aspects discussed above.

Even in the age of portable computers, in preparing or accompanying the digital
operations, it is still advisable to draw by hand drift curves that include the earth
tides. It can be done in units of scale division instead of milliGal to compare this with
computer outputs. Conversion from scale units (div) into mGal, μGal or nm/s2 is
necessary unless provided automatically. Different instrument heights above survey
markers (e.g. at identical stations) must be taken into account before constructing the
instrument drift where Δdiv = 3.086μGal/cm×Δh(cm)/ f , with f = scale factor
in div/μGal. Also the earth tides may be reduced in scale units.

The final result will be a set of points with coordinates and elevations as well as
the relative gravity values, i.e. differences from the chosen base station value. For
the purposes of exploration geophysics the point values are constant in time, but in
special cases geodynamic time variations are derived from repeated measurements.

3.8 Error Assessment and Accuracy

Errors of gravity values are essential for assessing the potential of gravity interpre-
tation. The term “error” is related to “inaccurate”, “imprecise”, “uncertain”, “unreli-
able”, and the opposite nouns are: “accuracy”, “precision”, “certainty”, “reliability”.
Each of these terms carries a somewhat different connotation, especially in contrast
to the vague common usage of these terms. Accuracy has to do with the closeness
to reality or truth or to the likelihood to be close to the true value, or probably how
close. Precision, on the other hand, has to do with the width (or better: narrowness)
of the scatter or the standard deviation (see below) or, in other words, the number
of significant digits of a quantity, where “significant” refers, for example, to a mea-
suring device; despite its high precision, a value may yet be far off its true value.
Reliability and certainty mean nearly the same and imply the degree of trust in the
values, which is a fairly subjective assessment. Reproducibility and repeatability,
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which are self-explanatory, may be added as necessary, but not sufficient conditions
for reliable observations.

In view of the subject of gravity interpretation, accuracy and precision gain a
special significance. While accuracy is an important aim, precision need not be so.
This has to do with the principal ambiguity of potential field interpretation or in-
version; a model found to explain the observations precisely can be far from reality.
Especially in gravity inversion (Chap. 7), but also in other methods of modelling,
standard errors may be calculated which generally tell how precisely the observa-
tions are “fitted”. In order to underline the restricted significance of such a posteriori
standard errors, it is proposed to call them “apparent standard errors” (or short:
“apparent errors”). This will be demonstrated again in the later chapters.

There are errors or error components of different nature, in any single value of
a measured quantity all components occur together and the total error is an integral
aggregate. Error components are outliers or gross errors, systematic and random,
each being briefly discussed below.

3.8.1 Outliers

Outliers or gross errors stem from misreadings, wrong copying, malfunctions of in-
struments and the like and are often easily recognized by eye, for example, if plotted
in a suitable fashion. In large data sets this may no longer be possible and statistical
data snooping may identify gross deviations from the general data distribution which
are errors much larger than the established statistical measurement inaccuracy.

However, a single outlier may be a correct value, if the measured quantity has the
erratic behaviour of containing in a smooth field a few small-scale local anomalies,
as frequently is the case in magnetics. Such local anomalies may or may not be
considered significant in a given context; in the first case, more observations may
be added in the vicinity, and in the latter case the outlier may be treated as an error,
either dismissed or treated as a random error, which has to be decided on the basis
of a general judgement of the survey aims.

If the scatter and distribution of the individual values of a quantity is known
from repeated measurements, outliers may be defined as those values falling far
out of the standard deviation (see below). However, as the Gauss distribution with
its standard deviation incorporates few quite large deviations, though with a corre-
spondingly small probability, it cannot be decided unambiguously whether the value
in question is part of the set or an outlier. As always in statistics, there is no absolute
characterization of a gross error.

3.8.2 Systematic Errors

Systematic errors can be controlled only by comparisons and calibrations, as out-
lined with the field procedures, for example, in connection with scale and calibration.
Any technical malfunction, as for example, a deteriorated sensor vacuum, thermostat
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problems etc. will affect the measurements, making repeated instrument checks
advisable. Levels may be de-adjusted, resulting in apparent scale lengthening by
1/cosε , where ε is the deviation from the vertical. Some instrument types may
have scale irregularities and periodicities revealed by extensive tests (Kanngieser
et al., 1983).

3.8.3 Random Errors

Random implies chance, unpredictability. It does not exclude a limitation of the
range of scatter. Instrument reading and instrument drift have random components
for which no theory exists. Sources are the setting of the instrument, in most cases,
the nulling or determining of the internal, i.e. not directly visible null configuration,
furthermore the reading of a meter, especially the estimation of the last digit, and
instrument levelling as well as auxiliary measurements as that of instrument height
etc. which all affect the reductions (Sect. 4.5.2). Incorrect levelling, for example, has
a systematic influence on the gravity observation and is thus not of an exclusively
random nature, but random errors of levelling produce random effects in gravity
reductions.

Individual random errors are thought to be independent from each other, or
stochastic, and are customarily assumed to have a normal or Gaussian distribution,
in the sense of standard deviations. Given n observations xi of the true quantity xo;
the individual random errors are Δxi = xi−xo; the Gaussian frequency or probability
distribution for a large number of observations (n → ∞) is then given by:

g(x) = s−1(2π)−1/2 exp(−(Δx/2s)2) (3.8.1)

with the standard deviation s defined as the square root of the variance

s2 = iΣΔxi
2/n (3.8.2)

As xo is not known, a practical estimate is made by replacing xo with the arith-
metic mean x :Δxi = xi−x where, henceforth, the underlining is dropped. For the es-
timate of s2, the denominator will be (n−1), the number of redundant observations.
The normal distribution expresses that in the interval ±s about the mean, x, 68%
of the individual measurements should lie within the interval ±2s, 95% (±2s is the
so-called “95% confidence interval”). Outside 3s, only 0.3% of the measurements
are expected and outside 5s only less than 10−6 of the total. Thus the probability of
large deviations approaches zero rapidly, but never disappears completely.

In most cases, too few observations exist to test the fundamental assumptions and
the limited number of observations may fit a Gaussian distribution more or less; ob-
vious deviations in shape may include asymmetry or skewness, double peaks, a too
sharp peak relative to the lateral width; such features suggest the error sources to be
investigated more thoroughly and the statistics to be viewed critically. Nevertheless,
usually, for want of better alternatives, most of the error treatment, as calculation of
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standard errors, error propagation, etc. is based on the Gaussian and is believed not
to lead to gross misinterpretations.

Many gravimeter types have two levels: the cross level controls the verticality
of the instrument, but the longitudinal or sensitivity level can be deliberately set
as it determines the point of balance between the moment of weight, lever×mg,
and of the spring moment; this point determines the angle of intersection of the
two moment curves versus setting, hence the sensitivity. Therefore, the sensitivity
level, once set, must be extremely carefully adjusted at each station; it is part of the
measurement; and setting of the sensitivity level must not change during a survey.
Otherwise it is a source of severe errors. Small errors in cross level setting are less
critical as their effects are related to cosε where ε is the error or deviation from
verticality. Every instrument type must be carefully assessed for such types of errors.

Errors come in also with the reductions, and each input parameter (height and co-
ordinates, densities, topographic relief) is affected by errors. The parameters of the
normal reference field, once adopted, are considered true for practical reductions.
This definition is principally not erroneous because the local gravity field differs,
for example, in vertical or horizontal gradient or in Bouguer density: The corre-
sponding effects appear in the calculated Bouguer anomalies and should be treated
in the data analysis and interpretation. Densities as the Bouguer density are of a
special character; none of the density determinations (Sect. 3.6.3) will render exact
densities which are preliminary and will be adjusted in the interpretation process.

The final assessment has to take into account all the above error sources, each
estimated carefully and put together to a general number of uncertainty which must
be completed by the uncertainties introduced by the various reductions and ulti-
mately also by the uncertainties related to modelling. If all the error components are
statistically independent, or in other words, orthogonal, the errors add statistically:

stot
2 = i∑si

2 (3.8.3)

This corresponds to the Gaussian error propagation law with the same sensitivity of
the resulting stot to each component si, as in a sum. For inversion stot is of funda-
mental importance (Chap. 7).

3.9 Conclusion

In conclusion, the aim is restated: gravity measurements render the g or δg values
with their uncertainties for sets of geographically defined points after removal of in-
strumental and tidal effects. The gravity values gi at stations i are assumed to repre-
sent the time-averaged or time-independent gravity field in space; the averaging will
not necessarily remove certain long-period – geodynamically interesting – compo-
nents of the field. The values do depend on the point coordinates, especially height.
Predictable dependencies can be calculated, at least for a standard gravity field used
for reference and comparison, others are unknown beforehand and are the prime



142 3 Observations and Field Activities

target of interpretation. The standard is described as the normal gravity field and
referring the observations to it is called “reductions”, the topic of the next chapter.
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Chapter 4
Gravity Anomalies and Disturbances:
Reductions and Analyses

4.1 Introduction

Sets of relative gravity values show spatial patterns, beside a decrease with station
elevation, and a poleward increase, also geological effects. The latter are usually
obscured by the other influences which must be removed in order to reveal the geo-
logical information. This cleaning operation is called “reduction” and the results are
called anomalies of various kinds which are the target of interpretation. Proper re-
ductions require knowledge of the station coordinates and of the normal gravity field
with which the observations are to be compared. In geodesy, the term “disturbance”
is more common, this stems historically from different references used, as described
below. In both cases the purpose of the reductions is to relate the observations to a
reference, and this is, in the proper sense of the term, not a “correction” of errors or
mistakes. The customary term “correction” is therefore avoided in this book. This
is also true for the tidal effects, removed by a tidal reduction, while, on the other
hand, the removal of the instrumental drift can be considered truly a correction. The
ultimate accuracy of the anomaly values is affected by both the observations and the
reductions.

As the input, and starting point into this chapter, we have lists, computer files
and graphical representations (profiles, maps) of observed gravity values with co-
ordinates, possibly also slow geodynamic time variation. Here the procedures and
manipulations are described. The manipulations usually include a refined drift and
tidal analysis even if tidal effects had already been approximately removed. The re-
ductions are for latitude, elevation and for topographic mass. The normal field is the
one considered best suited for the reductions. Purposely for reference a very sim-
ple earth model is chosen with standard parameters, even if one knows that local
parameters are different. In addition (see below) local values may be used, as deter-
mined by observations and measurements (Chap. 3). Further analysis of the gravity
anomalies (or disturbances) may involve the so-called regional-residual separation,
which, however, is not a “reduction” proper.

This chapter is divided into the following parts: reductions for earth tides, a
discussion of terms as gravity anomaly and disturbance, reference earth models;
components of gravity, standard reductions for latitude, elevation and topographic
mass, preliminary analysis of the anomalies, post-reduction aspects of data analysis,
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as regional – residual separation, smoothing, contour line construction, use of maps
and derivation of wanted quantities (KJ61, 93-121).

4.2 Earth Tide Reduction

It is advisable to refine preliminary drift corrections and tidal reductions. The
theoretical earth tides must be calculated and removed before treating the instru-
ment drift. Tidal gravity variations reach ±0.15mGal. In the field, data analy-
sis is usually in scale units, for example, for 0.1 mGal/div tides reach ±1.5div.
Theoretical tidal calculations are based on normal earth models. Since consider-
able local deviations may exist local recording of the gravity tides is preferred
(Sect. 3.6.2).

The following brief description of earth tides theory is based on KJ61 and be-
gins with the gravitational attraction (on the whole Earth’s body) from the moon
and sun (and planets as Jupiter) and the secondary effects of Earth deformation in
the tidal potential field. The lunar effects are about twice the solar effects. Since the
tidal effects are small, the celestial bodies can be treated independently; their effects
are superimposed linearly. In order not to mix up tidal effects with Earth rotation
and the related centrifugal forces, one describes the tidal motions of two bodies, as
Earth and Moon, as translatory revolution about the common centre of gravity, i.e.
without change of individual orientation or rotation. In this motion, gravitational
attraction and centrifugal forces cancel only at the Earth’s (or Moon’s) centre of
gravity; at all other points the vector sum deviates from zero, varying linearly with
radius r. The tidal force field generates a prolate ellipsoid (Earth approximated as a
sphere, the normal oblate ellipsoidal shape being neglected) and a gravity minimum
at the prolate poles and a maximum along the oblate equator. Only now, the Earth’s
self-rotation is considered which means that points rotate through the tidal fields of
deformation and gravity potential, generally twice a day through a maximum and
a minimum. Since, however, the moon revolves about the Earth in a month, i.e. 12
times faster than Earth revolution about the sun, the larger lunar effect shifts phase
in such a way that the tidal period is prolonged from 12 to nearly 13 hours. During
full and new moon, the lunar and solar effects are added (spring tides), while at half
moon they are subtracted (neap tides). Programs are available to do the proper cal-
culations of the tidal effects (see GRAVI: 3.3.2; Wentzel, 1995: http://www.gik.uni-
karlsruhe.de/∼wenzel/hw95/hw95.txt; http://www.astronomynotes.com/gravappl/
s10.htm).

Ocean tides are also non-negligible especially at points near (and high above) the
sea shore and near tidal rivers. There are, however, variable phase shifts between
solid earth tides and ocean tides, especially along island coasts, in bays and estu-
aries; these are regularly published as tidal tables in almanacs of the hydrographic
offices. Ocean tidal models are available, but near coasts special measures are ad-
visable.



4.3 The Time-Invariant Gravity Anomalies and Their Fundamental Properties 153

4.3 The Time-Invariant Gravity Anomalies and Their
Fundamental Properties

Gravity anomalies after tidal reduction are the time-invariant deviations from refer-
ence values and the object of geophysical interpretation. “Anomaly” is a typically
geophysical term. The reference or norm is a model, i.e. a mental image of reality,
which must be kept in mind. Therefore such models must be simple, for example,
in the form of the reference ellipsoid and the Bouguer slab for the topographic mass
(see below).

One anomaly value, i.e. an observation minus the theoretical norm refers to an
individual point in space (and time) and, alone, cannot be interpreted. Geophysicists
usually call “anomalies” sets of points in space. These are features in map view or
along a profile imagined to be continuous fields, related to some mass distribution.
The relation between the ideal continuous fields and the discrete sets of observations
is not trivial and requires special attention (see Sect. 5.1.5).

In geophysics gravity anomaly must be specified, for example, as Bouguer
anomaly (BA), Free Air or Faye anomaly (FA) or Isostatic anomaly (IA), and some
specialized kinds. The differences lie in the purpose and scope of the measurements
and the underlying reference models to which observations are compared. Defini-
tions must be unique for proper treatment of the observations. However, in practice
some insignificantly small or apparently irrelevant quantities are customarily ne-
glected for economic reasons. MicroGal precision is unnecessary if some of the
errors are of the order of a tenth of a milligal; such errors stem, for example, from
unknown nearby mass inhomogeneity. In other cases, for example, if temporal grav-
ity change is aimed at, some usually neglected quantities are significant.

The “anomalies”, as commonly used in geophysics, are inconsistently referenced
to normal gravity on the ellipsoid and height relative to the geoid. Anomalies in this
sense are abbreviated in this book by the letter “A”, i.e., FA, BA or IA.

In geodesy, requirements of accuracy, both in principle and in practice, are gen-
erally strict. Observations pertain to global reference systems that are subject to
specific conditions such as to preserve mass of the Earth; thus geodetic usage and
definition of the term “anomaly” differs from geophysical practice. Indeed, geo-
physics and geodesy use two related, but differently defined quantities, partly for
historical reasons: gravity anomaly (geophysics) and gravity disturbance (geodesy).

The “gravity disturbance”, as used in geodesy and described in Sect. 4.3, has
received little attention in geophysics, and thus no customary notation seems to
exist. It appears in order to suggest a notation analogous to the above: FD, BD or ID,
where the Free Air gravity Disturbance FD is synonymous with simply the gravity
disturbance as such, while the BD is the (hardly used) geoid-ellipsoid reduced BA,
and the ID is the (even less used) geoid-ellipsoid reduced IA.

In geophysics and geology gravity measurements aim at the study the Earth’s
interior. Geophysics is the physics branch of geology in broad sense, and gravity
reflects density variations in the interior and is used to find them as emphasized here.
Geodesy aims at accurately measuring the shape of the Earth, defining its surface
and establishing geodetic point networks or reference systems into which future
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measurements can be integrated. Gravity is intimately linked to the Earth’s figure.
The different aspects have consequences on how gravity observations are analyzed,
and have led to the differently defined anomaly and disturbance (see Hackney and
Featherstone, 2003). For both communities it is useful to understand the mutually
used terms, to bridge the gap between the two approaches and to make use of the
somewhat differing concepts to their advantage.

In geophysics gravity anomaly is the difference of observed and normal grav-
ity, both related to two different locations. (1) The observation is reduced to the
geoid (mean seal level). Historically, this choice stems from the easy availability
of the orthometric height of a point above sea level determined by levelling rela-
tive to the local horizontal (or vertical) with orthometric reductions (height error
δh ≈ δW/go), and is listed for benchmarks and contoured on topographic maps.
(2) Normal gravity is defined on the normal rotating ellipsoid which is fitted to the
geoid (Heiskanen & Moritz, 1967) and is the basis of the geodetic reference system
GRS80 (Moritz, 1980). The ellipsoidal height, i.e., height relative to the reference
ellipsoid was poorly known, if at all, and for exploration surveys this difference in-
troduces in limited areas no more than a nearly constant shift of the reference and
as such is not relevant to the purpose.

The gravity disturbance is defined as the difference of observed and normal grav-
ity at the same point P. Today, ellipsoidal heights are known to considerable preci-
sion and can be directly calculated for GPS positioned points. In many cases, it
would then be easy to replace the gravity anomaly by the gravity disturbance for
which the observed and normal values are taken at the observation point P reduced
to the corresponding point on the ellipsoid. For large-scale regional and global grav-
ity studies this is mandatory (see below). In such scales one must also worry about
the horizontal datum (latitude) and generally the geocentric latitude φ describing
the ellipsoid is chosen (not to be mixed up with the colatitude, also called φ , to the
geographical latitude ϕ).

Gravity anomalies and gravity disturbances are principally vector quantities, but
especially in geophysics, gravity data are based on scalar measurements. Both, grav-
ity anomalies and gravity disturbances can be defined also as scalar magnitude
quantities.

The gravity vector is normal to an equipotential surface such as the geoid, which
in the oceans, approximately coincides with the mean sea level. It is extrapolated
into continents as though physically realized in channels. The geoid is an irregular
surface; in empty space it is described by spherical harmonics as the solution of the
Laplace equation (see Chap. 2). The density inside the Earth, on the other hand, has
an irregular form, not mathematically-analytically describable, and this is true also
for gravity at the surface. Nevertheless, spherical harmonics are used to approxi-
mate gravity at the surface, and in spite of some theoretical limitations, convergence
does not normally present a problem. In the early 21st century, EGM96 (Lemoine
et al. 1998) represents the best geoid, and satellite missions as GOCE promise to
achieve cm and mGal accuracy on 100 km space resolution, many orders of magni-
tude better than only few decades ago. Therefore gravity anomalies and disturbances
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can be much more readily converted into each other. For the geophysical definition
of gravity anomalies the irregular geoid need not always be the reference surface,
but it is relevant to the geodetic definition of the gravity disturbance. Gravity anoma-
lies (at geoid level) are easily reduced to gravity disturbances at ellipsoid level by
the same reductions used for the observation level to the geoid level. For large-scale
problems the rotational ellipsoid, best-fitting the geoid, is the preferred reference
surface.

Note that reductions do not physically move the observations to another level – as
incorrectly expressed frequently. Reductions compare the observation with normal
values by estimating the latter at observation locations or by downward or upward
continuation of observed values in the normal gravity field, not in the anomalous
field. Anomalies are determined at the observation points, not at the reference level.
If the anomalous effects, for example, the anomalous vertical gravity gradient can
be estimated from the observed gravity distribution by applying Laplace’s equa-
tion, and if they are used in the reductions, the anomalies may be transferred to
the reduction level, however with incalculable problems, especially in downward
continuation through topographic mass. It is simpler to consider and interpret the
anomalies or disturbances at the points of observation and to take that into account
in subsequent modelling.

Normal gravity refers to an idealized normal earth as reference for the real
Earth with interior irregularities. The norm must be simple, easily calculable and
imaginable. Otherwise it would be confusing and useless. The equilibrium figure
of a homogeneous or layered self-gravitating rotating fluid body with no lateral
(horizontal) density variations has been chosen; it is an oblate ellipsoid of rotation
(Clairot’s theorem) constrained by the astronomically observed moment of inertia.
The parameters of the body are adjusted to fit the Earth; they depend on the basic
dimensions, the mean density-depth distribution and the angular velocity. The mean
radial density function of a sphere is modified, in the case of the rotational ellipsoid,
to surfaces of constant density conforming to internal equipotential surfaces which
are all ellipsoids with flattening decreasing with depth. The definition is not quite
unique gravitationally, but it is further constrained by seismological data, especially
by eigenperiods.

The theme of this chapter is the reductions and their calculation. It begins with
listing the various calculable influences affecting the gravity measurements. They
are calculable for the chosen normal reference earth and removed before further
data analysis also because they generally mask the effects of interest. The removal
is called reduction, usually resulting in more uniform and tractable data for imag-
ination and interpretation. Calculation of the reductions requires knowledge of the
coordinates, including height, and observation time. The term “reduction” means
both a definition and a computational rule. The expression “gravity effect”, on
the other hand, should be clearly distinguished from the term “anomaly”. An ef-
fect is usually computed for a given mass distribution in order to be compared
with an anomaly based on observations. Calculation is forward and straightfor-
ward. Interpretation of anomalies is the inverse problem with the aid of forward
solutions.
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4.4 Components of Observed Gravity

Gravity at a given point is the sum of several components, both time-invariant (or
averaged) and time-varying, the former mostly much larger than the latter. The lat-
ter components are partly removed in the process of data collection and analysis,
but may also be the target of research. The permanent or lasting components are ef-
fects of latitude, elevation, topographic mass and interior mass anomalies. Observed
gravity is always an integral effect of all masses.

The permanent components are:

• gn, normal gravity on the normalized earth ellipsoid, depending on latitude;
• gh the change predicted for the point elevation h above the reference surface

(ellipsoid or geoid, see above);
• gtop, the change predicted for the topographic mass, i.e. the mass located between

the Earth’s physical surface and the reference surface, depending on elevation
and the density distribution within the topographic mass; in the oceans it is the
change corresponding to the change from sea water to rock replacing the sea
water;

• ggeol, effects of any interior deviations from the normal earth below the physi-
cal surface, i.e. not only below the reference surface; it is usually the target of
research; ggeol may be divided into several components, of which some are be-
lieved to be known well enough to be calculated separately.

gobs = gn +gh +gtop +ggeol (4.4.1)

The small time-varying components are:
• Periodic variations caused by the relative astronomical positions of Earth, Moon,

Sun and other cosmic bodies,
• periodic variations caused by the solid earth tidal deformation
• more or less periodic ocean tide effects,
• irregular variations, due to changes in water level (groundwater, rivers, lakes,

ocean), ice volume (e.g. by melting or growing of glaciers) and resulting solid-
earth deformation,

• irregular variations, caused by mass movements in the atmosphere and resulting
earth deformation (marine, solid earth),

• irregular variations, caused by mass movements of endogenic origin (volcanism,
earthquakes, tectonics) and of exogenic origin (erosion, sedimentation),

• and finally any acceleration in an inertial system; such effects have, so far, turned
out to be unknown or negligible in geophysical surveys).

The above effects have a wide spectrum of frequencies or quasi-frequencies. The
periodic effects, often summarized under the term “tidal” may be taken into account
when the time-invariant gravity values are determined, for example, when construct-
ing the gravimeter drift, and/or calculated from solid earth tidal models; they reach
several tens of a microGal and have been treated above

Aperiodic variations related to groundwater, atmosphere and solid earth move-
ments as considered here are changes of gravitational attraction and related earth
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deformation; short period variations as in earthquakes with associated point accel-
erations are not the topic of this book. The slow gravitational variations must be
empirically estimated and are important if repeated observations are taken at the
same stations, or are the very object of investigation. They can be treated in a simi-
lar way as static gravity anomalies in terms of inversion and interpretation. What is
termed “irregular” depends on the particular research.

4.4.1 Normal Gravity

Normal gravity would be observed on the oblate reference ellipsoid of rotation that
approximates the equilibrium figure best fitted to Earth. The ellipsoidal parameters
depend on the dimensions, the mean density-depth distribution and the angular ve-
locity. The latitudinal gravity variation depends only weakly on the density-depth
distribution (Clairot), but the Earth’s moment of inertia θ is strongly affected by it
(θ ≈ 0.33MR2 instead of 0.4MR2 for a homogeneous sphere, where R = 6371 km
is the mean radius; see Task 4.1).

The currently (2008) used reference ellipsoid is part of the Geodetic Reference
System GRS80 (Moritz, 1980) incorporated in the World Geodetic System WGS84
and has the following parameters:

equatorial radius a = 6 378 137 m,
flattening f = (a -c)/a = 1/298.257 222, where c = polar radius (calculable from a

and f);
gravitational constant ×massGm = 3986005108 m3 s−2,
angular frequency ω = 729211510−11 s−1.

(By the way, the volume of the reference ellipsoid is 1.0831012 km3, its mass is,
with G = 6.674210−11 m3 kg−1s−2, M = 5.9721024 kg, and its mean density is, ac-
cordingly ρ ≈ 5513.5kg/m3.)

The corresponding normal gravity gn at the ellipsoidal surface, the International
Gravity Formula, is usually given, with geocentric latitude φ , as

gn = geq(1+ c2 sin2 φ − c4 sin2 2φ) (4.4.2)

with the equatorial normal gravity geq = 9.780237m/s2

c2 = 0.0053024

c4 = 0.0000058

A more accurate formula (with a relative error of 10−10 or absolute 10−4 mGal)
contains terms of several even powers of sinφ with the coefficients:

power 0: 1,
2: +0.005 279 0414,
4: +0.000 023 2718,
6: +0.000 000 1262,
8: +0.000 000 0007.
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http://www.gfy.ku.dk/∼iag/HB2000/part4/grs80 corr.htm
The coefficients are determined by fitting Eq. 4.4.2 to terrestrial and satellite

observations. Eq. 4.4.2 directly renders the normal horizontal gradient or derivative
with respect to φ which, for many purposes, is transformed into ∂gn/∂x, where x
is distance (km) pointing north. Its value is ∼ 0.8|sin2φ |mGal/km and is 0 at the
equator and at the poles.

In geodesy the standard for computing the magnitude of normal gravity on the
surface of the geocentric reference ellipsoid is the closed Somigliana-Pizzetti for-
mula:

gn = geq(1+ k sin2 φ)/(1− e2 sin2 φ)2 (4.4.3)

where k = (bgp/ageq) − 1 = 0.001 931 851 353, e2 = (a2 − b2)a2 =
0.006 694 380 022 90, and a = ellipsoidal semi-major axis, b = ellipsoidal semi-
minor axis, gp = polar normal gravity and geq = equatorial normal gravity. Equa-
tion (4.4.3) is generally accurate to 1μGal.

The corresponding normal vertical gradient of gravity is a function of φ and
elevation h above the ellipsoid. For practical purposes, ∂gn/∂h ≈−0.3086mGal/m
is a good approximation at the Earth’s surface. However, inclusion of the latitude
and elevation dependence leads to a quadratic expression for the FA reduction in
sinφ and in h (based on Eq. 4.4.3, Featherstone and Dentith, 1997):

δgF = 2geq(1+ f +m−2 f sin2 φ)h/a−3geq h2/a2 (4.4.4)

where the geodetic parameter m = ze/ge = ω2a2b/(GM sin2 φ)2 = 0.003 449 786
003 08; ze, ge, respectively, are the centrifugal and gravitational acceleration at the
ellipsoidal equator, ω is the Earth’s angular velocity, and M is the Earth’s mass.
The normal vertical gradient varies with latitude from −0.3088 at the equator to
−0.3083mGal/m at the poles, and it varies with h as ∂go/∂h ≈ ∂go/∂h|h=0 +
0.000036h [km], due to the quadratic height correction term, which corresponds
to an absolute decrease of the gradient with h; the effect integrates to about 7 mGal
for 10 km height.

Because, in the past, the elevation of a point was best known above sea level, not
above the ellipsoid, the elevation reduction and associated anomalies in geophysics
traditionally refer to the geoid, while in geodesy the gravity disturbance refers to
the ellipsoid. The geoid is described by a spherical harmonic series truncated at
some finite degree and order. The normal earth ellipsoid is expressed by the zonal
harmonics and is as such a constituent of the geoid, and the best fit to it.

The irregular surface of the real Earth is treated as a simple addition to the inter-
nally regularized normal reference earth, i.e., the mass between the physical surface
and the geoid or ellipsoid is simply placed on top above sea level in continents or
excavated below sea level in oceans and replaced by water: the topographic mass is
added or subtracted and this is an integral part of the reference earth model. Nor-
mal gravity is thus supplemented by the effects of the topographic masses. Their
treatment is discussed with the Bouguer reduction (Sect. 4.5).
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For some local problems (small relative to the Earth’s radius) a Cartesian ho-
mogeneous or horizontally layered half space may be taken with the local values
corresponding to the latitude on the ellipsoid.

4.4.2 Deviations From the Normal Earth

The above list of the gravity components includes that of the interior mass anoma-
lies, the usual target of gravity research. Sufficiently well known geological density
structures may be considered belonging to the reference earth or to the deviations
from it, and the corresponding geological reductions may be computed as a forward
problem, similar to the treatment of terrain or mass model effects. The temporal
gravity variations, likewise, may belong to both the normal earth (e.g. the theoreti-
cal solid earth tides) and to deviations from it (variations in earth elasticity, ground
water, atmosphere variations, geodynamic processes, etc.).

In summing up, it is obvious that the terms “normal earth”, “normal gravity” and
the various anomalies are used in different ways. Mostly, only the time-invariant reg-
ularized ellipsoidal earth model is considered the norm, defining gn and gh, while the
actual morphological-topographic shape and mass is considered a deviation. Here it
is preferred to include the latter into the reference earth (Bouguer earth) with their
assumed parameters, and on that basis the topographic mass reductions gtop are car-
ried out. Whether isostatic and some of the geological effects should be included
in, or excluded from, the normal earth, is a matter of the given project aims and of
personal choice.

4.5 The Reductions

From the list of gravity components Eq. (4.4.1) immediately follow the definitions
of the reductions and the instructions how to calculate them:

ggeol = gobs −gn −gh −gtop (4.5.1)

For values relative to some base station:

δggeol = δgobs −δgn −δgh −δgtop (4.5.1a)

where all values are referenced to the same station. Any constant shift of all reduced
values is irrelevant for most geophysical tasks. Remember that the vertical gradient
in δgh is negative, so that the reduction is positive for h > 0. If a geological effect
is estimated in advance, as for example an effect of an isostatic model, it may be
written also on the rhs of Eqs. (4.5.1, 4.5.1a) and ggeol and δggeol will then represent
the effects of the rest of the geological mass distribution (see Sects. 4.5.3.3, 4.5.3.4).
An exercise of gravity reductions is offered as Task 4.2.
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4.5.1 The Normal Reduction

In practice this reduction will depend on the size of the survey region; globally and
regionally gn is calculated from Eqs. (4.4.2) or (4.4.3) and subtracted from the values
in an absolute gravity system, or the theoretical latitudinal variation must be taken
relative to the same reference point which introduces a constant shift of the reduced
values. For local surveys of small spatial dimensions, often a constant latitudinal or
south-north horizontal gradient is assumed. In mid latitudes, the gradient is close
to +0.8 mGal/km northward. Again, reduction and observations can use the same
reference point.

Since earlier versions of the international normal gravity formula (1930 and
1967) slightly differed in the numerical parameter values, comparing gravity data
or maps from different periods requires knowledge of the corresponding normal
gravity differences. These are

δgn(1980–1930) = −16.3+13.7sin2 φ (mGal)

δgn(1980–1967) = 0.8316+0.0782sin2 φ (mGal)

4.5.2 The Height Reduction

Usually elevation above or below the reference surface is reduced by assuming the
normal vertical gradient, often simply the mean value at the ellipsoidal surface of
about −0.3086mGal/m. Systematic errors from their magnitude can be estimated
for the range of elevation differences in a survey region and are avoided if necessary,
see Eq. (4.4.4). The exact value to be taken depends on the accuracy requirements
and elevation differences in view of the largest error influences, for example, those
of density uncertainties (below). In applied geophysics −0.3086mGal/m usually
suffices in non-mountainous terrain with less than 1 km height variations. The ref-
erence surface, i.e. the ellipsoid, the geoid or an approximation has been discussed
above. The remaining anomaly after normal and height reduction is usually called
the Free Air anomaly (FA), see Sect. 4.6.1.

4.5.3 Topographic Mass Reduction

The topographic mass between the Earth’s surface and the reference surface can
have a substantial effect on the observed gravity value. The effect is estimated and
subtracted. As mentioned, the topographic mass is considered added to, or sub-
tracted from, the reference ellipsoid; hence the corresponding gravity effect at the
point of observation, to be mass-reduced, is subtracted (land above sea level) or
added (ocean). The customarily assumed Bouguer density is 2670kg/m3 estimated
in the past as the weighted average for surface rocks. Application of the Bouguer
reduction results in the Bouguer anomaly (BA). The topographic mass is usually



4.5 The Reductions 161

divided into two parts: (1) the Bouguer slab, mostly as a horizontal, laterally infinite
slab or plate of rock between the observation level and the reference level (some-
times the Bouguer plate reduction is exclusively called Bouguer reduction) and (2)
the deviation of the topographic surface from the plane surface, i.e. the relief; its
effect is removed in the terrain reduction and then one calls the result “complete
Bouguer anomaly”.

4.5.3.1 The Bouguer Reduction

The infinite horizontal Bouguer plate of thickness h and density ρB = 2670kg/m3

has the effect δgBP = 2πGρBh, about 0.1117 mGal/m (for ρ = 2390kg/m3 the
effect is 0.1 mGal/m; remember: 10 m rock has 1 mGal effect). That the Bouguer
plate is horizontally infinite does not present a problem because, as the solid angle
approach (Chap. 2) demonstrates, the effect of distant parts of the plate vanishes
quickly, for example, for r > 10h it is < 0.05δgBP. Except in high alpine moun-
tains, Bouguer plates often represent a sufficiently precise representation of the to-
pographic mass. Mountain slopes are smoother than it looks and rarely exceed 10◦

in low to medium mountain ranges.
The difference between Free Air anomaly and gravity disturbance must also be

taken into account in the Bouguer plate reduction. The height h is the geoidal height
in the first case, the ellipsoidal height in the second case.

It can also be shown that an equivalent spherical Bouguer plate of thickness h,
i.e., with the same effect 2πGρBh, extends laterally to where the tangential plane
through P” on a reference sphere below P intersects the tangential sphere through
P with angular width θB. According to KJ61 (p. 73–77), the effect of a spherical
(radius R) Bouguer plate of thickness h and angular width is δgBPsph ≈ 2πGρh
(1− [(R+h)cosθ −R]/((R+h)2 +R2 −2(R+h)Rcosθ)1/2).

The Bouguer reduction density ρB = 2670kg/m3 is part of the assumptions de-
scribing the reference earth. For cases where, locally, the real rock densities sig-
nificantly differ from this value, it is recommended to, nevertheless, calculate the
standard Bouguer anomaly. This will make it compatible with published standard
Bouguer anomalies. A more correct density can be taken for a second calculation of
an adapted Bouguer anomaly. The deviations of densities from the standard values
can be treated as a geological reduction or deferred to the interpretation, dealt with as
any other buried density anomalies. Incorrect Bouguer density values affect the error
estimates of the Bouguer anomalies, also in connection e.g. with elevation errors.

The main effect of the Bouguer reduction is to remove large gravity differences
between nearby points at different elevations. In spite of rather smooth topography
in medium relief terrain, elevation differences cause significant Bouguer effects, and
the short-wavelength behaviour contrasts with average long-wavelength behaviour
of, say, > 100km dimension in large mountain ranges as the Alps. The regional
mean Bouguer anomalies are highly correlated with mean elevation. This clearly
hints to systematic deviations of the Bouguer model of topography on top of, or
excavated from, the normal ellipsoid. In the real Earth isostasy is a dominant feature.
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4.5.3.2 The Terrain Reduction

The relief, often called “terrain” or “topography” deviates from the plane (or spher-
ical) surface of the Bouguer plate, and the gravity effect of the mass between the
irregular surface and the plane must be estimated. The same density of 2670kg/m3

is assumed because the terrain effect is a correction to the Bouguer slab effect calcu-
lated with that density. Since density tends to increase with depth, systematic errors
may be introduced by these assumptions, but mostly the real density variation below
the surface is unknown. The calculation methods for the terrain effect are a forward
problem of the same nature as encountered in any gravity modelling (Chaps. 2, 5, 6).
A few traditional methods are sketched below.

In the infinite plane case, the terrain effect is always negative, hence the reduction
is positive. Any part of the topographic mass above the level of the observation acts
to reduce the gravity value; any depression relative to the observation level means
that the plate effect that had been subtracted is too large. In the case of the spherical
Bouguer plate the situation is more complicated: the sign of the reduction is positive
only if the relief rises above the tangential plane through P or if it is deeper than the
curved level through P; mass lying below the tangential plane and above the Earth’s
curved level through P has a positive effect and has also not yet been taken into
account by the spherical plate; hence the reduction is negative.

Usually, the terrain is divided into the near field where insufficiently detailed
map information exists, and the far field taken from maps or digital terrain models
(DTM). Mostly the terrain effect quickly decreases with distance from the obser-
vation point. Often the only non-negligible effects come from near-field topogra-
phy which should be avoided in point selection. Sketches, for example, of two-
dimensional sections, may permit estimates of the near-field effects (see e.g. Sects.
2.9.7.4, 5.6.4). Special schemes (to 100 m, or so) have been designed by compa-
nies into which the near topography is to be sketched such that the effect can be
estimated by counting points. It may require local surveying, possibly using simple
instruments as inclinometers.

For calculating the far-field terrain effect approximate methods were applied in
the past which were based on cylinder ring segments and precalculated diagrams
and or nomograms (Sect. 2.9.2.2). It required for each observation point at height
hP the estimation of height htop at grid points or for surface segments, one of the
most tedious tasks in traditional gravity reduction. Templates or overlay charts, i.e.
transparent reticules (after Helmert) with rings and radii were used in combination
with nomograms or tabulated values of the contributions Δδgtop (to the total topo-
graphic terrain effect δgtop =∑Δδgtop) as function f (Δh,r) of distance r between P
and grid point and of Δh = htop −hP. Sometimes, 2D approximations are appropri-
ate for the terrain, especially in the near field, and a special case is briefly sketched
in Sect. 5.6.4 .

An analytical method due to Schweydar (KJ61, 179–183) fits circular mean Δh2

values (around P) by second-order polynomials in horizontal distance R through any
consecutive triples of mean Δh2 values to render coefficients which, with the aid of
tabulated values, are converted to the terrain effects δgtop; for more details on terrain
reductions see KJ61, 172–188 or the original literature quoted there.
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Today, terrain effects are usually calculated from digital terrain models on rect-
angular grids. These need not be re-read for each station, such the computational
work is left to digital programs. Effects of spherical curvature can be easily built
into the programs, but the plate and terrain reductions must be applied consistently,
either plane or spherical. Terrain effects can be calculated also on the basis of digi-
tized contours, but care must be taken where a contour passes very close to a gravity
station (Jacoby, 1967).

4.5.3.3 Geological Reductions

Sometimes additional geological reductions are applied, as mentioned. Precondition
is sufficiently reliable a priori knowledge of the geological structures in question.
Part of the geological anomaly ggeol (or δggeol) is moved to the right hand side of
Eqs. (4.5.1) and (4.5.1a) by computing, with any suitable method, and subtracting
the effects of the known geological bodies.

4.5.3.4 Isostatic Reductions

A special geological aspect is isostasy, i.e. the tendency of vertical mass balance
in the upper few hundred kilometres inside the Earth’s crust and mantle. The effect
is of interest especially in large regions or globally. The way how the balance is
achieved was, and is, a matter of debate and is generally assumed in some idealized
fashion. Isostatic reductions have been applied to Bouguer anomalies since many
decades and generally this was done with the aid of simplified isostatic model as-
sumptions as those of Airy or Pratt, and the Earth around a station (or a grid point)
P was divided into compartments by circles and radii through P (Airy-Heiskanen,
Hayford). Details are not the subject of this treatise, except saying that the topo-
graphic mean compartment height is directly translated into either a crustal thick-
ness (Airy) or an upper layer density (Pratt: usually 100 km thick) and then into the
corresponding gravity effect at P. The effects were tabulated and were added up. The
resulting anomalies are called “isostatic anomalies”, i.e. the deviations of observed
gravity from normal gravity (normal, height and mass reductions) modified by the
effects of topographic/bathymetric mass and its isostatic compensation. One may
also imagine the process as redistributing the topographic mass to the compensating
volume (KJ61, 80). A related method is that of condensating the topographic mass
onto the geoid or the ellipsoid, the gravitational effect on P is usually small, so that
condensation anomalies hardly differ from free air anomalies.

The indirect effect of geodesy refers to geoid calculations on the basis of re-
duced gravity anomalies; the Earth’s mass, hence the potential and the geoid are
effectively changed by the reductions, and to compensate this change, the reduced
mass is condensed onto the ellipsoid, and the effect of this compensation is called
the “indirect effect”. This term is hardly used in geophysics, but occasionally it
describes the reduction from the geoid to the ellipsoid to arrive at the gravity
disturbance.
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The atmosphere is usually neglected in any of the reductions. Estimated by the
flat Bouguer effect, the atmosphere exerts an upward pull of the order of 400μGal,
and air pressure variations do have effects; for example, a 50 hPa (hectopascal) high
(low) would cause about 20μGal gravity decrease (increase) which may be removed
in the drift correction. Globally the observation is inside an approximately homoge-
neous spherical shell which has no effect at the Earth’s surface, but this is not true
for high elevations on mountains, in airplanes or at satellite level.

4.6 The Result of the Reductions: Gravity Anomalies
and Gravity Disturbances

The above reductions lead to a set of gravity anomalies at points with coordinates
and elevations. These are sometimes called “absolute” if referred to the geoid or to
the ellipsoid itself, and “relative” if referred to an arbitrary base station value. The
point values are considered time-invariant exception for special geodynamic effects.
Primarily the anomalies are digital lists of numbers, for example, in computer files
or in printed form. Such lists are the basis of further analysis, numerical modelling
and interpretation, but as such they are uninspiring. The reduced data sets become
useful for interpretation (Chaps. 5, 6) only after some preparatory manipulations, as
visualisation. Traditionally visualisation has been realized by contouring with lines
of equal anomaly values or by drawing profiles, now mostly executed by computer
programs including colouring. Visualisation is undoubtedly important for guiding
interpreters’ ideas (see Sect. 5.2). It must, however, be kept in mind (see Sects. 1.4,
5.1.5) that the results are principally distinct from the observed discrete values and
that the methods of deriving the continuous fields, functions and pictures, as inter-
polation, functional fitting, kriging, etc., influences the essence of the anomalies and
hence their interpretation. This is especially relevant if in the interpretation the ob-
served values are replaced by calculated points on grids or profiles. In interpretation
it is essential to keep in mind the definitions of the different kinds of anomalies, i.e.
the reference models on which they are based and the reductions applied to the ob-
servations (above: Sect. 4.5). We now have the Free Air anomaly (FA), the Bouguer
anomaly (BA) and various isostatic anomalies (IA). If so-called geological reduc-
tions (to which isostatic reductions belong) are applied, various modified anomalies
result. Reductions can be considered as part of the interpretation.

4.6.1 FA: Free Air Anomaly, Faye Anomaly

The Free Air anomaly (FA) is defined by the observation after normal and height
reduction referred to the geoid or to an arbitrary relative datum. According to
Eqs. (4.5.1 & 4.5.1a):

FA = gobs −gn −gh or δFA = δgobs −δgn −δgh
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If the geoid undulation relative to the reference ellipsoid is taken into account in the
height reduction, i.e., if δgh is taken relative to the ellipsoid, the result is the gravity
disturbance or Free Air gravity disturbance FD. Terrain effects in mountainous re-
gions strongly affect the FA values and make them highly variable and irregular. The
terrain reduction removes such effects of local mass irregularities, but not the dom-
inant effect of the topographic mass in the form of the Bouguer slab. If the terrain
reduction is applied, the result is called Faye anomaly.

4.6.2 BA: Bouguer Anomaly

The Bouguer anomaly results from complete application of Eqs. (4.5.1 or 4.5.1a)

BA = gobs −gn −gh −gtop or δBA = δgobs −δgn −δgh −δgtop.

It should thus render the geological effects usually addressed in interpretation,
if all assumptions correspond to reality. The effect gtop or δgtop of the topographic
mass is meant to include all masses above the reference level, i.e. in the usual reduc-
tion procedure, the Bouguer plate and the terrain. If only the Bouguer plate reduction
is applied (Bouguer reduction), the “simple Bouguer anomaly” results; if the effects
of deviation of the topographic terrain or relief from the plane surface are removed
by the terrain reduction the result is called “complete Bouguer anomaly”. Any den-
sity deviations from the Bouguer earth assumptions below and above the reduction
level (i.e. between geoid or arbitrary level and Earth surface) are still contained
in the BA values. Nevertheless, the BA has the advantage to be not much dependent
on the local scales of topography and to bring out geological effects more clearly
than the FA (including the Faye anomaly) does.

As mentioned, the height and topographic mass reductions can be referenced
to the normal ellipsoid, although this is rarely done. In that case the result is the
Bouguer gravity disturbance BD.

4.6.3 IA: Isostatic Anomalies

The isostatic anomaly IA is calculated from the BA by adding an isostatic reduction,
−δgim, based on schematic isostatic models (im). The most obvious feature balanc-
ing large-scale topographic mass is crustal thickness variation, but other kinds of
density distributions have also been assumed:

IA = BA−gim = gobs −gn −gh −gtop −gim or

δ IA = δgobs −δgn −δgh −δgtop −δgim.

The isostatic model must be specified. The tendency of mass balance in the upper
few hundred kilometres inside the Earths crust and mantle is a geological aspect of
large regions. The Airy and Pratt models as well as combinations have been taken to
describe this tendency (Sect. 4.5.3.4). Isostatic anomalies (IA) represent deviations
from theoretical gravity fields composed of normal gravity plus height and mass
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effects of topography / bathymetry and of its isostatic compensation as assumed to
approximate reality. Reality, however, varies regionally on Earth. Again, the basis
of the isostatic reductions may be the Bouguer gravity disturbance, and in that case
the result should be called the isostatic gravity disturbance ID.

4.7 Preliminary Data Analysis

4.7.1 General Aspects

Preliminary data analysis aims at rendering reliable and interpretable anomalies. It
is necessary (1) to identify outliers, i.e. gross errors or mistakes generated some-
where from observation to data transfer and processing and, beyond the reductions
for geophysical comparability, (2) to make the anomalies amenable to the human
mind to form model ideas or pictures. The classical way of visualizing spatial data
is drawing profiles and contouring, which has a strong relationship to forming in-
terpretative ideas (see Sects. 5.2 and 5.3). In preparation, discrete anomaly values
are converted to continuous representations, often via gridding, i.e. the derivation
of regular point grids, in one and two dimensions, from irregularly spaced obser-
vations, for example, by mathematical and numerical procedures. Functional fitting
of the data is a customary intermediate step, and upward or downward continua-
tion essentially requires it. Some functional expansions, as standard polynomials,
have only formal value, others have a physical meaning. Preparatory steps include
attempts to separate different field components and may extend to the calculation of
field quantities (Sect. 2.10.2) not directly observed and the investigation of relation-
ships with other geological and geophysical quantities. These tasks are achieved by
manual, statistical and analytical methods. Data analysis nearly always has a filter-
ing character. As such, filtering is a formal or neutral operation, but it may affect
interpretation (see Sect. 1.1.1). Statistical methods are used to emphasize certain as-
pects (e.g. gradients), directions and relations with other data. Special wavelets are
suited to isolate certain features (e.g. edge effects). Field quantities have strong fil-
tering aspects and emphasize different field components. Modellers and interpreters
should test the consequences and investigate them in view of the reliability and
consistency of the whole data body, gravity and non-gravity (see Chap. 7). This is
particularly important in regional-local separation. Data analysis therefore cannot be
principally disconnected from interpretation. Various possibilities and applications
are discussed also in this Chapter, below, but the choice of methods will always
depend on the target.

4.7.2 Data Snooping or Identifying Outliers

Outliers are considered to be mistakes made at any stage. Erratic effects that can be
estimated, as those of buildings, are better removed before data analysis, but effects
from unknown sources may appear to occur at ‘random’ and may be treated like
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observational errors. Very localized anthropogenic magnetic effects embedded in
a smooth geological anomaly (widely differing length scales) may be considered
outliers. There is no absolute definition, it depends the aim of a survey. Outliers are
better removed and/or corrected before smoothing; otherwise the errors affect the
results; for example, high-pass filters only partly remove data scatter and errors. An
approach would be to remove the outliers by fitting a smooth function and repeat
the process in an iterative way.

Outliers may be obvious by inspection and intuitively interpreted as mistakes.
If less obvious to the eye, they can be searched by statistical criteria for the like-
lihood of belonging to a stochastic or Gaussian distribution or a distribution with
some autocorrelation characteristics. Assume a space (or time) function to be de-
fined by inaccurate data points; if the function is known or anticipated, it can be
determined by parameter adjustment with the residuals approximately Gauss dis-
tributed and rendering the standard deviation. An analysis of the distribution may
reveal the probability of certain residuals not to belong to the error set. Using the
median in comparison with the arithmetic average may identify outliers, too.

A function of unknown kind is more difficult to determine; this is the case in the
usual Fourier analysis or when step functions at unknown positions are searched.
Then also the residuals are less certain. A statistical analysis of residuals r(x) =
f (x)− f ∗(x) should be independent from the function f (x) assumed, where f ∗(x) is
the smoothed function. The analysis is affected by the autocorrelation function A(b)
between r(x) and r(x− b), shifted to the right; for a stochastic error A(b) should
be a delta function at b = 0. An outlier may be defined as a residual r where |r|
is greater than the value of an assumed limiting probability. KJ61, 268, 284 treats
the case f(x) = const and r(x), or better ri (discrete and equidistant), with 1st order
autocorrelation (only direct neighbours are correlated). However, the identification
of an outlier cannot be absolute but may have only some probability. The analysis
may be extended to directional analysis and statistics (see below: Sects. 4.7.3 and
2.10.9).

4.7.3 Smoothing, Averaging, Filtering

Filtering begins, before any formal data treatment, in the field with point spacing
and distribution, affecting the drawing of contour lines or gridding. Data series are
affected by random or stochastic errors with a certain distribution, more or less
Gaussian. It is assumed that outliers and jumps which do not belong to that distribu-
tion have been correctly removed by data snooping; however, it is never guaranteed.

Explicit smoothing can be carried out in many ways, for example, manually by
inspection and drawing or by averaging, functional fitting and statistical methods.
The choice of a smoothing method depends on what is considered significant and
what irrelevant. Some methods emphasize short wavelengths, some long ones, and
each method has its own character and associated errors. The simplest filtering
method is to average point values of spatial (or temporal) data series in usually
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overlapping areas with weighting functions (see Sect. 2.10.2). The averaging region
around a given point P may be a circular area of radius r around P or a ring between
r and r +Δr with r = distance from P; it is a convolution with a weighting or filter
function w(r) which may be smooth in the continuous case or a box function in the
case of a constant weight. In the spectral domain, it corresponds to multiplication
with the Fourier transform W(k) of w(k). In practice it is given by a finite number of
discrete coefficients.

Several schemes for equidistant data points were designed (see e.g. KJ61) to re-
duce tedious manual calculations. The simple box has a spectrum with unfavourable
side lobes. The ’triangular’ filter is somewhat more appropriate: w(r) = 1 − ar
(a = 1/rmax); its spectrum has very subdued side lobes (see Sect. 2.10.2). Fourth
differences correspond to a parabola fit through P and two neighbours at each side.
In binomial filters the coefficients are based on Pascal’s triangle whose every second
row is used; the bell shape of the function is expressed as

δg∗i = 2−2n[δgi +∑1,n(2n!)(k!(2n− k)!)−1(δgi−k +δgi+k)] (4.7.1)

It approaches a probability distribution, and for large n, it becomes Gaussian
(3.8.1):

δg∗i = (nπ)−1/2[δgi +∑1,n exp(−k−2/n)(δgi−k +δgi+k) (4.7.2)

For continuous functions:

δg∗i = 1/(L
√
π)[

∞∫

−∞

δg(x) exp(−[(x− r)/2L]2)dr (4.7.3)

with the spectrum (see Sect. 2.10.2)

δg∗(k,L) = exp[−k2L2];k2 = kx
2 + ky

2 (4.7.4)

2L characterizes the width of the Gaussian.
Before filtering, irregularly distributed data points are mostly interpolated onto a

regular grid or profile. Alternatively one may fit a continuous function to the irregu-
lar discrete data set (see below), but this also can introduce errors difficult to assess.
Furthermore, the functional fitting introduces smoothing of its own character, com-
bining in some way with the explicit filtering.

4.7.4 Functional Fitting

4.7.4.1 Linear Regression and Polynomial Fitting

Linear regression is fitting a linear function, as a straight line or a plane, to data
points. Average gradients of the gravity data are estimated, permitting the integration
of torsion balance and gradiometer observations into gravimeter data. Before
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frequency analysis, subtraction of the linear trend is mandatory. An extension of
linear regression is polynomial fitting (in one or two or more dimensions; see
Sect. 2.10.3). It usually employs ordinary non-orthogonal polynomials and is a
purely descriptive method of questionable value, for example, for regional-local
separation. The coefficients are formal and depend on the degree chosen for the
polynomial; for example, in a quadratic fit the linear term (or terms in x and y) does
no longer represent the mean gradient (or its x and y components).

The residuals from least-squares fitting will add up to zero (at the point set fitted)
but not for local anomalies. A problem is also that within data holes with no obser-
vational constraints, the polynomial may grow excessively and affect the marginal
data region, as the best fit concerns only the data points. Orthogonalized polynomi-
als (Sect. 2.10.3) are principally better to handle, but the extra work involved is not
normally justified.

4.7.4.2 Fourier Expansion and Spectral or Wave Number Filtering

Fourier expansion (theory: see Sect. 2.10.5) is widely applied in spectral or wave
number filtering. The desired spectral windows can be chosen arbitrarily. Fourier
expansion is a decomposition into a series of spectral components or harmonic func-
tions sinkx and coskx (k = 2π/λ), in two dimensions sinkxx sinkyy and coskx coskyy
(kx = 2π/λx,ky = 2π/λy). Again, it is a formal operation, but has often interpre-
tational motivation and is applied to upward or downward continuation, differenti-
ation, regional-local separation etc. The decision about filter properties, as cut-off
frequencies, is up to choice. Calculation of derivatives of the anomalies from the
irregular data sets and upward or downward continuation are conceptually and prac-
tically best carried out in the spectral domain.

Discrete Fourier Transforms (DFT) estimate the Fourier transform of a function
from a finite number of sampled points, as is always the case if applied to empirical
anomaly values:

F = l∑m
1 δg(lΔx)e−ilΔx (4.7.5)

Frequencies > kN = 1/(2Δx) (N for Nyquist) cannot be resolved. A related prob-
lem is that of aliasing, i.e. unwanted interference of the sampling intervals with any
real waves (λr) of the observed fields (e.g. a λr close to Δx can lead to kind of a beat
(see Arfken, 2001; Byerly, 1959, 1993, 2003).

Usually the FFT (Fast Fourier Transform) is used. It requires 2n de-trended sam-
ples at constant intervals, i.e. the data set must be chopped or extended to a number
of 2n where n is a positive integer (e.g., n = 10, 2n = 1024). The 2n data at Δx
intervals define the fundamental wavelength λo = (2n − 1)Δx. A linear regression
is mostly carried out for de-trending on the full data set. Extension of data sets
to 2n samples creates problematic modification. The section of anomaly of length
L may have ends that do not meet. They are forced to meet with sharp contrasts.
Such contrasts cause problems of convergence of the Fourier series. Principally,
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Fig. 4.4.1 Illustration of the application of a cosine window to taper a time or space series at its
ends. Symbols (Δx, L,i, n, nl) used in text are explained

convergence of finite series is guaranteed, but corners require inclusion of high fre-
quencies to avoid artificial large oscillations with no meaning.

Windowed Fourier Transforms (WFT) attempt to solve this problem by window-
ing sharp transitions so that the input data converge at the endpoints via weighting
functions, for example, the cosine window. As reality is often not known, caution
is generally needed. As shown in Fig. 4.4.1, a data series (i = 1, n+1; such that x
= 0, nΔx = L;ϕ = 0,2π) is tapered at its ends, by multiplying it for i ≤ n1 and
i ≥ n−n1 +2 with cosine functions w(x) (in between w(x) = 1) according to:

w(x) =

⎧⎪⎪⎨
⎪⎪⎩

1/2[1− cos(π/(i−1)/(n1 −1))], i ≤ n1

1, nl < i < n−n1 +2

1/2[1+ cos(π(i+n1 −n−1)/(n1 −1))], i ≥ n−n1 +2

(4.7.6)

The series w(x)f(x) is, of course, not the same as the original f(x), but the tapering
is hoped to essentially leave unchanged the important part of its spectrum and to
only cut off the high frequency end which stems from the arbitrary cut-off of the
data section. For this the width of the taper must not be too broad and tests are
always recommended to assess the effects of the tapering.

4.7.4.3 Other Functions

Examples of functions that can be used for smoothing and filtering are the Her-
mite polynomials, the sinx/x function and geophysical effects expressed as functions
of the coordinates of point and line masses (see Sect. 2.10.5). The aims of apply-
ing such functions goes beyond filtering and usually involves aspects of inversion
and interpretation (see KJ61). The application of these functions to describing or
fitting certain types of gravity anomalies usually involves their Fourier expansions



4.7 Preliminary Data Analysis 171

and Fourier transformation. Wavelets (Sect. 2.10.8), likewise, allow spectral decom-
position as series of special wavelet functions, for example, those describing and
emphasizing edge effects.

4.7.5 Statistical Approach, Correlations, Regression

Correlation and regression analysis are two common and closely related statistical
methods (see Sect. 2.10.9). Regression analysis has the quality of (linear) functional
fitting (Sect. 4.7.4.1), which itself is either carried out manually, but usually involves
least-squares fitting, hence statistics as well. Statistical methods are treated also in
Sects. 5.1.5 and 5.5.3. They may guide the interpretation, though correlation does
not automatically imply a causal relationship. Such methods can, however, reveal
relations with features or patterns and with other relevant data, for example, geol-
ogy, elevation, Moho depth, etc. Cross correlation between δg(x) and a quantity
q(x), or between δg(x,y) and q(x, y), implies a linear relationship to exist when the
corresponding values, each at identical coordinates xi (and yi), are plotted versus
each other, irrespective of any value of i. Correlations can bring out features of spe-
cial interest and these can then be investigated further. The term “autocorrelation”,
often denotes correlation between signals offset in the same data set, δg(x) and
δg(x−u). Usually, relations are obscured by data scatter and/or non-linear relations,
and a common measure of the degree of correlation is the correlation coefficient rgq

between δg and q.
A brief introduction to correlation and regression analysis follows. Assume two

variables, x and y, say, Bouguer anomaly and Moho depth, that are suspected to
be related to each other, but with considerable scatter. The xi and yi values may,
for example, pertain to the same geographical points i or areas i(ϕi,λi). Correlation
usually implies a linear relationship; more involved relations may be concealed by
the data scatter. The correlation coefficient between n data pairs xi,yi (n = length of
data vector) is

rxy = ryx = sxy/(sxsy) (4.7.7)

with the covariance

sxy =∑i(xi − x)(yi − y)/(n−1), (4.7.8)

the mean values

x =∑i xi/n,y =∑i yi/n (4.7.9)

and the standard deviations

sx =
(
∑i(xi − x)2/(n−1)

)1/2

and sy =
(
∑i(yi − y)2/(n−1)

)1/2

. (4.7.10)
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Generally −1 ≤ rxy ≤ +1, but even extremely high correlation, i.e. rxy very close to
1 or −1, may be accidentally caused by a third parameter, z. This can be tested with
the aid of a partial correlation coefficient

rxy(z) = (rxy − rxzryz)/
(
(1− r2

xz)(1− r2
yz)
)1/2

(4.7.11)

where rxz and ryz are defined equivalently to rxy. If |rxy(z)| < |rxy| the latter is prob-
ably overestimated, due to parameter z, and rxz may be more significant or rele-
vant; if rxy(z) ≈ 0, while rxy > 0, the latter may be only apparent, attributed to z. If
|rxy(z)| > |rxy|, z weakens the correlation between x and y, and if rxy(z) ≈ 0, rxy is
probably meaningful. Insignificant influence of z on the x, y correlation is indicated
by |rxy(z)| ≈ |rxy|.

Multiple correlation analysis can be extended to more parameters, say z and w,
and so on, by calculating analogously:

rxy(z) = (rxy(w) − rxz(w)ryz(w))/
(
(1− r2

xz(w))(1− r2
yz(w))

)1/2
. (4.7.12)

The results are generally not invariant to the sequence of analysis.
A correlation need by no means be one of cause and effect. Even an important

statistical significance of a relation found need not be great. The reader is referred
Knight (1999), Rice (1995), Sachs (1984), Electronic Textbook (2005). It can be
tested by the T-test (Rubin, 1994) for discriminating of data sets xik with differing
mean values xi and standard deviations ±sk (i counts sets, total number ni, k counts
individual samples). Is the difference Δx = xi − xj(i �= j) statistically significant? It
depends obviously on the standard deviations or scatter of the sets, s = (si

2/ni +
sj

2/nj)1/2. If T = Δx/s > T ∗(α, f ), the difference is significant on the α level, say
at α = 95%, where f is the number of degrees of freedom; T ∗ has been calculated
and tabulated for stochastic (not auto-correlated) distributions for different pairs of
α , f values (see texts; tables can be easily found also in the internet). For correlation
coefficients the T-test is:

T = r(n−2)1/2/(1− r2)1/2 > T ∗(n,α) (4.7.13)

where r is any of the above correlation coefficients and n = number of data pairs. A
few values of T ∗ for α = 95% and n are, as nnn, T ∗: 3, 6.61; 4, 2.92; 5, 2.35; 7, 2.05;
10, 1.86; 30, 1.70; 100, 1.66; ∞, 1.65.

The F-test of significance of multiple correlation coefficients rmult is similar to
the T-test. F is calculated with the assumed level of significance, say 95%, and the
number of degrees of freedom f (equal to the difference between the dimension and
the number of independent variables, for linear regression f = 1) and the excess
number of observations q = n− f .

F = rmult
2q/(1− rmult

2) f . (4.7.14)

F∗ = F( f ,q,rmult) is tabulated, and F as computed must exceed F∗ to indicate sig-
nificance.
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In regression analysis, usually one variable, say x, is considered independent and
precise, the other, y, is considered a function of x, i.e. dependent and error-affected.
The order may, of course, be reversed, or both may be considered imprecise. These
assumptions influence the statistics and the results and can be tested to some ex-
tent. Regression analysis has the quality of functional fitting (Sect. 2.10.3), but here,
instead of functions of the space coordinates, it is functions of, for example, some
geological parameters. Only linear regression is considered. Assume the observation
yi to be described by:

yi = ao +a1xi + vi = l(xi)+ vi (4.7.15)

y is linear in x: ao,a1 are constants, and vi is a deviation or residual from the assumed
straight line. This is generalized to a multi-parameter relation or a plane or hyper-
plane:

yi = ao +a1xi1 +a2xi2 + . . .+amxmi + vi. (4.7.16)

The coefficients ak are calculated by least squares, i.e. by minimizing the sum
of the squared residuals, i∑vi

2 = min, leading to the symmetric set of the linear
normal equations:

Nkjak = rj (4.7.17)

with Noo = n,Nkj =i ∑xkixji,rj =i ∑xjiyj.
The variance (3.7.2), here: Sxx = i∑i

2/(n−m− 1), and the standard deviation
sx = Sxx

1/2 are measures of the statistical closeness of the fit y(x). Note that the
solution is possible (or reliable) only if the parameters xki are mutually linearly
independent, otherwise Nkj becomes singular (or nearly so). A less critical condition
is also that the residual distribution is Gaussian.

For small scatter, i.e., sx small, the linear relation can be analogously expressed
as x(y), if |a1| ≈ 1 the corresponding coefficients would be a∗o ≈ −ao/a1,a∗1 ≈
+1/a1, and v∗1 ≈ −vi/a1. The larger the scatter and the more |a1| differs from 1,
the greater the deviations from these values, because now v∗i = x1− l∗(yi), instead of
vi = y1− l(xi) is minimized, and the fit approaches xi ≈−ao/a1−yi/a1 +v∗i, where
vi can take on quite different values. A useful visual indication of the reliability
of regression analysis is to plot both relations together (at least easy in the one-
dimensional x, y case); if both straight lines intersect at an acute angle the regression
is strong, if they intersect at nearly right angles it is meaningless.

A measure of the success of introducing a new variable in multiple regression is
the variance reduction:

b =i ∑(l(yi)− y)2/i∑(yi − y)2 (4.7.18)

The multiple correlation coefficient is, in this case, rmult = b1/2(0 ≤ rmult ≤
1);rmult grows always with variables added if they are independent and the resid-
uals are Gaussian, but only if rmult > 0.6, the correlation is strong and significant,
and if rmult < 0.4 it is insignificant. A test of significance of the multiple correlation
coefficient is also the F-test (see above).

In summary, the possibilities of statistical analysis are to reveal the existence or
non-existence of relationships. Practical applications and a more thorough study of
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the theory is left to the readers. Statistics can guide, but not replace, further geo-
physical and geological investigations.

