


Mechanical Engineering Series
Frederick F. Ling
Editor-in-Chief



Mechanical Engineering Series

G. Genta, Vibration Dynamics and Control

R. Firoozian, Servomotors and Industrial Control Theory

G. Genta and L. Morello, The Automotive Chassis, Volumes 1 & 2

F. A. Leckie and D. J. Dal Bello, Strength and Stiffness of Engineering Systems

Wodek Gawronski, Modeling and Control of Antennas and Telescopes

Makoto Ohsaki and Kiyohiro Ikeda, Stability and Optimization of Structures: Generalized
Sensitivity Analysis

A.C. Fischer-Cripps, Introduction to Contact Mechanics, 2nd ed.

W. Cheng and I. Finnie, Residual Stress Measurement and the Slitting Method

J. Angeles, Fundamentals of Robotic Mechanical Systems: Theory Methods
and Algorithms, 3rd ed.

J. Angeles, Fundamentals of Robotic Mechanical Systems:
Theory, Methods, and Algorithms, 2nd ed.

P. Basu, C. Kefa, and L. Jestin, Boilers and Burners: Design and Theory

J.M. Berthelot, Composite Materials: Mechanical Behavior and Structural Analysis

I.J. Busch-Vishniac, Electromechanical Sensors and Actuators

J. Chakrabarty, Applied Plasticity

K.K. Choi and N.H. Kim, Structural Sensitivity Analysis an Optimization 1: Linear Systems

K.K. Choi and N.H. Kim, Structural Sensitivity Analysis and Optimization 2: Nonlinear
Systems and Applications

G. Chryssolouris, Laser Machining: Theory and Practice

V.N. Constantinescu, Laminar Viscous Flow

G.A. Costello, Theory of Wire Rope, 2nd ed.

K. Czolczynski, Rotordynamics of Gas-Lubricated Journal Bearing Systems

M.S. Darlow, Balancing of High-Speed Machinery

W. R. DeVries, Analysis of Material Removal Processes

J.F. Doyle, Nonlinear Analysis of Thin-Walled Structures: Statics, Dynamics, and Stability

J.F. Doyle, Wave Propagation in Structures: Spectral Analysis Using Fast
Discrete Fourier Transforms, 2nd Edition

P.A. Engel, Structural Analysis of Printed Circuit Board Systems

A.C. Fischer-Cripps, Introduction to Contact Mechanics

A.C. Fischer-Cripps, Nanoindentation, 2nd ed.

J. Garcı́a de Jalón and E. Bayo, Kinematic and Dynamic Simulation of Multibody Systems:
The Real-Time Challenge

W.K. Gawronski, Advanced Structural Dynamics and Active Control of Structures

W.K. Gawronski, Dynamics and Control of Structures: A Modal Approach

G. Genta, Dynamics of Rotating Systems

D. Gross and T. Seelig, Fracture Mechanics with Introduction to Micro-mechanics

K.C. Gupta, Mechanics and Control of Robots

(continued after index)



Giancarlo Genta

Vibration Dynamics
and Control

123



Giancarlo Genta
Politecnico di Torino
Torino, Italy
giancarlo.genta@polito.it

ISBN: 978-0-387-79579-9 e-ISBN: 978-0-387-79580-5
DOI: 10.1007/978-0-387-79580-5

Library of Congress Control Number: 2008934073

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

springer.com



Mechanical Engineering Series

Frederick F. Ling
Editor-in-Chief

The Mechanical Engineering Series features graduate texts and research
monographs to address the need for information in contemporary mechan-
ical engineering, including areas of concentration of applied mechanics,
biomechanics, computational mechanics, dynamical systems and control,
energetics, mechanics of materials, processing, production systems, ther-
mal science, and tribology.

Advisory Board/Series Editors

Applied Mechanics F.A. Leckie
University of California,
Santa Barbara

D. Gross
Technical University of Darmstadt

Biomechanics V.C. Mow
Columbia University

Computational Mechanics H.T. Yang
University of California,
Santa Barbara

Dynamic Systems and Control/ D. Bryant
Mechatronics University of Texas at Austin

Energetics J.R. Welty
University of Oregon, Eugene

Mechanics of Materials I. Finnie
University of California, Berkeley

Processing K.K. Wang
Cornell University

Production Systems G.-A. Klutke
Texas A&M University

Thermal Science A.E. Bergles
Rensselaer Polytechnic Institute

Tribology W.O. Winer
Georgia Institute of Technology



Series Preface

Mechanical engineering, and engineering discipline born of the needs of the
industrial revolution, is once again asked to do its substantial share in
the call for industrial renewal. The general call is urgent as we face pro-
found issues of productivity and competitiveness that require engineering
solutions, among others. The Mechanical Engineering Series is a series fea-
turing graduate texts and research monographs intended to address the
need for information in contemporary areas of mechanical engineering.

The series is conceived as a comprehensive one that covers a broad
range of concentrations important to mechanical engineering graduate ed-
ucation and research. We are fortunate to have a distinguished roster of
series editors, each an expert in one of the areas of concentration. The
names of the series editors are listed on page vi of this volume. The areas
of concentration are applied mechanics, biomechanics, computational me-
chanics, dynamic systems and control, energetics, mechanics of materials,
processing, thermal science, and tribology.



Preface

After 15 years since the publication of Vibration of Structures and Machines
and three subsequent editions a deep reorganization and updating of the
material was felt necessary. This new book on the subject of Vibration
dynamics and control is organized in a larger number of shorter chapters,
hoping that this can be helpful to the reader. New material has been added
and many points have been updated. A larger number of examples and of
exercises have been included.

Since the first edition, these books originate from the need felt by the
author to give a systematic form to the contents of the lectures he gives
to mechanical, aeronautical, and then mechatronic engineering students of
the Technical University (Politecnico) of Torino, within the frames of the
courses of Principles and Methodologies of Mechanical Design, Construc-
tion of Aircraft Engines, and Dynamic Design of Machines. Their main aim
is to summarize the fundamentals of mechanics of vibrations to give the
needed theoretical background to the engineer who has to deal with vibra-
tion analysis and to show a number of design applications of the theory.
Because the emphasis is mostly on the practical aspects, the theoretical
aspects are not dealt with in detail, particularly in areas in which a long
and complex study would be needed.

The book is structured in 30 Chapters, subdivided into three Parts.
The first part deals with the dynamics of linear, time invariant, systems.

The basic concepts of linear dynamics of discrete systems are summarized
in the first 10 Chapters. Following the lines just described, some specialized
topics, such as random vibrations, are just touched on, more to remind the
reader that they exist and to stimulate him to undertake a deeper study of
these aspects than to supply detailed information.



x Preface

Chapter 11 constitutes an introduction to the dynamics of controlled
structural systems, which are increasingly entering design practice and will
unquestionably be used more often in the future.

The dynamics of continuous systems is the subject of the following two
chapters. As the analysis of the dynamic behavior of continuous systems
is now mostly performed using discretization techniques, only the basic
concepts are dealt with. Discretization techniques are described in a gen-
eral way in Chapter 14, while Chapter 15 deals more in detail with the
finite element method, with the aim of supplying the users of commercial
computer codes with the theoretical background needed to build adequate
mathematical models and critically evaluate the results obtained from the
computer.

The following two Chapters are devoted to the study of multibody mod-
eling and of the vibration dynamics of systems in motion with respect to
an inertial reference frame. These subjects are seldom included in books
on vibration, but the increasing use of multibody codes and the inclusion
in them of flexible bodies modeled through the finite element method well
justifies the presence of these two chapters.

Part II (including Chapters from 18 to 22 is devoted to the study of non-
linear and non time-invariant systems. The subject is dealt with stressing
the aspects of these subjects that are of interest to engineers more than to
theoretical mechanicists. The recent advances in all fields of technology of-
ten result in an increased nonlinearity of machines and structural elements
and design engineers must increasingly face nonlinear problems: This part
is meant to be of help in this instance.

Part III deals with more applied aspects of vibration mechanics. Chapters
from 23 to 28 are devoted to the study of the dynamics of rotating ma-
chines, while Chapters 29 and 30 deal with reciprocating machines. They
are meant as specific applications of the more general topics studied be-
fore and intend to be more application oriented than the previous ones.
However, methods and mathematical models that have not yet entered ev-
eryday design practice and are still regarded as research topics are dealt
with herein.

Two appendices related to solution methods and Laplace transform are
then added.

The subjects studied in this book (particularly in the last part) are usu-
ally considered different fields of applied mechanics or mechanical design.
Specialists in rotor dynamics, torsional vibration, modal analysis, nonlinear
mechanics, and controlled systems often speak different languages, and it is
difficult for students to be aware of the unifying ideas that are at the base
of all these different specialized fields. The inconsistency of the symbols
used in the different fields can be particularly confusing. In order to use a
consistent symbol system throughout the book, some deviation from the
common practice is unavoidable.



Preface xi

The author believes that it is possible to explain all the aspects related
to mechanical vibrations (actually not only mechanical) using a unified
approach. The current book is an effort in this direction.

S.I. units are used in the whole book, with few exceptions. The first
exception is the measure of angles, for which in some cases the old unit
degree is preferred to the S.I. unit radian, particularly where phase angles
are concerned. Frequencies and angular velocities should be measured in
rad/s. Sometimes the older units (Hz for frequencies and revolutions per
minute [rpm]) are used, when the author feels that this makes things more
intuitive or where normal engineering practice suggests it. In most formulas,
at any rate, consistent units are used. In very few cases this rule is not
followed, but the reader is explicitly warned in the text.

For frequencies, no distinction is generally made between frequency in Hz
and circular frequency in rad/s. Although the author is aware of the subtle
differences between the two quantities (or better, between the two different
ways of seeing the same quantity), which are subtended by the use of two
different names, he chose to regard the two concepts as equivalent. A single
symbol (ω) is used for both, and the symbol f is never used for a frequency
in Hz. The period is then always equal to T = 2π/ω because consistent
units (in this case, rad/s) must be used in all formulas. A similar rule holds
for angular velocities, which are always referred to with the symbol Ω.1 No
different symbol is used for angular velocities in rpm, which in some texts
are referred to by n.

In rotor dynamics, the speed at which the whirling motion takes place
is regarded as a whirl frequency and not a whirl angular velocity (even if
the expression whirl speed is often used in opposition to spin speed), and
symbols are used accordingly. It can be said that the concept of angular
velocity is used only for the rotation of material objects, and the rotational
speed of a vector in the complex plane or of the deformed shape of a rotor
(which does not involve actual rotation of a material object) is considered
a frequency.

The author is grateful to colleagues and students in the Mechanics
Department of the Politecnico di Torino for their suggestions, criticism,
and general exchange of ideas and, in particular, to the postgraduate stu-
dents working in the dynamics field at the department for reading the whole
manuscript and checking most of the equations. Particular thanks are due
to my wife, Franca, both for her encouragement and for doing the tedious
work of revising the manuscript.

G. Genta
Torino, July 2008

1In Vibration of Structures and Machines λ was used instead of ω for frequencies
to avoid using Ω for angular velocities. In the present text a more standard notation is
adopted.
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Introduction

Vibration

Vibration is one of the most common aspects of life. Many natural phe-
nomena, as well as man-made devices, involve periodic motion of some sort.
Our own bodies include many organs that perform periodic motion, with a
wide spectrum of frequencies, from the relatively slow motion of the lungs
or heart to the high-frequency vibration of the eardrums. When we shiver,
hear, or speak, even when we snore, we directly experience vibration.

Vibration is often associated with dreadful events; indeed one of the
most impressive and catastrophic natural phenomena is the earthquake,
a manifestation of vibration. In man-made devices vibration is often less
impressive, but it can be a symptom of malfunctioning and is often a signal
of danger. When traveling by vehicle, particularly driving or flying, any
increase of the vibration level makes us feel uncomfortable. Vibration is also
what causes sound, from the most unpleasant noise to the most delightful
music.

Vibration can be put to work for many useful purposes: Vibrating sieves,
mixers, and tools are the most obvious examples. Vibrating machines also
find applications in medicine, curing human diseases. Another useful aspect
of vibration is that it conveys a quantity of useful information about the
machine producing it.

Vibration produced by natural phenomena and, increasingly, by man-
made devices is also a particular type of pollution, which can be heard as
noise if the frequencies that characterize the phenomenon lie within the
audible range, spanning from about 18 Hz to 20 kHz, or felt directly as
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vibration. This type of pollution can cause severe discomfort. The discom-
fort due to noise depends on the intensity of the noise and its frequency, but
many other features are also of great importance. The sound of a bell and
the noise from some machine may have the same intensity and frequency
but create very different sensations. Although even the psychological dispo-
sition of the subject can be important in assessing how much discomfort a
certain sound creates, some standards must be assessed in order to evaluate
the acceptability of noise sources.

Generally speaking, there is growing awareness of the problem and de-
signers are asked, sometimes forced by standards and laws, to reduce the
noise produced by all sorts of machinery.

When vibration is transmitted to the human body by a solid surface,
different effects are likely to be felt. Generally speaking, what causes dis-
comfort is not the amplitude of the vibration but the peak value (or better,
the root mean square value) of the acceleration. The level of acceleration
that causes discomfort depends on the frequency and the time of exposure,
but other factors like the position of the human body and the part that
is in contact with the source are also important. Also, for this case, some
standards have been stated. The maximum r.m.s. (root mean square) val-
ues of acceleration that cause reduced proficiency when applied for a stated
time in a vertical direction to a sitting subject are plotted as a function of
frequency in Fig. 1. The figure, taken from the ISO 2631-1978 standard,
deals with a field from 1 to 80 Hz and with daily exposure times from 1min
to 24 h.

The exposure limits can be obtained by multiplying the values reported
in Fig. 1 by 2, while the reduced comfort boundary is obtained by dividing
the same values by 3.15 (i.e., by decreasing the r.m.s. value by 10 dB).
From the plot, it is clear that the frequency field in which humans are
more affected by vibration lies between 4 and 8 Hz.

Frequencies lower than 1 Hz produce sensations similar to motion sick-
ness. They depend on many parameters other than acceleration and are
variable from individual to individual.

At frequencies greater than 80 Hz, the effect of vibration is also depen-
dent on the part of the body involved and on the skin conditions and it is
impossible to give general guidelines.

An attempt to classify the effects of vibration with different frequencies
on the human body is shown in Fig. 2. Note that there are resonance fields
at which some parts of the body vibrate with particularly large amplitudes.

As an example, the thorax–abdomen system has a resonant frequency
of about 3–6 Hz, although all resonant frequency values are dependent on
individual characteristics. The head–neck–shoulder system has a resonant
frequency of about 20–30 Hz, and many other organs have more or less
pronounced resonances at other frequencies (e.g., the eyeball at 60–90 Hz,
the lower jaw-skull system at 100–220 Hz).

In English, as in many other languages, there are two terms used to
designate oscillatory motion: oscillation and vibration. The two terms are
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FIGURE 1. Vertical vibration exposure criteria curves defining the ‘fatigue-
decreased proficiency boundary’ (ISO 2631-1978 standard).

used almost interchangeably; however, if a difference can be found, oscil-
lation is more often used to emphasize the kinematic aspects of the phe-
nomenon (i.e., the time history of the motion in itself), while vibration
implies dynamic considerations (i.e., considerations on the relationships
between the motion and the causes from which it originates).

FIGURE 2. Effects of vibration and noise (intended as airborne vibration) on
the human body as functions of frequency (R.E.D. Bishop, Vibration, Cambridge
Univ. Press, Cambridge, 1979).
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Actually, not all oscillatory motions can be considered vibrations: For a
vibration to take place, it is necessary that a continuous exchange of energy
between two different forms occurs. In mechanical systems, the particular
forms of energy that are involved are kinetic energy and potential (elastic or
gravitational) energy. Oscillations in electrical circuits are due to exchange
of energy between the electrical and magnetic fields.

Many periodic motions taking place at low frequencies are thus oscil-
lations but not vibrations, including the motion of the lungs. It is not,
however, the slowness of the motion that is important but the lack of dy-
namic effects.

Theoretical studies

The simplest mechanical oscillators are the pendulum and the spring–mass
system. The corresponding simplest electrical oscillator is the
capacitor–inductor system. Their behavior can be studied using the same
linear second-order differential equation with constant coefficients, even if
in the case of the pendulum the application of a simple linear model requires
the assumption that the amplitude of the oscillation is small.

For centuries, the pendulum, and later the spring–mass system (later still
the capacitor–inductor system), has been more than a model. It constituted
a paradigm through which the oscillatory behavior of actual systems has
been interpreted. All oscillatory phenomena in real life are more complex
than that, at least for the presence of dissipative mechanisms causing some
of the energy of the system is dissipated, usually being transformed into
heat, at each vibration cycle, i.e., each time the energy is transformed for-
ward and backward between the two main energy forms. This causes the
vibration amplitude to decay in time until the system comes to rest, un-
less some form of excitation sustains the motion by providing the required
energy.

The basic model can easily accommodate this fact, by simply adding
some form of energy dissipator to the basic oscillator. The spring–mass–
damper and the damped-pendulum models constitute a paradigm for
mechanical oscillators, while the inductor–capacitor–resistor system is the
basic damped electrical oscillator.

Although the very concept of periodic motion was well known, ancient
natural philosophy failed to understand vibratory phenomena, with the ex-
ception of the study of sound and music. This is not surprising, as vibration
could neither be predicted theoretically, owing to the lack of the concept
of inertia, nor observed experimentally, as the wooden or stone structures
were not prone to vibrate, and, above all, ancient machines were heavily
damped owing to high friction.

The beginnings of the theoretical study of vibrating systems are traced
back to observations made by Galileo Galilei in 1583 regarding the motions
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of one of the lamps hanging from the ceiling of the cathedral of Pisa. It is
said that he timed the period of oscillations using the beat of his heart as a
time standard to conclude that the period of the oscillations is independent
from the amplitude.

Whether or not this is true, he described in detail the motion of the
pendulum in his Dialogo sopra i due massimi sistemi del mondo, published
in 1638, and stated clearly that its oscillations are isochronous. It is not
surprising that the beginning of the studies of vibratory mechanics occurred
at the same time as the formulation of the law of inertia.

The idea that a mechanical oscillator could be used to measure time,
due to the property of moving with a fixed period, clearly stimulated the
theoretical research in this field. While Galileo seems to have believed that
the oscillations of a pendulum have a fixed period even if the amplitude
is large (he quotes a displacement from the vertical as high as 50◦), cer-
tainly Huygens knew that this is true only in linear systems and around
1656 introduced a modified pendulum whose oscillations would have been
truly isochronous even at large amplitudes. He published his results in his
Horologium Oscillatorium in 1673.

The great development of theoretical mechanics in the eighteenth and
nineteenth centuries gave the theory of vibration very deep and solid roots.
When it seemed that theoretical mechanics could not offer anything new,
the introduction of computers, with the possibility of performing very com-
plex numerical experiments, revealed completely new phenomena and dis-
closed unexpected perspectives.

The study of chaotic motion in general and of chaotic vibrations of non-
linear systems in particular will hopefully clarify some phenomena that
have been beyond the possibility of scientific study and shed new light on
known aspects of mechanics of vibration.

Vibration analysis in design

Mechanics of vibration is not just a field for theoretical study. Design en-
gineers had to deal with vibration for a long time, but recently the current
tendencies of technology have made the dynamic analysis of machines and
structures more important.

The load conditions the designer has to take into account in the struc-
tural analysis of any member of a machine or a structure can be conven-
tionally considered as static, quasi-static, or dynamic. A load condition
belongs to the first category if it is constant and is applied to the struc-
ture for all or most of its life. A typical example is the self-weight of a
building. The task of the structural analyst is usually limited to deter-
mining whether the stresses static loads produce are within the allowable
limits of the material, taking into account all possible environmental ef-
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fects (creep, corrosion, etc.). Sometimes the analyst must check that the
deformations of the structure are consistent with the regular working of the
machine.

Also, loads that are repeatedly exerted on the structure, but that are
applied and removed slowly and stay at a constant value for a long enough
time, are assimilated to static loads. An example of these static load condi-
tions is the pressure loading on the structure of the pressurized fuselage of
an airliner and the thermal loading of many pressure vessels. In this case,
the designer also has to take into account the fatigue phenomena that can
be caused by repeated application of the load. Because the number of stress
cycles is usually low, low-cycle fatigue is encountered.

Quasi-static load conditions are those conditions that, although due to
dynamic phenomena, share with static loads the characteristics of being
applied slowly and remaining for comparatively long periods at more or
less constant values. Examples are the centrifugal loading of rotors and the
loads on the structures of space vehicles due to inertia forces during launch
or re-entry. Also, in this case, fatigue phenomena can be very important in
the structural analysis.

Dynamic load conditions are those in which the loads are rapidly varying
and cause strong dynamic effects. The distinction is due mainly to the speed
at which loads vary in time. Because it is necessary to state in some way a
time scale to assess whether a certain load is applied slowly, it is possible to
say that a load condition is static or quasi-static if the characteristic times
of its variation are far longer than the longest period of the free vibrations
of the structure.

A given load can thus be considered static if it is applied to a struc-
ture whose first natural frequency is high or dynamic if it is applied to a
structure that vibrates at low frequency.

Dynamic loads may cause the structure to vibrate and can sometimes
produce a resonant response. Causes of dynamic loading can be the mo-
tion of what supports the structure (as in the case of seismic loading of
buildings or the stressing of the structure of ships due to wave motion),
the motion of the structure (as in the case of ground vehicles moving on
uneven roads), or the interaction of the two motions (as in the case of air-
craft flying in gusty air). Other sources of dynamic loads are unbalanced
rotating or reciprocating machinery and aero- or gas-dynamic phenomena
in jet and rocket engines.

The task the structural analyst must perform in these cases is much more
demanding. To check that the structure can withstand the dynamic loading
for the required time and that the amplitude of the vibration does not affect
the ability of the machine to perform its tasks, the analyst must acquire a
knowledge of its dynamic behavior that is often quite detailed. The natural
frequencies of the structure and the corresponding mode shapes must first
be obtained, and then its motion under the action of the dynamic loads
and the resulting stresses in the material must be computed. Fatigue must
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generally be taken into account, and often the methods based on fracture
mechanics must be applied.

Fatigue is not necessarily due to vibration; it can be defined more gener-
ally as the possibility that a structural member fails under repeated load-
ing at stress levels lower than those that could cause failure if applied
only once. However, the most common way in which this repeated load-
ing takes place is linked with vibration. If a part of a machine or struc-
ture vibrates, particularly if the frequency of the vibration is high, it can
be called on to withstand a high number of stress cycles in a compar-
atively short time, and this is usually the mechanism triggering fatigue
damage.

Another source of difficulty is the fact that, while static loads are usually
defined in deterministic terms, often only a statistical knowledge of dynamic
loads can be reached.

Progress causes machines to be lighter, faster, and, generally speaking,
more sophisticated. All these trends make the tasks of the structural an-
alyst more complex and demanding. Increasing the speed of machines is
often a goal in itself, like in the transportation field. This is sometimes
useful in increasing production and lowering costs (as in machine tools)
or causing more power to be produced, transmitted, or converted (as in
energy-related devices). Faster machines, however, are likely to be the cause
of more intense vibrations, and, often, they are prone to suffer damages due
to vibrations.

Speed is just one of the aspects. Machines tend to be lighter, and ma-
terials with higher strength are constantly being developed. Better design
procedures allow the exploitation of these characteristics with higher stress
levels, and all these efforts often result in less stiff structures, which are
more prone to vibrate. All these aspects compel designers to deal in more
detail with the dynamic behavior of machines.

Dynamic problems, which in the past were accounted for by simple
overdesign of the relevant elements, must now be studied in detail, and
dynamic design is increasingly the most important part of the design of
many machines.

Most of the methods used nowadays in dynamic structural analysis were
first developed for nuclear or aerospace applications, where safety and,
in the latter case, lightness are of utmost importance. These methods are
spreading to other fields of industry, and the number of engineers working in
the design area, particularly those involved in dynamic analysis, is growing.
A good technical background in this field, at least enough to understand
the existence and importance of these problems, is increasingly important
for persons not directly involved in structural analysis, such as production
engineers, managers, and users of machinery.

It is now almost commonplace to state that about half of the engineers
working in mechanical industries, and particularly in the motor-vehicle in-
dustry, are employed in tasks directly related to design. A detailed analysis



8 Introduction

of the tasks in which engineers are engaged in an industrial group working
in the field of energy systems is reported in Fig. 3a. An increasing number
of engineers are engaged in design and the relative economic weight of de-
sign activities on total production costs is rapidly increasing. An increase
of 300% in the period from 1950 to 1990 has been recorded.

Within design activities, the relative importance of structural analysis,
mainly dynamic analysis, is increasing, while that of activities generally
indicated as drafting is greatly reduced (Fig. 3b).

Economic reasons advocate the use of predictive methods for the study
of the dynamic behavior of machines from the earliest stages of design,

FIGURE 3. (a) Tasks in which engineers are employed in an Italian industrial
group working in the field of energy systems; (b) relative economic weight of the
various activities linked with structural design (P.G. Avanzini, La formazione
universitaria nel campo delle grandi costruzioni meccaniche, Giornata di studio
sull’insegnamento della costruzione delle macchine, Pisa, March 31, 1989).
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without having to wait until prototypes are built and experimental data are
available. The cost of design changes increases rapidly during the progress of
the development of a machine, from the very low cost of changes introduced
very early in the design stage to the dreadful costs (mostly in terms of loss
of image) that occur when a product already on the market has to be
recalled to the factory to be modified. On the other hand, the effectiveness
of the changes decreases while new constraints due to the progress of the
design process are stated.

This situation is summarized in the plot of Fig. 4. Because many design
changes can be necessary as a result of dynamic structural analysis, it must
be started as early as possible in the design process, at least in the form of
first-approximation studies. The analysis must then be refined and detailed
when the machine takes a more definite form.

The quantitative prediction, and not only the qualitative understanding,
of the dynamic behavior of structures is then increasingly important. To
understand and, even more, to predict quantitatively the behavior of any
system, it is necessary to resort to models that can be analyzed using
mathematical tools. Such analysis work is unavoidable, even if in some of
its aspects it can seem that the physical nature of the problem is lost within
the mathematical intricacy of the analytical work.

After the analysis has been performed it is necessary to extract results
and interpret them to obtain a synthetic picture of the relevant phenomena.
The analytical work is necessary to ensure a correct interpretation of the
relevant phenomena, but if it is not followed by a synthesis, it remains only
a sterile mathematical exercise. The tasks designers are facing in modern

FIGURE 4. Cost and effectiveness of design changes as a function of the stage at
which the changes are introduced.
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technology force them to understand increasingly complex analytical tech-
niques. They must, however, retain the physical insight and engineering
common sense without which no sound synthesis can be performed.

Mathematical modeling

The computational predictions of the characteristics and the performance of
a physical system are based on the construction of a mathematical model,1

constructed from a number of equations, whose behavior is similar to that
of the physical system it replaces. In the case of discrete dynamic models,
such as those used to predict the dynamic behavior of discrete mechanical
systems, the model usually is made by a number of ordinary differential
equations2 (ODE).

The complexity of the model depends on many factors that are the first
choice the analyst has to make. The model must be complex enough to
allow a realistic simulation of the system’s characteristics of interest, but
no more. The more complex the model, the more data it requires, and the
more complicated are the solution and the interpretation of results. Today
it is possible to built very complex models, but overly complex models yield
results from which it is difficult to extract useful insights into the behavior
of the system.

Before building the model, the analyst must be certain about what he
wants to obtain from it. If the goal is a good physical understanding of the
underlying phenomena, without the need for numerically precise results,
simple models are best. Skilled analysts were able to simulate even complex
phenomena with precision using models with a single degree of freedom.
If, on the contrary, the aim is precise quantitative results, even at the
price of more difficult interpretation, the use of complex models becomes
unavoidable.

Finally, it is important to take into account the data available at the stage
reached by the project: Early in the definition phase, when most data are
not yet available, it is useless to use complex models, into which more or less
arbitrary estimates of the numerical values must be introduced. Simplified,
or synthetic, models are the most suitable for a preliminary analysis. As the
design is gradually defined, new features may be introduced into the model,
reaching comprehensive and complex models for the final simulations.

1Simulations are not always based on a mathematical models in a strict sense. In the
case of analog computers, the model was an electric circuit whose behavior simulated that
of the physical system. Simulation on digital computers is based on actual mathematical
models.

2A dynamic model, or a dynamic system, is a model expressed by one or more dif-
ferential equations containing derivatives with respect to time.
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Such complex models, useful for simulating many characteristics of the
machine, may be considered as true virtual prototypes. Virtual reality tech-
niques allow these models to yield a large quantity of information, not only
on performance and the dynamic behavior of the machine, but also on the
space taken by the various components, the adequacy of details, and their
esthetic qualities, that is comparable to what was once obtainable only
from physical prototypes.

The models of a given machine thus evolve initially toward a greater
complexity, from synthetic models to virtual prototypes, to return later to
simpler models.

Models are useful not only to the designer but also to the test engineer in
interpreting the results of testing and performing all adjustments. Simpli-
fied models allow the test engineer to understand the effect of adjustments
and reduce the number of tests required, provided they are simple enough
to give an immediate idea of the effect of the relevant parameters. Here
the final goal is to adjust the virtual prototype on the computer, transfer-
ring the results to the physical machine and hoping that at the end of this
process only a few physical validation tests are required.

Simplified models that can be integrated in real time on relatively low-
power hardware are also useful in control systems. A mathematical model of
the controlled system (plant, in control jargon) may constitute an observer
(always in the sense of the term used in control theory) and be a part of
the control architecture.

The analyst has the duty not only of building, implementing, and using
the models correctly but also of updating and maintaining them. The need
to build a mathematical model of some complexity is often felt at a certain
stage of the design process, but the model is then used much less than
needed, and above all is not updated with subsequent design changes, with
the result that it becomes useless or must be updated when the need for it
arises again.

There are usually two different approaches to mathematical modeling:
models made by equations describing the physics of the relevant phenom-
ena, − these may be defined as analytical models − and empirical models,
often called black box models.

In analytical models the equations approximating the behavior of the
various parts of the system, along with the required approximations and
simplifications, are written. Even if no real-world spring behaves exactly
like the linear spring, producing a force proportional to the relative dis-
placement of its ends through a constant called stiffness, and even if no
device dissipating energy is a true linear damper, the dynamics of a mass–
spring–damper system (see Chapter 1) can be described, often to a very
good approximation, by the usual ordinary differential equation (ODE)

mẍ + cẋ + kx = f(t) .
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The behavior of some systems, on the other hand, is so complex that
writing equations to describe it starting from the physical and geometrical
characteristics of their structure is forbiddingly difficult. Their behavior is
studied experimentally and then a mathematical expression able to describe
it is sought, identifying the various parameters from the experimental data.
While each of the parameters m, c, and k included in the equation of
motion of the mass–spring–damper system refers to one of the parts of the
system and has a true physical meaning, the many coefficients appearing
in empirical models usually have no direct physical meaning and refer to
the system as a whole.

Among the many ways to build black box models, that based on neu-
ral networks must be mentioned.3 Such networks can simulate complex
and highly nonlinear systems, adapting their parameters (the weights of
the network) to produce an output with a relationship to the input that
simulates the input–output relationship of the actual system.

Actually, the difference between analytical and black box models is not
as clear-cut as it may seem. The complexity of the system is often such
that it is difficult to write equations precisely describing the behavior of
its parts, while the values of the parameters cannot always be known with
the required precision. In such cases the model is built by writing equa-
tions approximating the general pattern of the response of the system,
with the parameters identified to make the response of the model as close
as possible to that of the actual system. In this case, the identified pa-
rameters lose a good deal of their physical meaning related to the various
parts of the system they are conceptually linked to and become global
parameters.

In this book primarily analytical models will be described and an attempt
will be made to link the various parameters to the components of the
system.

Once the model has been built and the equations of motion written,
there is no difficulty in studying the response to any input, assuming the
initial conditions are stated. A general approach is to numerically inte-
grate the ordinary differential equation constituting the model, using one
of the many available numerical integration algorithms. In this way, the
time history of the generalized coordinates (or of the state variables) is
obtained from any given time history of the inputs (or of the forcing
functions)

This approach, usually referred to as simulation or numerical experi-
mentation, is equivalent to physical experimentation, where the system is
subjected to given conditions and its response measured.

3Strictly speaking, neural networks are not sets of equations and thus do not belong
to the mathematical models here described. However, at present neural networks are
usually simulated on digital computers, in which case their model is made of a set of
equations.
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This method is broadly applicable, because it

• may be used on models of any type and complexity

• allows the response to any type of input to be computed

Its limitations are also clear:

• it does not allow the general behavior of the system to be known, but
only its response to given experimental conditions,

• it may require long computation time (and thus high costs) if the
model is complex, or has characteristics that make numerical inte-
gration difficult, and

• it allows the effects of changes of the values of the parameters to be
predicted only at the cost of a number of different simulations.

If the model can be reduced to a set of linear differential equations with
constant coefficients, it is possible to obtain a general solution of the equa-
tions of motion. The free behavior of the system can be studied indepen-
dently from its forced behavior, and it is possible to use mathematical
instruments such as Fourier or Laplace transforms to obtain solutions in
the frequency domain or in the Laplace domain. These solutions are often
much more expedient than solutions in the time domain that are in general
the only type of solution available for nonlinear systems.

The possibility of obtaining general results makes it convenient to start
the study by writing a linear model through suitable linearization tech-
niques. Only after a good insight of the behavior of the linearized models
is obtained will the study of the nonlinear model be undertaken. When
dealing with nonlinear systems it is also expedient to begin with simplified
methods, based on techniques like harmonic balance, or to look for series
solutions before starting to integrate the equations numerically.

Computational vibration analysis

If technological advances force the designer to perform increasingly complex
tasks, it also provides the instruments for the fulfillment of the new duties
with powerful means of theoretical and experimental analysis.

The availability of computers of increasing power has deeply changed
the methods, the mathematical means, and even the language of struc-
tural analysis, while extending the mathematical study to problems that
previously could be tackled only through experiments. However, the ba-
sic concepts and theories of structural dynamics have not changed: Its
roots are very deep and strong and can doubtless sustain the new rapid
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growth. Moreover, only the recent increase of computational power enabled
a deeper utilization of the body of knowledge that accumulated in the last
two centuries and often remained unexploited owing to the impossibility of
handling the exceedingly complex computations. The numerical solution of
problems that, until a few years ago, required an experimental approach can
only be attempted by applying the aforementioned methods of theoretical
mechanics.

At the same time, together with computational instruments, there was a
striking progress in test machines and techniques. Designers can now base
their choices on large quantities of experimental data obtained on machines
similar to those being studied, which are often not only more plentiful but
also more detailed and less linked with the ability and experience of the
experimenter than those that were available in the past. Tests on prototypes
or on physical models of the machine (even if numerical experimentation
is increasingly replacing physical experimentation) not only yield a large
amount of information on the actual behavior of machines but also allow
validation of theoretical and computational techniques.

Modern instruments are increasingly used to monitor more or less con-
tinuously machines in operating conditions. This allows designers to collect
a great deal of data on how machines work in their actual service conditions
and to reduce safety margins without endangering, but actually increasing,
safety.

As already said, designers can now rely on very powerful computational
instruments that are widely used in structural analysis. Their use is not,
however, free of dangers. A sort of disease, called number crunching syn-
drome, has been identified as affecting those who deal with computational
mechanics. Oden and Bathe4 defined it as ‘blatant overconfidence, indeed
the arrogance, of many working in the field [of computational mechanics] ...
that is becoming a disease of epidemic proportions in the computational me-
chanics community. Acute symptoms are the naive viewpoint that because
gargantuan computers are now available, one can code all the complicated
equations of physics, grind out some numbers, and thereby describe every
physical phenomena of interest to mankind’.

Methods and instruments that give the user a feeling of omnipotence, be-
cause they supply numerical results on problems that can be of astounding
complexity, without allowing the user to control the various stages of the
computation, are clearly potentially dangerous. They give the user a feel-
ing of confidence and objectivity, because the computer cannot be wrong
or have its own subjective bias.

The finite element method, perhaps the most powerful computational
method used for many tasks, among which the solution of problems of

4Oden T.J., Bathe K.J., A Commentary on Computational Mechanics, Applied Me-
chanics Review, 31, p. 1053, 1978.
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structural dynamics is one of the most important is, without doubt, the
most dangerous from this viewpoint.

In the beginning, computers entered the field of structural analysis in a
quiet and reserved way. From the beginning of the 1950s computers were
used to automatically perform those computational procedures that re-
quired long and tedious work, for which electromechanical calculators were
widely used. Because the computations required for the solution of many
problems (like the evaluation of the critical speeds of complex rotors or
the torsional vibration analysis of crankshafts) were very long, the use of
automatic computing machines was an obvious improvement.

At the end of the 1950s computations that nobody could even think of
performing without using computers became routine work. Programs of in-
creasing complexity were often prepared by specialists, and analysts started
to concentrate their attention on the preparation of data and the interpre-
tation of results more than on how the computation was performed. In the
1960s the situation evolved further, and the first commercial finite element
codes appeared on the market. Soon they had some sort of preprocessors
and postprocessors to help the user handle the large amounts of data and
results.

In the 1970s general-purpose codes that can tackle a wide variety of
different problems were commonly used. These codes, which are often pre-
pared by specialists who have little knowledge of the specific problems for
which the code can be used, are generally considered by the users to be
tools to use without bothering to find out how they work and the assump-
tions on which the work is based. Often the designer who must use these
commercial codes tends to accept noncritically any result that comes out
of the computer.

Moreover, these codes allow a specialist in a single field to design a
complex system without seeking the cooperation of other specialists in the
relevant matters in the belief that the code can act as a most reliable and
unbiased consultant.

On the contrary, the user must know well what the code can do and the
assumptions at its foundation. He must have a good physical perception of
the meaning of the data being introduced and the results obtained in order
to be able to give a critical evaluation.

There are two main possible sources of errors in the results obtained
from a code. First there can be errors (bugs, in the jargon of computer
users) in the code itself. This may even happen in well-known commercial
codes, particularly if the problem being studied requires the use of parts
of the code that are seldom used or insufficiently tested. The user may try
to solve problems the programmer never imagined the code could be asked
to tackle and may thus follow (without having the least suspicion of doing
so) paths that were never imagined and thus never tested.

More often, it is the modeling of the physical problem that is to blame for
poor results. The user must always be aware that even the most
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sophisticated code always deals with a simplified model of the real world,
and it is a part of the user’s task to ascertain that the model retains the
relevant features of the actual problem.

Generally speaking, a model is acceptable only if it yields predictions
close to the actual behavior of the physical system. Other than this, only
its internal consistency can be unquestionable, but internal consistency
alone has little interest for the applications of a model.

The availability of programs that automatically prepare data (preproces-
sors) can make things worse. Together with the advantages of reducing the
work required from the user and avoiding the errors linked with the manual
preparation and introduction of a large amount of data, there is the draw-
back of giving a false confidence. The mathematical model prepared by the
machine is neither better nor more objective than a handmade one, and it
is always the operator who must use engineering knowledge and common
sense to reach a satisfactory model.

The use of general-purpose codes requires the designer to have a knowl-
edge of the physical features of the actual systems and of the modeling
methods not much less than that required to prepare the code. The de-
signer must also be familiar with the older simplified methods through
which approximate, or at least order-of-magnitude, results can be quickly
obtained, allowing the designer to keep a close control over a process in
which he has little influence.

The use of sophisticated computational methods must not decrease the
skill of building very simple models that retain the basic feature of the ac-
tual system with a minimum of complexity. Some very ingenious analysts
can create models, often with only one, or very few, degrees of freedom,
which can simulate the actual behavior of a complicated physical system.
The need for this skill is actually increasing, and such models often con-
stitute a base for a physical insight that cannot be reached using complex
numerical procedures. The latter are then mandatory for the collection of
quantitative information, whose interpretation is made easier by the insight
already gained.

Concern about vibration and dynamic analysis is not restricted to de-
signers. No matter how good the dynamic design of a machine is, if it is
not properly maintained, the level of vibration it produces can increase
to a point at which it becomes dangerous or causes discomfort. The bal-
ance conditions of a rotor, for example, may change in time, and periodic
rebalancing may be required.

Maintenance engineers must be aware of vibration-related problems to
the same extent as design engineers. The analysis of the vibration produced
by a machine can be a very powerful tool for the engineer who has to
maintain a machine in working condition. It has the same importance that
the study of the symptoms of disease has for medical doctors.

In the past, the experimental study of the vibration characteristics of a
machine was a matter of experience and was more an art than a
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science: Some maintenance engineers could immediately recognize prob-
lems developed by machines and sometimes even foretell future problems
just by pressing an ear against the back of a screwdriver whose blade is
in contact with carefully chosen parts of the outside of the machine. The
study of the motion of water in a transparent bag put on the machine
or of a white powder distributed on a dark vibrating panel could give
other important indications. Modern instrumentation, particularly elec-
tronic computer-controlled instruments, gives a scientific basis to this as-
pect of the mechanics of machines.

The ultimate goal of preventive maintenance is that of continuously ob-
taining a complete picture of the working conditions of a machine in such
a way as to plan the required maintenance operations in advance, without
having to wait for malfunctions to actually take place.

In some more advanced fields of technology, such as aerospace or nu-
clear engineering, this approach has already entered everyday practice. In
other fields, these are more indications for future developments than current
reality.

Unfortunately, the subject of vibration analysis is complex and the use
of modern instrumentation requires a theoretical background beyond the
knowledge of many maintenance or practical engineers.

Active vibration control

The revolution in all fields of technology, and increasingly in everyday life,
due to the introduction of computers, microprocessors, and other electronic
devices did not only change the way machines and structures are designed,
built, and monitored but also had an increasingly important impact on
how they work and will deeply change the very idea of machines. A typical
example is the expression intelligent machines, which until a few decades
ago would have been considered an intrinsically contradictory statement,
but now is commonly accepted.

The recent developments in the fields of electronics, information, and
control systems made it possible to tackle dynamic problems of structures
in a new and often more effective way. While the traditional approach
for reducing dynamic stressing has always been that of changing (usually
increasing) the stiffness of the structure or adding damping, now control
systems that can either adapt the behavior of the structure to the changing
dynamic requirements or fight vibrations directly by applying adequate
dynamic forces to the structure are increasingly common. This trend is
widespread in all fields of structural mechanics, with civil, mechanical, and
aeronautical engineering applications. For example, structural control has
been successfully attempted in tall buildings and bridges, machine tools,
aircraft, bearing systems for rotating machinery, robots, space structures,
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and ground vehicles. In the latter case, the term active suspensions has
even become popular among the general public.

The advantages of this approach over the conventional one are clear
and can be easily evidenced by the example of a large lightweight struc-
ture designed to be deployed in space in a microgravity environment. The
absence or the low value of static forces allows the design of very light
structures, and lightness is a fundamental prerequisite for any structure
that has to be brought into orbit. This leads to very low natural frequen-
cies and corresponding vibration modes that can easily be excited and are
very lightly damped. Any attempt to maintain the dynamic stresses and
displacements within reasonable limits with conventional techniques, i.e.,
by stiffening the structure and adding damping, would lead to large in-
creases in the mass and, hence, the cost of the structure. The application
of suitable control devices can achieve the same goals in a far lighter and
cheaper way.

A structure provided with actuators that can adapt its geometric shape
or modify its mechanical characteristics to stabilize a number of working
parameters (e.g., displacements, stresses, and temperatures) is said to be
an adaptive structure. An adaptive structure can be better defined as a
structure with actuators allowing controlled alterations of the system states
and characteristics.

If there are sensors, the structure can be defined a sensory structure.
The two things need not go together, as in the case of a structure provided
with embedded optical fibers that supply information about the structural
integrity of selected components or in the case of a machine with a built-in
diagnostic system. If, however, the structure is both adaptive and sensory,
it is a controlled structure.

Active structures are a subset of controlled structures in which there is
an external source of power, aimed at supplying the control energy and
modulated by the control system using the information supplied by the
sensors. Another typical characteristic is that the integration between the
structure and the control system is so strong that the distinction between
structural functionality and control functionality is blurred and no separate
optimization of the parts is possible.

Intelligent structures can be tentatively differentiated from active struc-
tures by the presence of a highly distributed control system that takes care
of most of the functions. Most biological structures fall in this category;
a good example of the operation of an intelligent structure is the way the
wing of a bird regulates the aerodynamic forces needed to fly. Not only is
the shape constantly adapted, but the dynamic behavior of the structure is
also controlled. Although a central control system coordinates all this, most
of the control action is committed to peripheral subsystems, distributed on
the whole structure.

A tentative classification of adaptive and sensory structures is shown in
Fig. 5.
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FIGURE 5. Tentative classification of adaptive and sensory structures. A: adap-
tive structures; B: sensory structures; C: controlled structures; D: active struc-
tures; and E: intelligent structures.

In all types of controlled structures the control system may need to per-
form different tasks, with widely different requirements. For example, it can
be used to change some critical parameter to adapt the characteristics of
the system to the working conditions, like a device that varies the stiffness
of the supports of a rotor with the aim of changing its critical speed during
start-up to allow a shift from subcritical to supercritical conditions without
having to actually pass a critical speed. In this case, there is no need to
have a very complicated control system, and even a manual control can
be used, if a slow start-up is predicted. Other examples requiring a slow
control system are the suspension systems for ground vehicles that are able
to maintain the vehicle body in a prescribed attitude even when variations
of static or quasi-static forces (e.g., centrifugal forces in road bends) occur.

In the case where the control system has to supply forces to control
vibrations, its response has to be faster. If only a few modes of a large and
possibly soft structure are to be controlled, as in the case of tall buildings,
bridges, and some space structures, the requirements for the control system
may not be severe, but they become tougher when the characteristic time
of the phenomena to be kept under control gets shorter since the relevant
frequencies are high.

In other cases, when the structural elements are movable and a control
system is already present to control the rigid-body motions, the control of
the dynamic behavior of the system can be achieved by suitably modulating
the inputs to the devices that operate the machine. This is the case of
robot arms or deployable space structures in which the dynamic behavior
is strongly affected by the way the actuators perform their task of driving
the structural elements to the required positions.
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It is easy to predict that the application of structural control, particularly
using active control systems, will become more popular in the future. The
advances in performance and cost reduction of control systems are going
to make it cost-effective, but a key factor for its success will be the incor-
poration of complex microprocessor-based control systems into machines
of different kinds. They, although basically introduced for reasons different
from structural control, can also take care of the latter in an effective and
economical way. The advances in the field of neural networks may also open
promising perspectives in the field of structural control.

However, if the control system must perform the vibration control of
a structure, a malfunctioning of the first can cause a structural failure.
The reliability required is that typical of control systems performing vital
functions, like in fly-by-wire systems, and this requirement can have heavy
effects on costs, on both the component and the system level, and can slow
down the application of structural control in low-cost, mass-production
applications.

As already stated, the trend is toward an increasing integration between
the structural and control functions, and this leads to the need for a unified
approach at the design and analysis stages. The control subsystem must
no longer be seen as something added to an already existing structural
subsystem that has been designed independently.

There is a trend toward a unified approach to many aspects of struc-
tural dynamics and control, from both the theoretical viewpoint and its
practical applications. A further interdisciplinary effort must also include
those aspects that are more strictly linked with the electrical and electronic
components that are increasingly found in all kinds of machinery.

This interdisciplinary approach to the design of complex machines is
increasingly referred to as mechatronics.

Although there are many definitions of what mechatronics is, it can be
safely stated that it deals with the integration of mechanics, electronics,
and control science to design products that reach their specifications mainly
through a deep integration of their structural and control subsystems. A
tentative graphical definition is shown in Fig. 6, which must be regarded
to as an approximation.5 First, the sets defining the various component
technologies are not crisply defined; they are fuzzy sets. Second, it is ques-
tionable whether computer technology is to be so much stressed, as in this
way analogic devices seem to be ruled out.

But what is actually lacking in Fig. 6 are the economic aspects, which
must enter such an interdisciplinary approach from the onset of any prac-
tical application. The very need for an integrated approach allowing a true
simultaneous engineering of the various components of any machine comes

5S. Ashley, “Getting a hold on mechatronics”, Mechanical Engineering, 119 (5), May
1997.
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FIGURE 6. Tentative definition of mechatronics.

from economic consideration, even before thinking of the performance or
other technical aspects. No wonder that among the first applications of
mechatronics were consumer goods like cameras and accessories for per-
sonal computers.

It is the integration of a sound mechanical design, which includes static
and dynamic analysis and simulation, with electronic and control design
which allows construction of machines that offer better performance with
increased safety levels at potentially lower costs.



1
Conservative Discrete Vibrating
Systems

The equations of motion of single- and multi-degrees-of-freedom undamped
vibrating systems are obtained both by writing the dynamic equilibrium
equations and by resorting to Lagrange equations. The vibrating system
is assumed to be constrained to either an inertial reference frame or a body
moving with a known time history with respect to an inertial frame and
whose motion is translational. The equations of motion are obtained both
in the configuration and in the state space.

1.1 Oscillator with a single degree of freedom

The simplest system studied by structural dynamics is the linear mechan-
ical oscillator with a single degree of freedom. It consists of a point mass
suspended by a massless linear spring (Fig. 1.1a). Historically, however,
the mathematical pendulum (Fig. 1.1c) represented for centuries the most
common paradigm of an oscillator, which could be assumed to be linear,
at least within adequate limitations.

The study of the simple linear oscillators of Fig. 1.1 is important for more
than just historical reasons. In the first instance it is customary to start
the study of mechanics of vibration with a model that is very simple but
demonstrates, at least qualitatively, the behavior of more complex systems.

The arrangements shown in Fig. 1.1 also have a great practical impor-
tance: They constitute models that can often be used to study, with good
approximation, the behavior of systems of greater complexity. Moreover,
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FIGURE 1.1. Linear oscillators with one degree of freedom: (a) Spring–mass
system; the coordinate x for the study of the motion of point P can expressed in
an inertial reference frame or be a relative displacement; (b) physical pendulum;
(c) mathematical pendulum.

systems with many degrees of freedom, and even continuous systems, can
be reduced, under fairly wide simplifying assumptions, to a set of indepen-
dent systems with a single degree of freedom.

A linear spring is an element that, when stretched of the quantity l− l0,
reacts with a force

Fs = −k(l − l0), (1.1)

where l0 is the length at rest of the spring and k is a constant, usually
referred to as the stiffness of the spring, expressing the ratio between the
force and the elongation. In SI units, it is measured in N/m. If constant k
is positive, the force is a restoring force, opposing the displacement of point
P. The system is then statically stable, in the sense that, when displaced
from its equilibrium position, it tends to return to it.1

A force function of time F (t) can act on point P and the supporting
point A can move in x-direction with a known time history xA(t).

The dynamic equilibrium equation states that the inertia force is, at any
time, in equilibrium with the elastic reaction of the spring added to the
external forces. Written with reference to the inertial x-coordinate, it is
simply

mẍ = −k [x − l0 − xA(t)] + F (t) − mg . (1.2)

Owing to the linearity of the system of Fig. 1.1a, the length at rest
of the spring l0 and all constant forces such as those due to the gravi-
tational acceleration g, affect the static equilibrium position but not its
dynamic behavior. The dynamic problem can thus be separated from the

1For a more detailed definition of stability see Chapter 20. Only stable systems will
be dealt with in this chapter.
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static problem by neglecting all constant forces and writing the dynamic
equilibrium equation

mẍ + kx = kxA(t) + F (t) . (1.3)

Equation (1.3) expresses the motion of point P in terms of its displace-
ment from the position of static equilibrium x = 0 characterized by F = 0
and xA = 0. The excitation provided by the motion of the supporting
point and that provided by an external force can be dealt with in exactly
the same way.

When the excitation to the system is provided by the motion of the
supporting point, it may be expedient to express the position of point
P with reference to point A: coordinate xrel in Fig. 1.1a. The absolute
acceleration of point P is now expressed as

ẍiner = ẍrel + ẍA ,

and, neglecting the terms that are constant and whose effect is just dis-
placing the static position of equilibrium, the equation of motion becomes

mẍ + kx = −mẍA + F (t) , (1.4)

where subscript rel has been dropped.
It is very similar to Eq. (1.3), the only difference being the way the

displacement of the supporting point is taken into account.

Remark 1.1 Because the equation of motion is a second-order differential
equation, two conditions on the initial values must be stated to obtain a
unique solution.

Instead of the translational oscillator of Fig. 1.1a, a torsional oscillator
can be devised. It consists of a rigid body free to rotate about an axis pass-
ing through its center of mass, constrained by a torsional spring. Equation
(1.3) still holds, provided the parameters involved are changed according
to Table 1.1.

TABLE 1.1. Formal equivalence between mechanical oscillators with translational
and rotational motion. Quantities entering the equation of motion, common sym-
bols, and SI units.
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Example 1.1 Consider the pendulum shown in Fig. 1.1b. It can be consid-
ered as a rotational oscillator, with moment of inertia J and restoring gener-
alized force, due to the gravitational field, equal to

mgl sin(θ) .

In the case of the mathematical pendulum of Fig. 1.1c, the rigid body reduces
to a point mass suspended to a massless rod, and the moment of inertia reduces
to

J = ml2 .

The equation of motion for the free oscillations can be easily computed from
Eq. (1.3):

Jθ̈ + mgl sin(θ) = 0 .

If the amplitude of the oscillations is small enough, the equation of motion
can be linearized by substituting θ for sin(θ):

Jθ̈ + mglθ = 0 .

1.2 Systems with many degrees of freedom

Consider a discrete system consisting of two point masses connected to
point A through a number of springs (Fig. 1.2). A force Fi acts on each
mass. By introducing the same inertial coordinates seen for the case of
systems with a single degree of freedom, the following dynamic equilibrium
equations can be written:

{
m1ẍ1 + k1(x1 − xA) − k12(x1 − x2) = F1(t)
m2ẍ2 + k2(x2 − xA) − k12(x2 − x1) = F2(t) , (1.5)

or in matrix form
[

m1 0
0 m2

] {
ẍ1

ẍ2

}
+

[
k1 + k12 −k12

−k12 k2 + k12

] {
x1

x2

}
=

=
{

k1xA + F1(t)
k2xA + F2(t)

}
.

(1.6)

The structure of Eq. (1.6) holds for conservative linear discrete systems
with any number of degrees of freedom. The dynamic equilibrium equations
of a system made by a number of masses connected with each other and to
a supporting frame by linear springs can thus be written in the compact
form

Mẍ + Kx = f(t) . (1.7)

The matrices and vectors included in Eq. (1.7) are
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FIGURE 1.2. Sketch of a system with two degrees of freedom, made of two masses
connected to the supporting point A by linear springs. The position of the two
masses may be expressed by inertial coordinates or by the displacements relative
to point A.

• M is the mass matrix of the system. It is diagonal if all coordinates
xi are related to translational degrees of freedom and measured with
reference to an inertial frame.

• K is the stiffness matrix. Generally it is not a diagonal matrix, al-
though it usually has a band structure. In some cases, it is possible
to resort to a set of generalized coordinates for which the stiffness
matrix is diagonal (e.g., using as coordinates the length of the vari-
ous springs), but such a choice results in a non-diagonal mass matrix.
The only exception is that of the modal coordinates that allow the
use of mass and stiffness matrices, which are both diagonal.

• x is a vector2 in which the generalized coordinates are listed.

• f is a time-dependent vector containing the forcing functions due to
external forces or to the motion of the supporting points.

2Here the term vector is used with the meaning of column matrix: it is not a vector
in three-dimensional space.
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If, instead of using inertial coordinates, the positions of the two masses
m1 and m2 are expressed in terms of the displacements relative to point A
(coordinates xirel

in Fig. 1.2), the equations of motion are
{

m1 (ẍ1 + ẍA) + k1x1 − k12(x1 − x2) = F1(t)
m2 (ẍ2 + ẍA) + k2x2 − k12(x2 − x1) = F2(t) , (1.8)

i.e.,
[

m1 0
0 m2

] {
ẍ1

ẍ2

}
+

[
k1 + k12 −k12

−k12 k2 + k12

] {
x1

x2

}
=

=
{

−m1ẍA + F1(t)
−m2ẍA + F2(t)

}
.

(1.9)

Remark 1.2 The homogeneous part of the equation is not affected by the
use of relative coordinates. The excitation due to the motion of the con-
straints is expressed in terms of the acceleration of the latter while in the
case of inertial coordinates it is expressed in terms of their displacements.

This is consistent with what is seen for systems with a single degree of
freedom, but in the present case the situation may be more complicated
because, even if the generalized coordinates xi are all displacements, they
may occur in different directions.

Consider for instance a discrete system where all degrees of freedom are
translational, constrained to a rigid frame that can move in the directions
of the axes of the inertial reference frame xyz. Let the components of the
displacement of the rigid frame be xA, yA, and zA and express the general-
ized coordinates xi with reference to the moving frame. A two-dimensional
example is shown in Fig. 1.3.

The vector containing the absolute accelerations can be obtained from
that containing the second derivatives of the coordinates xi by the rela-
tionship

ẍiner = ẍ + δxẍA + δy ÿA + δz z̈A , (1.10)

where the terms δxi , δyi , and δzi are simply the direction cosines of the
displacement xi in the system of reference xyz. The equation of motion
written with reference to the relative coordinates is thus

Mẍ + Kx = −MδxẍA − Mδy ÿA − Mδz z̈A + f(t) . (1.11)

If a simple discrete system consists of point masses connected with each
other and to the ground by springs, the generalized coordinates xi can be
simply the components of the displacements along the directions of the
reference axes, in exactly the same way as for the system with a single
degree of freedom.

Generally speaking, matrices M and K are symmetrical matrices of order
n, where n is the number of degrees of freedom of the system.
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FIGURE 1.3. Example of a two-dimensional system excited by the motion of the

constraints. In this case, δx =
[

1 0 1 0
]T

and δy =
[

0 1 0 1
]T

.
Displacements xi are referred to the static equilibrium conditions and are con-
sidered to be small displacements.

Remark 1.3 The symmetry of the matrices can be destroyed if some equa-
tions are substituted by linear combinations of the equations or are just
multiplied by a constant. The equations of motion can thus be written in
forms in which the relevant matrices are not symmetrical.

Generally matrices M and K are positive semidefinite, but in many cases
they are positive definite. The mass matrix is positive defined when a non-
vanishing mass is associated to all degrees of freedom. The stiffness matrix
is positive defined when no rigid body motion is allowed. Sometimes a
system in which the constraints prevent all rigid body motions is said to
be a structure, and the term mechanism is used for the opposite case.

Many devices, such as spacecraft, aircraft, or drivelines, are actually un-
constrained and, if modeled as a whole, are characterized by singular stiff-
ness matrices.

Sometimes the difficulties linked with the presence of a singular stiffness
matrix can be circumvented by adding very soft constraints, which cause
low-frequency rigid body oscillatory motions, but this can be done only
when the vibrational behavior of the structure is studied as uncoupled
with the rigid body (or attitude) dynamics of the system. If their coupling
is accounted for, there is no way of removing the singularity of the stiffness
matrix.
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1.3 Coefficients of influence and compliance matrix

The static equilibrium configuration the system takes under the action of
constant forces can be computed through Eq. (1.7). If vector f is assumed
to be constant and only a solution with constant displacement vector x is
searched, the mentioned equation reduces to

Kx = f . (1.12)

If the stiffness matrix K is not singular, the equation can be solved
obtaining

x = K−1f = Bf , (1.13)

where the inverse of the stiffness matrix

B = K−1

is the compliance matrix3 or matrix of the coefficients of influence.
The compliance matrix B is symmetrical, like the stiffness matrix K, but

while the latter has usually a band structure, the former is generally full.

Remark 1.4 The generic element βij of matrix B has an obvious physical
meaning: It is the ith generalized displacement due to a unit jth generalized
force, i.e., it is what is commonly called an influence coefficient.

Remark 1.5 Matrix B exists only if the stiffness matrix is not singular.

1.4 Lagrange equations

The generalized coordinates appearing in Eq. (1.7) are directly the coor-
dinates x, y, and z of the various point masses. The number of degrees of
freedom of the system has been assumed to coincide with the number of
coordinates of points Pi.

If a number of constraints are located between the point masses, the
number of degrees of freedom of the system is smaller than the number of
coordinates and the displacement vectors �ri can be expressed as functions
of a number n of parameters xi

�ri = �ri(x1, x2, . . . , xn) . (1.14)

Because the number of parameters needed to state the configuration of
the system is n, it has n degrees of freedom. Vector x is thus the vector

3In the literature, the compliance matrix is often referred to with the symbol C.
Here, an alternative symbol (B, i.e., capital β) had to be used to avoid confusion with
the viscous damping matrix C.
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of the generalized coordinates, and the corresponding elements of vector
f are the generalized forces. Some of the xi can be true displacements or
rotations, but they can also have a less direct meaning, as in the case where
they are coefficients of a series expansion. Correspondingly, the generalized
forces are true forces, moments, or just mathematical expressions linked to
the forces and moments acting on the system in a less direct way.

Remark 1.6 The choice of the generalized coordinates is in a way arbi-
trary, and different sets of generalized coordinates can be devised for a given
system. However, this choice is not immaterial and the complexity of the
mathematical model can strongly depend on it.

In this way, what has been seen for a system made of point masses can
be extended to any mechanical system, provided that a finite number of
generalized coordinates can express its configuration.

The equations of motion can be obtained directly by writing the dynamic
equilibrium equations for each of the masses mi, i.e., by imposing that
the sum of all forces acting on each mass is equal to zero. These forces
must include those due to the springs, external forces as well as inertia
forces due to the motion of the reference frame. Although this approach
is straightforward if the system is simple enough, if the number of degrees
of freedom is high or if some of the generalized coordinates are not easily
linked with the displacements and rotations of masses mi, it is convenient
to resort to the methods of analytical mechanics like the principle of virtual
works, Hamilton’s principle, or Lagrange equations in order to write the
equations of motion. In this book, Lagrange equations

d

dt

(
∂T
∂ẋi

)
− ∂T

∂xi
+

∂U
∂xi

= Qi (1.15)

will be used extensively, although the choice of one of these techniques is
often just a matter of personal preference.

To understand the equivalence of two approaches (Lagrange equations
and dynamic equilibrium equations), it is sufficient to observe that the first
two terms of Eq. (1.15) are the expression of inertia forces as functions of
the kinetic energy T , the third term expresses conservative forces obtain-
able from the potential energy U , and that on the right-hand side is a
generic expression of forces that, although being functions of time, cannot
be obtained from the potential energy. Their expression can be obtained
from the virtual work δL performed by the forces applied to the system
when the virtual displacement δx is given:

Qi =
∂δL
∂δxi

. (1.16)

In the case of linear systems the potential energy is a quadratic form in
the displacements and, apart from constant terms which do not affect the
equation of motion, can be expressed as
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U =
1
2
xT Kx + xT f0 , (1.17)

where K is a symmetric matrix.
Even in the case of nonlinear systems, the potential energy does not

depend on the generalized velocities: its derivatives with respect to the
generalized velocities ẋi vanish. Equation (1.15) may thus be written by
resorting to the Lagrangian function or Lagrangian (T − U)

d

dt

[
∂(T − U)

∂ẋi

]
− ∂(T − U)

∂xi
= Qi . (1.18)

The kinetic energy is usually assumed to be a quadratic function of the
generalized velocities

T = T0 + T1 + T2 , (1.19)

where T0 does not depend on the generalized velocities, T1 is linear, and T2

is quadratic.
In the case of linear systems, the kinetic energy must contain terms in

which no power greater than two of the displacements and velocities is
present. As a consequence, T2 cannot contain the displacements, i.e.,

T2 =
1
2

n∑
i=1

n∑
j=1

mijxixj =
1
2
ẋT Mẋ , (1.20)

where M is a symmetric matrix whose elements mij do not depend on either
x or ẋ. In the present chapter only systems with constant parameters will
be considered, and hence M will be assumed to be constant.
T1 is linear in the velocities and then can contain powers not greater than

the first one in the generalized displacements:

T1 =
1
2
ẋT (M1x + f1) , (1.21)

where matrix M1 and vector f1 do not contain the generalized coordinates,
although f1 may be a function of time.
T0 does not contain the generalized velocities but only terms of order not

higher than two in the displacements:

To =
1
2
xT Mgx + xT f2+e , (1.22)

where matrix Mg, vector f2, and the scalar e are constant. T0 has a structure
similar to that of the potential energy: The term U −T0 is usually referred
to as dynamic potential .

By performing the derivatives appearing in the Lagrange equations it
follows that

∂(T − U)
∂ẋi

= Mẋ +
1
2

(M1x + f1) , (1.23)
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d

dt

[
∂(T − U)

∂ẋi

]
= Mẍ +

1
2
M1ẋ + ḟ1, (1.24)

∂(T − U)
∂xi

=
1
2
MT

1 ẋT + Mgx − Kx + f2 − f0. (1.25)

The equation of motion can thus be written in the form

Mẍ +
1
2

(
M1−MT

1

)
ẋ + (K−Mg)x = −ḟ1 + f2 − f0 + Q. (1.26)

Matrix M1 is usually skew-symmetric. However, even if it is not so, it
can be considered as the sum of a symmetric and a skew-symmetric part

M1 = M1sy + M1sk . (1.27)

When it is introduced into Eq. (1.26), the term

M1−MT
1

becomes
M1sy + M1sk − M1sy + M1sk = 2M1sk .

Only the skew-symmetric part of M1 appears in the equation of motion.
Let 2M1sk be indicated as G and vectors f0, ḟ1, and f2 be included into
the external forces vector Q. The equation of motion then becomes

Mẍ + Gẋ + (K−Mg)x = Q, (1.28)

The mass and stiffness matrices M and K have already been defined.
The skew-symmetric matrix G is usually referred to as the gyroscopic ma-
trix and the symmetric matrix Mg is usually called the geometric stiffness
matrix.4

A system in which T1 vanishes is said to be a natural system and no
gyroscopic matrix is present. In many cases also T0 is not present and the
kinetic energy is expressed by Eq. (1.20); such is the case for example of
linear nonrotating structures.

While in the case of linear systems the Lagrangian is a quadratic form
in the generalized coordinates and their derivatives, for general nonlinear
systems it may have a different expression.

Remark 1.7 When writing the linearized equations of motion of a non-
linear system, two alternatives are possible: either the nonlinear equations
are written first and then linearization is performed directly on the final
equations or the expressions of the energies are reduced to quadratic forms
by expanding them in series and truncating the series after the quadra-
tic terms. The two approaches yield the same results, but the first one is
generally far heavier from a computational viewpoint.

4Symbol Mg has been used here for the geometric stiffness matrix instead of Kg to
stress that it derives from the kinetic energy.
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Example 1.2 Write the equation of motion of the system sketched in

Fig. 1.4. It consists of three discs linked with each other by shafts that are

torsionally deformable; the first shaft is clamped in point A to a fixed frame.

The system can be modeled as a lumped-parameter system, with three rigid

inertias and three massless springs. Note that the numerical values reported

in the figure are unrealistic for a system of that type and were chosen only in

order to work with simple numbers. Consider the rotations θ1, θ2, and θ3 as

generalized coordinates.
By remembering the equivalences in Table 1.1, the equation of motion of the
third disc is

J3θ̈3 + kT3(θ3 − θ2) = M3.

