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Series Preface

Mechanical engineering, and engineering discipline born of the needs of the
industrial revolution, is once again asked to do its substantial share in
the call for industrial renewal. The general call is urgent as we face pro-
found issues of productivity and competitiveness that require engineering
solutions, among others. The Mechanical Engineering Series is a series fea-
turing graduate texts and research monographs intended to address the
need for information in contemporary areas of mechanical engineering.

The series is conceived as a comprehensive one that covers a broad
range of concentrations important to mechanical engineering graduate ed-
ucation and research. We are fortunate to have a distinguished roster of
series editors, each an expert in one of the areas of concentration. The
names of the series editors are listed on page vi of this volume. The areas
of concentration are applied mechanics, biomechanics, computational me-
chanics, dynamic systems and control, energetics, mechanics of materials,
processing, thermal science, and tribology.



Preface

After 15 years since the publication of Vibration of Structures and Machines
and three subsequent editions a deep reorganization and updating of the
material was felt necessary. This new book on the subject of Vibration
dynamics and control is organized in a larger number of shorter chapters,
hoping that this can be helpful to the reader. New material has been added
and many points have been updated. A larger number of examples and of
exercises have been included.

Since the first edition, these books originate from the need felt by the
author to give a systematic form to the contents of the lectures he gives
to mechanical, aeronautical, and then mechatronic engineering students of
the Technical University (Politecnico) of Torino, within the frames of the
courses of Principles and Methodologies of Mechanical Design, Construc-
tion of Aircraft Engines, and Dynamic Design of Machines. Their main aim
is to summarize the fundamentals of mechanics of vibrations to give the
needed theoretical background to the engineer who has to deal with vibra-
tion analysis and to show a number of design applications of the theory.
Because the emphasis is mostly on the practical aspects, the theoretical
aspects are not dealt with in detail, particularly in areas in which a long
and complex study would be needed.

The book is structured in 30 Chapters, subdivided into three Parts.

The first part deals with the dynamics of linear, time invariant, systems.
The basic concepts of linear dynamics of discrete systems are summarized
in the first 10 Chapters. Following the lines just described, some specialized
topics, such as random vibrations, are just touched on, more to remind the
reader that they exist and to stimulate him to undertake a deeper study of
these aspects than to supply detailed information.



X Preface

Chapter 11 constitutes an introduction to the dynamics of controlled
structural systems, which are increasingly entering design practice and will
unquestionably be used more often in the future.

The dynamics of continuous systems is the subject of the following two
chapters. As the analysis of the dynamic behavior of continuous systems
is now mostly performed using discretization techniques, only the basic
concepts are dealt with. Discretization techniques are described in a gen-
eral way in Chapter 14, while Chapter 15 deals more in detail with the
finite element method, with the aim of supplying the users of commercial
computer codes with the theoretical background needed to build adequate
mathematical models and critically evaluate the results obtained from the
computer.

The following two Chapters are devoted to the study of multibody mod-
eling and of the vibration dynamics of systems in motion with respect to
an inertial reference frame. These subjects are seldom included in books
on vibration, but the increasing use of multibody codes and the inclusion
in them of flexible bodies modeled through the finite element method well
justifies the presence of these two chapters.

Part IT (including Chapters from 18 to 22 is devoted to the study of non-
linear and non time-invariant systems. The subject is dealt with stressing
the aspects of these subjects that are of interest to engineers more than to
theoretical mechanicists. The recent advances in all fields of technology of-
ten result in an increased nonlinearity of machines and structural elements
and design engineers must increasingly face nonlinear problems: This part
is meant to be of help in this instance.

Part I1I deals with more applied aspects of vibration mechanics. Chapters
from 23 to 28 are devoted to the study of the dynamics of rotating ma-
chines, while Chapters 29 and 30 deal with reciprocating machines. They
are meant as specific applications of the more general topics studied be-
fore and intend to be more application oriented than the previous ones.
However, methods and mathematical models that have not yet entered ev-
eryday design practice and are still regarded as research topics are dealt
with herein.

Two appendices related to solution methods and Laplace transform are
then added.

The subjects studied in this book (particularly in the last part) are usu-
ally considered different fields of applied mechanics or mechanical design.
Specialists in rotor dynamics, torsional vibration, modal analysis, nonlinear
mechanics, and controlled systems often speak different languages, and it is
difficult for students to be aware of the unifying ideas that are at the base
of all these different specialized fields. The inconsistency of the symbols
used in the different fields can be particularly confusing. In order to use a
consistent symbol system throughout the book, some deviation from the
common practice is unavoidable.



Preface xi

The author believes that it is possible to explain all the aspects related
to mechanical vibrations (actually not only mechanical) using a unified
approach. The current book is an effort in this direction.

S.I. units are used in the whole book, with few exceptions. The first
exception is the measure of angles, for which in some cases the old unit
degree is preferred to the S.I. unit radian, particularly where phase angles
are concerned. Frequencies and angular velocities should be measured in
rad/s. Sometimes the older units (Hz for frequencies and revolutions per
minute [rpm]) are used, when the author feels that this makes things more
intuitive or where normal engineering practice suggests it. In most formulas,
at any rate, consistent units are used. In very few cases this rule is not
followed, but the reader is explicitly warned in the text.

For frequencies, no distinction is generally made between frequency in Hz
and circular frequency in rad/s. Although the author is aware of the subtle
differences between the two quantities (or better, between the two different
ways of seeing the same quantity), which are subtended by the use of two
different names, he chose to regard the two concepts as equivalent. A single
symbol (w) is used for both, and the symbol f is never used for a frequency
in Hz. The period is then always equal to T' = 27 /w because consistent
units (in this case, rad/s) must be used in all formulas. A similar rule holds
for angular velocities, which are always referred to with the symbol .! No
different symbol is used for angular velocities in rpm, which in some texts
are referred to by n.

In rotor dynamics, the speed at which the whirling motion takes place
is regarded as a whirl frequency and not a whirl angular velocity (even if
the expression whirl speed is often used in opposition to spin speed), and
symbols are used accordingly. It can be said that the concept of angular
velocity is used only for the rotation of material objects, and the rotational
speed of a vector in the complex plane or of the deformed shape of a rotor
(which does not involve actual rotation of a material object) is considered
a frequency.

The author is grateful to colleagues and students in the Mechanics
Department of the Politecnico di Torino for their suggestions, criticism,
and general exchange of ideas and, in particular, to the postgraduate stu-
dents working in the dynamics field at the department for reading the whole
manuscript and checking most of the equations. Particular thanks are due
to my wife, Franca, both for her encouragement and for doing the tedious
work of revising the manuscript.

G. Genta
Torino, July 2008

'In Vibration of Structures and Machines \ was used instead of w for frequencies
to avoid using 2 for angular velocities. In the present text a more standard notation is
adopted.
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Symbols

qi(zyz)

viscous damping coefficient, clearance
complex viscous damping coefficient

critical value of ¢

equivalent damping coefficient

distance (between axis of cylinder and center of crank)
base of natural logarithms

force vector

ith modal force

amplitude of the force F(t)

acceleration of gravity

response to a unit-step input

thickness of oil film, relaxation factor
response to a unit-impulse function
imaginary unit (i = v/—1)

stiffness, gain

complex stiffness (k* = k' + ik")

length, length of the connecting rod

length at rest, length in a reference condition
mass, number of modes taken into account, number of outputs
number of degrees of freedom

pressure

ith generalized coordinate

vector of the (complex) coordinates

ith eigenvector

ith eigenfunction

radius, number of inputs



xxii Symbols

r Ritz vector, vector of the complex coordinates (rotating frame),
vector of the command inputs, vector of modal participation factors

s Laplace variable

s state vector (transfer-matrices method)

t time, thickness

u displacement

u vector of the inputs, displacement vector (FEM)
u(t) unit-step function

v velocity

vector containing the derivatives of the generalized coordinates
Vs velocity of sound

w vector of the generalized velocities
X vector of the coordinates

Zo amplitude of x(t)

Tm maximum value of periodic law z(t)
TYz (fixed) reference frame

vector of the outputs
complex coordinate (z = = + iy)
state vector
area of the cross-section
matrix linking vectors w and v
dynamic matrix (state-space approach)
matrix linking vectors w and v
input gain matrix
damping matrix
output gain matrix
modal-damping matrix
dynamic matrix (configuration space approach)
direct link matrix
Young’s modulus
stiffness matrix of the material (FEM)
force
Rayleigh dissipation function
shear modulus, balance-quality grade
transfer function
gyroscopic matrix
(s)  matrix of the transfer functions
(w)  frequency response
controllability matrix
(w)  dynamic compliance matrix
area moment of inertia
identity matrix
mass moment of inertia
work
Laplace transform of function f
stiffness matrix.
dynamic stiffness matrix
geometric stiffness matrix
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Symbols xxiii

imaginary part of the stiffness matrix

ith modal stiffness

moment

mass matrix

ith modal mass

geometric stiffness matrix

matrix of the shape functions

load factor (Ocvirk number)

observability matrix

quality factor

ith generalized force

radius

rotation matrix

Sommerfeld number

Jacobian matrix

power spectral density

period of the free oscillations

kinetic energy

transfer matrix, matrix linking the forces to the inputs

potential energy

velocity, volume

power

slenderness of a beam, phase of static unbalance, nondimensional
parameter

attitude angle, phase of couple unbalance, nondimensional parameter
shear strain

logarithmic decrement, phase in phase-angle diagrams
unit-impulse function (Dirac delta)

virtual work

virtual displacement

strain, eccentricity

strain vector

damping factor (¢ = ¢/cer); nondimensional coordinate (¢ = z/1),
complex coordinate (¢ =& + in)

loss factor

modal coordinates

angular coordinate, pitch angle

coefficient of the nonlinear term of stiffness, viscosity

Poisson’s ratio, complex frequency

rotating reference frame

density

decay rate, stress

stress vector

yield stress

shear stress

angular displacement, roll angle, complex coordinate (¢ = ¢y, — igs)
Torsional stiffness, shear factor, angular error for couple unbalance.
specific damping capacity, yaw angle

frequency, complex frequency, whirl speed
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whirl speed in the rotating frame
eigenvalue matrix

natural frequency of the undamped system
frequency of the resonance peak in damped systems
compliance matrix

torsional damping coefficient

phase angle

eigenvector matrix

eigenvector matrix reduced to m modes
angular velocity (spin speed)

angular velocity vector

critical speed

imaginary part

real part

complex conjugate (a is the conjugate of a)

Laplace transform (f is the Laplace transform of f).
SUBSCRIPTS

deviatoric
mean
nonrotating
rotating
imaginary part
real part.



Introduction

Vibration

Vibration is one of the most common aspects of life. Many natural phe-
nomena, as well as man-made devices, involve periodic motion of some sort.
Our own bodies include many organs that perform periodic motion, with a
wide spectrum of frequencies, from the relatively slow motion of the lungs
or heart to the high-frequency vibration of the eardrums. When we shiver,
hear, or speak, even when we snore, we directly experience vibration.

Vibration is often associated with dreadful events; indeed one of the
most impressive and catastrophic natural phenomena is the earthquake,
a manifestation of vibration. In man-made devices vibration is often less
impressive, but it can be a symptom of malfunctioning and is often a signal
of danger. When traveling by vehicle, particularly driving or flying, any
increase of the vibration level makes us feel uncomfortable. Vibration is also
what causes sound, from the most unpleasant noise to the most delightful
music.

Vibration can be put to work for many useful purposes: Vibrating sieves,
mixers, and tools are the most obvious examples. Vibrating machines also
find applications in medicine, curing human diseases. Another useful aspect
of vibration is that it conveys a quantity of useful information about the
machine producing it.

Vibration produced by natural phenomena and, increasingly, by man-
made devices is also a particular type of pollution, which can be heard as
noise if the frequencies that characterize the phenomenon lie within the
audible range, spanning from about 18 Hz to 20 kHz, or felt directly as
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vibration. This type of pollution can cause severe discomfort. The discom-
fort due to noise depends on the intensity of the noise and its frequency, but
many other features are also of great importance. The sound of a bell and
the noise from some machine may have the same intensity and frequency
but create very different sensations. Although even the psychological dispo-
sition of the subject can be important in assessing how much discomfort a
certain sound creates, some standards must be assessed in order to evaluate
the acceptability of noise sources.

Generally speaking, there is growing awareness of the problem and de-
signers are asked, sometimes forced by standards and laws, to reduce the
noise produced by all sorts of machinery.

When vibration is transmitted to the human body by a solid surface,
different effects are likely to be felt. Generally speaking, what causes dis-
comfort is not the amplitude of the vibration but the peak value (or better,
the root mean square value) of the acceleration. The level of acceleration
that causes discomfort depends on the frequency and the time of exposure,
but other factors like the position of the human body and the part that
is in contact with the source are also important. Also, for this case, some
standards have been stated. The maximum r.m.s. (root mean square) val-
ues of acceleration that cause reduced proficiency when applied for a stated
time in a vertical direction to a sitting subject are plotted as a function of
frequency in Fig. 1. The figure, taken from the ISO 2631-1978 standard,
deals with a field from 1 to 80 Hz and with daily exposure times from 1 min
to 24 h.

The exposure limits can be obtained by multiplying the values reported
in Fig. 1 by 2, while the reduced comfort boundary is obtained by dividing
the same values by 3.15 (i.e., by decreasing the r.m.s. value by 10 dB).
From the plot, it is clear that the frequency field in which humans are
more affected by vibration lies between 4 and 8 Hz.

Frequencies lower than 1 Hz produce sensations similar to motion sick-
ness. They depend on many parameters other than acceleration and are
variable from individual to individual.

At frequencies greater than 80 Hz, the effect of vibration is also depen-
dent on the part of the body involved and on the skin conditions and it is
impossible to give general guidelines.

An attempt to classify the effects of vibration with different frequencies
on the human body is shown in Fig. 2. Note that there are resonance fields
at which some parts of the body vibrate with particularly large amplitudes.

As an example, the thorax—abdomen system has a resonant frequency
of about 3-6 Hz, although all resonant frequency values are dependent on
individual characteristics. The head—neck-shoulder system has a resonant
frequency of about 20-30 Hz, and many other organs have more or less
pronounced resonances at other frequencies (e.g., the eyeball at 60-90 Hz,
the lower jaw-skull system at 100-220 Hz).

In English, as in many other languages, there are two terms used to
designate oscillatory motion: oscillation and vibration. The two terms are
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FIGURE 1. Vertical vibration exposure criteria curves defining the ‘fatigue-
decreased proficiency boundary’ (ISO 2631-1978 standard).

used almost interchangeably; however, if a difference can be found, oscil-
lation is more often used to emphasize the kinematic aspects of the phe-
nomenon (i.e., the time history of the motion in itself), while wvibration
implies dynamic considerations (i.e., considerations on the relationships
between the motion and the causes from which it originates).
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FIGURE 2. Effects of vibration and noise (intended as airborne vibration) on
the human body as functions of frequency (R.E.D. Bishop, Vibration, Cambridge
Univ. Press, Cambridge, 1979).
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Actually, not all oscillatory motions can be considered vibrations: For a
vibration to take place, it is necessary that a continuous exchange of energy
between two different forms occurs. In mechanical systems, the particular
forms of energy that are involved are kinetic energy and potential (elastic or
gravitational) energy. Oscillations in electrical circuits are due to exchange
of energy between the electrical and magnetic fields.

Many periodic motions taking place at low frequencies are thus oscil-
lations but not vibrations, including the motion of the lungs. It is not,
however, the slowness of the motion that is important but the lack of dy-
namic effects.

Theoretical studies

The simplest mechanical oscillators are the pendulum and the spring-mass
system. The corresponding simplest electrical oscillator is the
capacitor—inductor system. Their behavior can be studied using the same
linear second-order differential equation with constant coefficients, even if
in the case of the pendulum the application of a simple linear model requires
the assumption that the amplitude of the oscillation is small.

For centuries, the pendulum, and later the spring-mass system (later still
the capacitor-inductor system), has been more than a model. It constituted
a paradigm through which the oscillatory behavior of actual systems has
been interpreted. All oscillatory phenomena in real life are more complex
than that, at least for the presence of dissipative mechanisms causing some
of the energy of the system is dissipated, usually being transformed into
heat, at each vibration cycle, i.e., each time the energy is transformed for-
ward and backward between the two main energy forms. This causes the
vibration amplitude to decay in time until the system comes to rest, un-
less some form of excitation sustains the motion by providing the required
energy.

The basic model can easily accommodate this fact, by simply adding
some form of energy dissipator to the basic oscillator. The spring—mass—
damper and the damped-pendulum models constitute a paradigm for
mechanical oscillators, while the inductor—capacitor—resistor system is the
basic damped electrical oscillator.

Although the very concept of periodic motion was well known, ancient
natural philosophy failed to understand vibratory phenomena, with the ex-
ception of the study of sound and music. This is not surprising, as vibration
could neither be predicted theoretically, owing to the lack of the concept
of inertia, nor observed experimentally, as the wooden or stone structures
were not prone to vibrate, and, above all, ancient machines were heavily
damped owing to high friction.

The beginnings of the theoretical study of vibrating systems are traced
back to observations made by Galileo Galilei in 1583 regarding the motions
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of one of the lamps hanging from the ceiling of the cathedral of Pisa. It is
said that he timed the period of oscillations using the beat of his heart as a
time standard to conclude that the period of the oscillations is independent
from the amplitude.

Whether or not this is true, he described in detail the motion of the
pendulum in his Dialogo sopra i due massimi sistemi del mondo, published
in 1638, and stated clearly that its oscillations are isochronous. It is not
surprising that the beginning of the studies of vibratory mechanics occurred
at the same time as the formulation of the law of inertia.

The idea that a mechanical oscillator could be used to measure time,
due to the property of moving with a fixed period, clearly stimulated the
theoretical research in this field. While Galileo seems to have believed that
the oscillations of a pendulum have a fixed period even if the amplitude
is large (he quotes a displacement from the vertical as high as 50°), cer-
tainly Huygens knew that this is true only in linear systems and around
1656 introduced a modified pendulum whose oscillations would have been
truly isochronous even at large amplitudes. He published his results in his
Horologium Oscillatorium in 1673.

The great development of theoretical mechanics in the eighteenth and
nineteenth centuries gave the theory of vibration very deep and solid roots.
When it seemed that theoretical mechanics could not offer anything new,
the introduction of computers, with the possibility of performing very com-
plex numerical experiments, revealed completely new phenomena and dis-
closed unexpected perspectives.

The study of chaotic motion in general and of chaotic vibrations of non-
linear systems in particular will hopefully clarify some phenomena that
have been beyond the possibility of scientific study and shed new light on
known aspects of mechanics of vibration.

Vibration analysis in design

Mechanics of vibration is not just a field for theoretical study. Design en-
gineers had to deal with vibration for a long time, but recently the current
tendencies of technology have made the dynamic analysis of machines and
structures more important.

The load conditions the designer has to take into account in the struc-
tural analysis of any member of a machine or a structure can be conven-
tionally considered as static, quasi-static, or dynamic. A load condition
belongs to the first category if it is constant and is applied to the struc-
ture for all or most of its life. A typical example is the self-weight of a
building. The task of the structural analyst is usually limited to deter-
mining whether the stresses static loads produce are within the allowable
limits of the material, taking into account all possible environmental ef-
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fects (creep, corrosion, etc.). Sometimes the analyst must check that the
deformations of the structure are consistent with the regular working of the
machine.

Also, loads that are repeatedly exerted on the structure, but that are
applied and removed slowly and stay at a constant value for a long enough
time, are assimilated to static loads. An example of these static load condi-
tions is the pressure loading on the structure of the pressurized fuselage of
an airliner and the thermal loading of many pressure vessels. In this case,
the designer also has to take into account the fatigue phenomena that can
be caused by repeated application of the load. Because the number of stress
cycles is usually low, low-cycle fatigue is encountered.

Quasi-static load conditions are those conditions that, although due to
dynamic phenomena, share with static loads the characteristics of being
applied slowly and remaining for comparatively long periods at more or
less constant values. Examples are the centrifugal loading of rotors and the
loads on the structures of space vehicles due to inertia forces during launch
or re-entry. Also, in this case, fatigue phenomena can be very important in
the structural analysis.

Dynamic load conditions are those in which the loads are rapidly varying
and cause strong dynamic effects. The distinction is due mainly to the speed
at which loads vary in time. Because it is necessary to state in some way a
time scale to assess whether a certain load is applied slowly, it is possible to
say that a load condition is static or quasi-static if the characteristic times
of its variation are far longer than the longest period of the free vibrations
of the structure.

A given load can thus be considered static if it is applied to a struc-
ture whose first natural frequency is high or dynamic if it is applied to a
structure that vibrates at low frequency.

Dynamic loads may cause the structure to vibrate and can sometimes
produce a resonant response. Causes of dynamic loading can be the mo-
tion of what supports the structure (as in the case of seismic loading of
buildings or the stressing of the structure of ships due to wave motion),
the motion of the structure (as in the case of ground vehicles moving on
uneven roads), or the interaction of the two motions (as in the case of air-
craft flying in gusty air). Other sources of dynamic loads are unbalanced
rotating or reciprocating machinery and aero- or gas-dynamic phenomena
in jet and rocket engines.

The task the structural analyst must perform in these cases is much more
demanding. To check that the structure can withstand the dynamic loading
for the required time and that the amplitude of the vibration does not affect
the ability of the machine to perform its tasks, the analyst must acquire a
knowledge of its dynamic behavior that is often quite detailed. The natural
frequencies of the structure and the corresponding mode shapes must first
be obtained, and then its motion under the action of the dynamic loads
and the resulting stresses in the material must be computed. Fatigue must
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generally be taken into account, and often the methods based on fracture
mechanics must be applied.

Fatigue is not necessarily due to vibration; it can be defined more gener-
ally as the possibility that a structural member fails under repeated load-
ing at stress levels lower than those that could cause failure if applied
only once. However, the most common way in which this repeated load-
ing takes place is linked with vibration. If a part of a machine or struc-
ture vibrates, particularly if the frequency of the vibration is high, it can
be called on to withstand a high number of stress cycles in a compar-
atively short time, and this is usually the mechanism triggering fatigue
damage.

Another source of difficulty is the fact that, while static loads are usually
defined in deterministic terms, often only a statistical knowledge of dynamic
loads can be reached.

Progress causes machines to be lighter, faster, and, generally speaking,
more sophisticated. All these trends make the tasks of the structural an-
alyst more complex and demanding. Increasing the speed of machines is
often a goal in itself, like in the transportation field. This is sometimes
useful in increasing production and lowering costs (as in machine tools)
or causing more power to be produced, transmitted, or converted (as in
energy-related devices). Faster machines, however, are likely to be the cause
of more intense vibrations, and, often, they are prone to suffer damages due
to vibrations.

Speed is just one of the aspects. Machines tend to be lighter, and ma-
terials with higher strength are constantly being developed. Better design
procedures allow the exploitation of these characteristics with higher stress
levels, and all these efforts often result in less stiff structures, which are
more prone to vibrate. All these aspects compel designers to deal in more
detail with the dynamic behavior of machines.

Dynamic problems, which in the past were accounted for by simple
overdesign of the relevant elements, must now be studied in detail, and
dynamic design is increasingly the most important part of the design of
many machines.

Most of the methods used nowadays in dynamic structural analysis were
first developed for nuclear or aerospace applications, where safety and,
in the latter case, lightness are of utmost importance. These methods are
spreading to other fields of industry, and the number of engineers working in
the design area, particularly those involved in dynamic analysis, is growing.
A good technical background in this field, at least enough to understand
the existence and importance of these problems, is increasingly important
for persons not directly involved in structural analysis, such as production
engineers, managers, and users of machinery.

It is now almost commonplace to state that about half of the engineers
working in mechanical industries, and particularly in the motor-vehicle in-
dustry, are employed in tasks directly related to design. A detailed analysis
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of the tasks in which engineers are engaged in an industrial group working
in the field of energy systems is reported in Fig. 3a. An increasing number
of engineers are engaged in design and the relative economic weight of de-
sign activities on total production costs is rapidly increasing. An increase
of 300% in the period from 1950 to 1990 has been recorded.

Within design activities, the relative importance of structural analysis,
mainly dynamic analysis, is increasing, while that of activities generally
indicated as drafting is greatly reduced (Fig. 3b).

Economic reasons advocate the use of predictive methods for the study
of the dynamic behavior of machines from the earliest stages of design,
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FIGURE 3. (a) Tasks in which engineers are employed in an Italian industrial
group working in the field of energy systems; (b) relative economic weight of the
various activities linked with structural design (P.G. Avanzini, La formazione
universitaria nel campo delle grandi costruzioni meccaniche, Giornata di studio
sull’insegnamento della costruzione delle macchine, Pisa, March 31, 1989).
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without having to wait until prototypes are built and experimental data are
available. The cost of design changes increases rapidly during the progress of
the development of a machine, from the very low cost of changes introduced
very early in the design stage to the dreadful costs (mostly in terms of loss
of image) that occur when a product already on the market has to be
recalled to the factory to be modified. On the other hand, the effectiveness
of the changes decreases while new constraints due to the progress of the
design process are stated.

This situation is summarized in the plot of Fig. 4. Because many design
changes can be necessary as a result of dynamic structural analysis, it must
be started as early as possible in the design process, at least in the form of
first-approximation studies. The analysis must then be refined and detailed
when the machine takes a more definite form.

The quantitative prediction, and not only the qualitative understanding,
of the dynamic behavior of structures is then increasingly important. To
understand and, even more, to predict quantitatively the behavior of any
system, it is necessary to resort to models that can be analyzed using
mathematical tools. Such analysis work is unavoidable, even if in some of
its aspects it can seem that the physical nature of the problem is lost within
the mathematical intricacy of the analytical work.

After the analysis has been performed it is necessary to extract results
and interpret them to obtain a synthetic picture of the relevant phenomena.
The analytical work is necessary to ensure a correct interpretation of the
relevant phenomena, but if it is not followed by a synthesis, it remains only
a sterile mathematical exercise. The tasks designers are facing in modern

T T T T T T T
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Cost of design
changes

Time

construction

Product
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design
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Assembly
Sales

FIGURE 4. Cost and effectiveness of design changes as a function of the stage at
which the changes are introduced.
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technology force them to understand increasingly complex analytical tech-
niques. They must, however, retain the physical insight and engineering
common sense without which no sound synthesis can be performed.

Mathematical modeling

The computational predictions of the characteristics and the performance of
a physical system are based on the construction of a mathematical model,*
constructed from a number of equations, whose behavior is similar to that
of the physical system it replaces. In the case of discrete dynamic models,
such as those used to predict the dynamic behavior of discrete mechanical
systems, the model usually is made by a number of ordinary differential
equations? (ODE).

The complexity of the model depends on many factors that are the first
choice the analyst has to make. The model must be complex enough to
allow a realistic simulation of the system’s characteristics of interest, but
no more. The more complex the model, the more data it requires, and the
more complicated are the solution and the interpretation of results. Today
it is possible to built very complex models, but overly complex models yield
results from which it is difficult to extract useful insights into the behavior
of the system.

Before building the model, the analyst must be certain about what he
wants to obtain from it. If the goal is a good physical understanding of the
underlying phenomena, without the need for numerically precise results,
simple models are best. Skilled analysts were able to simulate even complex
phenomena with precision using models with a single degree of freedom.
If, on the contrary, the aim is precise quantitative results, even at the
price of more difficult interpretation, the use of complex models becomes
unavoidable.

Finally, it is important to take into account the data available at the stage
reached by the project: Early in the definition phase, when most data are
not yet available, it is useless to use complex models, into which more or less
arbitrary estimates of the numerical values must be introduced. Simplified,
or synthetic, models are the most suitable for a preliminary analysis. As the
design is gradually defined, new features may be introduced into the model,
reaching comprehensive and complex models for the final simulations.

ISimulations are not always based on a mathematical models in a strict sense. In the
case of analog computers, the model was an electric circuit whose behavior simulated that
of the physical system. Simulation on digital computers is based on actual mathematical
models.

2A dynamic model, or a dynamic system, is a model expressed by one or more dif-
ferential equations containing derivatives with respect to time.
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Such complex models, useful for simulating many characteristics of the
machine, may be considered as true virtual prototypes. Virtual reality tech-
niques allow these models to yield a large quantity of information, not only
on performance and the dynamic behavior of the machine, but also on the
space taken by the various components, the adequacy of details, and their
esthetic qualities, that is comparable to what was once obtainable only
from physical prototypes.

The models of a given machine thus evolve initially toward a greater
complexity, from synthetic models to virtual prototypes, to return later to
simpler models.

Models are useful not only to the designer but also to the test engineer in
interpreting the results of testing and performing all adjustments. Simpli-
fied models allow the test engineer to understand the effect of adjustments
and reduce the number of tests required, provided they are simple enough
to give an immediate idea of the effect of the relevant parameters. Here
the final goal is to adjust the virtual prototype on the computer, transfer-
ring the results to the physical machine and hoping that at the end of this
process only a few physical validation tests are required.

Simplified models that can be integrated in real time on relatively low-
power hardware are also useful in control systems. A mathematical model of
the controlled system (plant, in control jargon) may constitute an observer
(always in the sense of the term used in control theory) and be a part of
the control architecture.

The analyst has the duty not only of building, implementing, and using
the models correctly but also of updating and maintaining them. The need
to build a mathematical model of some complexity is often felt at a certain
stage of the design process, but the model is then used much less than
needed, and above all is not updated with subsequent design changes, with
the result that it becomes useless or must be updated when the need for it
arises again.

There are usually two different approaches to mathematical modeling:
models made by equations describing the physics of the relevant phenom-
ena, — these may be defined as analytical models — and empirical models,
often called black boz models.

In analytical models the equations approximating the behavior of the
various parts of the system, along with the required approximations and
simplifications, are written. Even if no real-world spring behaves exactly
like the linear spring, producing a force proportional to the relative dis-
placement of its ends through a constant called stiffness, and even if no
device dissipating energy is a true linear damper, the dynamics of a mass—
spring-damper system (see Chapter 1) can be described, often to a very
good approximation, by the usual ordinary differential equation (ODE)

mi + ct + kx = f(t) .
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The behavior of some systems, on the other hand, is so complex that
writing equations to describe it starting from the physical and geometrical
characteristics of their structure is forbiddingly difficult. Their behavior is
studied experimentally and then a mathematical expression able to describe
it is sought, identifying the various parameters from the experimental data.
While each of the parameters m, ¢, and k included in the equation of
motion of the mass—spring—damper system refers to one of the parts of the
system and has a true physical meaning, the many coeflicients appearing
in empirical models usually have no direct physical meaning and refer to
the system as a whole.

Among the many ways to build black box models, that based on neu-
ral networks must be mentioned.? Such networks can simulate complex
and highly nonlinear systems, adapting their parameters (the weights of
the network) to produce an output with a relationship to the input that
simulates the input—output relationship of the actual system.

Actually, the difference between analytical and black box models is not
as clear-cut as it may seem. The complexity of the system is often such
that it is difficult to write equations precisely describing the behavior of
its parts, while the values of the parameters cannot always be known with
the required precision. In such cases the model is built by writing equa-
tions approximating the general pattern of the response of the system,
with the parameters identified to make the response of the model as close
as possible to that of the actual system. In this case, the identified pa-
rameters lose a good deal of their physical meaning related to the various
parts of the system they are conceptually linked to and become global
parameters.

In this book primarily analytical models will be described and an attempt
will be made to link the various parameters to the components of the
system.

Once the model has been built and the equations of motion written,
there is no difficulty in studying the response to any input, assuming the
initial conditions are stated. A general approach is to numerically inte-
grate the ordinary differential equation constituting the model, using one
of the many available numerical integration algorithms. In this way, the
time history of the generalized coordinates (or of the state variables) is
obtained from any given time history of the inputs (or of the forcing
functions)

This approach, usually referred to as simulation or numerical experi-
mentation, is equivalent to physical experimentation, where the system is
subjected to given conditions and its response measured.

3Strictly speaking, neural networks are not sets of equations and thus do not belong
to the mathematical models here described. However, at present neural networks are
usually simulated on digital computers, in which case their model is made of a set of
equations.
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This method is broadly applicable, because it

e may be used on models of any type and complexity

e allows the response to any type of input to be computed
Its limitations are also clear:

e it does not allow the general behavior of the system to be known, but
only its response to given experimental conditions,

e it may require long computation time (and thus high costs) if the
model is complex, or has characteristics that make numerical inte-
gration difficult, and

e it allows the effects of changes of the values of the parameters to be
predicted only at the cost of a number of different simulations.

If the model can be reduced to a set of linear differential equations with
constant coefficients, it is possible to obtain a general solution of the equa-
tions of motion. The free behavior of the system can be studied indepen-
dently from its forced behavior, and it is possible to use mathematical
instruments such as Fourier or Laplace transforms to obtain solutions in
the frequency domain or in the Laplace domain. These solutions are often
much more expedient than solutions in the time domain that are in general
the only type of solution available for nonlinear systems.

The possibility of obtaining general results makes it convenient to start
the study by writing a linear model through suitable linearization tech-
niques. Only after a good insight of the behavior of the linearized models
is obtained will the study of the nonlinear model be undertaken. When
dealing with nonlinear systems it is also expedient to begin with simplified
methods, based on techniques like harmonic balance, or to look for series
solutions before starting to integrate the equations numerically.

Computational vibration analysis

If technological advances force the designer to perform increasingly complex
tasks, it also provides the instruments for the fulfillment of the new duties
with powerful means of theoretical and experimental analysis.

The availability of computers of increasing power has deeply changed
the methods, the mathematical means, and even the language of struc-
tural analysis, while extending the mathematical study to problems that
previously could be tackled only through experiments. However, the ba-
sic concepts and theories of structural dynamics have not changed: Its
roots are very deep and strong and can doubtless sustain the new rapid
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growth. Moreover, only the recent increase of computational power enabled
a deeper utilization of the body of knowledge that accumulated in the last
two centuries and often remained unexploited owing to the impossibility of
handling the exceedingly complex computations. The numerical solution of
problems that, until a few years ago, required an experimental approach can
only be attempted by applying the aforementioned methods of theoretical
mechanics.

At the same time, together with computational instruments, there was a
striking progress in test machines and techniques. Designers can now base
their choices on large quantities of experimental data obtained on machines
similar to those being studied, which are often not only more plentiful but
also more detailed and less linked with the ability and experience of the
experimenter than those that were available in the past. Tests on prototypes
or on physical models of the machine (even if numerical experimentation
is increasingly replacing physical experimentation) not only yield a large
amount of information on the actual behavior of machines but also allow
validation of theoretical and computational techniques.

Modern instruments are increasingly used to monitor more or less con-
tinuously machines in operating conditions. This allows designers to collect
a great deal of data on how machines work in their actual service conditions
and to reduce safety margins without endangering, but actually increasing,
safety.

As already said, designers can now rely on very powerful computational
instruments that are widely used in structural analysis. Their use is not,
however, free of dangers. A sort of disease, called number crunching syn-
drome, has been identified as affecting those who deal with computational
mechanics. Oden and Bathe* defined it as ‘blatant overconfidence, indeed
the arrogance, of many working in the field [of computational mechanics] ...
that is becoming a disease of epidemic proportions in the computational me-
chanics community. Acute symptoms are the naive viewpoint that because
gargantuan computers are now available, one can code all the complicated
equations of physics, grind out some numbers, and thereby describe every
physical phenomena of interest to mankind’.

Methods and instruments that give the user a feeling of omnipotence, be-
cause they supply numerical results on problems that can be of astounding
complexity, without allowing the user to control the various stages of the
computation, are clearly potentially dangerous. They give the user a feel-
ing of confidence and objectivity, because the computer cannot be wrong
or have its own subjective bias.

The finite element method, perhaps the most powerful computational
method used for many tasks, among which the solution of problems of

40den T.J., Bathe K.J., A Commentary on Computational Mechanics, Applied Me-
chanics Review, 31, p. 1053, 1978.
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structural dynamics is one of the most important is, without doubt, the
most dangerous from this viewpoint.

In the beginning, computers entered the field of structural analysis in a
quiet and reserved way. From the beginning of the 1950s computers were
used to automatically perform those computational procedures that re-
quired long and tedious work, for which electromechanical calculators were
widely used. Because the computations required for the solution of many
problems (like the evaluation of the critical speeds of complex rotors or
the torsional vibration analysis of crankshafts) were very long, the use of
automatic computing machines was an obvious improvement.

At the end of the 1950s computations that nobody could even think of
performing without using computers became routine work. Programs of in-
creasing complexity were often prepared by specialists, and analysts started
to concentrate their attention on the preparation of data and the interpre-
tation of results more than on how the computation was performed. In the
1960s the situation evolved further, and the first commercial finite element
codes appeared on the market. Soon they had some sort of preprocessors
and postprocessors to help the user handle the large amounts of data and
results.

In the 1970s general-purpose codes that can tackle a wide variety of
different problems were commonly used. These codes, which are often pre-
pared by specialists who have little knowledge of the specific problems for
which the code can be used, are generally considered by the users to be
tools to use without bothering to find out how they work and the assump-
tions on which the work is based. Often the designer who must use these
commercial codes tends to accept noncritically any result that comes out
of the computer.

Moreover, these codes allow a specialist in a single field to design a
complex system without seeking the cooperation of other specialists in the
relevant matters in the belief that the code can act as a most reliable and
unbiased consultant.

On the contrary, the user must know well what the code can do and the
assumptions at its foundation. He must have a good physical perception of
the meaning of the data being introduced and the results obtained in order
to be able to give a critical evaluation.

There are two main possible sources of errors in the results obtained
from a code. First there can be errors (bugs, in the jargon of computer
users) in the code itself. This may even happen in well-known commercial
codes, particularly if the problem being studied requires the use of parts
of the code that are seldom used or insufficiently tested. The user may try
to solve problems the programmer never imagined the code could be asked
to tackle and may thus follow (without having the least suspicion of doing
so) paths that were never imagined and thus never tested.

More often, it is the modeling of the physical problem that is to blame for
poor results. The user must always be aware that even the most
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sophisticated code always deals with a simplified model of the real world,
and it is a part of the user’s task to ascertain that the model retains the
relevant features of the actual problem.

Generally speaking, a model is acceptable only if it yields predictions
close to the actual behavior of the physical system. Other than this, only
its internal consistency can be unquestionable, but internal consistency
alone has little interest for the applications of a model.

The availability of programs that automatically prepare data (preproces-
sors) can make things worse. Together with the advantages of reducing the
work required from the user and avoiding the errors linked with the manual
preparation and introduction of a large amount of data, there is the draw-
back of giving a false confidence. The mathematical model prepared by the
machine is neither better nor more objective than a handmade one, and it
is always the operator who must use engineering knowledge and common
sense to reach a satisfactory model.

The use of general-purpose codes requires the designer to have a knowl-
edge of the physical features of the actual systems and of the modeling
methods not much less than that required to prepare the code. The de-
signer must also be familiar with the older simplified methods through
which approximate, or at least order-of-magnitude, results can be quickly
obtained, allowing the designer to keep a close control over a process in
which he has little influence.

The use of sophisticated computational methods must not decrease the
skill of building very simple models that retain the basic feature of the ac-
tual system with a minimum of complexity. Some very ingenious analysts
can create models, often with only one, or very few, degrees of freedom,
which can simulate the actual behavior of a complicated physical system.
The need for this skill is actually increasing, and such models often con-
stitute a base for a physical insight that cannot be reached using complex
numerical procedures. The latter are then mandatory for the collection of
quantitative information, whose interpretation is made easier by the insight
already gained.

Concern about vibration and dynamic analysis is not restricted to de-
signers. No matter how good the dynamic design of a machine is, if it is
not properly maintained, the level of vibration it produces can increase
to a point at which it becomes dangerous or causes discomfort. The bal-
ance conditions of a rotor, for example, may change in time, and periodic
rebalancing may be required.

Maintenance engineers must be aware of vibration-related problems to
the same extent as design engineers. The analysis of the vibration produced
by a machine can be a very powerful tool for the engineer who has to
maintain a machine in working condition. It has the same importance that
the study of the symptoms of disease has for medical doctors.

In the past, the experimental study of the vibration characteristics of a
machine was a matter of experience and was more an art than a
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science: Some maintenance engineers could immediately recognize prob-
lems developed by machines and sometimes even foretell future problems
just by pressing an ear against the back of a screwdriver whose blade is
in contact with carefully chosen parts of the outside of the machine. The
study of the motion of water in a transparent bag put on the machine
or of a white powder distributed on a dark vibrating panel could give
other important indications. Modern instrumentation, particularly elec-
tronic computer-controlled instruments, gives a scientific basis to this as-
pect of the mechanics of machines.

The ultimate goal of preventive maintenance is that of continuously ob-
taining a complete picture of the working conditions of a machine in such
a way as to plan the required maintenance operations in advance, without
having to wait for malfunctions to actually take place.

In some more advanced fields of technology, such as aerospace or nu-
clear engineering, this approach has already entered everyday practice. In
other fields, these are more indications for future developments than current
reality.

Unfortunately, the subject of vibration analysis is complex and the use
of modern instrumentation requires a theoretical background beyond the
knowledge of many maintenance or practical engineers.

Active vibration control

The revolution in all fields of technology, and increasingly in everyday life,
due to the introduction of computers, microprocessors, and other electronic
devices did not only change the way machines and structures are designed,
built, and monitored but also had an increasingly important impact on
how they work and will deeply change the very idea of machines. A typical
example is the expression intelligent machines, which until a few decades
ago would have been considered an intrinsically contradictory statement,
but now is commonly accepted.

The recent developments in the fields of electronics, information, and
control systems made it possible to tackle dynamic problems of structures
in a new and often more effective way. While the traditional approach
for reducing dynamic stressing has always been that of changing (usually
increasing) the stiffness of the structure or adding damping, now control
systems that can either adapt the behavior of the structure to the changing
dynamic requirements or fight vibrations directly by applying adequate
dynamic forces to the structure are increasingly common. This trend is
widespread in all fields of structural mechanics, with civil, mechanical, and
aeronautical engineering applications. For example, structural control has
been successfully attempted in tall buildings and bridges, machine tools,
aircraft, bearing systems for rotating machinery, robots, space structures,
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and ground vehicles. In the latter case, the term active suspensions has
even become popular among the general public.

The advantages of this approach over the conventional one are clear
and can be easily evidenced by the example of a large lightweight struc-
ture designed to be deployed in space in a microgravity environment. The
absence or the low value of static forces allows the design of very light
structures, and lightness is a fundamental prerequisite for any structure
that has to be brought into orbit. This leads to very low natural frequen-
cies and corresponding vibration modes that can easily be excited and are
very lightly damped. Any attempt to maintain the dynamic stresses and
displacements within reasonable limits with conventional techniques, i.e.,
by stiffening the structure and adding damping, would lead to large in-
creases in the mass and, hence, the cost of the structure. The application
of suitable control devices can achieve the same goals in a far lighter and
cheaper way.

A structure provided with actuators that can adapt its geometric shape
or modify its mechanical characteristics to stabilize a number of working
parameters (e.g., displacements, stresses, and temperatures) is said to be
an adaptive structure. An adaptive structure can be better defined as a
structure with actuators allowing controlled alterations of the system states
and characteristics.

If there are sensors, the structure can be defined a sensory structure.
The two things need not go together, as in the case of a structure provided
with embedded optical fibers that supply information about the structural
integrity of selected components or in the case of a machine with a built-in
diagnostic system. If, however, the structure is both adaptive and sensory,
it is a controlled structure.

Active structures are a subset of controlled structures in which there is
an external source of power, aimed at supplying the control energy and
modulated by the control system using the information supplied by the
sensors. Another typical characteristic is that the integration between the
structure and the control system is so strong that the distinction between
structural functionality and control functionality is blurred and no separate
optimization of the parts is possible.

Intelligent structures can be tentatively differentiated from active struc-
tures by the presence of a highly distributed control system that takes care
of most of the functions. Most biological structures fall in this category;
a good example of the operation of an intelligent structure is the way the
wing of a bird regulates the aerodynamic forces needed to fly. Not only is
the shape constantly adapted, but the dynamic behavior of the structure is
also controlled. Although a central control system coordinates all this, most
of the control action is committed to peripheral subsystems, distributed on
the whole structure.

A tentative classification of adaptive and sensory structures is shown in
Fig. 5.
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FIGURE 5. Tentative classification of adaptive and sensory structures. A: adap-
tive structures; B: sensory structures; C: controlled structures; D: active struc-
tures; and E: intelligent structures.

In all types of controlled structures the control system may need to per-
form different tasks, with widely different requirements. For example, it can
be used to change some critical parameter to adapt the characteristics of
the system to the working conditions, like a device that varies the stiffness
of the supports of a rotor with the aim of changing its critical speed during
start-up to allow a shift from subcritical to supercritical conditions without
having to actually pass a critical speed. In this case, there is no need to
have a very complicated control system, and even a manual control can
be used, if a slow start-up is predicted. Other examples requiring a slow
control system are the suspension systems for ground vehicles that are able
to maintain the vehicle body in a prescribed attitude even when variations
of static or quasi-static forces (e.g., centrifugal forces in road bends) occur.

In the case where the control system has to supply forces to control
vibrations, its response has to be faster. If only a few modes of a large and
possibly soft structure are to be controlled, as in the case of tall buildings,
bridges, and some space structures, the requirements for the control system
may not be severe, but they become tougher when the characteristic time
of the phenomena to be kept under control gets shorter since the relevant
frequencies are high.

In other cases, when the structural elements are movable and a control
system is already present to control the rigid-body motions, the control of
the dynamic behavior of the system can be achieved by suitably modulating
the inputs to the devices that operate the machine. This is the case of
robot arms or deployable space structures in which the dynamic behavior
is strongly affected by the way the actuators perform their task of driving
the structural elements to the required positions.
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It is easy to predict that the application of structural control, particularly
using active control systems, will become more popular in the future. The
advances in performance and cost reduction of control systems are going
to make it cost-effective, but a key factor for its success will be the incor-
poration of complex microprocessor-based control systems into machines
of different kinds. They, although basically introduced for reasons different
from structural control, can also take care of the latter in an effective and
economical way. The advances in the field of neural networks may also open
promising perspectives in the field of structural control.

However, if the control system must perform the vibration control of
a structure, a malfunctioning of the first can cause a structural failure.
The reliability required is that typical of control systems performing vital
functions, like in fly-by-wire systems, and this requirement can have heavy
effects on costs, on both the component and the system level, and can slow
down the application of structural control in low-cost, mass-production
applications.

As already stated, the trend is toward an increasing integration between
the structural and control functions, and this leads to the need for a unified
approach at the design and analysis stages. The control subsystem must
no longer be seen as something added to an already existing structural
subsystem that has been designed independently.

There is a trend toward a unified approach to many aspects of struc-
tural dynamics and control, from both the theoretical viewpoint and its
practical applications. A further interdisciplinary effort must also include
those aspects that are more strictly linked with the electrical and electronic
components that are increasingly found in all kinds of machinery.

This interdisciplinary approach to the design of complex machines is
increasingly referred to as mechatronics.

Although there are many definitions of what mechatronics is, it can be
safely stated that it deals with the integration of mechanics, electronics,
and control science to design products that reach their specifications mainly
through a deep integration of their structural and control subsystems. A
tentative graphical definition is shown in Fig. 6, which must be regarded
to as an approximation.® First, the sets defining the various component
technologies are not crisply defined; they are fuzzy sets. Second, it is ques-
tionable whether computer technology is to be so much stressed, as in this
way analogic devices seem to be ruled out.

But what is actually lacking in Fig. 6 are the economic aspects, which
must enter such an interdisciplinary approach from the onset of any prac-
tical application. The very need for an integrated approach allowing a true
simultaneous engineering of the various components of any machine comes

58. Ashley, “Getting a hold on mechatronics”, Mechanical Engineering, 119 (5), May
1997.
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FIGURE 6. Tentative definition of mechatronics.

from economic consideration, even before thinking of the performance or
other technical aspects. No wonder that among the first applications of
mechatronics were consumer goods like cameras and accessories for per-
sonal computers.

It is the integration of a sound mechanical design, which includes static
and dynamic analysis and simulation, with electronic and control design
which allows construction of machines that offer better performance with
increased safety levels at potentially lower costs.
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Conservative Discrete Vibrating
Systems

The equations of motion of single- and multi-degrees-of-freedom undamped
vibrating systems are obtained both by writing the dynamic equilibrium
equations and by resorting to Lagrange equations. The wvibrating system
is assumed to be constrained to either an inertial reference frame or a body
moving with a known time history with respect to an inertial frame and
whose motion is translational. The equations of motion are obtained both
in the configuration and in the state space.

1.1 Oscillator with a single degree of freedom

The simplest system studied by structural dynamics is the linear mechan-
ical oscillator with a single degree of freedom. It consists of a point mass
suspended by a massless linear spring (Fig. 1.1a). Historically, however,
the mathematical pendulum (Fig. 1.1c) represented for centuries the most
common paradigm of an oscillator, which could be assumed to be linear,
at least within adequate limitations.

The study of the simple linear oscillators of Fig. 1.1 is important for more
than just historical reasons. In the first instance it is customary to start
the study of mechanics of vibration with a model that is very simple but
demonstrates, at least qualitatively, the behavior of more complex systems.