4.7.6 Derived Field Quantities

Preliminary data analysis may involve the derivation of field quantities as the po-
tential, gravity gradients and higher derivatives (Sect. 2.10.4), usually calculated
from gridded anomaly values with the aid of function fitting (Sects. 4.7.4.1–4.7.4.3).
Derivatives can be estimated from the spatial variation of δgz at and above the sur-
face of the massive Earth. This operation enhances short wavelengths and subdues
longer-wavelength components. It is sometimes taken as removal of a regional field
(below). The reverse, i.e. integration from the vertical derivative to the potential
enhances the longer wavelengths. Satellite observations of the sea surface give an
indirect estimate of the potential variation. All these operations involve continuous
fields derived from discrete observations and are subject to errors, difficult to esti-
mate (see Sect. 5.5.1).

4.7.7 Regional-Residual Separation

4.7.7.1 General

It is very often the case that the gravity anomaly observed and derived by the reduc-
tions, contains parts of no immediate interest, either the smooth long-wavelength
regional background field, or the very short-wavelength components of only very
local or no significance. To enhance small-scale features, downward continuation
or higher derivatives can be calculated. The motivation of regional-local separation
may also be that the anomalies of interest are too small to be recognizable, per-
haps only as wiggles of contour lines. After the smooth “regional” is removed the
residuals are taken to be the “local” anomalies.

There is no unique definition of smoothness; it is not simply a matter of spectral
filtering. The act of regional-residual separation is principally interpretational suf-
fering from the ambiguity problem. Succinctly speaking, separation requires knowl-
edge of the mass distribution and cannot be done before the interpretation. Indeed,
in cases where large-scale geological masses (e.g. a seismically determined Moho
depth variation) with long-wavelength gravity effects are known, they should be
better included in the interpretation proper or may be computed beforehand as a ge-
ological reduction and removed rather than a purely mathematical definition. Many
methods have been used for separation. All methods include arbitrary choices or
assumptions.

The residual or local values δgres are defined as

δgres = δgobs −δgreg. (4.7.19)

Defined by (δgreg − δgobs),δgres has the opposite sign of associated causative
mass anomalies.
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4.7.7.2 Manual Smoothing

Manual smoothing of anomaly profiles is perhaps the simplest and most obvious
method. Similar procedures may be applied to a contoured map, directly by smooth-
ing contours or by constructing parallel profiles, smoothing them and re-contouring.
The degree of smoothing will depend on the case at hand. Individual smooth curves
drawn by hand through the same observed profiles differ, especially when drawn by
different interpreters. The uncertainties must be kept in mind and possibly several
attempts should be compared to each other. Manual operations are subjective in the
sense that they can never be repeated exactly.

4.7.7.3 Averages and Functional Fitting

The various ways of averaging (Sect. 4.7.3) or linear fitting (see Sects. 2.10.2, 2.10.3)
may be applied and the results may be declared regional δgreg. These mathematical
methods are formally more objective, as they avoid the uncontrollable variations of
manual drawing, but their very choice is subjective mostly without objective criteria.
Admittedly, the results of the numerical operations are exactly repeatable if applied
in the same way to the same data set. A case in point is the popular polynomial
fitting, where the choice of the degree is arbitrary, including the linear regression in
one or two dimensions.

In all methods of functional fitting, least squares (lsq) is the principal criterion,
implying that the residuals behave as random errors. This is not realistic. Harmonic
functions (Sect. 2.10.5) permit any spectral filtering, as low pass, band pass and high
pass filtering and are thus very flexible. Their orthogonality is an important advan-
tage, but the caveats are the same, and the choice of wavelengths for regional and
local is arbitrary; shorter wavelengths may be taken for local. Similar remarks per-
tain to wavelets; their advantage for the regional definition is that they are spatially
limited. Akin to functionals are finite elements (Mallick and Sharma, 1999) where
the shape function for the regional are constructed from few regional points of the
field. In all cases the error sum (in large data sets) should be zero which is usually
ensured by the formal smoothing schemes. However, there is always a conflict with
the possibility of suppressing significant details or the possibility of misinterpreting
significant smaller-scale anomalies with non-zero integral effects.

4.7.7.4 Upward and Downward Continuation, Derived Field Quantities

A physically defined smoothing method based on the Laplace equation is upward
continuation (see Sect. 2.10.5.3); to what height is arbitrary. Upward and down-
ward continuation apply harmonic functions because they naturally define their
space behaviour. Analytical upward continuation is an effective means to smooth a
given anomaly distribution because small scale anomalies decay more rapidly with
height than longer scales. The opposite approach of downward continuation through
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hopefully homogeneous layers enhances the small-scale local features. In the spec-
tral domain the amplitudes vary exponentially, as ekz, with the vertical z and the
wave number k (where z < 0 upward). This is not a true separation of wavelengths,
only one of emphasis.

The different field quantities (Sect. 2.7.2), from the potential to the higher deriva-
tives emphasize different parts of the wave number spectrum or wavelengths and can
also be calculated with the aim of recognizing different field components termed re-
gional and residual. As with field continuation, the numerical procedures of differ-
entiating and integrating are best carried out in the spectral domain (Sect. 2.10.5.2).

4.7.7.5 Interpolation

Another similar method is to cut out the presumably anomalous region and to in-
terpolate the field through selected marginal points around the anomaly region. To
be sure, one must know the undisturbed regional field and the anomalous area. The
boundaries must be drawn arbitrarily and marginal anomalous effects cannot be to-
tally excluded. The regional field is then interpolated, manually (see above) or by
some numerical interpolation routine.

4.7.7.6 Iterative Approach from Simple to Complex Modelling

Regional-residual separation can be included into the inversion-interpretation pro-
cedure by proceeding from simple to detailed modelling of gravity anomalies. Such
an iterative approach to anomaly separation is described by Boschetti et al. (2004)
and Strykowski et al. (2005); the first step is an approximate removal of a local fea-
ture, fitting only the regional with simple models and subtracting the effect from
the original anomaly; in the second step the isolated local feature is model-fitted
and removed. The aim is to reduce feature interference and the process is repeated
until satisfactory convergence. A similar approach consists of the following steps.
Assume a complex gravity anomaly to be composed of different components and try
to isolate them step by step by fitting them with simple equivalent source geometries
(which need not resemble a priori geological and geophysical knowledge) optimiz-
ing, for example, their locations and then subtracting their effects. The procedure
is repeated until no further adjustment occurs. Only then the isolated anomalies are
subjected to a geologically or geophysically guided modelling and interpretation.
Formally, the method will be successful, but there is no guarantee for being geolog-
ically correct.

4.7.8 Directional Analysis

Finally, classical contour lines are amenable to directional analysis if showing clear
directional preference; if less visible but important for the analysis, it is useful
to emphasize the directional variation by directional statistics (e.g. Buchheim and
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Lauterbach, 1954), generally presented as a rose diagram. A full circle (360◦) is di-
vided by n Δα segments (n = 360◦/Δα), and in each angular window (α,α+Δα)
the length sum of all line elements within that window is plotted as a propor-
tional length. The connection of the end points is the rose diagram or a polar di-
agram. In the past usually carried out manually, it is now mostly done by numerical
routines, for example, as part of the contouring procedure by directional statistics
(Sect. 2.10.9). Certain geometrical constraints are discussed in Sect. 5.3.

4.8 Evaluation of Reduction Errors

Reductions and related manipulations introduce additional errors to those carried
over from the observations (see Sect. 3.7). Errors accumulate along the whole path
and ultimately influence the interpretation. Various error types arise, for exam-
ple, from inaccurate auxiliary observations, as surveying and rock densities. Again,
gross errors, systematic errors and random errors can occur and are briefly discussed
below.

Gross errors (Sect. 3.7.), if detected should be removed. Data analysis (Sect. 4.7.2)
includes inspection, statistical analysis and may lead to re-measurement as the best
remedy.

Systematic errors (Sect. 3.7.2) from wrong reduction parameters are incorrigible
if not recognized; they must be avoided by all means. The standard reductions do not
represent systematic errors (Sect. 4.1). Local deviations from the normal reference
assumptions, as vertical gradients or rock densities lead to anomalies, not errors.
If this is taken into account properly by calculating the model effects for the orig-
inal point locations, it represents no error. Reduction errors result if the points are
thought to move in space and model effects are calculated or modelled at the shifted
locations (heights). Similarly, a topographic mass density different from the stan-
dard 2670kg/m3 must be modelled. Isostatic reductions are especially susceptible
to such systematic errors due to unrealistic model assumptions. Systematic errors
may be introduced also when continuous anomalies are derived from discrete val-
ues of the BA, FA or IA, when the data points have a space distribution unfavourable
for recovering the features of interest (see Sect. 5.1.5). Systematic errors cannot be
detected by a posteriori standard errors. This emphasizes the fact that the latter are
only “apparent” (Sect. 3.8) and may be deceiving.

Random errors (Sect. 3.7.3) are independent from each other, but as has been
discussed, this is not always the case, for example, density errors interfere with el-
evation errors in the Bouguer reduction. No errors but anomalies are introduced if
reference, reduction and modelling are understood properly. Random errors in the
tidal reductions (Sect. 4.7.2) are relatively small. The normal reduction is usually
also uncritical because the horizontal derivative of normal gravity is small. Larger
errors may come in through the height and mass reductions (Sect. 4.7.5) result-
ing from random errors of point elevations and from density fluctuations (even if
2670kg/m3 is a correct global average) and from inaccurately mapped or digitized
terrain.
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Beyond the reductions as such, data analysis, functional fitting and regional-local
anomaly separation will also introduce errors, however these remain essentially un-
defined because the basic assumptions are arbitrary and regional-local separation as
such cannot be made in an unambiguous manner (see Sect. 4.7.5). One can only
make the mistake to take the separation literally and thus misinterpret the regional
or local anomalies. There is no guarantee against errors and mistakes in such proce-
dures.

4.9 Conclusion

At the end of this Chapter, station listings and images of gravity anomalies with
coordinates, elevations and perhaps additional characteristics exist to be handed over
to be interpreted, which is the original purpose of the observations. In carrying out
that task it is important to take into account the fundamental assumptions of the
reductions and the related manipulations and data analyses.
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Chapter 5
Qualitative Interpretation

5.1 Fundamental Ideas, Principles

5.1.1 Qualitative and Quantitative Interpretation

Qualitative interpretation is at the root of interpretation. “Qualitative” is contrasted
with “quantitative” and means something like “principally right” or also “of the
right order”, while “quantitative” means “numerically correct”. “Principally right”
implies that an interpretation envisages the right type of model; “of the right order”
denotes a different aspect, namely “semi-quantitative” or “approximate” with low
requirements on accuracy, efficient. “Quantitative” is not absolutely definable, be-
cause numerical correctness can never be absolute or error-free, but the requirements
on accuracy are high, or better: appropriate to a given problem.

Good interpretative ideas or models are provoked by given anomalies, their pat-
terns and relationships with geology or by analogy with related features. Form-
ing such ideas obviously largely feeds on experience which teaches this better than
words can do. The qualitative models have then to be quantified and tested and
either verified or falsified. The testing requires calculations, but especially in po-
tential fields with their principal ambiguity of inversion, basic ideas must be first.
This requires creative imagination and a good geological background. In large
scales, experience with dynamic models is important; on small scales, also tech-
nological, engineering and economic insight is necessary. At the idea stage, sim-
ple approximate, semi-quantitative estimates of gravity effects can teach what can
be learnt and what not. The interpreter must be used to effortless estimate and
exclude a large number of possibilities immediately. In all cases the question is
(1) what is the principal cause of the observed anomaly and (2) what is the ap-
proximate dimension, depth, geometry and strength? “Interpretation” has a broader
meaning. Beside finding a suitable density model, it includes also methodologi-
cal aspects and an assessment of geological implications, for example, prospects
of economic resources, and relations in the widest sense and in the whole field of
study.

The two sides of qualitative interpretation are: (1) forming principal ideas and
(2) aiding the idea forming process. It comprises visual, geometrical, physical,
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geological and geophysical aspects, and it includes the aspect of semi-quantitative
estimates of model effects in the form of simple rules to easily convince oneself
that an idea makes sense. (1) Sects. 5.1–5.5 discuss fundamentals and qualitative
constraints of interpretation and (2) Sect. 5.6 presents simple approaches to gravity
effect estimation; a final Sect. 5.7 illustrates this with a few examples.

5.1.2 The Ambiguity Problem and a priori Information

The starting point is the notorious principal ambiguity of the inverse problem. A
given gravity anomaly can be explained by infinite numbers of density models
teaching nothing by themselves. Preconceived ideas can be refuted or confirmed
by gravity data, and quite different possibilities may be overlooked. An example is
the bell-shaped effect generated by a point mass (or a homogeneous sphere) that
may also be generated by a shallow flat lens. Often the existence of a compact
sphere-like mass at some appropriate depth is then taken for granted (Fig. 5.1.1). A
case in point is the interpretation of large-scale gravity anomalies related to mantle
convection; when the first long-wavelength satellite solutions of the global gravity
field had been derived, gravity lows were interpreted with hot low-density rising
flow and highs by down going flow. However, convection disturbs both the temper-
ature field associated with voluminous density anomalies and the static equilibrium
position of density contrast surfaces, for example, the Earth’s surface, represent-
ing thin lens-shaped mass anomalies, and both must be considered (see Sect. 5.7.8;
McKenzie, 1977).

The starting point of interpretation can be a geological problem or a given grav-
ity anomaly. In the latter case, for example, a new data set from poorly known areas
or in satellite-derived gravity fields of other planets, little geological a priori infor-
mation may exist. In such a case one may be guided by comparing the anomalous
features with similar known instances or by applying very general ideas of planet
formation and dynamics. In the more usual cases, where the starting point is a geo-
logical problem, the feature of interest which one wants to know, may be the depth
structure, and a dedicated gravity survey has thus been conducted. In such cases,
usually a large amount of a priori knowledge exists which can be directly fed into
the interpretation procedure.

Because of the principal ambiguity, blind search is futile. If there is no automat-
ically natural solution of a problem, it is reasonable to set the stage in a plausible
and well founded and constrained framework. Qualitative interpretation is the im-
portant step of making conscious choices of the range of possible models, better
than being unconsciously guided by preconceived ideas. It is essential for deter-
mining the direction of the search for probable mass distributions that cause the
observed gravity anomalies. One may say: a real density distribution exists which is
not known but is looked for; the best possible success of interpretation is the density
distribution which most probably equals the real one or most closely approaches
it, and the probability distribution around it. However, what is that: the density
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Fig. 5.1.1 An infinity of mass distributions produces the same gravitational field in the source-
free outer space, depicted by equipotential surfaces intersecting the paper plane; numerical values
in arbitrary units: (a) point mass, (b) homogeneous sphere (inside, the equipotential surfaces are
shown by dashed lines) (c) the equivalent stratum at the surface where the thickness symbolizes
the surface mass density, (d) an equivalent stratum at some depth or a thin lens-shaped mass (after
KJ61, 208)

distribution which most probably equals the real one or most closely approaches
what is principally unknown? It can only be replaced by models on the basis of a
priori information and must be judged by some simple rules relating the models
to their effects. This has also an aspect of work economy. A well informed search
for appropriate and reliable density models is more economic than blind search.
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Arriving at quantification of models may be most effective by the proper qualita-
tive design on the basis of pre-existing insights. On the other hand, the ever more
efficient computers may permit very large numbers of random models to be tested
without contradicting the work economy of the interpreter.

A priori information may be of a general nature, of the kind as the assumption
of a single density boundary or compactness of a three-dimensional body or sim-
plicity and smoothness of boundaries. Such assumptions are useful for describing
density distributions even if they are wrong. A little more specific are assumptions
of simple-shaped bodies, as point or sphere, line or cylinder, undulated density-
contrast surface, etc. A further step toward geological reality would be extrapola-
tions from mapped surface geology (contacts and dips), interpolations between drill
holes and extrapolations beyond them, to detailed reflection seismic images in sec-
tions or in 3D.

A reasonable initial step of qualitative interpretation would be to test an assumed
body by a preliminary trial and error procedure: How could the initial assumptions
be changed to plausibly fit the given data? From differences or residuals, corrections
of the model parameters can be estimated and the test can be repeated iteratively.
It is the classical approach, but at the qualitative level a few steps would suffice to
find out if an idea or rough a priori information catches the essentials of a geological
problem.

5.1.3 Information Content of Gravity Anomalies

Gravity measurements are made to provide information about the density inside the
Earth, total mass (Sect. 2.7.6), geometrical distribution including depth, etc. “Infor-
mation gain” motivates gravity measurements at points which should be strategi-
cally located to provide most information. The question is how much gravity can
tell. The total mass of an anomalous body or its map location is direct information;
on the other hand, information on its depth is zero or nearly so, because of the am-
biguity, but it can be increased by additional independent information from other
sources.

The logical steps are: (1) questions or aims, (2) measurements at sets of discrete
points, (3) derivation of anomalies as functions of the space coordinates and (4) the
interpretation of the anomalies, i.e. a description or model of the density distribu-
tion, with the aid of additional a priori information. At a single observation point,
g carries little information, even less than the vector ggg. Obviously the recognition
of anomalies from discrete point sets is inseparable from the act of interpretation or
extraction of information about the inaccessible Earth’s interior (see Sect. 5.1.5).
Basically information is provided by the measurements and concentrated in the
anomalies. The interpretation is the ultimate information gained, but it is limited
by the inherent uncertainties. Therefore the information content of gravity data can
not be easily defined or quantified, but it is definitely enhanced by additional a pri-
ori information. It also depends on the resolution and accuracy of the data. Any
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complete representation of the gravity field carries exactly the same amount of in-
formation which is not changed by mathematical operations. Each field quantity,
however, emphasizes different spectral aspects, and hence, different components of
the source distribution. For example, the spatial frequency content tells something
about the probable depth of the density variations and may permit some separation
of different density components.

The limited information content of scalar (i.e. incomplete) gravity data can be
completed with the aid of the Laplace equation ((2.7.1), see Sects. 2.7.4, 2.10) since
the vector quality can be retrieved from values at the boundary. If known at the
surface, g(x,y) completely determines the ggg field anywhere above, because the vec-
tor field of ggg is determined in the source-free, zero-density space. The limitation
in practice is the limited number of observations and their errors. New information
is gained by new observations. One can obtain vector information by measuring
components of the gravity tensor (Sect. 2.8, eq. (2.8.1)), for example, deflections
of the vertical with torsion balances or with gradiometers (borehole instruments,
GOCE satellite: Sects. 3.2.8, 3.2.9) and by analysis of horizontal accelerations of
satellites.

5.1.4 Data Representation and Interpretation Constraints

Data are primarily digital: numbers or symbols mostly connected implicitly with
physical units. Qualitative ideas generally present themselves as images. Graphi-
cal and digital representations are equally important, they complement each other.
Bringing the two sides together calls for graphical visualisation of anomalies and
models on the basis of the digital data (Sect. 5.2). Other means to help forming
ideas on qualitative interpretation are: simple geometrical constraints (Sect. 5.3),
supplemented by physical constraints, as plausible limits to density (Sect. 5.4) and,
most importantly basic geological knowledge (Sect. 5.5). Correlation, regression
and other statistical analyses of geological and/or geophysical data are valuable
tools. Helpful are also simple semi quantitative rules or formulae (Sect. 5.6) on
the basis of Newton’s law. With simple model geometry a feeling can be developed
of what is essential and what is negligible.

5.1.5 Anomaly and Model Effect

A strict distinction is made between the observed anomalies, δgo, and the calculated
effects, δgm, by which the observations are to be explained. The two notions should
not be mixed up, as unfortunately is common. The present chapter partly deals with
the estimation of effects. Some simple methods of a semi-quantitative character are
needed to quickly test ideas. Matching model effects with anomalies is the process
of interpretation.

An anomaly is a mental picture or pattern and forms intuitively and subcon-
sciously by imagination from few discrete observations, a deviation from the
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reference earth. It is subjective and vague; it has no definite error bounds or
uncertainties and is part of the interpretation. How imagination works obviously
depends on the interpreter’s experience. Where not observed, some kind of inter-
polation would render values less certain than observed values. The purist view is
that only the observations have a factual value and nothing is known, where not ob-
served and only the observations should be used in interpretation. This contradicts
the experience of the existence of patterns or anomalies in space, not arbitrary scat-
ter; their acceptance is a realistic view. Anomalies may be more or less obscured
by random scatter as found in any data set in geology, geophysics and elsewhere,
and caution is obviously necessary to protect the interpreter from rash and uncritical
conclusions.

If the anomaly is to be constructed from the limited data, objective methods are
needed to get somewhat reliable estimates for points in data gaps between the data
points, i.e. the most probable values and their probability distributions (values with
error bars). This is especially important if the task is to derive strategic points (ex-
trema, half width coordinates, inflection points, etc.) or a regular grid of points
from irregularly spaced data; grids are the basis of graphic presentations or may
be applied in numerical interpretation and inversion methods. The success of such
methods depends decisively on the point distribution where the errors are to be min-
imized; unsuitably located points may lead to gross misinterpretations.

A plausible quantitative estimation method is based on the geostatistical spatial
behaviour of the observations, under the assumption that the estimated points belong
to the same statistical family. It can be characterized, for example, by variograms of
the data or by their autocorrelation. It is assumed that the data can be modelled as
a stationary stochastic process, i.e. independent from the location within the obser-
vation region. In gravity this will never hold exactly, and different variograms may
be calculated for different neighbourhoods. Variograms are a measure of the spatial
relation between the values at (pairs of) points and are defined by the variance S. In
profiles (coordinate x, Δx = xi − xj):

S(Δx) = (1/n)i∑n(δg(xi)−δg(xj))2 (5.1.1)

where the pairs xi, xj are selected to fall into a class or interval Δx±dx; their num-
ber n will generally depend on Δx. For marginal points calculation may include the
assumption of periodicity of the pattern in the interval of x considered. Generally,
the variogram is a monotonous function of Δx growing from zero or a finite value
(observational error of δg) to an asymptote (sill); beyond the range (where the sill
is approximately reached) the gravity values are considered independent from each
other. Variograms can be calculated for gravity maps (coordinates x, y) analogously
where Δx is replaced by Δd = (Δx2 +Δy2)1/2. Mostly gravity maps show some
directional variation, which can be investigated by variograms for azimuthal inter-
vals; they may render varying ranges, roughly describing an ellipse about the point
x,y; two-dimensionality can then be defined by a ratio of its long over its short axis
being above a certain number (however, see remarks in Sect. 5.3.1 on depth extent
in relation to radius of curvature of models).
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The experimental or empirical variogram S is, due to errors and irregularities of
the data, approximate. Therefore S may be fitted by a theoretical variogram which
describes a certain family of stochastic processes, and the fit will also render the
characteristic values of sill, range and possibly the observational error; the Gaus-
sian model based on the Gaussian probability distribution and error function is an
example.

The interpolation method is called “Kriging” (after D.G. Krige), “Gaussian pro-
cess regression” or “optimal prediction” which is a form of Bayesian inversion (see
Wikipedia: “Kriging”), applied to profile and map data sets. As the unmeasured
points are assumed to have the same statistic as the measured ones, the gravity value
δg(x) at an arbitrary point x and its error or probability distribution are estimated
on the basis of the variogram S(Δx) and the location relative to the observed points
δgi = δg(xi) at locations xi, as a linear combination or weighted average, the Krige
estimator:

δg(x) = i∑wiδgi (5.1.2)

where the weights wi are calculated from the appropriate variogram (the weights
in other interpolation schemes are less appropriate to the data set). Naturally the
wi decrease with the distance |x− xi| from the observations and the uncertainties
grow accordingly (Fig. 5.1.2). The wi are determined, subject to the condition that
the mean error of the estimates is zero and its variance is minimal. The solution
of this extreme value problem takes the stationarity of the stochastic process into
account and leads to a system of linear equations for the wi relating to the location
x (which is different for each x) to the locations of the neighbouring data points. If
all neighbours’ distances are outside the range (of the variogram) δg(x) becomes
their unweighted arithmetic mean and the error variance is undetermined. For more
details and the theory underlying Kriging see, e.g., Sachs (1984); Armstrong (1998).

Fig. 5.1.2 Example of Kriging interpolation with confidence intervals (after http://en.wikipedia.
org/wiki/Kriging). For interpolation the data (squares) are assumed to be error-free, otherwise the
curve need not exactly fit the data where the 95% error band would assume the data error width
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Kriging seems to be the most appropriate method to define an anomaly from dis-
crete data sets. However it should be kept in mind that any estimate of unmeasured
values may have large improbable errors (low probability as calculated by Kriging).
There is no insurance against undetected anomalies, for example, of small scale rel-
ative to the average inter-point distance or in larger data gaps; such features may be
overlooked in calculation the variogram. In this sense the sceptical view is true that
nothing is known where not observed, but this “nothing” has probability limits to be
carefully assessed, and not any gravity value in between is equally probable.

5.2 Digital and Visual Modes of Representation

Qualitative gravity interpretation can be circumscribed as creative integration of
data distributions or gravity anomaly fields with geology and physics. The men-
tal process is highly complex and involves imagination. This remains true in the
age of digital modelling and is greatly aided by easy transformation between the
digital and visual data representations. Qualitative interpretation happens largely in
the analogue world, and quantitative interpretation is then only the translation into
digital computation. There is no strict separation, and “qualitative” includes semi-
quantitative estimates by the use of rules of thumb.

The importance of visualisation cannot be over-emphasized; digital modelling
methods cannot be applied without knowing what one is doing. Details of visu-
alisation techniques are not presented here, and the reader is referred to special-
ized books (Natl. Acad. Press, 1997; Nakamura & Nakamura, 2001; Schneider &
Eberly, 2002) and is encouraged to implement and apply such techniques. Data are
much more easily visualized along profiles (corresponding to 2D models) than in
map view (corresponding to 3D models); profiles and 2D models are popular and
useful even where the source distribution is distinctly three-dimensional. In that case
the two-dimensional step is only preliminary, and methods of constructing 3D mod-
els from 2D sections facilitate interpretation. Colours are useful for recognition of
patterns and relations, facilitating also direct comparison of different data sets.

Conscious study of relations includes graphic comparison of parameters. It be-
gins with looking at two or more analogue figures (profiles or maps) side by side or
comparing different data sets in some similar way. Direct juxtaposition of profiles
can reveal relationships efficiently. A frequently encountered problem is that maps
are usually in different scales and/or projections. It is highly recommended to take
some extra trouble, exploit the possibilities of computers and copy machines and
achieve scale compatibility.

In digital data sets, statistical analyses can be conducted, as correlation
(Sect. 5.5.2) and regression (Sect. 5.5.3). These are more sophisticated, though
often not more revealing. A classical approach has been to plot, for example,
gravity anomalies (BA or FA) versus elevation, to calculate correlation and re-
gression coefficients and to deduce properties of the isostatic compensation (e.g.
Woollard, 1962). Multiple regression has turned out informative about different
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factors affecting gravity anomalies (Jacoby et al., 1991). Regionalisation of such
analyses can uncover important difference of structures and processes. In a recent
study of the Iceland crust, a similar approach has resulted in new insights into geo-
dynamic processes of ridge-plume interaction (Fedorova et al., 2005).

5.3 Geometrical Constraints: Patterns

Ideas form when geometry and patterns are viewed; pattern is a visual concept and
thus especially requires visual techniques, from simple sketching to sophisticated
computer graphics. Locations and sizes of maxima and minima, zones of gradients
and their shape and orientation will be noted and highlighted. Spatial spectra may
be helpful as well.

5.3.1 Three-Dimensional – Two-Dimensional

A fundamental distinction is whether an anomaly feature is elongated or irregular
in map view. It is then classed as two-dimensional (2D) or three-dimensional (3D).
These somewhat misleading terms imply, without gross errors, model geometries of
horizontally infinite extent or compact point-centred symmetry in three-dimensional
space. The former case is simpler to treat as it can be visualized on a 2D sheet of
paper. 3D cases may be handled at a preliminary step in 2D sections, keeping the
differences in gravity effects (see Chap. 2) in mind. The 2D approach is appropri-
ate generally if the ratio of vertical (z) over horizontal (r) scale is small: z/r << 1
(Sect. 2.9.3.1), i.e. the geological object has a large radius of curvature relative to
its depth extent. Figure 5.3.1a shows the gravity effects at the edge of a 1 km deep
step (2D) and of circular cylinders (3D) of 10 and 3 km radius; the visual impression
near the edge is very similar, but the amplitude is significantly affected, especially
for the 3 km cylinder; in an enlarged scale, also the differences of the step effect
from the two cylinder effects are shown; note their weak maxima near the edge; here
the lateral difference in mass of the 3D cylinders versus the 2D step is gravitation-
ally more effective than nearby; the effect of the 3 km cylinder has its maximum at
x = −3km beyond which the difference δgstep −δgcyl grows rapidly. Figure 5.3.1b
shows a least-squares fit of a 2D step effect to the anomalies generated by the two
cylinders. The resulting densities are, correspondingly, smaller (in detail they de-
pend on the point set chosen for the fit), and the residuals, shown in extended scale,
are not large, except where the opposite edge of the 3 km cylinder is approached.

5.3.2 Spatial Frequency

The dominant spatial frequency content is depth-dependent, but there is no unique
relation between wavelengths and source depths. Gravity effects of laterally limited
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bodies are attenuated and broadened with depth, the inverse is not necessarily true:
long-wavelength gravity anomalies may have shallow long-wavelength sources;
there are also exceptions to attenuation and broadening of the effect: (1) a con-
stant anomaly of infinite wavelength does not attenuate and may be caused by an
infinite horizontal homogeneous slab (Bouguer slab) at any depth, and (2) a har-
monic sinusoidal source generates an equally sinusoidal effect (as sin kx) which,
while attenuating, does not broaden (see Sect. 2.10.5.3), but wavelength and phase
are unchanged and equal to those of an equivalent surface mass at constant depth
(or a more complicated source).

Interpretation can gain from considering the frequency domain by expanding
spatial distributions in a harmonic series (Fourier series in Cartesian geometry or
spherical harmonics) for which powerful numerical routines exist. The spectral com-
ponents of low frequencies may, or may not, be caused by deep sources, and the
high frequencies are probably caused by shallow sources. Maximum depth criteria
(Sect. 5.6.7) can be applied, however with caution. Applications are also the sep-
aration of regional and local components of a gravity anomaly, but the problem is
non-unique (see Sect. 4.7.7).

5.4 Physical Constraints: Realistic Limits, Integral Relations

There are physical limits to acceptable models. Mass densities of voluminous crustal
materials will not exceed values of 3000 to 4000kg/m3 or be less than 1000kg/m3

although small volumes, for example, of ore concentrations and cavities do occur
beyond these limits. Usually it is the mean density of some large volume which is
of interest. It depends on the target, aims and scale how best to define densities and
their limits.

In gravity nearly always only density contrasts relative to a reference count:
Δρi = ρi −ρo; ρo can be a constant or some spatial function, for example, one of
depth only ρo(z); Δρ can, of course, be negative causing negative gravity anomalies,
perhaps surprising to some physicists.

Surface integrals over the gravity anomaly (Sect. 2.7.4) permit useful estimates
of the total causative mass and its lateral centre of gravity prior to quantitative

�
Fig. 5.3.1 Comparison of 2D and 3D effects: edge, d = 1km, density ρ = 238.5kg/m3, step and
circular disks, R = 3 and 10 km. (a) Gravity effects and differences (δgstep − δgdisk); the effects
are similar, but the amplitudes vary significantly, especially for the 3 km disk. (b) Least-squares
fit of the 2D step effect to the anomalies generated by the two disks, by adjusting the density;
given for the discs: ρo = 238.5kg/m3; equivalent step density for 10km disk: 236.3kg/m3 (<1%
smaller), for 3km disk: 216.7kg/m3 (<10%); the residuals r(x) are shown in an extended scale;
for the 10 km disk, generally r(x) ≤1% of the disc anomaly except near the edge (∼2%); for the
3 km disk, mostly r(x) ≤2.5%, beyond x<−4km, r(x) drops rapidly toward the opposite edge of
the disk
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modelling, where the centre of gravity can often be approximated. Strict separa-
tion from other body effects is, however, not possible, nor can the surface integrals
be extended to infinity which they theoretically should; both neglects can introduce
errors. They can be reduced with assumptions of simple idealized masses and fitting
the observations to the mass effects, but this is then quantitative interpretation.

5.5 Geological Constraints: Visual and Statistical Analyses,
Structures, Densities

5.5.1 General Remarks

Basically, qualitative interpretation is an art, and geological relations generally enter
into modelling ideas, often subconsciously, and thus evade systematic discussion.
An experienced interpreter has a feeling for, or a good guess of, what is looked for.
It cannot be acquired by conscious acts of learning, but the subject needs conscious
deliberation.

5.5.2 Scale

Gravity-geology relations depend somewhat on scale. Most structures subject to
geophysical exploration are small or locally embedded in larger features as conti-
nental shelves, rift zones or mountain belts. The corresponding scales are typically
from <1km to 10 km or a bit more.

Geological structures up to about 100 km scales may be called “quasi-local” and
more or less independent from other structures. This is not literarily true in terms of
geological processes, but such small masses do not necessarily influence the whole
density structure which enters the interpretation; it may be treated as some form of
a regional anomaly possibly removed (see Sect. 4.7.7).

From about 100 km scales upwards, the mass distributions quite probably have
generated compensating structures which may mutually balance their effects, at least
in part, a mechanism called “isostasy. An isostatic reduction may be applied, but it
depends on the specific mode of isostatic compensation, which need not correspond
to reality. There are many deviations from the classical Airy assumption of isostasy
realized by Moho undulations.

5.5.3 Gravity in Relation with Other Geological Quantities

Geological quantities will be understood in a broad sense to include any relevant
Earth features. Particular gravity-geology relations may become obvious by inspec-
tion and graphic comparison. Quantitative relations may be investigated statistically
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by correlation and regression between specific parameters, for example, gravity and
topography, Moho depth etc., and more involved multi-parameter analysis; for large
continental and global data sets of gravity and topography by regression analysis
(Sect. 4.7.5) the crust-mantle density contrast for an isostatic model may be thus de-
rived. Multivariate linear regression of many parameters (gravity, topography, seis-
mic Moho depth, vertical motion, teleseismic station arrival time residuals, heat flow
density and geological regionalisation) can isolate the important from unimportant
influences on the gravity field and the models and processes that probably formed
the structures.

According to the brief introduction into correlation and regression analysis
(Sect. 4.7.5), correlation between δg(x) and a quantity q(x), or between δg(x,y)
and q(x,y), implies a linear relationship to exist when the corresponding gravity
and q values, at identical coordinates xi (and yi), are plotted versus each other. A
measure of the degree of correlation is the correlation coefficient rgq between δg
and q (4.7.7). Correlations can bring out features of special interest and these must
then be investigated further. Examples of such studies are Woollard (1962) for North
American Bouguer anomalies and topography and for some global data; a multivari-
ate and regionalized investigation of central Europe (Jacoby et al., 1991), and tec-
tonically regionalized regression of topography, Bouguer anomaly and seismically
determined Moho depths of Iceland and the surrounding North Atlantic (Fedorova
et al., 2005), used to construct a crustal model by combining sparse seismic data
with a regular topography and gravity point grid.

5.6 Some Simple Estimates of Gravity Effects

Ideas are only useful if they carry also some semi-quantitative information. For
the purposes of qualitative interpretation or preliminary tests one needs more than
just ideas, one must also have a feeling for the approximate size or amplitude of the
associated effects. A few simple rules and formulae are useful for easy estimation of
the effects of proposed models. The theoretical basis is Newton’s law of gravitation
and the fundamental relationships that have been described in Chap. 2. As suggested
in Sect. 5.1.2, a preliminary trial and error test will quickly show, whether a chosen
assumption is a viable prospective starting point for more sophisticated modelling.

5.6.1 Bouguer Plate

For a first, very rough estimate of an expected model gravity effect, the Bouguer
plate can be taken, with a thickness similar to the vertical dimension of the model
(Sect. 2.9.3.3). As a rule of thumb, a rock slab of 10 m thickness (and density,
2390kg/m3) has a Bouguer effect of 1 mGal; usually an approximate density con-
trast will suffice: the simple expression is thus, in units mGal, m, and kg/m3

(Task 5.1):
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δg ≈ 0.1×d ×Δρ/2390. (5.6.1)

The somewhat surprising fact that such a coarse mass approximation works for
a reasonable gravity estimate, has a simple reason: the effect δg very rapidly de-
creases and vanishes as ∼ z/r3, more rapidly than ∼ 1/r2, when a mass element Δm
is removed horizontally by the distance r; the distant parts of an infinite horizontal
plate (or an infinite mass line or cylinder, in the 2D case, below), have little influence
on the approximation of a laterally limited body.

The estimate will be the better, the wider the body is laterally, but simple adjust-
ments to the estimate can be made by roughly assessing the solid angle Ω expanded
from the central point (maximum anomaly) to the edges of the body (remember: for
infinitely distant edges Ω = 2π). Such an assessment can be easily done by a quick
sketch. It is, again, simpler in the two-dimensional case, in which Ω = 2α, with α
the plane angle extended from any point P to the edges to an infinite stripe of sur-
face mass ρ∗. Figure 5.6.1 shows diagrammatically for a 2D strip and a 3D circular
disc at depth z, how the effect increases with increasing body width w∗ from zero
(w∗/z = 0) to that of a Bouguer plate (w∗/z → ∞).

Fig. 5.6.1 Gravity effect increasing with increasing body width w∗ from zero to that of a Bouguer
plate (w∗/z → ∞) for a 2D strip and a 3D circular disc (w∗ = 2r, r = radius) at depth z

5.6.2 Scale Rule

The scale rule states that gravity effects are proportional to the model length scale
(2.9.1.1). It helps to form ideas of expected model effect relations. The rule can also
be expressed as similarity of shapes and gravity effects, i.e. similar shapes (with the
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same density) generate similar gravity effects δg in space: define a model in units of
meter and calculate the effects in units of μGal – magnify the whole by, for example,
a factor of 1000(m → km,μGal → mGal). More important is the consequence that
one can define scale-independent, i.e. only shape-dependent parameters on the basis
of some features of the observed anomalies as maximum, half width, etc. and derive
from them some shape parameters as depth, maximum depth, etc. The use of the
solid angle in interpretation belongs to this class of shape characterisation.

5.6.3 Half Width Rules

A gravity anomaly can be characterized by its extreme value, δge located at xe, and
half width, w, defined as the distance Δx = |xh1−xh2| between the two points where
δge/2 at xh1 and xh2. Three points thus characterize the limited gravity anomaly
and are used to estimate mass or density anomaly and its depth. The relations de-
pend on the assumed or suggested geometry. Several instances are given below. Two
meanings are used in the literature, either as defined here or half of it.

5.6.3.1 3D: Point Mass or Sphere

Simple estimates can be based on point or spherical masses, i.e. directly on Newton’s
law. Of course, a point, even a homogeneous sphere, is ungeological, but sufficiently
compact or sphere-like bodies can be approximated this way fairly well. A homoge-
neous (or radially symmetrically dense) sphere has the same effect as the anomalous
mass concentrated at the sphere centre. Therefore (2.5.1): δgx = GΔmz/r3, is the
basis for estimates and δge = GΔm/z2 is its maximum at xe = 0 and Δm = ΔρV ,
the anomalous mass or excess mass of volume V and density contrast Δρ , z = depth
to the centre point and r = distance from the mass point to the station.

The half-maximum values δg(d1/2) = δge/2 lie at the horizontal distance d1/2
from the location of the mass point, and from (2.5.1) follows that

w = 2(41/3 −1)1/2z = 2×0.76642 · z ≈ 3z/2 → z ≈ 2w/3 (5.6.2a)

From δge and z follows the total anomalous mass Δm = ΔρV :

Δm = δgez2/G ≈ (4/9)δgew2/G (5.6.2b)

For a given anomalous density Δρ in a spherical volume V = (4/3)πR3 (ra-
dius R), with all quantities in SI units, except δg in mGal = 10−5 m/s2 and
G = 6.6710−11 m3kg−1s−2, V and R can be calculated, with minor numerical ap-
proximations, in [m3]:

V = Δm/Δρ ≈ (4/9)δgew2/(GΔρ) ≈ (2/3)105δgew2/Δρ,

and

R ≈ 25(δgew2/Δρ)1/3 (5.6.2c)
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or the density, if V or R is given:

ΔρR ≈ (4/9)δgew2/(GV ) ≈ (2/3)105δgew2/V (5.6.2d)

Letting, on the other hand, the sphere extend to the surface, i.e., R = z, in [m3]:

Δρz = Δm/(4πz3/3) ≈ 9/(8πG)δge/w ≈ 5.5104δge/w ≈ 3.6104δge/z (5.6.2e)

The geological plausibility of Δρz must, of course, be assessed. For comparison,
the thickness of a Bouguer plate of the same density Δρz with the effect δge (5.6.1)
would be d ≈ 2z/3 or 2R/3, i.e. the deepest point of the anomalous spherical mass
would extend to 3d, three times the Bouguer plate thickness.

For relations of similar nature with other field quantities, see KJ61, 218–219.

5.6.3.2 2D: Mass Line or Cylinder, Vertical Rod, Vertical Fault step

The equivalent 2D case is the (infinite) horizontal mass line or uniform cylinder
(Sect. 2.9.3.1), which may be a reasonable approximation for an elongated body of
roughly circular cross section and whose z/l ratio is small (z = depth, l = length).
The gravity effect (2.9.3.1) is simply: δg = 2Gρ+z/r2, where ρ+ is the mass per
unit length of the line in kg/m and r is the distance of P from the line. The effec-
tive density contrast is ΔΔΔρρρ ≈≈≈ ρρρ+///(((πππRRR2))), R = cylinder radius. The half width rule
is, in this case, depth zzz === www///222 or 50 % of the half width between the two points
of half-maximum gravity value. For simple estimates, the maximum gravity effect
may be sufficient, i.e.: δδδggge= 2Gρρρ+/zzz ≈ 4Gρρρ+/www, and with the above relations,
ΔΔΔρρρ ≈ wwwδδδggge/(4πGRRR2) or RRR ≈ (wwwδδδggge/(4πGΔΔΔρρρ))1/2. With δge in mGal, lengths in
km and Δρ in kg/m3, the above expressions take the form: ΔΔΔρρρ ≈ 12δδδgggewww///RRR2 or
RRR ≈ 3.5(δδδgggewww///ΔΔΔρρρ)1/2.

In Sects. 2.9.3.1 and 2.9.7.1.1, the effect of, and the correction for, finite length of
the horizontal mass line, instead of ∞, has been shown to be a = λ/(x2 +λ2 + z2)1/2

where 0 < a < 1. The so-called 21/2D approach (Sect. 2.9.8) can, of course, be
applied here as well.

Note that an elongated map shape is not a necessary condition for approximate
two-dimensionality; the condition is that the ratio z/l of depth over horizontal extent
is small. In the case of a curved density boundary or edge with radius of curvature
rc, the necessary condition for satisfactory two-dimensionality is z/rc << 1.

For a narrow mass extending steeply from near the surface to great depth z, such
as a volcanic chimney, a simple formula is that of the vertical rod (Sect. 2.9.3;
eqs. (2.9.10) and (2.9.11)): δg(l) = Gρ+[1/r1 −1/r2] = Gρa[1/r1 −1/r2], where a
is the area of the horizontal cross section and r1, r2 are the distances from P to the
upper and lower end of the rod, respectively. This remains correct if the rod extends
above the point elevation (the effects of the parts of the rod, symmetric about the
point elevation, cancel). The effect of a vertical rod is not easily distinguishable
from that of a point or sphere, although the half width w is greater, for infinitely
deep bottom depth of the rod, wrod/dtop ≈ 2

√
3 ≈ 3.5, versus wpoint/dpoint ≈ 2.7,
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where d = depth; a depth to the point mass dpoint ≈ 4/3dtop would make the half
widths about equal, but as the rod effect decays laterally very gradually, it is difficult
to estimate the zero level. If the latter is unknown, the two effects (or curves with
horizontal distance R) δgpoint(R/dtop) and δgrod(R/dtop) for dpoint = 2dtop are highly
similar for 0 < R/dtop < 6.

A vertical wall or dyke model of infinite strike, called in GW65, 294 “verti-
cal ribbon”, extending in depth from z1 to z2, and of thickness t and density con-
trast Δρ is characterized by the maximum anomaly δge, the half width w and the
anomaly integral I to estimate z1, z2 and Δρt. With A = 2GΔρt and the shape factor
β = z2/z1: δg(x) = A ln(r2

2/r1
2), ri

2 = x2 + zi
2, i = 1, 2

δge = A lnβ (5.6.3)

w = 2z1

√
β (5.6.4)

I =
∞∫

−∞

δg(x)dx = Aπ(z2 − z1) = 2πGΔm∗, (5.6.5)

where the 2D mass Δm∗ = Δρt(z2 − z1) [kg/m]. The scale-independent shape
function f (β ) can be calculated: f (β ) = δgew/I = 2β lnβ/π(β − 1); f (β ) can
be estimated from the observations, and the transcendental equation for β is solved
graphically (see shape function f (β ) for vertical dyke in Fig. 5.6.2) with the aid of
the graph of f (β ). Having found β , it is easy to find z1 from (5.6.4), z2 from β , and
Δρt = A/2G with A from (5.6.3) or (5.6.5).

Fig. 5.6.2 Shape functions f (β ) of 2D vertical dykes and horizontal strips (after GW65, 294) for
estimating the geometrical and physical parameters (dyke: depths z1 and z2 to top and bottom,
respectively; strip: width b and depth h) from β = z1/z2 (dyke) or β = b/h. The scale-independent
shape function can be calculated from the data: f (β ) = w δge/I, where w = anomaly half width,
δge = extreme value, I = integral over the anomaly (5.6.5), (5.6.8)
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Two similar cases of GW65, 295 are the “strip anticline”, i.e. the thin 2D hor-
izontal strip of width 2b and the circular disk of radius a, both of mass density
Δρt and at depth h. With A as above, and β = b/h: δg(x) = A arctan[(x + b)/h]−
arctan[(x−b)/h]

δge = 2A arctan β (5.6.6)

and taking into account the periphery angle

w = 2h(1+β 2)1/2 (5.6.7)

I =
∞∫

−∞

δg(x)dx = Aπb = 2πGΔm∗, (5.6.8)

As above, f (β ) = δgew/I = 4(1 + β 2)1/2arctanβ/β , and the solution for h, b
and Δρt proceeds analogously (see f (β ) for horizontal strip in Fig. 5.6.2).

The circular disk leads to elliptical integrals (the solid angle is an elliptical cone)
and cannot be treated in elementary terms, but with β = a/h and A as above

δge = Aπ(1− (1+β 2)1/2) (5.6.9)

w ≈ h(1.24+1.07β ), valid for 0.5 < β < 2.5 (5.6.10)

I =
∞∫

−∞

δg(x)dx = 2Aπh((1+β 2)1/2 −1) = 2πGΔm∗ (5.6.11)

Analogously, f (β ) = δgew/I = (0.62 + 0.53β )/(1 + β 2)1/2, proceeding from
here to the solution for h, a and Δρt likewise.

A frequent case is a vertical fault step over which a gravity gradient is observed,
i.e. Δg∞ at sufficiently large distance, and a half width w between the points (or
lines) of δg∞/4 and 3δg∞/4. For a vertical step reaching the surface and a density
contrast Δρ the appropriate half width rule gives both Δρ and the step height:

h = w,Δρ = δg∞/(2πGw) (5.6.12)

This is an approximation using a surface density condensation onto a half-
plane at depth h/2, the gravity effect of which is given by the solid angle ΔΩ =
2arctan(x/[h/2]), x measured normal to the fault strike, x = 0 above the fault. A
more exact and general formula is derived in Sect. 2.9.7.4.1. The estimate can be
modified for non-vertical dip, buried top and depth dependent Δρ . If the simple es-
timate of h and/or Δρ contradicts the geological evidence, then the model must be
further modified, for example, by introducing bodies which alter the apparent half
width (e.g. Jacoby et al., 2001).

5.6.4 Use of the Solid Angle Ω : Vertical Templates

The relation with Ω can be exploited and carried out by sketching for which one
may need a ruler and a protractor (possibly a compass). The basic expression for the
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gravity effect Δg to be evaluated is ΔΔΔggg ≈ GΔΔΔΩΩΩΔΔΔρρρΔΔΔhhh, where Δρ is the relevant
density contrast and Δh is the appropriate layer thickness; it may not always be
clearly defined and must be assessed according to the geometrical situation. ΔΩ
must be estimated from a sketch, for example. The estimate is rather easy in 2D
models where the solid angle is given by the plane angle Δα as ΔΩ = 2Δα . For the
theory see Sect. 2.9.1.1, rule 1, Sect. 2.9.7.2, (2.9.7), (2.9.49) and Fig 2.9.1.

A special case is the effect of a sloping terrain surface. Consider a flat valley
bottom and a flat top plane, connected by a constant slope (angle α , height h, density
ρ) and find that all points on the slope experience the constant terrain effect of
2αGρh; beyond the slope, on flat ground, the terrain effect (Sect. 4.5.3.2) decreases
towards zero.

For a quick semi-quantitative assessment of a two-dimensional model (cross sec-
tion) one can sketch a transparent overlay (KJ61, 152–154) with equidistant (Δz)
horizontal lines, and radii through P by dividing the angle π into equal parts Δα .
Each compartment thus defined has a gravity effect on P of Δg ≈ 2ΔαGΔρΔh
(Sect. 2.9.7.2). To get an estimate of the assumed 2D model section, one only needs
to count the compartments, perhaps including fractions, covering the geological
body. A graphical comparison of the theoretical effect with the observed data will
render a density contrasts estimate and suggest shape improvements. – The method
can be refined by finer divisions dzdα produced for office use (see Sect. 6.2.1.1 (3)),
but computer programs have generally replaced the use of templates.

5.6.5 Undulated Boundaries

It is also useful to remember that if a buried mass, for example, an approximately
horizontal density contrast surface is undulated (wavelength λ), the gravity effect
decays with vertical separation z as e−kz (Sect. 2.10.5, Task 5.2). Obviously, in such
an undulating case, no half width rule exists.

5.6.6 Diagrams

Many specialized diagrams for simple estimates have been published. Simple di-
agrams are useful for a quick look, but some diagrams are complicated and are
appropriate to quantitative interpretation. A simple example may be one for thick-
ness or depth-to-bottom estimation of isolated exposed rock bodies (Jacoby, 1970),
based on the ratio of the maximum effects over that of the Bouguer slab of equal
thickness; beside the shape of the exposure, the inclination of the contacts should
be known. Double-logarithmic diagrams make use of the scale or similarity rule,
permitting the relations to be presented by a single-parameter set of curves for any
scale and density contrast (parameter may be the contact slope α , for example). The
diagrams (GW65) treated in Sect. 5.6.3.2, are further applications of exploiting the
scale rule (self-similarity), the solid angle and the half width w for actual scale.
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5.6.7 Maximum Depth Rules

The aim of maximum depth rules is semi-quantitative. There is interest, for example,
in exploration, at what depth a geological body may be encountered at most, how-
ever, maximum values are relatively uncertain since the results of such estimates
always depend on assumptions and they are not extremes in a mathematical sense.
Undulations of buried density contrast surfaces introduce an additional complica-
tion, because they represent mass anomalies with alternating sign which affects the
half width of the gravity anomaly; a compact target mass at some depth has its char-
acteristic gravity half width which is, however, narrowed by side masses of opposite
sign. Hence, what appears to be the maximum depth of a single point mass can be
exceeded. Indeed, some geological processes do generate just such mass distribution
(e.g. thinning of a salt layer beside a salt dome or convecting systems).

Downward continuation is a related method; the maximum depth would be
reached where the lateral extent of an undulation contracts to a delta function, i.e.
a point mass. The method is, however, fraught with problems due to data noise and
general heterogeneity of geological masses.

More sophisticated methods have been proposed which take into account the
maximum possible density contrasts (Jung, 1927; Dürrbaum, 1974). The method
involves application of variational calculus and diagrams and often exceeds the
wanted simplicity.

5.6.8 Edge Effects

Edge effects are observed frequently. They result from abrupt lateral density con-
trasts and occur even over edges with the same vertical mass sum on both sides over
a limited depth interval, for example, juxtaposed crustal structures in perfect iso-
static balance. Geological examples are continental margins and oceanic transform
faults or inactive fracture zones where lithospheres of different ages abut against
each other (Figs. 5.6.3, 5.7.5, 6.5.5, 7.4.2). An inexperienced interpreter may think
of uncompensated mass anomalies.

The example of Fig. 5.6.3 consists of juxtaposed layers of different vertical
density distribution, but of equal vertical mass sum, i.e. isostatic at crustal depth
(30 km), somewhat reminiscent of a continental margin. The vertical contact at
x = 0 is abrupt; the right-hand block is homogeneous, the left one is divided into
two d = 15km sublayers of opposite density: top: Δρ = +180kg/m3, bottom:
−180kg/m3. The individual Bouguer effect of each sublayer would be δgB of+or
−113mGal. The edge effect of this boundary is δgm ≈ +/−20mGal, at both sides
of the edge at x = −/+10km; above the boundary the effect is zero. It is a typical
mass dipole effect, the integral of which is ∞

∫ ∞ δg(x)dx = 0. The maximum gradi-
ent is grad ≈ 6mGal/km. The outer half width” wo, i.e. the distance between the
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Fig. 5.6.3 gravity effect over the edge of two 30 km thick blocks of equal vertical mass sum;
321 homogeneous, left-hand block consisting of two d = 15 km sublayers, top Δρ = 180, bottom
−180kg/m3. The effect reaches ∼15 % of the Bouguer effect δgB (113 mGal); the characteristic
features are discussed in the text

two positions (x-values) where the effect falls back to half the extreme, |δgm/2|, is
about 2×50km = 100km; this is remarkably large for a depth extent of only 30 km.

The effects scale linearly with the geometrical dimensions, i.e. the slab depth
d (15km), and with the density contrast Δρ(180kg/m3). The edge effect reaches
∼ 15% of the Bouguer effect δgB (113 mGal): δδδgggm≈ 0.15 δδδgggB≈δδδgggB/6 and the dis-
tance between the extreme values is bbb = 2xxxm≈ 4/3 ddd (20 km). The extreme gravity
gradient, gggrrraaaddd≈ (9/2) δδδgggm/ddd (6 mGal/km), occurs above the boundary. The outer
half width (see above), |δgm/2|, is about wwwo≈ (20/3) ddd≈ 7 ddd (100 km).

Of course, in reality the lateral change of vertical structure is usually somewhat
transitional which moderates these effects in amplitude and stretches them later-
ally; moreover, the vertical density distribution may be different, affecting the ge-
ometrical relations and amplitudes. It is also likely that the anomalous structure is
laterally limited and may approach the vertical point or line dipole, treated below
(Sect. 5.6.9). The above numerical values are only rough guides. But in principle,
the gravity edge effect depends on the difference between the half widths of two
equal but opposite density contrasts at different depths. In practice, the scaling laws
(Sect. 5.6.2) are always applicable.
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5.6.9 Vertical Dipoles

Vertical dipoles consist of vertically displaced, approximately equal masses of op-
posite sign, but in reality, equality of mass may be only approximate. Idealized cases
are point masses (or spheres) and horizontal lines (or cylinders). Dipolar situations
are common in nature, very often consisting of one voluminous part and one being
flat or surface-like. Vertical dipoles are the result of the Earth tendency toward equi-
librium and the mechanical situation where vertical balance is more easily achieved
than lateral balance. Examples are isostasy, mantle plumes (an aspect of convection)
and generally mantle convection in a layer with deformable upper and lower bound-
aries, where uplift by a low-density mass generates an excess at the surface and
other density transitions, and where heavy mass generates depression and a deficit
at the surface. The situation is further complicated by an equivalent deformation at
the bottom of a convecting layer, such that the structure is a double dipole. However,
the lower part is often located so deep that it has negligible effects at the observation
level. For simple estimates, point and line dipoles as well as plume-like structures
of a thin positive surface mass and an extended vertical cylinder are treated here.

5.6.9.1 Point Dipoles

The point dipole (Fig. 5.6.4) consists of the mass m+ at R = 0 and depth Z+’ = 1 and
the mass m− at Z−‘ = a > 1(|m−| = m+ = m) in non-dimensional vertical cylinder
coordinates; dimensional scaling by the depth Z+ includes the gravity effect (at the
surface Z = 0), and primes are dropped from here on. For R = 0:

δgo = Gm(1−1/a2). (5.6.13)

Fig. 5.6.4 Point and line
dipole illustrated together.
Point dipole: mass m+ at
Z = 1 and m− at Z = a,
a = 1.5 and 2. The non-
dimensional gravity scale of
the 2D line dipole is shifted
up by 0.5 from that of the 3D
point dipole; 2D gravity effect
plotted versus R, 3D gravity
effect versus X; solid lines
for a = 2, dashed lines for
a = 1.5. The 2D line masses
of density ρ+

+ and ρ+
− are

represented by m+ and m−)
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The expression describes the central maximum: f = δgo/Gm, increasing with a;
for a = 1, f = 0 (m− and m+ cancel); a = 1.2, f = 0.31; a = 1.5, f = 0.61; a = 2,
f = 0.75; a = 4, f = 0.94; a = 10, f = 0.99; a → ∞, f = 1.

At R �= 0, after some rewriting:

δg = Gm[1−a(R2 +1)3/2/(R2 +a2)3/2]/(R2 +1)3/2 (5.6.14)

From the square bracket of (5.6.14) follows for the radius, Ro, of δg = 0 (change
of sign):

Ro =
[
(1−a4/3)/(a−2/3 −1)

]1/2
(5.6.15)

Ro, after some irregular behaviour between a = 1 and 1.1, grows with a, but more
and more slowly as a increases (e.g. a = 2, Ro ≈ 2; a = 10, Ro ≈ 5; a = 1000,
Ro ≈ 50, etc.); in other words, the region of δg > 0 expectedly expands when the
mass m− drops to greater depth, except when only 10% and less deeper than m+.

From the maximum at R = 0, the effect δg decreases to 0 at Ro. For R > Roδg is
dominated by the lower mass m−. The gravity effect outside is generally very small
and hardly reaches 5% of the maximum δgo in the case of a = 2; for a < 2 the
positive and negative sources are so close to each other that partial cancellation is
considerable everywhere; for a > 2, the inner area is more and more strongly dom-
inated by the upper mass, while outside the effect of the lower mass, though domi-
nant, is spread out farther and farther. The total area integral of δg (see Sect. 2.7.6;
eq. (2.7.12)) is zero because the total anomalous mass is zero. These properties of
the dipole effect are illustrated in Fig. 5.6.4 for a = 1.5 and 2. It means that deep
compensation is easily overlooked in gravity interpretation and lack of compensa-
tion or isostatic equilibrium may be only apparent, especially in 3D situations.

5.6.9.2 Line Dipoles (2D)

The analogous 2D case is the line dipole. It applies to many elongated terrestrial fea-
tures as ridges, trenches, continental margins, etc. In 2D, the expressions are simpler
than for the 3D point dipole. The line and point dipoles shown in Fig. 5.6.4 have
identical depths, but the effects are different. The line masses have line densities
ρ+

+ and ρ+
− (in kg/m) at x = 0, z+’ = 1 and z−‘ = a (a > 1, |ρ+

−| = ρ+
+ = ρ+)

in non-dimensional Cartesian coordinates (in Fig. 5.6.4, the point and line dipoles
are both marked identically m+ and m−). Dimensional scaling by the depth z+ in-
cludes the gravity effect (at the surface z = 0), and primes are dropped from here
on. For x = 0:

δge = 2Gρ+(1−1/a). (5.6.13a)

At x �= 0, after some rewriting:

δg = 2Gρ+(x2 −a)(1−a)/
[
(x2 +1)(x2 +a2)

]
(5.6.14a)
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From (5.6.13a) set zero, follows for the coordinate xo of δg = 0 (change of sign) is:

xo = a1/2 (5.6.15a)

xo grows with a as a1/2. Here, too, the region of δg > 0 expands when the mass
ρ+

− drops to greater depth. The 2D expressions also describe a central maximum
f = δge/2Gρ+, increasing with a (a = 1.5, f = 0.33; a = 2, f = 0.5; a = 4,
f = 0.75; a = 10, f = 0.9; a → ∞, f = 1). The effect decreases with distance
x to 0 at x = xo where δg changes sign. Outside (x > xo) δg is dominated by the
lower mass ρ+

−. The weak 2D gravity effect outside is relatively stronger than in
the 3D case; it may exceed 10% of the maximum δgo. Also in 2D the outside neg-
ative effect is spread out farther and farther, and the total area integral of δg (see
Sect. 2.7.6; eq. (2.7.12)) is zero. Integration in 2D is linear with x, while in 3D it is
proportional to R2. Deep” compensation is therefore more easily recognized than in
3D geometry.

5.6.9.3 Crustal Root Dipoles, Mantle Plume Dipoles

More specialized, though realistic, vertical mass dipoles are the combinations of
topography with crustal roots and mantle plumes of low-density material. As above,
the dipole effects are the more distinct the narrower the structures; they depend
on the ratio d/w of depth extent over width as discussed in connection with the
anomaly half width (Sect. 5.6.1); if d/w grows large, the effects become edge effects
(Sect. 5.6.8). Principally the FA is a dipole effect and the BA is only one part of it,
but as dipole” effects they are generally underrated, although familiar in magnetics
with its principal dipole sources. We estimate the effects and their semi-quantitative
magnitude. The knowledge of the effects is necessary for qualitative interpretation
of observed gravity anomalies.

The present vertical dipoles” are still strongly idealized, though less than point
and line dipoles (Sect. 5.6.9.2) are. The low density bodies uplift the surface to
achieve an isostatic” balance which is here assumed complete. Two models are pre-
sented, crustal root and mantle plume, each with some variants. The mass dipoles
consist of vertically displaced positive and “negative” masses equal in magnitude,
but of different volume and effective density contrasts. The effects depend on ge-
ometry, and the present results are examples only. Cartesian geometry will suffice
for the estimates. Details of complex density distributions within crust and mantle
are neglected and deferred to quantitative interpretation. Fig. 5.6.5a–c shows ideal-
ized schematic crustal models (a) in a 2D cross section of a mountain belt with a
locally compensating root in three versions, and a 3D cylinder-shaped plume and
uplift (b and c), both exactly compensated, called “Airy plume”, in two versions.

a) Estimation of BA and FA effects. What is meant with BA and FA effects are
the calculated effects which correspond to the definitions of the Bouguer and Free
Air anomalies. A very rough estimate can be realized by taking the Bouguer slab
(Sect. 5.6.1; eq. (5.6.1)) for the mean topography and the solid angle approach
(Sect. 5.6.4) for the root effect.
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(b)

(c)

Fig. 5.6.5 (continued)
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For the theoretical calculation of idealized effects, assume a triangular 2D sec-
tion of width w and vertex height h, a background crustal thickness b and a trian-
gular root of depth extent d (bottom vertex at z = b + d). The isostatic densities
are ρ for topography and Δρ = −ρh/d for the root relative to the mantle. Widths,
w = 100km and 400 km, demonstrate the width-dependence of the effect either by
laterally stretching the triangular mountain range or by shifting apart the unchanged
flanks leaving a flat top in between (trapezoid shape). Fig. 5.6.5a shows the FA and
BA effects calculated at points on the solid surface for the three cases with h = 3km,
b = 30km, ρ = 2500kg/m3, and consequently Δρ−300kg/m3.

For the triangular case with 100 km base, the BA effect, i.e. the effect of the root
only, reaches about −100mGal or 32% of the Bouguer slab effect (314 mGal), and
its half width w’ (∼110km) exceeds the structural width w by 10 %. The FA effect
(sum of topography and root effects) has a maximum at the apex of ∼200mGal
(65% of Bouguer slab effect) and negative flanks (minima about −20% slab ef-
fect at the edges); the average FA over the triangular topography is of the order of
+70mGal (22 % slab effect).

For the 400 km triangular structure the BA effect of the root (only) doubles
(−200mGal, 65%) and the FA effect of topography and root decreases to 111 mGal
(35%, average of a central 200 km wide strip: 16%) and −39mGal (12%), respec-
tively, for the maximum and the flank minima, while the flank effects decay more
slowly with horizontal distance.

The trapezoid structure reaches a BA effect (root only) of about −84% of the slab
effect. The FA effects has a two-peaked shape (edge effects) with maxima of 37%
of Bouguer slab (averaged: 25%) over the upper plateau edge and a central plateau
of 17%. The positive FA effect is flanked by deep minima at the foot of the slope
of −33% of the Bouguer slab effect; this suggests that the flanking minima, as over
the Alpine Molasse and the Ganges plains, are not caused only by thick sediments.

The amplitudes decrease, of course, with increasing observation level (e.g. of
satellites) where the decrease is stronger for the topographic excess mass and its

�
Fig. 5.6.5 Crustal and plume dipoles and calculated gravity effects: BA as the effect of the crustal
roots or the mantle roots alone, FA as the dipole effect of topography and root together; observed
at two levels, at the surface of topography and at 200 km elevation (satellite)
(a) Schematic 2D crustal cross sections of mountain belts and locally compensating roots (Airy-
type isostasy) in three different versions: two triangular sections of width w = 100 and 400 km
and one trapezoid section (w 0 400 km); vertex height h = 3 km, depth extent d of the root (bottom
vertex at z = b+d), background crustal thickness b = 30 km and ρ = 2500kg/m3, crustal root den-
sity contrast Δρ−300kg/m3. (b) Airy plume: vertical circular cylinder (radius Rc, density contrast
Δρp < 0 versus mantle, vertical extent bd, between Z = (1− b)d and Z = d; 0 < b < 1, surface
(ρ = 2500 kg/m3) uplifted by h, Airy mass balance: Δρp ≈ −ρh/(bd); neutral layer (Δρ = 0)
between Z = 0 and (1− b)d; b is calculated from mass balance between Moho uplift by h, den-
sity ΔρM, and top part of plume (depth extent bd, density contrast Δρp). (c) BA and FA effects in
two versions, calculated (at surface elevation and at 200 km height) along 1000 km profiles across
a given cylindrical plume (Rc = 100 km, vertical extent of Δρ : 100 to 600 or 100 to 200 km,
Δρ = −10 or −50 kg/m3, respectively, 2 km uplift with ρ = 2500 kg/m3)
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gravity effect is much smoother than at the surface. The (negative) BA effect (root
only) does, naturally, increase with the size of the root (approximate amplitude for
the narrow triangle: −20mGal, broad triangle: −75mGal, trapezoid: −125mGal),
and so does the composite FA effect (central value for the narrow triangle: +4mGal,
broad triangle: +13mGal, trapezoid: +20mGal) which is remarkably low for the
narrow structure.