The equations for the other two discs can be written in a similar way, obtaining
a set of three second-order differential equations which, after introducing the
numerical values of the parameters, is

⎡
⎣ 1 0 0

0 4 0
0 0 0.5

⎤
⎦

⎧⎨
⎩

θ̈1

θ̈2

θ̈3

⎫⎬
⎭ +

⎡
⎣ 20 −10 0

−10 14 −4
0 −4 4

⎤
⎦

⎧⎨
⎩

θ1

θ2

θ3

⎫⎬
⎭ =

⎧⎨
⎩

M1

M2

M3

⎫⎬
⎭ .

FIGURE 1.4. System with three degrees of freedom. J1 = 1 kg m2; J2 = 4 kg
m2; J3 = 0.5 kg m2; kT1 = 10 N m/rad; kT2 = 10 N m/rad; kT3 = 4 N m/rad.
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Alternatively, the equations of motion can be obtained from Lagrange equa-
tions. The kinetic and potential energies and the virtual work of the external
moments due to a virtual displacement [δθ1, δθ2, δθ3]

T are

2T = J1θ̇1
2

+ J2θ̇2
2

+ J3θ̇3
2
,

2U = kT1θ2
1 + kT2(θ2 − θ1)

2 + kT3(θ3 − θ2)
2,

δL = M1δθ1 + M2δθ2 + M3δθ3.

By performing the relevant derivatives, the same equation seen above is

obtained.

Example 1.3 Write the equation of motion of the mathematical pendulum of
Fig. 1.1c using Lagrange equation. The position of point P is

(P − O) =

{
l sin(θ)

−l cos(θ)

}
.

Angle θ can be taken as generalized coordinate. By differentiating the coordi-
nates of P with respect to time, the velocity and then the kinetic energy are
readily obtained:

VP = ˙(P − O) = lθ̇

{
cos(θ)
sin(θ)

}
,

T =
1

2
m|V |P2 =

1

2
ml2θ̇

2
.

The gravitational potential energy is simply

U = mgy = −mgl cos(θ) .

The derivatives included in the Lagrange equation are

∂T
∂θ̇

= ml2θ̇ ,
d

dt

(
∂T
∂θ̇

)
= ml2θ̈ ,

∂T
∂θ

= 0 ,
∂U
∂θ

= mgl sin(θ) .

The equation of motion thus coincides with that already obtained:

ml2θ̈ + mgl sin(θ) = 0 .

The linearization can be performed in two ways: either by linearizing directly
the equation of motion or by expressing the potential energy as a series in θ
and truncating it after the quadratic term
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U ≈ − mgl

(
1 − θ2

2

)
.

The kinetic energy is already a quadratic form in the generalized coordinate
and its derivative, so the inertial term is already linear. Since

∂U
∂θ

≈ mglθ,

the linearized equation of motion is readily obtained:

ml2θ̈ + mglθ = 0 .

Remark 1.8 If the expression of the potential energy in Example 1.4 were
linearized

U = −mgl cos (θ)≈− mgl ,

its derivative with respect to θ would have vanished and a wrong expression
of the equation of motion would have been obtained. To obtain a linearized
equation of motion, the expressions of the kinetic and potential energies
must be quadratic and not linear.

Example 1.4 Consider the two identical pendulums connected by a massless
spring shown in Fig. 1.5. The length of the spring at rest is equal to the distance
d between the suspension points.

FIGURE 1.5. Two pendulums linked together by a spring: sketch of the system.
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Write the kinetic and potential energies of the system and obtain the equa-

tion of motion through Lagrange equations. Finally, linearize the equations of

motion.

There are four dynamic equilibrium equations; they state that all forces, includ-

ing inertia forces, that act on the two point masses in x- and y-directions bal-

ance each other. Two constraint equations, stating that the distances (P1 − A)

and (P2 − B) are equal to the lengths l of the two pendulums, must be added

to the dynamic equilibrium equations.
The system has thus two degrees of freedom, and angles θ1 and θ2 can be
chosen as generalized coordinates. Equations (1.14) linking the positions of
the point masses with the generalized coordinates are

�r1 = (P1 − A) =

{
l sin(θ1)

−l cos(θ1)

}
, �r2 = (P2 − A) =

{
d + l sin(θ2)
−l cos(θ2)

}
.

Note that the relationship between the positions of the point masses and the

generalized coordinates is nonlinear. The kinetic energy is thus

T =
1

2
m

(
ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ2
2

)
=

1

2
ml2(θ̇1

2
+ θ̇2

2
) .

The gravitational potential energy can be defined with reference to any zero
level, for example, that of point A. The potential energy is

U = −mgl[cos(θ1) + cos(θ2)] +
1

2
k(d1 − d)2 ,

where the distance d1 between points P1 and P2 can be easily shown to be

d1 =
√

d2 + 2l2[1 − cos(θ1 − θ2)] − 2dl[sin(θ2) − sin(θ1)] .

By performing all the relevant derivatives of the Lagrangian function, T − U,
the equations of motion of the system are obtained:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ml2θ̈1 + mgl sin(θ1) + k(d1 − d)
∂d1

∂θ1
= 0 ,

ml2θ̈2 + mgl sin(θ2) + k(d1 − d)
∂d1

∂θ2
= 0 .

The derivatives of d1 with respect to θ1 and θ2 can be easily computed and the
equations can be written in explicit form. They are clearly nonlinear, but as
angles θ1 and θ2 are assumed to be small, they can be linearized:

d1 ≈
√

d2 − 2dl(θ2 − θ1) ≈ d − l(θ2 − θ1) , ∂d1/∂θ1 ≈ l , ∂d1/∂θ2 ≈ −l .

The linearized equation of motion can be written in the form

ml

[
1 0
0 1

] {
θ̈1

θ̈2

}
+

[
mg + kl −kl
−kl mg + kl

] {
θ1

θ2

}
=

{
0
0

}
.
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The same result could be obtained by approximating the expressions of the
kinetic and potential energies using quadratic forms in the generalized coor-
dinates and velocities. The kinetic energy is already such, while the potential
energy can be simplified by developing the cosines in series and truncating
them after the second term and using the simplified expression for d1

U = −mgl

[(
1 − θ2

1

2

)
+

(
1 − θ2

1

2

)]
+

1

2
kl2(θ1 − θ2)

2 ,

i.e.,

U =
l

2

{
θ1

θ2

}T [
mg + kl −kl
−kl mg + kl

] {
θ1

θ2

}
+ 2mgl .

The same linearized equations of motion are thus obtained.

1.5 Configuration space

Vector x in which the generalized coordinates are listed is a vector in the
sense it is column matrix. However, any set of n numbers may be interpreted
as a vector in an n-dimensional space. This space containing vector x is
usually referred to as the configuration space, since any point in this space
can be associated to a configuration of the system.

Actually, not all points of the configuration space, intended as an infi-
nite n-dimensional space, correspond to configurations that are physically
possible for the system: A subset of possible configurations may thus be
defined. Moreover, even systems that are dealt with using linear equations
of motion are linear only for configurations not much displaced from a ref-
erence configuration (usually the equilibrium configuration) and then the
linear Eq. (1.28) applies only in an even smaller subset of the configuration
space.

A simple system with two degrees of freedom is shown in Fig. 1.6a;
it consists of two masses and two springs whose behavior is linear in a
zone around the equilibrium configuration with x1 = x2 = 0 but then
behave in a nonlinear way to fail at a certain elongation (Fig. 1.6b). In the
configuration space, that in the case of a two-degrees-of-freedom system has
two dimensions and thus is a plane, there is a linearity zone, surrounded
by a zone where the system behaves in a nonlinear way. Around the latter
there is another zone where the system loses its structural integrity.

During motion, the point representing the system’s configuration moves
in the configuration space and its trajectory is referred to as the dynam-
ical path. The dynamical paths corresponding to different time histories
of the system can intersect each other, and a given configuration can be
instantaneously taken during different motions.
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FIGURE 1.6. Sketch of a system with two degrees of freedom (a) made of two
masses and two springs, whose characteristics (b) are linear only in a zone about
the equilibrium position. Three zones can be identified in the configuration space
(c) in the inner one the system behaves linearly, in another one the system is
nonlinear. The latter zone is surrounded by a ‘forbidden’ zone.

1.6 State space

Knowledge of the system’s configuration at a given time and of the time
history of the forcing function does not allow one to predict its future evo-
lution or to know its past time history. If, on the contrary, the generalized
velocities are also known, the state of motion of the system is completely
known at any time. Positions and velocities, taken together, are thus the
state variables of the system, even if this choice is not unique and other
pairs of variables correlated with them can be used (e.g., positions and
momenta).

A state vector

z =
{

v
x

}
,

where

v = ẋ ,

containing the displacements and velocities can thus be defined.5 It has 2n
components and defines a point in a space with 2n dimensions, the state
space, defined by a reference frame whose coordinates are the state variables
of the system. In the case of systems with a single degree of freedom, the
state space has only two dimensions and is called the state plane.

5The state vector can be alternatively defined as z =

{
x
v

}
. There is no difficulty

in modifying all relevant matrices to cope with this definition.
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Remark 1.9 The configuration space is a subspace of the state space.

With reference to the state space, the equation of motion (1.28) of a linear
system can be transformed into a set of 2n first-order linear differential
equations, the state equations of the system

{
Mv̇ + Gv + (K−Mg)x = Q
ẋ = v . (1.29)

The state equations are usually written in the form

ż(t) = Az(t) + Bu(t) , (1.30)

where

A =
[

−M−1G −M−1
(
K−Mg

)
I 0

]

is the dynamic matrix of the system. It is neither symmetrical nor positive
defined.

Vector u(t), whose size need not be equal to the number of degrees
of freedom of the system, is the vector in which the inputs affecting the
behavior of the system are listed. B is the input gain matrix; if the number
of inputs is r, it has 2n rows and r columns.

If the inputs u(t) are linked with the generalized forces Q(t) acting on
the various degrees of freedom by the relationship

Q(t) = Tu(t) , (1.31)

then the expression of the input gain matrix is

B =
[

M−1T
0

]
. (1.32)

If the output of the system consists of a linear combination of the state
variables, to which a linear combination of the inputs can be added, a
second equation can be added to Eq. (1.30)

y(t) = Cz(t) + Du(t) , (1.33)

where

• y is the output vector, i.e., a vector in which the m outputs of the
system are listed.

• C is a matrix with m rows and n columns, often referred to as the
output gain matrix.6 If all generalized displacements are taken as
outputs of the system, matrix C is simply C = [0, I].

6The output gain matrix is usually referred to as C. This symbol is used here even
though it is similar to that used for the damping matrix C because the author thinks
no confusion between them is possible.
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• D is a matrix with m rows and r columns, expressing the direct
influence of the inputs on the outputs; it is therefore referred to as
the direct link matrix .

The set of four matrices A, B, C, and D is usually referred to as the
quadruple of the dynamic system.

Summarizing, the equations that define the dynamic behavior of the
system, from input to output, are

{
ż = Az + Bu
y = Cz + Du . (1.34)

The input–output relationship described by Eq. (1.34) may be described
by the block diagram shown in Fig. 1.7.

If r = 1, i.e., there is a single input u(t), and m = 1, i.e., there is a
single output y(t), the system is referred to as a single-input, single-output
(SISO) system. Otherwise, if there are several inputs and outputs, the sys-
tem is a multiple-input, multiple-output (MIMO) one. This distinction has
nothing to do with the number of degrees of freedom or of state variables.
A single-degree-of-freedom system has two state variables (position and ve-
locity) and may be a MIMO system, where the input–output relationship
is concerned.

Remark 1.10 The state equation is a differential equation, but the output
equation is simply algebraic.

The points representing the state of the system in subsequent instants
describe a trajectory in the state space. This trajectory defines the motion.
The various trajectories obtained with different initial conditions constitute
the state portrait of the system. In the case of autonomous systems, i.e.,
systems modeled by an equation of motion not containing explicitly the
independent variable time, it is possible to demonstrate that, with the
exception of possible singular points, only one trajectory can pass through
any given point of the state space.

Equation (1.30) is non-autonomous, as time appears explicitly in the in-
put vector. In this case, one more dimension, namely time, is added to the

FIGURE 1.7. Block diagram corresponding to Eq. (1.34).



44 1. Conservative Discrete Vibrating Systems

state space to prevent the trajectories from crossing each other, as would
happen in (x, ẋ) space. The state space for a non-autonomous system with
a single degree of freedom is consequently a tridimensional space (x, ẋ, t).
Even in this case only the state projection in the (x, ẋ) plane is often rep-
resented to reduce the complexity of the state portrait. Another technique
is that of representing only some selected points of the trajectories, chosen
at fixed time intervals, usually the period of the forcing function when the
latter is periodic, as if a strobe were used. This strobed map is usually
referred to as a Poincaré section or Poincaré map.

A point in the state space such that

Az + Bu = 0

for any value of time is an equilibrium point. Because it is a static solution,
it can be defined only if the input vector u is constant in time. All general-
ized velocities are identically equal to zero and thus the equilibrium point
lies in the configuration space, thought as a subspace of the state space.
Although a nonlinear system can have a number of equilibrium points, a
single equilibrium point exists if the system is linear. If u is equal to zero,
the equilibrium point is the solution of the homogeneous algebraic equation

Az = 0 ,

i.e., the trivial solution z = 0, except when the dynamic matrix is singular.
In the case of nonlinear systems, the equations of motion can often be

linearized about any given equilibrium points. The motion of the linearized
system about an equilibrium point is usually referred to as motion in the
small .

Remark 1.11 The equation of motion in the state space can be written
in many different forms, but the current formulation is standard for the
study of dynamic systems in general. When the generalized momenta are
used instead of the generalized velocities, the term phase is used instead of
state.

Example 1.5 Write the equation of motion in the state space of the system

of Example 1.2, assuming that the only input u(t) is the moment M3 acting

on the third moment of inertia. Write the output equation, assuming that only

one output is considered, the rotation of the third moment of inertia. Introduce

three auxiliary variables v1= θ̇1, v2= θ̇2, and v3= θ̇3.
Because there is only one input (r=1), matrix T has three rows and one

column:

T = [0, 0, 1]T .
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The state equation is thus

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v̇1

v̇2

v̇3

θ̇1

θ̇2

θ̇3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 −20 10 0
0 0 0 2.5 −3.5 1
0 0 0 0 8 −8
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v1

v2

v3

θ1

θ2

θ3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0
0
2
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

M3 . (1.35)

Because the output is only θ3, matrix D vanishes while the output gain matrix
has one row and six columns:

C =
[

0 0 0 0 0 1
]

.

If matrix M is singular, it is impossible to write the dynamic matrix in
the usual way. Usually this occurs because a vanishingly small inertia is as-
sociated to some degrees of freedom and the problem may be circumvented
by associating a very small mass to them. However, it has little sense to
resort to tricks of this kind when it is possible to overcome the problem in
a more correct and essentially simple way.

Consider the system described by Eq. (1.28) and assume that matrices
G and Mg are zero (the system is natural). Moreover, assume that matrix
M is diagonal, which is not a lack of generality, since it is always possible
to write the system in this form.

The degrees of freedom can be subdivided into two sets: a vector x1,
containing those to which a non-vanishing inertia is associated, and a vector
x2, containing all other ones. In a similar way all matrices and forcing
functions may be split:

M =
[

M11 M12

M21 M22

]
, K =

[
K11 K12

K21 K22

]
, Q =

{
Q1

Q2

}
.

The mass matrix M22 vanishes and, since the mass matrix is diagonal,
also M12 and M21 vanish.

The equations of motion can be written in the form
{

M11ẍ1 + K11x1 + K12x2 = Q1(t)
K21x1 + K22x2 = Q2(t) . (1.36)

The second set of equations can be readily solved in x2:

x2 = −K−1
22 K21x1 + K−1

22 Q2(t) . (1.37)

It is thus possible to write an equation of motion containing only the
generalized coordinates x1:

M11ẍ1 +
(
K11x1 − K−1

22 K21

)
x1 = Q1(t) + K−1

22 Q2(t) (1.38)
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whose mass matrix is not singular. This procedure is essentially what in
Chapter 10 will be defined as static reduction.

1.7 Exercises

Exercise 1.1 Write the equations of motion for the system of Fig. 1.3, assum-

ing that the displacements of points P1 and P2 are small. Obtain the explicit

expressions of all matrices.

Exercise 1.2 Write the equations of motion of the system of Fig. 1.8. Eliminate
the generalized coordinate xC, and consider the system as a system with two
degrees of freedom only.

FIGURE 1.8. System with two degrees of freedom.

FIGURE 1.9. Double pendulum.
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Exercise 1.3 Consider the double pendulum of Fig. 1.9. Write the kinetic and

potential energies of the system and obtain the equation of motion through Lagrange

equations. Linearize the equation of motion in order to study the small oscillations

about the static equilibrium position.

Exercise 1.4 Write the quadruple of a system governed by Eq. (1.11) in which

forces f (t) have been neglected, assuming the accelerations of the constraints as

inputs and the generalized coordinates as outputs.



2
Equations in the Time, Frequency,
and Laplace Domains

The equations of motion of a discrete system are ordinary differential equa-
tions containing the derivatives of the generalized coordinates with respect
to time, usually up to the second order. If the time history of the re-
sponse is assumed, e.g. if it is stated that the time history is harmonic or
poly-harmonic, the equations of motion can be transformed into algebraic
equations containing the frequency but not the time. Another alternative
to transform the ordinary differential equations into algebraic equations is
to use Laplace transforms. In this case the equations contain the Laplace
variable, usually indicated with symbol s, instead of time.

2.1 Equations in the time domain

The equations of motion written in the previous chapter (Eq. (1.3) or (1.4))
contain the time history of both the excitation F (t) (or f(t)) and the re-
sponse x(t) (or x(t)). If the system is not time invariant, also the parameters
(m, k, etc.) are functions of time.

The equation of motion is thus said to be written in the time domain.
The inputs and the outputs are thus time histories and to solve a dynamic

problem means to obtain the time history of the output knowing that of
the input. Sometimes the input is derived from the output and the problem
is said to be an inverse problem.

This approach is fairly straightforward both in case of linear systems (and
then analytical solutions are possible, at least if the time history of the input
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is not too complicated) and in case of nonlinear systems. In the latter case a
general solution cannot usually be obtained and the only possible approach
is to resort to the numerical integration or to some approximate methods
whose results are increasingly unreliable with increasing nonlinearity.

Also the equation written with reference to the state space (Eq. (1.30))
is referred to the time domain. Their solution can usually be obtained in
closed form only in case of linear systems, excited by a not-too-complicated
law u(t).

2.2 Equations in the frequency domain

2.2.1 Harmonic motion

Assume that the system is linear and that the equations are time invariant.
As it will be demonstrated later, when the excitation either is not present
(free behavior) or has an harmonic time history, the response of the system
is harmonic in time.

This means that if

f = f1 cos (ωt) + f2 sin (ωt) (2.1)

(with the particular case f1 = f2 = 0 describing free behavior), the response
can be written in the form

x = x1 cos (ωt) + x2 sin (ωt) . (2.2)

Because

x0 cos (ωt + Φ) = x0 [cos (Φ) cos (ωt) − sin (Φ) sin (ωt)] ,

the harmonic time history of the ith response can be written as

xi = x0i cos (ωt + Φi) , (2.3)

where x0i and Φi are, respectively, its amplitude and phase. Clearly, the
amplitudes of the cosine and sine components are

x1 = {x0i cos (Φi)} , x2 = {−x0i sin (Φi)} . (2.4)

The same holds for the excitation.
It is common to use exponential functions to express a harmonic time

history. Instead of writing the ith time history using Eq. (2.3), the following
expression is very common:

xi = x0ie
iωt , (2.5)



2.2 Equations in the frequency domain 51

where x0i is a complex number, the complex amplitude of the response and
ω is a real constant, the circular frequency or simply the frequency.

By expanding Eq. (2.5),

xi = � (x0i) cos (ωt)−� (x0i) sin (ωt)+i [� (x0i) sin (ωt) + � (x0i) cos (ωt)] ,
(2.6)

it is clear that it does not coincide with Eq. (2.3).
In particular, while Eq. (2.3) yields a real result, Eq. (2.5) yields a com-

plex displacement.

Remark 2.1 In the real world the displacement and the excitation are both
real quantities. Equation (2.5) as such is thus unsatisfactory.

To avoid this problem, Eq. (2.5) can be written in the form

xi = �
(
x0ie

iωt
)

(2.7)

that yields Eq. (2.3), provided

x1i = � (x0i) , x2i = −� (x0i) . (2.8)

This amounts to represent the force f and the displacements x as the
projections on the real axis of vectors

f∗ = f0e
iωt , x∗ = x0e

iωt (2.9)

rotating in the complex plane with an angular velocity ω (Fig. 2.1a). Angle
Φ in the figure is the phase difference between the two vectors.

In practice Eq. (2.5) is directly used instead of Eq. (2.7). Neglecting the
� symbol amounts to writing a relationship between f∗ and x∗ instead of
between f and x.

FIGURE 2.1. (a) Force f and displacement x as projections of the complex quan-
tities f∗ and x∗ represented as rotating vectors in the complex plane. Situation
at time t. (b) Displacement thought as the sum of two counter-rotating vectors
in the complex plane.
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Another way to solve the inconsistency between Eq. (2.5) and Eq. (2.3)
is that of assuming implicitly that there are two solutions of the type of
Eq. (2.5), one with positive ω and one with negative ω, and that the time
history is given by the linear combination

xi = x0ie
iωt + x0ie

−iωt , (2.10)

where x0i is the conjugate of x0i.
A quick check shows that Eq. (2.10) is completely equivalent to Eq. (2.3).

The vector x with harmonic time history can be thought as the sum of two
vectors counter-rotating in the complex plane (Fig. 2.1b).

2.2.2 Frequency domain

By introducing the time history (2.5) for both excitation and response into
the equation of motion (1.7), an algebraic equation is obtained:

(
−ω2M + K

)
x0e

iωt = f0eiωt . (2.11)

This equation holds for any value of time t. Expression eiωt never goes
to zero in the complex plane and its projection on the real axis vanishes
only for selected values of time. Equation (2.11) can thus be simplified as

(
−ω2M + K

)
x0 = f0 . (2.12)

Remark 2.2 By introducing a time history of both response and excita-
tion into the equation of motion, the latter transforms from a differential
equation of order 2n (where n is the number of degrees of freedom) into an
algebraic equation containing the frequency but not the time. The matrix of
the coefficients contains constant terms and terms in ω2.

Remark 2.3 If the system performs harmonic motion and the time history
of the excitation is harmonic, Eq. (2.12) is exactly equivalent to the time
domain equation (1.7).

Equation (2.12) is usually said to be the equation of motion in the fre-
quency domain. It can be written only if parameters M and K are constant
in time, but in this case they can be functions of frequency.

Matrix
Kdyn = K − ω2M (2.13)

is said to be the dynamic stiffness matrix of the system and the equation
in the frequency domain can be written in the compact form

Kdynx0 = f0 . (2.14)

The dynamic stiffness matrix is a function of the frequency ω.



2.2 Equations in the frequency domain 53

The inverse of the dynamic stiffness matrix is the dynamic compliance
matrix or the frequency response of the system H(ω)

H (ω) = K−1
dyn . (2.15)

In the case of single-degree-of-freedom systems, its value is

H (ω) =
1

k − ω2m
, (2.16)

The matrix of the frequency responses for a system with n degrees of free-
dom contains a total of n2 functions of the frequency. However, since both
the dynamic stiffness and the frequency response matrices are symmetrical,
only n (n + 1) /2 are different from each other.

Also the state equation (2.18) can be written in the frequency domain.
If both the state vector z and the input vector u are harmonic in time and
are represented through Eq. (2.5)

z = z0e
iωt, u = u0e

iωt, (2.17)

it follows that
(iωI−A) z0 = Bu0, (2.18)

where matrices A and B must be constant in time, but may be functions of
the frequency. Vectors z0 and u0 are complex, and their meaning is exactly
the same already seen for x0 and f0.

Example 2.1 Write the frequency domain equation in both the configuration
and state space for the pendulum shown in Fig. 1.1b (Example 1.1).
The frequency domain equation is applicable only to linear systems (as it will
be seen later, the response of nonlinear systems is not harmonic) and then
only the linearized equation

Jθ̈ + mglθ = 0

will be considered.
By introducing a solution of the type of Eq. (2.5), it yields the frequency do-
main equation (

−ω2J + mgl
)
θ0 = 0 .

To write a state space equation, an auxiliary state variable, such as the velocity

vθ = θ̇,
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must be introduced. The time domain state equation is thus

{
v̇θ

θ̇

}
=

[
0 −mgl

J
1 0

] {
vθ

θ

}
.

The equation in the state space is obtained from Eq. (2.18):

[
iω

mgl

J
−1 iω

] {
vθ

θ

}
= 0 .

2.3 Equations in the Laplace domain

2.3.1 Laplace transforms

Consider a function of time f(t) defined for t ≥ 0. Its Laplace transform
L[f(t)] = f̃(s) is defined as

L[f(t)] = f̃(s) =
∫ ∞

0

f(t)e−stdt , (2.19)

where s is a complex variable. For the mathematical details on Laplace
transforms and the conditions on function f(t) which make the transform
possible, see one of the many textbooks on the subject.1

Laplace transform is a linear transform, i.e., the transform of a linear
combination of functions is equal to the linear combination of the trans-
forms of the various functions.

The main property that makes the Laplace transform useful in structural
dynamics is that regarding the transform of the derivatives of function f(t):

L[ḟ(t)] = sL[f(t)] − f(0), L[f̈(t)] = s2L[f(t)] − sf(0) − ḟ(0) . (2.20)

The transform thus enables changing a differential equation into an al-
gebraic equation without actually assuming the time histories of the ex-
citation and the response, as was seen for the equations written in the
frequency domain.

Given the equation of motion (1.3) of a conservative linear system with
a single degree of freedom,

mẍ + kx = f(t) ,

by transforming both functions f(t) and x(t) into f̃(s) and x̃(s), the fol-
lowing equation in the Laplace domain is obtained:

1For example, W.T. Thompson, Laplace transformation, Prentice Hall, Englewood
Cliffs, 1960.
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(s2m + k)x̃(s) − msx(0) − mẋ(0) = f̃(s) . (2.21)

Since the Laplace transforms of the most common functions f(t) are
tabulated (see Appendix B), Eq. (2.21) can be used to compute the Laplace
transform of the response of the system. The time history x(t) can thus
be obtained through the inverse transformation or, more simply, by using
Laplace transform tables.

Equation (2.21) holds also for systems with many degrees of freedom:

(s2M + K)x̃(s) − Msx(0) − Mẋ(0) = f̃(s) . (2.22)

If at time t = 0 both x(0) and ẋ(0) are equal to zero, it follows that

(s2M + K)x̃(s) = f̃(s) . (2.23)

The parameters of the system M and K must be constant in time, but
may be functions of the Laplace variable s.

Remark 2.4 The main limitation of the Laplace transform approach is
that of being restricted to the solution of linear differential equations with
constant coefficients.

2.3.2 Transfer functions

Since Eq. (2.23) is a very simple algebraic equation, it is easily solved in
x̃(s):

x̃(s) = (s2M + K)−1 f̃(s) . (2.24)

The function of s that, once multiplied by the transform of the excitation
f̃ (s), yields the transform of the response x̃(s) is the transfer function G(s)
of the system

G(s) = (s2M + K)−1 , (2.25)

or, in case of single-degree-of-freedom systems,

G(s) =
1

ms2 + k
. (2.26)

It coincides with the frequency response of the system H(ω) once s has
been substituted for iω.

The block diagram of the system can be drawn with reference to the
Laplace domain using the transfer function as shown in Fig. 2.2. The trans-
fer function and the frequency response are strictly related to each other:
The second can be obtained from the first by substituting the frequency
multiplied by the imaginary unit iω for the Laplace variable s.

A number n2 of transfer functions is included in matrix G(s), which is
often referred to as a transfer matrix, or matrix of the transfer functions.
It is symmetrical like matrix H(ω).
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FIGURE 2.2. Block diagram of a conservative linear single-degree-of-freedom
system in the Laplace domain.

Remark 2.5 When operating in the frequency domain, the motion is as-
sumed to be harmonic, and hence the frequency ω is expressed by a real
number. When operating in the Laplace domain, no limitation is set on the
type of time history and hence s is complex.

Example 2.2 Assume that a torque M (t) is applied to the pendulum of Fig.
1.1c (Example 1.1). Write the Laplace domain equation in the configuration
space and the transfer function.
Again, only the linearized equation will be dealt with. By adding the driving
torque M(t), the equation of motion becomes

Jθ̈ + mglθ = M (t) .

By introducing the Laplace transforms θ̃ (s) and M̃ (s) of the response and
of the excitation, and assuming that for t = 0 the pendulum is at rest in its
central position (θ (0) = 0, θ̇ (0) = 0), the Laplace domain equation is readily
obtained: (

s2J + mgl
)
θ̃(s) = M̃ (s) .

The transfer function is thus

G(s) =
1

s2J + mgl
.

2.3.3 State space equations

Also the state equation (2.18) can be transformed into an algebraic equation
through Laplace transform. Assuming that at time t = 0 the value of all
state variables is zero, the state and output equations of the system in the
Laplace domain are {

sz̃ (s) = Az̃(s) + Bũ(s)
ỹ(s) = Cz̃(s) + Dũ(s) ,

(2.27)

where z̃(s), ũ(s), and ỹ(s) are the Laplace transforms of the state, input,
and output vectors, respectively.
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The first equation can be solved in the state vector, obtaining

z̃ (s) = (sI −A)−1 Bũ(s) . (2.28)

By introducing the state vector into the output equation, the following
input–output transfer function is obtained:

G(s) =
ỹ(s)
ũ(s)

= C (sI −A)−1 B + D . (2.29)

The generic transfer function Gij(s), which links the ith output with the
jth input, can be written as the ratio of two polynomials:

Gij(s) =
βmsm + βm−1s

m−1 + · · · + β1s + β0

sn + αn−1sn−1 + · · · + α1s + α0
, (2.30)

where n is the order of the system and m (with m ≤ n) is the order of the
numerator of the transfer function. The difference n − m is referred to as
the pole excess or relative order of the system.

Remark 2.6 The roots of the denominator of the transfer function are
the poles of the system, i.e., the eigenvalues of the dynamic matrix A. The
roots of the numerator are the zeros. Note that the poles are characteristics
of the system, and the zeros are typical of each transfer function.

The transfer functions can be written in the form

Gij(s) = k
(s + z1)(s + z2) . . .

(s + p1)(s + p2) . . .
, (2.31)

where zi and pi are the zeros and poles, respectively.

Remark 2.7 The poles and zeros are either real or complex-conjugate
pairs, at least if the quadruple is real.

2.4 Exercises

Exercise 2.1 Plot the dynamic compliance of the system sketched in Fig. 1.4

and already studied in Example 1.2.

Exercise 2.2 A tubular cantilever beam has a length l and inner and outer

diameters di and do. At the end of the beam a mass m has been attached. Compute

the dynamic compliance of the system, neglecting the mass of the beam. Data:

l = 1 m, di = 60 mm, do = 80 mm, m = 30 kg, E = 2.1 × 1011 N/m2.

Exercise 2.3 Write the transfer functions of the system of Fig. 1.8 and already

studied in Exercise 1.2.
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Exercise 2.4 Consider the system of Fig. 1.4 and already studied in Examples

1.2 and 1.5. Assume that the input into the system is the torque M3 applied

at point 3 and the output is the rotation θ2. Compute the input–output transfer

function.
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Damped Discrete Vibrating Systems

Damping is a feature of all real-world systems, but is usually not easily
modeled. In the present chapter linearized models, namely viscous, hys-
teretic (or structural), and general nonviscous damping are discussed in
detail. The equations of motion, in both the time and the frequency do-
main, for linear damped systems are introduced, and the important issue of
how including nonviscous damping in time-domain equations is tackled.

3.1 Linear viscous damping

3.1.1 Definition of viscous damping

During vibration the energy stored in the system in different forms is con-
tinually exchanged between them. Mechanical vibration entails the trans-
formation of energy from the kinetic to the potential form and vice versa.
In a similar way, electrical oscillations are characterized by the energy ex-
change between the magnetic and the electric field.

However, each time energy is transformed from one form to another in
a real-world system, some energy is lost, or better is transformed, through
some irreversible process, into a form (usually heat) from which it cannot
be transformed back. In electrical systems this occurs due to the resistance
of the conductors (superconductors are an important exception), while in
mechanical system there is always some sort of friction or damping causing
energy losses. In mechanical vibration, for instance, damping causes some
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energy to be lost each time it is transformed from potential to kinetic energy
and back, causing a decrease in time of the amplitude of free oscillations.

The actual mechanisms causing energy losses are complex, and usually
lead to nonlinearities. However, particularly when damping is not large,
the exact way in which the damping force is applied is far less important
than the energy it dissipates in each vibration cycle. In this case the sim-
plest way to introduce energy losses into the system is applying a force
whose direction is opposite to that of the velocity and whose amplitude is
proportional to the speed.

A device producing a force whose amplitude is proportional to the rela-
tive velocity of its end points l̇ through the damping coefficient c and whose
direction is opposite to that of the relative velocity

Fd = −cl̇ (3.1)

is usually referred to as a linear viscous damper or linear dashpot. It can
be added (in parallel to the spring) to the linear mechanical oscillator with
a single degree of freedom consisting of a point mass suspended by a linear
spring (Fig. 1.1a), obtaining a spring–mass–damper system (Fig. 3.1a).

If the damping coefficient (in S.I. units expressed in Ns/m) is positive,
the damper is a device that dissipates energy, and the amplitude of the free
oscillations of the system decays in time. If the system is statically stable,
it is also dynamically stable because it actually returns to the equilibrium
position, at least asymptotically.

FIGURE 3.1. (a): Damped linear oscillator with one degree of freedom (spring–
mass–damper system, with the spring and the damper in parallel); (b) linear
damped system with 2 degrees of freedom.
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3.1.2 Time-domain equation of motion

The dynamic equilibrium equation of a spring–mass–damper system, with
the spring and the damper in parallel (Fig. 3.1a), written with reference to
the inertial x-coordinate, becomes

mẍ = −c [ẋ − ẋA(t)] − k [x − l0 − xA(t)] + F (t) − mg . (3.2)

The dynamic problem can be separated from the static problem by ne-
glecting all constant forces and the dynamic equilibrium equation can be
written in the form

mẍ + cẋ + kx = cẋA(t) + kxA(t) + F (t) . (3.3)

The corresponding equation of motion, written in terms of relative coor-
dinates, is

mẍ + cẋ + kx = −mẍA + F (t) , (3.4)

A 2 degrees of freedom systems is shown in Fig. 3.1b. The relevant equa-
tion of motion can be written in matrix form as[

m1 0
0 m2

]{
ẍ1

ẍ2

}
+

[
c1 + c12 −c12

−c12 c2 + c12

]{
ẋ1

ẋ2

}
+

+
[

k1 + k12 −k12

−k12 k2 + k12

] {
x1

x2

}
=

{
c1ẋA + k1xA + F1(t)
c2ẋA + k2xA + F2(t)

}
.

(3.5)
In the case of a general natural system with any number n of degrees of

freedom, the equation of motion can be written in the compact form

Mẍ + Cẋ + Kx = f(t) , (3.6)

where the symbols have the same meaning seen for conservative system
and C is the viscous damping matrix. Generally it is not a diagonal matrix
(although it usually has a band structure) and is symmetrical and positive
semidefinite.

3.1.3 Dynamic stiffness

If both x(t) and f(t) are harmonic in time, and the parameters of the
system are constant, Eq. (3.6) can be written in the frequency domain by
stating that both the response and the excitation can be expressed by the
time history of Eq. (2.5). The algebraic equation so obtained is

(
−ω2M+iωC + K

)
x0 = f0 . (3.7)

The dynamic stiffness

Kdyn = K− ω2M+iωC (3.8)
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is thus a complex quantity. Also its inverse, the dynamic compliance or the
frequency response, is complex.

Remark 3.1 The time history of the free oscillations of a damped sys-
tem is not harmonic. The frequency-domain equation (3.7) implies that the
function x(t) is harmonic, and thus cannot be used for free motion.1

Remark 3.2 The dynamic stiffness of a system made by a spring and a
damper in parallel is

kdyn = k+iωc. (3.9)

Its real part is constant, while its imaginary part is proportional to the
frequency. The ratio between the imaginary and the real parts of the dy-
namic stiffness is usually referred to as the loss factor

η =
ωc

k
. (3.10)

It grows linearly with the frequency.

3.1.4 Energy dissipated in harmonic motion

Consider a system with a single degree of freedom. The power dissipated
by the damper is simply given by the product of the force it exerts by the
speed:

W = Fdẋ = −cẋ2. (3.11)

Since the velocity in harmonic motion

x = x0 cos (ωt)

is
ẋ = x0ω sin (ωt) ,

the energy dissipated in a cycle is

ed =
∫ T

0

Wdt = −cx2
0ω

2

∫ T

0

sin2 (ωt) dt , (3.12)

where T is the period.
The integral is easily solved, yielding

ed = −cx2
0ω

∫ 2π

0

sin2 (ωt) d (ωt) = −πcx2
0ω . (3.13)

The energy the damper dissipates in a cycle (negative since it is dissi-
pated energy) is thus proportional to the frequency and to the square of
the amplitude of the motion.

1The frequency ω is here assumed to be a real quantity.
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The ratio between the energy dissipated in a cycle and the potential
energy stored by the spring at the maximum elongation

es =
1
2
kx2

0 (3.14)

is the specific damping capacity of the system, usually indicated by symbol
ψ :

ψ =
∣∣∣∣ed

es

∣∣∣∣ = 2πω
c

k
. (3.15)

The specific damping capacity of a viscously damped system is propor-
tional to the frequency.

3.1.5 Transfer function of a system with viscous damping

The equation of motion of a system with viscous damping can be written
in the Laplace domain by transforming both functions f(t) and x(t) into
f̃(s) and x̃(s). Equation (3.6) thus becomes

(s2M + sC + K)x̃(s) − Msx(0) − Mẋ(0) − Cx(0) = f̃(s) . (3.16)

If at time t = 0 both x(0) and ẋ(0) are equal to zero, it follows that

(s2M + sC + K)x̃(s) = f̃(s) . (3.17)

Also the damping matrix C must be constant in time, but may be a
function of the Laplace variable s.

Equation (3.17) is easily solved in x̃(s)

x̃(s) = (s2M + sC + K)−1f̃ (s) . (3.18)

The transfer function of the damped system is thus

G(s) = (s2M + sC + K)−1 , (3.19)

or, in case of single degrees of freedom systems,

G(s) =
1

ms2 + cs + k
. (3.20)

3.1.6 Dynamic stiffness of a spring–damper series.

Consider a mass–spring–damper system in which the spring and the damper
are in series instead of being in parallel (Fig. 3.2a).

The system has 2 degrees of freedom: the displacement x of mass m and
the displacement xB of point B.

The equations of motion are easily obtained by stating the dynamic
equilibrium conditions of mass m and point B{

mẍ + c (ẋ − ẋB) = F (t)
c (ẋB − ẋ) + kxB = kxA . (3.21)
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FIGURE 3.2. Spring–mass–damper system with the spring and the damper in se-
ries. (a): sketch of the system; (b) and (c): nondimensional dynamic stiffness and
loss factor as functions of the nondimensional frequency in linear and logarithmic
scales.

Remark 3.3 This set of differential equations is not a fourth order set,
as expected for a system with 2 degrees of freedom, but a third order set,
because the acceleration ẍB is not present. This is due to the fact that no
mass is located in B.

If all time histories are harmonic, the equation can be written in the
frequency domain

⎧⎨
⎩

(
−ω2m + iωc

)
x0 − iωcxB0 = F0

−iωcx0 + (k + iωc)xB0 = kxA0 .
(3.22)

The amplitude xB0 can be obtained from the second equation

xB0 =
iωcx0

k + iωc
+

kxA0

k + iωc
(3.23)

and substituted into the first, obtaining
(
−ω2m +

kω2c2

k2 + ω2c2
+ iω

k2c

k2 + ω2c2

)
x0 = F0 + kxA0

k − iωc

k2 + ω2c2
. (3.24)

The dynamic stiffness of the spring–damper series (without the mass m)
is thus

kdyn =
kω2c2

k2 + ω2c2
+ iω

k2c

k2 + ω2c2
. (3.25)

Equation (3.25) can be written in nondimensional form as

kdyn

k
=

ω∗2

1 + ω∗2 + i
ω∗

1 + ω∗2 , (3.26)
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where the nondimensional frequency is

ω∗ = ω
c

k
. (3.27)

The loss factor is thus
η =

1
ω∗ (3.28)

and decreases with increasing frequency.
The real and imaginary parts of the nondimensional dynamic stiffness

and the loss factor are plotted as functions of the nondimensional frequency
in Fig. 3.2b and c.

When the frequency tends to zero, both the real and the imaginary parts
of the dynamic stiffness vanish and the loss factor tends to infinity. At very
high frequency, on the contrary, only the imaginary part of the dynamic
stiffness tends to zero, together with the loss factor, while the real part
tends to the constant value k.

The value of the frequency at which the imaginary part has a peak is
easily computed by searching the frequency at which its derivative with
respect to ω vanishes:

ωpeak =
k

c
, i.e. ω∗

peak = 1 . (3.29)

The spring–damper series system acts as a damper at low frequency,
while at high frequency it acts as a spring:

limω∗→0 (kdyn) = ikω∗ = icω ,

(kdyn)ω∗=1 = k
2 (1 + i) ,

limω∗→∞ (kdyn) = k .

(3.30)

3.2 State-space approach

When using the state-space approach, the presence of damping does not
change much the relevant equations with the exception of the dynamic
matrix which is now

A =
[

−M−1C −M−1K
I 0

]
. (3.31)

Such a formulation holds only if the mass matrix is non-singular. This
can easily occur when one of the masses has a null value, like when a spring
and a damper are connected in series without any mass in between (see,
for instance, Fig. 3.2a).
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As already seen for undamped systems, this problem may be circum-
vented by associating a very small mass to the relevant degrees of freedom.
Also here, however, it has little sense to resort to tricks of this kind when
it is possible to overcome the problem in a more correct way.

The degrees of freedom can be subdivided into two sets: a vector x1

containing the generalized coordinates to which a nonvanishing inertia is
associated, and a vector x2 containing all other ones. In a similar way all
matrices and forcing functions may be split. The mass matrix M22 vanishes
and, if the mass matrix is diagonal, also M12 and M21 = MT

12 vanish.
Assuming that M12 is zero, the equations of motion become

{
M11ẍ1 + C11ẋ1 + C12ẋ2 + K11x1 + K12x2 = f1(t)
C21ẋ1 + C22ẋ2 + K21x1 + K22x2 = f2(t) . (3.32)

To simplify the equations of motion the gyroscopic and circulatory ma-
trices were not explicitly written, but in what follows no assumption on the
symmetry of the matrices will be done. Equation (3.32) thus holds also for
gyroscopic and circulatory systems.

By introducing the velocities v1, together with the generalized coordi-
nates x1 and x2, as state variables, the state equation is

M∗

⎧⎨
⎩

v̇1

ẋ1

ẋ2

⎫⎬
⎭ = A∗

⎧⎨
⎩

v1

x1

x2

⎫⎬
⎭ +

⎡
⎣ I 0

0 I
0 0

⎤
⎦ {

f1(t)
f2(t)

}
, (3.33)

where

M∗ =

⎡
⎣ M11 0 C12

0 0 C22

0 I 0

⎤
⎦ , A∗ = −

⎡
⎣ C11 K11 K12

C21 K21 K22

−I 0 0

⎤
⎦ . (3.34)

The dynamic matrix and the input gain matrix are

A = M∗−1A∗ , B = M∗−1

⎡
⎣ I 0

0 I
0 0

⎤
⎦ . (3.35)

Alternatively, the expressions of M∗ and A∗ may be

M∗ =

⎡
⎣ M11 C11 C12

0 C21 C22

0 I 0

⎤
⎦ , A∗ = −

⎡
⎣ 0 K11 K12

0 K21 K22

−I 0 0

⎤
⎦ . (3.36)

If vector x1 contains n1 elements and x2 contains n2 elements, the order
of the set of differential equations and the size of the dynamic matrix A
are 2n1 + n2.
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3.3 Rayleigh dissipation function

When the equations of motion are written through Lagrange equations,
non-conservative forces can be included into the force vector Q. Alterna-
tively, for a class of damping forces, it is possible to introduce a function
of the generalized velocities, usually referred to as the Rayleigh dissipation
function F .

The Lagrange equations thus become

d

dt

(
∂T
∂ẋi

)
− ∂T

∂xi
+

∂U
∂xi

+
∂F
∂ẋi

= Qi . (3.37)

The Rayleigh dissipation function for the viscous damper of Fig. 3.1a is
simply

F =
1
2
c [ẋ − ẋA(t)]2 . (3.38)

In general, for a linear system it is a quadratic function of the velocity.
If it can be written in the simple form

F =
1
2
ẋT Cẋ , (3.39)

where C is the symmetric damping matrix, the damping term appearing
in the equation of motion is simply Cẋ, as in equation (3.6).

This is not always the case, and the Rayleigh dissipation function may
contain also terms in which the products of the displacements by the ve-
locities are present

F =
1
2
ẋTCẋ + ẋT Hx , (3.40)

where H is a skew-symmetric matrix, referred to as the circulatory matrix .
The equation of motion of a linear, discrete, non-conservative system can

thus be written by adding the terms in C and H to Eq. (1.28)

Mẍ + (C + G)ẋ + (K−Mg + H)x = f(t) , (3.41)

Remark 3.4 The Rayleigh dissipation function is a measure of the power
dissipated by non-conservative forces.

Example 3.1 Consider the torsional system shown in Fig. 1.4 and already
studied in Example 1.2, adding three viscous torsional dampers with damping
coefficients Γ1 = 0.1, Γ2 = 1 Ns/m, and Γ3 = 0.4 Ns/m in parallel to the
springs. Write the damping matrix and the dynamic matrix.
The equation of motion of the third disc becomes

J3θ̈3 + Γ3(θ̇3 − θ̇2) + kT3(θ3 − θ2) = M3.

The equations for the other two discs can be written in a similar way, obtaining
a set of three second-order differential equations.
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The Rayleigh dissipation function is

2F = Γ1θ̇1
2

+ Γ2(θ̇2 − θ̇1)
2 + Γ3(θ̇3 − θ̇2)

2 ,

i.e.,

F =
1

2

⎧⎨
⎩

θ̇1

θ̇2

θ̇3

⎫⎬
⎭

T ⎡
⎣ Γ1 + Γ2 −Γ2 0

−Γ2 Γ2 + Γ3 −Γ3

0 −Γ3 Γ3

⎤
⎦

⎧⎨
⎩

θ̇1

θ̇2

θ̇3

⎫⎬
⎭ .

The damping matrix is thus

C =

⎡
⎣ 1.1 −1 0

−1 1.4 −0.4
0 −0.4 0.4

⎤
⎦ .

The dynamic matrix is

A =

[
−M−1C −M−1K

I 0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−1.1 1 0 −20 10 0
0.25 −0.35 0.1 2.5 −3.5 1
0 0.8 −0.8 0 8 −8
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Example 3.2 Consider the system of Fig. 3.1b, but with the spring and
damper connecting mass m2 to the ground in series instead of being in paral-
lel (Fig. 3.3). Write the equations of motion in both the configuration and the
state space.
The system has now 3 degrees of freedom: the displacement of point B must
be added to the displacements of point masses m1 and m2 The equations of
motion are thus

⎡
⎣ m1 0 0

0 m2 0
0 0 0

⎤
⎦

⎧⎨
⎩

ẍ1

ẍ2

ẍB

⎫⎬
⎭ +

⎡
⎣ c1 + c12 −c12 0

−c12 c2 + c12 −c2

0 −c2 c2

⎤
⎦

⎧⎨
⎩

ẋ1

ẋ2

ẋB

⎫⎬
⎭ +

+

⎡
⎣ k1 + k12 −k12 0

−k12 k12 0
0 0 k2

⎤
⎦

⎧⎨
⎩

x1

x2

xB

⎫⎬
⎭ =

⎧⎨
⎩

k1xA + F1(t)
F2(t)
k2xA

⎫⎬
⎭ .
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FIGURE 3.3. System of Fig. 3.1b, but with the spring and damper connecting
mass m2 to the ground in series instead of being in parallel.

The state variables are just 5 and, using the first formulation, the state-space
equation is

⎡
⎢⎢⎢⎢⎣

m1 0 0 0 0
0 m2 0 0 −c2

0 0 0 −c2 c2

0 0 1 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v̇1

v̇2

ẋ1

ẋ2

ẋB

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

=

⎡
⎢⎢⎢⎢⎣

−c1 − c12 c12 −k1 − k12 k12 0
c12 −c2 − c12 k12 −k12 0
0 c2 0 0 −k12

1 0 0 0 0
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v1

v2

x1

x2

xB

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

+

⎡
⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦

⎧⎨
⎩

k1xA + F1(t)
F2(t)
k2xA

⎫⎬
⎭ .
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Example 3.3 Write the linearized equation of motion of the system with 4
degrees of freedom shown in Fig. 1.3, to which a damper has been added in
parallel to each one of the five springs. Assume that the spring with stiffness
k5 is at 45◦ with respect to the direction of the coordinate axes in the reference
(static equilibrium) position.
Use Lagrange equations and take the relative displacements of points P1 and
P2 as generalized coordinates.
Let x0i be the coordinates defining the position of points P1and P2 in the
reference (i.e., the static equilibrium) condition and xi their displacements.
The vectors of the relative and inertial generalized coordinates are

xrel =

⎧⎨
⎩

(
P1 − A

)
(
P2 − A

)
⎫⎬
⎭=

⎧⎪⎪⎨
⎪⎪⎩

{
xAP1

yAP1

}
{

xAP2

yAP2

}
⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

x1

x2

x3

x4

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

x01

x02

x03

x04

⎫⎪⎪⎬
⎪⎪⎭

=x+x0 ,

xiner=xrel+δxxA+δyyA ,

where
δx =

[
1 0 1 0

]T
, δy =

[
0 1 0 1

]T
.

The kinetic energy of the system is

T = 1
2

(
m1V

2
P1 + m2V

2
P2

)
= 1

2
ẋT

inerMẋiner

where

M =

⎡
⎢⎢⎣

m1 0 0 0
0 m1 0 0
0 0 m2 0
0 0 0 m2

⎤
⎥⎥⎦ .

Assuming that the length at rest of the springs is l0i,the potential energy due
to the springs is

U = 1
2
k1

[√
(x1 + x01)

2 + x2
2 − l01

]2

+ 1
2
k2

[√
(x2 + x02)

2 + x2
1 − l02

]2

+

1
2
k3

[√
(x3 + x03)

2 + x2
4 − l03

]2

+ 1
2
k4

[√
(x4 + x04)

2 + x2
3 − l04

]2

+

+ 1
2
k5

[√
(x3 + x03 − x1 − x01)

2 + (x4 + x04 − x2 − x02)
2 − l05

]2

.

Since the displacements xi are referred to the static equilibrium conditions,
the length at rest of the springs is

li = x0i for i = 1...4 ; l05 =

√
(x03 − x01)

2 + (x04 − x02)
2 .
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To linearize the equation of motion, the expression of the potential energy (or
better, the increase of the potential energy with respect to the potential energy
in static equilibrium conditions) can be simplified by neglecting the squares of
the displacements xi with respect to the products xix0j. The expression of the
potential energy reduces to

U = 1
2
k1

[√
2x1l01 + l201 − l01

]2

+ 1
2
k2

[√
2x2l02 + l202 − l02

]2

+

1
2
k3

[√
2x3l03 + l203 − l03

]2

+ 1
2
k4

[√
2x4l04 + l204 − l04

]2

+

+ 1
2
k5

[√
l205 + 2Δx (x3 − x1) + 2Δy (x4 − x2) − l05

]2

,

where
Δx = x03 − x01 , Δy = x04 − x02 .

Finally, the square root can be substituted by its series truncated at its second
term, obtaining

U =
1

2

{
k1x

2
1 + k2x

2
2 + k3x

2
3 + k4x

2
4 + k5

[
Δx

l05
(x3 − x1) +

Δy

l05
(x4 − x2)

]2
}

,

i.e., in matrix form,

U = 1
2
xT

relKxrel =

= 1
2

⎧⎪⎪⎨
⎪⎪⎩

x1

x2

x3

x4

⎫⎪⎪⎬
⎪⎪⎭

T ⎡
⎢⎢⎣

k1 + c2k5 csk5 −c2k5 −csk5

csk5 k2 + s2k5 −csk5 −s2k5

−c2k5 −csk5 k3 + c2k5 csk5

−csk5 −s2k5 csk5 k4 + s2k5

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

x1

x2

x3

x4

⎫⎪⎪⎬
⎪⎪⎭

,

where c = Δx/l05 and s = Δy/l05. Since the spring with stiffness k5 is at 45◦,
both c and s are equal to

√
2/2.

The Rayleigh dissipation function is the sum of the dissipation functions of all
dampers. It is easily expressed as a function of the relative velocities

F =
1

2

{
c1ẋ

2
1 + c2ẋ

2
2 + c3ẋ

2
3 + c4ẋ

2
4 + c5

[
c (ẋ3 − ẋ1)

2 + s (ẋ4 − ẋ2)
2]}

i.e., in matrix form,

F =
1

2

⎧⎪⎪⎨
⎪⎪⎩

ẋ1

ẋ2

ẋ3

ẋ4

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎣

c1 + c2c5 csc5 −c2c5 −csc5

csc5 c2 + s2c5 −csc5 −s2c5

−c2c5 −csc5 c3 + c2c5 csc5

−csc5 −s2c5 csc5 c4 + s2c5

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ẋ1

ẋ2

ẋ3

ẋ4

⎫⎪⎪⎬
⎪⎪⎭

.
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By using Lagrange Equations, it follows

Mẍrel+Cẋrel + Kxrel = −MδxẍA − MδyÿA + f(t) .

It coincides with the equation obtained by introducing the damping matrix into

Eq. (1.11).

3.4 Structural or hysteretic damping

3.4.1 Hysteresis cycle

An elastic material is a material that does not dissipate energy when de-
formed; if its stress–strain characteristic is linear it is a linear, elastic mate-
rial. A structural element made of a material of this kind can be modeled as
a linear spring (Fig. 3.4a). This model is sometimes referred to as Hooke’s
model and the relevant stress–strain relationship is2

σ = Eε . (3.42)

The proportionality constant E is the Young’s modulus or modulus of
elasticity.

If instead of reasoning at the material level, (stresses, strains, mod-
uli), one works at the level of structural elements (forces, displacements,

FIGURE 3.4. Models for linear materials: (a) elastic, (b) viscous, (c), (d), (e)
and (f): visco-elastic.

2The sign (−) is omitted for consistency with the usual convention for stresses and
strains: here the force is positive when the spring is stretched and negative when it is
compressed.
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stiffness), the force–displacement characteristics is

F = −kx . (3.43)

However, as already stated, no actual material is exactly elastic: the
simplest way to model material damping is to assume that the material
reacts with a force that depends only on the strain rate. If it is linear it
can be modeled as a linear viscous damper (Fig. 3.4b), a model sometimes
referred to as Newton’s model. Its stress–strain relationship is

σ = −Cε̇ , (3.44)

or, in terms of forces and displacements

F = −cẋ . (3.45)

Actual materials react with both a restoring and a damping force; to
model a linear visco-elastic material at least one spring and one damper
are needed. They may be arranged in series (Maxwell’s model, Fig. 3.4c)
or in parallel (Voigt’s model3, Fig. 3.4d). The stress–strain and force–
displacement relationships for the latter model are

σ = −Eε − Cε̇ , F = −kx − cẋ . (3.46)

A model of this kind does not simulate satisfactorily actual engineering
materials. Since the 1920s experiments showed that many materials, when
subjected to cyclic loading, exhibit a type of internal damping causing
energy losses per cycle that are proportional to the square of the amplitude
and independent of the frequency. This behavior is usually described as
structural or hysteretic damping.4 Although subsequent studies showed
that there is a certain dependence on the frequency, hysteretic damping
is still considered an adequate model for energy dissipation in structural
materials in many applications.

Structural damping is thus defined assuming that the time history of the
stress cycles is harmonic and, since the material is linear, also the time
history of the deformation follows a similar pattern. The time histories
of the stress and of the strain are slightly out of phase and an elliptical
hysteresis cycle results in the (σε) plane (Fig. 3.5a): the strain lags the
stress by a phase-angle Φ.

Since the internal damping of most engineering materials is small, the
two time histories are only slightly out of phase and the elliptical hysteresis
cycle is small, usually much smaller than that shown in Fig. 3.5a.

3These models are often referred to with different names. See Banks H.T., Pinter
G.A., Hysteretic Damping, in S. Braun (ed.), Encyclopedia of Vibration, Academic Press,
London, 2001, and D. Roylance, Engineering Viscoelasticity, MIT, Cambridge, 2001.

4See, for instance, N.O. Myklestad, The concept of complex damping, Jour. of Applied
Mechanics, Vol. 19, 1952, p. 284.
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FIGURE 3.5. (a) Hysteresis cycle in (σ ε) plane. (b) Stresses and strains repre-
sented as rotating vectors in the complex plane at time t = 0.

Assuming that at time t = 0 the strain reaches its maximum value, it
follows {

σ = σ0 cos (ωt + Φ)
ε = ε0 cos (ωt) (3.47)

or, using the complex notation
{

σ = σ0e
i(ωt+Φ)

ε = ε0e
iωt ,

(3.48)

where the amplitudes σ0 and ε0 have been assumed to be real numbers.
The ratio between the stress and the strain, that in an elastic material is

the Young’s modulus, is now expressed by a complex number, the complex
modulus

E∗ =
σ

ε
=

σ0

ε0
eiΦ = E [cos (Φ) + i sin (Φ)] . (3.49)

Its real part
E′ = E cos (Φ) (3.50)

gives the measure of the elastic stiffness of the material and is often referred
to as storage or in-phase modulus . The imaginary part

E′′ = E sin (Φ) . (3.51)

is linked with damping and is said to be the loss or in-quadrature stiffness.
Their ratio is the loss factor or loss ratio η

η =
E′′

E′ = arctan(Φ) . (3.52)

As already stated, the phase-angle Φ by which the strain lags the stress
is assumed to be independent from the frequency. This causes the complex
modulus to be independent from the frequency: it can be considered as a
characteristic of the material.
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In the same way also the stiffness of a structural member can be expressed
by a complex number, the complex stiffness

k∗ = k′ + ik′′ , (3.53)

whose real part, the in-phase or storage stiffness k′, and imaginary part,
the in-quadrature or loss stiffness k′′, are independent from the frequency.
The loss factor of a structural element is thus defined as

η =
k′′

k′ = arctan(Φ) . (3.54)

Another parameter that is sometimes used to quantify the internal damp-
ing of materials is the specific damping capacity ψ. It is defined as the ratio
between the energy dissipated in a cycle (area of the ellipse in Fig. 3.5) and
the elastic energy stored in the system in the condition of maximum am-
plitude (area of the OAB triangle in the same figure)

ψ =
πσ0ε0 sin(Φ)

1
2σ0ε0

= 2π sin(Φ) . (3.55)

Contrarily to what seen for viscous damping, the specific damping capac-
ity of a system with hysteretic damping does not depend on the frequency.

The damping of most engineering materials (except for some elastomers)
is quite small (see Table 3.1), and the trigonometric functions of the phase-
angle Φ can be linearized. The expressions of the quantities defined earlier
can, consequently, be simplified:

k′ ≈ k,
k∗ ≈ k(1 + iη),

η ≈ Φ,
Ψ ≈ 2πΦ ≈ 2πη .

(3.56)

The loss factor of a structural member can be equal to that of the material
(as in the case of a homogeneous monolithic spring) or greater, if some
damping mechanisms other than material hysteresis are present (as in built-
up members, with rivets or threaded joints, elements in viscous fluids, and
so on).

TABLE 3.1. Order of magnitude of the loss factor of some engineering materials.
The high values typical of some elastomeric materials prevents from using the
simplified formulae reported above.

Material η

Aluminium alloy 0.0001− 0.001
Copper and copper alloys 0.001 − 0.005
Cast iron 0.001 − 0.08
Steel 0.01 − 0.06
Rubber 0.01 − 3
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3.4.2 Equation of motion in the frequency domain

The complex stiffness and the complex modulus have been introduced in
connection with harmonic loading and, as a consequence, they are well
suited to equations of motion written in the frequency domain.

The equation of motion of a single degree of freedom system with hys-
teretic damping can thus be obtained by introducing the complex stiffness
expressed by Eq. (3.56) into the frequency-domain equation (2.12), obtain-
ing [

−ω2m + k(1 + iη)
]
x0 = f0 . (3.57)

This equation can be generalized to multi degrees of freedom systems by
introducing an in-phase and an in-qudrature stiffness matrix

(
−ω2M + K′ + iK′′)x0 = f0 . (3.58)

If the loss factor is constant throughout the system, matrices K′′ and K′

are proportional and the complex stiffness matrix reduces to

K∗ = (1 + iη)K .

Remark 3.5 A time-domain equation of motion of the kind

mẍ + k(1 + iη)x = f(t) (3.59)

has no meaning: Both the force f and the displacement x are generic func-
tions of time, while the complex stiffness is defined only if their time his-
tories are both harmonic. Moreover, functions x(t) and f(t) are both real
quantities and the complex equation linking them has no meaning.

Although it can be demonstrated that the definition of structural damp-
ing can be extended to the more general case of periodic loading, because
any periodic time history can be expressed as the sum of harmonic terms,
its extension to nonperiodic time histories through Fourier transform is
impossible, since it can lead to non-causal results.

The dynamic stiffness of a system with structural damping is thus

kdyn = −mω2 + k(1 + iη) , (3.60)

for single degree of freedom systems, or in general,

Kdyn = −ω2M + K′ + iK′′ . (3.61)

3.4.3 Equivalent viscous damping

Structural damping is a form of linear damping that does not differ much
from viscous damping. From the frequency-domain equation of motion (3.7)
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it is clear that also in the latter case it is possible to define a complex
stiffness, with an imaginary part equal to

icω

instead of
ikη .

By equating the two expressions of the in-quadrature stiffness, it is pos-
sible to define an equivalent viscous damping

ceq =
ηk

ω
, (3.62)

through which structural damping can be assimilated to viscous damp-
ing with a coefficient inversely proportional to the frequency at which the
hysteresis cycle is gone through.5

In the case of systems with many degrees of freedom, it is also possible
to define an equivalent viscous damping matrix

Ceq =
1
ω

K′′ . (3.63)

Remark 3.6 Equation (3.62) shows clearly the inconsistence of using the
hysteretic damping model at very low frequency, since the equivalent damp-
ing tends to infinity when ω → 0. This is due to the assumption that the
shape of the hysteresis cycle is not affected by the frequency, while in a static
test (i.e., for ω → 0) there is no hysteresis cycle at all and the stress–strain
relationship of a linear material is a straight line.

To remove the dependency of the equivalent damping from the frequency,
Eq. (3.62) can be modified as

ceq =
ηk

ωr
, (3.64)

where ωr is a reference frequency, at which the equivalent viscous damping
dissipates the same energy as its hysteretic counterpart. As it will be seen
later, if ωr is the natural frequency of the system and damping is low, an
acceptable approximation may be obtained.

Remark 3.7 Structural damping is just a linear model that, while allow-
ing modeling many actual systems better than viscous damping, gives only
a rough approximation of the behavior of structural members. The Young’s

5The formula should be written as ceq = ηk/ |ω|, where |ω| is the frequency at which
the hysteresis cycle is gone through. In the present section the frequency is assumed to
be always expressed by a positive number.
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modulus E and the loss factor η of most engineering materials are inde-
pendent of the frequency only in an approximated way. Most metals stick
to this rule within a fair or even a good approximation, while elastomers
often show very strong dependence of their mechanical characteristics on
frequency (see Section 3.7).

The loss factor of all materials is a function of many parameters and is
particularly influenced by the amplitude of the stress cycle. During the life
of a structural member, strong variations of the damping characteristics
with the progress of fatigue phenomena are expected. Actually, damping
can be used to obtain information on the extent of fatigue damage.

With all the needed caution, it is possible to mention typical values of
damping of different engineering materials (Table 3.1). A large quantity of
data can be found in the literature.6

The behavior of materials is only approximately linear, but while the non-
linearities of the stress–strain curve are usually only found at high stresses
and a wide linearity field exists, the nonlinearities in the damping char-
acteristics are found at all values of the load. While the dependence of
the characteristics of the material on the frequency can be taken into ac-
count easily, the last consideration would lead to nonlinear equations and,
consequently, is usually neglected.

With all the aforementioned limitations, the structural damping model
remains a powerful tool for structural analysis and finds a wide application.

3.5 Non-viscous damping

3.5.1 Systems with a single degree of freedom

However, if a visco-elastic material is abruptly subject to stress, its strain
reaches instantly a certain value, to increase slowly in time. This is known
under the name of creep. If on the contrary is abruptly strained, its stress
reaches instantly a certain value, and then slowly decreases in time. This
is known under the name of relaxation.

The stress (force) is thus dependent not only on the instant values of
the displacement (strain) and velocity (strain rate), but also on their past
history. Some sort of ‘memory’ must be included in the constitutive law of
the material.

Possibly, the most general model for this phenomenon is the relationship

F = −kx −
∫ t

−∞
C (t, τ) ẋ (τ) dτ . (3.65)

6See, for instance, B.J. Lazan, Damping of Materials and Members in Structural
Mechanics, Pergamon Press, Oxford, 1968.
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where function C (t, τ), which usually has the form C (t − τ), is referred to as
damping kernel function, or retardation, heredity, after-effect or relaxation
function.

A common expression for the damping kernel function for a single degree
of freedom system is a sum of exponential terms

C (t − τ) =
m∑

i=1

ciμie
−μi(t−τ) , (3.66)

where the m parameters μi are said relaxation parameters.
If all μi tend to infinity, viscous damping is obtaned.
The equation of motion of a system with a single degree of freedom, which

includes also nonviscous damping, modeled using Eq. (3.65) together with
Eq. (3.66) to express the damping kernel, is

mẍ + cẋ +
m∑

i=1

ciμi

∫ t

−∞
e−μi(t−τ)ẋ (τ) dτ + kx = f(t) . (3.67)

It is possible to demonstrate that each exponential term in Eq. (3.66)
yields a force equivalent to that due to a spring with a damper in series
(system of Fig. 3.4c). The restoring force expressed by Eq. (3.65) is thus
equivalent to that due to the Maxwell–Weichart’s model shown in Fig. 3.4f,
with a number m of dampers.