The arrangements shown in Fig. 1.1 also have a great practical impor-
tance: They constitute models that can often be used to study, with good
approximation, the behavior of systems of greater complexity. Moreover,
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FIGURE 1.1. Linear oscillators with one degree of freedom: (a) Spring—mass
system; the coordinate x for the study of the motion of point P can expressed in
an inertial reference frame or be a relative displacement; (b) physical pendulum;
(c) mathematical pendulum.

systems with many degrees of freedom, and even continuous systems, can
be reduced, under fairly wide simplifying assumptions, to a set of indepen-
dent systems with a single degree of freedom.
A linear spring is an element that, when stretched of the quantity [ — [y,
reacts with a force
Fy=—k(l— 1), (1.1)

where [y is the length at rest of the spring and k is a constant, usually
referred to as the stiffness of the spring, expressing the ratio between the
force and the elongation. In SI units, it is measured in N/m. If constant k
is positive, the force is a restoring force, opposing the displacement of point
P. The system is then statically stable, in the sense that, when displaced
from its equilibrium position, it tends to return to it.!

A force function of time F(¢) can act on point P and the supporting
point A can move in z-direction with a known time history x4 (¢).

The dynamic equilibrium equation states that the inertia force is, at any
time, in equilibrium with the elastic reaction of the spring added to the
external forces. Written with reference to the inertial z-coordinate, it is
simply

mi = —klx—1lo—za(t)]+ F(t) —mg . (1.2)

Owing to the linearity of the system of Fig. 1.1a, the length at rest
of the spring [y and all constant forces such as those due to the gravi-
tational acceleration g, affect the static equilibrium position but not its
dynamic behavior. The dynamic problem can thus be separated from the

IFor a more detailed definition of stability see Chapter 20. Only stable systems will
be dealt with in this chapter.
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static problem by neglecting all constant forces and writing the dynamic
equilibrium equation

mi + kx =kxa(t) + F(t). (1.3)

Equation (1.3) expresses the motion of point P in terms of its displace-
ment from the position of static equilibrium x = 0 characterized by F' = 0
and x4 = 0. The excitation provided by the motion of the supporting
point and that provided by an external force can be dealt with in exactly
the same way.

When the excitation to the system is provided by the motion of the
supporting point, it may be expedient to express the position of point
P with reference to point A: coordinate .. in Fig. 1.1a. The absolute
acceleration of point P is now expressed as

Tiner = Trel + T A )

and, neglecting the terms that are constant and whose effect is just dis-
placing the static position of equilibrium, the equation of motion becomes

mi + kx = —mia + F(t), (1.4)

where subscript rel has been dropped.
It is very similar to Eq. (1.3), the only difference being the way the
displacement of the supporting point is taken into account.

Remark 1.1 Because the equation of motion is a second-order differential
equation, two conditions on the initial values must be stated to obtain a
unique solution.

Instead of the translational oscillator of Fig. 1.1a, a torsional oscillator
can be devised. It consists of a rigid body free to rotate about an axis pass-
ing through its center of mass, constrained by a torsional spring. Equation
(1.3) still holds, provided the parameters involved are changed according
to Table 1.1.

TABLE 1.1. Formal equivalence between mechanical oscillators with translational
and rotational motion. Quantities entering the equation of motion, common sym-
bols, and SI units.

Displacement Mass Stiffness Force
x [m] m [kg] k [N/m] F[N]

- Rotation Moment Torsional Moment
= ‘m‘ of inertia stiffness
A 2
@ [rad] J [kgm~] 7 [Nm/rad] M [Nm]
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Example 1.1 Consider the pendulum shown in Fig. 1.1b. It can be consid-
ered as a rotational oscillator, with moment of inertia J and restoring gener-
alized force, due to the gravitational field, equal to

mglsin(0) .

In the case of the mathematical pendulum of Fig. 1.1c, the rigid body reduces
to a point mass suspended to a massless rod, and the moment of inertia reduces
to

J=ml>.

The equation of motion for the free oscillations can be easily computed from

Eq. (1.3): )

JO + mglsin(f) = 0.
If the amplitude of the oscillations is small enough, the equation of motion
can be linearized by substituting 0 for sin(6):

Jé+mgl9:O.

1.2 Systems with many degrees of freedom

Consider a discrete system consisting of two point masses connected to
point A through a number of springs (Fig. 1.2). A force F; acts on each
mass. By introducing the same inertial coordinates seen for the case of
systems with a single degree of freedom, the following dynamic equilibrium
equations can be written:
miay + kl(ﬂil — $A) — klg(ZIJl — 332) = Fl(t)
. (1.5)
molo + kz(ﬂiz — $A) — klg(ZIJQ — 331) = Fz(t)

)

or in matrix form

[ml 0]{f1}+[k1+k12 —k12 ]{Cfl}_

0 mo T —ki2 k2t ko2 2 | (1.6)
o k1$A+F1(t) ’
_{ k2$A+F2(t)

The structure of Eq. (1.6) holds for conservative linear discrete systems
with any number of degrees of freedom. The dynamic equilibrium equations
of a system made by a number of masses connected with each other and to
a supporting frame by linear springs can thus be written in the compact
form

M + Kx = £(t). (1.7)

The matrices and vectors included in Eq. (1.7) are
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FIGURE 1.2. Sketch of a system with two degrees of freedom, made of two masses
connected to the supporting point A by linear springs. The position of the two
masses may be expressed by inertial coordinates or by the displacements relative
to point A.

e M is the mass matrix of the system. It is diagonal if all coordinates
x; are related to translational degrees of freedom and measured with
reference to an inertial frame.

e K is the stiffness matrix. Generally it is not a diagonal matrix, al-
though it usually has a band structure. In some cases, it is possible
to resort to a set of generalized coordinates for which the stiffness
matrix is diagonal (e.g., using as coordinates the length of the vari-
ous springs), but such a choice results in a non-diagonal mass matrix.
The only exception is that of the modal coordinates that allow the
use of mass and stiffness matrices, which are both diagonal.

e x is a vector? in which the generalized coordinates are listed.

e f is a time-dependent vector containing the forcing functions due to
external forces or to the motion of the supporting points.

2Here the term vector is used with the meaning of column matrix: it is not a vector
in three-dimensional space.
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If, instead of using inertial coordinates, the positions of the two masses
m1 and mo are expressed in terms of the displacements relative to point A
(coordinates z; _, in Fig. 1.2), the equations of motion are

mq (2131 + $A) + k1$1 — klg(ﬂil — $2) = Fl(t
ma (T2 + Za) + koo — ki2(x2 — 1) = Fo(t

)
] (1.8)

)

ie.,

mi 0 i . ki +kia  —Fki2 1 |
0 mo ) —kia Ry + k2 2 |
_ { —mli’A +F1(t) } (19)

- —mgfiA + Fg(t)

Remark 1.2 The homogeneous part of the equation is not affected by the
use of relative coordinates. The excitation due to the motion of the con-
straints is expressed in terms of the acceleration of the latter while in the
case of inertial coordinates it is expressed in terms of their displacements.

This is consistent with what is seen for systems with a single degree of
freedom, but in the present case the situation may be more complicated
because, even if the generalized coordinates x; are all displacements, they
may occur in different directions.

Consider for instance a discrete system where all degrees of freedom are
translational, constrained to a rigid frame that can move in the directions
of the axes of the inertial reference frame xyz. Let the components of the
displacement of the rigid frame be x 4, ya, and z4 and express the general-
ized coordinates x; with reference to the moving frame. A two-dimensional
example is shown in Fig. 1.3.

The vector containing the absolute accelerations can be obtained from
that containing the second derivatives of the coordinates x; by the rela-
tionship

Xiner :5&+6mj§A+éyyA+6zéA, (1.10)

where the terms 6,,, d,,, and §., are simply the direction cosines of the
displacement x; in the system of reference xyz. The equation of motion
written with reference to the relative coordinates is thus

Mx + Kx = —Mézj}A—MéyyA—MézéA+f(t). (1.11)

If a simple discrete system consists of point masses connected with each
other and to the ground by springs, the generalized coordinates z; can be
simply the components of the displacements along the directions of the
reference axes, in exactly the same way as for the system with a single
degree of freedom.

Generally speaking, matrices M and K are symmetrical matrices of order
n, where n is the number of degrees of freedom of the system.
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FIGURE 1.3. Example of a two-dimensional system excited by the motion of the
constraints. In this case, 6 = [ 1 0 1 0 ]T and 6, = [0 1 0 1 ]T.
Displacements x; are referred to the static equilibrium conditions and are con-
sidered to be small displacements.

Remark 1.3 The symmetry of the matrices can be destroyed if some equa-
tions are substituted by linear combinations of the equations or are just
multiplied by a constant. The equations of motion can thus be written in
forms in which the relevant matrices are not symmetrical.

Generally matrices M and K are positive semidefinite, but in many cases
they are positive definite. The mass matrix is positive defined when a non-
vanishing mass is associated to all degrees of freedom. The stiffness matrix
is positive defined when no rigid body motion is allowed. Sometimes a
system in which the constraints prevent all rigid body motions is said to
be a structure, and the term mechanism is used for the opposite case.

Many devices, such as spacecraft, aircraft, or drivelines, are actually un-
constrained and, if modeled as a whole, are characterized by singular stiff-
ness matrices.

Sometimes the difficulties linked with the presence of a singular stiffness
matrix can be circumvented by adding very soft constraints, which cause
low-frequency rigid body oscillatory motions, but this can be done only
when the vibrational behavior of the structure is studied as uncoupled
with the rigid body (or attitude) dynamics of the system. If their coupling
is accounted for, there is no way of removing the singularity of the stiffness
matrix.
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1.3  Coeflicients of influence and compliance matrix

The static equilibrium configuration the system takes under the action of
constant forces can be computed through Eq. (1.7). If vector f is assumed
to be constant and only a solution with constant displacement vector x is
searched, the mentioned equation reduces to

Kx="f. (1.12)

If the stiffness matrix K is not singular, the equation can be solved
obtaining
x =K 'f =Bf, (1.13)

where the inverse of the stiffness matrix
B=K!

is the compliance matrix® or matrix of the coefficients of influence.
The compliance matrix B is symmetrical, like the stiffness matrix K, but
while the latter has usually a band structure, the former is generally full.

Remark 1.4 The generic element (3;; of matriz B has an obvious physical
meaning: It is the ith generalized displacement due to a unit jth generalized
force, i.e., it is what is commonly called an influence coefficient.

Remark 1.5 Matriz B exists only if the stiffness matriz is not singular.

1.4 Lagrange equations

The generalized coordinates appearing in Eq. (1.7) are directly the coor-
dinates x, y, and z of the various point masses. The number of degrees of
freedom of the system has been assumed to coincide with the number of
coordinates of points P;.

If a number of constraints are located between the point masses, the
number of degrees of freedom of the system is smaller than the number of
coordinates and the displacement vectors 7% can be expressed as functions
of a number n of parameters x;

7?1':7?‘1'(3:133327"'7'1;71) : (114)

Because the number of parameters needed to state the configuration of
the system is n, it has n degrees of freedom. Vector x is thus the vector

3In the literature, the compliance matrix is often referred to with the symbol C.
Here, an alternative symbol (B, i.e., capital ) had to be used to avoid confusion with
the viscous damping matrix C.
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of the generalized coordinates, and the corresponding elements of vector
f are the generalized forces. Some of the z; can be true displacements or
rotations, but they can also have a less direct meaning, as in the case where
they are coefficients of a series expansion. Correspondingly, the generalized
forces are true forces, moments, or just mathematical expressions linked to
the forces and moments acting on the system in a less direct way.

Remark 1.6 The choice of the generalized coordinates is in a way arbi-
trary, and different sets of generalized coordinates can be devised for a given
system. Howewver, this choice is not immaterial and the complexity of the
mathematical model can strongly depend on it.

In this way, what has been seen for a system made of point masses can
be extended to any mechanical system, provided that a finite number of
generalized coordinates can express its configuration.

The equations of motion can be obtained directly by writing the dynamic
equilibrium equations for each of the masses m;, i.e., by imposing that
the sum of all forces acting on each mass is equal to zero. These forces
must include those due to the springs, external forces as well as inertia
forces due to the motion of the reference frame. Although this approach
is straightforward if the system is simple enough, if the number of degrees
of freedom is high or if some of the generalized coordinates are not easily
linked with the displacements and rotations of masses m;, it is convenient
to resort to the methods of analytical mechanics like the principle of virtual
works, Hamilton’s principle, or Lagrange equations in order to write the
equations of motion. In this book, Lagrange equations
d <8?’>_87+8U:Qi (1.15)

will be used extensively, although the choice of one of these techniques is
often just a matter of personal preference.

To understand the equivalence of two approaches (Lagrange equations
and dynamic equilibrium equations), it is sufficient to observe that the first
two terms of Eq. (1.15) are the expression of inertia forces as functions of
the kinetic energy 7, the third term expresses conservative forces obtain-
able from the potential energy U, and that on the right-hand side is a
generic expression of forces that, although being functions of time, cannot
be obtained from the potential energy. Their expression can be obtained
from the virtual work 0L performed by the forces applied to the system
when the virtual displacement 6x is given:

0oL
In the case of linear systems the potential energy is a quadratic form in

the displacements and, apart from constant terms which do not affect the
equation of motion, can be expressed as

T

Qi (1.16)
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1
U= 2XTKx+foO, (1.17)
where K is a symmetric matrix.

Even in the case of nonlinear systems, the potential energy does not
depend on the generalized velocities: its derivatives with respect to the
generalized velocities 2; vanish. Equation (1.15) may thus be written by
resorting to the Lagrangian function or Lagrangian (T —U)

d |[o(T -U oT -U
(T T -t _q, (1.18)
dt (92131 (92131

The kinetic energy is usually assumed to be a quadratic function of the

generalized velocities

where 7y does not depend on the generalized velocities, 77 is linear, and 75
is quadratic.

In the case of linear systems, the kinetic energy must contain terms in
which no power greater than two of the displacements and velocities is
present. As a consequence, 75 cannot contain the displacements, i.e.,

n n
T = ; Z Zmija:ixj = ;XTMX , (1.20)
=1 j=1
where M is a symmetric matrix whose elements m;; do not depend on either
x or X. In the present chapter only systems with constant parameters will
be considered, and hence M will be assumed to be constant.
7, is linear in the velocities and then can contain powers not greater than
the first one in the generalized displacements:

T = ;xT (Mix +f1) , (1.21)

where matrix M; and vector f; do not contain the generalized coordinates,
although f; may be a function of time.

7o does not contain the generalized velocities but only terms of order not
higher than two in the displacements:

T, = ;XTMQX +xTfyte, (1.22)
where matrix M, vector f5, and the scalar e are constant. 7y has a structure
similar to that of the potential energy: The term U — 7 is usually referred
to as dynamic potential.

By performing the derivatives appearing in the Lagrange equations it
follows that
T —-U)

.1
0i, Mx + 5 (Mix+1y) , (1.23)
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d[oT-U] . 1. . .

dt[ Oi; }_MXjLQMlXHl’ e
5(7(;_2’{) - ;foT +Myx — Kx +f3 — fy. (1.25)

T

The equation of motion can thus be written in the form

1 o
M+, (Mi-MT) 5+ (K-My)x = ~h+ £, - fo+ Q. (1.26)

Matrix M; is usually skew-symmetric. However, even if it is not so, it
can be considered as the sum of a symmetric and a skew-symmetric part

M; = Mlsy + Mg . (127)
When it is introduced into Eq. (1.26), the term
M, -M7T

becomes
Mlsy + Mlsk - Mlsy + Mlsk - 2Mlsk .

Only the skew-symmetric part of M appears in the equation of motion.
Let 2M 4, be indicated as G and vectors fy, f;, and f5 be included into
the external forces vector Q. The equation of motion then becomes

Mx + Gx + (K—M,)x = Q, (1.28)

The mass and stiffness matrices M and K have already been defined.
The skew-symmetric matrix G is usually referred to as the gyroscopic ma-
triz and the symmetric matrix M, is usually called the geometric stiffness
matriz.*

A system in which 77 vanishes is said to be a natural system and no
gyroscopic matrix is present. In many cases also 7 is not present and the
kinetic energy is expressed by Eq. (1.20); such is the case for example of
linear nonrotating structures.

While in the case of linear systems the Lagrangian is a quadratic form
in the generalized coordinates and their derivatives, for general nonlinear
systems it may have a different expression.

Remark 1.7 When writing the linearized equations of motion of a non-
linear system, two alternatives are possible: either the nonlinear equations
are written first and then linearization is performed directly on the final
equations or the expressions of the energies are reduced to quadratic forms
by expanding them in series and truncating the series after the quadra-
tic terms. The two approaches yield the same results, but the first one is
generally far heavier from a computational viewpoint.

4Symbol My has been used here for the geometric stiffness matrix instead of Ky to
stress that it derives from the kinetic energy.
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Example 1.2 Write the equation of motion of the system sketched in
Fig. 1.4. It consists of three discs linked with each other by shafts that are
torsionally deformable; the first shaft is clamped in point A to a fixed frame.
The system can be modeled as a lumped-parameter system, with three rigid
inertias and three massless springs. Note that the numerical values reported
in the figure are unrealistic for a system of that type and were chosen only in
order to work with simple numbers. Consider the rotations 01, 02, and 63 as
generalized coordinates.

By remembering the equivalences in Table 1.1, the equation of motion of the
third disc is

J36s + kr3 (03 — 62) = Ms.
The equations for the other two discs can be written in a similar way, obtaining

a set of three second-order differential equations which, after introducing the
numerical values of the parameters, is

10 0 61 20 —10 0 61 My
04 0 o ¢+ | —10 14 -4 0, ¢ =1 M
0 0 05 0 0 -4 4 03 Ms
zZ
'lyA y ’01 ,192
Vs
J1 Iz Ja
A [ [

x
le kTZ kTB
M\ Mz\ V[s\\
FIGURE 1.4. System with three degrees of freedom. J; = 1 kg m?; J» = 4 kg
m?; Js = 0.5 kg m?; kr1 = 10N m/rad; kr2 = 10 N m/rad; ks = 4 N m/rad.



1.4 Lagrange equations 37

Alternatively, the equations of motion can be obtained from Lagrange equa-
tions. The kinetic and potential energies and the virtual work of the external
moments due to a virtual displacement [661,00-, 593]T are

OT = 161" + Jobiy” + J3932,
U = kr, 037 + kry (02 — 01)% + kry (03 — 02)2,
0L = M16601 + M2660s + M36053.

By performing the relevant derivatives, the same equation seen above is
obtained.

Example 1.3 Write the equation of motion of the mathematical pendulum of
Fig. 1.1c¢ using Lagrange equation. The position of point P is

e-0={ i) }-

Angle 0 can be taken as gemeralized coordinate. By differentiating the coordi-
nates of P with respect to time, the velocity and then the kinetic energy are
readily obtained:
_ : o] cos(8)
Vp= (P O)-l@{ sin(0) }7

71 271 2.2
T = 2m|V|p = 2ml 0.

The gravitational potential energy is simply

U =mgy = —mglcos(0) .

The derivatives included in the Lagrange equation are

0T _ o, o (0F) =i,
00 dt \ 96

oT ou .

90 =0, 90 = mglsin(0) .

The equation of motion thus coincides with that already obtained:

mi®0 + mglsin() = 0.

The linearization can be performed in two ways: either by linearizing directly
the equation of motion or by expressing the potential energy as a series in 0
and truncating it after the quadratic term
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92
Uw—mgl(l— 2).

The kinetic energy is already a quadratic form in the generalized coordinate
and its derivative, so the inertial term is already linear. Since

ou
00

the linearized equation of motion is readily obtained:

~ mgl,

ml*0 + mgld = 0.

Remark 1.8 If the expression of the potential energy in Example 1.4 were
linearized

U = —mglcos (0) ~ —mgl ,

its derivative with respect to 8 would have vanished and a wrong expression
of the equation of motion would have been obtained. To obtain a linearized

equation of motion, the expressions of the kinetic and potential energies
must be quadratic and not linear.

Example 1.4 Consider the two identical pendulums connected by a massless

spring shown in Fig. 1.5. The length of the spring at rest is equal to the distance
d between the suspension points.

R

FIGURE 1.5. Two pendulums linked together by a spring: sketch of the system.
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Write the kinetic and potential energies of the system and obtain the equa-
tion of motion through Lagrange equations. Finally, linearize the equations of
motion.

There are four dynamic equilibrium equations; they state that all forces, includ-
ing inertia forces, that act on the two point masses in x- and y-directions bal-
ance each other. Two constraint equations, stating that the distances (P1 — A)
and (P> — B) are equal to the lengths | of the two pendulums, must be added
to the dynamic equilibrium equations.

The system has thus two degrees of freedom, and angles 01 and 02 can be
chosen as generalized coordinates. Equations (1.14) linking the positions of
the point masses with the generalized coordinates are

R A B e

Note that the relationship between the positions of the point masses and the
generalized coordinates is nonlinear. The kinetic energy is thus

1 . . . . 1 ) .2
T= 2m($§+yf+3:§+y§) = 2ml2(91 +627) .

The gravitational potential energy can be defined with reference to any zero
level, for example, that of point A. The potential energy is

1
U = —mgllcos(01) + cos(62)] + 2k(d1 —d)?,
where the distance di between points P1 and P2 can be easily shown to be

dy = +/d? 4 212[1 — cos(0; — 02)] — 2dl[sin(#2) — sin(6:)] .

By performing all the relevant derivatives of the Lagrangian function, T —U,
the equations of motion of the system are obtained:

mi*0, + mglsin(01) + k(d1 — d) 9dy =0,
001
mi%0 + mglsin(02) + k(dy — d) O _

00
The derivatives of di with respect to 61 and 02 can be easily computed and the

equations can be written in explicit form. They are clearly nonlinear, but as
angles 01 and 02 are assumed to be small, they can be linearized:

dy = \/d? —2dl(02 — 01) ~d —1(02 — 01) , Bd1/801 =1, Od1/B0s ~ —1 .

The linearized equation of motion can be written in the form

[0 6, L[ metk kI 6\ _[ 0
™Moo 6o —kl  mg+kl 0 [0 [
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The same result could be obtained by approrimating the expressions of the
kinetic and potential energies using quadratic forms in the generalized coor-
dinates and velocities. The kinetic energy is already such, while the potential
energy can be simplified by developing the cosines in series and truncating
them after the second term and using the simplified expression for di

0% 6% 1
U = —mgl {(1 - 21> + <1 - 5)} + 2k12(91 —62)%,

LT[ mg+kl —k 01
u’z{og}{ Kl mgtki |\ 6 f T2

The same linearized equations of motion are thus obtained.

i.e.,

1.5 Configuration space

Vector x in which the generalized coordinates are listed is a vector in the
sense it is column matrix. However, any set of n numbers may be interpreted
as a vector in an n-dimensional space. This space containing vector x is
usually referred to as the configuration space, since any point in this space
can be associated to a configuration of the system.

Actually, not all points of the configuration space, intended as an infi-
nite n-dimensional space, correspond to configurations that are physically
possible for the system: A subset of possible configurations may thus be
defined. Moreover, even systems that are dealt with using linear equations
of motion are linear only for configurations not much displaced from a ref-
erence configuration (usually the equilibrium configuration) and then the
linear Eq. (1.28) applies only in an even smaller subset of the configuration
space.

A simple system with two degrees of freedom is shown in Fig. 1.6a;
it consists of two masses and two springs whose behavior is linear in a
zone around the equilibrium configuration with ;1 = x93 = 0 but then
behave in a nonlinear way to fail at a certain elongation (Fig. 1.6b). In the
configuration space, that in the case of a two-degrees-of-freedom system has
two dimensions and thus is a plane, there is a linearity zone, surrounded
by a zone where the system behaves in a nonlinear way. Around the latter
there is another zone where the system loses its structural integrity.

During motion, the point representing the system’s configuration moves
in the configuration space and its trajectory is referred to as the dynam-
ical path. The dynamical paths corresponding to different time histories
of the system can intersect each other, and a given configuration can be
instantaneously taken during different motions.
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FIGURE 1.6. Sketch of a system with two degrees of freedom (a) made of two
masses and two springs, whose characteristics (b) are linear only in a zone about
the equilibrium position. Three zones can be identified in the configuration space
(c) in the inner one the system behaves linearly, in another one the system is
nonlinear. The latter zone is surrounded by a ‘forbidden’ zone.

1.6 State space

Knowledge of the system’s configuration at a given time and of the time
history of the forcing function does not allow one to predict its future evo-
lution or to know its past time history. If, on the contrary, the generalized
velocities are also known, the state of motion of the system is completely
known at any time. Positions and velocities, taken together, are thus the
state variables of the system, even if this choice is not unique and other
pairs of variables correlated with them can be used (e.g., positions and
momenta).
A state vector

where

containing the displacements and velocities can thus be defined.® It has 2n
components and defines a point in a space with 2n dimensions, the state
space, defined by a reference frame whose coordinates are the state variables
of the system. In the case of systems with a single degree of freedom, the
state space has only two dimensions and is called the state plane.

X

5The state vector can be alternatively defined as z = { } . There is no difficulty

in modifying all relevant matrices to cope with this definition.
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Remark 1.9 The configuration space is a subspace of the state space.

With reference to the state space, the equation of motion (1.28) of a linear
system can be transformed into a set of 2n first-order linear differential
equations, the state equations of the system

{ Mv+Gv+(K—Mg)x:Q (1.29)
X=V .
The state equations are usually written in the form

z(t) = Az(t) + Bu(t) , (1.30)

where
M- —-M—1? (K—Mg)
I 0

is the dynamic matrix of the system. It is neither symmetrical nor positive
defined.

Vector u(t), whose size need not be equal to the number of degrees
of freedom of the system, is the vector in which the inputs affecting the
behavior of the system are listed. B is the input gain matrix; if the number
of inputs is 7, it has 2n rows and r columns.

If the inputs u(t) are linked with the generalized forces Q(t) acting on
the various degrees of freedom by the relationship

|

Q(t) = Tu(t) , (1.31)
then the expression of the input gain matrix is
-1
B:[MOT}. (1.32)

If the output of the system consists of a linear combination of the state
variables, to which a linear combination of the inputs can be added, a
second equation can be added to Eq. (1.30)

y(t) = C2(t) + Du(t) , (1.33)

where

e y is the output vector, i.e., a vector in which the m outputs of the
system are listed.

e C is a matrix with m rows and n columns, often referred to as the
output gain matriz.5 If all generalized displacements are taken as
outputs of the system, matrix C is simply C = [0,I].

6The output gain matrix is usually referred to as C. This symbol is used here even
though it is similar to that used for the damping matrix C because the author thinks
no confusion between them is possible.
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e D is a matrix with m rows and r columns, expressing the direct
influence of the inputs on the outputs; it is therefore referred to as
the direct link matriz.

The set of four matrices A, B, C, and D is usually referred to as the
quadruple of the dynamic system.

Summarizing, the equations that define the dynamic behavior of the
system, from input to output, are

{ z = Az + Bu

y =Cz + Du (1.34)

The input—output relationship described by Eq. (1.34) may be described
by the block diagram shown in Fig. 1.7.

If r = 1, i.e., there is a single input u(t), and m = 1, i.e., there is a
single output y(¢), the system is referred to as a single-input, single-output
(SISO) systemn. Otherwise, if there are several inputs and outputs, the sys-
tem is a multiple-input, multiple-output (MIMO) one. This distinction has
nothing to do with the number of degrees of freedom or of state variables.
A single-degree-of-freedom system has two state variables (position and ve-
locity) and may be a MIMO system, where the input—output relationship
is concerned.

Remark 1.10 The state equation is a differential equation, but the output
equation is simply algebraic.

The points representing the state of the system in subsequent instants
describe a trajectory in the state space. This trajectory defines the motion.
The various trajectories obtained with different initial conditions constitute
the state portrait of the system. In the case of autonomous systems, i.e.,
systems modeled by an equation of motion not containing explicitly the
independent variable time, it is possible to demonstrate that, with the
exception of possible singular points, only one trajectory can pass through
any given point of the state space.

Equation (1.30) is non-autonomous, as time appears explicitly in the in-
put vector. In this case, one more dimension, namely time, is added to the

ry
2]

z +

EM\I o0

FIGURE 1.7. Block diagram corresponding to Eq. (1.34).

u
+
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state space to prevent the trajectories from crossing each other, as would
happen in (x,x) space. The state space for a non-autonomous system with
a single degree of freedom is consequently a tridimensional space (z, &, t).
Even in this case only the state projection in the (z, ) plane is often rep-
resented to reduce the complexity of the state portrait. Another technique
is that of representing only some selected points of the trajectories, chosen
at fixed time intervals, usually the period of the forcing function when the
latter is periodic, as if a strobe were used. This strobed map is usually
referred to as a Poincaré section or Poincaré map.
A point in the state space such that

Az +Bu=0

for any value of time is an equilibrium point. Because it is a static solution,
it can be defined only if the input vector u is constant in time. All general-
ized velocities are identically equal to zero and thus the equilibrium point
lies in the configuration space, thought as a subspace of the state space.
Although a nonlinear system can have a number of equilibrium points, a
single equilibrium point exists if the system is linear. If u is equal to zero,
the equilibrium point is the solution of the homogeneous algebraic equation

Az =0,

i.e., the trivial solution z = 0, except when the dynamic matrix is singular.

In the case of nonlinear systems, the equations of motion can often be
linearized about any given equilibrium points. The motion of the linearized
system about an equilibrium point is usually referred to as motion in the
small.

Remark 1.11 The equation of motion in the state space can be written
in many different forms, but the current formulation is standard for the
study of dynamic systems in general. When the generalized momenta are
used instead of the generalized velocities, the term phase is used instead of
state.

Example 1.5 Write the equation of motion in the state space of the system
of Example 1.2, assuming that the only input u(t) is the moment Ms acting
on the third moment of inertia. Write the output equation, assuming that only
one output is considered, the rotation of the third moment of inertia. Introduce
three auziliary variables vi= 01, va= 02, and vs= 0.

Because there is only one input (r=1), matriz T has three rows and one
column:

T =10,0,1]".
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The state equation is thus

i1 000 -2 10 0 1 0
02 000 25 -35 1 vy 0
s | _|0oo0oo0 0o 8 -8 v3 2
6 (|1 00 0 0 0 o0 (T) 0 (Mo (135
6 010 0 0 0 0 0
s 001 0 0 0 03 0

Because the output is only 03, matriz D vanishes while the output gain matriz
has one row and siz columns:

c=[0 0000 1].

If matrix M is singular, it is impossible to write the dynamic matrix in
the usual way. Usually this occurs because a vanishingly small inertia is as-
sociated to some degrees of freedom and the problem may be circumvented
by associating a very small mass to them. However, it has little sense to
resort to tricks of this kind when it is possible to overcome the problem in
a more correct and essentially simple way:.

Consider the system described by Eq. (1.28) and assume that matrices
G and M, are zero (the system is natural). Moreover, assume that matrix
M is diagonal, which is not a lack of generality, since it is always possible
to write the system in this form.

The degrees of freedom can be subdivided into two sets: a vector xj,
containing those to which a non-vanishing inertia is associated, and a vector
Xs, containing all other ones. In a similar way all matrices and forcing
functions may be split:

M;; M, Kii Kipo Q:
M = K= , Q= .
[ Mo My, ] [ K21 Koo ] Q { Q2 }

The mass matrix Moy vanishes and, since the mass matrix is diagonal,
also M5 and Mo, vanish.
The equations of motion can be written in the form

M%) + Kiixg + Kioxo = Qu(t) (1.36)

Koix; + Kooxz = Qaft) . '
The second set of equations can be readily solved in xa:

Xo = —K2_21K21X1 + K2_21Q2(t) . (1.37)

It is thus possible to write an equation of motion containing only the
generalized coordinates x;:

Miq1%X1 + (K11X1 - K§21K21) X1 = Ql(t) + K§21Q2(t) (138)
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whose mass matrix is not singular. This procedure is essentially what in
Chapter 10 will be defined as static reduction.

1.7 Exercises

Exercise 1.1 Write the equations of motion for the system of Fig. 1.3, assum-
ing that the displacements of points P1 and Pz are small. Obtain the explicit
ezpressions of all matrices.

Exercise 1.2 Write the equations of motion of the system of Fig. 1.8. Eliminate
the generalized coordinate x ¢, and consider the system as a system with two
degrees of freedom only.

Fy(t) Fy(t)
e i 3 I -
B D
Ao—\/\/\/\— ° °
k
K, y 4
my 2 I'l’12

FIGURE 1.8. System with two degrees of freedom.

FIGURE 1.9. Double pendulum.
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Exercise 1.3 Consider the double pendulum of Fig. 1.9. Write the kinetic and

potential energies of the system and obtain the equation of motion through Lagrange
equations. Linearize the equation of motion in order to study the small oscillations

about the static equilibrium position.

Exercise 1.4 Write the quadruple of a system governed by Eq. (1.11) in which
forces £ (t) have been neglected, assuming the accelerations of the constraints as
inputs and the generalized coordinates as outputs.
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Equations in the Time, Frequency;,
and Laplace Domains

The equations of motion of a discrete system are ordinary differential equa-
tions containing the derivatives of the generalized coordinates with respect
to time, usually up to the second order. If the time history of the re-
sponse is assumed, e.g. if it is stated that the time history is harmonic or
poly-harmonic, the equations of motion can be transformed into algebraic
equations containing the frequency but not the time. Another alternative
to transform the ordinary differential equations into algebraic equations is
to use Laplace transforms. In this case the equations contain the Laplace
variable, usually indicated with symbol s, instead of time.

2.1 Equations in the time domain

The equations of motion written in the previous chapter (Eq. (1.3) or (1.4))
contain the time history of both the excitation F(t) (or f(¢)) and the re-
sponse x(t) (or x(t)). If the system is not time invariant, also the parameters
(m, k, etc.) are functions of time.

The equation of motion is thus said to be written in the time domain.

The inputs and the outputs are thus time histories and to solve a dynamic
problem means to obtain the time history of the output knowing that of
the input. Sometimes the input is derived from the output and the problem
is said to be an inverse problem.

This approach is fairly straightforward both in case of linear systems (and
then analytical solutions are possible, at least if the time history of the input
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is not too complicated) and in case of nonlinear systems. In the latter case a
general solution cannot usually be obtained and the only possible approach
is to resort to the numerical integration or to some approximate methods
whose results are increasingly unreliable with increasing nonlinearity.

Also the equation written with reference to the state space (Eq. (1.30))
is referred to the time domain. Their solution can usually be obtained in
closed form only in case of linear systems, excited by a not-too-complicated
law u(t).

2.2 Equations in the frequency domain

2.2.1 Harmonic motion

Assume that the system is linear and that the equations are time invariant.
As it will be demonstrated later, when the excitation either is not present
(free behavior) or has an harmonic time history, the response of the system
is harmonic in time.

This means that if

f = f) cos (wt) + f5 sin (wt) (2.1)

(with the particular case f; = fo = 0 describing free behavior), the response
can be written in the form

X = x1 c0s (wt) + xz sin (wt) . (2.2)
Because
xg cos (wt + ) = xq [cos (P) cos (wt) — sin (P) sin (wt)] ,
the harmonic time history of the ith response can be written as
x; = xo; cos (wt + D;) (2.3)

where zo; and ®; are, respectively, its amplitude and phase. Clearly, the
amplitudes of the cosine and sine components are

x1 = {xp;cos (P;)} , xo={—wp;sin(P;)} . (2.4)

The same holds for the excitation.

It is common to use exponential functions to express a harmonic time
history. Instead of writing the ith time history using Eq. (2.3), the following
expression is very common:

zi = woie™" (2.5)
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where x(; is a complex number, the complex amplitude of the response and
w is a real constant, the circular frequency or simply the frequency.
By expanding Eq. (2.5),

x; = R (20;) cos (wt) = (xo;) sin (wt)+i [R (xo;) sin (wt) + I (z0;) cos (wit)]
(2.6)
it is clear that it does not coincide with Eq. (2.3).
In particular, while Eq. (2.3) yields a real result, Eq. (2.5) yields a com-
plex displacement.

Remark 2.1 In the real world the displacement and the excitation are both
real quantities. Equation (2.5) as such is thus unsatisfactory.

To avoid this problem, Eq. (2.5) can be written in the form
T, =R (J:Oiei“’t) (2.7)
that yields Eq. (2.3), provided
x1; = R(wos), w2 = —(x0i) - (2.8)

This amounts to represent the force f and the displacements = as the
projections on the real axis of vectors

U= foc®t, ot = mod! (2.9)

rotating in the complex plane with an angular velocity w (Fig. 2.1a). Angle
® in the figure is the phase difference between the two vectors.

In practice Eq. (2.5) is directly used instead of Eq. (2.7). Neglecting the
R symbol amounts to writing a relationship between f* and z* instead of
between f and z.

\ Im a) b)
Im
o [\ xoelmt
)
() Ri
X4
‘o ~_
Re -0 .
— — - ioe-lmt
X —

FIGURE 2.1. (a) Force f and displacement x as projections of the complex quan-
tities f* and x* represented as rotating vectors in the complex plane. Situation
at time ¢. (b) Displacement thought as the sum of two counter-rotating vectors
in the complex plane.
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Another way to solve the inconsistency between Eq. (2.5) and Eq. (2.3)
is that of assuming implicitly that there are two solutions of the type of
Eq. (2.5), one with positive w and one with negative w, and that the time
history is given by the linear combination

€T, = inei‘“t + $0i67iwt , (210)

where g, is the conjugate of xg;.

A quick check shows that Eq. (2.10) is completely equivalent to Eq. (2.3).
The vector x with harmonic time history can be thought as the sum of two
vectors counter-rotating in the complex plane (Fig. 2.1b).

2.2.2  Frequency domain

By introducing the time history (2.5) for both excitation and response into
the equation of motion (1.7), an algebraic equation is obtained:

(—w*™M + K) xe™" = foe™" . (2.11)

This equation holds for any value of time ¢. Expression e** never goes
to zero in the complex plane and its projection on the real axis vanishes
only for selected values of time. Equation (2.11) can thus be simplified as

(-w’M+K)xo =fo . (2.12)

Remark 2.2 By introducing a time history of both response and excita-
tion into the equation of motion, the latter transforms from a differential
equation of order 2n (where n is the number of degrees of freedom) into an
algebraic equation containing the frequency but not the time. The matrix of
the coefficients contains constant terms and terms in w?.

Remark 2.3 If the system performs harmonic motion and the time history
of the excitation is harmonic, Fq. (2.12) is exactly equivalent to the time
domain equation (1.7).

Equation (2.12) is usually said to be the equation of motion in the fre-
quency domain. It can be written only if parameters M and K are constant
in time, but in this case they can be functions of frequency.

Matrix

Kiyn =K — w*M (2.13)

is said to be the dynamic stiffness matriz of the system and the equation
in the frequency domain can be written in the compact form

Kdynx() = fQ . (214)

The dynamic stiffness matrix is a function of the frequency w.
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The inverse of the dynamic stiffness matrix is the dynamic compliance
matrix or the frequency response of the system H(w)

Hw) =K, . (2.15)
In the case of single-degree-of-freedom systems, its value is
H(w)= ! (2.16)
YTk —wm '

The matrix of the frequency responses for a system with n degrees of free-
dom contains a total of n? functions of the frequency. However, since both
the dynamic stiffness and the frequency response matrices are symmetrical,
only n(n + 1) /2 are different from each other.

Also the state equation (2.18) can be written in the frequency domain.
If both the state vector z and the input vector u are harmonic in time and
are represented through Eq. (2.5)

z =zpe™", u=upe™’, (2.17)

it follows that
(ZUJI - A) Zy = BUO, (218)

where matrices A and B must be constant in time, but may be functions of
the frequency. Vectors zy and ug are complex, and their meaning is exactly
the same already seen for xqy and fj.

Example 2.1 Write the frequency domain equation in both the configuration
and state space for the pendulum shown in Fig. 1.1b (Ezample 1.1).

The frequency domain equation is applicable only to linear systems (as it will
be seen later, the response of nonlinear systems is not harmonic) and then
only the linearized equation

JO +mglo =0
will be considered.
By introducing a solution of the type of Eq. (2.5), it yields the frequency do-
main equation
(—wQJ + mgl) 0o =0.
To write a state space equation, an auxiliary state variable, such as the velocity

vg =0,
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must be introduced. The time domain state equation is thus

(od-[0 7 ()

The equation in the state space is obtained from Eq. (2.18):

“ e e
1w 0

2.3 Equations in the Laplace domain

2.3.1 Laplace transforms

Consider a function of time f(t) defined for ¢ > 0. Its Laplace transform
L[f(t)] = f(s) is defined as

LIf ()] = f(s) /f Je~*tdt, (2.19)

where s is a complex variable. For the mathematical details on Laplace
transforms and the conditions on function f(¢) which make the transform
possible, see one of the many textbooks on the subject.!

Laplace transform is a linear transform, i.e., the transform of a linear
combination of functions is equal to the linear combination of the trans-
forms of the various functions.

The main property that makes the Laplace transform useful in structural
dynamics is that regarding the transform of the derivatives of function f(¢):

LIFO] = sLIF@B)] = £(0),  LIF@)] = s*LIFB)] — sf(0) = f(0). (2:20)

The transform thus enables changing a differential equation into an al-
gebraic equation without actually assuming the time histories of the ex-
citation and the response, as was seen for the equations written in the
frequency domain.

Given the equation of motion (1.3) of a conservative linear system with
a single degree of freedom,

mi + kx = f(t),
by transforming both functions f(¢) and z(t) into f(s) and Z(s), the fol-

lowing equation in the Laplace domain is obtained:

'For example, W.T. Thompson, Laplace transformation, Prentice Hall, Englewood
Cliffs, 1960.
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(s>m + k)i (s) — msz(0) — ma(0) = f(s). (2.21)
Since the Laplace transforms of the most common functions f(t) are
tabulated (see Appendix B), Eq. (2.21) can be used to compute the Laplace
transform of the response of the system. The time history z(t) can thus
be obtained through the inverse transformation or, more simply, by using
Laplace transform tables.
Equation (2.21) holds also for systems with many degrees of freedom:

(s°M 4 K)X(s) — Msx(0) — Mx%(0) = f(s). (2.22)
If at time ¢ = 0 both x(0) and %(0) are equal to zero, it follows that
(s>M + K)X(s) = f(s). (2.23)

The parameters of the system M and K must be constant in time, but
may be functions of the Laplace variable s.

Remark 2.4 The main limitation of the Laplace transform approach is
that of being restricted to the solution of linear differential equations with
constant coefficients.

2.3.2  Transfer functions

Since Eq. (2.23) is a very simple algebraic equation, it is easily solved in

x(s):
%(s) = (s°M + K) (). (2.24)

_ The function of s that, once multiplied by the transform of the excitation
f(s), yields the transform of the response X(s) is the transfer function G(s)
of the system

G(s) = (M +K) ™, (2.25)
or, in case of single-degree-of-freedom systems,
1
= . 2.2
G(s) ms? +k (2.26)

It coincides with the frequency response of the system H(w) once s has
been substituted for iw.

The block diagram of the system can be drawn with reference to the
Laplace domain using the transfer function as shown in Fig. 2.2. The trans-
fer function and the frequency response are strictly related to each other:
The second can be obtained from the first by substituting the frequency
multiplied by the imaginary unit iw for the Laplace variable s.

A number n? of transfer functions is included in matrix G(s), which is
often referred to as a transfer matriz, or matrix of the transfer functions.
It is symmetrical like matrix H(w).
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(s) 1 X(s)

— = G(s)= -

msZ2+ k

FIGURE 2.2. Block diagram of a conservative linear single-degree-of-freedom
system in the Laplace domain.

Remark 2.5 When operating in the frequency domain, the motion is as-
sumed to be harmonic, and hence the frequency w is expressed by a real
number. When operating in the Laplace domain, no limitation is set on the
type of time history and hence s is complez.

Example 2.2 Assume that a torque M (t) is applied to the pendulum of Fig.
1.1c (Exzample 1.1). Write the Laplace domain equation in the configuration
space and the transfer function.

Again, only the linearized equation will be dealt with. By adding the driving
torque M(t), the equation of motion becomes

JO +mglh = M (t).

By introducing the Laplace transforms é(s) and M(s) of the response and
of the excitation, and assuming that for t = 0 the pendulum is at rest in its
central position (8 (0) =0, 6 (0) = 0), the Laplace domain equation is readily
obtained:

(s°J +mgl) 0(s) = M (s) .

The transfer function is thus

2.3.3 State space equations

Also the state equation (2.18) can be transformed into an algebraic equation
through Laplace transform. Assuming that at time ¢ = 0 the value of all
state variables is zero, the state and output equations of the system in the
Laplace domain are

{ 57 (s) = Az(s) + Bu(s) (2.27)

y(s) = Ca(s) + Du(s) ,
where z(s), u(s), and y(s) are the Laplace transforms of the state, input,
and output vectors, respectively.
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The first equation can be solved in the state vector, obtaining
7(s) = (sI— A)"' Bi(s) . (2.28)

By introducing the state vector into the output equation, the following
input—output transfer function is obtained:

y(s) -1
G(s) = =C(sl — B+D. 2.29
(5) = gy =CGI = A B+ (2:29)

The generic transfer function G;;(s), which links the ith output with the
jth input, can be written as the ratio of two polynomials:

B ™ 4 Br—18™ "+ + Bis + o

Gij(s) =
i) S 4 18"+ s+ ag

, (2.30)
where n is the order of the system and m (with m < n) is the order of the
numerator of the transfer function. The difference n — m is referred to as
the pole excess or relative order of the system.

Remark 2.6 The roots of the denominator of the transfer function are
the poles of the system, i.e., the eigenvalues of the dynamic matriz A. The
roots of the numerator are the zeros. Note that the poles are characteristics
of the system, and the zeros are typical of each transfer function.

The transfer functions can be written in the form

(s+21)(s+22)...

Gigls) = (s+p1)(s+pa)...~

(2.31)

where z; and p; are the zeros and poles, respectively.

Remark 2.7 The poles and zeros are either real or complex-conjugate
pairs, at least if the quadruple is real.

2.4 Hxercises

Exercise 2.1 Plot the dynamic compliance of the system sketched in Fig. 1.4
and already studied in FExample 1.2.

Exercise 2.2 A tubular cantilever beam has a length | and inner and outer
diameters d; and d,. At the end of the beam a mass m has been attached. Compute
the dynamic compliance of the system, neglecting the mass of the beam. Data:
I1=1m,d; =60 mm, d, =80 mm, m =30 kg, E = 2.1 x 10" N/m?.

Exercise 2.3 Write the transfer functions of the system of Fig. 1.8 and already
studied in Fzxercise 1.2.
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Exercise 2.4 Consider the system of Fig. 1.4 and already studied in Examples
1.2 and 1.5. Assume that the input into the system is the torque Ms applied
at point 3 and the output is the rotation 02. Compute the input—output transfer
function.



3
Damped Discrete Vibrating Systems

Damping is a feature of all real-world systems, but is usually not easily
modeled. In the present chapter linearized models, namely viscous, hys-
teretic (or structural), and general nonviscous damping are discussed in
detail. The equations of motion, in both the time and the frequency do-
main, for linear damped systems are introduced, and the important issue of
how including nonviscous damping in time-domain equations is tackled.

3.1 Linear viscous damping

3.1.1 Definition of viscous damping

During vibration the energy stored in the system in different forms is con-
tinually exchanged between them. Mechanical vibration entails the trans-
formation of energy from the kinetic to the potential form and vice versa.
In a similar way, electrical oscillations are characterized by the energy ex-
change between the magnetic and the electric field.

However, each time energy is transformed from one form to another in
a real-world system, some energy is lost, or better is transformed, through
some irreversible process, into a form (usually heat) from which it cannot
be transformed back. In electrical systems this occurs due to the resistance
of the conductors (superconductors are an important exception), while in
mechanical system there is always some sort of friction or damping causing
energy losses. In mechanical vibration, for instance, damping causes some
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energy to be lost each time it is transformed from potential to kinetic energy
and back, causing a decrease in time of the amplitude of free oscillations.

The actual mechanisms causing energy losses are complex, and usually
lead to nonlinearities. However, particularly when damping is not large,
the exact way in which the damping force is applied is far less important
than the energy it dissipates in each vibration cycle. In this case the sim-
plest way to introduce energy losses into the system is applying a force
whose direction is opposite to that of the velocity and whose amplitude is
proportional to the speed.

A device producing a force whose amplitude is proportional to the rela-
tive velocity of its end points [ through the damping coefficient ¢ and whose
direction is opposite to that of the relative velocity

Fy=—d (3.1)

is usually referred to as a linear viscous damper or linear dashpot. It can
be added (in parallel to the spring) to the linear mechanical oscillator with
a single degree of freedom consisting of a point mass suspended by a linear
spring (Fig. 1.1a), obtaining a spring—mass—damper system (Fig. 3.1a).

If the damping coefficient (in S.I. units expressed in Ns/m) is positive,
the damper is a device that dissipates energy, and the amplitude of the free
oscillations of the system decays in time. If the system is statically stable,
it is also dynamically stable because it actually returns to the equilibrium
position, at least asymptotically.

(b)

F(t)
(a)
Py
. J
Xlnar erl c k kl
XLiner Xlrel
)fA A X 2iner X

FIGURE 3.1. (a): Damped linear oscillator with one degree of freedom (spring—
mass—damper system, with the spring and the damper in parallel); (b) linear
damped system with 2 degrees of freedom.
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3.1.2  Time-domain equation of motion

The dynamic equilibrium equation of a spring—mass—damper system, with
the spring and the damper in parallel (Fig. 3.1a), written with reference to
the inertial z-coordinate, becomes

mi = —cli —aa(t)] —k[z—lo—2za@)]+ F(t) —mg .  (3.2)

The dynamic problem can be separated from the static problem by ne-
glecting all constant forces and the dynamic equilibrium equation can be
written in the form

mi + ck + kx = cia(t) + kza(t) + F(t). (3.3)

The corresponding equation of motion, written in terms of relative coor-
dinates, is
mi + ¢t + kx = —mia + F(t), (3.4)

A 2 degrees of freedom systems is shown in Fig. 3.1b. The relevant equa-
tion of motion can be written in matrix form as

mpy 0 xl L@ +ci2  —ci2 3:31 I
0 mo To —C12 C2 + C12 T2

n ki +kie k2 z1 | _ | cada+kiza+ Fi(2)
—ki2 ko + ko2 2o | | ceda+koxa+ Fo(t) [
(3.5)

In the case of a general natural system with any number n of degrees of
freedom, the equation of motion can be written in the compact form

M + Cx + Kx = f(1), (3.6)

where the symbols have the same meaning seen for conservative system
and C is the viscous damping matrix. Generally it is not a diagonal matrix
(although it usually has a band structure) and is symmetrical and positive
semidefinite.