Observed FA (see Sect. 4.6.1) over mountain ranges are generally positive, al-
though large local variations in mountainous terrain make averaging difficult and
estimates of the terrain effects have large uncertainties. Aerogravimetry and, even
more so, satellite gravimetry have less spatial resolution, and downward continu-
ation to geoid level will give a more representative smooth picture; recent results
from the GRACE mission render the following approximate amplitudes: central
Andes: +70, Himalaya: +50, Caucasus-Iran: +50 and Alps: +30, Southern Alps,
New Zealand: +20mGal, all of these with uncertainties of about ±10mGal. These
values are quite similar to the above simple estimates. The negative BA values are
long known (Andes and Himalaya: −400 to −500mGal, Alps, Caucasus-Iran: −200
to −300mGal, Southern Alps: −100mGal) again with strong variations and uncer-
tainties. Also these values are similar to those predicted above, if the average ele-
vation of the Himalayas and high Andes is taken into account (at least twice that
assumed for the present models).

b) What kind of gravity effects are generated by a simple compensated Airy
plume structure? Mantle plumes foster melting and thus thicken and alter the crust
generating vertical dipoles with two depth components, a crustal root and the deep
plume itself (example Iceland plume: Sect. 5.7.7, 6.5.7). For the simplest case, as-
sume a vertical circular cylinder (radius Rc, density contrast Δρp < 0 versus mantle,
vertical extent bd, between Z = (1−b)d and Z = d; 0 < b < 1 (Fig. 5.6.5b). It uplifts
the surface by the amount h; Airy mass balance requires Δρp ≈−ρh/(bd), where ρ
is the density of the uplifted mass. A neutral layer is assumed to exist between Z = 0
and (1− b)d with effective Δρ = 0 and no gravity effect. It may simply represent
some arbitrary depth to the plume top, or it may consist of material of zero average
lateral density contrast by internal compensation of density anomalies, for example,
of an uplifted Moho (ΔρM > 0) and other density increases above equilibrium, com-
pensated by the subjacent top part of the plume (Δρp < 0). This vague, though nec-
essary, assumption is made here to estimate the value of b. If the Moho is uplifted
by the amount of h (same as the surface) and the mass compensation is achieved
by: hΔρM ≈ (1−b)dΔρp = −ρh(1−b)/b (insert: Δρp ≈−ρh/(bd)); this leads to
b ≈ ρ/(ρ+ΔρM) ≈ ρ/ρm where ρm is the upper mantle density; hence b ≈ 0.8 to
0.9, i.e. the upper 10 to 20% of the vertical plume extent. These assumptions must
be checked or specified in concrete cases, but there is the additional difficulty that
the deeper parts of the plume have a small gravity effect, hardly recognizable at the
surface.

For this simple estimate of the axial gravity effect δge, the dipole is divided into
three parts: (1) above the surface treated as a thin disc by taking the Bouguer plate
effect (5.6.1): δg(1) ≈ 2πGρh ≈ 0.1× h× ρ/2390; (2) δg(2) = 0 for the cylinder
between Z = 0 and (1 − b)d. (3) The lower part of the plume cylinder between
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Z = (1 − b)d and d may be approximated by a vertical rod (see Sect. 2.9.3.2:
Eqs. (2.9.10) and (2.9.10)). The rod or line density ρ+ is given by πR2Δρp (kg/m)
and the axial gravity effect at the disk surface is given by

δg(3) ≈ πGR2Δρp[1/(h+(1−b)d)−1/(h+d)], which, in view of h << d, after
some arithmetics, is δg(3) ≈ πGR2Δρp f /d, where f = b/(1 − b) ≈ ρ/(ρm − ρ)
(from b ≈ ρ/ρm, see above). Summing gives the total axial effect:

δge = δg(1) +δg(2) +δg(3) ≈ 2πGρh
[
1− (R/d)2ρm/(2(ρm −ρ))

]
(5.6.16)

With the Bouguer plate effect of the disk, numerically simplified:

δge ≈ 0.1×h×ρ/2390
[
1− (R/d)2ρm/(2(ρm −ρ))

]
. (5.6.17)

For reasonable values of R (50 to 100km), d (500km), ρ (2600 to 2800kg/m3)
and ρm (3300kg/m3) this expression renders (positive) values of (0.9±0.05)δgplate,
which means that the plume itself has only a very small influence, which will be even
smaller for plumes with a deeper top and smaller diameter.

The above estimate is supported by calculations of BA and FA profiles
(Fig. 5.6.5c) across a given cylindrical plume (Rc = 100km, 100 to 600 km depth,
Δρ = −10kg/m3, 2 km uplift with ρ = 2500kg/m3). At the plume centre, the
Bouguer plate effect δgplate of the 2 km uplifted disk (205 mGal) is reduced by only
7%, and beyond the disk edge the plume effect is −5% of δgplate at most, decay-
ing in amplitude to <1% at 500 km distance. It is also interesting to calculate the
plume dipole effect at satellite level of 200 km, shown as well. Here the amplitudes
of the disk and plume effects decay to +11% and −2% of δgplate leaving +9% for
the maximum total effect over the plume centre and a radius of the positive effect
of about 500 km, beyond which the negative effect nowhere exceeds −1% (here
−1mGal).

The influence of the depth extent of the Airy plume (same uplift) and a corre-
spondingly changed density contrast is also shown in Fig. 5.6.5c for the extreme
case of a plume extending from 100 to only 200 km depth and Δρ = −50kg/m3.
Here the plume effect at the surface is more than twice that of the deep plume; the
central maximum and the rim minimum are +83% and −12% of δgplate, respec-
tively. At 200 km level of observation, the effects of the uplifted disk and of the
plume more strongly counteract than in the case of the deep plume, such that the
amplitude drops from 9% to 7% of δgplate and the radius of the positive effect is
about 390 km.

As mentioned, the Airy plume can give only a rough idea of effects which can
be expected. In a more complete analysis, variants should be considered to include
features as plume heads (lateral spreading of low density material, tapered or some-
what conical uplifts, combinations of plumes with magmatically thickened crust,
flexure of the lithosphere, and calculations have to be done in spherical geometry.
Ultimately it is also necessary to extend the analysis to the dynamic cases of plume
convection (see e.g. Schubert et al., 2001, pp. 537–543). None of these or other
variants are treated here, but must be taken into account in a thorough analysis.
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In practice, qualitative interpretation of plume anomalies will involve trial and er-
ror, starting with the observables as h and δgo and with guesses of the parameters
ρ , d, R and b, to predict δge. Expression (5.6.17) can guide the search for bet-
ter fitting parameters: increasing h, ρ , d and decreasing R and the density factor
ρm/(2(ρm −ρ)) will increase δge and vice versa (at least if the initial estimate of
δge was realistic). The sensitivity of the result to h and ρ is direct in the range of
realistic values of d, R and densities (see Sects. 5.7.7 and 6.5.7 for examples).

5.7 Examples

Several examples demonstrate how simple models, mostly 2D, can catch various
characteristic geological situations. Semi-quantitative interpretation goes beyond
the first qualitative guesses and may even employ some optimization showing how
the simple initial assumption can lead better results. The modelling does not aim
at fitting particular very detailed features. Some models are taken up in the follow-
ing chapters (6, 7) for more detailed interpretation. In all the cases, the geological
problem, data with errors, initial assumption including error estimates for the model
parameters and results are briefly sketched.

Most cases belong into the category of large-scale tectonic features, as a graben,
a shelf edge, an oceanic ridge, an oceanic trench, a diapir of granite or salt, man-
tle convection, a mantle plume. Most cases were investigated by the authors and
their students. The associated gravity anomalies were taken from different sources,
as published maps and/or profiles or digital data sets and are considered more or
less typical for the structures. The examples are illustrated by Figs. 5.7.1, 5.7.2,
5.7.3, 5.7.4, 5.7.5, 5.7.6, 5.7.7, 5.7.8, 5.7.9.

5.7.1 Messel Maar Crater and Fault Zone (MFZ)
and Meerfeld Maar

Maars are volcanic craters excavated by phreatomagmatic explosions aided by the
collapse of wall rock. They are often filled with light sediments and deeper brec-
ciated diatreme rocks, thus a promising target for gravity studies, for example, of
the crater depth and deeper structure. Young maars have a tuff wall around them
with characteristic morphology and magnetic anomalies which aid their identifica-
tion. Older maars are deeply eroded and less conspicuous but can be detected by
geophysical investigations, especially by reconnaissance gravity surveys.

5.7.1.1 The Messel Maar

The Messel pit of oil shale, NE of Darmstadt, Germany, was formerly mined for
energy and chemical exploitation and is now a UNESCO world heritage site for its
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(c)

Fig. 5.7.1 (continued)
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excellent Eocene fossils. Figure 5.7.1a shows the BA as embedded into the regional
field which reflects the Messel Fault Zone (see below). Bituminous laminated sedi-
ments fill an approximately sigmoid hole in Variscan crystalline rocks of 0.7×1km2

dimension with apparently steep walls. At the time the geophysical investigations
started, the origin of the oil shale basin was debated, even its nature as a crater. The
power of gravity as a qualitative exploration tool was demonstrated as the anomaly,
complemented by magnetic and other data, could hardly be interpreted other than
by a maar-like crater (Jacoby et al., 2001, 2003), which was subsequently proven by
drilling.

The relative BA minimum is approximately −7mGal; this can be well estimated
from the map even without separating “the” regional anomaly; it is also evident in
the data profile across the Messel Fault Zone (see below, Fig. 5.7.1b). The half
width w < 1km, i.e. smaller than the geological basin, suggests z < 600m (see
Eq. (5.6.2a)). However, the crater fill has an extremely low density, evident in
direct measurements on samples, especially drill cores. With an oil shale density
ρ ≈ 1200kg/m3 and > 2500kg/m3 for country rock, Δρ ≈−1300kg/m3, and the
simple Bouguer effect gives d ≈ 10× δg× 2390/Δρ ≈ 130m. If the solid angle
at the centre is taken into account, d may be 10 to 20% larger; on the other hand,
the somewhat low density of the brecciated diatreme rocks below the oils hales,
contributing to the total gravity anomaly, would roughly compensate the solid angle
effect. These estimates are very well confirmed by more quantitative modelling and
ultimately by drilling (see Sect. 6.5.1).

5.7.1.2 Messel Fault Zone (MFZ)

The Messel Maar is one of at least 5 similar, though smaller, structures and a few
volcanic extrusions aligned along a NE trending strip of a distinct southeastward
gravity gradient, called the Messel Fault Zone (MFZ); Fig. 5.7.1b shows the BA
projected onto a plane normal to the MFZ. Gravity drops across it to the NW by
15 mGal and the maximum gradient is nearly 10 mGal/km. If for a first estimate,
the gradient is explained by a vertical fault step (Sect. 5.6.3.2), the fault properties,
throw h and density contrast Δρ , follow directly (5.6.12) from the gravity differ-
ence on both sides (∼ 15mGal across 3 km distance) and its half width w of ∼ 1km.
The results are h ≈ 1km und Δρ ≈ 360kg/m3. These do, however, contradict the
geological evidence for a much smaller throw h, as the Permian sandstones to the
NW are seldom thicker than 100 m (Jacoby et al., 2001), and a more detailed quan-
titative interpretation is discussed in Sect. 6.5.1.

5.7.1.3 Meerfeld Maar

The Quaternary Meerfeld Maar is located in the Eifel, the type locality of maar
structures. It is a nearly circular morphological depression with steep walls and a
flat bottom of sediments and a shallow lake filling half of the present crater bot-
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tom. The main question is the depth extent of the sediments and subjacent diatreme
rocks. Figure 5.7.1c shows the BA as contours and as a section along the line AA’.
The BA amplitude is δg = 4± 0.3mGal and the half width w ≈ 1.6km. From eq.
(5.6.2a) follows for the equivalent mass point the depth z ≈ 1km. The correspond-
ing sphere volume and radius, according to eq. (5.6.2c), would be for Δρ ≈−200 or
−600kg/m3: V ≈ 3 or 1km3 and R ≈ 0.9 or 0.6 km, respectively. A fitting sphere of
1 km radius (grazing the surface) would have a density of −150kg/m3. Quantitative
interpretation (Smilde, 1998) takes into account the conical shape of maar struc-
tures and also the densities of the lower diatreme rocks. This is demonstrated in
Sect. 7.4.1.

5.7.2 Salt Diapir: Helgoland

Salt diapirs of low density and soft rheology are structurally and dynamically buoy-
ant masses in the crust and of a characteristic scale of a few kilometres. They occur
in sedimentary basins of economic interest. The qualitative aspect of gravity primar-
ily concerns the discovery of salt structures mainly as oil traps, and interpretation
first asks for size, depth extent and density contrast which depends on the coun-
try rocks while mono-mineralic rock salt has a well defined density. The example
chosen is the North Sea island of Helgoland, built of Bunter sandstone uplifted and
tilted by a salt dome.

A simplified gravity map of the Helgoland area and a profile across strike are
shown in Fig. 5.7.2. The island is situated on the NE flank of an elliptical gravity
low, peaking at −26mGal. The NW strike of the long axis corresponds to the strike
of the island and the tilted sandstones. Below the map, a profile is shown roughly
across strike; it is asymmetric with a sharp peak less than 1 km west of the Hel-
goland rock. The regional field is irregular and to the SW of the gravity minimum
only few data points exist; hence, a reference for the effect of the target is diffi-
cult to define; very roughly, the amplitude δg is −7mGal. The half width is even
more difficult to define, the apparent value of 5 to 6 km is not representative for
the sharp peak anomaly. Where measured in detail on land, steeper gradients are
apparent. Furthermore, it is a case intermediate between 2D and 3D. According to
Sect. 5.6.3.2, z should be between w/2 and 2w/3, hence between 2.5 and 4 km and
for a 2D cylinder of radius 2 km, Δρ ≈ −120kg/m3, however, if the density con-
trast of rock salt versus the sediments, Δρsalt ≈ −200kg/m3, the cylinder radius
would be only a little smaller, ∼ 1.8km, extending the body to 4–5 km depth. On
the other hand, the available information of the shape of the anomaly and from a
drill hole which encountered the rock salt at 0.7 km depth, suggests that part of the
anomaly should be directly attributed to the shallow part of the salt dome west of
Helgoland, such that the deeper parts would have a somewhat smaller effect and the
above estimates must be modified. The shape of the anomaly, indeed, suggests a tri-
angular cross section as depicted in Fig. 5.7.2, together with the simple model. The
estimates are corroborated by detailed 3D modelling (see Sect. 6.5.2; Jacoby, 1966).
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Fig. 5.7.2 Bouguer anomaly in the area around Helgoland (top); profile AB across the anomaly
due to the Helgoland salt dome (middle); section across the model (bottom) intermediate between
a 2D cylinder and a 3D sphere and geological section based on drilling results

5.7.3 Granite Batholiths: Bancroft Area, Canada

Igneous rock bodies of intrusive or metasomatic origin are wide spread and fre-
quently exposed in deeply eroded crust. Their genesis, petrology and structure vary
widely, from basic (e.g. gabbro) to acid (granite), from sheet complexes, laccoliths
and plutons to “rootless” batholiths. Questions are typically the volume and depth
extent, the depth variation of the roof rocks, the density contrast Δρ , etc. The lat-
ter parameter is best estimated from petrological information as well as from field
and laboratory measurements (Sect. 3.6.3). The principal questions can often be
clarified in advance, and volume V and depth extent d remain the basic questions
which gravity surveys can answer. Semi-quantitative estimates require from grav-
ity mainly the anomaly patterns and amplitudes δg and the half widths wg relative
to the widths wgeol of the rock mass exposures. The depth extent roughly follows
from the Bouguer effect (5.6.1), easily modifiable by an approximate solid angle
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ΔΩest instead of 2π: (d ≈ 10× (2390/Δρ)× (2π/ΔΩest)× δg). If wgeol/wg < 1,
the rock mass is probably compact or sphere-like, in the 3D case, otherwise in the
2D case, more cylinder-like. The total mass and volume may be checked from the
point – sphere or line – cylinder approximation (Sect. 5.6.3: Eqs. (2.5.1), (5.6.2a, b),
(2.9.7)). If, on the other hand, wgeol/wg >> 1, the rock mass is rather plate-like,
ΔΩest → 2π, and the Bouguer approximation is fairly correct. A refinement of the
estimates may be achieved by diagrams (Jacoby, 1970).

For the granitic arch of gneiss domes and batholiths in the Bancroft area, north of
Peterborough, Ontario, Canada, in the Grenville Province of the Canadian Shield, a
simplified BA map is shown in Fig. 5.7.3 (W. Jacoby, unpubl., 1970); gravity highs
(>−40mGal) and lows (<−40mGal) are distinguished which display a distinct pat-
tern: a general trend from more positive values and more irregular shapes in the east
to more negative values and smoother shapes in the west; typical wavelengths in-
crease from ∼ 15 to ∼ 30 to >40km and amplitude variations decrease from ∼ 15 to
∼ 10 to <10mGal. The central region is an arc of distinct granite bodies of diapiric
to intrusive character while in the east smaller intrusive granites dominate and in the
west the whole terrain is a granitic gneiss; the metamorphic grade increases from
low (greenschist) to intermediate (amphibolite) to high (granulite), i.e. the crustal
level of exposure deepens from east to west. The granites are of generally interme-

Fig. 5.7.3 Simplified gravity anomalies over granite batholiths in the Bancroft area, Ontario,
Canada (Jacoby, unpubl.); explanations in insert. Of the three profiles the central one is treated
in more detail in Sect. 6.5.3
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diate composition, and the bodies contain accumulations of mafic minerals which
outline the internal structure.

Concentrating on the central arc, diameters or widths are about 15 km (wgeol)
with associated relative gravity (BA) minima δg ≈ −10mGal. Generally the con-
tacts have been mapped to dip away from the centre. The density contrast Δρ of
the granitic bodies (s.l.) against the metasedimentary, largely amphibolitic country
rock is estimated to be about −150kg/m3. It is likely that the depth extent d < wgeol

such that 2π/ΔΩest ≤ 1.4. The above expression for d renders, with these figures
d ≈ 2.2km. This is a plausible estimate. Since the BA values over the larger bodies
are all similar (−45± 1.5mGal), while the BA strongly varies over the interven-
ing rocks (about −33± 6mGal), the question is really for the depth variation of
the pendants of metasedimentary roof rocks above a largely granitic layer. Hence,
the pendants probably reach mostly to depths ≤2.2km. As generally density varies
more gradually from granitic to country rock, variations will extend deeper than
abrupt contrasts suggest; this must be taken into account in a more quantitative and
detailed interpretation (Sect. 6.5.3). It appears that the structure can be interpreted as
an undulating density boundary with two dominant wavelengths: about 30 km of the
major granite updomings and 6–7 km. The 30 km wavelength is probably the fastest
growing undulation of a Rayleigh-Taylor instability during deep burial, while the
shorter wavelength may reflect remnant folds.

5.7.4 Rhine Graben

Grabens are rifted crustal depressions with down-faulted blocks originating from
stretching, irrespective of the dimension, from meter to 100 km. Grabens can be
symmetric or asymmetric with only one master fault and a tilted block. A lasting
debate has centred on symmetry versus asymmetry, especially in deeper crustal lev-
els. Depth is generally related to width.

The Rhine graben is a classical example, ∼300km long and ∼30km wide and
affecting the whole crust. The depression is filled with Tertiary sediments. The main
questions are the depth of the sediment fill and crustal thickness, the density con-
trasts, the dip of the master faults and their continuation at depth. The BA profile
(Fig. 5.7.4) across the southern graben near Strasbourg (Prodehl et al., 1995) shows
an at least 250 km wide asymmetric arch up by 30 mGal from Lorraine in the west to
a value of about −10mGal and down to the east by at least 70 mGal to the Bavarian
Molasse and the Alps; a few 10 to 20 mGal undulations of 20–30 km wavelength
are superimposed, including the Rhine graben minimum of δg ≈ −20mGal near
the crest of the arch; the uncertainty is estimated to be less than ±5mGal on the
basis of a smooth regional, drawn manually and subtracted. For a semi-quantitative
estimate this appears acceptable (see Sect. 4.7.7).

A very simple rectangular or trapezoidal 2D section is a natural approxima-
tion; for the sediment fill, with a thickness most likely much smaller than the
morphological graben width, the Bouguer effect will suffice (density contrast as-
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Fig. 5.7.4 Bouguer anomaly (BA) profile across the Rhine graben at about the latitude of
Strasbourg; insert shows a simple scale model of the sediment fill (assumed −200 kg/m3) esti-
mated from the Bouguer plate effect to be 2.4 km thick. W to E Moho depth variation (not shown)
is estimated in the same manner to rise 2.5 km to below the graben and drop ∼ 6 km to the Bavarian
Molasse

sumed: Δρ = −200kg/m3): δg ≈ 0.1 × d × Δρ/2390 [units: mGal, m, kg/m3]
→ d ≈ 10× 20× (2400/200) ≈ 2400m, which is of the right order. One may cal-
culate the depths corresponding to different values of the density contrast. The re-
sults are compared to 2D block models of limited width and inclined master faults
(Fig. 5.7.4). If the gravity arch is caused by crustal thinning, i.e. Moho up arching,
a first-order estimate of its amplitude may be based on the Bouguer effect: applying
the same expression as above and assuming Δρ ≈ 300kg/m3, we estimate 2.5 km
Moho rise from the west and a ∼6km drop toward the Alps; however, here the in-
creasing sediment thickness will also affect gravity. This example will be continued
in Sect. 6.5.4.

5.7.5 SE Iceland Shelf Edge

An example for a transition from thin oceanic crust to thicker crust is the steep SE
shelf edge of the Iceland Plateau. It is a first-order morphological and structural
element. A profile is shown in Fig. 5.7.5. The BA rises from Iceland to the ocean
basin by 160 mGal (error about 10%). The BA appears as a superposition of a
monotonous increase from Iceland toward the ocean basin, reflecting crustal thin-
ning, and a dipolar feature, relatively positive above the upper shelf break and nega-
tive above the foot of the slope, suggestive of an edge effect as treated in Sect. 5.6.8.
It is much more conspicuous in the FA and in the residual rBA after subtraction of
the Moho effect as calculated in a preliminary way (see Sect. 6.5.5). The double
amplitude of FA is about 70 mGal, of rBA about 50 mGal, and the maximum FA
approximately coincides with the zero of rBA.

The residual BA is used here for a semi-quantitative estimate. The edge seems to
be very close to the shelf edge. The Iceland Plateau is not continental, but the shelf
edge is similar to many continental margins and may even incorporate a continental
splinter, originally from the Greenland shelf (Fedorova et al., 2005). Shelf edges
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Fig. 5.7.5 Gravity profiles across the SE Iceland shelf edge: (1) BA profile from near the Iceland
SE coast to the Atlantic basin toward SSE (Bouguer reduction density of rock mass 2600 kg/m3),
(2) residual BA: rBA (after subtraction of a Moho effect), (3) FA, and (4) bathymetry, topography.
Data from Fedorova et al. (2005) and references quoted there. For several models see Sect. 6.5.5,
Fig. 6.5.5

usually result from continental rifting and splitting; this may have occurred during
the Oligocene when the North Atlantic spreading axis jumped from the Norwegian
basin westward to the Greenland margin.

The principal questions are: (1) crustal thickness contrast Δd and densities
ΔρMoho from the increase of the BA between Iceland and the Atlantic basin, which,
however, cannot be separated without independent information, and (2) from the
dipolar component of the rBA, the properties of the edge, as depth extent and lateral
density contrast Δρedge; for this, the very simple edge of Sect. 5.6.8 is taken.

(1) From Δg = ΔBA ≈ 160mGal between land and sea, the simple Bouguer ef-
fect is taken with a customary Δρ ≈ 300kg/m3; however, for Iceland a value of
∼100kg/m3 was derived (e.g. Fedorova et al., 2005). The Bouguer effect then ren-
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ders d ≈ 10×150×2390/(300 or 100) ≈ 12 or 35 km. Obviously the density con-
trast represents the greatest uncertainty of this estimate, and the values of 100 and
300kg/m3 are lower and upper limits; the mean lateral contrast over the implied
depth range from 10 to 50 km is probably somewhere in between.

(2) The edge effect δgedge may be approximated by the simple model of
Sect. 5.6.8, shown in Fig. 5.6.3 which renders the expressions for estimating d
and Δρ . Remember that scaling is linear with density and the geometrical dimen-
sions. From Fig. 5.7.5, we get δgm ≈ ±24±4mGal, b ≈ 25km, wo ≈ 80km, grad
≈ 2mGal/km. The expressions supplied in Sect. 5.6.8 give for δgB ≈ 144mGal,
and for d several values: from b: 19 km, from wo: 11 km with the mean d ≈ 15km;
from grad (Δρ = 100kg/m3) follows d ≈ 64km; but this value must be scaled
with the density contrast to Δρ = 144kg/m3(Δρref/Δρδgm) and, of course, with
(gradobs/gradref); hence, d ≈ 64× (2/5)× (100/144) ≈ 18km, in good agreement
with the values above. The scatter of the d values is considerable and demonstrates,
not surprisingly, that the model is too simple.

This semi-quantitative calculation shows that the observed dipolar anomaly com-
ponent fits an edge effect roughly, although a glance at Fig. 5.7.5 demonstrates that
there are systematic discrepancies in the shape of the anomaly where the extrema
are sharper and the outward decay on both sides is more rapid than in the simple ver-
tical edge model. Moreover, the density results seem rather extreme, as the model
implies a 15± 5km layer of Δρ ≈ +144kg/m3 to overlie −144kg/m3 material,
and such a vertical density inversion of 300kg/m3 may be mechanically unstable.
In consequence, a laterally more restricted dipolar mass anomaly than semi-infinite
slabs and some modified structures are suggested. Finally, as an aspect of quali-
tative interpretation, other models may be considered, such as block uplift and/or
block rotation, sediments, high-density intrusives, etc., in other words, structures
which originated during geological history. Any of these must be tested requiring
more sophisticated quantitative modelling, see Sects. 6.5.5 and 7.4.2.

5.7.6 Spreading Ridges, Reykjanes Ridge

Ridges form an Earth encircling system of divergent plate margins where new
oceanic lithosphere is formed from hot, partially melting rising mantle material.
Here a first, very simple estimate of densities and mass anomalies is given. For
density, very simple estimates employ the Bouguer effect and Cartesian 2D ap-
proximation for the elongated ridges and trenches. Typically, but with consider-
able scatter, the axial FA is about +10±10mGal, for the height relative to deep sea
basins, take d = 2500±500m, for the density contrast Δρ = 1800±200kg/m3. The
Bouguer plate effect (Sect. 5.6.1) of such an under-water ridge is δg ≈ 0.1×2500×
(1800/2390) ≈ 185±40mGal, nearly 20 times as large as the observed FA. Hence,
the average mantle density anomaly should produce about −175mGal, about the av-
erage relative BA; with, say, d = 100km follows Δρ ≈ 10×BA×2390/d ≈−40±
10kg/m3, and with the thermal expansivity α ≈ 3.10−5 K−1 and Δρ/ρ = −αΔT ,
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the mean thermal anomaly ΔT ≈ 400±100K. The same estimate, of course, follows
from a simple isostatic argument: Δρridge dridge ≈ −ΔρT dT, with the above values
→ ΔρT ≈−40kg/m3. These numerical estimates are not altogether unreasonable.

The Reykjanes Ridge SE of Iceland may serve as a special example for the di-
vergent plate margins. It has unusual features: it is about 30◦ oblique to the usual
direction normal to spreading and is for 1000 km nearly straight, not interrupted
and offset by significant transform faults; instead of a central rift it has a central
horst obliquely traversed by narrow volcanic ridges oriented approximately normal
to spreading (further to the S, an axial rift develops, more typical of slow spread-
ing ridges). The positive morphology is accompanied by both a positive FA rising
to nearly +60mGal and a BA which is −60 to −80mGal relative to the adjacent
basins (δge ≈−70±10mGal). The half width w of the gravity anomaly is of order
150 to 200 km (Fig. 5.7.6). The anomaly may be wider, if the anomalously shallow
sea and the regional gravity high are taken into account which both are probably re-
lated to the Iceland plume (see Sect. 5.7.9). A negative density anomaly underneath
originates from the hot rising mantle material which cools as the plates diverge side-
ways. The mantle anomaly may be considered an upward pointing hot low-density
asthenospheric wedge under the cooling and thickening lithosphere. Alternatively,
the temperature anomaly ΔT of the hot region may be taken; it is the high ambient
local temperature T(x, z) from which the equilibrium geotherm T∞(z) is subtracted
that is reached as the plates form from hot mantle cooling with time and distance
from the axis: ΔT = T(x,z)−T∞(z) describing onion-shaped ΔT isotherms. Near
Iceland, hot plume inflow must also be considered.

Here a simple estimate of the hot, low density mantle is based on an approxi-
mation by a 2D mass line or cylinder (Sect. 5.6.3.2 and the expressions therein).
The half width w ≈ 150–200 km suggests the depth of a mass line or a cylinder
that may extend to a depth of twice its radius, i.e. R ≈ w, about 150 km. A shal-

Fig. 5.7.6 Section across Reykjanes Ridge at about 62◦N. Gravity (BA, reduction density of
ridge topography (2600–1000) kg/m3) and morphology from Jacoby et al. (2007) and references
quoted there; gravity amplitude and half width indicated. Section shows sketch of lithosphere-
asthenosphere structure, 2D line mass, cylinder of 75 km radius and lens-shaped body
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lower flatter density anomaly is likely, concentrated toward the ridge axis and grad-
ually thinning with distance (Fig. 5.7.6). The mean density may be roughly esti-
mated from Δρ ≈ wδgo/(4πGR2) (all quantities in equivalent SI units) rendering
Δρ ≈−22kg/m3, which would correspond to a mean excess temperature of +230K
and an isostatic submarine ridge topography of +2km (while 100% shallow com-
pensation may not exist). These values are of the right order, but they may refer to
only part of the ridge elevation because even the more distant reference basins may
be affected by the Iceland plume. More quantitative modelling and a more thorough
discussion of this are deferred to Sect. 6.5.6.

5.7.7 Plumes, the Iceland Plume

Plumes underlying the hotspots of non-plate-margin volcanism (Morgan, 1971) are
a feature of high Rayleigh-number convection, as demonstrated by laboratory and
numerical modelling. They are envisioned as narrow stem-like upwellings from hot
bottom boundary layers heated from below. Many experiments suggest that the
buoyant material should accumulate above the CMB into diapirs that evolve into
big rising plume heads (super-plumes) leaving a tail or stem behind which may be
further fed from below regularly or episodically. Plumes are a dynamic process af-
fecting the density distribution and deflecting density surfaces. Plumes were, and
are still, debated, and other mantle heterogeneities, for example, relicts from former
subduction should also be considered, but seismic mantle tomography now (2008)
can resolve some plumes rather clearly, and large low-velocity hot regions above the
core-mantle boundary are observed, as well.

As shown in Sect. 5.6.9.3, Airy plumes in static vertical equilibrium with the
uplifted excess mass above them have gravity effects with a central high and a neg-
ative rim. But deep plumes with small density contrasts have very small effects at
the surface which may be generally obscured by other effects. Generally hotspot-
plume effects are difficult to observe. A statistical analysis of 33 intra-plate hotspots
(Fig. 5.7.7) led to an average positive gravity signal (+5mGal) surrounded by a
distinct negative rim (−3mGal) several degrees wide and embedded, with some
oscillations, in a positive background (<+2mGal) decreasing outward; this back-
ground probably reflects the tendency of hotspots to cluster in regions of high geoid
and gravity (unpublished by author WJ; Monereau & Cazenave, 1990). The positive
feature tapers off and might cover approximately a hemispheric quadrant. The nu-
merical values are affected by the averaging or stacking procedure and do not refer
to individual hotspots which vary widely. It is also not clear what the net effect of
an “average plume” might be, as only exceptional ones can possibly be isolated. A
better way of convolution or stacking would take into account the individual hotspot
strengths, possibly leaving the signal shape constant.

Compared to the model of Sect. 5.6.9.3 (Fig. 5.6.5b) the observed signal
(Fig. 5.7.7) is broader, but this reflects the coarse 5◦ spatial resolution. The low
resolution implies averaging over a corresponding area which, if applied to the mod-
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Fig. 5.7.7 Plume gravity effects, radially averaged for 33 intra-plate hotspots and plotted versus
angular distance S; symmetry simulates a section across a hotspot. The characteristic central high
surrounded by a distinct low is embedded in positive background reflecting the tendency of the
hotspots to occur in regions of high geoid and gravity. The fit of the 33 hotspot anomalies achieves
a variance reduction of the gravity field of no more than 1.5 % (unpublished W. Jacoby)

elling results, renders a central maximum of about +10mGal, or so; the averaging
less effectively suppresses the amplitude of the negative ring. Finally, with the 3D
half width w = 2R1/2, a plume should extend to order z = 2/3w, amounting to upper
mantle depths at least, but in view of the minute gravity effect of deep parts of the
plume, it can be argued that greater depths can hardly be resolved by gravity.

As a special case, the Iceland plume is chosen which occurs on, and interacts
with, the Mid-Atlantic Ridge. The FA rises to about +60mGal and topography to
about 700-800 m above sea level. If these figures are compared, a 10–20% influence
of the plume is implied relative to the topographic Bouguer plate effect, more than
the 5–10% estimated in Sect. 5.6.9.3b, which may reflect the special situation of a
plume beneath a spreading ridge and extra crustal thickness. A large area of several
thousand kilometres dimension is characterized by relatively shallow seafloor cul-
minating in Iceland at an elevation of >+1000m which exceeds the average height
of ridge crest by >3000m; the surrounding ocean basins are >1000m shallower
than normal basins of comparable age. The FA is positive in a similarly large area
and reaches +60mGal near the supposed plume centre (NW Vatnajökull), while
ridge axial values are generally of order +10mGal, such that the excess due to the
Iceland plume is of order +50mGal. A negative gravity ring (see above) is missing.
The BA has a minimum of <−40mGal and is only about +200mGal over the ocean
basins. The geoid is also high, reaching +60m. From which depth in the mantle the
plume originates is debated, but tomography sees a weak anomaly at least to middle
mantle depths, possibly to its bottom (Bijward & Spakman, 1999).

The parameters are fairly uncertain. The critical quantity is h; as said above,
700–800 m mean elevation suggest a plume influence of roughly 10–20% of the up-
lift effect. However, the reference for defining the uplift h is uncertain, hence a trial
and error search (Sect. 5.6.9.3) may start with h ≈ 2km, δge ≈ +60mGal, uplift
densities ρ ≈ 2000kg/m3 (partially inundated), R (100 km?), d (500 km?). From
(5.6.17) δge would be ∼ 160mGal which seems too large by a factor 3. This argues
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for lower values of h, ρ and d and larger values of R, say h ≈ 1.5km (for the Ice-
land plateau), ρ ≈ 1800 (due to partly inundation), d ≈ 400km, R ≈ 130km (still
much smaller than radius of Iceland plateau), rendering δge ≈ 100mGal, still twice
the free air anomaly. As pointed out in Sect. 5.6.9.3, the result is not very sensitive
to changes in R and d; the plume gravity effect hardly changes with depth changes
when the starting value is already large. A more detailed analysis is necessary, al-
though none of the chosen parameters is unreasonable. The results are taken but for
a preliminary qualitative interpretation, supported by seismic tomography (Wolfe
et al., 1997; Foulger et al., 2000).

At the present state of ignorance about the deep Earth’s interior, it seems a sensi-
ble approach to probe the Earth’s gravity field by systematically shifting correlation
analyses with several model plume effects in the search of their possible existence
in the field. This can be a step toward the problem of quantitative interpretation and
inversion.

5.7.8 Tonga-Kermadec Trench, Subduction and Back arc Basin

Deep sea trenches mark convergent plate boundaries and are the expression of an
oceanic plate subducting under an upper plate which may be continental (e.g. west-
ern South America, Japan) or oceanic (e.g. Mariana island arc, Tonga-Kermadec
island arc). The subducted plate or slab is geophysically visible mainly by its seis-
micity resulting from deformation under the subduction stresses. Cooled oceanic
lithosphere, differentiated into crust and uppermost mantle by seafloor spreading,
is denser than the surrounding mantle and subducts under the force of gravity (or
negative buoyancy). This is a classical case of the dual role of gravity generating
density anomalies (active role) that, in turn, produce big gravity anomaly signals
(passive role). Slab density is thus of decisive geodynamic importance.

A complex of phenomena accompanies plate convergence, beginning from a sea-
ward forebulge due to bending, a deep-sea trench, often a sedimentary arc, a vol-
canic arc and either an Andean-type volcanic mountain range or a back-arc basin,
also called marginal sea. Back-arc basins form by subducting plate roll-back, i.e.
ocean-ward trench migration leaving a gap filled by mantle upwelling. Furthermore,
water in the oceanic crust is set free enhancing melting and uprise of the melts
to form a buoyant mantle wedge and back-arc seafloor spreading. If on the other
hand, the upper plate is moved toward the retreating trench, an Andean mountain
range develops. Hence, the integral gravity signal is also very complex and subject
to detailed quantitative analysis and interpretation. A ‘simple’ conceptual model
should distinguish at least three components: the lithospheric slab, the buoyant di-
apir above, and the surface masses, down dragged in the trench and up-bent in the
forebulge and pushed up above the low-density diapir: the latter masses are partly
taken into account in the Bouguer reduction and will be neglected in the present
estimates. Semi-quantitative gravity interpretation, here, will consider only the sub-
ducted plate, and it is asked if its thickness, density contrast, and temperature can
be roughly estimated.



5.7 Examples 225

The profile across the Tonga-Kermadec trench (Fig. 5.7.8: FA, BA and morphol-
ogy; from Jacoby, 1975, and references therein) extends from the Lau Basin to the
Tonga trench. The FA rises from near zero, 500 km from the trench like a ramp to
about +180mGal from where it abruptly drops to below −100mGal over the trench;
the ramp is characterized by ∼50km long oscillations. The BA shows a minimum-
maximum-minimum pattern of >250km wavelength, undulating between 180, 80,
180, and 130 mGal and rising again toward the trench where the 180 mGal plateau
over the Lau Basin also shows ∼50km long undulations. Qualitatively, the FA
pattern suggests a general mass accumulation in the upper few hundred kilometres
to which the slab certainly contributes significantly, while the BA seems to mainly
reflect the top-positive dipole of the diapir with its uplifted roof; the slab effect is
hardly identifiable, perhaps only in some weak asymmetry of the BA rising toward
the trench. From Fig. 5.7.8, the FA half width of w ≈ 250km and δge ≈ 150mGal,
at least, follow. For the BA w ≈ 130km which is the width of the Lau Basin, and
δge ≈ 70mGal, both values about half those of the FA.

Fig. 5.7.8 Section through Tonga-Kermadec subduction region; location shown by insert at bottom
(Jacoby, 1975, see references quoted there). Top: dashed line: FA; grey dashed line: BA – 100 mGal;
solid line: smoothed BA – 100 mGal; horizontal line: approximate half width. Bottom: spherical
cylinder section from BA half width (see text); light-grey dashed contours: approximate lithosphere
(including slab) – asthenosphere structure, not known in the early sixties
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If, in this situation, the basic semi-quantitative model is restricted to the mass
anomaly of the slab, errors follow from the neglected components. Inclusion of the
diapir into a dipole model is complicated by the vertical sequence: positive uplifted
top, negative diapir, positive bottom of the slab; this cannot easily explain the pos-
itive FA. Ignoring all these complications and approximating only a slab by a 2D
mass line (Sect. 5.6.3.2), taking the half width of the FA as representative of the
total mass disturbance, but only a third of its amplitude, 50 mGal, because the slab
constitutes only part of the mass accumulation, we find from the expressions in
(Sect. 5.6.3.2) a depth z of 120 km, and with a cylinder radius R = 100km assumed,
Δρ ≈ 150kg/m3; the cross sectional area of the slab, sketched in Fig. 5.7.8, is about
twice the area of a circle (cylinder) of 100 km radius, suggesting a slab density con-
trast of +75kg/m3, not a totally unreasonable value. The example is presented to
demonstrate, that semi-quantitative estimates in cases of complex structures can give
orders of magnitude and that more quantitative interpretation must encompass ac-
curate bathymetry and upper and lower crust, as well as of mantle structure from
seismic data (see Sect. 6.5.8).

5.7.9 Mantle Convection

Mantle flow is largely hidden below the lithospheric plates which together are an in-
tegral convecting system. Effects in the gravity field are expected from related tem-
perature and, hence, density variations. The relation between plates, deeper mantle
flow and gravity is, however, not simple, as is evident in comparisons of the plate ge-
ometry and the global gravity field (see Sect. 1.5.4, 1.5.5; National Academy Press,
1997). Expansion in spherical harmonics of gravity and plate geometry suggests
some correlation in harmonic degrees and orders 4 and 5 (Schubert et al., 2001),
but the largest amplitudes are of degrees 2 and 3 which probably do not directly re-
flect plate-related flow. Low degree spherical harmonic components would certainly
suggest mantle wide anomalies, but shallower anomalies of broad lateral extent are
not excluded. Seismic tomography must be taken into account in view of velocity-
temperature-density relations. A qualitatively important aspect is the Earth’s ten-
dency to orientate its axis of largest inertia parallel to its axis or rotation (Goldreich
& Toomre, 1969) and this would tend to place the equator where convection up-
wellings predominate, thus hinting at a significant component of the flow pattern.

Some component of gravity may, nevertheless, be more directly related to the
moving plates, for example, through the continuity condition which requires the
plate motion to be linked with flow. Respective data are difficult to isolate from
the global gravity field which is an integral of all masses of Earth. Stacking grav-
ity profiles along plate motion trajectories toward the trenches may enhance such
a signal while suppressing other components. Examples are shown in Fig. 5.7.9a
(after Seidler et al., 1983) where the FA is plotted along the trajectories of plate
motion relative to the hotspot frame of reference versus distance (coordinate XB

in degree) from the trailing edge (XB = 0) to the leading edge; the figure shows
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Fig. 5.7.9 Mantle convection. (a) FA plotted along trajectories of plate motion in hotspot frame
of reference versus distance XB (in degree) from trailing edge (XB = 0) to the leading edge; FA
averaged for XB = const (across the trajectories) shown as a bar, standard deviation shown in
grey. Plates PAC, SAM, IND, EUR move from divergent to convergent boundaries. (b) Numerical
model of convection in Cartesian box (Rayleigh number Ra = 106 with temperature dominated p,
T-dependent viscosity (Ritzert & Jacoby, 1992); boxes show calculated elevation H (below water),
flow lines as stream function contours Ψ; the FA gravity anomaly Δg; the temperature field T;
horizontally averaged viscosity as log η. (scales are dimensionless; note especially the relative
variation of H and Δg)
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the averages for XB = const across the trajectories. The plates PAC, SAM, IND,
EUR have in common the movement from divergent to convergent boundaries. They
show a consistent trend of slight to distinct FA increase toward both ends, trail-
ing (divergent) and leading (convergent, i.e. subducting or overriding a subducting
plate). Since the analysis smears out the effects, their amplitudes will appear sub-
dued and the widths enhanced (divergence: ∼10±10mGal,15◦ ±5◦ width; conver-
gence: 20±>10mGal, 30◦ ± 5◦ width). Stacking of profiles across the spreading
ridges in the Atlantic, Indic and Pacific render mean topographic highs of 1.0 to
1.6 km, mean FA highs of 6 to 14 mGal and mean BA lows of −80 to −130mGal,
relative to the adjacent basins (Jacoby & Çavşak, 2005). Stacking and averaging
does not fully suppress other independent effects; compare, for example, the plume-
affected Reykjanes Ridge (Sect. 5.7.6) with FA rising to +60mGal and BA only
−60 to −80mGal. In the gravity disturbance (see Sect. 4.3) the positive effect is
enhanced relative to the FA by the height reduction from the geoid to the ellipsoid
(N∂gn/∂h× (−1) ≈ +0.3086N [m]), as the geoid above upwelling flow (plume,
ridge) is positively disturbed; this effect is somewhat lessened by the corresponding
geoidal Bouguer reduction (see Sect. 4.5.3.1). In the BA the Bouguer reduction re-
moves the effect of only the displaced surface not that of similarly displaced internal
density contrast surfaces (e.g. Moho).

A qualitative assessment may be guided by comparisons with models of simple
cases of convection in 2D boxes with a fluid of constant viscosity and heated from
below (McKenzie, 1977; Ritzert & Jacoby, 1992). Such models show that the FA has
a maximum over upwelling and a minimum over downwelling if top and bottom are
deformable and pushed up or pulled down by the currents; generally the gravity ef-
fects of the dynamic topography predominate over those of the thermally induced in-
ternal density variations which are of the opposite sign. If, on the other hand, top and
bottom are fixed and undeformable, only the effects of the internal density variation
are observed. The problem was mentioned in Sect. 5.1.2 to illustrate the importance
of a priori information. Beside the nature of the top and bottom boundaries, the ob-
servation that on the Earth gravity is positive above both upwelling and downwelling
presents a problem: while the models agree with the ridge regions (see Sect. 5.7.6),
they predict gravity lows for the regions accompanying subduction where gravity
highs are observed, interrupted by narrow deep lows that follow the trenches (see
Sect. 5.7.8). Such behaviour can be simulated by convection where the viscosity
of the fluid increases with depth below the asthenosphere minimum; the tempera-
ture dominated viscosity case (Ritzert & Jacoby, 1992) is shown in (Fig. 5.7.9b);
the effect is larger in the pressure dominated case. The situation is complicated by
stagnation of flow and the upwelling above slabs. Principal questions concern the
rheology of the mantle, the size or volume and depth of the convecting system, its
lateral extent and the temperature variations. The anomaly half widths cannot ex-
clude shallow convection but certainly permit mantle-wide flow which is supported
by the tomographic evidence of subduction tending to penetrate the whole mantle.

Obviously, the whole problem involves careful quantitative estimates of the com-
plex relationships, it goes far beyond any simple estimates and always involves
a tightrope walk of dynamic balances between the various processes and mass
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anomalies involved. This is beyond the scope of the present treatise (see e.g., Tho-
raval et al., 1995; Bunge et al., 1996; Čadek & Fleitout, L., 1999; Steinberger &
Holme, 2002). Qualitative interpretation is largely restricted to such considerations
as those above.

5.8 Error Discussion and Conclusions

Errors of qualitative and semi-quantitative interpretation are naturally made also in
the three categories, gross, systematic and random (Sects. 3.7.1, 3.7.2, 3.7.3), but
they are of a more general nature than those discussed in the previous chapters.
They have more to do with notions as reliability and confidence. Interpretation is an
act of associating meaning with the observations or understanding which is the pri-
mary aim of measuring and analyzing gravity. Semi-quantitative estimates of grav-
ity effects serve the purpose of testing the ideas, but “crazy ideas” cannot always be
proven wrong by calculation.

Gross and systematic errors in the initial stages of interpretation include, beside
the usual ones as mistaken numerical values, computational mistakes and copying
errors, the use of wrong formulae and wrong preconceived ideas. Ideas may be
partly right guided by fantasy and imagination and right or wrong refers to consis-
tency or inconsistency with structures and processes existing inside Earth and with
the laws of physics (e.g. mechanical stability), chemistry, geological history etc.
The best safeguards against gross mistakes are experience, controls, rethinking and
review by fellow scientists, in other words: never to contend oneself.

The above is related to the notion of the “apparent a posteriori standard error” in-
troduced in Sect. 3.8. The principal ambiguity of gravity interpretation implies that
wrong models which are at variance with “reality” may be, nevertheless, quite com-
patible with the gravity observations. Estimated numerical uncertainties or standard
deviations may be very small, but as long as not excessive, they are rather irrelevant
for the purpose of qualitative interpretation. The same is true for any random errors
because they cannot even be statistically quantified like observations and the desired
estimates are not meant to be precise.

At the end of this chapter, the interpreter of a given gravity anomaly has clear
and tested ideas of the model or models in mind. Preliminary estimates have shown
the way to thoroughly quantifiable or quantitative modelling and interpretation.
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Chapter 6
Quantitative Interpretation

Quantitative interpretation means quantification of qualitative models. “Qualitative”
is not “purely qualitative”. All models are approximate estimates. There is no clear
distinction between “qualitative” and “quantitative”. “Quantitative” is never “abso-
lutely accurate” or error-free, and model parameters must be complemented by their
error bounds. What is considered sufficiently accurate depends on the study aims,
data situation, numerical realisation etc.

The present chapter concentrates on how the forward problem is best solved by
calculating gravity effects δg of given or assumed mass anomalies. The different
strategies for organizing the calculations are emphasized, based on qualitative mod-
els of Chap. 5. The ultimate aim of gravity interpretation requires detailed routines;
however, they are usually available or should be written for the given problems.
This chapter tries to show up the possibilities on the theoretical basis laid down in
Chap. 2. Trial and error, optimization and inversion build on this chapter.

6.1 Introduction: From Qualitative
to Quantitative Interpretation

Complex geological bodies must be constructed on the basis of simple body types.
Specific parametrizations offer themselves which are most appropriate to the de-
scription based on the coordinates of points and the associated densities: quadru-
plets {xk, yk, zk, ρk} or quintuplets {xk, yk, zk, ρk, tkl} where the index k signifies
a countable model parameter and l an instant in time. Any kind of coordinates are
in use. Frequently only two geometrical coordinates are specified, the third is as-
sumed infinite; such models are called “two-dimensional” or 2D (see Sect. 2.9.7).
Generally the basic model bodies are uniform in density.

Since the gravity effects of geological bodies are always small relative to standard
earth gravity gggo in a study area, the associated vertical deflections are generally
negligible and in a fixed (x, y, z) coordinate system with z parallel to gggo. The gravity
effect is thus always assumed to be the z component of the gravitational vector effect
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although the disturbing vector will generally have also x, y components and thus
deflect ggg from gggo and the fixed z direction.

6.1.1 Principal Considerations: Qualitative
and Quantitative Interpretation

In quantitative gravity interpretation essentially the locations, depths, shapes and
density contrasts of geological bodies are to be defined as “accurately” as possi-
ble. It may be desirable to first isolate those parts of the observed gravity anoma-
lies which are caused by the target bodies, and this is part of interpretation. It
requires independent additional a priori information, which, of course, may be
ambiguous in itself. The whole task, thus, will be to approach “the truth” by
combining all available information and adjust it mutually within the error lim-
its of each. The compromise between all pieces of conflicting evidence is largely
a matter of judgement and experience. The traditional manual approach by trial
and error is necessarily subjective and uncertain. Its quantification is Bayesian
inversion described in Chap. 7 which, thus, is the top aim of quantitative
interpretation.

Due to the ambiguity problem gravity can never define or prove a “true” model
but can definitively prove an assumed model wrong – in line with Karl Popper’s
view that science advances by falsification of preliminary hypotheses. One can
learn how wrong a model is. Gravity interpretation is never final: any new data
warrant better quantifying the models. Another valuable aspect of gravity interpre-
tation is suitability to aid interpolation between gaps in other types of information,
for example, between boreholes or seismic surveys. Standard methods as seismic
reflection may also leave “blind spots” where gravity modelling can be applied prof-
itably to fill such gaps. Thus, gravity is and remains a unique and economic tool for
exploration.

Non-ambiguous quantitative information, contained in gravity anomalies, is the
total amount of the anomalous mass and its horizontal centre of gravity (see
Sect. 2.7.6). The accuracy of the information depends on the accuracy of the
data and, to a large extent, on the definition of the zero level of an investi-
gated anomaly. In a somewhat similar fashion, maximum depths may also be es-
timated. Downward continuation of gravity anomalies through homogeneous layers
can also give some direct insights by computing the idealized mass anomaly
in the form of the equivalent stratum, but it is only a guide to quantitative
interpretation.

A model is as accurate as the given error bounds permit, i.e. errors from the data,
from neglected model aspects, from additional information. The best to be achieved
is good estimates of most likely model parameters and of their error bounds. They
are essentially of statistical nature, but that is too simple because of the ambiguity
problem, and the possibility to construct totally wrong models that fit within arbi-
trarily narrow error bounds.
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6.1.2 General Methodological Aspects

It is “anomalies” that are interpreted. Anomalies are “reduced” observations. In
contrast, it is gravity “effects” which are calculated for given assumed or known
mass anomalies. The height reduction (Sect. 4.5.2) does not shift the observation
points onto a reference level below which all disturbing mass anomalies lie. The
anomalous gravity effects at the field locations are left after the reduction. This
is critical in mountainous terrain, and it is generally recommendable to interpret
anomaly values at the observation locations, i.e. to compute model effects for these
locations. With present computing facilities this does not present any difficulty.

Quantifying the error bounds is an essential aspect of quantitative interpretation.
The mathematical approach to this problem is optimization and inversion (Chap. 7).
It is the last step to arrive at quantitative models and their uncertainties by match-
ing the gravity observations and adjusting the model parameters that generate the
matching effects. It is not an aspect of gravity alone, but also of any other a priori
information.

Customarily one distinguishes direct and indirect methods, taken here as an or-
dering principle. An interpretation method is called “direct” if some parameters
describing a model (e.g. density, dimensions, location, depth etc.) are calculated di-
rectly from characteristic features of the observed anomaly δg(x) (e.g. amplitude,
“half width”, some ratios, etc.) by the use of formulae or diagrams or “characteristic
curves”. Such direct methods are based on rather simple models with only few pa-
rameters. Otherwise the direct relation between observation and model parameters
will not be direct. Some of the direct methods belong into the category of estimates
or quick semi-quantitative methods described in Sect. 5.6. More involved methods
are treated here and some will be only quoted from the literature.

The indirect approach is the traditional trial and error procedure. It is iterative
and starts with assuming a preliminary or initial model, calculating its effects δgm

and continues with comparing them to the observations δgobs. The residual field (ri

or r = δgobs − δgm) is then examined for systematic space variations which may
be, again, interpreted by modifications to the previous model, i.e., taken to estimate
the model changes (or the difference model) which lead to reduce the residuals or
to better fit the observations. This is repeated until the fit is considered satisfactory.
The aim is to match the observed anomalies by the computed effects, however it
suffices within the error bounds of the observations. The final residuals are (from
the original observed data) are considered small enough and their variation is con-
sidered sufficiently random in space. If trial and error is carried out manually it is
guided mainly by experience (see remarks in Sect. 6.4). By it one finds an accept-
able model, i.e. one that is compatible with the observations, but not all variants
which are also data-compatible. This must be considered within the geological con-
straints; otherwise an infinite space of irrelevant models would be included. System-
atic approaches are probably better than arbitrary ones, but the ever more efficient
computers permit also a random (Monte Carlo) search.

There is no clear-cut distinction between direct and indirect methods of inter-
pretation, they are end members between simple direct calculations and involved
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mathematical procedures rendering more sophisticated and detailed models on the
basis of the whole observational set. Besides, at any interpretatative step simple
direct methods and more complex indirect model improvement can be combined.
Computers provide additional support through effective graphics (Sect. 5.5). The
different skills of humans trained in different fields as mathematics, geophysics and
geology, in combination, promise the best results.

The differences between all these compatible models, say, Δλ(xk, yk, zk, ρk) =
Δλρk(x, y, z) have no significant gravity effects (i.e. they are effectively zero) at
the stations considered, where λ stands for any possible model combination. It is
called the “nullspace” of models. One can formulate the interpretation task as that
of finding the nullspace of models beyond finding one model by trial and error. It
involves a priori information as formulated as Bayesian inversion (Chap. 7). Monte
Carlo routines with random variation of the parameters and genetic or evolutionary
algorithms can find solutions. Combination of these procedures with straightforward
iterative least-squares routines is a successful strategy. If an anomaly, i.e. a confined
field variation is identified, certain parameters can be determined (e.g. the half width
etc.) and then some simple formula may render a preliminary solution which can be
iteratively refined (demonstrated for magnetic anomalies by Bosum, 1981; Hahn &
Bosum, 1986). Euler deconvolution has been stressed as a tool combined with a
cluster analysis, called “RODIN”.

6.1.3 Philosophy of Modelling: Detailed Description
Versus Catching the Fundamental Features
and Their Uncertainties

Geological structures are generally of high complexity at all scales and models will
always be approximations. It is an art to design approximations which depict the
essential aspects of a geological density distribution while simplifying the rest, for
example, small structures of insignificant gravity effect. It is essentially the data
noise and work economy which determine what is “small”. Relevant scales depend
on distance from the observation points. Near-surface inhomogeneities introduce
such noise. No rock body is perfectly homogeneous in density, but only some of the
internal density variations will be considered important in modelling. Examples of
approximations are the neglect of the dominant long dimension (2D) and of purely
vertical components of density variation ρ(z). However, different vertical density
gradients in neighbouring rock units (e.g. from compaction of sediments or from
diagenetic rock alteration) may lead to not-negligible lateral density contrasts.

Two principal approaches to modelling exist. One is to refine the geometrical
description to great precision and detail, depending on the kind of a priori infor-
mation available. Detailed reflection seismic and drill hole data permit complex 3D
parametrizations, e.g., by polyhedral triangulation, as in the interactive modelling
program IGMAS (Götze & Lahmeyer, 1988). The opposite approach is to assume
a set of relatively simple adjustable shapes of which models can be composed and
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which can be changed in an easy adjustment procedure. This approach is behind the
program INVERT (Smilde, 1998). The criterion of changes to have measurable ef-
fects calls for a hierarchy of scales and a strategy from crude to refined. Sensitivity
tests reveal the minimum size of significant density variations (in space and density)
in the whole model region. Systematic and summation effects must be taken into
account. For optimization and inversion (Chap. 7) the number of model parameters
must be kept low (to be determined by tests).

The path to quantitative interpretation requires first decisions as to what is essen-
tial and what can be neglected, and then adequate geometrical model descriptions,
approximations or parametrization, for which gravity effects can be calculated.
Many possible geometrical descriptions exist. Useful practical methods are pre-
sented in a systematic fashion, for example, combining elementary bodies (Chap. 2
and Sect. 5.6). The present chapter is mainly on methodological aspects of gravity
calculation for the various tasks common in gravity interpretation.

6.1.4 Model Types: Two and Three-Dimensional; Large Model
Bodies Versus Small Mass Elements

Geology is three-dimensional (3D). If, however, one coordinate describes the dom-
inant extent of a body with little variation in that direction only two geometrical
coordinates are needed to describe the body in its two-dimensional cross section
(2D, see Sect. 2.9.7). The term 2D is not quite correct, but it is descriptive and
generally accepted. A planar surface mass (kg/m2, see Sect. 2.7.3) is also 2D (if
laterally unlimited).

The loss of accuracy when reducing the geometry form 3D to 2D must be esti-
mated. Some seem to believe that only 3D modelling is acceptable, but often sim-
ple models are better, and sophistication is not a sufficient criterion of intelligent
interpretation. Regard for the human imagination is essential, and it is generally
more adapted to simpler models. The so-called two-and-a-half-dimensional models
(21/2D) take the non-infinite extent of model units into account by end corrections
(Sect. 6.2.3; KJ61, 144, 163–164; GW65, 292), but to be adequate the density be-
yond the end must be considered.

The geometry of geological masses can be approximated by few large uniform
volumes which catch the essentials or by many very simple small mass elements
assembled to larger bodies. Large bodies, e.g., prisms, polyhedra, disks and their
2D equivalents, are usually describable by relatively few parameters. This is an im-
portant advantage for inversion. Small bodies, as points or spheres, small prisms,
etc., and their 2D equivalents, have several advantages: few parameters for each
and simpler mathematical expressions allowing to shift, alter, generate or annihi-
late such elements. Disadvantages are the extremely small effects creating rounding
errors in large sums, and inversion is not directly possible (see Sect. 7.2.2.3.1.2).
Combinations of large bodies and small mass elements are feasible, for example,
by combining many small elements to bigger ones depending on their distance from
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the calculation point. Reasonably efficient estimation was formerly possible also for
the effects by “individual” volume division into point P-related compartments by the
use of overlay templates. This now nearly forgotten procedure has the advantage to
work for shapes which are not amenable to analytical treatment and will also be
treated here (Sects. 6.3.2.2 & 6.3.3.2

The following sections on 2D and 3D modelling, will follow the same scheme:
large model bodies, direct and indirect methods, then the same order for small mass
elements. The order is repeated for 3D models. Some unavoidable repetition is,
hopefully, acceptable.

6.1.5 Density

6.1.5.1 Reference Density

Although for the gravity calculations it is not essential whether densities of the
model parts are taken as the absolute or relative values, it is generally advantageous
to use relative density contrasts, because the observed gravity anomaly variation re-
flects only the lateral variations of density, referred to some reference density ρref

(see Sect. 2.5, Eq. 2.5.4), for the model unit k:

Δρk = ρk −ρref (6.1.1)

Fig. 6.1.1 On the definition of density contrasts in gravity modelling: schematic illustration of the
different situations discussed in the text: (a) Simple imbedding, (b) overlap, (c) undulating layer
boundary, (d) nesting, (e) disjoint bodies and (f) bodies of alternating sign of Δρ
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ρref can be defined arbitrarily, for example, mutually between two bodies or as a
constant background of all bodies considered (see Sect. 6.2.1.2; Fig. 6.1.1). In the
latter case, ρref = ρo must not have lateral variations; it may be a constant or depth-
dependent, ρo(z), for example, horizontally averaged over the model extent. Each
such an assumption of ρo leads to another constant value go of the gravity effect:

go = 2πG0

∫ zo
ρo(z)dz (6.1.2)

equivalent to the effect of a Bouguer slab (Sect. 2.9.3.3); at greater depth than zo no
density variations are taken into account. If only the corresponding Δρ values enter
the modelling, go does not appear in the calculated gravity effects. The observations
and the theoretical effects can be directly related (e.g. by their correlation coeffi-
cient) if and only if both sets have zero mean. This is usually not the case, and any
interpretational algorithms should take care of subtracting the mean automatically.
The mean density may be taken as reference density ρo to be first subtracted from
the individual values, however, since their final values are not known a priori, the
reference density ρo is an important notion which must be carefully considered.

There are several possibilities (Fig. 6.1.1).
(1) The body is embedded in “country rock” or a reference mass, which may

be another model body (Fig. 6.1.1d) or even several bodies; in the latter case
the assumption is not constant density, but only constant density contrast, be-
cause the background varies in density; the same is true if the reference density
is depth dependent ρo(z) which will remain principally undetermined, i.e. indepen-
dently established at best. Related seismic velocities offer indirect information (see
Sect. 3.6.3.4).

(2) If all non-overlapping bodies k of a model are simply assigned their individ-
ual density contrasts Δρk, (Fig. 6.1.1a) these refer to the same background, possibly
difficult to identify; e.g. if the model volume comprises the whole crust, the back-
ground would be the underlying mantle if the crust-mantle boundary is undulated;
otherwise ρo is arbitrary and irrelevant for the interpretation. The individual relative
density contrasts Δρk are meaningful, also mutually.

The reference ρref or ρo, if not depth-dependent, may be estimated with (Eq. 6.1.1)
on the basis of a priori estimates of the individual absolute densities ρprior

k and a
posteriori density contrasts Δρpost

k (e.g. as obtained in an inversion as described
in Chap. 7) for one or several geological model bodies k; from Eq. 6.1.1 follows
ρok = ρprior

k −Δρpost
k . Several such determinations for different model bodies will

generally lead to conflicting values of ρok, and an average, possibly weighted, may
be calculated as ρ

o
=k∑(wkρok)/k∑wk, where wk may be chosen, for example, such

as to reflect the importance of the model bodies k. A posteriori absolute densities
ρpost

k can then be calculated again by (Eq. 6.1.1): ρpost
k = ρ

o
−Δρk.

(3) For models consisting of undulated layers, the inter-layer density contrasts
can b chosen for the model parametrization (Fig. 6.1.1c): Consider a model, for
example, of the upper and lower crust plus mantle, or several superimposed sedi-
mentary layers, and only the boundaries are of consequence. There are two options
to describe this.
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(3.1) Each layer is defined as in case (2) (Fig. 6.1.1a) by all the points describing
its top and bottom and the density contrast is defined against a background ρo com-
mon to all layers; the disadvantage is that all boundary points must be defined twice
in reverse order, because layers in contact have each to be traced around in the same
(usually clockwise) direction.

(3.2) Each boundary between two layers is defined only once, and the relevant
density contrast is that between layer k + 1 and layer k: Δρk+1,k. The volume is
given now by points defining, for example, the upper boundary of layer k + 1 (re-
alizable as a polyhedron in 3D or as a polygon in 2D), completed or “closed” by a
horizontal surface (3D) or line (2D) which does not contribute to the lateral grav-
ity variation (Fig. 6.1.1c). The body must be extended to lateral distances from the
observation points far enough to avoid end effects. The region outside the relevant
model space and the far ends, so to speak, represents the lateral continuation of Earth
structure. The procedure is repeated from layer to layer, the reference for the first
boundary is the density of the top layer 1, and as the density contrasts are defined
for each boundary relative to the overlying layer, the layer densities ρk are calcu-
lated by summing the intervening density contrasts (calling Δρk,k−1 = Δρk, and
Δρ1 = ρ1):

ρk =1ΣkΔρk (6.1.3)

In cases, some layers may be laterally limited lenses, such that in the vertical
sequence such layers may not exist everywhere. In a region where, say, layer k + 1
is missing it is required to extend the layer boundary k, k +1 (between layers k and
k+1) and repeat it as the boundary k+1, k+2 (identical to boundary k, k+2, such
that the layer k + 1 thickness is zero). By following such a procedure, it is ensured
that the calculated density contrasts Δρk will be correctly taken into account by
vertical summation according to (6.1.3) in the whole model volume, even where
layer k + 1 is missing. Similar situations (e.g. if more layers than one are missing)
are treated analogously.