This is easily shown by observing that the force exerted by each expo-
nential term in Eq. (3.66) is

Fi = ciμi

∫ t

−∞
e−μi(t−τ)ẋ (τ) dτ . (3.68)

Since the Laplace transform of

f(τ) = e−μτ

is
f̃(s) =

1
s + μ

,

the Laplace transform of force Fi(t) is

F̃i (s) = ciμi
s

s + μi
x̃ (s) . (3.69)

The corresponding stiffness in the Laplace domain is thus

k (s) = ciμi
s

s + μi
. (3.70)

The frequency-domain complex stiffness is obtained by substituting iω
for s:

k∗ (ω) = ciμi
iω

iω + μi
= ciμi

ω2 + iμiω

ω2 + μ2
i

. (3.71)
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If
μi =

k

ci
and c = ci (3.72)

the complex stiffness becomes

k∗ (ω) = k

(
ω2c2

k2 + c2ω2
+ iω

kc

k2 + c2ω2

)
, (3.73)

which coincides with the complex stiffness expressed by Eq. (3.25).
Since the nonviscous damping can be expressed by the system of Fig. 3.4f,

the m degrees of freedom corresponding to the displacements of points Bi

must also be considered. They are usually referred to as internal or damping
degrees of freedom. The system, although containing just one mass, has thus
m + 1 degrees of freedom.

However, since no mass is associated to points Bi, the accelerations of
the internal coordinates do not appear in the equations of motion, and the
order of the differential equation is not 2 (m + 1) but only m + 2.

The equation of motion of the system of Fig. 3.4f with mass m located
in point C and constrained in point A thus

Mẍ + Cẋ + Kx = f(t) , (3.74)

where, remembering Eq. (3.65), the relevant matrices and vectors are

x =

⎧⎪⎪⎨
⎪⎪⎩

xC

xB1

xB2

...

⎫⎪⎪⎬
⎪⎪⎭

, M =

⎡
⎢⎢⎣

m 0 0 ...
0 0 ...

0 ...
symm. ...

⎤
⎥⎥⎦ , f(t) =

⎧⎪⎪⎨
⎪⎪⎩

Fc

0
0
0

⎫⎪⎪⎬
⎪⎪⎭

,

C=

⎡
⎢⎢⎣

c +
∑m

i=1 ci −c1 −c2 ...
c1 0 ...

c2 ...
symm. ...

⎤
⎥⎥⎦ , K=

⎡
⎢⎢⎣

k 0 0 ...
μ1c1 0 ...

μ2c2 ...
symm. ...

⎤
⎥⎥⎦ .

Since the states are only m + 2, remembering Eq. (3.34), the state equa-
tion is, ⎧⎨

⎩
v̇C

ẋC

ẋB

⎫⎬
⎭ = M∗−1A∗

⎧⎨
⎩

vC

xC

xB

⎫⎬
⎭ + M∗−1

⎧⎨
⎩

FC

0
0m×1

⎫⎬
⎭ , (3.75)

where

M∗ =

⎡
⎣ m 0 C12

0m×1 0m×1 C22

0 1 01×m

⎤
⎦ , A∗ = −

⎡
⎣ C11 K11 01×m

C21 0m×1 K22

−1 0 01×m

⎤
⎦ ,

C11 and K11 are numbers, C12 is a row matric with m columns, and C22

and K22 are m × m diagonal matrices.
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This form of the state equations is not unique, and many different forms,
all essentially equivalent, can be found in the literature.7 Moreover, it is
possible to associate also a mass to points Bi, in such a way that the
mass matrix is not singular. This approach is followed by the GHM model
intrduced by Golla and Hughes.8

Since the various approaches are essentially equivalent, only the one
shown above will be dealt with here.

A similar result can be obtained by resorting to the stress–strain rela-
tionship

σ + τεσ̇ = Er (ε + τσ ε̇) , (3.76)

where Er, τε, and τσ are the relaxed modulus of elasticity, and the constant
strain and constant stress relaxation times, respectively. It allows to account
for creep and relaxation phenomena. If the stress and strain time histories
are harmonic in time {

σ = σ0e
iωt

ε = ε0e
iωt , (3.77)

where the amplitudes σ0 and ε0 are expressed by complex numbers, the
frequency-domain stress–strain relationship becomes:

σ0 (1 + iτεω) = ε0Er (1 + iτσω) . (3.78)

The ratio between the (complex) amplitudes of the stress and the strain
is

σ0

ε0
= Er

1 + iτσω

1 + iτεω
= Er

[
1 + τετσω2

1 + τ2
ε ω2

+ i
(τσ − τε)ω

1 + τ2
ε ω2

]
. (3.79)

This is equivalent to defining a complex Young’s modulus whose real part
(the in-phase or storage modulus) E′ and imaginary part (the in-quadrature
or loss modulus) E′′ are both functions of the frequency ω

E′ = Er
1 + τετσω2

1 + τ2
ε ω2

, E′′ = Er
(τσ − τε)ω

1 + τ2
ε ω2

. (3.80)

Their ratio is the loss factor

η =
E′′

E′ =
(τσ − τε)ω

1 + τετσω2
. (3.81)

It is again possible to demonstrate that this frequency-domain expression
is the same that can be obtained from the Kelvin’s model, (Fig. 3.4d, Eq.

7For instance, the equation found in N. Wagner, S. Adhicari, Symmetric State-Space
Method for a Class of Nonviscously Damped Systems, AIAA Journal, Vol. 41, No5,
May 2003, p. 951–956, is obtained starting from Eq. (3.36) instead of Eq. (3.34) and
multiplying the last equation by m.

8D.J. McTavish, P.C. Hughes, Modelling of Linear Viscoelastic Space Structures,
Journal of Vibration and Acoustics, , Vol. 115, Jan. 1993, p. 103–110.
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(3.88)), provided that

k0 = Er , k1 = Er

(
τσ

τε
− 1

)
, c1 = Er (τσ − τε) .

This model is sometimes also referred to as the standard linear material
model.

3.5.2 Systems with many degrees of freedom

Consider a system with many degrees of freedom, which includes both
viscous and nonviscous damping, and use Eq. (3.65) to express the latter.
Let the damping kernel be expressed by Eq. (3.66).

The resulting equation of motion is

Mẍ + Cẋ +
m∑

i=1

Ciμi

∫ t

−∞
e−μi(t−τ)ẋ (τ) dτ + Kx = f(t) . (3.82)

Although being usually symmetrical, the matrices Ci may have different
structures. If, for instance, hystereting damping is distributed on the whole
structure, having the same characteristics everywhere, they are not rank
deficient, and their number m is equal to the number of exponential terms
needed to approximate the actual behavior of the material with the required
accuracy.

If, on the contrary, the nonviscous damping has different properties in
different parts of the structure (e.g., because different materials are used),
their rank is much smaller than the number n of degrees of freedom (i.e.,
they are rank deficient) and they have nonvanishing terms only in the zone
interested by the relevant material. Their number m is much larger, since
there is a number of matrices equal to the sum of the numbers of exponential
terms needed to model each one of the various materials. For instance,
if there are five different materials, and each one is modeled using four
exponential terms (i.e. there is a total of 20 exponential terms), m = 20.

The equation in the configuration space has now a size n (m + 1)

M∗∗ẍ∗∗ + C∗∗ ˙x∗∗ + K∗∗x∗∗ = f∗∗(t) , (3.83)

where

x∗∗ =

⎧⎪⎪⎨
⎪⎪⎩

x
xB1

xB2

...

⎫⎪⎪⎬
⎪⎪⎭

, M∗∗ =

⎡
⎢⎢⎣

M 0 0 ...
0 0 ...

0 ...
symm. ...

⎤
⎥⎥⎦ , f∗∗(t) =

⎧⎪⎪⎨
⎪⎪⎩

f
0
0
0

⎫⎪⎪⎬
⎪⎪⎭

,

C∗∗ =

⎡
⎢⎢⎣

C+
∑m

i=1 Ci −C1 −C2 ...
C1 0 ...

C2 ...
symm. ...

⎤
⎥⎥⎦ ,
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K∗∗=

⎡
⎢⎢⎣

K 0 0 ...
μ1C1 0 ...

μ2C2 ...
symm. ...

⎤
⎥⎥⎦ .

If matrices Ci are not rank deficient, the state equations can be written
in the same way seen for single degree of freedom systems. Partitioning the
degrees of freedom to separate the coordinates of the actual system x (they
are n) from the internal coordinates xB (they are n × m), and using Eq.
(3.34), it follows that

⎧⎨
⎩

v̇
ẋ
ẋB

⎫⎬
⎭ = M∗−1A∗

⎧⎨
⎩

v
x
xB

⎫⎬
⎭ + M∗−1

⎧⎨
⎩

f
0n×1

0(n×m)×1

⎫⎬
⎭ , (3.84)

where

M∗ =

⎡
⎣ M 0 C∗∗

12

0(n×m)×n 0(n×m)×n C∗∗
22

0n×n In×n 0n×(n×m)

⎤
⎦ ,

A∗ = −

⎡
⎣ C∗∗

11 K∗∗
11 0n×(n×m)

C∗∗
21 0(n×m)×n K∗∗

22

−In×n 0 0n×(n×m)

⎤
⎦ .

Again, the state equation can be written in different, but equivalent,
forms.

If matrices Ci are rank deficient the singularity of matrix M∗ prevents
from performing the inversion needed to obtain the dynamic matrix of the
system. Removing the singularity has the added advantage of reducing the
number of states of the system.

Assuming that all matrices Ci are symmetrical and following the proce-
dure outlined by S. Adhicari and N. Wagner,9 the eigenvalues and eigenvec-
tors of the matrices Ci are first obtained. If the rank of the generic matrix
Ci is ri, its ri (with ri < n) nonzero eigenvalues can be collected in the
diagonal eigenvalue matrix di, whose size is ri × ri.

A rectangular transformation matrix Ri (whos size is n × ri) can be
defined, so that

RT
i CiRi = di . (3.85)

The columns of matrices Ri are the eigenvectors of matrix Ci correspond-
ing to the ri nonzero eigenvalues. If matrices Ci are not symmetrical, this
procedure can be modified by using the left and right eigenvectors.10

9N. Wagner, S. Adhicari, Symmetric State-Space Method for a Class of Nonviscously
Damped Systems, AIAA Journal, Vol. 41, No5, May 2003, p. 951–956. Here a slightly
different definition of the internal coordinates has been used.

10S. Adhicari, N. Wagner, Analysis of Asymmetric Nonviscously Damped Linear Dy-
namic Systems, Journal of Applied Mechanics, Vo. 70, Nov. 2003, p. 885–893.
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The internal coordinates xBi can thus be reduced in number through the
transformation

xBi= Rix̃Bi . (3.86)

By introducing the internal coordinates x̃Bi instead of xBi, the matrices
C∗∗ and K∗∗ reduce to

C∗∗ =

⎡
⎢⎢⎣

C+
∑m

i=1 Ci −C1R1 −C2R2 ...
d1 0 ...
0 d2 ...

symm ...

⎤
⎥⎥⎦ ,

K∗∗=

⎡
⎢⎢⎣

K 0 0 ...
μ1d1 0 ...

μ2d2 ...
symm. ...

⎤
⎥⎥⎦

and the computation proceeds as before.

3.6 Structural damping as nonviscous damping

3.6.1 Ideal Maxwell–Weichert model

As already stated, the formulation of the structural damping seen in Section
3.4.1, with the exception of Eq. (3.64), can be used only in the frequency
domain. This is a severe limitation, particularly nowadays, since it pre-
cludes the possibility of integrating the equations of motion numerically in
time.

Many attempts have been made, particularly in the 1950s and 1960s, to
overcome this limitation. A model that can be applied in the time domain
was introduced by Voigt and studied further by Biot11 and then by We-
ichert. It consists of a spring, with in parallel a large number of spring and
damper system in series (Fig. 3.4f).

If there are n dampers, like in the case seen for non-viscous damping,
the system has m + 2 degrees of freedom: The displacements of points A
and C and of the m points Bi.

Consider the simplified case with m = 1 (Kelvin’s model, Fig. 3.4e).
The dynamic stiffness matrix of the system can be obtained by adding the
stiffness of the spring k0 with that of the parallel of spring k1 and damper

11M.A. Biot, Linear Thermodynamics and the Mechanics of solids, Proc. Third U.S.
National Congress of Applied Mechanics, 1958, p.1, T.K. Caughey, Vibration of Dynamic
Systems with Linear Hysteretic Damping, Linear Theory, Proceedings of the Fourth US
National Congress of Applied Mechanics, 1962, pp. 87–97. In his paper Biot refers to
the Maxwell–Weichert model as the Voigt model.
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c1 obtained from Eq. (3.25):

kdyn = k0 +
ω2c2

1k1

k2
1 + ω2c2

1

+ i
ωc1k

2
1

k2
1 + ω2c2

1

. (3.87)

The complex stiffness of the system of Fig. 3.4a is thus

kdyn = k0 +
m∑

i=1

ω2c2
i ki

k2
i + ω2c2

i

+ i

m∑
i=1

ωcik
2
i

k2
i + ω2c2

i

. (3.88)

Caughey, in the mentioned paper based on the Maxwell–Weichert model
of Fig. 3.4f, introduced a ratio

βi =
ki

ci
(3.89)

between the stiffness and the damping of the ith branch.12 Its dimensions
are 1/s and then has the same dimensions of a frequency. Equation (3.88)
thus reduces to

kdyn = k0 +
m∑

i=1

ki

(
ω2

β2
i + ω2

+ i
ωβi

β2
i + ω2

)
. (3.90)

By allowing the number of dampers to tend to infinity, the stiffness ki

becomes a function of a parameter identifying the infinity of infinitesimal
dampers. Biot proposed to use β as a parameter and to assume that func-
tion k (β) is

k (β) = k0
g

β
, (3.91)

where g is a constant linked with the damping of the system.
The sums in Eq. (3.88) are thus transformed into integrals

kdyn = k0

[
1 + gω2

∫ ∞

ε

dβ

β (β2 + ω2)
+ igω

∫ ∞

ε

dβ

(β2 + ω2)

]
, (3.92)

where ε is the minimum value taken by β.
By integrating and assuming that g is linked to the loss factor by the

relationship

g = η
2
π

,

it follows that

kdyn = k0

{
1 + η

1
π

ln
[
1 +

ω2

ε2

]
+ iη

[
1 − 2

π
artg

( ε

ω

)]}
. (3.93)

12Ratio βi coincides with the exponent μi introduced in the nonviscous damping
model.
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The complex stiffness of an hysteretic damper should be independent
from the frequency, while that expressed by Eq. (3.93) is not. However, in a
suitably chosen frequency range, the approximation is quite good. The ratio
between the complex stiffness obtained from Eq. (3.93) and that obtained
from the hysteretic damping model is shown in Fig. 3.6 as a function of the
nondimensional frequency ω/ε.

Biot suggested that the frequency should be larger than 10ε, i.e., that the
nondimensional frequency ω/ε should be larger than 10. From the figure it
is clear that the error on the imaginary part is smaller than 6% and reduces
quickly with increasing frequency. The error on the real part depends on
the value of the loss factor: if the latter is small enough an error smaller
than a few percent is obtained in a wide frequency range.

Remark 3.8 The Maxwell–Weichert model is quite satisfactory, consid-
ering also that

(a) the hysteretic damping model is at any rate an approximation,
(b) the hysteretic damping model does not hold at low frequency (ε must

then be chosen accordingly)
(c) the hysteretic damping model in the form of Eq. (3.56) holds only

for low values of the loss factor η.

FIGURE 3.6. Ratio between the real and the imaginary parts of the complex
stiffness k obtained from Eq. ( 3.93) and the ones obtained from the hysteretic
damping model kh as a function of the nondimensional frequency ω/ε.
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Remark 3.9 The Maxwell–Weichert model is not linked with the frequency-
domain formulation and can be used also in time-domain equations. It in-
troduces however a large (theoretical infinite) number of additional degrees
of freedom, the displacements of points Bi.

3.6.2 Practical Maxwell–Weichert model

The Maxwell–Weichert model seen in the previous section is just a theo-
retical model and cannot be directly applied to numerical integration of
the equations of motion, owing to the infinity of spring–damper systems it
includes. It may be approximated by using a finite (small) number m of
dampers.

The contribution of each damper to the imaginary part of the complex
stiffness is expressed by Eq. (3.90) and peaks at a frequency (Eq. (3.29))

ω =
ki

ci
= βi . (3.94)

It is then possible to identify a number m of frequencies ωi and stating
that at each one of them one of the dampers works at its maximum damping
conditions (βi = ωi) and that the sum of all terms at that speed is equal
to ηk:

n∑
i=1

ki
βjβi

β2
i + β2

j

= ηk for j = 1, ..., m . (3.95)

A set of n equations allowing to compute the various ki is thus obtained

Ak = ηke , (3.96)

where
Aij =

βjβi

β2
i + β2

j

, (3.97)

k is the vector containing the unknowns ki and e is a suitable unit vector.
Since the various βi are known, all the parameters of the system are

known once that the values of ki have been obtained.
The simplest model is that with a single damper (m = 1, Fig. 3.4e):

it adds just a single degree of freedom to the system and is made by two
springs and one damper. Matrix A reduces to a number:

A = 0.5 . (3.98)

If the damper is tuned at the reference frequency ωr, it follows

k1 = 2ηk0 , c1 = 2
ηk0

ωr
. (3.99)

A comparison between the equivalent damping computed using Eq. (3.64)
and that computed using the present model is reported in Fig. 3.7a and b.
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FIGURE 3.7. Maxwell–Weichert damper with n = 1 (Kelvin model). Compar-
ison between the equivalent damping computed using Eq. (3.64), curve labeled
‘Voight’, and that computed using the present model, curve labeled ‘Kelvin’. The
real part depends also on the value of η: The curves for η = 0.001, 0.01, and 0.02
are reported.

The figure shows that the real part of the complex stiffness, that in the
model of Eq. (3.64) is the same as that for hysteretic damping, is now
slightly increasing with the frequency. How much it increases depends on
the value of the loss factor and three curves for η = 0.001, 0.01, and 0.02 are
reported. The imaginary part coincides with that of the hysteretic damping
at the reference frequency. Both below and above the Maxwell–Weichert
model gives a better approximation than the ‘parallel’ (Voigt’s) model of
Fig. 3.4d. Above all, it prevents the imaginary part from rising drastically
with increasing frequency. In both cases, the behavior at very low frequency
is better, since it prevents the equivalent damping from growing without
bounds at decreasing frequency.

To obtain a better approximation, a larger number of spring–damper
series can be used. Assume that the frequencies ωi, with i = 1, ..., m at
which the dampers are tuned are in geometric progression:

ωi+1 = aiω1 , for i = 1, ..., m − 1 . (3.100)

Since βi = ωi, the elements of matrix A are

Aij =
a(j−i)

1 + a2(j−i)
. (3.101)

If a is large enough (typically, it can be assumed a = 10),

a2j >> a2i
1 , for j > i. (3.102)

In this case,

Aij =
1
2

for j = i , (3.103)
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Aij ≈ ai−j for j > i. (3.104)

The values of the stiffness and the damping coefficients of the various
dampers are thus

ki = γiηk , ci =
γiηk

ω1a(i−1)
,

where γi are the solutions of the equation

Aγ = e (3.105)

and are functions only of ratio a. The values for a = 10, computed using
the exact values for A, are

n = 1 2
n = 2 1.6694 1.6694
n = 3 1.7035 1.3254 1.7035
n = 4 1.7001 1.3600 1.3600 1.7001
n = 5 1.7004 1.3566 1.3947 1.3566 1.7004
n = 6 1.7004 1.3569 1.3913 1.3913 1.3569 1.7004
n = 7 1.7004 1.3569 1.3916 1.3878 1.3916 1.3569 1.7004
n = 8 1.7004 1.3569 1.3916 1.3881 1.3881 1.3916 1.3569 1.7004
n = 9 1.7004 1.3569 1.3916 1.3881 1.3885 1.3881 1.3916 1.3569 1.7004
n = 10 1.7004 1.3569 1.3916 1.3881 1.3885 1.3885 1.3881 1.3916 1.3569 1.7004

If the range in which the Maxwell–Weichert damper is tuned is centered
(in a logarithmic scale) on the reference frequency ωr, the value of ω1 is

ω1 = ωra
1−m

2 . (3.106)

To evaluate the precision that can be obtained using this approach, con-
sider the case with m = 3 and a = 10.

The results are reported in Fig. 3.8. From the figure it is clear that the
imaginary part of the complex frequency is almost constant, and close to
that obtained for hysteretic damping, in a range of frequencies spanning
from less than 0.1 to more than 10 times the reference frequency, to drop out
outside this range. The real part is close to that characterizing hysteretic
damping, with an error growing with growing η.

Remark 3.10 The model here shown coincides with that previously de-
scribed for nonviscous damping. It allows to write equations of motion in
the time domain starting from the hysteretic damping formulation that are
a very good approximation in a wide frequency range, at the cost of intro-
ducing a number of additional degrees of freedom.

Remark 3.11 The larger the number of additional degrees of freedom, the
wider is this frequency range or the more precisely the model simulates
hysteretic damping.
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FIGURE 3.8. Ratio between the imaginary (a) and the real (b) parts of the
complex stiffness k obtained from a simplified Maxwell–Weichert model with
three dampers and the ones obtained from the hysteretic damping model kh as a
function of the frequency ω. Full lines: complex stiffness of the system and dashed
line: imaginary part of the stiffness of each one of the branches.

3.7 Systems with frequency-dependent parameters

A complex viscous damping

c∗ = c′ + ic′′ (3.107)

can be introduced in the same way the complex stiffness was defined. The
real part c′ is coincident with the damping coefficient and the imaginary
part c′′ is actually a stiffness in the sense that it does not involve any dissi-
pation of energy. As an equivalent damping was defined for the imaginary
part of the complex stiffness, an equivalent stiffness can be defined for the
imaginary part of the complex damping:

keq = −ωc′′.

Consequently, the complex damping model allows to introduce a stiffness
that grows linearly with increasing frequency into the linear equation of
motion (if c′′ is expressed by a negative number).

More generally, it is possible to define coefficients c and k which are gen-
eral functions of the frequency. However, as already stated for the complex
stiffness approach, a time-domain equation of motion like

mẍ + c(ω)ẋ + k(ω)x = F (t) (3.108)

is conceptually inconsistent, since it is written partly in the time domain,
with the time histories x(t) (and its time derivatives) and F (t), and partly
in the frequency domain, because the laws c(ω) and k(ω) enter explicitly
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the equation. The frequency ω is, however, defined only when the time
history x(t) is harmonic. As a consequence, equation (3.108) should not be
used.

The corresponding frequency-domain relationship[
− mω2 + ic(ω)ω + k(ω)

]
x0 = f0 , (3.109)

on the contrary, is correct and useful for the study of harmonic motion. For
a more detailed discussion of this issue, see, for example, the well-known
paper by S.H. Crandall.13

A case in which the dependence of the elastic and damping characteris-
tics of the system on the frequency is very important is that of structural
members made of elastomeric materials. The in-phase and in-quadrature
stiffness k′ and k′′ of an elastomeric element are reported as functions of
the frequency in Fig. 3.9. The loss factor

η = tan(Φ)

has also been plotted in the figure. Three regions are usually defined: At
low frequency (rubbery region), the material shows a very low stiffness; at

FIGURE 3.9. In-phase and in-quadrature stiffness and loss factor of an elas-
tomeric spring as a function of the frequency.

13S.H.Crandall, “The role of damping in vibration theory”, J. of Sound and Vibration,
11(1), (1970), 3–18.
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high frequency (glassy region), its stiffness is substantially higher. Between
the two regions there is a zone (transition region) in which the loss factor
has a maximum.

The stiffness and damping of elastomeric materials is also strongly in-
fluenced by temperature, and the effects of an increase of frequency or
a decrease of temperature are so similar that it is possible to obtain the
curves related to changes in temperature at constant frequency from those
related to frequency at constant temperature and vice versa. Note that in
the case of Fig. 3.9, the value of the loss factor is quite high, at least in the
transition region, and no small-damping assumption can be made.

3.8 Exercises

Exercise 3.1 Consider the system of Fig. 1.8, already studied in Exercises 1.2,

2.1 and 2.3. Write the transfer function of the system, adding dampers c1, c2, c3,

and c4 in parallel to all springs.

Numerical data: m1 = 10, m2 = 5, k1 = 10, k2 = 8, k3 = 4, k4 = 5, c1 = 2,

c2 = 1, c3 = 1, c4 = 1.5.

Exercise 3.2 Plot the dynamic compliance of the system sketched in Fig. 1.4

and already studied in Example 1.2 and Exercise 2.4, with the values of the damp-

ing coefficients given in Example 3.1.

Exercise 3.3 Consider the beam already studied in Exercise 2.2, and assume

that the loss factor of the material is η = 0.01. Compute the dynamic compliance

of the system. Since it is a complex number, plot its amplitude and phase as

functions of the frequency.

Data: l = 1 m, di = 60 mm, do = 80 mm, m = 30 kg, E = 2.1 × 1011 N/m2.

Exercise 3.4 Repeat the computation of the previous exercise, by substituting

the structural damping model with a Maxwell–Weichert model with three dampers.

Chose the parameters of the model so that the two model yield the same results at

the frequency at which the frequency response has a maximum and at frequencies

equal to 0.1 and 10 times that value. Compare the results with those of the previous

exercise. Plot also the real and imaginary parts of the dynamic stiffness of the

beam without mass.



4
Free Vibration of Conservative
Systems

The free motion of undamped vibrating systems is studied. The properties of
the modes of free vibration of multi-degrees-of-freedom systems are studied
and it is shown that they allow to perform a coordinate transformation
uncoupling the equations of motion.

4.1 Systems with a single degree of freedom

The solution of Eq. (1.3) (or of Eq. (1.4)) can be obtained by adding the
complementary function, i.e., the general solution of the homogeneous equa-
tion, to a particular integral of the complete equation. The first describes
the behavior of the system when no external excitation acts on it (free be-
havior) and, consequently, it is influenced only by its internal parameters.
The homogeneous equation of motion is a second-order autonomous dif-
ferential equation because the independent variable, time, does not appear
explicitly.

Remark 4.1 When studying the free behavior, it is immaterial whether
Eq. (1.3) or (1.4) is used, because their homogeneous parts are identical.

Remark 4.2 Contrary to the complementary function, the particular in-
tegral describes the motion under the effect of an external excitation and
thus is influenced by both the characteristics of the system and the time
history of the excitation.
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The homogeneous equation of motion of a conservative system with a
single degree of freedom is thus

mẍ + kx = 0 . (4.1)

Its solution is harmonic in time, and thus can be expressed by either a
sine or cosine function or an exponential function with imaginary exponent,
as discussed in detail in Section 2.2.1.

Here a solution of the type

x = x0e
st (4.2)

is assumed, which amounts to searching for a solution in the Laplace do-
main.

The acceleration is easily obtained from the time history (4.2):

ẍ = x0s
2est .

By introducing the solution (4.2) into the equation of motion, the latter
becomes

x0

(
ms2 + k

)
est = 0 . (4.3)

Equation (4.3) holds for any value of time and hence in particular when
est �= 0.1 By dividing Eq. (4.3) by est, the following algebraic equation is
obtained

x0(ms2 + k) = 0 . (4.4)

The condition for the existence of a solution other than the trivial solu-
tion

x0 = 0

leads to the following characteristic equation

ms2 + k = 0 , (4.5)

whose two solutions, s1 and s2, are

s1,2 = ± i

√
k

m
= ± iωn . (4.6)

The two solutions of the characteristic equation are imaginary, yielding
a harmonic oscillation whose circular frequency is the natural frequency ωn

of the system

ωn =

√
k

m
. (4.7)

1Since s is in general a complex number, there may be an infinity of values of t for
which est = 0.
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The complementary function is the sum of two terms of the type shown
in Eq. (4.2) with two constants, x01 and x02, that depend on the initial
conditions and are usually expressed by complex numbers

x = x01e
s1t + x02e

s2t =
{[

�(x01 + x02) + i�(x01 + x02)
]

cos(ωnt)+

+
[
�(x02 − x01) + i�(x01 − x02)

]
sin(ωnt)

}
.

(4.8)

Remark 4.3 As already stated in Chapter 2, the displacement x is a real
quantity and then the two constants, x01 and x02, must be complex conju-
gate. Equation (4.8) thus reduces to

x = 2�(x01) cos(ωnt) − 2�(x01) sin(ωnt) . (4.9)

If at time t = 0 the position x(0) and the velocity ẋ(0) are known, the
values of the real and imaginary parts of constant x01 are

�(x01) =
x(0)

2
�(x01) = − 1

2ωn
ẋ(0) .

(4.10)

The equation describing the oscillations of the system is then

x =
[
x(0) cos (ωn t) +

ẋ(0)
ωn

sin (ωn t)
]

. (4.11)

The trajectories of the free oscillations of a conservative linear system
in the state plane are circles, or ellipses, depending on the scales used for
displacements and velocities (Fig. 4.1).

Example 4.1 An instrument whose mass is 20 kg must be mounted on a

space vehicle through a cantilever arm of annular cross-section made of light

alloy (Young’s modulus E = 72 × 109 N/m2, density ρ = 2, 800 kg/m3), 600

mm long. Choose the dimensions of the cross-section in such a way that the

first natural frequency is higher than 50 Hz.

If the mass of the beam is neglected and a model with a single degree of freedom

is used, in order to obtain a natural frequency higher than 50 Hz (314 rad/s)

the stiffness of the beam must be

k ≥ mω2
n = 1.97 × 106 N/m . (4.12)
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FIGURE 4.1. State-space trajectories for a system with a single degree of freedom.
The different trajectories correspond to different initial conditions.

The arm can be modeled as a cantilever beam clamped at one end and loaded by

the inertia force of the instrument at the other end. The well-known formula

for its stiffness is

k =
3EI

l3
, (4.13)

where l and I are the length of the beam and the area moment of inertia of
the cross-section, respectively.

The minimum value of the moment of inertia I can be easily computed:

I =
kl3

3E
= 1.97 × 10−6 m4 . (4.14)

By using a beam with annular cross-section with inner and outer diameters

of 100 mm and 110 mm, respectively, the value of the moment of inertia is

I = 2.28 × 10−6 m4, yielding the following values of the stiffness and natural

frequency:

k = 2.28 × 106 N/m , ωn = 337 rad/s = 53.7 Hz . (4.15)

The mass of the beam is 2.77 kg, which is only slightly larger than 1/10 of the

concentrated mass at the free end. The single-degree-of-freedom model in which

the mass of the beam has been neglected can then be used with confidence.
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4.2 Systems with many degrees of freedom

The solution can be performed directly with reference to the configuration
space. The homogeneous equation describing free motion is

Mẍ + Kx = 0 . (4.16)

Equation (4.16) is a set of linear homogeneous second-order differential
equations. Such equations are coupled, because at least one of the matrices
M or K is usually not diagonal. If matrix M is not diagonal, the system is
said to have an inertial coupling; if K is not diagonal, the coupling is said
to be elastic. Again, a Laplace domain solution similar to Eq. (4.2)

x = x0e
st (4.17)

can be assumed, and an eigenproblem of the same type as Eq. (4.4) can be
obtained. Because the system is undamped, all solutions s are imaginary
and the use of a frequency-domain solution with the form

x = x0e
iωt , (4.18)

in which the frequency of oscillation ω is explicitly included, is expedient.
Since the acceleration is

ẍ = −ω2x0e
iωt , (4.19)

the following algebraic homogeneous equation is obtained:(
K − ω2M

)
x0 = 0. (4.20)

The characteristic equation of the relevant eigenproblem can be obtained
by noting that to obtain a solution different from the trivial solution x0 = 0,
the determinant of the matrix of the coefficients must vanish:

det
(
K− ω2M

)
= 0 . (4.21)

This eigenproblem can be reduced in standard form in one of the two
following ways:

det
(
K−1M − 1

ω2
I
)

= 0 , det
(
M−1K− ω2I

)
= 0 . (4.22)

Both matrices K−1M and M−1K are often referred to as dynamic matri-
ces and symbol D is used for them. They should not be confused with either
the dynamic matrix A or the direct link matrix D defined with reference
to the state space.

Equations (4.22) are algebraic equations of degree n in ω2 (or in 1/ω2)
that yield the n values of the natural frequencies of the system.
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Remark 4.4 The dynamic matrices D are not symmetrical, even if both
M and K are.

Remark 4.5 The solutions in terms of natural frequencies are actually 2n,
corresponding to ±ωni. In the following pages only n solutions, correspond-
ing to the n eigenvalues and eigenvectors of the eigenproblem in ω2 (or in
1/ω2), will be considered. If the solution in the state space is considered,
2n conjugate eigenvalues in s are found.

The eigenvectors give the mode shapes, i.e., the amplitudes of oscillation
of the various masses at the corresponding natural frequency. All eigenval-
ues in ω2 (or in 1/ω2) are real and positive; the natural frequencies then
are real, and undamped oscillations of the system are obtained. Also, the
eigenvectors qi are real, which means that all masses move in phase, or
with a phase lag of 180◦.

Because there are n eigenvectors, a square matrix, the matrix of the
eigenvectors

Φ = [q1,q2, . . . ,qn],

can be written. Each one of its columns is one of the eigenvectors.
The complete solution of the equation of motion can be transformed in

the same way as Eq. (4.9):

x =
n∑

i=1

[
�(K∗

i )qi cos(ωit) −�(K∗
i )qi sin(ωit)

]
, (4.23)

where the n complex constants K∗
i can be determined from the 2n initial

conditions. If at time t = 0 the positions x0 and the velocities ẋ0 are known,
it follows that

�{K∗
i } = Φ−1x0 , �{ωiK

∗
i } = −Φ−1ẋ0 . (4.24)

Remark 4.6 Since the system is conservative, free vibration does not de-
cay in time, i.e., its amplitude remains constant. This is clearly just an
academic result, since all real-world systems have some damping.

The free motion of a vibrating system can be studied in the state space
by assuming a solution of the type

z = eAtz0 , (4.25)

where z0 is the state vector at time t0 and eAt is the so-called transition
matrix at time t. It can be expressed by the series

eAt = I + tA +
t2

2!
A2 +

t3

3!
A3 + . . . , (4.26)

which converges for any value of t. The computation of the transition matrix
can become impractical for large-order systems, and the number of terms
in the series (4.26) to be considered grows rapidly with increasing time t.
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Example 4.2 Compute the time history of the free motion of a single-degree-
of-freedom conservative system through the series (4.26) for the transition
matrix.
For an undamped single-degree-of-freedom system, the state vector and the
dynamic matrix are

z =

{
v
x

}
, A =

[
0 − k

m

1 0

]
=

[
0 −ω2

n

1 0

]
.

Equation ( 4.26) yields the transition matrix

e

⎡
⎣ 0 −ω2

n

1 0

⎤
⎦t

=

[
1 0
0 1

]
+ t

[
0 −ω2

n

1 0

]
+

t2

2

[
−ω2

n 0
0 −ω2

n

]
+

+
t3

3!

[
0 ω4

n

−ω2
n 0

]
+

t4

4!

[
−ω4

n 0
0 −ω4

n

]
+ · · · =

=

⎡
⎣ 1 + t2

2
ω2

n + t4

4!
ω4

n + . . . −ω2
n

(
tωn − t3

3!
ω3

n + . . .
)

1
ωn

(
tωn − t3

3!
ω3

n + . . .
)

1 + t2

2
ω2

n + t4

4!
ω4

n + . . .

⎤
⎦ =

=

[
cos(ωnt) −ωn sin(ωnt)
1

ωn
sin(ωnt) cos(ωnt)

]
.

After obtaining the product eAtz0, the following time histories for the displace-
ment and the velocity are obtained:

⎧⎪⎨
⎪⎩

v = v0 cos(ωnt) − ωnx0 sin(ωnt)

x =
v0

ωn
sin(ωnt) + x0 cos(ωnt) .

This solution coincides with that expressed by Eq. ( 4.9).

4.3 Properties of the eigenvectors

Consider a linear natural system and refer to the space of the configura-
tions. The eigenvectors are orthogonal with respect to both the stiffness
and mass matrices. This propriety can be demonstrated simply by writ-
ing the dynamic equilibrium equation in harmonic oscillations for the ith
mode:

Kqi = ω2
i Mqi . (4.27)

Equation (4.27) can be premultiplied by the transpose of the jth
eigenvector

qT
j Kqi = ω2

i q
T
j Mqi . (4.28)
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Products qT
j Kqi and qT

j Mqi are scalar quantities.
The same can be done for the equation written for the jth mode and

premultiplied by the transpose of the ith eigenvector:

qT
i Kqj = ω2

jq
T
i Mqj . (4.29)

By subtracting Eq. (4.29) from Eq. (4.28) it follows that

qT
j Kqi − qT

i Kqj = ω2
i q

T
j Mqi − ω2

j qT
i Mqj . (4.30)

Remembering that, owing to the symmetry of matrices K and M,

qT
j Kqi = qT

i Kqj

and
qT

j Mqi = qT
i Mqj ,

it follows that (
ω2

i − ω2
j

)
qT

j Mqi = 0 . (4.31)

In the same way, it can be shown that
(

1
ω2

i

− 1
ω2

j

)
qT

j Kqi = 0 . (4.32)

From Eqs. (4.31) and (4.32), assuming that all natural frequencies are
different from each other, it follows that, if i �= j,

qT
i Mqj = 0 , qT

i Kqj = 0 , (4.33)

which are the relationships defining the orthogonality properties of the
eigenvectors with respect to the mass and stiffness matrices, respectively.

If i = j, the results of the same products are not zero:

qT
i Mqi = Mi , qT

i Kqi = Ki . (4.34)

Constants Mi and Ki are the modal mass and modal stiffness of the ith
mode, respectively. They are linked with the natural frequencies by the
relationship

ωi =

√
Ki

Mi

, (4.35)

stating that the ith natural frequency coincides with the natural frequency
of a system with a single degree of freedom whose mass is the ith modal
mass and whose stiffness is the ith modal stiffness.
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The modal mass matrix and the modal stiffness matrix can be obtained
from the following relationships based on the matrix of the eigenvectors Φ:

⎧⎨
⎩

ΦTMΦ = diag[Mi] = M ,

ΦTKΦ = diag[Ki] = K .
(4.36)

An interpretation of the modal stiffnesses and of the modal masses is
straightforward: If the system is deformed following the ith mode shape,
the potential energy is

U =
1
2
qT

i Kqi =
1
2
Ki ,

i.e., it is equal to half the modal stiffness. In a similar way, the kinetic
energy the system stores at its maximum speed while vibrating following
a mode shape is equal to the corresponding modal mass, apart from the
constant ω2

i /2.

4.4 Uncoupling of the equations of motion

The matrix of the eigenvectors can be used to perform a coordinate trans-
formation that is particularly useful:

x = Φη , η = Φ−1x . (4.37)

This amounts to expressing the generic n-dimensional vector x, which
states the configuration of the system, as a linear combination of the eigen-
vectors using n coefficients of proportionality ηi. This is possible because
the eigenvectors are linearly independent and define a reference frame in
the space of the configurations of the system.

Remark 4.7 It must be explicitly stated that the eigenvectors are orthog-
onal with respect to the mass and stiffness matrices (they are said to be
m-orthogonal and k-orthogonal), but they are not orthogonal to each other.
The product ΦTΦ does not yield a diagonal matrix, and the inverse Φ−1

of matrix Φ does not coincide with its transpose ΦT .

The eigenvectors are, however, orthogonal if the dynamic matrix is sym-
metrical, like when a system with a diagonal mass matrix has all masses
equal to each other (i.e., the mass matrix is made by an identity matrix
multiplied by a constant).

In the space of the configurations, the eigenvectors are n vectors that
can be taken as a reference frame. However, as already stated, in general
they are not orthogonal with respect to each other.
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Remark 4.8 Equation ( 4.37) is nothing else than a coordinate transfor-
mation in the space of the configurations, as the n values ηi are the n
coordinates of the point representing the configuration of the system, with
reference to the system of the eigenvectors. They are said to be principal,
modal, or normal coordinates.

Although the eigenvectors are not orthogonal to each other, it is possible
to perform a coordinate transformation that yields a system whose dynamic
matrix (D, referred to the configuration space) is symmetrical and has
orthogonal eigenvectors. By performing a Cholesky decomposition of the
mass matrix

M = LLT , (4.38)

where L is a lower triangular non-singular matrix, a new set of generalized
coordinates x∗ can be defined by the relationship

x∗ = LT x. (4.39)

By introducing the generalized coordinates (4.39) into the equation of
motion and premultiplying it by L−1, the mass matrix transforms into an
identity matrix, while the stiffness matrix and the force vector reduce to2

K∗ = L−1KL−T , f∗ = L−1f . (4.40)

The system so obtained has a unit mass matrix, and its eigenvectors are
orthogonal. The eigenvalues are not changed by the transformation, and
the eigenvectors are obtained from those of the original system using a
simple linear combination. The modal mass matrix can be shown to be an
identity matrix, and the modal stiffness matrix is a diagonal matrix with
all elements equal to the squares of the natural frequencies:

K = [ω2] .

If the modal coordinates are introduced into the equation of motion (1.7),
it follows that

MΦη̈ + KΦη = f . (4.41)

By premultiplying the equation so obtained by ΦT ,

ΦTMΦη̈ + ΦTKΦη = ΦT f , (4.42)

it follows that

Mη̈ + Kη = f , (4.43)

2Symbol A−T is here used for the transpose of the inverse (A−T = (A−1)T ).
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where M and K are the modal mass and modal stiffness matrices, defined
by Eq. (4.34), and f(t) is the modal force vector:

fi(t) = qT
i f(t) . (4.44)

Since the modal matrices are diagonal, Eq. (4.43) is a set of n uncoupled
second-order differential equations. Each of them is

Miη̈i + Kiηi = fi ,

and the system with n degrees of freedom is broken down into a set of n
uncoupled systems, each with a single degree of freedom (Fig. 4.2).

The eigenvectors are the solutions of a linear set of homogeneous equa-
tions and, thus, are not unique: For each mode, an infinity of eigenvectors
exists, all proportional to each other. Because the eigenvectors can be seen
as a set of n vectors in the n-dimensional space providing a reference frame,
the length of such vectors is not determined, but their directions are known.
In other words, the scales of the axes are arbitrary.

There are many ways to normalize the eigenvectors. The simplest is by
stating that the value of one particular element or of the largest one is

FIGURE 4.2. Modal uncoupling. The coupled system (a) and the uncoupled
modal systems (b) are exactly equivalent.
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set to unity. Each eigenvector can also be divided by its Euclidean norm,
obtaining unit vectors in the space of the configurations.

Another way is to normalize the eigenvectors in such a way that the
modal masses are equal to unity. This can be done by dividing each eigen-
vector by the square root of the corresponding modal mass. In the latter
case, each modal stiffness coincides with the corresponding eigenvalue, i.e.,
with the square of the natural frequency. Equation (4.43) reduces to

η̈ + [ω2]η = f ′ , (4.45)

where
[ω2] = diag{ω2

i }

is the matrix of the eigenvalues and the modal forces f ′(t) are

f ′
i =

fi

Mi

=
qT

i f
qiMqi

. (4.46)

Example 4.3 Perform the modal analysis of the system shown in Fig. 1.4
and already studied in Example 1.2.
Because the mass matrix is diagonal, the formulation of the dynamic matrix
involving the inversion of the mass matrix is used:

D = M−1K =

⎡
⎣ 20 −10 0

−2.5 3.5 −1
0 −8 8

⎤
⎦ .

The characteristic equation yielding the natural frequencies is easily obtained
and solved:

ω6 − 31.5ω4 + 225ω2 − 200 = 0 ;

ω1 = 1.0166 ; ω2 = 3.0042 ; ω3 = 4.6305 .

The eigenvalues of the dynamic matrix D are 1.03353, 9.02522, and 21.44125.
The corresponding eigenvectors, normalized by setting to unity the largest el-
ement, are

⎧⎨
⎩

0.45913
0.87081

1

⎫⎬
⎭ ;

⎧⎨
⎩

0.11677
0.12815

−1

⎫⎬
⎭ ;

⎧⎨
⎩

1
−0.14412
0.08578

⎫⎬
⎭ .

The products qT
i Mqj are easily computed. Those with i = j yield the three

modal masses

M1 = 3.74404 , M2 = 0.57933 , M3 = 1.08616 ,
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and those with different subscripts yield the values −1.02× 10−5, 1.54× 10−5,

and 4.09 × 10−6. The values obtained are very small, compared to the modal

masses; they represent the deviations from orthogonality (with respect to the

mass matrix) due to computational approximations.

The eigenvectors can be normalized by dividing each one of them by the square

root of the corresponding modal mass. The matrix of the eigenvectors is

Φ =

⎡
⎣ 0.23728 0.15342 0.95925

0.45004 0.16837 −0.13825
0.51681 −1.31383 0.08228

⎤
⎦ .

The eigenvectors are represented in the space of the configurations θ1θ2θ3

in Fig. 4.3a. They are clearly not orthogonal.
The modal mass matrix, then, is the identity matrix, while the modal stiffness

matrix is a diagonal matrix containing the squares of the natural frequencies

computed earlier:

M =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , K =

⎡
⎣ 1.03353 0 0

0 9.02522 0
0 0 21.44125

⎤
⎦ .

FIGURE 4.3. Eigenvectors represented in the space of the configurations θ1θ2θ3:
(a) eigenvectors normalized in such a way that the modal masses have a unit
value; (b) orthogonal eigenvectors obtained by premultiplying the vectors in (a)
by matrix LT .
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Note that, although the mass and stiffness matrices are the same as obtained
by transformation ( 4.39), the eigenvectors are not orthogonal.
In this case the Cholesky transformation of the mass matrix is very simple,
because the mass matrix is diagonal. It yields

L =

⎡
⎣ 1 0 0

0 2 0
0 0 0.7071

⎤
⎦ .

By using the transformation (4.40) of the stiffness matrix, it follows that

K∗ =

⎡
⎣ 20 −5 0

−5 3.5 −2.8284
0 −2.8284 8

⎤
⎦ .

In this case, because the mass matrix is an identity matrix, the dynamic matrix

D = M−1K∗ coincides with the stiffness matrix K∗ and is symmetrical.
The eigenvectors

LT Φ =

⎡
⎣ 0.23728 −0.15342 0.95925

0.90008 −0.33674 −0.27650
0.36544 0.92901 0.05818

⎤
⎦

are orthogonal, as it can be easily verified (Fig. 4.3b).

4.5 Modal participation factors

Consider a multi-degrees-of-freedom system excited by the translational
motion of the constraints and chose the relative displacements between
the various masses and the supporting points to describe its motion. The
equation of motion is Eq. (1.11); it can be rewritten in terms of modal
coordinates as

MΦη̈ + KΦη = −MδxẍA − Mδy ÿA − Mδz z̈A + f(t) . (4.47)

By premultiplying all terms by matrix ΦT , it yields

Mη̈ + Kη = −rxẍA − ry ÿA − rz z̈A + f(t) , (4.48)

where
rj = ΦTMδj (4.49)

is a vector containing the so-called modal participation factors in the direc-
tion j (j = x, y, z). Each term of this vector gives a measure of how much
of the mass of the system participates in the ith mode when the system is
excited by a motion of the supporting frame in the relevant direction.

This statement is easily justified. Consider a rigid-body translation of
the system in the direction j (j = x, y, z) with velocity V . The vector



4.5 Modal participation factors 107

containing the generalized velocities (the derivatives of the generalized
coordinates) is

v = V δj . (4.50)

The kinetic energy of the system is thus

T =
1
2
V 2δT

j Mδj . (4.51)

Since the system is performing a rigid-body motion, the expression

mT = δT
j Mδj (4.52)

is nothing else than the total mass mT of the system, or at least the mass
that can be associated to a motion along the direction j.

Equation (4.49) can be solved in δj by premultiplying both sides by
M−1Φ−T :

δj = M−1Φ−T rj . (4.53)

By remembering that the mass matrix M is symmetrical, the following
expression for the total mass of the system is readily obtained:

mT = rT
j Φ−1M−1MM−1Φ−T rj = rT

j Φ−1M−1Φ−T rj . (4.54)

Since

Φ−1M−1Φ−T =
(
ΦTMΦ

)−1
= M

−1
,

the total mass of the system can be expressed as

mT = rT
j M

−1
rj . (4.55)

The modal mass matrix is diagonal, and thus Eq. (4.55) can be written
in the form

mT =
n∑

i=1

(
r2
ji

Mi

)
. (4.56)

Often ratios r2
ji

/Mi, expressed as percentages of mass mT , are used in-
stead of the modal participation factors. The higher the value of the modal
participation factor in a certain direction, the more that mode is excited
by a motion of the supports in that direction.
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Example 4.4 Compute the modal participation factors in x- and y-directions
for the system of Fig. 1.3 (Example 3.3), assuming the following data:

• masses: m1 = 2; m2 = 3;

• stiffness: k1 = 3; k2 = 2; k3 = 5; k4 = 4; k5 = 7;

• geometry: Δx/l05 = 1/
√

2; Δy/l05 = 1/
√

2 (the fifth spring is at 45◦).

The relevant matrices are

M =

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 3

⎤
⎥⎥⎦ , K =

⎡
⎢⎢⎣

6.5 3.5 −3.5 −3.5
3.5 5.5 −3.5 −3.5
−3.5 −3.5 8.5 3.5
−3.5 −3.5 3.5 7.5

⎤
⎥⎥⎦ .

The natural frequencies and the eigenvectors, normalized in such a way that
the modal masses have a unit value, are

ωn1 = 1.0624 , ωn2 = 1.1823 , ωn3 = 1.2699 , ωn4 = 2.6822 ,

Φ =

⎡
⎢⎢⎣

−0.2057 −0.4202 0.3521 0.3964
0.5928 0.1079 0.0647 0.3644
0.0946 0.1064 0.4888 −0.2722
0.2488 −0.4433 −0.0946 −0.2568

⎤
⎥⎥⎦ .

The modal participation factors are

rx =

⎧⎪⎪⎨
⎪⎪⎩

−0.1275
−0.5211

2.1706
−0.0239

⎫⎪⎪⎬
⎪⎪⎭

, ry =

⎧⎪⎪⎨
⎪⎪⎩

1.9321
−1.1142
−0.1545
−0.0415

⎫⎪⎪⎬
⎪⎪⎭

It is easy to verify that, since the modal masses have a unit value, products

rT
x rx = rT

y ry = 5

are equal to the total mass of the system. The modal participation factors,
normalized to the total mass of the system, are thus

Mode # r2
x/mt r2

y/mt

1 0.0032 0.7466
2 0.0543 0.2483
3 0.9423 0.0048
4 0.0001 0.0003
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A motion of the supports in x-direction excites practically only the third mode,

and only marginally the second one, while a motion in y-direction excites both

the first and, to a lesser extent, the second modes. The fourth mode is almost

not excited by any motion of the supporting frame.

Example 4.5 Two identical pendulums connected by a spring
Consider the two identical pendulums connected by a spring shown in Fig. 1.5
and studied in Example 1.4. Compute the natural frequencies of the linearized
system and the time history of the free oscillations when the system is released
from a standstill, with the first pendulum displaced at θ0 and the second in the
vertical position. The main data are m=1 kg, l=600 mm, k=2 N/m, and
g=9.81 m/s2.
By introducing the data, the equation of motion becomes

[
0.6 0
0 0.6

] {
θ̈1

θ̈2

}
+

[
11.01 −1.2
−1.2 11.01

] {
θ1

θ2

}
=

{
0
0

}
.

The eigenfrequencies and the corresponding eigenvectors can be easily com-
puted:

ω2
1 =

g

l
= 16, 35

ω2
2 =

mg + 2kl

ml
= 20, 35

ω1 = 4.04 rad/s,

ω2 = 4.51rad/s,

q1 =

{
1
1

}
, q2 =

{
1

−1

}
.

In the first mode the two pendulums move together, without stretching the
spring, with the same frequency they would have if they were not connected.
This motion is not affected by the characteristics of the spring.
In the second mode the pendulums oscillate in opposition with a frequency
affected by the characteristics of both the spring and the pendulums. If the
spring is very soft (k/m much smaller than g/l) the two natural frequencies
are very close to each other.
The initial conditions are θ1 = θ0 and θ2 = θ̇1 = θ̇2=0. The time histories of
the free oscillations are then easily obtained:

θ1(t) =
θ0

2

[
cos(ω1t) + cos(ω2t)

]
, θ2(t) =

θ0

2

[
cos(ω1t) − cos(ω2t)

]
,

or, remembering some trigonometric identities,

⎧⎪⎪⎨
⎪⎪⎩

θ1(t) = θ0

[
cos

(ω2 − ω1

2
t
)

cos
(ω2 + ω1

2
t
)]

,

θ2(t) = θ0

[
sin

(ω2 − ω1

2
t
)

sin
(ω2 + ω1

2
t
)]

.
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FIGURE 4.4. Two pendulums linked together by a spring: time history of the
response.

The motion can then be considered an oscillation with a frequency equal to the

average of the natural frequencies of the system (ω2 +ω1)/2 with an amplitude

that is modulated with a frequency equal to (ω2 − ω1)/2, as clearly shown in

Figs. 4.4a and b.

The system does not include any damping: The energy of the two pendulums

is therefore conserved. The initial conditions are such that at time t = 0 all

energy is concentrated in the first pendulum. The spring slowly transfers energy

from the first to the second in such a way that the amplitude of the former

decreases in time while the amplitude of the latter increases. This process goes

on until the first pendulum stops and all energy is concentrated in the second

one.

The initial situation is so reversed and the process of energy transfer starts

again in the opposite direction. The frequency of the sine wave that modulates

the amplitude is

(ω2 − ω1)/2 = 0.235 rad/s = 0.037 Hz ,
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corresponding to a period of 26.72 s. The frequency of the beat is thus twice the

frequency computed earlier, i.e., 0.072 Hz, corresponding to a period of 13.37 s.

This means that the amplitude increases and decreases with a period that is

half of that of the modulating sine wave.

The occurrence of the beat is, however, linked with the initial conditions that

must be able to excite both modes. If this does not happen, the oscillation is

mono-harmonic, and no beat takes place.

4.6 Structural modification

Many techniques aimed at computing the natural frequencies of a system
after some of its characteristics have been modified without solving a new
eigenproblem are listed under the general name of structural modification.
Sometimes, the inverse problem is also considered: to compute the modifi-
cations needed to obtain required values of some natural frequencies.

Consider an undamped discrete system and introduce some small modifi-
cations in such a way that the mass and stiffness matrices can be written in
the form M+ΔM and K+ ΔK. If the modifications introduced are small
enough, the eigenvectors of the new system can be approximated by the
eigenvectors of the old one and the ith modal mass, stiffness, and natural
frequency of the new system can be approximated as

M imod
= qT

i (M + ΔM)qi = 1 + qT
i ΔMqi ,

Kimod
= qT

i (K + ΔK)qi = ω2
i + qT

i ΔKqi ,

ω2
imod

= Kimod

M imod

= ω2
i + qT

i ΔKqi

1 + qT
i ΔMqi

,

(4.57)

where the eigenvectors have been normalized in such a way that the modal
masses of the original system have unit values. The modifications are as-
sumed to be small. In this case, the series expressing the square root of
ω2

imod
can be truncated after the first term, yielding

ωimod
≈ ωi

(
1 +

qT
i ΔKqi

2ω2
i

− qT
i ΔMqi

2

)
. (4.58)

Equation (4.58) can be used to compute the new value of the ith eigen-
value, knowing the modifications that have been introduced into the sys-
tem. However, the inverse problem can also be solved. If matrices ΔM
and ΔK are functions of a few unknown parameters, a suitable set of
equations (4.58) can be used to find the values of the unknowns, which
allow the solution for some stated values of the natural frequencies. The
procedure described here is approximated and can be used only for small
modifications.
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Another procedure that can be used to compute the effect of stiffness
modifications that do not need to be small is the following. The eigenprob-
lem allowing the computation of the natural frequencies of the modified
system expressed in terms of modal coordinates of the original system is

η̈ + [ω2
i ]η + ΦT ΔKΦη = 0 , (4.59)

where matrix ΦT ΔKΦ is, in general, not diagonal, because the eigenvectors
of the original system do not uncouple the equations of motion of the
modified system.

If only one modification is introduced, matrix ΔK can be expressed in
the form ΔK = αuuT where, if the modification consists of the addition
of a spring linking degrees of freedom i and j, constant α is nothing other
than the stiffness of the spring and all elements of vector u are zero except
elements i and j, which are equal to 1 and −1, respectively. This is actu-
ally not a limitation: Because the procedure is not approximated, several
modifications can be performed in sequence without losing precision.

The modal matrix linked with the modification can be expressed as

ΦT ΔKΦ = αΦT uuTΦ = αūūT , (4.60)

where, obviously, ū = ΦTu.
The eigenproblem

(−ω2I + [ω2
i ] + αūūT )η0 = 0

linked with Eq. (4.59) yields a set of n equations of the type

(
− ω2 + ω2

i

)
η0i

ūi
= −α

n∑
k=1

ūkη0k
(i = 1, 2, . . . , n) . (4.61)

Note that ω2 equals the eigenvalues of the modified system, while ω2
i

equals those of the original one. The term on the right-hand side of (4.61)
is the same in all equations. It then follows that

(
− ω2 + ω2

1

)
η01

ū1
=

(
− ω2 + ω2

2

)
η02

ū2
= · · · =

(
− ω2 + ω2

n

)
η0n

ūn
. (4.62)

The eigenvector η0 can thus be easily computed. By stating that the ith
element is equal to unity, the remaining elements can be computed from
Eq. (4.62):

η0k
=

(
− ω2 + ω2

i

)
ūk(

− ω2 + ω2
k

)
ūi

(k �= i) . (4.63)
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By introducing the eigenvector expressed by Eq. (4.63) into Eq. (4.61)
and remembering that η0i was assumed to be equal to one, it follows that

1
α

= −
n∑

k=1

ū2
k(

− ω2 + ω2
k

) = 0 . (4.64)

Equation (4.64) can be regarded as a nonlinear equation in ω, yielding the
eigenfrequencies of the modified system. The same equation can, however,
be used to compute the value of α once a value for the natural frequency
of the modified system has been stated. Note that although it is possible
to obtain any given value of the eigenfrequency, it is, however, impossible
to be sure that a given eigenfrequency is modified as needed.

4.7 Exercises

Exercise 4.1 A ballistic pendulum of mass m and length l is struck by a bullet,

having a mass mb and velocity v, when it is at rest. Assuming that the bullet

remains in the pendulum, compute the frequency and amplitude of the oscillations.

Data: m = 100 kg; mb = 0.05 kg, v = 200 m/s, and l = 3 m.

Exercise 4.2 Consider the undamped system of Fig. 1.8 (Exercise 1.2). Com-

pute the natural frequencies assuming that m1 = 10 kg, m2 = 5 kg, k1 = 10

kN/m, k2 = 8 kN/m, k3 = 4 kN/m, and k4 = 5 kN/m.

Exercise 4.3 Consider the double pendulum of Fig. 1.9 (Exercise 1.3). Using

the linearized equations of motion already obtained compute the natural frequen-

cies and the mode shapes. Data: m1 = 2 kg, m2 = 4 kg, l1 = 600 mm, l = 400

mm, and g = 9.81 m/s2.

Exercise 4.4 Consider a system with 2 degrees of freedom, made by masses

m1 and m2, connected by a spring k12 between each other and springs k1 and

k2 to point A. Compute the natural frequencies, mode shapes, the modal masses,

and stiffnesses. Plot the eigenvectors in the space of the configurations and show

that the mode shapes are m-orthogonal and k-orthogonal. Compute the modal

participation factor for an excitation due to the motion of point A. Data: m1 = 5

kg, m2 = 10 kg, k1 = k2 = 2 kN/m, and k12 = 4 kN/m.

Exercise 4.5 Consider the system of the previous exercise and modify the stiff-

ness of the springs so that the first natural frequency is increased by 20%. Check

that the second natural frequency is not changed much.

Exercise 4.6 The multifilar pendulum is one of the devices used for measuring

moments of inertia (Fig. 4.5a). A trifilar pendulum consists of a tray hanging

from three wires and the objects to be measured can be simply positioned on the
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FIGURE 4.5. Trifilar suspension at rest (a) and displaced at angle θ from the
static equilibrium position (b).

tray, taking care to put the center of mass of the object over the center of the

latter. The period of the torsional oscillations of the tray and of the tray plus the

object is measured in two subsequent tests. In Fig. 4.5b the device is shown during

the motion, in a position displaced at angle θ from the position at rest.

Write the equation of motion of the system.

Write the equation allowing to compute the moment of inertia of the object

being tested from the measurements and the geometrical characteristics of the

pendulum (l, R1, and R2) and the masses m, mt, and mw of the object, the tray

and of each one of the suspension wires.



5
Free Vibration of Damped Systems

Damping causes free vibration to decay in time. Moreover, if damping is
high enough, some or even all the modes of free vibration may be nonoscil-
latory and free motion a simple return toward the equilibrium position.
Except in a few cases, damping prevents from uncoupling the equations of
motion when written in modal coordinates, at least in an exact way. How-
ever, if damping is small enough, uncoupling can still be performed in an
approximate way, and the concept of modal damping can nonetheless be
introduced.

5.1 Systems with a single degree
of freedom–viscous damping

The solution of the homogeneous equation associated with the equation
of motion of a damped system with a single degree of freedom (3.3) can
be assumed to be of the same type already seen for the corresponding
undamped (conservative) system

x = x0e
st . (5.1)

By introducing solution (5.1) into the equation of motion, the following
algebraic equation is obtained:

x0(ms2 + cs + k) = 0 . (5.2)
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The condition for the existence of a solution other than the trivial solu-
tion x0 = 0 leads to the characteristic equation

ms2 + cs + k = 0 , (5.3)

whose two solutions s1 and s2 are

s1, 2 =
−c ±

√
c2 − 4mk

2m
. (5.4)

Generally speaking, s is expressed by a complex number; the time history
(5.1) is thus

x = x0e
�(s)tei�(s)t . (5.5)

The solution (5.5) of the equation of motion can be regarded as a har-
monic oscillation x0e

i�(s)t of the same kind seen for the undamped system,
multiplied by a factor e�(s)t that decreases in time, if �(s) is negative.

The imaginary part of s is the frequency ω of the damped oscillations of
the system, while its real part is often referred to as decay rate and symbol
σ is used for it.

Remark 5.1 In some cases the decay rate is defined as σ = −�(s), so
that σ is positive when the motion actually decays in time. The definition
used here (σ = �(s)) would be better referred to as growth rate.

Equation (5.5) can thus be written in the form

x = x0e
σt [cos (ωt) + i sin (ωt)] . (5.6)

For stability σ = �(s) must be negative.
If condition

c > 2
√

km (5.7)

is satisfied, the solutions of the characteristic equation (5.3) are real. The
motion of the system is not oscillatory, but simply the combination of two
terms that decrease monotonically in time, because both roots are negative.
The value of the damping expressed by Eq. (5.7) is often referred to as
critical damping, the highest value of c that allows the system to show an
oscillatory free behavior. When condition (5.7) is satisfied, the system is
said to be overdamped.

Introducing the damping ratio or relative damping ζ, i.e., the ratio be-
tween the value of the damping c and its critical value ccr

ζ =
c

ccr
=

c

2
√

km
, (5.8)

the two values of the decay rate σ of an overdamped system (ζ > 1) are

σ = �(s) = −
√

k

m

(
ζ ±

√
ζ2 − 1

)
. (5.9)
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If the damping of the system is lower than the critical damping (ζ < 1),
the system is said to be underdamped. Equation (5.4) still holds but leads to
a pair of complex-conjugate solutions for s. The system performs damped
harmonic oscillations (Fig. 5.1) with circular frequency ω and decay rate σ

⎧⎪⎪⎨
⎪⎪⎩

ω = �(s) = ±
√

k
m

√
1 − ζ2 = ±ωn

√
1 − ζ2,

σ = �(s) = −ζ
√

k
m = −ζωn ,

(5.10)

where ωn is the natural frequency of the corresponding undamped system.
As shown in nondimensional form in Figs. 5.2b and c, the decay rate

decreases linearly with increasing ζ, while the plot ω (ζ) is an arc of a
circle.

The complete expression of the complementary function with its inte-
gration constants is similar to that seen in Chapter 4 for the conservative
system (Eqs. from (4.8) to (4.11)), with the difference that here a decay
rate is present to account for the decrease in time of the amplitude of the
free oscillations:

x = x01e
s1t + x02e

s2t = eσt

{[
�(x01 + x02) + i�(x01 + x02)

]
cos(ωt)+

+
[
�(x02 − x01) + i�(x01 − x02)

]
sin(ωt)

}
.

(5.11)
Displacement x is a real quantity and then the two complex constants,

x01 and x02, must be conjugate. If at time t = 0 the position x(0) and
the velocity ẋ(0) are known, the values of the real and imaginary parts of

FIGURE 5.1. Time history of the damped oscillations of a lightly damped system.
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FIGURE 5.2. (a) Nondimensional roots locus for a damped system with a single
degree of freedom (s∗ = s/ωn). (b) and (c) Plots of the real and imaginary parts
of s∗ as functions of the damping ratio ζ.

constant x01 are

�(x01) =
x(0)

2
,

�(x01) =
−1

2ωn

√
1 − ζ2

[
ẋ(0) + ζωnx(0)

]
.

(5.12)

The equation describing the damped free oscillations of the system is
then

x = e−ζωnt

{
x(0) cos

(
ωn

√
1 − ζ2 t

)
+

+
1√

1 − ζ2

[
ẋ(0)
ωn

+ ζx(0)
]

sin
(
ωn

√
1 − ζ2 t

)}
.

(5.13)

The roots of the characteristic equation can be reported on the complex
plane, i.e., on a plane in which the x-axis is taken as the real axis and
the y-axis is the imaginary axis. The points representing the solutions of
the characteristic equation in the complex plane are usually referred to as
the poles of the system. When the behavior of the system depends on a
parameter, as in the current case it depends on the damping ratio ζ, the
plot of the roots with varying values of the parameter is said to be the roots
locus . The roots locus of a damped system with a single degree of freedom
is shown in Fig. 5.2a.

The roots locus of an underdamped system with a single degree of free-
dom is half of a circle, because

|s| =
√

ω2 + σ2 =

√
k

m
= ωn. (5.14)

In the case of underdamped systems, the two solutions have the same
real part (decay rate) and imaginary parts equal in modulus but opposite
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in sign. For overdamped systems, on the contrary, the two solutions, which
are real (lying on the real axis), are not coincident. One of them tends to
infinity and the other tends to zero when damping tends to infinity.

In the case of critically damped systems (ζ = 1), the two solutions are
coincident: The two branches of the locus for underdamped systems meet
on the real axis to separate again for overdamped systems. The point where
the two branches meet to remain on the real axis is said to be a break-in
point. When the opposite occurs and two branches lying on the real axis
meet to depart from the axis, the point is said to be a breakaway point.

Solutions on the left of the complex plane, as in the case of systems with
positive damping, are asymptotically stable, while solutions lying on the
right part of the plane denote unstable behavior. Solutions located on the
imaginary axis are stable but not asymptotically, as the oscillations are not
damped, and the system, once set in motion, cannot reach an equilibrium
condition although not being unstable.

Remark 5.2 The systems studied in structural dynamics are usually lightly
damped; consequently, factor

e−ζωnt

decreases monotonically very slowly with time. The frequency of the oscil-
lations is only slightly smaller than the natural frequency of the undamped
system ωn, owing to the presence of factor

√
1 − ζ2. In the case of lightly

damped systems, this factor is almost equal to unity, and the frequency of
the damped free oscillations is almost equal to that of the free oscillations
of the undamped system.