3.1.8  Dynamic stiffness

If both x(t) and f(t) are harmonic in time, and the parameters of the
system are constant, Eq. (3.6) can be written in the frequency domain by
stating that both the response and the excitation can be expressed by the
time history of Eq. (2.5). The algebraic equation so obtained is

(—wM+iwC + K) xo = {5 . (3.7)
The dynamic stiffness

Kiyn = K — w?M+iwC (3.8)
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is thus a complex quantity. Also its inverse, the dynamic compliance or the
frequency response, is complex.

Remark 3.1 The time history of the free oscillations of a damped sys-
tem is not harmonic. The frequency-domain equation (3.7) implies that the
function x(t) is harmonic, and thus cannot be used for free motion.

Remark 3.2 The dynamic stiffness of a system made by a spring and a

damper in parallel is
kdayn = k+iwc. (3.9)

Its real part is constant, while its imaginary part is proportional to the
frequency. The ratio between the imaginary and the real parts of the dy-
namic stiffness is usually referred to as the loss factor

= (3.10)

It grows linearly with the frequency.

3.1.4 FEnergy dissipated in harmonic motion

Consider a system with a single degree of freedom. The power dissipated
by the damper is simply given by the product of the force it exerts by the
speed:

W = Fyi = —ci®. (3.11)

Since the velocity in harmonic motion
x = xg cos (wt)

is
& = zowsin (wt) ,

the energy dissipated in a cycle is

T
/Wdt —cxow/ sin? (wt) dt | (3.12)

where T is the period.
The integral is easily solved, yielding

27
eq = —cx%w/ sin? (wt) d (wt) = —Terdw . (3.13)
0

The energy the damper dissipates in a cycle (negative since it is dissi-
pated energy) is thus proportional to the frequency and to the square of
the amplitude of the motion.

IThe frequency w is here assumed to be a real quantity.
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The ratio between the energy dissipated in a cycle and the potential
energy stored by the spring at the maximum elongation
1
2

is the specific damping capacity of the system, usually indicated by symbol
(U

ka? (3.14)

€s =

€d
€s

¥ == 27er . (3.15)

The specific damping capacity of a viscously damped system is propor-
tional to the frequency.

3.1.5 Transfer function of a system with viscous damping

The equation of motion of a system with viscous damping can be written
in the Laplace domain by transforming both functions f(¢) and z(t) into

f(s) and Z(s). Equation (3.6) thus becomes
(s>M + sC + K)%(s) — Msx(0) — M%(0) — Cx(0) = f(s). (3.16)
If at time ¢ = 0 both x(0) and %(0) are equal to zero, it follows that
(s°M + 5C + K)X(s) = f(s). (3.17)

Also the damping matrix C must be constant in time, but may be a
function of the Laplace variable s.
Equation (3.17) is easily solved in X(s)

%(s) = (M + sC + K) ' (s). (3.18)

The transfer function of the damped system is thus

G(s) = (M +sC+K)™*, (3.19)
or, in case of single degrees of freedom systems,
1
G(s) = . 3.20
(s) ms2+cs+k (3.20)

3.1.6  Dynamic stiffness of a spring—damper series.

Consider a mass—spring—damper system in which the spring and the damper
are in series instead of being in parallel (Fig. 3.2a).

The system has 2 degrees of freedom: the displacement = of mass m and
the displacement xp of point B.

The equations of motion are easily obtained by stating the dynamic
equilibrium conditions of mass m and point B

{ mi + ¢ (i — dp) = F(t)

C(iB — $) + k!.CB = kxA . (321)
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FIGURE 3.2. Spring-mass—damper system with the spring and the damper in se-
ries. (a): sketch of the system; (b) and (c): nondimensional dynamic stiffness and
loss factor as functions of the nondimensional frequency in linear and logarithmic
scales.

Remark 3.3 This set of differential equations is not a fourth order set,
as expected for a system with 2 degrees of freedom, but a third order set,
because the acceleration I p is not present. This is due to the fact that no
mass is located in B.

If all time histories are harmonic, the equation can be written in the
frequency domain

(—me + iwc) o — iwcxrp, = Fo

(3.22)
—iwcx, + (k +iwe) xp, = kza, -

The amplitude xp, can be obtained from the second equation

— wex, kxa, (3.23)
P07 b tiwe |k + iwe '
and substituted into the first, obtaining
kw?c? k%c k —iwce
2 ; —

(—w m+ 12 4 w22 + Wy w2c2> xo = Fy + kxa, 12 4 w22 (3.24)

The dynamic stiffness of the spring—damper series (without the mass m)
is thus

kw?c? ) k%e
kdyn = k2 + w22 + 1w k2 + W22 (325)
Equation (3.25) can be written in nondimensional form as
kdyn w*? . Wt
= 3.26
k 1+w*2+21+w*2’ ( )
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where the nondimensional frequency is

wt=w . 3.27
k ( )

The loss factor is thus .
= 3.28
n » ( )

and decreases with increasing frequency.

The real and imaginary parts of the nondimensional dynamic stiffness
and the loss factor are plotted as functions of the nondimensional frequency
in Fig. 3.2b and c.

When the frequency tends to zero, both the real and the imaginary parts
of the dynamic stiffness vanish and the loss factor tends to infinity. At very
high frequency, on the contrary, only the imaginary part of the dynamic
stiffness tends to zero, together with the loss factor, while the real part
tends to the constant value k.

The value of the frequency at which the imaginary part has a peak is
easily computed by searching the frequency at which its derivative with
respect to w vanishes:

Wpeak = e, wpear =1 (3.29)

The spring—damper series system acts as a damper at low frequency,
while at high frequency it acts as a spring:

hmw*—»O (kdun) = ikw* =icw s
(Kayn) ey = 5 (1+19) (3.30)

limw*_,oo (kdyn) =k.

3.2 State-space approach

When using the state-space approach, the presence of damping does not
change much the relevant equations with the exception of the dynamic
matrix which is now

~-M~'C -M"'K

A= . 0 . (3.31)

Such a formulation holds only if the mass matrix is non-singular. This
can easily occur when one of the masses has a null value, like when a spring
and a damper are connected in series without any mass in between (see,
for instance, Fig. 3.2a).
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As already seen for undamped systems, this problem may be circum-
vented by associating a very small mass to the relevant degrees of freedom.
Also here, however, it has little sense to resort to tricks of this kind when
it is possible to overcome the problem in a more correct way.

The degrees of freedom can be subdivided into two sets: a vector x;
containing the generalized coordinates to which a nonvanishing inertia is
associated, and a vector x5 containing all other ones. In a similar way all
matrices and forcing functions may be split. The mass matrix Mo vanishes
and, if the mass matrix is diagonal, also M5 and My, = MY, vanish.

Assuming that Mz is zero, the equations of motion become

{ M;y1%; + Crixy + Crakxe + Kiixy + Kioxe = fi(2) (3.32)
Ca1%;1 + CaoXy + Koixy + Kooxo = f5(1) . '

To simplify the equations of motion the gyroscopic and circulatory ma-
trices were not explicitly written, but in what follows no assumption on the
symmetry of the matrices will be done. Equation (3.32) thus holds also for
gyroscopic and circulatory systems.

By introducing the velocities vy, together with the generalized coordi-
nates x; and Xs, as state variables, the state equation is

Vi1 Vi I 0 £ (t)
M % p=A"¢ x1 o+ [0 I { fl(t) } , (3.33)
).(2 X9 0 0 2
where
Mi; 0 Cypo Cu K Ki2
M* = 0 0 ng s A = — Cgl K21 K22 . (334)
0 I O . | 0 0

The dynamic matrix and the input gain matrix are

I 0
A=M"1'A* B=M"']| 0 I (3.35)
0 0
Alternatively, the expressions of M* and A* may be
My Cip Coo 0 Kii Kip
M* = 0 Cgl 022 s A = — 0 K21 K22 . (336)
0 1 0 -I 0 0

If vector x; contains n; elements and x5 contains ns elements, the order
of the set of differential equations and the size of the dynamic matrix A
are 2ni + ns.
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3.3 Rayleigh dissipation function

When the equations of motion are written through Lagrange equations,
non-conservative forces can be included into the force vector Q. Alterna-
tively, for a class of damping forces, it is possible to introduce a function
of the generalized velocities, usually referred to as the Rayleigh dissipation
function F.

The Lagrange equations thus become

d (m)_ oT U, OF

it \ oz, ) o T om T ox ~ 9 (3.37)

The Rayleigh dissipation function for the viscous damper of Fig. 3.1a is
simply

F= ;c [& —da(t)] . (3.38)

In general, for a linear system it is a quadratic function of the velocity.
If it can be written in the simple form

F= ;xTcx , (3.39)
where C is the symmetric damping matrix, the damping term appearing
in the equation of motion is simply Cx, as in equation (3.6).

This is not always the case, and the Rayleigh dissipation function may
contain also terms in which the products of the displacements by the ve-
locities are present

1
F= 2>'<TC>'< +xTHx | (3.40)

where H is a skew-symmetric matrix, referred to as the circulatory matriz.
The equation of motion of a linear, discrete, non-conservative system can
thus be written by adding the terms in C and H to Eq. (1.28)

Mx + (C+ G)x+ (K—M, + H)x = f(t) , (3.41)

Remark 3.4 The Rayleigh dissipation function is a measure of the power
dissipated by non-conservative forces.

Example 3.1 Consider the torsional system shown in Fig. 1.4 and already
studied in Example 1.2, adding three viscous torsional dampers with damping
coefficients 'y = 0.1, ' = 1 Ns/m, and I's = 0.4 Ns/m in parallel to the
springs. Write the damping matrixz and the dynamic matrizx.

The equation of motion of the third disc becomes

Js03 + F3(9.3 - 9.2) + k13 (03 — 02) = Ms.

The equations for the other two discs can be written in a similar way, obtaining
a set of three second-order differential equations.
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The Rayleigh dissipation function is

2F = F1012 + 1_‘2(9‘2 - 9‘1)2 + F3(93 — 9‘2)2 5

i.€e.,
1 él g i +12 —I'2 0 él
F = 9 02 —I's I's+Ts —I's 02
93 0 _FB 1—‘3 93

The damping matrix is thus

1.1 -1 0

C=| -1 14 -04

0 -04 04

The dynamic matriz is

—1.1 1 0 —-20 10 0
0.25 —-0.35 0.1 25 =35 1
A -M'C -M'K ] 0 08 -08 0 8 -8
I 0 1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0

Example 3.2 Consider the system of Fig. 3.1b, but with the spring and
damper connecting mass ma to the ground in series instead of being in paral-
lel (Fig. 3.3). Write the equations of motion in both the configuration and the
state space.

The system has now 3 degrees of freedom: the displacement of point B must
be added to the displacements of point masses m1 and mso The equations of
motion are thus

mi 0 0 T c1 + ci2 —C12 0 T1
0 ma2 O 2o + —cC12 c2+c12 —c2 T2 +
0 0 0 B 0 —ca co B
ki+kiz —ki2 0 T kixa + Fi(t)
+ —Fk12 ki 0 T2 = Fa(t)

0 0 ko TB kax A
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Fy(t)

Cio Ky
Fy(t)
Cl kl

my
m
2
Lrel
B
A

X1.
lmer
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X2 iner X2 rel
k 2

}
X
1A

FIGURE 3.3. System of Fig. 3.1b, but with the spring and damper connecting
mass mz to the ground in series instead of being in parallel.

The state variables are just 5 and, using the first formulation, the state-space
equation 1s

mi 0 0 0 0 01
0 mo 0 0 —C2 V2
0 0 0 —C2 C2 X1 =
0 0 1 0 0 To
0 0 0 1 0 B
—c1 — C12 c12 —k1 — k12 k12 0 v1
c12 —C2 — C12 k12 —k12 0 V2
= 0 C2 0 0 —ki12 T +
1 0 0 0 0 T2
0 1 0 0 0 B

kiza+ F (t)
Fa(t)
kox A

Jr
O O O O+
[=NeNell =]
OO = OO
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Example 3.3 Write the linearized equation of motion of the system with 4
degrees of freedom shown in Fig. 1.3, to which a damper has been added in
parallel to each one of the five springs. Assume that the spring with stiffness
ks is at 45° with respect to the direction of the coordinate azes in the reference
(static equilibrium) position.

Use Lagrange equations and take the relative displacements of points P1 and
P> as generalized coordinates.

Let xo; be the coordinates defining the position of points Prand P2 in the
reference (i.e., the static equilibrium) condition and x; their displacements.
The vectors of the relative and inertial generalized coordinates are

(Pl—A) { LTAp, } T To1

YAp, T2 o2

Xrel = - x = T + T =X+Xo ,
A 3 03
(P2 1) "
yAp2 T4 To4
Xine7':Xrel+6wa+6yyA )
where

b.=[1 01 0], 6=[010 1] .
The kinetic energy of the system is

T = é (le]gl + mQVIEQ) = é).(z:’berM).(iner
where
mi 0 0 0
_ 0 mi 0 0
M = 0 0 mao 0

0 0 0 me

Assuming that the length at rest of the springs is loi, the potential energy due
to the springs is
2 2
U=k |:\/(x1 +xo1)® + 2% —lo1| + sko {\/(202 +202)® + a2 —lo2| +
2 2
Sks {\/(363 + x03) + 22 — 103} + 2ka {\/(1’4 + 204) + 22 — lo4} +
2
+;k5 {\/(Is + zo3 —x1 — 2001)2 + (x4 + o4 — 2 — I02)2 - 105}

Since the displacements x; are referred to the static equilibrium conditions,
the length at rest of the springs is

li =x0i fori=1.4 ; los= \/(xog, — $01)2 + (o4 — x02)2
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To linearize the equation of motion, the expression of the potential energy (or
better, the increase of the potential energy with respect to the potential energy
in static equilibrium conditions) can be simplified by neglecting the squares of
the displacements x; with respect to the products x;xo;. The expression of the
potential energy reduces to

2 2
U=k [\/2301101 +12 - lm] + Sko [\/szloz +12, — loz] +
2 2
;kg [\/21’3lo3 +12, — log} + ;k4 [\/21’4104 +12, - 104J +
+;k5 [\/l85 +2Az (23 — x1) + 2Ay (T4 — 2) —los} s

where

Ax =03 —To1 , Ay =Tos— Toz2 .
Finally, the square root can be substituted by its series truncated at its second
term, obtaining

1

U=,

A A ?
{klmf + kox + kgxg + kazd + ks v (x3 —x1) + Y (x4 — Iz)} } )
5

i.e., in matrixz form,

1,7
U= % KxXrer =
T 2 2
1 k1 + c“ks csks —c“ks —csks T1
1 9 csks ko + s2ks —csks —5%ks To
2 T3 —2ks —csks ks + ks csks T3 ’
T4 —csks —5%ks csks ks + sks T4

where ¢ = Az /los and s = Ay/los. Since the spring with stiffness ks is at 45°,
both ¢ and s are equal to \/2/2.

The Rayleigh dissipation function is the sum of the dissipation functions of all
dampers. It is easily expressed as a function of the relative velocities

F = 9 {611’% + Cods + csid + cadl + s [c (23 — 1’1)2 + s (fa — 362)2]}

i.e., in matriz form,

T1 c1 + c2es cses —c2es —cses T1
. 2 2 .
e 1 To cscs co + s°cs —cSscs —s“cs To
= . 2 2 .
T3 —c“cs —csces c3 4+ ccs cscs T3

T4 —csces —8205 cscs c4 + 8205 T4
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By using Lagrange Equations, it follows
M, e;+Cxkrel + KXpop = —MxXa — Mdyya + £(1)

It coincides with the equation obtained by introducing the damping matrix into
Eq. (1.11).

3.4 Structural or hysteretic damping

3.4.1 Hysteresis cycle

An elastic material is a material that does not dissipate energy when de-
formed; if its stress—strain characteristic is linear it is a linear, elastic mate-
rial. A structural element made of a material of this kind can be modeled as
a linear spring (Fig. 3.4a). This model is sometimes referred to as Hooke’s
model and the relevant stress—strain relationship is?

o= Fe. (3.42)

The proportionality constant E is the Young’s modulus or modulus of
elasticity.

If instead of reasoning at the material level, (stresses, strains, mod-
uli), one works at the level of structural elements (forces, displacements,

2
=z
e
a
A
=

Hooke's model
Newton's model

O Maxwell's model
o Maxwell-
Weichert's model

o Voigt's model
o Kelvin's model
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FIGURE 3.4. Models for linear materials: (a) elastic, (b) viscous, (c), (d), (e)
and (f): visco-elastic.

2The sign (—) is omitted for consistency with the usual convention for stresses and
strains: here the force is positive when the spring is stretched and negative when it is
compressed.
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stiffness), the force—displacement characteristics is
F=—kx. (3.43)

However, as already stated, no actual material is exactly elastic: the
simplest way to model material damping is to assume that the material
reacts with a force that depends only on the strain rate. If it is linear it
can be modeled as a linear viscous damper (Fig. 3.4b), a model sometimes
referred to as Newton’s model. Its stress—strain relationship is

o=-Cée, (3.44)
or, in terms of forces and displacements
F=—ct. (3.45)

Actual materials react with both a restoring and a damping force; to
model a linear visco-elastic material at least one spring and one damper
are needed. They may be arranged in series (Maxwell’s model, Fig. 3.4c)
or in parallel (Voigt’s model®, Fig. 3.4d). The stress-strain and force-
displacement relationships for the latter model are

oc=—FEe—Cé, F=—kx—ci. (3.46)

A model of this kind does not simulate satisfactorily actual engineering
materials. Since the 1920s experiments showed that many materials, when
subjected to cyclic loading, exhibit a type of internal damping causing
energy losses per cycle that are proportional to the square of the amplitude
and independent of the frequency. This behavior is usually described as
structural or hysteretic damping.* Although subsequent studies showed
that there is a certain dependence on the frequency, hysteretic damping
is still considered an adequate model for energy dissipation in structural
materials in many applications.

Structural damping is thus defined assuming that the time history of the
stress cycles is harmonic and, since the material is linear, also the time
history of the deformation follows a similar pattern. The time histories
of the stress and of the strain are slightly out of phase and an elliptical
hysteresis cycle results in the (oe€) plane (Fig. 3.5a): the strain lags the
stress by a phase-angle ®.

Since the internal damping of most engineering materials is small, the
two time histories are only slightly out of phase and the elliptical hysteresis
cycle is small, usually much smaller than that shown in Fig. 3.5a.

3These models are often referred to with different names. See Banks H.T., Pinter
G.A., Hysteretic Damping, in S. Braun (ed.), Encyclopedia of Vibration, Academic Press,
London, 2001, and D. Roylance, Engineering Viscoelasticity, MIT, Cambridge, 2001.

4See, for instance, N.O. Myklestad, The concept of complex damping, Jour. of Applied
Mechanics, Vol. 19, 1952, p. 284.
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FIGURE 3.5. (a) Hysteresis cycle in (o €) plane. (b) Stresses and strains repre-
sented as rotating vectors in the complex plane at time ¢ = 0.

Assuming that at time ¢ = 0 the strain reaches its maximum value, it
follows

o = ogcos (wt + D)
{ € = ¢€o cos (wt) (3.47)
or, using the complex notation
_ i(wt+P)
0 = 0pe€
{ozmil (3.48)

where the amplitudes oy and ¢y have been assumed to be real numbers.
The ratio between the stress and the strain, that in an elastic material is
the Young’s modulus, is now expressed by a complex number, the complex
modulus o oy
E* = ¢ e e'® = E[cos (®) + isin (D)] . (3.49)
Its real part

E’' = Ecos (®) (3.50)

gives the measure of the elastic stiffness of the material and is often referred
to as storage or in-phase modulus. The imaginary part

E" = Esin (®). (3.51)

is linked with damping and is said to be the loss or in-quadrature stiffness.
Their ratio is the loss factor or loss ratio n

E/I

= = arctan(®). (3.52)

n

As already stated, the phase-angle ® by which the strain lags the stress

is assumed to be independent from the frequency. This causes the complex

modulus to be independent from the frequency: it can be considered as a
characteristic of the material.
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In the same way also the stiffness of a structural member can be expressed
by a complex number, the complex stiffness

k=K + ik (3.53)

whose real part, the in-phase or storage stiffness k', and imaginary part,
the in-quadrature or loss stiffness &/, are independent from the frequency.
The loss factor of a structural element is thus defined as

1"
=, = arctan(®) . (3.54)
Another parameter that is sometimes used to quantify the internal damp-
ing of materials is the specific damping capacity 1. It is defined as the ratio
between the energy dissipated in a cycle (area of the ellipse in Fig. 3.5) and
the elastic energy stored in the system in the condition of maximum am-
plitude (area of the OAB triangle in the same figure)

mopeo sin(P)

Y = = 27sin(P). (3.55)

500€0
Contrarily to what seen for viscous damping, the specific damping capac-
ity of a system with hysteretic damping does not depend on the frequency.
The damping of most engineering materials (except for some elastomers)
is quite small (see Table 3.1), and the trigonometric functions of the phase-
angle ® can be linearized. The expressions of the quantities defined earlier
can, consequently, be simplified:

kK =~ k, n=~®,
E* ~ k(1 +1n), U = 27D ~ 27

The loss factor of a structural member can be equal to that of the material
(as in the case of a homogeneous monolithic spring) or greater, if some
damping mechanisms other than material hysteresis are present (as in built-
up members, with rivets or threaded joints, elements in viscous fluids, and
S0 on).

(3.56)

TABLE 3.1. Order of magnitude of the loss factor of some engineering materials.
The high values typical of some elastomeric materials prevents from using the
simplified formulae reported above.

Material n
Aluminium alloy 0.0001 — 0.001
Copper and copper alloys  0.001 — 0.005
Cast iron 0.001 —0.08
Steel 0.01 —0.06

Rubber 0.01 -3
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3.4.2  Equation of motion in the frequency domain

The complex stiffness and the complex modulus have been introduced in
connection with harmonic loading and, as a consequence, they are well
suited to equations of motion written in the frequency domain.

The equation of motion of a single degree of freedom system with hys-
teretic damping can thus be obtained by introducing the complex stiffness
expressed by Eq. (3.56) into the frequency-domain equation (2.12), obtain-
ing

[—w?m + k(1 +in)] 2o = fo - (3.57)

This equation can be generalized to multi degrees of freedom systems by
introducing an in-phase and an in-qudrature stiffness matrix

(~w*M+ K’ +iK")xg =1 . (3.58)

If the loss factor is constant throughout the system, matrices K’ and K’
are proportional and the complex stiffness matrix reduces to

K'=(1+inK.
Remark 3.5 A time-domain equation of motion of the kind
mi + k(14 in)x = f(t) (3.59)

has no meaning: Both the force f and the displacement x are generic func-
tions of time, while the complex stiffness is defined only if their time his-
tories are both harmonic. Moreover, functions x(t) and f(t) are both real
quantities and the complex equation linking them has no meaning.

Although it can be demonstrated that the definition of structural damp-
ing can be extended to the more general case of periodic loading, because
any periodic time history can be expressed as the sum of harmonic terms,
its extension to nonperiodic time histories through Fourier transform is
impossible, since it can lead to non-causal results.

The dynamic stiffness of a system with structural damping is thus

kayn = —mw? + k(1 +in), (3.60)
for single degree of freedom systems, or in general,

Kayn = —w*M + K’ +iK". (3.61)

3.4.3 FEquivalent viscous damping

Structural damping is a form of linear damping that does not differ much
from viscous damping. From the frequency-domain equation of motion (3.7)
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it is clear that also in the latter case it is possible to define a complex
stiffness, with an imaginary part equal to

cw

instead of
ikn .

By equating the two expressions of the in-quadrature stiffness, it is pos-
sible to define an equivalent viscous damping
nk
Ceq = , 3.62
=" (362)
through which structural damping can be assimilated to viscous damp-
ing with a coefficient inversely proportional to the frequency at which the
hysteresis cycle is gone through.®
In the case of systems with many degrees of freedom, it is also possible
to define an equivalent viscous damping matrix

1
Cey= K. (3.63)

Remark 3.6 Fquation (3.62) shows clearly the inconsistence of using the
hysteretic damping model at very low frequency, since the equivalent damp-
ing tends to infinity when w — 0. This is due to the assumption that the
shape of the hysteresis cycle is not affected by the frequency, while in a static
test (i.e., for w — Q) there is no hysteresis cycle at all and the stress—strain
relationship of a linear material is a straight line.

To remove the dependency of the equivalent damping from the frequency,
Eq. (3.62) can be modified as

k
Cg="", (3.64)

Wy
where w, is a reference frequency, at which the equivalent viscous damping
dissipates the same energy as its hysteretic counterpart. As it will be seen

later, if w, is the natural frequency of the system and damping is low, an
acceptable approximation may be obtained.

Remark 3.7 Structural damping is just a linear model that, while allow-
ing modeling many actual systems better than viscous damping, gives only
a rough approximation of the behavior of structural members. The Young’s

5The formula should be written as ceq = nk/ |w|, where |w| is the frequency at which
the hysteresis cycle is gone through. In the present section the frequency is assumed to
be always expressed by a positive number.
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modulus E and the loss factor n of most engineering materials are inde-
pendent of the frequency only in an approximated way. Most metals stick
to this rule within a fair or even a good approrimation, while elastomers
often show wvery strong dependence of their mechanical characteristics on
frequency (see Section 3.7).

The loss factor of all materials is a function of many parameters and is
particularly influenced by the amplitude of the stress cycle. During the life
of a structural member, strong variations of the damping characteristics
with the progress of fatigue phenomena are expected. Actually, damping
can be used to obtain information on the extent of fatigue damage.

With all the needed caution, it is possible to mention typical values of
damping of different engineering materials (Table 3.1). A large quantity of
data can be found in the literature.’

The behavior of materials is only approximately linear, but while the non-
linearities of the stress—strain curve are usually only found at high stresses
and a wide linearity field exists, the nonlinearities in the damping char-
acteristics are found at all values of the load. While the dependence of
the characteristics of the material on the frequency can be taken into ac-
count easily, the last consideration would lead to nonlinear equations and,
consequently, is usually neglected.

With all the aforementioned limitations, the structural damping model
remains a powerful tool for structural analysis and finds a wide application.

3.5 Non-viscous damping

3.5.1 Systems with a single degree of freedom

However, if a visco-elastic material is abruptly subject to stress, its strain
reaches instantly a certain value, to increase slowly in time. This is known
under the name of creep. If on the contrary is abruptly strained, its stress
reaches instantly a certain value, and then slowly decreases in time. This
is known under the name of relaxation.

The stress (force) is thus dependent not only on the instant values of
the displacement (strain) and velocity (strain rate), but also on their past
history. Some sort of ‘memory’ must be included in the constitutive law of
the material.

Possibly, the most general model for this phenomenon is the relationship

Fe—ko— /t C(t7)i(r)dr. (3.65)

6See, for instance, B.J. Lazan, Damping of Materials and Members in Structural
Mechanics, Pergamon Press, Oxford, 1968.
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where function C (¢, 7), which usually has the form C (¢ — 7), is referred to as
damping kernel function, or retardation, heredity, after-effect or relaxation
function.

A common expression for the damping kernel function for a single degree
of freedom system is a sum of exponential terms

Clt—7)=>_ cipe =7 (3.66)
=1

where the m parameters p; are said relaxation parameters.

If all p; tend to infinity, viscous damping is obtaned.

The equation of motion of a system with a single degree of freedom, which
includes also nonviscous damping, modeled using Eq. (3.65) together with
Eq. (3.66) to express the damping kernel, is

m t
mi+ i+ Y il e Mg (1) dr + kx = f(t) . 3.67
> e

i=1 >

It is possible to demonstrate that each exponential term in Eq. (3.66)
yields a force equivalent to that due to a spring with a damper in series
(system of Fig. 3.4c). The restoring force expressed by Eq. (3.65) is thus
equivalent to that due to the Maxwell-Weichart’s model shown in Fig. 3.4f,
with a number m of dampers.

This is easily shown by observing that the force exerted by each expo-
nential term in Eq. (3.66) is

t
Fy = cipi / e M=) g (1) dr . (3.68)
Since the Laplace transform of
f(r)=e"
is 1
fo)= 4
the Laplace transform of force F;(t) is

- s
F; = Cill; i . 3.69
() =cm, ] () (3.60)

The corresponding stiffness in the Laplace domain is thus
S

: 3.70
st (3.70)

k(s) = ciu;

The frequency-domain complex stiffness is obtained by substituting iw

for s: )
N w w* + ipw
E* (w) = ciuii = cip; Hi

3.71
W+ i w? + pif (371
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If L
i = and c=¢; (3.72)

Ci
the complex stiffness becomes

2.2

m@gzk( v 4 e ), (3.73)

W
k2 + 2w? k2 + 2w?

which coincides with the complex stiffness expressed by Eq. (3.25).

Since the nonviscous damping can be expressed by the system of Fig. 3.4f,
the m degrees of freedom corresponding to the displacements of points B;
must also be considered. They are usually referred to as internal or damping
degrees of freedom. The system, although containing just one mass, has thus
m + 1 degrees of freedom.

However, since no mass is associated to points B;, the accelerations of
the internal coordinates do not appear in the equations of motion, and the
order of the differential equation is not 2 (m + 1) but only m + 2.

The equation of motion of the system of Fig. 3.4f with mass m located
in point C and constrained in point A thus

Mx + Cx + Kx = f(t) , (3.74)

where, remembering Eq. (3.65), the relevant matrices and vectors are

xc m 0 0 F.
_ ) TB1 - 0 0 B 0
X = B2 ) M - 0 ) f(t) - 0 9
symm. 0
c+> e —a —e .. k 0 0
C— C1 0 ’ K= H1C1 0
C2 H2C2
symm. symim.

Since the states are only m + 2, remembering Eq. (3.34), the state equa-
tion is,

’[)C (Y6 FC
do p=MTITANG wo p M 0 , (3.75)
XB XB Omx1
where
m 0 Ci Cii Kii Oixm
M*=| Omx1 Omx1  Ca , A== Ca1 Opxn Koo ;
0 1 01><m _1 O 01><m

C41 and K7; are numbers, Cq, is a row matric with m columns, and Coq
and Koo are m x m diagonal matrices.
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This form of the state equations is not unique, and many different forms,
all essentially equivalent, can be found in the literature.” Moreover, it is
possible to associate also a mass to points B;, in such a way that the
mass matrix is not singular. This approach is followed by the GHM model
intrduced by Golla and Hughes.®

Since the various approaches are essentially equivalent, only the one
shown above will be dealt with here.

A similar result can be obtained by resorting to the stress—strain rela-
tionship

o+ 10 = E, (e + 75¢) , (3.76)

where E,., 7., and 7, are the relaxed modulus of elasticity, and the constant
strain and constant stress relaxation times, respectively. It allows to account
for creep and relaxation phenomena. If the stress and strain time histories
are harmonic in time .

{ o = gpeit

T (3.77)
where the amplitudes oy and ¢y are expressed by complex numbers, the
frequency-domain stress—strain relationship becomes:

oo (1+itw) = 6B, (1 + it,w) . (3.78)

The ratio between the (complex) amplitudes of the stress and the strain
is
) 1+ im,w L+ 7etow? (7o — T w
= ) =F +1 . 3.79
€0 "1 +itw "1+ 7202 1+ 72w? (3.79)

This is equivalent to defining a complex Young’s modulus whose real part

(the in-phase or storage modulus) £’ and imaginary part (the in-quadrature
or loss modulus) E” are both functions of the frequency w

1+ 7T w? (To —Te)w
/ 1
E =FE, 14 7202 , BF'"=F,. | 4 1202 . (3.80)

Their ratio is the loss factor

B _ () (3.81)

n= £ 1+ Tetow?

It is again possible to demonstrate that this frequency-domain expression
is the same that can be obtained from the Kelvin’s model, (Fig. 3.4d, Eq.

"For instance, the equation found in N. Wagner, S. Adhicari, Symmetric State-Space
Method for a Class of Nonviscously Damped Systems, AIAA Journal, Vol. 41, Nob5,
May 2003, p. 951-956, is obtained starting from Eq. (3.36) instead of Eq. (3.34) and
multiplying the last equation by m.

8D.J. McTavish, P.C. Hughes, Modelling of Linear Viscoelastic Space Structures,
Journal of Vibration and Acoustics, , Vol. 115, Jan. 1993, p. 103—110.
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(3.88)), provided that

To

Te

kO:ETa kler< _1)7 Cler(To_Te)-
This model is sometimes also referred to as the standard linear material
model.

3.5.2  Systems with many degrees of freedom

Consider a system with many degrees of freedom, which includes both
viscous and nonviscous damping, and use Eq. (3.65) to express the latter.
Let the damping kernel be expressed by Eq. (3.66).

The resulting equation of motion is

t

M+ Cx+ Y ciui/ e Nk () dr + Kx=£(t) . (3.82)

i=1 >

Although being usually symmetrical, the matrices C; may have different
structures. If, for instance, hystereting damping is distributed on the whole
structure, having the same characteristics everywhere, they are not rank
deficient, and their number m is equal to the number of exponential terms
needed to approximate the actual behavior of the material with the required
accuracy.

If, on the contrary, the nonviscous damping has different properties in
different parts of the structure (e.g., because different materials are used),
their rank is much smaller than the number n of degrees of freedom (i.e.,
they are rank deficient) and they have nonvanishing terms only in the zone
interested by the relevant material. Their number m is much larger, since
there is a number of matrices equal to the sum of the numbers of exponential
terms needed to model each one of the various materials. For instance,
if there are five different materials, and each one is modeled using four
exponential terms (i.e. there is a total of 20 exponential terms), m = 20.

The equation in the configuration space has now a size n (m + 1)

where
X M 0 0 f
ok XB1 % 0 0 sk o 0
= XB2 ’ M™ = 0 ’ f (t) - 0 )

symm. 0

C+Y»,C; —-C; —-C,

C, 0
C** — ,
C,

Symm.
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K 0 0
ok ,ulcl 0
K =
12Co
symm.

If matrices C; are not rank deficient, the state equations can be written
in the same way seen for single degree of freedom systems. Partitioning the
degrees of freedom to separate the coordinates of the actual system x (they
are n) from the internal coordinates xp (they are n x m), and using Eq.
(3.34), it follows that

v v f
X p=M"T1A{ x M 0 x1 : (3.84)
XB XB O(nxm)x1
where
M 0 15
M* = O(nxm)xn O(nxm)xn C;; )
Onxn Lixn 0n><(n><m)
11 11 Onx(nxm)
A" =— C;T O(nxm)xn 3;
—Lixn 0 0n><(n><m)

Again, the state equation can be written in different, but equivalent,
forms.

If matrices C; are rank deficient the singularity of matrix M* prevents
from performing the inversion needed to obtain the dynamic matrix of the
system. Removing the singularity has the added advantage of reducing the
number of states of the system.

Assuming that all matrices C; are symmetrical and following the proce-
dure outlined by S. Adhicari and N. Wagner,? the eigenvalues and eigenvec-
tors of the matrices C; are first obtained. If the rank of the generic matrix
C, is 1y, its r; (with r; < n) nonzero eigenvalues can be collected in the
diagonal eigenvalue matrix d;, whose size is r; X r;.

A rectangular transformation matrix R; (whos size is n X r;) can be
defined, so that

R/CR,; =d; . (3.85)

The columns of matrices R,; are the eigenvectors of matrix C; correspond-
ing to the r; nonzero eigenvalues. If matrices C; are not symmetrical, this
procedure can be modified by using the left and right eigenvectors.'”

9N. Wagner, S. Adhicari, Symmetric State-Space Method for a Class of Nonviscously
Damped Systems, AIAA Journal, Vol. 41, No5, May 2003, p. 951-956. Here a slightly
different definition of the internal coordinates has been used.

103, Adhicari, N. Wagner, Analysis of Asymmetric Nonviscously Damped Linear Dy-
namic Systems, Journal of Applied Mechanics, Vo. 70, Nov. 2003, p. 885-893.
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The internal coordinates xp; can thus be reduced in number through the
transformation

xp;= RiXp; . (3.86)

By introducing the internal coordinates Xp; instead of xp;, the matrices
C** and K** reduce to

C+ er;l C;, —-CiR; —-C3R»
cr = 0 d, ’

symm

K 0 0
*ok M1 dl 0
K =
,uzdz

Symim.

and the computation proceeds as before.

3.6 Structural damping as nonviscous damping

3.6.1 Ideal Mazwell-Weichert model

As already stated, the formulation of the structural damping seen in Section
3.4.1, with the exception of Eq. (3.64), can be used only in the frequency
domain. This is a severe limitation, particularly nowadays, since it pre-
cludes the possibility of integrating the equations of motion numerically in
time.

Many attempts have been made, particularly in the 1950s and 1960s, to
overcome this limitation. A model that can be applied in the time domain
was introduced by Voigt and studied further by Biot'! and then by We-
ichert. It consists of a spring, with in parallel a large number of spring and
damper system in series (Fig. 3.4f).

If there are n dampers, like in the case seen for non-viscous damping,
the system has m + 2 degrees of freedom: The displacements of points A
and C and of the m points B;.

Consider the simplified case with m = 1 (Kelvin’s model, Fig. 3.4e).
The dynamic stiffness matrix of the system can be obtained by adding the
stiffness of the spring kg with that of the parallel of spring k1 and damper

M. A. Biot, Linear Thermodynamics and the Mechanics of solids, Proc. Third U.S.
National Congress of Applied Mechanics, 1958, p.1, T.K. Caughey, Vibration of Dynamic
Systems with Linear Hysteretic Damping, Linear Theory, Proceedings of the Fourth US
National Congress of Applied Mechanics, 1962, pp. 87-97. In his paper Biot refers to
the Maxwell-Weichert model as the Voigt model.
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¢1 obtained from Eq. (3.25):

w?e kl . wclk%
ayn = k ! 3.87
w0t g et T (3:57)
The complex stiffness of the system of Fig. 3.4a is thus
Ui wchki weik
kayn = ko + K2 4 e Z K wQCQ : (3.88)

i=1

Caughey, in the mentioned paper based on the Maxwell-Weichert model

of Fig. 3.4f, introduced a ratio
k;

P = 3.89

pi= (3.59)

between the stiffness and the damping of the ith branch.'? Its dimensions

are 1/s and then has the same dimensions of a frequency. Equation (3.88)

thus reduces to

u w? o wph
kdyn = ko + E k; (5-2+w2+zﬁ-2+w2) . (3.90)
i=1 i i

By allowing the number of dampers to tend to infinity, the stiffness k;
becomes a function of a parameter identifying the infinity of infinitesimal
dampers. Biot proposed to use 3 as a parameter and to assume that func-
tion k& (0) is

g
k(B) = ko g
where ¢ is a constant linked with the damping of the system.

The sums in Eq. (3.88) are thus transformed into integrals

ayn = ko {1 —|—gw2/E ﬁ(ﬁ2iw2) + z'gw/E (82 fuﬂ)} , o (3.92)

where € is the minimum value taken by .
By integrating and assuming that ¢ is linked to the loss factor by the
relationship

(3.91)

2
g=n_,
m
it follows that
1 2 2
kdyn:ko{1+n 1n[1+”2}+m{1— artg(e)]}. (3.93)
m € 7T w

2Ratio 3; coincides with the exponent p; introduced in the nonviscous damping
model.
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The complex stiffness of an hysteretic damper should be independent
from the frequency, while that expressed by Eq. (3.93) is not. However, in a
suitably chosen frequency range, the approximation is quite good. The ratio
between the complex stiffness obtained from Eq. (3.93) and that obtained
from the hysteretic damping model is shown in Fig. 3.6 as a function of the
nondimensional frequency w/e.

Biot suggested that the frequency should be larger than 10, i.e., that the
nondimensional frequency w/e should be larger than 10. From the figure it
is clear that the error on the imaginary part is smaller than 6% and reduces
quickly with increasing frequency. The error on the real part depends on
the value of the loss factor: if the latter is small enough an error smaller
than a few percent is obtained in a wide frequency range.

Remark 3.8 The Mazwell-Weichert model is quite satisfactory, consid-
ering also that

(a) the hysteretic damping model is at any rate an approzimation,

(b) the hysteretic damping model does not hold at low frequency (e must
then be chosen accordingly)

(c) the hysteretic damping model in the form of Eq. (3.56) holds only
for low values of the loss factor .

1.1
: Rk ]
K/k :
1hoe n=0.02_~"
' /’/’ P
e |
1.04 e ..0.01 ]
,/ __/
1.02 B I il N
1 r/,;,,—— | -~ 0.001
’,—" -
0.98 =
0.96 /W
0.94 /
/
0.92
0.9 /
1 10 100 1000

/s

FIGURE 3.6. Ratio between the real and the imaginary parts of the complex
stiffness k obtained from Eq. ( 3.93) and the ones obtained from the hysteretic
damping model kj;, as a function of the nondimensional frequency w/e.
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Remark 3.9 The Mazwell-Weichert model is not linked with the frequency-
domain formulation and can be used also in time-domain equations. It in-
troduces however a large (theoretical infinite) number of additional degrees
of freedom, the displacements of points B;.

3.6.2 Practical Maxwell-Weichert model

The Maxwell-Weichert model seen in the previous section is just a theo-
retical model and cannot be directly applied to numerical integration of
the equations of motion, owing to the infinity of spring—damper systems it
includes. It may be approximated by using a finite (small) number m of
dampers.

The contribution of each damper to the imaginary part of the complex
stiffness is expressed by Eq. (3.90) and peaks at a frequency (Eq. (3.29))

k.
w = ' = ﬂz . (394)
Ci
It is then possible to identify a number m of frequencies w; and stating
that at each one of them one of the dampers works at its maximum damping
conditions (8; = w;) and that the sum of all terms at that speed is equal
to nk:

Z;kﬂffﬂf =k forj=1, ..., m. (3.95)
A set of n equations allowing to compute the various k; is thus obtained
Ak = nke , (3.96)

where
Ay = ﬁ; Jf ﬂ? , (3.97)

k is the vector containing the unknowns k; and e is a suitable unit vector.
Since the various (; are known, all the parameters of the system are
known once that the values of k; have been obtained.
The simplest model is that with a single damper (m = 1, Fig. 3.4e):
it adds just a single degree of freedom to the system and is made by two
springs and one damper. Matrix A reduces to a number:

A=05. (3.98)
If the damper is tuned at the reference frequency w,., it follows
k
ky = 2nko , c1 = 210 . (3.99)

A comparison between the equivalent damping computed using Eq. (3.64)
and that computed using the present model is reported in Fig. 3.7a and b.
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FIGURE 3.7. Maxwell-Weichert damper with n = 1 (Kelvin model). Compar-
ison between the equivalent damping computed using Eq. (3.64), curve labeled
‘Voight’, and that computed using the present model, curve labeled ‘Kelvin’. The
real part depends also on the value of 77: The curves for n = 0.001, 0.01, and 0.02
are reported.

The figure shows that the real part of the complex stiffness, that in the
model of Eq. (3.64) is the same as that for hysteretic damping, is now
slightly increasing with the frequency. How much it increases depends on
the value of the loss factor and three curves for n = 0.001, 0.01, and 0.02 are
reported. The imaginary part coincides with that of the hysteretic damping
at the reference frequency. Both below and above the Maxwell-Weichert
model gives a better approximation than the ‘parallel’ (Voigt’s) model of
Fig. 3.4d. Above all, it prevents the imaginary part from rising drastically
with increasing frequency. In both cases, the behavior at very low frequency
is better, since it prevents the equivalent damping from growing without
bounds at decreasing frequency.

To obtain a better approximation, a larger number of spring-damper
series can be used. Assume that the frequencies w;, with ¢ = 1, ..., m at
which the dampers are tuned are in geometric progression:

wip1 =a‘'wy, fori=1,..,m—1. (3.100)

Since (; = w;, the elements of matrix A are

h =1
5= e (3.101)
If a is large enough (typically, it can be assumed a = 10),
a® >>a¥ | for j > i. (3.102)

In this case,
1
Aij = 9 fOl”j =1 y (3103)
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Ay~ a7 for j>i. (3.104)

The values of the stiffness and the damping coefficients of the various
dampers are thus

yink
ki =vyink , ¢ = 1)
Py 77 c wla(z_l)
where ~; are the solutions of the equation
Avy=e (3.105)

and are functions only of ratio a. The values for a = 10, computed using
the exact values for A, are

n=1 2

n=2 16694 1.6694

n=3 17035 1.3254 1.7035

n=4 1.7001 1.3600 1.3600 1.7001

n=>5 1.7004 1.3566 1.3947 1.3566 1.7004

n=6 1.7004 1.3569 1.3913 1.3913 1.3569 1.7004

n=7 17004 1.3569 1.3916 1.3878 1.3916 1.3569 1.7004

n=38 1.7004 1.3569 1.3916 1.3881 1.3881 1.3916 1.3569 1.7004

n=9 17004 1.3569 1.3916 1.3881 1.3885 1.3881 1.3916 1.3569 1.7004

n =10 1.7004 1.3569 1.3916 1.3881 1.3885 1.3885 1.3881 1.3916 1.3569 1.7004

If the range in which the Maxwell-Weichert damper is tuned is centered
(in a logarithmic scale) on the reference frequency w,., the value of w; is

1—m

Wi =wra 2 . (3.106)

To evaluate the precision that can be obtained using this approach, con-
sider the case with m = 3 and a = 10.

The results are reported in Fig. 3.8. From the figure it is clear that the
imaginary part of the complex frequency is almost constant, and close to
that obtained for hysteretic damping, in a range of frequencies spanning
from less than 0.1 to more than 10 times the reference frequency, to drop out
outside this range. The real part is close to that characterizing hysteretic
damping, with an error growing with growing 7.

Remark 3.10 The model here shown coincides with that previously de-
scribed for nonviscous damping. It allows to write equations of motion in
the time domain starting from the hysteretic damping formulation that are
a very good approzimation in a wide frequency range, at the cost of intro-
ducing a number of additional degrees of freedom.

Remark 3.11 The larger the number of additional degrees of freedom, the
wider 1is this frequency range or the more precisely the model simulates
hysteretic damping.
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FIGURE 3.8. Ratio between the imaginary (a) and the real (b) parts of the
complex stiffness k obtained from a simplified Maxwell-Weichert model with
three dampers and the ones obtained from the hysteretic damping model kj, as a
function of the frequency w. Full lines: complex stiffness of the system and dashed
line: imaginary part of the stiffness of each one of the branches.

3.7 Systems with frequency-dependent parameters
A complex viscous damping
= +id (3.107)

can be introduced in the same way the complex stiffness was defined. The
real part ¢’ is coincident with the damping coefficient and the imaginary
part ¢” is actually a stiffness in the sense that it does not involve any dissi-
pation of energy. As an equivalent damping was defined for the imaginary
part of the complex stiffness, an equivalent stiffness can be defined for the
imaginary part of the complex damping:

keq = —w(”.

Consequently, the complex damping model allows to introduce a stiffness
that grows linearly with increasing frequency into the linear equation of
motion (if ¢” is expressed by a negative number).

More generally, it is possible to define coefficients ¢ and k which are gen-
eral functions of the frequency. However, as already stated for the complex
stiffness approach, a time-domain equation of motion like

mi + c(w)t + k(w)x = F(t) (3.108)

is conceptually inconsistent, since it is written partly in the time domain,
with the time histories z(¢) (and its time derivatives) and F'(t), and partly
in the frequency domain, because the laws c¢(w) and k(w) enter explicitly
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the equation. The frequency w is, however, defined only when the time
history z(t) is harmonic. As a consequence, equation (3.108) should not be
used.

The corresponding frequency-domain relationship

—mw? +ic(w)w + k(w)|zo = fo , (3.109)

on the contrary, is correct and useful for the study of harmonic motion. For
a more detailed discussion of this issue, see, for example, the well-known
paper by S.H. Crandall.'3

A case in which the dependence of the elastic and damping characteris-
tics of the system on the frequency is very important is that of structural
members made of elastomeric materials. The in-phase and in-quadrature
stiffness k' and k” of an elastomeric element are reported as functions of
the frequency in Fig. 3.9. The loss factor

7 = tan(P)

has also been plotted in the figure. Three regions are usually defined: At
low frequency (rubbery region), the material shows a very low stiffness; at

100
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FIGURE 3.9. In-phase and in-quadrature stiffness and loss factor of an elas-
tomeric spring as a function of the frequency.

13S.H.Crandall, “The role of damping in vibration theory”, J. of Sound and Vibration,
11(1), (1970), 3-18.
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high frequency (glassy region), its stiffness is substantially higher. Between
the two regions there is a zone (transition region) in which the loss factor
has a maximum.

The stiffness and damping of elastomeric materials is also strongly in-
fluenced by temperature, and the effects of an increase of frequency or
a decrease of temperature are so similar that it is possible to obtain the
curves related to changes in temperature at constant frequency from those
related to frequency at constant temperature and vice versa. Note that in
the case of Fig. 3.9, the value of the loss factor is quite high, at least in the
transition region, and no small-damping assumption can be made.