(4) Bodies can be nested. If a body is placed into another, the density contrast is
relative to that one (Fig. 6.1.1d). If a body intersects the boundaries of another, i.e.
overlaps it, its uniformly defined density contrast implies a non-uniform absolute
density because the absolute density at any point in the model space will be the sum
of all “local” density contrasts at that point and the reference density, say ρo. Care
must be taken when composing complicated models of partly overlapping bodies.

(5) Separate, non-compact bodies of identical Δρ can be linked to one by con-
necting a point of each closed boundary by a line (2D) or an edge or plane (3D) in
both directions which cancels any possible formal gravity effect (Fig. 6.1.1e).

(6) Bodies are usually “compact” or “closed” in the sense of their boundaries not
intersecting themselves, but this need not be so (Fig. 6.1.1b,f). In partial volumes
where parts of the circumscribing boundaries intersect each other the sense of di-
rection is reversed (most obvious in the 2D case, (Fig. 6.1.1f) such that the sign of
the calculated gravity effect of these parts is reversed, i.e. Δρ reverses its sign.

(7) Of course model construction can include combinations of all the above
possibilities.
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6.1.5.2 Errors of Density

The calculation of gravity effects is subject to errors related to the assumptions of
densities. Because, for reasons of computational efficiency, the “calculation radius”
must always be limited (depending on machines, model parametrization etc.) it is
important to take into account the effects of model edges, and there can be a consid-
erable difference whether absolute or relative densities are chosen; in the first case
the edge is one between absolute density and zero, in the latter it is only between
“density anomaly” and reference density which can be zero if the density anomaly
is confined to the central model volume.

The mean density value depends on the “sampling distribution” within the model
space; model bodies of different volumes should be weighted accordingly, but since
the effects of “unit volumes” depend on their relative locations with respect to the
data points, there is no simple rule for defining the “best”. Data points are usually
distributed irregularly. If the model effects are computed at the data point locations,
this is no serious problem. For interpretative schemes involving least- squares ad-
justments, the point distribution affects the results, which is implicit weighting.

6.2 Two-Dimensional (2D) Approximations and Modelling

The “two-dimensional” case simpler than 3D. Though 2D is a much stronger “ideal-
isation” than most 3D descriptions, it is “reasonable” for horizontally extended den-
sity structures if along y, little relevant changes occur and if the depth extent of the
mass anomalies is much smaller than the horizontal scales of variation perpendicular
to the section (see Sect. 5.3.1, Fig. 5.3.1). 2D masses (in kg/m2) correspond to vol-
ume density (kg/m3) in a vertical slab of unit thickness. The fundamental mass ele-
ment of 2D models is the infinite horizontal mass line or the element dm∗ = ρ∗dxdz
with ρ∗ in kg/m2. It corresponds to the point mass m or dm in 3D space. Integration
over y from –∞ to +∞ has been carried out (Eq. 2.9.7). Alternatively, in the solid-
angle approach, the infinitesimal horizontal ribbon of surface mass, dxρ+, can be
chosen with ρ+ in kg/m, and integration is then equivalent to the projection of the
ribbon onto the unit sphere around P (Eqs. 2.9.49 & 2.9.50). The theoretical expres-
sions for calculating 2D effects are treated in Sect. 2.9.7. Many numerical codes are
freely available with instructions how to organize the data and model input. In the
program INVERT (Smilde, 1998), a 2D subroutine is called PROFILE based on the
“Talwani method” (2.9.7.4.3).

6.2.1 Few Large 2D Model Units

6.2.1.1 Direct Interpretation Methods with Few Large 2D Bodies

Models are made amenable to direct interpretation by drastic idealisation. The un-
known quantities include mass or density, dimensions, dip angles, etc. Examples of
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methods are: (1) total mass anomaly, centre of gravity and higher moments; (2) the
use of characteristic curves for simple models as ribbons and steps; (3) use of tem-
plates or overlay charts; (4) determination of one or a few horizontal circular mass
lines; (5) determination of rectangular cross-sections as thick and thin 2D dykes;
(6) the equivalent stratum (see Sect. 2.7.2) which can be calculated by downward
continuation (Sect. 2.10.5.3); (7) calculation of a density contrast boundary para-
meterized at regular intervals. These methods are between the direct and indirect
approach.

(1) Mass, centre of gravity and higher moments can be directly found from ex-
pansions of the gravity field into Legendre polynomials which correspond to the
so-called “reduced multipole moments” of a body, depending on its shape. For a de-
tailed account of the method the reader is referred to the text GW65, pp. 222–234,
for 2D especially pp. 232–234. It involves integrations of the gravity anomaly (see
Sect. 2.7.6) and interpretation on the basis of simple bodies. A practical problem is
that anomalies are hardly ever isolated (see Sects. 2.10.2 and 2.10.3, 4.7.7). A recent
application of the technique is presented by Sailhac & Gibert (2003) on the basis of
the continuous wavelet transform (see Sect. 2.10.8).

(2) The use of characteristic curves for simple models as fault steps has been
extensively treated by GW65, 282–287. Though 2D geometry is mostly justified,
the task is complex enough. Three “free” parameters are the density contrast Δρ ,
the dip angle α and the ratio of h/d(h = depth of burial, d = vertical offset) the
forth unknown is the absolute length scale which follows from the dimension of the
gravity anomaly. Relatively simple cases of this kind, taken from GW65, 294–295,
are presented in Sect. 5.6.3.2 as a qualitative or semi-quantitative method.

(3) The horizontal mass line or equivalent circular cylinder is the fundamental
2D mass element, but nevertheless a “large body”, characterized by four parame-
ters: horizontal location x (after the x axis has been oriented normal to the cylinder
axis), axial depth, cylinder radius R and density ρ . Without a priori information
on R and/or ρ only three independent parameters describe the effect. As shown in
Sect. 5.6.3.2, amplitude δgo and half width w give the parameters depth z and line
density ρ+;

z = w/2;ρ+ = δgo/(4G);ρ+ = πR2Δρ (6.2.1)

A more quantitative interpretation takes all observations into account to optimize w
and δgo by fitting the mass line effect (Eq. 2.9.7) to the observations with the above
three parameters as the unknowns. The reference gravity value can also be resolved
(see Sect. 5.6.3.2).

(4) Rectangular cross-sections represent “thick” and “thin” 2D dykes. “Thick”
dykes have thicknesses resolvable by gravity effects, otherwise dykes are called
“thin”. Parameters of thick dykes are the corner coordinates (again after defining
the x and y axes) x1, z1, x2, z2 (Δx = x2 − x1, Δz = z2 − z1) and Δρ . The extreme
anomaly δge (perhaps after subtraction of a trend) may define the “location”, for
example, xo = (x2 −x1)/2. Δρ may be estimated in advance or found in connection
with z2,z1 and Δx. The basic theory is treated in Sects. 2.9.3.3 & 2.9.3.4, and for
the 2D situation in Sects. 2.9.7.1.2 and 2.9.7.4.2. The most important expressions
are (Eqs. 2.9.50 & 2.9.51 and 2.9.59 & 2.9.60). If the body orientation is arbitrary,



6.2 Two-Dimensional (2D) Approximations and Modelling 243

i.e. not vertical, coordinate rotation must be invoked. A number of related cases (ver-
tical and oblique dykes of finite and infinite depth extent, steps, staircases, horsts,
anticlines) are treated with the appropriate formulae by KJ61, 190–199.

The thin dyke requires fewer parameters. Thickness, d, and density contrast, Δρ ,
cannot be resolved independently: with d = Δx, the parameters are z1, z2 and dΔρ .
The location x of the anomaly extreme value is, again, determined first. The basic
expressions are given in Sect. 2.9.3.4 (Eqs. 2.9.21 & 2.9.22) and in Sect. 2.9.7.3.1
for “hollow” rectangular pipes of which each side can be taken. Non-vertical dykes
can be derived by coordinate rotation (Sect. 2.9.7.3.2).

The mathematical expressions are generally too complicated for simple direct
solutions. An approach is that of (2) with characteristic curves or the design of spe-
cialized methods, for example, by diagrams which can be useful if special questions
arise routinely.

(5) Downward continuation (see Sect. 2.10.5.3) is the calculation of the gravity
anomalies at some depth below the observation level from the observed δg(x,z = 0).
The gravity variation at the lower level z, δg∗(x,z), can then be converted to an
equivalent stratum (Sect. 6.2.7.2) by the expression ρ∗(x) = δg∗(x,z)/2πG. With
a density contrast Δρ , ρ∗(x) may then be converted to a thickness variation of a
“thin” layer or to a depth variation of a density contrast surface by the relation
δh(x) = ρ∗/Δρ . Depth or thickness variations must remain relatively small to avoid
non-linear effects, presenting a limiting condition It must be checked in specific ex-
amples. In practice, downward continuation is carried out via the Fourier transfor-
mation of given discrete gravity profiles. It involves a wave number (k) dependent
amplitude amplification by ekz. The profile at depth z, δg∗(x,z), is then obtained
with the inverse Fourier transformation.

(6) Other ways to compute a single density contrast boundary in a 2D sec-
tion from measured gravity above it, are subject the same limiting conditions
as above (5): the boundary must be a unique function of the horizontal coordi-
nate x (no folding over) and the density contrast assumed must be sufficiently
large to allow fitting the gravity variations within the limits of vertical freedom
of the surface undulations. The maximum “uplift” will be by h, the mean depth,
and the gravity effect of local depressions may be too small such that no solu-
tion may exists. The method, thus, represents a form of maximum depth rule.
The parametrization can be realized by the “Talwani method” (Sect. 2.9.7.4.4;
Talwani et al., 1959) where the section is approximated by a polygon of straight
line segments with corner points (x,z) with the ends connected by a horizon-
tal line (see below and Fig. 6.1.1c). The expressions for the numerical evalua-
tion are (Eqs. 2.9.61, 2.9.64 & 2.9.65). Another parametrization is with small
segments (width Δx) of the depth curve and approximate their anomalous 2D
mass as rectangular 2D mass elements of ΔρΔxΔh, where h is measured from
some arbitrary constant depth (e.g. the average depth). Depending on the de-
sired accuracy, the effect of the mass elements can be calculated, for example,
by mass line approximation Δm∗ = ΔρΔxΔh with the line at the element cen-
tre (x,h/2): Δδg = 2GΔm∗Δh/r2, where Δh = (ho − h/2) and r2 = x2 + Δh2;
or, if Δx is chosen wider, by the solid angle (see Sect. 2.9.7.2) expanded from P
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to the segment Δx between xk+1 and xk at depth h/2 from the reference depth:
Δδg = 2GΔm∗(arctan(Δh/xk+1) – arctan Δh/xk). Due to the non-linearity with
depth and the influence of neighbouring elements, the procedure will have to be
iterative (see Sect. 6.2.1.2 (5)).

6.2.1.2 Indirect Interpretation Methods with Few Large 2D Bodies

Indirect interpretation by trial and error model adjustment can be realized with any
of the above parametrizations. The geometrical model description should be flexi-
ble without requiring a very large number of parameters. Rectangular cross sections
may be useful in some cases. The classical method is based on the polygonal section
or the “Talwani method”. It permits an efficient description, and change, of arbitrary
shapes by relatively few parameters (corner coordinates). “Thin” horizontal layers,
also vertical or oblique “dykes” and “thick” rectangular cross sections provide prac-
tical approximations to 2D bodies. The undulated density contrast surface is well
suited for the trial and error approach.

(1) The expressions for numerical evaluation of the effects of 2D oblique steps
and polygons (“Talwani method”) are Eqs. (2.9.61, 2.9.64 and 2.9.65). They contain
angles and distances which generally must be calculated from coordinates (xi, zi) of
observation points Pi(i = 1 to n) and (xk, zk) of corner points k (k = 1 to m; where
the last point k = m is identical to the first point k = 1). Tests should always be made
before “imported” routines are used for “production runs”.

A specific polygon is assigned its constant density contrast Δρ (Sect. 6.1.5.1
and Fig. 6.1.1). The corner points are read in sequence, usually clockwise along the
polygon; programming then takes care of the calculated effects δg to be positive
if Δρ is positive and P essentially lies above the main part of the body. Changing
the direction to anticlockwise, changes the sign of the effects. Complex models are
built of several bodies which may be apart from each other, in contact or overlap-
ping (see Fig. 6.1.1). Nesting or multiple wrapping (Fig. 6.1.1d) is an easy way to
realize small stepwise or nearly continuous density variations, and an example is
the calculation of the thermal expansivity, for example, of the cooling lithosphere at
spreading ocean ridges (Jacoby & Çavşak, 2005).

(2) “Thin” layer-like or “dyke-like” bodies are, in a sense, large and small at the
same time, large in area and small in thickness; large 2D volumes are represented by
many elements. Such bodies are thus, intermediate and might be treated also as “many
small bodies” (Sect. 6.2.2.2). The effects of horizontal layers (Sects. 2.9.7.1.2; 2.9.7.2)
is calculated by (Eqs. 2.9.50 and 2.9.52). Irregular 2D geometries of geological bodies
can be composed of horizontal layers with individual thicknesses dk = (zk − zk−1),
where zo = 0, increasing with depth, and defined by horizontal boundaries at, say, xk1

and xk2 for each layer k. This procedure can be modified to include definitions of xk1

and xk2 as functions of depth z or zk, and may be incorporated into iterative algorithms
of model self-adjustment akin to optimization.

The expressions needed for vertical and oblique dykes (Eq. 2.9.51) are given
in Sect. 2.9.7.1.2 and in Sect. 2.9.7.3.2 (where they are parts of elements of 2D



6.2 Two-Dimensional (2D) Approximations and Modelling 245

polygonal hollow cross sections and require rotation of coordinates). Especially
“thin” vertical dykes (density Δρ , thickness Δx, where only ΔρΔx is specified)
may be used to define general body and layer boundaries where each “dyke” ex-
tends from some fixed bottom depth zn (possibly zn → ∞) to the depth zk of the
boundary k. The gravity effect of such a “dyke” is, according to (Eq. 2.9.51),
δgnk = 2GρΔxln(rn/rk), where r is the distance from P to the dyke top or bottom,
and the effect of a layer or body bounded by zk−1 and zk is δgk = δgk−1 − δgk =
2Gρ Δx ln(rk/rk−1). The computational scheme will involve the proper definition
of all body or layer boundaries k as sequences of zk values, i.e. counted as zkj by
the additional counting variable j, summation for the contributions of each body or
layer and summing all body effects. For “large” r values several “thin dykes” may
be combined.

(3) “Thick” rectangular cross sections are large units of any size of which only
few are needed to approximate arbitrary geological bodies. The use of rather few
2D blocks is especially suitable for the trial and error approach because the gravity
effects change in a rather simple and obvious way with the possible changes of
such blocks in size and location. The rectangular shape restricts the flexibility. The
needed theoretical expressions (2.9.59 & 2.9.60) are derived in Sect. 2.9.7.4.2, from
combinations of vertical steps (Sect. 2.9.7.4.1).

(4) Vertical 2D templates are mentioned, mainly for historical reasons, as tools
for the estimation of the gravity effects δδδg of irregular cross sections, if not approxi-
mated by polygons. Such templates or overlay charts are centred on the observation
point P and consist of a pattern of intersecting lines such that area segments or
compartments are delineated. The segments are defined to contribute each the same
incremental effect, say Δδg, if the segment is “filled” by mass, or in other words,
if the template compartment covers the 2D body of density Δρ . The contributions
are counted and summed to render δg at P; the procedure is repeated at each sta-
tion. Such templates (similar to the horizontal ones for the estimation of the terrain
reduction, see Sect. 4.5.3.2) had been common before efficient computers became
available.

A classical template (KJ61, 152) consists of equidistant horizontal lines (Δz)
and radii (Δϕ), making trapezoids contributing each Δδg = 2GρΔzΔϕ where 2Δϕ
represents the solid angle (see Sect. 2.9.7.2). Coarse versions of such a template can
be drawn even by hand and may be used for quick semi-quantitative estimates of
gravity effects (see Sect. 5.6.4). The “occupied” compartments can be counted and
only partly occupied fractions can be estimated, the sum rendering the wanted effect
δg at P. Another type of vertical 2D template consists of equidistant circles and radii
of specially calculated angular increments around P, and similar templates exist for
the higher derivatives δWzx, δWxx, and δWzzz (KJ61, 157–161).

(5) Improvements to an undulated density contrast profile can be iterated with
the expressions given in Sect. 6.2.1.1 (6). The convergence depends on the ratio of
h/Δx (elevation of point above contrast profile over width of 2D mass element). If
h/Δx < 1, the influence of the laterally displaced elements is small and convergence
will be fast.
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6.2.2 Many Small 2D Model Units

Small 2D mass elements are infinite horizontal mass lines (Sect. 2.9.3.1) or thin
rods, cylinders or beams of rectangular cross section. The elements are assumed so
thin that only the product of density and cross sectional area will represent a line
density ρ+ (kg/m). They represent a finite approximation to integration by summa-
tion suited to the forward calculation of gravity effect of arbitrary 2D bodies but not
suited to direct interpretation. Thin layers and “dykes” of Sect. 6.2.1.2 (2) (“large”
elements) are in one dimension also “small” elements characterized by their surface
density (kg/m2). The advantage of the many small elements is arbitrarily high spa-
tial resolution and flexibility, but the disadvantage is the summation of small, but
very many rounding errors which must be carefully checked in all instances. The
expression describing the gravity effects of line elements (Eq. 2.9.7) is the simplest,
with or without “end corrections” (Eq. 2.9.8).

6.2.2.1 Direct Interpretation Methods with Many Small 2D Bodies

Large sets of elements, for example, in regular grids, would have to be strongly sim-
plified for direct interpretation. If the individual ρ+ values in a grid are prescribed
by functions of the coordinates x, z, a continuous density variation could be approxi-
mated so that certain parameters of ρ+(x, z) might be calculated directly from given
gravity anomaly values. In that sense, inversion of given gravity anomalies for the
parameters (Chap. 7), may be considered a “direct” method. Another scheme may
be iterative adjustment along the lines of Sect. 6.2.1.1 (6), where boundaries define
regions of different line densities ρ+ which can be shifted, for example, by addition
and subtraction (annihilation) or by conversion of mass lines.

6.2.2.2 Indirect Interpretation Methods with Many Small 2D Bodies

The indirect approach of trial and error with many “small” line elements seems more
“natural”. However, practical routines must be designed to efficiently handle large
sets of such elements when their densities are to be changed to better fit observed
gravity profiles. There is, indeed, no real difference between the indirect and the
direct approaches.

6.2.3 Two-and-a-Half Dimensional (21
2 D) Models

In order to avoid the theoretically unrealistic, strictly infinite structures, end cor-
rections (Eq. 2.9.8) for finite length of the structures can be applied, in which case
the models are called “two-and-a-half dimensional” or 2 1

2 D (KJ61, 144, 163–164;
GW65, 292). They are much in use, e.g., for building starting models for a full 3D



6.3 Three-Dimensional (3D) Approximation and Modelling 247

investigation. Beside the 2D cross sections of geological structures their lateral ex-
tent must be defined. For mass lines or thin rods the individual end correction are
uniquely given by the density beyond the ends (see Sects. 6.1.4 and 6.1.5). For com-
plicated, e.g., polygonal cross sections, it is not quite so simple, especially if the real
structural ends are variable and not abrupt.

Free software from various sources is available in the public domain which can
be found and downloaded through the internet (see, e.g. http://www.rockware.com
catalog/pages/grav2dc.html, http://www.wits.ac.za/science/geophysics/software.
htm by Gordon Cooper; useful for teaching purposes (P. Keating, pers. comm.,
2006). Another program is “Potent”: http://www.geoss.com.au/ which, after a few
days, will run in a demo mode, restricted to two bodies. The result can be saved as an
x, y, z file to be important into software as Geosoft; P. Keating (pers. comm., 2006)
considers it one of the best modelling package. Authored by Steven Sheriff, is the
3D software http://www.umt.edu/geosciences/faculty/sheriff/Sheriff Vita abstracts/
Sheriff software.htm. Internet-based information is short-lived, and the quoted web-
pages may be outdated or disappear any time, while new software will be offered
probably in quick succession. No software should be applied blindly.

6.3 Three-Dimensional (3D) Approximation and Modelling

6.3.1 Few Large 3D Model Units

Clearly, fixed body shapes are not very suitable for accurate quantitative interpre-
tation, since they are not flexible enough to approximate complex forms. Direct
methods should render location, size, depth and possibly shape and orientation of
large bodies from features of the gravity anomaly. In indirect iterative trial and error
more parameters can be incorporated.

The possibilities to parameterize 3D model geometry are treated in Chap. 2 and
expressions are presented for polyhedra, rectangular prisms, dykes, horizontal layers
bounded by depth contours, vertical cylinder ring sectors. 2D Fourier transforms or
wavelets and downward or upward continuation may be applied.

The above parametrizations can be adapted to direct or indirect interpretation
strategies. Direct methods require fixing of many model parameters to leave only
very few free if volume description requires too many parameters. Parametrization
by polyhedra by which any geometry can be approximated, requires compromises
between resolution and economy and is better suited to indirect methods. The op-
posite is true for specialized, more idealized forms as, for example, rectangular
prisms or cuboids; though less flexible in shape, they permit direct determination
of quantities as depth, depth extent and lateral dimensions and are economically de-
scribed, possibly in combination with smaller elements of the same type. In small-
body parametrization, more and more of these may be combined to larger ones,
depending, for example, on distance from the observation point.
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6.3.1.1 Direct Interpretation Methods with Few Large 3D Bodies

Any geometrical parametrizations, to be capable of direct parameter determination,
must be simplified to leave only one or few parameters free. Several interpretational
diagrams by GW65 are expressedly not very suitable. There are two exceptions to
this with some practical value.

(1) On the basis of the integral relationships (Sect. 2.7.6), GW65, 222–234, pro-
pose the expansion of given anomalies δg(x,y) into Legendre polynomials (see
Sect. 2.10.6.1) which can be related to characteristic quantities of 3D mass dis-
tributions as total mass and mass moments. These can be related to certain simple
geometrical shapes as rectangular prisms and tri-axial ellipsoids. This theoretically
interesting aspect has not gained practical importance, probably because geological
density distributions fit such simple models only poorly; it is also due to the country
rock inhomogeneneity. Moreover, in exploration too much idealization is not useful.
The total mass, say, of an ore body, More = ρoreV = Mδg(1+ρo/Δρ) follows from
the gravitationally identified total anomalous mass ΔMδg = VΔρ where ρo is the
density of the country rock.

(2) Diagrams for evaluating limited dykes are extensively treated by GW65,
273–282. Free parameters are, beside location and dimension (scale), density times
thickness Δρ∗ = Δρd, the ratio h/l(h = depth to top, l = length of dyke), dip angle
α, and horizontal length y∗. The diagrams shown by GW65 suggest that they are
applicable only in special situations.

(3) Depth and mass of large spheres and/or of the equivalent point masses can be
determined directly from anomaly amplitudes and half widths (Sect. 5.6.3.1), and
the horizontal coordinates follow from those of the anomaly centre of gravity. The
corresponding equations are given in Sect. 5.6.3.1. Separation of several such bodies
is, however, ambiguous (see Sect. 4.7.7).

(4) “Thick” and “thin” laterally limited dykes are 3D rectangular prisms or
cuboids (Webster’s New Collegiate Dictionary: “Math. A rectangular parallele-
piped”) equivalent to 2D “thick” rectangular cross sections and “thin” dykes. The
“thin” case is treated in (Sect. 6.3.1.1 (2)), the “thick” case is hardly amenable to
direct interpretation.

(5) A more attractive possibility of direct 3D interpretation exists for smooth
undulations of density contrast layers, e.g. in sedimentary basins. Application of
downward continuation of gravity anomalies (Sect. 2.10.5.3) in two dimensions
and of the equivalent stratum analogy makes it possible to calculate undulations
for given density contrasts. The ambiguities, for example, in the presence of several
density contrast surfaces, can be reduced if borehole density logs are available (see
GW65, 255–263).

(6) A single density contrast surface can also be calculated in 3D, as in the
2D case (Sect. 6.2.1.1 (6)), under the same limiting conditions. The direct method
is, by definition, to calculate only one improvement to the initial surface, which
can be a step in an iterative procedure, as sketched in the section on indirect
methods (Sect. 6.3.1.2 (5)). In analogy to the 2D situation (polygonal section,
“Talwani method” (Sect. 2.9.7.4.4; Talwani et al., 1959), parametrization of the
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density contrast surface can be in the form of polyhedra with plane triangles be-
tween the given points (x, y, z) (“triangulation”) expanded from a horizontal polyg-
onal rim. However, only one or very few points can be adjusted directly at a single
step to better fit the observations. The expressions for the numerical evaluation are
Eqs. (2.9.41, 2.9.42, 2.9.43).

Another possibility is to take small segments, for example, squares of dimension
a2 and to approximate their anomalous mass as rectangular discs of ΔρΔha2, Δh
is the depth improvement. It is assumed that the gravity anomaly values δg form a
regular grid with the points centred above the square mass elements at an elevation
h (which may vary from point to point). The “linear” simplification may be that
the effect of the surface improvement is limited in the calculation to only that of the
directly subjacent square, for which δg = GΔΩΔρΔh, where ΔΩ depends on h and
a, i.e. Δh = δg/(GΔΩ(h,a)Δρ). For a “reasonable” range of h/a values, ΔΩ(h,a)
can be approximated on the basis of Eq. (2.9.34) in Sect. 2.9.4.4. If h << a, ΔΩ →
2π, and Δh ≈ δg/(2πGΔρ), for h > a or h >> a, a better approximation would be

Δh ≈ δg(4/3)(h2/a2)/(πGΔρ) (6.3.1)

(derive this approximation in Task 6.1) but with increasing h, the influence of the
neighbouring mass elements becomes detrimental to the purpose of direct interpre-
tation. (see Sect. 6.3.1.2 (5)).

(7) For any task of routine application it may be useful to develop special direct
methods. As an example, diagrams were developed for cone-shaped craters as di-
atremes and maars (Sebazungu, 2005) described by parameters as depth of burial,
vertical extent, inclination of the walls, top and bottom radius (where these parame-
ters are not mutually independent). Input parameters are amplitude of δg, half width
or some equivalent quality etc. Although the directly determined values are only
preliminary, they may serve as a priori information for a more detailed optimization
(Chap. 7).

6.3.1.2 Indirect Interpretation Methods with Few Large 3D Bodies

Indirect interpretation by trial and error cannot be standardized for the determina-
tion of depth, shape and density of 3D mass anomalies. The analytical expressions
for the foreward calculations are presented in Sect. 2.9.6. For some purposes, graph-
ical methods with templates were used before the advent of efficient computers (see
Sect. 6.1.4). Methodological possibilities are briefly sketched here. The most flex-
ible parametrizations, suitable for analytical and numerical evaluation and approx-
imation of arbitrary shapes are probably the polyhedra (Sect. 2.9.6.2) and stacks
of horizontal polygonal discs (Sect. 2.9.4.2) by which given contour lines can be
exploited; for special cases, as “thin dykes” of laterally limited extent, equations
for planar elements (Sects. 2.9.3.3 & 2.9.3.4) can be derived by coordinate rotation
(Sect. 2.4.3.1). Cuboids and other regular (Sect. 2.9.6.1) bodies are less flexible to
fit realistic 3D shapes. Cylinders or cones can be taken for crater-like bodies.
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(1) Massive polyhedra (Sect. 2.9.6.2) with arbitrary complexity are generally ap-
plicable. One way is to first derive a set of vertical polygonal sections of anomalous
masses from geology or geophysical models. Then triangulation can connect the
sections. The gravity effects are finally calculated with expressions given by several
authors (IGMAS: Götze & Lahmeyer, 1988; Çavşak, 1992; Holstein et al., 1999,
Holstein, 2002a, b). Such methods permit a highly detailed description of 3D shapes,
but they require large numbers of geometrical parameters (coordinates) and the sen-
sitivity of the gravity effects to details and changes in detail may be low. Further-
more, detailed parametrization leads to the numerical evaluation of very many, very
small contributions to the total gravity effect of a polyhedron, such that rounding er-
rors may become a problem (see Holstein et al., 1999). Large numbers of parameters
restrict the possibilities of formal inversion (Chap. 7).

(2) “Thin” layers as horizontal sections through a body or layers are especially
suited for elevation or depth contours, for example, for caylculating terrain effects
(Sect. 4.5.3.2) or from 3D seismic reflection studies, which, however, are affected
by inaccurate velocities. The classical method is the approximation of the bound-
ary by a polygon (Sect. 2.9.4.2), and the calculation is done for straight line seg-
ments (Eq. 2.9.30; Talwani & Ewing, 1960; GW65, 302–303). For some smooth
curved contour lines that can be described mathematically, analytical integration
of Eq. (2.9.33) may be possible. Alternatively, for contours given by sets of x, y
points, approximation can also be done by computing the azimuth λ from P to any
xi, yi and Δλ consecutively. For each triangle, thus defined, mean z/r(λ ) values
(Eq. 2.9.33) are taken (instead of averaging r or R). Problems arise for points P near
a contour where special measures have to be taken Jacoby (1967). Earlier methods
(Goguel, 1961; Baranov, 1953, see also KJ61, 168–170) are based on the geometry
of the solid angle and corresponding diagrams.

The effects of oblique finite rectangular “thin” bodies or dykes can be calculated
from Eqs. (2.9.18 & 2.9.20) for the plane-normal and plane-parallel components,
respectively. The complete set of x, y, z components of the gravity effects is
given in (Eqs. 2.9.66 & 2.9.67). This applies to vertical dykes, as demonstrated
in (Eqs. 2.9.62 & 2.9.63), and requires coordinate rotation (Sect. 2.4.3.1) for
oblique dykes. Coordinate rotation is illustrated in the case of the oblique poly-
gon (Sect. 2.9.4.3) and is to be applied to a special rectangular plate (Eqs. 2.9.31 &
2.9.32). An equivalent expression is also provided by GW65, 226 (8–24).

(3) Large rectangular prisms (expressions given in Sect. 2.9.6.1) offer another
way of composing 3D models, however, less efficient for approximating geological
bodies. Trial and error in changing the prisms will concentrate on few big prisms.
A special form of bodies with round outline and steep walls is the vertical circular
or more general cylinder.

(4) Templates have been presented e.g. by KJ61, 155–160 (where the theoreti-
cal background and applications to estimating δg and some higher derivatives are
derived). The templates can be used to “manually” or “graphically” calculate ef-
fects of irregularly shaped bodies. The templates consist of intersecting lines such
that compartments are formed which have identical “incremental” gravity effects
Δδg. “Graphic” means that the body must be drawn, for example, in sections, and
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“manual” means that template compartments are counted, in which the body (i.e.
density Δρ) is present. Application to 3D problems is akin to, but more compli-
cated than, 2D templates (Sect. 6.2.1.2 (4)).

(5) The direct calculation of improvements to an undulated density contrast sur-
face (Sect. 6.3.1.1 (6)) is also the basis of trial and error. The convergence depends
on the ratio of h/a (a = side length of square mass element, h = elevation of point
above element). If h/a < 1, the influence of the laterally displaced elements is
small and convergence will be fast, but it slows or deteriorates with h growing to
h/a >> 1.

(6) Some interesting formulae for special geometries are documented by KJ61,
154–155, 189–190; they include circular disks and rings, cones and the paraboloid.
The solutions are based on the solid angle as described in Sect. 2.9.1.1 and some of
them are treated in Sect. 2.9.3. They are simple only for axial observation points,
otherwise they lead to elliptical integrals.

6.3.2 Many Small 3D Model Units

Small elements have advantages and disadvantages for modelling and may be rect-
angular prisms, small thin mass plates, thin vertical rods, spheres, mass points, etc.
Mathematical expressions for their individual gravity effects may be simple or in-
volved (see Sect. 2.9). The numerical routines can be economized in many ways.
Instead of calculating a mathematical expression for each element, it is feasible to
first calculate tables of the effects versus some parameters; in the actual computa-
tion, they can be interpolated from the table which may be even more accurate than
evaluating complex expressions each time.

Generally a compromise has to be found between local resolution and efficiency.
Elements close to a station P can be subdivided and elements far removed from P
may be combined. Elements may be skipped altogether, or different expressions can
be used. It is necessary to analyse the errors of the computations, especially round-
ing errors, with the correct expressions and with various possible approximations.
Approximations must be checked for their systematic errors in connection with the
large sums involved. Exact total mass of an element and depth of its centre of grav-
ity are the most critical aspects. Handling many mass elements requires organisation
of the input, for example, of density contrast boundaries, such that each element is
characterized correctly and/or can be easily changed.

6.3.2.1 Direct Interpretation Methods with Many Small 3D Bodies

“Direct methods” in the classical sense cannot handle large numbers of para-
meters. The only thing which may be called “direct” is “automatic” algorithms
leading to a model without human interference and which might also be consid-
ered an automated “indirect” method. Monte Carlo search might also be included
(Sects. 2.10.9; 7.3.3.2).
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6.3.2.2 Indirect Interpretation Methods with Many Small 3D Bodies

Also for manual trial and error, elements must not be chosen too small. To be
tractable, handling of many small elements must be programmed. Elements can be
changed for density by random number routines applied to regions of density con-
trasts in a way to “move” the contrast boundaries, and large sets of models may be
generated from which only “good ones” are accepted. Two possibilities to parame-
terize 3D models are briefly discussed: (1) point grids and (2) grids of vertical rods.
Other possibilities can be invented with semi-small mass elements, as layers (see
2D case, Sect. 6.3.1.2 (2)) defined by their limiting contours.

(1) Point grids can realize any resolution, replacing integration by finite ele-
ment summation. The elementary prisms Δx ·Δy ·Δz may be approximeted by point
masses m (Sect. 2.9.2.5) where density is given by ρk = mk/(Δx ·Δy ·Δz) or the
full theory of rectangular prisms (Sect. 2.9.6.1) can be applied. With efficient com-
puters, the possibly large numbers of elements need not present a problem. The
computation of the point effects δgi can be speeded up by applying efficient inter-
polation with functions in the parameter space of distance r and “sight angle” ϕ .
Densities can be assigned by functions of the coordinates, Δρ(x,y,z). The gravity
effect at an observation point P(xi,yi,zi) is then obtained by numerical convolu-
tion of δg(Δxik,Δyik,Δzik) with Δρ(xk,yk,zk) where Δxik = xk − xi, etc. Spectral
convolution methods (Sect. 4.7.4.2) permit fast calculations. The spectral treatment
offers upward or downward continuation (Sects. 2.10.5.3 and 6.2.1.1 (5) & (6)),
especially for layers at z = zl of the present 3D grid where density is given by
Δρ(x,y,zl).

(2) Arbitrary bodies can be described also by vertical rods along which the den-
sity varies, for example, in discrete steps. Assume that in a suitable model “box”
all relevant density contrasts Δρk versus a common background density ρo are de-
scribed by a regular x, y grid of vertical rods or mass lines: (xi = iΔx,yj = jΔy; i = 1
to n, j = 1 to m); each rod intersects the density contrast surfaces at a sequence of
zijk values ( j = 1 to p) where all Δρk = ρk+1 −ρk values are specified. If at some
location a layer k (boundaries k, k – 1) is missing, zk = zk−1. This permits a unique
treatment as long as there are no overturned folds. Cases where a given density
contrast is met by a rod more than once have to be treated separately.

The fundamental mass element for the calculation is the rod extending from
depth zk to infinity: according to (Eq. 2.9.10) δg(l) = Gρ+/ro where ρ+ is the line
mass (kg/m) and ro = (Δx2 +Δy2 +Δz2)1/2 (Δ stands for the difference between
rod top and P) is the distance between the top of the rod and P. The expression is
simple, and the computational efficiency can be increased further by tabulating r
values versus Δx,Δy and Δz and interpolating them. In the “far field” elements can
be combined. In the “near field” a refinement of the standard rods is achieved by
interpolating neighbouring zikj values onto a finer grid, so that the errors of the mass
line approximation never exceed a preset threshold. Efficient interpolation methods
or fitting zk surfaces to the zijk values can be applied. Alternatively, the nearby rods
my be replaced by rectangular prisms.
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6.4 Summary: Strategies of Model Building; from Trial
and Error to Inversion

Quantitative interpretation requires calculation of gravity effects of arbitrarily shaped
bodies to any desired accuracy. However, interpretation goes beyond that. The
aim is to limit the “model space” to geologically probable models and their error
bounds. Here strategies and methods to approach or approximate geological struc-
tures are treated. The emphasis is on the possibilities that exist to build the available
parametrizations into interpretation schemes. Several programs are available, often
in the public domain. Here, the basis for understanding existing programs, but also
for designing new methods is provided.

Errors or limits of certainty characterize probability distributions; they are of-
ten assumed to be Gaussian. What is known is the goodness of fit composed of the
residuals encountered in modelling and interpretation; they contain data and model
errors. Direct methods largely ignore the residuals; they usually render as many
model parameters (e.g. mass and depth) as data points are used (e.g. amplitude and
half width), but they are selected from larger sets of observations. If averages are
used also their standard deviation can be estimated. The indirect methods of trial
and error largely build on experience and the “error” or “misfit” of the residuals are
taken as the basis for subsequent trials. Visualization of the residual patterns and
a priori knowledge of geology are important. Trial and error can be idea provok-
ing and leads to optimization and inversion toward the minimum sum of squared
residuals or to Monte Carlo methods. It is always an advantage if the interpreter
combines the “manual” approach with mathematical methods. Human creativity is
in many respects superior to algorithms and machines. Apparently small standard
errors of the a posteriori model variables are not a sufficient condition for the results
to correctly describe the real geology, or in other words, precision is not accuracy.

6.5 Examples

Examples explain concepts better than any theoretical discourse. Qualitative and
semi-quantitative interpretation (Sect. 5.7) prepared the way to quantitatively mod-
els with more detail to be derived with the outlined methods. The cases of Sect. 5.7
(except Sect. 5.7.9) are taken up again with an equivalent numbering, mostly by
trial and error (since optimization and inversion are left to Chap. 7). The examples
are chosen mainly from published work, with the aim to give insights into how the
models were derived, without using “fully computerized” and “automated” meth-
ods, and they are only sketched, and readers are referred to the original work and
references cited therein. Classical trial and error does not hide the working mecha-
nisms. To narrate the search can be instructive. Obviously one generally goes from
simple models with few components to more and more detail and complexity, fol-
lowing geometrical, physical and geological guiding principles (Sects. 5.3, 5.4, 5.5).
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The aspects treated in the present chapter may differ in direction and emphasis from
the previous chapter. Two examples will be followed up in the last chapter.

6.5.1 Messel Maar Crater and Fault Zone (MFZ)

The Messel pit of oil shale, NE of Darmstadt, Germany, was formerly mined for
energy and chemical exploitation and is now a UNESCO world heritage site for its
excellent Eocene fossils. Figure 5.7.1a shows the BA as embedded into the regional
field which reflects the Messel Fault Zone (see below). Bituminous laminated sedi-
ments fill an approximately sigmoid hole in Variscan crystalline rocks of 0.7×1km2

dimension with apparently steep walls. At the time the geophysical investigations
started, the origin of the oil shale basin was debated, even its nature as a crater. The
power of gravity as a qualitative exploration tool was demonstrated as the anomaly,
complemented by magnetic and other data, could hardly be interpreted other than
by a maar-like crater (Jacoby et al., 2001, 2003), which was subsequently proven by
drilling.

The Messel oil shale pit and the question of its origin were introduced in
Sect. 5.7.1. The aim of the gravity study was to clarify the nature and origin of
the basin: a relic of a once much larger lake? But of steep-walled crater shape? Of
volcanic or impact origin? Gravity has the potential to reveal shape and depth ex-
tent, and accompanying magnetic measurements can test for volcanic products as
magnetized crater fill and relic tuff deposits.

A few more facts;

• 1 km wide, rather deep “basin” filled with lake sediments deposited under anoxic
conditions about 50 Ma ago in Variscan country rocks;

• laminated sediments, at depth with clastics, to 230 m depth below the original
surface;

• shallow features and Quaternary sediments removed by erosion and mining;
• located on the Messel Fault Zone (MFZ) expressed as a linear gradient zone

(Fig. 5.7.1b) accompanied by mapped volcanics;
• observed negative gravity anomaly of about –7 mGal (Fig. 5.7.1a) coinciding

with the basin, accompanied by a smooth negative magnetic total field anomaly.

Qualitative estimates of Sect. 5.7.1 pointed to a maar crater on the MFZ (oil
hale density contrast –1300kg/m3 and thickness ∼130m (below the pit bottom),
and the existence of a fault zone expressed by the linear north-easterly trending
gravity gradient of 15 mGal drop to the NW. Quantitative gravity modelling and
interpretation were carried out by Moos (1994). 2D and 3D modelling was com-
bined to simultaneously fit the Messel anomaly (1) and the gravity gradient zone
(2). (1) To test the crater hypothesis, the location, depth extent and dimension of
cylinder-shaped low-density bodies (Sects. 6.3.1.2 (3), 2.9.2.2) were adjusted to fit
gravity as well as the surface and drilling information. Several stacked cylinders
of radii, decreasing with depth, can approximate the crater shape, and the density
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could be varied from one to the next to simulate downward densification or decreas-
ing negative density contrast, but such a variation was hardly resolvable in view of
the correlation between radius and density. Cylinders were parameterized as polyg-
onal horizontal discs that could approximate circular, elliptical, sigmoid and other
shapes. Figure 6.5.1 presents an acceptable example: three nearly co-axial circular
cylinders have a density contrast versus country rock of –1170kg/m3 (a priori esti-
mate: –1300) and a total thickness of 170 m. The MFZ was fitted by a fault dipping
∼ 50◦ NW and extending to 560 m depth between two blocks with a density drop of
600kg/m3 to the NW (a priori 1 km vertical fault, 360kg/m3; Sect. 5.7.1). However,
geological evidence is for a much smaller fault drop. The problem was resolved by
introducing a steep narrow body of slightly reduced density (–100kg/m3) travers-
ing below the Messel crater and extending with SW-NE-strike to several kilometres
depth; the low-density body separates slightly denser rocks (+100kg/m3) to the
SE from those to the NW, on which a layer of Permian sandstones rests, which are
250kg/m3 less dense and, on average, a few tens of meters thick, as revealed by
local shallow drill holes. This latter model is not shown in the figure.

The magnetic anomaly (minimum –300 nT) was modelled by Laubersheimer
(1997) with the cylinders and it was found that an inversely magnetized body below

Fig. 6.5.1 A NW-SE section through the Messel Maar crater and across the Messel Fault Zone
(MFZ). The crater is represented by three not quite coaxial cylinders (shown in axial sections).
The density contrasts were calculated by LSQ adjustment; after Moos (1994)
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the sediments would fit the data, but the shallow non-magnetic hole of the crater em-
bedded in positively magnetized country rock could similarly fit the data, if the mag-
netisation is tapered, for example, by deep weathering of the wall rocks. The models
can be tested by deeper drilling. A research well was drilled near the centre (UTM
coordinates R31.30, H82.75; in Fig. 6.5.1 at x ≈ 1120 m) and it did hit the modelled
magnetized tuff body at approximately the predicted depth and the diatreme breccia
below, the latter at a depth of about 400 m under the surface. Quantitative gravity
and magnetic interpretation of the observed anomalies, complemented by geologi-
cal observations, served well in the investigation of, and essentially demonstrating,
the existence of a maar-like crater (Jacoby et al., 2001, 2003).

6.5.2 Salt Structure of Helgoland

For the simple estimates on the salt structure under Helgoland of Sect. 5.7.2 a point
or spherical mass was assumed, and arguments for a 2D triangular cross section
were given. But enough information exists such that a more quantitative fairly de-
tailed 3D interpretation can be attempted by trial and error, supported by a LSQ
density optimization. The island is built of NE dipping Bunter sandstone. An in-
complete sequence of Mesozoic strata forms a well mapped arch, and a > 3000m
drill hole had penetrated these strata and the underlying Permian rock salt without
hitting its Pre-Permian basement; the drilling data were used to complete the 3D
model. SW of the island a sea bottom depression probably marks the culmination of
the salt either as a graben and/or as an exsolution feature. Its farther boundaries and
its bottom had to be roughly inferred, e.g. from the BA map.

Detailed gravity measurements on land complemented by marine data, shown
in Fig. 5.7.2, fit well into the surrounding BA. Densities were measured on Bunter
sandstone samples of the Helgoland rock; the initial densities of the other strata had
to be estimated from the known rock types. Each body of the 3D model was approx-
imated by horizontal layers for the gravity calculation according to Sects. 6.3.1.2
and 2.9.4.4 (Jacoby, 1967). The initially calculated effects clearly demonstrated that
least-squares density fitting to the observations would greatly facilitate the trial and
error adjustment of the geological structures, and the resulting density contrasts
(versus rock salt) led to very plausible final densities with small standard errors of
order 10kg/m3 calculated from the gravity fit with a standard deviation of about
±0.1 mGal. The residuals (not shown here) are still not quite random, but their spa-
tial variation of about 0.1 mGal undulations strikes as the sedimentary strata and
indicates small non-modelled internal structure (Jacoby, 1966). The optimization
of the densities is a first step toward inversion. The calculated density of the ex-
posed sandstone body closely agreed with the experimental density determinations
of more than 100 kg of samples.

The final 3D block model of the arched Mesozoic succession is presented in
Fig. 6.5.2 based on the gravity modelling and on the geological surface and drilling
data. The succession above the Permian salt is Bunter sandstone (the deepest of
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Fig. 6.5.2 3D block diagram of the uplifted supra-salt dome sedimentary structure of the Hel-
goland area; sub-salt structure hypothetical. Data: surface geology, drill hole data. Legend – kr:
Cretaceous; m: Middle Triassic limestone Muschelkalk; so, sm, su: Upper, Middle, Lower Bunter
sandstone, respectively; z: Permian salt Zechstein; Düne: sand dune island; after Jacoby (1966)

which is exposed in the island), “Muschelkalk” (Middle Triassic limestone) and
Cretaceous limestone (the latter representing the basement of the separate island
of sand dunes, called “Düne”). Upper Triassic and the Jurassic are missing. The
model is fairly detailed as adjusted by quantitative trial and error fitting. The one
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acceptable model found is not unique and the whole model space remains unknown.
A hypothetical sub-salt fault and the inaccessible “main fault” SW of Helgoland are
uncertain; but Cretaceous limestone exposed at the seafloor SW of Helgoland at
the edge of the depression, mostly hidden by sediments and water, proves a large
vertical offset versus the Bunter rocks of the island. Seismic data were not available
at the time of the interpretation.

6.5.3 Anstruther Batholith: Bancroft Area, Canada

The Anstruther batholith is part of a SW-NE trending granitic arch of gneiss domes
and batholiths in the Bancroft area, Ontario, Canada, introduced in Sect. 5.7.3,
where a simplified BA map of the area was presented (Fig. 5.7.3; W. Jacoby, unpubl.,
1970). This part of the southern crystalline Canadian Shield was formed in the
Grenville orogeny about 1 Ga ago, and the rocks exposed in the area today were
then deeply buried and heated. The metamorphic grade increases westward. Here,
a 2D quantitative interpretation of the Anstruther batholith is presented as a de-
tailed geological section constructed by trial and error fitting of the gravity pro-
file (Sect. 6.2.1.2 (1); Fig. 6.5.3); the geological-geophysical profile extends on
both sides to include the Glamorgan gneiss dome in the west and the Methuen
batholith in the east. 2D modelling is considered adequate because generally the
ratio z/r, i.e. depth over horizontal radii of curvature of the structures, is small
(Sects. 5.3.1; 5.6.3.2); based on the estimates from the qualitative interpretation in
Sect. 5.7.3, the depth extent of the density variations is generally only a few kilo-
metres, while the radius of curvature of the important features is mostly >10km.
But in quantitative modelling the gradual density variations must be taken into ac-
count from granite to the Grenville metasediments as marble, biotite-rich gneisses
and amphibolite.

A priori knowledge encompasses surface geology including rock type exposure,
contact dips and detailed magnetic anomalies. Conceptual initial modelling of folds
or “downward construction” from the surface data is part of the modelling proce-
dure. The contacts mostly dip away from the centre of the batholith, and rudimen-
tary fold structures are evident as mafic mineral bands or schlieren within the granite
body. Some 8 different rock types are distinguished where each type is defined as
one uniform unit, though often geometrically disjoint. Gravity effects are calcu-
lated with the Talwani method (Sects 2.9.7.4.3 & 2.9.7.4.4). The density contrast
between granite and the majority of the wall rocks is initially assumed to be about
Δρ ≈−150kg/m3 with variations of up to ±100kg/m3. The initial density values
are adjusted by linear least-squares fitting the observations. The a posteriori absolute
densities ρk(post) are computed from the adjusted density contrasts Δρk = ρk – ρo,
the a priori densities ρk(pre) (e.g. from measured samples) and the mean reference
density ρ

o
= Σρko/m where m is the number of independent densities and the differ-

ences between the ρok = ρk(pre)+Δρk(post) result from errors of the ρk(pre) and
the fact that all are referred to a common background ρo (Sect. 6.1.5.1 (2)).
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Fig. 6.5.3 Upper crustal section across the Anstruther batholith, Bancroft area, Ontario, Canada.
Data: geological maps, densities from rock samples, gravity measurements, partly unpublished;
only the rock units 1, 2, 6, 7, 8 of the legend occur in the section shown. The density results have
errors of < 50kg/m3, but their mean relative differences are probably more accurate

The section shown in Fig. 6.5.3 is the result of some 5–10 trial and error itera-
tions. The observations are fitted to within < 0.5mGal. The granitic bodies appear
to rise from a deep “layer” and are therefore termed “batholiths”; only in the eastern
greenschist terrain, some bodies have the appearance of magmatic intrusions into
greeschist facies cover rocks (not in the section). Generally the metasediments ap-
pear to be pendants into a continuous “granitic layer”, reaching no more than ∼2km
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depth, but the density transition or the “halo” with intermediate densities may reach
about 6km. In agreement with the qualitative interpretation (Sect. 5.7.3), the depth
variation of the metasediments is suggestive of the structure to be an undulating
density boundary with two dominant wavelengths of the major granite updomings
and smaller scales of folding.

6.5.4 Rhine Graben

The Rhine graben (Fig. 5.7.4) was introduced in Sect. 5.7.4; although bounded by
lateral master faults on both sides, it is not quite symmetric. The detailed inter-
pretation, presented by Prodehl et al., (1995), is shown in Fig. 6.5.4 together with
the BA profile which forms a wide asymmetric positive “arch” and a relative low
over the Rhine graben. The interpretation method is that of Sect. 6.2.1.2 (1) includ-
ing studies in 2D, 2 1

2 D and 3D. The a priori information comes from references
quoted by Prodehl et al., incorporating a large amount of seismic data, refraction
experiments, teleseismic studies and a detailed reflection line in the framework of
the French ECORS and the German DEKORP programs. The gravity minimum is
flanked by 5–10 mGal highs over the graben shoulders of the Black Forest and the
Vosges. On the basis of the seismic data, the Tertiary Rhine graben sediments have

Fig. 6.5.4 Crustal section across Rhine graben at latitude near Strasbourg. Structure based on
geological and seismic information (after Prodehl et al., 1995)
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a thickness of only 1–1.5 km (instead of the 2.4 km estimated in Sect. 5.7.4 on the
basis of a single density contrast of –200kg/m3). A stronger density contrast of
about –300kg/m3 and additional 1 km of pre-rift sediments explain the difference.
The uppermost crustal density undulations of about ±100kg/m3 about an average
of 2660kg/m3 are partly based on geological observations, partly guessed to fit the
corresponding BA undulations.

Outside the graben, the Moho had been estimated in Sect. 5.7.4 from gravity
alone to drop 2.5 km to the west and > 6km toward the Alps. It is now (Fig. 6.5.4)
taken from the seismic data to drop from 25 km below the graben to 30 km in the
west and to 32 km toward the Alps. The main discrepancy with the previous es-
timate in the west is explained by a hypothetical high-density lowermost crustal
body. Generally, this model is founded on more data than that of Sect. 5.7.4. The
interpretation does not invoke a low density mantle body below the graben which
had been postulated earlier to exist. The interpretation is a case of classical trial and
error fitting with a large amount of guiding data.

6.5.5 The SE Iceland Shelf Edge

As outlined in Sect. 5.7.5, the gravity anomalies, i.e. FA, also BA and especially the
residual BA, rBA (Moho-effect subtracted), all display a dipolar feature at the SE
Iceland shelf edge with a high above the shelf break and a low above its bottom. In
the semi-quantitative estimate it was treated as an edge effect of a sharp vertical 2D
boundary between two adjacent crust-upper mantle structures of balanced vertical
density distributions (Fig. 5.7.5, see Sect. 5.6.8). The data sources and geological
background information are given by Fedorova et al. (2005). The 2D models pre-
sented are adequate since the SE Iceland shelf is very nearly straight. In this chapter,
several experimental initial models, based on different geological concepts are in-
vestigated with the method outlined above in Sect. 6.2.1.2 (1), and in Sect. 7.4.2 one
of these concepts is subjected to a more detailed inversion.

Beside the transition from land to sea, the isostatic edge effect fits the rBA data
rather convincingly (Sect. 5.7.5). But the separation of effects of the Moho and the
edge is not unique. It can be taken as a starting model of a more thorough quanti-
tative interpretation. Several other geological scenarios are sketched in Fig. 6.5.5.
A non-isostatic edge (1) is fitted to the rBA, and the Moho model and water body
are shown only for comparison. (2) Another geological idea is shelf erosion, for ex-
ample, by glacial abrasion and corresponding uplift of a positive density gradient,
evident in an enhanced average crustal density, coupled with sediment deposition at
the foot of the shelf slope; the BA has been fitted to this model including the Moho.
(3) Densification of the upper crust might also result from increased volcanism dur-
ing a phase of increased plume activity, resulting in forward building of the shelf,
again, coupled with light oceanic sediments; here rBA was fitted, and a small ad-
justment of the Moho density contrast was permitted. (4) Finally a non-isostatic or
uncompensated edge flexure and rotation is shown, possibly resulting from torques
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inherent in the lateral density variation (Jacoby, 1978) and uplifting the outer shelf
and slightly depressing the foot of the slope; the rBA was fitted. LSQ adjustment
of the density contrasts was applied speeding up the trial and error process. These
models can be complemented by other ideas of geological evolutionary processes.
Traditional trial and error interpretation cannot fully explore the wide range of mod-
elling possibilities and does not solve the non-uniqueness problem. It becomes also
obvious that more thorough a priori information is needed.

6.5.6 Spreading Ridges

Before the advent of seafloor spreading, ocean ridges were considered submarine
mountain belts with crustal roots, but then it was realized that hot, low-density mate-
rial rises diapir-like and explains the ridge topography (Jacoby, 1970). In Sect. 5.7.6,
a qualitative estimate for Reykjanes Ridge of a density anomaly of –30kg/m3 for an
assumed 100 m depth extent was interpreted with a temperature anomaly of about
+300K. Quantitative gravity modelling (2D: Sect. 6.2.1.2 (1)) has to take into ac-
count additional a priori information, mainly data on bathymetry and from seis-
mic studies of crustal structure which shows the Moho to rise towards the ridge
axes, instead of dipping with a thickening root. The Reykjanes Ridge was investi-
gated by many workers (see Jacoby et al., 2007, and references quoted there). Here
an interpretation of gravity across two ridges is reproduced: the rather slow Mid
Atlantic Ridge (MAR: Fig. 6.5.6a), and the fast spreading East Pacific Rise (EPR:
Fig. 6.5.6b). The 2D model of a triangular-shaped low-density body of hot rising
asthenospheric mantle material from under the diverging cooling and thickening
plates was adopted and adjusted by trial and error (Jacoby, 1978, where the avail-
able a priori information is quoted). Again, 2D is well justified, although the struc-
tures reach more than 50 km depth. Fitted was a modified BA reduced for crustal
structure, i.e. crust was, so to speak, first “filled up” to mantle density by calculation
(Sect. 4.5.3.1). The resulting gravity anomaly should essentially reflect the effect of
the asthenospheric wedge.

The shape of the asthenosphere wedge is taken as an equivalent to the density
distribution inherent in the isotherms of cooling plates, which should be quite sim-
ilar in both ridges if normalized to a common spreading rate. It is the physically
correct temperature model (McKenzie, 1977, but the asthenospheric wedges is a
suitable equivalent. For the MAR with a wedge of 60 km height Δρ was found

�
Fig. 6.5.5 The SE Iceland shelf, compare Fig. 5.7.5. Four different model types portraying differ-
ent geological processes which might have formed the shelf. (1) Non-isostatic edge fitted to the
residual Bouguer anomaly, rBA; Moho and water body shown for comparison; (2) fit of BA: glacial
abrasion causing uplift and enhanced average crustal density, coupled with sediments at the foot of
the shelf slope; (3) fit of rBA: dense upper crust due to increased volcanism and forward building
of shelf, coupled with light slope sediments; (4) fit of rBA: fully non-isostatic edge bending or
rotation, uplifting the outer shelf and depressing the slope (see text)
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Fig. 6.5.6 Crust-upper mantle sections of spreading ridges, (a) Mid Atlantic Ridge (MAR), (b)
East Pacific Rise (EPR); the sections are based on crustal seismic information (in boxes: seismic
P velocities in km/s) and on the concept of thickening lithosphere and rising asthenosphere (after
Jacoby, 1975)

to be about –120 kg/m3; this is a high value which, for a height of 100 km, would
be reduced to about –70kg/m3, still exceeding estimates for the Reykjanes Ridge.
For the EPR a much lower density contrast of –50kg/m3 for the central wedge
with, however, only 30 km height was obtained (only –15kg/m3 if the height were
100 km).

The discrepancies between the preliminary estimate of Chap. 5 and the present
models reflect the limitations of rough estimates, but the differences between the
ridges seem substantial enough to be significant. The MAR and EPR are different,
for example, in divergence rate, plume occurrence and dynamics. The slow spread-
ing Atlantic is characterized by many near-ridge plumes that inject hot and possi-
bly volatile-rich material into the asthenosphere, thus enhancing the melting and
the density deficit, while the fast spreading Pacific is also driven by slab pull such
that the asthenospheric upwelling might lag behind. The physically more adequate
model of the lateral cooling density anomalies (anomalous isotherms; McKenzie,
1977) is treated by Jacoby & Çavşak, (2005).

6.5.7 Mantle Plumes

Mantle plumes are, by definition, narrow 3D structures rising from great depth,
many from the core-mantle boundary at 2900 km depth, but even recent tomographic
pictures are not yet focussed enough to be conclusive (Montelli et al., 2004; Nolet
et al., 2005). The main problem is that their associated anomalies are hardly known
because they cannot be clearly isolated from the effects of other inhomogeneities
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and at the surface the effects of their deepest parts are too weak and spread out
too much. The “plume signal” shown in Fig. 5.7.7 is an average found by decon-
volution for a global set of 33 hotspot locations (thought of as delta functions). It
is positive at the centre with a negative ring around, indeed suggestive of a plume
dipole. In Sect. 5.7.7 it was qualitatively compared with the theoretical isostatic
(“Airy”) plume “dipole” of Sect. 5.6.9.3.

In the earlier qualitative interpretation attempt (Sect. 5.7.7) it was argued that
both the central gravity high and the negative rim are broader than the theoretical
effects of the “Airy plume dipoles” of section Sect. 5.6.9.3, and in addition, both
are embedded in a wide positive gravity anomaly. Furthermore the central high is
much lower than shown in Fig. 5.6.5b. Plume models should be based on reliable to-
mographic images and/or on dynamic models rendering the dynamic surface uplift
associated to positive gravity effects which, however, depends on poorly known rhe-
ological parameters. A preliminary 3D model in Cartesian coordinates is taken to fit
the gravity “signal” of Fig. 5.7.7. The mass balance between the plume mass deficit
and the uplifted mass excess need not be realized in a ductile dynamic system in a
continuous process of adjustment. The following model components deviate from
the above simple model: (1) the uplifted topography is much lower on average and
spread out laterally to, say, 500 km from the centre; (2) since a deep plume itself
cannot explain the broad negative rim, a plume head is assumed to extend later-
ally, or flow out, from its centre, arbitrarily assumed to a distance of r = 1000km,
50 km thick and with a density contrast of only −3kg/m3 (but only the product of
thickness and density contrast can be significant); (3) the plume itself extends ar-
bitrarily from 100 to 600 km depth with a radius of 100 km and a density contrast
also of –3kg/m3, however, its influence is negligible (see Sect. 5.6.9.3); (4) an arbi-
trary “deep” mass has been assumed at 1000 km depth to fit the very broad gravity
high which may be related to the plume clustering. It should be emphasized that
the model components partly compensate each other in their effects, as inherent in
the dipole nature (causing problems), and that any details of the surface-near mass
distribution, normally considered in the Bouguer reduction, are ignored here.

A reasonably fitting model (Fig. 6.5.7) has some similarity with the Iceland
plume as imaged by seismic tomography (Wolfe et al., 1997; Foulger et al., 2000),
except for its additional plume head and the “deep positive mass” which both cannot
be “seen” in the seismic images. The numerical values of the model parameters are
shown in the figure and given in its caption. The subdued and spread-out uplift and
the plume head seem to remain somewhat relevant; any topography caused by in-
creased volcanism is totally ignored. The model is not “mass balanced” if the “deep
mass” is neglected.

6.5.8 Tonga-Kermadec Trench, Subduction and Back Arc Basin

A gravity profile across the Kermadec trench, island “arc” and back-arc basin was
introduced in Sect. 5.7.8 and shown in Fig. 5.7.8 with a much simplified model. The
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Fig. 6.5.7 Simplistic Cartesian plume model (shown in 10-fold vertical exaggeration to only
400 km depth) which can approximately explain the average plume signal of Fig. 5.7.7 (13 points).
The model consists of a vertical circular cylinder of density contrast Δρ = –3kg/m3, radius
r = 100km, depth extent from z = 100–600km, which has a head, also cylindrical (Δρ = –3kg/m3,
extending laterally to r = 1000km and in depth from z = 100–150km); where the two bodies over-
lap, the density contrast is Δρ = –6kg/m3. The uplifted topography (grey, schematic, vertical
exaggeration 250 times that of the model), assumed to be radially spread out in conical shape, is
modelled as a stack of 4 circular disks (r = 500, 300, 200, 100 km; each Δz = 15m thick and of
density ρ = 2500kg/m3). In addition, a “deep” mass (not shown) is modelled as a 2D body of
triangular cross section at about 1000 km depth and of density contrast of about 0.5kg/m3; it has
no significance other than to fit the broad 2 mGal gravity high around the “mean plume”

descending slab was assumed to be unknown(in the early 1960s) and the positive
FA and especially the BA was qualitatively interpreted by a mass line, directly ren-
dering its depth and the mass excess. The quantitative interpretation includes the
a priori knowledge of the subducted slab (Fig. 6.5.8). Also included is the back-
arc basin underlain by thin lithosphere and by hot low-density mantle upwelling
as well as bathymetry and crustal structure. An early interpretation by a 2D model
(Jacoby, 1975), based on references quoted there, serves here as an example for
modelling by trial and error (2D approach of Sect. 6.2.1.2 (1)). A satisfactory fit to
the available data was achieved. The lower part of Fig. 6.5.8 shows, with no ver-
tical exaggeration, the slab and diapir structure assumed in a section; the top part
shows the FA and BA (Fig. 5.7.8). The slab geometry is constructed from the deep
seismicity; the overlying diapir was not geometrically well constrained, but its ex-
istence and approximate extent was inferred from strong attenuation (low Q) and
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Fig. 6.5.8 Upper mantle and crustal section across the Tonga-Kermadec subduction zone; data
basis: slab constructed from intermediate and deep seismicity, lithospheric thickness assumed; low
Q, low velocity, low density diapir from seismic data, crust from a few seismic refraction lines
(after Jacoby, 1975, and references quoted there)

low seismic velocities. The crust, shown in the middle part of the figure with tenfold
vertical exaggeration, is based on seismic refraction experiments.

The model consists of four model units: upper, lower crust, slab and diapir, and
the geometry was adjusted in several trial and error steps and alternating linear
least-squares fitting to the BA for the density contrasts Δρ versus “mantle”. The
geometrical adjustments in fitting gravity generally amounted to <4km vertically
in the crust and up to 15km in the slab and diapir. The results fit the observations
to about ±5mGal (5% of the BA variation) which was considered adequate. From
the density contrasts total densities were calculated: 2700, 2900 and 3200kg/m3

(with error bounds of <100kg/m3) for upper and lower crust and uppermost man-
tle, respectively; the slab and diapir density contrasts versus mantle came out as +30
and –20kg/m3, respectively (error bounds <10kg/m3). The example demonstrates
that quantitative gravity interpretation with well constrained a priori information can
lead to dynamically relevant density models which, in this case, have stood the test
of later studies fairly well. The Cartesian 2D geometry of a 500×1000km2 section
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embedded in a spherical earth with a radius of only about ten times the model di-
mensions causes no gross errors.

6.5.9 Mantle Convection

Mantle convection, qualitatively discussed with very simple estimates in Sect. 5.7.9,
is not followed up in this chapter more quantitatively. It would require extensive dy-
namic convection modelling in spherical coordinates (see, for example, to Schubert
& Turcotte, 2001).