Consider the part of the time history of the displacement close to a
peak (Fig. 5.3a). The actual peak occurs in point A, which is very close
to point B where the harmonic part of the solution eiωt has a unit value.
The amplitudes at two subsequent peaks, approximated by two subsequent
points B, spaced apart by one period of oscillations (T = 2π/ω) are

xk = eσtk , xk+1 = eσtk+1 = eσ(tk+2π/ω) . (5.15)

The ratio between the amplitudes of two subsequent peaks is then

xk

xk+1
= e−2πσ/ω, (5.16)

and is constant in time. Its natural logarithm, usually defined as logarithmic
decrement, is

δ = ln
(

xk

xk+1

)
= 2π

ζ√
1 − ζ2

≈ 2πζ . (5.17)

The two expressions of the logarithmic decrement are reported in Fig.
5.3b.
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FIGURE 5.3. Damped oscillations of a lightly damped system. (a) Enlargement
of the zone close to a peak; (b) logarithmic decrement as a function of ζ.

This expression was obtained by confusing points A and B in the figure,
but this approximation is not needed and holds also for large values of ζ.
The peaks can be obtained by differentiating the time history of Eq. (5.13)
with respect to time and setting to zero the derivative. Since the initial
conditions are immaterial, it is possible to state x(0) = 0, obtaining

dx

dt
= eσt ẋ(0)

ω
[σ sin (ωt) − ω cos (ωt)] = 0 , (5.18)

which yields
tan (ωt) =

ω

σ
, (5.19)

i.e.,

ωt = artg
(ω

σ
+ iπ

)
for i = 0, 1, 2, .... (5.20)

The solutions with even values of i are maxima, those with odd values
are minima.

The ratio between the amplitude at two subsequent peaks is thus

xk

xk+1
=

e
σ
ω artg(ω

σ +2kπ) ẋ(0)
ω sin

[
artg

(
ω
σ + 2kπ

)]
eσartg[ω

σ +2(k+1)π] ẋ(0)
ω sin

{
artg

[
ω
σ + 2 (k + 1)π

]} = e−
2πσ

ω ,

(5.21)
which coincides with the expression obtained earlier.

Remark 5.3 The logarithmic decrement gives a measure of the damping
of the system that is not too difficult to evaluate from the recording of the
amplitude versus time (Fig. 5.1). If the first expression of Eq. (5.17) is
used, it holds also for large values of ζ.
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Remark 5.4 The logarithmic decrement is a constant of the system and
can be measured in any part of the time history of the free vibrations. Dif-
ferent values measured during the decay of the free motion are usually a
symptom of nonlinearity.

The decay of the amplitude in n oscillation is

xn

x0
= e−nδ = e

− 2nπζ√
1−ζ2 . (5.22)

It is plotted in Fig. 5.4a versus ζ for various values of n.
The trajectories of the free oscillations of an undamped linear system in

the state plane were found to be circles (or ellipses, depending on the scales
used for displacements and velocities, Fig. 4.1) while those of a damped sys-
tem are logarithmic spirals. They wind up in a clockwise direction toward
the origin, which is a singular point (Fig. 5.4b).

Instead of using Eq. (5.1), the solution of the equation of motion could
also be written in the form

x = x0e
iνt, (5.23)

where iν = s. The real and imaginary parts of the complex frequency ν are
the actual frequency of the motion and the decay rate (changed in sign),
respectively,

�(ν) = �(s) = ω , �(ν) = −�(s) = −σ . (5.24)

FIGURE 5.4. Damped system with a single degree of freedom. (a) Decrease
of the amplitude after a number n of oscillations versus the damping ratio ζ.
(b) State-space trajectory. Initial conditions: The system is displaced from the
equilibrium position and then let free with zero initial velocity.
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5.2 Systems with a single degree
of freedom–hysteretic damping

As seen in Section 3.4.2, the dynamic stiffness of a system with structural
damping can be obtained by simply introducing the complex stiffness in
the expression of the dynamic stiffness of an undamped system

kdyn = −mω2 + k(1 + iη) , (5.25)

or, by remembering that s = iω,

kdyn = ms2 + k(1 + iη) . (5.26)

Remark 5.5 Strictly speaking, this way of proceeding is inconsistent: hys-
teretic damping was defined with reference to harmonic motion, and the
very concept of decay rate implies that the amplitude of the motion changes
in time. Equation (5.26) holds only when ν is real (and equal to ω), and
thus Eq. (5.26) should not be used for free damped oscillations, i.e., when
s has a non-vanishing real part. However, systems with structural damp-
ing are usually very lightly damped and the decay rate is small enough, if
compared with the frequency of oscillations, to use the concept of hysteretic
damping also for damped free oscillations.

The frequency and the decay rate of the free oscillations of the system
can be obtained by equating the dynamic stiffness to zero

s = i

√
k

m

√
1 + iη = iωn

√
1 + iη . (5.27)

By separating the real and the imaginary parts of s1

ω = �(s) = ωn

√
1 +

√
1 + η2

2
≈ ωn,

σ = �(s) = −ωn

√
−1 +

√
1 + η2

2
≈ −ωn

η

2
.

(5.28)

Note that the solution (5.27) should have a double sign (±). However, the
strain always lags the stress, and when the imaginary part of s is negative
(clockwise rotation in the complex plane) the loss factor should be also
negative. This results in a negative value of σ, as it is clearly the case since
the free oscillations must decay owing to energy dissipation.

The frequency of the free oscillations is slightly higher than the natu-
ral frequency of the undamped system. This result is different from that

1
√

a ± ib =

√ √
a2+b2+a

2
± i

√ √
a2+b2−a

2
.
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found for viscous damping but, also in this case, the frequency shift due
to the presence of damping is negligible for lightly damped systems. The
logarithmic decrement δ takes the value

δ =
πη√

1 + (η2/4)
≈ πη. (5.29)

5.3 Systems with a single degree
of freedom – nonviscous damping

The homogeneous equation associated to Eq. (3.74) describes the free mo-
tion of a single degree of freedom spring, mass, damper system in which
the damper has nonviscous characteristics.

The natural frequencies are readily computed by finding the eigenvalues
of the dynamic matrix

A = M∗−1A∗ . (5.30)

If the nonviscous damper is modeled using m springs and dampers in
series, the eigenvalues are m + 2. Two of them are either real or complex
conjugate while the other m, mostly related to the motion of points Bi, are
real. If the two former eigenvalues are complex the system is underdamped,
if they are all real the system is overdamped.

To simplify matters, let m = 1. By assuming a solution of the type

x = x0e
st ,

the equation for free motion of the spring, mass, nonviscous damper system

mẍ + cμ

∫ t

−∞
e−μ(t−τ)ẋ (τ) dτ + kx = 0 (5.31)

becomes (
ms2 + cμ

s

s + μ
+ k

)
x0 = 0 . (5.32)

The characteristic equation is thus

ms2 + cμ
s

s + μ
+ k = 0 , (5.33)

or, introducing the nondimensional quantities

s∗ =
s

ωn
= s

√
m

k
, ζ =

c

2
√

mk
, β =

ωn

μ
=

1
μ

√
k

m
,

βs∗3 + s∗2 + (β + 2ζ) s∗ + 1 = 0 . (5.34)
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The characteristic equation is a cubic equation. Its solutions can easily
be computed in closed form, obtaining

{
s∗1 = − 1

3β + S + T ,
s∗2,3 = − 1

3β − 1
2 (S + T ) ± i

√
3

2 (S − T ) ,
(5.35)

where

R = 1
27β3

(
9 β ζ − 9 β2 − 1

)
,

D = 1
27β4

[
8 β ζ3 + ζ2

(
12 β2 − 1

)
+ ζ

(
6 β3 − 10 β

)
+ β4 + 2 β2 + 1

]
,

S = 3
√

R +
√

D , T = 3
√

R −
√

D .

This solution holds if D > 0 and yields a damped harmonic motion: the
system is thus uderdamped.

The condition D = 0, i.e.,

8 β ζ3 + ζ2
(
12 β2 − 1

)
+ ζ

(
6 β3 − 10 β

)
+ β4 + 2 β2 + 1 = 0 (5.36)

thus discriminates between under- and overdamped systems.
The behavior of the system depends on two parameters: ζ and β. The

former is a nondimensional damping coefficient, the second one is a param-
eter stating its nonviscosity. If β = 0 (μ → ∞) the damping is viscous, and
the usual condition ζ < 1 is found for oscillatory free motion. The larger is
β, the less viscous is damping.

Once a value of β is stated, Eq. (5.36) can be solved in ζ and a zone in
which the system is underdamped can be identified in the parameter plane
ζβ.

Since it is a cubic equation in ζ, three solutions are found. However, only
two are positive and need to be considered

ζL = 1
24β

[
1 − 12 β2 + 2

√
1 + 216β2 cos

(
θc+4π

3

)]

ζU = 1
24β

[
1 − 12 β2 + 2

√
1 + 216β2 cos

(
θc

3

)]
,

(5.37)

where

θc = arcos

⎡
⎣1 − 5832β4 − 540β2√

(216β2 + 1)3

⎤
⎦ . (5.38)

The two lines β(ζ) so obtained are reported in Fig. 5.5. The plot identifies
two zones in the parameter plane ζβ: The values included in zone A give way
to an oscillatory behavior. On the contrary, the values of the parameters
in zone B are characterized by nonoscillatory free behavior.
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FIGURE 5.5. Free behavior of a simple system with nonviscous damping. The
parameters in zone A correspond to an underdamped system, those in zone B to
an overdamped system.

The coordinates of point C are⎧⎨
⎩

ζC = 4
3
√

3
= 0.7698

βC = 1
3
√

3
= 0.1925 .

(5.39)

If the system is weakly nonviscous, its behavior is not much different from
that of a viscously damped system: for low values of ζ it is underdamped
while for high values it is overdamped.

With increasing β the critical damping decreases, but an underdamped
behavior can be found also for very high values of ζ. The zone in which
overdamped behavior is found decreases with increasing β, and when β ≥
βc it disappears altogether.

5.4 Systems with many degrees of freedom

The solution of the homogeneous equation associated with the equation of
motion (3.6) is of the type

x = x0e
st . (5.40)

By introducing the solution (5.40) into Eq. (3.6) and setting f = 0, the
following set of homogeneous linear algebraic equations is obtained:

x0(Ms2 + Cs + K) = 0 . (5.41)

To obtain solutions other than the trivial solution x0 = 0, the determi-
nant of the matrix of the coefficients must vanish. The resulting eigenprob-
lem

det(Ms2 + Cs + K) = 0 (5.42)
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is not reduced in canonical form, but has the form of a so-called lambda
matrix .2

To obtain an eigenproblem in canonical form it is possible to resort to
the state space. Assuming a solution of the type

z = z0e
st, (5.43)

the homogeneous linear algebraic equations is(
A− sI

)
z0 = 0 , (5.44)

yielding the eigenproblem of order 2n

det
(
A− sI

)
= 0 . (5.45)

The eigenvalues s yield the frequencies of oscillation and the decay rates;
the eigenvectors yield the complex mode shapes z0. All considerations on
the stability of the system seen in the previous section still hold, with the
only difference that now there are n pairs of complex-conjugate solutions.
If some of them are real, the corresponding modes are nonoscillatory; if
they are imaginary, undamped oscillations may occur. The fact that the
eigenvectors are complex3 causes the time histories related to the various
degrees of freedom to be out of phase.

5.5 Uncoupling the equations of motion: space of
the configurations

The matrix Φ of the eigenvectors of the conservative system obtained by
neglecting the damping matrix C can be used to perform a modal trans-
formation of the equation of motion of the damped system. By introducing
the modal coordinates

x = Φη (5.46)

into the equation of motion (3.6) and by premultiplying all its terms by
ΦT , it follows that

Mη̈ + Cη̇ + Kη = f , (5.47)

where M and K are the diagonal modal mass and modal stiffness matrices,
respectively, defined by Eq. (4.34) and f(t) is the modal force vector, already
defined when dealing with the undamped system.

C is the modal-damping matrix

C = ΦTCΦ . (5.48)

2The term lambda matrix comes from the habit of using symbol λ for the unknown
of the eigenproblem. Here the more modern practice of using symbol s is followed.

3An interesting discussion on the meaning of complex modes can be found in G.F.
Lang, ‘Demystifying complex modes’, Sound and Vibration, January, 1989.
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Remark 5.6 The modal-damping matrix is generally not diagonal, be-
cause the eigenvectors of the undamped system, although orthogonal with
respect to the stiffness and mass matrices, are not orthogonal with respect to
the damping matrix. The modal-damping matrix is, however, symmetrical,
since the original damping matrix is such.

It has been demonstrated that a condition that is both necessary and
sufficient to obtain a diagonal modal-damping matrix is that matrix M−1C
commutes4 with matrix M−1K, or

CM−1K = KM−1C . (5.49)

In this case, it is possible to define a modal damping Ci = Cii for each
mode and to uncouple the equations of motion.

A particular case that satisfies condition (5.49) is the so-called propor-
tional damping, i.e., the case in which the damping matrix can be expressed
as a linear combination of the mass and stiffness matrices:

C = αM + βK . (5.50)

Because condition (5.49) is more general than condition (5.50), a sys-
tem whose damping satisfies the first will be said to possess generalized
proportional damping.

Under these conditions, all matrices are diagonal, and Eq. (5.47) is a set
of n uncoupled second-order differential equations. Each of them is

Miη̈i + Ciη̇i + Kiηi = fi , (5.51)

and the system with n degrees of freedom is broken down into a set of n
uncoupled systems, each with a single degree of freedom.

By normalizing the eigenvectors in such a way that the modal masses
are equal to unity, Eq. (5.47) for a system with generalized proportional
damping reduces to

η̈ + 2[ζω]η̇ + [ω2]η = f ′ , (5.52)

where [ω2] = diag{ω2
i } is the matrix of the eigenvalues, already defined in

Section 1.7, and matrix
[ζω] = diag{ζiωi}

contains the damping ratios for the various modes.

Remark 5.7 The frequencies ωi are the natural frequencies of the corre-
sponding undamped system.

Remark 5.8 Often the modal-damping matrix is not obtained by building
matrix C and then performing the modal transformation, but directly by
assuming reasonable values for the modal-damping ratios ζi.

4Matrices A and B commute if AB = BA.
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Although modal uncoupling does not introduce approximations in un-
damped systems, the equations of motion of damped systems can be un-
coupled exactly only in the case of generalized proportional damping. The
situation is usually that sketched in Fig. 5.6, in which the various modal
systems are coupled to each other by the out-of-diagonal terms of modal
damping.

This statement obviously does not exclude the possibility of uncoupling
the equations of motion by introducing adequate approximations. The sim-
plest way is by computing the modal-damping matrix using Eq. (5.48) and
then neglecting all its terms except those on the diagonal. This corresponds
to ‘cutting’ the dampers connecting the modal systems in Fig. 5.6b and
substituting dampers C i with dampers with coefficient C ii. Another pos-
sibility is to compute the eigenvalues related to the damped system solving
the eigenproblem (5.44) and then using Eq. (5.10) to compute the modal
damping for each mode.

Remark 5.9 These procedures, which usually produce very similar results,
introduce errors that are very small if the system is lightly damped.

FIGURE 5.6. Modal uncoupling of damped systems. (a): Multi-degrees of free-
dom damped system. The modal systems in (b) are coupled by the out-of-diago-
nal modal-damping terms. The damping coefficients C i are linked to the elements
of the modal damping matrix by the relationships C i =

∑3
j=1 C ij for i = 1, ...,

3. Note that the term C ij with i �= j is negative.
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There are, however, cases in which neglecting the out-of-diagonal ele-
ments of the modal-damping matrix leads to unacceptable results, mainly
when the system is highly damped and the damping distribution is far
from being proportional. In this case, however, it is still possible to distin-
guish between a proportional part Cp of the damping matrix, which is a
diagonal matrix containing the elements of C on the main diagonal, and a
nonproportional part Cnp, containing all other elements of C. The latter
is symmetrical with all elements on the main diagonal equal to zero.

By applying the inverse modal transformation, it is possible to show also
that the original damping matrix C can be split into a proportional and a
nonproportional part,

Cp = Φ−TCpΦ−1 and Cnp = Φ−TCnpΦ−1 ,

respectively. Note that Cp is not strictly proportional but only proportional
in a generalized way.

Once the natural frequencies and mode shapes of the undamped system
are known, the equation of motion of the system can be rewritten in modal
coordinates in the form

Mη̈ + Cpη̇ + Kη = −Cnpη̇ + f(t) . (5.53)

All matrices on the left-hand side are diagonal and coupling terms are
present only on the right-hand side. It is thus possible to devise an itera-
tive procedure allowing the computation of the eigenvalues of the damped
system without solving the eigenproblem (5.44), whose size is 2n. Because
a solution of the type of Eq. (5.11) can be assumed for the time history of
the response in terms of modal coordinates, the differential homogeneous
equation associated with Eq. (5.53) can be transformed into the following
algebraic equation in the Laplace domain:(

s2M + sCp + K
)
η0 = −sCnpη0 . (5.54)

To compute the ith eigenvalue si, assume a set of n complex modal
coordinates that are all zero, except for the real part of the ith coordinate,
which is assumed with unit value. This amounts to assuming a complete
uncoupling between the modes, at least where the ith mode is concerned.
From the ith equation a first approximation of the complex eigenvalue
can be obtained. The remaining i − 1 complex equations can be used to
obtain new values for the n−1 complex elements of the eigenvector; the ith
element is assumed to have unit real part and zero imaginary part. Once
the eigenvector has been computed, a new estimate for the ith eigenvalue
can be obtained from the ith equation while the other equations yield a
new estimate for the eigenvector. This procedure can be repeated until
convergence is obtained.

This iterative procedure does not rely on any small-damping assumption.
The starting values of the eigenfrequencies are not those of the undamped
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system, but rather are those of a system that has a generalized proportional
distribution of damping. Consequently, it can also be applied to systems
with very high damping in which some modes show a nonoscillatory free
response. Although no theoretical proof of the convergence of the technique
has been attempted, a number of tests did show that convergence is very
quick. The reduction of computation time with respect to the conventional
state-space approach is particularly remarkable when the root loci are to
be obtained and the eigenproblem has to be solved several times.

Example 5.1 Perform the modal analysis of the system shown in Fig. 1.4
(Example 1.2), with the damping added in Example 3.1.
From the state-space dynamic matrix obtained in Example 3.1, the eigenvalues
are readily obtained:

s1 = −0.0263 ± i 1.017 , s2 = −0.4410 ± i 2.974 , s3 = −0.6577 ± i 4.575.

The modal analysis of the undamped system was performed in Example 4.3,
obtaining the following matrix of the eigenvectors, normalized by stating the
modal masses have unit values

Φ =

⎡
⎣ 0.23728 0.15342 0.95925

0.45004 0.16837 −0.13825
0.51681 −1.31383 0.08228

⎤
⎦ .

The modal-damping matrix can thus be computed. It is not diagonal because
the damping of the system is not proportional.

C = ΦT CΦ =

⎡
⎣ 0.0527 −0.0328 −0.2049

−0.0328 0.8813 −0.1324
−0.2049 −0.1324 1.3160

⎤
⎦ .

Even if the damping matrix is not diagonal, approximate modal uncoupling
can be performed by neglecting all elements of the modal-damping matrix lying
outside the main diagonal.
The fact that the neglected elements of matrix C are of the same order of
magnitude as the terms considered should not give the impression of a rough
approximation. Actually, the behavior of the system is similar to that of the
undamped system, owing to the low value of damping, except when a mode
is excited near its resonant frequency. Damping is important only in near-
resonant conditions, and even then only in one of the equations that is related
to the resonant mode.
In the equation in which damping is important, the element on the diagonal
of the modal-damping matrix is multiplied by a generalized coordinate that is
far greater than the other ones, i.e., by the modal coordinate of the resonant
mode.
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From the three uncoupled modal systems, the damped frequencies and decay
rates of the free motions can be obtained easily:

s1 = −0.0266 ± i 1.016 , s2 = −0.4407 ± i 2.972 , s3 = −0.6580 ± i 4.583.

They are very close to the values obtained directly as eigenvalues of the dy-
namic matrix in the state space. The imaginary parts of the eigenvalues can
be compared with the natural frequencies of the undamped system.

It is clear that the presence of damping does not greatly affect the frequency

of the free oscillations of the system.

5.6 Uncoupling the equations of motion: state
space

The eigenvectors of Eq. (5.44) do not uncouple the equations of motion in
the state space because matrix A is not symmetrical.

It is, however, possible to uncouple the state equations by resorting to
the eigenvectors of the adjoint eigenproblem, i.e., the eigenvectors of matrix
AT . Let qRi be the ith right eigenvector (i.e., the ith eigenvector of matrix
A) and let qLi be the ith left eigenvector (i.e., the ith eigenvector of matrix
AT ). They are biorthogonal, i.e., all products qT

LjqRi are equal to zero, if
i �= j.

The eigenvectors can be normalized in such a way that

qT
LiqRi = 1 , (5.55)

in which case they are said to be biorthonormal.
By introducing into the state equation the modal states z defined by the

relationship
z = ΦRz , (5.56)

where ΦR is the matrix of the right eigenvectors, and premultiplying by
the matrix of the left eigenvectors ΦL transposed, the following modal
uncoupled set of equations is obtained:

ż = Az + Bu , (5.57)

where
A = ΦT

LAΦR (5.58)

is a diagonal matrix listing the eigenvalues and

B = ΦT
LB (5.59)

is the input gain matrix of the modal system.
Note that this is possible because

Φ
T

LΦR = I.
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Remark 5.10 The transition matrix eAt in this case is a diagonal matrix,
which can be easily computed because each of its elements is simply esit.

Example 5.2 Consider the system shown in Fig. 1.4 and studied in Examples
1.2, 3.1, and 5.1. Write the state-space equations and uncouple them through
the right and left eigenvectors.
The dynamic matrix and the input gain matrix computed in the mentioned
examples are

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1.1 1 0 −20 10 0
0.25 −0.35 0.1 2.5 −3.5 1
0 0.8 −0.8 0 8 −8
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B =
[

0 0 2 0 0 0
]T

.

The right and left eigenvectors, suitably normalized, are (since they are con-
jugate, the six columns of the matrices are reported in synthetic form)

qRi =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2028 ∓ 0.5513i 0.1217 ± 0.0196i 1.0102 ∓ 0.0155i
2.2258 ∓ 1.1453i 0.1336 ∓ 0.0110i −0.1494 ∓ 0.0313i
2.5456 ∓ 1.3337i −1.0418 ± 0.0201i 0.0850 ± 0.0446i
−0.5721 ∓ 1.1674i 0.0005 ∓ 0.0410i −0.0344 ∓ 0.2158i
−1.1815 ∓ 2.1572i −0.0101 ∓ 0.0434i −0.0021 ± 0.0330i
−1.3747 ∓ 2.4665i 0.0575 ± 0.3418i5 0.0069 ∓ 0.0196i

⎤
⎥⎥⎥⎥⎥⎥⎦

,

qLi =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0184 ± 0.0111i 0.0932 ± 0.0342i 0.4557 ± 0.0546i
0.1425 ± 0.0775i 0.4292 ± 0.0472i −0.2614 ∓ 0.0929i
0.0205 ± 0.0110i −0.4134 ∓ 0.0719i 0.0178 ± 0.0126i
−0.0272 ± 0.0112i −0.1476 ± 0.2879i 0.0169 ± 2.1322i
−0.0675 ± 0.1502i 0.0581 ± 1.2954i 0.0355 ∓ 1.2320i
−0.0095 ± 0.0216i 0.0225 ∓ 1.2599i −0.0291 ± 0.0924i

⎤
⎥⎥⎥⎥⎥⎥⎦

.

It can be easily checked that

Φ
T
LΦR = I.

The modal state matrix and the modal input gain matrix are

A = ΦT
LAΦR =

= diag
[
−0.0263 ± 1.0174i −0.4410 ± 2.9736i −0.6577 ± 4.5753i

]
,

B = ΦT
LB =

=
[

0.0411 ± 0.0219i −0.8269 ± 0.1438i 0.0355 ± 0.0252i
]T

.

The elements of the modal state matrix coincide with the damped eigenvalues
of the system.
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5.7 Exercises

Exercise 5.1 Add a viscous damper with damping coefficient c to the ballis-

tic pendulum of Exercise 4.1. Compute the maximum amplitude, the logarithmic

decrement, and the time needed to reduce the amplitude to 1/100 of the original

value. Data: m = 100 kg; mb = 0.05 kg, v = 200 m/s, l = 3 m, c = 6 Ns/m.

Exercise 5.2 Add a viscous damper c12 = 40 Ns/m between masses m1 and

m2 of the system of Exercise 4.4. Compute the modal-damping matrix and say

whether damping is proportional or not. In the case where it is not proportional,

compute matrices Cp and Cnp. Compute the complex frequencies and the com-

plex modes of the system, both in the direct way and through an iterative modal

procedure.

Exercise 5.3 Consider the system with hysteretic damping studied in Exercise

3.3. Compute the natural frequency of the undamped system and then the fre-

quency of the free oscillations and the decay rate of the damped one. Repeat the

computations for the system with Maxwell–Weichert damping of Exercise 3.4.

Exercise 5.4 Consider the system with 3 degrees of freedom of Fig. 1.8, already

studied in Exercises 1.2, 2.1, and 2.3, with damping added as in Exercise 3.1.

Write the state-space equations and uncouple them through the right and left

eigenvectors.



6
Forced Response in the Frequency
Domain: Conservative Systems

The response of a linear conservative system excited by a harmonic forcing
function is a harmonic time history in phase with the excitation. When the
forcing frequency is close to a natural frequency of the system, very large
amplitudes can be reached in a short time. This phenomenon is referred to
as resonance. Theoretically, resonance leads to infinitely large amplitudes
in undamped systems.

6.1 System with a single degree of freedom

6.1.1 Steady-state response

The motion of a system with a single degree of freedom under the effect
of an external excitation can be obtained by adding the solution of the
homogeneous equation describing the free motion to a particular integral
of Eq. (1.3) or (1.4).

Among the different time histories of the excitation F (t) that may be
considered, one is of particular interest: Harmonic excitation

F (t) = f1 cos (ωt) + f2 sin (ωt) = f0 cos (ωt + Φ) . (6.1)

As discussed in detail in Section 2.2.1, it is expedient to express quantities
that have a harmonic time history as projections on the real axis of vectors
that rotate in the complex plane by resorting to the complex notation. The
forcing function can thus be expressed in the form

F (t) = f0e
iωt . (6.2)
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In a similar way, if the excitation is provided by the motion of the con-
straint, the forcing function is

xA(t) = xA0e
iωt . (6.3)

It is easy to verify that if the forcing function has an harmonic time
history, the particular integral of the equation of motion is harmonic in
time, oscillating with the same frequency ω. It can be represented by an
exponential function as well

x(t) = x0e
iωt . (6.4)

By introducing a harmonic time history for both excitation and response,
the differential time-domain equation of motion (1.3) or (1.4) can be trans-
formed into an algebraic, frequency domain, equation yielding the complex
amplitude of the response

(
− mω2 + k

)
x0 =

⎧⎨
⎩

f0 ,
kxA0 ,
−mω2xA0 ,

(6.5)

for excitation provided by a force, by the motion of the supporting point
A using an inertial coordinate, and by the motion of the supporting point
A using a relative coordinate, respectively. The coefficient of the unknown
x0 in Eq. (6.5) is the dynamic stiffness of the system, already defined in
Section 2.2.1, with reference to multi-degrees-of-freedom systems

kdyn =
(
− mω2 + k

)
= k

[
1 −

(
ω

ωn

)2
]

.

The dynamic stiffness is a function of the forcing frequency; its reciprocal
is usually referred to as dynamic compliance or receptance and expresses
the ratio between the amplitude of the displacement x0 and the amplitude
of the exciting force f0. When the forcing frequency tends to zero, the
dynamic stiffness and compliance tend to their static counterparts, the
stiffness k and the compliance 1/k.

The ratio between the dynamic and static compliance of the system is
usually referred to as the nondimensional frequency response

H(ω) =
k

k − mω2
=

1

1 −
(

ω
ωn

)2 (6.6)

of the system; it is also referred to as the magnification factor (Fig. 6.1a).
When plotting the frequency response, logarithmic axes are often used,
and the scale of the ordinates may be expressed in decibels (Fig. 6.1b).
The value in decibels of the magnification factor H(ω) is defined as
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FIGURE 6.1. Magnification factor as a function of the forcing frequency: (a)
linear scales, (b) logarithmic scale for frequency and dB scale for amplitudes.

HdB = 20 log10(|H |) . (6.7)

In the logarithmic plot, the frequency response tends, for very low fre-
quency, to the straight line H=1, and for very high frequency to a straight
line sloping down with a slope equal to −2. This last situation is often
referred to as an attenuation of 12 dB/oct (decibel per octave), even if the
actual value is 12.041 dB/oct, or 40 dB/dec (decibel per decade). Where the
response follows the first straight line, the system is said to be controlled
by the stiffness of the spring because inertia forces are negligible, and the
external force F (t) is in equilibrium with the elastic force. In the case of
excitation due to the motion of point A, mass m follows the displacement
of the support. The response is in phase with the excitation.

When the system follows the sloping straight line, its behavior is said
to be controlled by the inertia of the mass m, because the elastic force
is negligible if compared to the inertia force, and the latter balances the
external force F (t). The response is still in phase with the excitation but
its amplitude has an opposite sign: this situation is usually described as a
phase angle of −180◦.

When the excitation frequency ω is close to the natural frequency ωn,
a resonance occurs and the steady-state amplitude tends to be infinitely
large. However, in this zone, which is said to be controlled by damping, the
damping of the system becomes the governing factor because, at resonance,
the inertia force exactly balances the elastic force and, consequently, only
the damping force can balance the excitation F (t). In this case, the presence
of damping cannot be neglected and the present conservative model loses
its accuracy.
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If the excitation is provided by the harmonic motion of the supporting
point A, a frequency response

H(ω) =
x0

xA0

can be defined. The magnification factor is still expressed by Eq. (6.6).
A very common example of a system excited by the motion of the sup-

ports is that of a rigid body supported by compliant mountings whose
aim is that of insulating it from vibrations that can be transmitted from
the surrounding environment. In this case, the magnification factor |H | is
referred to as transmissibility of the suspension system.

The transmissibility is the ratio between the amplitude of the absolute
displacement of the suspended object and the amplitude of the displace-
ment of the supporting points.

Another problem related to the insulation of mechanical vibrations is
that of reducing the excitation exerted on the supporting structure by a
rigid body on which a force variable in time is acting. The ratio between the
amplitude of the force exerted by the spring on the supporting point kx and
the amplitude of the excitation F (t) is also referred to as transmissibility
of the suspension.

With simple computations, it is possible to show that the value of the
transmissibility so defined is the same as obtained in Eq. (6.6). This ex-
plains why the two ratios are referred to by the same name.

Apart from the dynamic compliance and the dynamic stiffness, other
frequency responses can be defined. The ratio between the amplitude of the
velocity and that of the force F is said to be the mobility; its reciprocal is the
mechanical impedance. The ratio between the amplitude of the acceleration
and that of the force F is said to be the inertance, and its reciprocal is the
dynamic mass. The aforementioned frequency responses are summarized in
Table 6.1 and Fig. 6.2. The most widely used are the dynamic compliance
and the inertance.

They are all expressed by real numbers, in the case of undamped systems.

TABLE 6.1. Frequency responses.

Frequency response Definition S.I. units Lim(ω → 0)
Dynamic compliance x0/f0 m/N 1/k

Dynamic stiffness f0/x0 N/m k
Mobility (ẋ)0 /f0 = ωx0/f0 m/sN 0

Mechanical impedance f0/ (ẋ)0 = f0/ωx0 Ns/m ∞
Inertance (ẍ)0 /f0 = ω2x0/f0 m/s2N 0

Dynamic mass f0/ (ẍ)0 = f0/ω2x0 s2N/m ∞
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FIGURE 6.2. Nondimensional frequency responses for an undamped single-de-
gree-of-freedom system (logarithmic scales).

6.1.2 Nonstationary response

The complete solution of the equation of motion is obtained by adding the
solutions found for the free and forced oscillations (i.e., adding a particular
integral to the complementary function)

x = K∗eiωnt + H(ω)
f0

k
eiωt . (6.8)

The complex constant K∗ can be determined from the initial conditions.
In most actual systems, owing to the presence of damping (see Chapter
5), the first term of Eq. (6.8) tends to zero, often quite quickly, while the
second one has a constant amplitude; as a consequence, when studying
the response of a damped system to harmonic excitation, usually only the
latter is considered. There are, however, cases in which the initial transient
cannot be neglected, particularly when dealing with lightly damped systems
or when the forcing function is applied to a system that is at rest: in the
latter case oscillations with growing amplitude usually result, until the
steady-state conditions are reached.

In the present undamped case the free response does not vanish with
time, and the solution is a poly-harmonic oscillations made of two
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components, one with frequency ωn and one with frequency ω. By writ-
ing the complex constants K∗ and f0 as

K∗ = C1 − iC2 , f0 = f1 − if2 ,

the response can be written using only harmonic functions

x = C1 cos (ωnt) + C2 sin (ωnt) +
H(ω)

k
[f1 cos (ωt) + f2 sin (ωt)] , (6.9)

where constants C1 and C2 must be obtained from the initial conditions
x(0) = x0 and ẋ(0) = v0. Their values are⎧⎪⎪⎪⎨

⎪⎪⎪⎩

C1 = x0 −
H(ω)

k
f1

C2 =
v0

ωn
− H(ω)

k

ω

ωn
f2.

(6.10)

The motion is periodic if ratio ω/ωn is a rational number.
Consider for instance the case of a system which at time t = 0 is at

standstill in the origin (x0 = 0, v0 = 0) and is excited by a force with only
sine components (f1 = 0). The response is simply

x = f2
H(ω)

k

[
sin (ωt) − ω

ωn
sin (ωnt)

]
. (6.11)

Some nondimensional time histories are reported in Fig. 6.3 for different
values of ratio ω/ωn. In all cases it is assumed to be a rational number so
that the motion is periodic, but in the first case the period is fairly long. In
cases (b) and (c) the forcing frequency is close to the natural frequency and
a beat takes place. The nondimensional period of the beat is 20π = 62.8.

If the frequency of the forcing function coincides with the natural fre-
quency, Eq. (6.11) cannot be used, since H(ω) is infinitely large while the
expression in braces vanishes. The response can be computed as

x = lim
ω→ωn

{
f2

H(ω)
k

[
sin (ωt) − ω

ωn
sin (ωnt)

]}
, (6.12)

i.e., by introducing the value of H(ω)

x =
f2ωn

k
lim

ω→ωn

[
ωn sin (ωt) − ω sin (ωnt)

ω2
n − ω2

]
. (6.13)

Using de L’Hospital’s rule, the limit can be computed by differentiating
both the numerator and denominator with respect to ω

x =
f2ωn

k
lim

ω→ωn

[
ωnt cos (ωt) − sin (ωnt)

−2ω

]
=

f2

2k
[sin (ωnt) − ωnt cos (ωnt)] .

(6.14)
The amplitude grows linearly with time, tending to infinity for t → ∞.
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FIGURE 6.3. Nondimensional time history for an undamped system excited by
an harmonic force starting from the origin at standstill. (a) ω/ωn = 0.51; (b)
ω/ωn = 0.90; (c) ω/ωn = 1.1; (d) ω/ωn = 2.0.

Remark 6.1 To state that when resonance occurs the amplitude of the
response becomes infinitely large is an oversimplification, even in the ideal-
ized case of undamped systems. The amplitude grows linearly and an infinite
time is required to reach an infinite amplitude

In practice, large values of the amplitude can be reached in a short time,
but there are cases where the amplitude buildup is slow.

The time history expressed by Eq. (6.14) is reported in Fig. 6.4.
The equation of the straight line enveloping the response is easily approx-

imated by the line connecting the peaks, which occur at the times when
sin (ωnt) vanishes

x =
f2ωn

2k
t . (6.15)

FIGURE 6.4. Resonant response of a conservative system with a single degree of
freedom.
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6.2 System with many degrees of freedom

The harmonic excitation and response of a general multi-degrees-of-freedom
system can be written in the form

f(t) = f0eiωt , x(t) = x0e
iωt . (6.16)

By introducing the solution (6.16) into the equation of motion (1.7), the
frequency-domain equation (2.14) is obtained

Kdynx0 = f0 , (6.17)

where the expression of the dynamic stiffness matrix of the system is ex-
pressed by Eq. (2.13)

Kdyn = −ω2M + K.

The dynamic stiffness matrix is real and symmetrical but can be non-
positive defined.

As stated in Chapter 2, vectors x0 and f0 are in general complex vectors.
By separating the real and the imaginary parts of Eq. (6.17) it follows

[
K− ω2M 0

0 K− ω2M

] {
�(x0)
�(x0)

}
=

{
�(f0)
�(f0)

}
. (6.18)

The real part of the response then depends only on the real part of the
excitation, and the same holds for the imaginary parts.

Remark 6.2 The real and imaginary parts of the response can be com-
puted from the real and imaginary parts of the excitation separately. This
property, however, holds only for conservative (undamped) systems.

If all the harmonic exciting forces have the same phasing, i.e., the exci-
tation is said to be monophase or coherently phased, the response of the
system is harmonic and is in phase with the excitation. In such a case
both f0 and x0 can be expressed by real vectors, simply by taking as initial
time the instant in which both the excitation and the response are at their
maximum.

A system with n degrees of freedom can be excited using n harmonic
generalized forces corresponding to the n generalized coordinates, and, for
each exciting force, n responses can be obtained. The frequency responses

Hij(ω) =
x0i(ω)

f0j
, (6.19)

where f0j is the amplitude of the jth generalized force and x0i is the re-
sponse at the ith degree of freedom, are thus n2.

The static compliance matrix or the matrix of the coefficients of influence
is defined as the inverse of the stiffness matrix K. A dynamic compliance
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matrix can be defined in the same way as the inverse of the dynamic stiff-
ness matrix. It coincides with the matrix of the frequency responses H(ω)
defined earlier. The compliance matrix is symmetrical, as is the stiffness
matrix, but while the latter often has a band structure, the former does
not show useful regularities.

A number n2 of frequency responses can be plotted in the same way
seen for systems with a single degree of freedom. Their amplitude has n
peaks with infinite height, corresponding to the natural frequencies. Some
of the curves H(ω) can cross the frequency axis, i.e., the amplitude can get
vanishingly small at certain frequencies. This condition is usually referred
to as antiresonance. It must be noted that while the resonances are the
same for all the degrees of freedom, the antiresonances are different and
may be absent in some of the responses. The number of antiresonances is
n−1 for the transfer functions on the main diagonal and, in the case of in-
line systems with the generalized coordinates listed sequentially, decrease
by one on each diagonal above or below it. No antiresonance is thus found
in H1,n and Hn,1.

Example 6.1 Compute the elements H11 and H13 of the frequency response
of the system in Example 1.2.
The dynamic compliance is easily computed by inverting the dynamic stiffness
matrix. The frequency responses are plotted in Fig. 6.5a using logarithmic
scales. By multiplying the dynamic compliance by ω2 the inertance is easily
obtained (Fig. 6.5b).

FIGURE 6.5. Two elements of the (a) dynamic compliance matrix and (b) the
inertance matrix of a system with three degrees of freedom. The units are rad/Nm
for the dynamic compliance and rad/Nms2 for the inertance.
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6.3 Modal computation of the response

Since the equations of motion of any linear conservative system with n
degrees of freedom can be uncoupled into n separate linear equations of the
same type of those seen for a single-degree-of-freedom system (Eqs. (4.45)),
the time history of the response to an arbitrary excitation can be computed
by

1. Computing the eigenvalues and eigenvectors of the system and nor-
malizing the eigenvectors.

2. Computing the modal forces as functions of time.

3. Solving the n Eqs. (4.45), in order to obtain the time histories of the
response in terms of modal coordinates η.

4. Recombining the responses computed through Eq. (4.37), yielding
the time history of the system in terms of the physical coordinates x.

This procedure has the notable advantage of dealing with n uncoupled
equations, while a direct solution would require the integration of a set of
n coupled differential equations.

There is, however, another advantage: Not all modes are equally impor-
tant in determining the response of the system. If there are many degrees
of freedom, a limited number of modes (usually those characterized by the
lowest natural frequencies) is sufficient for obtaining the response with good
accuracy. If only the first m modes are considered,1 the savings in terms
of computation time, and hence cost, are usually noticeable, because only
m eigenvalues and eigenvectors need to be computed and m systems with
one degree of freedom have to be studied. Usually the modes that are more
difficult to deal with are those characterized by the highest natural frequen-
cies, particularly if the equations of motion are numerically integrated. The
advantage of discarding the higher-order modes is, in this case, great.

When some modes are neglected, the reduced matrix of the eigenvectors,
which will be referred to as

Φ∗ = [q1,q2, . . . ,qm] ,

is not square because it has n rows and m columns. The first coordinate
transformation (4.37) still holds

xn×1 = Φ∗
n×mηm×1 ,

and the m values of the modal mass, stuffiness, and force can be computed
as usual. However, the inverse transformation (second Eq. (4.37)) is not
possible, because the inversion of matrix Φ∗ cannot be performed.

1In the following pages it is assumed that the modes which are retained are those
from the first one to the mth.
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The modal coordinates η can be computed from the physical coordinates
x by premultiplying by Φ∗TM both sides of the first Eq. (4.37) computed
using the reduced matrix of the eigenvectors Φ∗, obtaining

Φ∗TMx = Φ∗TMΦ∗η , (6.20)

i.e.,
Φ∗TMx = Mη. (6.21)

Premultiplying then both sides by the inverse of the matrix of the modal
masses, it follows

ηm×1 = M
−1

m×mΦ∗
m×n

T Mn×nxn×1 . (6.22)

Equation (6.22) is the required inverse modal transformation. As re-
quired, the transformation matrix

M
−1

m×mΦ∗
m×n

T Mn×n

has m rows and n columns.
When studying the response to an excitation due to the motion of the

supporting points, it is usually sufficient to consider the few modes char-
acterized by a high value of the corresponding modal participation factor.
The order of vector rj is in this case m and all the considerations dis-
cussed in Section 4.5 still hold, but Eq. (4.56) is only approximated. The
precision that can be attained considering only a limited number of modes
when computing the response to an excitation due to the motion of the con-
straints is measured by the approximation with which the sum in Eq. (4.56)
approximates the total mass of the system.

The response computed by considering only the first m modes can be in-
accurate even at low frequency if the static deformation has a shape which,
once expressed in modal coordinates, has non-negligible contributions due
to any mode of order higher than m. To account for the contribution of the
modes which are neglected to the low-frequency response without having
to use a high number of modes, it is possible to operate as follows.

Assuming that the eigenvectors are normalized in such a way that the
modal masses have a unit value, the modal responses can be obtained from
Eqs. (4.45) in which a harmonic forcing function is introduced

η0i =
f0i

ω2
ni − ω2

=
1

ω2
ni − ω2

qT
i f0 for i = 1, 2, ..., n . (6.23)

By transforming the response from the modal coordinates back to the
physical ones, it follows

x =
n∑

i=1

η0iqi =

(
n∑

i=1

1
ω2

ni − ω2
qiqT

i

)
f0 . (6.24)
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By subdividing the sum into two parts, related to the first m modes and
to all other ones, it follows

x =

(
m∑

i=1

1
ω2

ni − ω2
qiqT

i

)
f0 +

(
n∑

i=m+1

1
ω2

ni − ω2
qiqT

i

)
f0 . (6.25)

The first term is the approximated response computed using the first
m modes, while the second term can be considered as the error due to
considering a reduced number of modes. If the natural frequency of the
(m + 1)th mode is much higher than the excitation frequency ω (say at
least 10 times), ω2

ni >> ω2 for all the modes included in the second term.
The error can then be computed by neglecting ω2 with respect to ω2

ni

x ≈
(

m∑
i=1

1
ω2

ni − ω2
qiqT

i

)
f0 +

(
n∑

i=m+1

1
ω2

ni

qiqT
i

)
f0 . (6.26)

If for instance ωni for the (m + 1)th mode is 10 times ω, the approxima-
tion in the computation of the error is less (much less) than 1%.

The response to a static force vector f0

xst= K−1f0 (6.27)

can be expressed in terms of modal coordinates

xst =

(
n∑

i=1

1
ω2

ni

qiqT
i

)
f0 =

(
m∑

i=1

1
ω2

ni

qiqT
i

)
f0 +

(
n∑

i=m+1

1
ω2

ni

qiqT
i

)
f0 .

(6.28)
From Eqs. (6.27) and (6.28) it follows

(
n∑

i=m+1

1
ω2

ni

qiqT
i

)
f0 = K−1f0 −

(
m∑

i=1

1
ω2

ni

qiqT
i

)
f0 . (6.29)

Finally, introducing Eq. (6.29) into Eq. (6.26) it follows

x ≈
(

m∑
i=1

1
ω2

ni − ω2
qiqT

i

)
f0 −

(
m∑

i=1

1
ω2

ni

qiqT
i

)
f0 + K−1f0 . (6.30)

Note that only the first m eigenvectors appear in Eq. (6.30).
The sum of the first two terms have an immediate physical meaning: it

is the difference between the dynamic and the static response, computed
using the first m modes. As a whole, the meaning of Eq. (6.30) is then clear:
the response can be computed by accounting for the dynamic response of
the lower order modes, plus the static response of the other ones.
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The difference between the dynamic and static response can be immedi-
ately computed as

(
m∑

i=1

1
ω2

ni − ω2
qiqT

i

)
f0 −

(
m∑

i=1

1
ω2

ni

qiqT
i

)
f0 =

=

[
m∑

i=1

ω2

ω2
ni

(
1

ω2
ni − ω2

)
qiqT

i

]
f0 =

m∑
i=1

ω2

ω2
ni

η0iqi.

(6.31)

An approximated computation of the response can thus be performed by
first obtaining the first m eigenvectors and modal responses η0i and then
recombining them using the relationship

x ≈ Φ∗∗η∗ , (6.32)

where Φ∗∗ is a modified reduced matrix of the eigenvectors obtained by
adding a further column to Φ∗ in which the first Ritz vector (see next
section, Eq. (6.36))

r1 = K−1f0 ,

is included

Φ∗∗ = [q1,q2, . . . ,qm, r1] . (6.33)

η∗ is the vector of the modified modal coordinates

η∗ = [
ω2

ω2
n1

η01 ,
ω2

ω2
n2

η02 , . . . ,
ω2

ω2
nm

η0m, 1] . (6.34)

Example 6.2 Consider the torsional system studied in Example 1.2, and
compute the response of the first inertia (point 1) to a harmonic torque with
unit amplitude applied in the same point using the modal approach.
The modal analysis of the system was performed in Example 4.3. Let Φ be the
matrix of the eigenvectors normalized in such a way that the modal masses
have a unit value. Its value is here repeated together with the modal mass
matrix

Φ =

⎡
⎣ 0.23728 0.15342 0.95925

0.45004 0.16837 −0.13825
0.51681 −1.31383 0.08228

⎤
⎦ ,
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K=

⎡
⎣ 1.03353 0 0

0 9.02522 0
0 0 21.44125

⎤
⎦ .

The modal contributions to the response in point 1 due to the ith mode can be

readily computed as

x01i = q1iη1 = q1i
1

ω2
ni − ω2

qT
i f0 .

The responses are reported in Fig. 6.6a. From the plot it is clear that the third

mode is quite important in determining the response also at low frequency,

and the third mode component of the static response is quite strong. The sec-

ond mode is comparatively unimportant, except close to its own resonance.

In these conditions, the modal computation of the response performed includ-

ing a single mode (Fig. 6.6b) or two modes (Fig. 6.6c) is quite inaccurate

even at low frequency. Only in the vicinity of the first resonance (the first

and the second in Fig. 6.6c) such modal computations can be considered ac-

ceptable.The modal computation was repeated using the modified matrix and

vector defined in Eqs. (6.33) and (6.34). In this case, as shown in Fig. 6.6d,

very accurate results are obtained even with a single mode up to the antires-

onance (ω ≈ 1.5). At higher frequency, the third mode starts to show strong

dynamic effects and reducing its response to the static one becomes unsatisfac-

tory. Taking into account also the second mode does not change essentially the

picture.

This example is in a way not typical, since the three natural frequencies are

quite close to each other and, in this condition, the high-order modes extend

their influence at frequencies as low as the natural frequencies of the first

modes. At any rate, it shows that the static component of the response of the

modes resonating at high frequency can be too strong to be neglected.

6.4 Coordinate transformation based on Ritz
vectors

The dynamic behavior of systems with many degrees of freedom was stud-
ied in the preceding sections using either physical coordinates or modal
coordinates. It is, however, obvious that any other coordinate transforma-
tion can be applied and that any non-singular matrix of order n could
be used to perform a coordinate transformation. This statement simply
means that any set of linearly independent vectors can be assumed as a
reference frame in the space of configurations. The modal transformation
based on the eigenvectors has the drawbacks of requiring the solution of
an eigenproblem, which sometimes is quite complex, and often requiring
a large number of modes to compute the response to a generic forcing
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FIGURE 6.6. Response of the three degrees of freedom system of Example 1.2. (a)
Contributions of the 3 modal systems to the response in point 1. (b) Response in
mode 1, computed from the complete equations (full line) and using only the first
modal response (dashed line). (c) As (b), but with the first two modal responses.
(d) As (b), but taking into account the static response, plus one mode (dashed
line) and plus two modes (dotted line).

function. When the response to an excitation due to the motion of the
supports has to be computed, this means that many modes have a modal
participation factor high enough to prevent from neglecting them. In this
case, the use of Ritz vectors constitutes a different choice worthy of con-
sideration.

Consider a multi-degree-of-freedom system excited in such a way that
there is only one input u(t). In the configurations space, the forcing function
can be expressed as f(t) = f0f(t). The first Ritz vector is defined by the
equation

r1 = K−1f0 , (6.35)

and then it coincides with the static deflected shape under the effect of the
constant force distribution f0. Ritz vectors, like eigenvectors, are normal-
ized. The simplest way to normalize Ritz vectors is by making the products
rT Mr equal to unity. This can easily be performed by dividing each Ritz
vector r by the square root of rTMr.
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The following vectors can be computed using the recursive equation

ri = K−1Mri−1 . (6.36)

Once a set of m Ritz vectors has been computed, a transformation matrix
with n rows and m columns

R = [r1, r2, . . . , rm]

can be written. It can be used instead of the matrix of the eigenvectors to
perform the coordinate transformation

x = R¯̄x.

The coordinates ¯̄xi are m, as when a reduced number of modes is used.
The transformed mass matrix is diagonal, due to the way the Ritz vectors
are derived. All other transformed matrices are, however, non-diagonal and,
consequently, the undamped equations of motions are coupled (elastic cou-
pling).

The physical interpretation of Ritz vectors is straightforward. The first
vector represents the static deformation under the effect of force distri-
bution f0. No allowance is taken for inertia forces. Inertia forces due to
harmonic motion with frequency ω and deformed shape r1 are ω2Mr1.
The second Ritz vector is then proportional to the deformed shape due to
inertia forces consequent to a harmonic oscillation with a deformed shape
corresponding to the first vector. In the same way, all other vectors are
computed.

The advantage of Ritz vectors with respect to the eigenvectors of the
undamped system in the computation of the time history of the response
is then clear: Fewer coordinates are generally required, and the amount of
computational work needed to compute them is much smaller. The equation
of motion obtained using Ritz vectors can then be subjected to modal
analysis or reduced as it will be seen in Chapter 10.

There are, however, also disadvantages. First, it is common to perform
an eigenanalysis before computing the time history of the response to ob-
tain the natural frequencies and the mode shapes. In this case, the modal
transformation involves very little additional computational work. In the
undamped case, the equations of motion obtained through modal transfor-
mation are uncoupled, while, through Ritz vectors, a set of equations with
elastic coupling is obtained. When damping is taken into consideration,
and even more when nonlinearities are included in the model, the number
of Ritz vectors needed can increase, and it is very difficult to assess how
many must be considered, as happens with the true eigenvectors.

Although they are sometimes used in the computation of the response
of structures to seismic excitation, Ritz vectors are not widely used in
structural dynamics.
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6.5 Response to periodic excitation

When a periodic excitation F (t) with period T acts on the system, the
steady-state response can easily be computed by decomposing the forcing
function in a Fourier series

F (t) = a0 +
n∑

i=1

ai cos
(

2πi

T

)
+

n∑
i=1

bi sin
(

2πi

T

)
. (6.37)

The coefficients of the Fourier series can be obtained from function F (t)
using the formulae

a0 =
1
T

∫ T

0

F (t)dt

ai =
1
T

∫ T

0

F (t) cos
(

2πi

T
t

)
dt

bi =
1
T

∫ T

0

F (t) sin
(

2πi

T
t

)
dt.

(6.38)

Because the system is linear, the response to the poly-harmonic excita-
tion (6.37) can be obtained by adding the responses to all terms of the
forcing functions. Since in the case of undamped systems the frequency
response is real, the following expression for the particular integral of the
equation of motion can be obtained:

x(t) =
1
k

a0 +
n∑

i=1

aiH(ωi) cos(ωit) +
n∑

i=1

biH(ωi) sin(ωit) , (6.39)

where the frequency of the ith harmonic of the forcing function is

ωi =
2πi

T
.

The complete solution can thus be obtained by adding the particular
integral expressed by Eq. (6.39) to the complementary function

x = K∗eiωnt

and computing the complex constant K∗ from the initial conditions.

6.6 Exercises

Exercise 6.1 A machine whose mass is m contains a rotor with an eccentric

mass me at a radius re running at speed Ω1. Compute the stiffness of the sup-

porting elements in such a way that the natural frequency of the machine is equal
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to 1/8 of the forcing frequency due to the rotor; compute the maximum amplitude

of the force transmitted to the supports at all speeds up to the operating speed.

Add a second unbalanced rotor identical to the first running in the same direc-

tion at a slightly different speed Ω2. Write the equation of motion and show that

a beat takes place. Compute the frequency of the beat and plot the time history

of the response (assuming that the free part of the response has already decayed

away) starting from the time at which the two unbalances are in phase. Data:

m = 500 kg, me = 0.050 kg, re = 1 m, Ω1 = 3, 000 rpm, Ω2 = 3, 010 rpm.

Exercise 6.2 Compute the time history of the system of Exercise 4.2 for an

excitation due to the motion of the supports xA = xA0 sin(ωt). Compute the time

history of the response using physical and modal coordinates (neglect the free

motion part of the response). Data: xA0 = 5 mm, ω = 30 rad/s.

Exercise 6.3 Consider the system of Example 1.4. The points at which the two

pendulums are connected move together in the x-direction with a harmonic time

history xA = xB = xA0 sin(ωt), with xA0 = 30 mm, ω = 1 Hz.

Compute the response of the system, assuming that at time t = 0 the whole sys-

tem is at a standstill. Compute the modal participation factors and assess whether

an excitation of the type here assumed, with the initial condition described, gives

way to a beat. Data: m = 1 kg, l = 600 mm, k = 2 N/m, g = 9.81 m/s2.

Exercise 6.4 An instrument, whose mass is 20 kg must be mounted on a space

vehicle through a cantilever arm of annular cross-section made of light alloy, 600

mm long and with inner and outer diameters 100 and 110 mm respectively.

Using a simple model with a single degree of freedom, check the ability of the

arm to withstand a harmonic excitation due to the motion of the supporting point.

Let the intensity of the excitation be defined by

• Amplitude 10 mm in the frequency range 5–8.5 Hz

• Acceleration 3 g in the frequency range 8.5–35 Hz

• Acceleration 1 g in the frequency range 35–50 Hz.

The stresses due the mentioned excitation must not exceed

• The ultimate strength (328 MN/m2) divided by a safety factor of 1.575

• The yield strength (216 MN/m2) divided by a safety factor of 1.155

• The allowable fatigue strength for a duration of 107 cycles (115 MN/m2)

The relative displacement between the instrument at the end of the beam and

the supporting structure must not exceed 2 mm. Material data: E = 72 × 109

N/m2; ρ = 2, 800 kg/m3.



7
Forced Response in the Frequency
Domain: Damped Systems

When damping is considered, the response of a linear system to a harmonic
excitation is still harmonic in time, but is not in phase with the excitation.
If damping is small, there is still a well-defined resonance (or many of them,
depending on number of degrees of freedom), but its amplitude remains
finite. If damping is large, one or more resonance peaks may disappear
altogether.

7.1 System with a single degree of freedom:
steady-state response

The response of a damped system with a single degree of freedom can be
computed following the same lines seen in Chapter 6 for the undamped
system. The excitation and the response can be written in the form

• Force excitation
F (t) = f0e

iωt . (7.1)

• Excitation due to motion of the constraint

xA(t) = xA0e
iωt . (7.2)

• Response
x(t) = x0e

iωt . (7.3)
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As it was stated for the case of undamped systems, force F (t) is a real
quantity and should be expressed as F = �(f0e

iωt); in the same way, the
expression of the displacements should mention explicitly the real part,
since the complex notation is used to express quantities that have a har-
monic time history as projections on the real axis of vectors that rotate in
the complex plane. The symbol � is, however, usually omitted.

Phasing is much more important for damped systems than for conserva-
tive ones, since damping causes the response to be out of phase with respect
to the excitation. The amplitudes f0 and x0 are then complex quantities,
with different phasing as shown in Fig. 7.1.

Remark 7.1 The response to a harmonic excitation is harmonic, with the
same frequency of the forcing function but out of phase with respect to the
latter.

By introducing a harmonic time history for both excitation and response,
the differential equation of motion can be transformed into an algebraic
equation yielding the complex amplitude of the response

(
− mω2 + iωc + k

)
x0 =

⎧⎨
⎩

f0 ,
(iωc + k)xA0 ,
−mω2xA0 ,

(7.4)

for excitation provided by a force, by the motion of the supporting point
A using an inertial coordinate, and by the motion of the supporting point

FIGURE 7.1. Response of a system with viscous damping as seen in the complex
plane.
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A using a relative coordinate, respectively. The coefficient of the unknown
x0 in Eq. (7.4) is the dynamic stiffness of the system already defined in
Chapter 3

kdyn =
(
− mω2 + icω + k

)
= k

[
1 −

(
ω

ωn

)2

+ 2iζ

(
ω

ωn

)]
. (7.5)

Remark 7.2 The dynamic stiffness, as well as its reciprocal, the dynamic
compliance or receptance, is complex.

The real part of the frequency response H(ω) gives the component of the
response that is in phase with the excitation. The imaginary part gives the
component in quadrature, which lags the excitation by a phase angle of 90◦.
The expressions for the real and imaginary parts of H(ω), its amplitude,
and phase are

�(H) = k
k − mω2

(k − mω2)2 + c2ω2
=

1 −
(

ω
ωn

)2

[
1 −

(
ω
ωn

)2
]2

+
(
2ζ ω

ωn

)2
,

�(H) = k
−cω

(k − mω2)2 + c2ω2
=

−2ζ ω
ωn[

1 −
(

ω
ωn

)2
]2

+
(
2ζ ω

ωn

)2
,

|H | =
k√

(k − mω2)2 + c2ω2
=

1√[
1 −

(
ω
ωn

)2
]2

+
(
2ζ ω

ωn

)2

,

Φ = arctan
(

−cω

k − mω2

)
= arctan

⎡
⎢⎣ −2ζ

(
ω

ωn

)

1 −
(

ω
ωn

)2

⎤
⎥⎦ .

(7.6)

The situation in the complex plane at time t is described in Fig. 7.1.
The absolute value of the frequency response is the magnification factor.

It is plotted together with the phase angle Φ as a function of the forcing
frequency in Figs. 7.2a and b for different values of the damping ratio ζ.
Logarithmic axes are often used, and the scale of the ordinates is expressed
in decibels (Fig. 7.2c). This plot is referred to as the Bode diagram.

The resonance occurs when the excitation frequency ω is close to the
natural frequency of the undamped system ωn, but does not exactly co-
incide with it, and its amplitude is limited. In this zone the damping of
the system, however small it may be, becomes the governing factor be-
cause, at resonance, the inertia force exactly balances the elastic force and,
consequently, only the damping force can balance the excitation F (t).
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FIGURE 7.2. Bode diagram, i.e., magnification factor and phase as functions of
the forcing frequency: (a) and (b) linear scales, (c) logarithmic scale for frequency
and dB scale for amplitudes. (d) Frequency response of lightly damped systems
approximated by using the response of the undamped system and shaving the
peak at the value expressed by Eq. (7.7). Comparison with the exact solution.

Remark 7.3 In a range close to the resonance, which is said to be con-
trolled by damping, the presence of damping cannot be neglected; in the
other frequency ranges, the behavior of the system can often be very well
approximated using an undamped model.

Remark 7.4 At the natural frequency of the undamped system, the phase
lag is exactly 90◦, regardless of the value of the damping.

If ζ < 1/2, the frequency at which the peak amplitude occurs is

ωp = ωn

√
1 − 2ζ2 .

It shifts toward the lower values of ω with increasing damping and does
not coincide with the frequency of the free oscillations of the system. For
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greater values of ζ, the curve H(ω) does not show a peak and the maximum
value occurs at ω = 0. If the system is lightly damped and ζ2 is negligible
compared with unity, then the maximum values of the amplitude and mag-
nification factor are, respectively,

|x0|max ≈ f0

cωn
, |H |max ≈ 1

2ζ
. (7.7)

The term
Q =

1
2ζ

(7.8)

is often called the quality factor and symbol Q is used to represent it.
On the curve obtained for ζ = 0.1 in Fig. 7.2a, points P1 and P2, at

which the amplitude is equal to the peak amplitude divided by
√

2, are
reported. They are often defined as half-power points and correspond to an
attenuation of about 3 dB with respect to the maximum amplitude. The
frequency interval Δω between points P1 and P2 is often called the half-
power bandwidth and is used as a measure of the sharpness of the resonance
peak. If damping is small enough to allow the usual simplifications (i.e., ζ2

is negligible compared with unity), the frequencies corresponding to such
points and the half-power bandwidth are

ωP1 ≈ ωn

√
1 − 2ζ , ωP2 ≈ ωn

√
1 + 2ζ , Δω ≈ 2ζωn . (7.9)

The frequency response of a lightly damped system can be approximated
by the frequency response of the corresponding undamped system except
for the frequency range spanning from point P1 to point P2, where the am-
plitude can be considered constant, its value being expressed by Eq. (7.7).
As shown in Fig. 7.2d, this approximation still holds for values of damping
as high as ζ = 0.25 − 0.30.

FIGURE 7.3. Real and imaginary parts of the frequency response as functions of
the forcing frequency.
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FIGURE 7.4. (a) Same as Fig. 7.3, but as a tridimensional plot. (b) Nyquist
diagram for a system with a single degree of freedom.

Instead of plotting the amplitude and the phase of the frequency re-
sponse, it is possible to separately plot its real and imaginary parts (Fig. 7.3).
The two plots of Fig. 7.3 can be combined in the three-dimensional plot of
Fig. 7.4a. The projection of the latter on the complex plane is the so-called
Nyquist diagram (Fig. 7.4b).

If the excitation is provided by the harmonic motion of the supporting
point A, a frequency response H(ω) = x0/xA0 can be defined. By sepa-
rating the real part from the imaginary part, the following values of the
magnification factor and phase lag are readily obtained:

�(H) =
k(k − mω2) + c2ω2

(k − mω2)2 + c2ω2
,

�(H) =
−cmω3

(k − mω2)2 + c2ω2
,

|H | =
√

k2 + c2ω2√
(k − mω2)2 + c2ω2

,

Φ = arctan
(

−cmω3

k(k − mω2) + c2ω2

)
.

(7.10)

The amplitude and the phase of the frequency response are plotted as
functions of the forcing frequency in Fig. 7.5.

The transmissibility is the ratio between the amplitude of the absolute
displacement of the suspended object and the amplitude of the displace-
ment of the supporting points. In many cases, the amplitude of the accel-
eration is more important than the amplitude of the displacement (Fig.
7.6a).
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FIGURE 7.5. Same as Fig. 7.2, but with the excitation provided by the harmonic
motion of the supporting point. Full line indicates curves for different values of
damping; dashed line indicates line connecting the peaks.

FIGURE 7.6. Non-dimensional response of a system excited by the motion of the
supporting point: (a) amplitude of the absolute acceleration of point P as a func-
tion of the driving frequency, (b) displacement expressed in relative coordinates.
The same response holds for the case of a system excited by a forcing function
whose amplitude is proportional to the square of the frequency. Full line indicates
curves for different values of damping; dashed line indicates line connecting the
peaks.

Another problem related to the insulation of mechanical vibrations is
that of reducing the excitation exerted on the supporting structure by a
rigid body on which a force variable in time is acting. The ratio between
the amplitude of the force exerted by the spring–damper system on the
supporting point kx + cẋ and the amplitude of the excitation F (t) is also
referred to as transmissibility of the suspension. As in the case of undamped
systems, the value of the transmissibility so defined is the same as obtained
in Eq. (7.10) and the two ratios are referred to by the same name.
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From Fig. 7.6a, it is clear that any increase of the damping causes a
decrease of the transmissibility if the exciting frequency is lower than the
natural frequency of the suspension multiplied by

√
2, but it causes an

increase of the vibration amplitude at higher frequencies.
When the system is excited by the motion of the supporting point, it

can be expedient to resort to relative coordinates. If the amplitude of
the displacement of the supporting point is independent from the forcing
frequency, the acceleration is proportional to the square of ω. The non-
dimensional frequency response for this case is shown in Fig. 7.6b. The
same figure can be used for the more general case of the response to a
forcing function whose amplitude is proportional to the square of the fre-
quency. Note that the peak is located at a frequency higher than the natural
frequency of the undamped system.

All frequency responses, like the mobility, the mechanical impedance, the
inertance, and its reciprocal, the dynamic mass, are complex in the case of
damped systems.

7.2 System with a single degree of freedom:
nonstationary response

The complete solution of the equation of motion is obtained by adding a
particular integral to the complementary function

x = K∗e−ζωnteiωn

√
1−ζ2t + H(ω)

f0

k
eiωt (7.11)

and computing the complex constant K∗ from the initial conditions. Owing
to damping, the first term of Eq. (7.11) now tends to zero, often quite
quickly, while the second one has a constant amplitude; as a consequence,
when studying the response of a damped system to harmonic excitation,
usually only the latter is considered. As already stated, there are, however,
cases in which the initial transient cannot be neglected, particularly when
dealing with lightly damped systems or when the forcing function is applied
to a system that is at rest: in the latter case oscillations with growing
amplitude usually result, until the steady-state conditions are reached.

To show this effect, the cases already seen in Fig. 6.3 but with a damping
ratio ζ = 0.2 are studied (Fig. 7.7). Like in the previous study, the system
is at standstill in the origin (x0 = 0, v0 = 0) at time t = 0 and is excited
by a force with only a sine components (f1 = 0). Four different values of
ratio ω/ωn between the forcing frequency and the natural frequency of the
undamped system are considered. Clearly the free oscillation damps out
after a few oscillations and a solution coinciding with the forced response
is obtained. The beat quickly disappears.
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FIGURE 7.7. Same as Fig. 6.3 but for a system with a damping ratio ζ = 0.2.