3.8 Exercises

Exercise 3.1 Consider the system of Fig. 1.8, already studied in Ezercises 1.2,
2.1 and 2.3. Write the transfer function of the system, adding dampers ci1, c2, cs3,
and c4 in parallel to all springs.

Numerical data: m1 = 10, me =5, k1 = 10, ko =8, ks =4, ks =5, c1 = 2,
c2=1,c3=1, ca =1.5.

Exercise 3.2 Plot the dynamic compliance of the system sketched in Fig. 1.4
and already studied in Example 1.2 and Ezercise 2.4, with the values of the damp-
ing coefficients given in Example 3.1.

Exercise 3.3 Consider the beam already studied in Exercise 2.2, and assume
that the loss factor of the material is 7 = 0.01. Compute the dynamic compliance
of the system. Since it is a complexr number, plot its amplitude and phase as
functions of the frequency.

Data: 1 =1 m, d; = 60 mm, do = 80 mm, m = 30 kg, E = 2.1 x 10" N/m?.

Exercise 3.4 Repeat the computation of the previous exercise, by substituting
the structural damping model with a Maxwell-Weichert model with three dampers.
Chose the parameters of the model so that the two model yield the same results at
the frequency at which the frequency response has a mazximum and at frequencies
equal to 0.1 and 10 times that value. Compare the results with those of the previous
ezercise. Plot also the real and imaginary parts of the dynamic stiffness of the
beam without mass.
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Free Vibration of Conservative
Systems

The free motion of undamped vibrating systems is studied. The properties of
the modes of free vibration of multi-degrees-of-freedom systems are studied
and it is shown that they allow to perform a coordinate transformation
uncoupling the equations of motion.

4.1 Systems with a single degree of freedom

The solution of Eq. (1.3) (or of Eq. (1.4)) can be obtained by adding the
complementary function, i.e., the general solution of the homogeneous equa-
tion, to a particular integral of the complete equation. The first describes
the behavior of the system when no external excitation acts on it (free be-
havior) and, consequently, it is influenced only by its internal parameters.
The homogeneous equation of motion is a second-order autonomous dif-
ferential equation because the independent variable, time, does not appear
explicitly.

Remark 4.1 When studying the free behavior, it is immaterial whether
Eq. (1.3) or (1.4) is used, because their homogeneous parts are identical.

Remark 4.2 Contrary to the complementary function, the particular in-
tegral describes the motion under the effect of an external excitation and
thus is influenced by both the characteristics of the system and the time
history of the excitation.
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The homogeneous equation of motion of a conservative system with a
single degree of freedom is thus

mi +kr=0. (4.1)

Its solution is harmonic in time, and thus can be expressed by either a
sine or cosine function or an exponential function with imaginary exponent,
as discussed in detail in Section 2.2.1.

Here a solution of the type

x = xge® (4.2)

is assumed, which amounts to searching for a solution in the Laplace do-
main.
The acceleration is easily obtained from the time history (4.2):

i = xos2et .

By introducing the solution (4.2) into the equation of motion, the latter

becomes
T (ms2 +k)e=0. (4.3)

Equation (4.3) holds for any value of time and hence in particular when
et # 0.1 By dividing Eq. (4.3) by e®!, the following algebraic equation is
obtained

zo(ms® +k)=0. (4.4)

The condition for the existence of a solution other than the trivial solu-
tion
o — 0
leads to the following characteristic equation

ms®+ k=0, (4.5)

whose two solutions, s; and s, are

k
51,2 = + Z\/ =4+ iwn . (46)
m

The two solutions of the characteristic equation are imaginary, yielding
a harmonic oscillation whose circular frequency is the natural frequency wy,

of the system
k
n = . 4.7
“ \/m (1)

ISince s is in general a complex number, there may be an infinity of values of ¢ for
which est = 0.
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The complementary function is the sum of two terms of the type shown
in Eq. (4.2) with two constants, xp1 and zg2, that depend on the initial
conditions and are usually expressed by complex numbers

x = xore’tt + zoee®?t = { [%(9601 + z02) + 1S (zo1 + xog)} cos(wpt)+

+ [S(xog — {E()l) + i@?(xm — $02):| sin(wnt)} .
(4.8)
Remark 4.3 As already stated in Chapter 2, the displacement x is a real

quantity and then the two constants, xg1 and xo2, must be compler conju-
gate. Equation (4.8) thus reduces to

x = 2R(x01) cos(wnt) — 23 (o1 ) sin(wpt) . (4.9)

If at time ¢ = 0 the position 2(0) and the velocity #(0) are known, the
values of the real and imaginary parts of constant zy; are

o _al)
o) 2 (4.10)
C\\S‘($01) = _2(,«)”3:(0) .

The equation describing the oscillations of the system is then

z = |z(0) cos (wy t) + £(0)

sin (wy, )| . 4.11
) sin (w1 (411)

The trajectories of the free oscillations of a conservative linear system
in the state plane are circles, or ellipses, depending on the scales used for
displacements and velocities (Fig. 4.1).

Example 4.1 An instrument whose mass is 20 kg must be mounted on a
space vehicle through a cantilever arm of annular cross-section made of light
alloy (Young’s modulus E = 72 x 10° N/m?, density p = 2,800 kg/m*), 600
mm long. Choose the dimensions of the cross-section in such a way that the
first natural frequency is higher than 50 Hz.

If the mass of the beam is neglected and a model with a single degree of freedom
is used, in order to obtain a natural frequency higher than 50 Hz (314 rad/s)
the stiffness of the beam must be

k> mw? =1.97 x 10° N/m. . (4.12)
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A V=X

FIGURE 4.1. State-space trajectories for a system with a single degree of freedom.
The different trajectories correspond to different initial conditions.

The arm can be modeled as a cantilever beam clamped at one end and loaded by
the inertia force of the instrument at the other end. The well-known formula
for its stiffness is
3BT
k= B (4.13)

where | and I are the length of the beam and the area moment of inertia of
the cross-section, respectively.
The minimum value of the moment of inertia I can be easily computed:

I kl? 1.97 x 107¢ m* (4.14)

=__=1. m . .
3E

By using a beam with annular cross-section with inner and outer diameters
of 100 mm and 110 mm, respectively, the value of the moment of inertia is
I=228x107% m*, yielding the following values of the stiffness and natural

frequency:
k=228 x 10° N/m , wy, =337 rad/s = 53.7 Hz. (4.15)

The mass of the beam is 2.77 kg, which is only slightly larger than 1/10 of the
concentrated mass at the free end. The single-degree-of-freedom model in which
the mass of the beam has been neglected can then be used with confidence.
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4.2 Systems with many degrees of freedom

The solution can be performed directly with reference to the configuration
space. The homogeneous equation describing free motion is

Mi + Kx=0. (4.16)

Equation (4.16) is a set of linear homogeneous second-order differential
equations. Such equations are coupled, because at least one of the matrices
M or K is usually not diagonal. If matrix M is not diagonal, the system is
said to have an inertial coupling; if K is not diagonal, the coupling is said
to be elastic. Again, a Laplace domain solution similar to Eq. (4.2)

x = xge®! (4.17)

can be assumed, and an eigenproblem of the same type as Eq. (4.4) can be
obtained. Because the system is undamped, all solutions s are imaginary
and the use of a frequency-domain solution with the form

x = xpe™! | (4.18)

in which the frequency of oscillation w is explicitly included, is expedient.
Since the acceleration is

% = —w?xpe™t (4.19)

the following algebraic homogeneous equation is obtained:
<K - w2M> xo = 0. (4.20)

The characteristic equation of the relevant eigenproblem can be obtained
by noting that to obtain a solution different from the trivial solution xo = 0,
the determinant of the matrix of the coefficients must vanish:

det <K - w2M) =0. (4.21)

This eigenproblem can be reduced in standard form in one of the two
following ways:

det (KlM — 12 I) =0, det (MlK — w21) =0. (4.22)
w

Both matrices K~'M and M 'K are often referred to as dynamic matri-
ces and symbol D is used for them. They should not be confused with either
the dynamic matrix A or the direct link matrix D defined with reference
to the state space.

Equations (4.22) are algebraic equations of degree n in w? (or in 1/w?)
that yield the n values of the natural frequencies of the system.
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Remark 4.4 The dynamic matrices D are not symmetrical, even if both
M and K are.

Remark 4.5 The solutions in terms of natural frequencies are actually 2n,
corresponding to tw,,. In the following pages only n solutions, correspond-
ing to the n eigenvalues and eigenvectors of the eigenproblem in w? (or in
1/w?), will be considered. If the solution in the state space is considered,
2n conjugate eigenvalues in s are found.

The eigenvectors give the mode shapes, i.e., the amplitudes of oscillation
of the various masses at the corresponding natural frequency. All eigenval-
ues in w? (or in 1/w?) are real and positive; the natural frequencies then
are real, and undamped oscillations of the system are obtained. Also, the
eigenvectors q; are real, which means that all masses move in phase, or
with a phase lag of 180°.

Because there are n eigenvectors, a square matrix, the matrix of the
eigenvectors

® =[q1,q2,--.,qu),
can be written. Each one of its columns is one of the eigenvectors.
The complete solution of the equation of motion can be transformed in
the same way as Eq. (4.9):
n
x=> [%(Kf)qi cos(wit) — (K} )q sin(wgt) | (4.23)
i=1
where the n complex constants K can be determined from the 2n initial
conditions. If at time ¢ = 0 the positions x¢ and the velocities Xq are known,
it follows that

R{K} =@ 'xo, SH{wiK}=—-® "% (4.24)

Remark 4.6 Since the system is conservative, free vibration does not de-
cay in time, i.e., its amplitude remains constant. This is clearly just an
academic result, since all real-world systems have some damping.

The free motion of a vibrating system can be studied in the state space
by assuming a solution of the type

z = etz (4.25)

where 7z, is the state vector at time t; and e’ is the so-called transition
matrix at time t. It can be expressed by the series

t? t3
eAt:I+tA+2'A2+3|.A3+... , (4.26)

which converges for any value of ¢. The computation of the transition matrix
can become impractical for large-order systems, and the number of terms
in the series (4.26) to be considered grows rapidly with increasing time ¢.
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Example 4.2 Compute the time history of the free motion of a single-degree-
of-freedom conservative system through the series (4.26) for the transition
matriz.

For an undamped single-degree-of-freedom system, the state vector and the
dynamic matriz are

Equation (4.26) yields the transition matriz

{O _w’%}t 2 2 2
1 0 110 0 —w, t —wr, 0
¢ _{0 1}“{1 0 }J“z{ 0 —wi}+
+t3 0w +t4 —whp 0 -
31| —wn 0 4 0 —wn -
2 2 t* 4 2 33
1+ 5wn+ Lwnt... Wy (twn — gy + ..
B wln (twn—flwfb—&—...) 1+t22w3b+ﬁwi+... B

-| Sy e ]

n

After obtaining the product ez, the following time histories for the displace-
ment and the velocity are obtained:

v = vg cos(wnt) — wnZo sin(wnt)

z="" sin(wnt) + xo cos(wnt) .
Wn

This solution coincides with that expressed by Eq. (4.9).

4.3 Properties of the eigenvectors

Consider a linear natural system and refer to the space of the configura-
tions. The eigenvectors are orthogonal with respect to both the stiffness
and mass matrices. This propriety can be demonstrated simply by writ-
ing the dynamic equilibrium equation in harmonic oscillations for the ith
mode:

Kq; = w/Mq; . (4.27)

Equation (4.27) can be premultiplied by the transpose of the jth

eigenvector
q; Kq; = w;qj Mq; . (4.28)
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Products quqi and q;‘-FMqi are scalar quantities.
The same can be done for the equation written for the jth mode and
premultiplied by the transpose of the ¢th eigenvector:

q; Kq; = wjq{ Mq; . (4.29)
By subtracting Eq. (4.29) from Eq. (4.28) it follows that
q; Ka; — q] Kq; = wjqj Mq; — wj q Mgq; . (4.30)
Remembering that, owing to the symmetry of matrices K and M,
q] Kq; = q] Kq;

and
q, Mq; = q; Mq; ,

it follows that
(w? — w?) q?Mqi =0. (4.31)

In the same way, it can be shown that

Wi wj

11
( y — 2‘>qJTin:o. (4.32)

From Egs. (4.31) and (4.32), assuming that all natural frequencies are
different from each other, it follows that, if i # j,

a/Mq; =0, q/Kq;=0, (4.33)

which are the relationships defining the orthogonality properties of the
eigenvectors with respect to the mass and stiffness matrices, respectively.
If i = j, the results of the same products are not zero:

q; Mq; = M; q/Kq; = K; . (4.34)

Constants M; and K; are the modal mass and modal stiffness of the ith
mode, respectively. They are linked with the natural frequencies by the

relationship
K;
w; = \/ , (4.35)
M;

stating that the ith natural frequency coincides with the natural frequency
of a system with a single degree of freedom whose mass is the ith modal
mass and whose stiffness is the ith modal stiffness.
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The modal mass matrix and the modal stiffness matrix can be obtained
from the following relationships based on the matrix of the eigenvectors ®:

®TM® = diag[M,;] =M ,
(4.36)
PTK® = diag[K,| = K.

An interpretation of the modal stiffnesses and of the modal masses is
straightforward: If the system is deformed following the ith mode shape,
the potential energy is

1 7 1
U= 2(11- Kq; = 2Ki
i.e., it is equal to half the modal stiffness. In a similar way, the kinetic
energy the system stores at its maximum speed while vibrating following
a mode shape is equal to the corresponding modal mass, apart from the
constant w?/2.

4.4  Uncoupling of the equations of motion

The matrix of the eigenvectors can be used to perform a coordinate trans-
formation that is particularly useful:

x=®n, n==a&'x. (4.37)

This amounts to expressing the generic n-dimensional vector x, which
states the configuration of the system, as a linear combination of the eigen-
vectors using n coefficients of proportionality 7;. This is possible because
the eigenvectors are linearly independent and define a reference frame in
the space of the configurations of the system.

Remark 4.7 It must be explicitly stated that the eigenvectors are orthog-
onal with respect to the mass and stiffness matrices (they are said to be
m-orthogonal and k-orthogonal), but they are not orthogonal to each other.
The product ®T® does not yield a diagonal matriz, and the inverse ® 1
of matriz ® does not coincide with its transpose ®7 .

The eigenvectors are, however, orthogonal if the dynamic matrix is sym-
metrical, like when a system with a diagonal mass matrix has all masses
equal to each other (i.e., the mass matrix is made by an identity matrix
multiplied by a constant).

In the space of the configurations, the eigenvectors are n vectors that
can be taken as a reference frame. However, as already stated, in general
they are not orthogonal with respect to each other.
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Remark 4.8 Fquation (4.37) is nothing else than a coordinate transfor-
mation in the space of the configurations, as the n wvalues m; are the n
coordinates of the point representing the configuration of the system, with
reference to the system of the eigenvectors. They are said to be principal,
modal, or normal coordinates.

Although the eigenvectors are not orthogonal to each other, it is possible
to perform a coordinate transformation that yields a system whose dynamic
matrix (D, referred to the configuration space) is symmetrical and has
orthogonal eigenvectors. By performing a Cholesky decomposition of the
mass matrix

M =LL", (4.38)

where L is a lower triangular non-singular matrix, a new set of generalized
coordinates x* can be defined by the relationship

x* =LTx. (4.39)

By introducing the generalized coordinates (4.39) into the equation of
motion and premultiplying it by L~!, the mass matrix transforms into an
identity matrix, while the stiffness matrix and the force vector reduce to?

K =L 'KL 7, f=L"f. (4.40)

The system so obtained has a unit mass matrix, and its eigenvectors are
orthogonal. The eigenvalues are not changed by the transformation, and
the eigenvectors are obtained from those of the original system using a
simple linear combination. The modal mass matrix can be shown to be an
identity matrix, and the modal stiffness matrix is a diagonal matrix with
all elements equal to the squares of the natural frequencies:

K= [wz] .

If the modal coordinates are introduced into the equation of motion (1.7),
it follows that
M®n +Keén=f. (4.41)

By premultiplying the equation so obtained by ®7,
" Mei) + dTKPn = ®7f (4.42)
it follows that

Mi)+ Kn =f (4.43)

2Symbol A =T is here used for the transpose of the inverse (A~7 = (A~1)T).
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where M and K are the modal mass and modal stiffness matrices, defined
by Eq. (4.34), and f(¢) is the modal force vector:

filt) = ai £(2) - (4.44)

Since the modal matrices are diagonal, Eq. (4.43) is a set of n uncoupled
second-order differential equations. Each of them is

My + Ky = fi

and the system with n degrees of freedom is broken down into a set of n
uncoupled systems, each with a single degree of freedom (Fig. 4.2).

The eigenvectors are the solutions of a linear set of homogeneous equa-
tions and, thus, are not unique: For each mode, an infinity of eigenvectors
exists, all proportional to each other. Because the eigenvectors can be seen
as a set of n vectors in the n-dimensional space providing a reference frame,
the length of such vectors is not determined, but their directions are known.
In other words, the scales of the axes are arbitrary.

There are many ways to normalize the eigenvectors. The simplest is by
stating that the value of one particular element or of the largest one is

Fy(t) [

m
a) !
Ko
Fo(t
o(t) [ K,
T my [ b)
K13 T,(1) () (1)
Fy(t) .
X1 f ° T M1 T M, T M;
Xg m ny N2 _ M3
K, 2 K;3
k3
X3
A

FIGURE 4.2. Modal uncoupling. The coupled system (a) and the uncoupled
modal systems (b) are exactly equivalent.
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set to unity. Each eigenvector can also be divided by its Euclidean norm,
obtaining unit vectors in the space of the configurations.

Another way is to normalize the eigenvectors in such a way that the
modal masses are equal to unity. This can be done by dividing each eigen-
vector by the square root of the corresponding modal mass. In the latter
case, each modal stiffness coincides with the corresponding eigenvalue, i.e.,
with the square of the natural frequency. Equation (4.43) reduces to

i+ win=1, (4.45)

where
[w?] = diag{w;}

is the matrix of the eigenvalues and the modal forces f/(¢) are

fi odff

! — = . 4.46
i M; q;Mq; (4.46)

Example 4.3 Perform the modal analysis of the system shown in Fig. 1.4
and already studied in Example 1.2.

Because the mass matriz is diagonal, the formulation of the dynamic matriz
imvolving the inversion of the mass matrix is used:

20 -10 0
D=M'K=| -25 35 -1
0 -8 8

The characteristic equation yielding the natural frequencies is easily obtained
and solved:
w® = 31.5w" 4+ 225w% — 200 = 0;

w1 = 1.0166 ; wa = 3.0042; w3 = 4.6305 .

The eigenvalues of the dynamic matriz D are 1.03353, 9.02522, and 21.44125.
The corresponding eigenvectors, normalized by setting to unity the largest el-
ement, are

0.45913 0.11677 1
0.87081 ; 0.12815 ; —0.14412
1 —1 0.08578

The products qf Mq; are easily computed. Those with i = j yield the three
modal masses

M, =3.74404 , M, =0.57933 , Ms = 1.08616 ,
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and those with different subscripts yield the values —1.02 x 1077, 1.54 x 107>,
and 4.09 x 107%. The values obtained are very small, compared to the modal
masses; they represent the deviations from orthogonality (with respect to the
mass matriz) due to computational approzimations.

The eigenvectors can be normalized by dividing each one of them by the square
root of the corresponding modal mass. The matriz of the eigenvectors is

0.23728  0.15342  0.95925
¢ = | 0.45004  0.16837 —0.13825
0.51681 —1.31383  0.08228

The eigenvectors are represented in the space of the configurations 616203
in Fig. 4.3a. They are clearly not orthogonal.

The modal mass matrix, then, is the identity matriz, while the modal stiffness
matriz is a diagonal matrix containing the squares of the natural frequencies
computed earlier:

1 0 0 1.03353 0 0
M=|0 1 0 , K= 0 9.02522 0
0 0 1 0 0 21.44125
034 A
a1 b) 0311
a,
q,
0,
0 1
q3 1 61

q,

FIGURE 4.3. Eigenvectors represented in the space of the configurations 01620s:
(a) eigenvectors normalized in such a way that the modal masses have a unit
value; (b) orthogonal eigenvectors obtained by premultiplying the vectors in (a)
by matrix L7.
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Note that, although the mass and stiffness matrices are the same as obtained
by transformation (4.39), the eigenvectors are not orthogonal.

In this case the Cholesky transformation of the mass matriz is very simple,
because the mass matriz is diagonal. It yields

1 0 0
L=|0 2 0
0 0 0.7071

By using the transformation (4.40) of the stiffness matriz, it follows that

20 -5 0
K'=| -5 3.5 —2.8284
0 —2.8284 8

In this case, because the mass matrix is an identity matriz, the dynamic matriz
D = M 'K* coincides with the stiffness matriz K* and is symmetrical.
The eigenvectors

0.23728 —0.15342 0.95925
L"® = | 090008 —0.33674 —0.27650
0.36544 0.92901 0.05818

are orthogonal, as it can be easily verified (Fig. 4.3b).

4.5 Modal participation factors

Consider a multi-degrees-of-freedom system excited by the translational
motion of the constraints and chose the relative displacements between
the various masses and the supporting points to describe its motion. The
equation of motion is Eq. (1.11); it can be rewritten in terms of modal
coordinates as

M®i) + K®n = —Mé,i4 — Mdyjia — M8.54 + £(1). (4.47)

By premultiplying all terms by matrix ®7, it yields

M+ Kn=—r;i4 —ryja —r.24 + (1), (4.48)

where
r; = ®TMJ; (4.49)

is a vector containing the so-called modal participation factors in the direc-
tion j (j =z, y, z). Each term of this vector gives a measure of how much
of the mass of the system participates in the ith mode when the system is
excited by a motion of the supporting frame in the relevant direction.
This statement is easily justified. Consider a rigid-body translation of
the system in the direction j (j = z, y, z) with velocity V. The vector
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containing the generalized velocities (the derivatives of the generalized
coordinates) is

v=V3§;. (4.50)

The kinetic energy of the system is thus
Loasr
T = 2V 6; Md; . (4.51)
Since the system is performing a rigid-body motion, the expression
mr = & MJ; (4.52)

is nothing else than the total mass mp of the system, or at least the mass
that can be associated to a motion along the direction j.

Equation (4.49) can be solved in d; by premultiplying both sides by
M- T,

§j=M"'® Ty, . (4.53)

By remembering that the mass matrix M is symmetrical, the following
expression for the total mass of the system is readily obtained:

mp=r] ® "M 'MM '® "r; =r] @'M '@ r; . (4.54)

Since
—1

)

M 1T = (@TMB) | =M
the total mass of the system can be expressed as

mr=t'M ;. (4.55)

The modal mass matrix is diagonal, and thus Eq. (4.55) can be written
in the form

n r2
mr =Y <1\J4> . (4.56)

i=1

Often ratios TJQ /M, expressed as percentages of mass mr, are used in-
stead of the modal participation factors. The higher the value of the modal
participation factor in a certain direction, the more that mode is excited
by a motion of the supports in that direction.
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Example 4.4 Compute the modal participation factors in x- and y-directions
for the system of Fig. 1.3 (Example 3.3), assuming the following data:

e masses: mi1 = 2; ma = 3;
[ ] stiﬁness: kl = 3; /fg = 2,‘ /f3 = 5,‘ k4 = 4,‘ ks = 7;
e geometry: Ax/los = 1/\/2,' Ay/los = 1/\/2 (the fifth spring is at 45°).

The relevant matrices are

2 0 0 O 6.5 35 =35 =35
0 2 0 O 3.5 55 =35 -3.5
M= 0 0 3 01’ K= -3.5 —-35 85 3.5
0 0 0 3 -35 =35 35 7.5

The natural frequencies and the eigenvectors, normalized in such a way that
the modal masses have a unit value, are

wn1 = 1.0624 , wno = 1.1823 | wps = 1.2699 , w4 = 2.6822,

—0.2057 —0.4202 0.3521 0.3964
0.5928 0.1079 0.0647 0.3644
0.0946 0.1064 0.4888 —0.2722
0.2488 —0.4433 —0.0946 —0.2568

P —

The modal participation factors are

—0.1275 1.9321

= —0.5211 - —1.1142
* 2.1706 ’ Y —0.1545
—0.0239 —0.0415

It is easy to verify that, since the modal masses have a unit value, products

T, _ T, _
ryTy =TyTy =25

are equal to the total mass of the system. The modal participation factors,
normalized to the total mass of the system, are thus

Mode # ri/mt rf,/mt
1 0.0032 0.7466
2 0.0543 0.2483
3 0.9423 0.0048
4 0.0001 0.0003
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A motion of the supports in x-direction excites practically only the third mode,
and only marginally the second one, while a motion in y-direction excites both
the first and, to a lesser extent, the second modes. The fourth mode is almost
not excited by any motion of the supporting frame.

Example 4.5 Two identical pendulums connected by a spring
Consider the two identical pendulums connected by a spring shown in Fig. 1.5
and studied in Example 1.4. Compute the natural frequencies of the linearized
system and the time history of the free oscillations when the system is released
from a standstill, with the first pendulum displaced at 0y and the second in the
vertical position. The main data are m=1 kg, 1=600 mm, k=2 N/m, and
g=9.81 m/s>.

By introducing the data, the equation of motion becomes

G R (8)-()

The eigenfrequencies and the corresponding eigenvectors can be easily com-
puted:

w?= 9 _ 16,35 w1 = 4.04 rad/s,
o mg+ 2kl
= T 20,35 we = 4.51rad/s,

w(1) w{1)

In the first mode the two pendulums move together, without stretching the
spring, with the same frequency they would have if they were not connected.
This motion is not affected by the characteristics of the spring.

In the second mode the pendulums oscillate in opposition with a frequency
affected by the characteristics of both the spring and the pendulums. If the
spring is very soft (k/m much smaller than g/l) the two natural frequencies
are very close to each other.

The initial conditions are 01 = 0y and 0> = 91 = [92 =0. The time histories of
the free oscillations are then easily obtained:

0 0
01(t) = 20 {cos(wlt) —|—cos(w2t)} , 02(t) = 20 {cos(wlt) — cos(wzt)} ,
or, remembering some trigonomeltric identities,
01(t) = 0o [cos <w2 ;wl t) cos <w2 ;wl t)] ,

0(t) = 6o [sin (wz ;““ t) sin <w2 ;wlt)} .
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FIGURE 4.4. Two pendulums linked together by a spring: time history of the
response.

The motion can then be considered an oscillation with a frequency equal to the
average of the natural frequencies of the system (w2 +w1)/2 with an amplitude
that is modulated with a frequency equal to (w2 — w1)/2, as clearly shown in
Figs. 4.4a and b.

The system does not include any damping: The energy of the two pendulums
s therefore conserved. The initial conditions are such that at time t = 0 all
energy is concentrated in the first pendulum. The spring slowly transfers energy
from the first to the second in such a way that the amplitude of the former
decreases in time while the amplitude of the latter increases. This process goes
on until the first pendulum stops and all energy is concentrated in the second
one.

The initial situation is so reversed and the process of energy transfer starts
again in the opposite direction. The frequency of the sine wave that modulates
the amplitude is

(we —w1)/2 =10.235 rad/s = 0.037 Hz,
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corresponding to a period of 26.72 s. The frequency of the beat is thus twice the
frequency computed earlier, i.e., 0.072 Hz, corresponding to a period of 13.37 s.
This means that the amplitude increases and decreases with a period that is
half of that of the modulating sine wave.

The occurrence of the beat is, however, linked with the initial conditions that
must be able to excite both modes. If this does not happen, the oscillation is
momno-harmonic, and no beat takes place.

4.6 Structural modification

Many techniques aimed at computing the natural frequencies of a system
after some of its characteristics have been modified without solving a new
eigenproblem are listed under the general name of structural modification.
Sometimes, the inverse problem is also considered: to compute the modifi-
cations needed to obtain required values of some natural frequencies.

Consider an undamped discrete system and introduce some small modifi-
cations in such a way that the mass and stiffness matrices can be written in
the form M + AM and K + AK. If the modifications introduced are small
enough, the eigenvectors of the new system can be approximated by the
eigenvectors of the old one and the ¢th modal mass, stiffness, and natural
frequency of the new system can be approximated as

Mi,,. =al (M+AM)q; =1+ qf AMaq;,
R . 24dl
Klmod - qz (K + AK) qZ wl + qz Aqu ) (457)
w,? — Kim,od — wZQ + %?AKqZ ,
mod Mi?nod 1 + q’L AMql

where the eigenvectors have been normalized in such a way that the modal
masses of the original system have unit values. The modifications are as-
sumed to be small. In this case, the series expressing the square root of

w? can be truncated after the first term, yielding

tmod

TAKq; TAMq;
q; AKq; q; q) . (4.58)

Wi oa ~ Wi <1 + 2(«%2 9

Equation (4.58) can be used to compute the new value of the ith eigen-
value, knowing the modifications that have been introduced into the sys-
tem. However, the inverse problem can also be solved. If matrices AM
and AK are functions of a few unknown parameters, a suitable set of
equations (4.58) can be used to find the values of the unknowns, which
allow the solution for some stated values of the natural frequencies. The
procedure described here is approximated and can be used only for small
modifications.
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Another procedure that can be used to compute the effect of stiffness
modifications that do not need to be small is the following. The eigenprob-
lem allowing the computation of the natural frequencies of the modified
system expressed in terms of modal coordinates of the original system is

i+ [Win + ®TAK®n =0, (4.59)

where matrix @7 AK® is, in general, not diagonal, because the eigenvectors
of the original system do not uncouple the equations of motion of the
modified system.

If only one modification is introduced, matrix AK can be expressed in
the form AK = auu” where, if the modification consists of the addition
of a spring linking degrees of freedom i and j, constant « is nothing other
than the stiffness of the spring and all elements of vector u are zero except
elements ¢ and 7, which are equal to 1 and —1, respectively. This is actu-
ally not a limitation: Because the procedure is not approximated, several
modifications can be performed in sequence without losing precision.

The modal matrix linked with the modification can be expressed as

STAKP® = a®Tuu’ ® = qun’, (4.60)

where, obviously, 1 = ®7u.
The eigenproblem

(—w’I+ [wi] +aua’)n, =0

linked with Eq. (4.59) yields a set of n equations of the type

( w +U)>TI01:—OéZUkT]Qk (1=1,2,...,n). (4.61)

Note that w? equals the eigenvalues of the modified system, while w?
equals those of the original one. The term on the right-hand side of (4.61)
is the same in all equations. It then follows that

( w4 w )7701:< w+w2>n02=~-~=( w+w)n0" (4.62)
Uy U2 Un

The eigenvector 1, can thus be easily computed. By stating that the ith
element is equal to unity, the remaining elements can be computed from
Eq. (4.62):

< } W)Uk (k #1). (4.63)

No, =
< w? 4 w? >u
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By introducing the eigenvector expressed by Eq. (4.63) into Eq. (4.61)
and remembering that 79, was assumed to be equal to one, it follows that

; -y, W —0. (4.64)

k=1 <—w2 +w,%)

Equation (4.64) can be regarded as a nonlinear equation in w, yielding the
eigenfrequencies of the modified system. The same equation can, however,
be used to compute the value of a once a value for the natural frequency
of the modified system has been stated. Note that although it is possible
to obtain any given value of the eigenfrequency, it is, however, impossible
to be sure that a given eigenfrequency is modified as needed.

4.7 Exercises

Exercise 4.1 A ballistic pendulum of mass m and length [ is struck by a bullet,
having a mass my and velocity v, when it is at rest. Assuming that the bullet
remains in the pendulum, compute the frequency and amplitude of the oscillations.
Data: m = 100 kg; mp = 0.05 kg, v =200 m/s, and | =3 m.

Exercise 4.2 Consider the undamped system of Fig. 1.8 (Ezercise 1.2). Com-
pute the natural frequencies assuming that mi = 10 kg, me = 5 kg, k1 = 10
EN/m, ka = 8 kN/m, ks =4 kN/m, and ks = 5 kN/m.

Exercise 4.3 Consider the double pendulum of Fig. 1.9 (Ezercise 1.3). Using
the linearized equations of motion already obtained compute the natural frequen-
cies and the mode shapes. Data: mi1 = 2 kg, ma2 = 4 kg, l1 = 600 mm, | = 400
mm, and g = 9.81 m/s>.

Exercise 4.4 Consider a system with 2 degrees of freedom, made by masses
m1 and ma, connected by a spring kiz between each other and springs ki and
ko to point A. Compute the natural frequencies, mode shapes, the modal masses,
and stiffnesses. Plot the eigenvectors in the space of the configurations and show
that the mode shapes are m-orthogonal and k-orthogonal. Compute the modal
participation factor for an excitation due to the motion of point A. Data: my =5
kg, ma =10 kg, k1 = k2 =2 kN/m, and k12 = 4 kN/m.

Exercise 4.5 Consider the system of the previous exercise and modify the stiff-
ness of the springs so that the first natural frequency is increased by 20%. Check
that the second natural frequency is not changed much.

Exercise 4.6 The multifilar pendulum is one of the devices used for measuring
moments of inertia (Fig. 4.5a). A trifilar pendulum consists of a tray hanging
from three wires and the objects to be measured can be simply positioned on the
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FIGURE 4.5. Trifilar suspension at rest (a) and displaced at angle 6 from the
static equilibrium position (b).

tray, taking care to put the center of mass of the object over the center of the
latter. The period of the torsional oscillations of the tray and of the tray plus the
object is measured in two subsequent tests. In Fig. 4.5b the device is shown during
the motion, in a position displaced at angle 6 from the position at rest.

Write the equation of motion of the system.

Write the equation allowing to compute the moment of inertia of the object
being tested from the measurements and the geometrical characteristics of the
pendulum (I, R1, and Rz) and the masses m, mt, and m., of the object, the tray
and of each one of the suspension wires.



D
Free Vibration of Damped Systems

Damping causes free vibration to decay in time. Moreover, if damping is
high enough, some or even all the modes of free vibration may be nonoscil-
latory and free motion a simple return toward the equilibrium position.
Except in a few cases, damping prevents from uncoupling the equations of
motion when written in modal coordinates, at least in an exact way. How-
ever, if damping is small enough, uncoupling can still be performed in an
approzimate way, and the concept of modal damping can nonetheless be
introduced.

5.1 Systems with a single degree
of freedom—viscous damping

The solution of the homogeneous equation associated with the equation
of motion of a damped system with a single degree of freedom (3.3) can
be assumed to be of the same type already seen for the corresponding
undamped (conservative) system

r = z0e . (5.1)

By introducing solution (5.1) into the equation of motion, the following
algebraic equation is obtained:

zo(ms* +cs+k)=0. (5.2)
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The condition for the existence of a solution other than the trivial solu-
tion zg = 0 leads to the characteristic equation

ms? +cs+k=0, (5.3)
whose two solutions s; and s, are

—c++/e2 —dmk

. (5.4)

51,2 =

Generally speaking, s is expressed by a complex number; the time history
(5.1) is thus

x = 20eRteSet (5.5)

The solution (5.5) of the equation of motion can be regarded as a har-
monic oscillation ze*>*)* of the same kind seen for the undamped system,
multiplied by a factor e®(*)! that decreases in time, if %(s) is negative.

The imaginary part of s is the frequency w of the damped oscillations of
the system, while its real part is often referred to as decay rate and symbol
o is used for it.

Remark 5.1 In some cases the decay rate is defined as 0 = —R(s), so
that o is positive when the motion actually decays in time. The definition
used here (o = R(s)) would be better referred to as growth rate.

Equation (5.5) can thus be written in the form
x = zoe”" [cos (wt) + isin (wi)] . (5.6)

For stability o = $(s) must be negative.
If condition
¢ > 2Vkm (5.7)

is satisfied, the solutions of the characteristic equation (5.3) are real. The
motion of the system is not oscillatory, but simply the combination of two
terms that decrease monotonically in time, because both roots are negative.
The value of the damping expressed by Eq. (5.7) is often referred to as
critical damping, the highest value of ¢ that allows the system to show an
oscillatory free behavior. When condition (5.7) is satisfied, the system is
said to be overdamped.

Introducing the damping ratio or relative damping ¢, i.e., the ratio be-
tween the value of the damping ¢ and its critical value c,

(=

C Cc

= ) 5.8
Cer 2\/km ( )

the two values of the decay rate o of an overdamped system (¢ > 1) are

0:3?(8):—\/:; (Cj:\/g‘?—l) . (5.9)
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If the damping of the system is lower than the critical damping (¢ < 1),
the system is said to be underdamped. Equation (5.4) still holds but leads to
a pair of complex-conjugate solutions for s. The system performs damped
harmonic oscillations (Fig. 5.1) with circular frequency w and decay rate o

w:%(s):i\/i\/l_@::twn\/l_CQ’
(5.10)

o =R(s) = ¢y b = ~Cwn,

where w,, is the natural frequency of the corresponding undamped system.

As shown in nondimensional form in Figs. 5.2b and ¢, the decay rate
decreases linearly with increasing ¢, while the plot w (¢) is an arc of a
circle.

The complete expression of the complementary function with its inte-
gration constants is similar to that seen in Chapter 4 for the conservative
system (Egs. from (4.8) to (4.11)), with the difference that here a decay
rate is present to account for the decrease in time of the amplitude of the
free oscillations:

x = xore’tt + xoee?t = e”t{ {%(xm + xo2) + 1S (z01 + xog)} cos(wt) +

+ {S(xog — 201) + iR (201 — xog)} sin(wt)} .

(5.11)

Displacement x is a real quantity and then the two complex constants,
xo1 and xp2, must be conjugate. If at time ¢ = 0 the position z(0) and
the velocity @(0) are known, the values of the real and imaginary parts of

FIGURE 5.1. Time history of the damped oscillations of a lightly damped system.
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FIGURE 5.2. (a) Nondimensional roots locus for a damped system with a single
degree of freedom (s* = s/wy). (b) and (c) Plots of the real and imaginary parts
of s* as functions of the damping ratio ¢.

constant zg; are

5.12
%($01) = ( )

-1
z(0) + Cwpz(0)] .
po 1 - a0+ G0
The equation describing the damped free oscillations of the system is
then

z = e " 2(0) cos (wn\/l —¢? t) +

+ ﬂl_ o ﬁgs) + @:(0)] sin (wn\/l 2 t) } .

The roots of the characteristic equation can be reported on the complex
plane, i.e., on a plane in which the z-axis is taken as the real axis and
the y-axis is the imaginary axis. The points representing the solutions of
the characteristic equation in the complex plane are usually referred to as
the poles of the system. When the behavior of the system depends on a
parameter, as in the current case it depends on the damping ratio ¢, the
plot of the roots with varying values of the parameter is said to be the roots
locus. The roots locus of a damped system with a single degree of freedom
is shown in Fig. 5.2a.

The roots locus of an underdamped system with a single degree of free-
dom is half of a circle, because

(5.13)

Is| = Vw? + 02 = \/:l = wp. (5.14)

In the case of underdamped systems, the two solutions have the same
real part (decay rate) and imaginary parts equal in modulus but opposite
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in sign. For overdamped systems, on the contrary, the two solutions, which
are real (lying on the real axis), are not coincident. One of them tends to
infinity and the other tends to zero when damping tends to infinity.

In the case of critically damped systems (( = 1), the two solutions are
coincident: The two branches of the locus for underdamped systems meet
on the real axis to separate again for overdamped systems. The point where
the two branches meet to remain on the real axis is said to be a break-in
point. When the opposite occurs and two branches lying on the real axis
meet to depart from the axis, the point is said to be a breakaway point.

Solutions on the left of the complex plane, as in the case of systems with
positive damping, are asymptotically stable, while solutions lying on the
right part of the plane denote unstable behavior. Solutions located on the
imaginary axis are stable but not asymptotically, as the oscillations are not
damped, and the system, once set in motion, cannot reach an equilibrium
condition although not being unstable.

Remark 5.2 The systems studied in structural dynamics are usually lightly
damped; consequently, factor

e—(wnt

decreases monotonically very slowly with time. The frequency of the oscil-
lations is only slightly smaller than the natural frequency of the undamped
system wy,, owing to the presence of factor \/1 — (2. In the case of lightly
damped systems, this factor is almost equal to unity, and the frequency of
the damped free oscillations is almost equal to that of the free oscillations
of the undamped system.

Consider the part of the time history of the displacement close to a
peak (Fig. 5.3a). The actual peak occurs in point A, which is very close
to point B where the harmonic part of the solution e* has a unit value.
The amplitudes at two subsequent peaks, approximated by two subsequent
points B, spaced apart by one period of oscillations (T' = 27 /w) are

xp = et Ty = et = o (trt2m/w) (5.15)

The ratio between the amplitudes of two subsequent peaks is then

Tk _ 6—271'0/0.)7 (516)
Tk+1

and is constant in time. Its natural logarithm, usually defined as logarithmic
decrement, is

5:1n< o ):271'\/1< ~27n(¢ . (5.17)

Tht1 ¢

The two expressions of the logarithmic decrement are reported in Fig.
5.3b.
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FIGURE 5.3. Damped oscillations of a lightly damped system. (a) Enlargement
of the zone close to a peak; (b) logarithmic decrement as a function of .

This expression was obtained by confusing points A and B in the figure,
but this approximation is not needed and holds also for large values of (.
The peaks can be obtained by differentiating the time history of Eq. (5.13)
with respect to time and setting to zero the derivative. Since the initial
conditions are immaterial, it is possible to state (0) = 0, obtaining

d £(0
df = ot "”L) [osin (wt) — weos (wt)] =0, (5.18)
which yields
tan (wt) = (5.19)
g
ie.,
w ‘
wt—artg(a —l—m) fori=0, 1, 2, ... (5.20)

The solutions with even values of 7 are maxima, those with odd values
are minima.
The ratio between the amplitude at two subsequent peaks is thus

Ty, e art( 5 +2km) z‘i)o) sin [artg (¢ + 2kn)] _ %m0
= . = e w o,
Tht1  oarte[+2(k+D)m] Ig)) sin {artg [¢ +2(k+1)7] }
(5.21)
which coincides with the expression obtained earlier.

Remark 5.3 The logarithmic decrement gives a measure of the damping
of the system that is not too difficult to evaluate from the recording of the
amplitude versus time (Fig. 5.1). If the first expression of Eq. (5.17) is
used, it holds also for large values of (.
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Remark 5.4 The logarithmic decrement is a constant of the system and
can be measured in any part of the time history of the free vibrations. Dif-
ferent values measured during the decay of the free motion are usually a
symptom of nonlinearity.

The decay of the amplitude in n oscillation is

2nw(

—e M =¢ V1- | (5.22)

Tn

Lo

It is plotted in Fig. 5.4a versus ( for various values of n.

The trajectories of the free oscillations of an undamped linear system in
the state plane were found to be circles (or ellipses, depending on the scales
used for displacements and velocities, Fig. 4.1) while those of a damped sys-
tem are logarithmic spirals. They wind up in a clockwise direction toward
the origin, which is a singular point (Fig. 5.4b).

Instead of using Eq. (5.1), the solution of the equation of motion could
also be written in the form

r = xoe™’, (5.23)
where iv = s. The real and imaginary parts of the complex frequency v are

the actual frequency of the motion and the decay rate (changed in sign),
respectively,

Rv) =9(s) =w, S(v) =—R(s) = —0o. (5.24)
xnlx:\\\\\ \ : | a) |
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FIGURE 5.4. Damped system with a single degree of freedom. (a) Decrease
of the amplitude after a number n of oscillations versus the damping ratio (.
(b) State-space trajectory. Initial conditions: The system is displaced from the
equilibrium position and then let free with zero initial velocity.
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5.2 Systems with a single degree
of freedom—hysteretic damping

As seen in Section 3.4.2, the dynamic stiffness of a system with structural
damping can be obtained by simply introducing the complex stiffness in
the expression of the dynamic stiffness of an undamped system

kayn = —mw? + k(1 +in), (5.25)
or, by remembering that s = iw,
kayn = ms® + k(1 +in) . (5.26)

Remark 5.5 Strictly speaking, this way of proceeding is inconsistent: hys-
teretic damping was defined with reference to harmonic motion, and the
very concept of decay rate implies that the amplitude of the motion changes
in time. Equation (5.26) holds only when v is real (and equal to w), and
thus Eq. (5.26) should not be used for free damped oscillations, i.e., when
s has a non-vanishing real part. However, systems with structural damp-
ing are usually very lightly damped and the decay rate is small enough, if
compared with the frequency of oscillations, to use the concept of hysteretic
damping also for damped free oscillations.

The frequency and the decay rate of the free oscillations of the system
can be obtained by equating the dynamic stiffness to zero

k
s:i\/ V14 in = iw, /1 +in. (5.27)
m

By separating the real and the imaginary parts of s

1 1 2
w:S(s):wn\/ AR ~ wp,

-1 14 n2
oc=R(s) =—wy, +\2/+77 z—wng.

(5.28)

Note that the solution (5.27) should have a double sign (4). However, the
strain always lags the stress, and when the imaginary part of s is negative
(clockwise rotation in the complex plane) the loss factor should be also
negative. This results in a negative value of o, as it is clearly the case since
the free oscillations must decay owing to energy dissipation.

The frequency of the free oscillations is slightly higher than the natu-
ral frequency of the undamped system. This result is different from that

"Watib= \/\/“2+2b2+“ ii\/\/angz—a.
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found for viscous damping but, also in this case, the frequency shift due
to the presence of damping is negligible for lightly damped systems. The
logarithmic decrement ¢ takes the value

= e ™ 2 = (5.29)

5.3 Systems with a single degree
of freedom — nonviscous damping

The homogeneous equation associated to Eq. (3.74) describes the free mo-
tion of a single degree of freedom spring, mass, damper system in which
the damper has nonviscous characteristics.
The natural frequencies are readily computed by finding the eigenvalues
of the dynamic matrix
A=M"1A". (5.30)

If the nonviscous damper is modeled using m springs and dampers in
series, the eigenvalues are m + 2. Two of them are either real or complex
conjugate while the other m, mostly related to the motion of points B;, are
real. If the two former eigenvalues are complex the system is underdamped,
if they are all real the system is overdamped.

To simplify matters, let m = 1. By assuming a solution of the type

= zpet |

the equation for free motion of the spring, mass, nonviscous damper system

t
mi + cu/ e Mg () dr + kz =0 (5.31)
becomes
9 s
+ +k =0. 5.32
(ms g, i > xg (5.32)

The characteristic equation is thus
ms*+ep T +k=0, (5.33)
s+ u
or, introducing the nondimensional quantities
1 |k
5= " :s\/m, ¢=_, . B=""= \/ ,
Wn k 2v'mk w o uVm

Bs™ + 52+ (B+2()s*+1=0. (5.34)
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The characteristic equation is a cubic equation. Its solutions can easily
be computed in closed form, obtaining

{s;:_;ﬁ+5+T, (5.35)

3= —as — 3 (S+T)EIP(S-T) |
where
R= 4, (98¢-95"-1),
D=L 8¢+ (1262 1) +¢(66° ~108) + §* + 267 +1],

S=YR+vVD , T=3YR—-D.

This solution holds if D > 0 and yields a damped harmonic motion: the
system is thus uderdamped.
The condition D = 0, i.e.,

8B+ (1267 —1)+¢(68°—108) + f* +282°+1=0  (5.36)

thus discriminates between under- and overdamped systems.

The behavior of the system depends on two parameters: ( and 3. The
former is a nondimensional damping coefficient, the second one is a param-
eter stating its nonviscosity. If 5 =0 (1 — o) the damping is viscous, and
the usual condition ¢ < 1 is found for oscillatory free motion. The larger is
[, the less viscous is damping.

Once a value of 3 is stated, Eq. (5.36) can be solved in ¢ and a zone in
which the system is underdamped can be identified in the parameter plane
.

Since it is a cubic equation in (, three solutions are found. However, only
two are positive and need to be considered

L= 2415 [1 —1258% + 2\/1 + 21632 cos (9C§4ﬂ)}
(5.37)
(= oy [1 1267 +2V/1+ 2168 cos ()]

where
1 — 58323* — 54032

\/(21652 +1)°

The two lines 3({) so obtained are reported in Fig. 5.5. The plot identifies
two zones in the parameter plane (3: The values included in zone A give way
to an oscillatory behavior. On the contrary, the values of the parameters
in zone B are characterized by nonoscillatory free behavior.

0. = arcos (5.38)
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FIGURE 5.5. Free behavior of a simple system with nonviscous damping. The
parameters in zone A correspond to an underdamped system, those in zone B to
an overdamped system.

The coordinates of point C are

(c = 333 =0.7698
(5.39)
Bc = 3\1/3 =0.1925 .

If the system is weakly nonviscous, its behavior is not much different from
that of a viscously damped system: for low values of ( it is underdamped
while for high values it is overdamped.

With increasing 3 the critical damping decreases, but an underdamped
behavior can be found also for very high values of (. The zone in which
overdamped behavior is found decreases with increasing G, and when § >
0. it disappears altogether.

5.4 Systems with many degrees of freedom

The solution of the homogeneous equation associated with the equation of
motion (3.6) is of the type
x = xpe*". (5.40)

By introducing the solution (5.40) into Eq. (3.6) and setting f = 0, the
following set of homogeneous linear algebraic equations is obtained:

x9(Ms®> 4+ Cs +K) =0 . (5.41)

To obtain solutions other than the trivial solution xg = 0, the determi-
nant of the matrix of the coefficients must vanish. The resulting eigenprob-
lem

det(Ms? + Cs + K) =0 (5.42)
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is not reduced in canonical form, but has the form of a so-called lambda
matriz.?