6.6 Summary of Chapter 6

Quantitative gravity interpretation requires accurate forward calculation of gravity
effects of assumed, arbitrarily complex models. The mathematical expressions de-
rived in Chap. 2 provide the basis for the computational strategies and methods
described in the present chapter. They are ordered according to the geometrical as-
pects of two- and three-dimensionality and the division of the model space into few
large or many small mass elements. Methodologies and strategies emphasized and
organization, assemblage and execution of the calculations are discussed. It is con-
sidered important to concentrate on model aspects which have significant gravity
effects and are thus be meaningful. Modelling of subtle details is not given prior-
ity, although there are no principle limits to including details. It is a question of
economy of quantitative modelling and interpretation.

Available software for 3D, 2D and 2 1
2 D gravity (and magnetics) modelling, and

examples are quoted in the text. They can be profitably used, if care is taken and the
limitations are considered. Application of programs without basic understanding of
the underlying principles easily leads to mistakes. Users should do tests. Some as-
pects of the modelling are illustrated by examples, mostly in 2D which is easier to
imagine than 3D (which is also not more quantitative than 2D). Some possibly prac-
ticable methods have been described which have never been realized (programmed)
and tested but may be developed in the future. Optimization and inversion are the ul-
timate aim of most gravity studies and the subject of the following and final chapter.
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Chapter 7
Optimization and Inversion

7.1 Introduction

We recapitulate: gravity interpretation aims at models of mass distributions on the
basis of observed gravity anomalies or data. “Model” stands for “image” or “virtual
representation of reality” in the widest sense with a mixed spectrum of meanings
which humans form in their minds for lack of “absolute” knowledge of reality.

Gravitational model building requires the mathematical tools of forward calculat-
ing gravity effects of given mass bodies: Newton’s law of gravitation (Chap. 2), and
strategies of defining acceptable model geometries. The classical strategy is trial and
error (Sect. 6.1.2), where models are constructed from the available information, the
model effects, δgm, are calculated, and the differences or residuals, r = δgo −δgm

(5.1.5) from the observations, δgo, will iteratively guide the search. They are re-
duced by appropriate changes of the model parameters. The procedure is subjective
and limited, but so is also the choice of mathematical algorithms. Errors of data and
a priori information lead to conflicts, especially if the data sources are of different
kinds, but the principal ambiguity makes a priori information mandatory, which de-
pends on the task, in geodesy to efficiently describe the external gravity field, in
geophysics to obtain information on geological structures. Here the emphasis is on
the geological-geophysical aspects.

Optimization and inversion are envisaged as the essence of gravity interpretation.
Both terms have similar meanings and are not always distinct. We understand opti-
mization of model parameters as the effort to reconcile conflicting evidence by min-
imization of discrepancies by, for example, scaling, en bloc shifting and turning of
model bodies (see below). This implies that a problem is overdetermined: more than
the minimum information exists required for a solution, thus giving insight into, and
increasing, its reliability or accuracy. In view of our principal ignorance, however,
more unknowns exist than data, and the relationships between unknowns and obser-
vations must be simplified to enable a solution to be obtained. Information, here, is
mainly gravity, supplemented by additional observations. Optimization means that
all available information is combined into a “best model”. The least-squares (LSQ,
see below) solution is the best linear and unbiased estimator (BLUE) of the true
situation. It is an approximation since the observations and the model relationships
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represented by the functional matrix A (see below) deviate from the true situation
by statistical scatter.

Inversion of anomalies, on the other hand, is defined as the direct mathematical
construction of the most acceptable models, which includes also their optimization.
Especially interesting variables are introduced in order to determine their values.
Inversion is an extension of the so-called direct methods of interpretation (Chaps. 5
and 6) which are based on idealized a priori definitions of mass distributions with
parameters directly calculable from a number of certain characteristic data. They
include simple estimates (Sect. 5.6) or more sophisticated methodologies (Sects. 6.2
and 6.3). Generally, however, conflicting information exists which gives insight into
how much confidence one can have in the results, and the data have uncertainties
suggesting weighting schemes and ideas about the “field” or the “anomaly” that is
defined by the discrete observations, including the space between them: is it totally
undefined or a “smooth” continuation?

Gravity inversion and optimization converge. One may consider inversion as a
subclass of general optimization and the variables of inversion are thus a subclass of
those of optimization. Generally optimization concerns any quantities supplemented
in order to let the observations fit. In contrast, for inversion the chosen quantities are
the main interest. Bayesian inversion starts from a priori information with its own
error bounds which are treated like the gravity observations. Just like the open ques-
tion of what gravity teaches about the real mass distribution, inversion is principally
under-determined, and variables are introduced in order to find out if they are real,
how large and how certain.

In starting with Newton’s law of gravitation (Eq. 2.5.5):

δδδg =
∫

V
dg = G

∫
V
Δρ(r/r3)dV ,

we note that the fundamental mass element dm = ΔρdV contains density ρ or Δρ ,
and the integral is, in this sense, linear in density, however with an infinite number
of infinitesimal mass elements. which cannot be generally resolved for the density
distribution. The task can be achieved only if a finite number of mass elements or
parameters that describe the mass distribution and sufficient observations are linked
by systems of linear equations of the form (see below: Sect. 7.2.1):

Ax = y or Ax = y or y = A(x) (7.10.1)

with the formal (LSQ) solution

x = (AT A)−1AT y (7.10.2)

A or A(x) represents “model relationships”, x stands for the m unknown densities
and y for the n observations; x and y are described as vectors (usually written as x
and y). A and x can be generalized to include other parameters than densities.

Optimization is treated before inversion, and both sections are organized by the
logic of equation (7.10.2) from the observations, y, to the model relationships, A, and
to the parameters or variables, x. The term “model relationships” is meant to clarify
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the common term “model” which is used differently in geophysics and in geodesy.
In geophysics “model” is usually restricted to the parameters, x, in geodesy “model”
usually includes the function or matrix A. Of course, A(x) (or A) and the variables
x belong together, but generally both x and A are not known well enough to be
absolutely distinguished in a given problem. Uncertain components of A can also
be considered variables, x, or they may be considered observations, y, with errors.
Components of A that are very certain are considered “conditions”, while others
are very uncertain model hypotheses or even known to be “wrong” as, for example,
intended simplifications of the model relationships. The uncertainty of defining A,
x and y results from our ignorance about the real world and specifically about the
Earth’s interior.

This chapter is largely based on Smilde (1997, 1998), henceforth referred to by
PS97, dealing with the use and evaluation of a priori information for potentially
singular inversion problems and the determination of density distributions by grav-
ity. Important texts for the general theory of geophysical inversion problems are
Menke (1984) and Tarantola (2005).

7.2 Optimization

Optimization is a very general task in every field of human activity, especially in
science. In gravity interpretation, it is the attempt to apply potential theory and opti-
mally map observations into density models. Redundant data involve discrepancies
which indicate errors. Here, errors are understood as differences from the true val-
ues which, however, are usually unknown (note that the “statistical error”, below,
has a different meaning). Optimization is error minimization, based on error the-
ory of measurements and theoretical conditions (as the sum of angles in a plane
triangle).

The notions of error and uncertainty, precision and accuracy, probability or like-
lihood, reliability, stability and resolution may need some clarification. “Uncer-
tainty” is often synonymously used as “error” (or statistical error), that refers to
the “scatter” of the observations or determinations of a variable. The “standard er-
ror” is also a statistical error which will be defined below. “Precision”, the opposite
of the statistical error, means smallness of the statistical scatter or close repeata-
bility which need not be centered at the true value if the observations are affected
by systematic errors (first definition). “Accuracy” of a result, on the other hand,
expresses the likelihood of being close to the true value, and in this sense, it is the
opposite to “error” (first definition). Reliability has about the same meaning as accu-
racy and implies that the given value can be trusted within certain limits, i.e., can be
tested by other means. “Probability” or “likelihood” of approaching a true value are
usually difficult to estimate and thus subject to personal judgment; both terms are
synonymous and a high probability is the opposite of large uncertainty. The stability
of a result expresses its insensitivity to data errors and to changes in the initial as-
sumptions, for example, of iteration in the case of a non-linear problem. Resolution
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describes the independence of variables or of distinguishing results to be unique and
really distinct. It is also related to the discrimination of neighboring results and their
significance.

7.2.1 Theory

The theory is largely based on Eq. (7.10.1), beginning with observations, y, con-
straining the model relationships, A, with their variables, x. The basis of the model
relationships is Newton’s law of gravitation (Eq. 2.5.5)

δδδg =
∫

V
dg = G

∫
V
Δρ(r/r3)dV = −∇∇∇δU

or for the potential:

δU = −G
∫

V
Δρ/r dV (7.2.1)

The integrand is the density distribution Δρ(x,y,z) in the source volume, V , and
the kernel is r/r3, or for U, 1/r; r is the distance vector from a volume element dV
to P (at the origin 0). These integral equations are examples of Fredholm’s integral
equation of first kind (Arfken 1985, p. 865) which has the form

g(u) =
b∫

a

K(u,v)ρ(v)dv (7.2.2)

with g(u) and ρ(v) at the coordinates u and v, respectively, and the kernel K(u,v)
in the form of Newton’s law. It has generally no unique solution except in special
cases. Methods leading to solutions are called “regularization” narrowing or remov-
ing the non-uniqueness and the instability at least mathematically. It is assumed in
Ax = y or Ax = y (Eq. 7.1.1) that the unknown density distribution can be described
by only m parameters, x, and that n observed gravity values, y, are given. A is the
operator matrix based on (Eq. 2.5.5) that projects the density model onto the obser-
vations. The non-uniqueness is represented by the nullspace Axo = 0 which can be
added to (Eq. 7.1.1) without changing y, as the external gravity effects are zero. A
“nullspace” is defined by models generating no external field, for example, defined
by the differences between any two fitting models. Say, [ρ(x,y,z)] describes such a
model in geometrical space and [ρi(x,y,z)] and [ρk(x,y,z)] have the same external
gravity effect, δgi(x,y) = δgk(x,y), then the model [ρi(x,y,z)−ρk(x,y,z)] generates
δgi−k(x,y) = 0.

The matrix A is in this case singular and thus the inverse operator A−1 does not
exist which otherwise would render a unique solution. Any of the solutions x + xo

must be judged by a priori external criteria and may be found either relevant or more
or less acceptable or unacceptable. If all solutions except one are unacceptable, the
problem is uniquely solvable.

Those external criteria could be expressed as obeying the auxiliary conditions,
Bx = z, and could be extracted from (Eq. 7.2.2) by writing
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Ax = y
Bx = z

→
[

A
B

]
x =

[
y
z

]
(7.2.3)

If only one solution exists, then the inverse of the combined matrix exists and A
has then been successfully regularized.

7.2.1.1 Observations, Model Relationships, Variables

Observations and ideas are the basis of the image we have of the world. Observations
and experiments are intimately entangled with questions, theoretical relationships
and models. Observations in geodesy and geophysics are primarily of geometrical
and gravitational nature, but in a broad sense, include other physical quantities and
pre-existing knowledge about an object of study. Even theoretical relationships can
be considereds observations. In gravity, observations of various kinds at locations,
(xi,yi,zi), complemented by extra-gravity information, are applied to the question of
the inaccessible underground density distribution. Observation are always affected
by errors, and there are never sufficient observations.

Optimization is defined here as optimally solving the situation when observations
are conflicting. When are they conflicting?

– When they have too large scatter or contain blunders or outliers (in case of ob-
servations of the same kind or of different kinds).

– When their theoretical relationship is wrongly defined, mostly in the case of ob-
servations of different kinds or because the theory is really wrong, or only too
much simplified.

These two types of conflicts might be actually equivalent.
In geodesy, a theoretical relationship between the observations is sometimes

called a “model”, sometimes a “condition”, especially when this relationship is very
certainly known, as a mathematically derived equality or inequality. In geophysics,
the relationship between the observations is usually given by an “image” or model
of the hypothetical underground gravitating density distribution. Its description con-
tains optimizable parameters or variables. Additional conditions are needed because
of the ambiguity, such as a priori density bounds, idealizations and simplifications
of geometry, for example, “smoothness” (see Chap. 5).

A fundamental condition for parameter optimization is that a solution exists
and that the parameters are sensitive to the observations, i.e. that they are resolv-
able. Irresolvable quantities are, for example, laterally constant mass distributions
as Bouguer plates and confocal spheres which generate laterally constant effects
which cannot be separated. Mass distributions should be laterally variable. In areas
with constant observed gravity, a priori information on variable mass “anomalies”
permits to derive tractable models by geological gravity reductions (Sect. 4.5.3.3).
However, in that case the a priori information cannot be optimized by gravity.

Often the theoretical relationship between the observations is known up to some
quantities with poorly known values. In this case optimization is the selection of
the values of these variables such as to reduce and to minimize the conflicts, for
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example, by scaling and en bloc shifts of model bodies. But usually some additional
types of conflicts between observations will remain after optimally adjusting the
variables. In the case of inversion, however, variables (with usually well defined
physical meanings) are introduced with the purpose of determining their unknown
values (see Sect. 7.2.2.2).

If error-free data and/or model relationships are in conflict, no solution exists. On
the other hand, models can fit noisy data approximately (unless constructed such as
to nonsensically fit the errors). If gross and systematic errors are eliminated, the
probability distributions of the random errors must be carefully assessed. Weights
will be applied accordingly, large ones in the case of narrow error probability dis-
tributions and vice versa. Optimization thus means adjusting the models, to be as
compatible as possible with all available information, or the least severe conflict
with any specified constraint or best compromise or trade-off between the different
data errors. This non-trivial task must be defined.

7.2.1.2 Optimization Criteria, Probability, Likelihood, Accuracy, Reliability,
Uncertainty, Errors

Conflicts can arise only if redundant observations exist, say n, more than needed to
solve for m unknowns; there are then n−m redundant observations. Solving con-
flicts between observations in the optimal sense requires criteria, which define what
a solution is optimal. Optimization criteria depend on what is expected of the most
probable solution. Types of criteria are:

– Geometrically minimal “distance” between the given observation values and
their “deconflicted” (optimized, adjusted) values.

– Probabilistic criteria take the statistical properties of the observations into ac-
count. The real observations are assumed to be scattered realizations of hypo-
thetical, conflict-free observable quantities. The “deconflicted” optimal solution
consists of calculated values for these quantities, which would be theoretically
realized with the highest probability or likelihood by the given observations, if
their probability distribution were known.

For more than one observation, “distance” can be defined in the usual Euclidian
way as the square root of the sum of the squared individual distances (errors) or
the L2-norm. That establishes the least-squares (LSQ) method. More generally the
individual distances might be weighted appropriately. “Distance” might be defined
differently: e.g. by the sum of absolute individual errors (Σ|ri| = min!, L1-norm)
which is less sensitive to the largest discrepancies. Higher norms emphasize larger
discrepancies; L∞ will correct the largest discrepancy only. If the statistical proper-
ties are given by the Gaussian probability distribution (see below), the solution is the
same as for the geometrically motivated least squares method. Assigning different
accuracies, or better: standard deviations, to individual observations is equivalent
to individually weighting the distance components. “Least-squares” methods are
most popular for error minimization and parameter optimization. If the errors are
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Gauss-distributed, LSQ renders the optimal solution. If not, optimal solutions are
possible but not necessarily so. A qualified decision which norm is to be chosen has
to be taken depending on the basis of the nature of the observations and the given
error statistics.

The least-squares principle is illustrated by the case of n observations, yi = yobs,i

of a single unknown variable x (m = 1). A theoretical deduction is given below
(Sect. 7.2.1.2.1). C.F. Gauss (1777–1855) assumed that the individual measurement
errors are stochastic, i.e., statistically independent. For arbitrary y and ri = yi − y,
the estimated variance, S(y) = Σri

2/(n−1) has a parabolic shape, if plotted versus
y, with its minimum at y = x = Σyi/n(x = Σwiyi/Σwi, if weighted with wi); x is the
arithmetic mean of the observations and the solution of minimization.

√
Σri

2 repre-
sents the minimum “distance” between the observational values. The frequency dis-
tribution of the residuals, r, is maximum at, and symmetric about, the mean, x, form-
ing a bell-shaped curve. Plotted versus a general coordinate y, the error frequency
or Gaussian error distribution is given by f (y) = 1/[s(2π)1/2]exp[−y2/(2s2)], char-
acterized by the standard deviation s = S1/2 as a measure of the width of the scatter,
and the uncertainty of the mean is sm = s/n1/2. It must, however, not be forgotten
that S can generally be only roughly estimated on the basis of limited observations.

The least-squares principle is extendable analogously to m > 1 for models de-
fined by m variables (m > n) and m− n redundant observations. An ensemble of n
observations, δgi at the station coordinates xi = (xi,yi,zi), i = 1, n, may represent
a “gravity anomaly” which may be described as δg(xi) along a 1D profile (x) or
δg(xi,yi) in a 2D (x,y) array on a map. For modelling, δgi is taken to be the ef-
fect, f (xi,p), of a density model defined by physical and geometrical parameters
p = (p1, p2, . . . pm) in (x,y,z,ρ) space. The parameters are the variables p (= x in
the sense of Eq. (7.10.1)) of the optimization or inversion problem; f (xi,p) is linear
in density but generally non-linear in the coordinates. Solving for p, is a minimum
problem analogous to the one-variable case and is treated later. For optimization of
non-linear cases, an initial or a priori estimate p0 of the parameter vector is assumed
to exist, and the optimal p is to be determined from the n observations. Admit-
tedly, in view of our ignorance, such problems are only artificially over-determined
(n > m) by restricting m with appropriate simplifications, while in reality it is always
under-determined (m > n).

Minima S(p) and S(p1, p2) for one or two variables pk are easily imagined
graphically as a depression of a line or a surface, but for more parameters the
S(p) form hyper-surfaces in the p-coordinate system. S = Σri

2/(n−m) and ri =
δgi − fi(p). Since the surface S depends on all residuals ri, all model effects,
δgi = δg(xi), at the observation points, Pi = P(xi), are functions of the model pa-
rameters pk. The derivatives ∂ ri/∂ pk = ∂ (δgobs,i − f (xi, p))/∂ pk = Jik are a mea-
sure of how the residuals would respond to parameter changes. The whole n×m
Jacobian matrix {Jik} (i = 1, n; k = 1, m) thus forms the basis of a minimum
problem for the S surface, the solution of which gives the minimum directly in the
linear case, and the direction of the search by iteration in the non-linear case. The
Jik elements, by their size (steepness of slope), can also be envisioned as sensitivi-
ties of the effects against parameter changes, and the Jacobian can be interpreted as
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“sensitivity matrix”. Densities in fixed geometry present a linear problem. For non-
linear problems of geometry the hyper-surface may become complicated with many
local minima. Several strategies exist for the search of the minimum parameter set
p. Improvement need not occur at every point xi nor with every parameter pk, and
the numerical procedure may pass over the S-minimum and miss it.

7.2.1.2.1 Theory of the Least-Squares Method

A theoretical derivation of the least squares principle is based on the condition that
the observations y correspond to a certain expected relationship such that no dis-
crepancies exist in this respect between them, expressed by the condition equation

Uy = 0 (7.2.4)

where the matrix U describes the condition or conditions and where the uncertainty
is quantified by the covariance matrix Cu; the equation can be represented by the
conditional probability density distribution φ(Uy | y), common to all observations
y. Uy is the deviation from the assumed condition, and φ(y | ỹ) is the probability
density of y given an actual observation ỹ with the covariance matrix Cy. The effec-
tive a posteriori probability density is then under both assumptions

φ(Ûy, ŷ | ỹ) = φ(Uy | y) ·φ(y | ỹ) (7.2.5)

where “a posteriori” is symbolized by “∧”. The relationship between these three
probability densities is illustrated in Fig. 7.2.1.

With the symbolic expression φ ∝ N(a, B) (saying: φ has a normal distribution
with the expectation a and the covariance matrix B), the assumption of normal dis-
tributions of the two probability densities is

φ(y | ỹ) ∝ N(ỹ,Cy) = α1 exp
(
−1/2(y− ỹ)TCy

−1(y− ỹ)
)

φ(Uy | y) ∝ N(0,CU ) = α2 exp
(
−1/2(Uy)TCU

−1(Uy)
) (7.2.6)

The a posteriori probability density is (Menke 1984; Tarantola 2005):

φ
(

Ûy, ŷ | ỹ
)

= α3 exp
(
−1/2[(y− ỹ)TCy

−1(y− ỹ)+(Uy)TCU
−1(Uy)]

)

= α4 exp
(
−1/2 (y− ŷ)TCŷ

−1(y− ŷ)
) (7.2.7)

with
⎧⎪⎨
⎪⎩

ŷ = ỹ−
(

UTCU
−1

U +Cy
−1
)−1

UTCU
−1

Uỹ

Cŷ =
(

UTCy
−1

U +Cy
−1
)−1 (7.2.8)

or equivalently
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Fig. 7.2.1 Illustration of the a priori and a posteriori probability densities for 2 observations and a
connecting theory or condition; within the ellipses the probability density exceeds a certain value.
φ(y|ỹ) is the probability density of y, given by two observations ỹ1, ỹ2; φ(Uy|ỹ) is the probability
density of the condition Uy = 0 to be true for y; φ(Ûy, ŷ|ỹ) is the a posteriori probability density
for Uy = 0 to be satisfied by the observations ỹ

{
ŷ = ỹ−CyUT (UCyUT +CU )−1Uỹ

Cŷ = Cy −CyUT (UCyUT +CU )−1UCy
(7.2.9)

where ŷ maximizes the probability density and it is the desired maximum likelihood
estimator which minimizes its variance, i.e. the squared term in (Eq. 7.2.7):

(y− ỹ)TCy
−1(y− ỹ)+(Uy)TCU

−1(Uy) = minimal (7.2.10)

Equations (7.2.8) and (7.2.9) determine a solution when there are discrepancies
among the data, i.e., when the real observations ỹ, and conditions are incompati-
ble among themselves or with the data. That is the natural situation in research and
exploration into the unknown.

In the special case Cy = I (i.e., all uncertainties of the observations are equal and
independent) and a solution vector y that satisfies the conditions, Uy = 0, the solu-
tion y and the observed vector ỹ have the minimal “distance” in the n-dimensional
observation space, if for y the least-squares solution ŷ is chosen. The distance is
equal to the (equally weighted) L2 norm of a vector

(y− ỹ)T (y− ỹ) = ‖(y− ỹ)‖2 =
(
Σ
n
(y− ỹ)2

)1/2

(7.2.11)

where ‖ . . . ‖2 refers to the L2 norm.
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The maximum likelihood solution is identical to the least-squares solution in
the case of normal distributions. If Cy �= I, the inverse covariance matrices in
(Eq. 7.2.10) modify the definition of distance by weighting the components (to
take different units or accuracies of the y-components into account). If Uy �= 0,
its components contribute to the distances to be minimized and are thus minimized
simultaneously.

7.2.1.2.2 Regularization of Condition Equations

If, as usual, the condition equations are assumed to be exactly correct, then CU = 0
and CU

−1 is not defined. A solution can be calculated only with (Eq. 7.2.9) and
(UCyUT )−1 must not be singular. Therefore fewer conditions than observations
must exist and the conditions must not contradict each other, i.e. they must be in-
dependent; the equation system must not be overdetermined. If these preconditions
are not satisfied, a covariance matrix CU �= 0 will “soften” the conditions; they will
not be met exactly but only on (weighted) average or with maximum likelihood un-
der the assumption of the normal distribution. This means that the conditions are
considered uncertain, implying that the condition equations are regularized.

7.2.1.2.3 Partitioned Observations

There are special cases of the condition equation (7.2.4) where part of its observa-
tions ỹ are very inaccurately known. Then the observations can be partitioned into
two sets, x (inaccurately known) and y (well known), respectively, which are not
correlated, and we can write:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Uy = 0

Cy, CU
⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[A− I]

[
x

y

]
= 0

Cxy =

[
Cx0

0Cy

]
,CA

(7.2.12)

where CA is the limited probability with which the partial matrix A is correct. The
solution for the partial set x, after substituting it into (Eq. 7.2.9), is

{
x̂ = x̃−CxAT

[
ACxAT +Cy +CA

]−1 [Ax̃− ỹ]

Cx̂ = Cx −CxAT
[
ACxAT +Cy +CA

]−1
ACx

(7.2.13)

or substituted into (7.2.8):

⎧⎨
⎩

x̂ = x̃−
[
AT [Cy +CA]−1A+Cx

−1
]−1

AT [Cy +CA]−1 [ỹ−Ax̃]

Cx̂ =
[
AT [Cy +CA]−1 A+Cx

−1
]−1 (7.2.14)
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The observation equation, which is the basis of the solution equation (7.2.14)
corresponding to the condition equation (7.2.12), is:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
A

I

]
x =

[
y

x

]

Cy,Cx

(7.2.15)

If the partial set x is totally uncertain, then Cx = diag(∞), hence C−1
x = 0 and x̃

is arbitrary, e.g. x̃ = 0. If, moreover, CA = 0, then (Eq. 7.2.15) corresponds to the
least-squares solution of the observation equations Ax = y with x as the unknown
variables:

x̂ = (ATCy
−1

A)−1ATCy
−1

ỹ (7.2.16)

This means that the variable x can be considered as an observation of which one
knows nothing, which seldom is quite true. The essence of this is: if unknowns “run

away” from reasonable values, their uncertainty Cx must be reduced from

[
∞ 0
0 ∞

]
to

finite values requiring a priori information.

7.2.1.2.4 Adjustment in Phases

The variables x and their covariance matrix need not be arbitrarily guessed as can
be shown by the so-called adjustment in phases. Given the observation equation
Ax = y, with Cx = diag(∞) and x̃ = 0, the observations y are divided into two groups
(assumed uncorrelated for simplicity, but not necessarily)

[
A1

A2

]
x =

[
y1

y2

]
(7.2.17)

which becomes
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̂ =

[
[A1 A2]T (Cy1A1 +Cy2A2)

−1

[
A1

A2

]]−1

[A1 A2]T (Cy1A1 +Cy2A2)
−1

[
ỹ1

ỹ2

]

Cx̂ =

[
[A1 A2]T (Cy1A1 +Cy2A2)

−1

[
A1

A2

]]−1

(7.2.18)
which is equivalent to:

⎧⎪⎨
⎪⎩

x̂12 =
[
AT

2 Cy2A2

−1
A2 +Cx̂1

−1
]−1 [

AT
2 Cy2A2

−1
ỹ2 +Cx̂1

−1x̂1

]

Cx̂12 =
[
AT

2 Cy2A2
−1

A2 +Cx̂1
−1
]−1 (7.2.19)
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with
⎧⎪⎨
⎪⎩

x̂1 =
[
AT

1 Cy1A1

−1
A1

]−1
AT

1 Cy1A1

−1
ỹ1

Cx̂1 =
[
AT

1 Cy1A1

−1
A1

]−1 (7.2.20)

The latter equation corresponds to the adjustment with only the observations ỹ1

in the first phase; in the second phase of Eq. (7.2.19) adjustment is carried out with
only the observations ỹ2, but taking into account the result x̂1 and its a posteriori
covariance matrix Cx̂1. The solution is the same as that obtained in one go.

In the special case
[

A
I

]
x =

[
y
x

]
⇔
[

A
I

]
(x̃+δx) =

[
y
x

]
⇔
[

A
I

]
δx =

[
y−Ax̃
x− x̃

]
(7.2.21)

with x̃ = x̂1 and Cx = Cx̂1 , the result of the second phase is:

⎧⎪⎨
⎪⎩

x̂ = x̃+δx = x̃+
[
ATCyA

−1
A+Cx

−1
]−1

ATCy
−1[ỹ−Ax̃]

Cx̂ =
[
ATCyA

−1
A+Cx

−1
]−1 (7.2.14a)

which is again Eq. (7.2.14), i.e. the well-known equation for the least-squares so-
lution of observation equations with additional so-called a priori information x̃
and Cx. So adding a-priori information corresponds to solving the problem with
previously available data, which could also have been solved in one single step. The
a-priori information can be interpreted as the summarized results of some previous
observations y1.

7.2.1.2.5 Combined Covariance Matrices

The a priori covariance matrices Cy and CA always occur together in observa-
tion equations and are usually not considered separate. Comparison of Eqs. (7.2.8)
and (7.2.14) shows that the uncertainty of the condition equation, CU , or of the ob-
servation equation (Cy +CA) implies the uncertainty of the respective right-hand
sides. The two covariance matrices are thus combined to CyA = Cy + CA; when
it is known, the uncertainty of the kernel A must be taken into account together
with that of the observations; the uncertainty values of A have thus also been called
“parametrization errors”. An example in gravity optimization is the real small-scale
scatter due to neglected shallow small-scale mass anomalies which cannot princi-
pally be explained by larger or deeper density models.

The main principle is that model simplifications (also intended ones) must be
accounted for by increasing the uncertainty of the observations y(Cy).
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7.2.1.2.6 Non-Trivial Nullspace of A

If the inverse covariance matrix C−1
x = 0, then in (Eq. 7.2.14), AT (Cy +CA)−1 =

ATCyA
−1A; its existence follows from an analysis of the generalized eigen-vectors

of A:
{

Av j = σ jw j

AT wi = σivi
or

{
= ĀV = WS
= ĀTW = V S

(7.2.22)

Ā equals A with zeros added to complete A to a square matrix, which in principle
does not change the analysis. S = diag(σi≤p �= 0, σi>p = 0) are the eigen-values,
also called “singular values”, ordered by size, with a number of p values �= 0; V and
W are matrices with the corresponding eigen-vectors as columns, whence follows
(dropping the bar above A) the definition (symbolized by: “=!”):

{
AT AV = V SS DEF V S2

AATW = WSS DEF WS2 (7.2.23)

If Ax0 = 0 and x0 �= 0, A has a non-trivial nullspace, i.e., does not contain zeros, and
(7.2.23) implies at least one eigen-value to be zero. This means: S−2 does not exist,
nor exist the following derived matrices: (AT A)−1 =V S−2V T , and (ATCyA

−1A)−1 =
((ATCyA

1/2)(CyA
1/2A))−1 = (Ac

T Ac)−1 = VcSc
−2Vc

T (since CyA DEF CyA
1/2CyA

1/2

is positive definite, hence not singular, and AT A and CyA
1/2A DEF Ac (7.2.18) have

the same nullspace as A). The matrix rows of V corresponding to the zero eigen-
values span the nullspace and are its axes.

The existence of a non-trivial nullspace of A is equivalent with a singularity of
(ATCyA

−1A)−1. The matrix is the a posteriori covariance matrix with Vc as singu-
lar values and Sc

−2 as eigen-vectors. Sc
−2 represents the a posteriori variances of

the linear combinations of the variables in the columns of Vc. These two matrices
define the m-dimensional standard hyperellipsoid, i.e., multidimensional standard
deviations. The hyperellipsoid axes are along the eigen-vectors Vc with variances
Sc

−2, in the respective directions according to the respective eigen-vectors. If the
covariance matrix is singular, at least one element of Sc is zero, the corresponding
standard deviation is infinite and the standard ellipsoid degenerates in this direction
to an infinite cylinder; no respective solution is preferred. A corresponding regular-
ization is necessary. If A is not to be changed (by some implicit side condition) then
C−1

x must be chosen other than the zero matrix, i.e. a finite uncertainty around an a
priori estimate must be assumed. The covariance for such a regularized solution is
calculated from:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
A

I

]
x =

[
y

x

]

Cxy =

[
Cy 0

0 Cx

] =

⎧⎪⎪⎨
⎪⎪⎩

[
Ac

I

]
Cx

1/2xc =

⎡
⎣ yc

Cx
1/2xc.

⎤
⎦ ,

Cycxc = I

with

⎧⎪⎨
⎪⎩

Ac = Cy
−1/2A

yc = Cy
−1/2y

xc = Cy
−1/2x

⇒
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([AT I])Cy
−1
[

A
I

]
+Cx

−1)−1 =
(

Cx
1/2 [AT

c I
][Ac

I

]
Cx

1/2
)−1

=

= Cx
1/2Vc(Sc

2 + I)−1V T
c Cx

1/2
with

(
AT

c Ac
)−1 = VcSc

−2V T
c (7.2.24)

In contrast to (7.2.23) with VcSc
−2Vc

T, the matrix (Sc
2 +I) to be inverted does not

contain zeros any more and the inverse is uniquely defined; the a posteriori standard
deviation is limited, even if Sc contains zeros or small values.

The quintessence is that adding a priori information means removing dimensions
from the nullspace.

7.2.1.2.7 Numerical Instabilities

If the overdetermined Eq. (7.2.16) is analytically stable and regular, it can still
happen that it becomes numerically unstable or singular, if the variables have
widely differing values and physical units. If the orders of magnitude are known
they can be normalized to order 1 by letting xnorm = Cnormx, and the equation
Anormxnorm = y is to be solved with Anorm = ACnorm

−1. With this normalized ker-
nel Anorm substituted into (7.2.16), the solution xnorm determines the original vari-
ables as x = Cnorm

−1xnorm. Within numerical accuracy, no numerical instability or
singularity should occur.

If small rounding errors have a strong influence on the calculation of the inverse,
then the problem is probably physically unstable or singular, not just numerically,
and needs additional physical information. If the regularized system of equations

[
A
I

]
x =

[
y
x

]
(7.2.25)

is to be solved, then for the normalization matrix Cnorm, the “square root matrix”

C1/2
x of the a priori covariance matrix Cx =Cx

1/2Cx
1/2 can be taken (e.g. the Choleski

factor matrix or ES, where E = matrix of the eigen-vectors of Cx and S = diagonal
matrix of its square roots; Tarantola 2005), and the a priori covariance matrix for
the normalized variables xnorm will be the unit matrix. In many cases it will suffice
to choose a diagonal matrix for the normalization matrix containing the assumed
standard deviations, if the range of x-values is approximately known, as usual in the
case of variables with a clear physical meaning. In other cases, as with unconstrained
variables or the coefficients of ordinary polynomials or of harmonic expansions, the
needed a priori knowledge is usually missing and regularization is not so easy, but
that is generally so for variables with unclear physical meaning. Only mathematical
regularization can help here removing singular values as described in Sect. 7.2.1.2.6.

7.2.1.2.8 Summary

The essential message of this section, 7.2.1, on the theory of optimization is that
LSQ is based on mathematical principles which guide the search for the most
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reliable density distributions of geological relevance by fitting the parameters or
variables of appropriate a priori models to gravity observations. Appropriate means
capability of leading to stable solutions of the fundamental system of regularized
linear equations (7.10.1). Important methods and problems of regularization have
been discussed theoretically for a number of typical situations.

In the context of inversion of model variables, it is likely that the need for reg-
ularization arises when the only source of information on the variables x is in the
observations y (Sect. 7.2.1.2.3), for example, when they have no physical meaning
and predictable value as the average reading of a relative gravimeter. If the meaning
of a variable is clear it usually also implies an estimate of its value and its un-
certainty. Such a priori information renders the problem regular and unique and is
not an unwanted influencing of the results. It rather comes from earlier adjustment
phases (Sect. 7.2.1.2.4). Observations might be lost or forgotten, but the results (es-
timates and covariance matrices) carry the same information as the original data.
Such an earlier phase is the experience of expert scientists mostly reflecting the for-
mer results accurately enough as implicit a priori information. However, the solution
should be stable, i.e. not too sensitive against variations of the a priori information,
as it is also with the pure condition equation. If the solution is unstable regardless, it
generally means that the new information of the current phase has no strong weight,
i.e. it is not very important relative to the a priori information.

The application of the theoretical aspects to practical problems of gravity model
optimization will now be considered.

7.2.2 Practice

Optimization begins with the questions to be answered by gravity interpretation,
guiding the planning and the actual measurements, reductions and the analysis of
the data (Chaps. 3, 4). The aims determine also the design of appropriate models
(Chaps. 5, 6), which should describe the anticipated geological situation. This re-
quires geological knowledge and imagination, but the researcher should be always
open to the unexpected.

A compromise is to be attempted between accurate and detailed forward mod-
elling and optimal fitting of the observations and a priori information. Practical op-
timization is hardly imaginable without efficient computer routines (as INVERT,
PS97, attached to this book on a CD). The computational demands are high, and the
programs must be applied with mathematical understanding of their limitations. The
basic principles and possibilities are explained below. In any optimization proce-
dure choices must be made of specific algorithms, solution methodology, strategies
of linearization and iteration, etc., and there is ample space for experimentation.

The system of linear equations to be solved for optimization is y = Ax or y = A(x),
(Eq. 7.1.1). First, the observations or data, y, (see Chaps. 3, 4) are discussed, then
the model relationships, A, and finally the variables or parameters, x, in connection
with the optimization and inversion requirements.
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7.2.2.1 Observations

7.2.2.1.1 Types, Spatial Distribution

The following types of observations can be distinguished:

– originally measured values as the classical “reading”,
– measurements combined into a single “observed value” as the arithmetic mean

(possibly as noted in a field book or done by internal processing in modern in-
struments),

– reduced, filtered, corrected values,
– interpolated and extrapolated values.

“Observations” may be the original numbers archived in a field book, on tape or
in digital storage and may result from some “automatic” processing and even re-
duction. For example, absolute gravity meters average many “drops” and record
the mean values and standard deviations. It is a case of adjustment in phases
(Sect. 7.2.1.2.4).

All observable and derivable gravity field quantities (Sect. 2.7.4) can play the
role of observations: gravity itself, so-called gravity gradients, components of the
gravity gradient tensor (Sect. 2.8), sea surface topography as a measure of poten-
tial anomalies or geoid undulations and some of the other second derivatives of
the potential. Observations are supplied by pendulums (Sect. 3.2.2), gravimeters
and related instruments (Sects. 3.2.3, 3.2.4, 3.2.5, 3.2.6, 3.2.7), gradiometers and
the torsion balance (Sect. 3.2.9), satellite altimetry (Sect. 3.2.8) and by astrometry
and levelling instruments (plumb-line deflection). There is no sharp boundary be-
tween observed and derived quantities. But as a general rule, it is better to interpret
observed quantities before too much data processing to avoid the additional uncer-
tainties. Other than gravity observations, as seismic and magnetic, may be included.
Gravity interpretation, model optimization and inversion depend on gravity data and
a priori information (non-gravity).

Data preparation may also involve their reduction in number. Data not relevant
for a problem are sensibly removed. (1) There may be too many for practical han-
dling; an example is interpolation between data points, but care must be taken of
how to interpolate, e.g. topography and maintaining theoretical relationships as the
Laplace equation. (2) If model components are excluded, data correlating with them
would affect the remaining model in the solution and should be removed. Into this
category belong the gravimeter drift correction if no temporal gravity variation is
modelled. The standard reductions (Chap. 4) belong here if no complete Earth model
is included, and, if only a local anomaly is modelled, also the removal of a regional
field (Sect. 4.7.7) described by unconstrained variables on the basis of the data them-
selves. Instead, more a priori information can be included into the optimization.

The spatial layout of the observations in the field (see Sect. 3.4) will be designed
in view of the target and the a priori knowledge about it, but depends also on lo-
gistics, economic constraints, etc. The station configuration should be dense, where
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the most important field variations are expected for the problem solution. This may
become known only during a survey.

In the case of unfavourable data distributions, surprises may happen in the op-
timization process. The recognition and characterization of “the anomaly” or the
“field”, on the basis of limited discrete observations is an implicit initial step of in-
terpretation (Sect. 1.4). A similar argument pertains to the background or reference
level of the observations relevant for total mass estimates (Sect. 2.7.6). What is an
anomaly if only few discrete observations exist and some plausible shape of it is
anticipated? Is it permitted to complement the data, for example, by gridding? Or
should the interpretation be strictly limited to the original observations? The con-
sequences of data manipulations must be explored by tests and comparisons. For
example, mathematical field analysis as filtering may be facilitated by gridding it,
but it may turn out that a model body is moved unrealistically by the minimum con-
dition in the optimization, which is influenced by gridding or can be prevented by
stronger constraints (see 5.1.5). While gridding can be arbitrarily densified, the a
posteriori standard deviation is formally reduced which must be prevented by in-
creasing the a priori standard deviation (Sect. 7.2.1.2.5):

Data point distribution determines parts of a model to be more or less resolvable.
Stations may be set up along customary 1D profiles or on 2D maps and sometimes
in 3D distributions (buildings, underground works, boreholes, airborne surveys in
combination with the surface; see Chap. 3). 1D profiles (usually not exactly straight)
hardly allow the detection of density variations sideways from the profile and thus
limit modelling essentially to 2D density sections, allowed only if it is known that
no significant lateral density variations exist. 2 1/2 D models (Sects. 2.9.8; 6.2.3) are
appropriate only if the lateral density variation can be estimated.

The optimized density distribution will not be affected critically if the reductions
are smaller than the a posteriori accuracy of the data, as usually the case. The mean
Bouguer density or the standard vertical gradient (Sects. 4.5.2 and 4.8) locally devi-
ates from the standard values due to the geological situation. Density is never con-
stant and varies inside the topographic mass systematically with topography (dense
rock may also resist erosion), and the reductions with locally derived, not com-
pletely certain quantities introduce uncertainty or conflicts. Anomalies result from
observations and standard reductions with clearly defined standard (“normal”) val-
ues (see discussion of the fundamental properties of anomalies in Sects. 4.1 and 4.3),
and possible differences of the local values or uncertain reduction parameters can be
included into the parametrization and optimization as additional model components.

Averaging and smoothing the original data can reduce potential conflicts before-
hand, but also introduce unexpected new conflicts! Combining observations will
make them statistically dependent. The statistical properties of each observation
type will be different. Theoretical relationships might exist between certain types of
observations and can be anticipated, but unknown relationships between other types
cannot. If the spatial spectra of the field are insufficiently known, for example, due
to too sparse measurements, interpolation will overlook high-frequency components
and suffer from aliasing.
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7.2.2.1.2 Accuracy Estimates, Outliers, Correlation

The a priori standard deviations are estimated from the observation and reduction
errors (see Sects. 3.1; 4.8). Experimental accuracy estimates can be derived from re-
peated measurements or between different types of measurements (see Sects. 3.6.1;
3.8.3). But when the sample size is not very large, the measurement process has to be
reviewed which is necessary in almost all cases. The values found for the measure-
ment accuracy must be considered rough estimates. Statistical correlations between
observations (see Sect. 4.7.5) must be considered for a correct relative weighting
of individual observations. If this is difficult, optimization of the Tikhonov regular-
ization Parameter (Sect. 7.2.2.3.3) should be considered. The accuracy of the data
or their likely errors are very important for optimization of models, because fitting
the model effects to the data cannot constrain the optimization better than the data
errors allow.

The norm chosen affects the error estimates. The L2 norm is rather sensitive to
data that deviate by large discrepancies. The L1 norm is more robust, but the solu-
tion algorithms are more complex and evaluating the solution is more difficult. It is
possible to combine the advantages of both methods (e.g. Nolet, 1987) by an itera-
tive procedure where the a posteriori residuals of an L2 solution optimally adjust the
a priori standard deviation of the data at the next iteration step such that effectively
the L1 norm is optimized.

Statistically distinguishing outliers from statistical scatter, as by data snooping
(see Sects. 3.8.1; 4.7.2), is important but difficult. Outliers are defined by being
incompatible with the optimization criteria; for example, in case of the geometri-
cal distance minimization the relevance of outlier size is not proportional to the
defined distance function. In the case of the probabilistic method, the statistical
properties of outliers do not correspond to the assumed statistics of the normally
scattered observations. Correlations between observations must be considered for a
correct statistical description and therefore usually influences the relative weighting
of observations. But especially interpolation and filtering will introduce additional
correlations which should not be ignored. Estimating correlation from repeated mea-
surements, while combining different observations with complex theoretical rela-
tionships, is difficult. The correlation introduced by the theoretical relationship must
be either removed or be taken into account in the optimization process (full covari-
ance matrices Cy).

7.2.2.2 Model Relationships

“Model relationship” (see Sect. 7.1) has a broader and more general meaning than
the usual term “model”, expressing the uncertainty of how to formulate the basic
problem. It is based on the system of linear equations Ax = y or A(x) = y (Eq. 7.1.1)
for the unknown variables x on the basis of the observations y and the model rela-
tions A(x) or A. There is no unambiguous “natural” prescription for the definition
of x, y and A; they are all intimately entangled and mutually linked and cannot be
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strictly kept apart. Usually several possibilities exist as a matter of philosophy and
the choice of A and x and their separate treatment are somewhat arbitrary. In other
words, nature does not “know” such distinctions of roles or absolute definitions.
Usually A incorporates physical laws, such as Newtonian gravitation or potential,
but a priori knowledge or assumptions may be built into Ax beforehand with affects
on the variables x and the observations y. For example, numerical constants, if ac-
curately known, may be included into the physical laws A or into the observations,
y, but also, if uncertain, into the variables, x. Some relationships and/or variables
are hypothetical. To make the problem tractable, some choices may be necessary,
for example, idealizations and simplifications of the model relationships, though
objectively “wrong”. Balancing the different requirements is the art of modelling.

Model relationships include mathematical conditions, for example, of equality
or inequality and rankings of size and importance of individual model components.
A given model has different parts which are mutually related, not independent, in
other words, in most cases the different components are not orthogonal. Adding or
leaving out one component will influence the results of optimization for the others,
unless the models are described by orthogonal functions, as for example Fourier
series, Chebyshev polynomials and spherical harmonics.

Two different modelling philosophies are typically held by researchers: either
aiming at a detailed description of geological structures or emphasizing principal
questions (Sect. 6.1.3). For modelling and optimization, the former aim requires
detailed a priori information such as good seismic images, which in special cases,
can be improved by gravity optimization, for example, in seismic “blind spots”.
However, the danger is to become merely descriptive. The latter more principal
approach is rather exploratory and has more options of parametrization beyond the
mere description of structures. The limitations in the numbers of optimizable (or
invertible) variables is a further argument for this approach, a topic discussed as
reparametrization (Sect. 7.2.2.3.1.1).

7.2.2.2.1 Alternatives

Distinctions between different model relationships are investigated by hypothesis
testing or simultaneous solution of corresponding parameters. It should encompass
the possibilities and the essentials of geological or physical reality. Mostly various
alternative mathematical descriptions exist which each has its advantages and disad-
vantages, as adaptability to the complexities of nature and adequacy or inadequacy
and accuracy or uncertainty in relation to the data. Different mathematical descrip-
tions might have different problematic ranges (as, e.g., map projections with their
own unprojectable areas (poles) and characteristic “errors” in projectable locations:
shape conserving conformal projections versus area conserving authalic projec-
tions). Complex geometries always have alternative possibilities to be constructed.
For simpler geometries parametrization may be carried out (1) with “large” rectan-
gular prisms by defining their corner coordinates (Sects. 2.9.6.1; 2.9.7.4; 6.3.1), but
inflexible in adapting to more complex shapes or (2) by fine point grids (Sect. 6.3.2.2
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(1)) which, however, beside possibly suffering from discretization errors, cannot be
stably optimized mathematically: small changes in observation values or model pa-
rameters result in very different optimized results which must be avoided, for ex-
ample by reparametrization (Sect.7.2.2.3.1.1). Grids can be favourably oriented in
space by coordinates rotation (see integration, Sect. 2.9). Parametrization can be
done in various coordinates, as Cartesian, cylinder and spherical, or in different
domains, as space or functional domains (power series, harmonic series, spherical
harmonics, wavelets). The Gauss-Legendre quadrature in spherical coordinates of
Sect. 2.10.7.3 is an example. As each parametrization is best adaptable for certain
aspects of optimization, tests and comparisons are recommended.

7.2.2.2.2 Complexity, Accuracy, Conditions

Ideally the information about the a priori parameter values and the a priori stan-
dard errors is reliable and independent. The optimization procedures should then
find the best compromise for the a posteriori parameters, but this does not happen
automatically due to incomplete, inaccurate and/or contradictory knowledge, inade-
quate parametrization and error statistics. Often parameter uncertainties can only be
estimated which is difficult when the relationships between data and side conditions
are not obvious. Thus, complex model relationships may include observations with
unclear statistical properties, which require analysis before optimization and much
work must be done before optimization. If this total state of knowledge is exploited
by relating real a priori probability distributions to all data and side conditions, reli-
able a posteriori probability distributions may result, but the solution may offer little
new information.

When model relationships are not very accurately known they have themselves
the character of optimizable variables. They may be considered observables with
given or assumed error bounds as discussed above. Depending on the details or
vagueness of geological a priori information, the model relationships may be ex-
tended by additional conditions and relations between separate model units (illus-
trated by the case of the SE Iceland shelf: Sect. 7.4.2).

Conditions can be interpreted as model relationships themselves. For example,
mathematical conditions as equality (=), inequality or exclusion (�=) or compari-
son (<, >) usually have the highest priority. Examples for equality are repeated
measurements of the same quantity (length of a rod, gravity value at a station, how-
ever, after subtraction of tidal and other temporal effects) or the sum of angles in a
triangle; radii are always > 0 (although formally negative values may appear in a
calculation with a special meaning), so are absolute densities. Or geological bodies
do not occur above the Earth’s surface: z > 0 (z pointing down and z = 0 at the sur-
face). These mathematical conditions, though partly based on physics are stronger
than physical relationships as a priori density bounds or practical conditions to be
met by model design, as idealizations and simplifications of geometry, for example,
smoothness (Sects. 7.2.2.3.4, 7.2.2.3.5).
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7.2.2.3 Variables

Once the model relationships have been defined, the variables or model parameters
can be calculated or optimized. In the case of linear problems the calculation is in
one step and in non-linear problems it usually involves iteration. In geological mod-
elling, the initial or a priori assumed model parameters (Chaps. 5 and 6) are usually
somewhat hypothetical density distributions in 3D geometry (x, y, z), often simpli-
fied in 2D (x, z). They depend on the task and should be suited to the geological
structures in question.

7.2.2.3.1 Types, Parametrization

Models are described by numbers with given meanings, and so are the gravity effects
at certain locations (coordinates). It must be defined which model characteristics are
to be optimized (see Sect. 6.1.3). Parameters or variables can be assumed either free,
fixed, bounded by a priori standard deviations or limited by inequality conditions
and they may be subject to a priori mutual dependencies or correlations by a pre-
determined correlation matrix or controlled by pre-set condition equations.

7.2.2.3.1.1 Reparametrization

In most cases, different kinds of parametrization are possible for a given problem
(see Sect. 6.1.4). Among the arguments for the choice to be made for a particular
parametrization, three are most important: completeness, compactness and numeri-
cal efficiency. Not excluding each other, these conditions may, however, be in mu-
tual conflict. Simple large mass units are well suited to optimization within their
principal limitations, as they cannot fit observed small-scale variations, or they may
be parameterized by fine grids of mass points, each with 4 parameters (coordinates,
mass), which have less geometrical limitation but very many parameters. Fine grids
of finite mass elements approach the properties of Fredholm’s integral equation with
infinitesimal mass elements. Such “complete” parametrizations with large numbers
of small mass elements, while principally linear functions of the element densities,
loose the linearity by the necessary regularizations in the form of additional condi-
tions. Reparametrization can reduce the degrees of freedom by combining many of
them to fewer adjustable parameters. It is meant to optimally use the given a pri-
ori information by limiting the variables with conditions as additional observation
equations, e.g., smoothing or density contrast boundaries subjected to optimization
of fewer parameters. One might define, for example, a grid of points and parameter-
ize their relative masses (or densities) by a rather smooth function of the coordinates,
say a Fourier series of low order which complies with the a priori information on
limitations to the density variation and possibly on existing density gradation. Or a
volume of fixed shape may define a density contrast which differs from that outside;
the boundaries may be defined by conditions of equality or inequality (such as if
x ≥ c, ρ = ρ1, else ρ = ρ2), by barrier or by penalty functions (Sect. 7.2.2.3.5). The
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smaller number of variables, the smoother the model effects which affect the noise
level and the standard deviation of the observations must be adapted to this type of
parametrization error (Sect. 7.2.1.2.5).

7.2.2.3.1.2 Parametrization with Only Trivial Nullspace

Parametrizations with no formal ambiguity are represented by one or very few suit-
able uniform model bodies with density contrast boundaries. A list of simple ge-
ometries which can be defined to approximate geological structures rather naturally
may include in 3D:

– point masses or spheres (with 4 parameters each: mass m, coordinates x,y,z);
if on sufficiently fine grids, point masses approximate integration over infinites-
imal mass elements by summation over finite mass elements (see (Eq. 2.6.1),
Sects. 5.6.3.1, 6.3.3.1 (3), 6.3.3.2 (1));

– polyhedra or closed triangulated body surfaces with n corner points (3n + 1 pa-
rameters) (see Sects. 2.9.6.2, 6.3.1.2 (1));

– rectangular prisms, i.e. vertical columns with rectangular horizontal bottom and
top planes, usually in regular grids based on digital terrain models (DTM) with
heights (and densities) at n corner points or centres; the top planes might be
determined by averaging from the values at the bordering corners (3n parame-
ters: n densities, 2n values of z, reduced to n, if the bottom z-value is fixed, plus
possibly 3 parameters for origin and orientation of the DTM) (see Sect. 2.9.6.1:
(Eqs. 2.9.41, 2.9.42, 2.9.43) with arrangements: Sects. 6.3.1.1 (2), (4), (6); 6.3.1.2
(5); 6.3.1.2 (3), 6.3.2.2 (2));

– horizontal disks or layers of polygonal circumference and thickness d = ztop −
zbottom, which is a generalization of the above prism (2n + 3 parameters: den-
sity, ztop, zbottom, 2n corner x, y coordinates) (see Sect. 2.9.4.2: (Eq. 2.9.30);
Sects. 6.3.2.1 (2); 6.3.2.2 (3)).

2D:

– horizontal infinite mass lines or cylinders, e.g., in a regular grid in the vertical
x, z plane (for n lines 3n parameters: n line masses ρ+ = ρπR2 (either ρ+ or ρ
or R), possibly plus 4 parameters for origin x, y, z and azimuth); such line masses,
like point masses, in sufficiently fine grids approximate integration by summation
(see Sect. 2.9.3.1: (Eq. 2.9.7); Sects. 2.9.7.1.1: (Eq. 2.9.49); Sects. 5.6.3.2; 6.2.1.1
(1); 6.2.21);

– horizontally infinite beams with polygonal cross section in the vertical plane,
called “Talwani beams” (2n parameters: corner point coordinates x, y, plus pos-
sibly 4 parameters for density, azimuth and origin xo, yo; see Sects. 2.9.7.4.3,
2.9.7.4.4: (Eqs. 2.9.50, 2.9.51, 2.9.65); Sects. 6.2.2.1 (6); 6.2.1.2 (1)).

The list is not complete, and other kinds of parametrization can be combined
or new ones can be invented. Modelling of undulated seismic boundaries may aim
at optimizing the corresponding density contrasts either constant or characterized
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by a simple gradient. Surface boundaries of geological maps may be continued
downward and borehole data can render a priori information exploited by such
parametrizations, also well suited for detailed inversion. While gravitation is a lin-
ear function of density, geometry and density always form products, and for large
changes of geometry, a solution ansatz for non-linear equations will be required.

Small-scale density anomalies as occurring at body edges may be suitably param-
eterized. Even if the ambiguity seems to disappear, such parametrizations are never
quite realistic, as they will not represent all possibilities existing in nature. The ambi-
guity is reduced seemingly by combining small and large-scale structures or by basic
simple shapes of uniform mass elements assembled irregularly or in regular grids
as suited to the a priori information. Possibilities exist to design parametrizations
with formally no ambiguity (and such with merely trivial ambiguity; null-masses or
null-densities can always be added) which have advantages and disadvantages.

7.2.2.3.1.3 “Complete” Smooth Parametrizations

Famous examples of “smooth” functions with no ambiguity are the Fourier se-
ries and the spherical harmonics (Sects. 2.10.5, 2.10.7). The smoothness is deter-
mined by the maximum degree and order assumed for fitting the given discrete data.
Downward continuation of Fourier-transformed observations (see Sect. 2.10.5.3;
Eqs. 2.10.14, 2.10.15), coupled to the equivalent stratum (Sect. 2.7.3) renders the
density unambiguously under the condition that the intermediate space or depth
range is empty (ρ = 0) or has a constant density (ρ = const). With bnm = gravity
coefficients:

⎧⎪⎨
⎪⎩
ρ∗(x,y,z) = (1/NM)

N−1

∑
n=0

M−1

∑
m = 0

xnm(z)e−2πi(nx/N+my/M)

xnm(z) = (2πG)−1 bnm exp
(
−z
(
n2 +m2

)1/2
) (7.2.26)

The spherical harmonics equally render a unique solution under the equivalent
conditions:

ρ(φ ,λ,r) =
N

∑
n = 0

rn
n

∑
m = 0

(xc
nm cosmλ+ xs

nm sinmλ)Pnm(cosφ) (7.2.27)

and
xc

nm,xs
nm =

[
(2n+1)(2n+3)/4πGR2n+3]bc

nm,bs
nm (7.2.28)

7.2.2.3.1.4 Transformation of Variables

Reparametrization can be achieved by transforming the parametrization into any
other more suitable form, for example, from simple “macroscopic shapes” (poly-
hedra or specialized prisms or disks) to sets of many small “microscopic” elements
(6.2.2.1, 6.3.2.1). It may be advantageous, on the basis of a given fine grid, to decide
if a mass element belongs into one or another body, depending on the definition of a
boundary. The effect of the microscopic mass elements is calculated separately and
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the speed of computation may be increased by tabulation and interpolation routines.
The reparametrization can also be carried out in the opposite direction, since rel-
atively simple large volumes of uniform density defined by few variables should
be better optimizable. Typical shapes include cylindrical bodies approximated by
polygonal outline and vertical, horizontal or oblique orientation. The relief of den-
sity boundaries can be described by digital terrain models. Definition and estimation
of a priori values and standard deviations should permit easy input. Most of the usual
parametrizations are combinations of simpler ones (polyhedra composed of elemen-
tary tetrahedra, DTM composed of rectangular prisms, polygonal 2D Talwani beams
composed of elementary steps, etc.). The horizontal disk may approximate a verti-
cal circular cylinder, and the circle can be generalized to ellipses or cycloids or tro-
choids capable of describing horizontally complex geological structures with only
a limited number of adjustable parameters (Appendix A1). A further generalization
may be an arbitrary orientation of the various above bodies, involving coordinate
transformations (Sect. 2.4.3.1).

7.2.2.3.2 A-Priori Information, Correlations, Conditions

A priori information of some kind is always included in gravity modelling and opti-
mization, even if implicit and invisible for the inexperienced worker, e.g., the damp-
ing by the factor e−z in Eq. (7.2.26). A priori information ranges from ideas and
hypotheses to detailed structures as supplied by other methods of geology and geo-
physics (Chaps. 5, 6). The most important rule for estimating the standard deviations
of the a priori variables is the so-called two-sigma rule, that is to adjust the a priori
standard deviations of different parameters (e.g. density and depth of a body) by
first asking, which deviations would be unacceptable independently, say, at the 95%
level defining a range of ± 2σ (e.g. 100kg/m3 and 10 m) and then to assume half
these values as suitable standard deviations, σ (50kg/m3, 5 m).

Correlations can be investigated by calculating the a priori covariance matrix
(Sect. 7.2.2.3.8) of the regularized variables, or if a priori standard deviations of
the variables are given, a correlation matrix expresses that the chosen variables are
not formulated as being independent from each other (non-orthogonality). In case
of geometrically or temporally ordered variables, a correlation length, d0, can be
estimated within which a variable should not change more than a certain fraction
of its standard deviation from its neighbours. The correlation coefficient rij can be
estimated from the “distance” dij between the variables i and j with a correlation
function, for example, rij = exp(−(dij/d0)p) or rij = 1/(1+(dij/d0)p), where p is a
suitably chosen constant.

“Correlation” can be treated by the above covariance and correlation analyses.
On the other hand, if obvious in advance, correlations can be included in the prob-
lem formulation and hence in optimization. This reduces the number of variables
stabilizing the optimization. Variables with correlated gravity effects are, for exam-
ple, the density and the volume of a body (mass = density × volume), or coordinates
of mutual boundary elements between contiguous model volumes, if shifted, change
both volumes equally but with opposite sign.
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7.2.2.3.3 Tikhonov Regularization

Tikhonov regularization is a method of determining the mutual relative influence of
the data versus that of the given a priori information in an optimization problem.
The standard form is (Tikhonov & Arsenin, 1977):

(Ax− ỹ)T(Ax− ỹ)+λ2(x− x̃)T(x− x̃) = ‖Ax− y‖2 +λ2‖x− x̃‖2 = min (7.2.29)

or generalized:

(Ax− ỹ)T(Ax− ỹ)+λ2(Bx− z̃)T(Bx− z̃) = ‖Ax− ỹ‖2 +λ2‖Bx− ẑ‖2 = min (7.2.30)

The data are divided according to (Eq. 7.2.3), and the covariance matrices are unit
matrices, multiplied by the scalar λ2. The generalization to full covariance matrices
can be transferred into the form (see Sect. 7.2.1.2.6):

(Ax− y)TCyA
−1(Ax− y)+λ2(Bx− z)TCzB

−1(Bx− z) =

(A′x− y′)T(A′x− y′)+λ2(B′x− z)T(B′x− z) (7.2.31)

with A′ = CyA
−1/2A, y′ = CyA

−1/2y, B′ = CzB
−1/2B, z′ = CzB

−1/2z

where, for example, C1/2 = ES and E is an orthonormal matrix of eigen-vectors
(columns) of the positive definite covariance matrix C = C1/2C1/2; S is the corre-
sponding diagonal matrix of the square roots of the eigen-values.

The standard form is the least-squares minimizing criterion with the solution
(Eq. 7.2.14). In the Tikhonov regularization it is essential that λ2 is a free optimiz-
able parameter. A balance is intended between adjusting to the new data, y, and to
the old data, i.e. the a priori information or the side conditions. If λ2 is included in
CzB it represents the certainty of the a priori, and when 1/λ2 is included in CyA it
quantifies implicitly the parametrization error CA (see Sect. 7.2.1.2.5). In the quite
common case that the weighting of the a priori information relative to the data is
much more difficult than the determination of the covariance matrices, especially
Cz or B′, then optimization of λ2 is recommendable. If, on the other hand, the rela-
tive mutual weighting of the individual pieces of a priori information is uncertain,
then λ2 is only one among many free parameters. In this case optimizing only λ2

will most likely not lead to the optimal result. An important example are densely
gridded observations dominating the data relative to the a priori information on the
variables. Adapting λ2 corresponds to finding a better mutual relative weighting
while leaving the data grid unchanged.

The regularization parameter λ2 can well illustrate the so-called trade-off or ex-
changeability of new data and a priori information. Plotted in double-logarithmic
scale, the residual terms in (Eq. 7.2.30), ‖Ax− ỹ‖ and ‖Bx− z̃‖, as function of the
regularization parameter λ2, represent in most cases an L-shaped curve (Fig. 7.2.2).
A small λ2 fits the new data well but permits a large deviation from the a priori
information, while a large λ2 leads to results which mostly reflect the a priori infor-
mation and practically neglect the data. If both data sets are consistent, the choice of
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Fig. 7.2.2 The L-curve shows, when the Tikhonov regularization parameter λ is varied from small
(upper left) to large (lower right), on the abscissa: how the fit to the new data varies and, on the
ordinate: how the fit to the a priori information (or old data) varies, both together demonstrating
the trade-off

λ2 is irrelevant. In the case of discrepancies, the optimization of (Eq. 7.2.1–2) with
λ2 as a free parameter results in a solution which is equally fitted to the data and to
the a priori information. The implicit assumption is that the whole new data set has
the same weight as the total previous information. Such an assumption is sensible
if the old information consists of expected a priori values of individual model pa-
rameters and the new information consists of many repeated or mutually checking
measurements, which might gain a large weight dominating the previous informa-
tion. A cumbersome analysis of the whole data material and its statistical relevance
is then replaced by the optimization of the regularization parameter. Often the λ2

value at the “bend” of the L-curve is taken as the optimum from whereon one resid-
ual term strongly deteriorates while the other improves only slightly. Under certain
circumstances an additional upper bound may be set for one or the other residual
term, or for both, such that the regularization parameter may be further limited. The
“edgehog” procedure (Jackson, 1973) is based on such assumptions.

The Tikhonov regularization invites us to think about what can be said a priori
about the variables x. If all variables are independent and contained in the a pri-
ori information, a hypothetical singularity is prevented from the very start, for as
formulated below in Sect. 7.3.2.3.2, these variables predetermine the deepest point
of the variance topography; the condition Ax = y will only shift it, if it contains
better information. The generalized form of the Tikhonov regularization leaves the
choice of the B-matrix and the a priori information z open. Regularization with the
Sobolev norm and with inequality conditions represents special cases which require
an optimization of the regularization parameter.
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7.2.2.3.4 Smoothness or Sobolev Condition

Smoothness conditions are frequently needed in optimization and inversion prob-
lems, e.g. to control the data scatter relative to suitable model dimensions.
Fredholm’s integral equation (7.2.2) in the form of the Newton integral (Eq. 2.5.5) is
a distance-dependent smoothing operator. It causes very small-scale far-away den-
sity variations to become unobservable. They are thus part of the nullspace and must
be eliminated by regularization. The inverse operator roughens the observations and
translates every small-scale random scatter into a strong variation of the variables.