FIGURE 7.8. Resonant response of a system with a single degree of freedom,
with ζ = 0.2.

The same effect occurs when the frequency of the forcing function coin-
cides with the natural frequency. The time history for the same case studied
in Fig. 6.4, but for a damped system with ζ = 0.2 is shown in Fig. 7.8.

The amplitude starts growing linearly, but then settles at the steady-
state value.

7.3 System with structural damping

The hysteretic damping model can be used only in an approximated way in
the case of free vibrations that for damped systems are necessarily decaying
in time. On the contrary, it is perfectly adequate to studying the steady-
state response to a harmonic forcing function, since its time history is
exactly harmonic.



162 7. Forced Response in the Frequency Domain

The steady-state solution for harmonic excitation is readily obtained
from the expression (3.57) of the dynamic stiffness: In the case of excita-
tion provided by a force F (t), the following expressions for the real and
imaginary parts of the frequency response H(ω), its amplitude, and the
phase angle can be obtained:

�(H) =
k(k − mω2)

(k − mω2)2 + k2η2
, |H | =

k√
(k − mω2)2 + k2η2

,

�(H) =
−k2η

(k − mω2)2 + k2η
, Φ = arctan

(
−kη

k − mω2

)
.

(7.12)

The magnification factor is plotted together with the phase angle as
functions of the forcing frequency in Fig. 7.9 for different values of the loss
factor η.

The quality factor of a system with a single degree of freedom with
structural damping is simply given by

Q = |H |max =
1
η

. (7.13)

If damping is small, as is usually the case, the shift of the resonance
peak between viscous and structural damping is small and the behavior
of systems with the two different types of damping is, at least close to
the peak, similar. Since in lightly damped systems, i.e., when η2 can be
neglected compared with unity, the effect of damping is important only
near the resonance, it is possible to define a constant equivalent damping
as

FIGURE 7.9. Same as Fig. 7.2, but for a system with structural damping. Full
line indicates curves for different values of damping; dashed line indicates line
connecting the peaks.
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ceq =
ηk

ωn
, ζeq =

η

2
. (7.14)

In this way, the concept of hysteretic damping can be extended in a
simple, although approximated, way also to time-domain equations.

The expression 2ζ is sometimes called “loss factor” in systems with vis-
cous damping.

As an alternative, a Maxwell–Weichert damping tuned at the natural
frequency of the system (see Chapter 3) can be used. If a single spring–
damper series is put in parallel to the spring with stiffness k, the data of
the spring–damper series are

k1 = 2ηk , c1 =
2ηk

ωn
. (7.15)

In case more springs and dampers are used, the values of the relevant
parameters found in Section 3.6.2 can be used.

7.4 System with many degrees of freedom

The response of a system with many degrees of freedom to a harmonic forc-
ing function can be computed by writing the generic harmonic excitation
in the form

f(t) = f0eiωt

and the response in the form

x(t) = x0e
iωt .

The differential equation of motion (3.6) can thus be transformed into
the algebraic equation

Kdynx0 = f0. (7.16)

The dynamic stiffness matrix

Kdyn = −ω2M + K + iωC (7.17)

is complex when damping is present.
Both vectors x0 and f0 are in general complex, and Eq. (7.16) can be

rewritten by separating its real and imaginary parts
[

−ω2M + K −ωC
ωC −ω2M + K

] {
� (x0)
� (x0)

}
=

{
� (f0)
� (f0)

}
. (7.18)

As opposite to what happens with undamped systems, the equation deal-
ing with the real parts of the forcing function and of the response is not
uncoupled with that dealing with the imaginary parts. As a consequence,
x0 is generally not real even if f0 is real
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Remark 7.5 Even if all the harmonic exciting forces are in phase, i.e.,
the excitation is coherently phased, the response of the system, although
harmonic, is not coherently phased. Not even if the damping is proportional
do the various parts of the system oscillate in phase when subjected to forces
that are in phase with each other.

To fully understand the meaning of a complex vector x0, consider the
case of a massless beam on which a number of masses are located (Fig.
7.10a). Consider a representation in which the plane of oscillation of the
system (the vertical plane in Figs. 7.10b and c) is the real plane and the
plane perpendicular to it is the imaginary plane. Any plane perpendicular
to them can be considered a complex plane, in which the real and imaginary
axes are defined by the intersections with the real and imaginary planes.

FIGURE 7.10. Meaning of the complex displacement vector x0: (a) sketch of a
beam modeled as a massless beam with concentrated masses, (b) undamped case:
the deflected configuration is the projection on the real plane of a line lying on a
plane that rotates at angular speed ω, (c) damped case: the line that generates
the deflected shape is skew.
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At the location of each mass, there is a complex plane in which the vector
representing the displacement of the mass rotates.

If, as in the case of undamped systems with coherently phased excitation,
vector x0 is real, the situation in a space in which the coordinate planes
are the real and imaginary planes is that shown in Fig. 7.10b. The actual
deformed shape is then the projection on the real plane of a planar line
that rotates at the angular speed ω. The shapes it takes at various instants
are consequently all similar; only their amplitudes vary in time.

If vector x0 is complex (Fig. 7.10c), the deformed shape is the projection
on the real plane of a rotating skew line. Consequently, its shape varies in
time and no stationary point of minimum deformation (node) or maximum
deformation (loop or antinode) exists. As already seen, this last situation
also characterizes the case of proportional damping and all the cases that
can be reduced to it, at least in an approximate way.

The effect of damping on the frequency responses is that of reducing the
resonance peaks and increasing the amplitude at the antiresonances. If the
system is highly damped, some of the peaks may disappear completely.
The Nyquist diagrams usually have as many loops as degrees of freedom,
if the system is lightly damped. With increasing damping, some loops can
disappear.

7.5 Modal computation of the response

In case of proportionally damped multi-degree-of-freedom systems, the
equations of motion for forced vibrations can be uncoupled and the study
reduces to the computation of the response of n uncoupled linear damped
systems, like in the case of undamped system. The relevant uncoupled
equations of motion are Eqs. (5.51) and Eqs. (5.52), depending on how the
eigenvectors have been normalized.

If damping is small, the response of each mode can consequently be
approximated as shown in Fig. 7.2d. However, while the amplitudes are
approximated very well in this way, the error in the computation of the
phases may be large.

If the forcing frequency is close to one of the natural frequencies, the
shape of the response is usually very close to the relevant mode shape.
Because the mode shapes used for the modal transformation are the real
mode shapes of the undamped system and not the complex modes of the
damped system, the modal response of the resonant mode is coherently
phased even if the forces acting on the system are not. However, even
if damping is proportional, the response is not a pure mode shape even
exactly in resonance, because the amplitude of the resonant mode is not
infinitely larger than the amplitude of the other modes, as would occur in
undamped systems.
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Remark 7.6 At resonance, the phase lag between the modal force and the
modal response of the resonant mode is exactly 90◦.

Also in the case of damped systems it is possible to take into account only
a limited number of modes, usually the lower order ones. The problem of
taking into account the contribution of the neglected (higher order) modes
to the static deformation is the same as already seen for the undamped
system.

Equation (6.23) yielding the ith modal response can be written in the
form

η0i =
1

ω2
ni − ω2 + 2iζωωni

qT
i f0 for i = 1, 2, ..., n , (7.19)

in which the eigenvectors have been assumed to be normalized in such a
way that the modal masses have unit values. By operating in the same way
seen for the undamped system, the approximated value of the response
(6.30) becomes

x ≈
(

m∑
i=1

1
ω2

ni − ω2 + 2iζωωni
qiqT

i

)
f0 −

(
m∑

i=1

1
ω2

ni

qiqT
i

)
f0 + K−1f0 ,

(7.20)
i.e.,

x ≈
m∑

i=1

ω2 − 2iζωωni

ω2
ni

η0iqi + K−1f0 . (7.21)

In the same way already seen for undamped systems, an approximated
computation of the response can thus be performed by first obtaining the
first m eigenvectors (of the undamped system) and computing the first m
modal responses η0i and then recombining them using the relationship

x ≈ Φ∗∗η∗ , (7.22)

where
Φ∗∗ = [q1,q2, . . . ,qm, r1] (7.23)

is the same seen in Section 6.3 and η∗ is the vector of the modified modal
coordinates

η∗ = [
ω2 − 2iζωωn1

ω2
n1

η01 , . . . ,
ω2 − 2iζωωnm

ω2
nm

η0m, 1] . (7.24)

Although modal uncoupling can be applied exactly only in the case of
proportional damping, such a procedure can often be applied in cases where
the equations of motion could not be uncoupled theoretically. In particular,
if the system is lightly damped, as is common in structural dynamics, the
response of each mode to a harmonic excitation is close to that of the cor-
responding undamped system except in a narrow frequency range centered
on the resonance of the mode itself, i.e., except in that frequency range in
which the response is governed by damping.
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Remark 7.7 This statement amounts to state that only the elements on
the main diagonal of the modal-damping matrix are important in determin-
ing the response of the system, and even them only close to the resonances.
Neglecting the out-of-diagonal elements (even if they are of the same order
of magnitude of those which are retained) is then acceptable.

The eigenvectors of the undamped system can be used as a reference
frame in the space of the configurations; consequently, the motion of the
damped system can be expressed in terms of modal coordinates, whether
or not the damping is proportional or small. If modal coupling is strong, all
eigenvectors can be present in the response of the system at any frequency
and it is not possible to understand a priori how much each of them affects
the global response.

When damping is high enough to prevent from neglecting modal cou-
pling, the iterative procedure based on Eq. (5.53) can be used. The relevant
equation in the frequency domain is

(
−ω2M + iωCp + K

)
η0 = −iωCnpη0 + f0 . (7.25)

The equation obtained by neglecting matrix Cnp is first solved. A solu-
tion η

(0)
0 , corresponding to a system with generalized proportional damp-

ing, is thus obtained. This solution is introduced on the right-hand side of
Eq. (7.25), and a second-approximation solution η

(1)
0 is obtained. The iter-

ative procedure can continue until the difference between two subsequent
solutions is smaller than any given small quantity. Either a Jacobi or a
Gauss Siedel iterative scheme can be used; the second is generally faster
(see Appendix A). The convergence of the iterative scheme is fast, even if
the distribution of damping is far from being proportional. The simplifica-
tion of the computations obtainable in this way is noticeable, particularly
in the case of systems with many degrees of freedom.

Example 7.1 Compute the element H33 of the frequency response of the

system in Example 1.2, taking also damping into account.

The frequency response H33 is reported in Fig. 7.11, comparing the results

directly obtained with those earlier computed using the values of the modal

damping, to obtain the modal responses and then transforming the results to

physical coordinates.

The two curves are almost everywhere exactly superimposed, showing the very

good approximation obtainable when using modal damping. The dashed line

refers to the undamped system, for comparison.
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FIGURE 7.11. Frequency response H33: (a) amplitude as a function of frequency;
(b) Nyquist diagram.

The first mode is less damped than the other two, and the third one is so much

damped that the resonance peak disappears completely. It must be noted that

the third peak is, at any rate, very narrow in the response of the undamped

system. In the Nyquist plot (Fig. 7.11b) the first peak generates a loop that is

far larger than the one related to the second resonance.

7.6 Multi-degrees of freedom systems
with hysteretic damping

As stated in Section 3.4.1, the stiffness matrix K∗ is complex, with a real
part K′ defining the conservative properties of the system and an imaginary
part K′′ defining the dissipative properties. The dynamic stiffness matrix
for a system with structural damping is

Kdyn = −ω2M + K′ + iK′′ .

By separating the real and imaginary parts of vectors x0 and f0, the
response can be computed from the equation[

−ω2M + K′ −K”
K” −ω2M + K′

] {
� (x0)
� (x0)

}
=

{
� (f0)
� (f0)

}
. (7.26)

If the loss factor is constant throughout the system, matrices K′′ and K′

are proportional and the complex stiffness matrix reduces to

K∗ = (1 + iη)K . (7.27)

This is a form similar to that of proportional damping, and the equations
of motion can be uncoupled exactly, yielding n equations of motions of
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the type seen for systems with a single degree of freedom with structural
damping.

In the case of systems with many degrees of freedom, it is also possible to
define an equivalent viscous damping matrix equal to K′′ divided by ω. Be-
cause systems with structural damping are very lightly damped, the effects
of damping are restricted only in the fields of frequency that are close to
the natural frequencies, and the modal uncoupling holds with good approx-
imation. The behavior of the system can thus be studied by uncoupling the
equations of motion using the eigenvectors of the undamped system and
introducing a constant equivalent damping that does not depend on the
frequency

Cieq =
Ki”
ωni

, ζieq =
ηi

2
. (7.28)

The modal damping can easily be measured during a dynamic test by
measuring the amplitude at resonance or the half-power bandwidth, or
evaluated from data that can be found in the literature.

The equivalent viscous damping matrix in physical coordinates can thus
be obtained by

• computing the eigenvectors of the undamped system;

• computing K”;

• computing the modal equivalent damping of the various modes Cieq;

• performing the back-transformation to the physical coordinates

Ceq = Φ−T CieqΦ
−1 . (7.29)

Again, a Maxwell–Weichert damper can be associated to each modal
system. The values of the stiffnesses and damping coefficients of the various
springs and dampers can be computed in the usual way.

7.7 Response to periodic excitation

The response to a periodic excitation F (t) (with period T ) expressed by
Eq. (6.37) can be computed in the same way seen for undamped system,
with the difference that now the frequency response H(ω) is complex. By
separating the real and imaginary parts of the frequency response, the
following expression for the particular integral of the equation of motion is
easily obtained:
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x(t) =
1
k

{
a0 +

n∑
i=1

[ai�(H(ωi)) + bi�(H(ωi))] cos(ωit)+

+
n∑

i=1

[bi�(H(ωi)) − ai�(H(ωi))] sin(ωit)

}
,

(7.30)

where the frequency of the ith harmonic of the forcing function is

ωi =
2πi

T
.

7.8 The dynamic vibration absorber

A dynamic vibration absorber is basically a spring–mass–damper system
that is added to any vibrating system with the aim of reducing the ampli-
tude of the vibrations of the latter. If the damper or the spring is missing,
an undamped vibration absorber or a Lanchester damper (springless vibra-
tion absorber) is obtained.

Consider a system consisting of a mass m suspended on a spring with
stiffness k on which a force varying harmonically in time with frequency ω
and maximum amplitude f0 is acting. The vibration absorber, consisting
of a second mass ms, a spring of stiffness ks, and a damper with damping
coefficient c, is connected to mass m (Fig. 7.12a). The equation yielding
the amplitude of the harmonic response of the system is

[
−ω2

[
ms 0
0 m

]
+

[
ks −ks

−ks ks + k

]
+ iω

[
c −c

−c c

]] {
xs0

x0

}
=

{
0
f0

}
.

By introducing the mass ratio μ, the stiffness ratio χ, the tuning ratio
τ , and the nondimensional frequency ω∗

μ =
ms

m
, χ =

ks

k
, τ =

χ

μ
, ω∗ =

ω

ωn
= ω

√
m

k
,

the frequency response H22(ω) can be easily computed:

|H22| =
1
k

√ (
τ − ω∗2

)2 + c∗2ω∗2

f2(ω∗) + c∗2ω∗2g2(ω∗)
, (7.31)

where

f(ω∗) = ω∗4
− ω∗2

(1 + χ + τ) , g(ω∗) = 1 − ω∗2
(1 + μ),

and
c∗ =

c

μ
√

km
.
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The tuning ratio is the square of the ratio between the natural frequency
of the original system ωn and that of the vibration absorber. If the vibration
absorber is undamped, the amplitude of the motion of mass m is vanishingly
small if

τ = ω∗2 ,

i.e., the square of the nondimensional frequency of the excitation coincides
with the tuning ratio. The frequency response computed for a mass ratio
μ = 0.2 and a tuning ratio

χ =
μ

(1 + μ)2

is shown in Fig. 7.12b, curve labeled c = 0. The presence of an undamped
vibration absorber is successful in completely damping the vibration at a
given frequency but produces two new resonance peaks at the frequencies
at which function f(ω∗) vanishes (Fig. 7.12c).

The working of the undamped vibration absorber can be easily under-
stood by noting that at the frequency at which the vibration absorber is
tuned, the motion of mass ms is large enough to produce a force on mass m
that balances force F . Consequently, the amplitude of the motion of mass
ms increases when the mass ratio μ decreases and tends to infinity when
ms tends to zero.

If the amplitude of motion of mass m is to be reduced also outside a
narrow range near frequency ωn, the use of a damper is mandatory.

All response curves, obtained with any value of c, pass through points
A, B, and, C and lie in the shaded zone in Fig. 7.12b bounded by the
two limiting cases of the undamped system and that with infinitely large
damping. The latter coincides with a system with a single degree of freedom
with mass m + ms and stiffness k. Such curves have a maximum in the
zone included between points B and C in the case of high damping and two
maxima outside the field BC in the case of small damping.

A reasonable way of optimizing the vibration absorber is to look for a
value of the damping causing the maxima to coincide with points B and C
and to tune the system (i.e., select the value of ks) in a way so as to obtain
the same value of the response in B and C.

The latter condition can be shown to be obtained1 for the optimum value
of the tuning ratio

χopt =
μ

(1 + μ)2
.

Strictly speaking, no value of the damping can cause the two peaks to be lo-
cated simultaneously at points B and C. The value of the damping allowing
one to meet this condition with good approximation and the approximated
value of the maximum amplitude are

1D. Hartog, Mechanical Vibrations, McGraw-Hill, New York, 1956, pp. 93ff



172 7. Forced Response in the Frequency Domain

FIGURE 7.12. Vibration absorber applied to a system with a single degree of
freedom: (a) sketch of the system; (b) limiting cases (damping tending to zero
and infinity) for systems with optimum tuning; (c) natural frequencies of the
undamped system as functions of the mass ratio μ; (d) amplitude of the response
of the system in (b), but with three different values of damping.

copt =
√

km

√
3μ3

2(1 + μ)3
, |H |max =

√
1 +

2
μ

.

The frequency response of a system with mass ratio μ = 0.2, optimum
tuning ratio, and three values of damping is plotted in Fig. 7.12d.

Another different type of dynamic vibration absorber is the so-called
Lanchester damper, which consists of a mass connected to the system
through a damper. Originally it had a dry-friction damper, but if the
damper is of the viscous type, it is basically a damped vibration absorber
without restoring spring. The frequency response can be easily computed,
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obtaining

|H22| =
1
k

√
ω∗2 + c∗2

ω∗2(ω∗2 − 1)2 + ω∗2 [1 − (μ + 1)ω∗2 ]2
.

Following the procedure used for the preceding case, the optimum value
of the damping and the corresponding maximum value of the frequency
response can be computed:

copt =
√

km

√
2μ2

(2 + μ)(1 + μ)
, |H |max = 1 +

2
μ

.

A comparison between the frequency responses of a system with a single
degree of freedom with a dynamic and a Lanchester vibration absorber is
shown in Fig. 7.13. In both cases the mass ratio is μ = 0.2.

Example 7.2 Consider the system with two degrees of freedom shown in Fig.
7.14a. The data are the following: m1 = m2 = 5 kg, k1 = k2 = k3 = 5 kN/m.
The system is excited by a harmonic force f1 applied on mass m1.
A dynamic vibration absorber is located on mass m1. Assuming that the mass
of the vibration absorber in ms = 1 kg, compute the stiffness ks and the
damping cs of the vibration absorber that minimizes the dynamic response on
mass m1. Plot the frequency response and compare it with that of the undamped
system.
Repeat the computation for a Lanchester damper.

FIGURE 7.13. Comparison between the frequency responses of a system with a
single degree of freedom with a dynamic and a Lanchester vibration absorber.
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FIGURE 7.14. Dynamic vibration absorber. (a) System on which the vibration
absorber is applied. (b) Frequency responses of the dynamic vibration absorber
and of the Lanchester damper.

Once the dynamic vibration absorber is located on mass m1, the dynamic stiff-
ness of the system is

Kdyn = −ω2

⎡
⎣ ms 0 0

0 m1 0
0 0 m2

⎤
⎦ + iω

⎡
⎣ cd −cd 0

−cd cd 0
0 0 0

⎤
⎦ +

+

⎡
⎣ kd −kd 0

−kd kd + k1 + k12 −k12

0 −k12 k2 + k12

⎤
⎦ .

The frequency response to be minimized is the modulus of element H22 of
matrix H (ω). The optimization cannot be performed in closed form owing
to the complexity of the analysis. It is, however, easy to use any numerical
optimization method, and in the following the simplest approach is followed.
A number of values of ks and cs are chosen in a given interval, and for each
pair of values the function |H22 (ω) | is computed. A three-dimensional plot of
its maximum value max (|H22|) as a function of ks and cs is obtained.
A map of the surface max (|H22|) (ks, cs) for 50 < cs < 300 Ns/m (with
increments 5 Ns/m) and 10 < ks < 60 kN/m (with increments 1 kN/m) is
reported in Fig. 7.15a. It is clearly a valley, with a minimum for ks ≈ 40 kN/m
and cs ≈ 110 Ns/m. To obtain more precise values a further computation in a
range close to the values so identified could be performed, but was considered
useless mostly due to the consideration that the function is fairly flat about
the minimum.
The frequency response |H22 (ω) | for ks = 40 kN/m and cs = 110 Ns/m is
shown in Fig. 7.14b. As it could be expected, the peaks have the same height,
showing that the optimization was performed accurately.
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FIGURE 7.15. Dynamic vibration absorber (a) and Lanchester damper (b). Plots
used to optimize the parameters.

The study was repeated for the Lanchester damper. Now ks = 0 and there is
just one parameter, cs. The one-dimensional optimization is easy but, although
a closed-form solution could be obtained without great computational difficul-
ties, the function max (|H22|) (cs) for 50 < cs < 300 Ns/m (with increments
1 Ns/m) was plotted (Fig. 7.15b). The value cs = 210 Ns/m was chosen.
The frequency response |H22 (ω) | for the selected value of cs is shown in Fig.
7.14b. In this case it is impossible to reduce the height of the first peak as much
as in the previous case, while the second peak has roughly the same height as
in the case of the dynamic vibration absorber.

7.9 Parameter identification

In the preceding sections, attention was paid to the computation of the
dynamic response of a system whose characteristics are known. Very often,
however, the opposite problem must be solved: The behavior of the system
has been investigated experimentally and a mathematical model has to be
obtained from the experimental results. First consider the case of a system
with a single degree of freedom and assume that the response x(t) and the
excitation F (t) are known in a number m of different instants and that
the corresponding velocities and accelerations are also known. By writing
the equation of motion of the system m times, the following equation can
be obtained

⎡
⎢⎢⎣

ẍ1 ẋ1 x1

ẍ2 ẋ2 x2

. . . . . . . . .
ẍm ˙xm xm

⎤
⎥⎥⎦

⎧⎨
⎩

m
c
k

⎫⎬
⎭ =

⎧⎪⎪⎨
⎪⎪⎩

f1

f2

. . .
fm

⎫⎪⎪⎬
⎪⎪⎭

. (7.32)
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Equation (7.32) is a set of m linear equations with three unknowns, the
parameters of the system to be determined. A subset of three equations is
then required to solve the problem. Actually, the situation is more complex.
All measurements are affected by some errors, and the results obtainable
from a set of three measurements are unreliable. To obtain more reliable
results, it is better to retain all rows of the matrix of the coefficients of
Eq. (7.32) and to resort to its pseudo-inverse

⎧⎨
⎩

m
c
k

⎫⎬
⎭ =

⎡
⎢⎢⎣

ẍ1 ẋ1 x1

ẍ2 ẋ2 x2

. . . . . . . . .
ẍm ˙xm xm

⎤
⎥⎥⎦
† ⎧⎪⎪⎨
⎪⎪⎩

f1

f2

. . .
fm

⎫⎪⎪⎬
⎪⎪⎭

. (7.33)

The pseudo-inverse A† of matrix A can be computed as

A† = (AT A)−1AT ,

but this simple approach based on matrix inversion is increasingly less
efficient for large matrices. Algorithms based on singular value decomposi-
tion or QR factorization are both more accurate and more computationally
efficient.

To avoid introducing the velocities and accelerations together with the
displacements into Eq. (7.33), it is possible to work in the frequency do-
main. In this case, the complex amplitudes of the response x0(ω) and the
corresponding complex amplitudes of the excitation f0(ω) at m values of
the frequency are measured, and Eq. (7.32) can be transformed into a set
of m complex equations or 2m real equations

⎡
⎢⎢⎣

−ω2x01 iωx01 x01

−ω2x02 iωx02 x02

. . . . . . . . .
−ω2x0m iωx0m x0m

⎤
⎥⎥⎦

⎧⎨
⎩

m
c
k

⎫⎬
⎭ =

⎧⎪⎪⎨
⎪⎪⎩

f01

f02

. . .
f0m

⎫⎪⎪⎬
⎪⎪⎭

. (7.34)

In the case of systems with many degrees of freedom, everything gets
more complex as the number of parameters to be estimated becomes greater,
but the computations can follow the same lines shown for systems with a
single degree of freedom. Also, in this case both time-domain and frequency-
domain methods are possible, and many procedures have been proposed
and implemented.

The identification of the modal parameters of large mechanical systems
is the main object of experimental modal analysis, which is, in itself, a
specialized branch of mechanics of vibrations. It has been the subject of
many books and papers in recent years. The algorithms used are often
influenced by the hardware that is available for the acquisition of relevant
data and subsequent computations. The recent advances in the field of
computers and electronic instrumentation are causing steady advancements
to take place in this field.
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7.10 Exercises

Exercise 7.1 Consider the same machine of Exercise 6.1 (with a single rotor).

Use an elastomeric supporting system that, when tested at the frequencies of 50

and 200 Hz, is found to have a stiffness of 500 and 800 kN/m, respectively, and a

damping of 980 and 450 Ns/m, respectively. Using the models of complex stiffness

and complex damping to model the supporting system, compute the force exerted

by the machine on the supporting structure at all speeds up to the maximum

operating speed.

Exercise 7.2 Study the effect of an undamped vibration absorber with mass

ma = 0.8 kg applied to mass m1 of Exercise 4.4. Tune it on the first natural

frequency of the system. Plot the dynamic compliance H22 with and without the

dynamic vibration absorber.

Add a viscous damper between mass m1 and the vibration absorber. Compute

the response of the system with various values of the damping coefficient, trying

to minimize the amplitude of the displacement of mass m2 in a range of frequency

between 5 and 30 rad/s.

Exercise 7.3 Evaluate the elastic, inertial, and damping characteristics of a

system with a single degree of freedom using a simple exciter provided of an

eccentric mass. The mass of the exciter is 5 kg and the eccentric mass of 0.020 kg

is located at a radius of 100 mm (Fig. 7.16)

Two tests are run at speeds of 100 and 200 rpm, recording the following values

of the amplitude and phase of the response:

Test 1: ω1 = 100 rpm = 10.47 rad/s = 1.667 Hz; x01 = 0.011 mm, φ1 = −7◦;

Test 2: ω2 = 200 rpm = 20.94 rad/s = 3.333 Hz; x02 = 0.165 mm, φ2 = −64◦.

FIGURE 7.16. Sketch of a system with a single degree of freedom with the exciter.
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Exercise 7.4 Consider the damped system with 3 degrees of freedom studied in
Examples 1.2 and 3.1. Assume that the excitation is due to the rotation of the
supporting structure about the axis of the beams, with law

θA = θ0 sin (ωt) .

Compute the response in terms of physical coordinates (θ0i/θ0A) and of modal

coordinates (η0i/θ0A) in the range 0 ≤ ω ≤ 6.

Exercise 7.5 Compute the forced response of the system of Exercise 4.4 with
a damper added between masses m1 and m2 when excited by a motion of the
supporting point

xA = xA0 sin (ωt) .

Use both a non-modal and an iterative approach. Add a further damper between

mass m2 and point A, equal to the one already existing between mass m1 and m2,

and repeat the analysis. Data: c12 = 40 Ns/m, xA0 = 5 mm, ω = 30 rad/s.



8
Response to Nonperiodic Excitation

The response to a nonperiodic excitation can be computed in closed form
only in a few selected cases. In general the solution can be obtained through
Laplace transforms or by integrating numerically the equations of motion
in the time domain, with the latter approach becoming increasingly popular.

8.1 Impulse excitation

When a large force acts on the system for a short time, as in the case
of shock loads, the impulsive model that assumes that a force tending to
infinity acts for a time tending to zero can be used. This model is based on
the unit-impulse function δ(t) (or Dirac’s δ), defined by the relationships

⎧⎨
⎩

δ = 0 for t �= 0

δ = ∞ for t = 0

∫ ∞

−∞
δ(t)dt = 1 . (8.1)

The impulse excitation can thus be expressed as

F = f0δ(t) .

Remark 8.1 The impulse function δ has the dimension of the reciprocal
of a time [s−1] and f0 has the dimensions of an impulse [Ns]. Because the
impulse of the function δ(t) has a unit value, the value of f0 is that of the
total impulse of force F (t).
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The response to an impulse excitation is easily computed: It is sufficient
to observe that in the infinitely short period of time in which the impulsive
force acts, all other forces are negligible compared to it. The momentum
theorem can be applied to compute the conditions of the system just after
the impulsive force has been applied from those related to the instant before
its application.

The position x0 after the impulse is equal to that before the impulse,
while the velocity v0 is equal to the one before the impulse plus an increment
due to an increase of momentum equal to the impulse. Assuming that before
the impulse the system with a single degree of freedom is at rest in the
origin, it follows that {

x0 = 0,

v0 =
f0

m
.

(8.2)

The time history can be computed from the equations governing the free
behavior of the system, obtaining

x(t) =
f0

mωn
h(t) , (8.3)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(t) =
1√

1 − ζ2
e−ζωnt sin

(
ωn

√
1 − ζ2t

)
,

h(t) = ωnte−ωnt ,

h(t) =
1

2
√

1 − ζ2

⎧⎪⎨
⎪⎩−e

−

[
ζ+

√
1−ζ2

]
ωnt

+ e
−

[
ζ−

√
1−ζ2

]
ωnt

⎫⎪⎬
⎪⎭ .

The three expressions of the (nondimensional) impulse response h(t)
hold for underdamped, critically damped, and overdamped systems, respec-
tively. The impulse responses with different values of the damping ratio ζ
are shown in nondimensional form in Fig. 8.1.

The impulse response h(t) completely characterizes the system. Its Lapla-
ce transform can be immediately computed by multiplying the Laplace
transform of the Dirac’s δ by the transfer function of the system:

h̃(s) = G(s)δ̃(s) . (8.4)

Because the Laplace transform of the Dirac’s δ (see Appendix B) has a
unit value, the Laplace transform of the impulse response coincides with
the transfer function of the system.

In the case of multi-degrees-of-freedom systems it is possible to define a
matrix of the impulse responses H(t): its Laplace transform coincides with
the transfer matrix G(s) and its Fourier transform with the frequency
response H(ω).
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FIGURE 8.1. Response to an impulse excitation h(t) for different values of the
damping ratio ζ.

8.2 Step excitation

Another case for which a closed-form solution is available is that of the
response to a step excitation. The unit step function u(t) can be defined
by the expression

{
u = 0 for t < 0,
u = 1 for t ≥ 0,

(8.5)

and is just the integral of the impulse function δ(t).
Its Laplace transform is then

ũ(s) =
1
s
δ̃(s) =

1
s

. (8.6)

The response of the system to the excitation

F = f0u(t)

can be computed by adding the solution obtained for free oscillations to
the steady-state response to the constant force f0.

Remark 8.2 The step function u is nondimensional, while in the present
case f0 has the dimension of a force (N).
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Also, in this case a simple expression is commonly used

x(t) =
f0

k
g(t) , (8.7)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(t) = 1 − e−ζωnt

[
cos

(
ωn

√
1 − ζ2t

)
+

ζ√
1 − ζ2

sin
(

ωn

√
1 − ζ2t

)]
,

g(t) = 1 − (1 − ωnt)e−ωnt ,

g(t) = 1 − 1
2

⎧⎪⎨
⎪⎩−e

−

[
ζ+

√
1−ζ2

]
ωnt

+ e
−

[
ζ−

√
1−ζ2

]
ωnt

⎫⎪⎬
⎪⎭ .

The three expressions for the response to unit step g(t) hold for under-
damped, critically damped, and overdamped systems, respectively. They
are plotted in nondimensional form in Fig. 8.2a.

From the response to a step forcing function, some characteristics of the
system that can be used to formulate performance criteria can be stated.
With reference to Fig. 8.2b, they are the peak time Tp (time required for
the response to reach its peak value), the rise time Tr (time required for
the response to rise from 10 to 90% of the steady-state value, sometimes
from 5 to 95% or from 0 to 100%), the delay time Td (time required for
the response to reach 50% of the steady-state value), the setting time Ts

(time required for the response to settle within a certain range, usually 5%
but sometimes 2%, of the steady-state value), and the maximum overshot

FIGURE 8.2. (a) Response to a step forcing function g(t); (b) dynamic charac-
teristics of a system with a single degree of freedom obtained from the response
to a step forcing function.
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(maximum deviation of the response with respect to the steady-state value).
The last item is usually expressed as a percentage of the steady-state value.

The maxima and minima of the time history of an underdamped system
are easily obtained by differentiating function g(t) with respect to time and
setting the derivative to zero:

dg

dt
= −e.−ζωnt

[√
1 + ζ2

ωn
sin

(
ωn

√
1 − ζ2t

)]
= 0 .

The solution of this equation is

ωn

√
1 − ζ2t = iπ for i = 0, 1, 2, ....

Function g(t) has a minimum when i is even and a maximum when i is
odd. The value at the ith extremum is

g(t) = 1 − e
− iπζ√

1−ζ2 (−1)i . (8.8)

The maximum overshot is thus

g(t)
limt→∞ g(t)

= e
− πζ√

1−ζ2 . (8.9)

Its value is plotted as a function of ζ in Fig. 8.3.
Also in the case of the response to step excitation it is possible to extend

the result here obtained to multi-degrees-of-freedom systems. A matrix of
the step responses G(t) can thus be defined.

FIGURE 8.3. Maximum overshot as a function of ζ.
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8.3 Duhamel’s integral

A different approach, applicable to both periodic and nonperiodic forcing
functions, is the use of Duhamel’s or convolution integral. The impulse of
force F (t) acting on the system, computed between time τ and time τ +dτ
(Fig. 8.4), is simply F (τ)dτ .

The response of the system to such an impulse can be easily expressed
in the form

d[x(t)] =
F (τ)dτ

mωn
h(t − τ) , (8.10)

where function h(t) is the response to a unit impulse defined earlier.
The response to the forcing function F (t) can be computed by adding

(or better, integrating, as there is an infinity of vanishingly small terms)
the responses to all the impulses taking place at all times up to time t

x(t) =
∫ t

0

d[x(t)]dτ =
1

mωn

∫ t

0

F (τ)h(t − τ)dτ . (8.11)

The integral of Eq. (8.11), usually referred to as Duhamel’s integral,
allows the computation of the response of any linear system to a force F (t)
with a time history of any type. Only in a few selected cases the integration
can be performed in closed form; however, the numerical integration of
Eq. (8.11) is simpler than the direct numerical integration of the equation
of motion.

By introducing the impulse response of an underdamped system, the
particular integral of the equation of motion can be expressed in the more
compact form

x(t) = A(t) sin
(√

1 − ζ2ωnt
)
− B(t) cos

(√
1 − ζ2ωnt

)
, (8.12)

where functions A(t) and B(t) are expressed by the following integrals:

FIGURE 8.4. Response to the impulse exerted by force F (t) between time τ and
τ + dτ .
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A(t) =
1

mωn

√
1 − ζ2

eζωnt

∫ t

0

F (τ)eζωnτ cos
(√

1 − ζ2ωnτ
)

dτ,

B(t) =
1

mωn

√
1 − ζ2

eζωnt

∫ t

0

F (τ)eζωnτ sin
(√

1 − ζ2ωnτ
)

dτ .

(8.13)

Example 8.1 Check the ability of the system studied in Example 4.1 to with-
stand a shock corresponding to the prescriptions of MIL-STD 810 C, basic
design, i.e., an acceleration of the supporting structure that increases linearly
in time from t = 0 to t1 = 11 ms up to a value of 20 g to drop subsequently
to zero. The stresses due to the shock must not exceed the ultimate strength of
the material, 328 MN/m2.
As the period of the free oscillations of the system is

T =
2π

ωn
=

2π

337
= 18.6 ms,

the duration of the shock is not much shorter than the period of the free os-
cillations, and good accuracy cannot be expected if the shock is studied as an
impulse loading. The computation will, therefore, be performed using both an
impulsive model and the Duhamel’s integral.
The force acting on the beam is given by the mass multiplied by the accelera-
tion. It increases in time from 0 to the value

mamax = 3, 924 N,

which is reached after 11 ms. The total impulse is equal to 21.6 Ns. If damp-
ing is neglected, the impulsive model (Eq. (8.3) with f0=21.6 Ns) yields an
amplitude of the harmonic motion that follows the impulse

x0 = 3.2 × 10−3 m .

The maximum value of the stress, which takes place at the clamped end, can
be computed by dividing the maximum value of the bending moment klx0 by
the section modulus of the beam, obtaining

σmax = 105.6 × 106 N/m2 .

To compute the displacement through the Duhamel’s integral, function F (t)
must be explicitly computed:

F =
mamax

t1
= 357, 000 t for 0 ≤ t ≤ 0.011,

F = 0 for t > 0.011.
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By neglecting the presence of damping, which gives a conservative result, func-
tions A(t) and B(t) are, for the first 11 ms,

A(t) =
amax

t1ωn

∫ t

0

τ cos (ωnτ ) dτ =
amax

t1ω3
n

[ωnt sin (ωnt) + cos (ωnt) − 1] ,

B(t) =
amax

t1ωn

∫ t

0

τ sin (ωnτ ) dτ =
amax

t1ω3
n

[−ωnt cos (ωnt) + sin (ωnt)] .

By introducing the values of A(t) and B(t) into Eq. (8.12), and remembering
that the system is undamped, it follows that

x(t) =
amax

t1ω3
n

[ωnt − sin (ωnt)] = 0.466 × 10−3 [ωnt − sin (ωnt)] .

When no more exciting force is present, i.e., after 11 ms, the values of A(t)
and B(t) remain constant. By introducing a value of time t=11 ms in the
expressions of A(t) and B(t), the following equation for the free motion of the
system is obtained

x(t) = −0.0018 sin(ωnt) − 0.0012 cos(ωnt).

The response of the system is plotted in Fig. 8.5. The maximum value of the
displacement and the corresponding value of the maximum stress are, respec-
tively,

dmax = 2.2 mm, σmax = 72.6 MN/m2.

The value of the stress is far smaller than the allowable value and, conse-

quently, it is not necessary to repeat the computation taking into account the

presence of damping.

FIGURE 8.5. Time history of the response of the system. Impulsive model and
results obtained through Duhamel’s integral.
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Remark 8.3 As predicted, the impulsive model in this case does not allow
a good approximation of the results, because the duration of the shock is not
much shorter than the period of the free oscillations.

8.4 Solution using the transition matrix

In the case of multi-degrees-of-freedom systems, the response to a generic
input u(t) can be expressed using the transition matrix eAt in the form

z(t) = eAtz0 +
∫ t

0

eA(t−τ)Bu(τ)dτ , (8.14)

which can be regarded as a generalization of convolution integral. Some
difficulties can be encountered in computing the transition matrix; they
increase with increasing time t and with increasing absolute value of the
highest eigenvalue of the dynamic matrix A. The time interval t can be
subdivided into subintervals and Eq. (8.14) can be applied in sequence,
one subinterval after the other. If the input is constant at the value u0

in the subinterval from time t0 to time t1, the state z1 at the end can be
computed from the one at the beginning z0 as

z1 = eA(t1−t0)
{
z0 + A−1

[
I − e−A(t1−t0)

]
Bu0

}
. (8.15)

If the input varies linearly from u0 to u1, the integral can be solved in
closed form, yielding

z1 = eA(t1−t0) (z0 + Ru0 + Su1) , (8.16)

where

R = A−1

{
I − 1

t1 − t0
A−1

[
I − e−A(t1−t0)

]}
B ,

S = A−1

{
1

t1 − t0
A−1

[
I − e−A(t1−t0)

]
− e−A(t1−t0)

}
B .

By resorting to the left and right eigenvectors, the equations of motion
can be easily uncoupled. Each time history of the modal state variables is
of the type

zi(t) = zi0e
sit +

∫ t

0

esi(t−τ)qT
LiBu(τ)dτ . (8.17)

8.5 Solution using Laplace transforms

Once the Laplace transform of the time history of the excitation f(s) is
known, the Laplace transform of the response x(s) can be easily computed:
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x(s) =
f(s)

s2m + sc + k
− mẋ(0) + (ms + c)x(0)

s2m + sc + k
, (8.18)

or, in case of multi-degrees-of-freedom systems

x(s) =
[
s2M + sC + kK

]−1
[F(s) − Mẋ(0) − (Ms + C)x(0)] . (8.19)

Since the Laplace transforms of the most common functions f(t) are tab-
ulated (see, for example, Appendix B), Eq. (8.18) can be used to compute
the Laplace transform of the response of the system. The time history x(t)
can then be obtained through the inverse transformation or, more simply,
by using Laplace transform tables.

Remark 8.4 The main limitation of the Laplace transform approach is
that of being restricted to the solution of linear differential equations with
constant coefficients.

Example 8.2 Repeat the computation of the shock response of Example 8.1

through Laplace transforms.
From time t = 0 to time t1 = 11 ms, the forcing function is

F (t) =
mamax

t1
t .

Its Laplace transform can be found on the table in Appendix B:

F̃ (s) =
mamax

t1

1

s2
.

By multiplying the Laplace transform of the input by the transfer function of
the system it follows that

x̃(s) = G(s)F̃ (s) =
mamax

t1

1

s2(ms2 + k)
,

i.e.,

x̃(s) =
amax

t1

1

s2(s2 + ω2
n)

.

From the table a Laplace transform pair

f̃(s) =
ω3

s2(s2 + ω2)
, f(t) = ωt − sin(ωt)
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can be found and the displacement can thus be computed

x(t) =
amax

ω3
nt1

[ωnt − sin(ωnt)] .

This expression coincides with that obtained in Example 8.1 using the

Duhamel’s integral.
The corresponding velocity is

ẋ(t) =
amax

ω2
nt1

[1 − cos(ωnt)] .

At time t = t1 their values are

x(t) = 1.98 mm, ẋ(t) = 0.290 m/s .

After time t1 the motion is free

x(t) = x1 cos(ωnt) + x2 sin(ωnt) .

Stating that at time t1 the displacement and the velocity are those computed
above {

x(t1) = x1 cos(ωnt1) + x2 sin(ωnt1) = 0.00198,
ẋ(t1) = −x1ωn sin(ωnt1) + x2ωn cos(ωnt1) = 0.290 ,

the values of x1 and x2 are readily computed, obtaining

x1 = −0.0012 m, x2 = −0.0018 m,

that coincide with the values computed in Example 8.1.

8.6 Numerical integration of the equations of
motion

An increasingly popular approach to the computation of the time history
of the response from the time history of the excitation is the numerical
integration of the equation of motion.

Remark 8.5 While all other approaches seen (Laplace transform, Duha-
mel’s integral, etc.) can be applied only to linear systems, the numerical
integration of the equation of motion can also be performed for nonlinear
systems (see Part II).

Remark 8.6 Any solution obtained through the numerical approach must
be considered the result of a numerical experiment and usually gives little
general insight to the relevant phenomena. The numerical approach does
not substitute other analytical methods, but rather provides a very powerful
tool to deal with cases that cannot be studied in other ways.
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Once the equations of motion of the system have been stated, the first
choice is between numerical integration in the state or in the configuration
space, i.e., between the numerical integration of a set of first- or second-
order equations. Today the former approach is more popular, and most
‘simulators’, i.e., computer programs performing numerical simulations, op-
erate in the state space.

There are many different methods that can be used to perform the inte-
gration of the equation of motion (see Appendix A). All of them operate
following the same guidelines: The state of the system at time t+Δt is com-
puted from the known conditions that characterize the state of the system
at time t. The finite time interval Δt must be small enough to allow the
use of simplified expressions of the equation of motion without incurring
errors that are too large. The mathematical simulation of the motion of
the system is performed step by step, increasing the independent variable
t with subsequent finite increments Δt.

Most simulation programs available commercially do not require the user
to choose the time increment Δt, but adapt the time increment to the
situation until the errors are kept within stated limits. At any rate, being
immaterial who chooses the value of Δt, there are two criteria that must
be satisfied:

• the time increment must be small enough for the integration algo-
rithm to be stable, and

• the time increment must be small enough for the integration errors
to be small enough.

These criteria may be independent of each other.
Since the size of the integration increment must be compared with the

periods of the oscillations of the system, these criteria must be evaluated
in each case. In particular, the oscillations that must be accounted for are
not only the actual ones that are excited by the forcing functions and the
initial conditions, but also those potentially occurring at all the natural
frequencies of the system, even if they are not excited in the particular
simulation considered. The latter may actually be excited by numerical
errors, and then amplified by numerical instabilities, until they cause the
whole integration procedure to fail.

Numerical integration methods may be either unconditionally or condi-
tionally stable: the former are stable for any value of the time increment
(although losing precision with increasing Δt), while the latter are stable
only if the time increment is small enough.

When integrating the equations of motion of a single-degree-of-freedom
system the stability of the algorithm is not usually a problem: If the time
increment is small enough to yield the required precision, it is usually small
enough to behave in a stable way as well.
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When on the contrary there are many degrees of freedom, and then
also many natural frequencies, some high-frequency modes may be little
excited and their contribution to the overall response may be negligible. If
the algorithm is unconditionally stable, the time increments may be small
when compared with the periods of the modes of interest (to achieve the
required precision), but large when compared with the higher, non-excited
modes. The errors in the evaluation of the contribution of the latter have
little importance, and they do not cause instability problems.

When using conditionally stable algorithms, on the contrary, the high-
frequency modes can drive the integration to instability, and the time in-
crements must be smaller when compared with the periods of all modes.

Systems containing both low- and high-frequency components at the
same time, like when modeling a phenomenon that contains dynamics with
widely different timescales, are said to be stiff and their numerical study
requires either very short time increments or particularly stable integration
algorithms.

A possible approach is to transform the equations into modal coordinates
before attempting the integration. If the modes can be uncoupled in an
exact or approximated way, different time steps can be used for the various
modes, thus greatly reducing the integration time.

Even if the modes are coupled, a reduced set of modal equations can
be used, at least in an approximated way. If the modes resonating at high
frequency are left out, longer time steps can be used also when conditionally
stable algorithms are employed. This is usually impossible for stiff systems,
where both high- and low-frequency dynamics are usually important.

8.7 Exercises

Exercise 8.1 A spring–mass system is excited by a force whose time history is
given by the equation

F = |f0 sin(ωt)| .

At time t = 0 the system is at rest in the equilibrium position. Compute the

time history of the response (a) by numerical integration and (b) by computing

a Fourier series for the forcing function F (t). Data: m = 1 kg, k = 1, 000 N/m,

f0 = 2 N, ω = 10 rad/s.

Exercise 8.2 The same spring–mass system studied in Exercise 8.1 but with a
damper added is excited by the same force with time history given by the equation

F = |f0 sin(ωt)| .

At time t = 0 the system is at rest in the equilibrium position. Compute the

time history of the response (a) by numerical integration and (b) by computing a

Fourier series for the forcing function F (t), and compare the results with those
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of the undamped system. Data: m = 1 kg, k = 1, 000 N/m, c = 6 Ns/m, f0 = 2

N, ω = 10 rad/s.

Exercise 8.3 Add a hysteretic damping with loss factor η = 0.05 to all springs

of the system of Exercise 4.4.

Plot the four values of the dynamic compliance matrix as a function of the

driving frequency.

Exercise 8.4 Consider the system with hysteretic damping studied in Exercise

8.3. Repeat the computation of the dynamic compliance matrix by using

• an equivalent damping function of frequency

• a constant equivalent damping

Compare the results. Repeat the computation with a value of the loss factor 10

times larger and compare again the results.

Exercise 8.5 Consider the system studied in Example 8.1. Repeat the compu-

tations for a shock having a duration of 1 ms and a peak acceleration of 200 g.

Compare the results obtained using the impulse model with those obtained through

the Duhamel’s integral.

Exercise 8.6 A spring–mass system is excited by a shock load with a duration of

11 ms and a linearly increasing intensity with peak acceleration of 20 g. Compute

the response through the impulse model and Duhamel’s integral and compare the

results. Perform the numerical integration of the equation of motion, with time

steps of 0.05, 0.5, and 5 ms and compare the results. Data: m = 20 kg, k = 2×106

N/m.

Exercise 8.7 The system with hysteretic damping of Exercise 8.3 is excited by

a shock applied through the supporting point A. The acceleration of point A has

the same time history described in Example 8.1.

Compute the time histories of the displacement of both masses through nu-

merical integration in time without resorting to modal coordinates. Repeat the

computation using modal coordinates and Duhamel’s integral.

Exercise 8.8 Repeat the study of Exercise 8.7, with a value of the loss factor

η = 0.1. Perform only the non-modal computation.
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Short Account of Random Vibrations

The study of the response to periodic and nonperiodic excitation is here
complemented by a short account on random vibration, aimed more at defin-
ing some basic concepts than at dealing with the subject in any detail.

9.1 General considerations

There are many cases where the forcing function acting on a dynamic sys-
tem has a very complex time history, that cannot be reduced to a simple
periodic pattern and cannot be defined in a closely deterministic way. This
implies mainly that records of the excitation and of the response of the
system obtained in conditions that are alike differ from each other in a
substantial way.

Typical examples are seismic excitation on buildings, excitation on the
structures of ground vehicles due to road irregularities, and excitation of
the structure of ships due to sea waves. For all these cases, and many other
similar ones, the term random vibration is commonly used.

In all these cases the time history of the excitation can be measured, and
if enough experimental data are taken, it is possible to perform a statistical
analysis.

The study of the response of dynamic systems to an excitation of this
kind is quite complex and two different approaches can be used.

A simple approach, at least from a conceptual point of view, is to operate
in the time domain, computing the response of the system by numerically
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integrating the equations of motion using the experimental time history of
the excitation as an input. In this way, however, only a limited insight of
the phenomena involved is obtained, and computations becomes rapidly
heavy if many experimental data are used in the attempt of understanding
the behavior of the system with some generality.

A much better, and usually simpler in practice, way is to perform a
statistic analysis of the input: the statistic parameters of the outputs of
the system can be obtained from the statistic parameters of the input and
this is usually sufficient to verify whether the system complies with the
prescribed functionality and safety requirements.

This involves mostly frequency-domain computations and requires a good
background in statistics. There are many excellent books devoted to the
subject of random vibrations where the interested reader can find a more
complete analysis. In this chapter only a brief outline, mainly on the qual-
itative aspects of the relevant phenomena, will be given.

9.2 Random forcing functions

Consider a generic function y(t). Given a sample whose duration is T , the
average value in time, and the mean square can be defined by the obvious
relationships

ȳ =
1
T

∫ T

0

y(t)dt,

(y2) =
1
T

∫ T

0

y2(t)dt .
(9.1)

The square root of the mean square is usually defined as the root mean
square (in short r.m.s.) value

yrms =
√

(y2) =

√
1
T

∫ T

0

y2(t)dt . (9.2)

The variance, usually referred to by the symbol σ2, is defined as

σ2 = (y − ȳ)2 =
1
T

∫ T

0

[
y(t) − ȳ

]2

dt . (9.3)

In many cases the input is assumed to have a zero average value. This can
always be obtained by subtracting to the sample its average value, which
amounts to separate the static behavior of the system from its dynamic
behavior. This approach is possible only in the case of linear systems.

The variance in this case coincides with the mean square.
The square root of the variance is the standard deviation σ. When the

average is equal to zero, the standard deviation coincides with the r.m.s.
value.
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In case of an harmonic function with zero average (i.e. a sine or cosine
wave), assuming that T is a multiple of the period, the mean square and
the standard deviation are

(y2) =
1
T

∫ T

0

y2
max cos2 (ωt)dt =

1
2
y2
max ,

σ = yrms =
1√
2
ymax .

These statistical parameters in general depend on the sample used for
the analysis.

When studying random excitation, a first assumption is that the phe-
nomenon is stationary, i.e., its characteristics do not change when the study
is performed starting at different times. Another assumption is that of er-
godicity, a complex statistical property that in the present case can be
summarized by stating that any sample can be considered typical of the
whole set of available samples.

Under these assumptions, the average, the r.m.s. value, the variance,
and all other statistical parameters can be considered independent of the
particular sample used for their computation. These are oversimplifications
of a more complex phenomenon, but in most cases they allow for results
that are in close accordance with experimental evidence to be obtained.

If the phenomenon is stationary and ergodic, the values of the average
and of the variance computed in time T are coincident with the same values
obtained for T tending to infinity.

Another very important statistical parameter is the autocorrelation
function

Ψ(τ) = lim
T→∞

1
T

∫ T

0

y(t)y(t + τ)dt , (9.4)

which states how the value of function y(t) at time t is linked with the
value it takes at time t + τ .

Under the above-mentioned assumptions, for a zero-mean phenomenon,
it follows that

Ψ(0) = σ2 = y2
rms . (9.5)

The autocorrelation function of an harmonic function such as the sine or
cosine waves considered above is

Ψ(τ) =
1
2
y2
max cos (τ) .

In the case of an ideal random phenomenon, in which the value of function
y(t) in every instant is completely independent of the value it takes in any
other instant, the autocorrelation is equal to zero for every value of τ except,
as already stated, τ = 0. As it will be seen below, the autocorrelation
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function of an actual random phenomenon, although tending to zero with
increasing absolute value of τ , is not zero.

A spectral analysis of the signal can be performed using the Fourier
transform of function y(t):

Y (ω) =
∫ ∞

−∞
y (t) e−iωtdt . (9.6)

Instead of using the Fourier transform of function y (t), the information
regarding the frequency content of a random variable is the power spectral
density S(ω), often indicated with the acronym PSD. The power spectral
density is correctly defined as the Fourier transform of the autocorrelation
function

S(ω) =
∫ ∞

−∞
Ψ(τ)e−iωτdτ , (9.7)

but it can be also defined as the square of the modulus of the Fourier
transform of function y (t), multiplied by a suitable constant

S(ω) =
1
2π

|Y (ω)|2 . (9.8)

The term power is here used loosely: Because the power of an harmonic
signal is proportional to the square of the amplitude, it just stands for
amplitude squared.

If the random vibration is excited by a force, the dimension of its power
spectral density S(ω) is that of the square of a force divided by a frequency.
In S.I. units it is therefore measured in N2/(rad/s) = N2s/rad or in N2/Hz.
If the system is excited by the motion of the supporting point, the forcing
function is an acceleration and its power spectral density is measured in
(m/s2)2/(rad/s) = m2/s3rad or in g2/Hz.

The integral of function S(ω) is the variance of function y(t), i.e., if the
average value is equal to zero, the square of its r.m.s. value

yrms =

√∫ ∞

−∞
S(ω)dω . (9.9)

The power spectral density is here defined for both positive and negative
values of the frequency ω (two-sided power spectral density). Often, on the
contrary, a one-sided power spectral density is defined, limited to positive
values of the frequency.

Remark 9.1 A random forcing function is usually defined as a narrow-
band or wide-band excitation, depending on the width of the frequency
range involved.
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9.3 White noise

The simplest type of random excitation is a random forcing function with
constant power spectral density. This type of forcing function, which con-
tains all possible frequencies in the same measure, is often referred to as
white noise. Its autocorrelation function has a zero value for all values of
τ and goes to infinity for τ = 0. It is, therefore, a Dirac’s impulse function
δ(τ).

Remark 9.2 A true white noise, with a spectrum extending for the whole
frequency range from 0 to infinity, is just a mathematical model, since its
r.m.s. value would be infinitely large, as also shown by the fact that Ψ is a
Dirac’s δ, i.e. Ψ(0) is infinite.

A more realistic random excitation is a band limited white noise, i.e., an
excitation with a power spectral density (Fig. 9.1a) expressed as

S = S0 for |ω| ≤ ω0 ,
S = 0 for |ω| > ω0 . (9.10)

Its r.m.s. value is thus

yrms =
√

2S0ω0, (9.11)

and its autocorrelation function, shown in Fig. 9.1b, is

Ψ(τ) = 2S0
sin (ω0τ)

τ
. (9.12)

Often the power spectral density of the white noise is truncated both at a
minimum and at a maximum frequency. It is assumed to have the shape of

FIGURE 9.1. Nondimensional power spectral density (a) and autocorrelation
function (b) of a band limited white noise.
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a trapezium in a bi-logarithmic plane and then, while being constant in the
central frequency field, it decays on both side with a constant slope (see,
for instance, Fig. 9.6a), usually measured in dB/oct (decibel per octave) or
dB/dec (decibel per decade). In other cases the power spectral density is
considered as constant at different values in various frequency ranges, with
straight ramps (in a bi-logarithmic plane) in between.

9.4 Probability distribution

The quantities defined earlier are not yet sufficient to completely charac-
terize a random forcing function. It is also necessary to define a function
expressing the probability density function p(y) related to the amplitude.

The probability density function p(y) is defined as the probability that
a random variable y(t) takes a value included between y and y + dy.

Usually, such a function is assumed to be a normal or Gaussian proba-
bility density

p(y) =
1√
2πσ

e−
(y−μ)2

2σ2 , (9.13)

where μ is the mean and σ is the standard deviation (Fig. 9.2a).
The probability that y (t) is included in the interval [μ − σ, μ + σ] can

be computed by integrating the probability density in that interval: it is
0.683. The probabilities it lies within a band of semi-amplitude 2σ and 3σ
are, respectively, 0.954 and 0.997. There is, however, no interval in which
the probability is 1: This means that there is a non-zero probability that
function y(t) reaches any value, however large.

FIGURE 9.2. Nondimensional plot of the normal probability density function (a)
and the normal probability distribution function (b).
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Remark 9.3 This is clearly just a theoretical statement, resulting from
approximating the actual probability density with a normal distribution. All
real world phenomena are limited and the ‘tails’ of the probability density
function must be cut somewhere, but this can done only by reasoning on
the physical significance and properties of function y (t).

Sometimes the suggestion is to cut the normal distribution at y − μ =
±3σ, or at y − μ = ±5σ, but these are anyway arbitrary statements.

The probability that
y(t) ≤ y1 (9.14)

is the probability distribution function P (y1). In the case of a normal
distribution it follows

P (y1) =
∫ y1

−∞
p(y)dy =

1√
2πσ

∫ y1

−∞
e−

(y−μ)2

2σ2 dy . (9.15)

The integral cannot be performed in closed form, but series for both
(y − μ) /σ small and large exist. A plot obtained numerically is shown in
Fig. 9.2b.

To reach a probability exactly equal to 1 an infinitely large value of y1

must be reached.

Remark 9.4 When a random function is stationary, ergodic, and char-
acterized by a normal probability distribution, the average (which is here
assumed to be equal to zero), the variance, and the power spectral density
characterize completely the function.

9.5 Response of linear systems

Consider a linear system with a single degree of freedom on which a ran-
dom forcing function (in terms of applied force or of displacement of the
supporting point) is acting and assume that it is normal, stationary, and
ergodic. The behavior of the system is completely characterized by its fre-
quency response H(ω), which is complex if the system is damped.

The response can be measured in terms of displacement x(t), velocity, or
acceleration, but also of stresses in any point of interest of the system. It
has a random nature as well, with the same characteristics of stationarity
and ergodicity and the same normal probability distribution as the forcing
function. Also, the mean value of the response is equal to zero.

The power spectral density of the response can be computed directly from
the power spectral density of the excitation and the frequency response of
the system:

Sx(ω) = Sf (ω)|H(ω)|2 . (9.16)
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The r.m.s. value of the response is thus

xrms =

√∫ ∞

−∞
Sx(ω)dω . (9.17)

Assume that a force with a white noise power spectral density acts on
a linear, single degree of freedom system with a damping ratio ζ. The
frequency response is

|H(ω)| =
1

k

√[
1 −

(
ω
ωn

)2
]2

+
(
2ζ ω

ωn

)2

, (9.18)

and thus the power spectral density of the displacement is (Fig. 9.3a)

Sx(ω) =
S0

k2

1[
1 −

(
ω
ωn

)2
]2

+
(
2ζ ω

ωn

)2
. (9.19)

The power spectral densities are now expressed, respectively, in N2s/rad
and m2s/rad.

The r.m.s. value of the response is in this case

xrms =
√

S0

k

√√√√√
∫ ∞

−∞

1[
1 −

(
ω
ωn

)2
]2

+
(
2ζ ω

ωn

)2
dω , (9.20)

FIGURE 9.3. Response of a linear single degree of freedom system excited by
a random force with white noise spectrum. (a) Nondimensional power spectral
density of the response. (b) Nondimensional r.m.s. value of the response as a
function of the damping ratio.
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i.e.,

xrms =
1
k

√
πS0ωn

2ζ
. (9.21)

If the excitation is provided by the motion of the supporting point, and
then the power spectral density of the white noise excitation S0 is referred
to the acceleration (expressed in (m/s)2 /rad/s or g2/Hz), the r.m.s. value
of the displacement is

xrms =

√
πS0

2ζω3
n

. (9.22)

The r.m.s. value of the response is plotted as a function of the damping
ratio in Fig. 9.3b. Provided that the system is damped, it remains limited,
even if the excitation is a theoretical white noise having an infinitely large
r.m.s. value.

From Fig. 9.3a it is clear that a lightly damped linear system with a
single degree of freedom acts as a sort of filter, amplifying the input signal
in a very narrow band about the resonant frequency and cutting off all
other components. The lower is the damping of the system, the narrower
is the passing band.

The response of a lightly damped system is thus a narrow-band random
vibration. The time history of the response follows the pattern sketched
in Fig. 9.4: an oscillation that is almost harmonic with randomly variable
amplitude and slightly variable frequency. The frequency is very close to
the natural frequency of the system.

Under these conditions it is possible to define an envelope of the time
history and thus the probability density for a generic peak to be higher than
the r.m.s. by a given factor. If the excitation (and then also the response)
is normal, such a probability density follows the Rayleigh distribution

FIGURE 9.4. Pattern of the time history of the response of a lightly damped
system to a random forcing function of the white-noise type.
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p

(
xp

xrms

)
=

xp

x2
rms

e
−

x2
p

2x2
rms (9.23)

plotted in Fig. 9.5a. From the figure it is clear that very low and very high
values of the peaks are unlikely and that the maximum probability is that
of having peaks roughly as high as the r.m.s. value.

Again, there is a nonzero probability that a peaks reaches any value,
however high. This has no physical meaning and comes from having as-
sumed a normal probability distribution. In practice the plot must be cut
at a certain value of xp/xrms.

By integrating the probability density function it is possible to compute
the probability that a peak is higher than the generic value xmax

P

(
xmax

xrms

)
= e

− x2
max

2x2
rms , (9.24)

that is plotted in Fig. 9.5b. It is a Gaussian distribution, but in the figure
it is shown in logarithmic scale to show better how it drops quickly for high
values of the peak.

From Eq. (9.24) it is possible to directly compute the probability that
the maximum amplitude of the response reaches any given value in a given
working time. Because the response is a narrow-band random signal, its
frequency is very close to the natural frequency of the system and the
number of oscillations taking place in time t is tωn/2π. The probability
that in one of these periods the peak value is greater than xmax is thus

P

(
xmax

xrms

)
=

tωn

2π
e
− x2

max
2x2

rms . (9.25)

FIGURE 9.5. (a) Probability density of the peak values of a narrow-band random
response and (b) probability that one of the peaks is higher than a given value
xmax. Note the logarithmic scale in Fig. 9.5b.
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Example 9.1 Check the ability of the system studied in Example 4.1 to with-

stand for a time of 30s the random excitation provided by the motion of the

supporting point defined in Fig. 9.6a. The (one-sided) power spectral density

is

• constant in a frequency range between 100 and 250 Hz at a value of 0.03

g2/Hz;

• increases at 9 dB/oct between 20 and 100 Hz; and

• decreases at −15 dB/oct between 250 and 2,000 Hz (Fig. 9.6a).

The stresses must not exceed

• the ultimate strength of 328 MN/m2 divided by a safety factor of 1.575;

or

• the yield strength of 216 MN/m2 divided by a safety factor of 1.155; or

• the allowable fatigue strength for the prescribed duration (115 MN/m2

for 107 cycles).

The relative displacement between the instrument at the end of the beam and

the supporting structure must not exceed 4 mm.

The power spectral density of the excitation includes the natural frequency

of the system. As a consequence, the computation of the response cannot be

performed when neglecting the presence of damping, which will be assumed to

be of the hysteretic type. For safety, a low value of the loss factor η = 0.01

will be assumed, so that conservative results will be obtained.
Consider the first frequency field. The relationship between power spectral den-
sity and frequency is linear in a bi-logarithmic plane; its expression is then of
the type

S(ω) = aωn .

As the power spectral density increases of 9 dB/oct and at a frequency of 100
Hz its value is 0.03 g2/Hz = 2.88 (m/s2)2/Hz, its expression is

S(ω) = 2.88 × 10−6ω3 ,

where frequencies are measured in Hz.
In the range between 100 and 250 Hz, the power spectral density is constant
at a value 2.88 (m/s2)2/Hz, while between 250 and 2,000 Hz, where the power
spectral density decreases at −15 dB/oct, the expression

S(ω) = 2.81 × 1012ω−5

is readily obtained. The r.m.s. value of the acceleration is obtained by inte-

grating the power spectral density between 20 and 2,000 Hz:
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FIGURE 9.6. Power spectral density of the excitation (a) and the response (b)
of the system of Example 9.1.

arms = 26.15 m/s2 .

Because the response has to be computed in terms of relative displacement,

the frequency response can be used, substituting the inertial force ma for the

external force F . The power spectral density of the response can be immedi-

ately computed for the three frequency ranges by multiplying the power spectral

density of the excitation by the square of the frequency response

Sx(ω) = 2.23 × 10−16 ω3[
1−

(
ω

ωn

)2
]2

+η2
,

Sx(ω) = 2.23 × 10−10 1[
1−

(
ω

ωn

)2
]2

+η2
,

Sx(ω) = 2.17 × 102 ω−5[
1−

(
ω

ωn

)2
]2

+η2
.

where frequencies are expressed in Hz and power spectral densities in m2/Hz.
Note that in the above equations the damping has been assumed to be hysteretic,
which is inconsistent with the fact that hysteretic damping loses any meaning
when the motion is not harmonic. Here however the system is lightly damped
and the response is a very narrow-band response centered on the resonant
frequency: The use of hysteretic damping or of any sort of equivalent damping
leads to very similar results.
The power spectral density of the response is plotted in Fig. 9.6b. The r.m.s.
value of the response can be computed by integrating the power spectral density:

xrms = 0.539 mm .