To obtain an eigenproblem in canonical form it is possible to resort to
the state space. Assuming a solution of the type

z = zge™, (5.43)
the homogeneous linear algebraic equations is
(A—sI)zo =0, (5.44)
yielding the eigenproblem of order 2n
det (A—sI)=0. (5.45)

The eigenvalues s yield the frequencies of oscillation and the decay rates;
the eigenvectors yield the complex mode shapes zg. All considerations on
the stability of the system seen in the previous section still hold, with the
only difference that now there are n pairs of complex-conjugate solutions.
If some of them are real, the corresponding modes are nonoscillatory; if
they are imaginary, undamped oscillations may occur. The fact that the
eigenvectors are complex® causes the time histories related to the various
degrees of freedom to be out of phase.

5.5 Uncoupling the equations of motion: space of
the configurations

The matrix ® of the eigenvectors of the conservative system obtained by
neglecting the damping matrix C can be used to perform a modal trans-
formation of the equation of motion of the damped system. By introducing
the modal coordinates

x =®n (5.46)

into the equation of motion (3.6) and by premultiplying all its terms by
&7 it follows that
Min+Cn+Kn=f, (5.47)

where M and K are the diagonal modal mass and modal stiffness matrices,
respectively, defined by Eq. (4.34) and f(¢) is the modal force vector, already
defined when dealing with the undamped system.

C is the modal-damping matrix

cC=o"Co. (5.48)

2The term lambda matrix comes from the habit of using symbol X for the unknown
of the eigenproblem. Here the more modern practice of using symbol s is followed.

3An interesting discussion on the meaning of complex modes can be found in G.F.
Lang, ‘Demystifying complex modes’, Sound and Vibration, January, 1989.
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Remark 5.6 The modal-damping matriz is generally not diagonal, be-
cause the eigenvectors of the undamped system, although orthogonal with
respect to the stiffness and mass matrices, are not orthogonal with respect to
the damping matriz. The modal-damping matriz is, however, symmetrical,
since the original damping matriz is such.

It has been demonstrated that a condition that is both necessary and
sufficient to obtain a diagonal modal-damping matrix is that matrix M—1C
commutes? with matrix M~ 'K, or

CM'K=KM!C. (5.49)

In this case, it is possible to define a modal damping C; = C}; for each
mode and to uncouple the equations of motion.

A particular case that satisfies condition (5.49) is the so-called propor-
tional damping, i.e., the case in which the damping matrix can be expressed
as a linear combination of the mass and stiffness matrices:

C=aM+ K. (5.50)

Because condition (5.49) is more general than condition (5.50), a sys-
tem whose damping satisfies the first will be said to possess generalized
proportional damping.

Under these conditions, all matrices are diagonal, and Eq. (5.47) is a set
of n uncoupled second-order differential equations. Each of them is

Mirj + Cinji + Kimi = fi (5.51)

and the system with n degrees of freedom is broken down into a set of n
uncoupled systems, each with a single degree of freedom.

By normalizing the eigenvectors in such a way that the modal masses
are equal to unity, Eq. (5.47) for a system with generalized proportional
damping reduces to

i)+ 20Cwli + W = £ (5.52)

where [w?] = diag{w?} is the matrix of the eigenvalues, already defined in
Section 1.7, and matrix

[Cw] = diag{(;wi}

contains the damping ratios for the various modes.

Remark 5.7 The frequencies w; are the natural frequencies of the corre-
sponding undamped system.

Remark 5.8 Often the modal-damping matriz is not obtained by building
matric C and then performing the modal transformation, but directly by
assuming reasonable values for the modal-damping ratios ;.

4Matrices A and B commute if AB = BA.
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Although modal uncoupling does not introduce approximations in un-
damped systems, the equations of motion of damped systems can be un-
coupled exactly only in the case of generalized proportional damping. The
situation is usually that sketched in Fig. 5.6, in which the various modal
systems are coupled to each other by the out-of-diagonal terms of modal
damping.

This statement obviously does not exclude the possibility of uncoupling
the equations of motion by introducing adequate approximations. The sim-
plest way is by computing the modal-damping matrix using Eq. (5.48) and
then neglecting all its terms except those on the diagonal. This corresponds
to ‘cutting’ the dampers connecting the modal systems in Fig. 5.6b and
substituting dampers C; with dampers with coefficient C';;. Another pos-
sibility is to compute the eigenvalues related to the damped system solving
the eigenproblem (5.44) and then using Eq. (5.10) to compute the modal
damping for each mode.

Remark 5.9 These procedures, which usually produce very similar results,
introduce errors that are very small if the system is lightly damped.

| T 0
rh o ‘TL . |T[1 v, |

FIGURE 5.6. Modal uncoupling of damped systems. (a): Multi-degrees of free-
dom damped system. The modal systems in (b) are coupled by the out-of-diago-
nal modal-damping terms. The damping coefficients C'; are linked to the elements
of the modal damping matrix by the relationships C; = Zi:l Cijfori=1, ..,
3. Note that the term C;; with ¢ # j is negative.
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There are, however, cases in which neglecting the out-of-diagonal ele-
ments of the modal-damping matrix leads to unacceptable results, mainly
when the system is highly damped and the damping distribution is far
from being proportional. In this case, however, it is still possible to distin-
guish between a proportional part C, of the damping matrix, which is a
diagonal matrix containing the elements of C on the main diagonal, and a
nonproportional part C,,, containing all other elements of C. The latter
is symmetrical with all elements on the main diagonal equal to zero.

By applying the inverse modal transformation, it is possible to show also
that the original damping matrix C can be split into a proportional and a
nonproportional part,

C,=®7C,®'andC,,=®7C,, ',

respectively. Note that C,, is not strictly proportional but only proportional
in a generalized way.

Once the natural frequencies and mode shapes of the undamped system
are known, the equation of motion of the system can be rewritten in modal
coordinates in the form

Mij + Cp) + Kn = —C,piy + £(1) . (5.53)

All matrices on the left-hand side are diagonal and coupling terms are
present only on the right-hand side. It is thus possible to devise an itera-
tive procedure allowing the computation of the eigenvalues of the damped
system without solving the eigenproblem (5.44), whose size is 2n. Because
a solution of the type of Eq. (5.11) can be assumed for the time history of
the response in terms of modal coordinates, the differential homogeneous
equation associated with Eq. (5.53) can be transformed into the following
algebraic equation in the Laplace domain:

(s°M+5Cp, + K) ng = —sCppmy - (5.54)

To compute the ith eigenvalue s;, assume a set of n complex modal
coordinates that are all zero, except for the real part of the ith coordinate,
which is assumed with unit value. This amounts to assuming a complete
uncoupling between the modes, at least where the ith mode is concerned.
From the ith equation a first approximation of the complex eigenvalue
can be obtained. The remaining ¢ — 1 complex equations can be used to
obtain new values for the n — 1 complex elements of the eigenvector; the ith
element is assumed to have unit real part and zero imaginary part. Once
the eigenvector has been computed, a new estimate for the ith eigenvalue
can be obtained from the ith equation while the other equations yield a
new estimate for the eigenvector. This procedure can be repeated until
convergence is obtained.

This iterative procedure does not rely on any small-damping assumption.
The starting values of the eigenfrequencies are not those of the undamped
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system, but rather are those of a system that has a generalized proportional
distribution of damping. Consequently, it can also be applied to systems
with very high damping in which some modes show a nonoscillatory free
response. Although no theoretical proof of the convergence of the technique
has been attempted, a number of tests did show that convergence is very
quick. The reduction of computation time with respect to the conventional
state-space approach is particularly remarkable when the root loci are to
be obtained and the eigenproblem has to be solved several times.

Example 5.1 Perform the modal analysis of the system shown in Fig. 1.4
(Example 1.2), with the damping added in Example 3.1.

From the state-space dynamic matriz obtained in Example 3.1, the eigenvalues
are readily obtained:

s1 = —0.0263 £17 1.017, s2 = —0.4410 &4 2.974, s3 = —0.6577 £ ¢ 4.575.

The modal analysis of the undamped system was performed in Example 4.3,
obtaining the following matrixz of the eigenvectors, normalized by stating the
modal masses have unit values

0.23728 0.15342 0.95925
® = | 0.45004 0.16837 —0.13825
0.51681 —1.31383 0.08228

The modal-damping matriz can thus be computed. It is not diagonal because
the damping of the system is not proportional.

0.0527 —0.0328 —0.2049
C=&"C®=| —0.0328 0.8813 —0.1324
—0.2049 —0.1324 1.3160

Even if the damping matrixz is not diagonal, approrimate modal uncoupling
can be performed by neglecting all elements of the modal-damping matriz lying
outside the main diagonal.

The fact that the neglected elements of matriz C are of the same order of
magnitude as the terms considered should not give the impression of a rough
approximation. Actually, the behavior of the system is similar to that of the
undamped system, owing to the low value of damping, except when a mode
is excited mear its resonant frequency. Damping is important only in near-
resonant conditions, and even then only in one of the equations that is related
to the resonant mode.

In the equation in which damping is important, the element on the diagonal
of the modal-damping matriz is multiplied by a generalized coordinate that is
far greater than the other ones, i.e., by the modal coordinate of the resonant
mode.
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From the three uncoupled modal systems, the damped frequencies and decay
rates of the free motions can be obtained easily:

s1 = —0.0266 £4 1.016, s2 = —0.4407 £ 14 2.972, s3 = —0.6580 = 4.583.

They are very close to the values obtained directly as eigenvalues of the dy-
namic matriz in the state space. The imaginary parts of the eigenvalues can
be compared with the natural frequencies of the undamped system.

It is clear that the presence of damping does not greatly affect the frequency
of the free oscillations of the system.

5.6 Uncoupling the equations of motion: state
space

The eigenvectors of Eq. (5.44) do not uncouple the equations of motion in
the state space because matrix A is not symmetrical.

It is, however, possible to uncouple the state equations by resorting to
the eigenvectors of the adjoint eigenproblem, i.e., the eigenvectors of matrix
AT . Let qgr; be the ith right eigenvector (i.e., the ith eigenvector of matrix
A) and let qr; be the ith left eigenvector (i.e., the ith eigenvector of matrix
AT). They are biorthogonal, i.e., all products q7 ;qp; are equal to zero, if
i 7.

The eigenvectors can be normalized in such a way that
ardp; =1, (5.55)

in which case they are said to be biorthonormal.
By introducing into the state equation the modal states z defined by the
relationship
z = Ppz, (5.56)

where ® 5 is the matrix of the right eigenvectors, and premultiplying by
the matrix of the left eigenvectors ®; transposed, the following modal
uncoupled set of equations is obtained:

z = Az + Bu, (5.57)
where
A=oT A®p (5.58)
is a diagonal matrix listing the eigenvalues and
B=®'B (5.59)

is the input gain matrix of the modal system.
Note that this is possible because

&, by =1
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Remark 5.10 The transition matriz et in this case is a diagonal matriz,

which can be easily computed because each of its elements is simply e®it.

Example 5.2 Consider the system shown in Fig. 1.4 and studied in Examples
1.2, 3.1, and 5.1. Write the state-space equations and uncouple them through
the right and left eigenvectors.

The dynamic matriz and the input gain matriz computed in the mentioned
examples are

—-1.1 1 0 —-20 10 0
0.25 -0.35 0.1 25 =35 1
A= 0 0.8 -0.8 0 8 -8
a 1 0 0 0 0 0 ’
0 1 0 0 0 0
0 0 1 0 0 0
T

B=[0 0 2 0 0 0]

The right and left eigenvectors, suitably normalized, are (since they are con-
jugate, the siz columns of the matrices are reported in synthetic form)

0.2028 F0.5513;  0.1217 £0.0196;  1.0102 ¥ 0.0155
2.2258 F 1.1453  0.1336 F0.0110i  —0.1494 ¥ 0.0313i
| 25456 F1.3337i  —1.0418 +0.02015  0.0850 + 0.0446i
AR =1 05721 F1.1674i  0.0005 F 0.0410i  —0.0344 F 0.2158 | °
—1.1815 F2.1572i —0.0101 F 0.0434i —0.0021 + 0.0330i
—1.3747 F2.4665i  0.0575 + 0.3418i5  0.0069 F 0.01964

0.0184 +0.0111% 0.0932 £ 0.03421 0.4557 £ 0.05467

0.1425 + 0.0775¢ 0.4292 +0.0472¢  —0.2614 F 0.0929:
o 0.0205 +0.0110¢  —0.4134 7 0.0719¢  0.0178 £ 0.0126¢
ALi= 10,0272 £ 0.0112i —0.1476 +0.2879%  0.0169 -+ 2.1322i
—0.0675 £ 0.15027  0.0581 £ 1.29544 0.0355 F 1.23202

—0.0095 £ 0.02162  0.0225 F 1.2599:  —0.0291 +£ 0.09241

It can be easily checked that
&, dp =1
The modal state matriz and the modal input gain matriz are
A=® AP =
= diag[ —0.0263 + 1.0174¢ —0.4410 £2.9736¢ —0.6577 + 4.5753: ] ,
B=®[B=
= [ 0.0411 £0.02197 —0.8269 + 0.1438i 0.0355 + 0.02523

The elements of the modal state matriz coincide with the damped eigenvalues
of the system.

I
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5.7 Exercises

Exercise 5.1 Add a viscous damper with damping coefficient ¢ to the ballis-
tic pendulum of Ezxercise 4.1. Compute the maximum amplitude, the logarithmic
decrement, and the time needed to reduce the amplitude to 1/100 of the original
value. Data: m = 100 kg; my = 0.05 kg, v =200 m/s, | =3 m, ¢ =6 Ns/m.

Exercise 5.2 Add a viscous damper c12 = 40 Ns/m between masses m1 and
ma of the system of Exercise 4.4. Compute the modal-damping matrixz and say
whether damping is proportional or not. In the case where it is not proportional,
compute matrices C, and Cyryp. Compute the complex frequencies and the com-
plex modes of the system, both in the direct way and through an iterative modal
procedure.

Exercise 5.3 Consider the system with hysteretic damping studied in Ezercise
3.3. Compute the natural frequency of the undamped system and then the fre-
quency of the free oscillations and the decay rate of the damped one. Repeat the
computations for the system with Mazwell-Weichert damping of Ezercise 3.4.

Exercise 5.4 Consider the system with 3 degrees of freedom of Fig. 1.8, already
studied in Ezercises 1.2, 2.1, and 2.3, with damping added as in Ezercise 3.1.
Write the state-space equations and uncouple them through the right and left
eigenvectors.
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Forced Response in the Frequency
Domain: Conservative Systems

The response of a linear conservative system excited by a harmonic forcing
function is a harmonic time history in phase with the excitation. When the
forcing frequency is close to a natural frequency of the system, very large
amplitudes can be reached in a short time. This phenomenon is referred to
as resonance. Theoretically, resonance leads to infinitely large amplitudes
in undamped systems.

6.1 System with a single degree of freedom

6.1.1 Steady-state response

The motion of a system with a single degree of freedom under the effect
of an external excitation can be obtained by adding the solution of the
homogeneous equation describing the free motion to a particular integral
of Eq. (1.3) or (1.4).

Among the different time histories of the excitation F'(¢) that may be
considered, one is of particular interest: Harmonic excitation

F(t) = f1cos(wt) + fosin (wt) = fycos (wt + D) . (6.1)

As discussed in detail in Section 2.2.1, it is expedient to express quantities
that have a harmonic time history as projections on the real axis of vectors
that rotate in the complex plane by resorting to the complex notation. The
forcing function can thus be expressed in the form

F(t) = foe™" . (6.2)
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In a similar way, if the excitation is provided by the motion of the con-
straint, the forcing function is

za(t) = 20,6 . (6.3)

It is easy to verify that if the forcing function has an harmonic time
history, the particular integral of the equation of motion is harmonic in
time, oscillating with the same frequency w. It can be represented by an
exponential function as well

x(t) = zoe™? . (6.4)

By introducing a harmonic time history for both excitation and response,
the differential time-domain equation of motion (1.3) or (1.4) can be trans-
formed into an algebraic, frequency domain, equation yielding the complex
amplitude of the response

f07
(—mw?+k)zg =1 kaa,, (6.5)
—mw3T A,

for excitation provided by a force, by the motion of the supporting point
A using an inertial coordinate, and by the motion of the supporting point
A using a relative coordinate, respectively. The coefficient of the unknown
zo in Eq. (6.5) is the dynamic stiffness of the system, already defined in
Section 2.2.1, with reference to multi-degrees-of-freedom systems

Kagn = (—mw? + k) = k [1— (:}")T .

The dynamic stiffness is a function of the forcing frequency; its reciprocal
is usually referred to as dynamic compliance or receptance and expresses
the ratio between the amplitude of the displacement xg and the amplitude
of the exciting force fy. When the forcing frequency tends to zero, the
dynamic stiffness and compliance tend to their static counterparts, the
stiffness k and the compliance 1/k.

The ratio between the dynamic and static compliance of the system is
usually referred to as the nondimensional frequency response

H(w) = k_’jmz - (1w )2 (6.6)

Wn

of the system; it is also referred to as the magnification factor (Fig. 6.1a).
When plotting the frequency response, logarithmic axes are often used,
and the scale of the ordinates may be expressed in decibels (Fig. 6.1b).
The value in decibels of the magnification factor H(w) is defined as
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FIGURE 6.1. Magnification factor as a function of the forcing frequency: (a)
linear scales, (b) logarithmic scale for frequency and dB scale for amplitudes.

HdB :2010g10(|H|). (67)

In the logarithmic plot, the frequency response tends, for very low fre-
quency, to the straight line H=1, and for very high frequency to a straight
line sloping down with a slope equal to —2. This last situation is often
referred to as an attenuation of 12 dB/oct (decibel per octave), even if the
actual value is 12.041 dB/oct, or 40 dB/dec (decibel per decade). Where the
response follows the first straight line, the system is said to be controlled
by the stiffness of the spring because inertia forces are negligible, and the
external force F'(t) is in equilibrium with the elastic force. In the case of
excitation due to the motion of point A, mass m follows the displacement
of the support. The response is in phase with the excitation.

When the system follows the sloping straight line, its behavior is said
to be controlled by the inertia of the mass m, because the elastic force
is negligible if compared to the inertia force, and the latter balances the
external force F'(t). The response is still in phase with the excitation but
its amplitude has an opposite sign: this situation is usually described as a
phase angle of —180°.

When the excitation frequency w is close to the natural frequency w,,
a resonance occurs and the steady-state amplitude tends to be infinitely
large. However, in this zone, which is said to be controlled by damping, the
damping of the system becomes the governing factor because, at resonance,
the inertia force exactly balances the elastic force and, consequently, only
the damping force can balance the excitation F(¢). In this case, the presence
of damping cannot be neglected and the present conservative model loses
its accuracy.
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If the excitation is provided by the harmonic motion of the supporting
point A, a frequency response

can be defined. The magnification factor is still expressed by Eq. (6.6).

A very common example of a system excited by the motion of the sup-
ports is that of a rigid body supported by compliant mountings whose
aim is that of insulating it from vibrations that can be transmitted from
the surrounding environment. In this case, the magnification factor |H| is
referred to as transmissibility of the suspension system.

The transmissibility is the ratio between the amplitude of the absolute
displacement of the suspended object and the amplitude of the displace-
ment of the supporting points.

Another problem related to the insulation of mechanical vibrations is
that of reducing the excitation exerted on the supporting structure by a
rigid body on which a force variable in time is acting. The ratio between the
amplitude of the force exerted by the spring on the supporting point kxz and
the amplitude of the excitation F'(t) is also referred to as transmissibility
of the suspension.

With simple computations, it is possible to show that the value of the
transmissibility so defined is the same as obtained in Eq. (6.6). This ex-
plains why the two ratios are referred to by the same name.

Apart from the dynamic compliance and the dynamic stiffness, other
frequency responses can be defined. The ratio between the amplitude of the
velocity and that of the force F' is said to be the mobility; its reciprocal is the
mechanical impedance. The ratio between the amplitude of the acceleration
and that of the force F' is said to be the inertance, and its reciprocal is the
dynamic mass. The aforementioned frequency responses are summarized in
Table 6.1 and Fig. 6.2. The most widely used are the dynamic compliance
and the inertance.

They are all expressed by real numbers, in the case of undamped systems.

TABLE 6.1. Frequency responses.

Frequency response Definition S.I. units Lim(w — 0)
Dynamic compliance xo/ fo m/N 1/k
Dynamic stiffness fo/xo N/m k
Mobility &)y /fo=wzo/fo  m/sN 0
Mechanical impedance  fo/ (#), = fo/wzo  Ns/m 00
Inertance (&) /fo =w?zo/fo m/s’N 0
Dynamic mass fo/ (&) = fo/w?zo s°N/m 00
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FIGURE 6.2. Nondimensional frequency responses for an undamped single-de-
gree-of-freedom system (logarithmic scales).

6.1.2 Nonstationary response

The complete solution of the equation of motion is obtained by adding the
solutions found for the free and forced oscillations (i.e., adding a particular
integral to the complementary function)

= K*e™" 4 H(w) J;O et (6.8)
The complex constant K* can be determined from the initial conditions.
In most actual systems, owing to the presence of damping (see Chapter
5), the first term of Eq. (6.8) tends to zero, often quite quickly, while the
second one has a constant amplitude; as a consequence, when studying
the response of a damped system to harmonic excitation, usually only the
latter is considered. There are, however, cases in which the initial transient
cannot be neglected, particularly when dealing with lightly damped systems
or when the forcing function is applied to a system that is at rest: in the
latter case oscillations with growing amplitude usually result, until the
steady-state conditions are reached.
In the present undamped case the free response does not vanish with
time, and the solution is a poly-harmonic oscillations made of two
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components, one with frequency w, and one with frequency w. By writ-
ing the complex constants K* and fj as

K*=Cy—iCy Jfo=fi—if2,
the response can be written using only harmonic functions

H(w)
k

where constants C; and Cs must be obtained from the initial conditions
2(0) = xo and ©(0) = vo. Their values are

x = C cos (wpt) + Cysin (wyt) + [f1cos (wt) + fosin(wt)] , (6.9)

H
Cy =m0 — l(:))fl
(6.10)
Cy — vo Hw) w b,
Wn, k  wy

The motion is periodic if ratio w/wy, is a rational number.

Consider for instance the case of a system which at time t = 0 is at
standstill in the origin (zo = 0, vg = 0) and is excited by a force with only
sine components (f1 = 0). The response is simply

x = ng]iw) sin (wt) — “ sin (wnt)] - (6.11)

Wn

Some nondimensional time histories are reported in Fig. 6.3 for different
values of ratio w/wy,. In all cases it is assumed to be a rational number so
that the motion is periodic, but in the first case the period is fairly long. In
cases (b) and (c) the forcing frequency is close to the natural frequency and
a beat takes place. The nondimensional period of the beat is 20w = 62.8.

If the frequency of the forcing function coincides with the natural fre-
quency, Eq. (6.11) cannot be used, since H(w) is infinitely large while the
expression in braces vanishes. The response can be computed as

z = lim { fo H}i‘”) {sin (wt) — :’n sin (wnt)” , (6.12)

wW—wn

i.e., by introducing the value of H(w)

_ oo {wnsin(wt)—wsin(wnﬂ] (6.13)

xr =
k  w—own w2 —w?

Using de L’Hospital’s rule, the limit can be computed by differentiating
both the numerator and denominator with respect to w

_ fawn . wptcos (Wt) —sin (wat)]  fa . .
x = lim o = ok [sin (wnt) — wpt cos (wnt)] .

(6.14)
The amplitude grows linearly with time, tending to infinity for ¢t — oo.

k wown
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FIGURE 6.3. Nondimensional time history for an undamped system excited by
an harmonic force starting from the origin at standstill. (a) w/w, = 0.51; (b)
w/wn =0.90; (¢) w/wp = 1.1; (d) w/wn, = 2.0.

Remark 6.1 To state that when resonance occurs the amplitude of the
response becomes infinitely large is an oversimplification, even in the ideal-
ized case of undamped systems. The amplitude grows linearly and an infinite
time is required to reach an infinite amplitude

In practice, large values of the amplitude can be reached in a short time,
but there are cases where the amplitude buildup is slow.

The time history expressed by Eq. (6.14) is reported in Fig. 6.4.

The equation of the straight line enveloping the response is easily approx-
imated by the line connecting the peaks, which occur at the times when
sin (wy,t) vanishes

fZWn
="k t. (6.15)
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FIGURE 6.4. Resonant response of a conservative system with a single degree of
freedom.
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6.2 System with many degrees of freedom

The harmonic excitation and response of a general multi-degrees-of-freedom
system can be written in the form

f(t) = foe™t | x(t) = xpe™? . (6.16)

By introducing the solution (6.16) into the equation of motion (1.7), the
frequency-domain equation (2.14) is obtained

KdynXO = fO » (617)

where the expression of the dynamic stiffness matrix of the system is ex-
pressed by Eq. (2.13)
Kayn = —w*M + K.

The dynamic stiffness matrix is real and symmetrical but can be non-
positive defined.

As stated in Chapter 2, vectors xg and fy are in general complex vectors.
By separating the real and the imaginary parts of Eq. (6.17) it follows

K — w*M 0 R(xo) | _ [ R(fo) (6.18)
0 K- sz %(XQ) o %(fo) ' ’
The real part of the response then depends only on the real part of the
excitation, and the same holds for the imaginary parts.

Remark 6.2 The real and imaginary parts of the response can be com-
puted from the real and imaginary parts of the excitation separately. This
property, however, holds only for conservative (undamped) systems.

If all the harmonic exciting forces have the same phasing, i.e., the exci-
tation is said to be monophase or coherently phased, the response of the
system is harmonic and is in phase with the excitation. In such a case
both fy and x( can be expressed by real vectors, simply by taking as initial
time the instant in which both the excitation and the response are at their
maximum.

A system with n degrees of freedom can be excited using n harmonic
generalized forces corresponding to the n generalized coordinates, and, for
each exciting force, n responses can be obtained. The frequency responses

Hij(w) = 20 @) (6.19)
Joj
where fo; is the amplitude of the jth generalized force and xg; is the re-
sponse at the ith degree of freedom, are thus n2.

The static compliance matrix or the matrix of the coefficients of influence

is defined as the inverse of the stiffness matrix K. A dynamic compliance
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matrix can be defined in the same way as the inverse of the dynamic stiff-
ness matrix. It coincides with the matrix of the frequency responses H(w)
defined earlier. The compliance matrix is symmetrical, as is the stiffness
matrix, but while the latter often has a band structure, the former does
not show useful regularities.

A number n? of frequency responses can be plotted in the same way
seen for systems with a single degree of freedom. Their amplitude has n
peaks with infinite height, corresponding to the natural frequencies. Some
of the curves H(w) can cross the frequency axis, i.e., the amplitude can get
vanishingly small at certain frequencies. This condition is usually referred
to as antiresonance. It must be noted that while the resonances are the
same for all the degrees of freedom, the antiresonances are different and
may be absent in some of the responses. The number of antiresonances is
n —1 for the transfer functions on the main diagonal and, in the case of in-
line systems with the generalized coordinates listed sequentially, decrease
by one on each diagonal above or below it. No antiresonance is thus found
in Hy, and H, ;.

Example 6.1 Compute the elements Hi1 and His of the frequency response
of the system in Example 1.2.

The dynamic compliance is easily computed by inverting the dynamic stiffness
matriz. The frequency responses are plotted in Fig. 6.5a using logarithmic
scales. By multiplying the dynamic compliance by w? the inertance is easily
obtained (Fig. 6.5b).
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FIGURE 6.5. Two elements of the (a) dynamic compliance matrix and (b) the
inertance matrix of a system with three degrees of freedom. The units are rad/Nm
for the dynamic compliance and rad/Nms? for the inertance.
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6.3 Modal computation of the response

Since the equations of motion of any linear conservative system with n
degrees of freedom can be uncoupled into n separate linear equations of the
same type of those seen for a single-degree-of-freedom system (Egs. (4.45)),
the time history of the response to an arbitrary excitation can be computed
by

1. Computing the eigenvalues and eigenvectors of the system and nor-
malizing the eigenvectors.

2. Computing the modal forces as functions of time.

3. Solving the n Eqgs. (4.45), in order to obtain the time histories of the
response in terms of modal coordinates 7.

4. Recombining the responses computed through Eq. (4.37), yielding
the time history of the system in terms of the physical coordinates x.

This procedure has the notable advantage of dealing with n uncoupled
equations, while a direct solution would require the integration of a set of
n coupled differential equations.

There is, however, another advantage: Not all modes are equally impor-
tant in determining the response of the system. If there are many degrees
of freedom, a limited number of modes (usually those characterized by the
lowest natural frequencies) is sufficient for obtaining the response with good
accuracy. If only the first m modes are considered,' the savings in terms
of computation time, and hence cost, are usually noticeable, because only
m eigenvalues and eigenvectors need to be computed and m systems with
one degree of freedom have to be studied. Usually the modes that are more
difficult to deal with are those characterized by the highest natural frequen-
cies, particularly if the equations of motion are numerically integrated. The
advantage of discarding the higher-order modes is, in this case, great.

When some modes are neglected, the reduced matrix of the eigenvectors,
which will be referred to as

é* = [q17q27"'7qm] 9

is not square because it has n rows and m columns. The first coordinate
transformation (4.37) still holds

_ *
Xnx1 = q)nxmnmxl )

and the m values of the modal mass, stuffiness, and force can be computed
as usual. However, the inverse transformation (second Eq. (4.37)) is not
possible, because the inversion of matrix ®* cannot be performed.

n the following pages it is assumed that the modes which are retained are those
from the first one to the mth.
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The modal coordinates 17 can be computed from the physical coordinates
x by premultiplying by ®*7M both sides of the first Eq. (4.37) computed
using the reduced matrix of the eigenvectors ®*, obtaining

»*"Mx = & Moy , (6.20)

ie.,
&' Mx = Mn. (6.21)

Premultiplying then both sides by the inverse of the matrix of the modal
masses, it follows

—1 «
Nmx1 = memq)anTMnannxl . (6.22)

Equation (6.22) is the required inverse modal transformation. As re-

quired, the transformation matrix
M;lem@;‘anTMnX”
has m rows and n columns.

When studying the response to an excitation due to the motion of the
supporting points, it is usually sufficient to consider the few modes char-
acterized by a high value of the corresponding modal participation factor.
The order of vector r; is in this case m and all the considerations dis-
cussed in Section 4.5 still hold, but Eq. (4.56) is only approximated. The
precision that can be attained considering only a limited number of modes
when computing the response to an excitation due to the motion of the con-
straints is measured by the approximation with which the sum in Eq. (4.56)
approximates the total mass of the system.

The response computed by considering only the first m modes can be in-
accurate even at low frequency if the static deformation has a shape which,
once expressed in modal coordinates, has non-negligible contributions due
to any mode of order higher than m. To account for the contribution of the
modes which are neglected to the low-frequency response without having
to use a high number of modes, it is possible to operate as follows.

Assuming that the eigenvectors are normalized in such a way that the
modal masses have a unit value, the modal responses can be obtained from
Egs. (4.45) in which a harmonic forcing function is introduced

foi 1 -
Mi= a2 = e q’l'f, fori=1,2,..,n. (6.23)

ni ni

By transforming the response from the modal coordinates back to the
physical ones, it follows

I P TS 6.24
x ;Tloq (ZWQ _wgqql> 0 (6.24)

i=1 n
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By subdividing the sum into two parts, related to the first m modes and
to all other ones, it follows

X — <Z W2 2 qm?) fo + < > 22 qiq?> f,.  (6.25)

i=1 ~ni i=m+1 N

The first term is the approximated response computed using the first
m modes, while the second term can be considered as the error due to
considering a reduced number of modes. If the natural frequency of the
(m + 1)th mode is much higher than the excitation frequency w (say at
least 10 times), w2, >> w? for all the modes included in the second term.
The error can then be computed by neglecting w? with respect to w2,

X & (Z W2 w2 Qiq;> fo + < Z wzlqiq;?r> fo. (6.26)

=1 ~ni i=m-41 "

If for instance wy,; for the (m + 1)th mode is 10 times w, the approxima-
tion in the computation of the error is less (much less) than 1%.
The response to a static force vector fj

xo= K 'f, (6.27)

can be expressed in terms of modal coordinates

1 1 |
Xt = <Z 2 qu) fo = (Z 2 qiqf> fo + ( > 2 qiqf> fo .

=1 ~ni i=1 ~nt i=m-+1 ni
(6.28)

From Egs. (6.27) and (6.28) it follows

n 1 - m 1

i:m+l ni i=1 ni

Finally, introducing Eq. (6.29) into Eq. (6.26) it follows

’” 1 G| N
X~ <Z e qiq?> £y — <Z 2 qiq?> fo+ K 'f,.  (6.30)

i=1 i i=1 i

Note that only the first m eigenvectors appear in Eq. (6.30).

The sum of the first two terms have an immediate physical meaning: it
is the difference between the dynamic and the static response, computed
using the first m modes. As a whole, the meaning of Eq. (6.30) is then clear:
the response can be computed by accounting for the dynamic response of
the lower order modes, plus the static response of the other ones.
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The difference between the dynamic and static response can be immedi-
ately computed as

(Z W2 —quiqi>f0_ <Zw2'<liqi>f0:

i=1 n i=1 n
(6.31)
m 2 m 2
w 1 ) T w
= aiq; | fo= Noidi-

An approximated computation of the response can thus be performed by
first obtaining the first m eigenvectors and modal responses 7y; and then
recombining them using the relationship

x ~ P " (6.32)

where ®** is a modified reduced matrix of the eigenvectors obtained by
adding a further column to ®* in which the first Ritz vector (see next
section, Eq. (6.36))

ri =K 'fy,
is included
T = [q17q27"'aq’m.arl] . (633)
n* is the vector of the modified modal coordinates
. w2 W2 W2
n = [wglnola wiznOwnwuj?LmnOm;l] . (634)

Example 6.2 Consider the torsional system studied in FExample 1.2, and
compute the response of the first inertia (point 1) to a harmonic torque with
unit amplitude applied in the same point using the modal approach.

The modal analysis of the system was performed in Example 4.3. Let ® be the
matrixz of the eigenvectors normalized in such a way that the modal masses
have a unit value. Its value is here repeated together with the modal mass
matrix

0.23728 0.15342 0.95925
P = | 0.45004 0.16837 —0.13825 s
0.51681 —1.31383 0.08228
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1.03353 0 0
K= 0 9.02522 0
0 0 21.44125

The modal contributions to the response in point 1 due to the ith mode can be
readily computed as

1 T
Toli = q1iM1 = q1i o 5 i fo .
wo, —w

The responses are reported in Fig. 6.6a. From the plot it is clear that the third
mode is quite important in determining the response also at low frequency,
and the third mode component of the static response is quite strong. The sec-
ond mode is comparatively unimportant, except close to its own resonance.
In these conditions, the modal computation of the response performed includ-
ing a single mode (Fig. 6.6b) or two modes (Fig. 6.6¢) is quite inaccurate
even at low frequency. Only in the vicinity of the first resonance (the first
and the second in Fig. 6.6¢) such modal computations can be considered ac-
ceptable. The modal computation was repeated using the modified matriz and
vector defined in Eqs. (6.33) and (6.34). In this case, as shown in Fig. 6.6d,
very accurate results are obtained even with a single mode up to the antires-
onance (w =~ 1.5). At higher frequency, the third mode starts to show strong
dynamic effects and reducing its response to the static one becomes unsatisfac-
tory. Taking into account also the second mode does not change essentially the
picture.

This example is in a way not typical, since the three natural frequencies are
quite close to each other and, in this condition, the high-order modes extend
their influence at frequencies as low as the natural frequencies of the first
modes. At any rate, it shows that the static component of the response of the
modes resonating at high frequency can be too strong to be neglected.

6.4 Coordinate transformation based on Ritz
vectors

The dynamic behavior of systems with many degrees of freedom was stud-
ied in the preceding sections using either physical coordinates or modal
coordinates. It is, however, obvious that any other coordinate transforma-
tion can be applied and that any non-singular matrix of order n could
be used to perform a coordinate transformation. This statement simply
means that any set of linearly independent vectors can be assumed as a
reference frame in the space of configurations. The modal transformation
based on the eigenvectors has the drawbacks of requiring the solution of
an eigenproblem, which sometimes is quite complex, and often requiring
a large number of modes to compute the response to a generic forcing
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FIGURE 6.6. Response of the three degrees of freedom system of Example 1.2. (a)
Contributions of the 3 modal systems to the response in point 1. (b) Response in
mode 1, computed from the complete equations (full line) and using only the first
modal response (dashed line). (c) As (b), but with the first two modal responses.
(d) As (b), but taking into account the static response, plus one mode (dashed
line) and plus two modes (dotted line).

function. When the response to an excitation due to the motion of the
supports has to be computed, this means that many modes have a modal
participation factor high enough to prevent from neglecting them. In this
case, the use of Ritz vectors constitutes a different choice worthy of con-
sideration.

Consider a multi-degree-of-freedom system excited in such a way that
there is only one input u(¢). In the configurations space, the forcing function
can be expressed as f(t) = fyf(¢). The first Ritz vector is defined by the
equation

r = Kilfo , (635)

and then it coincides with the static deflected shape under the effect of the
constant force distribution fj. Ritz vectors, like eigenvectors, are normal-
ized. The simplest way to normalize Ritz vectors is by making the products
r'Mr equal to unity. This can easily be performed by dividing each Ritz
vector r by the square root of r” Mr.
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The following vectors can be computed using the recursive equation
r; =K 'Mr;, ;. (6.36)

Once a set of m Ritz vectors has been computed, a transformation matrix
with n rows and m columns

R=[r1,ra,...,1p]

can be written. It can be used instead of the matrix of the eigenvectors to
perform the coordinate transformation

x = Rx.

The coordinates Z; are m, as when a reduced number of modes is used.
The transformed mass matrix is diagonal, due to the way the Ritz vectors
are derived. All other transformed matrices are, however, non-diagonal and,
consequently, the undamped equations of motions are coupled (elastic cou-
pling).

The physical interpretation of Ritz vectors is straightforward. The first
vector represents the static deformation under the effect of force distri-
bution f;. No allowance is taken for inertia forces. Inertia forces due to
harmonic motion with frequency w and deformed shape r; are w?Mr;.
The second Ritz vector is then proportional to the deformed shape due to
inertia forces consequent to a harmonic oscillation with a deformed shape
corresponding to the first vector. In the same way, all other vectors are
computed.

The advantage of Ritz vectors with respect to the eigenvectors of the
undamped system in the computation of the time history of the response
is then clear: Fewer coordinates are generally required, and the amount of
computational work needed to compute them is much smaller. The equation
of motion obtained using Ritz vectors can then be subjected to modal
analysis or reduced as it will be seen in Chapter 10.

There are, however, also disadvantages. First, it is common to perform
an eigenanalysis before computing the time history of the response to ob-
tain the natural frequencies and the mode shapes. In this case, the modal
transformation involves very little additional computational work. In the
undamped case, the equations of motion obtained through modal transfor-
mation are uncoupled, while, through Ritz vectors, a set of equations with
elastic coupling is obtained. When damping is taken into consideration,
and even more when nonlinearities are included in the model, the number
of Ritz vectors needed can increase, and it is very difficult to assess how
many must be considered, as happens with the true eigenvectors.

Although they are sometimes used in the computation of the response
of structures to seismic excitation, Ritz vectors are not widely used in
structural dynamics.
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6.5 Response to periodic excitation

When a periodic excitation F(t) with period T acts on the system, the
steady-state response can easily be computed by decomposing the forcing
function in a Fourier series

- 2mi " (2w
F(t):a0+z;aicos(T)—Fz;bism(T>. (6.37)

The coefficients of the Fourier series can be obtained from function F'(t)
using the formulae

1 T
ag = / F(t)dt
1 27
S = 6.38
a; T/o F(t) cos ( T t> dt (6.38)

1T omi
b; = T/o F(t)sin< 7T”t> dt.

Because the system is linear, the response to the poly-harmonic excita-
tion (6.37) can be obtained by adding the responses to all terms of the
forcing functions. Since in the case of undamped systems the frequency
response is real, the following expression for the particular integral of the
equation of motion can be obtained:

2(t) = llﬂao £ @il () cosnt) + Y biH()sin(it), (639

where the frequency of the ith harmonic of the forcing function is

The complete solution can thus be obtained by adding the particular
integral expressed by Eq. (6.39) to the complementary function

T = K*elwnt

and computing the complex constant K* from the initial conditions.

6.6 Exercises

Exercise 6.1 A machine whose mass is m contains a rotor with an eccentric
mass me at a radius r. running at speed 1. Compute the stiffness of the sup-
porting elements in such a way that the natural frequency of the machine is equal
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to 1/8 of the forcing frequency due to the rotor; compute the mazimum amplitude
of the force transmitted to the supports at all speeds up to the operating speed.

Add a second unbalanced rotor identical to the first running in the same direc-
tion at a slightly different speed Q2a. Write the equation of motion and show that
a beat takes place. Compute the frequency of the beat and plot the time history
of the response (assuming that the free part of the response has already decayed
away) starting from the time at which the two unbalances are in phase. Data:
m = 500 kg, me = 0.050 kg, re =1 m, 1 = 3,000 rpm, Q2 = 3,010 rpm.

Exercise 6.2 Compute the time history of the system of Exercise 4.2 for an
excitation due to the motion of the supports xa = xa, sin(wt). Compute the time
history of the response using physical and modal coordinates (neglect the free
motion part of the response). Data: xa, =5 mm, w = 30 rad/s.

Exercise 6.3 Consider the system of Example 1.4. The points at which the two
pendulums are connected move together in the x-direction with a harmonic time
history x4 = xp = x4, sin(wt), with x4, = 30 mm, w =1 Hz.

Compute the response of the system, assuming that at time t = 0 the whole sys-
tem is at a standstill. Compute the modal participation factors and assess whether
an excitation of the type here assumed, with the initial condition described, gives
way to a beat. Data: m = 1 kg, | = 600 mm, k =2 N/m, g = 9.81 m/s>.

Exercise 6.4 An instrument, whose mass is 20 kg must be mounted on a space
vehicle through a cantilever arm of annular cross-section made of light alloy, 600
mm long and with inner and outer diameters 100 and 110 mm respectively.

Using a simple model with a single degree of freedom, check the ability of the
arm to withstand a harmonic excitation due to the motion of the supporting point.
Let the intensity of the excitation be defined by

o Amplitude 10 mm in the frequency range 5-8.5 Hz

o Acceleration 3 g in the frequency range 8.5-35 Hz

e Acceleration 1 g in the frequency range 35-50 Hz.

The stresses due the mentioned excitation must not exceed

o The ultimate strength (328 MN/m?) divided by a safety factor of 1.575
o The yield strength (216 MN/m?) divided by a safety factor of 1.155

o The allowable fatigue strength for a duration of 107 cycles (115 MN/m?)

The relative displacement between the instrument at the end of the beam and
the supporting structure must not exceed 2 mm. Material data: E = 72 x 10°
N/m?; p = 2,800 kg/m°.
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Forced Response in the Frequency
Domain: Damped Systems

When damping is considered, the response of a linear system to a harmonic
excitation is still harmonic in time, but is not in phase with the excitation.
If damping is small, there is still a well-defined resonance (or many of them,
depending on number of degrees of freedom), but its amplitude remains
finite. If damping is large, one or more resonance peaks may disappear
altogether.

7.1 System with a single degree of freedom:
steady-state response

The response of a damped system with a single degree of freedom can be

computed following the same lines seen in Chapter 6 for the undamped

system. The excitation and the response can be written in the form

e Force excitation
F(t) = foe™t . (7.1)

e Excitation due to motion of the constraint

za(t) = za,e™" . (7.2)

e Response _
z(t) = zoe™? . (7.3)
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As it was stated for the case of undamped systems, force F'(t) is a real
quantity and should be expressed as F' = R(foe?); in the same way, the
expression of the displacements should mention explicitly the real part,
since the complex notation is used to express quantities that have a har-
monic time history as projections on the real axis of vectors that rotate in
the complex plane. The symbol & is, however, usually omitted.

Phasing is much more important for damped systems than for conserva-
tive ones, since damping causes the response to be out of phase with respect
to the excitation. The amplitudes fy and zy are then complex quantities,
with different phasing as shown in Fig. 7.1.

Remark 7.1 The response to a harmonic excitation is harmonic, with the
same frequency of the forcing function but out of phase with respect to the
latter.

By introducing a harmonic time history for both excitation and response,
the differential equation of motion can be transformed into an algebraic
equation yielding the complex amplitude of the response

fO )
(- mw? + iwe+ k)zg = (iwe+ k)za, (7.4)
—mw?z 4,

for excitation provided by a force, by the motion of the supporting point
A using an inertial coordinate, and by the motion of the supporting point

i Im
Re(H)f,e"
Hfoeioot
fo elmt
V=
()
, Re
—
F(t) Im(H)f, e
e

FIGURE 7.1. Response of a system with viscous damping as seen in the complex
plane.
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A using a relative coordinate, respectively. The coefficient of the unknown
zo in Eq. (7.4) is the dynamic stiffness of the system already defined in
Chapter 3

2
kagn = (= mw? + icw + k) = k l1— (w ) —|—2i§(w )] . (75)
wn n
Remark 7.2 The dynamic stiffness, as well as its reciprocal, the dynamic
compliance or receptance, is complex.

The real part of the frequency response H(w) gives the component of the
response that is in phase with the excitation. The imaginary part gives the
component in quadrature, which lags the excitation by a phase angle of 90°.
The expressions for the real and imaginary parts of H(w), its amplitude,
and phase are

- (2)
2 o
_ —o e
S(H) = (k—171u12c)020+c2w2 1_(w)2'2+(2<w)2’
| = k _ 1

V(k — mw?)? + 2w? \/[1_ (:}n)2r+ (26;‘;)2

e ~2¢ (&)
$ = arctan = arctan 5
k — mw? 1_ ( w )

The situation in the complex plane at time ¢ is described in Fig. 7.1.

The absolute value of the frequency response is the magnification factor.
It is plotted together with the phase angle ® as a function of the forcing
frequency in Figs. 7.2a and b for different values of the damping ratio (.
Logarithmic axes are often used, and the scale of the ordinates is expressed
in decibels (Fig. 7.2¢). This plot is referred to as the Bode diagram.

The resonance occurs when the excitation frequency w is close to the
natural frequency of the undamped system w,, but does not exactly co-
incide with it, and its amplitude is limited. In this zone the damping of
the system, however small it may be, becomes the governing factor be-
cause, at resonance, the inertia force exactly balances the elastic force and,
consequently, only the damping force can balance the excitation F'(t).
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FIGURE 7.2. Bode diagram, i.e., magnification factor and phase as functions of
the forcing frequency: (a) and (b) linear scales, (c¢) logarithmic scale for frequency
and dB scale for amplitudes. (d) Frequency response of lightly damped systems
approximated by using the response of the undamped system and shaving the
peak at the value expressed by Eq. (7.7). Comparison with the exact solution.

Remark 7.3 In a range close to the resonance, which is said to be con-
trolled by damping, the presence of damping cannot be neglected; in the
other frequency ranges, the behavior of the system can often be very well
approximated using an undamped model.

Remark 7.4 At the natural frequency of the undamped system, the phase
lag is exactly 90°, regardless of the value of the damping.

If ¢ < 1/2, the frequency at which the peak amplitude occurs is

Wp :wn\/l —2¢2.

It shifts toward the lower values of w with increasing damping and does
not coincide with the frequency of the free oscillations of the system. For
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greater values of (, the curve H(w) does not show a peak and the maximum
value occurs at w = 0. If the system is lightly damped and ¢? is negligible
compared with unity, then the maximum values of the amplitude and mag-
nification factor are, respectively,

fo 1

~ ~
|x0|max ~ ) |H|max ~

o ” (7.7)

The term 1

Q=2<

is often called the quality factor and symbol @ is used to represent it.

On the curve obtained for { = 0.1 in Fig. 7.2a, points P; and P, at
which the amplitude is equal to the peak amplitude divided by v/2, are
reported. They are often defined as half-power points and correspond to an
attenuation of about 3 dB with respect to the maximum amplitude. The
frequency interval Aw between points P1 and P2 is often called the half-
power bandwidth and is used as a measure of the sharpness of the resonance
peak. If damping is small enough to allow the usual simplifications (i.e., ¢?
is negligible compared with unity), the frequencies corresponding to such
points and the half-power bandwidth are

wp, ~ wny/1—2C, wp, & wn\/142C, Aw =~ 2€w,. (7.9)

(7.8)

The frequency response of a lightly damped system can be approximated
by the frequency response of the corresponding undamped system except
for the frequency range spanning from point P; to point Po, where the am-
plitude can be considered constant, its value being expressed by Eq. (7.7).
As shown in Fig. 7.2d, this approximation still holds for values of damping
as high as ¢ = 0.25 —0.30.

4 ——
Re(H) - 1 |
2_ . .
] 0.5 | 1
1 0.75 1 1
o1 1
_2— -
-4 -8 —
0 1 2 3 0 1 2 3

0/o, /O,

FIGURE 7.3. Real and imaginary parts of the frequency response as functions of
the forcing frequency.
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FIGURE 7.4. (a) Same as Fig. 7.3, but as a tridimensional plot. (b) Nyquist
diagram for a system with a single degree of freedom.

Instead of plotting the amplitude and the phase of the frequency re-
sponse, it is possible to separately plot its real and imaginary parts (Fig. 7.3).
The two plots of Fig. 7.3 can be combined in the three-dimensional plot of
Fig. 7.4a. The projection of the latter on the complex plane is the so-called
Nyquist diagram (Fig. 7.4b).