A smoothness condition can be defined, if a partial set of the variables x are
considered values of the same function at their positions ξ , or according to Menke
(1984), if they have a natural order, as for example, density as a function of space
coordinates or temperature as a function of time, where the function x(ξ ) is the
smoother, the smaller the derivatives δ nx/δξ n. Such a condition is:

(BSN
2

x− z̃)TCzb
−1(BSN

2
x− z̃) = (αox(ξ )+Σ

n
αnδ nx/δξ n − 0̃)TCzB

−1

(αox(ξ )+Σ
n
αnδ nx/δξ n − 0̃) (7.2.32)

For equidistant ξi, it is, with the constants a0 and a1:

BS1
2
x = αox(ξ )+α1δx(ξ )/δξ= αox(ξι)+α1(x(ξi+1)− x(ξi))/Δξ

= αodiag(x)+α1/Δξ

⎡
⎢⎢⎣
−1 1 0 . . . 0
0 −1 1 . . . ..
. . . . . . . . . . . . 0
0 . . . 0 −1 1

⎤
⎥⎥⎦ (7.2.33)

or

BS2
2
x = BS21x+α2δ 2x(ξ )/δξ 2

= BS21x+α2((x(ξi+1)− x(ξi))− (x(ξι)− x(ξi−1)))/Δξ 2

= BS21x+α2/Δξ 2

⎡
⎢⎢⎣

1 −2 1 0 . . . 0
0 1 −2 1

. . . . . . 0
0 . . . 0 1 −2 1

⎤
⎥⎥⎦ (7.2.34)

The pure Sobolev L2-norm S2
N lets the minimum condition extend to the Nth

derivative, hence αn = 1 for all n = 1, N. In practice, every αn can be set 0 or 1 just
as needed for the smoothness wanted.

7.2.2.3.5 Inequality Condition (Exclusion Condition)

Certain ranges of parameter values are usually excluded, e.g., by the given a priori
information or the physical situation, such as the space above the Earth’s surface.
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Exclusion can be achieved by inequality conditions. Inequality conditions as x ≤
c, x ≥ c or c1 ≤ x ≤ c2 provide a priori conditions only in a limited sense. They
correspond to an infinite uncertainty, i.e. Cx = diag(∞), as long as the condition is
satisfied, but as the solution is about to transgress the boundary, they correspond to
absolute fixing the variable at the value of c, i.e. Cx = 0. A possible ambiguity will
no longer extend from −∞ to +∞, but will be limited by inequality conditions to the
permitted region. It may, however, happen that no solution exists if the conditions
exclude each other forming an overdetermined system of condition equations which
itself must be regularized (Sect. 7.2.1.2.2).

The usual methods of solving equation systems with inequality conditions are

• search methods, as the simplex method and the gradient method which check the
side condition for each iteration;

• reparametrization of the variables (applied in Sect. 7.2.2.3.1.2) by the intro-
duction of the N(0,1) normal-distributed variable x′ = log((x ± c)/(xo±c))/s
(instead of the ordinary variable x) with the back-transformation x = (xo ±
c)exp(sx′)± (−c) and the parameters xo(≈ x) and s (>> 1), free to choose;
it leads to a solution for x which obeys the condition x < c (upper sign) or
x > c (lower sign) (compare Tarantola, 2005); the implicit probability den-
sity of x is thus condensed toward the boundary and dilated in the opposite
direction;

• penalty and barrier methods add to the function to be minimized a term which
increases toward the boundary:

(y−Ax)TCyA
−1(y−Ax)+λ2Π...(x,c, . . .) = min, with

Πbarr(x,c,s) = − ln((x± c)/s+1) or Πpen(x,c,s,r) = max(0,((x± c)/s)r)
(7.2.35)

The barrierΠbarr increases to infinity at the boundary c, such that it cannot ever be
reached, but increases before reaching c holding back the solution at a distance
within the permitted region. In contrast, the penalty Πpen rises only within the
forbidden region such that the solution will pass c until the penalty term reaches
an equilibrium with the rest of the minimum function.

Inequality conditions of physically meaningful parameters (e.g. radius > 0, 104

kg/m3 > density > 0, depth > 0, etc.) are idealized probability densities which are,
indeed, small near the boundaries and are thus reasonably represented by barrier
methods. The penalty method does not totally exclude the forbidden region, but the
adjustment leads to a weighted mean. It may not be critical that some conditions
are not met, since a completely satisfactory solution is no possible in this case. By
trespassing in the forbidden region, the result may show which conditions might be
incompatible.

An example of a penalty function, increasing the resistance with the approach
of the boundary and further within the region x > c, is the following p(x′) with
x′ = (x−c)/s, c and s being constants, and the + and − sign for the two conditions
x < c and x > c, respectively (Eq. 7.2.35):



7.2 Optimization 299

Fig. 7.2.3 The penalty function p and its derivative dp for an upper limit c; it rises toward a linear
asymptote (dp(x′) ≈ constant), and the transition length is determined by s (x′ = (x− c)/s)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(x′) = 1/2(x′ + x′erf(x′)+π−1/2exp(−x′2))
d p(x′) = 1/2 ± 1/2erf(x′)[

A

d p(± x′)/(± s)

]
dx =

[
y−AAA (x)
p(± x′)

] (7.2.36)

The function p(x′) (Fig. 7.2.3) is linear and nearly zero in the permitted region
except near x = c. In the “forbidden” region, it rises toward a linear asymptote
(d p(x′) ≈ const), and the transition length is determined by the value of s. This
definition guarantees that the linearized function intersects zero at or near c, and if
a current solution x′ > 2s, p(x′), the penalty function takes on the role of an obser-
vation x̃ = c with a standard deviation of 1s.

A disadvantage of the penalty and barrier methods is that in most cases assump-
tions are violated, either that of the non-linearity of the system of equations to be
solved or that of normal distributions of the data (or a priori information). Generally
it must be decided if the assumptions inside the permitted region are to be main-
tained while violated only near the boundary, or if a potentially forbidden solution
is to be prevented from reaching the boundary largely preserving the assumptions
but already sensing the influence still within the permitted region and trespassing
the boundary strongly impeded.

7.2.2.3.6 Linearly Related Variables

Reparametrization can also exploit linear dependencies between variables, i.e. a
change Δp2 of parameter 2 is linearly related to the change Δ p1 of parameter
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1: Δp2 = c Δp1, c being a constant. For example, block movement of a prescribed
volume of constant point masses is defined by equal and parallel shifts of all points
in that volume. Or all masses, i.e., the density as the mass sum divided by the total
volume, may be permitted to change each by the same amount. Or point coordinates
may change linearly such that the prescribed volume can expand or contract. The
fact that scaled parallel shift relates variables to each other and thus reduces their
numbers is expressed as:

AAA (x1,x2) = y with x1 = x̃1 +dx1, and x2 = x̃2 +dx2 under the condition

dx2 = cdx1 ⇒ [A1 A2]
[

dx1

dx2

]
= y−A(x̃1, x̃2) ⇒ (A1 + cA2)dx1 = y−A (x̃1, x̃2)

Linear relations and conditions are also needed in regularizations with large but
simple geometries. If, for example, neighboring bodies may have to remain con-
nected, the contiguity condition can be realised by the linear dependency between
the affected parameters with c = 1, i.e. both changes are identical in all coordinates
of the connected points. This reduces the number independent variables, too. Simi-
larly, such bodies can also be scaled and shifted by the same kind of linear relations.
Furthermore, rigid rotations can be provided by the proper relations between coor-
dinate changes in the optimization process.

7.2.2.3.7 Lanczos Inverse

The Lanczos inverse can be regarded a special case of the Backus-Gilbert approach
(see Sect. 7.3.1.2.2). The generalized eigen-value analysis (Sect. 7.2.1.2.6) leads to
the so-called singular value decomposition (SVD) of A:

A = WSV T (7.2.37)

The columns of V are an orthonormal basis for the model space of A, i.e. for
the variables x; the columns of W are an orthonormal basis for the projection space
of A, i.e. for the observations y. The vectors of V belonging to the generalized sin-
gular values Si = 0, constitute the model nullspace, i.e. the linear combinations of
variables which have no effect on the observations. The corresponding vectors of
W constitute the partial space of the discrepancies of the observations, i.e. the lin-
ear combination of observations which cannot be generated by the variables. For
the non-regularized observation equation, Ax = y, follows from (Eq. 7.2.23) that S
contains the singular values and V the eigen-vectors of the a posteriori covariance
matrix of the variables (ATA)−1.

The so-called Lanczos inverse (Lanczos, 1961; Jackson, 1972) of A is defined
as V S−1

L W T , where SL = diag(σi≤p > 0, ∞i > p) or SL
−1 = diag(1/σi≤p > 0,

0i>p). Since SL consists only of elements > 0, the inverse exists always and projects
nothing into the nullspace; the solution has a component of length zero in the direc-
tion of the nullspace vector. To be a sensible solution technique, the variables must
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be deviations dx from the estimates x, as is the case with solutions according to the
minimum norm or the Sobolev norm. Thus, the implicit regularization or a priori
information is that the solution should contain only components that can be pro-
jected by A. In the case of gravity inversion, it means a restriction to gravimetrically
relevant density distributions.

If no a priori information or sensible estimates of x exist, then this solution is
the most reasonable one; it says nothing about components of which nothing can be
said. A nearly singular matrix A, and thus an unstable solution x, is characterized
by σi � 1 or 1/σi � 1. The instability can be avoided by damping the solution
through forcing the 1/σi values to be small by the damping parameter αi, such that
S−1

D = diag(αi/σi) with 1≥αi ≥αi+1 ≥αp ≥ 0 (damped singular value decomposi-
tion, DSVD); when αi≤ j = 1 and αi> j = 0, we have the so-called truncated singular
value decomposition, TSVD (see Hansen, 1993). DSVD with αi = σi

2/(σi
2 +λ2)

corresponds to a Tikhonov regularization with the regularization parameter λ2. The
TSVD has the solution x̂ = V S−1

L W Ty with y = Axy = WSLV Txy. From this follows
for the second criterion of Sect. 7.3.1.2.2 that x̂ = xr = Ryy = V S−1

L W TWSLV Txy =
xy and hence Rx = I. This regularization is optimal according to the Backus-Gilbert
method, and the parametrization always leads to a solution, but since the decom-
position is usually unknown beforehand, the only known fact is that some badly
determined linear combinations of the variables have been removed from the solu-
tion, but it is not known a priori which solution is preferred. It is possible to control
this by considering the SVD of the regularized problem ABc(dxc) = dyyc, instead of
the original problem A(dx) = y−Ax:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
A

B

]
dx =

[
y−Ax

z−Bx

]
ABcdxc = dyzc

⇒

Cyz =

[
Cy 0

0 Cz

]
,Cdx Cyzc = I, Cdxc

= I

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABc =

[
Cy

−1/2 0

0 Cz
−1/2

]
·
[

A

B

]
Cdx

1/2

dyzc =

[
Cy

−1/2 0

0 Cz
−1/2

][
y−Ax

z−Bx

]

dxc = Cdx
−1/2dx

(7.2.38)

If the side conditions Bx = z do regularize the problem completely, the solution is
the same as that with the Tikhonov regularization. If the side conditions do not suf-
fice and unexpectedly a nullspace remains, the Lanczos inverse or the TSVD/DSVD,
as a “black box”, provides a unique solution which is as close as possible to the es-
timate x, in the sense of a minimizing norm with respect to Cdx. The problem has
been recently investigated also by Sebazungu (2005).

7.2.2.3.8 Covariance Matrix

A general analysis of linear relationships between variables is furnished by the a
priori covariance matrix (see below Sect. 7.3.2.2.4) of the regularized variables or,
if the standard deviations are estimated independently from it, a correlation matrix.
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Such a matrix can be calculated directly in most cases (see Sect. 7.2.2.3.2). Another
possibility exists, if a side condition, Bx = z, relates several or all variables to each
other. It can be optimized in a first-phase adjustment, based on the a priori x̃, their
standard deviations Sx, and the uncertainty Sz, within which the side condition is to
be satisfied. Values of x corresponding to the condition equation are estimated with
Sx

2BT (BSx
2BT +Sz

2)(Bx̃− z̃): the covariance matrix follows from

Sx
2 −Sx

2BT (BSx
2BT +Sz

2)BSx
2.

If the standard deviation of z is chosen zero, side conditions could possibly be
defined to be in mutual conflict. The changes of the variables may also satisfy the
side condition B δx = 0, which automatically holds for the a priori information but
is used only to determine the covariance matrix of the variable changes as in Sx

2 −
Sx

2BT (BSx
2BT + Sz

2)BSx
2, above. But this requires the conditions to be linear, or

after each solution of the basic equation the covariance matrix must be recalculated.

7.2.2.3.9 Accuracy

Reliable a priori values of the chosen parameter values and their standard errors
are essential for the whole complex of the model relationships (Sect. 7.2.2.2.2), but
knowledge is usually incomplete, inaccurate and contradictory and the parametriza-
tion may be questionable. The parameter uncertainties themselves can often be only
vaguely guessed. The input of the a priori information may be tedious, and proper
weighting of auxiliary conditions is often difficult. All the a priori choices affect the
optimization results, partly intended, partly uncontrollably. Ambiguity can be can-
celled or reduced only in the mathematical solution, but if too much is prescribed
a priori, the solution will no longer provide new information from the data. Most
of these problems are solvable by the 2σ rule (see below), especially relevant to
inversion.

7.2.2.3.10 Application of Regularization Methods

Regularization must be balanced between too little and too much which is not easy.
Over-regulating returns only the input with the solutions, and under-regulating leads
to unstable solutions. A stable and reliable solution rarely offers new unexpected de-
tails which can be gained only with the risk of ambiguity and instability. The trade-
off between solvability and stability can be tested by the Tikhonov regularization
parameter λ2, controlling the relative weighting of data and a priori information as
illustrated by the L-curve (Sect. 7.2.2.3.3; Fig. 7.2.2). The task of inversion is to find
the best compromise between the influences of the data and of the side conditions.
Properly weighted standard deviations may be problematic, even if the Tikhonov
parameter is optimized automatically. It is advisable to adjust the a priori standard
deviations of different parameters by applying the two-sigma rule of Sect. 7.2.2.3.2.
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The definition of a minimization condition for the parameters with the Tikhonov
regularization is facilitated by giving the parameters a form in which the conditions
are easily formulated or deduced. For the latter, the parameters should have approx-
imately a normal distribution. The Sobolev norm (Sect. 7.2.2.3.4) assumes that the
parameters are chosen to have a “natural” order.

Real or realistic a priori probability density distributions of all data and side con-
ditions calculated before the solution is calculated reflect the total state of knowledge
expressed by the a posteriori probability distributions. If serious discrepancies have
arisen, desirable additional observations or observational methods may be suggested
or rethinking of the problem. Alternatively, one might begin with minimal a priori
information, analyze the solutions by comparison with the data and side conditions
for unwanted properties and iteratively add more and more a priori information until
only acceptable solutions are generated taking all information into account. If res-
olution is insufficient new observational methods or ideas should be considered. In
this case, the main work is done after each mathematical solution. The “nullspace
shuttle” of Deal & Nolet (1996) is an example of this approach, modifying an initial
solution, determined by the Lanczos inverse according to the auxiliary conditions;
however, only that part of the modified intermediate solution is accepted into the
final solution that does not contradict the data, i.e., it lies in the nullspace of the
original problem.

The first strategy requires a vision of all aspects of the problem and compression
of partial aspects of information, to keep the data quantity manageable and to allow
proper weighting and compliance of correlations between them. It is often a numer-
ical problem, but it permits a better analysis of the result in its various aspects and
employs the capabilities of inversion in the literal way. The iterative strategy derives
partial results rather separately. This is no inversion any more but rather forward
modelling with the disadvantages of both methods, intended inversion combined
with incomplete possibilities to incorporate all information in a way the researchers
are not aware of. The influence of the neglected information remains unclear. In
practice, the choice will often lie somewhere between these extremes depending on
the human and numerical possibilities.

The Bayesian approach is to include non-gravity a priori information, not merely as
initial assumptions (as would be needed for any iterative scheme), but as data on some
or all model parameters pk, k = 1, m, with estimated error distributions. They are
treated like data in the inversion-optimization process and their residuals, rk = pok −
pk, are included in the minimization of the variance S. This permits the combination
of data sets of different nature and different physical units, non-dimensionalized or
normalized by their individual estimated standard deviationsσk (see Sect. 7.2.1.2) and
could be further developed to joint inversion of original observations. If the a priori
σk values are unknown, they have to be very carefully estimated, but their sizes have
only second-order effects on the solution, where the a priori parameter values have
first-order effects. Effects of changes in the relative sizes of the σk on the results of
fitting should be investigated. They should be trusted only if well established or if they
have no strong influence on the results. Assuming normal error distributions permits
the application of efficient LSQ-oriented algorithms, easily rendering a posteriori
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standard deviations. The justification of the statistical assumptions must be checked
a posteriori. If normal distributions are well established (combination of normally
distributed errors leads to collective normal distributions), the least-squares method
renders the most likely parameter values, the largest probability densities and the
smallest variances (by definition, see Rao, 1973).

Superposition of many processes of observation and data reduction, each with its
normal distribution, leads again to normal distributions, such that the variance is a
good measure of the scatter or error distribution.

Suspicion against bias and preconceived (Bayesian) ideas has led to supposedly
unbiased inversion programs fitting the gravity data to any desired degree and pro-
ducing apparently accurate images of underground density distributions. However,
implicit assumptions are easily overlooked. Close fitting of the data and attractive
models deceive the inexperienced researcher about their uncertainties. “Unbiased”
results are questionable if in conflict with reliable a priori information. Hence, exclu-
sively forward modelling programs are still much in use which accurately calculate
gravity effects but cannot easily be made to fit the observations and do not sys-
tematically investigate the full range of the a priori knowledge with its uncertainty
limits. Therefore a compromise is needed between accurate detailed forward mod-
elling and optimal fitting of the observations using any valid a priori information
and illuminating the range of possibilities.

7.3 Inversion

Inversion has the aim to determine geologically and geodynamically important den-
sity distributions inside the Earth which cannot be obtained directly from samples.
One of the first steps of inversion is the recognition and characterization of “anoma-
lies” which suggest certain mass distributions. While optimization requires an initial
approximation, inversion should find the solution, for example for certain variables
of special interest, directly from the data. The solution should be optimal. However
in potential fields a priori search ideas are mandatory.

Gravity fields or anomalies are estimated from discrete data (Sect. 1.4) where
“field” usually means “continuous variation of a quantity”. Model effects are usu-
ally quantified as continua (outside the source volumes), but calculations are carried
out usually with discrete numbers at a limited set of observation points. Different
components of a density model are not “orthogonal”: they influence each other mu-
tually in the inversion and optimization and affect all variables. Data distributions
influence the ultimate inversion results by the minimum condition over the whole
data set (see 5.1.5), sometimes seriously. The solution to the inverse problem lies in
its regularization by the available a priori information and adequate parametrization.
In Bayesian inversion the parameters are accompanied by their uncertainties. It may
be extended to adjustment in phases (Sect. 7.2.1.2.4) or even joint inversion which
requires the primary observations (e.g. seismic travel times, etc.) and their respec-
tive theories to be included. Gravity is the subject of this treatise, and all other data
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are regarded a priori information helping to regularize the inversion problem. For a
seismologist the situation would be reversed.

In practice the range of acceptable models can by narrowed by a priori knowl-
edge, in exceptional cases to zero (see Sects. 7.2.2.3.1, 2.7.3), but only as a math-
ematical possibility. The uncertainties in the parameters of a priori models and in
the observations will leave room for many acceptable models, characterized by the
a posteriori parameter values and their uncertainties. Search for acceptable models
resembles trial and error, and optimization may be guided, e.g., by the Gaussian
method (Sect. 7.2.1.2). If that way the main minimum is missed, systematic or ran-
dom search and genetic model variations (see below: Sect. 7.3.3) are possibilities.
The different strategies can be combined offering the possibility to choose the best.

7.3.1 Overview

Optimizing algorithms are at the heart of inversion. They can be chosen such as to
suit the task at hand and are available in the literature on numerical mathematics.
Practical inversion methodology is essentially the same as for optimization. Theo-
retical aspects specific to inversion problems are treated in this section. Emphasis
is on regularization, parametrization and evaluation of the results, the calculation
of a priori and a posteriori covariance, correlation and resolution matrices etc. Di-
rect methods (Sect. 7.3.2) solve the normal equations, Ax = y (Eq. 7.1.1), by ma-
trix inversion, applied to linear and non-linear problems. The latter usually require
linearization and iteration, the calculation of the Jacobians and evaluation of con-
vergence properties and abort criteria. Iterative algorithms as conjugate gradients,
LSQR (Paige & Saunders, 1982) etc. search a solution by iteration, without explic-
itly calculating (AT A)−1 or even A−1 along deterministic mathematical rules like
line minimization, steepest descent routines or conjugate gradients. Evolutionary
and similar algorithms exploit chance and large numbers of tests, realizable by ef-
ficient computers (see Sect. 7.3.3). The assessment of the results needs criteria and
permits a judgment about the accuracy, reliability and resolution. The theoretical
concepts are illustrated by two case studies (Sect. 7.4) and in several tasks.

7.3.1.1 General Remarks: The Situation

For inversion, important questions are:

◦ Which data have the greatest influence on the solutions, which ones have little
influence?

◦ What kind of additional information will optimally lead to acceptable solutions?
◦ What is the cost-benefit relation between data gathering and knowledge gain?
◦ What can be sensibly gained from a solution and what not?
◦ How can a density distribution be derived from the available data, with emphasis

on gravity, which corresponds to all known aspects, adds new aspects and avoids
conflicts?
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◦ Can observation methods or instruments be suggested that most completely and
accurately determine a density distribution?

Explicit and implicit ways to find answers are discussed.
The gravity inverse problem is an ill-posed problem, since no que solutions ex-

ist (Hadamard, 1953). Conditions Bx = z were treated for optimization (Sects. 7.2.1,
7.2.2.3.8). A principal possibility is to exclude the nullspace by defining the problem
with a parametrization that cannot represent a non-trivial nullspace (Sect. 7.2.1.2.6).
In gravity, a finite number of point masses leaves no non-trivial nullspace but their
effects will not generally fit the data. A most complete parametrization, providing
free variables for many if not all aspects of the theory, should be chosen in order
not to exclude possible solutions and to fit the observations optimally within the sta-
tistical scatter. Examples in gravity inversion are fine grids of small mass elements
(see Sects. 6.2.2, 6.3.2) or functional series to high order (see 2.95–8). An arbitrar-
ily large, but still limited number of mass points (mass > 0) at different locations is
principally determinable, but only under the fictitious condition of infinite and in-
finitely accurate data and infinitely accurate arithmetic. Generally such parametriza-
tions must, however, be strongly regularized to permit numerically stable solutions.
Another kind of conditions are exploited with bodies extending from the surface
to large depth; this permits sort of extrapolation to depths, where the gravity ef-
fects are very small. Singular value decomposition (SVD) is helpful for unfavorable
parametrizations (see Sect. 7.3.3), because it drops the insignificant small singu-
lar values, and thus defines a much more compact parametrization which can be
extracted from the original one. Removal of insignificant undeterminable variables
or avoiding singularity by properly designing density models (e.g. using orthogo-
nal functions, as Fourier series) are examples of successful regularization. These
methods circumvent nullspaces mathematically, leaving the physical and geologi-
cal realization to the interpreter and can thus be called “extraction of a preferred
solution out of many” achieved with the aid of side conditions.

7.3.1.2 Requirements, Strategies

7.3.1.2.1 A Priori Information

A priori information is strictly required by the condition that gravity inversion has
to be formally overdetermined, to be solvable. A priori information provides regu-
larization. Generally information contains internal conflicts which reveal the uncer-
tainty of a problem, and in this sense inversion is a subclass or subset of general op-
timization (as expressed in Sect. 7.1). But inversion goes also beyond optimization
as the direct construction of the most acceptable models by introducing interesting
unknown variables in order to determine their values.

Several general methods of regularization exist which do not represent explicit
geometrical or physical a priori information, but are a more general type of a priori
information. Examples are conditions of smoothness and exclusion (Sects. 7.2.2.3.4
and 7.2.2.3.5), the Lanczos inverse (Sect. 7.2.2.3.7), discussed above, and the



7.3 Inversion 307

balancing of the influence of the data and a priori information by the Backus &
Gilbert approach, below.

7.3.1.2.2 Backus-Gilbert Method

The Backus-Gilbert method (Backus & Gilbert, 1968, Sabatier, 1977) tries to for-
mulate how to best regularize inversion problems in a general way or to show which
solution should be preferred: the one which satisfies the condition of the minimum
variance or that which corresponds to the a priori “reality”. The aim is not the best
fit of the model to the data, but the best-possible reconstruction of “reality”, taking
into account that reality must be deduced from the data y, but can be represented
in the data only partially. The nullspace is not represented. Moreover, the data are
uncertain. “Reality” is thus understood as only the facts, xy, which are described
by the (consistent or fitted) observations, y. If the solution must be regularized, the
reconstruction xr will be influenced and distorted by the a priori information relative
to the facts xy : xr = Rxxy and ideally Rx = I. The projection of xy onto the observa-
tions is obviously Axy = y, and the reconstruction cannot be done other than via the
data: xr = Ryy = RyAxy = Rxxy. What is desired is a reconstruction matrix Ry which
satisfies the conditions:

(1) The uncertainty RT
y ATCyAARy of the individual reconstructed xr which follows

from the uncertainty of the data and the uncertainties of the projection A (ex-
pressed by CyA) is to be minimal.

(2) The reconstruction xr is to be as similar as possible to the situation xy following
from the observations: Rx = RyA should ideally equal the identity matrix I.

These conditions contradict each other in most cases, as experience shows. For
example, a detailed density distribution (many parameters) can fit the data very well,
while it will, however, have large uncertainties. In contrast, a large-scale mean den-
sity can be determined very accurately, however, with a poor fit to the detailed data.
One has to choose (1) the relative weights of the two conditions, corresponding to
the Tikhonov regularization parameter λ, and (2) the definition of similarity with
the identity matrix. The matrix Rx must then be calculated from the two conditions
revealing the “best” reconstruction xr = Ryy. The second condition can be of help in
choosing the regularization method and as a criterion in evaluating a solution (see
Sect. 7.3.2.2.8).

The analysis can be carried out with the direct methods for linear (Sect. 7.3.2.1)
or non-linear (Sect. 7.3.2.3) problems or by iterative methods (Sect. 7.3.3.1). Only
for linear or mildly non-linear problems the simple matrix algorithms are appropriate.

7.3.1.2.3 Summary of Possibilities to Define A Priori Information in a Gravity

Computational tools (such as INVERT, PS97, attached to this book on a disk) should
provide for all the possibilities discussed above. Parameters or variables have to
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be defined either free, fixed, bounded by a priori standard deviations and option-
ally limited by pre-set conditions and mutual dependencies or by correlations (as a
correlation matrix or condition equations). Parametrizations calculable by internal
or external modules ought to permit principal modelling geometries to be defined
adaptable to given a priori information, complemented by the possibility to import
externally calculated model effects. The relative weighting of the parameters and
the data are preferentially optimizable with the Tikhonov regularization parame-
ter (Sect. 7.2.2.3.3). Linear or non-linear or conditions should be definable, and it
should be possible to place starting parameter values near suitable solutions since
otherwise the iteration may immediately “jump” into “nonsensical” or “forbidden”
“terrain”. Last but not least, the inversion tool must provide all the a posteriori in-
formation needed to evaluate the results.

7.3.2 Direct Algorithms

Methods are called “direct” if they solve, mostly by matrix inversion, the normal
equations (7.2.14a) x = (ATA)−1ATy. In linear problems the unknowns are rendered
in one step. Mildly non-linear problems are most easily linearized (if possible) and
then iterated, each step solving (Eq. 7.1.2) and updating the solution until an abort
criterion is satisfied. The elements of A are the Jacobians, Jik, i.e. the derivatives of
all model effects, ∂δg(xi)/∂ pk, (Sect. 7.2.1.2).

7.3.2.1 Linear Problems

If the underlying functional relationship between the variables x and the observa-
tions y is linear, the solution (Sect. 7.1.2) renders optimized variables and the inver-
sion of the data in one step. Newton’s law is linear in density (also in geometrical
scale). Hence, theoretically determining density (or scale) is a linear problem, if
the geometry of the geological bodies is known or given. Generally, however, ge-
ometry is unknown, and large point grids, without further regularization, will not
automatically lead to the correct stable solution, not even approximately. Rather the
non-linear question of geometrical distribution remains open.

Cases of linear inversion do occur in practice, when the geometry of a structure
is well determined, for example by seismic methods, or if not so accurately deter-
mined, at least as an experimental step. Linear inversion for density was demon-
strated in some case histories (Sects. 6.5.2; 6.5.3; 6.5.8). Another linear case, where
the geometry is assumed known, is the optimization of the Bouguer density and
vertical gravity gradient (Sects. 4.5.3.1; 4.5.2); this is briefly described below as a
variant of the Nettleton method (Sects. 3.6.3.6) which exploits the relation between
the Bouguer anomaly and topography, generally in graphical approximate form.
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7.3.2.1.1 Principles, Methods, Tasks

Solving linear equations, including large sets of them, is a common task of numer-
ical mathematics and will thus be treated only briefly. The special case of separat-
ing or isolating correlated effects in gravity data sets by sequentially solving linear
equations is treated thereafter.

7.3.2.1.1.1 Solving Linear Equations

The classical Gauss-Newton method for solving systems of linear equations seems
the most common tool for practical inversion, capable of optimizing models or
model parameters as discussed above. It has proven fully adequate as it can always
find a minimum if it exists (see Sect. 7.3.2.3.2).

Many methods are available for matrix inversion. The pivoting-free Choleski de-
composition is advantageous for systems of equations of moderate size and saves
memory. The normal matrix is decomposed into an upper and a lower triangular ma-
trix which are transposed matrices, saving storage space; the method is numerically
stable without pivoting (reordering of the matrix elements). For very large systems
of equations it is time-consuming and memory demanding (as is the Newton method
generally if sparseness of the matrices is not exploited). The situation is character-
ized by the number of parameters which usually must be limited through suitable
simplifications. If the aim is mainly to evaluate the results carefully, compact rep-
resentations are required anyhow. Under these circumstances, the calculation of the
model effects usually takes more time than the matrix inversion. If larger problems
are to be routinely solved, other algorithms must be considered, e.g., iterative ones
without matrix inversion or LU decomposition (Gollub & Van Loan, 1989, Chap. 4)
which decomposes the normal matrix similarly and lends itself very well for ex-
ploiting sparse matrix techniques more economically in terms of computer time.
Singular Value Decomposition (SVD) solves the model equations on the basis of a
generalized inverse without calculating the normal matrix whose condition number
equals the square of that of the original model equations which are thus easier to
solve accurately. SVD is suited also for singular, nearly singular and numerically
unstable problems. Several implementations of these algorithms are widely used.

7.3.2.1.1.2 Separating Correlated Effects in Data by Sequentially
Solving Linear Equations

The task of isolating the effects of the vertical gradient used in the height re-
duction, −δgh, and the Bouguer density assumed in the Bouguer and terrain re-
duction, −δgB, is discussed here first, independently from the solution algorithm
applied. Removing their mutual linear relations and those with the observations
δg, before solving for their values, is a refinement of the traditional Nettleton
method, the results of which are affected by such relations (Jacoby, 1966). Calcu-
lating first the linear relationships (regression coefficients) of δgB with δg, δgh

with δg and δgB with δgh and subtracting them from δg, better fitting values
are obtained for the Bouguer density and the vertical gravity gradient by solving
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observation equations of the residual gravity plus residual height and mass ef-
fects. The unknown Bouguer anomaly from deeper sources can be approximated,
e.g., by a polynomial fit. Steep slopes of topography are advantageous for sta-
ble solutions; indeed, such geometry approaches the 3D situations discussed in
Sect. 3.6.3.5. The application to Helgoland (Sect. 3.6.3.6) proved rather convinc-
ing. Of course, there may exist more complex relationships, not eliminated by linear
correlations.

7.3.2.2 Assessment of Solution (Residuals, Covariance, RMSE, F-Test,
Standard Deviations, Correlation, Resolution)

When a solution has been found by regularization and the adjustment of the vari-
ables to be unique and stable and a density distribution has been calculated for fur-
ther research, it is important to first evaluate the quality of the solution. The quality
involves the internal consistency between the data and side conditions, the adequacy
of the parametrization, the uncertainties of the variables, the necessity of data and
side conditions, the novelty of the solution or the lack of it, and the suitability of the
solution method for the problem at hand.

For this, several characteristics or criteria can be obtained from the optimization
and inversion process itself. A complex problem will, however, not easily reduce to
a few criteria. It is important, as a kind of contrast enhancement, to define them such
that they will take on simple values such as 0 or ±1 or � 1 or �−1, if significant,
and intermediate values would indicate insignificance. Hence, the properties of so-
lutions and general characteristics should be compared to each other in the form of
differences or ratios to arrive at normalized criteria independent from the problem at
hand. In the Bayesian approach (7.2.2.3.10) all a priori and a posteriori information,
including the basic equations, are usually described by normal distributions, where
the most important results are the expected values and their uncertainties. The eval-
uation of the solution will thus be their comparison with suitably chosen quantities,
indicating that the expectation either

• corresponds with the criterion or
• deviates from the criterion within acceptable limits or
• deviates strongly or is incompatible with the criterion;

or the uncertainty is either

• much narrower than the criterion value or
• it is comparable with it or
• it is much broader than it.

Figure 7.3.1 illustrates all 9 combinations of the above possibilities and interpre-
tations. The actual meaning will depend on the given case and the purpose of the
comparison. For example, only solutions of a pre-set quality may be acceptable, or
the computational method may be appropriate only within certain limits of linear-
ity, etc. In gravity, a priori limits (e.g. of density) may be decisive, and it will be
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Fig. 7.3.1 Graphic illustration and interpretation of the 9 different situations in comparing the
expectation and the uncertainty of a solution based on “new data” with a criterion which represents
the a priori or previous knowledge

important to decide whether new information has been gained or something already
known has been only confirmed.

The criteria may refer to single parameters, to selected combinations or to the
whole set. Single parameters can be judged generally only if they have physical
meaning or can be related to a meaningful interpretation. In these cases, the evalua-
tion will be simple. In some cases, however, the parameters have a meaning only in
combination, for example, the coefficients of a polynomial alone cannot be judged,
but the functional values can (see Sect. 2.10.3). Criteria encompassing all variables
will permit the most compact assessment of the quality of a solution in a problem-
independent form because they are defined in the same coordinate system as the
solution itself.

7.3.2.2.1 The Expectation: The Residuals

Evaluation implies judging probabilities. Probabilities can be estimated correctly
only if data and a priori information comply with the following conditions:
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1. the standard deviations and covariance matrices are chosen correctly to describe
the statistical uncertainty;

2. they are free of gross errors;
3. the basic equation Ax = y (7.10.1) is adequate;
4. the normal distribution is statistically justified.

The conditions 1 and 4 are essentially equivalent, and 2 and 3 follow from them.
The order is chosen to indicate how easily one may be inclined to change the
assumptions.

7.3.2.2.2 Residuals of Individual Variables

Residuals or errors e are the differences between the observations (also a priori side
conditions), marked by a tilde (as ỹ) and the effects of the optimized a posteriori
model variables or parameters, marked by “∧” (as “x̂ ”); “error” is used in the sense
of the first definition of the introduction (Sect. 7.1):

e =
[

ỹ
x̃

]
−
[

ŷ
x̂

]
=
[

ỹ
x̃

]
−
[
AAA (x̂)

x̂

]

with
⎧⎨
⎩

x̂ = x̃+
(
ATCyA

−1A+Cx
−1
)−1

ATCyA
−1ỹ)

Ce = CyA −A
(
ATCyA

−1A+Cx
−1
)−1

AT
(7.3.1)

These residuals are N(0, Ce) normal-distributed if data and a priori information
have a normal distribution N((y,x),(CyA,Cx)). By comparison with this probability
distribution the validity of the assumptions can be tested. Generally the individual
residuals are judged in view of their significance for the problem to be solved.

7.3.2.2.3 Root Mean Square Error (RMSE) and F-Test

Some simple numbers can be provided to judge the results of any kind of inversion
problem. The shifting variate is the length of the error vector or the weighted sum
of n squared N(0, I) normally distributed variables, according to the L2 norm that
is minimized

eT
[
CyA 0

0 Cx

]−1

e = ε2 = min (7.3.2)

If r linear combinations of m variables are not regularized, only (n− r) error
components (degrees of freedom) contribute to the error vector, and the shifting
variate is, by definition, χ2

n−r-distributed with the expectation n− r. Under the as-
sumption that the data follow N((y,x),CyA,Cx), the probability that ε2 ≥ εc

2 is equal
to the percentile χn−r

2(εc
2). The quantity ε2/(n− r) is the weighted mean squared
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residual. If the covariances are valid up to a common variance factor σ2, derived
from a sample of size k, the F-statistic ε2/((n − r)σ2) has Fn−r,k-distribution: it
compares the squared length of the residual vector with the expected length, where
both are uncertain. If the chosen σ2 is valid, as though taken from a quasi-infinite
sample, the F-statistic is Fn−r,∞ distributed, equivalent to χ2

n−1,k/(n− r). For suit-

ably scaled covariance matrices, σ2 = 1, such that the F-statistic equals ε2/(n− r).
It is a value estimated for the covariance factor of the data (a priori information).
If the a posteriori standard deviations, σ̂i, are multiplied with this factor, as it ap-
pears to describe the given uncertainty better, the variables thus connected with the
fitted standard deviations, are no longer normally distributed, but have the Student’s
t-distribution, ei(n− r)1/2/(ε · σ̂ i) ∝ tn−r.

If the F-statistic ≈ 1, all the above assumptions appear to be valid.
If the F-statistic � 1, the variance factor should be multiplied with it to bring it

up to 1 without changing the solution and the unweighted residuals, suggesting that
the assumptions are not valid within the standard deviation multiplied by ε2/(n−r).

If the F-statistic � 1, the solution fits better than expected, and the basic equation
(or model) could possibly be further specified. If the assumptions hold, two differ-
ent solutions with an F-statistic � 1 are statistically indistinguishable, and one can
conclude that the difference between both solutions lies effectively in the nullspace
of the basic equation.

Shifting variate and F-statistic provide a joint evaluation of the data and the a
priori information.

The weighted Root Mean Square Error (wRMSE) permits independent evalua-
tion of either form of information. For the data and for the variables it is defined
differently by: [

(ỹ−AAA (x̂))TCy
−1(ỹ−AAA (x̂))/n

]1/2

and [
(x̃− x̂)TC−1

x̃ (x̃− x̂)/m
]1/2

, respectively (7.3.3)

They are ordinary averages disregarding the degrees of freedom and have no F-
distribution, but the user can thus judge the quality of the data fit relative to the fit of
the a priori information. They are plotted against each other in double-logarithmic
scale in the L-curve of the Tikhonov regularization (Sect. 7.2.2.3.3; Fig. 7.2.2). The
statistical quantities wRMSE of the variables and of the data, the F-statistics and
the coordinates of the Tikhonov L-curve of the current solution provide a means
to assess the quality of the complete (multidimensional) solution by three simple
numbers.

7.3.2.2.4 The A Posteriori Covariance Matrix

The evaluation of the covariance matrix C concentrates on combination of two vari-
ables by their correlation or larger groups of variables by the eigen-value/eigen-
vector analysis. A covariance matrix C without normalization can rarely be
interpreted as such because its elements often differ in physical meaning and units.
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Therefore the matrix C is decomposed into the dimensionalized a posteriori matrix
diag(σ) of the standard deviations, where σi = Cii

1/2, and the non-dimensional cor-
relation matrix R; this is achieved by the decomposition C = diag(σ) R diag(σ),
where σ2

i = Cii and R = diag(1/σ) C diag(1/σ); see Sects. 7.3.2.2.7, 7.3.2.2.10.

7.3.2.2.5 The Standard Deviation σ

The a posteriori standard deviation permits an evaluation of the individual variables,
which is only useful, as mentioned, if they are physically meaningful. In evaluating
the a posteriori standard deviation, one asks:

(1) Is it below a certain physically realistic criterion value σcrit?
(2) Or, for individually regularized variables: has σ significantly decreased relative

to the a priori value σprior?

The answer should be σ/σcrit < 1, or � 1 and ideally should approach 0, but not
exactly zero (the covariance matrix would then be singular).

For σcrit the maximum acceptable uncertainty of the result may be chosen, such
that σ/σcrit > 1 suggests that the solution is effectively singular and urgently needs
regularization. In extreme cases, the variable may be removed from the inversion.
Or it can indicate that the uncertainty exceeds a given range of interpretability. Or
the range of linearity of the observation equations may be exceeded and must be re-
garded with caution. In general, σcrit is given in conjunction with an expected value
of the variable, and it might be sensible to add these quantities as observations and
standard deviations directly to the system of equations as a measure of regulariza-
tion. If σ/σcrit ≈ 1, σ has not decreased significantly and thus none of the data was
able to pin down this variable and the regularization was really necessary. The result
σ/σcrit ≈ 0 indicates that the data alone fix the solution and regularization is unnec-
essary. However, a precise solution (with a small standard deviation) can be wrong,
and the regularization may be needed to prevent this, i.e. it may be important for the
problem at hand, even if superfluous for the solution process.

7.3.2.2.6 The Correlation Matrix

The correlations Ri j measure how closely two variables, xi and x j, are grouped around
that straight line which represents with the smallest residual variance a linear relation
between them if infinitely many samples of normally distributed data would be consid-
ered. But the Ri j are estimated only from a few scattered data. As the covariance ma-
trix is positive definite, Rii = 1 on the diagonal expresses complete self-dependence.
For all others (i �= j) : −1 < Ri j < +1. Ri j near ±1 indicates a strong dependence
suggesting that one of the variables is unnecessary as it can be calculated from the
other and carries no new information. This can be exploited for regularization, and a
significant section of the regression line with the least scatter could be chosen to be
represented by a point xi, x j, such that x j = bxi. The slope b of the straight line is
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b = 2σiσ jRi j/max
[(
σi

2 −σj
2)± (σi

4 +σj
4 +2σi

2σj
2 (2Ri j

2 −1
))]

≈ sign(Ri j)σj/σi, |Ri j| → 1 (7.3.4)

This follows from the fact that each of the partial matrices Cij
[

σi
2 σiσjRi j

σiσjRi j σj
2

]

contains the coefficients which describe an ellipse: xTCi jx = σ2
i xi

2 +2σiσjRi jxix j +
σ2

j x2
j = 1. The two half axes λmax and λmin with the directions vmax and vmin result

from the two solutions of the eigen-value problem:

Cλv =
[
σi

2 −λ σiσjRi j

σiσjRi j σj
2 −λ

]
v = 0.

Non-trivial solutions exist only if |Cλ|= 0, hence, for the half-lengths and the direc-
tions of the axes, respectively:

λ= e1/2(
(
σi

2 +σj
2)± (σi

4 +σj
4 +2σi

2σj
2 (2Ri j

2 −1
))

,

v =
[
λ−σj

2

σiσjRi j

]
(7.3.5)

The slope b follows from the ratio of the second over the first component of the large
semi-axis vmax, which itself is calculated with λ = λmax. This standard ellipse is the
two-dimensional equivalent of the standard deviation and describes how the variables
are grouped. A very narrow and inclined ellipse corresponds to Ri j ≈±1, a circular or
axis-parallel one corresponds to Ri j ≈ 0. The principal axes lie in the direction of the
eigen-vectors ofCi j and are interpreted as the linear combinations of the two variables
with the largest and smallest standard deviations, represented by the lengths of the
principal axes, which are given by the square roots of the of the eigen-values.

7.3.2.2.7 Eigen-Value/Eigen-Vector Analysis of the A Posteriori Covariance
Matrix and the Criterion Covariance Matrix

Generally the covariance matrix is too large and complicated to be easily interpreted.
The axes of a hyperellipsoid are simpler to imagine, and the classical standard el-
lipse can be generalized to an m-dimensional standard hyperellipsoid describing the
collective grouping of m variables. The connection between the covariance matrix C,
the square roots of the m eigen-values ζi

2, i.e. the singular values (always positive,
as C is positive definite) in the diagonal matrix S = diag(ζ1 ≥ ζ2 ≥ . . .≥ ζm) and the
respective eigen-vectors ei in the columns of matrix E (orthonormal, i.e. EE = 1) is:

Cei = ζi
2ei, i = 1, m ⇒CE = ESS ⇒C = ESSET (7.3.6)
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The square roots of the eigen-values, so-called “singular values” are interpreted
as the standard deviations of the linear combinations of the variables which are
defined in the corresponding eigen-vectors. If the vector variables x are normally
distributed with the expectations μ and the covariance matrix C, i.e., x∝N(μ , C), x
can be transformed via the eigen-vectors:

ETx ∝ N
(
ETμ ,ETCE

)
= N

(
ETμ ,ET(ESSET)E

)
, and hence ETx ∝ N

(
ETμ ,S2) .

If linear combinations in the eigen-vectors occur which have a physical mean-
ing, their standard deviation can be compared to a criterion value defined for the
combination, e.g. two densities occurring as the sum and the difference.

An example: of m variables xk=1,m, the first half of the variables (k = 1,m/2) de-
scribe the depth of a layer top and the second half of the variables (k = m/2+ 1,m)
describe the bottom. The components of the eigen-vectors are thus defined in rela-
tion to the base [xk=1 . . .xk=m/2 xk=m/2+1, m . . .xk=m]T. The eigen-vectors[

1
m/2 . . . 1

m/2 0 . . .0
]T

,
[
0 . . .0 1

m/2 . . . 1
m/2

]T
and

[
1
m . . . 1

m
1
m . . . 1

m

]T
correspond to the

mean depths of the top, the bottom and the whole layer, respectively. The standard
deviations of these quantities are the corresponding singular values.

If variables have different physical units, the singular values and eigen-vectors
cannot be evaluated immediately. Take, for example, the components a and b of
an eigen-vector to have the units “m” and “kg/m3”; the linear combination would
be a[m]+b[kg/m3] which is physical nonsense. Even non-dimensionalization (e.g.
division by 1 m and 1kg/m3) would leave singular values which, if ordered by size,
strongly depend on the units chosen.

An example: assume the variables of a whole lithosphere section to be (1) the
density anomalies, known a priori to about ±0.5g/cm3 and (2) depths with an un-
certainty of ±30,000m; both are uncorrelated. After adjustment the standard de-
viations are, e.g., 0.1g/cm3 and 2000 m with a correlation coefficient of 0.8. The
singular values of the a posteriori covariance matrix are thus 2000.00 . . . for the
eigen-vector [0.00 . . .0.99 . . .], representing essentially only the depth accuracy, and
0.06 . . . for the eigen-vector [0.99 . . .0.00 . . .], describing essentially only the den-
sity accuracy. From this, one would deduce that the depth uncertainty has decreased
(about correctly) with a factor of 15, and the density uncertainty by a factor of 10
(instead of 5). The considerable correlation is totally invisible because the eigen-
vectors are essentially parallel to the coordinate axes. If, however, the coordinate
system is scaled with the estimated uncertainties, i.e., the density values are di-
vided by 0.5 and the depth units by 30,000, then the singular values are 0.20 . . .
and 0.038 . . . for the eigen-vectors [0.96 . . .0.26 . . .] and [−0.26 . . .0.96 . . .], respec-
tively. Now the strong correlation is recognizable from the inclined orientation and
the different size of the eigenvectors and the improvement relative to the assumed
uncertainties is directly indicated by the singular values.

To solve this problem the original variables x can be subjected to a coordinate
transformation T to the new xc = T x, where the transformed a posteriori covariance
matrix:
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T−TCT−1 (7.3.7)

represents the standard hyperellipsoid xTCx = xc
TT−TCT−1xc = 1 in the new coor-

dinates. The correlation matrix R = diag(1/σ) C diag(1/σ) can thus be interpreted
as the standard hyperellipsoid in the coordinate system of the a posteriori standard
deviations of the variables.

To determine whether or not the accuracy of the solution corresponds to some
given criterion, for meaningful comparison first a criterion covariance matrix Cc

must be defined by a suitable transformation of the a posteriori covariance matrix.
The matrix Cc is usually calculated by one of the following procedures:

1. The criterion is given by the standard deviations S = diag(si=1,m) of certain
ortho-normalized linear combinations L of the variables, i.e. the transformation
matrix T = C1/2

c = SLT or T−1 = C−1/2
c = LS−T is known (the criterion standard

deviations, as computational quantities, symbolized by si).
2. The criterion is given by the standard deviations S = diag(si=1,m) of the vari-

ables and their correlation matrix R, and the transformation matrix must be cal-
culated from the square root matrix of R : T = C1/2

c = SR1/2 or T−1 = C−1/2
c =

R−1/2 S−1.
3. The criterion must be deduced from conditions between the variables: Bx = e

with x ∝ N(0,CxB) and e ∝ N(0, Ce); the covariance matrix of the variables
which correspond to this condition is, after (Eq. 7.2.9), Cc =CxB−CxB(BCxBBT +
Ce)−1BCxB from which follows, as specified: T = C1/2

c or T−1 = C−1/2
c .

If a singular value of the transformed covariance matrix (Eq. 7.3.7) equals 1, the
standard deviation in the direction of the eigen-vector is equal to that of the criterion.
If it is greater, the aim is missed. If it is smaller, the expectations are surpassed.

The transformations easiest to interpret are, beside the trivial transformations
I, pure scaling of the original coordinates (without rotation), used also above.
Especially for variables with unique physical meaning, one should consider re-
normalizing them with the a priori standard deviations S = diag(si=1,m), which in
this case also play the role of criterion standard deviations si (see above):

S−1CxS−1. (7.3.8)

Then the singular values and the components of the eigen-vectors have units most
easily interpreted. It is a compromise between maintaining the original physical
coordinate system and the subjective weighting of the results.

If the criterion matrix is equal to the a priori covariance matrix, Cx, and if C1/2
x

represents an interpretable transformation, in the best case, for example, if Cx is a
diagonal matrix, then with (Eqs. 7.2.13, 7.2.14), the transformed a posteriori covari-
ance matrix is:

Cx
−1/2Cx̂

(
C−1/2

)T
= Cx

−1/2 (AT)CyAA+Cx
−1)−1

(
Cx

−1/2
)T

= I −Cx
−1/2AT (ACxAT +CyA

)−1
A
(

C−1/2
x

)T
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The central expression is positive definite and the second term of the right-hand
side expression is positive semi-definite, i.e. positive definite when ATA is not sin-
gular. Furthermore, for the singular values of the matrix sum (I −C), eig(I −C) =
1− eig(C); hence, the eigen-values (the squares of the singular values in this case)
of the transformed a posteriori covariance matrix must be >0 and ≤1. Values close
to 1 indicate that the accuracy of the corresponding linear combinations of the vari-
ables has not improved; values near 0 mean that the eigen-vector is well resolved.
If an eigen-value of the left-hand expression is equal to 1, then the corresponding
eigen-value of the second term of the right-hand expression is 0. It means that ATA is
singular and that the corresponding eigen-vector lies in the nullspace of A. This way,
the nullspace of the non-regularized problem can be re-established from a fully reg-
ularized solution. So one is able to determine which combination of variables would
be badly resolved without a priori information although a stable solution is achieved
by including it. This way, the a priori information that is not verified by observations
can be recognized.

In most cases, not all variables will be regularized with a priori information, es-
pecially if criteria can hardly be formulated (see Sect. 7.2.1.2.7). For such variables
the following may be done:

1. they are removed from the a posteriori covariance matrix and do no longer appear
in the eigen-vectors;

2. let the respective diagonal elements C−1/2
x = 0, implying an infinite a priori stan-

dard deviation. Then the eigen-values are zero for eigen-vectors in the directions
of these variables and appear thus as infinitely improved;

3. let, for these variables, C−1/2
x = 1 (or another arbitrary value) in order to exhibit

possible interactions with other variables.

7.3.2.2.8 The Resolution Matrix

“Resolving” different variables means to be able to distinguish, to disentangle their
values. What is meant here is the distinction of what the observations tell about
the solution in comparison to the a priori information. The resolution matrix Rx

is central to the Backus-Gilbert method of regularization (Sect. 7.3.1.2.2) and is
defined by xr = Ryy = RyAxy = Rxxy. From this and (Eq. 7.2.13) is derived:

⎧⎨
⎩

xr − x̃ = CxAT
(
ACxAT +CyA

)−1
A(xy − x̃) = Rx (xy − x̃)

Cx̂ = Cx −CxAT
(
ACxAT +CyA

)−1
ACx

(7.3.9)

from which follows:
Rx = I −Cx̂Cx

−1 (7.3.10)

The most important properties of Rx are:



7.3 Inversion 319

1. Rx describes how strongly the solution xy which exactly corresponds to the con-
sistent or adjusted observations is distorted by the regularization. In the ideal
case, if Rx = I, the regularized solution is not distorted, i.e., it is perfectly re-
solved by definition.

2. If Cx is arbitrary, the ideal situation exists only if Cx̂ = 0, i.e. the a posteriori
covariance matrix should be the null matrix. Of course, it is desirable that the
scatter of the adjusted variables is zero.

3. If Cx = diag(∞), Rx = I. According to the definition, the trivial conclusion is that
without regularization there is no influence of regularization on the solution.

4. If it turns out that Rx = I in spite of regularization, then it follows from xr − x̃ =
Rx(xy − x̃), that the a priori information has no influence on the results.

5. Data errors propagate, even in the ideal case Rx = I, according to the adjustment
method Ry, into the solution xr.

6. If Rx �= I and the data are in conflict with the a priori information, then the dis-
crepancies will generally spread across several variables although there may be
only one conflicting variable.

7. The element Rx(i, j) (line i, column j) describes the change (relative to the un-
regularized solution) of variable i, caused by a discrepancy of one unit in the
variable j between data and a priori information. In other words: if the data try to
shift variable j by one unit to a value contradicting the a priori information, then
(also or in its place) variable i will change by Rx(i, j) units to better fit the data. If
the diagonal element Rx(i, i) < 1, the required change of the variable i is incom-
plete, and Rx(i, i) < 0 expresses that the feedback of regularization reverses the
sign of the change required by the data.

8. Rx is seldom symmetric. Rx(i, j) and Rx(j, i) will have reciprocal physical units,
and the influence of a strongly regularized or fixed variable will spread over less
regularized variables but not vice versa.

9. If the units of the variables are changed such that they exactly agree with the a pri-
ori information, i.e. on both xr and xy, the transformation Cx

1/2 is applied, then
xr = (I −Cx̂Cx

−1)xy ⇒ Cx
−1/2xr = Cx

−1/2(I −Cx̂Cx
−1)Cx

1/2Cx
−1/2xy ⇒ xr

T =
(I−Cx

−1/2Cx̂Cx
−1/2)xy

T and hence Rx
′ = (I−Cx

−1/2Cx̂Cx
−1/2). By this transfor-

mation the matrix has become symmetric remaining positive definite. However,
the Rx(i, j) in transformed units tell us little more about their meanings. Alter-
natively, as in (Eq. 7.3.8), the a priori S = diag(σi=1,m) can be chosen for the
transformation matrix, again as criterion standard deviation (Sect. 7.3.2.2.7):

Rx
′′ =

(
I −S−1Cx̂CxS−1)= S−1 (I −Cx̂Cx

−1)S (7.3.11)

which is a similarity transformation. Rx
′′(i, j) describes by how many standard de-

viations variable i changes when variable j was to be changed by one, if not pre-
vented by the a priori information or the regularization. The matrix elements are
non-dimensional, and in the special case of Cx = S2, Rx

′′ is even symmetric.
The practical application of this discussion will be illustrated in the case history

of Meerfeld Maar (Sect. 7.4.1).
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7.3.2.2.9 Eigen-Value/Eigen-Vector Analysis of the Resolution Matrix

The interpretation of the eigen-values and eigen-vectors of the resolution matrix is
related to the standard hyperellipsoids and criterion covariance matrices, although
resolution matrices are generally not symmetric and therefore not describing hy-
perellipsoids. The criterion covariance matrix implies the question of whether the
a posteriori uncertainty of an arbitrary linear combination LTx is smaller than the
criterion. The uncertainty is defined by the norm (LTx)TC(LTx) of the vector (LTx)
relative to a covariance matrix C, or LCLT, as only corresponding linear combina-
tions are of interest. With the a posteriori covariance matrix Cx̂ and the criterion
covariance matrix Cc, the question is equivalent to:

LCx̂LT ≤ L CcLT ⇒Cx̂LT = λCcLT ⇒Cc
−1Cx̂LT = λL ⇒Cx̂Cc

−1L = λL with λ≤ 1.

The first equation expresses that the hyperellipsoid described by Cx̂ should always
be smaller than that defined by Cc. If the subsequent equation is solved for all lin-
ear combinations, the eigen-values and eigen-vectors of Cx̂C−1

c are obtained which
represent extrema and saddle points of the size ratio of the hyperellipsoids. Since
Cx̂C−1

c is not symmetric, it does not describe a hyperellipsoid, and the directions of
the extrema are usually non-orthogonal (Fig. 7.3.2) as the principal axes of a hyper-
ellipsoid would be. Orthogonalization (as described above) by the transformation
matrix Cx

−1/2 carries no real advantage since it is no longer clear in which coordi-
nates the principal axes would be defined.

From (Eq. 7.3.10) follows that the resolution matrix, similar to the covariance
matrix, makes a comparison, however, not with the uncertainty, but with its reduction:

Cc
−1Cx̂x = λx ⇒ (I −Cx̂Cx

−1)x = λx.

The eigen-values are between 0 and 1. Near 0 means minimal reduction of the un-
certainty, not better than the criterion; near 1 means maximal uncertainty reduction
with hardly any effect from the regularization. Eigen-vectors with very small eigen-
values represent linear combinations of variables which are strongly influenced by

Fig. 7.3.2 The ratio of the sizes of two concentric ellipses and directions of its extrema (as for
Cx ·C−1

c with identical centre) in polar coordinates
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the a priori information. Eigen-values ≈ 1 show a strong uncertainty decrease, i.e.
nearly exclusively by the data.

Also here it is reasonable for the analysis of the eigen-vectors, to apply a
similarity transformation with the a priori standard deviations such that the size
of their components will show whether they are large relative to the criterion
(Sects. 7.3.2.2.7, 7.3.2.2.8). The interpretation of the resolution matrix and its eigen-
values shows a close relationship with the concept of the criterion matrices applied
in the geodetic coordinate determination (e.g. Baarda, 1973).

7.3.2.2.10 Comparison of the Eigen-Value/Eigen-Vector Analysis of the
Covariance and Resolution Matrices

In Sect. 7.3.2.2.7 the eigen-values and eigen-vectors of the a posteriori covariance
matrix, normalized with the criterion a priori standard deviations, were calculated:
S−1CxS−1 (Eq. 7.3.8) and in Sect. 7.3.2.2.9 the eigen-values and eigen-vectors of
the resolution matrix (as similarity-transformed also with the a priori standard devi-
ations) were derived: R′′

x = S−1(I−Cx̂C−1
x )S (Eq. 7.3.11). What is their connection?

It is simple if the a priori covariance matrix is equal to the a priori standard devi-
ation squared: C−1

x = S−2; then the two matrices are complementary to 1, and the
eigen-vectors are identical.

If unregularized variables exist, their a posteriori standard deviation will be lim-
ited and probably correlated with other variables, hence they will be represented in
several eigen-vectors of (Eq. 7.3.8). Their resolution, however, appears perfect rel-
ative to their infinite a priori standard deviation, and for the respective eigen-vector,
the equation (7.3.11) will have an eigen-value of 1.

If the a priori covariance matrix assumes correlations between variables, the
eigen-value/eigen-vector analysis of (Eq. 7.3.11) emphasizes linear combinations
of variables which would have large uncertainty without regularization. Strongly
regularized linear combinations appear in (Eq. 7.3.8) among the eigen-vectors with
small uncertainty, as intended by the regularization, while by (Eq. 7.3.11) they are
counted as poorly resolved.

Generally however, the eigen-vectors of (Eqs. 7.3.8 and 7.3.11) differ because
of completely unregularized variables (which cannot show up in Eq. 7.3.11) and
correlations. Though many eigen-vectors will be equal, if regularization was only
weakly applied, especially for the unequal ones it is of interest, whether a small
uncertainty, i.e. a small eigen-value in (Eq. 7.3.8) is connected also with good reso-
lution and whether this would be due only to a priori information or also to the data.
If in (Eq. 7.3.11) no similar vector occurs, the question is difficult to answer. Simi-
lar to the case of a posteriori standard deviations of individual variables, the ratio of
a posteriori over a priori uncertainty must be calculated for the linear combination
considered. If, instead of S, the individual eigen-vectors of (Eq. 7.3.8) are chosen for
the transformation matrix, S−1Cx̂S−1 = ED(ED)T with D being a diagonal matrix
of the singular values and E being an orthogonal matrix of the eigen-vectors, the
resolution in the respective direction is
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I −DECx
−1ETD (7.3.12)

An eigen-vector of (Eq. 7.3.8) with small uncertainty and poor resolution appears
certain only due to the a priori information. Generally, however, small uncertainty
will be associated with good resolution.

7.3.2.2.11 Residuals of the Eigen-Vectors of the A Posteriori Covariance

Whether or not a linear combination of variables with small a posteriori uncertain-
ties lies at the right place, is indicated by the residual of the corresponding eigen-
vector of the a posteriori covariance matrix. If, as in Sect. 7.3.2.2.10, S−1Cx̂S−1 =
ED(ED)−1 (D: diagonal matrix of the singular values, E: matrix of the eigen-
vectors), then the weighted residuals of these eigen-vectors are (eTEC−1

x ETe)1/2.
Poorly resolved but strongly regularized eigen-vectors (Eq. 7.3.12) are expected
to have small residuals; but if large, non-linearity of the basic equation is sug-
gested which may be ambiguous near the optimum, this ambiguity does not nec-
essarily reach up to the location of the a priori information, so that the solu-
tion might be unique again if such a priori information is defined. In the case of
only slightly regularized eigen-vectors with very small residuals the a priori in-
formation has already predicted the information contents of the new data. In con-
trast, large residuals of well determined variables suggest discrepancies between
them.

7.3.2.2.12 Application: Design of New Observational Methods

Finally, a practical application of the eigen-value/eigen-vector analysis is to reveal
deficits in the existing data or data types and to suggest which ones should be ob-
tained by new measurements or new methods. It poses a design problem for new
measuring instruments or methods. If several eigen-vectors are poorly resolved,
it may suffice to measure a linear combination of them, and mutually indepen-
dent measuring procedures can be combined arbitrarily to arrive at a useful design.
The a priori information used will influence the design of new methods by adding
data, which may result from real observations. For example, seismically determined
models supply indirect density information and direct geometrical information on
contrast surfaces, and they could be incorporated in a joint inversion procedure by
including refraction and reflection laws, ray tracing and seismic velocity-density
relations.

Most observation methods will solve non-linear combinations of the variables.
Thus the search must be for new methods which provide the wanted eigen-vectors
after linearization. The design of observation methodology is itself an ill-posed in-
verse problem (Penrose, 1991), where the eigen-vectors can help, but where no
unique solution can be defined. No algorithm can be proposed, only experienced
insight and ideas may serve as regularization.
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7.3.2.2.13 Summary: Evaluation Criteria for Gravity Inversion

The a posteriori information for a solution permits a well educated evaluation of
the results, their reliability and accuracy, in view of the geological, geodynamic or
exploration aims of interpretation, especially when the model situation is complex.
The evaluation criteria relevant to gravity inversion have been described. The crite-
rion standard deviations, written as a diagonal matrix, are the basis for transforma-
tions (Sects. 7.3.2.2.7 and 7.3.2.2.9, Eqs. (7.3.8, 7.3.11)). They can be chosen such
that the quantities expressed as numerical values in this system (standard deviations
and eigen-vectors) are easily interpreted. Usually the criterion standard deviations
are the a priori standard deviations. For the individual variables the next quantities
are evaluated in their original physical units:

– the values of the solution,
– the residuals and
– the a posteriori standard deviations.

Statistical units (unit-less) of interest are:

– wRMSE of the variables;
– wRMSE of the data;
– the F-statistic;
– the coordinates of the Tikhonov L-curve of the current solution.

In relation with the a posteriori covariance matrix the results to be assessed are:

– the a posteriori standard deviation relative to the criterion a posteriori standard
deviation, equivalent to (1 – resolution), for the individual variables;

– the correlation coefficients
– the eigen-values of the a posteriori covariance matrix in the coordinate system of

the criterion standard deviations;
– the corresponding eigen-vectors, expressed in the units of the criterion standard

deviations;
– the residuals of the eigen-vectors, expressed in the units of the criterion standard

deviations;
– the resolution of the eigen-vectors (1 – a posteriori/a priori standard deviation of

the eigen-vectors);
– the linearity factors for the current solution ± one eigen-vector, i.e., the change

of the shifting variate (Sect. 7.3.2.2.3) when an eigen-vector is added to, or sub-
tracted from, the current solution.

In relation with the resolution matrix interesting quantities are:

– the resolution matrix itself, normalized with the criterion standard deviations;
– the eigen-values of the resolution matrix;
– the corresponding eigen-vectors, expressed in the units of the criterion standard

deviations.

In addition:

– the second derivatives to assess the non-linearity (Sect. 7.3.2.3.2)
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7.3.2.3 Mildly Non-linear Problems

Mildly non-linear problems are problems which can be linearized such that iterative
solutions are stably possible. In the present context a problem is defined to be lin-
earizable, if within about a 2σ interval of all observations and all estimated variables
the model relationship is sufficiently linear that the iteration will converge to only
one solution. This solution should be within the same two standard deviations also
the optimum of the original non-linear problem. Such a situation will, of course,
depend on the model relationships and the variables of the specific problem.

7.3.2.3.1 Principles, Problems: Linearization, Initial Values, the
Damping Parameter

The linearization of the basic equation, i.e. the calculation of the Jacobian matrix of
the derivatives ∂ ri/∂ pk = ∂ (δgobs,i − f (xi,p))/∂ pk = Jik, can be obtained by ana-
lytical or numerical differentiation. In the last case, the differentiation distance can
be chosen proportional to the estimated a posteriori standard deviations, i.e. the in-
verse diagonal elements of ATCyA

−1A+C−1
x , or to the a priori (and the normalizing)

standard deviations. If the basic equation can be considered linear only around the
minimum, the former option guarantees that the search is done only there. The pro-
portionality factor may be chosen in the order of 0.1. Caution is necessary because
of possible problematic interference between the discretization of the variables and
numerical differentiation. A discretization of the parameters should not depend on
their values, and in any case, the discretization distance should be much smaller than
the differentiation distance. Otherwise the derivatives (finite difference coefficients)
can be seriously in error. In critical situations, tests with different discretizations are
necessary.