9.5 Response of linear systems 205

By comparing the contributions of the three integrals related to the various

frequency ranges, it is clear that the only frequency field that contributes sig-

nificantly to the response is the first one, because the natural frequency of the

system falls in it and the response is of the narrow-band type.
The r.m.s. value of the stress, computed in the same way as in Example 3.1,
is

σrms = 17.8 × 106 N/m2 .

The narrow-band response can be assimilated to a harmonic oscillation with

random varying amplitude and frequency equal to the natural frequency 53.7

Hz. The total number of cycles occurring in the prescribed 1.930s is 1,611.
As the r.m.s. value of the stress is 6.5 times smaller than the fatigue strength at
107 cycles, the third condition is surely satisfied. For the first condition, the al-
lowable stress is 208 MN/m2. The r.m.s. value is, therefore, 11.7 times smaller
than the allowable value of the stress. The probability that the stress reaches
the allowable value in the prescribed 30s can be computed using Eq. (9.25),
obtaining

P = 3.6 × 10−27 .

The situation is slightly more critical for the second condition, regarding the

yield strength: The allowable strength is 187 MN/m2, the ratio between the

allowable stress and the r.m.s. value is 10.5, and the probability of reaching

the critical condition in the prescribed time is 1.7 × 10−21.

The probability that the structure fails under the effects of the random excita-

tion prescribed is extremely low. For the critical condition on the displacement,

the probability is also very low, namely, 1.8 × 10−9.

Remark 9.5 In the example, the resonant frequency lies outside the fre-
quency range where the power spectral density of the excitation is constant.
The results computed assuming that the excitation is a theoretical white
noise would be quite far from the correct ones obtained here.

If the excitation is a band-limited white noise (Fig. 9.1) with an up-
per limitation at frequency ω0, the expression for the r.m.s. value of the
response is

xrms =
√

S0ωn

k

√
f (ω0/ωn)

2 ζ
√
−1 + ζ2

, (9.26)

where

f

(
ω0

ωn

)
= −

(
ζ−

√
−1 + ζ2

)
arctan

(
ω0/ωn

ζ+
√
−1 + ζ2

)
+

+
(

ζ+
√
−1 + ζ2

)
arctan

(
ω0/ωn

ζ−
√

−1 + ζ2

)
.
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FIGURE 9.7. Nondimensional r.m.s. value of the response to a band-limited white
noise as a function of the ratio ω0/ωn. The dashed lines are the asymptotes for
ω0/ωn → ∞, i.e., for an ideal white noise.

Remark 9.6 For underdamped systems function f (ω0/ωn) is imaginary,
but xrms is anyway real, as expected.

The r.m.s. value of the response to a band-limited white noise is reported
in Fig. 9.7 as a function of ratio ω0/ωn. From the plot it is clear that if the
resonance peak is included in the band, i.e. ω0/ωn > 1, the ideal white-
noise model yields fairly good results. If ω0/ωn > 2 the fact that the band
is limited has practically no consequence on the results.

If the system has many degrees of freedom, the power spectral density of
the response can still be computed using Eq. (9.16), with the only difference
that now there are many responses and there may be many inputs.

If the system is lightly damped each frequency response Hij (ω) has a
number of peaks, and thus there are several bands in which the excitation
may be amplified.

Example 9.2 Quarter-car model.
One of the simplest models used to study the dynamic behavior of motor vehicle

suspensions is the so-called quarter car with two degrees of freedom (Fig. 9.9a).

The upper mass simulates the part of the mass of the car body (the sprung

mass) that can be considered supported by a given wheel, and the lower one

simulates the wheel and all the parts that can be considered as rigidly connected

with the unsprung mass.
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The two masses are connected by a spring–damper system simulating the
spring of the suspension and the shock absorber. The unsprung mass is con-
nected to the ground with a second spring simulating the stiffness of the tire.
The point at which the tire contacts the ground is assumed to move in a verti-
cal direction with a given law h(t), in order to simulate the motion on uneven
ground. Assume the following values of the parameters: Sprung mass ms =
250 kg; unsprung mass mu = 25 kg; spring stiffness k = 25 kN/m; tire stiffness
kt = 100 kN/m; damping coefficient of the shock absorber c = 2,150 Ns/m.
The following analyses will be performed:

• modal analysis;

• computation of the frequency response; and

• computation of the response of the system due to the road excitation
when travelling at a sped of 30 m/s on a road whose surface can be
considered normal following the ISO standards

Modal analysis
If coordinates xs and xu are defined with reference to an inertial frame, the
equation yielding the response of the system to a harmonic excitation with
frequency ω and amplitude h0 is

[
−ω2

[
ms 0
0 mn

]
+

[
k −k
−k k + kt

]
+ iω

[
c −c
−c c

]] {
xs0

xn0

}
=

=

{
0

kth0

}

where

M = 25

[
10 0
0 1

]
, K = 25, 000

[
1 −1

−1 5

]
,

C = 2, 150

[
1 −1

−1 1

]
,

f = 100, 000 h0

{
0
1

}
, D = M−1K =

[
100 −100

−1, 000 5, 000

]
.

The characteristic equation that allows the computation of the natural frequen-
cies of the undamped system is

[
100 − ω2 −100
−1, 000 5, 000 − ω2

]
= 0 ,

i.e.,
ω4 − 5, 100ω2 + 400, 000 = 0 .

Its solutions and the values of the natural frequencies are

ω2
1 = 79.676 (ω1 = 8.926 rad/s = 1.421 Hz),

ω2
2 = 5, 020.32 (ω2 = 70.85 rad/s = 11.28 Hz) .

The eigenvectors can be computed directly by introducing the eigenvalues into

the dynamic matrix and stating equal to unity one of their values, e.g., the

second



208 9. Short Account of Random Vibrations

FIGURE 9.8. Eigenvectors in the space of the configurations. Point A, with coor-

dinates x =
[

2 1
]T

and η = Φ−1x =
[

0.47.83 0.1952
]T

is also shown as
an example.

[
100 − ω2 −100
−1, 000 5, 000 − ω2

] {
x
1

}
= 0 .

The second equation yields

x = 5 − ω2

1000
.

The two eigenvectors are then

q1 =

{
4.9203

1

}
, q2 =

{
−0.020324

1

}
.

The eigenvectors are represented in Fig. 9.8 in the space of the configurations.

They are clearly not orthogonal with respect to each other.
The modal masses are thus easily computed, obtaining 6,052.4 and 25.103,
respectively. These values can be used to normalize the eigenvectors, obtaining

Φ =

[
0.062346 −0.0040564
0.012854 0.199588

]
.

The modal masses have unit values, while the modal stiffnesses are equal to

the squares of the natural frequencies. The modal damping matrix

C = ΦTCΦ =
[

5.4596 −22.0634
−22.0634 89.1627

]

is not diagonal and can be split into its proportional and nonproportional parts:

Cp =

[
5.4596 0

0 89.1627

]
, Cnp =

[
0 −22.0634

−22.0634 0

]
.

The inverse modal transformation yields the following expressions of the two

parts of the original damping matrix
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FIGURE 9.9. (a) Scheme of the quarter car model; (b), (c) frequency response;
(d) power spectral density of a normal road following ISO standards; and (e)
power spectral density of the acceleration at a speed of 30 m/s on the road
profile whose power spectral density is given in (d).

Cp =

[
1.445 −424
−424 2, 221

]
, Cnp =

[
705 −1, 726

−1, 726 −71

]
.

The distribution of the damping is far from being proportional and the non-

proportional damping matrix is nonpositive definite. Matrix Cp is, however,

strictly proportional, with coefficients α = 4.084 and β = 0.01696.
The modal forces are then obtained:

f = ΦT f = h0

{
1, 285
19.959

}
.

Computation of the frequency response
The frequency response of the system can be computed directly from the equa-

tion of motion, obtaining
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|H12| =
xs0

h0
= kp

√
k2 + c2ω2

f2(ω)c2ω2g2(ω)
,

|H22| =
xn0

h0
= kp

√
(k − mω2)2 + c2ω2

f2(ω)c2ω2g2(ω)
,

where
f(ω) = msmnω4 − [kpms + k(ms + mn)]ω2 + kkp ,

g(ω) = (ms + mn)ω2 − kp .

The response is plotted in Fig. 9.9b and c. The same result can also be ob-
tained through an iterative procedure starting from modal uncoupling. Using
the Jacobi method, the modal coordinates at the ith iteration can be obtained
from those at the (i − 1)–th through the formulae

η
(i)
1 =

f̄1 − iωC̄12η
(i−1)
2

K̄1 − ω2M̄1 + iωC̄11
, η

(i)
2 =

f̄2 − iωC̄21η
(i−1)
1

K̄2 − ω2M̄2 + iωC̄22
.

The response, computed after the first and third iterations, is plotted in Fig.
9.9b and c. Three iterations are enough to obtain a good approximation even
in the current case, where damping is neither small nor close to being propor-
tional.
Response to random excitation (road excitation)
The power spectral density of a normal road following ISO standards is shown
in Fig. 9.9d. The power spectral density of a road profile S∗ is usually measured
in m2/(cycles/m) and is a function of the space frequency ω∗, in cycles/m.
Once the speed V of the vehicle has been stated, it is possible to obtain the
various quantities defined with reference to the time frequency from the space
frequency through the formulas

ω = V ω∗ , S = S∗/V .

The curve of Fig. 9.9d can be expressed by the equation

S∗ = aω∗n

,

where constants a and n are

a = 8.33 × 10−7 m ,

n = −2 if ω∗ ≤ 1/6 cycles/m ,

i.e., for road undulations with wavelength greater than 6 m, and

a = 2.58 × 10−6 m1,63 ,

n = −1.37 if ω∗ > 1/6 cycles/m ,

i.e., for short wavelength irregularities.
The (one-sided) power spectral density (with reference to the time frequency)
is

S = a′ωn ,
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where

a′ =
a

V n+1
.

At a speed of 30 m/s it follows

a′ = 2.5 × 10−5 m3 s−2 for ω ≤ 5 Hz ,

a′ = 9.07 × 10−6 m2,37 for ω > 5 Hz .

The power spectral density of the acceleration of the sprung mass can be easily
computed by multiplying the power spectral density of the road profile by the
square of the inertance of the suspension. Because the inertance is equal to
the dynamic compliance H12 (computed above) multiplied by ω2, or, better, by
4π2ω2 if ω is measured in Hz, it follows that

Sa = S 16π4ω4H2
12 = 16π4a′ωn+4H2

12 .

To obtain the power spectral density of the acceleration in (m/s2)2/Hz, the

frequency must be expressed in Hz, while in the equation yielding the dynamic

compliance H12, it is expressed in rad/s. The result is shown in Fig. 9.9e.
The r.m.s. value of the acceleration can be obtained by integrating the power
spectral density and extracting the square root

arms = 1.21m/s2 = 0.123g .

9.6 Exercises

Exercise 9.1 Repeat the computations of the response of the system of Exam-

ple 9.1, by substituting the hysteretic damping with an equivalent viscous damping,

computed at the resonant frequency. Compare the results with those obtained in

the example.

Exercise 9.2 A spring–mass–damper system is excited by a force whose time

history is random. The power spectral density of the excitation is constant at

a value of 10,000 N2/Hz between the frequencies of 50 and 200 Hz. At lower

frequencies it increases at 12 dB/oct, while a decay of 12 dB/oct takes place

at frequencies higher than 200 Hz. Compute the power spectral density of the

response and the r.m.s. values of both excitation and response. Data: m = 10 kg,

k = 5 MN/m, c = 3 kNs/m.

Exercise 9.3 Repeat the computations of Exercises 9.1 and 9.2 assuming a the-

oretical unlimited white noise and compare the results with those already obtained.

Discuss similarities and differences.

Exercise 9.4 Consider the torsional system with 3 degrees of freedom of Fig.

1.8, already studied in Exercises 1.2, 2.1 and 2.3, with damping added as in



212 9. Short Account of Random Vibrations

Exercise 3.1, excited by a motion of the supporting point like in Exercise 7.4.

The excitation is random with a band-limited white noise with a power spectral

density of the rotation Sθ = 10−6 rad2/Hz up to a frequency of 8 Hz. Plot the

power spectral density of the response of the third disc and compute numerically

the r.m.s. value of the rotation at the same point.



10
Reduction of the Number of Degrees
of Freedom

The mathematical models of many real-world systems are quite complicated
and may include a large number of degrees of freedom, in particular when
they are generated automatically starting from drawings or other geometric
information. Techniques aimed at reducing the size of the model without
loosing important information on the behavior of the system are then in-
creasingly applied in various stages of the dynamic analysis.

10.1 General considerations

As already stated, when performing a dynamic analysis, there is a great
advantage in reducing the size of the problem, particularly when using
methods like the finite element method (see Chapter 15), which usually
yield models with a large number of degrees of freedom. It is not uncommon
to use models with thousands or even millions of degrees of freedom: When
performing static analysis, this does not constitute a problem for modern
computers, but the solution of an eigenproblem of that size can still be a
formidable task.

Moreover, when using displacement methods, i.e., methods that first
solve the displacements and then compute stresses and strains as deriva-
tives of the displacements, displacements, and all other entities directly
linked with them like mode shapes and natural frequencies, are obtained
with much greater precision, for a given model, than stresses and strains.
Conversely, this means that much more detailed models are needed when
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solving the stress field, which is typical of static problems, than when
searching natural frequencies and mode shapes.

Remark 10.1 Because it is often expedient to use the same model for the
static and dynamic analysis, a reduction of the number of degrees of freedom
for dynamic solution is useful, particularly when only a limited number of
natural frequencies are required.

In particular, reduced order models are particularly useful in the early
stages of the analysis, when many details of the systems have not yet been
exactly defined. While performing tests on the prototypes, simple models
that can be solved in a short time on small computers may be of help too.
As it will be seen in Chapter 11, simplified models may also be implemented
in the control software.

Reduced models can be useful in both time-domain and frequency-domain
computations. Their use is generally restricted to linear system but, as will
be shown in Part II, they find applications also in the approximated solu-
tion of nonlinear models.

Two approaches may be used when computing the natural frequencies:
reducing the size of the model or leaving the model as is and using algo-
rithms, such as the subspace iteration method, that search only the lowest
natural frequencies. Although the two are more or less equivalent, the first
leaves the choice of which degrees of freedom to retain to the user, while
the second operates automatically. As a consequence, a skilled operator can
use advantageously reduction techniques, which allow good results to be ob-
tained with a small number of degrees of freedom. A general-purpose code
for routine computations, sometimes used by not much experienced ana-
lysts, on the contrary, can advantageously use the second approach. Only
the first approach is dealt with here: The second is studied in Appendix A,
together with other solution techniques.

Remark 10.2 Before computers were available, remarkable results were
obtained using models with very few (often a single) degrees of freedom, but
this required great computational ability and physical insight.

10.2 Static reduction of conservative models

Static reduction is based on the subdivision of the generalized coordinates
xi into two sets: master degrees of freedom contained in vector x1 and slave
degrees of freedom contained in x2. Assuming that the master degrees of
freedom are m (n is the total number of degrees of freedom), the stiffness
matrix and the nodal force vector can be partitioned accordingly, and the
equation expressing the static problem becomes[

K11m×m K12m×(n−m)

K21(n−m)×m
K22(n−m)×(n−m)

] {
x1

x2

}
=

{
f1
f2

}
. (10.1)
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Matrices K11 and K22 are symmetrical, while K12 = KT
21 are neither

symmetrical nor square. Solving the second set of Eqs. (10.1) in x2, the fol-
lowing relationship linking the slave to the master coordinates is obtained:

x2 = −K−1
22 K21x1 + K−1

22 f2 . (10.2)

Introducing Eq. (10.2) into Eq. (10.1), the latter yields

Kcondx1 = fcond , (10.3)

where ⎧⎨
⎩

Kcond = K11 − K12K−1
22 KT

12 ,

fcond = f1 − K12K−1
22 f2 .

Equation (10.3) yields the master generalized displacements x1. The slave
displacements can be obtained directly from Eq. (10.2) simply by multi-
plying some matrices.

Remark 10.3 When used to solve a static problem, static reduction yields
exact results, i.e., the same results that would be obtained from the complete
model.

The subdivision of the degrees of freedom between vectors x1 and x2

can be based on different criteria. The master degrees of freedom can sim-
ply be those in which the user is directly interested. Another choice can be
physically subdividing the structure in two parts. This practice can be gen-
eralized by subdividing the coordinates into many subsets and is generally
known as solution by substructures or substructuring.

In particular, substructuring can be expedient when the structure can
be divided into many parts that are all connected to a single frame. If the
generalized displacements of the connecting structure or frame are listed in
vector x0 and those of the various substructures are included in vectors xi,
the equation for the static solution of the complete structure has the form⎡

⎢⎢⎣
K00 K01 K02 . . .

K11 0 . . .
K22 . . .

symm. . . .

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

x0

x1

x2

. . .

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

f0
f1
f2
. . .

⎫⎪⎪⎬
⎪⎪⎭

. (10.4)

The equations related to the ith substructure can be solved as

xi = −K−1
ii Ki0x0 + K−1

ii fi . (10.5)

The generalized displacements of the frame can be obtained using an
equation of the type of Eq. (10.3) where the condensed matrices are⎧⎪⎪⎨

⎪⎪⎩
Kcond = K00 −

∑
∀i

K0iK−1
ii KT

0i ,

fcond = f0 −
∑
∀i

K0iK−1
ii fi .

(10.6)



216 10. Reduction of the Number of Degrees of Freedom

As already stated, static reduction does not introduce any further ap-
proximation into the model. A similar reduction can be used in dynamic
analysis without introducing approximations only if no generalized inertia
is associated with the slave degrees of freedom. In this case, static reduction
is advisable because the mass matrix of the original system is singular, and
the condensation procedure allows removal of the singularity.

10.3 Guyan reduction

The so-called Guyan reduction is based on the assumption that the slave
generalized displacements x2 can be computed directly from master dis-
placements x1, neglecting inertia forces and external forces f2. In this case,
Eq. (10.2), without the last term, can also be used in dynamics.

By partitioning the mass matrix in the same way seen for the stiffness
matrix, the kinetic energy of the structure can be expressed as

T =
1
2

{
ẋ1

−K−1
22 K21ẋ1

}T [
M11 M12

M21 M22

] {
ẋ1

−K−1
22 K21ẋ1

}
, (10.7)

i.e.,

T =
1
2
ẋT

1

[
I −K−1

22 K21

] [
M11 M12

M21 M22

]{
I

−K−1
22 K21q̇1

}
ẋ1 .

(10.8)
The kinetic energy is thus

T =
1
2
ẋT

1 Mcondẋ1 , (10.9)

where the condensed mass matrix is

Mcond = M11 − M12K−1
22 KT

12 −
[
M12K−1

22 KT
12

]T
+

+K12K−1
22 M22K−1

22 KT
12 .

(10.10)

Guyan reduction is not much more demanding from a computational
viewpoint than static reduction because the only matrix inversion is that
of K22, which has already been performed for the computation of the
condensed stiffness matrix. If matrix M is diagonal, two of the terms of
Eq. (10.10) vanish.

Although approximate, it introduces errors that are usually small, at
least if the choice of the slave degrees of freedom is appropriate. Inertia
forces related to slave degrees of freedom are actually not neglected, but
their contribution to the kinetic energy is computed from a deformed con-
figuration obtained on the basis of the master degrees of freedom alone.
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FIGURE 10.1. Sketch of a system with 5 degrees of freedom.

Remark 10.4 If the relevant mode shapes are only slightly influenced by
the presence of some of the generalized masses or if some parts of the
structure are so stiff that their deflected shape can be determined by a few
generalized coordinates, the results can be very accurate, even when few
master degrees of freedom are used.

Example 10.1 Consider the conservative system with 5 degrees of freedom
of Fig. 10.1. Compute the natural frequencies using a model with all degrees of
freedom, and then repeat the computation using static and Guyan reductions
taking the displacements of points 2 and 4 as slave degrees of freedom.
The mass and stiffness matrices of the system are

K =

⎡
⎢⎢⎢⎢⎣

2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎤
⎥⎥⎥⎥⎦ , M =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0.5

⎤
⎥⎥⎥⎥⎦ .

By directly solving the eigenproblem, the following matrix of the eigenvalues
is obtained:

[ω2] = diag
[

0.0979 0.8244 2.000 3.176 3.902
]

,

i.e.,

ωn = 0.3129, 0.9080, 1.4142, 1.7820, 1.9754 .

Since the slave degrees of freedom are the second and the fourth, the partitioned
matrices are

K11 =

⎡
⎣ 2 0 0

0 2 0
0 0 1

⎤
⎦ , M11 =

⎡
⎣ 1 0 0

0 1 0
0 0 0.5

⎤
⎦ ,

K12 =

⎡
⎣ −1 0

−1 −1
0 −1

⎤
⎦ , K22 =

[
2 0
0 2

]
, M22 =

[
1 0
0 1

]
.

The reduced stiffness matrix is
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Kcond =

⎡
⎣ 1.5 −0.5 0

−0.5 1 −0.5
0 −0.5 0.5

⎤
⎦ .

Only three natural frequencies can be found using static reduction, since the
system is reduced to a system with 3 degrees of freedom. The natural frequen-
cies from the eigenproblem involving matrices M11 and Kcond are reported in
the table below

Exact Static reduction Guyan reduction

Mode 1 0.3129 0.4370 0.3167
Mode 2 0.9080 1.1441 0.9864
Mode 3 1.4142 1.4142 1.4142
Mode 4 1.7820 – –
Mode 5 1.9754 – –

The errors on the first two natural frequencies are 40% and 26%: as pre-
dictable static reduction yields very poor results. The fact that the third nat-
ural frequency is obtained correctly is an anomaly, due to the fact that the
third eigenvector of the full model has zero amplitudes at the slave degrees of
freedom. In this condition neglecting the corresponding masses does not lead
to any error.
The reduced mass matrix obtained through the Guyan reduction is

Mcond =

⎡
⎣ 1.25 0.25 0

0.25 1.50 0.25
0 0.25 0.75

⎤
⎦ .

Also using Guyan reduction only three natural frequencies can be found. The
natural frequencies from the eigenproblem involving matrices Mcond and Kcond

are reported in the table above.
The errors on the first two natural frequencies are 1.2% and 8.6%.

Considering that the masses associated to the slave degrees of freedom are

equal to those associated to the master coordinates, the precision with which

the first natural frequency is computed is an interesting result. The precision

on the second one is smaller as expected. Again the third natural frequency is

evaluated with no error, for the reason seen above.

10.4 Damped systems

In a way similar to that seen for the mass matrix, viscous, or structural
damping matrices can be reduced using Eq. (10.10) in which M has been
substituted with C and K′′, respectively. The reduced viscous damping
matrix is thus

Ccond = C11 − C12K−1
22 KT

12 −
[
C12K−1

22 KT
12

]T
+

+K12K−1
22 C22K−1

22 KT
12 .

(10.11)
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The reduction of damping matrices introduces errors that depend on
the choice of the slave degrees of freedom but are usually small when the
degrees of freedom in which viscous dampers are applied or, in the case of
hysteretic damping, where the loss factor of the material changes, are not
eliminated.

Small errors are also introduced when the generalized coordinates of the
slave degrees of freedom are determined with good accuracy by some master
displacement, as in the case of very stiff parts of the structure.

10.5 Dynamic reduction

While the reduction techniques seen above can be used for both frequency-
domain and time-domain computations, when only frequency-domain
solutions are searched the reduction can be operated directly on the dy-
namic stiffness matrix (dynamic reduction). This procedure does not intro-
duce approximations, but the frequency appears explicitly in the matrices
that must be inverted and multiplied.

There is no difficulty in reducing also the complex dynamic stiffness
matrix resulting from a damped system.

Because it is not possible to perform the inversion of matrix Kdyn22

leaving the frequency unspecified (except if the slave degrees of freedom
are only 2 or 3), a numerical value of the frequency must be stated. While
this does not give any problem when computing the frequency response of
the system, it is impossible to compute the natural frequencies in this way,
except if operating by trial and error.

Dynamic reduction has also an application in the computation of the
approximated response of multi-degrees-of-freedom nonlinear systems: It
will be further studied in Chapter 20.

10.6 Modal reduction

Performing the modal transformation and then neglecting a number of
modes may be considered as a different approach to the reduction of the
number of degrees of freedom of the system.

Using the reduced matrix of the eigenvectors Φ∗ instead of the full matrix
Φ introduces two types of errors:

• errors due to neglecting the contribution of the neglected modes and

• errors due to neglecting modal coupling.

The second cause is not present if the modes are exactly uncoupled,
like in the case of undamped systems or damped systems with generalized
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proportional damping. Often high-frequency modes are determined more
by how the model has been obtained than by the actual characteristics of
the physical system, and then neglecting them no further approximations,
beyond those already present in the model, are introduced.

Moreover, the use of the modified reduced matrix Φ∗∗ (see Section 7.5)
can make the errors of the first type to be quite small, and a system with
a large number of degrees of freedom can be studied with precision using
only a small number of modes.

When damping (or the gyroscopic and circulatory matrices G and H)
couple the modal equations, it is difficult to assess how many modes are
needed to obtain the required precision. This issue depends on many fac-
tors, like how large is damping (or the gyroscopic and circulatory effects),
how many natural frequencies are included in the range of the exciting
frequencies, how spaced are they are, etc.

10.7 Component-mode synthesis

When substructuring is used, the degrees of freedom of each substructure
can be divided into two sets: internal degrees of freedom and boundary de-
grees of freedom. The latter are all degrees of freedom that the substructure
has in common with other parts of the structure. They are often referred
to as constraint degrees of freedom because they express how the substruc-
ture is constrained to the rest of the system. Internal degrees of freedom
are those belonging only to the relevant substructure. The largest possible
reduction scheme is that in which all internal degrees of freedom are consid-
ered slave coordinates and all boundary degrees of freedom are considered
master coordinates. In this way, however, the approximation of all modes
in which the motion of the internal points of the substructure with respect
to the motion of its boundary is important, can be quite rough.

A simple way to avoid this drawback is to also consider as master coor-
dinates, together with the boundary degrees of freedom, some of the modal
coordinates of the substructure constrained at its boundary. This procedure
would obviously lead to exact results if all modes were retained, but be-
cause the total number of modes is equal to the number of internal degrees
of freedom, the model obtained has as many degrees of freedom as the orig-
inal model. As usual with modal practices, the computational advantages
grow, together with the number of modes that can be neglected.

The relevant matrices are partitioned as seen for reduction techniques,
with subscript 1 referring to the boundary degrees of freedom and subscript
2 to the internal degrees of freedom. The displacement vector x2 can be
assumed to be equal to the sum of the constrained modes x′

2, i.e., the
deformation pattern due to the displacements x1 when no force acts on
the substructure, plus the constrained normal modes x′′

2 , i.e., the natural
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modes of free vibration of the substructure when the boundary generalized
displacements x1 are equal to zero.

The constrained modes x′
2 can be expressed by Eq. (10.2) once the force

vector f2 is set equal to zero:

x′
2 = −K−1

22 K21x1 .

The constrained normal modes can easily be computed by solving the
eigenproblem (

−ω2M22 + K22

)
x

′′

2 = 0 .

Once the eigenproblem has been solved, the matrix of the eigenvectors
Φ can be used to perform the modal transformation

x′′
2 = Φη2 .

The generalized coordinates of the substructure can thus be expressed
as {

x1

x2

}
=

{
x1

−K−1
22 K21x1 + Φη2

}
=

=
[

I 0
−K−1

22 K21 Φ

] {
x1

η2

}
= Ψ

{
x1

η2

}
.

(10.12)

Equation (10.12) represents a coordinate transformation, allowing the
expression of the deformation of the internal part of the substructure in
terms of constrained and normal modes. Matrix Ψ expressing this transfor-
mation can be used to compute the new mass, stiffness, and, where needed,
damping matrices and the force vector

M∗ = ΨT MΨ , K∗ = ΨT KΨ ,
C∗ = ΨTCΨ , f∗ = ΨT f .

(10.13)

If there are m constrained coordinates and n internal coordinates and if
only k constrained normal modes are considered (k < n), then the size of
the original matrices M, K, ... is m+n, while that of matrices M∗, K∗, ...
is m + k.

The main advantage of component-mode synthesis and substructuring
is allowing the construction of the model and the analysis of the various
parts of a large structure in an independent way. The results can then be
assembled in a way similar to what will be seen in the context of the Finite
Element Method (see Chapter 15) and the behavior of the structure can be
assessed from that of its parts. If this is done, however, the connecting nodes
must be defined in such a way that the same boundary degrees of freedom
are considered in the analysis of the various parts. It is, however, possible
to use algorithms allowing to connect otherwise incompatible meshes.

Remark 10.5 All the methods discussed in this section, which are closely
related to each other, can be found in the literature in a variety of versions.



222 10. Reduction of the Number of Degrees of Freedom

FIGURE 10.2. Sketch of the system and values of the relevant parameters.

Although they are general for discrete systems, they are mostly used in
connection with the Finite Element Method, owing to the large number of
degrees of freedom typical of the models based on it.

Example 10.2 Consider again the discrete system already studied in Ex-

ample 10.1 and sketched in Fig. 10.2. Study its dynamic behavior using

component-mode synthesis retaining different numbers of modes.

The total number of degrees of freedom of the system is five and the complete

mass and stiffness matrices are those shown in the previous example.

The structure is then subdivided into two substructures and the analysis is

accordingly performed.
Substructure 1 includes nodes 1, 2, and 3 with the masses located on them. The
displacements at nodes 1 and 2 are internal coordinates, while the displacement
at node 3 is a boundary coordinate. The mass and stiffness matrix of the
substructure, partitioned with the boundary degree of freedom first and then
the internal ones, are

K =

⎡
⎣ 1 −1 0

−1 2 −1
0 −1 2

⎤
⎦ , M =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ .

The matrix of the eigenvectors for the internal normal modes can be easily
obtained by solving the eigenproblem related to matrices with subscript 22 and,
by retaining all modes, matrices K∗ and M∗ of the first substructure can be
computed as follows:

Φ =

⎡
⎢⎣

√
2

2

−
√

2

2√
2

2

√
2

2

⎤
⎥⎦ , K∗ =

⎡
⎣ 0.3333 0 0

0 1 0
0 0 3

⎤
⎦ ,
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M∗ =

⎡
⎣ 1.556 0.7071 −0.2357

0.7071 1 0
−0.2357 0 1

⎤
⎦ .

Substructure 2 includes nodes 3, 4, and 5 with the masses located on nodes
4 and 5. The mass located on node 3 has already been taken into account in
the first substructure and must not be considered again. The displacements at
nodes 4 and 5 are internal coordinates, while the displacement at node 3 is a
boundary coordinate. The mass and stiffness matrix of the substructure, parti-
tioned with the boundary degree of freedom first and then the internal ones, are

K =

⎡
⎣ 1 −1 0

−1 2 −1
0 −1 1

⎤
⎦ , M =

⎡
⎣ 0 0 0

0 1 0
0 0 0.5

⎤
⎦ .

Operating as seen for the first substructure, it follows

Φ =

⎡
⎣

√
2

2

−
√

2

2
1 1

⎤
⎦ , K∗ =

⎡
⎣ 0 0 0

0 0.5858 0
0 0 3.4142

⎤
⎦ ,

M∗ =

⎡
⎣ 1.5 1.2071 −0.2071

1.2071 1 0
−0.2071 0 1

⎤
⎦ .

The substructures can be assembled in the same way as the elements (see

Chapter 15). A map, that is a table in which the correspondence between the

generalized coordinates of each substructure and those of the system as a whole,

can be written

Subst. d.o.f. 1 2 3
1 type boundary modal modal

Subst. d.o.f. 1 2 3
2 type boundary modal modal

Global d.o.f. 1 2 3 4 5

The following global stiffness and mass matrices can thus be obtained

K∗ =

⎡
⎢⎢⎢⎢⎣

0.3333 0 0 0 0

0 1 0 0 0
0 0 3 0 0
0 0 0 0.5858 0
0 0 0 0 3.4142

⎤
⎥⎥⎥⎥⎦ ,

M∗ =

⎡
⎢⎢⎢⎢⎣

1.5 0.7071 −0.2357 1.2071 −0.2071

0.7071 1 0 0 0
−0.2357 0 1 0 0

1.2071 0 0 1 0
−0.2071 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .
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The matrices have been partitioned in such a way to separate the boundary

displacement degree of freedom from the modal degrees of freedom. If no modal

coordinate is considered, the component-mode synthesis coincides with Guyan

reduction, with only one master degree of freedom.

If the third and fifth rows and columns are cancelled, only one internal normal

mode is taken into account for each substructure. If the matrices are taken

into account in complete form, all modes are considered and the result must

coincide, except for computational approximations, with the exact ones. The

results obtained in terms of the square of the natural frequency (those related

to the complete model are taken from Example 10.1) are

Size of matrices 5 (exact) 1 (Guyan red.) 3 (1 mode) 5 (2 modes)

Mode 1 0.3129 0.3303 0.3129 0.3129
Mode 2 0.9080 – 0.9080 0.9080
Mode 3 1.4142 – 1.4883 1.4142
Mode 4 1.7820 – – 1.7821
Mode 5 1.9754 – – 1.9753

10.8 Exercises

Exercise 10.1 Consider the system with two degrees of freedom of Exercise 4.4,

made by masses m1 and m2, connected by a spring k12 between each other and

springs k1 and k2 to point A. Write the reduced stiffness and mass matrix through

Guyan reduction considering the displacement of mass m2 as master degree of

freedom. Compute the expression for the natural frequency and compare it with

the lowest natural frequency obtained from the complete model. Evaluate their

numerical value using the data below. Repeat the analysis using the displacement

of mass m1 as the master degree of freedom. Data: m1 = 5 kg, m2 = 10 kg,

k1 = k2 = 2 kN/m, k12 = 4 kN/m.

Exercise 10.2 Add two dampers with a damping coefficient c = 0.1 to the

system of Fig. 10.2 between nodes 2 and 3 and nodes 4 and 5. Compute the

complex frequencies both using the complete model and through Guyan reduction,

assuming that the displacement of node 1 is a slave degree of freedom. Repeat the

computation assuming that also the displacement of node 4 is a slave degree of

freedom.

Exercise 10.3 Repeat the study of Exercise 10.1 resorting to the component-

mode synthesis. Compare the results with those of the previous exercise.

Exercise 10.4 Consider again the undamped system of Fig. 10.2. Compute the

natural frequencies using the component-mode synthesis by considering the sub-

system made of all masses and all spring except the first one as a substructure and

then constraining it to the ground through the first spring. Consider a different

number of modal coordinates.
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Controlled Linear Systems

Structures and machines are increasingly provided with control system, of-
ten active ones, that influence deeply their dynamic behavior. When this
is the case, the dynamics of the system cannot be studied without a good
knowledge of the performance of all components of the control loop, such
as sensors, actuators, controllers, power amplifiers. The correct approach
is thus to undertake the design and analysis of the system at a global level,
including all components into models that take into account all of them in
the required detail.

11.1 General considerations

Consider a structure1 provided with a number of actuators and modeled
as a discrete system (Fig. 11.1). Its equation of motion in the space of the
configuration can be expressed in the form

Mẍ + Cẋ + Kx = fc + fe , (11.1)

where the control forces exerted by the actuators and the disturbances or
external forces can be expressed, respectively, as

fc = Tcuc , fe = Teue ,

1In control terminology the controlled system is usually referred to as plant. In the
following sections the more specific term structure will also be used: No attempt to deal
with control theory in general is intended.
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FIGURE 11.1. Block diagram of a structure on which both control and external
forces are acting.

where uc and ue are the control and external inputs. Matrix Tc is
sometimes referred to as the control influence matrix .

The corresponding state and output equations are
{

ż = Az + Bcuc(t) + Beue(t) ,
y(t) = Cz ,

(11.2)

where the inputs are assumed not to directly influence the outputs through
the direct link matrix D. The input gain matrices are simply

Bc =
[

M−1Tc

0

]
, Be =

[
M−1Te

0

]
.

The designer must deal with the whole system, made of the structure
as well as the actuators, the control system that must provide the latter
with the control inputs, the sensors and, in the case of active systems, the
source of power for the actuators.

When designing an active system, the primary concern is often shifted
from obtaining the required response to achieving stability. Or, better, sta-
bility becomes a prerequisite that must be fulfilled before thinking about
performances.

This is new compared with the usual approach to structural dynamics:
In most structures, stability is taken for granted, because the structure can
only dissipate energy and free vibrations are bound to die out sooner or
later. The designer has to provide sufficient damping, but at least he is sure
that the motion is stable.

Notable exceptions are the cases in which the structure can absorb energy
from its environment, as with aeroelastic structures or rotating machines.
If even a small fraction of the energy from the aerodynamic field or kinetic
energy linked with rotation seeps into the vibration, strong self-excited vi-
brations may take place. In these cases, stability has always been a primary
concern.

For ideal and co-located2 active systems, a theorem that ensures marginal
stability exists, but most real-world active systems are prone to instability:
When the structure is acted on by actuators of any type, the control system

2Sensors and actuators are said to be co-located when the generalized force due to
the latter corresponds to the generalized coordinate measured by the former.
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must avoid supplying energy to any vibration motion, otherwise an unstable
behavior may occur.

The behavior of any active structure is the result of the integration of
the behavior of the structural subsystem with that of the controller, the
actuators, and the sensors and the only reasonable approach is to design
the system as a whole. To add a controller to an already existing structure
or one designed without taking into account the presence of the former may
lead to performances far from the expected.

Structural dynamics, control engineering, transducer design, and elec-
tronics must merge from the beginning with that interdisciplinary approach
often referred to as mechatronics.

11.2 Control systems

The science of control systems and the related technology saw enormous
advances in recent decades, and it is impossible to summarize them satis-
factorily in a text on structural dynamics. Only a few remarks on control
systems will be reported here, limited to what can be useful in the context
of structural control; the interested reader can find the relevant information
in many textbooks on the subject.

Classical control theory deals with linear, or at least linearized, control
systems. The basic tools are those typical of linear system dynamics, namely
block diagrams, phase- or state-space equations, transfer functions, and
eigenstructure analysis.

The control systems used for structural control can be based on trans-
ducers (sensors and/or actuators) of different types, such as mechanical,
electrical, hydraulic, and pneumatic. Recently, however, electronic-based
systems are becoming more common, both for all-electrical applications
and in the form of electro-mechanical, electrohydraulic, and so on, appli-
cations. The electronic part can be based on analog or digital circuits; the
former are preferred for simpler applications, where they are still cheaper
than the latter. With the diffusion of microprocessors, digital techniques
became more common, particularly for their flexibility and ability to per-
form very complex tasks.

Independently from their physical configuration, control systems can be
divided into two categories: passive and active control systems. The first
operate without any external energy supply, using the energy stored in the
structure as potential or kinetic energy as a consequence of its dynamic
response to supply the control forces.

Passive devices in many cases act as dampers. For example, piezoceramic
materials can be used as both sensors and actuators: If a piezoelectric ele-
ment is simply shunted by a resistor, a sort of electric damper is obtained.
By also introducing an inductor into the circuit, the capacitance of the
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piezoelectric element forms, together with the other components of the cir-
cuit, a resonant inductor–resistor–capacitor system whose transfer function
can be designed to obtain performance similar to that of a damped vibra-
tion absorber. Piezoelectric elements can also be used in active systems,
as both sensors and actuators. Layers of piezoelectric materials can also
perform as distributed sensory or actuating devices.

Active control systems are equipped with an external power supply to
provide the control forces. There are cases in which the amount of control
energy is minimal and in this case the term semi-active systems is some-
times used. Active systems can be either manual or automatic, but only
the latter are important in structural control, particularly if true dynamic
control is required.

Both active and passive control systems can operate as open-loop or
closed-loop systems. Open-loop control systems, sometimes referred to as
predetermined control systems, react to the variation of the input parame-
ters of the controlled system without actually measuring its output param-
eters in order to check whether the response of the system conforms with
the required values. A system that changes the stiffness of the supports
of a rotor depending on its angular velocity, for instance, is an open-loop
system.

In closed-loop or feedback systems the control system monitors the out-
puts of the controlled system, compares their actual values with predeter-
mined reference values, and uses the information so obtained to perform
the control action. Closed- and open-loop techniques can be used simul-
taneously, as in the case of feedback systems in which the rapidity of the
response of the controller is incremented by also monitoring the excita-
tion and using this information to help controlling the system (feedforward
technique).

An example of an active closed-loop control system taken outside the
field of structural control is the driver of a vehicle. The control action
is performed by comparing the trajectory and the other parameters of the
motion with those the driver aims to obtain and then acting on the controls
to supply the required corrections. A blind driver who tries to drive home
relying on his knowledge of the road would be an example of open-loop
control.

An active magnetic bearing is another example of an active closed-loop
control system.

Most passive systems are closed-loop systems. Closed-loop systems are
usually preferred when the control is required to react to unknown external
or internal disturbances, but they are usually more complex and costly than
open-loop systems.

There are cases, like when the control is performed by mechanical means
(for instance, a Watt’s regulator), where it may be arbitrary to state where
the control system ends and where the plant starts.
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FIGURE 11.2. Inverted pendulum stabilized by a linear spring: (a) the whole as-
sembly is considered as the system; (b) the pendulum is considered as the system
and the spring is considered as the controller; (c) root locus in nondimensional
form.

Another common distinction for control systems is that between reg-
ulators and servomechanisms or tracking systems. A regulator is used to
maintain the system in a predetermined condition, which can be an equilib-
rium position, a velocity, or an acceleration, in spite of external disturbance.
The spring of the inverted pendulum in Fig. 11.2 can be considered a reg-
ulator, even if it cannot achieve its goal with precision in the presence of
a constant disturbance: If a constant force F acts on the pendulum (the
controlled system), the spring cannot restore the position with θ = 0.

The input to the system controlled by a regulator is the condition to be
maintained, and it is usually referred to as the set point. It is a constant,
but it can be changed in many cases from one constant value to another.

In the case of a servomechanism, the reference input changes in time
and the control system tries to obtain an output of the controlled system
that follows the reference. In this case the output can also be a position, a
velocity, an acceleration, or any other relevant quantity.

A control system can be a single-input single-output (SISO) or multiple-
input multiple-output (MIMO) or multivariable system. In the first case,
the control system reacts to only one of the outputs of the controlled sys-
tem, acting on just one input of the plant uc: They are clearly not restricted
to systems with a single degree of freedom.

MIMO control systems use a number of outputs of the plant to act on
a number of control inputs. When each input separately controls a sin-
gle output, the term decentralized control is used. Decentralized control is
sometimes resorted to with the aim of weakening the coupling of a MIMO
plant.
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Example 11.1 Consider the pendulum shown in Fig. 11.2. It is stabilized in

its inverted position by a linear spring. In Fig. 11.2a the pendulum–spring as-

sembly is considered the system, while in Fig. 11.2b the pendulum is considered

the controlled system, and the spring is the controller.

If a force F (t) acts as a disturbance on the pendulum and a viscous damping

with coefficient Γ is provided by the hinge, the linearized equation for small

displacements about the inverted upright position, obtained as dynamic equi-

librium equation for rotations about the hinge point, is

ml2θ̈ + Γθ̇ + (kl
2−mgl)θ = lF (t) .

The transfer function of the system of Fig. 11.2a is then

G(s) =
1

ml2s2+Γs + kl2−mgl
.

If the scheme of Fig. 11.2b is considered, the equation of motion of the system

is

mlθ̈+
Γ

l
θ̇ − mgθ = F c+F (t) ,

where Fc is the control force and the equation of the control system is

Fc= −klθ .

The characteristic equation of the controlled system, including the controller,

is in nondimensional form

s∗
2
+2ζs∗+k∗−1 = 0 ,

where

s∗= s

√
l

g
, ζ =

Γ
2m

√
gl3

, k∗= k
l

mg
.

The root locus is plotted in Fig. 11.2c. The breakaway point occurs for

k∗=
√

1 + ζ2 ,

and the system is stable if

k∗> 1 , i.e., if k >
mg

l
.

The last condition could be obtained directly from the equation of motion,

stating that the total stiffness of the system must be positive to have stable

behavior.
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11.3 Controllability and observability

Consider the linear system whose behavior is described by Eqs. (11.2). The
possibility of controlling it through the control inputs uc and of knowing its
state from the observation of its outputs y is defined as its controllability
and observability.

If it is possible to determine a law for the inputs uc(t) defined from time
t0 to time tf , which allows the system to be driven from the initial state
to a desired state and in particular to a state with all state variables equal
to zero, the system is said to be controllable. If this can be done for any
arbitrary initial time t0 and initial state, then the system is completely
controllable. To check whether the system is controllable, it is possible to
write the controllability matrix

H =
[
Bc ABc A2Bc . . . An−rBc

]
, (11.3)

where r is the number of control inputs, i.e., the number of columns of
matrix Bc, and n is the number of states.

If matrix H, which has a total of n rows and r×(n − r + 1) columns, has
rank n, the system is completely controllable. The controllability matrix
can also be written considering products AiBc until i = n − 1 instead of
i = n− r. In this way, the number of columns of the controllability matrix
is r × n instead of r × (n − r + 1), but nothing is changed, because the
added columns are linear combinations of the others.

In a similar way, a linear system is said to be observable if it is possible
to determine its state at time t0 from the laws of the inputs u(t) and the
outputs y(t) defined from time t0 to time tf . If this can be done for any
arbitrary initial time t0 and initial state, then the system is completely
observable. To check whether a linear system with fixed parameters is ob-
servable, it is possible to write the observability matrix

O =
[
CT ATCT (AT )2CT . . . (AT )n−mCT

]
, (11.4)

where m is the number of outputs, i.e., the number of rows of matrix C.
If such a matrix, which has a total of n rows and n × m columns, has

rank n, the system is completely observable.
It is easy to verify that in the case of a linear structural system with a

single degree of freedom both conditions for observability and controllabil-
ity are always verified. This is, however, not necessarily the case for systems
with many degrees of freedom, where observability and controllability must
be checked in each case.

The study of the controllability and observability matrices allows one to
obtain a sort of on–off answer on the issue of whether a structure can be
controlled by a given set of actuators or observed by a set of sensors but does
not state how controllable or observable it is. Other criteria allowing one
to obtain a measure of the controllability and observability of a plant, and
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then allowing to search for the best position of transducers, are described
in the literature.3

It is possible to define the controllability and observability starting from
the equations written in modal coordinates; in this way it is possible to
state which modes can be controlled and observed by a given set of trans-
ducers. The obvious general rule is that a mode cannot be either observed
or controlled by a transducer located near one of the nodes of the relevant
mode shape.

11.4 Open-loop control

Consider the structure in Fig. 11.1. The actuators added to provide suitable
control forces Fc are driven by a controller to which a number of reference
inputs r(t) are provided (block diagram in Fig. 11.3a). If the controller is
linear, the control input can thus be expressed as

uc = Krr(t) . (11.5)

A more complex example of an open-loop system is a system with input
compensation, in which a device supplies a set of control inputs uc that
are functions not only of the reference inputs r(t) but also of the external
forces fe(t), or better, of the external inputs ue(t), applied to the system
(Figs. 11.3b, c)

uc = Krr(t) + Keue(t) . (11.6)

The matrices of the gains of the control system Kr and Ke have as
many rows as the control inputs and as many columns as the reference
and external inputs, respectively. The total state equation of the controlled
system can be obtained by introducing Eqs. (11.6) into Eq. (11.2):{

ż = Az + (BcKe + Be)ue(t) + BcKrr(t) ,
y(t) = Cz .

(11.7)

In general, an open-loop system relies on the model of the plant to obtain
a command input that, supplied to it, causes the output to follow a desired
pattern. This strategy requires very good knowledge of the dynamics of the
controlled system and is usually applied only as a feedforward component
in conjunction with a feedback controller.

Remark 11.1 The free response of the system is not affected by the pres-
ence of the control system, which plays a role only in determining the forced
response. This feature is, however, strictly linked with the complete linearity
of the system.

3See for example J.L. Junkins, Y. Kim, Introduction to Dynamics and Control of
Flexible Structures, AIAA, Washington DC, 1993.
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FIGURE 11.3. Open-loop control of the plant of Fig. 11.1: (a) tracking system in
which the control input tries to follow an external reference; (b) open-loop control
with external input compensation; (c) block diagram of the system shown in (b).

By resorting to Laplace transform and assuming that the gains of the
control system are considered functions of the Laplace variable s and that
at time t = 0 the value of all state variables is zero, the equation of motion
becomes{

(sI−A) z (s) = (BcKe + Be)ue(s) + BcKrr(s) ,
y(s) = Cz (s) .

(11.8)

If r(t) = 0, the input–output relationship reduces to

y(s) = C (sI−A)−1 (BcKe + Be)ue(s) . (11.9)

The transfer function linking the outputs of the system with the external
inputs can be easily computed:

G(s) = C (sI−A)−1 (BcKe(s) + Be) . (11.10)
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11.5 Closed-loop control

Consider now a structure controlled by a closed-loop system (Fig. 11.4).
The reference inputs r(t) interact with the outputs of the sensors ys to
supply suitable control inputs uc to a set of actuators that produce the
control forces. The actuators can be active systems, or passive elements,
such as the spring in Fig. 11.2b. The general block diagram of a feedback
system is shown in Fig. 11.2b. The open-loop transfer functions of the plant
and control system are indicated as Gol(s) and H(s), respectively.

Consider a SISO system. If no external disturbances are acting, i.e., ue(t)
= 0, the output y(t) is linked to the reference input r(t) by the following
relationship, written in the Laplace domain

y(s) = Gol(s)
[
r(s) − H(s)y(s)

]
, (11.11)

i.e.,

y(s) =
G(s)

1 + G(s)H(s)
r(s) . (11.12)

The closed-loop transfer function is then

Gcl(s) =
y(s)
r(s)

=
G(s)

1 + G(s)H(s)
. (11.13)

FIGURE 11.4. (a) Block diagram of the multi-degree-of-freedom structure in
Fig. 11.1 controlled by a feedback system; (b) general block diagram of a feedback
system in the Laplace domain.
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In the case of MIMO systems, the input–output relationship is

y(s) = [I + Gol(s)H(s)]−1 G(s)r(s) . (11.14)

The state equation of the controlled system is still Eq. (11.2), but now
the control inputs uc are determined by the outputs y(t) of the system and
the reference inputs r(t)

uc = Krr − Kyy , (11.15)

where the size of all matrices and vectors depends on the number of control
and reference inputs and the number of outputs of the system. The state
equation of the controlled system is thus

ż =
(
A− BcKyC

)
z + BcKrr(t) + Beue(t) . (11.16)

If the control system is a regulator, vector r contains just the constants
that define the set point. If the aim of the control system is to maintain
the structure in the static equilibrium position in spite of the presence of
the perturbing inputs ue(t), the reference inputs are equal to zero, and the
equation of motion can be simplified.

Remark 11.2 Note that the presence of the control loop affects the free
behavior of the system as well as the forced response. The very stability
of the system can be affected and, while the control system can be used to
increase the stability of the structure or to give an artificial stability to an
unstable plant, the behavior of the system must be carefully studied to avoid
that unwanted instabilities are caused by the feedback loop.

The block diagram corresponding to Eq. (11.16) is shown in Fig. 11.5.
This type of feedback is usually referred to as output feedback , because the
loop is closed using just the outputs of the system. The design of such a

FIGURE 11.5. Block diagram of the multi-degrees-of-freedom structure in
Fig. 11.4 controlled by an output feedback system.
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control system consists of determining the gain matrices Ky and Kr, which
enable the system to behave in the desired way.

In the case of structural control, it is possible to write the equation of
motion of the controlled system in the configuration space. Assume that
the reference input is vanishingly small (i.e., the structure must be kept in
the undeformed configuration); the output of the system can be written in
the form

y(t) =
[

C1 0
0 C2

] {
ẋ
x

}
(11.17)

and the gain matrix Ky has the form

Ke =
[

G1 0
0 G2

]
. (11.18)

These assumptions correspond to a separation between the control inputs
linked to the position and the velocity outputs of the system. They lead to
control forces that can be expressed as

fc = −TcG1C1ẋ − TcG2C2x . (11.19)

The equation of motion of the controlled system is then

Mẍ + (C + TcG1C1) ẋ + (K + TcG2C2)x = fe . (11.20)

Gains G1 and G2 then cause an increase of the damping and stiffness
characteristics of the structure, respectively.

If the actuators and sensors are co-located, i.e., the generalized forces
exerted by the actuators correspond to the generalized displacements or
velocities read by the sensors, the output gain matrices are equal to the
transpose of the control influence matrix:

C1 = C2 = TT
c .

If the gain matrices G1 and G2 are fully populated, symmetric positive
defined matrices, then the damping and stiffness effects due to the control
system

TcG1C1 = TcG1TT
c , TcG2C2 = TcG2TT

c

are themselves symmetric positive semidefinite matrices. This is enough to
state that the controlled system is asymptotically stable.

Remark 11.3 The practical interest of this statement is, however, reduced
by the considerations that in practice it may be difficult to achieve a per-
fect sensor–actuator co-location and that in actual systems the behavior of
sensors and actuators differs from the ideal behavior here assumed.
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By resorting to Laplace transforms and assuming that at time t = 0
the value of all state variables is zero, the closed-loop transfer function
linking the outputs of the system y(s) to the external ue(s) inputs when
all reference inputs are equal to zero can be easily computed. For a system
with output feedback, it follows that

G(s) = C
(

sI−A + BcKe(s)C
)−1

Be . (11.21)

Also in this case, the gains of the control system are considered functions
of the Laplace variable s. The poles of the closed-loop system are then the
roots of the characteristic equation

det
(

sI−A + BcKe(s)C
)

= 0 . (11.22)

Similar equations hold for systems with state feedback and for the trans-
fer functions linking the output with the reference input r(s).

Example 11.2 Consider the inverted pendulum in Fig. 11.2. The system

has a single degree of freedom and, hence, n = 2. The vectors and matrices

included in the equation of motion of the controlled system are

z =

{
θ̇
θ

}
, A =

[
− Γ

ml2
g

l
1 0

]
,

Be = Bc =

{
1

ml
0

}
, ue = F .

The output and the control parameter of the system coincide with the angular

displacement θ, and the gain matrix Ky states the dependence of the general-

ized force exerted by the spring as a function of the angular displacement:

y = θ , u = θ , C = [0, 1] , Ky= kl2 .

Because the set point is characterized by θ = 0, it follows that r = 0. Intro-

ducing the aforementioned values of all the relevant matrices and vectors into

Eq. (11.16) the same equation of motion of the controlled system seen in Ex-

ample 11.1 is obtained.

11.6 Basic control laws

In the preceding sections the controller was assumed to provide a set of
control inputs uc to the controlled system, which are determined just as
linear combinations of the outputs of the system y and the control inputs
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r(t). In the case of output control, if the number of reference inputs r is
equal to the number m of outputs of the plant and the two gain matrices
Ky and Kr are equal, the control law can be further simplified

uc = Kpey = Kp(r − y) , (11.23)

where the elements of vector ey(t) are the errors of the output of the
system and matrix Kp contains the gains of the control system. This type
of control is said to be proportional control (hence, the gain in this case
can be called proportional gain) and provides a large corrective action when
the instantaneous errors are large. It has the main advantage of being very
simple but has several disadvantages as well, such as a lack of precision in
certain instances and the possibility of producing instability. In a certain
sense, it stiffens the system.

A different choice, always within the frame of linear systems, is the so-
called derivative control, which, in the case of SISO systems, can be sum-
marized in the form

uc = Kd
dey

dt
. (11.24)

This type of control reacts more to the increase of error than to the error
itself and provides large corrective actions when the errors increase at a high
rate. It provides a sort of damping to the system and enhances stability,
but it is insensitive to constant errors and not very sensitive to errors that
accumulate slowly. It is prone to cause a drift in the output of the system,
but this disadvantage is not critical in structural control, where the control
system must prevent vibrations, and its reaction to static or quasi-static
forces is often of little importance. In harmonic motion, its effectiveness
increases with the frequency of the perturbation.

A third possibility is the so-called integral control, which can be summa-
rized in the form

uc = Ki

∫ t

0

ey(t)dt . (11.25)

It reacts to the accumulation of errors and causes a slow-reacting control
action. Its disadvantages are mainly that it is insensitive to high frequencies
and prone to cause instability.

Remark 11.4 The control laws here described are only theoretical abstrac-
tions because they assume that the sensors, actuators, controllers, and all
other components of the control loop are ideal, having no delays and behav-
ing in a perfectly linear way no matter how high their input is and how fast
their action is required to be.

Due to the different characteristics of the control laws, often a law that
combines the aforementioned control strategies, and possibly others based
on higher-order derivatives or integrals, is used. This type of control is
usually referred to as proportional–integral–derivative (PID) control.
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By combining the already reported control laws, the control input due
to a SISO PID controller is

uc = Kpey +Kd
dey

dt
+Ki

∫ t

0

ey(t)dt = Kp

(
ey + Td

dey

dt
+

1
Ti

∫ t

0

ey(t)dt

)
,

(11.26)
where the prediction or derivative time and the reset time are, respectively,

Td =
Kd

Kp
and Ti =

Kp

Ki
.

In the Laplace domain, the relationship between the control input uc(s)
and the error ey(s) for a SISO PID control system can be expressed in the
form

uc(s) = P (s)ey(s) = Kp

(
1 + sTd +

1
sTi

)
ey(s) . (11.27)

Consider a plant governed by a set of second-order linear differential
equation, and apply to it an ideal MIMO PID controller, whose control
action is expressed as

uc = Kpey + Kd
dey

dt
+ Ki

∫ t

0

ey(t)dt . (11.28)

The equation of motion of the system in the configuration space (11.1)
is still

Mẍ + Cẋ + Kx = fc + fe ,

where

fc = Tc

[
Kpey + Kd

dey

dt
+ Ki

∫ t

0

ey(t)dt

]
, fe = Teue.

What is said above implicitly assumes that only the displacements x
contribute to the output. If also the velocities ẋ contribute to the outputs,
the roles of the proportional, derivative, and integrative control mix up:
the proportional action has also a derivative effect, the integral action has
a component depending on the displacements, and the derivative action
reacts also to accelerations. To avoid this, in the following the output is
assumed to depend only on the displacements:

y = Tsx ,

where Ts is a matrix that states how the sensors are located with respect
to the generalized coordinates. If the sensors and actuators are co-located,

Ts = TT
c . (11.29)
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By introducing the control law into the equation of motion and assuming
that the vector of the references is a generic known function of time r(t),
the latter becomes

Mẍ + [C + TcKdTs] ẋ + [K + TcKpTs]x + TcKiTs

∫ t

0

xdt = (11.30)

= TcKpr + TcKdṙ + TcKi

∫ t

0

rdt + Teue .

The derivative action is thus similar to damping: if the gain matrix Kd is
symmetrical and the sensors and actuators are co-located, the total damp-
ing effect is expressed by a symmetric matrix. If it is positive defined it is
true damping.

The proportional action is a restoring action similar to stiffness: if the
gain matrix Kp is symmetrical and the sensors and actuators are co-located,
the total damping effect is expressed by a symmetric matrix and the system
is non-circulatory. If it is positive defined it is a true restoring action.

The integral action is different from either stiffness or damping and intro-
duces a behavior different from that obtainable from noncontrolled systems.

The integral of vector x appears explicitly in Eq. (11.30): A reworking
of the equation is then required to reduce it to a standard differential
equation. This can be done by adding a number of auxiliary states either
by differentiating once more the equation and introducing the derivatives
of the velocities as variables or by introducing the auxiliary variables

w =
∫ t

0

xdt

together with the velocities
v = ẋ .

The state equations are thus
⎧⎪⎪⎨
⎪⎪⎩

v̇ = −M−1 [C + TcKdTs]v − M−1 [K + TcKpTs]x − M−1TcKiTsw+

+ M−1TcKpr + M−1TcKdṙ + M−1TcKi

∫ t

0
rdt + M−1Teue

ẋ = v
ẇ = x ,

(11.31)

or, to write them in standard form,

ż∗ = A∗z∗ + B∗
pr(t) + B∗

dṙ(t) + B∗
i

∫ t

0

r(t)dt + B∗
eue(t) , (11.32)

where the augmented state vector is

z∗ =

⎧⎨
⎩

v
x
w

⎫⎬
⎭
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and the augmented matrices are

A∗ =

⎡
⎣ −M−1 [C + TcKdTs] −M−1 [K + TcKpTs] −M−1TcKiTs

I 0 0
0 I 0

⎤
⎦ ,

B∗
k =

⎡
⎣ M−1TkKp

0
0

⎤
⎦ for k = p, d, i, B∗

e =

⎡
⎣ M−1Te

0
0

⎤
⎦ .

Consider a single-degree-of-freedom system, controlled by a SISO PID
co-located controller. The equation of motion is

mẍ + c∗ẋ + k∗x+ki

∫ t

0

xdt = kpr + kdṙ + ki

∫ t

0

rdt + f(t) , (11.33)

where c∗ and k∗ are the total damping and stiffness, including also the
control actions. In the Laplace domain it becomes

(
ms2 + c∗s + k∗+

ki

s

)
x(s) =

(
kp + skd +

ki

s

)
r(s) + f(s) , (11.34)

Assuming as output the displacement and as input the reference r(t),
the transfer function is

G(s) =
x(s)
r(s)

=
s2kd + skp + ki

ms3 + c∗s2 + k∗s + ki
. (11.35)

The system is a third-order system, and its characteristic equation is

ms3 + c∗s2 + k∗s + ki = 0 . (11.36)

It can be written in the following nondimensional form:

s
∗3 + 2ζs∗2 + s∗ + k∗

i = 0, (11.37)

where

s∗ = s

√
m

k∗ , ζ =
c∗

2
√

k∗m
, k∗

i = ki

√
m

k∗3 . (11.38)

The characteristic equation has a real solution

s =
b

6
+

8ζ2

3b
+

2ζ

3
, (11.39)

and two complex-conjugate solutions

s = − b

12
− 4ζ2

3b
+

2ζ

3
± i

√
3

2

(
b

6
− 8ζ2

3b

)
, (11.40)
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where

b = 3

√
−108 − 108k∗

i + 64ζ3 + 12
√

81 + 162k∗
i − 96ζ3 + 81k∗2

i − 96 k∗
i ζ3 .

(11.41)
The roots locus for 0.1 < ζ < 0.8 and 0 < k∗

i < 1 is shown in Fig. 11.6.
The dashed line refers to an equivalent PI system. The lines for the PID

systems for various values of ζ branch from the dashed line toward the
right: The stability is thus decreased by the presence of the integral action
and in certain cases (low ζ and high k∗

i ) the system becomes unstable. If
a similar plot but for ζ > 1 were shown, it could be seen that the presence
of an integrative action can cause an oscillatory behavior.

If the PID control is used to keep the plant in its equilibrium position
and thus r = 0, the transfer function between the displacement and the
external input is

G(s) =
x(s)
f(s)

=
s

ms3 + c∗s2 + k∗s + ki
. (11.42)

or, in nondimensional form,

k∗G(s∗) =
s∗

s∗3 + 2ζs∗2 + s∗ + k∗
i

. (11.43)

FIGURE 11.6. Roots locus for a single-degree-of-freedom system controlled by a
PID SISO controller with 0.1 < ζ < 0.8 and 0 < k∗

i < 1 . The dashed line is the
roots locus for a system controlled by a PD controller.
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FIGURE 11.7. Bode plot of the nondimensional frequency response for a system
vith a PID controller with ζ = 0.1 and k∗

i = 0, 0.01, 0.1, 0.2, 0.3, 0.4 , 0.5, 0.6,
0.7, 0.8, 0.9.

The bode plot of the nondimensional frequency response is shown in
Fig. 11.7. The integrative action reduces slightly the height of the resonance
peak, but above all introduces a zero in the origin and consequently the
response is very little affected by low-frequency disturbances.

Example 11.3 To understand the effect of the various control gains using
a simple system with a single degree of freedom, consider the prismatic, ho-
mogeneous beam hinged at one end of Fig. 11.8a. Study the cases in which the
hinge is controlled by an ideal proportional, PD, and a PID controller. The
data are l = 1 m, m = 5 kg, g = 9.81 m/s2.
The system is so simple that the study can be performed in the configuration
space. Since the beam is prismatic, the center of mass is at mid-length and the
moment of inertia about the hinge is

J =
ml2

3
.

The equation of motion is

Jθ̈ +
mgl

2
cos (θ) = T ,

where T is the control torque.
Assume that the sensor detects the value of angle θ (y = θ) and that the
controller is required to bring the beam at angle θ0 and to keep it there
(r = θ0 =constant).
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FIGURE 11.8. Prismatic, homogeneous beam hinged at one end. (a) Sketch of
the system; (b) time history of angle θ for a proportional control; (c) time history
of angle θ for a PD control; (d) time history of angle θ for a PID control.

Proportional controller
Using the expression of the error given by Eq. (11.23), the control torque is

T = −Kp (θ − θ0) .

The equation of motion of the controlled system is then

Jθ̈ + Kpθ +
mgl

2
cos (θ) = Kpθ0 .

The equation of motion is nonlinear due to presence of the cosine of angle θ.
Only if θ is small can it be linearized. The proportional gain plays the same
role of stiffness: The larger it is, the quicker the tendency toward the reference
position is, but also the stronger is the oscillatory behavior of the system.
The position at rest can be computed by assuming that θ̈ and θ̇ vanish,
obtaining

θ +
mgl

2Kp
cos (θ) = θ0 .

A proportional controller is unable to reach the reference position if the system
is subjected to external forces. The final position can be written as

θ = θ0 + Δθ ,

where Δθ is the error in the final position. The equation yielding the error can
thus be written as

Δθ +
mgl

2Kp
cos (θ0 + Δθ) = 0 .

If Δθ is small,
cos (θ0 + Δθ) ≈ cos (θ0) − Δθ sin (θ0) ,

the error can be computed easily:
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Δθ = − mgl cos (θ0)

2Kp − mgl sin (θ0)
.

Since the equation of motion is nonlinear, a numerical value of the gain is
assumed, Kp = 100 N m/rad, and the equation of motion is integrated numer-
ically.
Using a reference value θ0 = 30◦, the final value of angle θ is equal to 16.52◦.
The steady-state error is thus large: Δθ = 13.48◦. The linearized expression
for the error yields Δθ = 13.87◦, which is fairly good, considering that the
error is not really small.
Consider the arm at rest with θ = 0 and apply the reference θ0 = 30◦. The
results of the numerical integration are shown in Fig. 11.8b, for both the non-
linear and the linearized cases. Strong undamped oscillation about the steady-
state value occurs.
PD controller
By adding a derivative control action, and remembering that the reference θ0

is constant, the equation of motion of the controlled system is

Jθ̈ + Kdθ̇ + Kpθ +
mgl

2
cos (θ) = Kpθ0.

The derivative gain plays the same role of damping: its action is needed to
avoid strong vibration, but it has no effect on the final position at rest and thus
also a PD controller is unable to reach the reference position if the system is
subjected to external forces.
Assuming that the derivative gain is Kd = 10 N m s/rad and that the propor-
tional gain and the reference value are the same as above, the results of the
numerical integration of the equation of motion are those shown in Fig. 11.8c.
The steady-state value of 16.52◦ is now quickly reached.
PID controller
The control torque now is

T = −Kp (θ − θ0) − Kdθ̇ − Ki

∫ t

0

(θ − θ0) du .