If the excitation is provided by the harmonic motion of the supporting
point A, a frequency response H(w) = xo/x4, can be defined. By sepa-
rating the real part from the imaginary part, the following values of the
magnification factor and phase lag are readily obtained:

k(k — mw?) + 2w?

R(H) = (k — mw?)2 + 2w?’
N —cmw?
S(H) = (k — mw?)? + 2w?’
(7.10)
| = VE2 + c2w?
\/(k — mw?)? + c2w? ’
—cmw?
$ = arctan (k(k — mw?) + c2w2> .

The amplitude and the phase of the frequency response are plotted as
functions of the forcing frequency in Fig. 7.5.

The transmissibility is the ratio between the amplitude of the absolute
displacement of the suspended object and the amplitude of the displace-
ment of the supporting points. In many cases, the amplitude of the accel-
eration is more important than the amplitude of the displacement (Fig.
7.6a).
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FIGURE 7.5. Same as Fig. 7.2, but with the excitation provided by the harmonic
motion of the supporting point. Full line indicates curves for different values of
damping; dashed line indicates line connecting the peaks.
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FIGURE 7.6. Non-dimensional response of a system excited by the motion of the
supporting point: (a) amplitude of the absolute acceleration of point P as a func-
tion of the driving frequency, (b) displacement expressed in relative coordinates.
The same response holds for the case of a system excited by a forcing function
whose amplitude is proportional to the square of the frequency. Full line indicates
curves for different values of damping; dashed line indicates line connecting the
peaks.

Another problem related to the insulation of mechanical vibrations is
that of reducing the excitation exerted on the supporting structure by a
rigid body on which a force variable in time is acting. The ratio between
the amplitude of the force exerted by the spring-damper system on the
supporting point kx 4+ c¢& and the amplitude of the excitation F(t) is also
referred to as transmissibility of the suspension. As in the case of undamped
systems, the value of the transmissibility so defined is the same as obtained
in Eq. (7.10) and the two ratios are referred to by the same name.
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From Fig. 7.6a, it is clear that any increase of the damping causes a
decrease of the transmissibility if the exciting frequency is lower than the
natural frequency of the suspension multiplied by /2, but it causes an
increase of the vibration amplitude at higher frequencies.

When the system is excited by the motion of the supporting point, it
can be expedient to resort to relative coordinates. If the amplitude of
the displacement of the supporting point is independent from the forcing
frequency, the acceleration is proportional to the square of w. The non-
dimensional frequency response for this case is shown in Fig. 7.6b. The
same figure can be used for the more general case of the response to a
forcing function whose amplitude is proportional to the square of the fre-
quency. Note that the peak is located at a frequency higher than the natural
frequency of the undamped system.

All frequency responses, like the mobility, the mechanical impedance, the
inertance, and its reciprocal, the dynamic mass, are complex in the case of
damped systems.

7.2 System with a single degree of freedom:
nonstationary response

The complete solution of the equation of motion is obtained by adding a
particular integral to the complementary function

T = K*e‘cw"tei“’"\/l_gzt + H(w)J;:eM (7.11)

and computing the complex constant K* from the initial conditions. Owing
to damping, the first term of Eq. (7.11) now tends to zero, often quite
quickly, while the second one has a constant amplitude; as a consequence,
when studying the response of a damped system to harmonic excitation,
usually only the latter is considered. As already stated, there are, however,
cases in which the initial transient cannot be neglected, particularly when
dealing with lightly damped systems or when the forcing function is applied
to a system that is at rest: in the latter case oscillations with growing
amplitude usually result, until the steady-state conditions are reached.

To show this effect, the cases already seen in Fig. 6.3 but with a damping
ratio ¢ = 0.2 are studied (Fig. 7.7). Like in the previous study, the system
is at standstill in the origin (zo = 0, vg = 0) at time ¢ = 0 and is excited
by a force with only a sine components (f; = 0). Four different values of
ratio w/w,, between the forcing frequency and the natural frequency of the
undamped system are considered. Clearly the free oscillation damps out
after a few oscillations and a solution coinciding with the forced response
is obtained. The beat quickly disappears.
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FIGURE 7.7. Same as Fig. 6.3 but for a system with a damping ratio ¢ = 0.2.
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FIGURE 7.8. Resonant response of a system with a single degree of freedom,
with ¢ = 0.2.

The same effect occurs when the frequency of the forcing function coin-
cides with the natural frequency. The time history for the same case studied
in Fig. 6.4, but for a damped system with ¢ = 0.2 is shown in Fig. 7.8.

The amplitude starts growing linearly, but then settles at the steady-
state value.

7.3 System with structural damping

The hysteretic damping model can be used only in an approximated way in
the case of free vibrations that for damped systems are necessarily decaying
in time. On the contrary, it is perfectly adequate to studying the steady-
state response to a harmonic forcing function, since its time history is
exactly harmonic.
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The steady-state solution for harmonic excitation is readily obtained
from the expression (3.57) of the dynamic stiffness: In the case of excita-
tion provided by a force F(t), the following expressions for the real and
imaginary parts of the frequency response H(w), its amplitude, and the
phase angle can be obtained:

R(H) = k(k — mw?) H| = k
(k = mw?)2 + k2?2’ Vb —me?)? £k
—k*n —kn '
S(H) = P =
S(H) (= mw?)? + K2y’ arctan (k nw?

The magnification factor is plotted together with the phase angle as
functions of the forcing frequency in Fig. 7.9 for different values of the loss
factor 7.

The quality factor of a system with a single degree of freedom with
structural damping is simply given by

1
Q = |H|maw = n . (713)

If damping is small, as is usually the case, the shift of the resonance
peak between viscous and structural damping is small and the behavior
of systems with the two different types of damping is, at least close to
the peak, similar. Since in lightly damped systems, i.e., when n? can be
neglected compared with unity, the effect of damping is important only
near the resonance, it is possible to define a constant equivalent damping
as

[H|
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1 2 o/, 3 0 1 2 o/, 3
FIGURE 7.9. Same as Fig. 7.2, but for a system with structural damping. Full

line indicates curves for different values of damping; dashed line indicates line
connecting the peaks.
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nk n
Ceq = W Ceq = 9° (7.14)

n

In this way, the concept of hysteretic damping can be extended in a
simple, although approximated, way also to time-domain equations.

The expression 2( is sometimes called “loss factor” in systems with vis-
cous damping.

As an alternative, a Maxwell-Weichert damping tuned at the natural
frequency of the system (see Chapter 3) can be used. If a single spring—
damper series is put in parallel to the spring with stiffness k, the data of
the spring—damper series are

2nk

Wn

kl = 277]€ , C1 = (715)
In case more springs and dampers are used, the values of the relevant
parameters found in Section 3.6.2 can be used.

7.4 System with many degrees of freedom

The response of a system with many degrees of freedom to a harmonic forc-
ing function can be computed by writing the generic harmonic excitation
in the form

f(t) = foe™!

and the response in the form
x(t) = xpe™" .

The differential equation of motion (3.6) can thus be transformed into
the algebraic equation
KdynXO = fo. (716)

The dynamic stiffness matrix
Kayn = —w*M + K + iwC (7.17)

is complex when damping is present.
Both vectors xo and fy are in general complex, and Eq. (7.16) can be
rewritten by separating its real and imaginary parts

A (3 () e

As opposite to what happens with undamped systems, the equation deal-
ing with the real parts of the forcing function and of the response is not
uncoupled with that dealing with the imaginary parts. As a consequence,
Xq is generally not real even if f is real
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Remark 7.5 Even if all the harmonic exciting forces are in phase, i.e.,
the excitation is coherently phased, the response of the system, although
harmonic, is not coherently phased. Not even if the damping is proportional
do the various parts of the system oscillate in phase when subjected to forces
that are in phase with each other.

To fully understand the meaning of a complex vector xg, consider the
case of a massless beam on which a number of masses are located (Fig.
7.10a). Consider a representation in which the plane of oscillation of the
system (the vertical plane in Figs. 7.10b and c) is the real plane and the
plane perpendicular to it is the imaginary plane. Any plane perpendicular
to them can be considered a complex plane, in which the real and imaginary
axes are defined by the intersections with the real and imaginary planes.

I
i ot
|
|

Re

FIGURE 7.10. Meaning of the complex displacement vector xo: (a) sketch of a
beam modeled as a massless beam with concentrated masses, (b) undamped case:
the deflected configuration is the projection on the real plane of a line lying on a
plane that rotates at angular speed w, (c) damped case: the line that generates
the deflected shape is skew.
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At the location of each mass, there is a complex plane in which the vector
representing the displacement of the mass rotates.

If, as in the case of undamped systems with coherently phased excitation,
vector Xg is real, the situation in a space in which the coordinate planes
are the real and imaginary planes is that shown in Fig. 7.10b. The actual
deformed shape is then the projection on the real plane of a planar line
that rotates at the angular speed w. The shapes it takes at various instants
are consequently all similar; only their amplitudes vary in time.

If vector xg is complex (Fig. 7.10¢), the deformed shape is the projection
on the real plane of a rotating skew line. Consequently, its shape varies in
time and no stationary point of minimum deformation (node) or maximum
deformation (loop or antinode) exists. As already seen, this last situation
also characterizes the case of proportional damping and all the cases that
can be reduced to it, at least in an approximate way.

The effect of damping on the frequency responses is that of reducing the
resonance peaks and increasing the amplitude at the antiresonances. If the
system is highly damped, some of the peaks may disappear completely.
The Nyquist diagrams usually have as many loops as degrees of freedom,
if the system is lightly damped. With increasing damping, some loops can
disappear.

7.5 Modal computation of the response

In case of proportionally damped multi-degree-of-freedom systems, the
equations of motion for forced vibrations can be uncoupled and the study
reduces to the computation of the response of n uncoupled linear damped
systems, like in the case of undamped system. The relevant uncoupled
equations of motion are Egs. (5.51) and Eqs. (5.52), depending on how the
eigenvectors have been normalized.

If damping is small, the response of each mode can consequently be
approximated as shown in Fig. 7.2d. However, while the amplitudes are
approximated very well in this way, the error in the computation of the
phases may be large.

If the forcing frequency is close to one of the natural frequencies, the
shape of the response is usually very close to the relevant mode shape.
Because the mode shapes used for the modal transformation are the real
mode shapes of the undamped system and not the complex modes of the
damped system, the modal response of the resonant mode is coherently
phased even if the forces acting on the system are not. However, even
if damping is proportional, the response is not a pure mode shape even
exactly in resonance, because the amplitude of the resonant mode is not
infinitely larger than the amplitude of the other modes, as would occur in
undamped systems.
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Remark 7.6 At resonance, the phase lag between the modal force and the
modal response of the resonant mode is exactly 90°.

Also in the case of damped systems it is possible to take into account only
a limited number of modes, usually the lower order ones. The problem of
taking into account the contribution of the neglected (higher order) modes
to the static deformation is the same as already seen for the undamped
system.

Equation (6.23) yielding the ith modal response can be written in the
form

1

W2 4 DiCwn, al fori=1,2,...,n, (7.19)

o wh; =
in which the eigenvectors have been assumed to be normalized in such a
way that the modal masses have unit values. By operating in the same way
seen for the undamped system, the approximated value of the response
(6.30) becomes

E 1 T E 1 T —1
o al | fo — iq; | fo + K ' fy,
x (;wii—wQﬂL%wamq%) 0 <;wiiqql> o + 0
(7.20)
ie.,

w

L - 2i(wwnp; 1
X~y ) noiq; + K~ 'y . (7.21)
i=1 ni

In the same way already seen for undamped systems, an approximated
computation of the response can thus be performed by first obtaining the
first m eigenvectors (of the undamped system) and computing the first m

modal responses 7p; and then recombining them using the relationship
X~ ®n* (7.22)
where

T = [Q17(12a---an,I'1] (723)

is the same seen in Section 6.3 and n* is the vector of the modified modal
coordinates

N w? — 2iCwwny w? — 2iCwwnm
n* =] ; . ) Tom, 1] . (7.24)
Wni Whm

Although modal uncoupling can be applied exactly only in the case of
proportional damping, such a procedure can often be applied in cases where
the equations of motion could not be uncoupled theoretically. In particular,
if the system is lightly damped, as is common in structural dynamics, the
response of each mode to a harmonic excitation is close to that of the cor-
responding undamped system except in a narrow frequency range centered
on the resonance of the mode itself, i.e., except in that frequency range in
which the response is governed by damping.
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Remark 7.7 This statement amounts to state that only the elements on
the main diagonal of the modal-damping matriz are important in determin-
ing the response of the system, and even them only close to the resonances.
Neglecting the out-of-diagonal elements (even if they are of the same order
of magnitude of those which are retained) is then acceptable.

The eigenvectors of the undamped system can be used as a reference
frame in the space of the configurations; consequently, the motion of the
damped system can be expressed in terms of modal coordinates, whether
or not the damping is proportional or small. If modal coupling is strong, all
eigenvectors can be present in the response of the system at any frequency
and it is not possible to understand a priori how much each of them affects
the global response.

When damping is high enough to prevent from neglecting modal cou-
pling, the iterative procedure based on Eq. (5.53) can be used. The relevant
equation in the frequency domain is

(—w’M + iwCp, + K) g = —iwCppnq + fo . (7.25)

The equation obtained by neglecting matrix C,,, is first solved. A solu-
tion n((JO), corresponding to a system with generalized proportional damp-
ing, is thus obtained. This solution is introduced on the right-hand side of
Eq. (7.25), and a second-approximation solution nél) is obtained. The iter-
ative procedure can continue until the difference between two subsequent
solutions is smaller than any given small quantity. Either a Jacobi or a
Gauss Siedel iterative scheme can be used; the second is generally faster
(see Appendix A). The convergence of the iterative scheme is fast, even if
the distribution of damping is far from being proportional. The simplifica-
tion of the computations obtainable in this way is noticeable, particularly
in the case of systems with many degrees of freedom.

Example 7.1 Compute the element Hss of the frequency response of the
system in Example 1.2, taking also damping into account.

The frequency response Hss is reported in Fig. 7.11, comparing the results
directly obtained with those earlier computed using the values of the modal
damping, to obtain the modal responses and then transforming the results to
physical coordinates.

The two curves are almost everywhere exactly superimposed, showing the very
good approximation obtainable when using modal damping. The dashed line
refers to the undamped system, for comparison.
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FIGURE 7.11. Frequency response Hss: (a) amplitude as a function of frequency;
(b) Nyquist diagram.

The first mode is less damped than the other two, and the third one is so much
damped that the resonance peak disappears completely. It must be noted that
the third peak is, at any rate, very narrow in the response of the undamped
system. In the Nyquist plot (Fig. 7.11b) the first peak generates a loop that is
far larger than the one related to the second resonance.

7.6 Multi-degrees of freedom systems
with hysteretic damping

As stated in Section 3.4.1, the stiffness matrix K* is complex, with a real
part K’ defining the conservative properties of the system and an imaginary
part K defining the dissipative properties. The dynamic stiffness matrix
for a system with structural damping is

Kiyn = —w’M + K’ +iK”.

By separating the real and imaginary parts of vectors x¢ and fy, the
response can be computed from the equation

A )38 e

If the loss factor is constant throughout the system, matrices K’ and K’
are proportional and the complex stiffness matrix reduces to

K= (1+inK. (7.27)

This is a form similar to that of proportional damping, and the equations
of motion can be uncoupled exactly, yielding n equations of motions of
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the type seen for systems with a single degree of freedom with structural
damping.

In the case of systems with many degrees of freedom, it is also possible to
define an equivalent viscous damping matrix equal to K’ divided by w. Be-
cause systems with structural damping are very lightly damped, the effects
of damping are restricted only in the fields of frequency that are close to
the natural frequencies, and the modal uncoupling holds with good approx-
imation. The behavior of the system can thus be studied by uncoupling the
equations of motion using the eigenvectors of the undamped system and
introducing a constant equivalent damping that does not depend on the
frequency

K.” .
Cieg= '+ Giea= 2 (7.28)
The modal damping can easily be measured during a dynamic test by
measuring the amplitude at resonance or the half-power bandwidth, or
evaluated from data that can be found in the literature.
The equivalent viscous damping matrix in physical coordinates can thus
be obtained by

e computing the eigenvectors of the undamped system;
e computing K”;
e computing the modal equivalent damping of the various modes Cj.4;

e performing the back-transformation to the physical coordinates

Coy=27C;, @' (7.29)

Again, a Maxwell-Weichert damper can be associated to each modal
system. The values of the stiffnesses and damping coefficients of the various
springs and dampers can be computed in the usual way.

7.7 Response to periodic excitation

The response to a periodic excitation F'(t) (with period T') expressed by
Eq. (6.37) can be computed in the same way seen for undamped system,
with the difference that now the frequency response H(w) is complex. By
separating the real and imaginary parts of the frequency response, the
following expression for the particular integral of the equation of motion is
easily obtained:
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z(t) = ,1 {ao + ) [aiR(H(wi)) + biS(H (w;))] cos(wit)+
i=1

i=1

(7.30)
+ D BiRH (wi)) — aiS(H (wy)))] sin(wit)} ,

where the frequency of the ith harmonic of the forcing function is

271
T

Wi =

7.8 The dynamic vibration absorber

A dynamic vibration absorber is basically a spring—mass—-damper system
that is added to any vibrating system with the aim of reducing the ampli-
tude of the vibrations of the latter. If the damper or the spring is missing,
an undamped vibration absorber or a Lanchester damper (springless vibra-
tion absorber) is obtained.

Consider a system consisting of a mass m suspended on a spring with
stiffness k on which a force varying harmonically in time with frequency w
and maximum amplitude fy is acting. The vibration absorber, consisting
of a second mass my, a spring of stiffness kg, and a damper with damping
coefficient ¢, is connected to mass m (Fig. 7.12a). The equation yielding
the amplitude of the harmonic response of the system is

AR R aney B [ e U

By introducing the mass ratio p, the stiffness ratio y, the tuning ratio
7, and the nondimensional frequency w*

N ks X N w m
= s = 5 T = 5 w = = W 5
= X7k k

the frequency response Hao(w) can be easily computed:

2
1 (7' - w*z) + c*w*?
| 22| k\/fz( *) 6*2 %2 2( *)7 ( )

where

and
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The tuning ratio is the square of the ratio between the natural frequency
of the original system w,, and that of the vibration absorber. If the vibration
absorber is undamped, the amplitude of the motion of mass m is vanishingly
small if

T=w?,
i.e., the square of the nondimensional frequency of the excitation coincides
with the tuning ratio. The frequency response computed for a mass ratio
¢ = 0.2 and a tuning ratio

"

YT )

is shown in Fig. 7.12b, curve labeled ¢ = 0. The presence of an undamped
vibration absorber is successful in completely damping the vibration at a
given frequency but produces two new resonance peaks at the frequencies
at which function f(w*) vanishes (Fig. 7.12c).

The working of the undamped vibration absorber can be easily under-
stood by noting that at the frequency at which the vibration absorber is
tuned, the motion of mass m is large enough to produce a force on mass m
that balances force F'. Consequently, the amplitude of the motion of mass
ms increases when the mass ratio 1 decreases and tends to infinity when
ms tends to zero.

If the amplitude of motion of mass m is to be reduced also outside a
narrow range near frequency w,, the use of a damper is mandatory.

All response curves, obtained with any value of ¢, pass through points
A, B, and, C and lie in the shaded zone in Fig. 7.12b bounded by the
two limiting cases of the undamped system and that with infinitely large
damping. The latter coincides with a system with a single degree of freedom
with mass m + m, and stiffness k. Such curves have a maximum in the
zone included between points B and C in the case of high damping and two
maxima outside the field BC in the case of small damping.

A reasonable way of optimizing the vibration absorber is to look for a
value of the damping causing the maxima to coincide with points B and C
and to tune the system (i.e., select the value of k) in a way so as to obtain
the same value of the response in B and C.

The latter condition can be shown to be obtained! for the optimum value
of the tuning ratio

_ H
Xt = (1 )2
Strictly speaking, no value of the damping can cause the two peaks to be lo-
cated simultaneously at points B and C. The value of the damping allowing
one to meet this condition with good approximation and the approximated
value of the maximum amplitude are

ID. Hartog, Mechanical Vibrations, McGraw-Hill, New York, 1956, pp. 93ff
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FIGURE 7.12. Vibration absorber applied to a system with a single degree of
freedom: (a) sketch of the system; (b) limiting cases (damping tending to zero
and infinity) for systems with optimum tuning; (c) natural frequencies of the
undamped system as functions of the mass ratio p; (d) amplitude of the response
of the system in (b), but with three different values of damping.
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The frequency response of a system with mass ratio p = 0.2, optimum
tuning ratio, and three values of damping is plotted in Fig. 7.12d.

Another different type of dynamic vibration absorber is the so-called
Lanchester damper, which consists of a mass connected to the system
through a damper. Originally it had a dry-friction damper, but if the
damper is of the viscous type, it is basically a damped vibration absorber
without restoring spring. The frequency response can be easily computed,
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obtaining

1 w*? 4 c*?
|H22| = 2 %2 2 %2 %272 "
BV we(we =124+ w1 — (u+ 1)w*’]

Following the procedure used for the preceding case, the optimum value
of the damping and the corresponding maximum value of the frequency
response can be computed:

Copt = Vkm 2 Hlmas = 14 2
o 2+n)d+u)’ e o
A comparison between the frequency responses of a system with a single
degree of freedom with a dynamic and a Lanchester vibration absorber is
shown in Fig. 7.13. In both cases the mass ratio is p = 0.2.

Example 7.2 Consider the system with two degrees of freedom shown in Fig.
7.14a. The data are the following: m1 = ma =5 kg, k1 = ko = ks =5 kN/m.
The system is excited by a harmonic force fi1 applied on mass m;.

A dynamic vibration absorber is located on mass mi. Assuming that the mass
of the wvibration absorber in ms = 1 kg, compute the stiffness ks and the
damping cs of the vibration absorber that minimizes the dynamic response on
mass m1. Plot the frequency response and compare it with that of the undamped
system.

Repeat the computation for a Lanchester damper.

12 T T T

KIH,,|

101

Lanchester

Dynamic

FIGURE 7.13. Comparison between the frequency responses of a system with a
single degree of freedom with a dynamic and a Lanchester vibration absorber.
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FIGURE 7.14. Dynamic vibration absorber. (a) System on which the vibration
absorber is applied. (b) Frequency responses of the dynamic vibration absorber
and of the Lanchester damper.

Once the dynamic vibration absorber is located on mass ma, the dynamic stiff-
ness of the system is

ms 0 0 Cd —cqg O
Kayn = —w? 0 m 0 +iw | —cq cg O |+
0 0 me 0 0 0
ka —kqg 0
+ | —ka ka4 ki 4k —ki2
0 —ki2 ko + ki2

The frequency response to be minimized is the modulus of element Haa of
matriz H (w). The optimization cannot be performed in closed form owing
to the complezity of the analysis. It is, however, easy to use any numerical
optimization method, and in the following the simplest approach is followed.
A number of values of ks and cs are chosen in a given interval, and for each
pair of values the function |Hae (w) | is computed. A three-dimensional plot of
its mazimum value max (|Hazz2|) as a function of ks and cs is obtained.

A map of the surface max (|Haz|) (ks, ¢s) for 50 < ¢s < 300 Ns/m (with
increments 5 Ns/m) and 10 < ks < 60 kN/m (with increments 1 kN/m) is
reported in Fig. 7.15a. It is clearly a valley, with a minimum for ks ~ 40 kN/m
and ¢s = 110 Ns/m. To obtain more precise values a further computation in a
range close to the values so identified could be performed, but was considered
useless mostly due to the consideration that the function is fairly flat about
the minimum.

The frequency response |Haz (w)| for ks = 40 kN/m and cs = 110 Ns/m is
shown in Fig. 7.14b. As it could be expected, the peaks have the same height,
showing that the optimization was performed accurately.
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FIGURE 7.15. Dynamic vibration absorber (a) and Lanchester damper (b). Plots
used to optimize the parameters.

The study was repeated for the Lanchester damper. Now ks = 0 and there is
Just one parameter, cs. The one-dimensional optimization is easy but, although
a closed-form solution could be obtained without great computational difficul-
ties, the function max (|Haz|) (¢s) for 50 < ¢ < 300 Ns/m (with increments
1 Ns/m) was plotted (Fig. 7.15b). The value cs = 210 Ns/m was chosen.
The frequency response |Haz (w) | for the selected value of cs is shown in Fig.
7.14b. In this case it is impossible to reduce the height of the first peak as much
as in the previous case, while the second peak has roughly the same height as
in the case of the dynamic vibration absorber.

7.9 Parameter identification

In the preceding sections, attention was paid to the computation of the
dynamic response of a system whose characteristics are known. Very often,
however, the opposite problem must be solved: The behavior of the system
has been investigated experimentally and a mathematical model has to be
obtained from the experimental results. First consider the case of a system
with a single degree of freedom and assume that the response z(t) and the
excitation F'(t) are known in a number m of different instants and that
the corresponding velocities and accelerations are also known. By writing
the equation of motion of the system m times, the following equation can
be obtained

3:‘.1 2151 X1 m fl
2ot e Vo b (7.32)

Tm  Tm T fm
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Equation (7.32) is a set of m linear equations with three unknowns, the
parameters of the system to be determined. A subset of three equations is
then required to solve the problem. Actually, the situation is more complex.
All measurements are affected by some errors, and the results obtainable
from a set of three measurements are unreliable. To obtain more reliable
results, it is better to retain all rows of the matrix of the coefficients of
Eq. (7.32) and to resort to its pseudo-inverse

"

wy [2on a (s
c op=| T T2 2 (7.33)
K T T T fm

The pseudo-inverse At of matrix A can be computed as
AT = (ATA) AT,

but this simple approach based on matrix inversion is increasingly less
efficient for large matrices. Algorithms based on singular value decomposi-
tion or QR factorization are both more accurate and more computationally
efficient.

To avoid introducing the velocities and accelerations together with the
displacements into Eq. (7.33), it is possible to work in the frequency do-
main. In this case, the complex amplitudes of the response xo(w) and the
corresponding complex amplitudes of the excitation fy(w) at m values of
the frequency are measured, and Eq. (7.32) can be transformed into a set
of m complex equations or 2m real equations

2 .

—w23:01 wro, To, m fo,

—w?rg, WTo, o, e b fo, (7.34)
9 . k

—w?xg,  iwxg, o, foo,

In the case of systems with many degrees of freedom, everything gets
more complex as the number of parameters to be estimated becomes greater,
but the computations can follow the same lines shown for systems with a
single degree of freedom. Also, in this case both time-domain and frequency-
domain methods are possible, and many procedures have been proposed
and implemented.

The identification of the modal parameters of large mechanical systems
is the main object of experimental modal analysis, which is, in itself, a
specialized branch of mechanics of vibrations. It has been the subject of
many books and papers in recent years. The algorithms used are often
influenced by the hardware that is available for the acquisition of relevant
data and subsequent computations. The recent advances in the field of
computers and electronic instrumentation are causing steady advancements
to take place in this field.
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7.10 FExercises

Exercise 7.1 Consider the same machine of Ezercise 6.1 (with a single rotor).
Use an elastomeric supporting system that, when tested at the frequencies of 50
and 200 Hz, is found to have a stiffness of 500 and 800 kN/m, respectively, and a
damping of 980 and 450 Ns/m, respectively. Using the models of complez stiffness
and complex damping to model the supporting system, compute the force exerted
by the machine on the supporting structure at all speeds up to the mazimum
operating speed.

Exercise 7.2 Study the effect of an undamped vibration absorber with mass
mq = 0.8 kg applied to mass mi1 of Exercise 4.4. Tune it on the first natural
frequency of the system. Plot the dynamic compliance Hao with and without the
dynamic vibration absorber.

Add a viscous damper between mass mi and the vibration absorber. Compute
the response of the system with various values of the damping coefficient, trying
to minimize the amplitude of the displacement of mass meo in a range of frequency
between 5 and 30 rad/s.

Exercise 7.3 FEwvaluate the elastic, inertial, and damping characteristics of a
system with a single degree of freedom using a simple exciter provided of an
eccentric mass. The mass of the exciter is 5 kg and the eccentric mass of 0.020 kg
is located at a radius of 100 mm (Fig. 7.16)

Two tests are run at speeds of 100 and 200 rpm, recording the following values
of the amplitude and phase of the response:

Test 1: w1 = 100 rpm = 10.47 rad/s = 1.667 Hz; xo1 = 0.011 mm, ¢1 = —7°;

Test 2: wa = 200 rpm = 20.94 rad/s = 3.333 Hz; xo2 = 0.165 mm, ¢2 = —64°.

Te

éuc

FIGURE 7.16. Sketch of a system with a single degree of freedom with the exciter.
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Exercise 7.4 Consider the damped system with 3 degrees of freedom studied in
Ezxamples 1.2 and 3.1. Assume that the excitation is due to the rotation of the
supporting structure about the azis of the beams, with law

04 = 0o sin (wt) .

Compute the response in terms of physical coordinates (0o; /004 ) and of modal
coordinates (noi/6oa) in the range 0 < w < 6.

Exercise 7.5 Compute the forced response of the system of Exercise 4.4 with
a damper added between masses mi and ms when excited by a motion of the
supporting point
TA=Ta,sin (wt).
Use both a non-modal and an iterative approach. Add a further damper between
mass ma and point A, equal to the one already existing between mass mi1 and ma,
and repeat the analysis. Data: c12 =40 Ns/m, xa, =5 mm, w = 30 rad/s.
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Response to Nonperiodic Excitation

The response to a nonperiodic excitation can be computed in closed form
only in a few selected cases. In general the solution can be obtained through
Laplace transforms or by integrating numerically the equations of motion
in the time domain, with the latter approach becoming increasingly popular.

8.1 Impulse excitation

When a large force acts on the system for a short time, as in the case
of shock loads, the impulsive model that assumes that a force tending to
infinity acts for a time tending to zero can be used. This model is based on
the unit-impulse function §(¢) (or Dirac’s ), defined by the relationships

6=0 for ¢ 7& 0 oo
/ S(t)dt =1 . (8.1)

0 =00 fort =0
The impulse excitation can thus be expressed as

F = fod(t).

Remark 8.1 The impulse function § has the dimension of the reciprocal
of a time [s71] and fo has the dimensions of an impulse [Ns]. Because the
impulse of the function §(t) has a unit value, the value of fo is that of the
total impulse of force F(t).
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The response to an impulse excitation is easily computed: It is sufficient
to observe that in the infinitely short period of time in which the impulsive
force acts, all other forces are negligible compared to it. The momentum
theorem can be applied to compute the conditions of the system just after
the impulsive force has been applied from those related to the instant before
its application.

The position zy after the impulse is equal to that before the impulse,
while the velocity vg is equal to the one before the impulse plus an increment
due to an increase of momentum equal to the impulse. Assuming that before
the impulse the system with a single degree of freedom is at rest in the

origin, it follows that
Ty = 0,
8.2
o d0 (32)
m

The time history can be computed from the equations governing the free
behavior of the system, obtaining

x(t) = nﬁ h(t), (8.3)
where

h(t) = \/11_ % e~ wntgin <wn\/1 - C2t> ,

h(t) = wpte™“nt,
1 - [<+\/1—g2] wWnt
Co/1-¢2 |

The three expressions of the (nondimensional) impulse response h(t)
hold for underdamped, critically damped, and overdamped systems, respec-
tively. The impulse responses with different values of the damping ratio ¢
are shown in nondimensional form in Fig. 8.1.

The impulse response h(t) completely characterizes the system. Its Lapla-
ce transform can be immediately computed by multiplying the Laplace
transform of the Dirac’s § by the transfer function of the system:

h(s) = G(s)d(s) . (8.4)

forele

+e

h(t)

Because the Laplace transform of the Dirac’s ¢ (see Appendix B) has a
unit value, the Laplace transform of the impulse response coincides with
the transfer function of the system.

In the case of multi-degrees-of-freedom systems it is possible to define a
matrix of the impulse responses H(t): its Laplace transform coincides with
the transfer matrix G(s) and its Fourier transform with the frequency
response H(w).
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FIGURE 8.1. Response to an impulse excitation h(t) for different values of the
damping ratio .

8.2 Step excitation

Another case for which a closed-form solution is available is that of the
response to a step excitation. The unit step function u(t) can be defined
by the expression

u=0 fort<O0,
{ u=1 fort>0, (85)
and is just the integral of the impulse function §(¢).
Its Laplace transform is then
1~ 1
u(s) = o(s)= . 8.6
als) = 3(s) = | (56)

The response of the system to the excitation
F= fou(t)

can be computed by adding the solution obtained for free oscillations to
the steady-state response to the constant force fj.

Remark 8.2 The step function u is nondimensional, while in the present
case fo has the dimension of a force (N).
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Also, in this case a simple expression is commonly used

o(t) = 20 01), (87)

where

g(t) =1 — e Swnt lcos (wn\/l - C2t> + \/1§— e sin (wn\/l — C%)] ,
gt) =1— (1 —wyt)e “nt,
1 - [<+\/1—g2] wnt

g(t):1—2 —e

feorele

+e

The three expressions for the response to unit step g(¢) hold for under-
damped, critically damped, and overdamped systems, respectively. They
are plotted in nondimensional form in Fig. 8.2a.

From the response to a step forcing function, some characteristics of the
system that can be used to formulate performance criteria can be stated.
With reference to Fig. 8.2b, they are the peak time T, (time required for
the response to reach its peak value), the rise time 7. (time required for
the response to rise from 10 to 90% of the steady-state value, sometimes
from 5 to 95% or from 0 to 100%), the delay time Ty (time required for
the response to reach 50% of the steady-state value), the setting time Ty
(time required for the response to settle within a certain range, usually 5%
but sometimes 2%, of the steady-state value), and the maximum overshot

2.0 T T T T T T T T
=0
« | 01\¢ U ) b)
s 0.2 ] Maximum overshot
4 4 1 ] A\ T 7 AN 7~
\ 7 AN
0.7 09 — \/
10 -
1.0 — Tr
14 } -
5 ‘
05 H
0.5 + ‘ I
5 ‘ i
1 [
0.1 -
0.0 — T T T T T T T T 7T L
0 2 4 6 8 0,1 T4 T ¢

FIGURE 8.2. (a) Response to a step forcing function g(t); (b) dynamic charac-
teristics of a system with a single degree of freedom obtained from the response
to a step forcing function.
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(maximum deviation of the response with respect to the steady-state value).
The last item is usually expressed as a percentage of the steady-state value.
The maxima and minima of the time history of an underdamped system

are easily obtained by differentiating function ¢(¢) with respect to time and
setting the derivative to zero:

2? \/1w+ ¢ sin (wn\/l — C%‘)] =0.

_ _e.fﬂunt

n

The solution of this equation is
wnV/1—Ct=ir fori=0, 1, 2, ...

Function g(t) has a minimum when ¢ is even and a maximum when i is
odd. The value at the ith extremum is

in¢

gty =1—e Vi-¢® (=1)" . (8.8)

The maximum overshot is thus

g(t) _ 7\/17rf§2
limy oo g(t) e . (8.9)

Its value is plotted as a function of ¢ in Fig. 8.3.

Also in the case of the response to step excitation it is possible to extend
the result here obtained to multi-degrees-of-freedom systems. A matrix of
the step responses G(t) can thus be defined.

0.8} — § —

Maximum overshot

06 : 1
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FIGURE 8.3. Maximum overshot as a function of (.
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8.3 Duhamel’s integral

A different approach, applicable to both periodic and nonperiodic forcing
functions, is the use of Duhamel’s or convolution integral. The impulse of
force F(t) acting on the system, computed between time 7 and time 7+ dr
(Fig. 8.4), is simply F'(7)dr.

The response of the system to such an impulse can be easily expressed
in the form

F(r)dr
dlz(t)] = h(t —71), 8.10
() =", he =) (5.10)
where function h(t) is the response to a unit impulse defined earlier.
The response to the forcing function F'(t) can be computed by adding
(or better, integrating, as there is an infinity of vanishingly small terms)
the responses to all the impulses taking place at all times up to time ¢

t t
x(t) = / d[x(t)])dT = ! / F(r)h(t —7)dr. (8.11)
0 mwy, Jo
The integral of Eq. (8.11), usually referred to as Duhamel’s integral,
allows the computation of the response of any linear system to a force F'(t)
with a time history of any type. Only in a few selected cases the integration
can be performed in closed form; however, the numerical integration of
Eq. (8.11) is simpler than the direct numerical integration of the equation
of motion.
By introducing the impulse response of an underdamped system, the
particular integral of the equation of motion can be expressed in the more
compact form

x(t) = A(t) sin <\/1 - Cant) — B(t) cos (\/1 - Cant) , (8.12)
where functions A(t) and B(t) are expressed by the following integrals:

Fx

F(t)

d[x(t)]
7\\NAWA A
B A VAR VARVERNY

FIGURE 8.4. Response to the impulse exerted by force F(t) between time 7 and
T4 dr.
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_ 1 Cuwnt ' CwnT _ 2

Alf) = Mmwn /1 — C2e /otF(T)e o8 (\/1 ¢ w"T) ar,
_ 1 Cunt ConT 2

B(t) . C2e /0 F(r)e sin (\/1 ¢ wnr) dr.

(8.13)

Example 8.1 Check the ability of the system studied in Example 4.1 to with-
stand a shock corresponding to the prescriptions of MIL-STD 810 C, basic
design, i.e., an acceleration of the supporting structure that increases linearly
i time fromt = 0 to t1 = 11 ms up to a value of 20 g to drop subsequently
to zero. The stresses due to the shock must not exceed the ultimate strength of
the material, 328 MN/m?.
As the period of the free oscillations of the system is
27 27

T_wn = gq7 = 18.6 ms,
the duration of the shock is not much shorter than the period of the free os-
cillations, and good accuracy cannot be expected if the shock is studied as an
impulse loading. The computation will, therefore, be performed using both an
impulsive model and the Duhamel’s integral.
The force acting on the beam is given by the mass multiplied by the accelera-
tion. It increases in time from 0 to the value

MAmaz = 3,924 N,

which is reached after 11 ms. The total impulse is equal to 21.6 Ns. If damp-
ing is neglected, the impulsive model (Eq. (8.3) with fo=21.6 Ns) yields an
amplitude of the harmonic motion that follows the impulse

20=32x10"3m.

The mazimum value of the stress, which takes place at the clamped end, can
be computed by dividing the mazimum value of the bending moment klxo by
the section modulus of the beam, obtaining

Omaz = 105.6 x 10° N/m? .
To compute the displacement through the Duhamel’s integral, function F(t)

must be explicitly computed:

_ Mamax

F =357,000 ¢t for 0<t<0.011,

1

F=0 for t>0.011.
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By neglecting the presence of damping, which gives a conservative result, func-
tions A(t) and B(t) are, for the first 11 ms,

t
A(t) = ?lrjj: /0 7 cos (wnT)dT = ?lrjjg [wntsin (wnt) + cos (wnt) — 1],
t

B(t) = ?ﬁ: /0 7sin (wn7)drT = ?::g [—wnt cos (wnt) + sin (wnt)].
By introducing the values of A(t) and B(t) into Eq. (8.12), and remembering
that the system is undamped, it follows that

x(t) = ?;‘ [wnt — sin (wnt)] = 0.466 x 10~ [wnt — sin (wnt)] .
1Wh
When no more exciting force is present, i.e., after 11 ms, the values of A(t)
and B(t) remain constant. By introducing a value of time t=11 ms in the

expressions of A(t) and B(t), the following equation for the free motion of the
system is obtained

z(t) = —0.0018 sin(wnt) — 0.0012 cos(wnt).

The response of the system is plotted in Fig. 8.5. The mazimum value of the
displacement and the corresponding value of the maximum stress are, respec-
tively,

dmaz = 2.2 mm, Omaz = 72.6 MN/m”.

The value of the stress is far smaller than the allowable value and, conse-
quently, it is not necessary to repeat the computation taking into account the
presence of damping.

4.0 T T T T T
x[mm] - N

2.0

0.0

-2.0 1
: — — — Impulsive model *_ ,/ :
| —— Duhamel integral -~ |

-4.0 T T T I T
0 10 20 30

t[ms]

FIGURE 8.5. Time history of the response of the system. Impulsive model and
results obtained through Duhamel’s integral.
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Remark 8.3 As predicted, the impulsive model in this case does not allow
a good approximation of the results, because the duration of the shock is not
much shorter than the period of the free oscillations.

8.4 Solution using the transition matrix

In the case of multi-degrees-of-freedom systems, the response to a generic
input u(t) can be expressed using the transition matrix et in the form

t
z(t) = etz + / A=) Bu(r)dr, (8.14)
0

which can be regarded as a generalization of convolution integral. Some
difficulties can be encountered in computing the transition matrix; they
increase with increasing time ¢ and with increasing absolute value of the
highest eigenvalue of the dynamic matrix A. The time interval ¢ can be
subdivided into subintervals and Eq. (8.14) can be applied in sequence,
one subinterval after the other. If the input is constant at the value ug
in the subinterval from time ¢y to time ¢1, the state z; at the end can be
computed from the one at the beginning zg as

7 = eAllit0) {zo + A1 {I — e_A(tl_tO)} Buo} . (8.15)

If the input varies linearly from ug to up, the integral can be solved in
closed form, yielding

VAR 6A(t17t0) (ZO + RUQ + Sul) y (816)

where

o)y 1 1y At —to)
R=A {I R [I e } B,

S=A" 1 A {I _ e*A(tlftD):| _ oAttt | g
t1 —to

By resorting to the left and right eigenvectors, the equations of motion
can be easily uncoupled. Each time history of the modal state variables is
of the type

t
zi(t) = zi, e +/ e =qT Bu(r)dr . (8.17)
0

8.5 Solution using Laplace transforms

Once the Laplace transform of the time history of the excitation f(s) is
known, the Laplace transform of the response z(s) can be easily computed:
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f(s) ~ ma(0) + (ms + c)z(0)
s2m+sc+k s2m+sc+k

x(s) = , (8.18)

or, in case of multi-degrees-of-freedom systems

1

x(s) = [*M + sC + kK] [F(s) — Mx(0) — (Ms + C)x(0)] .  (8.19)

Since the Laplace transforms of the most common functions f(t) are tab-
ulated (see, for example, Appendix B), Eq. (8.18) can be used to compute
the Laplace transform of the response of the system. The time history x(t)
can then be obtained through the inverse transformation or, more simply,
by using Laplace transform tables.

Remark 8.4 The main limitation of the Laplace transform approach is
that of being restricted to the solution of linear differential equations with
constant coefficients.

Example 8.2 Repeat the computation of the shock response of Example 8.1
through Laplace transforms.
From time t = 0 to time t1 = 11 ms, the forcing function is

Ft) = Tmexy
t1

Its Laplace transform can be found on the table in Appendiz B:

I Mamax ]-
F(s)= .
(s) h 82
By multiplying the Laplace transform of the input by the transfer function of

the system it follows that

MAmax 1

#e) = GFe) = "™ Ly

i.e.,

~ amax 1

(s) = t1 s2(s2+w2)’
From the table a Laplace transform pair

~ wg

f(s) = 2(s2 +w?) f(t) = wt — sin(wt)
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can be found and the displacement can thus be computed
amax .
z(t) = [wnt — sin(wnt)] .

w%tl

This expression coincides with that obtained in Ezample 8.1 wusing the
Duhamel’s integral.
The corresponding velocity is

. a’l’l’lax
z(t) = it [1 — cos(wnt)] .

At time t = t1 their values are

z(t) = 1.98 mm, ©(t) =0.290 m/s.

After time t1 the motion is free
x(t) = 1 cos(wnt) + x2 sin(wnt) .

Stating that at time t1 the displacement and the velocity are those computed

above
x(t1) = x1 cos(wnt1) + z2 sin(wnti) = 0.00198,
z(t1) = —x1wn sin(wnt1) + Tawn cos(wnti) = 0.290 ,

the values of ©1 and x2 are readily computed, obtaining
1 = —0.0012 m, x2 = —0.0018 m,

that coincide with the values computed in Fxample 8.1.

8.6 Numerical integration of the equations of
motion

An increasingly popular approach to the computation of the time history
of the response from the time history of the excitation is the numerical
integration of the equation of motion.

Remark 8.5 While all other approaches seen (Laplace transform, Duha-
mel’s integral, etc.) can be applied only to linear systems, the numerical
integration of the equation of motion can also be performed for nonlinear
systems (see Part I1).

Remark 8.6 Any solution obtained through the numerical approach must
be considered the result of a numerical experiment and usually gives little
general insight to the relevant phenomena. The numerical approach does
not substitute other analytical methods, but rather provides a very powerful
tool to deal with cases that cannot be studied in other ways.
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Once the equations of motion of the system have been stated, the first
choice is between numerical integration in the state or in the configuration
space, i.e., between the numerical integration of a set of first- or second-
order equations. Today the former approach is more popular, and most
‘simulators’, i.e., computer programs performing numerical simulations, op-
erate in the state space.

There are many different methods that can be used to perform the inte-
gration of the equation of motion (see Appendix A). All of them operate
following the same guidelines: The state of the system at time ¢+At is com-
puted from the known conditions that characterize the state of the system
at time t. The finite time interval At must be small enough to allow the
use of simplified expressions of the equation of motion without incurring
errors that are too large. The mathematical simulation of the motion of
the system is performed step by step, increasing the independent variable
t with subsequent finite increments At.

Most simulation programs available commercially do not require the user
to choose the time increment At¢, but adapt the time increment to the
situation until the errors are kept within stated limits. At any rate, being
immaterial who chooses the value of At, there are two criteria that must
be satisfied:

e the time increment must be small enough for the integration algo-
rithm to be stable, and

e the time increment must be small enough for the integration errors
to be small enough.

These criteria may be independent of each other.

Since the size of the integration increment must be compared with the
periods of the oscillations of the system, these criteria must be evaluated
in each case. In particular, the oscillations that must be accounted for are
not only the actual ones that are excited by the forcing functions and the
initial conditions, but also those potentially occurring at all the natural
frequencies of the system, even if they are not excited in the particular
simulation considered. The latter may actually be excited by numerical
errors, and then amplified by numerical instabilities, until they cause the
whole integration procedure to fail.

Numerical integration methods may be either unconditionally or condi-
tionally stable: the former are stable for any value of the time increment
(although losing precision with increasing At), while the latter are stable
only if the time increment is small enough.

When integrating the equations of motion of a single-degree-of-freedom
system the stability of the algorithm is not usually a problem: If the time
increment is small enough to yield the required precision, it is usually small
enough to behave in a stable way as well.
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When on the contrary there are many degrees of freedom, and then
also many natural frequencies, some high-frequency modes may be little
excited and their contribution to the overall response may be negligible. If
the algorithm is unconditionally stable, the time increments may be small
when compared with the periods of the modes of interest (to achieve the
required precision), but large when compared with the higher, non-excited
modes. The errors in the evaluation of the contribution of the latter have
little importance, and they do not cause instability problems.

When using conditionally stable algorithms, on the contrary, the high-
frequency modes can drive the integration to instability, and the time in-
crements must be smaller when compared with the periods of all modes.

Systems containing both low- and high-frequency components at the
same time, like when modeling a phenomenon that contains dynamics with
widely different timescales, are said to be stiff and their numerical study
requires either very short time increments or particularly stable integration
algorithms.

A possible approach is to transform the equations into modal coordinates
before attempting the integration. If the modes can be uncoupled in an
exact or approximated way, different time steps can be used for the various
modes, thus greatly reducing the integration time.

Even if the modes are coupled, a reduced set of modal equations can
be used, at least in an approximated way. If the modes resonating at high
frequency are left out, longer time steps can be used also when conditionally
stable algorithms are employed. This is usually impossible for stiff systems,
where both high- and low-frequency dynamics are usually important.

8.7 Exercises

Exercise 8.1 A spring—mass system is excited by a force whose time history is
given by the equation

F = |fosin(wt)| .

At time t = 0 the system is at rest in the equilibrium position. Compute the
time history of the response (a) by numerical integration and (b) by computing
a Fourier series for the forcing function F(t). Data: m =1 kg, k = 1,000 N/m,
fo=2 N, w=10 rad/s.

Exercise 8.2 The same spring-mass system studied in Ezercise 8.1 but with a
damper added is excited by the same force with time history given by the equation

F = | fosin(wt)| .

At time t = 0 the system is at rest in the equilibrium position. Compute the
time history of the response (a) by numerical integration and (b) by computing a
Fourier series for the forcing function F(t), and compare the results with those
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of the undamped system. Data: m =1 kg, k = 1,000 N/m, ¢ = 6 Ns/m, fo = 2
N, w =10 rad/s.

Exercise 8.3 Add a hysterctic damping with loss factor n = 0.05 to all springs
of the system of Exercise 4.4.

Plot the four values of the dynamic compliance matrix as a function of the
driving frequency.

Exercise 8.4 Consider the system with hysteretic damping studied in Ezercise
8.3. Repeat the computation of the dynamic compliance matriz by using

® an equivalent damping function of frequency

® q constant equivalent damping

Compare the results. Repeat the computation with a value of the loss factor 10
times larger and compare again the results.

Exercise 8.5 Consider the system studied in Ezample 8.1. Repeat the compu-
tations for a shock having a duration of 1 ms and a peak acceleration of 200 g.
Compare the results obtained using the impulse model with those obtained through
the Duhamel’s integral.

Exercise 8.6 A spring—mass system is excited by a shock load with a duration of
11 ms and a linearly increasing intensity with peak acceleration of 20 g. Compute
the response through the impulse model and Duhamel’s integral and compare the
results. Perform the numerical integration of the equation of motion, with time
steps of 0.05, 0.5, and 5 ms and compare the results. Data: m = 20 kg, k = 2x10°
N/m.