7.3.2.3.2 Expansion of A(x) to Second-Order Terms

To assess problems of the linearization, the expansion of A(x) to second-order terms
is considered.

The least-squares solution of the observation equation Ax = y with x as the un-
known variable renders the expression (Sect. 7.2.16) that minimizes the expression
(see Sect. 7.2.1.2.3):

ϕ(x) = (y−AAA (x))TCyA
−1(y−AAA (x)) (7.3.13)

A is the linearized version of A(x). The Taylor expansion till second-order terms is:

ϕ(x) ≈ ϕ(xi)+∂ϕ(xi)/∂xTΔx+ 1/2ΔxT∂ 2ϕ(xi)/∂x∂xTΔx (7.3.14)

where
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∂ϕ(xi)/∂xT = −2∂AAA T /∂xTCyA
−1(y−AAA (xi))

∂ 2ϕ(xi)/∂x∂xT = 2∂AAA T /∂xCyA
−1∂AAA /∂xT −∂ 2AAA T /∂x∂xTCyA

−1(y−AAA (xi))
(7.3.15)

At the minimum, the gradient ∇∇∇ϕ(x) = 0:

∇∇∇ϕ(x) =∂ϕ(xi)/∂x−∂ 2ϕ(xi)/∂x∂xTΔx = 0 ⇒
Δx =∂ϕ(xi)/∂x(∂ 2ϕ(xi)/∂x∂xT )−1 ⇒ (7.3.16)

Δx =∂AAA T /∂xTCyA
−1(y−AAA (xi))

×
(
∂AAA T /∂xCyA

−1∂AAA /∂xT −∂ 2AAA T /∂x∂xTCyA
−1(y−A(xi))

)−1

For a linear kernel, ∂A /∂xT = A and ∂ 2A T /∂x∂xT = 0. This confirms the equal-
ity with x̂ = (ATC−1

y A)−1ATC−1
y y (see Sect. 7.2.1.2.3, Eq. (7.2.16)). If in an it-

erative method, starting from a current solution ϕ(xi) not the absolute minimum
directly, but only a better solution ϕ(xi+1) < ϕ(xi) is aimed at it suffices to step
a small distance Δxi,i+1 = xi+1−xi in a linear relation with ΦΦΦ the opposite direc-
tion of the local gradient: Φ = F∇ϕ = Fδϕ(xi)/δx, where F is a square matrix,
such that:

ϕ(xi+1) =ϕ(xi)+δϕ(xi)/δxTΔxi+1,i =ϕ(xi)−δϕ(xi)/δxT Fδϕ(xi)/δx (7.3.17)

The condition ϕ(xi+1) < ϕ(xi) is always met when δϕ(xi)/δxT Fδϕ(xi)/δx > 0
which corresponds to the definition of F being positive definite. This conforms to
a Newton-Raphson method for determining the root of a gradient function ∇∇∇ϕ .
An arbitrary positive definite matrix F differs from the special choice F = Fopt =
(δA T /δxC−1

yA δA /δxT −δ 2A T /δxδxTC−1
yA (y−A (xi)))−1 in that the former ren-

ders only a slight improvement and the latter renders the optimal solution. In other
words, in the case of using F , the lowest point is looked for by stepping downs-
lope in the steepest direction, while in the case of Fopt the curvature as the linear or
non-linear “topography” is used to find the minimum in one step. To this end a hy-
perparaboloid with the same curvature is placed at the current solution and renders
with (Eq. 7.3.16) the coordinates of its minimum. If A (x) is linear, the solution is
correct, if not, non-linear iteration should be continued. The following considera-
tions are important:

• The Newton method finds roots of the gradients, but for non-linear A (x) they
may be also maxima or saddle points, which however can be checked;

• Approximations of the function ϕ(x) by the hyperparaboloid may be locally poor
and may not place the new solution near the (nearest) minimum;

• The a posteriori covariance matrix of the variables Cx = F−1 is now influenced
by the second derivative of A (x) : −∂ 2A T /∂x∂xTCyA

−1(y−A (xi)) �= 0. The
uncertainty is corrected upward or downward relative to the linearized version
depending on the curvature of ϕ(x). Close to a minimum the predictions are
improved. But if maxima exist, there must also be inflexion points with zero
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curvature, and F does not remain positive definite. Hence at such points the
method fails to decide whether to go to the minimum or the maximum introduc-
ing again a singularity. Moreover, the second derivative is usually not considered,
because (1) it is often quite small, (2) its effect is only to find the minimum a bit
faster and (3) its calculation is tedious.

Consequently, when a current approximate solution xi lies near a desired mini-
mum, the solution method for weakly non-linear basic equations should make the
step Δx so small that it will not reach another minimum. Such a damping of the
iterated solution is in effect a regularization with the side condition Δx = 0; its co-
variance matrix CΔx defines the local search or damping radius. The regularized and
damped basic equation for iteration i is thus:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣
∂A/∂x

I

I

⎤
⎥⎦Δx =

⎡
⎢⎣

y−A(xi)
x− xi

0

⎤
⎥⎦

CyA,x,Δx =

⎡
⎢⎣

CyA 0 0

0 Cx 0

0 0 CΔx

⎤
⎥⎦

(7.3.18)

with the solution:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xi+1 = xi +
[
∂AT /∂xTCyA

−1 [∂AT /∂x
]
+C−1

x +CΔx
−1
]−1

[∂A/∂x]T C−1
yA [y−A[xi]]+C−1

x [x− xi]]

Cxi+1 =
[
∂AT /∂xTCyA

−1[∂AT /∂x]+Cx
−1
]−1

(7.3.19)

The “regularization observation” (x− xi) pulls the solution at every step back
to the a priori information, but the “damping observation” Δx = 0 is the same in
all steps. When the solution has converged to the minimum, Δx is necessarily zero
and damping has become superfluous. Therefore C−1

Δx is used only to determine the
solution path; it does not appear in the a posteriori covariance of the converged
solution, for the statistics should be independent from the path.

7.3.2.3.3 Iterative Solution

For the mildly non-linear case, the Gauss-Newton algorithm was extended to the
Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963, Press et al.,
1992). It is applied to the initial values of the variables (Sect. 7.3.2.3.4) and regular-
izes, i.e. damps, the change of the solution from step to step. To keep the damping
in accordance with the a priori information, as discussed below (Sect. 7.3.2.3.2), the
covariance matrix of the parameter changes per iteration step, CΔx of Eq. (7.3.19),
can be chosen proportional to the a priori standard deviations Sx = diag(σi=1,m),
i.e. λSx. Since the free variables (σ =∞) cannot be damped this way, a “normalizing
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standard deviation” must be prescribed to them in order to define the proportionality
factor of damping which should reflect the expected range of values, but the choice
is not critical.

In the case of a linear basic equation, the optimal solution lies at the bottom
of a parabolic valley, the walls of which rise accordingly if moving normal to the
standard ellipsoid, i.e. along the eigen-vectors of the a posteriori covariance ma-
trix. From the minimum, the topography rises by one unit if one moves by a unit
of a singular value along the eigen-vector. This is because the singular values of
the a posteriori covariance matrix indicate how large the uncertainty is in some par-
ticular linear combination which is also connected with a data uncertainty of one
standard deviation. One standard deviation of the data from the optimal solution
changes the shifting variate by one unit, as given by the slope of the above topog-
raphy. In case of a non-linear basic equation the slope can be higher or lower. An
increase of the shifting variate by < 1, when the solution is changed by one sin-
gular value unit in the direction of the eigen-vector, indicates that the effective a
posteriori standard deviation is larger than calculated. Obviously the data are not
fitted that much worse than should be expected and the non-linearity results in a
larger acceptable solution range than calculated. A decrease (negative increase) in-
dicates that one has gone downslope – by accident? – and the optimum solution has
not yet been reached. Very large values indicate a deterioration of the solution by
more than one standard deviation. The estimate of the a posteriori standard devia-
tion has to be reduced accordingly, and the solution range is smaller than deduced
from the linear model. The approach is related to the so-called “edgehog” procedure
(Jackson, 1973).

7.3.2.3.4 Initial Values of Variables

Initial values of the variables are needed to start the iteration, but in order to con-
verge, they must lie in the “environment” of the solution looked for. Moreover, in the
Bayesian approach they should represent the best a priori information. Initial values
are not always easy to choose if the a priori information is vague and the prob-
lem may be more strongly non-linear than anticipated (Sect. 7.3.2.3.2). There is the
danger that the solution does not reach the main minimum. Especially problematic
starting points or locations are where the ϕ-topography is extreme, i.e., either flat
or highly curved, even a singularity. It is therefore important to start at a favourable
point, for example, in a region of negative curvature around the expected minimum.
Thus the choice of the starting point is part of the regularization.

7.3.2.3.5 Damping Parameter λ

The damping parameter λ serves to affect the speed of convergence. A small λ
leads to fast convergence when the basic equation is approximately linear. Large
λ values are needed when convergence deteriorates. λ can be recalculated at each
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iteration step. Near the minimum, the error of fit should decrease at each iteration
and λ can be set to zero. If not, then one might just step back and increase the
damping until a better solution is found. Then the damping may be decreased until
it is smaller than some fraction of the a priori standard deviation (e.g. 1/100). If
the solution still improves, no damping need be imposed: λ = 0. Some optimizing
algorithms for the damping parameter employ a systematic search as back tracking
(Press et al., 1992), but no clear rule seems to exist and a slow change of λ usually
suffices. If the problem, in spite of regularization, is singular, a solution can be
guaranteed by letting λ > 0. Only when the largest of the estimated a posteriori
standard deviations (which are the inverse diagonal elements of ATCyA

−1A+Cx
−1)

exceeds some multiple of its a priori value (e.g. 100), singularity is indicated.

7.3.2.3.6 Abort Criteria (χ2-Change, Model Differences, Damping)

The damping parameter renders also the abort criterion if the improvement remains
consecutively below some small value (e.g. 0.01 for several steps). In this situation,
also the change δxi from step i to step i + 1 should be considered in relation to the
covariance matrix:

(δxi)TCx̂
−1(δxi), (7.3.20)

in order to ensure that the change of the solution is really small relative to what the
data can resolve. If a small deterioration occurs in the iteration (e.g. a change of the
F-statistic by < 0.01 and of the normalized solution vector by < 0.1), the solution
cannot be accepted, but it is tested if the change occurs within the region of the pre-
vious minimum or is on the way to another. Such measures are necessary in view
of non-linearity and imprecise arithmetic, for example, from numerical differentia-
tion. If both relaxing the damping and strong tightening do not result in a significant
change of the solution, it can be assumed that the minimum has indeed been found.

7.3.3 Other Algorithms

Some model relations are so strongly non-linear that linearization will generally fail
to lead to stable solutions. In such cases, other strategies alternative to the Newton
method guided by the derivatives of basic functions may be more successful, such
as iterative algorithms, systematic or random (Monte Carlo) grid search and vari-
ants of genetic or evolutionary methods of search (Goldberg, 1989; Holland, 1992).
They search the solutions by random variations of the parameters and selecting only
acceptable solutions or by rejecting unacceptable ones.

Consider the non-linear basic equation A(x) = y which cannot be easily linearized
to Ax = y. Fortunately, ordinary problems of gravity inversion are often reasonably
linearizable in the environment of interest, or they can be formulated this way. But
problems arise if F (Eq. 7.3.17) is singular and the topography has no curvature
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and no minimum in a certain direction; if F is nearly singular with a topography
resembling a very flat bowl, and its deepest point is difficult to find; like a ball
the solution can roll back and forth and come to a stop arbitrarily by the slightest
influence, it is unstable. Regularization bends the rims of the bowl up to better define
a minimum (illustrated in Fig. 7.3.3). If regularization is carried out by replacing
ATCyA

−1A with ATCyA
−1A+C−1

x , the solution space is concentrated into the region
of the a priori information xi. If Cx = diag(σ2) with small σ2, the solution will move
across an only small distance down the local gradient toward the optimal solution.

In the case of strongly non-linear basic equations one should use other algo-
rithms, because regularization with Cx will not suffice to obtain a unique result. For
example, a systematic search on a narrow grid of parameter “points” (which would
require many attempts) or a random search by a Monte Carlo method (see below). Or
imagine a topography characterized by many minima and maxima, but nevertheless
generally descending toward the principal minimum (e.g. a density distribution con-
sisting of many shallow small bodies and a large deep one). A Monte Carlo survey
may then first identify a low region or one with frequent lows, on which the search
can then be concentrated. Evolution algorithms (see below) generate from previous
accidental good solutions new solutions with smaller modifications, from which the
best are chosen for further improvement (e.g. by a systematic adjustment). Also the
SIMPLEX method (Nelder & Mead, 1965) concentrates on new solutions near the
best previous one, but only in a descent direction determined from a set of solutions.
It works well where the basic equation is relatively smooth, but can be rather easily
trapped in a local minimum. The method does also not calculate the lowest point but

Fig. 7.3.3 Deformation of the function to be minimized by the a priori information
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an arbitrary point lower than the current solution, nor does it calculate the gradient,
i.e. the maximum slope.

7.3.3.1 Iterative Algorithms

Iterative algorithms of matrix inversion as opposed to direct algorithms
(Sect. 7.3.2.1.1.1) try to gather explicitly or implicitly information on the matrix in-
verse by an iterative procedure. The Levenberg-Marquardt algorithm (Sect. 7.3.2.3.1)
also solves iteratively, but in that case during each iteration step the matrix inversion
itself is usually still performed by a direct method (LU, Choleski, etc.). The rationale
of matrix inversion by iterative algorithms is to speed up the computation and re-
duce memory consumption relative to direct algorithms. For a matrix of size N ×N
the time requirement of direct algorithms usually scales with N3 and the memory
consumption with N2. In contrast, many iterative algorithms even never build up the
inverse matrix, but only search for the optimal solution, requiring memory scaling
with only N. And for non-linear problems, in each iteration step not the optimal
solution of the linearized problem is searched for, but only a better one. This sim-
plified optimization step saves computation time, since in subsequent iteration steps
the linearization and therefore the achievable optimum the will change anyhow.

A well known type of iterative algorithms is the conjugate-gradients method. It
is a minimization algorithm, which searches for the minimum by stepping itera-
tively more or less directly downhill. Especially the LSQR flavour of this type of
algorithms, which solves the least-squares problem, could be considered for gravity
inversion of very large problems. Not even the Jacobian must be stored explicitly.
The disadvantage is, however, that the a-posteriori covariance matrix is not directly
available afterwards. Even if it would be calculated the memory requirements would
be again similar to those of direct methods. These methods are interesting, if only
the model solution is of interest. If solution assessment criteria are required, like
a-posteriori standard deviation, covariances or resolution information, this type of
algorithms is less suitable.

An alternative type of iterative procedures are variable metric or quasi-Newton
algorithms. Contrary to conjugate gradient methods, the second derivative matrix of
the function to be minimized (Sect. 7.3.2.3.2; Eq. (7.3.14)) is built up iteratively in
order find the solution faster, when approaching the minimum. Because this matrix
is built up, estimated a-posteriori standard deviation, covariances, etc. are available
after the optimization has been performed. These methods provide an interesting
compromise between the advantages and disadvantages of direct algorithms and
conjugate gradient procedures.

7.3.3.2 Monte Carlo Algorithms

Monte Carlo search routines work with random numbers or random number gener-
ators, i.e. they “throw dice”. Starting from am initial vector xo of the variables or



7.3 Inversion 331

parameters, random changes δδδx are added, where for each parameter δxk samples
are generated from a Gaussian distribution with the standard deviation σk, assumed
a priori for xk. A large sample of solutions, y = A(xo + δδδx), is then calculated and
analyzed statistically. Outliers with respect to the a priori frame of knowledge can
be removed immediately. The rest is then plotted for single variables or couples of
them, or general frequency distributions are calculated for multi-dimensional solu-
tions and the maximum of the distribution may be taken as the best solution plus or
minus some measure of its standard error.

7.3.3.3 Genetic and Evolutionary Algorithms

Genetic algorithms are search techniques to find exact or approximate solutions to
optimization and represent a particular class of evolutionary algorithms inspired by
evolutionary biology. The technique somewhat simulates biological evolution by
combining the previously best solutions with the hope that the offspring may be
even better. The term “evolution” is not quite appropriate, because the algorithms
aim at solutions in the vicinity of the a priori information while biological evolution
has no aim (or is not teleological). Populations consist of abstract representations
in the form of arrays of bits or values of variables (chromosomes, genotype) of can-
didate solutions (individuals, phenotypes). Evolution happens in generations. The
advantages are that the approach can produce reasonable solutions even of strongly
non-linear problems with many minima and possibly with singularities in some re-
gions and they can easily escape from local minima in which a guided solution may
have been trapped. The disadvantage is that a statistical quality evaluation of the
solutions is quite difficult.

The basic scheme of the algorithm is the following:

(1) A starting model is constructed as a population of randomly modified individu-
als centred on the a priori information. Its parameters are varied within assumed
statistical distributions, usually normal distributions with given standard devia-
tions. A generation of solutions (individuals) is thus produced.

(2) The solutions are ordered according to the F-statistic (F suggesting fitness). The
fitness function measures the quality of a solution.

(3) The worst individuals are rejected or removed.
(4) They are replaced by new solutions (children) which are arbitrary (chance) com-

binations of the parameter values (genes) taken (inherited) from the remaining
individuals (parents). This recombination is called “cross-over”.

(5) The parameter values of the new solutions are slightly changed at random (mu-
tation). The equally inherited mutation factor determines how strong the aver-
age mutation is. The mutation factor is different for each variable and is itself
subject to mutation.

(6) Individuals that are too similar to each other are removed, where the similarity
is defined by the F-statistic and by (Eq. 7.3.20). This prevents inbreeding and
encourages co-existence of several niche populations.
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(7) The so-called slack variables (variables of no physical importance for the prob-
lem at hand, like the mean of relative gravity readings) are, at each step, op-
timized by the Newton method because evolution does not work for them and
would inhibit the search for a minimum.

(8) The abort criterion is examined and, if not yet met, the procedure is repeated
from point (2) (new generation).

Some characteristics of the algorithm are:

• Each individual may have its own parameter sequence. In the cross-over,
neighbouring parameter values are likely to remain together, such that positive
or fitting combinations tend to be handed down, but the sequence does mutate
occasionally as well, so that better ones have a chance to be found.

• An individual exists only for a certain number of iterations and can extend its
existence only by producing better offspring. Accordingly, successful individuals
(with small F-statistics) produce more offspring than less successful ones do.

• Evolutionary algorithms more or less play the game of genetic evolution by ran-
dom mutations and recombinations accompanied by rejection of the unfit. In con-
trast to biological evolution that has no aim and measures success with the ability
survive, gravity inversion generally aims at fitting some a priori information and
success is measured also by fitting it.

• Performance can be quite varied, and diversity is important such that it should be
enforced, by emphasizing mutations and bringing in random immigrants. Gener-
ally, genetic algorithms are good at finding reasonable global solutions, but the
absolute optimum is better found by classical matrix inversion, once the general
region has been found. It is thus effective to combine the different methods.

For more details and possibilities of genetic algorithms see Frazer & Burnell
(1970), Goldberg (1989), Mitchell (1998), Fogel (2006). Various problems and vari-
ants of the method are discussed in Wikipedia (http://en.wikipedia.org/wiki/Genetic
algorithm).

7.4 Case Studies

Inversion with emphasis on the above principles is illustrated with two case stud-
ies, the Meerfeld Maar (Sect. 7.4.1) and the SE Iceland shelf edge (Sect. 7.4.2). The
Meerfeld Maar in the Eifel, Germany, was introduced in Sect. 5.7.1. The SE Ice-
land shelf (Sects. 5.7.5, 6.5.5) is an exploratory case. The two examples differ in the
amount and nature of the a priori information and in the approach to inversion. In
the first case, the analysis of statistical characteristics and evaluation play a more im-
portant role than the geological aspects, treated in Sects. 5.7 and 6.5. But since the
Bayesian approach (Sect. 7.2.2.3.10) intimately links the geological a priori infor-
mation to the statistical inversion problem, the two sides cannot be really separated.
In the second case the situation is characterized by very vague a priori information
essentially consisting of several speculative geological ideas, four of which were pre-
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sented in Sect. 6.5.5. Here, only one of these is investigated, and the inversion strategy
involves trial and error with different model types, including schematic ones.

The program INVERT was applied. The concepts of regularization as described
were tested in practice and strengths and weaknesses became evident. An important
aspect was structuring the abstract concepts into a comprehensible format that was to
help the users in a reasonably short learning period to understand the many evaluation
criteria and to arrive at better and more useful solutions in less time. Some geological
assumptions are simplified, the basic principle may, however, be explained better,
by limiting the spectrum of the interacting pieces of information from the start.

7.4.1 Meerfeld Maar

7.4.1.1 The Geological Framework

The a priori information includes the volcanic processes forming a maar and
the rocks within which it originated. The Quaternary West-Eifel volcanic field is
characterized by many localised bowl-shaped depressions (“craters”), many of the
younger ones filled party with lakes (from which the term “maar” originates).

The depressions result from phreatomagmatic steam explosions and sagging of
country rock into the reaction chamber between magma and water during rather
short eruption cycles (Lorentz, 1986; Meyer, 1988). Magma ascends through faults
and fractures into which water flows from above in sufficient quantities to gener-
ate large amounts of steam. Most maars occur in former river valleys. Triggering
of steam explosions depends on pressure being < 25b and on shock waves. The
explosions fracture the cooling juvenile magma and the country rock. A mixture
of fragments is ejected and deposited as a tuff wall around the crater. It ranges in
size from fine-grained ash and lapilli to bombs, xenoliths (solid already in the as-
cending magma) as well as country rock which usually dominates in volume. After
an explosion, water flows again into the deepest parts of the reaction chamber and
may lead to the next steam explosion, such that the fragmentation front steps down-
ward, and the rock is loosened and destabilized above the chamber, sagging down in
blocks. Material falling back and cleared out during the eruptive cycles partly falls
back forming a cone-shaped volume of loose material, until the supply of magma
and/or water comes to an end, and either more lava rises to the surface or the pipe
being left filled with fragmented material. The results are heterogeneous structures,
reflecting the different genetic processes. The deeper parts of fragmented rock are
called “diatreme”, upon which more or less volcanic material of the final phases may
be deposited as welded tuff or even built-up scoria cones. The left-over depression
is subsequently more or less filled by ground water and the former river, forming a
lake and a sediment body of eroded tuff and country rock with added muddy organic
material. The shape of the sediment body will be that of a bowl widening upward if
the depression is successively filled, but the sediment body may narrow upward, if
higher-density screen from the slopes dominates the filling process.
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Larger maars, as the Meerfeld Maar, have the following characteristics.

The surface is strongly modified by later sedimentation and/or erosion; with time
the maar lakes disappear.

The surface dimensions are obscured and often revealed by geophysical signa-
tures of gravity and magnetic anomalies.

The maximum depths of the diatremes seems to be 2000–2500 m.
The upper quarter of a diatreme seems to have rather shallow wall slopes, of to

about 35◦, which depends on the texture of the country rock (Stachel & Büchel,
1989).

According to Lorentz (1986) the original depth over width ratio of the diatreme
is about 1:1 (Fig. 7.4.1).

In comparison, the deeply eroded and deeply mined diatremes of similar origin in
the Kimberley region of South Africa (diamond mines in the kimberlite pipes)
have usually very steep walls sloping 79–85◦ in their lower parts (Hawthorne,
1975), but less, higher up (about 60◦).

The maar craters have an original width over depth ratio from 1:3 to 1:7 (Lorentz,
1986), mostly 1:5 (Stachel & Büchel, 1989).

Fig. 7.4.1 Schematic model of a maar diatreme with post-eruptive crater sediments and dykes after
Lorenz (1986). The model is based on kimberlite diatremes in Botswana and the Kimberly district
of South Africa. Dimensions of dykes and pyroclastic vents (dotted) are exaggerated
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The original maximum slope of the maar craters is probably < 35◦ (Stachel &
Büchel, 1989).

The Meerfeld Maar (Fig. 7.4.2) originated about 29 000 years ago (Lorentz &
Büchel, 1980) within the Devonian rocks of the West Eifel. Its rim has a diameter
of about 1700 m and the depth of the morphological depression is presently about
160 m. Geoelectric resistivity measurements revealed a thickness of post-volcanic
sediments of about 190 m. These relations correspond to a width:depth ratio of 1:5,
and geological observations suggest only minor erosion of the original surface. Con-
siderable relicts of the tuff wall still exist at the NW, N and NE flanks, supported by
strong magnetic anomalies. In the NE they reach 15 m thickness (Meyer, 1988).
To the W and SE direction spread-out tuff deposits occur which come possibly
from eruptive centres at the corresponding sides of the crater edge (see Fig. 7.4.2;
Hunsche, 1973). The diatreme surface diameter is about 1200 m, as deduced from
magnetic data (Fig. 7.4.2; after Büchel, unpubl., 1990). The plan form is nearly cir-
cular, possibly slightly elongated in the NNW-SSE direction. If the diameter-depth
ratio is 1:1, the diatreme should extend to 1100–1700 m depth. The maar lake that
originally filled the whole crater has been partly filled by a sediment fan from the
Meerbach stream on the S side. Directly around the south shore there is a wet region.
The village Meerfeld to the SW is situated on the fan which partly consists of back-
transported tuffs. On the W, N and E sides, the magnetically identified diatreme edge
very closely coincides with the edge of the sediments which abut against exposed
Devonian rocks only a few tens of meters further out. Above the crater rim, faults
exist which seem related to the depression.

7.4.1.2 Rock Densities

The densities of the various rock types are known within certain error bounds. The
Devonian marlstones and sandstones have a density of about 2650kg/m3 (Mertes,
1983), but the average porosity of 5% reduces it to 2500kg/m3 (Henk, 1984), con-
firmed on hand specimens, possibly with a bit higher density (G. Büchel, pers. com-
munication). The tuffs consist of 75% country rock and 25% juvenile components
(including bombs) with a porosity of about 30%. If dry, the mean volume density is
estimated about 2000kg/m3 (Mertes, 1983; Henk, 1984; Stachel & Büchel, 1989),
rising to 2200kg/m3 when water-saturated. The lake sediments, if consisting of
sand, silt or clay have densities of 1800–2150kg/m3 (Stachel & Büchel, 1989).
Peat and mud have densities near 1000kg/m3. The sample to sample scatter is oc-
casionally large, but partly an artefact of sample handling. Within the rock formation
relative standard errors are estimated to be of the order of 5%.

7.4.1.3 Gravity Data

Gravity data were collected in 1990 during a geophysical field course by Johannes
Gutenberg University Mainz, and in 1992 data gaps were filled and some points
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Fig. 7.4.2 Geological sketch map of the Meerfeld Maar after Meyer (1988). Devonian basement
shown by strike lines of folded strata, fold axes, and NNW-SSE trending pre-maar faults; crater
bottom: lake and alluvium; normal faults at crater walls, arrows: block rotation; rim of diatreme
mostly inferred; tuff cover (white with dotted boundaries); possible eruptive centres (black)
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were checked. 122 stations are distributed along roads and partly in fields in a
roughly 2×2km2 area with the highest station density at the bottom of the maar, less
on the slopes and on the upper plateau (see Fig. 5.7.1c). A Sodin Geodetic W410T
gravimeter was used. The 3D station coordinates were surveyed with a TOPCON
ET2 total station (theodolite with electronic distance measurement). The survey net-
work was adjusted and tested for accuracy in connected loops. The relative errors
of the coordinates were estimated to be generally better than 5 cm. The program
GRAVI (Smilde, 1995; see Sect. 3.3.2) was applied to calculate the gravimeter drift
and the normal, height and Bouguer reductions (see Sects. 4.5.1, 4.5.2, 4.5.3). The
tidal reduction (Sect. 4.2) was implicitly included in the drift correction. The terrain
reduction (Sect. 4.5.3.2) was calculated on the basis of the 40× 40m2 digital ter-
rain model of the Landesvermessungsamt Rheinland-Pfalz (State Geodetic Survey
of Rhineland-Palatine), Koblenz.

A conservative estimate of the errors of the reduced gravity anomalies is about
0.06 mGal, which is mainly caused by the uncertain instrument drift correction. The
Bouguer density used in the reductions (Bouguer plate and terrain) was 2550kg/m3.

Fig. 7.4.3 Top: contour lines (25 m) of elevation of the Meerfeld Maar, constructed only from
the observed station elevations. Bottom: WSW-ENE section A-A′ through the Meerfeld Maar (ap-
proximately along the Variscan strike); the circles show point values in a strip; their sizes decrease
linearly with distance from 0 to 150 m; the solid line describes the weighted interpolation, and the
dashed lines show its uncertainty taken from the spatial covariance function of the data (see also
Fig. 5.7.1c)
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Fig. 7.4.3 (continued)

Its optimization with a Nettleton method (see Sect. 3.6.3.6) or in the inversion pro-
cess with INVERT would have been possible, however, the strong correlation be-
tween the gravity anomaly and topography leads to systematically wrong results (in
this case to 2840kg/m3), and reliable a priori information must limit the value to a
realistic range.

The Bouguer anomaly has been shown already in Fig. 5.7.1c. In addition, the
topography has been interpolated from the point coordinates and is shown here as
a contoured map and along the WSW-ENE section A-A′ (Fig. 7.4.3). The graphic
representations are based on rather irregularly distributed data points. In the sec-
tions, the values in a 300 m wide strip are shown projected perpendicularly, where
the size of a symbol decreases with point distance from the section (zero at 150 m).
The section goes exactly through the points at A and A′. Where only few points
exist near the profile, the interpolated curve is less certain. The dashed lines illus-
trate the uncertainty of the curve which follows from the spatial covariance function
(assumed to be isotropic) of the whole data set.

The interpolated values must be considered with caution, since the location of
possible disturbing bodies affects the correlation function locally. Hence, the as-
sumption of a uniform and isotropic covariance function may have an unwanted
effect on the determination of the target density distribution.
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Some characteristics of the Bouguer anomalies are pointed out.

• Outside the maar crater, a weak “regional” trend is observed, rising from NNW
to SSE. It is so weak that its effect will be averaged out when it is neglected in
the modelling, since the data are distributed quite regularly around the crater.

• The minimum is remarkably peaked, which indicates a very shallow density
anomaly. Lake sediments narrowing upward are a possible source, however,
very soft soil in this region (making gravity measurements difficult) close to the
lakeshore suggests groundwater saturation.

• Outside the crater rim gravity slightly decreases outward on the WSW to NW or
N side. A possible source are the tuffs deposited there. However such an effect is
not observed on the tuff deposits to the NE and SSE.

• Unfortunately, the transition from the steep gravity increase inside the crater rim
to the flat, “undisturbed” field outside is not well defined because of an insuffi-
cient number of stations. A reliable definition of the deeper structures requires a
better data basis especially in this region.

7.4.1.4 Parametrization of the A Priori Information

The aim of gravity inversion is in this case to determine the density distribution de-
scribing the diatreme, i.e., the shape and the density contrast with the country rock.
Internal density variations in the diatreme and also in the country rock, for example,
by possible alteration are of interest as well, but are probably not resolvable.

Accordingly, the parametrization to be designed for the density distribution will
not permit a fit to the data with a better accuracy than 0.1 mGal, as standard devia-
tion. For a normal distribution of the data, this means, if all other assumptions are
met, that about 95% of the a posteriori residuals should be < 0.2mGal, or that the
residuals should be < 0.2mGal with a probability of 95%.

7.4.1.4.1 Bouguer Density

As discussed above (Sect. 7.4.3.1.2), the Bouguer and terrain reduction was car-
ried out with the density 2550kg/m3, which has removed the largest part of the
gravity variations related to the different station elevations. This implies that for all
gravity anomalies not yet explained, suitable source bodies must be defined. The
reference density is thus defined for the body contrasts, but since it is not certain
that 2550kg/m3 is representative for the country rock (not explicitly modelled), the
Bouguer density could be adjusted together with the other density contrasts, espe-
cially if their absolute values are known. Since they are assumed as density contrasts
relative to the assumed absolute Bouguer density, a strong negative correlation be-
tween these is expected and should be defined a priori. For the start, 2550kg/m3 is
assumed error-free, but the assumption might be dropped at a later stage.
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7.4.1.4.2 The Diatreme

The conical shape suggests a parametrization with conical circular disks, i.e. hori-
zontal conic sections. Ellipticity seems negligible in view of the a priori informa-
tion and its very small surface effect for the deeper parts. The most important as-
pect is the radius, i.e. its variation with depth. The magnetic edge anomalies define
the upper radius quite reliably, and information on the diatreme shape from kim-
berlite pipes suggest an initial assumption on the slope of the pipe walls. Circular
vertical cylinder disks are simpler than conical ones and to avoid non-negligible
parametrization errors, a sufficiently fine division is necessary, which may become
coarser with depth. Near the surface, however, the effect jumps at the edges, such
that here a conical disk was assumed. It was defined by an upper and a lower ra-
dius and a triangulated side. This avoids a strong gradient of the effect at the edge,
which is (1) not observed (maybe because of the insufficient point density, but it
would, nevertheless, influence the solution, because it would tend to place the edge
between points), and (2) the steep gradient surrounding a flatter region represents a
strong non-linearity in the relation between radius and density. The gravity effect is
nearly zero outside the disk and jumps rather abruptly to the Bouguer plate effect
when moving onto the disk. Gradient-based optimizing procedures has problems of
finding the minimum which might be found only by trial and error. The problem
is less severe, when the gradient decreases and extends over a wider zone. This is
not necessary for the deeper disks with vertical walls. The interpretation of the con-
ical side of the top disk may be literally such a shape, or it may involve mixing of
material and density gradation, and may finally be taken as a model error. Another
possibility is to model such a density gradation by a cylindrical disk with a density
contrast decreasing toward the edge. This can be realised by nesting many disks with
increasing radii and correspondingly smaller density contrasts, such that by addition
at the centre the total contrast is established (see Sect. 6.1.5.1 (3.2); Fig. 6.1.1d). In
this way also a broader gentle gradient is generated.

The parameters of the cylindrical circular disks (see Sect. 7.2.2.3.1.2) are: den-
sity, depths of top and bottom, centre coordinates and radius. The conical disk has
two radii, at the top and bottom. The circles were approximated by 18 equal straight
sections (polygon), which causes a negligible error relative to the station distances
and the other generalizing assumptions (e.g. the circular shape).

At the surface the radius is known, but at depth there is better a priori information
on the slopes of the diatreme walls than on the radii which vary more strongly. Nev-
ertheless, it appears easier to reparametrize the radii and link them to the slope as a
function of depth. Fitting the depths as a function of the radius is another possibility,
but depth determination is more strongly non-linear and more problematic than the
non-linearity of radius determination. Unfortunately a symmetric variation of the
slope transforms into an asymmetric variation of the radii, but by a fine division of
the diatreme into thin disks, the problems more or less disappear (as shown below).
Moreover, the uncertainty of the slope is anyway not likely to be symmetric. The
a priori information on the slope is reparametrized to become a priori information
on the individual radii by translating the shape of the diatreme, based on the slopes,
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into radii at selected depths. The standard deviation σr of the radii r is chosen to be
large, because the individual radii are hardly known: σr = 200m if r > 200m, σr is
otherwise smaller, down to 100 m at the bottom. Since the uncertainty of the disk
radii is asymmetric, the inequality condition (Fig. 7.2.3; see Sect. 7.2.2.3.5) was
imposed: r > 0 with a transition range of 5 m (Eq. (7.2.10), with c = 0, s = −5
in x′ = (x− c)/s, where “minus” signifies a lower bound). The assumed standard
deviations, combined with the disk intervals of 25–250 m and a maximum radius of
500 m imply a very large range of angles, possibly leading to a singularity, certainly
too unstable and rarely acceptable solutions. The individual disks would be varied in
size so much that finally each individual disc would function to fit a small subgroup
of data points.

Such behaviour is suppressed by condition equations which connect the radius
change of each disk with that of its neighbour. For an upper disk i (depth zi, ra-
dius ri) and a lower disk i+1 (zi+1, ri+1) the slope α i,i+1 follows from tanα i,i+1 =
(zi+1−zi)/(ri+1−ri) =Δzi/Δri. Hence the radius difference is Δri =Δzi/ tanα i,i+1.
For a variation of α between αmin and αmax, the variation of the radius dif-
ferences is σΔri ≈ (Δzi/ tanαmax − Δzi/ tanαmin)/4(2σ rule). If the initially as-
sumed model radii describe the slope correctly: (r0

i+1−r0
i) = Δr0

i = (Δzi/ tanα i +
Δzi/ tanα i+1)/2, for arbitrary radii ri = r0

i + dri we have Δri ∝ N(Δr0
i, σΔri) and

Δdri ∝ N(0,σΔri), and for the radius changes relative to the initial model the condi-
tion equations are:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ux = 0

Cx,CU ⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

1 −1 0 0

0 1 −1

. . . . . . . . . . . . 0

0 . . . 0 1 −1

⎤
⎥⎥⎥⎦dr = 0

Sr = diag(σr), SΔ r = diag(σΔ r)

(7.4.1)

where σr is the standard deviation of the individual radii (here 200 m). From these
condition equations, the covariance matrix of the radii, or more exactly, of the devi-
ations from the radii of the initial model, can be calculated with:

Cdr = Sr −SrU(USrU
T +SΔr)−1UTSr (7.4.2)

(see Eq. (7.2.9) and Sect. 7.2.2.3.8). If this covariance matrix of the radii is included
as a priori information, the radii will closely follow the condition of limited slope
angles for neighbouring disks in the solution, if the components of SΔr are chosen
small. With increasing distance between disks the radius can be fitted to the data
with less and less constraints provided by the condition. A common change by, say,
200 m would be hardly prevented. The standard deviations calculated with the di-
agonal elements of the covariance matrix, will be smaller than 200 m, because each
individual radius is also constrained by the angle condition. Since the uncertainty of
the a priori values of the slope angle decreases with depth, the a priori uncertainty
of the radius variation will also have to decrease with depth.
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Table 7.4.1 lists the assumed initial model data (shown together with the results,
below, in Fig. 7.4.6a). The elevation above mean sea level and the depth below
the surface at 336 m elevation are shown. The top radius of 550 m and the slope
angles (with maximum and minimum value) at the given depths represent the a
priori information. Columns with the position in the last row empty define the re-
lation between a disk and the next subjacent one. The ΔR per 100 m values follow
from the slope angles and are the basis, together with the top 550 m, for calculating
the deeper radii. From the minimal and maximal slope angle follows σΔr. Negative
maximum slope angles (of the lowermost disks) mean the diatreme could widen
downward. Table 7.4.2 presents, in its first columns, the uncertainties of the individ-
ual disks.

The density contrast of the disks relative to the country rock is limited nar-
rowly to the anticipated range of the contrast between tuff and the Devonian, i.e.
2050–2550 = −500± 50kg/m3, thus the density contrast should be between 400
and 600kg/m3 at 95% probability, or a discrepancy of 0.1 mGal (the assumed
modelling accuracy) violates the observations as much as a deviation of 50kg/m3

violates the assumed a priori density contrast. Density could be assumed as a known
or unknown function of depth, however, since probably both densities, of diatreme
and Devonian, increase with depth, the contrast may be close to constant and is
assumed as such for simplicity.

The disk centres are coupled to each other: all lie directly above each other. The
a priori information does suggest that a diatreme does not blast its way down along
a winding path and usually produces a roughly circular cross section (supported
by the results, see below). The standard deviation of the centre coordinates is set
100 m in X and Y , and the location was set at the BA minimum at X = 4252 and
Y = 1647m (Easting: 2554252, Northing: 5551647). Although this implies an un-
wanted correlation between the gravity data and the a priori information, not ar-
ranged for in the inversion program, the assumed uncertainty of 100 m will leave
any correlation unnoticeable, at least if the variables behave not too non-linearly.
Moreover, the geological a priori information suggests the same values within the
uncertainty.

A further possible parametrization error of modelling with plane horizontal disks
is that not all stations lie exactly on the surface of the uppermost disk. The ques-
tion is how to take the mass in between into account. The following possibilities
exist.

(1) A body can be defined by a DTM (digital terrain model) of the plane upper
disk surface, the terrain and the prolongation of the conical disk side. This is a
tedious procedure which cannot be built into the optimization process without
further approximations.

(2) The upper disk surface is placed directly below the lowest station and the in-
tervening mass is neglected. As seen in Fig. 7.4.3, the topography above the
assumed diatreme in the profile range ±500m is relatively flat and the interven-
ing volume is small. Moreover, all stations outside the diatreme do lie above its
upper boundary, such that its gravity effect is correctly calculated.
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Table 7.4.2 A priori and a posteriori results for the model parameters (explanations see text)

Variable A-priori σprior σcorr σnorm Inequality Result Difference σpost

r1 [m] 550 200 48.6 200 587 37.0 10.3
r2 [m] 534 200 47.7 200 574 39.7 7.0
r3 [m] 526 200 47.5 200 566 40.1 6.5
r4 [m] 501 200 46.6 200 530 28.6 5.8
r5 [m] 469 200 45.5 200 454 −15.5 7.8
r6 [m] 440 200 44.7 200 399 −40.7 9.3
r7 [m] 414 200 44.1 200 358 −55.7 11.3
r8 [m] 377 200 43.0 200 297 −79.7 15.1
r9 [m] 333 200 41.7 200 234 −98.5 19.3
r10 [m] 297 200 40.8 200 189 −107.8 20.6
r11 [m] 266 200 40.1 200 153 −113.4 21.0
r12 [m] 240 200 39.8 200 124 −115.7 21.1
r13 [m] 220 200 39.7 200 103 −116.7 21.2
r14 [m] 204 200 39.6 200 87 −116.9 21.3
r15 [m] 189 189 39.6 189 72 −116.9 21.4
r16 [m] 166 166 39.6 166 51 −114.7 21.6
r17 [m] 129 129 40.2 129 25 −103.7 21.6
r18 [m] 77 100 41.6 100 > 0±5 1.0 −76.0 (2.57) 2.00
r19 [m] 55 100 44.8 100 > 0±5 0.2 −54.8 (2.10) 1.64
r20 [m] 50 100 50.2 100 > 0±5 0.1 −49.9 (2.05) 1.60
x [m] 4252 100 100 100 4246 −6.0 1.9
y [m] 1647 100 100 100 1628 −19.1 2.1
d [kg/m3] −500 50 50 50 −620 −120 250
c [mGal] 0 ∞ ∞ 1000 0.49 0.49 0.02

(3) The elevation of the stations is placed at the uppermost disk surface. For stations
directly above the diatreme which actually lie higher, the disk depths could be
interpreted as though defined relative to the local terrain; the disks are, so to
speak, fitted to the terrain. This is acceptable in the case of disks close to the
stations and not too steep terrain; but for more distant parts of the anomalous
body errors incur. Fortunately these are small due to the distance and have less
influence.

Figure 7.4.4 shows the calculated gravity effect of the diatreme which results
from shifting the stations from the terrain level to 0.5 m above the uppermost disk
level. The total effect nowhere reaches 0.15 mGal, i.e. it is of the order of the as-
sumed standard deviation of the gravity data and the modelling. Outside the crater
the original elevation would be undoubtedly better, and the largest error occurs at
the edge of the diatreme and on the sediment fan in the SW part of the maar. The
difference effect demonstrates how the gradient of the gravity effect increases closer
to the edge of the anomalous body. Above the diatreme, consideration of the correct
elevation is insignificant because the effect of the upper disk approximates that of a
Bouguer slab, which does not depend on elevation above the disk.

Thus, for the inversion, the stations are left at the actual terrain elevation. Possible
corrections could be estimated on the basis of the figure. For comparison, the final
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Fig. 7.4.4 Contours and shading of the change of the gravity effect when the stations are shifted
down from their observation position to 0.5 m above the upper model disk

gravity residuals (observed minus final model effects) are shown in Fig. 7.4.5. For
the discussion see below (Sect. 7.4.1.5.2).

7.4.1.4.3 The Lake Sediments

Since the lake sediments lie above the diatreme, their gravity effects are correlated
with the diatreme effects and hence they mutually affect their density results. It
would therefore be desirable to determine the sediment density distribution in mag-
nitude and geometry. The a priori information on density is rather reliable and could
be easily optimized because their effect are closely linearly related the sediment
thickness, but this is hardly known. The body is thus not modelled initially.

If the sediments are distributed with some similarity or correlation with the dia-
treme, they would probably decrease the diatreme density and affect its shape in the
solution. If the sediments occur only locally or irregularly, they will be evident in
the corresponding residuals.

7.4.1.4.4 The Tuffs Outside the Crater

The tuffs could have a similar systematic effect as the sediments, but only few mea-
surements have been made over them. Their influence on the whole inversion will
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Fig. 7.4.5 Contoured and shaded residuals (observed – calculated) after the inversion; the a poste-
riori disk radii are also shown

thus be small. According to geological mapping they are not regularly distributed,
i.e. they show poorly correlated behaviour with the circular diatreme and will not
influence much the inversion results for the diatreme. An improved model may take
the tuffs into account, for example, by a circular or elliptical ring, which can be
realised by two disks of opposite density contrast (outer disk: Δρ(tuff versus Devo-
nian); inner “compensating disk: Δρ(Devonian versus tuff)). Or some more detailed
information might be modelled by a DTM.

7.4.1.4.5 The Regional Trend

If the stations are not very asymmetrically distributed around the crater, the regional
trend may be neglected in an optimal fit of the data. The effect of the trend on an
essentially radially symmetric model field would largely cancel itself. The neglect
will increase the data standard deviations and the F-statistics. In an improved model
a linear trend (like an inclined plane) could be defined with two additional vari-
ables which would be included in the optimization as slack variables, such that the
gradient (magnitude and direction) would be free in the solution. A higher-order
polynomial is hardly justified by the data, and due to the small number of stations
outside the crater the corresponding trend surface would tend to “partly explain”
the gravity minimum caused by the diatreme. In such a case a strong regulariza-
tion would be necessary in a way limiting the parameters to describe only the trend
surface and to separate it from the diatreme effect.
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7.4.1.4.6 The Additive Constant

An additive constant in the fit of the model effects to the observations is needed in
the optimizing task, because the reference of the Bouguer anomalies and the effects
calculated with an arbitrary reference density must be correctly referenced to each
other. The constant is a slack variable.

7.4.1.4.7 Summary

The parametrization has resulted in 24 variables to be optimized:

20 radii, 2 for the conical disk and 18 for the cylindrical circular disks, henceforth
referred to by r1–r20, from top to bottom;

the two common centre coordinates, called x and y;
the density contrast of the diatreme relative to the Devonian, called ρ;
the additive constant, called c.

Table 7.4.2 summarizes for the variables the a priori initial values and the con-
ditions. Column 3 contains the standard deviations of the individual variables, as
defined before the calculation of the correlation matrix of the radii. Column 4 con-
tains the standard deviations after the calculation with the conditions (the diagonal
elements of Cx in Eq. (7.2.1 – 2)). Column 5 contains the normalizing standard de-
viations, used in presenting the results: the residuals, the a posteriori standard devi-
ations, the eigen-vectors and the eigen-values of the a posteriori covariance matrix
(see Sect. 7.3.2.2.10). Column 6 shows, for the lowermost 3 disks, the inequality
conditions assumed.

7.4.1.5 Results

7.4.1.5.1 Geology

Figure 7.4.6b shows the geologically relevant aspect of the results which is also pre-
sented numerically in the last three columns of Table 7.4.2. The most conspicuous
characteristics are the much shallower slope angle in the upper part of the diatreme
and the reduction of the maximum depth to 600–700 m below sea level or about
1000 m below the surface, not 1700 m as in the a priori model. The radii of the three
lowermost disks are all < 1m, suggesting that they were constrained by the inequal-
ity condition; otherwise they would have turned negative (in the INVERT imple-
mentation, the gravity effect would have also changed sign to warrant continuity
and uniqueness). In Fig. 7.4.7, the initial and final forms of the diatreme demon-
strate that between 600 and 800 m depth the shape was largely maintained while the
radius was strongly reduced. The radii of the two upper disks have slightly increased
beyond the initial value of 550 m; at places it is wider by about 100 m than the mag-
netically observed diatreme edge. The density contrast of the diatreme fill became
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(a) (b)

Fig. 7.4.6 Side views of the diatreme model: (a) initial a priori model (density contrast
−500kg/m3) and (b) final result of the inversion (density contrast −620kg/m3, the vertical axis
has shifted 6 m to the W and 19 m to the S). The top disk is conical and all others are vertical
cylinders; the disk parametrization is by polygons, the edges of which are also shown

more negative, i.e. −620 instead of −500kg/m3. This may have the same cause as
that of the increase of the upper disks. The centre coordinates were only insignif-
icantly changed. Figure 7.4.5 shows a map of the residuals (observed – modelled)
and Fig. 7.4.8 shows four profiles with symbols identical to those of Figs. 5.7.1c
and 7.4.3.

7.4.1.5.2 Gravity Anomaly

• Especially in the NW, the negative residuals seem to be strongly correlated
with the non-modelled tuffs at their transition to their Devonian basement at the
crater edge;

• in the SSW of the crater lies a negative anomaly which is probably related to the
non-modelled stream sediment fan;

• the negative anomaly to the N of the lake and the positive one to the W side
cannot be explained without better knowledge of the local geology; perhaps the
latter might be connected with western eruptive centre of tuff (see Fig. 7.4.2)
suspected by Hunsche (1973); however, no such anomaly is seen near the other
similarly suspected centre to the S;
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Fig. 7.4.7 Comparison of the a priori model (solid line) and the result (dashed line); the crosses
on the axes are the disk centres and the lines are the envelops

• the sharp BA peak at the crater centre could not quite be fitted, but the residuals
here are not large (−0.14mGal) by comparison with the residuals generally;

• no uniform correlation of the residuals can be recognized with the circular struc-
ture, only a correlation with change of sign in the SSW-NNE direction and a
positive WNW-ESE gravity ridge with, however, the most negative residuals in
the “far” WNW (tuffs).

7.4.1.5.3 Comprehensive Evaluation of the Residuals

In summary, the diatreme model deviates from the a priori information in some
significant aspects but it is an acceptable possibility, especially in view of its lack in
separating the sediments from the diatreme. The fit of the gravity data is a little less
convincing, as evident in the amplitudes of many of the residuals. This situation is
quantitatively demonstrated by the following numbers:

• wRMSE of the observations: 3.81,
• wRMSE of the variables: 1.25
• F-statistics: 14.98
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Fig. 7.4.8 Four gravity profiles across the Meerfeld Maar, W-E, SW-NE, S-N, SE-NW, compar-
ing the observed BA (solid line) and modelled gravity effects (dashed line). The observations are
shown by circles and their size symbolizes the station distance from the profile (largest to smallest
corresponds to 0–150 m, respectively). The positive anomalies near inflow of the stream Meerbach
and its exit are probably explained by the deep cuts into the Devonian basement rocks, since nei-
ther the topography of the DTM of the state geodetic survey nor the assumed Bouguer density will
be perfectly correct
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The uncertainty of the observations (including the expected modelling errors)
was exceeded by nearly a factor of 4 on average, and the uncertainty of the variables
(including the a priori information on the slope of the diatreme) by 11/4. Probably
the standard deviation of the observations was chosen too small and could be ad-
justed. Optimizing the Tikhonov regularization parameters suggests an increase of
the present standard deviations by a factor of 3–4, but then the diatreme structure
would hardly be resolved by the gravity data. If in an improved model the gravity
trend and the occurrence of the tuffs outside the crater are taken into account, the
diatreme would again be resolvable. For the purpose of this example, this simple
solution, although not fitting the gravity data extremely well, was accepted, because
it exhibits a better resolution of the model parameters.

Summarizing: the statement that some assumptions about the model and about
the statistical distribution of the data or a priori information are not true, is wrong
with a probability of < 5%, because the quantile F121,∞;95% = 1.22 is much smaller
than the F-statistic (see Sect. 7.3.2.2.7).

7.4.1.5.4 Stability of the Iteration

In Fig. 7.4.9 the history of the variables and some evaluation parameters during the
40 iterations is plotted. The change of values of the variables r1–r20 and x, y, d, c
is shown normalized with the final a posteriori standard deviation. The maximum
change thus means that a variable in one step has increased or decreased by (more
than) one a posteriori standard deviation (upper or lower bound, respectively); r2–r4
have initially grown, r6–r20 have shrunk, as evident in the figure.

The line marked by Chi represents the change of the shifting variate
(Sect. 7.3.2.2.3), i.e. the squared length change of the residual vector of the ob-
servations and variables jointly, normalized with the a priori standard deviations of
the observations or of the a priori covariance matrix of the variables. If Chi remains
within its bounds, the squared length change of the residual vector is smaller than
about one a priori standard deviation squared. Given the 122 observations and 24
variables, of which 23 have an a priori value (as have the observed values), there are
121 degrees of freedom. Hence the bounds indicate a change of the F-statistics of
±1/121 ≈±0.008.

The line Xi represents the length change of the vector of the variables jointly,
normalized with σnorm, i.e. the normalizing standard deviation (see Table 7.4.2).
Xo shows the same vector, normalized with the estimated a posteriori standard
deviations after each iteration. The line lam shows, in a logarithmic scale, the damp-
ing factor λ used, where the bounds represent 10±5. Due to the non-linear behaviour
of the uppermost disk, the damping was limited to a minimum 0.1, such that the vari-
ables were set to preserve their values of the previous iteration within a maximum of
10 times their normalizing standard deviations. When Chi grew larger, the damping
was also increased.

The shifting variate changes after about 20 iterations at each step less than a
standard deviation, but occasionally deteriorates, in which case the damping must be
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Fig. 7.4.9 Variation of the variables and iteration parameters during the iteration history, shown in
order to demonstrate the stability or instability of the iteration (see text)

increased. The variables themselves, however, change after iteration 25 much less
than one a posteriori standard deviation, although the damping allows for at least
that freedom. The instability of the shifting variate during the last 10 iterations thus
indicates a relatively high sensitivity of the data values to minimal changes of the
variables. The cause is the mentioned steep gradient generated by the upper disks.
The radii of the upper disks seem therefore most difficult to determine without the
increased damping from iteration 25 onward. But since the changes always alternate
sign the total error will even after many iterations be smaller than one a posteriori
standard deviation.

The centre coordinates x, y approach their final values already after 5 iterations.
The longest lasting influence of the instability originates from the radii r19 and r20
of the two lowermost disks which affect also the neighbouring disks and the density
contrast. In the first iteration they jumped into the negative region and needed many
iterations to find the non-linear equilibrium between the pressure of the penalty
function toward positive values and the common pressure of the data and the rest of
the a priori information toward negative values. The changes are small relative to the
a priori standard deviations, but the penalty function is included in the calculation
of the a posteriori standard deviations, such that their values are quite small and the
changes relative to them are large, as long as the solution lies within, or very close
to, the forbidden region.
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On the whole, the solution seems to reliably represent a local minimum. This is
a necessary basis for quantitatively evaluating the criteria which were discussed in
Sect. 7.3.2.2.

7.4.1.5.5 A posteriori Standard Deviations of the Radii

Figure 7.4.10 presents the disk thicknesses (middle) and the standard deviations of
the radii (left) and radius differences (right), plotted versus depth in logarithmic
scale. The standard deviations of the individual radii significantly decrease (a pos-
teriori) when the gravity data have also to be explained. The a priori decrease of the
standard deviations with depth mainly results from the slope angle condition for the
pipe walls. The inversion reduces the radius standard deviations by 80% to about
100 m depth; below 200 m depth, the reduction is nearly constant at 50%; the lower-
most disks are practically fixed by the inequality condition. It is difficult to estimate
how much an asymmetric probability distribution (which cannot be realised in the
solution method) would affect the uncertainly of solely permitted radius values. On
the whole, the gain of information from the gravity data seems to be considerable
for all individual radii.

Fig. 7.4.10 A priori (solid line) and a posteriori (dashed line) values of three quantities versus (log-
arithmic) depth characterizing the diatreme model; left: standard deviation of the disk radii; right:
standard deviation of the radius differences; middle: disk thicknesses which affect the standard
deviations
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The right-hand picture shows the standard deviations of the radius differences
from disk to disk, which are closely connected with the slope of the wall. They were
calculated by continuation of the variances and covariances by the neighbouring
radii. For this quantity the information gain is much smaller than for the individual
radii. The gravity data do not seem to affect neighbouring disk radii differently,
except between 20 and 90 m and between 130 and 270 m, and the reduction of the
uncertainty is maximally 30%.

The relative approach of both curves (left-hand picture) between 100 and 400 m
depth is caused partly by the thickness increase of the disks, which is not propor-
tional to their gravity effects. The Backus-Gilbert regularization method
(Sect. 7.3.1.2.2) has, among others, the aim to avoid such effects, by composing
the variables such that they have as uniform variance reduction as possible (i.e. such
a resolution). This approach was not implemented in INVERT, but an iterative opti-
mization would be possible on the basis of the information presented.

The radii were introduced to define a simple connection between the a priori in-
formation on the slope angle and the gravity effect. Therefore also the uncertainty
of the slope angle should be considered. This is done by calculating the connec-
tion between the disk thicknesses with the radii and the standard deviations of their
differences. Figure 7.4.11 shows the results of this calculation for the initial (left)
and final (right) models. The centre line shows for the result that the slope angle
should be < 30◦, as also can be seen in Figs. 7.4.6b and 7. The uncertainty of the
angle in the solution is at least 5◦ smaller than that of the a priori information, down
to 200 m depth. From 300 m downward the gravity data seem to say nothing signif-
icant about the slope angle. The angles of the solution often lie at the margin of the
a priori standard deviation, but mostly inside. From this one may conclude that the
gravity inversion has rendered an acceptable, but nevertheless somewhat unexpected
result.

7.4.1.5.6 The Correlation Matrix

The correlation matrix calculated from the condition equations of the slope angles is
shown in Fig. 7.4.12. From the condition that the changes of mutually adjacent radii
should be approximately the same, it follows that also for more distant disks only
comparable radius changes are permitted, but with increasing distance the correla-
tion decreases. The upper disks are thus correlated with more neighbours because
their thicknesses are small such that the angle will remain similar even when the
uncertainty of the angle is larger than at greater depth.

With increasing depth (until r9 at 150 m) the distance between strongly corre-
lated disks decreases because the disks become thicker; further down (till r14 at
450 m) it increases again because a smaller uncertainty was assumed for the angle.
The lowermost disks are hardly correlated, because their uncertainty is increased
and their thickness is also larger.

The a posteriori correlation matrix (Fig. 7.4.13) shows a much reduced correla-
tion for all disks above about r11 (at 300 m depth) relative to the a priori correlation.
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Fig. 7.4.11 Wall slope angles and their error bounds versus (logarithmic) depth, left: a priori, right
a posteriori

The gravity data seem to tell much more than the a priori information does. How-
ever, they do not say the same as the a priori information, as follows from the reduced
slope angles (see Fig. 7.4.11). Radius r4 (25–50 m) and r10–r17 (250–800 m) are
negatively correlated with the first three disk radii: the effect of the upper more ex-
tended bodies can be compensated by the lower more compact bodies. A downward
continuation of the gravity field (Sect. 2.10.5.3, Eq. (7.2.26)) would project a wide
component only to greater depth. The disks r11–r16 (300–600 m) are mutually cor-
related, but still as much as by the a priori information, which again supports the poor
resolution by the gravity data in this depth range. The lowermost disks are effectively
uncorrelated, because they are constrained only by the inequality condition.

The density contrast is negatively correlated with the upper disk radii and pos-
itively with the lower ones. The means that if the density contrast is less negative
than found by the present solution, then the radii of the upper disks would have to
decrease and those of the lower disks should increase. Since the density contrast of
the solution is remarkably negative (−620 instead of a priori −500kg/m3), it might
be a bit more realistic that the density contrast may be somewhat weaker (perhaps
less influenced by the neglected lake sediments) and the diatreme walls would then
also be less curved, which, too, would correspond better to the a priori information.

The centre coordinates are not appreciably correlated with any other variables.
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Fig. 7.4.12 A priori correlation matrix of the variables with the angle condition (note the grey
scale!)

The additive constant is positively correlated with nearly all radii and with the
density contrast, as would be expected. But only to a minor degree, therefore no
serious possibility of a mutual influence exists, and the values of the more interesting
variables are not rendered doubtful by this.

7.4.1.5.7 Eigen-Vectors of the Correlation Matrix

In Fig. 7.4.14 the eigen-vectors (centre) and singular values (square roots of
eigen-values) (left) of the a posteriori covariance matrix are shown together with
the resolution and residuals (also left) and the linearity factors (right). The singular
values are expressed relative to the normalizing standard deviation of Table 7.4.2
(see (Eq. 7.3.8) and Sect. 7.3.2.2.10). The lines show the relative contribution of the
individual variables to the eigen-vector, normalized with the largest amplitude. For
example, the density contrast d in the first (uppermost) eigenvector is plotted at the
upper bound, with also the r10–r15; it means that they contribute the same to the
eigen-vector (in relation to their respective normalizing standard deviations: 200 m
for r10–r14: 189 m for r15 and: 50kg/m3 for d). Eigen-vectors represent only di-
rections, hence the vertical scales of the individual lines are arbitrary and vary from



7.4 Case Studies 357

Fig. 7.4.13 A posteriori correlation matrix of the variables (note the grey scale!)

line to line. This is graphically necessary to make the largest (most important) com-
ponents obvious and to help recognizing the components of eigen-vectors.

The singular values (circles in left part of Fig. 7.4.14) show how large the a
posteriori standard deviation of the respective eigen-vector is relative to its nor-
malizing standard deviation. The normalizing standard deviation is, for all vari-
ables, equal to the a priori standard deviation, except for the additive constant c
(σnorm = 1000, σprior = ∞). For the radii, it is the standard deviation which had
been taken for calculating the covariance matrix of the radii from the conditions
concerning the slope angle. The singular values represent the extreme values of re-
duction of the uncertainty relative to these standard deviations.

The maximum reduction occurred for the slack variable c (the last eigen-vector);
snorm = 1000 has effectively no significance. The two eigen-vectors shown above
c represent the lowermost disks that were “frozen” with an uncertainty reduced to
about 1/100 of originally 100 m. The other eigen-vectors show a reduction between
1/100 and 1/10 of the uncertainty, with the exception of the first eigen-vector which
has almost not improved. This is the eigen-vector corresponding to the correlation
between the density contrast and the curvature of the diatreme wall, mentioned in
the previous section. Simultaneously decreasing the density contrast and the curva-
ture is hardly constrained, neither by the gravity data nor by the a priori information
on the slope angle. The curvature has the same standard deviation where these data
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Fig. 7.4.14 Singular values of the a posteriori covariance matrix (middle); left: eigen-values (cir-
cles), resolution (solid line), and residuals (dash-dotted line); right: linearity factors for +1∗eigen-
vector (circles) and −1∗eigen-vector (asterisks); for the units see text

are not taken into account. As it turned out later, many more eigen-vectors are only
poorly resolved by the gravity data, though better by the conditions related to the
slope angle. The first eigen-vector is, however, not determined well by these con-
ditions either, because it represents the longest wavelength in the change of the
radius differences. Two adjacent radii nearly perfectly obey the angle condition, but
across many disks the condition has little influence. Generally it is noted that the
long-wavelength components are less well determined than the short wavelengths,
especially at greater depths.

The strong uncertainty of the first two eigen-vectors is somewhat relaxed by the
linearity factors (right-hand side of figure). They show how much the square root of
the shifting variate grows, when the solution changes by one a posteriori standard
deviation (equal to the singular value) in direction of the corresponding (normal-
ized) eigen-vector. For linear basic equations this length change should be 1 (see
Sect. 7.3.2.3.3). For the first eigen-vector this value is about 16, and to a first-order
approximation it can be assumed that the a posteriori uncertainty is < 1/16, instead
of 1, because a change by one a priori standard deviation of this linear combina-
tion of variables apparently would cause a change of 16 (not 1) times the a priori
standard deviation of the linear combination of the observations. The non-linearity
is, plausibly, linked with the functional connection between density contrast and
disk radius. If both change as defined in the eigen-vector, the gravity effect does not
change by adding the individual components, as is the case with the radii mutually,
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but by multiplying the density contrast by the radius. The non-linear effect of the
upper disks is recognizable in eigen-vector #6, but it is not very strongly visible.
The penalty function even weakens the gradient of the minimizing function, such
that the change of the solution by one a posteriori standard deviation worsens the fit
to the data even less, than is the case in the linearized equation.

The line at the left edge of Fig. 7.4.14 connects the points that represent the res-
olution of the eigen-vectors (Eq. 7.3.12), in this case referring also to the a priori in-
formation on the slope angle. The eigen-vectors, though having small eigen-values,
i.e. being well determined, are just badly resolved. So, they are well determined only
by the a priori information on the angle. Here it is evident that the short-wavelength
variations of the radius differences are poorly resolved by the gravity data. The up-
per two eigen-vectors have resolution values smaller than 10−6 and were not plotted.

The residuals of the eigen-vectors are represented by the dash-dotted line at the
left edge of Fig. 7.4.14, again relative to the normalizing standard deviations (see
Sect. 7.3.2.2.11). Only the residuals of the first two eigen-vectors are essentially 1,
which means that the a priori information does not have to be impaired significantly
by fitting the data. Most new aspects of the solution are obviously represented by
the long-wavelength aspects. Generally the resolution and the residuals correlate,
though the well resolved linear combinations of the variables do not fully agree
with the a priori information, for good resolution does not correspond to negligible
residuals (with the exception of the additive constant), but non-resolved combina-
tions of the variables are indeed kept at the initial values, because small resolution is
coupled with small residuals (which is not always the case in non-linear problems).