The equation of motion of the controlled system is thus

Jθ̈ + Kdθ̇ + Kpθ + Ki

∫ t

0

θ du +
mgl

2
cos (θ) = Kpθ0 + Kiθ0t .

The equation of motion is then an integro-differential equation and must be
written in the state space. Introducing two auxiliary variables

v = θ̇ , w =

∫ t

0

θ du ,

the equation becomes

Jv̇ + Kdv + Kpθ + Kiw +
mgl

2
cos (θ) = Kpθ0 + Kiθ0t .

or, in matrix form,
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⎧⎨
⎩

v̇

θ̇
ẇ

⎫⎬
⎭ =

⎡
⎣ −Kd

J
−Kp

J
−Ki

J

1 0 0
0 1 0

⎤
⎦

⎧⎨
⎩

v
θ
w

⎫⎬
⎭ +

+

⎧⎨
⎩

mgl
2J

cos (θ) +
Kp

J
θ0 + Ki

J
θ0t

0
0

⎫⎬
⎭ .

The results of the numerical integration obtained assuming an integrative gain
Ki = 100 N m/rad and the same reference value θ0 = 30◦ are shown in Fig.
11.8d.
The steady-state value now coincides with the reference value and is quickly
reached, although with some damped oscillation.

The nondimensional parameters of the system are ζ = 0.39 and k∗
i = 0.13 and

the poles are s1 = −1.099 1/s and s2,3 = −2.451 ± 6.972 i 1/s.

11.7 Delayed control

The control action is usually quite different from the ideal control law
defined above. A first effect, which is normally unwanted, is due to the
impossibility, for all the control system–actuator combinations, to react in
an infinitely fast way to the inputs provided by the sensors. Consider for
instance a proportional controller, which reacts to the error

ey = r − y

with a delay τ . The control action is thus

uc (t) = Kpey (t − τ) = Kp [r (t − τ) − y (t − τ)] . (11.44)

Assuming, as usual, a time history for the error of the kind

ey = ey0e
st ,

it follows that

ey (t − τ) = ey0e
s(t−τ) = ey0e

ste−sτ = ey (t) e−sτ . (11.45)

The Laplace domain relationship between the control input uc(s) and
the error ey(s) in a proportional controller with delay is thus

uc(s) = Kpey(s)e−sτ (11.46)

and thus the transfer function of the control system is

uc(s)
ey(s)

= ke−sτ . (11.47)
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If the delay is short enough and not too large values of s are considered,
the exponential can be replaced by its Taylor series truncated at the first
term, obtaining the following value of the transfer function

uc(s)
ey(s)

= k
1

1 + sτ
. (11.48)

This is equivalent to expressing the delay of the control system in the
time domain by replacing ey (t − τ) with its truncated Taylor series

uc (t) = Kpey (t − τ) = Kp [ey (t) − τ ėy (t)] . (11.49)

Consider now a linear system provided of a proportional output control
with delay τ and resort to the first-approximation expression (11.49). The
equation of motion of the system in the configuration space is again Eq.
(11.1), and the control forces are

fc = TcKp (ey − τ ėy) = TcKp (r − τ ṙ − y + τ ẏ) .

Assuming again that the output depends only on the displacements

y = Tsx ,

by introducing the control and disturbance forces, the configuration space
equation of the system is

Mẍ + (C − τTcKpTs) ẋ + (K+TcKpTs)x = TcKp (r − τ ṙ) + Teue .

Remark 11.5 The control delay has clearly the effect of reducing damping
(at least if matrix TcKpTs is positive defined, as it must be if the propor-
tional control has to increase the stability of the system), i.e., it increases
the tendency of the system to oscillate and if large enough (or if the sys-
tem is little damped) it may cause instability. Although obtained from a
first-approximation model, this consideration has a general value.

Similar results can be obtained by introducing the delay also in PD or
PID controllers.
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FIGURE 11.9. Prismatic, homogeneous beam hinged at one end. Time history
of angle θ for a proportional and a PD control with a delay of 30 ms.

Example 11.4 Study the same controlled beam of Example 11.3, but insert
a delay in the control loop. Assume a value of 30 ms for the overall delay.
After inserting the delay in the control loop, the system with a proportional
control was studied first, by numerically integrating the equation of motion.
The system was already at the verge of instability without delay; as soon as
the delay was added it showed, as expected, a strongly unstable oscillatory
behavior, and no attempt to study it in detail was done.
The response of the system with PD controller is compared with that of the
system without delay in Fig. 11.9. The presence of the delay increases the
oscillatory nature of the response, but the derivative control is successful in
insuring stability. The dotted line was obtained by using a truncated Taylor
series in τ (Eq. (11.49)). With this value of the delay the result is almost com-
pletely superimposed to that obtained by numerical integration of the equation
of motion. With a higher delay, less accurate results would have been obtained.

Also the response obtained using a PID control shows similar oscillations.

11.8 Control laws with frequency-dependent gains

Equation (11.27) defines the gains of the control system as functions of s
in the Laplace domain.

In general, the gains may be functions of the Laplace variable s or, in the
case of harmonic response, of the frequency ω, which depend on the actual
physical configuration of the control system. As shown in the previous
section, the delay of the control action can be modeled in this way.
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The system described by Eq. (11.48) is a simple first-order linear system,
whose parameters k and τ have an immediate physical meaning: the first
is the gain of the control system; the second is the time constant for a step
input.

The response g(t) to a unit-step input, as defined by Eq. (8.5), is reported
in nondimensional form in Fig. 11.10. It is simply

g(t) = k
(
1 − e−t/τ

)
. (11.50)

The frequency response of a first-order system can be easily obtained
from the transfer function (11.48) by substituting iω to s. Separating the
real part from the imaginary part, its expression is

�[H(ω)] =
k

1 + τ2ω2
, |H(ω)| =

k√
1 + τ2ω2

,

�[H(ω)] = − kτω

1 + τ2ω2
, Φ = arctan(−τω) .

(11.51)

The bode diagram of the frequency response is plotted in Fig. 11.11.
The circular frequency

ωg =
1
τ

FIGURE 11.10. Nondimensional response of a first-order system to a unit step.
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FIGURE 11.11. Bode diagram of the frequency response of a first-order system.

is the so-called cut-off frequency. The period corresponding to the cut-off
frequency defined here does not directly coincide with the time constant
but is

Tg = 2πτ .

The first-order system acts as a low-pass filter with an attenuation, at
frequencies higher than the cut-off frequency, of about 6 dB/oct or 20
dB/dec. It also introduces a phase lag of the response that goes from zero
at very low frequency to 90◦ at a frequency tending to infinity. At the cut-
off frequency the phase lag is 45◦. The effectiveness of the control system
is quickly reduced at frequencies higher than the cut-off frequency.

Remark 11.6 The time constant of the control system–actuators combi-
nation is a most important parameter that can dictate the choice of a par-
ticular layout, especially when high-frequency operation is required.

In most cases the control system can be modeled as a first-order system
only as a very rough approximation. There are usually limits above which a
linear model is no longer possible: All types of control systems can only sup-
ply an output that is limited in magnitude. When the maximum response
is attained, the saturation phenomenon occurs and the gain decreases with
increasing input, giving way to a nonlinear response.

Apart from the presence of a cut-off frequency, a dependence of the
control law on the frequency can be purposely devised by adding a com-
pensator with an appropriate law K(s). For example, if the disturbance
frequencies are well determined, an ideal control system would have a very
small gain except in correspondence to the frequencies of the disturbances
to be suppressed. On the contrary, a support that insulates a device from
external disturbances should behave as a very stiff system at all frequencies
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except those that must be suppressed, where its stiffness should approach
zero.

The use of a compensator allows the frequency response of the system to
be tailored to fulfill the design goals of the particular application, to both
achieve the required performance and ensure adequate robustness. This can
be done easily with electronic control systems, which can be designed to
obtain almost arbitrary transfer functions, provided the required output
does not exceed their maximum limits.

Example 11.5 Consider the linear mechanical system with a single degree

of freedom shown in Fig. 11.12a. The control force is supplied by an actuator

acting on an auxiliary spring of stiffness k1 and governed by an active control

system.
With reference to the figure, the equation of motion of the system is

mẍ + cẋ + kx = F (t) + Fc(t) .

The control force can be expressed as Fc = −k1(x − u), and the equation of
motion of the controlled system is

mẍ + cẋ + (k + k1)x = k1u + F (t) .

Consider a closed-loop control system in which the displacement u(t) is a linear
function of the displacement x. The block diagram, in which the gain of the
control system P is referred to as Gc(s), is shown in Fig. 11.12b. This type of
control is a regulator, in the sense described in Section 11.2 with a set point
corresponding to x = 0. The transfer function of the total system is

G(s) =
1

ms2 + cs + k + k1 + k1Gc(s)
.

In the case of proportional control, in which the displacement of the actuator is

proportional to the displacement of the system u = −Gcx, the control system

actually adds a spring with stiffness equal to k1 multiplied by the gain. If a

derivative control is applied, the control system is equivalent to a damper, with

damping coefficient equal to k1 multiplied by the gain. Note that in this case

the gain is not a nondimensional quantity.
Other cases of interest are shown in Figs. 11.12c and e, in which the actuator
of the control system acts through a damper or on an auxiliary mass. The last
layout is usually referred to as an active vibration absorber. The expressions
of the control force are

Fc = −c1(ẋ − u̇) and Fc = −m1(ẍ − ü) .
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FIGURE 11.12. (a) Sketch and (b) block diagram of a system with a single degree
of freedom controlled by an actuator through an auxiliary spring, (c) and (d) an
auxiliary damper, or (e) and (f) an auxiliary mass.

If the control law is of the proportional type (u = −Gcx), the transfer functions
of the two systems are, respectively,

G(s) =
1

ms2 + (c + c1)s + k + sc1Gc(s)
,

G(s) =
1

(m + m1)s2 + cs + k + s2m1Gc(s)
.

In the first case, a proportional control introduces an active damping into the

system, an integral control law in which u(t) is proportional to the integral of

the displacement or in which u̇(t) is proportional to x(t) introduces an active

stiffness. If a derivative control is used, the control force is proportional to the

acceleration, and the effect is similar to that of an added mass.
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11.9 Robustness of the controller

In many cases, some of the parameters of the system are not well known
or are prone to change in time. There are many examples in the field
of structural dynamics, such as the case of hysteretic damping, which is
usually poorly known and is affected by many parameters in a way that
is often impossible to control, or that of the wandering unbalance, shown
by many rotors. One of the advantages of a feedback control system is
that they can usually compensate for these unwanted effects, because they
measure directly the outputs and act to keep them within stated limits.
Feedback control systems can even compensate for the uncertainties and
variations of their own parameters.

A system that is little affected by changes of operating conditions, by
parameter variations, and by external disturbances is said to be robust
and robustness is one of the basic requisites of control systems.

Generally speaking, the sensitivity of the quantity q to the variations of
parameter α is measured by the derivative ∂q/∂α. By computing the sensi-
tivities of the relevant characteristics of the system (eigenvalues, frequency
responses, etc.) to the variation of the critical parameters, it is possible to
assess its robustness.

The root sensitivity Si,α of the ith root si of the transfer function to
parameter α, for example, can be defined as

Si,α = α

(
∂si

∂α

)
=

∂si

∂ log(α)
. (11.52)

The derivative is, in many cases, computed numerically, by giving a small
variation to the parameter under study and computing a new value of
the relevant characteristic of the system. If the dynamic matrix A can
be differentiated with respect to parameter α, the sensitivity of the ith
eigenvalue si of the dynamic matrix ∂si/∂α can be computed in closed
form

∂si

∂α
= qT

Li

∂Ai

∂ log(α)
qRi , (11.53)

where qLi and qRi are, respectively, the ith left and right eigenvectors.
Similar but more complicated expressions can be found in the literature
for the eigenvector sensitivity.

11.10 State feedback and state observers

A more complete type of feedback is the state feedback shown in Fig. 11.13,
in which all state variables are used to close the loop. The control inputs
are obtained in this case through the equation
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FIGURE 11.13. Block diagram of the multi-degrees-of-freedom structure in
Fig. 11.4 controlled by a state feedback system.

uc = Krr − Kzz ,

and the product KyC in Eq. (11.16) must be substituted by matrix Kz.
Usually state feedback is regarded as an ideal situation, but for practical

reasons, linked with the impossibility of measuring many state variables,
output feedback is applied.

The alternative is to use a device that estimates the state variables of
the plant, performing a sort of simulation of its behavior (Fig. 11.14; the
figure refers to a regulation problem in which the reference inputs r are
equal to zero). It is usually referred to as a state observer . This is possible
if the system is observable, in the sense defined in Section 11.3.

The behavior of the observer is defined by matrices A0, B0, and C0. If
they were equal to the matrices of the system, the observer would be an
exact model of the plant. In general, this is impossible and the observer
is only an approximated model, often a reduced order one. In structural
control, if digital techniques are used, the observer can be a finite element
model, perhaps reduced using Guyan or similar reduction procedures.

Usually the term model-based control is used when the control algorithm
is based on a mathematical model of the plant, running in real time on the
microprocessor on which the control system is based.

To ensure that the observer evolves in time like the actual plant, a feed-
back is introduced: The difference between the output of the observer ŷ
and that of the system y is introduced, through a gain matrix K0, into the
observer.

The states of the observer ẑ are readily available, and the states of the
plant are not such (this is why the observer is used) and the control feedback
is closed through the control gain matrix Kc.

The equations allowing the study of the closed-loop behavior of the sys-
tem of Fig. 11.14 are
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FIGURE 11.14. Block diagram of the multi-degrees-of-freedom structure in
Fig. 11.4 controlled by a regulator with a state observer.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż = Az + Bcuc + Beue ,
y = Cz ,
˙̂z = A0ẑ + B0uc + K0(y − ŷ) ,
˙̂y = C0ẑ ,
uc = −Kcẑ .

(11.54)

The observer with its feedback branches constitutes the regulator of the
plant, which can be considered a system that has the output of the plant
y as input and outputs the control inputs uc, which are fed back to the
plant. The last three equations of Eq. (11.54), which define the behavior of
the regulator, can be written in the form

{ ˙̂z = Areg ẑ + Bregy,
uc = Cregẑ.

(11.55)

where

Areg = A0 + K0C0 − B0Kc , Breg = K0 , Creg = −Kc .
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If the observer has the same number of states as the plant, the error of
the observer e0 can be easily defined as the difference between the actual
state of the system z and the state ẑ, which has been approximated by the
observer

e0 = z − ẑ .

By subtracting the third equation of Eq. (11.54) from the first, it follows
that

ė0 =
[
A−A0 − K0C0 − C

]
z +

(
A0 − K0C0

)
e0 +

(
Bc − B0

)
uc + Beue .

(11.56)
If

A0 = A , C0 = C

(actually it is enough that

A0 = A + K0(C0 − C) ),

and B0 = Bc, Eq. (11.56) reduces to

ė0 =
(
A− K0C

)
e0 + Beue . (11.57)

Consider the free behavior of the system described by Eq. (11.57). If the
real part of all eigenvalues of matrix

A0 = A− K0C

is negative, the error of the observer tends to zero for time tending to in-
finity and the observer is asymptotically stable. The observer can thus be
designed by stating a set of eigenvalues of matrix A0, whose real parts
are negative and that minimize the time delay between the estimated and
actual state vectors. It is a common suggestion4 that the poles of the ob-
server (i.e., the eigenvalues of matrix A0) be placed on the complex plane
on the left of the poles of the controlled structure. However, a fast observer
obtained in this way can be prone to amplify the disturbances that are al-
ways present in the signals from the sensors. The choice of the poles must
be a trade-off between the requirements of quick response and disturbance
rejection.

The computation of matrix K0, which causes matrix A0 to yield the
required eigenvalues, can be performed using the pole-placement procedure,
provided the rank of the observability matrix O is n, i.e., the system is
observable. This procedure is straightforward if the system has a single

4See, for example, H.H.E. Leipholz, M. Abdel Rohman, Control of Structures, Mar-
tinus Nijhoff, Dordrecht, 1986, p. 106.
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output, while for multivariable systems some arbitrary choices must be
made.

The state equation of the complete system shown in Fig. 11.14 is{
ż
ė0

}
=

[
A− BcKc BcKc

0 A− K0C

] {
z
e0

}
+

{
Beue

Beue

}
. (11.58)

The characteristic equation of the closed-loop system is

det
[

sI−A + BcKc BcKc

0 sI −A + K0C

]
= 0 , (11.59)

i.e.,

det
(

sI−A + BcKc

)
det

(
sI−A + K0C

)
= 0 . (11.60)

The roots of Eq. (11.60) are the eigenvalues of the controlled system plus
the eigenvalues of the observer and the relevant parts of the characteristic
equation can be solved separately.

11.11 Control design

To prescribe the free behavior of the controlled system and of the observer
in terms of natural frequencies and decay rates, the n eigenvalues s1, s2, . . . ,
sn of the dynamic matrix A − BcKc (for the former) and of the dynamic
matrix A − K0C (for the second) can be stated. Note that if they are
complex, there must be a number of conjugate pairs in order to obtain real
values of the gains. The characteristic equation of the controlled system
(corresponding to the first part of Eq. (11.60)) is

det
(
sI−A + BcKc

)
= (s − s1)(s − s2) . . . (s − sn) = 0 . (11.61)

The n eigenvalues can be used to compute the n coefficients of the char-
acteristic polynomial. By equating the expressions of the coefficients on the
left-hand side of Eq. (11.61) with the coefficients so computed, n equations,
which can be used to compute the n unknown elements of matrix Kc, are
obtained. The computation of the unknowns can be performed easily using
Ackermann’s formula

Kc =
[

0 0 0 . . . 0 1
]
H−1N , (11.62)

where H is the controllability matrix defined by Eq. (11.3), and matrix
N is obtained from the coefficients a0, a1, . . . , an−1 of the characteristic
polynomial (subscripts refer to the power of the unknown) through the
formula

N = An + an−1An−1 + an−2An−2 + · · · + a0I. (11.63)
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If the controllability matrix, which in the case of a single-input system
is a square matrix, is not singular, there is no difficulty in computing the
gains of the control system Kc. However, this is essentially a theoretical
statement because in practice the numerical evaluation of matrix Kc for
systems whose order of the dynamic matrix is higher than a few units can
be affected by large numerical errors.

Apart from the computational difficulties encountered when applied to
MIMO systems, the pole assignment method allows one to state the poles
of the controlled system but does not allow one to control its eigenvectors.
This can result in badly conditioned eigenvector matrices, which is highly
undesirable. It is much more convenient to resort to methods that are gen-
erally referred to as eigenstructure assignment procedures, which allow to
state, within ample limits, both the eigenvalues and the eigenvectors of the
controlled system. For a detailed presentation of such methods, the reader
is again advised to refer to specialized textbooks on structural control.

Optimal control techniques are mostly based on the minimization of per-
formance indices, which include the error of the control system but can take
into account the costs or energy needed to perform the control action. A
common definition of the performance indices is

J =
∫ ∞

0

[
zT (t)Qz(t) + uT

c (t)Ruc(t)
]
dt . (11.64)

This formulation, to be applied to systems in which the desired condition is
that with all state variables equal to zero, minimizes a linear combination
of the integrals in time of the deviation from this condition (i.e., of the
control errors) and of the control inputs, which are in some way linked
with the energy needed for the control function. The various state variables
and control inputs can have different importance, as shown by the weight
matrices Q and R introduced into the definition of the performance index.

Under wide assumptions, it is possible to demonstrate that the feedback
gain matrix Kc for an optimal state feedback can be written in the form

Kc = R−1BT
c P , (11.65)

where P is the solution of the algebraic Riccati equation

AT P + PA− PBcR−1BT
c P + Q = 0 . (11.66)

The regulator so obtained is referred to as an optimal linear quadratic
regulator, where linear refers to the linearity of the controlled system (plant
+ controller) and quadratic refers to the quadratic performance index. Sim-
ilar considerations can be made for the observer, if y and ẑ are substituted
for z and uc into the performance index (11.64).

The detailed design of the control system and observer is, however, well
beyond the scope of this text, and the reader is advised to refer to the many
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texts in which the optimal control theory and the solution of algebraic
Riccati equations are dealt with.5

11.12 Modal approach to structural control

Structural models usually have many degrees of freedom, particularly if
they have been obtained through discretization techniques, like the finite
element method (see Chapter 15). They are thus impractical for the de-
sign of the control system, which usually requires to deal with low-order
models of the plant. Moreover, these models have a large number of high-
frequency modes with little physical meaning, because they are due more
to the discretization procedure than to the structure itself.

A very effective way to obtain a reduced order model for the design
of the control system is that of using the Guyan reduction: The model
of the plant can be condensed until a small number of master degrees of
freedom are retained. The comparison of the open-loop natural frequencies
and vibration modes of the reduced order model with the corresponding
ones obtained from the full model allows verification of the validity of this
approach in any relevant case.

The approach most frequently resorted to is, however, that of using modal
coordinates and retaining only a reduced number of modes.

The equation of motion of the controlled structure, i.e., of the structure
on which the control forces fc are acting, can be reduced in modal form by
resorting to the eigenvectors of the undamped system

Mη̈ + Cη̇ + Kη = ΦT fc + ΦT fe . (11.67)

Remark 11.7 As it will be seen later, Eq. (11.67) holds not only for dis-
crete systems but also for continuous ones. The only difference is that in
the latter case there is, theoretically, an infinity of modes.

Remark 11.8 The modal-damping matrix C is often obtained by directly
assessing the modal damping of the various modes and hence is usually
diagonal.

The modal mass matrix may reduce to an identity matrix if the eigen-
vectors are normalized in such a way that the modal masses have a unit
value.

When computed from the characteristics of the system and not directly
by assessing the damping of the various modes, the modal-damping matrix
is not, in general, a diagonal matrix, and the modes are not uncoupled.

5See, for example, the already-mentioned book J.L. Junkins, Y. Kim, Introduction
to Dynamics and Control of Flexible Structures, AIAA, Washington DC, 1993.
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However, as structures are in most cases very little damped, the coupling
of the modes is fairly weak and the modal-damping matrix can be ap-
proximated by a diagonal matrix simply by neglecting its out-of-diagonal
elements.

The modal equation in the phase space is then

ż = Az + Bcuc(t) + Beue(t) ,
y = Cz ,

(11.68)

where

z =
{

η̇η
ηη

}
, A =

[
−C −K

I 0

]
,

Bc =
[

ΦT Tc

0

]
, Be =

[
ΦT Te

0

]
,

(11.69)

and the output gain matrix links the outputs y of the system with the
modal coordinates.

Remark 11.9 If the damping matrix is diagonal, the first Eq. (11.68) un-
couples in a number of sets of two equations, each dealing with a single
modal coordinate. This uncoupling, which is usually only approximate, does
not hold any more once a closed-loop control system is included in the
equation.

The coupling due to the control system can be very strong, much stronger
than that linked with damping which is often neglected. In a way, the effect
of the action of the control system can often be assimilated to that of very
high damping, and some of the modes of the controlled system can even
be overdamped: No small-damping assumption holds anymore. Apart from
the strong coupling due to the added damping, the presence of the control
system changes the mode shapes; it is true that the new mode shapes can
be expressed as combinations of the modes of the uncontrolled system,
but this further increases modal coupling. Due to this coupling, the results
obtained by considering only a limited number of modes in the design of the
control system are only an approximation of the behavior of the complete
model.

In particular, the errors introduced by the fact that the outputs y of
the system are also influenced by the modes that have been neglected are
referred to as observation spillover . Those introduced by the fact that the
control forces due to the control system do influence not only the modes
considered but also the neglected ones are referred to as control spillover.
Spillover can cause the system to behave in ways different from the pre-
dicted one and in some cases can even cause instability.

Remark 11.10 Active systems are prone to instability, because energy is
supplied to the structure, and if this occurs in a wrong way, it can cause
the excitation of some modes instead of damping them.
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If an observer is used to approximate only a reduced number of modes,
it is better to use an equation that considers the vectors z (of order n, now
containing the modal coordinates and their derivatives) and ẑ (of order nr,
with nr < n, containing the estimated values of the modal coordinates on
which control is performed and their derivatives), which are state variables
of the system, instead of Eq. (11.58), considering z and the errors e0{

ż
˙̂z

}
=

[
A −BcKc

K0C A − B0Kc − K0C0

] {
z
ẑ

}
+

{
Beue

0

}
. (11.70)

The various matrices have different sizes, and they combine in such a
way as to yield a closed-loop dynamic matrix that has n + nr rows and
columns. Its eigenvalues are the closed-loop roots of the system and their
study allows the effects of spillover to be predicted.

Although spillover is an actual danger plaguing the modal approach to
the design of the control system for a structure, modal control has been used
successfully in many cases; it allows the solution of the problem of designing
the control system in a simple and straightforward way, particularly when
the number of modes to be considered is low. Even if modal control is
widely accepted, the possible dangers due to spillover must always be kept
in mind, and an evaluation of the effects of higher-order modes is in many
cases advisable.

Remark 11.11 Equations (11.68) and (11.70) also hold in the case of con-
tinuous systems, once their modal characteristics have been obtained.

Remark 11.12 Equations (11.68) and (11.70) contain only a form of pro-
portional control, but since in the latter the control forces are also linked
to the modal velocities included into the modal states, the control system
provides a form of damping as in the case of derivative control.

11.13 Exercises

Exercise 11.1 Consider the damped inverted pendulum in Fig. 11.2. Plot the

root locus with the following data. Compute the value of the stiffness of the spring

in such a way that the natural frequency of the system is 50 Hz, and the damping

ratio of the system. Compute also the time history following a shock due to the

impact of a ball of mass of 1 kg traveling at 30 m/s on the bob of the pendulum.

Assume a perfectly elastic shock. Data: length l = 1 m, m = 2 kg, g = 9.806

m/s2, Γ = 100 N m/rad.

Exercise 11.2 Substitute the spring in Example 11.1 with an actuator driven

by a proportional–derivative control system and a transducer reading angle θ.

Compute the gains in such a way that the frequency of the damped oscillations of

the system is 50 Hz and the damping ratio is 0.2. Compute the response to the

same impulse studied in Exercise 11.1.
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Exercise 11.3 Consider the torsional system with 3 degrees of freedom of

Fig. 1.8, already studied in Exercises 1.2 , 2.1, and 2.3, and add a control system

that exerts a moment on disc 2. Consider as input to the system the rotation θA

of the supporting point and as output the rotation of disc 2. Compute the matrices

of the system and check whether it is controllable and observable. Give the system

a step input with a rotation θA = 10◦, and assume as new reference position the

static equilibrium configuration rotated of angle θA. Compute the gains in such

a way that the overshot in the first mode is not greater than 50%, assuming an

output feedback. Compute the time histories of the response at all discs.

Exercise 11.4 Consider the quarter-car model of Example 9.2. Substitute the

shock absorber with a ‘skyhook damper’, i.e., an active device that exerts on the

sprung mass a force proportional to its absolute vertical velocity. Assume that the

feedback loop is based on the vertical acceleration of the sprung mass. Compute

the frequency response of the system; plot the maximum value of the acceleration

of the sprung mass as a function of the gain of the control system and choose the

parameters that allow the minimum value of the peak acceleration to be obtained.

Compute the variable component of the vertical force exerted by the tire on the

road and the value of the gain that minimizes its peak value.

Exercise 11.5 Compute the power spectral density of the response of the ac-

tive suspension obtained in Exercise 11.4 (with the value of the gain minimizing

the vertical acceleration) when traveling on a normal road following ISO stan-

dards (Fig. 9.9d). Compare the results with those obtained in Example 9.2 for a

conventional suspension.



12
Vibration of Beams

At a macroscopic scale most real life objects can be accurately modeled as
elastic continuums. The study of the vibration dynamics of a continuous
system can however be performed only when its geometrical configuration
is simple, and the simplest elastic continuum is a beam. In spite of its
simplicity, the study of vibrating beams yields interesting insights on the
behavior of a much wider class of systems.

12.1 Beams and bars

The main feature of the discrete systems studied in the preceding chapters
is that a finite number of degrees of freedom is sufficient to describe their
configuration. The ordinary differential equations (ODEs) of motion can
be easily substituted by a set of linear algebraic equations: The natural
mathematical tool for the study of linear discrete systems is matrix algebra.

The situation is different when a deformable elastic body is studied as a
continuous system: Because they can be thought as being constituted by
an infinity of points, they have an infinity of degrees of freedom and the
resulting mathematical models are made by partial (derivatives) differential
equations (PDEs).

Because no general approach to the dynamics of an elastic body is feasi-
ble, many different models for the study of particular classes of structural
elements (beams, plates, shells, etc.) have been developed. In this chapter,
only beams will be studied: This choice is only in part due to the fact that
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many machine elements can be studied as beams (shafts, blades, springs,
etc.); it comes from the need of showing some general properties of contin-
uous systems in the simplest case to gain a good insight on the properties
of deformable bodies.

The study of the elastic behavior of beams dates back to Galileo, with
important contributions by Daniel Bernoulli, Euler, De Saint Venant, and
many others. A beam is essentially an elastic solid in which one dimension
is prevalent over the others. Often the beam is prismatic (i.e., the cross-
sections are all equal), homogeneous (i.e., with constant material charac-
teristics), straight (i.e., its axis is a part of a straight line), and untwisted
(i.e., the principal axes of elasticity of all sections are equally directed in
space). The unidimensional nature of beams allows simplification of the
study: Each cross-section is considered as a rigid body whose thickness in
the axial direction is vanishingly small; it has 6 degrees of freedom, three
translational and three rotational. The problem is then reduced to a unidi-
mensional problem, in the sense that a single coordinate, namely the axial
coordinate, is required.

Setting the z-axis of the reference frame along the axis of the beam
(Fig. 12.1), the six generalized coordinates of each cross-section are the
axial displacement uz, the lateral displacements ux and uy, the torsional
rotation φz about the z-axis, and the flexural rotations φx and φy about
axes x and y. Displacements and rotations are assumed to be small, so
rotations can be regarded as vector quantities, which simplify all rotation
matrices by linearizing trigonometric functions. The three rotations will
then be considered components of a vector in the same way as the three
displacements are components of vector u. The generalized forces acting on
each cross-section and corresponding to the 6 degrees of freedom defined
earlier are the axial force Fz, shear forces Fx and Fy , the torsional moment
Mz about the z-axis, and the bending moments Mx and My about the x-
and y-axes.

FIGURE 12.1. Straight beam. (a) Sketch and reference frame; (b) generalized
displacements and forces on a generic cross-section.
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TABLE 12.1. Degrees of freedom and generalized forces in beams.

Type of behavior Degrees of freedom Generalized forces

Axial Displacement uz Axial force Fz

Torsional Rotation φz Torsional moment Mz

Flexural Displacement ux Shearing force Fx

(xz-plane) Rotation φy Bending moment My

Flexural Displacement uy Shearing force Fy

(yz-plane) Rotation φx Bending moment Mx

From the aforementioned assumptions it follows that all normal stresses
in directions other than z (σx and σy) are assumed to be small enough to
be neglected. When geometric and material parameters are not constant
along the axis, they must change at a sufficiently slow rate not to induce
stresses σx and σy , which could not be considered in this model. If the axis
of the beam is assumed to be straight, the axial translation is uncoupled
from the other degrees of freedom, at least in first approximation. A beam
that is loaded only in the axial direction and whose axial behavior is the
only one studied is usually referred to as a bar . The torsional–rotational
degree of freedom is uncoupled from the others only if the area center of
all cross-sections coincides with their shear center, which happens if all
cross-sections have two perpendicular planes of symmetry. If the planes of
symmetry of all sections are equally oriented (the beam is not twisted) and
the x- and y-axes are perpendicular to such planes, the flexural behavior in
the xz-plane is uncoupled from that in the yz-plane. The coupling of the
degrees of freedom in straight, untwisted beams with cross-sections having
two planes of symmetry is summarized in Table 12.1.

12.2 Axial behavior of straight bars

Consider a bar as defined in the preceding section made of an isotropic
linear elastic material. An axial distributed force fz(z, t) (being a force
per unit length in the SI it is measured in N/m) acts on each point of
the bar. The assumption that the cross-section behaves as a rigid body is
clearly a simplification of the actual behavior, since a longitudinal stretch-
ing or compression is always accompanied by deformations in the plane of
the cross-section, but the assumption of small deformations makes these
side effects negligible. The position of each point in the original configu-
ration is defined by its coordinate z, while its displacement has only one
component uz.
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12.2.1 Equation of motion

Consider a length dz of a beam centered on the point with coordinate z
(Fig. 12.2). The inertia force due to motion in z-direction is

üzdm = ρAüzdz .

The resultant of the axial force Fz exerted by the other parts of the bar
is

Fz +
1
2

∂Fz

∂z
dz −

(
Fz − 1

2
∂Fz

∂z
dz

)
=

∂Fz

∂z
dz.

The external force acting on the same length of the beam is

fz(z, t)dz.

The dynamic equilibrium equation can thus be written in the form

ρAüz =
∂Fz

∂z
+ fz(z, t) . (12.1)

The axial force Fz is easily linked with the displacement by the usual
formula from the theory of elasticity

Fz = Aσz = EAεz = EA
∂uz

∂z
. (12.2)

By introducing Eq. (12.2) into Eq. (12.1), the dynamic equilibrium equa-
tion is obtained:

m(z)
d2uz

dt2
− ∂

∂z

[
k(z)

∂uz

∂z

]
= fz(z, t) , (12.3)

FIGURE 12.2. Axial behavior of a straight bar: (a) system of reference and
displacement; (b) forces acting on the length dz of the bar.
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where the mass per unit length of the bar and the axial stiffness are, re-
spectively,

m(z) = ρ(z)A(z) , k(z) = E(z)A(z) . (12.4)

The boundary conditions must be stated following the actual conditions
at the ends of the bar: if, for instance, they are clamped, the displacement
uz must be equated to zero for z = 0 and z = l (where l is the length of
the beam and the origin is set at the left end).

If the bar is prismatic and homogeneous, i.e., all characteristics are con-
stant, Eq. (12.3) reduces to

d2uz

dt2
− E

ρ

∂2uz

∂z2
= fz(z, t) . (12.5)

12.2.2 Free behavior

The homogeneous equation associated with Eq. (12.5) describing the free
behavior of the bar

d2uz

dt2
− E

ρ

∂2uz

∂z2
= 0 (12.6)

is a wave propagation equation in a one-dimensional medium and constant
E/ρ is the square of the speed of propagation of the waves, i.e., the speed
of sound in the material

vs =

√
E

ρ
. (12.7)

It can be used to study the propagation of elastic waves in the bar, such
as those involved in shocks and other phenomena of interest in the field of
structural dynamics. For the study of most problems related to vibration
dynamics, stationary solutions are, however, more useful.

Remark 12.1 The two approaches lead to the same results, because it is
possible to describe the propagation of elastic waves in terms of superimpo-
sition of stationary motions and vice versa. It is not, however, immaterial
which way is followed in the actual study of any particular phenomena,
because the complexity of the analysis can be quite different.

As an example, in the study of the propagation of the elastic waves
caused by a shock, the number of modes, which must be considered when
the relevant phenomena are studied as the sum of stationary solutions, can
be exceedingly high, and then it is advisable to consider the equation of
motion as wave equation. In most cases, however, the dynamic behavior of
continuous systems can be described accurately by adding only a limited
number of modes.

The solution of the homogeneous equation (12.6) can be expressed as the
product of a function of time by a function of the space coordinate

uz(z, t) = q(z)η(t) . (12.8)
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Introducing Eq. (12.6) into the homogeneous equation (12.3) and sepa-
rating the variables, it follows that

1
η(t)

d2η(t)
dt2

=
1

m(z)q(z)
d

dz

[
k(z)

dq(z)
dz

]
. (12.9)

The function on the left-hand side depends on time but not on the space
coordinate z. Conversely, the function on the right-hand side is a function
of z but not of t. The only possible way of satisfying Eq. (12.9) for all values
of time and of coordinate z is to state that both sides are constant and that
the two constants are equal. This constant can be indicated as −ω2.

The condition on the function of time on the left-hand side is thus

1
η(t)

d2η(t)
dt2

= constant = −ω2 , (12.10)

i.e.,
d2η

dt2
+ ω2η = 0 . (12.11)

Neglecting a proportionality constant that will be introduced into func-
tion q(z) later, it yields a harmonic oscillation with frequency ω

η(t) = sin(ωt + φ) . (12.12)

The solution of the equation of motion for free axial oscillations of the
bar is

u(z, t) = q(z) sin(ωt + φ) . (12.13)

Function q(z) is said to be the principal function. Each point of the bar
performs a harmonic motion with frequency ω, while the amplitude is given
by function q(z).

Remark 12.2 The resultant motion is then a standing wave, with all
points of the bar vibrating in phase.

By introducing Eq. (12.13) into Eq. (12.9), it follows that

d

dz

[
k(z)

dq(z)
dz

]
+ ω2m(z)q(z) = 0 , (12.14)

or, in the case of constant parameters,

d2q(z)
dz2

+
ω2

v2
s

q(z) . (12.15)

Equations (12.14) and (12.15) are eigenproblems. The second, for exam-
ple, states that the second derivative of function q(z) (with respect to the
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space coordinate z) is proportional to the function itself, the constant of
proportionality being

ω2

v2
s

= ω2 ρ

E
. (12.16)

The values of such a constant that allow the equation to be satisfied
by a solution other than the trivial solution q(z) = 0 are the eigenval-
ues, and the corresponding functions q(z) are the eigenfunctions. The first
equation (12.14), although more complex, has a similar meaning.

Remark 12.3 The eigenvalues are infinite in number, and the general so-
lution of the equation of motion (12.14) can be obtained as the sum of an
infinity of terms of the type of Eq. (12.13).

Remark 12.4 The eigenfunctions qi(z) are defined only as far as their
shape is concerned, exactly as was the case for eigenvectors. The amplitude
of the various modes can be computed only after the initial conditions have
been stated.

Remark 12.5 Although the number of eigenfunctions, and hence of modes,
is infinite, a small number of principal functions is often sufficient to de-
scribe the behavior of an elastic body with the required precision, in a way
that is similar to what has already been said for eigenvectors.

Remark 12.6 Eigenfunctions have some of the properties seen for eigen-
vectors, particularly that of orthogonality with respect to the mass m(z) and
to the stiffness k(z).

In the case of a bar, the property of orthogonality with respect to mass
and stiffness means that if qi(z) and qj(z) are two distinct eigenfunctions,
it follows that if (i �= j),

∫ l

0

m(z)qi(z)qj(z)dz = 0 ,

∫ l

0

k(z)
dqi(z)

dz

dqj(z)
dz

dz = 0 . (12.17)

As was the case for eigenvectors, eigenfunctions are not directly orthog-
onal: ∫ l

0

qi(z)qj(z)dz �= 0 ,

except when the mass m(z) is constant along the beam. If i = j, the
integrals of Eq. (12.17) do not vanish:

∫ l

0

m(z)[qi(z)]2dz = M i �= 0 ,

∫ l

0

k(z)
[
dqi(z)

dz

]2

dz = Ki �= 0 .

(12.18)
Equation (12.17) can be proved by writing Eq. (12.14) for two differ-

ent eigenfunctions qi(z) and qj(z) (with the corresponding eigenvalues ωi
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and ωj) and then multiplying the first one by qj(z) and the second one by
qi(z)

−ω2
i m(z)qi(z)qj(z) = qj(z)

d

dz

[
k(z)

dqi(z)
dz

]
, (12.19)

−ω2
jm(z)qj(z)qi(z) = qi(z)

d

dz

[
k(z)

dqj(z)
dz

]
. (12.20)

By subtracting Eq. (12.20) from Eq. (12.19) and integrating over the
whole length of the beam, it follows

−
(
ω2

i − ω2
j

) ∫ l

0

m(z)qi(z)qj(z)dz =
∫ l

0

qj(z)
d

dz

[
k(z)

dqi(z)
dz

]
dz+

−
∫ l

0

qj(z)
d

dz

[
k(z)

dqi(z)
dz

]
dz .

(12.21)
The two expressions at the right-hand side can be integrated by parts.

The first one yields

∫ l

0

qj(z)
d

dz

[
k(z)

dqi(z)
dz

]
dz =

[
qj(z)k(z)

dqi(z)
dz

]l

0

+

−
∫ l

0

k
dqi(z)

dz

dqj(z)
dz

dz .
(12.22)

The ends of the bar may be either free or clamped: in the first case the
axial force, and hence the axial strain, vanishes, while in the latter the
displacement is equal to zero:

either q(z) = 0 or
dq(z)
dz

= 0 for z = 0 and z = l .

It then follows
∫ l

0

qj(z)
d

dz

[
k(z)

dqi(z)
dz

]
dz = −

∫ l

0

k
dqi(z)

dz

dqj(z)
dz

dz,∫ l

0

qi(z)
d

dz

[
k(z)

dqj(z)
dz

]
dz = −

∫ l

0

k
dqi(z)

dz

dqj(z)
dz

dz .
(12.23)

By introducing Eq. (12.20) into Eq. (12.21), it follows

−
(
ω2

i − ω2
j

) ∫ l

0

m(z)qi(z)qj(z)dz = 0 , (12.24)

and then, if ωi �= ωj ,

∫ l

0

m(z)qi(z)qj(z)dz = 0 , (12.25)
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which proves the m-orthogonality property.
The k-orthogonality property can be proved in a similar way, by divid-

ing Eqs. (12.20) and (12.19) by ω2
i and ω2

j , respectively, subtracting and
integrating over the whole length of the beam.

Constants M i and Ki are the modal mass and the modal stiffness, re-
spectively, for the ith mode.

Remark 12.7 The meaning of the modal mass and stiffness of continuous
systems is exactly the same as for discrete systems; the only difference is
that in the current case the number of modes, and then of modal masses
and stuffiness, is infinite.

Any deformed configuration of the system u(z, t) can be expressed as
a linear combination of the eigenfunctions. The coefficients of this linear
combination, which are functions of time, are the modal coordinates ηi(t):

u(z, t) =
∞∑

i=0

ηi(t)qi(z) . (12.26)

Equation (12.26) expresses the modal transformation for continuous sys-
tems and is equivalent to the first equation (4.37). The inverse transforma-
tion, needed to compute the modal coordinates ηi(tk) corresponding to any
given deformed configuration u(z, tk) occurring at time tk, can be obtained
through a procedure closely following that used to obtain Eq. (6.22). Mul-
tiplying Eq. (12.26) by the jth eigenfunction and by the mass distribution
m(z) and integrating on the whole length of the bar, it follows that

∫ l

0

[
m(z)qj(z)u(z, t0)

]
dz =

∞∑
i=0

ηi(t0)
∫ l

0

[
m(z)qj(z)qi(z)

]
dz . (12.27)

Of the infinity of terms on the right-hand side, only the term with i = j
does not vanish and the integral yields the jth modal mass.

Remembering the definition of the modal masses, it then follows that

ηi(t0) =
1

M j

∫ l

0

[
m(z)qj(z)u(z, t0)

]
dz , (12.28)

which can be used to perform the inverse modal transformation, i.e., to
compute the modal coordinates corresponding to any deformed shape of
the system.

Eigenfunctions can be normalized in several ways, one being that leading
to unit values of the modal masses. This is achieved simply by dividing each
eigenfunction by the square root of the corresponding modal mass.

12.2.3 Forced response

The vibration of the bar under the effect of the forcing function fz(z, t)
can be obtained by solving the complete equation (12.3), whose general
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solution can be expressed as the sum of the complementary function ob-
tained earlier and a particular integral of the complete equation. Owing to
the orthogonality properties of the normal modes qi(z), the latter can be
expressed as a linear combination of the eigenfunctions. Equation (12.26)
then also holds in the case of forced motion of the system.

By introducing the modal transformation (12.26) into the equation of
motion (12.3), the latter can be transformed into a set of an infinite number
of equations in the modal coordinates ηi

M iη̈i(t) + Kiηi(t) = f i(t) , (12.29)

where the ith modal force is defined by the following formulas

f i(t) =
∫ l

0

qi(z)f(z, t)dz , f i(t) =
m∑

k=1

qi(zk)fk(t) , (12.30)

holding in the cases of a continuous force distribution and m concentrated
axial forces fk(t) acting on points of coordinates zk, respectively.

Remark 12.8 Equation (12.30) corresponds exactly to the definition of the
modal forces for discrete systems (4.44).

Equation (12.29) can be used to study the forced response of a continuous
system to an external excitation of any type by reducing it to a number of
systems with a single degree of freedom. In the case of continuous systems,
their number is infinite, but usually few of them are enough to obtain the
results with the required precision.

If the excitation is provided by the motion of the structure to which
the bar is connected, it is expedient to resort to a coordinate system that
moves with the supporting points. In the case of the axial behavior of a
bar, only the motion of the supporting structure in the axial direction is
coupled with its dynamic behavior.

If the origin of the coordinates is displaced by the quantity zA, the ab-
solute displacement in z-direction uziner(z, t) is linked to the relative dis-
placement uz(z, t) by the obvious relationship

uziner(z, t) = uz(z, t) + zA(t) .

By writing Eq. (12.3) using the relative displacement, it follows

m(z)
d2uz

dt2
− ∂

∂z

[
k(z)

∂uz

∂z

]
= −m(z)z̈A . (12.31)

This result is similar to that obtained for discrete systems: The excitation
due to the motion of the constraints can be dealt with by using relative
coordinates and applying an external force distribution equal to −m(z)z̈A.
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The modal forces can be readily computed through Eq. (12.30)

f i(t) = −riz̈A , (12.32)

where

ri =
∫ l

0

qi(z)m(z)dz

are the modal participation factors related to the axial motion of the bar.

Remark 12.9 The physical meaning of the modal participation factors is
the same as that already seen for discrete systems.

12.2.4 Prismatic homogeneous bars

If the bar is prismatic and homogeneous, i.e., all characteristics are con-
stant along the axial coordinate, the general solution of the second equa-
tion (12.14) is

q(z) = C1 sin
(

ω

vs
z

)
+ C2 cos

(
ω

vs
z

)
. (12.33)

Equation (12.33) expresses the mode shapes of longitudinal vibration of
the bar, after constants C1 and C2 have been computed from the boundary
conditions.

First consider the case in which both ends of the bar are free: The stress
σz and, hence, the strain

εz =
∂uz

∂z

vanishes at both ends[
dq(z)
dz

]
z=0

=
[
dq(z)
dz

]
z=l

= 0 , (12.34)

if the origin is set at the left end of the bar. With simple computations,
Eq. (12.34) yields

ω

vs

[
C1 cos

(
ω

vs
z

)
− C2 sin

(
ω

vs
z

)]
= 0 for z = 0, z = l , (12.35)

i.e., ⎧⎪⎪⎨
⎪⎪⎩

C1 = 0 ,

C1 − C2 sin
(

ω

vs
l

)
= 0 .

(12.36)

The second equation (12.36) leads to a solution different from the trivial
solution C2 = 0 only if
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ωil

vs
= iπ , (12.37)

i.e., if

ωi = iπ
vs

l
=

iπ

l

√
E

ρ
, i = 0, 1, 2, 3, . . . . (12.38)

Equation (12.38) yields the natural frequencies of the longitudinal vibra-
tions of the bar. The first natural frequency is 0, which corresponds to a
rigid-body longitudinal motion. This was to be expected, because no axial
constraint was stated. Constant C2 is not determined, which is obvious be-
cause it is the amplitude of the mode of free vibration. Some of the mode
shapes

qi(z) = qi0 cos(iπζ) , (12.39)

where
ζ =

z

l
,

are plotted in Fig. 12.3. The number of nodes (points in which the ampli-
tude of motion vanishes) of each mode is equal to the order of the mode.
The cases regarding other boundary conditions can be dealt with in a sim-
ilar way. A general expression for the natural frequencies is

ωi =
βai

l

√
E

ρ
, (12.40)

where constants βai depend on the boundary conditions

βai = iπ, (i = 0, 1, 2, . . . ), free–free;
βai = iπ, (i = 1, 2, 3, . . . ), constrained–constrained;
βai = (i + 1

2 )π, (i = 0, 1, 2, . . . ), constrained–free.
(12.41)

The mode shapes for the last two cases are, respectively,

qi(z) = qi0 sin(iπζ) , qi(z) = qi0 cos
[
π

(
i +

1
2

)
ζ

]
. (12.42)

FIGURE 12.3. The first five normal modes of a prismatic homogeneous bar free
at both ends. The plot must not confuse the reader: The displacements are in
the axial direction.
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Example 12.1 Consider a prismatic homogeneous bar free at both ends and

at rest. At time t = 0 a concentrated force F0(t) is applied at the right end.

Compute the equations of motion in modal form.

If the eigenfunctions (12.39) are normalized in such a way that their maximum

amplitude is equal to one, all constants qi have a unit value. The modal masses

and stiffnesses are then

M i= ρA

∫ l

0

[cos(iπζ)]2 dz =

⎧⎨
⎩

ρAl for i = 0,

1
2ρAl for i = 1, 2, ...,

Ki= EA

∫ l

0

{
d

dz
[cos(iπζ)]

}2

dz =

⎧⎨
⎩

0 for i = 0,

i2π2

2l EA for i = 1, 2, ....

Note that the mass for the mode with i = 0, i.e., for the rigid-body motion in

z-direction, is equal to the actual mass of the bar while the stiffness related to

the same mode is zero because the bar is unrestrained.

The modal forces are

f i(t) = F0(t) cos(iπ) = (−1)iF0(t).

All modes are then excited; the equations of motion are

ρAlη̈i = F0(t)

for the first mode (i = 0) and

ρAl

2
η̈i + i2π2 EA

2l
= (−1)iF0(t)

for all other modes.

Once force F0(t) has been stated, it is easy to obtain the modal coordinates as

functions of time and superimpose the solutions to obtain the solution u(z, t).
The number of modes that need to be considered depends on function F0(t).
If instead of a concentrated force at one end of the bar, a force f(z, t) is

applied that is constant along the bar, the obvious result is that the bar moves

along the z-axis without any axial vibration because all points are subject to

the same acceleration. In fact, if

f(z, t) =
F0(t)

l
= constant

along the beam, the modal forces are

f i(t) =
∫ l

0

f(z, t) cos(iπζ)dz = F0(t)
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FIGURE 12.4. Sketch of a mass–spring system in which the mass of the spring has
not been neglected (a) and of an equivalent system based on a bar (b). The ratio
β is reported as a function of ms/m in (c); the curve labeled as ‘approximated’
follows the rule of adding one-third of the mass of the spring to mass m.

for the first mode (i = 0) and

f i(t) = 0

for all other modes. Only the first mode, i.e., the rigid-body mode, is excited.

Example 12.2 Consider a helical spring, with stiffness k and mass ms,
with a mass m at its end (Fig. 12.4a).
Compute the natural frequencies of the system for different values of ratio
ms/m. If the mass of the spring is negligible (i.e., if ms/m → 0), the system
reduces to a spring–mass system and it has only one natural frequency:

ωn =

√
k

m
.

To account for the mass of the spring, the latter can be considered as a pris-
matic bar (Figure 12.4b), with mass

ρAl = ms

and axial stiffness
EA

l
= k.
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The two relationships above can be used to compute the density ρ, the area A,
and the Young’s modulus E of the bar equivalent to the spring. Note that one
of the above characteristics can be stated arbitrarily. The axial displacement
of the bar is

uz = η(t)q(z) = η(t)

[
C1 sin

(
ω

vs
z

)
+ C2 cos

(
ω

vs
z

)]
.

The boundary condition for z = 0 is just

q(0) = 0 ,

yielding
C2 = 0 .

At the other end (z = l) it is possible to write a dynamic equilibrium equation
stating that the force the beam exerts on the mass

EA(ε)z=l = EA

(
duz

dz

)
z=l

= C1EA
ω

vs
η(t) cos

(
ω

vs
l

)

is equal to the inertia force exerted by the mass

m (üz)z=l = mη̈(t)q(l) = C1mω2η(t) sin

(
ω

vs
z

)
.

This relationship yields

C1mω2η(t) sin

(
ω

vs
l

)
= C1EA

ω

vs
η(t) cos

(
ω

vs
l

)
,

which is satisfied for any value of C1 and can be reduced to an equation

ωl

vs
tan

(
ωl

vs

)
=

EAl

mv2
s

=
ms

m
,

allowing to compute the natural frequency ω of the system.
If β is the solution of the equation

x tan(x) =
ms

m
,

the natural frequency is

ω = β
vs

l
=

β

l

√
E

ρ
,

i.e.,

ω = β

√
k

m
.

The solution β of the equation is thus a factor for which the natural frequency
of the mass–(massless) spring system must be multiplied to account for the
mass of the spring.
If ms/m → 0, i.e., the mass of the spring ms = ρAl is much smaller than
mass m, also ratio
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x =
ω

vs
l = ωl

√
ρ

E
= ωl

√
ρA

EA

is small and tan(x) ≈ x. The equation yielding the natural frequency is then

x2 =
ms

m
,

i.e.,

ω2l2
ρA

EA
=

ρAl

m
,

which yields

ω =

√
EA

ml
=

√
k

m
.

The other natural frequencies tend to the values seen for a clamped–clamped
bar.
The values of βi for the first 10 natural frequencies are plotted as functions
of ratio ms/m in Fig. 12.4c. If ratio ms/m is small, the results are similar
to that of the mass–spring system: The presence of the mass of the spring
slightly lowers the natural frequency and the other natural frequencies, due to
the vibrations of the spring, are much higher and are usually neglected.
For ms/m = ∞, i.e., when the mass m is negligible if compared with the mass
of the spring, the same values already obtained for a clamped-free bar are
found.
For low values of ms/m a first-approximation solution for the first natural
frequency is easily obtained. Assuming that the displacement x of the mass
ρAdl of the generic length dl of the spring located at a distance z from the
fixed end is linked to the displacement xm of mass m by the linear relationship

x = xm
z

l
,

the kinetic energy of the spring is

Ts =
1

2

∫ l

0

ρAẋ2
m

(z

l

)2

dl =
1

6
msẋ

2
m .

The total kinetic energy of the spring–mass system, that neglecting the mass
of the spring

Tm =
1

2
mmẋ2

m ,

becomes

T = Ts + Tm =
1

2

(
mm +

ms

3

)
ẋ2

m .

The natural frequency of the spring–mass system is thus

ωn =

√
k

mm + ms
3

.

This result yields the empirical rule of adding one-third of the mass of the

spring to the mass m in the computation of the natural frequency. As shown

in Fig. 12.4c it yields fairly accurate results even when the mass of the spring

is several times the mass supported by it.
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12.3 Torsional vibrations of straight beams

Consider a beam of the same type studied in the preceding section. Un-
der the assumptions seen in Section 4.2.1, the torsional behavior of the
beam is uncoupled from the axial and flexural behavior and can be stud-
ied separately. Using the elementary theory of torsion, the problem is one
dimensional, because all parameters are functions only of the axial coor-
dinate z. The dynamic equilibrium equation of a length dz of the beam
is

ρIzφ̈zdz =
∂Mz

∂z
dz + mz(z, t)dz , (12.43)

where mz(z, t) is an arbitrary distribution of torsional moment acting on
the beam.

Since the relationship linking the torsional generalized displacement (i.e.,
the rotation) with the torsional moment is

Mz = GI ′p
∂φz

∂z
, (12.44)

Equation (12.43) becomes

ρIz
d2φz

dt
=

∂

∂z

[
GI ′p

∂φz

∂z

]
+ mz(z, t) . (12.45)

If the cross-section of the beam is circular or annular, the torsional mo-
ment of inertia I ′p coincides with the polar moment of inertia Iz while in
other cases the two quantities are different; the values for I ′p for the cases of
greater practical interest can be found in the literature. If the cross-section
is elliptical with axes a and b, for instance, the following formula can be
used:

I ′p =
a3b3

5.1 (a2 + b2)
, (12.46)

while in the case of a rectangular cross-section with sides a and b ( a ≤ b)

I ′p =
a3b

Ψ
, (12.47)

where Ψ is reported as a function of ratio a/b in Table 12.2.
Equation (12.45) is identical to Eq. (12.3), provided that

uz is substituted by φz

ρA is substituted by ρIz

EA is substituted by GI ′p
fz(z, t) is substituted by mz(z, t),

the only difference being that the equations reported for prismatic ho-
mogeneous bars can be used only if the beam has a circular or annular
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TABLE 12.2. Values of coefficient Ψ for the computation of I ′
p of rectangular

cross-sections.

b/a 1 1.5 2 3 4 6 10 ∞
Ψ 7.14 5.10 4.37 3.80 3.56 3.34 3.19 3.00

cross-section, because the area (here the moments of inertia Iz and I ′p) was
canceled from both the mass and the stiffness.

Since the equation of motion for the torsional behavior of beams is identi-
cal to that already seen for their axial behavior, all the considerations seen
above for the latter hold also for the present case. The torsional behavior
of beams will not be dealt with any further.

12.4 Flexural vibrations of straight beams:
The Euler–Bernoulli beam

With the assumptions in Section 12.1, the flexural behavior in each lateral
plane can be studied separately from the other degrees of freedom. The
study of the flexural behavior is more complicated than that of the axial
or torsional behavior, because in bending two of the degrees of freedom
of each cross-section are involved. If bending occurs in the xz-plane, the
relevant degrees of freedom are displacement ux and rotation φy.

The simplest approach is that often defined as Euler–Bernoulli beam,
based on the added assumptions that both shear deformation and rota-
tional inertia of the cross-sections are negligible compared with bending
deformation and translational inertia, respectively. These assumptions lead
to a good approximation if the beam is very slender, i.e., if the thickness
in the x-direction is much smaller than length l.

Remark 12.10 The thickness in the x-direction must be, at any rate,
small enough to use beam theory.

12.4.1 Equations of motion

The equilibrium equation for translations in the x-direction of the length
dz of the beam (Fig. 12.5) is readily obtained by equating the inertia force

ρA
d2ux

dt2
dz

to the sum of the forces exerted by the other parts of the beam

∂Fx

∂z
dz
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FIGURE 12.5. Flexural behavior of a straight beam in the xz-plane: (a) sketch
of the system; (b) forces and moments acting on the length dz of the beam.

and the external force fx(z, t)dz:

ρA
d2ux

dt2
=

∂Fx

∂z
+ fx(z, t) . (12.48)

If the rotational inertia of the length dz of the beam is neglected, and no
distributed bending moment acts on the beam, the equilibrium equation
for rotations about the y-axis of the length dz of the beam is obtained by
equating the moment due to the shear forces acting at a distance dz to the
sum of the moments exerted by the other parts of the beam

Fxdz +
∂My

∂z
dz = 0 . (12.49)

By introducing Eq. (12.49) into Eq. (12.48), it follows

ρA
d2ux

dt2
= −∂2My

∂z2
+ fx(z, t) . (12.50)

The bending moment is proportional to the curvature of the inflected
shape of the beam; neglecting shear deformation and using elementary
beam theory, the latter coincides with the second derivative of the dis-
placement ux

My = EIy
∂2ux

∂z2
, (12.51)
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where Iy is the area moment of inertia of the cross-section of the beam
about its y-axis. The following equilibrium equation can thus be obtained:

m(z)
d2ux

dt2
+

∂2

∂z2

[
k(z)

∂2uz

∂z2

]
= fx(z, t) , (12.52)

where the mass and the bending stiffness per unit length are, respectively,

m(z) = ρ(z)A(z) , k(z) = E(z)Iy(z) . (12.53)

Once the lateral displacement ux has been obtained, the second gener-
alized coordinate φy is readily obtained: Since the cross-section remains
perpendicular to the deflected shape of the beam owing to neglecting shear
deformation, the rotation of the cross-section is equal to the slope of the
inflected shape

φy =
∂uz

∂z
. (12.54)

In the case of a prismatic homogeneous beam, Eq. (12.52) reduces to

ρA
d2ux

dt2
+ EIy

∂4ux

∂z4
= fx(z, t) . (12.55)

12.4.2 Free vibrations

Operating in the same way as seen for axial vibration, a steady-state so-
lution of the homogeneous equation can be obtained as the product of a
function of time by a function of the space coordinate

ux(z, t) = q(z)η(t) . (12.56)

Again function η(t) can be shown to be harmonic

η(t) = sin(ωt + φ) . (12.57)

The principal function q(z) can be obtained by introducing Eqs. (12.56)
and (12.57) into Eq. (12.55)

−ω2m(z)q(z) =
d2

dz

[
k(z)

d2q(z)
dz2

]
, (12.58)

or, in the case of a prismatic homogeneous beam,

−ω2q(z) =
EIy

ρA

d4q(z)
dz4

. (12.59)

The general solution of Eq. (12.59) is

q(z) = C1 sin (az) + C2 cos (az) + C3 sinh (az) + C4 cosh (az) , (12.60)
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where

a =
√

ω 4

√
ρA

EIy
. (12.61)

Constants Ci can be computed from the boundary conditions. In the
present case four boundary conditions must be stated, which is consistent
both with the order of the differential equation and with the number of
degrees of freedom involved. Each end of the beam may be free, clamped,
simply supported, or, a condition seldom accounted for, constrained in such
a way to restrain rotations but not displacements.

At a free end displacement and rotations are free, but both the bending
moment and the shear force must vanish. This can be expressed by the
relationships

d2q

dz2
= 0,

d3q

dz3
= 0 . (12.62)

If on the contrary an end is clamped, both the displacement and the
rotation vanish

q = 0,
dq

dz
= 0 . (12.63)

A supported end is free to rotate, and hence the bending moment must
vanish, but the displacement is constrained

q = 0,
d2q

dz2
= 0 . (12.64)

A further condition is the case where the end is free to move, and hence
the shear force vanishes, but the rotation is constrained

dq

dz
= 0,

d3q

dz3
= 0 . (12.65)

The boundary conditions can be written in the form

AC = 0 , (12.66)

where C is a vector containing the four unknown coefficients Ci of
Eq. (12.60) and A is a square matrix with size 4×4, containing functions
sin (az), cos (az), etc., computed at the two ends. Equation (12.66) is an
homogeneous algebraic equation; for solutions different from the trivial so-
lution C = 0 to exist, the determinant of matrix A, that contains constant
a and hence the frequency ω, must vanish. The characteristic equation
allowing to compute the natural frequencies is thus

det (A) = 0 . (12.67)
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Example 12.3 Compute the natural frequencies and the mode shapes of a

beam supported at both ends.
The conditions stating that the displacements vanish at both ends yield

q(0) = C2 + C4 = 0 ,

q(l) = C1 sin (al) + C2 cos (al) + C3 sinh (al) + C4 cosh (al) = 0 .

The second derivative of function q(z) is

d2q

dz2
= −a2C1 sin (az) − a2C2 cos (az) + a2C3 sinh (az) + a2C4 cosh (az) ,

and then the conditions stating that the bending moment vanishes at both ends
yield

1

a2

(
d2q

dz2

)
z=0

= −C2 + C4 = 0 ,

1

a2

(
d2q

dz2

)
z=l

= −C1 sin (al) − C2 cos (al) + C3 sinh (al) + C4 cosh (al) = 0 .

The conditions at the left end (z = 0) yield the set of equations

{
C2 + C4 = 0

−C2 + C4 = 0 ,

i.e.,
C2 = 0, C4 = 0 .

The conditions at the other end (z = l) yield

{
C1 sin (al) + C3 sinh (al) = 0

−C1 sin (al) + C3 sinh (al) = 0 ,

i.e., [
sin (al) sinh (al)
− sin (al) sinh (al)

] {
C1

C3

}
=

{
0
0

}
.

To obtain a solution other than the trivial solution C1 = 0, C3 = 0, the
determinant of the matrix of the coefficients of the set of linear equations in
C1 and C3 must vanish

2 sin (al) sinh (al) = 0 .

This equation can be easily solved in al

al = iπ (i = 1, 2, 3, ...),

obtaining an infinity of natural frequencies
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ω =
i2π2

l2

√
EIy

ρA
.

Constant C3 can be shown to be equal to 0, while constant C1 is arbitrary and
depends on the initial conditions. The eigenfunctions, normalized to yield a
unit maximum amplitude, are

q(z) = sin
(
iπ

z

l

)
.

Example 12.4 Repeat the computation for a beam clamped at both ends.
The conditions stating that the displacements vanish at both ends are the same
as seen for the previous example:

q(0) = C2 + C4 = 0 ,

q(l) = C1 sin (al) + C2 cos (al) + C3 sinh (al) + C4 cosh (al) = 0 .

The second condition states that the rotation, i.e., the derivative of the dis-
placement

dq

dz
= aC1 cos (az) − aC2 sin (az) + aC3 cosh (az) + aC4 sinh (az) ,

vanish at both ends, yielding

1

a

(
dq

dz

)
z=0

= C1 + C3 = 0 ,

1

a

(
dq

dz

)
z=l

= C1 cos (al) − C2 sin (al) + C3 cosh (al) + C4 sinh (al) = 0 .

Matrix A is thus

A =

⎡
⎢⎢⎣

0 1 0 1
sin (al) cos (al) sinh (al) cosh (al)

1 0 1 0
cos (al) − sin (al) cosh (al) sinh (al)

⎤
⎥⎥⎦ ,

and its determinant vanishes when

1 − cos (al) cosh (al) = 0 .

This equation cannot be solved in closed form, but its numerical solution is

straightforward. The first four solutions, accurate to four decimal places, are
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βfi = ail = 4.7301, 7.8532, 10.9956, 14.1372 .

The natural frequencies are thus

ωi =
β2

fi

l2

√
EIy

ρA
.

Since the hyperbolic cosine of a number greater than 1 is a large number (for
instance, cosh (10) = 1.101 × 104), the characteristic equation is solved when
cos (al) ≈ 0, i.e., al is an odd multiple of π/2. Discarding the value π/2, too
small for being accurate enough, it follows

βfi = ail = π

(
i +

1

2

)
,

that yields

βfi = ail = 4.7124, 7.8540, 10.9956, 14.1372 .

Starting from i = 3, the values so obtained are exact to four decimal places.

The procedure seen in the examples can be applied also for other bound-
ary conditions. Usually the characteristic equation, which involves trigono-
metric and hyperbolic functions, cannot be solved in closed form, but there
is no difficulty in obtaining numerical solutions.

A general expression for the natural frequencies with any boundary con-
dition is

ωi =
β2

fi

l2

√
EIy

ρA
, (12.68)

where the values of constants βfi = ail depend on the boundary conditions
(Table 12.3).

The eigenfunctions, expressed with reference to the nondimensional co-
ordinate

ζ =
z

l
(12.69)

TABLE 12.3. Values of constants βfi = ail for the various modes with different
boundary conditions.

Boundary condition i = 0 i = 1 i = 2 i = 3 i = 4 i > 4

Free–free 0 4.730 7.853 10.996 14.137 ≈ (i + 1/2)π
Supported–free 0 1.25π 2.25π 3.25π 4.25π (i + 1/4)π
Clamped–free – 1.875 4.694 7.855 10.996 ≈ (i − 1/2)π
Supported–supported – π 2π 3π 4π iπ
Supported–clamped – 3.926 7.069 10.210 13.352 ≈ (i + 1/4)π
Clamped–clamped – 4.730 7.853 10.996 14.137 ≈ (i + 1/2)π
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and normalized in such a way that the maximum value of the displacement
is equal to unity, are, for different boundary conditions, as follows:

1. Free–free. Rigid-body modes:

qI
0(ζ) = 1 , qII

0 (ζ) = 1 − 2ζ .