Exercise 8.7 The system with hysteretic damping of Exercise 8.3 is excited by
a shock applied through the supporting point A. The acceleration of point A has
the same time history described in Example 8.1.

Compute the time histories of the displacement of both masses through nu-
merical integration in time without resorting to modal coordinates. Repeat the
computation using modal coordinates and Duhamel’s integral.

Exercise 8.8 Repeat the study of Ezercise 8.7, with a value of the loss factor
1n = 0.1. Perform only the non-modal computation.
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Short Account of Random Vibrations

The study of the response to periodic and nonperiodic excitation is here
complemented by a short account on random vibration, aimed more at defin-
ing some basic concepts than at dealing with the subject in any detail.

9.1 General considerations

There are many cases where the forcing function acting on a dynamic sys-
tem has a very complex time history, that cannot be reduced to a simple
periodic pattern and cannot be defined in a closely deterministic way. This
implies mainly that records of the excitation and of the response of the
system obtained in conditions that are alike differ from each other in a
substantial way.

Typical examples are seismic excitation on buildings, excitation on the
structures of ground vehicles due to road irregularities, and excitation of
the structure of ships due to sea waves. For all these cases, and many other
similar ones, the term random vibration is commonly used.

In all these cases the time history of the excitation can be measured, and
if enough experimental data are taken, it is possible to perform a statistical
analysis.

The study of the response of dynamic systems to an excitation of this
kind is quite complex and two different approaches can be used.

A simple approach, at least from a conceptual point of view, is to operate
in the time domain, computing the response of the system by numerically
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integrating the equations of motion using the experimental time history of
the excitation as an input. In this way, however, only a limited insight of
the phenomena involved is obtained, and computations becomes rapidly
heavy if many experimental data are used in the attempt of understanding
the behavior of the system with some generality.

A much better, and usually simpler in practice, way is to perform a
statistic analysis of the input: the statistic parameters of the outputs of
the system can be obtained from the statistic parameters of the input and
this is usually sufficient to verify whether the system complies with the
prescribed functionality and safety requirements.

This involves mostly frequency-domain computations and requires a good
background in statistics. There are many excellent books devoted to the
subject of random vibrations where the interested reader can find a more
complete analysis. In this chapter only a brief outline, mainly on the qual-
itative aspects of the relevant phenomena, will be given.

9.2 Random forcing functions

Consider a generic function y(t). Given a sample whose duration is T', the
average value in time, and the mean square can be defined by the obvious
relationships

(9.1)

The square root of the mean square is usually defined as the root mean
square (in short r.m.s.) value

T
Yrms = \/(yg) = \/;/0 y2(t)dt . (9.2)

The variance, usually referred to by the symbol o2, is defined as

2

P9y | ' [yu)—y} . 93)

In many cases the input is assumed to have a zero average value. This can
always be obtained by subtracting to the sample its average value, which
amounts to separate the static behavior of the system from its dynamic
behavior. This approach is possible only in the case of linear systems.

The variance in this case coincides with the mean square.

The square root of the variance is the standard deviation o. When the
average is equal to zero, the standard deviation coincides with the r.m.s.
value.
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In case of an harmonic function with zero average (i.e. a sine or cosine
wave), assuming that 7" is a multiple of the period, the mean square and
the standard deviation are

1 ’ 2 2 1 2
) = g | vhcost ()t = i

0 = Yrms — \/2ymax .

These statistical parameters in general depend on the sample used for
the analysis.

When studying random excitation, a first assumption is that the phe-
nomenon is stationary, i.e., its characteristics do not change when the study
is performed starting at different times. Another assumption is that of er-
godicity, a complex statistical property that in the present case can be
summarized by stating that any sample can be considered typical of the
whole set of available samples.

Under these assumptions, the average, the r.m.s. value, the variance,
and all other statistical parameters can be considered independent of the
particular sample used for their computation. These are oversimplifications
of a more complex phenomenon, but in most cases they allow for results
that are in close accordance with experimental evidence to be obtained.

If the phenomenon is stationary and ergodic, the values of the average
and of the variance computed in time 7" are coincident with the same values
obtained for T" tending to infinity.

Another very important statistical parameter is the autocorrelation
function

T
W(r) = Jim 1{ /O YOyt + 7)dt, (9.4)

which states how the value of function y(t) at time ¢ is linked with the
value it takes at time t + 7.

Under the above-mentioned assumptions, for a zero-mean phenomenon,
it follows that

V(0) =0 = Y. (9.5)

The autocorrelation function of an harmonic function such as the sine or
cosine waves considered above is

1
W(r) = mcos(7) -

In the case of an ideal random phenomenon, in which the value of function
y(t) in every instant is completely independent of the value it takes in any
other instant, the autocorrelation is equal to zero for every value of 7 except,

as already stated, 7 = 0. As it will be seen below, the autocorrelation
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function of an actual random phenomenon, although tending to zero with
increasing absolute value of 7, is not zero.

A spectral analysis of the signal can be performed using the Fourier
transform of function y(t):

¥ (w) = / Tyt et (9.6)

— 00

Instead of using the Fourier transform of function y (t), the information
regarding the frequency content of a random variable is the power spectral
density S(w), often indicated with the acronym PSD. The power spectral
density is correctly defined as the Fourier transform of the autocorrelation
function

S(w) = / U(r)e T dr, (0.7)
but it can be also defined as the square of the modulus of the Fourier
transform of function y (¢), multiplied by a suitable constant

Sw) =, YW (0.8)

The term power is here used loosely: Because the power of an harmonic
signal is proportional to the square of the amplitude, it just stands for
amplitude squared.

If the random vibration is excited by a force, the dimension of its power
spectral density S(w) is that of the square of a force divided by a frequency.
In S.I. units it is therefore measured in N?/(rad/s) = N2s/rad or in N /Hz.
If the system is excited by the motion of the supporting point, the forcing
function is an acceleration and its power spectral density is measured in
(m/s?)?/(rad/s) = m?/s*rad or in g?/Hz.

The integral of function S(w) is the variance of function y(t), i.e., if the
average value is equal to zero, the square of its r.m.s. value

Yrms = \//Oo S(w)dw (99)

The power spectral density is here defined for both positive and negative
values of the frequency w (two-sided power spectral density). Often, on the
contrary, a one-sided power spectral density is defined, limited to positive
values of the frequency.

Remark 9.1 A random forcing function is usually defined as a narrow-
band or wide-band excitation, depending on the width of the frequency
range involved.
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9.3 White noise

The simplest type of random excitation is a random forcing function with
constant power spectral density. This type of forcing function, which con-
tains all possible frequencies in the same measure, is often referred to as
white noise. Its autocorrelation function has a zero value for all values of
7 and goes to infinity for 7 = 0. It is, therefore, a Dirac’s impulse function

o(7).

Remark 9.2 A true white noise, with a spectrum extending for the whole
frequency range from 0 to infinity, is just a mathematical model, since its
r.m.s. value would be infinitely large, as also shown by the fact that ¥ is a
Dirac’s 0, i.e. U(0) is infinite.

A more realistic random excitation is a band limited white noise, i.e., an
excitation with a power spectral density (Fig. 9.1a) expressed as

S =5 for |w| <wq,
S=0 for |w| > wq . (9.10)
Its r.m.s. value is thus
Yrms — \/250&)0, (9.11)
and its autocorrelation function, shown in Fig. 9.1b, is
¥(r) = 25,51 @oT) (9.12)

Often the power spectral density of the white noise is truncated both at a
minimum and at a maximum frequency. It is assumed to have the shape of

15 15
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FIGURE 9.1. Nondimensional power spectral density (a) and autocorrelation
function (b) of a band limited white noise.
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a trapezium in a bi-logarithmic plane and then, while being constant in the
central frequency field, it decays on both side with a constant slope (see,
for instance, Fig. 9.6a), usually measured in dB/oct (decibel per octave) or
dB/dec (decibel per decade). In other cases the power spectral density is
considered as constant at different values in various frequency ranges, with
straight ramps (in a bi-logarithmic plane) in between.

9.4 Probability distribution

The quantities defined earlier are not yet sufficient to completely charac-
terize a random forcing function. It is also necessary to define a function
expressing the probability density function p(y) related to the amplitude.
The probability density function p(y) is defined as the probability that
a random variable y(t) takes a value included between y and y + dy.
Usually, such a function is assumed to be a normal or Gaussian proba-
bility density
1 (y—w)?
e T 202
p(y) Jame® ; (9.13)

where p is the mean and o is the standard deviation (Fig. 9.2a).

The probability that y (¢) is included in the interval [u — o, p + o] can
be computed by integrating the probability density in that interval: it is
0.683. The probabilities it lies within a band of semi-amplitude 20 and 3o
are, respectively, 0.954 and 0.997. There is, however, no interval in which
the probability is 1: This means that there is a non-zero probability that
function y(t) reaches any value, however large.

0.5 1
a) b)
Spy) t P(y,)
0.4r 0.8
0351 0.7
0.3r 0.6
025+ 0.5
0.2r 0.4
0.15¢ 0.3
0.1r 0.2
0.05r 0.1
0 - 0 :
-4 2 0 2 yu 4 -4 2 0 2 Y4
c G

FIGURE 9.2. Nondimensional plot of the normal probability density function (a)
and the normal probability distribution function (b).
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Remark 9.3 This is clearly just a theoretical statement, resulting from
approzimating the actual probability density with a normal distribution. All
real world phenomena are limited and the ‘tails’ of the probability density
function must be cut somewhere, but this can done only by reasoning on
the physical significance and properties of function y (t).

Sometimes the suggestion is to cut the normal distribution at y — p =
430, or at y — = £50, but these are anyway arbitrary statements.
The probability that

y(t) <wn (9.14)

is the probability distribution function P (y;). In the case of a normal
distribution it follows

vL 1 v _(y-mw?

— 0o — 00

The integral cannot be performed in closed form, but series for both
(y — p) /o small and large exist. A plot obtained numerically is shown in
Fig. 9.2b.

To reach a probability exactly equal to 1 an infinitely large value of y;
must be reached.

Remark 9.4 When a random function is stationary, ergodic, and char-
acterized by a nmormal probability distribution, the average (which is here
assumed to be equal to zero), the variance, and the power spectral density
characterize completely the function.

9.5 Response of linear systems

Consider a linear system with a single degree of freedom on which a ran-
dom forcing function (in terms of applied force or of displacement of the
supporting point) is acting and assume that it is normal, stationary, and
ergodic. The behavior of the system is completely characterized by its fre-
quency response H(w), which is complex if the system is damped.

The response can be measured in terms of displacement x(t), velocity, or
acceleration, but also of stresses in any point of interest of the system. It
has a random nature as well, with the same characteristics of stationarity
and ergodicity and the same normal probability distribution as the forcing
function. Also, the mean value of the response is equal to zero.

The power spectral density of the response can be computed directly from
the power spectral density of the excitation and the frequency response of
the system:

Sa(w) = Sp(W)|HW)[*. (9.16)
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The r.m.s. value of the response is thus

Trms = \//OO Sy(w)dw . (9.17)

Assume that a force with a white noise power spectral density acts on
a linear, single degree of freedom system with a damping ratio ¢. The
frequency response is

1

o[- ()] + ez’

and thus the power spectral density of the displacement is (Fig. 9.3a)
So 1

)] )

The power spectral densities are now expressed, respectively, in N2s/rad
and m?s/rad.

The r.m.s. value of the response is in this case

~ VSo > 1
Lrms = k / 5 dw 5 (920)

@) )

|H(w)| = , (9.18)

S (w) (9.19)

a) =0 xrmsk b)

x L 0.1 1 VoS,
S

20F

10

2 0 0.5 1
o

FIGURE 9.3. Response of a linear single degree of freedom system excited by
a random force with white noise spectrum. (a) Nondimensional power spectral
density of the response. (b) Nondimensional r.m.s. value of the response as a
function of the damping ratio.
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ie.,

1 [7Sowy
rms — . 21
T i \/ 5 (9.21)

If the excitation is provided by the motion of the supporting point, and
then the power spectral density of the white noise excitation Sy is referred
to the acceleration (expressed in (m/s)? /rad/s or g2/Hz), the r.m.s. value

of the displacement is
7So
rms = . .22
* \/ZCw% (9:22)

The r.m.s. value of the response is plotted as a function of the damping
ratio in Fig. 9.3b. Provided that the system is damped, it remains limited,
even if the excitation is a theoretical white noise having an infinitely large
r.m.s. value.

From Fig. 9.3a it is clear that a lightly damped linear system with a
single degree of freedom acts as a sort of filter, amplifying the input signal
in a very narrow band about the resonant frequency and cutting off all
other components. The lower is the damping of the system, the narrower
is the passing band.

The response of a lightly damped system is thus a narrow-band random
vibration. The time history of the response follows the pattern sketched
in Fig. 9.4: an oscillation that is almost harmonic with randomly variable
amplitude and slightly variable frequency. The frequency is very close to
the natural frequency of the system.

Under these conditions it is possible to define an envelope of the time
history and thus the probability density for a generic peak to be higher than
the r.m.s. by a given factor. If the excitation (and then also the response)
is normal, such a probability density follows the Rayleigh distribution

bl
I UUUVU UU VVU\]U UV

FIGURE 9.4. Pattern of the time history of the response of a lightly damped
system to a random forcing function of the white-noise type.
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p< % >: Ip "2t (9.23)

Trms 2,

plotted in Fig. 9.5a. From the figure it is clear that very low and very high
values of the peaks are unlikely and that the maximum probability is that
of having peaks roughly as high as the r.m.s. value.

Again, there is a nonzero probability that a peaks reaches any value,
however high. This has no physical meaning and comes from having as-
sumed a normal probability distribution. In practice the plot must be cut
at a certain value of Tp / Trms-

By integrating the probability density function it is possible to compute
the probability that a peak is higher than the generic value x4

2

P (‘”’””) = ¢ 20tms | (9.24)
xrms

that is plotted in Fig. 9.5b. It is a Gaussian distribution, but in the figure

it is shown in logarithmic scale to show better how it drops quickly for high

values of the peak.

From Eq. (9.24) it is possible to directly compute the probability that
the maximum amplitude of the response reaches any given value in a given
working time. Because the response is a narrow-band random signal, its
frequency is very close to the natural frequency of the system and the
number of oscillations taking place in time t is tw,/27. The probability
that in one of these periods the peak value is greater than x4, is thus

2
z tw, — Tmaz
P( maw) = Te 2ms . (9.25)
Trms 27
0.8 T T T T T T T 1 E T T T T T T T T E
P Xrms - a) P 7 b) ]
0.6 7 1 0.1 3 E
0.4 ] 0.01 o E
0.2 1 0.001 3 E
0.0 LI B S S B 0.0001 L S ML S B
0 1 2 3 4 0 1 2 3 4 5
xp/xrms Xmax/xrms

FIGURE 9.5. (a) Probability density of the peak values of a narrow-band random
response and (b) probability that one of the peaks is higher than a given value
Tmaz. Note the logarithmic scale in Fig. 9.5b.
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Example 9.1 Check the ability of the system studied in Example 4.1 to with-
stand for a time of 30s the random excitation provided by the motion of the
supporting point defined in Fig. 9.6a. The (one-sided) power spectral density
18

e constant in a frequency range between 100 and 250 Hz at a value of 0.03
9 /Hz;
e increases at 9 dB/oct between 20 and 100 Hz; and

e decreases at —15 dB/oct between 250 and 2,000 Hz (Fig. 9.6a).
The stresses must not exceed

e the ultimate strength of 328 MN/m? divided by a safety factor of 1.575;

or
o the yield strength of 216 MN/m? divided by a safety factor of 1.155; or

e the allowable fatigue strength for the prescribed duration (115 MN/m?
for 107 cycles).

The relative displacement between the instrument at the end of the beam and
the supporting structure must not exceed 4 mm.
The power spectral density of the excitation includes the natural frequency
of the system. As a consequence, the computation of the response cannot be
performed when neglecting the presence of damping, which will be assumed to
be of the hysteretic type. For safety, a low value of the loss factor n = 0.01
will be assumed, so that conservative results will be obtained.
Consider the first frequency field. The relationship between power spectral den-
sity and frequency is linear in a bi-logarithmic plane; its expression is then of
the type

S(w) = aw™ .
As the power spectral density increases of 9 dB/oct and at a frequency of 100
Hz its value is 0.03 ¢* /Hz = 2.88 (m/s*)* /Hz, its expression is

S(w) =2.88 x 107 %w? |

where frequencies are measured in Hz.

In the range between 100 and 250 Hz, the power spectral density is constant
at o value 2.88 (m/s* )? /Hz, while between 250 and 2,000 Hz, where the power
spectral density decreases at —15 dB/oct, the expression

S(w) =2.81 x 10w~

s readily obtained. The r.m.s. value of the acceleration is obtained by inte-
grating the power spectral density between 20 and 2,000 Hz:
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FIGURE 9.6. Power spectral density of the excitation (a) and the response (b)
of the system of Example 9.1.

Qrms = 26.15 m/s> .

Because the response has to be computed in terms of relative displacement,
the frequency response can be used, substituting the inertial force ma for the
external force F'. The power spectral density of the response can be immedi-
ately computed for the three frequency ranges by multiplying the power spectral
density of the excitation by the square of the frequency response

Sy (w) =2.23 x 10716 w
( ) [17( w )2}2+n2

Sp(w) =223 x 1071 ! ,

Sy(w) = 2.17 x 102 “ oz -
()] e

where frequencies are expressed in Hz and power spectral densities in m? /Hz.
Note that in the above equations the damping has been assumed to be hysteretic,
which is inconsistent with the fact that hysteretic damping loses any meaning
when the motion is not harmonic. Here however the system is lightly damped
and the response is a very narrow-band response centered on the resonant
frequency: The use of hysteretic damping or of any sort of equivalent damping
leads to very similar results.
The power spectral density of the response is plotted in Fig. 9.6b. The r.m.s.
value of the response can be computed by integrating the power spectral density:

Trms = 0.539 mm .
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By comparing the contributions of the three integrals related to the various
frequency ranges, it is clear that the only frequency field that contributes sig-
nificantly to the response is the first one, because the natural frequency of the
system falls in it and the response is of the narrow-band type.
The r.m.s. value of the stress, computed in the same way as in Example 3.1,
5

Orms = 17.8 x 10° N/m” .
The narrow-band response can be assimilated to a harmonic oscillation with
random varying amplitude and frequency equal to the natural frequency 53.7
Hz. The total number of cycles occurring in the prescribed 1.930s is 1,611.
As the r.m.s. value of the stress is 6.5 times smaller than the fatigue strength at
107 eycles, the third condition is surely satisfied. For the first condition, the al-
lowable stress is 208 MN/m2. The r.m.s. value is, therefore, 11.7 times smaller
than the allowable value of the stress. The probability that the stress reaches
the allowable value in the prescribed 30s can be computed using Eq. (9.25),
obtaining

P=36x10"2".

The situation is slightly more critical for the second condition, regarding the
yield strength: The allowable strength is 187 MN/m?, the ratio between the
allowable stress and the r.m.s. value is 10.5, and the probability of reaching
the critical condition in the prescribed time is 1.7 x 1072L.

The probability that the structure fails under the effects of the random excita-
tion prescribed is extremely low. For the critical condition on the displacement,
the probability is also very low, namely, 1.8 x 1077,

Remark 9.5 In the example, the resonant frequency lies outside the fre-
quency range where the power spectral density of the excitation is constant.
The results computed assuming that the excitation is a theoretical white
noise would be quite far from the correct ones obtained here.

If the excitation is a band-limited white noise (Fig. 9.1) with an up-
per limitation at frequency wp, the expression for the r.m.s. value of the
response is

S VSown f (wo/wn)
rms k 2 C\/_l + Cz b)

F(E) == (c-v-1+¢*)anctan (Gy_/ﬁ <2> .
* <C+\/_1 + CZ) arctan ( wo/wn ) ,

(V=14

(9.26)

where
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FIGURE 9.7. Nondimensional r.m.s. value of the response to a band-limited white
noise as a function of the ratio wo/wrn. The dashed lines are the asymptotes for
wo /wn — 00, 1.e., for an ideal white noise.

Remark 9.6 For underdamped systems function f (wo/wy) is imaginary,
but T,ms s anyway real, as expected.

The r.m.s. value of the response to a band-limited white noise is reported
in Fig. 9.7 as a function of ratio wy/w,,. From the plot it is clear that if the
resonance peak is included in the band, i.e. wo/w, > 1, the ideal white-
noise model yields fairly good results. If wg/w, > 2 the fact that the band
is limited has practically no consequence on the results.

If the system has many degrees of freedom, the power spectral density of
the response can still be computed using Eq. (9.16), with the only difference
that now there are many responses and there may be many inputs.

If the system is lightly damped each frequency response H;; (w) has a
number of peaks, and thus there are several bands in which the excitation
may be amplified.

Example 9.2 Quarter-car model.

One of the simplest models used to study the dynamic behavior of motor vehicle
suspensions is the so-called quarter car with two degrees of freedom (Fig. 9.9a).
The upper mass simulates the part of the mass of the car body (the sprung
mass) that can be considered supported by a given wheel, and the lower one
simulates the wheel and all the parts that can be considered as rigidly connected
with the unsprung mass.
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The two masses are connected by a spring—damper system simulating the
spring of the suspension and the shock absorber. The unsprung mass is con-
nected to the ground with a second spring simulating the stiffness of the tire.
The point at which the tire contacts the ground is assumed to move in a verti-
cal direction with a given law h(t), in order to simulate the motion on uneven
ground. Assume the following values of the parameters: Sprung mass ms =
250 kg; unsprung mass m. = 25 kg; spring stiffness k = 25 kN/m; tire stiffness
k: = 100 kN/m; damping coefficient of the shock absorber ¢ = 2,150 Ns/m.
The following analyses will be performed:

e modal analysis;
e computation of the frequency response; and

e computation of the response of the system due to the road excitation
when travelling at a sped of 30 m/s on a road whose surface can be
considered normal following the ISO standards

Modal analysis

If coordinates xs and x, are defined with reference to an inertial frame, the
equation yielding the response of the system to a harmonic excitation with
frequency w and amplitude ho is

R R e N b B | S
Lo J

where
10 0 L -1
M725{0 1}, K725,OOO{_1 5},
1 -1
(3_27150{_1 1}7
B 0 o 100 —100
f_1007000ho{ . } D=M"K= { —1,000 5,000 } '

The characteristic equation that allows the computation of the natural frequen-
cies of the undamped system is

100 — w? —100 -
—1,000 5,000 —w? |~ 7’
i.e.,
w* = 5,100w” + 400,000 = 0.

Its solutions and the values of the natural frequencies are

w? =T79.676 (w1 = 8.926 rad/s = 1.421 Hz),
w3 = 5,020.32 (w2 =70.85 rad/s = 11.28 Hz) .

The eigenvectors can be computed directly by introducing the eigenvalues into
the dynamic matriz and stating equal to unity one of their values, e.g., the
second
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FIGURE 9.8. Eigenvectors in the space of the configurations. Point A, with coor-
dinates x :[ 2 1 ]T and n = @ 'x = [ 0.47.83 0.1952 ]T is also shown as
an example.

100 — w? —100 1\ _,
—1,000 5,000 — w? 1 [

The second equation yields

The two eigenvectors are then

4.9203 —0.020324
q1 = 1 , Q2 = 1 .

The eigenvectors are represented in Fig. 9.8 in the space of the configurations.
They are clearly not orthogonal with respect to each other.

The modal masses are thus easily computed, obtaining 6,052.4 and 25.103,
respectively. These values can be used to normalize the eigenvectors, obtaining

& — 0.062346 —0.0040564
| 0.012854 0.199588

The modal masses have unit values, while the modal stiffnesses are equal to
the squares of the natural frequencies. The modal damping matriz

5.4596 —22.0634
— T —
C=2Ce= { —22.0634 89.1627 ]
s not diagonal and can be split into its proportional and nonproportional parts:
Cc — 5.4596 0 c. — 0 —22.0634
P 0 89.1627 |’ " —22.0634 0 '

The inverse modal transformation yields the following expressions of the two
parts of the original damping matriz
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FIGURE 9.9. (a) Scheme of the quarter car model; (b), (c) frequency response;
(d) power spectral density of a normal road following ISO standards; and (e)
power spectral density of the acceleration at a speed of 30 m/s on the road
profile whose power spectral density is given in (d).

705  —1,726

1.445 —424 c
' " _1,7260 =71

Cr = { —424 2,221

The distribution of the damping is far from being proportional and the non-
proportional damping matrix is nonpositive definite. Matrixz Cp is, however,
strictly proportional, with coefficients o = 4.084 and 3 = 0.01696.

The modal forces are then obtained:

 oTe 1,285
f=2 f_ho{ 19.959 }

Computation of the frequency response
The frequency response of the system can be computed directly from the equa-

tion of motion, obtaining
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Ts k2 + c2w?
His|=""° =k
| 12| hO P\/fg(w)czwggg(w)7

\Hag = "0 = g, | (b= mw?)? & e
he '\ P@)eew)

where
F(w) = mempw® — [kpms + k(ms +my)|w® + kky ,
9(w) = (ms +mu)w? — ky .

The response is plotted in Fig. 9.9b and c. The same result can also be ob-
tained through an iterative procedure starting from modal uncoupling. Using
the Jacobi method, the modal coordinates at the ith iteration can be obtained
from those at the (i — 1)-th through the formulae
0 — i iwCany Y 0 = J2—iwCan”
YKy —wiMy +iwCi Ko —w2Ms +iwCa |

1)

The response, computed after the first and third iterations, is plotted in Fig.
9.9b and c. Three iterations are enough to obtain a good approximation even
in the current case, where damping is neither small nor close to being propor-
tional.

Response to random excitation (road excitation)

The power spectral density of a normal road following ISO standards is shown
in Fig. 9.9d. The power spectral density of a road profile S™ is usually measured
in m?/(cycles/m) and is a function of the space frequency w*, in cycles/m.
Once the speed V' of the vehicle has been stated, it is possible to obtain the
various quantities defined with reference to the time frequency from the space
frequency through the formulas

w=Vw", §=5)V.

The curve of Fig. 9.9d can be expressed by the equation

«T

S* =aw"
where constants a and n are
a=833x10"" m,

n=-2 if w* <1/6 cycles/m ,

i.e., for road undulations with wavelength greater than 6 m, and
a=258x10"° m"%,

n=—137 if w" >1/6 cycles/m ,

i.e., for short wavelength irregularities.
The (one-sided) power spectral density (with reference to the time frequency)
18

!
S=duw" ,
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where

/ a

a :Vn+1 .

At a speed of 30 m/s it follows
a=25%x10""m® s% for w<5 Hz,

a' =9.07 x107° m*>* for w>5 Hz.

The power spectral density of the acceleration of the sprung mass can be easily
computed by multiplying the power spectral density of the road profile by the
square of the inertance of the suspension. Because the inertance is equal to
the dynamic compliance Hi2 (computed above) multiplied by w2, or, better, by
A7%w? if w is measured in Hz, it follows that

S, = S16rtwHiy = 167td w" ™ HE, .

To obtain the power spectral density of the acceleration in (m/s*)? /Hz, the
frequency must be expressed in Hz, while in the equation yielding the dynamic
compliance Hiz, it is expressed in rad/s. The result is shown in Fig. 9.9e.
The r.m.s. value of the acceleration can be obtained by integrating the power
spectral density and extracting the square root

arms = 1.21m/s* = 0.123g.

9.6 Exercises

Exercise 9.1 Repeat the computations of the response of the system of Exam-
ple 9.1, by substituting the hysteretic damping with an equivalent viscous damping,
computed at the resonant frequency. Compare the results with those obtained in
the example.

Exercise 9.2 A spring-mass—damper system is excited by a force whose time
history is random. The power spectral density of the excitation is constant at
a value of 10,000 N2/Hz between the frequencies of 50 and 200 Hz. At lower
frequencies it increases at 12 dB/oct, while a decay of 12 dB/oct takes place
at frequencies higher than 200 Hz. Compute the power spectral density of the
response and the r.m.s. values of both excitation and response. Data: m = 10 kg,
k=5 MN/m, c =3 kNs/m.

Exercise 9.3 Repeat the computations of Exercises 9.1 and 9.2 assuming a the-
oretical unlimited white noise and compare the results with those already obtained.
Discuss similarities and differences.

Exercise 9.4 Consider the torsional system with 3 degrees of freedom of Fig.
1.8, already studied in FEzxercises 1.2, 2.1 and 2.3, with damping added as in
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Ezercise 3.1, excited by a motion of the supporting point like in Exercise 7.4.
The excitation is random with a band-limited white noise with a power spectral
density of the rotation Sp = 107° rad® /Hz up to a frequency of 8 Hz. Plot the
power spectral density of the response of the third disc and compute numerically
the r.m.s. value of the rotation at the same point.
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Reduction of the Number of Degrees
of Freedom

The mathematical models of many real-world systems are quite complicated
and may include a large number of degrees of freedom, in particular when
they are generated automatically starting from drawings or other geometric
information. Techniques aimed at reducing the size of the model without
loosing important information on the behavior of the system are then in-
creasingly applied in various stages of the dynamic analysis.

10.1 General considerations

As already stated, when performing a dynamic analysis, there is a great
advantage in reducing the size of the problem, particularly when using
methods like the finite element method (see Chapter 15), which usually
yield models with a large number of degrees of freedom. It is not uncommon
to use models with thousands or even millions of degrees of freedom: When
performing static analysis, this does not constitute a problem for modern
computers, but the solution of an eigenproblem of that size can still be a
formidable task.

Moreover, when using displacement methods, i.e., methods that first
solve the displacements and then compute stresses and strains as deriva-
tives of the displacements, displacements, and all other entities directly
linked with them like mode shapes and natural frequencies, are obtained
with much greater precision, for a given model, than stresses and strains.
Conversely, this means that much more detailed models are needed when
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solving the stress field, which is typical of static problems, than when
searching natural frequencies and mode shapes.

Remark 10.1 Because it is often expedient to use the same model for the
static and dynamic analysis, a reduction of the number of degrees of freedom
for dynamic solution is useful, particularly when only a limited number of
natural frequencies are required.

In particular, reduced order models are particularly useful in the early
stages of the analysis, when many details of the systems have not yet been
exactly defined. While performing tests on the prototypes, simple models
that can be solved in a short time on small computers may be of help too.
As it will be seen in Chapter 11, simplified models may also be implemented
in the control software.

Reduced models can be useful in both time-domain and frequency-domain
computations. Their use is generally restricted to linear system but, as will
be shown in Part II, they find applications also in the approximated solu-
tion of nonlinear models.

Two approaches may be used when computing the natural frequencies:
reducing the size of the model or leaving the model as is and using algo-
rithms, such as the subspace iteration method, that search only the lowest
natural frequencies. Although the two are more or less equivalent, the first
leaves the choice of which degrees of freedom to retain to the user, while
the second operates automatically. As a consequence, a skilled operator can
use advantageously reduction techniques, which allow good results to be ob-
tained with a small number of degrees of freedom. A general-purpose code
for routine computations, sometimes used by not much experienced ana-
lysts, on the contrary, can advantageously use the second approach. Only
the first approach is dealt with here: The second is studied in Appendix A,
together with other solution techniques.

Remark 10.2 Before computers were available, remarkable results were
obtained using models with very few (often a single) degrees of freedom, but
this required great computational ability and physical insight.

10.2 Static reduction of conservative models

Static reduction is based on the subdivision of the generalized coordinates
x; into two sets: master degrees of freedom contained in vector x; and slave
degrees of freedom contained in xs. Assuming that the master degrees of
freedom are m (n is the total number of degrees of freedom), the stiffness
matrix and the nodal force vector can be partitioned accordingly, and the
equation expressing the static problem becomes

K Ki2, X1 f;
o X (nm = . 10.1
KQl(nfnL) Xm K22(n77n) X (n—m) X2 f2 ( )
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Matrices K11 and Koo are symmetrical, while Kio = Kgl are neither
symmetrical nor square. Solving the second set of Egs. (10.1) in x2, the fol-
lowing relationship linking the slave to the master coordinates is obtained:

x2 = — Ko Koix1 + Ko f . (10.2)
Introducing Eq. (10.2) into Eq. (10.1), the latter yields
Kcondxl — lcond (103)

where _—
Keona = Ky — K12K22 K12 ’

foona = fi — K19Kos fo .

Equation (10.3) yields the master generalized displacements x; . The slave
displacements can be obtained directly from Eq. (10.2) simply by multi-
plying some matrices.

Remark 10.3 When used to solve a static problem, static reduction yields
exact results, i.e., the same results that would be obtained from the complete
model.

The subdivision of the degrees of freedom between vectors x; and xo
can be based on different criteria. The master degrees of freedom can sim-
ply be those in which the user is directly interested. Another choice can be
physically subdividing the structure in two parts. This practice can be gen-
eralized by subdividing the coordinates into many subsets and is generally
known as solution by substructures or substructuring.

In particular, substructuring can be expedient when the structure can
be divided into many parts that are all connected to a single frame. If the
generalized displacements of the connecting structure or frame are listed in
vector xg and those of the various substructures are included in vectors x;,
the equation for the static solution of the complete structure has the form

Koo Ko Ko ... Xo fo
K11 0 . X1 f1
= . 10.4
Kgg ca X2 f2 ( )
symm.
The equations related to the 7th substructure can be solved as
X; = —K;ilKiQXo + I(;lfZ . (105)

The generalized displacements of the frame can be obtained using an
equation of the type of Eq. (10.3) where the condensed matrices are
Kcond = KOO - Z KOlK;ler(lJ; )

Vi 10.6
fcond = fO - Z KOZK;Zlfz . ( )
Vi
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As already stated, static reduction does not introduce any further ap-
proximation into the model. A similar reduction can be used in dynamic
analysis without introducing approximations only if no generalized inertia
is associated with the slave degrees of freedom. In this case, static reduction
is advisable because the mass matrix of the original system is singular, and
the condensation procedure allows removal of the singularity.

10.3 Guyan reduction

The so-called Guyan reduction is based on the assumption that the slave
generalized displacements x5 can be computed directly from master dis-
placements x7, neglecting inertia forces and external forces fy. In this case,
Eq. (10.2), without the last term, can also be used in dynamics.

By partitioning the mass matrix in the same way seen for the stiffness
matrix, the kinetic energy of the structure can be expressed as

T
1 X1 M1 My X1
T = R o U o7
2{ —K5 Ko } [ My Moy ~Ky Korx; (10.7)

ie.,
1 M M I
T — o T I _KflK 11 12 ) o
9 X1 [ 22 21 ] [ Ms; Moy, ~K5' Koy 1
(10.8)
The kinetic energy is thus
1.1 .
T = o X1 MeonaXi , (10.9)
where the condensed mass matrix is
_ _ T
Meond = M1 — M12K221K{2 - [M12K221K{2} +
(10.10)

+K12K 5, Mo, Ko, KT, .

Guyan reduction is not much more demanding from a computational
viewpoint than static reduction because the only matrix inversion is that
of Koo, which has already been performed for the computation of the
condensed stiffness matrix. If matrix M is diagonal, two of the terms of
Eq. (10.10) vanish.

Although approximate, it introduces errors that are usually small, at
least if the choice of the slave degrees of freedom is appropriate. Inertia
forces related to slave degrees of freedom are actually not neglected, but
their contribution to the kinetic energy is computed from a deformed con-
figuration obtained on the basis of the master degrees of freedom alone.
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k=1 k=1 k=1 k=1 k=1
m=1 m=1 m=1 m=1 m= 0.5

1 2 3 4 5
FIGURE 10.1. Sketch of a system with 5 degrees of freedom.

Remark 10.4 If the relevant mode shapes are only slightly influenced by
the presence of some of the generalized masses or if some parts of the
structure are so stiff that their deflected shape can be determined by a few
generalized coordinates, the results can be very accurate, even when few
master degrees of freedom are used.

Example 10.1 Consider the conservative system with 5 degrees of freedom
of Fig. 10.1. Compute the natural frequencies using a model with all degrees of
freedom, and then repeat the computation using static and Guyan reductions
taking the displacements of points 2 and 4 as slave degrees of freedom.

The mass and stiffness matrices of the system are

2 —1 0 0 0 1 0 0 O 0

-1 2 -1 0 0 01 0 O 0

K= 0 -1 2 -1 0|, M=|0 0 1 O 0
0 0 -1 2 -1 0 0 0 1 0

0 0 0 -1 1 0 0 0 0 05

By directly solving the eigenproblem, the following matrixz of the eigenvalues
s obtained:

[w2] = diag[ 0.0979 0.8244 2.000 3.176 3.902 ] ,
i.e.,
wn = 0.3129, 0.9080, 1.4142, 1.7820, 1.9754 .

Since the slave degrees of freedom are the second and the fourth, the partitioned
malrices are

2 0 0 1 0 0
Kui=|02 0|, Mu=|0 1 0],
0 0 1 0 0 0.5
—1 0
2 0 1 0
Kpo=| -1 -1 |, Kx= , Moo = .
0 —1 0 2 0 1

The reduced stiffness matriz is
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1.5 —0.5 0
Keona = | —0.5 1 =05
0 -0.5 0.5

Only three natural frequencies can be found using static reduction, since the
system is reduced to a system with 3 degrees of freedom. The natural frequen-
cies from the eigenproblem involving matrices Mi1 and Kcona are reported in
the table below

Ezact Static reduction Guyan reduction

Mode 1 0.3129 0.4370 0.3167
Mode 2 0.9080 1.1441 0.9864

Mode 3 1.4142 1.4142 1.4142
Mode 4 1.7820 - -
Mode 5 1.9754 - -

The errors on the first two natural frequencies are 40% and 26%: as pre-
dictable static reduction yields very poor results. The fact that the third nat-
ural frequency is obtained correctly is an anomaly, due to the fact that the
third eigenvector of the full model has zero amplitudes at the slave degrees of
freedom. In this condition neglecting the corresponding masses does not lead
to any error.

The reduced mass matriz obtained through the Guyan reduction is

1.25 0.25 0
Mcond = 0.25 1.50 0.25
0 025 0.75

Also using Guyan reduction only three natural frequencies can be found. The
natural frequencies from the eigenproblem involving matrices Meona and Kcond
are reported in the table above.

The errors on the first two natural frequencies are 1.2% and 8.6%.
Considering that the masses associated to the slave degrees of freedom are
equal to those associated to the master coordinates, the precision with which
the first natural frequency is computed is an interesting result. The precision
on the second one is smaller as expected. Again the third natural frequency is
evaluated with no error, for the reason seen above.

10.4 Damped systems

In a way similar to that seen for the mass matrix, viscous, or structural

damping matrices can be reduced using Eq. (10.10) in which M has been

substituted with C and K”, respectively. The reduced viscous damping
matrix is thus

- _ T

Ceona = C11 — C12K221K{2 - [C12K221K?2] +

(10.11)

+K 12Ky Coo Koy K -
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The reduction of damping matrices introduces errors that depend on
the choice of the slave degrees of freedom but are usually small when the
degrees of freedom in which viscous dampers are applied or, in the case of
hysteretic damping, where the loss factor of the material changes, are not
eliminated.

Small errors are also introduced when the generalized coordinates of the
slave degrees of freedom are determined with good accuracy by some master
displacement, as in the case of very stiff parts of the structure.

10.5 Dynamic reduction

While the reduction techniques seen above can be used for both frequency-
domain and time-domain computations, when only frequency-domain
solutions are searched the reduction can be operated directly on the dy-
namic stiffness matrix (dynamic reduction). This procedure does not intro-
duce approximations, but the frequency appears explicitly in the matrices
that must be inverted and multiplied.

There is no difficulty in reducing also the complex dynamic stiffness
matrix resulting from a damped system.

Because it is not possible to perform the inversion of matrix Kayn,,
leaving the frequency unspecified (except if the slave degrees of freedom
are only 2 or 3), a numerical value of the frequency must be stated. While
this does not give any problem when computing the frequency response of
the system, it is impossible to compute the natural frequencies in this way,
except if operating by trial and error.

Dynamic reduction has also an application in the computation of the
approximated response of multi-degrees-of-freedom nonlinear systems: It
will be further studied in Chapter 20.

10.6 Modal reduction

Performing the modal transformation and then neglecting a number of
modes may be considered as a different approach to the reduction of the
number of degrees of freedom of the system.

Using the reduced matrix of the eigenvectors ®* instead of the full matrix
® introduces two types of errors:

e errors due to neglecting the contribution of the neglected modes and

e errors due to neglecting modal coupling.

The second cause is not present if the modes are exactly uncoupled,
like in the case of undamped systems or damped systems with generalized
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proportional damping. Often high-frequency modes are determined more
by how the model has been obtained than by the actual characteristics of
the physical system, and then neglecting them no further approximations,
beyond those already present in the model, are introduced.

Moreover, the use of the modified reduced matrix ®** (see Section 7.5)
can make the errors of the first type to be quite small, and a system with
a large number of degrees of freedom can be studied with precision using
only a small number of modes.

When damping (or the gyroscopic and circulatory matrices G and H)
couple the modal equations, it is difficult to assess how many modes are
needed to obtain the required precision. This issue depends on many fac-
tors, like how large is damping (or the gyroscopic and circulatory effects),
how many natural frequencies are included in the range of the exciting
frequencies, how spaced are they are, etc.

10.7 Component-mode synthesis

When substructuring is used, the degrees of freedom of each substructure
can be divided into two sets: internal degrees of freedom and boundary de-
grees of freedom. The latter are all degrees of freedom that the substructure
has in common with other parts of the structure. They are often referred
to as constraint degrees of freedom because they express how the substruc-
ture is constrained to the rest of the system. Internal degrees of freedom
are those belonging only to the relevant substructure. The largest possible
reduction scheme is that in which all internal degrees of freedom are consid-
ered slave coordinates and all boundary degrees of freedom are considered
master coordinates. In this way, however, the approximation of all modes
in which the motion of the internal points of the substructure with respect
to the motion of its boundary is important, can be quite rough.

A simple way to avoid this drawback is to also consider as master coor-
dinates, together with the boundary degrees of freedom, some of the modal
coordinates of the substructure constrained at its boundary. This procedure
would obviously lead to exact results if all modes were retained, but be-
cause the total number of modes is equal to the number of internal degrees
of freedom, the model obtained has as many degrees of freedom as the orig-
inal model. As usual with modal practices, the computational advantages
grow, together with the number of modes that can be neglected.

The relevant matrices are partitioned as seen for reduction techniques,
with subscript 1 referring to the boundary degrees of freedom and subscript
2 to the internal degrees of freedom. The displacement vector xa can be
assumed to be equal to the sum of the constrained modes x5, i.e., the
deformation pattern due to the displacements x; when no force acts on
the substructure, plus the constrained normal modes x4, i.e., the natural



10.7 Component-mode synthesis 221

modes of free vibration of the substructure when the boundary generalized
displacements x; are equal to zero.

The constrained modes x5 can be expressed by Eq. (10.2) once the force
vector f5 is set equal to zero:

/ —1
Xo = —K22 K21X1 .

The constrained normal modes can easily be computed by solving the
eigenproblem B
(—w2M22 + K22) Xy =0.

Once the eigenproblem has been solved, the matrix of the eigenvectors
® can be used to perform the modal transformation

x5 = 0n,.

The generalized coordinates of the substructure can thus be expressed
as

X1 o X1 _
X9 —K2_21K21X1 + @7]2 (10 12)

SRR b
~Ky,' Koy @ up ny J -

Equation (10.12) represents a coordinate transformation, allowing the
expression of the deformation of the internal part of the substructure in
terms of constrained and normal modes. Matrix ¥ expressing this transfor-
mation can be used to compute the new mass, stiffness, and, where needed,
damping matrices and the force vector

M* = ¥TM¥, K*=UTKT,

C*—wTCW, £ — Wit (10.13)

If there are m constrained coordinates and n internal coordinates and if
only k constrained normal modes are considered (k < n), then the size of
the original matrices M, K, ... is m + n, while that of matrices M*, K*, ...
ism+ k.

The main advantage of component-mode synthesis and substructuring
is allowing the construction of the model and the analysis of the various
parts of a large structure in an independent way. The results can then be
assembled in a way similar to what will be seen in the context of the Finite
Element Method (see Chapter 15) and the behavior of the structure can be
assessed from that of its parts. If this is done, however, the connecting nodes
must be defined in such a way that the same boundary degrees of freedom
are considered in the analysis of the various parts. It is, however, possible
to use algorithms allowing to connect otherwise incompatible meshes.

Remark 10.5 All the methods discussed in this section, which are closely
related to each other, can be found in the literature in a variety of versions.
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k=1 k=1 k=1 k=1 k=1
m=1 m=1 m=1 m=1 m= 0.5
1 2 3 4 5
§_/\/\/\/\_._/\/\/V\_‘_WV\_. Substructure 1
1 2 3

Substructure 2 J\/\/\/\_._/\/\/\/\_.
3 4 5

FIGURE 10.2. Sketch of the system and values of the relevant parameters.

Although they are gemeral for discrete systems, they are mostly used in
connection with the Finite Element Method, owing to the large number of
degrees of freedom typical of the models based on it.

Example 10.2 Consider again the discrete system already studied in Ex-
ample 10.1 and sketched in Fig. 10.2. Study its dynamic behavior using
component-mode synthesis retaining different numbers of modes.

The total number of degrees of freedom of the system is five and the complete
mass and stiffness matrices are those shown in the previous example.

The structure is then subdivided into two substructures and the analysis is
accordingly performed.

Substructure 1 includes nodes 1, 2, and 3 with the masses located on them. The
displacements at nodes 1 and 2 are internal coordinates, while the displacement
at node 3 is a boundary coordinate. The mass and stiffness matriz of the
substructure, partitioned with the boundary degree of freedom first and then
the internal ones, are

1 -1 0 1 0 0
K = 1 2 -1 , M={0 1 0
0 -1 2 0 0 1

The matriz of the eigenvectors for the internal normal modes can be easily
obtained by solving the eigenproblem related to matrices with subscript 22 and,
by retaining all modes, matrices K* and M™ of the first substructure can be
computed as follows:

V2 —V2 0.3333
2 9

V2 V2 ’
2 2

P —
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1.556 0.7071 —0.2357
M" = 0.7071 1 0
—0.2357 0 1

Substructure 2 includes nodes 3, 4, and 5 with the masses located on nodes
4 and 5. The mass located on node 3 has already been taken into account in
the first substructure and must not be considered again. The displacements at
nodes 4 and 5 are internal coordinates, while the displacement at node 3 is a
boundary coordinate. The mass and stiffness matriz of the substructure, parti-
tioned with the boundary degree of freedom first and then the internal ones, are

1 -1 0 00 0
K=|-1 2 -1, M=|01 o0
0 -1 1 0 0 05

Operating as seen for the first substructure, it follows

V2 =2 0 0 0

P = 9 9 , K'=1! 0 05858 0|,
1 1 0 0 3.4142
1.5 1.2071 —0.2071
M* = 1.2071 1 0
—0.2071 0 1

The substructures can be assembled in the same way as the elements (see
Chapter 15). A map, that is a table in which the correspondence between the
generalized coordinates of each substructure and those of the system as a whole,
can be written

Subst. d.o.f. 1 2 3

1 type boundary modal modal
Subst. d.o.f. 1 2 3

2 type boundary modal modal
Global d.o.f. 1 2 3 4 5

The following global stiffness and mass matrices can thus be obtained

03333 0 O 0 0
0 1 0 0 0
K" = 0 0 3 0 01,
0 0 0 0.5858 0
0 0 O 0 3.4142
1.5 07071 —0.2357 1.2071 —0.2071
0.7071 1 0 0 0
M* = | —0.2357 0 1 0 0
1.2071 0 0 1 0
—0.2071 0 0 0 1
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The matrices have been partitioned in such a way to separate the boundary
displacement degree of freedom from the modal degrees of freedom. If no modal
coordinate is considered, the component-mode synthesis coincides with Guyan
reduction, with only one master degree of freedom.

If the third and fifth rows and columns are cancelled, only one internal normal
mode is taken into account for each substructure. If the matrices are taken
into account in complete form, all modes are considered and the result must
coincide, except for computational approximations, with the exact ones. The
results obtained in terms of the square of the natural frequency (those related
to the complete model are taken from Ezample 10.1) are

Size of matrices 5 (exact) 1 (Guyan red.) 3 (1 mode) 5 (2 modes)

Mode 1 0.3129 0.3303 0.3129 0.3129
Mode 2 0.9080 - 0.9080 0.9080
Mode 3 1.4142 - 1.4883 1.4142
Mode 4 1.7820 - - 1.7821
Mode 5 1.9754 - - 1.9753

10.8 Exercises

Exercise 10.1 Consider the system with two degrees of freedom of Exercise 4.4,
made by masses My and Mo, connected by a spring k1o between each other and
springs k1 and ko to point A. Write the reduced stiffness and mass matriz through
Guyan reduction considering the displacement of mass mg as master degree of
freedom. Compute the expression for the natural frequency and compare it with
the lowest natural frequency obtained from the complete model. Evaluate their
numerical value using the data below. Repeatl the analysis using the displacement
of mass m1 as the master degree of freedom. Data: mi1 = 5 kg, ma = 10 kg,
ki1 =ks =2 kN/m, kio =4 kN/m.

Exercise 10.2 Add two dampers with a damping coefficient ¢ = 0.1 to the
system of Fig. 10.2 between nodes 2 and 3 and nodes 4 and 5. Compute the
complex frequencies both using the complete model and through Guyan reduction,
assuming that the displacement of node 1 is a slave degree of freedom. Repeat the
computation assuming that also the displacement of node 4 is a slave degree of
freedom.