7.4.1.5.8 Eigen-Vectors of the Resolution Matrix

The resolution of the diatreme density distribution by the gravity data is specified
yet more accurately by the singular values and eigen-vectors of the resolution matrix
(Fig. 7.4.15) than by the resolution of the eigen-vectors of the a posteriori covari-
ance matrix. The upper singular values (1–10) and eigen-vectors of the resolution
matrix demonstrate the poor resolution of the short-wavelength radius changes; the
larger the wavelength, the better is it resolved. As from eigen-vector 15 or at the
latest 18 (depending on the demands on the gravity data by the modeller), the reso-
lution is effectively equal to 1, i.e. optimal. Such a high resolution is shown also by
the additive constant c and the centre coordinates x and y. Eigen-vector 21 describes
a general increase of the radii together with a decrease of (already negative) density
contrast value. Since each of these contributions changes gravity in the same direc-
tion, the linear combination is well resolved. Eigen-vector 20 is more or less the
opposite of the first eigen-vector in Fig. 7.4.14. They are, in any case, orthogonal
relative to each other, because the components of the radii have the opposite sign.
Eigen-vectors 19, 18 and 14 again indicate that the radii of the upper 11 disks (to
300 m depth) can be resolved by the gravity data in a broader scale and at greater
depths. In the case of very short wavelengths the a priori information determines the
shape of the diatreme.
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Fig. 7.4.15 Singular values (left) and eigen-vectors (right) of the resolution matrix

7.4.1.5.9 The Resolution Matrix

Figure 7.4.16 shows the resolution matrix which presents information different from
the previous figures. While large and small values of elements on the main diago-
nal do mean well and poorly resolved variables, respectively, the emphasis of this
picture is the influence which the a priori information on a variable has on the
other variables (see Sect. 7.3.2.2.8). The influence is, again, expressed relative to
the normalizing standard deviation. The clearest example is the row for the den-
sity contrast d. When radius r10 increases by one normalizing standard deviation
(200 m), because the gravity data demand it but the a priori standard deviation op-
poses it, the density contrast d, instead, becomes smaller (more negative) by about
0.8 times its normalizing standard deviation (50kg/m3). In contrast, a prevented
increase (becoming more positive) of the density contrast by 50kg/m3 results in a
less than 0.1×200m radius shrinking of disk r10, as can be seen in column d. Below
the diagonal, larger values appear than above it, implying that a priori information
limiting the radii of the upper disks will influence the radii of the lower disks, while
such an influence of the lower disks on the upper disks is very weak. Disks r10–r17
(250 to 800 m depth) appear to be affected only jointly by the gravity data, for in-
dividual disks are hardly affected by the data, as evident from the small values on
the diagonal, while the neighbours react equally as seen in the uniform magnitude
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Fig. 7.4.16 The resolution matrix

of the values in this region. The three lowermost disks show null resolution since
they are almost completely determined by the penalty function (see Sect. 7.4.1.5.7),
restraining them from becoming negative.

7.4.1.6 Concluding Remarks on the Example Meerfeld Maar

The Meerfeld Maar is an example of a nearly singular gravity inversion, mainly be-
cause the size and the density contrast of the diatreme are highly correlated with
each other. Therefore much a priori information was collected which can help in
solving the problem. Since it is also a tutorial example, some of the available a
priori information was consciously dropped which hampers the geological interpre-
tation. This actually demonstrates how important it is to include as much a priori
information into the modelling as possible.

The resulting model has a few unexpected aspects, especially the low slope angle
of the upper part of the diatreme and its reduced depth extent. These aspects appear
to only weakly contradict the known facts. The eigen-values and eigen-vectors of the
resolution matrix demonstrate that one needs to put much effort into the definition
of the a priori information concerning the small- to medium-scale depth range at a
depth of 300–600 m, because in this region the gravity data provide little information
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and determine at most just a mean radius. Evaluation of the a posteriori covariance
matrix clearly demonstrates that the joint optimization of the gravity data and the a
priori information improves knowledge. The a priori information is concentrated on
the deep small-scale part, while the gravity data emphasize the shallower or larger-
scale part. Further modelling should concentrate more carefully on a priori informa-
tion and gravity data that tell something about the upper 200 or 300 m depth range.
This follows from the largest eigen-vector which shows that the density distribution
in this depth range can be fully compensated by a modified density contrast and radii
in the diatreme range of 300–800 m depth. An incorporation of the lake sediments
between 40 and 190 m, as determined from geo-electric data by G. Büchel (pers.
comm., 1996), would strongly affect the results concerning the slope and curvature
of the diatreme walls and, hence, the depth extent and density contrast at depth.
Since the respective information seems to be missing in the present gravity data and
in the a priori information used, new measurements should concentrate on these as-
pects, and the first step suggested is areal gravimetric surveying at and beyond the
crater rim.

Obviously, the case of the Meerfeld Maar emphasizes the methodological aspects
more than the geological questions. Since, however, geological or related questions
are the driving motivation of gravity inversion, the discussion also showed what can
be done next in this direction.

7.4.2 SE Iceland Shelf: Edge Effect

7.4.2.1 Principal Ideas

The second case history differs from the above in important aspects. It is the con-
spicuous dipolar gravity anomaly at the shelf edge which calls for an investigation
(Sect. 5.7.5), and solid a priori information on the causative structures is essen-
tially missing. The relationship with Iceland, one of the most prominent hotspots on
Earth, and its structure and evolution are questions and only vague a priori infor-
mation: is the gravity anomaly explained by the edge effect between two different
types of oceanic versus Icelandic crust, or does it reveal a continental splinter under
the shelf? Fedorova et al. (2005) speculated about such a splinter of the Greenland
shelf split off and carried east when the spreading ridge jumped to the west from the
Norwegian basin, some 26 Ma ago, to initiate the Kolbeinsey ridge north of Iceland.
The spreading history at the latitudes of Iceland was complex and it is possible that
a Greenland splinter was carried to the east, to form a more or less continuous band
from the SE Iceland shelf at about 63◦N to Jan Mayen at 71◦N. The Jan Mayen
Ridge has been investigated by refraction seismics and inferred to have a continen-
tal basement (Kodaira et al., 1998). The a priori information has the nature of a
general concept which must be considered as a whole with large uncertainty of the
individual parameters describing the geometry and densities. The hypothesis of the
structure being a continuation from, or a least related to, the Jan Mayen Ridge can
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be taken as a priori information to be tested by inversion – similar to the Meerfeld
Maar where the South African kimberlite pipes played such a role in the inversion
(Sect. 7.4.1).

The situation calls for an exploratory strategy of parametrization, especially the
two-sigma rule (Sect. 7.2.2.3.2). The individual parameter errors may be chosen
too wide and then narrowed, and condition or correlation matrices may be assumed
a priori. This section will follow such a strategy: testing the shelf edge effect, a
continental splinter and the conditions imposed by the corresponding structures.

The SE Iceland shelf was introduced in Sect. 5.6.8 emphasizing the conspicu-
ous dipolar gravity anomaly accompanying the edge and steep slope of the Iceland
plateau down to the ocean basin. Figure 5.7.5 presents an averaged NNW-SSE pro-
file across the 50 km wide shelf with x = 0 at 64◦N intersecting the coast at about
63.7◦N, 17.5◦W (inset for location) and shows the topography and bathymetry, the
free air anomaly (FA), the Bouguer anomaly (BA) and the residual BA (rBA) ob-
tained by subtracting an estimated Moho effect from the BA. The data errors have
been estimated from the averaging two neighbouring profiles, each based on spa-
tially distributed gravity and topography data in compartments of a 20 km strip and
they range from 1 to 6 mGal and average about 2–3 mGal. Parametrization errors of
the same order were added to take the short-wavelength data scatter into account.

All three different kinds of gravity profiles display the dipolar anomaly near the
shelf edge. It is most pronounced in the FA with a 60 mGal asymmetric peak above
the shelf break, a steep drop to the bottom of the plateau slope and a more gentle
−10mGal asymmetric gravity low at the foot of the slope. The dipolar shape is not
completely removed by the Bouguer reduction, but it appears more rounded and
shifted landward (about 10 km for the peak and 20 km for the low), superimposed
on the general oceanward rise of the BA to 160 mGal, reflecting the crustal thinning.
With its effect estimated and removed, the rBA isolates a dipolar feature with a
30 mGal peak, shifted 20 km farther landward from the FA peak, and the 20 mGal
low shifted 10–20 km landward from the FA low. The ∼ 20km distance between the
rBA and the FA dipolar features seems significant.

As the Moho rise toward the ocean basin is not constrained by detailed seis-
mic a priori information, the rBA is only preliminary. In Sect. 5.7.5 a qualitative
interpretation was offered for it as an edge effect, i.e. a vertical edge of two lay-
ers on top of each other, each 15 ± 5km thick with lateral density contrasts of
+144kg/m3 overlying −144kg/m3 density contrast at depth. Furthermore, the rBA,
in Sect. 5.7.5, indicates that the double layer is probably laterally limited landward.
In Sect. 6.5.5 three more models of different geological nature were investigated
(Fig. 6.5.5), but only the edge or dipole model is followed up here by inversion
(with the program INVERT) because it is attractive as an idea and would test the
above hypothesis of a continental splinter. The other geological ideas, not individ-
ually treated, are closely related to the edge effect and will be linked with it below.
Details can be worked out as Task 7.5.

As a first experiment, the rBA is inverted in order to test this conceptual model
of a laterally limited vertical mass dipole. A very simple model of two rectangular
2D blocks (coupled adjustable density contrasts +/−100 with each an uncertainty
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of ±100kg/m3) was assumed as a priori information with fixed depth extent (0–15
and 15–30 km); the horizontal limits of the upper and lower blocks were assumed
at x = 40 and 80 km, on the basis of the rBA, and were left adjustable (±20km).
The a priori standard errors of density contrast can be considered rough estimates
of 2σ representing for each body a range from 0 to + or −200kg/m3 and the mu-
tual difference of 400kg/m3 as an extreme. Fixing the depths (a priori error ±0)
is justified only by the preliminary nature of the test. The result of this inversion is
shown in Fig. 7.4.17. It confirms the viability of such a structure in a very crude
form. The calculated densities are (in the case shown) +83 and −83kg/m3; inter-
estingly, the gravity data shift the lower block some 20–30 km seaward below the
shelf edge. The rBA is not considered further because of the problem of the poorly
known Moho assumed.

The rapid transition from the Iceland shelf to the ocean basin itself generates an
edge effect of a gravity dipole signal (Sect. 5.6.8) by the shallow “negative top” of
the water mass versus upper crust and the “positive bottom” of the mantle versus
lower Icelandic crust. It is attempted to separate the two “dipole” effects by inver-
sion. Thus the next step is to include the Moho in the inversion of the FA and the
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Fig. 7.4.17 The SE Iceland shelf: preliminary inversion of the rBA with an idealized crustal
dipole model
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BA. They contain all the effects of the internal crust and mantle structure with the
transition from the Iceland shelf to the deep sea, while the effect of topography and
bathymetry is treated differently in the two types of gravity anomaly. The FA con-
tains the unreduced effects of topography and bathymetry which must be modelled,
here in an idealized 2D manner, while the BA results from detailed Bouguer and
terrain reductions. It is of interest to investigate the influence of this difference.

7.4.2.2 A Priori Information on the Crustal and Mantle Structure

The a priori information as discussed above, includes (1) a concept of the origin
and nature of the shelf, including the seismically determined crustal structure of the
Jan Mayen Ridge (whose relevance is, however, hypothetical and was therefore in-
cluded only towards the end), (2) the morphology, (3) the background knowledge
of oceanic and Iceland crust with data from further inland, and (4) strong local-
ized magnetic anomalies accompanying the shelf edge. No detailed seismic data are
available in the region proper, except further inland under the Vatnajökull ice cap,
and the situation is similar in the ocean basin. Only general a priori knowledge of
the ocean crust exists. Its average thickness may be thicker than normal under the
anomalously shallow North Atlantic basins, affected by the Iceland plume. Crustal
thickness of Iceland is debated and is today believed to reach a maximum of about
40 km under NW Vatnajökull (Darbyshire et al., 2000), where earlier “thin crust
models” (15–20 km) were based on partly the same seismic data, but on a different
interpretation. The lower crust in the “thick crust model” has a very small density
contrast against the material below (about 100kg/m3; Menke, 1999; Kaban et al.,
2002; Fedorova et al., 2005) and may be considered a transient layer intermediate
between mantle and crust. Under the circumstances, the gravity data may have a
stronger weight than the a priori information in the inversion.

Under the circumstances, local isostasy of the shelf region may be taken as an
initial a priori assumption to be tested, implying the Moho to be an expanded mirror
image of topography/bathymetry (called “isostatic Moho” or Moho model (2)).

Another possibility is to combine the seismic data with the topography/
bathymetry and gravity data in the whole region by regression analysis, as pre-
sented by Fedorova et al. (2005) on the basis of the “thick crust model”. From the
regionalized experimental regression coefficients, Moho values were calculated on
a 25 km grid of topography and gravity points, and a new Moho map was plotted
on this basis. Lack of detailed knowledge of internal crustal structure and the sta-
tistical noise suggest that the individual point errors were about ±3km. The map is
only approximate. If taken as the best available a priori information on the Moho, a
profile across the shelf can be constructed (called “a priori Moho” or Moho model
(3)). The map of Fedorova et al. shows a band of thickened crust (to > 30km) ac-
companying the SE shelf and continuing to the N along the western margin of the
Norwegian basin to the Jan Mayen Ridge (as mentioned above) which has been
suggested, on the basis of a seismic experiment (Kodaira et al., 1998) to contain
continental rocks split off the Greenland margin when the Kolbeinsey ridge was
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initiated. In the seismic section the continental basement appears to be ∼ 15km
thick and ∼ 60km wide and layered (pre-rift sediments, “continental upper crust”
and “continental lower crust”), and overlain by a much thinner basalt cover. The
eastern edge towards the Norwegian basin was not defined by the seismic experi-
ment, and to the west the upper continental layers appear stretched, perhaps some
100 km. In contrast, a simplified uniform body is envisaged for the SE Iceland shelf
with a similar shape and of similar dimensions, but a thin NW-ward continuation
under Iceland is not considered, nor would it be revealed by gravity.

For the densities, values between 2600 and 2900kg/m3 may be regarded appro-
priate a priori limits, implying σ ≈ 300/4 or 75kg/m3. The density contrast of sea
water Δρw = ρw −ρuc against uppermost crustal rocks is about 1600±100kg/m3.
The depth-averaged Moho density contrast (15–40 km), Δρm = ρm−ρlc, is assumed
160± 100kg/m3, which is low, but supported by regional isostasy. In Sect. 5.7.5
values of 300 and 100kg/m3 were considered with the lower value more appropri-
ate for the depths from 20 to 40 km. On the very large scale of the North Atlantic,
isostasy is probably also disturbed by the Iceland mantle plume, but the related
deeper density distribution has only gently varying gravity effects along the (radial)
profile and may be neglected here.

The marine sediments at and below the Iceland plateau slope are approximately
known (see Fedorova et al., 2005). To avoid associated effects in the inversions, the
gravity anomalies were “sediment-corrected”, i.e., the compaction of the sediment
layer to basement density by about 10% was estimated and added to the water depth,
and also taken into account in the locally isostatic Moho depth.

7.4.2.3 Parametrization Strategy

Two-dimensional parametrization is sufficient, since the radius of curvature of the
shelf edge between 14◦ and 21◦W is ∼ 300km, compared to model depths to <
40km (Sect. 5.3.1, Fig. 5.3.1) and the errors relative to 3D modelling are small.

The uncertain situation of the a priori information motivates experimentation
with several parameterizations of different geological nature (Fig. 6.5.5) with the
common feature of a shallow landward density excess and a corresponding deep
crustal density deficit (Sect. 6.5.5). Before the crust-internal “mass dipole model” is
treated, a homogeneous crust is investigated to clarify the exclusive shelf edge effect
with three different parameterizations of the Moho (Fig. 7.4.18): (1) an idealized
ramp-like isostatic transition from the shelf to the ocean basin (drop: 2 km, width:
20 km, oceanward density contrast Δρw a priori assumed −1600 ± 100kg/m3, a
posteriori −1586kg/m3) coupled with an isostatically balanced 20 km thick mantle
layer between 10 and 30 km depth and a density contrast Δρm = 160 → 159kg/m3,
(2) the locally isostatic model of observed topography-bathymetry and a Moho with
−Δρw/Δρm ≈ 10 and its top at about 10 km, and (3) the a priori model or section
through the crust map by Fedorova et al. (2005), which shows, with a ±3km un-
certainty, thickened crust below the shelf edge (maximum 30 km), from where the
Moho rises to both sides, into the ocean basin gradually to 13 km and toward NNW
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Fig. 7.4.18 Experimental density models of the ocean basin and the Moho (with uniform crust)
for the SE Iceland shelf and transition to the ocean basin: (1) local isostasy; steep ideal-
ized slope of 2 km across 20 km (Δρsea = −1600kg/m3) and Moho rising from 10 to 30 km
(ΔρMoho = 160kg/m3); an idealized ocean basin belongs to this (solid line); (2) local isostasy,
Moho as mirror image of the observed topography/bathymetry, expansion factor Δρsea/ρMoho;
the observed bathymetry is shown by a dotted line; (3) Moho based on a priori information
(ΔρMoho = 160kg/m3), not strictly isostatic, but with the same observed bathymetry

to 25 km depth close to the Iceland coast from where it drops to 40 km depth below
NW Vatnajökull (not strictly isostatic).

7.4.2.4 Inversion of the FA

7.4.2.4.1 The Iceland-Ocean Transition

The observed FA shows distinct dipole signal which, as argued above, may be a
composite of two similar superimposed signals with a relatively small lateral off-
set. It is difficult to separate the sources and the inversion may become unstable,
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based on gravity alone, unless properly regularized, i.e. unless reliable a priori
information prescribes such a dipole. In the present case the inversion is essen-
tially a tool for testing hypotheses and their plausibility. Since the shelf margin
is the principal geological feature and a strong FA accompanies it, the FA is first
investigated.

Surprisingly, the simplest model (1), shown in Fig. 7.4.18, produces without any
adjustment a gravity effect (not shown) which is more similar to the FA than cal-
culated for the more “realistic” models (2) and (3) presented below. The major
differences are the shift of some 20 mGal and the peaked extrema. The constant
shift means little but may, indeed, be related to the large-scale positive FA over the
whole of Iceland, most likely connected with the dynamic topography generated
by the Iceland mantle plume. Inverting model (1) as a priori information by ad-
justing only the additive constant c and the density contrasts leads to a fairly good
fit of the FA (±7mGal), except for the more peaked extrema, and residuals with
patterns mainly reflecting a probably wider and less abrupt transition. If the den-
sities are adjusted in a way maintaining local isostasy (by correlating dΔρm at the
Moho with dΔρw of the water as dΔρm = (hw/hm)dΔρw, with hw (2 km) and hm

(20 km) the thicknesses of water and mantle), the results (shown in Fig. 7.4.18) are
c = 18mGal, Δρw = −1586kg/m3 and Δρm = 159kg/m3. In a second inversion,
additionally, the x coordinate of the foot of the slope (xw) and the corresponding
edge of the Moho rise (xm) is allowed to adjust such that xm = xw. The adjust-
ment, indeed, shifts the point by about 8± 0.4km oceanward (Fig. 7.4.19). This
change is accompanied by a change in the densities Δρw and Δρm to −1623± 9
and +162± 1kg/m3, respectively. The fit to the FA is, as expected, slightly better
(±6mGal), especially the minimum near the foot and the corresponding residuals
are smaller. In both above inversions, the residuals landward from the slope are wavy
and reminiscent of rBA, however of smaller amplitude (< 10mGal).

The gravity effect of model (2) does not fit the FA (Fig. 7.4.20). Though of little
meaning, the constant shift has the wrong sign (opposite to above) and stems from
the greater thickness of the assumed mantle layer, defined by the Moho maximum
depth of 40 km below central Iceland. It appears related to the assumed 160kg/m3

density contrast extending to 40 km depth. More critically, the dipolar double am-
plitude is only about one half of that observed (70 mGal). Doubling the amplitude
could be achieved by scaling density with a factor of 2, but it would contradict the
a priori information. An inversion of the FA (to ±10mGal, F-statistics: 108) with a
priori Moho model (2) and only the constant c and the isostatic densities adjustable,
renders the densities Δρw and Δρm − 1665 and +166kg/m3, respectively. Beside
the density scaling, the abruptness of the transition affects the amplitude. It would
have to be less smooth than taken from the morphology, hence would also deviate
from local isostasy. Part of the geological smoothing may be by sediments below
the slope, say, between x = 90 and 100 km; a maximum sediment thickness of 1 km
and a density contrast of, say, Δρ = −240kg/m3 would give plausible −10mGal.
However, introduction of a corresponding sediment correction (i.e. at most 1 km of
sediments compacted to upper crust density) has only an insignificant effect on the
results (which is also true for the other models). Of course, beside the conflict with
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Fig. 7.4.19 Idealized model (1) as a priori information for the inversion of the FA, with adjustment
of the densities Δρw and Δρm, maintaining isostasy, and of the x coordinate of the foot of the slope
and the corresponding upper Moho edge

gravity, local one-to-one isostasy at 10–20 km scale is unlikely. This can be stud-
ied by an inversion of the FA and permitting also the Moho morphology to adjust,
starting with model (2). The results are not shown, but a strong Moho undulation
(amplitude ±10km; Δρw −1604, Δρm +160kg/m3) superimposed on the a priori
Moho is calculated for which no independent information exists. A high is found
below the shelf break between two lows, one near the coast line of Iceland, the other
at the shelf foot. Nevertheless, the FA residuals are still large.

The fit of the effects of model (3) to the FA, with only the constant c ad-
justable (−10mGal), is worse than in the above cases. This is not surprising and
the large residuals (to 30 mGal) are negatively correlated with the a priori Moho,
accordingly. When the density adjustment is included, the fit is still very poor
(wRMSE: ±15mGal, F-statistics: 262, Fig. 7.4.21), and the results are Δρw, Δρm =
−1437,+144kg/m3, respectively. These values are questionable, but strongly de-
pend on the constraints imposed on them. The reason is the deep Moho under central
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Fig. 7.4.20 Fitting the FA with the isostatic Moho model (2) defined as an expanded mirror image
of the bathymetry; the inversion shown by adjusting Δρw and Δρm maintaining isostasy, results in
Δρw = −1665 and Δρm = +166kg/m3)

Iceland included also in model (3), so that the gravity data require a low Moho den-
sity contrast Δρm (to which Δρw is assumed correlated to maintain isostasy).

The above results are not supported by a priori information. Hence, with a ho-
mogeneous crust, no acceptable fit to the FA is obtained. If, for a test, the Moho
is allowed to adjust within ±5km, it is calculated very similar to that obtained
for Moho model (2) as starting point: Δρw, Δρm = −1607,+161kg/m3, respec-
tively. Both Moho models differ only in the a priori assumptions which, in Bayesian
inversion, are also fitted, but the data dominate the Moho depth variation calcu-
lated to explain the FA edge anomaly amplitude. As a strong Moho undulation is
not likely, the arguments for a crustal inhomogeneity as a dipolar crustal structure
(Sects. 5.7.5, 6.5.5; Fig. 6.5.5 (1)) are more convincing with a buried continental
sliver in the lower shelf crust (Sect. 7.4.2.2).
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Fig. 7.4.21 Fitting the FA with the a priori Moho model (3) by adjusting Δρw and Δρm roughly
maintaining isostasy. The resulting density contrasts (−1437 and +144kg/m3) are rather low

7.4.2.4.2 A Crustal Mass Dipole Added

The vertical mass dipole is added to Moho models (2) and (3). Since no concrete
a priori information exists on its geometry, the parametrization begins with rectan-
gular 2D block form, 15× 40km2 in section, similar to Fig. 7.4.17. Adaptation of
the bottom to each Moho model will follow. The densities and the lateral bound-
aries are assumed adjustable, followed by a more general geometrical adjustment.
The a priori lateral density contrasts are assumed, as for the test with the rBA, to be
+/− 100kg/m3 with the same uncertainty. The fit (not shown) to the gravity data
was immediately improved and the adjusted density contrasts of the initial model
came out to +/−124kg/m3, implying absolute densities of, say, 2700–2800kg/m3,
embedded in 2600 and 2800–2900kg/m3 material, respectively from top to bottom.
A general vertical density increase with z was thus taken into account.

Refinement of the oversimplified initial model is a necessary, very important step.
It includes adaptation of the bottom of the lower block to conform with the a priori
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Moho and parametrizing the geometry to better fit the FA. This led to an experi-
mental rhomboidal shape of the lower crustal body of ∼ 15km vertical and ∼ 60km
horizontal dimensions, buried under a roughly 15 km thick denser upper crust of
similar shape and 200 m water. Ideas on how a continental splinter is formed are
too vague for a priori information. If this basalt and the dense upper crust of the SE
shelf are equivalent, one might argue that the difference in thickness is related to
the closeness to the Iceland plume. Furthermore, to fit the FA observations on land,
topography was added underneath the land stations, and a shallow low-density body
of loose Pleistocene gravel and sand was added optionally (turning out not to be
essential for the fit).

First the results are shown for the isostatic Moho model (2) (Fig. 7.4.22). The
lower crustal body comes out much smaller and more triangular with a density
contrast −85± 10kg/m3. The upper crust body is inclined oceanward, but shifted
from the a priori position by < 5km oceanward (density contrast 116 ± 7, core
174 ± 8kg/m3). The correlated water and Moho density contrasts come out as
−1600± 20 and 160± 2kg/m3, respectively. Interestingly, the inversion modifies
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Fig. 7.4.22 Fitting the FA with the a priori Moho model (2) and the shelf crustal mass dipole added
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the Moho model (2) in the direction of model (3) with a slightly thickened crust
under the shelf. Topography under the land stations is very roughly approximated
(with a density of 2873±91kg/m3).

The inversion result for the somewhat more realistic a priori Moho (3), with the
mass dipole of rhomboid bodies added, is presented in Fig. 7.4.23. The gravity fit
is similar; the F-statistics is about 4, the wRMSE (see 7.3.2.2.4) is 1.3 mGal for the
observations and 1.6 times the a priori standard deviations of the variables which,
under the circumstances, is not very significant. The Moho density contrast is, again,
calculated to be 160±1kg/m3, assumed correlated to the water density contrast of
−1601± 10kg/m3. The denser upper body shown (+128± 7kg/m3) is inclined
oceanward with a core of increased density (adding up to +192± 8kg/m3). The
rather big a posteriori low-density lower crust (Δρ :−120±8kg/m3) still resembles
an inclined rhomboid similar to the continental crustal body suggested for the Jan
Mayen Ridge by the seismic study of Kodaira et al. (1998). The land topography
and the sander body are constrained by only very few stations and are calculated to
have densities of 2180±336 and −184±42kg/m3, respectively.
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Fig. 7.4.23 Fitting the FA with the a priori Moho model (3) and the shelf crustal mass dipole added
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Two aspects are emphasized. (1) One is the problem of the high (negative) cor-
relation between the effects of the upper and lower crustal body, rendering the in-
version unstable if not strongly regularized. Consequently small variations of the
geometrical a priori parameters easily lead to large changes in the a posteriori den-
sity contrasts of the order of <100 to >300 kg/m3 (corresponding to about 2σ ). The
gravity data, by themselves, cannot resolve the details of the volume and shape of
the bodies nor the densities individually, as volume and density are also highly cor-
related. (2) The principal result of the high/low density vertical dipole, however, is
very robust. It does not depend on details of the a priori information. If the densi-
ties are loosely constrained, the amplitude of the variation from top to bottom tends
to increase, but it leads to only an insignificantly better fit of the data. The con-
straints imposed on the model are justified only on the basis of the whole geological
concept. Details of density and geometry are uncertain, but comparison of the two
Moho versions suggests, that the a priori, not strictly isostatic version with a Moho
depression under the shelf, more than the strictly isostatic Moho version, favours a
low density, possibly continental root. However, importantly the lower body is not
resolved by gravity alone. If, however, assumed a priori, it is supported by the inver-
sion. This is not an absolute proof for its existence, but proof or verification cannot
principally be expected from gravity in this case.

7.4.2.5 Inversion of the BA

Also the BA is inverted with the same a priori information in order to investigate
the influence of the Bouguer and terrain reductions on the final modelling results.
The ocean mass deficit, which is well constrained by a priori information, has been
removed by the Bouguer reduction. This is a form of regularization which may
help stabilizing the separation of the Moho and crust-internal effects. It is inves-
tigated how much additional regularization is necessary. The BA data are given
with individual station standard deviations which result from taking averages of
values distributed in a 20 km wide strip. The largest a priori observational stan-
dard errors σ occur around the shelf and slope (4–6 mGal), but the profile mean is
±2mGal.

The inversion of the BA with the isostatic Moho model (2) (Fig. 7.4.24) is quite
similar to that of the FA (Fig. 7.4.22). The shapes are similar, but again, the upper
crust body is shifted slightly landward and has a slightly bigger core. The calcu-
lated density contrasts are also similar (98±7, 147±8 and −111±9kg/m3). The
a posteriori Moho fits more closely to the initial one, and the density contrast Δρm

is 155± 4kg/m3. In this inversion the wRMSE is 0.9 a priori, i.e. ±2mGal, and
the assumed initial variables are fitted well (0.9 a priori). The upper/lower crust
mass distribution is a robust result but with the same kind of restrictions as dis-
cussed above.

The inversion of the BA with the a priori Moho model (3) and the crustal mass
dipole is, in addition, constrained by condition matrices concerning the rhomboid
shape (and the density of the core of the upper crustal body). In contrast to rigidly
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Fig. 7.4.24 Fitting the BA with the a priori Moho model (2) and the shelf crustal mass dipole added

fixing relationships between parameters, condition matrices permit them to be con-
strained more loosely, within specified a priori standard deviations replacing the
fixed correlation between the variables. As a brief illustration, take for example,
two variables x1 and x2 which are a priori expected to change approximately the
same way: Δx1 ≈ Δx2; then the condition can be expressed as Δx1 −Δx2 = 0± sx,
i.e., relaxed by permitting an a priori standard error sx.

The results are shown in Fig. 7.4.25. The wRMSE of the observations is 0.5
times the a priori values (∼ 1mGal), the corresponding value for the model is equal
to the a priori assumptions of the parameters and the F-statistics is about 1.1. Re-
member that a priori parameter values and their standard deviations are individually
only poorly constrained. The characteristic features required by the BA data in the
shelf region (where σdata ≈ ±5mGal) are similar to the results of inverting the FA
(Fig. 7.4.23), but the initial model was slightly modified (the local Moho depression
defined by only 3 points which were given the nominal a priori ±5km standard devi-
ation). In this solution, the upper body is shifted landward by ∼ 6km, and the lower
body is shifted down by ∼ 1.5km. The Moho density contrast is +164± 3kg/m3.
The upper body density contrast is 95±6kg/m3 with core of 143±7kg/m3, and the
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Fig. 7.4.25 Fitting the BA with the a priori Moho model (3) and the shelf crustal mass dipole added

lower crustal body has a density contrast Δρ of −113±9kg/m3. The sander body
near the coast was included and calculated to be only about 1 km thick with a density
contrast of −203±78kg/m3. Only by tightly (±10kg/m3) constraining the density
contrasts (especially for the lower body), volume and shape of the model can be de-
termined with the individual coordinates are only loosely constrained (e.g. ±10km).
The principal dipole nature is, however, again a robust result. All the differences
between the models of Figs. 7.4.23 (FA) and 7.4.25 (BA) are well within the uncer-
tainties of the a priori information.

7.4.2.6 Discussion of Errors and Conclusions

The rBA, FA and BA all are characterized by a conspicuous dipolar anomaly from
which the investigation starts by suggesting itself a somewhat dipolar mass distribu-
tion of crustal dimensions. The various inversion attempts point to a vertical dipole
in the shelf crust, and the conclusion is difficult to escape that the lower crust has
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an anomalously low density complemented by a relatively dense upper crust. This
speculative interpretation involving the hypothesis of a lower crust of continental
origin is supported by the inversion results. High uplift during the early splitting
phase of the Greenland shelf led to stronger erosion removing the less dense up-
permost rock (comparable to model 2 of Fig. 6.5.5) and the early magmas may
have been more mafic than ordinary oceanic and Icelandic basalts (comparable to
model 3 of Fig. 6.5.5). Large magnetic anomalies near the shelf edge may support
these ideas. Comparison to the seismic model of Jan Mayen Ridge by Kodaira et al.
(1998) reveals surprising similarities of structure which may suggest – cautiously –
that the continental splinter hypothesis and the so-called “a priori Moho” are rea-
sonable hypotheses, though not proven by independent evidence. There is one large
difference between the SE Iceland shelf and Jan Mayen Ridge: the magmatic cover
of the continental block appears much thicker on the former than on the latter. In-
deed, this seems plausible in view of the proximity to the Iceland plume at the SE
shelf and the greater distance around Jan Mayen.

Gravity has the power to render a hypothesis more or less likely. In the present
case, the hypothesis of a “light” lower crust and dense upper crust is suggested intu-
itively by a positive gravity anomaly above a locally depressed Moho. It is strength-
ened by the fact that even for the “isostatic Moho” without a local depression the
hypothesis is supported by the inversion.

Relative to the inversion situation of the Meerfeld Maar (Sect. 7.4.1), beside the
geological situation and scale, the a priori information on the structure and the ex-
pected dipolar mass distributions is vague. It leads to an intrinsically singular and
unstable inversion aggravated by the two features in close proximity that are genet-
ically related to each other: a vertical mass dipole consisting of a light continental
splinter from Greenland in the lower crust under a denser magmatic upper crust just
where the crust sharply changes thickness from Iceland to the ocean basin. Near-
singularity is demonstrated by the sensitivity of the a posteriori variables to small
changes in the regularization with locally large gravity residuals. Nevertheless, the
a priori geological guiding principle proved acceptable.

The reason for the large errors and deviations in some of the series of inversions
(some of which are reported) lies in the uncertain a priori information on the indi-
vidual parameters. The a priori information on any single parameter has large error
bounds. The a priori information is realistic only concerning the whole geological
situation which is thus the main a priori constraint. Note that most individual pa-
rameters have the potential of large trade-offs. As argued above, the resulting nearly
singular situation requires either stronger regularization concerning the parameters
than justified by their a priori knowledge, or alternatively, the whole concept must
be constrained by assuming condition or correlation matrices, in order to satisfy the
whole geological situation, for example, the tentative shape of the source bodies.
This was tested in the last inversion shown in Fig. 7.4.25. Confidence in the prin-
cipal result comes from its consistency and robustness, independent from details of
the Moho and of the body shapes.

How convincing is this in view of the other model types of Sect. 6.5.5 (Fig. 6.5.5)?
These were characterized by densification through top erosion (2), dense volcanics
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(3) and block rotations (4). Relatively small adjustments to their model parame-
ters can satisfy the gravity data equally well. Possibly a valid argument is that all
these models are non-isostatic, but the dimensions of < 100km render this argument
weak. The models (2) and (3) have much similarity with the dipole mass model,
but missing the weakly resolved low-density lower crustal block. Since it generates
the negative gravity side lobes, models (2) and (3) must include another compo-
nent generating such an effect: mainly the sediments below the plateau slope which
must be more effective (density contrast times thickness) than already taken into
account. This would be a case of regional mass compensation or isostasy, which
is also a realistic concept. It is an interesting demonstration of the difficulty, if not
impossibility, of discriminating local and regional isostasy merely on the basis of
gravity.

The present example is a case where the gravity data are of greater importance
than the a priori information on shape, volume and density contrasts. Missing con-
straints on the individual model parameters do not prevent a general model type
to be modelled by inversion. The analysis shows that specific additional (mostly
seismic) a priori information is needed on the sediments and on the crustal struc-
ture of the SE Iceland shelf and also on the evolution of the North Atlantic.
This demonstrates the value of gravity inversion in specifying questions for future
research.

The choice of the SE Iceland shelf as a demonstration of gravity inversion has
been made for its tutorial value, not because of a final proven result. In fact, the result
is still debatable. However, this is not different in essentially all cases of gravity
inversion.

7.5 Outlook

Independent a priori information reduces or even completely solves the ambiguity
problem of potential field interpretation. Optimization, for example, by least-squares
fitting in the case of inconsistent data, requires implicit and explicit a priori infor-
mation. Moreover, extensive a priori information is desirable to avoid unacceptable
or unusable solutions.

The structure of the a priori information determines how it is transferred into a
mathematical formulation of the regularization. Mostly this leads to non-linear op-
timizing problems. How strongly the non-linearity affects the stability of a solution
can be tested by experimenting or by including the higher derivatives of the basic
equations (which may be cumbersome). In practice, regularization is necessary to
prevent instability by keeping the number of variables acceptably small.

The distribution of the observations relative to the a priori models has an effect
on the optimization or inversion results. If not sufficiently constrained, a model body
may be moved far from the a priori expectation if the data are better satisfied that
way. Sufficiently strong regularization is then required. It is also the question of
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what is an anomaly if “too few” discrete observations exist relative to an anticipated
anomaly. Interpolation on a grid then represents a form of regularization.

The two case histories represent two different situations, one with considerably
detailed a priori information (of which some was not even used), the other with
general but rather vague a priori information on an ensemble of variables, but not
much on them individually. The strategies chosen were thus different.

Comparison of the deviations in the values of the solution with the data and the a
priori information enables an evaluation of a current solution to be made, especially
if the existing a priori information is explicit and detailed. For a finer evaluation of
the potential solution space (especially in the first example), however, a comparison
of the a posteriori covariance matrix of the variables is very important with various
suitably chosen criterion covariance matrices. Especially the normalizing standard
deviations, mostly chosen to be equal to the a priori standard deviations, and the
a priori covariance matrices have been emphasized (Sects. 7.2.2.3.8, 7.3.2.2). The
former tell us something about the extent of the solution space under the assump-
tion that it is adequate, and in a clearer form than possible considering only the a
posteriori covariance matrix. The latter forms the basis for analysing the a priori in-
formation more thoroughly and determining its influence on the solution, relative to
the gravity data. The solution method can be optimized with the aid of these evalu-
ation criteria, because they tell which a priori information is superfluous and which
properties are important and, if not yet used, should be used. For this purpose the
meaning of the elements of the correlation and resolution matrices and their eigen-
values and eigen-vectors should be intensively considered, as demonstrated in the
case of Sect. 7.4.1.

In the second case (Sect. 7.4.2) this kind of analysis reveals that parts of the
model depend completely on the a priori information, here especially the lower body
of low density. Only if it is assumed that the a priori concept is correct, can gravity
inversion tell something about the shape and density of the whole vertical mass
dipole. This is not too surprising since in many such situations gravity alone cannot
solve the problem of the source distribution. The chosen approach to modelling the
dipolar anomaly was exploratory, beginning with a primitive mass dipole. After a
principal fit of the gravity anomaly, a rhomboidal cross section, matching the a priori
Moho at the bottom, was tested with some freedom of adjustment to fit the BA or FA.
The cross section was optimized in shape and orientation. This led to a rhomboidal
low-density lower crust (of supposedly continental origin) under 200 m of water
and a denser upper crust of similar shape and dimensions (supposedly of volcanic
origin). The seismically derived cross section of the Jan Mayen Ridge, buried under
1 km of water and only some 2 km of basalt and post-rift sediments, was initially
not taken as a priori information for the construction of the a priori model, but the
similarity lends support to the preferred a posteriori model as the result of inversion.

For a situation characterized by so little a priori knowledge, experimentation by
trial and error is a reasonable way to find or define a priori information, e.g. on ac-
ceptable basic shapes. If a typical characteristic shape is suggested or found, it may
be preserved in principle during the inversion, for example, roughly rhomboidal, by
some form of condition (or covariance) matrix which would impose the condition
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that neighbouring coordinates (points) would be shifted in a similar fashion. In the
case of the SE Iceland shelf, this is a plausible, though geologically not very strong
condition. At the experimental stage it produces a fairly stable type of solution. This
was the case in the present modelling of the crustal shelf structure.

Practical applications require numerical tools as the program INVERT which
was developed in connection with a number of problems of various geological na-
ture. It became evident that even strongly singular problems can be solved such that
no contradiction to established facts arises. Nevertheless, new information can be
gained from the gravity data. Sensible modelling can be realised much more easily
when the parametrization corresponds to the model ideas of the user. Practical expe-
rience helps in translating the a priori information into numbers and equations. The
results are generally not very sensitive to error estimates (which may be difficult to
find numerically), but users must learn to “honestly” quantify the uncertainty of the
a priori information without being too keen or too lax.

The correlation matrix and the resolution matrix, as well as their eigen-values
and eigen-vectors have proven useful for evaluating the modelling and planning its
continuation. But with increasing numbers of variables, it becomes more and more
complex to derive the important information. This stresses the importance of a com-
pact parametrization, even if the problem then becomes more strongly non-linear.
The presentation, graphical or otherwise, of the eigen-vectors should be made as
easy interpretable as possible. Relations of even very heterogeneous variables, also
without a natural succession, should be clearly recognizable. It has proven diffi-
cult for the search of new measuring methods or of new kinds of information, that
several poorly resolved eigen-vectors can be put together in arbitrary linear combi-
nations, such that a possibly useful method could become obvious only by suitably
“rotating” the base of eigen-vectors.

Flexibility of a program in its capacity to incorporate every kind of a priori
information is usually in conflict with its speed and ease of use. Narrow limiting
the wanted minimum speeds up the optimization, but requires complex a priori in-
formation to be handled, which is often computing time-intensive. Furthermore, a
parametrization fitted to a given problem must be programmed by the user or be
provided with the program. A practicable compromise between the two possibilities
is always an aim.

Inversion should not be looked at as a magic tool solving all interpretation prob-
lems unerringly and automatically approaching the truth, while intuition would be
generally misleading. Learning greatly gains from mistakes, doubtful methods and
errors. In particular, the researcher still has much influence on the results, for ex-
ample, by setting the error bounds. which may be very wide. The two-sigma rule
(Sect. 7.2.2.3.2) then permits an estimate of realistic a priori errors. The second
example demonstrates this. Inversion thus suggests experimentation with various
forms of a priori information. It can then guide the search for plausible or accept-
able models where independent detailed knowledge from other sources is missing.
During experimenting the open-minded researcher will go through a learning pro-
cess. In the end, hopefully a better, more convincing model will be found, but also
a better, more creative researcher.
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The program INVERT (PS97) is an example of an efficient gravity inversion
routine which incorporates the aspects and devices described in this chapter. IN-
VERT was developed as a research tool in applications to many problems and is
today extensively used in industrial exploration applications. An executable version,
INVERT.exe, and a handbook, INVERT.doc, are attached to this book on a CD.

References

Arfken, G.: Mathematical Methods for Physicists, 3rd ed. Academic Press, San Diego, CA,
1200pp., 1985

Baarda, W.: S-transformations and criterion matrices. Publications on Geodesy, 5, 1168pp.,
Netherlands Geodetic Commission, Delft, 1973 (2nd ed. 1981)

Backus, G.E., Gilbert, F.J.: The resolving power of gross earth data. Geophys. J. R. Astron. Soc.,
16, 169–205, 1968

Darbyshire, F.A., White, R.S., Priestley, K.F.: Structure of the crust and uppermost mantle of Ice-
land from a combined seismic and gravity study. Earth Planet. Sci. Lett. 181, 409–428, 2000

Deal, N., Nolet, G.: Nullspace shuttles. Geophys. J. Int., 124, 372–380, 1996
Fedorova, T., Jacoby, W.R., Wallner, H.: Crust-mantle transition and Moho model for Iceland and

surroundings from seismic, topography, and gravity data. Tectonophysics, 396, 119–140, 2005
Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 3rd

ed. IEEE Press, Piscataway, NJ., 296pp., 2006
Frazer, A., Burnell, D.: Computer Models in Genetics. New York, McGraw-Hill, 1970
Goldberg, D.E.: Genetic algorithms in Search, Optimization and Machine Learning. Addison-

Wesley Longman Publ. Co., Boston, 372pp., 1989
Gollub, H.G., van Loan, C.F.: Matrix Computations. Johns Hopkins Univ. Press, Baltimore, 1989.
Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Yale Uni-

versity Press, New Haven, 1923; Reprint: Dover Publ., New York, iv+316pp., 1953
Hansen, P.C.: Regularisation tools, a Matlab package for analysis and solution of discrete ill-posed

problems. Report UNIC-92-03, as Postscript via Netlib (netlib@research.att.com) from library
NUMERALGO, 1993

Hawthorne, J.B.: Model of a kimberlite pipe. Phys. and Chem. of the Earth, 9, 1–15, 1975
Henk, A.: Zur Geologie und Geophysik des Meerfelder Maares und seiner Umgebung/Westeifel.

Diplomarbeit (Master’s thesis), Mainz, 1984
Holland, J.H.: Genetic algorithms. Scientific American, 267, 17–30, 1992
Hunsche, H.: Geomagnetische, geoelektrische und magnetotellurische Messungen im Rahmen

einer Exkursion zum Mosenberg und Meerfelder Maar in der Westeifel, Gamma, 22, Braun-
schweig, 1973

Jackson, D.D.: Interpretation of inaccurate, insufficient and inconsistent data. Geophys. J. R.
Astron. Soc., 28, 97–109, 1972

Jackson, D.D.: Marginal solutions to quasi-linear inverse problems in geophysics: The edgehog
method. Geophys. J. R. Astron. Soc., 35, 121–136, 1973

Jacoby, W.: Schweremessungen auf Helgol and Auswertung mit Ausgleichsverfahren Z. Geo-
physik, 32, 340–351, 1966.
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Appendix: Analytical Geometry

M1

Definition of a plane in x, y, z by three non-identical and non-collinear points Pi =
(xi,yi,zi), where i = 1, 2, 3. Normal vector ppp from O (0, 0, 0) to plane

The following expressions describe a plane in x, y, z:

z = a+bx+ cy (M1.1)

Ax+By+Cz+D = 0 (M1.2)

x/xo + y/yo + z/zo = 1 (M1.3)

xpx + ypy + zpz − p = 0, with p = (px, py, pz) (M1.4)

where xo, yo and zo are the axis intercepts of the plane and ppp is the plane-normal
vector from O (0, 0, 0) to the plane and p = |ppp|).

Some of the relations between the various parameters are:

a = −D/C, b = −A/C, c = −B/C;

xo = −D/A = −a/b,yo = −D/B = −a/c, zo = −D/C = a;

px = p2/xo; py = p2/yo; pz = p2/zo, p2 = (px
2 + py

2 + pz
2)

⎫⎪⎬
⎪⎭ (M1.5)

Inserting the three-point coordinates leads to three linear equations for the un-
knowns, a, b, c:

AAAvvv = www (M1.6)

with

AAA =

⎧⎨
⎩

1 x1 y1

1 x2 y2

1 x3 y3

⎫⎬
⎭ ; vvv = (a,b,c); www = (z1,z2,z3) (M1.7)

The solution is obtained by applying Cramer’s rule with the determinants |AAA|,
|AAAa|, |AAAb|, |AAAc|, where in |AAAa| the first column of |AAA| is replaced by bbbT, and in |AAAb|
the second and in |AAAc| the third, accordingly:

383
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|AAA| = x1y2 − x2y1 + x2y3 − x3y2 + x3y1 − x1y3

|AAAa| = x1(y2z3 − y3z2)+ x2(y3z1 − y1z3)+ x3(y1z2 − y2z1)
|AAAb| = −[y1z2 − y2z1 + y2z3 − y3z2 + y3z1 − y1z3]
|AAAc| = x1z2 − x2z1 + x2z3 − x3z2 + x3z1 − x1z3

∣∣∣∣∣∣∣∣∣
(M1.8)

Then
a = |AAAa/|AAA|, b = |AAAb|/|AAA|, c = |AAAc/|AAA| (M1.9)

From a, b, c any of the other parameters can be calculated by applying the ap-
propriate relations of (M1.5), especially the distance

p = a/(1+b2 + c2)1/2 (M1.10)

M2

Normal vector ppp from O (0.0,0) to straight line sss12 in x, y, z through two points P1,
P2 or point vectors rrr1, rrr2

The line sssij in x, y, z is defined by

sss12 = rrr2 − rrr1 = (x2 − x1,y2 − y1,z2 − z1) = (Δx,Δy,Δz)

The scalar products rrrij ppp = p2 (i = 1, 2) and sss12 ppp = 0 render three linear equations
for px, py, pz which can be written as

CCCppp = qqq

with

CCC =

⎧⎨
⎩

x1 y1 z1

x2 y2 z2

Δx Δy Δz

⎫⎬
⎭ ; ppp = (px, py, pz); qqq = p2(1,1,0) (M2.1)

The solution is obtained the same way as in Appendix M1 with the determinants
|CCC|, |CCCx|,

|CCCy|, |CCCz|,accordingly;

|CCC| = Δx(y1z2 −y2z1)+Δy(x2z1 −x1z2)+Δz(x1y2 −x2y1

|CCCx| = p2[(y2 − y1)Δz+(z1 − z2)Δy] = p2A

|CCCy| = p2[(z2 − z1)Δx+(x1 − x2)Δz] = p2B

|CCCz| = p2[(x2 − x1)Δy+(y1 − y2)Δx] = p2C

∣∣∣∣∣∣∣∣∣∣∣∣
(M2.2)
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In this case, p is obtained in the same way as in M1:

p = D/(A2 +B2 +D2)1/2 and

px = AD/(A2 +B2 +D2)
py = BD/(A2 +B2 +D2)
pz = CD/(A2 +B2 +D2)

∣∣∣∣∣∣∣∣∣
(M2.3)

A1

The cylindrical cycloid (Fig. A.1)
Many geological bodies are outlined on maps by closed curves. Near the surface,

gravity has the best resolution. The geometrically simplest approximation for such
geometries is the cylinder. A circular cylinder is described in 3D by 8 variables: 2
axis coordinates, 1 radius, 1 surface depth or height, 1 bottom depth, 1 axial dip
and its corresponding azimuth and 1 density. For vertical or horizontal cylinders the
latter two angles can be dropped.

For more complicated outlines than circles, cycloids are appropriate (Fig. A.1).
In polar coordinates the radius ro of a circle is modulated as a function of the angle
α by a sine wave of a certain frequency, n, and phase, αn. The frequency must be
an integer to get a closed curve. The curve is described by a periphery point of a
circle of radius rn which rotates with the frequency n while its centre rotates with
frequency 1 about the main circle in the same direction making an epicycloid or in
the opposite direction making a hypocycloid; n determines how many maxima and
minima the radius length has, rn determines the greatest deviation from ro and αn

gives the orientation of the maxima and minima. The hypocycloid of frequency 2
is an ellipse with the axes ro + rn and ro − rn. Several frequencies can be linearly
superimposed, each with its frequency, amplitude and phase.

The N regularly distributed points of the periphery of the cycloid are calculated
for k = 0, N by

xk = xc + |ro|cos[2π(ro/|ro|)(k−1/2)/N)]

+∑
i

ri cos[2π((ni − ri/|ri|)(ro/|ro|)(k−1/2)/N)−niαi]

yk = yc + |ro|sin[2π(ro/|ro|)(k−1/2)/N)]

+∑
i

ri sin[2π((ni − ri/|ri|)(ro/|ro|)(k−1/2)/N)−niαi]

(A.1)

where xc and yc are the centre coordinates, i counts the superimposed frequencies,
ni are their integer frequencies, αi are their phases and ri are their amplitudes which
make hypocycloids if positive and epicycloids if negative. A cylindrical cycloid of
frequency n requires 2n + 8 variables, and only 2n + 6 if the axial orientation and
density are fixed.
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While such an outline cannot approximate any arbitrary form, it can describe with
few parameters rather complex bodies, and the parameters are imaginable so that a
priori information can be easily translated into the parameter values and their scatter.
The transformation into cycloid parametrization can be applied to reparametrization
of triangulated surfaces (polyhedra), plates and 2D Talwani beams.

Fig. A.1: Cylindrical cycloid. The example shows a hypocycloid of frequency n = 2 describing an
ellipse
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Mid Atlantic Ridge (MAR), 223, 263
Model

m. adjustment, 244
m. element, 237–238, 241–252

Moho, 171, 174, 192, 193, 208, 261–262,
363–364, 365–366, 367, 368–370,
371–372, 373, 374–376

Molasse, 207, 217, 218
Moment of gravity anomaly, 44, 155, 157, 242,

248
Momentum, 11
Monte Carlo method, 253, 329
Moon, 24–25, 119, 122, 152, 156
Mountain range, 10–11, 12–13, 14, 161–162,

207–208, 224

Near field, 119, 124, 129, 130, 131, 135, 162,
252

Nettleton profile, 135–136
Network (base stations), 128
Newton, Isaac (1643–1727), 5
New Zealand, 208
norm, 9, 23, 36, 153, 155, 159, 276–277, 279,

288, 296
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Normal
n. component, 48, 57, 64, 66, 70–71, 72
n. distribution, 140, 278, 280, 299, 303, 304,

310, 312, 339
n. earth, 9, 152, 155, 156, 158, 159
n. equations, 88–89, 131, 173, 305, 308
n. gravity, 9, 12, 31, 33, 35, 47, 75, 129,

151, 153, 154–155, 156, 157–159,
160, 177

Normalisation, 20, 95–96
North America, 14, 18–19, 193
North Anatolian Fault, 14
North magnetic pole, 106
Norwegian Basin, 219, 366
Nullspace, 7, 236, 274, 283, 292, 297,

300–301, 303, 306, 307, 313, 318
Nyquist frequency, 169
Nyquist, Harry (1889–1976), 169

observable, 1, 7, 15, 40, 41, 46, 114, 210, 276,
286, 297

Ocean
o. current, 7, 33, 121
o. ridge, 10, 13, 14, 15, 17, 244, 263
o. trench, 17

Oil, 19, 119, 210, 213, 214, 254
Orbit, perturbation, 121, 122
Ore, 19, 45, 191, 248
Orogeny, 14, 15, 258
Orthogonal series, 86, 94
Orthometric reduction, 154
Outlier, 124, 126, 139, 166–167, 275, 288, 331
Overlay, transparent, 199

Pacific, 13, 17, 18, 228, 263, 264
Parametrization, 4, 61, 70, 73, 79, 233, 236,

237, 239, 241, 243, 244, 247, 248, 249,
250, 253, 282, 287, 289, 290, 291, 292,
293, 295, 298, 301, 302, 304, 305, 306,
308, 310, 339, 340, 342, 347, 348, 363,
366, 371, 372, 380, 386

Pattern, 15, 128, 185, 186, 189, 216, 225, 226,
245

Pendulum
mathematical p., 115
physical p., 115
reversion p., 115

Periodic, 91, 130, 156
Permeability, 106, 109
Phase spectrum, 20
Pizzetti, Paolo (1860–1918), 158
Plate

p. boundary, 15
p. tectonics, 10, 13–16, 17, 18

Plumb line deflection, 42, 50, 286
Plume, head, 209, 222, 265
Poisson equation, 30, 31, 34, 43, 44, 73, 80
Poisson relationship, 109
Poisson, Siméon Denis (1781–1840), 22, 34
Polarisation, magnetic, 109
Polygon, 62, 63, 64, 65, 69, 73, 83, 84, 104,

240, 243, 244, 250, 340
Polyhedron, 64, 69, 71, 72, 73, 85, 240, 250
Polynomial, fitting, 88, 168–169, 175
Popper, Karl (1902–1994), 234
Postglacial rebound, 10
Potential, 1, 2, 3, 5, 7, 12, 16, 20, 31, 32, 33,

34, 36, 37, 43, 45, 46, 48, 54, 73, 75, 85,
89, 90, 102, 103, 105, 106, 108, 109,
121, 122, 138, 139, 152, 163, 174, 176,
181, 273, 274, 286, 287, 289, 304, 377,
378, 379

Power series, 94, 95, 290
Power spectrum, 20
Pratt, John Henry (1809–1871), 6, 163
Precision, 6, 8, 10, 73, 113, 114, 115, 116, 118,

120, 121, 122, 124, 127, 128, 138, 139,
153, 154, 236, 253, 273

Prism, 48, 55, 57, 58, 59, 61, 63, 71, 72, 120,
292

Probability, 139, 140, 167, 168, 182, 186, 187,
188, 253, 273, 276, 278, 279, 280, 290,
298, 303, 304, 312, 339, 342, 351

Projection, 47, 56, 57, 58, 63, 65, 66, 73, 77,
82, 211, 241, 300, 307

Quadrature, 47, 56, 102, 290
Qualitative, 1, 3, 5, 181, 182, 184, 185, 188,

192, 193, 204, 210, 214, 220, 224, 226,
228, 229, 233, 242, 254, 258, 260, 263,
265, 363

Quantitative, 2, 3, 5, 128, 181, 182, 185, 186,
188, 191, 192, 193, 199, 200, 204, 210,
213, 214, 221, 215, 217, 218, 220, 224,
226, 229, 233, 240, 242, 245, 247, 253,
256, 257, 258, 261, 267

Radar, 7, 31, 75, 121
Radial symmetry, 52
Random error, 86, 87, 88, 139, 140, 175, 177,

229, 276
Rayleigh, Lord (Strutt, John William)

(1842–1919), 15, 217, 222
Rayleigh-Taylor instability, 217
rebound, 10
Reduction

Bouguer r., 17, 129, 158, 160, 161, 165, 177,
219, 224, 228, 265, 337, 363, 374
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earth tide r., 152
geological r., 159, 161, 163, 164, 174
height r., 160, 164, 165, 228, 235, 309
isostatic r., 163–164, 165, 166, 177, 192
mass r., 17, 132, 159, 160–161, 163, 165,

177
terrain r., 131, 134, 161, 162–163, 165, 245,

309, 337, 339, 365, 374
topographic mass r., 160–161, 165

Reference density, 30, 44, 47, 70, 238, 239,
240, 241, 258, 339, 347

Reflection seismics, 184, 236
Refraction seismics, 362
Regional-residual separation, 88, 151, 174,

176
Regression, linear, 130, 168–169, 172, 173,

175, 193
Regularization, 274, 280, 283, 284, 285, 288,

291, 295, 296, 297, 300, 301, 302, 303,
304, 305, 306, 307, 308, 310, 313, 314,
318, 319, 320, 321, 322, 326, 327, 328,
333, 346, 351, 374

Relative gravimetry, 9, 120, 124, 285
Reliability, 7, 137, 138, 166, 173, 229, 271,

273, 305
Relief, 11, 85, 114, 128, 129, 130, 131, 134,

135, 141, 161, 162, 165, 294
Residual, 9, 45, 88, 114, 136, 151, 152, 167,

173, 174, 176, 218, 219, 235, 253, 261,
263, 296, 310, 313, 314, 322, 351, 363

Resolution, matrix, 318, 320, 321, 322, 323,
359, 360, 361, 380

Reykjanes Ridge, 220–222, 228, 263, 264
Rhine graben, 217, 218, 260–261
Rift

r. continental, 14
r. valley, 17

Rock, 133–138
crystalline r., 133, 136, 137, 213, 254
plutonic r., 136, 137
r. densities, 13, 132, 134, 137
r. sample, 259
sedimentary r., 134, 136–137
volcanic r., 15, 136, 137

Root mean square, 312–313
Rotation, 9, 11, 16, 24, 27, 28, 29, 31, 32, 33,

62, 64, 65, 66, 69, 78, 82, 115, 121, 152,
155, 157, 220, 226, 243, 245, 249, 250,
261, 263, 290, 317, 336

Rounding error, 72, 237, 246, 250, 251, 284

Saddle point, 41, 320, 325
Salt diapir, 214
San Andreas Fault, 14

satellite
s. gravity, 121
s. radar, 75

Scale
s. factor (gravimeter), 124, 130, 138
s. rule, 194–195, 199

Scatter, 132, 136, 137, 138, 139, 140, 167,
171, 172, 173, 186, 220, 272, 273, 275,
277, 282, 288, 297, 304, 306, 314, 319,
335, 363, 386

Sea level, 8, 10, 12, 16, 33, 100, 121, 123, 154,
158, 160, 223, 342, 347

SEASAT, 121
Second derivatives of potential, 122, 286
Seismic

s. model, 19, 132, 377
s. reflection, 234, 250
s. refraction, 19, 267
s. velocity, 322

Seismicity, 14, 119, 224, 266, 267
Sensitivity

instrumental s., 117, 121, 127
s. matrix, 278

Serendipity, 4
Series expansion, 86, 95
Shelf

s. continental, 123, 192
s. Iceland, 218–220, 261–263, 290, 332,

362–378, 380
Sign convention, 32, 37, 42, 85, 95
Sinx/x method, 170
Slope

continental s., 12, 16
terrain s., 199

Smoothing, 87, 114, 152, 167–168, 170, 175,
287, 291, 368

Solid angle, 4, 31, 39, 43, 44, 47, 49, 53, 56,
62, 64, 66, 69, 70, 71, 72, 73, 74, 75, 76,
79, 81, 83, 85, 161, 195, 198, 199, 204,
213, 215, 243, 245, 250, 251

Somigliana, Carlo (1860–1918), 158
Somigliana-Pizetti-formula, 158
Spatial spectrum, 20, 101
Spherical

s. coordinates, 25–26, 35, 38, 47, 50, 91, 99,
101, 102, 108, 268, 290

s. harmonics, 7, 20, 87, 91, 94, 95, 96,
99–101, 102, 121, 154, 191, 226, 289,
293

s. uniform mass, 48, 52
Spreading ridge, 13, 220–222, 223, 228, 264,

362
Stacking, 79, 222, 226
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Standard deviation, 88, 105, 131, 132, 138,
139, 140, 167, 173, 227, 253, 256,
277, 283, 284, 286, 288, 291, 299,
302, 313, 314, 315, 317, 318, 319,
321, 323, 324, 326, 330, 339, 341,
342, 344, 351, 352, 353, 354, 357,
358, 360

Standard error, 115, 130, 229, 273, 330, 375
Statistics, 114, 116, 118, 139, 140, 167, 171,

173, 174, 177, 277, 288, 290, 313, 326,
346, 349, 351, 369, 373, 375

Step
s. oblique, 79, 80, 81, 82, 244
s. vertical, 80–81, 198, 245

Stochastic, 86, 87, 104, 105, 126, 140, 167,
172, 186, 187, 277

Strip, horizontal, 71, 75, 197, 198
Structure, geological, 1, 10, 14, 19, 21, 27, 85,

87, 163, 192, 247, 253, 256, 289, 291,
292, 294

Students, 3, 5, 210
Subduction, 10, 14, 15, 222, 225, 228, 265–268
Sunda arc, 17
Supercondicting gravimeter, 120
Surface

s. density (kg/m2), 246
s. integral, 34, 35, 44, 191, 192
s. mass, 39, 44, 53, 56, 59, 62, 94, 183, 191,

194, 202, 224, 237, 241
Survey, gravity, 113, 119, 132, 134, 182, 210
Susceptibility, 106, 109

Talwani, Manik, 62, 81, 248, 250
Talwani method, 81, 241, 243, 244, 248, 258
Taylor, Brook (1685–1731) – mathematics,

324
Taylor, Geoffrey Ingram (1886–1975) – fluid

dynamics, 242
Tectonics, 10, 13, 17, 18, 24
Telford, William Murray (1916–1997), 3, 149
Temperature, 7, 12, 15, 33, 114, 118, 119, 122,

182, 221, 222, 224, 226, 227, 228, 263,
297

Template, 162, 198–199, 238, 242, 245, 249,
250–251

Temporal gravity variation, 8, 114, 119, 120,
121, 159, 286

Terrain effect
plane t. e., 163
spherical t. e., 163
t. reduction (correction), 131, 134, 161,

162–163, 165, 245, 309, 337, 339, 365,
374

Thermal convection, 12, 101

Tibet, 12
Tides

lunar t., 25, 152
neap t., 25, 152
solar t., 25
solid earth t., 125, 152, 156, 159
spring t., 25, 152

Tomography, seiemic, 15, 101, 222, 223, 226,
265

Tonga-Kermadec, 224–226, 265–268
TOPEX-Poseidon, 121
topography, dynamic, 228, 368
Torsion balance, 6, 41, 42, 46, 89, 119, 122,

168, 185, 286
Transform fault, 14, 18, 200, 221
Trench, 17, 41, 210, 226
Trial and error, 87, 184, 193, 210, 223, 233,

234, 235, 236, 244, 245, 246, 247, 249,
250, 251, 252, 253, 256, 258, 259, 263,
267, 305, 333, 340, 379

T-test, 172
Tunnel, 134
Two-dimensional, 29, 35, 46, 49, 53, 71, 75,

77, 86, 90, 93, 188, 189, 194, 233, 237,
241, 315

Two-and-a-half-dimensional, 237

Undulated boundary, 238, 260
Units, physical

cgs, MKS, SI, 23, 30, 195, 222
Eötvös, Gal, mGal, 23, 115, 117, 123, 124,

131, 138, 152, 154, 157, 158, 160, 193,
195, 196, 213, 214, 216, 344, 368

Upward continuation, 39, 90, 92, 93, 155, 175,
247

Variance, 140, 173, 186, 187, 223, 229, 277,
279, 296, 303, 304, 313, 314, 354

Variogram, 105, 126, 186, 187, 188
Vector calculus, 48, 73
Vertical cylinder coordinates, 25, 26, 39, 41,

47, 48, 50, 89, 93, 202
Visualisation, 7, 33, 164, 185, 188
Volcanic, 13, 15, 136, 137, 196, 210, 213, 221,

224, 254, 333, 335, 377, 379
Volcano, 11, 14
von Helmholtz, Herrmann (1821–1894), 99

Wavelength, 16, 17, 18, 20, 91, 92, 100, 105,
121, 161, 169, 174, 182, 191, 199, 216,
225, 358, 359, 363

Wavelet, 103, 104, 171, 242
Wave number, 17, 92, 94, 97, 169, 176, 243
Wegener, Alfred (1880–1930), 11, 12, 13
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Weight, 5, 31, 117, 119, 126, 132, 141, 168,
276, 285, 295, 365

WFT, Windowed Fourier Transform, 170

WGS84 (World Geodetic System), 157

Zenith, 41
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