Exercise 10.3 Repeat the study of Ezercise 10.1 resorting to the component-
mode synthesis. Compare the results with those of the previous exercise.

Exercise 10.4 Consider again the undamped system of Fig. 10.2. Compute the
natural frequencies using the component-mode synthesis by considering the sub-
system made of all masses and all spring except the first one as a substructure and
then constraining it to the ground through the first spring. Consider a different
number of modal coordinates.
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Controlled Linear Systems

Structures and machines are increasingly provided with control system, of-
ten active ones, that influence deeply their dynamic behavior. When this
is the case, the dynamics of the system cannot be studied without a good
knowledge of the performance of all components of the control loop, such
as sensors, actuators, controllers, power amplifiers. The correct approach
is thus to undertake the design and analysis of the system at a global level,
including all components into models that take into account all of them in
the required detail.

11.1 General considerations

Consider a structure' provided with a number of actuators and modeled
as a discrete system (Fig. 11.1). Its equation of motion in the space of the
configuration can be expressed in the form

Mx+Cx+Kx=f1f. +f,, (11.1)

where the control forces exerted by the actuators and the disturbances or
external forces can be expressed, respectively, as

fc = Tcuc ) fe = Te“ea
n control terminology the controlled system is usually referred to as plant. In the

following sections the more specific term structure will also be used: No attempt to deal
with control theory in general is intended.



226 11. Controlled Linear Systems

External forces

Control inputs Outputs
——-| Actuators Structure }—»

Control forces

FIGURE 11.1. Block diagram of a structure on which both control and external
forces are acting.

where u. and u, are the control and external inputs. Matrix T, is
sometimes referred to as the control influence matriz.
The corresponding state and output equations are

3 = Az + Bouo(t) + Boue (1),
y(t) =Cz,

where the inputs are assumed not to directly influence the outputs through
the direct link matrix D. The input gain matrices are simply

-1 —1
Bcz[M TC}’ Bez[M TG}'

(11.2)

0 0

The designer must deal with the whole system, made of the structure
as well as the actuators, the control system that must provide the latter
with the control inputs, the sensors and, in the case of active systems, the
source of power for the actuators.

When designing an active system, the primary concern is often shifted
from obtaining the required response to achieving stability. Or, better, sta-
bility becomes a prerequisite that must be fulfilled before thinking about
performances.

This is new compared with the usual approach to structural dynamics:
In most structures, stability is taken for granted, because the structure can
only dissipate energy and free vibrations are bound to die out sooner or
later. The designer has to provide sufficient damping, but at least he is sure
that the motion is stable.

Notable exceptions are the cases in which the structure can absorb energy
from its environment, as with aeroelastic structures or rotating machines.
If even a small fraction of the energy from the aerodynamic field or kinetic
energy linked with rotation seeps into the vibration, strong self-excited vi-
brations may take place. In these cases, stability has always been a primary
concern.

For ideal and co-located? active systems, a theorem that ensures marginal
stability exists, but most real-world active systems are prone to instability:
When the structure is acted on by actuators of any type, the control system

2Sensors and actuators are said to be co-located when the generalized force due to
the latter corresponds to the generalized coordinate measured by the former.
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must avoid supplying energy to any vibration motion, otherwise an unstable
behavior may occur.

The behavior of any active structure is the result of the integration of
the behavior of the structural subsystem with that of the controller, the
actuators, and the sensors and the only reasonable approach is to design
the system as a whole. To add a controller to an already existing structure
or one designed without taking into account the presence of the former may
lead to performances far from the expected.

Structural dynamics, control engineering, transducer design, and elec-
tronics must merge from the beginning with that interdisciplinary approach
often referred to as mechatronics.

11.2  Control systems

The science of control systems and the related technology saw enormous
advances in recent decades, and it is impossible to summarize them satis-
factorily in a text on structural dynamics. Only a few remarks on control
systems will be reported here, limited to what can be useful in the context
of structural control; the interested reader can find the relevant information
in many textbooks on the subject.

Classical control theory deals with linear, or at least linearized, control
systems. The basic tools are those typical of linear system dynamics, namely
block diagrams, phase- or state-space equations, transfer functions, and
eigenstructure analysis.

The control systems used for structural control can be based on trans-
ducers (sensors and/or actuators) of different types, such as mechanical,
electrical, hydraulic, and pneumatic. Recently, however, electronic-based
systems are becoming more common, both for all-electrical applications
and in the form of electro-mechanical, electrohydraulic, and so on, appli-
cations. The electronic part can be based on analog or digital circuits; the
former are preferred for simpler applications, where they are still cheaper
than the latter. With the diffusion of microprocessors, digital techniques
became more common, particularly for their flexibility and ability to per-
form very complex tasks.

Independently from their physical configuration, control systems can be
divided into two categories: passive and active control systems. The first
operate without any external energy supply, using the energy stored in the
structure as potential or kinetic energy as a consequence of its dynamic
response to supply the control forces.

Passive devices in many cases act as dampers. For example, piezoceramic
materials can be used as both sensors and actuators: If a piezoelectric ele-
ment is simply shunted by a resistor, a sort of electric damper is obtained.
By also introducing an inductor into the circuit, the capacitance of the
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piezoelectric element forms, together with the other components of the cir-
cuit, a resonant inductor—resistor—capacitor system whose transfer function
can be designed to obtain performance similar to that of a damped vibra-
tion absorber. Piezoelectric elements can also be used in active systems,
as both sensors and actuators. Layers of piezoelectric materials can also
perform as distributed sensory or actuating devices.

Active control systems are equipped with an external power supply to
provide the control forces. There are cases in which the amount of control
energy is minimal and in this case the term semi-active systems is some-
times used. Active systems can be either manual or automatic, but only
the latter are important in structural control, particularly if true dynamic
control is required.

Both active and passive control systems can operate as open-loop or
closed-loop systems. Open-loop control systems, sometimes referred to as
predetermined control systems, react to the variation of the input parame-
ters of the controlled system without actually measuring its output param-
eters in order to check whether the response of the system conforms with
the required values. A system that changes the stiffness of the supports
of a rotor depending on its angular velocity, for instance, is an open-loop
system.

In closed-loop or feedback systems the control system monitors the out-
puts of the controlled system, compares their actual values with predeter-
mined reference values, and uses the information so obtained to perform
the control action. Closed- and open-loop techniques can be used simul-
taneously, as in the case of feedback systems in which the rapidity of the
response of the controller is incremented by also monitoring the excita-
tion and using this information to help controlling the system (feedforward
technique).

An example of an active closed-loop control system taken outside the
field of structural control is the driver of a vehicle. The control action
is performed by comparing the trajectory and the other parameters of the
motion with those the driver aims to obtain and then acting on the controls
to supply the required corrections. A blind driver who tries to drive home
relying on his knowledge of the road would be an example of open-loop
control.

An active magnetic bearing is another example of an active closed-loop
control system.

Most passive systems are closed-loop systems. Closed-loop systems are
usually preferred when the control is required to react to unknown external
or internal disturbances, but they are usually more complex and costly than
open-loop systems.

There are cases, like when the control is performed by mechanical means
(for instance, a Watt’s regulator), where it may be arbitrary to state where
the control system ends and where the plant starts.
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FIGURE 11.2. Inverted pendulum stabilized by a linear spring: (a) the whole as-
sembly is considered as the system; (b) the pendulum is considered as the system
and the spring is considered as the controller; (c¢) root locus in nondimensional
form.

Another common distinction for control systems is that between reg-
ulators and servomechanisms or tracking systems. A regulator is used to
maintain the system in a predetermined condition, which can be an equilib-
rium position, a velocity, or an acceleration, in spite of external disturbance.
The spring of the inverted pendulum in Fig. 11.2 can be considered a reg-
ulator, even if it cannot achieve its goal with precision in the presence of
a constant disturbance: If a constant force F' acts on the pendulum (the
controlled system), the spring cannot restore the position with § = 0.

The input to the system controlled by a regulator is the condition to be
maintained, and it is usually referred to as the set point. It is a constant,
but it can be changed in many cases from one constant value to another.

In the case of a servomechanism, the reference input changes in time
and the control system tries to obtain an output of the controlled system
that follows the reference. In this case the output can also be a position, a
velocity, an acceleration, or any other relevant quantity.

A control system can be a single-input single-output (SISO) or multiple-
input multiple-output (MIMO) or multivariable system. In the first case,
the control system reacts to only one of the outputs of the controlled sys-
tem, acting on just one input of the plant u.: They are clearly not restricted
to systems with a single degree of freedom.

MIMO control systems use a number of outputs of the plant to act on
a number of control inputs. When each input separately controls a sin-
gle output, the term decentralized control is used. Decentralized control is
sometimes resorted to with the aim of weakening the coupling of a MIMO
plant.
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Example 11.1 Consider the pendulum shown in Fig. 11.2. It is stabilized in
its inverted position by a linear spring. In Fig. 11.2a the pendulum-—spring as-
sembly is considered the system, while in Fig. 11.2b the pendulum is considered
the controlled system, and the spring is the controller.

If a force F(t) acts as a disturbance on the pendulum and a viscous damping
with coefficient I' is provided by the hinge, the linearized equation for small
displacements about the inverted upright position, obtained as dynamic equi-
librium equation for rotations about the hinge point, is

mi%0 +T0 + (kI* —mgl)0 = LF(t) .

The transfer function of the system of Fig. 11.2a is then

1

Gls) = .
() = 2524 Ts 4 K2yl

If the scheme of Fig. 11.2b is considered, the equation of motion of the system
18 r
mif+ 0 —mgh =F +F(t),

where F is the control force and the equation of the control system is
F.= —klf .

The characteristic equation of the controlled system, including the controller,
s in nondimensional form

s 42 HE 1 =0,

where

s*=s l, (= r , k*:kl .
g 2m+/gl3 myg

The root locus is plotted in Fig. 11.2¢c. The breakaway point occurs for

P14,
and the system is stable if

m
kK*>1, ie,ifk> lg :
The last condition could be obtained directly from the equation of motion,
stating that the total stiffness of the system must be positive to have stable
behavior.
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11.3  Controllability and observability

Consider the linear system whose behavior is described by Egs. (11.2). The
possibility of controlling it through the control inputs u. and of knowing its
state from the observation of its outputs y is defined as its controllability
and observability.

If it is possible to determine a law for the inputs u.(t) defined from time
to to time ¢y, which allows the system to be driven from the initial state
to a desired state and in particular to a state with all state variables equal
to zero, the system is said to be controllable. If this can be done for any
arbitrary initial time ¢y and initial state, then the system is completely
controllable. To check whether the system is controllable, it is possible to
write the controllability matrix

H=[ B AB. A*B. ... A""B. ]|, (11.3)

where 7 is the number of control inputs, i.e., the number of columns of
matrix B, and n is the number of states.

If matrix H, which has a total of n rows and r x (n — r + 1) columns, has
rank n, the system is completely controllable. The controllability matrix
can also be written considering products A*B. until i = n — 1 instead of
i =n —r. In this way, the number of columns of the controllability matrix
is 7 x n instead of r X (n —r + 1), but nothing is changed, because the
added columns are linear combinations of the others.

In a similar way, a linear system is said to be observable if it is possible
to determine its state at time to from the laws of the inputs u(t) and the
outputs y(t) defined from time ¢¢ to time ¢;. If this can be done for any
arbitrary initial time ¢y and initial state, then the system is completely
observable. To check whether a linear system with fixed parameters is ob-
servable, it is possible to write the observability matrix

o=[cr ATct (AT)2cT ... (AT)nmeT ], (11.4)

where m is the number of outputs, i.e., the number of rows of matrix C.

If such a matrix, which has a total of n rows and n x m columns, has
rank n, the system is completely observable.

It is easy to verify that in the case of a linear structural system with a
single degree of freedom both conditions for observability and controllabil-
ity are always verified. This is, however, not necessarily the case for systems
with many degrees of freedom, where observability and controllability must
be checked in each case.

The study of the controllability and observability matrices allows one to
obtain a sort of on-off answer on the issue of whether a structure can be
controlled by a given set of actuators or observed by a set of sensors but does
not state how controllable or observable it is. Other criteria allowing one
to obtain a measure of the controllability and observability of a plant, and
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then allowing to search for the best position of transducers, are described
in the literature.?

It is possible to define the controllability and observability starting from
the equations written in modal coordinates; in this way it is possible to
state which modes can be controlled and observed by a given set of trans-
ducers. The obvious general rule is that a mode cannot be either observed
or controlled by a transducer located near one of the nodes of the relevant
mode shape.

11.4  Open-loop control

Consider the structure in Fig. 11.1. The actuators added to provide suitable
control forces F. are driven by a controller to which a number of reference
inputs r(t) are provided (block diagram in Fig. 11.3a). If the controller is
linear, the control input can thus be expressed as

u. =K, r(t). (11.5)

A more complex example of an open-loop system is a system with input
compensation, in which a device supplies a set of control inputs u. that
are functions not only of the reference inputs r(¢) but also of the external
forces f.(t), or better, of the external inputs u.(t), applied to the system
(Figs. 11.3b, ¢)

u. = K,r(t) + Keue(t). (11.6)

The matrices of the gains of the control system K, and K. have as
many rows as the control inputs and as many columns as the reference
and external inputs, respectively. The total state equation of the controlled
system can be obtained by introducing Egs. (11.6) into Eq. (11.2):

{ z = Az + (B.K. + Be) uc(t) + B.K,r(t),

Y() = Ca. (11.7)

In general, an open-loop system relies on the model of the plant to obtain
a command input that, supplied to it, causes the output to follow a desired
pattern. This strategy requires very good knowledge of the dynamics of the
controlled system and is usually applied only as a feedforward component
in conjunction with a feedback controller.

Remark 11.1 The free response of the system is not affected by the pres-
ence of the control system, which plays a role only in determining the forced
response. This feature is, however, strictly linked with the complete linearity
of the system.

3See for example J.L. Junkins, Y. Kim, Introduction to Dynamics and Control of
Flexible Structures, ATAA, Washington DC, 1993.
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FIGURE 11.3. Open-loop control of the plant of Fig. 11.1: (a) tracking system in
which the control input tries to follow an external reference; (b) open-loop control
with external input compensation; (c) block diagram of the system shown in (b).

By resorting to Laplace transform and assuming that the gains of the
control system are considered functions of the Laplace variable s and that
at time t = 0 the value of all state variables is zero, the equation of motion
becomes

{ (sI—A)z(s) = (BKe+ Be) ue(s) + BK,r(s), (11.8)
y(s) =Cz (s) . '
If r(t) =0, the input—output relationship reduces to

y(s) = C(sI— A) " (BK. + B.) ue(s) . (11.9)

The transfer function linking the outputs of the system with the external
inputs can be easily computed:

G(s) =C (s — A) " (BKe(s) + Be). (11.10)
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11.5 Closed-loop control

Consider now a structure controlled by a closed-loop system (Fig. 11.4).
The reference inputs r(t) interact with the outputs of the sensors ys to
supply suitable control inputs u. to a set of actuators that produce the
control forces. The actuators can be active systems, or passive elements,
such as the spring in Fig. 11.2b. The general block diagram of a feedback
system is shown in Fig. 11.2b. The open-loop transfer functions of the plant
and control system are indicated as Gy (s) and H(s), respectively.

Consider a SISO system. If no external disturbances are acting, i.e., u,(t)
= 0, the output y(¢) is linked to the reference input r(¢) by the following
relationship, written in the Laplace domain

y(s) = Gouls) [ms) - H<s>y<s>] | (1L.11)

ie.,
_ G(s)
V) =1 Gy H(s)

The closed-loop transfer function is then

r(s). (11.12)

_yls) _ G(s)
Gaals) = L) T 14 Gs)H(s) (11.13)
a)
Disturbing
Ref forces
eference
input fo(") Outpui
—— Controller Actuators Plant =
r(t) uc(h) (1) y(t)
Ys()
Sensors
b)
fo(s)
r(s) ~ i - y(s)
+ GOI(S/
H(s)

FIGURE 11.4. (a) Block diagram of the multi-degree-of-freedom structure in
Fig. 11.1 controlled by a feedback system; (b) general block diagram of a feedback
system in the Laplace domain.
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In the case of MIMO systems, the input—output relationship is
y(s) = [[+ Go(s)H(s)] "' G(s)r(s). (11.14)

The state equation of the controlled system is still Eq. (11.2), but now
the control inputs u. are determined by the outputs y(¢) of the system and
the reference inputs r(t)

u =K r—-Kyy, (11.15)

where the size of all matrices and vectors depends on the number of control
and reference inputs and the number of outputs of the system. The state
equation of the controlled system is thus

7= (A - BCKyC) 2+ BK,r(t) + Boug(t) . (11.16)

If the control system is a regulator, vector r contains just the constants
that define the set point. If the aim of the control system is to maintain
the structure in the static equilibrium position in spite of the presence of
the perturbing inputs u.(t), the reference inputs are equal to zero, and the
equation of motion can be simplified.

Remark 11.2 Note that the presence of the control loop affects the free
behavior of the system as well as the forced response. The very stability
of the system can be affected and, while the control system can be used to
increase the stability of the structure or to give an artificial stability to an
unstable plant, the behavior of the system must be carefully studied to avoid
that unwanted instabilities are caused by the feedback loop.

The block diagram corresponding to Eq. (11.16) is shown in Fig. 11.5.
This type of feedback is usually referred to as output feedback, because the
loop is closed using just the outputs of the system. The design of such a

FIGURE 11.5. Block diagram of the multi-degrees-of-freedom structure in
Fig. 11.4 controlled by an output feedback system.
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control system consists of determining the gain matrices K, and K,., which
enable the system to behave in the desired way.

In the case of structural control, it is possible to write the equation of
motion of the controlled system in the configuration space. Assume that
the reference input is vanishingly small (i.e., the structure must be kept in
the undeformed configuration); the output of the system can be written in

the form
y(t) = [Col (?2 ] { i } (11.17)

and the gain matrix K, has the form

[G o
K@_[ 5 Gz} . (11.18)

These assumptions correspond to a separation between the control inputs
linked to the position and the velocity outputs of the system. They lead to
control forces that can be expressed as

fc = —TcGlcl}.{ - TCGQCQX. (1119)
The equation of motion of the controlled system is then
MX+ (C+TCG161)X+ (K+TCG262)X: fe. (1120)

Gains G; and Gg then cause an increase of the damping and stiffness
characteristics of the structure, respectively.

If the actuators and sensors are co-located, i.e., the generalized forces
exerted by the actuators correspond to the generalized displacements or
velocities read by the sensors, the output gain matrices are equal to the
transpose of the control influence matrix:

C1=Cy=TY".

If the gain matrices G; and G are fully populated, symmetric positive
defined matrices, then the damping and stiffness effects due to the control
system

T.G:C; = T.G,TY | T.GyCo =T.G,TE

are themselves symmetric positive semidefinite matrices. This is enough to
state that the controlled system is asymptotically stable.

Remark 11.3 The practical interest of this statement is, however, reduced
by the considerations that in practice it may be difficult to achieve a per-
fect sensor—actuator co-location and that in actual systems the behavior of
sensors and actuators differs from the ideal behavior here assumed.
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By resorting to Laplace transforms and assuming that at time ¢t = 0
the value of all state variables is zero, the closed-loop transfer function
linking the outputs of the system y(s) to the external u.(s) inputs when
all reference inputs are equal to zero can be easily computed. For a system
with output feedback, it follows that

-1
G@pﬂ(ﬂ—A+&K4wQ B.. (11.21)

Also in this case, the gains of the control system are considered functions
of the Laplace variable s. The poles of the closed-loop system are then the
roots of the characteristic equation

det (SI - A+ BcKe(s)C> =0. (11.22)

Similar equations hold for systems with state feedback and for the trans-
fer functions linking the output with the reference input r(s).

Example 11.2 Consider the inverted pendulum in Fig. 11.2. The system
has a single degree of freedom and, hence, n = 2. The vectors and matrices
included in the equation of motion of the controlled system are

b _ro9
z:{o}a A= ml? l )
1 0

1
Be:Bc: ml ) ue:F-
0

The output and the control parameter of the system coincide with the angular
displacement 0, and the gain matriz K, states the dependence of the general-
ized force exerted by the spring as a function of the angular displacement:

y=0, u=0, c=[0,1 , K,=k.

Because the set point is characterized by 0 = 0, it follows that r = 0. Intro-
ducing the aforementioned values of all the relevant matrices and vectors into
Eq. (11.16) the same equation of motion of the controlled system seen in Ex-
ample 11.1 is obtained.

11.6 Basic control laws

In the preceding sections the controller was assumed to provide a set of
control inputs u. to the controlled system, which are determined just as
linear combinations of the outputs of the system y and the control inputs
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r(t). In the case of output control, if the number of reference inputs r is
equal to the number m of outputs of the plant and the two gain matrices
K, and K, are equal, the control law can be further simplified

u =Kpe, =K,(r—y), (11.23)

where the elements of vector e,(t) are the errors of the output of the
system and matrix K, contains the gains of the control system. This type
of control is said to be proportional control (hence, the gain in this case
can be called proportional gain) and provides a large corrective action when
the instantaneous errors are large. It has the main advantage of being very
simple but has several disadvantages as well, such as a lack of precision in
certain instances and the possibility of producing instability. In a certain
sense, it stiffens the system.

A different choice, always within the frame of linear systems, is the so-
called derivative control, which, in the case of SISO systems, can be sum-

marized in the form
de,

dt -

This type of control reacts more to the increase of error than to the error
itself and provides large corrective actions when the errors increase at a high
rate. It provides a sort of damping to the system and enhances stability,
but it is insensitive to constant errors and not very sensitive to errors that
accumulate slowly. It is prone to cause a drift in the output of the system,
but this disadvantage is not critical in structural control, where the control
system must prevent vibrations, and its reaction to static or quasi-static
forces is often of little importance. In harmonic motion, its effectiveness
increases with the frequency of the perturbation.

A third possibility is the so-called integral control, which can be summa-
rized in the form

ue = K4 (11.24)

¢
Ue = Ki/ ey(t)dt. (11.25)
0

It reacts to the accumulation of errors and causes a slow-reacting control
action. Its disadvantages are mainly that it is insensitive to high frequencies
and prone to cause instability.

Remark 11.4 The control laws here described are only theoretical abstrac-
tions because they assume that the sensors, actuators, controllers, and all
other components of the control loop are ideal, having no delays and behav-
ing in a perfectly linear way no matter how high their input is and how fast
their action is required to be.

Due to the different characteristics of the control laws, often a law that
combines the aforementioned control strategies, and possibly others based
on higher-order derivatives or integrals, is used. This type of control is
usually referred to as proportional-integral-derivative (PID) control.
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By combining the already reported control laws, the control input due
to a SISO PID controller is

de t de 1/t
ue = Kpey+Kq dty —|—K1-/O ey(t)dt = K, <ey + Ty dty + Ti/o ey(t)dt> ,
(11.26)
where the prediction or derivative time and the reset time are, respectively,
Ky K
T, = d T, ="7.
d Kp an Ki

In the Laplace domain, the relationship between the control input w.(s)
and the error e,(s) for a SISO PID control system can be expressed in the
form

uc(s) = P(s)ey(s) = K, (1 +sTq+ S;) ey(s). (11.27)

Consider a plant governed by a set of second-order linear differential
equation, and apply to it an ideal MIMO PID controller, whose control
action is expressed as

dey,

=K K
" pey TR gy

t
+ KZ/ e, (t)dt. (11.28)
0
The equation of motion of the system in the configuration space (11.1)
is still

Mx+Cx+Kx="1Ff +f,,
where

de,

fo="T. |[Kpe, +Ka'

t
+Ki/ ey(t)dt} , f.=T.u..
0

What is said above implicitly assumes that only the displacements x
contribute to the output. If also the velocities x contribute to the outputs,
the roles of the proportional, derivative, and integrative control mix up:
the proportional action has also a derivative effect, the integral action has
a component depending on the displacements, and the derivative action
reacts also to accelerations. To avoid this, in the following the output is
assumed to depend only on the displacements:

y:TSX)

where T is a matrix that states how the sensors are located with respect
to the generalized coordinates. If the sensors and actuators are co-located,

T, =T, (11.29)
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By introducing the control law into the equation of motion and assuming
that the vector of the references is a generic known function of time r(t),
the latter becomes

t
Mx + [C + T.K T, x + [K + T.K, T, x + T.K,T, / xdt = (11.30)
0

t
=TK,r+TKyr+ T.K; / rdt + T.u, .
0

The derivative action is thus similar to damping: if the gain matrix K is
symmetrical and the sensors and actuators are co-located, the total damp-
ing effect is expressed by a symmetric matrix. If it is positive defined it is
true damping.

The proportional action is a restoring action similar to stiffness: if the
gain matrix K, is symmetrical and the sensors and actuators are co-located,
the total damping effect is expressed by a symmetric matrix and the system
is non-circulatory. If it is positive defined it is a true restoring action.

The integral action is different from either stiffness or damping and intro-
duces a behavior different from that obtainable from noncontrolled systems.

The integral of vector x appears explicitly in Eq. (11.30): A reworking
of the equation is then required to reduce it to a standard differential
equation. This can be done by adding a number of auxiliary states either
by differentiating once more the equation and introducing the derivatives
of the velocities as variables or by introducing the auxiliary variables

t
W:/xdt
0

together with the velocities

The state equations are thus

v=-M'[C+TKiTs]v-M'K+TK,Ts]x - M 'TK;T;w+
+ M T K,r + M7 T Kot + M7 T.K; [) rdt + M~ Teu,

X=v
w=x,
(11.31)
or, to write them in standard form,
t
7zt =A"z" + B;r(t) + Bi(t) + B} / r(t)dt + Biu.(t) , (11.32)
0

where the augmented state vector is
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and the augmented matrices are

—M'[C+T.KyTs] —M '[K+T.K,Ts] —M 'T.K;Ts
I 0

A" = 0
0 I 0
M~ 'T.K, M~'T,
B = 0 fork=p,d, i, B = 0
0 0

Consider a single-degree-of-freedom system, controlled by a SISO PID
co-located controller. The equation of motion is

t t
mi 4 c*i + kx+k/ xdt = kyr + kgt + k; / rdt + f(t),  (11.33)
0 0

where ¢* and k* are the total damping and stiffness, including also the
control actions. In the Laplace domain it becomes

(m52 + s+ k*—!—]?) x(s) = (kp + skq + ]f;) r(s)+ f(s), (11.34)

Assuming as output the displacement and as input the reference r(t),
the transfer function is

x(s) $%ka + skp + k;
= = . 11-
Gls) r(s)  ms3+crs?+krs+k; (11.35)

The system is a third-order system, and its characteristic equation is
ms® 4+ c*s® + k*s+k; = 0. (11.36)

It can be written in the following nondimensional form:

$ 342052+ 5" + k=0, (11.37)
where

m c* m
st =3 , (= . ki =k . 11.38
Vi ¢ 2kem = (13

The characteristic equation has a real solution
b 8% 2
= 11.

§= ¢ + 3 + 3 (11.39)

and two complex-conjugate solutions

b 4<2+2<ii\/3 <b_8§2> |

T 1o 6 3b

12 3b 3 2 (11.40)



242 11. Controlled Linear Systems

where

b= (’/—108 — 108k} + 64¢3 + 12 \/81 + 162k} — 96¢3 + 81k}2 — 96 k(3 .
(11.41)

The roots locus for 0.1 < ¢ < 0.8 and 0 < k} < 1 is shown in Fig. 11.6.

The dashed line refers to an equivalent PI system. The lines for the PID
systems for various values of ( branch from the dashed line toward the
right: The stability is thus decreased by the presence of the integral action
and in certain cases (low ¢ and high &}) the system becomes unstable. If
a similar plot but for ¢ > 1 were shown, it could be seen that the presence
of an integrative action can cause an oscillatory behavior.

If the PID control is used to keep the plant in its equilibrium position
and thus r = 0, the transfer function between the displacement and the
external input is

x(s) s

or, in nondimensional form,

S*

E*G(s*) = : 11.43
(") §*3 +20s*? + s* + k ( )
1 _— 701
3(s) P
N2
05 07 _
S T~—"c=08
/
0
‘-\
0.5 ™
1t 4

1 08 06 04 02 0 02 g

FIGURE 11.6. Roots locus for a single-degree-of-freedom system controlled by a
PID SISO controller with 0.1 < ¢ < 0.8 and 0 < ki < 1. The dashed line is the
roots locus for a system controlled by a PD controller.
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FIGURE 11.7. Bode plot of the nondimensional frequency response for a system
vith a PID controller with ¢ = 0.1 and k; = 0, 0.01, 0.1, 0.2, 0.3, 0.4 , 0.5, 0.6,
0.7, 0.8, 0.9.

The bode plot of the nondimensional frequency response is shown in
Fig. 11.7. The integrative action reduces slightly the height of the resonance
peak, but above all introduces a zero in the origin and consequently the
response is very little affected by low-frequency disturbances.

Example 11.3 To understand the effect of the various control gains using
a simple system with a single degree of freedom, consider the prismatic, ho-
mogeneous beam hinged at one end of Fig. 11.8a. Study the cases in which the
hinge is controlled by an ideal proportional, PD, and a PID controller. The
data are l =1 m, m =5 kg, g = 9.81 m/s>.

The system is so simple that the study can be performed in the configuration
space. Since the beam is prismatic, the center of mass is at mid-length and the
moment of inertia about the hinge is

The equation of motion is

- l
JO + ng cos(0) =T,
where T is the control torque.
Assume that the sensor detects the value of angle 0 (y = 0) and that the
controller is required to bring the beam at angle 0y and to keep it there
(r = 0y =constant).
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FIGURE 11.8. Prismatic, homogeneous beam hinged at one end. (a) Sketch of
the system; (b) time history of angle 6 for a proportional control; (c) time history
of angle 6 for a PD control; (d) time history of angle 6 for a PID control.

Proportional controller
Using the expression of the error given by Eq. (11.23), the control torque is

T=—K,(0—0) .

The equation of motion of the controlled system is then
JO + K0 + ngl cos (0) = Ky .

The equation of motion is nonlinear due to presence of the cosine of angle 6.
Only if 0 is small can it be linearized. The proportional gain plays the same
role of stiffness: The larger it is, the quicker the tendency toward the reference
position is, but also the stronger is the oscillatory behavior of the system.
The position at rest can be computed by assuming that 0 and 6 wvanish,
obtaining
l

0+ ;nlgp cos (0) = 6o .
A proportional controller is unable to reach the reference position if the system
1s subjected to external forces. The final position can be written as

0 =00+ A0,

where A@ is the error in the final position. The equation yielding the error can
thus be written as

mgl
A6 0o+ AO) =0 .
+ oK, cos (6o + AB) =0

If A@ is small,
cos (0o + AB) =~ cos (0y) — Afsin (0y)

the error can be computed easily:
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mgl cos (6o)

2K, —mglsin (6p)
Since the equation of motion is nonlinear, a numerical value of the gain is
assumed, K, = 100 N m/rad, and the equation of motion is integrated numer-
ically.
Using a reference value Oy = 30°, the final value of angle 0 is equal to 16.52°.
The steady-state error is thus large: AO = 13.48°. The linearized expression
for the error yields AO = 13.87°, which is fairly good, considering that the
error is not really small.
Consider the arm at rest with @ = 0 and apply the reference 6o = 30°. The
results of the numerical integration are shown in Fig. 11.8b, for both the non-
linear and the linearized cases. Strong undamped oscillation about the steady-
state value occurs.
PD controller
By adding a derivative control action, and remembering that the reference 0o
is constant, the equation of motion of the controlled system is

Af =

JO+ Ka0 + K0+ ngl cos (0) = K,0o.

The derivative gain plays the same role of damping: its action is needed to
avoid strong vibration, but it has no effect on the final position at rest and thus
also a PD controller is unable to reach the reference position if the system is
subjected to external forces.

Assuming that the derivative gain is Kq = 10 N m s/rad and that the propor-
tional gain and the reference value are the same as above, the results of the
numerical integration of the equation of motion are those shown in Fig. 11.8c.
The steady-state value of 16.52° is now quickly reached.

PID controller

The control torque now is

t
T = —KP(G—GO)—Kdé—KZ—/ (0 —6o) du .
0
The equation of motion of the controlled system is thus
.. . t mgl
J@-I—Kd@—‘er@-i-Ki/ 0 du + 9 COS(@) :Kp00+Ki00t .
0

The equation of motion is then an integro-differential equation and must be
written in the state space. Introducing two auziliary variables

t
v :9 , w :/ 0 du 5
0
the equation becomes
. mgl
JU + Kgv + Kp9 + K;w + 9 Ccos (9) = ero + K0t .

or, in matriz form,
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Al
0 = 1 0 0 0 +
w 0 1 0 w
ngl cos (0) + If]p 0o + {(; Oot
+ 0

0

The results of the numerical integration obtained assuming an integrative gain
K; =100 N m/rad and the same reference value 6y = 30° are shown in Fig.
11.8d.

The steady-state value now coincides with the reference value and is quickly
reached, although with some damped oscillation.

The nondimensional parameters of the system are ¢ = 0.39 and kj = 0.13 and
the poles are sy = —1.099 1/s and s2,3 = —2.451 £6.972 i 1/s.

11.7  Delayed control

The control action is usually quite different from the ideal control law
defined above. A first effect, which is normally unwanted, is due to the
impossibility, for all the control system-actuator combinations, to react in
an infinitely fast way to the inputs provided by the sensors. Consider for
instance a proportional controller, which reacts to the error

ey =r—y
with a delay 7. The control action is thus
u (t)=Kpe, (t—7)=K,[r(t—7) -y (t—7)]. (11.44)
Assuming, as usual, a time history for the error of the kind
e, = ey e,
it follows that
s(t—T)

e, (t —7) =eye =eyele ™ =e, (t)e 7. (11.45)

The Laplace domain relationship between the control input w.(s) and
the error ey (s) in a proportional controller with delay is thus

u(s) = Kpey(s)e " (11.46)
and thus the transfer function of the control system is

Uc(s)

() e (11.47)
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If the delay is short enough and not too large values of s are considered,
the exponential can be replaced by its Taylor series truncated at the first
term, obtaining the following value of the transfer function

ue($) k 1

ey(s) T Ml4sr (11.48)

This is equivalent to expressing the delay of the control system in the
time domain by replacing e, (t — 7) with its truncated Taylor series

u(t) =Kpe, (t —7) =K, [e, (t) — &, (t)] . (11.49)

Consider now a linear system provided of a proportional output control
with delay 7 and resort to the first-approximation expression (11.49). The
equation of motion of the system in the configuration space is again Eq.
(11.1), and the control forces are

f.=TK,(e, —71¢,) =T.K,(r —7F —y +77) .
Assuming again that the output depends only on the displacements
y = TSX,

by introducing the control and disturbance forces, the configuration space
equation of the system is

M + (C — 7T K, T,) % + (K+T.K,T,) x = T.K, (r — 7#) + Teu, .

Remark 11.5 The control delay has clearly the effect of reducing damping
(at least if matriv T K, T is positive defined, as it must be if the propor-
tional control has to increase the stability of the system), i.e., it increases
the tendency of the system to oscillate and if large enough (or if the sys-
tem is little damped) it may cause instability. Although obtained from a
first-approximation model, this consideration has a general value.

Similar results can be obtained by introducing the delay also in PD or
PID controllers.
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FIGURE 11.9. Prismatic, homogeneous beam hinged at one end. Time history
of angle 6 for a proportional and a PD control with a delay of 30 ms.

Example 11.4 Study the same controlled beam of Example 11.3, but insert
a delay in the control loop. Assume a value of 30 ms for the overall delay.
After inserting the delay in the control loop, the system with a proportional
control was studied first, by numerically integrating the equation of motion.
The system was already at the verge of instability without delay; as soon as
the delay was added it showed, as expected, a strongly unstable oscillatory
behavior, and no attempt to study it in detail was done.

The response of the system with PD controller is compared with that of the
system without delay in Fig. 11.9. The presence of the delay increases the
oscillatory nature of the response, but the derivative control is successful in
insuring stability. The dotted line was obtained by using a truncated Taylor
series in T (Eq. (11.49)). With this value of the delay the result is almost com-
pletely superimposed to that obtained by numerical integration of the equation
of motion. With a higher delay, less accurate results would have been obtained.
Also the response obtained using a PID control shows similar oscillations.

11.8 Control laws with frequency-dependent gains

Equation (11.27) defines the gains of the control system as functions of s
in the Laplace domain.

In general, the gains may be functions of the Laplace variable s or, in the
case of harmonic response, of the frequency w, which depend on the actual
physical configuration of the control system. As shown in the previous
section, the delay of the control action can be modeled in this way.
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The system described by Eq. (11.48) is a simple first-order linear system,
whose parameters k and 7 have an immediate physical meaning: the first
is the gain of the control system; the second is the time constant for a step
input.

The response ¢(t) to a unit-step input, as defined by Eq. (8.5), is reported
in nondimensional form in Fig. 11.10. It is simply

g(t) = k (1 - e_t/T) : (11.50)

The frequency response of a first-order system can be easily obtained
from the transfer function (11.48) by substituting iw to s. Separating the
real part from the imaginary part, its expression is

k k
RHIT= 1 4 rage =y g2 (11.51)
S[HW) = — . F™ ® = arctan(—7w) .

14 72027

The bode diagram of the frequency response is plotted in Fig. 11.11.
The circular frequency

g(t)/k S

104+ — — — — — — — — — — — — — — — —
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FIGURE 11.10. Nondimensional response of a first-order system to a unit step.
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FIGURE 11.11. Bode diagram of the frequency response of a first-order system.

is the so-called cut-off frequency. The period corresponding to the cut-off
frequency defined here does not directly coincide with the time constant
but is

Ty =2m7 .

The first-order system acts as a low-pass filter with an attenuation, at
frequencies higher than the cut-off frequency, of about 6 dB/oct or 20
dB/dec. It also introduces a phase lag of the response that goes from zero
at very low frequency to 90° at a frequency tending to infinity. At the cut-
off frequency the phase lag is 45°. The effectiveness of the control system
is quickly reduced at frequencies higher than the cut-off frequency.

Remark 11.6 The time constant of the control system—actuators combi-
nation is a most important parameter that can dictate the choice of a par-
ticular layout, especially when high-frequency operation is required.

In most cases the control system can be modeled as a first-order system
only as a very rough approximation. There are usually limits above which a
linear model is no longer possible: All types of control systems can only sup-
ply an output that is limited in magnitude. When the maximum response
is attained, the saturation phenomenon occurs and the gain decreases with
increasing input, giving way to a nonlinear response.

Apart from the presence of a cut-off frequency, a dependence of the
control law on the frequency can be purposely devised by adding a com-
pensator with an appropriate law K(s). For example, if the disturbance
frequencies are well determined, an ideal control system would have a very
small gain except in correspondence to the frequencies of the disturbances
to be suppressed. On the contrary, a support that insulates a device from
external disturbances should behave as a very stiff system at all frequencies
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except those that must be suppressed, where its stiffness should approach
ZEro0.

The use of a compensator allows the frequency response of the system to
be tailored to fulfill the design goals of the particular application, to both
achieve the required performance and ensure adequate robustness. This can
be done easily with electronic control systems, which can be designed to
obtain almost arbitrary transfer functions, provided the required output
does not exceed their maximum limits.

Example 11.5 Consider the linear mechanical system with a single degree
of freedom shown in Fig. 11.12a. The control force is supplied by an actuator
acting on an auxiliary spring of stiffness ki1 and governed by an active control
system.

With reference to the figure, the equation of motion of the system is

mi + ct + kx = F(t) + Fe(t) .

The control force can be expressed as F. = —ki(x — u), and the equation of
motion of the controlled system is

mi + ct + (k+ ki) = kiu+ F(t).

Consider a closed-loop control system in which the displacement u(t) is a linear
function of the displacement x. The block diagram, in which the gain of the
control system P is referred to as G.(s), is shown in Fig. 11.12b. This type of
control is a regulator, in the sense described in Section 11.2 with a set point
corresponding to x = 0. The transfer function of the total system is

1
Gls) = ms? +cs+k+ ki +kiGe(s)
In the case of proportional control, in which the displacement of the actuator is
proportional to the displacement of the system u = —Gcx, the control system
actually adds a spring with stiffness equal to ki1 multiplied by the gain. If a
derivative control is applied, the control system is equivalent to a damper, with
damping coefficient equal to ki multiplied by the gain. Note that in this case
the gain is not a nondimensional quantity.
Other cases of interest are shown in Figs. 11.12¢ and e, in which the actuator
of the control system acts through a damper or on an auxiliary mass. The last
layout is usually referred to as an active vibration absorber. The expressions
of the control force are

F.=—ci(¢—u) and Fo = —m1(Z — 1) .
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FIGURE 11.12. (a) Sketch and (b) block diagram of a system with a single degree
of freedom controlled by an actuator through an auxiliary spring, (¢) and (d) an
auxiliary damper, or (e) and (f) an auxiliary mass.

If the control law is of the proportional type (u = —Gcx), the transfer functions
of the two systems are, respectively,

1
Gls) = ms? + (c+ec1)s + k + sc1Ge(s)
G(s) = :

(m+mi1)s?+cs+k+ s?mi1Ge(s)

In the first case, a proportional control introduces an active damping into the
system, an integral control law in which u(t) is proportional to the integral of
the displacement or in which u(t) is proportional to x(t) introduces an active
stiffness. If a derivative control is used, the control force is proportional to the
acceleration, and the effect is similar to that of an added mass.
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11.9 Robustness of the controller

In many cases, some of the parameters of the system are not well known
or are prone to change in time. There are many examples in the field
of structural dynamics, such as the case of hysteretic damping, which is
usually poorly known and is affected by many parameters in a way that
is often impossible to control, or that of the wandering unbalance, shown
by many rotors. One of the advantages of a feedback control system is
that they can usually compensate for these unwanted effects, because they
measure directly the outputs and act to keep them within stated limits.
Feedback control systems can even compensate for the uncertainties and
variations of their own parameters.

A system that is little affected by changes of operating conditions, by
parameter variations, and by external disturbances is said to be robust
and robustness is one of the basic requisites of control systems.

Generally speaking, the sensitivity of the quantity ¢ to the variations of
parameter « is measured by the derivative dq/d«a. By computing the sensi-
tivities of the relevant characteristics of the system (eigenvalues, frequency
responses, etc.) to the variation of the critical parameters, it is possible to
assess its robustness.

The root sensitivity S; o of the ith root s; of the transfer function to
parameter «, for example, can be defined as

8Si - ({981
Sia=a <aa) = Dlogla) (11.52)

The derivative is, in many cases, computed numerically, by giving a small
variation to the parameter under study and computing a new value of
the relevant characteristic of the system. If the dynamic matrix A can
be differentiated with respect to parameter «, the sensitivity of the ith
eigenvalue s; of the dynamic matrix 0s;/0a can be computed in closed

form
887: T 8A7,
=4
O 0log(
where qr; and qg; are, respectively, the ith left and right eigenvectors.

Similar but more complicated expressions can be found in the literature
for the eigenvector sensitivity.

)QRia (11.53)

11.10 State feedback and state observers

A more complete type of feedback is the state feedback shown in Fig. 11.13,
in which all state variables are used to close the loop. The control inputs
are obtained in this case through the equation
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FIGURE 11.13. Block diagram of the multi-degrees-of-freedom structure in
Fig. 11.4 controlled by a state feedback system.

u=K,r-—K.z,

and the product K,C in Eq. (11.16) must be substituted by matrix K.

Usually state feedback is regarded as an ideal situation, but for practical
reasons, linked with the impossibility of measuring many state variables,
output feedback is applied.

The alternative is to use a device that estimates the state variables of
the plant, performing a sort of simulation of its behavior (Fig. 11.14; the
figure refers to a regulation problem in which the reference inputs r are
equal to zero). It is usually referred to as a state observer. This is possible
if the system is observable, in the sense defined in Section 11.3.

The behavior of the observer is defined by matrices Ag, By, and Cy. If
they were equal to the matrices of the system, the observer would be an
exact model of the plant. In general, this is impossible and the observer
is only an approximated model, often a reduced order one. In structural
control, if digital techniques are used, the observer can be a finite element
model, perhaps reduced using Guyan or similar reduction procedures.

Usually the term model-based control is used when the control algorithm
is based on a mathematical model of the plant, running in real time on the
microprocessor on which the control system is based.

To ensure that the observer evolves in time like the actual plant, a feed-
back is introduced: The difference between the output of the observer y
and that of the system y is introduced, through a gain matrix Ky, into the
observer.

The states of the observer z are readily available, and the states of the
plant are not such (this is why the observer is used) and the control feedback
is closed through the control gain matrix K..

The equations allowing the study of the closed-loop behavior of the sys-
tem of Fig. 11.14 are
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FIGURE 11.14. Block diagram of the multi-degrees-of-freedom structure in

Fig. 11.4 controlled by a regulator with a state observer.

z = Az + B.u. + B.u, ,

2= Aoz + Bou. + Ko(y — ¥),

y =Cz,
y =Coz,
u = -K.z.

(11.54)

The observer with its feedback branches constitutes the regulator of the
plant, which can be considered a system that has the output of the plant
y as input and outputs the control inputs u., which are fed back to the
plant. The last three equations of Eq. (11.54), which define the behavior of

the regulator, can be written in the form

where

Areg = Ao + KoCo — BoK. ;

{ i - Arcgi + Brang

Ue = CregZ.

Breg =Ky )

(11.55)



256 11. Controlled Linear Systems

If the observer has the same number of states as the plant, the error of
the observer ey can be easily defined as the difference between the actual
state of the system z and the state z, which has been approximated by the
observer

e =2z — 7.

By subtracting the third equation of Eq. (11.54) from the first, it follows
that

éo = .A—.A() —KOCO—C]Z+ (AO —Koco)eo+ (BC—BQ)UC—FBGU@.

(11.56)
If
A=A, Co=C
(actually it is enough that
Ao = A+ Ko(Co — C) ),
and By = B., Eq. (11.56) reduces to
é() = <.A — K()C) ep + Beue . (1157)

Consider the free behavior of the system described by Eq. (11.57). If the
real part of all eigenvalues of matrix

Ag=A—-KoC

is negative, the error of the observer tends to zero for time tending to in-
finity and the observer is asymptotically stable. The observer can thus be
designed by stating a set of eigenvalues of matrix Ay, whose real parts
are negative and that minimize the time delay between the estimated and
actual state vectors. It is a common suggestion? that the poles of the ob-
server (i.e., the eigenvalues of matrix .4¢) be placed on the complex plane
on the left of the poles of the controlled structure. However, a fast observer
obtained in this way can be prone to amplify the disturbances that are al-
ways present in the signals from the sensors. The choice of the poles must
be a trade-off between the requirements of quick response and disturbance
rejection.

The computation of matrix Ky, which causes matrix Ay to yield the
required eigenvalues, can be performed using the pole-placement procedure,
provided the rank of the observability matrix O is n, i.e., the system is
observable. This procedure is straightforward if the system has a single

4See, for example, H.H.E. Leipholz, M. Abdel Rohman, Control of Structures, Mar-
tinus Nijhoff, Dordrecht, 1986, p. 106.
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output, while for multivariable systems some arbitrary choices must be
made.
The state equation of the complete system shown in Fig. 11.14 is

p A-BXK. BX. z Beu,
0 S e L A A

The characteristic equation of the closed-loop system is

SI — A + BCKC BcKc _
det [ 0 T— A+ KoC ] =0, (11.59)
ie.,
det <sI—A+BCKC)det <sI—A+KOC> =0. (11.60)

The roots of Eq. (11.60) are the eigenvalues of the controlled system plus
the eigenvalues of the observer and the relevant parts of the characteristic
equation can be solved separately.

11.11 Control design

To prescribe the free behavior of the controlled system and of the observer
in terms of natural frequencies and decay rates, the n eigenvalues s1, so, ...,
s, of the dynamic matrix A — B.K,. (for the former) and of the dynamic
matrix A — KoC (for the second) can be stated. Note that if they are
complex, there must be a number of conjugate pairs in order to obtain real
values of the gains. The characteristic equation of the controlled system
(corresponding to the first part of Eq. (11.60)) is

det(sI— A+ BK.) = (s —s1)(s —s2)...(s—s,) =0. (11.61)

The n eigenvalues can be used to compute the n coefficients of the char-
acteristic polynomial. By equating the expressions of the coefficients on the
left-hand side of Eq. (11.61) with the coefficients so computed, n equations,
which can be used to compute the n unknown elements of matrix K., are
obtained. The computation of the unknowns can be performed easily using
Ackermann’s formula

K.=[0 00 ... 0 1]H'N, (11.62)

where H is the controllability matrix defined by Eq. (11.3), and matrix
N is obtained from the coefficients ag, a1, ..., a,_1 of the characteristic
polynomial (subscripts refer to the power of the unknown) through the
formula

N=A"+a, 1 A" ' +a, 24" >+ -+ aoL (11.63)
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If the controllability matrix, which in the case of a single-input system
is a square matrix, is not singular, there is no difficulty in computing the
gains of the control system K.. However, this is essentially a theoretical
statement because in practice the numerical evaluation of matrix K. for
systems whose order of the dynamic matrix is higher than a few units can
be affected by large numerical errors.

Apart from the computational difficulties encountered when applied to
MIMO systems, the pole assignment method allows one to state the poles
of the controlled system but does not allow one to control its eigenvectors.
This can result in badly conditioned eigenvector matrices, which is highly
undesirable. It is much more convenient to resort to methods that are gen-
erally referred to as eigenstructure assignment procedures, which allow to
state, within ample limits, both the eigenvalues and the eigenvectors of the
controlled system. For a detailed presentation of such 