Other modes:

qi(ζ) =
1

2N
{sin(βiζ) + sinh(βiζ) + N [cos(βiζ) + cosh(βiζ)]} ,

where

N =
sin(βi) − sinh(βi)

− cos(βi) + cosh(βi)
.

2. Supported–free. Rigid-body mode:

q0(ζ) = ζ .

Other modes:

qi(ζ) =
1

2 sin(βi)

[
sin(βiζ) +

sin(βi)
sinh(βi)

sinh(βiζ)
]

.

3. Clamped–free.

qi(ζ) =
1

N2
{sin(βiζ) − sinh(βiζ) − N1 [cos(βiζ) − cosh(βiζ)]} ,

where

N1 =
sin(βi) + sinh(βi)
cos(βi) + cosh(βi)

,

N2 = sin(βi) − sinh(βi) − N1 [cos(βi) − cosh(βi)] .

4. Supported–supported.

qi(ζ) = sin(iπζ) .

5. Supported–clamped.

qi(ζ) =
1
N

[
sin(βiζ) − sin(βi)

sinh(βi)
sinh(βiζ)

]
,

where N is the maximum value of the expression within brackets and must
be computed numerically.
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6. Clamped–clamped.

qi(ζ) =
1

N2
{sin(βiζ) − sinh(βiζ) − N1 [cos(βiζ) − cosh(βiζ)]} ,

where

N1 =
sin(βi) − sinh(βi)
cos(βi) − cosh(βi)

,

and N2 is the maximum value of the expression between braces and must
be computed numerically. The first four mode shapes (plus the rigid-body
modes where they do exist) for each boundary condition are plotted in
Fig. 12.6.

Other boundary conditions can be used also in the case of beams, as
shown in the following examples.

FIGURE 12.6. Normal modes of a straight beam with different end conditions.
The first four modes plus the rigid-body modes, where they exist, are shown.
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FIGURE 12.7. Sketch of a beam supported at both ends with two spring re-
straining rotations and values of β1 to be inserted into Eq. (12.68) to compute
the natural frequencies as functions of the ratio between the stiffness of the springs
and that of the beam.

Example 12.5 Consider a clamped–clamped beam, but assume that the con-
straints at the ends are not perfect and in particular are unable to constrain
completely the rotational degrees of freedom. This situation can be modeled as
a supported beam with a spring at each end reacting to rotation with a stiffness
χ (Fig. 12.7).
The boundary conditions state that the displacements at the end vanish, while
the bending moment is proportional to the rotation through the stiffness

q = 0, EIy
d2q

dz2
= ±χ

dq

dz
.

The double sign accounts for the different situation at the two ends: the upper
sign holds at the left end while the lower one at the right end.
The first condition yields again

C2 + C4 = 0 ,

C1 sin (al) + C2 cos (al) + C3 sinh (al) + C4 cosh (al) = 0 ,

while the second one yields

a (−C2 + C4) =
χ

EIy
(C1 + C3) ,
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FIGURE 12.8. Sketch of a beam clamped at one end and with a concentrated
mass m at the other. Values of βi to be inserted into Eq. (12.68 ) to compute
the natural frequencies as functions of the ratio between the added mass and the
mass of the beam.

a [−C1 sin (al) − C2 cos (al) + C3 sinh (al) + C4 cosh (al)] =

= − χ

EIy
[C1 cos (al) − C2 sin (al) + C3 cosh (al) + C4 sinh (al)] .

The four boundary conditions can be written as a set of linear equations in Ci

⎡
⎢⎢⎣

0 1 0 1
s c S C
χ∗ al χ∗ −al

−als + χ∗c −alc − χ∗s alS + χ∗C alC + χ∗S

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

C1

C2

C3

C4

⎫⎪⎪⎬
⎪⎪⎭

= 0,

where s = sin (al), c = cos (al), S = sinh (al), C = cosh (al), and the nondi-
mensional stiffness

χ∗=
χl

EIy

is the ratio between the stiffness of the spring and that of the beam.
The characteristic equation expressing the condition that the determinant of
the matrix of the coefficients of the set of linear equations in Ci vanishes can
be solved numerically in al, obtaining the results shown in Fig. 12.7.
When χ∗ → 0 the solution for a beam supported at both ends is obtained, while
for χ∗ → ∞ the solution is that for a beam clamped at both ends.
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Example 12.6 Consider a beam clamped at the right end and with a mass

m at the left end (Fig. 12.8).

The boundary conditions state that the displacement and rotation at the right
end vanishes, like in the case of the clamped–clamped beam:

q(l) = C1 sin (al) + C2 cos (al) + C3 sinh (al) + C4 cosh (al) = 0,(
dq

dz

)
z=l

= a [C1 cos (al) − C2 sin (al) + C3 cosh (al) + C4 sinh (al)] = 0 .

At the left end the bending moment vanishes:

EIy

(
d2q

dz2

)
z=0

= 0 ,

i.e.,
−C2 + C4 = 0 .

The shear force

EIy

(
d3q

dz3

)
z=0

= EIya3 (−C1 + C3)

must balance the inertia force

−mω2 (q)z=0 − mω2 (C2 + C4) = 0 .

The relevant equation is thus

EIya3C1 + mω2C2 − EIya3C3 + mω2C4 = 0.

By introducing the nondimensional mass, i.e., the ratio between the mass m
and the mass of the beam

m∗ =
m

ρAl
,

and remembering that

a =
√

ω 4

√
ρA

EIy
,

this equation can be written as

−C1 + m∗alC2 + C3 + m∗alC4 = 0 .

The matrix of the coefficients A is thus

A =

⎡
⎢⎢⎣

sin (al) cos (al) sinh (al) cosh (al)
cos (al) − sin (al) cosh (al) sinh (al)

0 −1 0 1
1 m∗al −1 m∗al

⎤
⎥⎥⎦ .

The characteristic equation is thus

det (A) = 1 + cos (al) cosh (al)+

−m∗al [sin (al) cosh (al) − cos (al) sinh (al)] = 0 .
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FIGURE 12.9. Natural frequencies of a mass–leaf spring system in which the
mass of the spring has not been neglected, as a function of ms/m. The curve
labeled as ‘approximated’ (fully superimposed to the one labeled ‘exact’) follows
the rule of adding 23% of the mass of the spring to mass m.

The characteristic equation expressing the condition that the determinant of
matrix A vanishes can be solved numerically in al, obtaining the results shown
in Fig. 12.8.
When m∗ → 0 the solution for a beam supported at one end is obtained, while
for m∗ → ∞ the solution is that for a beam clamped at one end and supported
at the other one.

Example 12.7 Consider a leaf spring made of a prismatic and homoge-
neous beam clamped at one end and supporting the mass m at the other end.
The system is very similar to the one studied in Example 12.6 (Fig. 12.8),
but now the stress is laid on the action of the beam as a spring. Compute the
natural frequencies of the system at changing values of the ratio between the
mass of the spring ms and the mass m.
The stiffness of the spring is

k =
3EIy

l3
.

The mass ratio is
ms

m
=

ρAl

m
.
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The natural frequencies of the system are

ωi =
β2

i

l2

√
EIy

ρA
=

β2
i

3

√
m

ms

√
k

m
,

where coefficients βi were computed in Eq. (12.6).
The factors

β2
i

3

√
m

ms

are plotted as functions of the mass ratio ms/m in Fig. 12.9, obtaining a plot
not very different from that obtained for helical springs in Fig. 12.4c.

Also here there is a simple rule for computing the first natural frequency:

adding the 23% of the mass of the spring to mass m. As shown in the figure,

this rule allows to compute the first natural frequency with good precision.

Eigenfunctions also have orthogonality properties in the case of bending.
While the property of orthogonality with respect to the mass has the same
expression as in the case of axial vibration, the expression of orthogonality
with respect to the stiffness is different:

∫ l

0

m(z)qi(z)qj(z)dz = 0 ,

∫ l

0

k(z)
d2qi(z)

dz2

d2qj(z)
dz2

dz = 0 , (12.70)

for i �= j.
As a consequence, the definitions of modal masses and stiffnesses are

M i =
∫ l

0

m(z) [qi(z)]2 dz , Ki =
∫ l

0

k(z)
[
d2qi(z)

dz2

]2

dz . (12.71)

If function m(z) is constant, the eigenfunctions are orthogonal.

12.4.3 Forced response

The expressions of the modal forces f i(t) are similar to those seen for the
axial behavior

f i =
∫ l

0

qi(z)fx(z, t)dz . (12.72)

In the case of excitation due to motion xA(t) of the supporting structure,
the response of the beam can be computed by resorting to a reference frame
fixed to the constraints and applying the modal forces

f i = −riẍA , (12.73)

where

ri =
∫ l

0

qi(z)m(z)dz .
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Example 12.8 Consider the prismatic homogeneous beam shown in Fig.

12.10a. It is supported at one end; at the other end it is supported by an

actuator that can supply both the static force to balance the self-weight and

dynamic forces to control vibration. The control system will be studied using

modal analysis, taking into account the first three modes, one of which is a

rigid-body motion.
Using the equations in Section 12.4 and the values reported in Table 12.3, the
eigenvectors, normalized to yield unit values for the modal masses, the modal
masses, and stiffnesses are as follows:
Mode 0 (rigid-body mode):

q0(ζ) = ζ

√
3

m
, M = 1 , K = 0.

ith mode (any i):

qi(ζ) =

√
2

m

[
sin(βiζ) +

sin(βi)

sinh(βi)
sinh(βiζ)

]
,

M = 1 , K = β4
i
EIy

ml3
,

where

m = ρAl

is the total mass of the beam, ζ = z/l is a nondimensional coordinate, and

coefficients βi are

βi = (i + 1/4)π, i.e., sin(βi) = −1i/
√

2 .

The modal forces due to self-weight are

f0 = −g

√
3m

2
, f i = 0 ∀i �= 0 .

The modal control forces are

f c0
= fc

√
3
m

, fci
= 2Fc

(
−1i

)
√

m
∀i �= 0 .

Comparing the expressions of the modal forces, it follows immediately that

the static component of the control force is

fcst
=

mg

2
.

Note that all modal coordinates have a static value even if the modal
forces due to self-weight vanish: In the equilibrium condition the static
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control force makes the modal coordinate of mode zero vanish while the others
yield the static deflected shape

ηist = (−1)i gl3
√

m3

(i + 1/4)4π4EIy
.

In the following an ideal PD feedback controller will be used, in conjunction
with a feedforward compensation of the weight of the beam. Due to the linearity
of the problem, the dynamic study will be performed neglecting the static forces
and deflections; this is possible only within the linear range, particularly if no
saturation occurs in the actuator.
By introducing the constant

ω1 = π2

√
EIy

ml3
,

which is nothing other than the first natural frequency of the same beam simply
supported at both ends, matrices A and Bc reduce to

A =

⎡
⎢⎢⎢⎢⎣

0 −ω2
1

⎡
⎢⎢⎣

0 0 0 . . .
0 1, 254 0 . . .
0 0 2, 254 . . .

. . . . . . . . . . . .

⎤
⎥⎥⎦

I 0

⎤
⎥⎥⎥⎥⎦ ,

Bc =
1√
m

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩

√
3

−2
2

. . .

⎫⎪⎪⎬
⎪⎪⎭

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Consider as a first case an output-feedback control system with a single sensor

at the free end of the beam yielding both displacement and velocity. The output

vector y and matrix C are then

y =

{
ẋ(l)
x(l)

}
,

C =
1√
m

[ √
3 −2 2 . . . 0 0 0 . . .

0 0 0 . . .
√

3 −2 2 . . .

]
.

The control gain matrix Ky has one row, because it must supply the control
input to a single actuator, and two columns, because there are two outputs of
the system:

Ky =
[

kv kd

]
,

where kd is the proportionality constant between the force of the actuator and

the displacement (dimensionally it is a stiffness) and kv is the proportionality

constant between the force and the velocity (dimensionally it is a damping

coefficient). By introducing the nondimensional gains
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FIGURE 12.10. Beam supported at one end and actively controlled at the other:
(a) sketch of the system; (b) root loci.

k∗
v =

kv

ω1m
, k∗

d =
kd

ω2
1m

= kd
l3

EIyπ4
,

the closed-loop dynamic matrix is

Acl =

[
ω1k

∗
vR −ω2

1S
I 0

]
,

where

R =

⎡
⎢⎢⎣

3 −2
√

3 2
√

3 . . .

−2
√

3 4 −4 . . .

2
√

3 −4 4 . . .
. . . . . . . . . . . .

⎤
⎥⎥⎦ ,

S =

⎡
⎢⎢⎣

3k∗
d −2

√
3k∗

d 2
√

3k∗
d . . .

−2
√

3k∗
d 1, 254 + 4k∗

d −4k∗
d . . .

2
√

3k∗
d −4k∗

d 2, 254 + 4k∗
d . . .

. . . . . . . . . . . .

⎤
⎥⎥⎦ .

The nondimensional root loci for the first three modes with various values of
the gain k∗

d are plotted in Fig. 12.10b. To state a relationship between the two
elements of the gain matrix, the gain k∗

v has been assumed to comply with the
relationship

k∗
v = 0.1

√
k∗

d/3 ,

which corresponds to assuming a damping ratio ζ = 0.1 for the controlled first
mode if mode coupling is neglected.

Note that when the gain tends to zero the natural frequencies of the supported–

free beam are obtained. If the gain tends to infinity, the actuator reduces to

a rigid support and the natural frequencies of the supported–supported beam

are obtained. In these two limiting cases the system is undamped, because no

structural damping was taken into account.
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Intermediate values of the frequency are obtained for finite values of the gain.
The roots are complex and the negative real part evidences the damping role
of the control system.

Another consideration regards spillover. The figure has been drawn by taking

into account three, five, and seven modes. The response at the first mode is

correct in all three cases; that at the second mode requires at least five modes

to be computed correctly, but the errors due to spillover with three modes are

not large. For the response at the third mode seven modes are required. Using

five modes the results are still acceptable, but with three modes the errors due

to spillover lead to unacceptable results.
Consider now a state feedback, obtained by resorting to a single displacement
sensor at the free end and adding an observer to the system. Take into account
only the first three modes.
Matrices A, Bc, and C are

A =

⎡
⎢⎢⎣ 0 −ω2

1

⎡
⎣ 0 0 0

0 1.254 0
0 0 2.254

⎤
⎦

I 0

⎤
⎥⎥⎦ ,

Bc =
1√
m

⎧⎪⎪⎨
⎪⎪⎩

⎧⎨
⎩

√
3

−2
2

⎫⎬
⎭

0

⎫⎪⎪⎬
⎪⎪⎭

,

C =
1√
m

[
0 0 0

√
3 −2 2

]
.

By assuming a unit value for ω1, the controllability and observability matrices
and their determinants are

H =
1√
m

⎡
⎢⎢⎢⎢⎢⎢⎣

√
3 0 0 0 0 0

−2 0 4.883 0 −11.92 0
2 0 −51.26 0 1, 314 0

0
√

3 0 0 0 0
0 −2 0 4.883 0 −11.92
0 2 0 −51.26 0 1, 314

⎤
⎥⎥⎥⎥⎥⎥⎦

,

O =
1√
m

⎡
⎢⎢⎢⎢⎢⎢⎣

0
√

3 0 0 0 0
0 −2 0 4.883 0 −11.92
0 2 0 −51.26 0 1, 314√
3 0 0 0 0 0

−2 0 4.883 0 −11.92 0
2 0 −51.26 0 1314 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

det(H) = −1.01 × 108 , det(O) = −1.01 × 108.

Assume that the six nondimensional eigenvalues of the controlled system are

−0.2 ± 0.6i , −0.2 ± 2i , −0.5 ± 5i ,
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and those of the observer are

−0.3 ± 0.6i , −0.5 ± 2i , −0.9 ± 5i .

By using the pole-placement procedure, the following gain matrices for the
controller and observer are obtained

Kc = ω1

√
m

[
0.452 −0.149 0.460 0.381ω1 −0.784ω1 0.341ω1

]
,

K0 = ω1

√
m

[
0.456ω1 −1.011ω1 1.555ω1 0.746 −0.268 0.786

]T
.

A simple check shows that the required roots of the system are obtained. To
check the errors due to spillover, the eigenvalues of the systems were again
computed, taking into account 10 modes, only the first three of which are con-
trolled using the observer and the controller defined earlier. The following 26
nondimensional eigenvalues have been obtained:

−0.200 ± 0.584i , − 0.303 ± 0.621i , − 0.266 ± 1.949i ,
−0.598 ± 2.071i , −0.893 ± 4.765i , −0.482 ± 5.108i ,
0.0213 ± 10.599i , 0.0103 ± 18.069i , 0.0047 ± 27.564i ,
0.0024 ± 39.063i , 0.0013 ± 52.563i , 0.0008 ± 68.063i ,
0.0005 ± 85.563i .

The first six are similar to the ones stated for the controller and the observer.
The remaining ones are not very different from the corresponding natural fre-
quencies of the uncontrolled system:

10.562 , 18.063 , 27.563 , 39.063 , 52.563 , 68.063 , 85.563 ,

but have a positive real part. Spillover causes a slight instability of the system,

which, however, in the current case is due to the fact that no damping of the

beam has been considered. The very small damping introduced by the beam

itself should be sufficient to achieve stable behavior in all modes.

Example 12.9 Consider the same system studied in Example 12.8. Study
its response to a shock load of the type prescribed by MIL-STD 810 C, basic
design (see Example 8.1) and compare the results with those obtained for a
simply supported beam with the same dimensions.

The total mass of the beam is m = ρAl = 3.124 kg and the value of parameter

ω1 in the previous example is 147.74 rad/s. Assuming a unit value for the

modal masses, the modal stiffnesses for the first eight modes (including the

rigid-body mode) are



12.4 Flexural vibrations of straight beams: The Euler–Bernoulli beam 299

K0 = 0 , K3 = 2.435 × 106 , K6 = 3.331 × 107 ,

K1 = 53, 290 , K4 = 7.121 × 106 , K7 = 6.030 × 107 .

K2 = 559, 400 , K5 = 1.658 × 107 ,

Because the uncontrolled system is very lightly damped, a modal damping ap-
proximation is accepted. The modal damping for the various modes can be
computed as Ci = ηωi:

C0 = 0 , C3 = 15.605 , C6 = 57.710 ,

C1 = 2.308 , C4 = 26.683 , C7 = 77.655 .

C2 = 7.479 , C5 = 40.720 ,

By assuming the same eigenfrequencies of the three controlled modes as in
Example 11.4, the following gain matrices for the controller and the observer
are obtained:

Kc =
[

118.1 −38.85 120.0 14, 705 −30, 239 13, 152
]

,

K0 =
[

17, 571 −38, 985 59, 983 195.86 −69.88 205.28
]T

.

As seen in Example 12.8, to check the errors due to spillover the eigenval-
ues of the systems were computed again, taking into account 10 modes. This
computation is now performed taking into account damping in order to verify
whether the damping of the system can counteract the destabilizing effects of
spillover. The following 26 eigenvalues, expressed in rad/s, have been obtained:

−29.73 ± 86.09i , − 44.60 ± 92.20i , − 43.95 ± 290.45i ,
−84.68 ± 302.97i , −129.03 ± 700.17i , −77.97 ± 758.20i ,
−4.59 ± 1, 565.7i , −11.81 ± 2, 669.2i , −19.67 ± 4, 072.2i ,

−28.51 ± 5, 771.0i , −38.63 ± 7, 765.4i , −50.13 ± 10, 055i ,
−63.13 ± 12, 641i .

The first six are very similar to the ones for the controller and the observer and
are almost not changed (to working accuracy) by the presence of damping. The
remaining ones, which are not very different from the corresponding natural
frequencies of the uncontrolled system, now have a negative real part. The
damping of the system counteracts the instability due to spillover, even if the
very low absolute value of some decay rates (particularly for the seventh mode)
suggests a behavior with a small stability margin. The very low value assumed
for structural damping accounts for this type of behavior.

The shock, applied to the frame that supports the beam, is prescribed as a

linearly increasing acceleration, reaching 20 g in 11 ms and then decreasing

abruptly to zero. The shock load is seen from the beam as a constant distributed

load whose absolute value is given by the mass multiplied by the time-varying

acceleration. Only the modal force related to the first mode (mode 0, rigid-body

mode) is different from zero:
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FIGURE 12.11. Time history of the displacement (a) and of the stress (b) at
the center of the beam in Fig. 12.10 when a shock load of the type prescribed
by MIL-STD 810 C, basic design, is applied to it; comparison with a simply
supported beam.

F 0 = −a
√

3m

2
.

The response has been computed using Eq. (11.67), taking into account 20
state variables for the beam (10 modes) and 6 state variables for the observer,
by integrating the equation in time using the Euler method. The external in-
put ue is the time-varying acceleration −a, while vector Be has all elements
vanishingly small except the first, which is

Be1 =

√
3m

2
.

The response at the center of the beam has been reconstructed from the modal

response and is plotted in Fig. 12.11a. In Fig. 12.11b the stress at the center

of the beam, computed from the mode shapes and modal coordinates, has been

plotted. In the same figures the values obtained applying the same shock to a

similar beam simply supported at both ends are plotted for comparison.
From the figure it is clear that the active control system is very effective
in damping out the free oscillations caused by the shock, while the simply
supported beam gives way to a lower value of the maximum displacement.
This is, however, to be expected, because the control system is assumed to be
quite soft and then it allows a sort of large rigid-body motion under the effect
of the shock.
The reduction of the stress peak is large, since the rigid-body motion, which
absorbs most of the energy of the shock, does not contribute to the stresses.
The time history of the force applied by the actuator at the free end of the
beam is shown in Fig. 12.12.

This example has been reported only to show some features of structural

control.
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FIGURE 12.12. Time history of the control force of the beam studied in
Fig. 12.11.

No attempt to optimize the control system or verify its feasibility from an

energy viewpoint has been performed. A purely proportional control law with

no cut-off frequency has been used: No actual control systems can follow this

law; the highest controlled frequency is, however, about 120 Hz and any system

with a cut-off frequency higher than this value would do the job.

Another source of nonlinearity here not accounted for is the saturation of the

actuator. However, it is not difficult to include it into the model when the

computation is based on the numerical integration of the equations of motion,

like in this case.

Example 12.10 Consider the same beam studied in Example 12.9. The

beam is now a structural member moved by an actuator that exerts a torque at

the hinged end (Fig. 12.13a). The beam is controlled by an open-loop system

that governs the actuator torque following a predetermined pattern.

Assume that the torque is controlled following either a square-wave pattern

(bang–bang control) (Fig. 12.13b) or a more elaborate double-versine time his-

tory (Fig. 12.13c). Neglecting weight, compute the maximum torque needed to

achieve a rotation of 45◦ (π/4 rad) in 0.5 s and the time history of the tip of

the beam during and after the maneuver.
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FIGURE 12.13. Beam rotating about one of its ends under the effect of the driv-
ing torque T (t): (a) sketch of the system at time t; (b) and (c) time histories
of the control torque during the maneuver: square-wave and double-versine pat-
terns; (d) time history of the displacement of the free end: displacement from the
rigid-body position, computed by numerically integrating the equations of the
first five modes.

Rigid-body dynamics
The equation of motion of the beam as a rigid body is simply

θ̈ =
T (t)

J
,

where

J =
1

3
ml2

is the moment of inertia of the beam about the axis of rotation.
In the case of the bang–bang control the time history of the torque is

T = Tmax for 0 ≤ t ≤ tmax

2
,

T = −Tmax for
tmax

2
< t ≤ tmax .

The square-wave law allows for the minimum travel time for a given value of
the maximum driving torque. The control law is symmetrical in time and the
speed of the beam at time tmax reduces to zero. By integrating the equation of
motion, the time history of the displacement is

θ =
3Tmax

2ml2
t2 for 0 ≤ t ≤ tmax

2
,

θ =
3Tmax

4ml2
(
−t2max + 4tmaxt − 2t2

)
for

tmax

2
≤ t ≤ tmax.
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The relationship linking the torque with the displacement θmax and the time
needed for the rotation is

Tmax =
4ml2θmax

3t2max

.

In the case of the double-versine control, the time history of the torque is

T =
Tmax

2

[
1 − cos

(
4π

tmax
t

)]
for 0 ≤ t ≤ tmax

2
,

T = −Tmax

2

[
1 − cos

(
4π

tmax
t

)]
for

tmax

2
≤ t ≤ tmax.

Also in this case the control law is symmetrical in time and the speed of the

beam reduces to zero at time tmax. By integrating the equation of motion, the

time history of the displacement is

θ =
3Tmax

4ml2

{
t2 +

t2max

8π2

[
cos

(
4π

tmax
t

)
− 1

]}
,

for 0 ≤ t ≤ tmax/2 and

θ =
3Tmax

8ml2

{
−t2max + 4tmaxt − 2t2 − t2max

4π2

[
cos

(
4π

tmax
t

)
− 1

]}
,

for tmax/2 < t ≤ tmax, respectively.
The relationship linking the torque with the displacement θmax and the time
needed for the rotation is

Tmax =
8ml2θmax

3t2max

.

The values of the maximum torque are then Tmax = 13.09 Nm for the square

wave and Tmax = 26.17 Nm for the double versine.
Dynamic behavior of the beam

The dynamic behavior of the beam will be studied in the xz-reference frame of

Fig. 12.13a. Such a frame is not inertial and, consequently, inertia forces due

to its motion must be introduced into the equations.
An approach similar to that seen in Chapter 17 for discrete systems, but much
more simplified, will be followed here. The position in an inertial (nonrotating)
reference frame x′z′ of a general point of the beam, located at coordinate z, is

{
x′

z′

}
=

{
z sin(θ) + ux cos(θ)
z cos(θ) − ux sin(θ)

}
,

where ux(t) is the displacement due to the bending of the beam. By differenti-
ating the position, the kinetic energy of a length dz of beam is readily obtained:

dT =
1

2
ρAdz(θ̇

2
z2 + u̇2

x + u2
xθ̇

2
+ 2zθ̇u̇x).
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By assuming that the law θ(t) is stated, performing the relevant derivatives
with respect to uz and u̇z, the inertial terms entering into the equation of
motion for the bending behavior of the beam are

ρAdz(üx + zθ̈
2
+ uxθ̇

2
).

The first term is the usual term that appears in the equation of motion of

the stationary beam. The second term is due to the acceleration of the beam

and can easily be accounted for as an external excitation, because it does not

contain the deformation of the beam. The third term is a ‘centrifugal stiffening’

effect, because of the centrifugal force due to rotation.

In the small movement studied, the acceleration is high but the angular velocity

maintains a value low enough to neglect the last effect.

Moreover, the aim of the study is mainly to predict the free behavior of the

beam after the required position is reached and the two neglected effects stop

acting. Clearly they are not ininfluent, because the behavior after the beam has

stopped depends on what happens during the motion, but the assumption that

their effect is small can be accepted, at least in a first-approximation study.
The beam can be studied as a beam at standstill, under the effect of the moment
T (t) and the inertia force −ρAzθ̈(t). The study will be performed using modal
analysis. The mode shapes, modal masses, and stiffnesses have been computed
in Example 12.8. The modal forces due to the inertia forces are

f i0
= −lθ̈

√
m/3 ; f ii

= 0 ∀i �= 0.

The modal forces due to the driving torque T (t) are

fTi
= T (t)

dqi(z)

dz
,

i.e.,

fT0
=

T (t)

l

√
3

m
, fTi

=
T (t)

l

√
2

m
βi

[
1 +

sin(βi)

sinh(βi)

]
.

Remembering that

θ̈ =
3T

ml2
,

the equation of motion for the rigid-body mode is simply

η̈0 =
T (t)

l

√
3

m
− l

√
3

m
θ̈ = 0 ,

i.e., because at time t = 0 both η0 = 0 and η̇0 = 0, the first modal coordinate
is always equal to zero. This result is obvious, because the driving torque has
been computed by imposing the rigid-body motion of the beam. The equations
of motion of the other modes are

η̈i + Ciη̇i + Kiηi =
T (t)

l

√
2

m
βi

[
1 +

sin(βi)

sinh(βi)

]
.
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The displacement at the free end of the beam, with respect to the position of
the rigid-body motion is simply

xe =
∞∑

i=1

ηiqi(t) =
2√
m

∞∑
i=1

(−1)iηi .

The modal equations of motion can be solved by numerical integration or using
Duhamel’s integral. A solution based on the numerical integration of the first
five modes is shown in Fig. 12.13d. From the figure, it is clear that the double-
versine control succeeds in positioning the beam without causing long-lasting
vibrations as in the case of the bang–bang control pattern. The latter strongly
excites the first mode, which is little damped.
These results are linked with the particular application, because a control in-
put of the versine type can also excite some modes; however, the fact that
the square-wave control input is more prone to exciting vibrations than more
smooth control laws is a general feature. In many cases, particular control
laws that are much better than the square-wave and the versine laws are used,
and much theoretical and experimental work has been devoted to identifying
optimal control laws.

In a practical case, if positioning accuracy is required, a closed-loop control

must be associated with the open-loop control shown here. If the response of

the control device is fast enough, deformation modes can also be controlled.

12.5 Bending in the yz-plane

The situation in the yz-plane is clearly very similar to that already studied
with reference to the xz-plane. The physical problem is the same; however,
there are some differences in the equations due to the fact that in the xz-
plane the positive direction for rotations is from z-axis to x-axis while in
the yz-plane a rotation is positive if it goes from y-axis to z-axis (Fig.
12.14).

While in the xz-plane the rotation and the displacement in any point of
an Euler–Bernoulli beam are linked by the relationship

φy =
dux

dz
,

the corresponding relationship for yz-plane is

φx = −duy

dz
.

Remark 12.11 The difficulties of notation arising from the differences
existing in the two planes could be easily circumvented by assuming −φx

instead of φx as the generalized coordinate for rotation. If the corresponding
generalized force is taken as −Mx instead of Mx, the situation in the two
planes is exactly the same. This is, however, not free from drawbacks, as it
will be shown, and is generally not done.
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FIGURE 12.14. Positive directions for displacements and rotations in xz- and
yz-planes.

12.6 Coupling between flexural and torsional
vibrations of straight beams

The uncoupling between flexural and torsional behavior in straight beams
was possible as a consequence of a number of assumptions, introduced to
simplify the dynamic study of beams. If the cross-section does not possess
two planes of symmetry perpendicular to each other, the above-mentioned
uncoupling does not occur any more.

Consider, as an example, a straight, prismatic, and homogeneous beam,
whose cross-section has only one plane of symmetry. Locate the reference
frame in such a way that axes y and z are contained in the symmetry plane
and study the flexural behavior in xz-plane (Fig. 12.15). Let z-axis pass
through the shear centers of the cross-sections, i.e., the points having the
property that when a bending force is applied to it, no torsional deformation
results.

By definition, the elastic reaction Fy of the beam loaded in bending
passes through the shear center C.

Consider the length dz of beam as a rigid body and write the dynamic
equilibrium equations for motions involving the torsional degree of freedom
and those linked to bending in xz-plane. Due to the very small length dz,
the mass moments of inertia of such rigid body about its center of gravity
can be approximated as

Jy = ρIydz, Jz = ρIzdz, Jxz = 0 , (12.74)

the latter relationship being due to symmetry.
The velocity of the center of mass and the angular velocity are

V =

⎧⎨
⎩

u̇x − dφ̇z

0
0

⎫⎬
⎭ , Ω =

⎧⎨
⎩

0
φ̇y

φ̇z

⎫⎬
⎭ . (12.75)

The kinetic energy of the rigid body is thus

T =
1
2
ρdz

[
A

(
u̇2

x + d2φ̇
2

z − 2du̇xφ̇z

)
+ Iyφ̇

2

y + Izφ̇
2

z

]
. (12.76)



12.6 Coupling between flexural and torsional vibrationsof straight beams 307

FIGURE 12.15. Coupled flexural–torsional behavior of a beam. (a) Sketch of a
channel beam. (b) Forces and moments acting on the length dz of the beam with
reference to the shear center C.

The generalized forces acting on the body with references to the gener-
alized coordinates ux, φy, and φz are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qx =
∂Fx

∂z
dz,

Qφy =
∂My

∂z
dz + Fxdz,

Qφz =
∂Mz

∂z
dz.

(12.77)

By introducing the kinetic energy and the generalized forces into the
Lagrange equations, the following equations of motion are obtained

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρA

(
d2ux

dt2
− d

d2φz

dt2

)
=

∂Fx

∂z
,

ρIy
d2φy

dt2
=

∂My

∂z
+ Fx,

ρ
(
Ad2 + Iz

) d2φz

dt2
− ρAd

d2ux

dt2
=

∂Mz

∂z
.

(12.78)

If shear deformation is neglected, the rotation φy of the cross-section is
equal to the derivative of the displacement dux/dz. By solving the second
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equation in Fx, the first equation transforms into

ρA
d2ux

dt2
− ρAd

d2φz

dt2
− ∂

∂z

[
ρIy

∂

∂z

(
d2ux

dt2

)]
=

∂2My

∂z2
. (12.79)

If the usual relationships between the bending and torsional moments
and the generalized bending and torsional displacements (Eqs. 12.51 and
12.44) ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

My = EIy
∂2ux

∂z2

Mz = GI ′p
∂φz

∂z

(12.80)

are introduced into Eqs. (12.78) and (12.79), two coupled differential equa-
tions for the bending and torsional behavior are obtained.

Equation (12.44) however is not always suited to describe the torsional
behavior of beams, particularly in the case of thin-walled sections. If the
cross-section is not allowed to warp freely in each station along the beam,
some bending is always present together with torsion. In the case of Fig.
12.15, torsion is accompanied by bending of the flanges in the yz-plane.
Timoshenko1 showed that this behavior can be taken into account by sub-
stituting Eq. (12.44) by the following relationship

Mz = GI ′p
∂φz

∂z
− R

∂3φz

∂z3
, (12.81)

where R is the warping rigidity (as opposed to the torsional rigidity GI ′p)
of the beam. In the case of Fig. 12.15 its value is

R =
Dh2

2
=

Eta3h2

24
, (12.82)

or, taking into account also the effect of the web,

R =
Dh2

2

(
1 +

t1h
3

4Iz

)
=

Eta3h2

24

(
1 +

t1h
3

4Iz

)
, (12.83)

where D is the flexural rigidity of each flange.
By using Eq. (12.81) instead of Eq. (12.44), assuming that the beam

is prismatic and homogeneous and neglecting the rotational inertia of the
cross-section for rotations about y-axis, the equations of motion become⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ρA
d2ux

dt2
− ρAd

d2φz

dt2
= −EIy

∂4ux

∂z4
,

ρ
(
Ad2 + Iz

) d2φz

dt2
− ρAd

d2ux

dt2
= GI ′p

∂2φz

∂2z
− R

∂4φz

∂z4
.

(12.84)

1S.H. Timoshenko, Strength of Materials, Van Nostrand, New York, 1978.
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If a solution of the type

ux = qx(z)eiωt, φz = qz(z)eiωt (12.85)

is assumed, the following equations for the coupled free vibrations of the
system are obtained:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−EIy
d4qx

dz4
= ω2ρA (qx − dqz) ,

−GI ′p
d2qz

d2z
− R

d4qz

dz4
= ω2ρ

[(
Ad2 + Iz

)
qz − Adqx

]
.

(12.86)

Only the case of a beam with simply supported ends will be studied in
detail. Using as boundary conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qx = 0
d2qx

dz2
= 0 for z = 0 and z = l,

qz = 0
d2qz

dz2
= 0 for z = 0 and z = l,

(12.87)

the eigenfunctions are

qx = qxi0 sin
(

iπz

l

)
, qz = qzi0 sin

(
iπz

l

)
. (12.88)

Remark 12.12 While the boundary conditions on displacement ux are
quite obvious, the second condition on angle φy comes from assuming that
each flange behaves as a beam simply supported in yz-plane.

Introducing the solution (12.88) into Eq. (12.86) they yield
⎡
⎢⎢⎣

ω2
fi − ω2

i dω2
i

dA

d2A + Iz
ω2

i ω2
ti − ω2

i

⎤
⎥⎥⎦

{
qxi0

qzi0

}
= 0, (12.89)

where ωfi and ωti are, respectively, the ith flexural and torsional uncoupled
natural frequencies, i.e., the solutions of Eq. (12.89) when d = 0 (the shear
center coincides with the center of mass)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ωfi =
i2π2

l2

√
EIy

ρA
,

ωti =
iπ

l2

√
i2π2R + GI ′pl

2

ρIz
.

(12.90)
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The former coincides with the bending natural frequency of an Euler–
Bernoulli beam supported at both ends, while the second one is different
from that obtained for the torsional vibration of bars owing to the warping
rigidity. If the warping rigidity is neglected, it coincides with that previously
computed.

If no uncoupling is possible (d �= 0), the characteristic equation of the
eigenproblem is (

ω2
fi − ω2

i

) (
ω2

ti − ω2
i

)
− αω4

i = 0, (12.91)

where

α =
d2A

d2A + Iz
. (12.92)

The coupled natural frequencies can thus be easily computed

ωi =

(
ω2

fi + ω2
ti

)
±

√(
ω2

fi + ω2
ti

)2

− 4 (1 − α) ω2
fiω

2
ti

2 (1 − α)
. (12.93)

If the cross-section has no plane of symmetry, a more complicated prob-
lem arises, since vibrations in xz- and yz-planes are both coupled with
torsional vibration. All degrees of freedom except axial translation uz must
thus be studied together. Even more complex cases are found in engineer-
ing practice, particularly when dealing with twisted non-prismatic beams,
as turbine, fan, or propeller blades.

12.7 The prismatic homogeneous Timoshenko
beam

Both the rotational inertia of the cross-section and shear deformation were
not taken into account in the Euler–Bernoulli beam model. In this sec-
tion this assumption will be dropped, with reference only to a prismatic
homogeneous beam.

A beam in which these effects are not neglected is usually referred to as
a Timoshenko beam.

Shear deformation can be accounted for as a deviation of the direction
of the deflected shape of the beam not accompanied by a rotation of the
cross-section (Fig. 12.16). The latter is thus no more perpendicular to the
deformed shape of the beam, and the rotation of the cross-section can be
expressed as

φy =
∂ux

∂z
− γx . (12.94)

The shear strain γx is linked to the shear force by the relationship

γx =
χFx

GA
, (12.95)
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FIGURE 12.16. Effect of shear deformation on beam bending. (a) Euler–Bernoulli
beam; (b) Timoshenko beam.

where the shear factor χ depends on the shape of the cross-section, even if
there is not complete accordance on its value. For a circular beam, a value
of 10/9 is usually assumed; for other shapes the expressions reported in
Table 12.4 can be used.

Equation (12.94) can thus be written in the form

φy =
∂ux

∂z
− χFx

GA
. (12.96)

The bending moment has no effect on shear deformation: If the latter
is accounted for, the relationship linking the bending moment with the
inflected shape of the beam becomes

My = EIy
∂φy

∂z
. (12.97)

The rotational inertia of the cross-section is no more neglected, and the
dynamic equilibrium equations for displacement and rotation of the length
dz of the beam are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρA
d2ux

dt2
=

∂Fx

∂z
+ fx(z, t) ,

ρIy
d2φy

dt2
= Fx +

∂My

∂z
.

(12.98)

By solving Eq. (12.96) in Fx and introducing it into Eq. (12.98), it follows

⎧⎪⎪⎨
⎪⎪⎩

ρA
d2ux

dt2
=

GA

χ

(
∂2ux

∂z2
− ∂φy

∂z

)
,

ρIy
d2φy

dt2
=

GA

χ

(
∂ux

∂z
− φy

)
+ EIy

∂2φy

∂z2
.

(12.99)
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TABLE 12.4. Shear factors for some different cross-sections (from G.R. Cowper,
The shear coefficient in Timoshenko’s beam theory, J. Appl. Mech., June, 1966,
335–340).

By differentiating the second equation (12.99) with respect to z and
eliminating φy, the following equation can be obtained:

EIy
∂4ux

∂z4
− ρIy

(
1 +

Eχ

G

)
∂2

∂z2

(
∂2ux

∂t2

)
+

ρ2Iyχ

G

d4ux

dt4
+ ρA

d2ux

dt2
= 0,

(12.100)
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and then, in the case of free oscillations with harmonic time history,

EIy
d4q(z)
dz4

+ ρω2Iy

(
1 +

Eχ

G

)
d2q(z)
dz2

− ρω2

(
A − ω2 ρIyχ

G

)
q(z) = 0 .

(12.101)
The same considerations regarding the form of the eigenfunctions (seen

in Section 12.6) also hold in this case. If the beam is simply supported at
both ends, the same eigenfunctions seen in the case of the Euler–Bernoulli
beam still hold, and Eq. (12.101) can be expressed in nondimensional form
as

( ω

ω∗

)4

−
( ω

ω∗

)2 α2

i2π2χ∗

(
1 + χ∗ +

α2

i2π2

)
+

α4

i4π4χ∗ = 0, (12.102)

where ω∗
i is the ith natural frequency computed using the Euler–Bernoulli

assumptions, the slenderness α of the beam is defined as

α = l

√
A

Iy
=

l

r
(12.103)

(r is the radius of inertia of the cross-section) and

χ∗ = χ
E

G
. (12.104)

The results obtained from Eq. (12.102) for a beam with circular cross-
section and material with ν = 0.3 are reported as functions of the slender-
ness in Fig. 12.17.

Remark 12.13 Both shear deformation and rotational inertia lower the
value of the natural frequencies, the first being stronger than the second by
a factor of about 3, as shown by Timoshenko.2

Remark 12.14 The effects of shear deformation and rotational inertia are
increasingly strong with increasing order of the modes.

Remark 12.15 It must be remembered, at any rate, that even the so-called
Timoshenko beam model is an approximation, because it is based on the
usual approximations of the beam theory, and the very model of a one-
dimensional solid is no more satisfactory when the slenderness is low. Be-
cause the beam behaves as if it were less and less slender with increasing
order of the modes, high-order modes can be computed using the beam theory
only if the slenderness is high enough.

2S.P. Timoshenko et al., Vibration Problems in Engineering, Wiley, New York, 1974.
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FIGURE 12.17. Effect of shear deformation on the first five natural frequencies of
a simply supported beam. Ratio between the natural frequency computed taking
into account rotational inertia and shear deformation and that computed using
the Euler–Bernoulli model.

12.8 Interaction between axial forces and flexural
vibrations of straight beams

The uncoupling mentioned in the preceding sections is based on the as-
sumption of geometrical linearity, among others. When studying a linear
problem, the equilibrium equations are written applying the loads to the
body in its undeformed configuration. Consider a straight beam to which
an axial force Fz, constant in time, is applied, and assume that the cross-
section of the beam is such that torsional and lateral behavior and bending
in the xz- and yz-planes are uncoupled. If the equilibrium equations in
the xz-plane are written in the deflected position, the bending moment
due to the axial force Fzux(z, t) acting in the xz-plane must be taken into
account. Similarly, in studying the behavior in the yz-plane, the moment
−Fzuy(z, t) must be considered. If shear deformation and rotational inertia
of the cross-sections are neglected, the dynamic equilibrium equation of a
length dz of the beam for rotation about the y-axis (Eq. 12.49) becomes
(Fig. 12.18)

Fxdz +
∂My

∂z
dz − Fz

∂ux

∂z
dz = 0 . (12.105)

The equation of motion can thus be written in the form

ρA
d2ux

dt2
+

∂2

∂z2

[
EIy

∂2ux

∂z2

]
− Fz

∂2ux

∂z2
= fx(z, t) , (12.106)
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FIGURE 12.18. Effect of a constant axial force on the flexural behavior of a
straight beam in the xz-plane; (a) sketch of the system; (b) forces and moments
acting on the length dz of the beam.

or, for a prismatic homogeneous beam,

ρA
d2ux

dt2
+ EIy

∂4ux

∂z4
− Fz

∂2ux

∂z2
= fx(z, t) . (12.107)

The solution of the homogeneous equation governing free oscillations is
again of the type

ux = η(t)q(z) , (12.108)

where the time history η(t) is harmonic. In the case of a prismatic homo-
geneous beam performing harmonic free oscillations with frequency ω, the
equation of motion in the frequency domain is

−ω2ρAq (z) + EIy
d4q (z)

dz4
− Fz

d2q (z)
dz2

= 0 . (12.109)

If the beam is simply supported at both ends, the eigenfunctions are still
those seen for the Euler–Bernoulli beam, and the natural frequencies are

ωi =
iπ

l

√
EIy

ρA

(
iπ

l

)2

+
Fz

ρA
. (12.110)

By introducing the natural frequency ω∗
i , computed without taking into

account the axial force Fz,

ω∗
i =

(
iπ

l

)2
√

EIy

ρA
,
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the slenderness of the beam, and the axial stress

α = l

√
A

Iy
, σz =

Fz

A
,

Equation (12.106) yields

ωi

ω∗
i

=

√
1 +

σz

E

α2

i2π2
. (12.111)

A tensile axial force then causes an increase of the natural frequency, i.e.,
acts as if it increases the flexural stiffness of the beam. An opposite effect
is due to axial compressive forces. The first natural frequency obtained
from Eq. (12.111) is plotted as a function of the axial strain εz = σz/E
for various values of the slenderness α in Fig. 12.19. If the axial stress is
compressive, Eq. (12.111) holds only if

|σz | <
Ei2π2

α2
. (12.112)

When the axial stress reaches one of the mentioned values, the natural
frequency reduces to zero; this means that no stable equilibrium condition
is possible.

Remark 12.16 When the stress is equal to the lowest of these values,
buckling takes place and the expression obtained with i = 1 is the buckling
stress of the beam.

Remark 12.17 An effect similar to that due to an axial force applied to
the end of the beam is because of axial force fields, like the centrifugal field
in propeller or turbine blades. Centrifugal field also causes a stiffening effect
in discs and other parts of rotors.

The limiting case for an infinitely slender beam under tensile axial force,
i.e., a beam whose bending stiffness is negligible when compared with the
stiffening effect of the axial force, is that of a vibrating taut string. If
both the area of the cross-section of the string and the tensile force Fz are
constant, the equation of motion (12.106) reduces to

ρA
d2ux

dt2
= Fz

∂2ux

∂z2
. (12.113)

The equation of motion is then identical to Eq. (12.9), which was ob-
tained for the axial vibration of bars. The results obtained in Section 12.2.1
can be directly used by simply substituting the axial force Fz for the stiff-
ness EA. Equation (12.113) has been obtained from the equation of motion
of a beam subject to axial forces and, therefore, holds under the assump-
tions seen here. They are, however, not needed in the case of a vibrating
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FIGURE 12.19. Effect of an axial force on the first natural frequency of a sim-
ply supported beam. Ratio between the natural frequency computed taking into
account the axial force and that computed using Eq. (12.68) as a function of the
axial strain for beams with different values of the slenderness α.

taut string, and the same equation holds if the lateral displacements are
not small and the tensile force along the string is not constant, provided
the material has a linear stress–strain characteristic.3

Example 12.11 A string whose length is 500 mm has a cross-section of 3

mm2 and is made of a material whose density is ρ = 8,000 kg/m3. Compute

the tensile force in the string in such a way that the first natural frequency

corresponds to the central A (nominal frequency 440 Hz) and the relative am-

plitudes of the harmonics of the vibration obtained by plucking the string at

1/3 of its length.

The first natural frequency is

ω1 =
π

l

√
Fz

ρA
.

By stating that it is equal to 440 Hz = 880π rad/s, it follows that Fz = 4, 646
N. The other harmonics are simply multiples of the fundamental frequency.

3R. Buckley, Oscillations and Waves, Adam Hilger Ltd., Bristol, UK, 1985.
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If the string is plucked at 1/3 of its length, the configuration at time t = 0 is
a triangle, with the vertex at 1/3 of the length. The equation of the deformed
shape at time t = 0 is thus

ux(ζ, 0) = 3ζ for 0 ≤ ζ ≤ 1
3
,

ux(ζ, 0) = 3
2
(1 − ζ) for 1

3
< ζ ≤ 1.

This shape can easily be expressed as a linear combination of the mode shapes.

Because all modes oscillate in phase and are at their maximum amplitude at

time t = 0, the shape of the string at any time can be expressed as

ux(z, t) =
∞∑

i=1

ai sin(iπζ) cos(ωi).

Constants ai, expressing the amplitudes of the various harmonics, can be com-

puted from Eq. (12.28)

ai =
mt

M i

∫ 1

0

ux(ζ, 0) sin(iπζ)dζ =

= 6
∫ 1/3

0

ζ sin(iπζ)dζ + 3
∫ 1

1/3

(1 − ζ) sin(iπζ)dζ.

The results for the first 10 natural frequencies are as follows:

Mode ωi [Hz] ai/a1 Mode ωi [Hz] ai/a1

1 440 1 6 2,640 0
2 880 0.250 7 3,080 0.0206
3 1,320 0 8 3,520 0.0158
4 1,760 −0.0628 9 3,960 0
5 2,200 −0.0402 10 4,400 −0.0102

Note that the third, sixth, ninth, . . . harmonics are not excited. This could be

predicted because the string was plucked in a spot where these harmonics have

a node.

12.9 Exercises

Exercise 12.1 A transmission shaft is made of a circular steel tube and has

two joints at the ends. Without considering the mass of the joints, compute the

first five flexural natural frequencies of the shaft neglecting shear deformations

and rotations of the cross-sections. Repeat the computations, taking into account

shear deformations, and compare the results. Data: inner diameter = 80 mm,
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outer diameter = 100 mm, length = 1.5 m, E = 2.1× 1011 N/m2, ν = 0.3, ρ =

7,810 kg/m3.

Exercise 12.2 A cylindrical chimney is 40 m tall, has an inner diameter of 500

mm, and has a wall thickness of 15 mm. Compute the flexural natural frequencies

and mode shapes (neglecting the influence of compressive stresses due to self-

weight). To perform a dynamic test, a small rocket attached to the top of the

chimney and directed horizontally is fired. The thrust of the rocket instantaneously

reaches the value of 100 N, lasts for 5 s, and then instantaneously drops to zero.

Compute the time history of the various modes and the maximum stresses at the

base of the stack. If necessary, assume that the damping is of structural type,

with a loss factor η = 0.02. Use Duhamel’s integral or numerical integration; if

possible, also use an impulsive approach. Data: E = 2.1 × 1011 N/m2, ν = 0.3,

ρ = 7,810 kg/m3.

Exercise 12.3 Consider the chimney of Exercise 12.2. Compute the modal par-

ticipation factors of the first five modes for an excitation provided by the hori-

zontal motion of the supporting ground. Assume that the chimney is excited by a

horizontal random motion of the ground, whose power spectral density is constant

at 0.003 g2/Hz between 3 and 30 Hz, increases at 9 dB/oct between 0.1 and 3 Hz,

and drops at −12 dB/oct between 30 and 100 Hz.4 Compute the spectrum of the

response of the first five modes and the r.m.s. values of the displacement at the

top and of the stresses at the base.

Exercise 12.4 Compute the natural frequencies of the beam sketched in Fig.

12.20. The beam, having a box structure, is supported at both ends by two cylin-

drical hinges whose axes lie in the horizontal plane. Data: l = 10 m, t = 10 mm,

ρ = 7, 810 kg/m3, a = 500 mm, E = 2.1 × 1011 N/m2, ν = 0.3.

FIGURE 12.20. Exercise 4.4. Sketch of the beam.

4This spectrum is not meant to give any realistic indications on seismic design,
but only as an example of computation of a random response.
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Exercise 12.5 Consider the beam studied as Exercise 12.4. A trolley carrying

an eccentric rotor (of mass mR, eccentricity ε) and rotating at speed Ω travels

along the axis of the beam with speed V . The axis of rotation is horizontal and

perpendicular to the axis of the beam and parallel to y-axis.

Assuming that the center of mass of the rotor (neglecting the eccentricity) is

on the axis of the beam, study the forced vibrations of the beam and evaluate the

dynamic stresses. Neglect the inertia of the trolley and of the rotor, the rotational

inertia of the beam, and shear deformations. Data: mR = 100 kg, ε = 10 mm,

V = 10 m/s, Ω = 3,000 rpm = 314 rad/s.

Exercise 12.6 Repeat the computations related to the beam studied as Exercise

12.5, taking into account the structural damping of the material. Assume a value

of the loss factor η = 0.02.

Exercise 12.7 A connecting rod has an annular cross-section and is hinged at

its ends through two parallel cylindrical hinges. Compute the natural frequencies

of the flexural vibrations in the plane containing the axes of the hinges and in a

plane perpendicular to it. Repeat the computation when a compressive axial force

of 10,000 N acts on the rod. Data: inner diameter = 30 mm, outer diameter =

40 mm, length = 400 mm, E = 2.1 × 1011 N/m2, ν = 0.3, ρ = 7, 810 kg/m3.

Exercise 12.8 Consider the taut string of Example 12.11. Compute the shift of

the fundamental frequency due to a change of the tension equal to 10%. Compute

the response of the string when it is plucked at 1/4 of its length (assume the

original value of the tension). Assume that the point at 1/4 of the length of the

string is displaced of 10 mm and released, and compute the actual amplitude of

the various modes and the maximum value of the kinetic energy related to them.

How is the energy distributed among the modes? Data: l = 500 mm, A = 3 mm2,

ρ = 8,000 kg/m3.



13
General Continuous Linear Systems

Apart from vibrating beams, other continuous models can be used to ob-
tain closed-form solutions. Although in practical applications nowadays dis-
cretization techniques are more used than continuous models, a quick survey
of the latter may be useful. Also the problems related to wave propagation
in solids and fluids are touched.

13.1 Elastic continuums

Usually a deformable body is modeled as an elastic continuum or, in the
case its behavior can be assumed to be linear, as a linear elastic continuum.
It is clear that the elastic continuum is only a model, since no actual body is
such at an atomic scale, but for most objects studied by structural dynamics
the continuum model is more than adequate. Besides, it is to exclude (not
only from a practical point of view but also for theoretical reasons) the
possibility of using the discontinuous structure of matter to build a model
with a very large, but finite, number of degrees of freedom.

An elastic body can be thought of as consisting of an infinity of points.
To describe the undeformed (or initial) configuration of the body, a refer-
ence frame is set in space. Many problems can be studied with reference
to a two-dimensional frame or, as seen in the previous chapter for beams,
even a single coordinate, but there are cases in which a full tridimensional
approach is required. The characteristics of the material are stated as func-
tions of the position defined in all the portions of space (or plane or line)
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FIGURE 13.1. Deformation of an elastic continuum; reference frame and
displacement vector.

that are occupied by the continuum. These functions need not, in general,
be continuous.

The configuration at any time t can be obtained from the initial con-
figuration once a vector function −→u (x, y, z, t) expressing the displacements
of all points is known (Fig. 13.1). The displacement of a point is a vector,
with a number of components equal to the number of dimensions of the
reference frame. Usually the components of this vector are taken as the
degrees of freedom of each point, even if in some cases a different choice is
considered; the number of degrees of freedom of an elastic (or, more gener-
ally, deformable) body is thus infinite. The components of the displacement
can be considered as continuous functions of space coordinates and time,
and the theory of continuous functions is the natural tool for dealing with
deformable continua.

Remark 13.1 The function −→u (x, y, z, t) describing the displacement of the
points of the body is differentiable with respect to time at least twice; the first
derivative gives the displacement velocity and the second the acceleration.
Usually, however, higher-order derivatives also exist.

If displacements and rotations can be considered as small, to avoid in-
troducing geometrical nonlinearities, the definition of stresses and strains
used in elementary theory of elasticity can be stated. When the dynamics
of an elastic body can be dealt with as a linear problem, as when the behav-
ior of the material is linear and no geometrical nonlinearity is considered,
an infinity of natural frequencies exist as a consequence of the infinity of
degrees of freedom of the model.
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Assuming that the forces acting on the body are expressed by the func-
tion f(x, y, z, t), the equation of motion can generally be written as

D[u(x, y, z, t)] = f(x, y, z, t) , U [u(x, y, z, t)]B = 0, (13.1)

where the differential operator D completely describes the behavior of the
body and operator U , defined on the boundary, states the boundary condi-
tions (only homogeneous boundary conditions are described by Eq. (13.1)).
The actual form of the differential operator can be obtained by resorting
directly to the dynamic equilibrium equations or by writing the kinetic and
potential energies and using Lagrange equations. The boundary conditions
usually follow from geometrical considerations.

In the case of the axial behavior of beams studied in the previous chapter
the differential operator D is defined by Eq. (12.3):

D(uz) = m(z)
d2uz

dt2
− ∂

∂z

[
k(z)

∂uz

∂z

]
. (13.2)

Since the problem is one dimensional this is one of the simplest cases
and a closed-form solution could be found.

In general, the solution of Eq. (13.1) exists if an inverse operator D−1

can be defined,
u(x, y, z, t) = D−1[f(x, y, z, t)] , (13.3)

so that the time history of the displacements of all points of the body can
be obtained from the time history of the forces applied to it.

Remark 13.2 Equation (13.3) is just a formal statement; in most cases
the relevant operator cannot be written in explicit form, particularly when
the boundary conditions are not the simplest ones.

The computational difficulties arise both from the differential equations
themselves and, even more, from the boundary conditions. They can be
overcome only in a few simple cases: Most problems encountered in en-
gineering practice require dealing with complex structures and the use of
continuous models describing them in detail is, consequently, ruled out.

The traditional approach was to resort to much simplified models, like
the beam theory seen in the previous chapter or the plate theory seen here
or to even more simplified discrete models.

For complex shapes the only feasible approach is the discretization of
the continuum and then the application of the methods seen for discrete
systems. The substitution of a continuous system, characterized by an in-
finity of degrees of freedom, with a discrete system, sometimes with a very
large but finite number of degrees of freedom, is usually referred to as
discretization. This step is of primary importance in the solution of prac-
tical problems, because the accuracy of the results depends largely on the
adequacy of the discrete model to represent the actual system.
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The fact that the solutions of continuous models have the same prop-
erties as the solutions of discrete models is a prerequisite for the suc-
cess of discretization techniques. The eigenvectors obtained by discretiza-
tion are m- and k-orthogonal exactly as the eigenfunctions of the original
continuous system; any general solution of the discretized model can be ex-
pressed as a linear combination of the eigenvectors exactly like the general
solution of the original system can be expressed in terms of eigenfunctions.
Moreover, the modal decomposition of a continuous system is a sort of dis-
cretization that holds exactly, at least if an infinity of eigenfunctions are
used.

The above-mentioned properties were demonstrated in the previous chap-
ter for beams, but can be demonstrated, although with much greater diffi-
culty, in general.

13.2 Flexural vibration of rectangular plates

Consider a plate that is thin enough to be modeled as a two-dimensional
system: It can be considered as a two-dimensional equivalent of the beam
studied in Chapter 12. In the case of plates, two basic formulations ex-
ist: In the simplest one, the so-called Kirchoff plate, corresponding to the
Euler–Bernoulli beam, shear deformation is neglected and any line perpen-
dicular to the plate is assumed to remain perpendicular to the deflected
mid-surface during deformation. The second formulation, in which shear
deformation is not neglected, is referred to as Mindlin plate, and is similar
to the Timoshenko beam.

Even if the analysis is limited to the first formulation and the displace-
ments are assumed to be small enough to allow a complete linearization
of the problem, the analysis is far more complex than what was seen for
beams. As a consequence, only a short account will be given here.1

A reference frame with axes x and y contained in the mid-plane of the
plate is stated (Fig. 13.2a). Consider a small portion of plate, with length
and width equal to dx and dy, and study the forces and moments exerted
on it by the other parts of the plate though its lateral surfaces (Fig. 13.2b).

A shearing force (per unit length) Fy, a bending moment (per unit
length) My, and a twisting moment (per unit length) Myx act on the sides
parallel to y-axis. In a similar way, the forces and moments acting on the
sides parallel to x-axis are Fx, Mx, and Mxy.

While a sort of uncoupling between the ‘in-plane’ and the flexural be-
haviors can be stated for the plates as was seen for beams, and thus no
in-plane forces are considered in the study of plate bending, flexural and

1For a complete description of the static behavior of plates, see S. Timoshenko, S.
Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York, 1959.
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FIGURE 13.2. Plate: (a) geometrical definitions and system of reference; (b)
forces and moments acting on a small portion of the plate.

twisting behavior cannot be uncoupled, as it was the case for torsional and
flexural behavior of beams.

If a surface force distribution fz(x, y, t) acts on the plate, the dynamic
equilibrium equation for translations in the z direction is

ρh
d2uz

dt2
dxdy =

∂Fx

∂x
dxdy +

∂Fy

∂y
dxdy + fzdxdy . (13.4)

Equation (13.4) is the two-dimensional equivalent of Eq. (12.48). Neglecting
the rotational inertia of the cross-section and canceling all terms containing
negligible quantities, the equilibrium equation to rotation about x- and y-
axes are, respectively,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Mxy

∂x
+

∂Mx

∂y
+ ∂Fx = 0

∂My

∂x
+

∂Mxy

∂y
− ∂Fy = 0.

(13.5)

By introducing Eq. (13.5) into Eq. (13.4) and remembering that because
τxy = τyx, Mxy = −Myx, it follows that

ρh
d2uz

dt2
=

∂2My

∂x2
+ 2

∂2Mxy

∂x∂y
− ∂2Mx

∂y2
+ fz . (13.6)

The bending and twisting moments can be easily linked to the deforma-
tion of the plate. The bending moment My about y-axis is directly linked
with the curvature of the plate in xz-plane, as it was the case of beams, but
also to the curvature in yz-plane. The cross-section of a beam deflecting in
xz-plane is subjected to a lateral deformation, due to lateral contraction,
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expressed by Poisson’s coefficient. In the case of a plate such deformation
is constrained by the adjacent parts of the plate and gives way to a bend-
ing moment Mx in yz-plane. A similar consideration holds for the bending
moment in xz-plane.

By approximating the curvatures with the second derivatives

∂2uz

∂x2
and

∂2uz

∂y2
,

it follows that ⎧⎪⎪⎨
⎪⎪⎩

My = −B

(
∂2uz

∂x2
+ ν

∂2uz

∂y2

)

Mx = B

(
∂2uz

∂y2
+ ν

∂2uz

∂x2

)
,

(13.7)

where

B =
Eh3

12 (1 − ν2)
(13.8)

is the bending stiffness of the plate.
In a similar way, the twisting moment can be expressed as

Mxy = −B (1 − ν)
∂2uz

∂x∂y
. (13.9)

By introducing the expressions for the bending and twisting moments
into the equation of motion (13.6), the latter yields

ρh

B

∂2uz

∂t2
+

∂4uz

∂x4
+ 2

∂4uz

∂x2∂y2
+

∂4uz

∂y4
=

fz

B
. (13.10)

The differential operator of Eq. (13.1) is thus

D =
[
ρh

∂2

∂t2
+ B

∂4

∂x4
+ 2B

∂4

∂x2∂y2
+ B

∂4

∂y4

]
uz . (13.11)

The force fz(x, y, t) must be set to zero in the study of free vibration
and Eq. (13.10) reduces to a homogeneous equation. Its solution can be
expressed as the product of a function of the space coordinates by a function
of time:

uz(x, , y, t) = q(x, y)η(t), (13.12)

which is the two-dimensional equivalent of Eq. (12.8).
The function of time η(t) is harmonic and the form of Eq. (12.12) can be

assumed. Also in this case function q(x, y) can be regarded as a principal
or normal function and can be obtained from the equation

ω2 ρh

B
q(x, y) +

∂4q(x, y)
∂x4

+ 2
∂4q(x, y)
∂x2∂y2

+
∂4q(x, y)

∂y4
= 0 . (13.13)
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An eigenproblem is thus obtained, although a far more complex one than
those encountered in the study of one-dimensional systems. Remarkable
difficulties can arise in the statement of boundary conditions, particularly
when the geometrical shape of the boundary is not of the simplest type.

Consider the case of a rectangular plate of length a (in the x-direction)
and width b (in the y-direction). If the lower-left corner is in the origin of
the xy reference frame, the boundaries of the plate are the straight lines
of equations x = 0, x = a, y = 0, and y = b. Assume that the plate is
simply supported at its edges, i.e., that the displacement and curvature in
the plane containing the edge are equal to zero. The bending moment along
the edge must vanish as well. These three conditions can be shown to be
equivalent to the two conditions2:

q = 0,
∂2q

∂x2
= 0 along the lines x = 0 and x = a

q = 0,
∂2q

∂y2
= 0 along the lines y = 0 and y = b .

(13.14)

The solution of the eigenproblem, even with the present very simple
boundary conditions, is rather complex. It can be shown that the eigenval-
ues are3

ωij = π2

[(
i

a

)2

+
(

j

b

)2
]√

B

ρh
= π2

[(
i

a

)2

+
(

j

b

)2
] √

Eh2

12ρ(1 − ν2)
,

(13.15)
and the corresponding eigenfunctions are

qij = q0 sin
(

iπx

a

)2

sin
(

jπy

b

)2

, i, j = 1, 2, . . .

Constants i and j are the number of half-waves of the deflected shape in
the x- and y-directions, respectively. The eigenfunctions can be shown to
possess the usual properties of orthogonality with respect to both stiffness
and mass. Because the thickness and the material properties are constant,
the eigenfunctions are strictly orthogonal. Some eigenfunctions are shown
in Fig. 13.3. In the figure, the nodal lines, i.e., the lines along which the
amplitude of the vibration vanishes, are clearly visible. They are straight
lines; those parallel to the x-axis are j − 1, and those parallel to the y-axis
are i−1, excluding the boundaries of the plate, which are themselves nodal
lines.

2For a detailed description of the boundary conditions, see S. Timoshenko, S.
Woinowsky-Krieger, Theory of Plates and Shells, Mc Graw Hill, New York, 1959.

3L. Meirovitch, Analytical Methods in Vibrations, Macmillan, New York, 1967, p. 184.
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FIGURE 13.3. Nine eigenfunctions of a rectangular plate.

Remark 13.3 If the plate is square (a = b), the eigenfrequency of order
i, j is coincident with that of order j, i. In all cases in which coincident
eigenfrequencies are found, any linear combinations of the eigenfunctions
is itself an eigenfunction and often happens that those obtained from the
computations are not the more significant or obvious ones.

No other case will be studied here because, even in the case of circu-
lar plates, the analysis is fairly complex and it is necessary to resort to
Bessel’s functions. Actually, while in the study of the static behavior of
circular plates symmetry can simplify the problem, this cannot be done in
dynamics, as even if the system possesses some properties of symmetry and
is loaded by a symmetric forcing function, free vibrations whose modes are
not symmetrical can exist and can be excited by any small deviation from
symmetry.

Example 13.1 Consider a square plate simply supported at all sides; com-
pute the first frequencies corresponding to modes with up to three half-waves
in both directions. Because the second and third modes correspond to identical
eigenfrequencies (i.e., to a multiple eigenvalue), find the linear combinations
of the eigenfunctions yielding nodal lines coinciding with the diagonals of the
square plate. Data: a = b = 1 m, h = 10 mm, E = 2.1×1011 N/m2, ρ = 7, 810
kg/m3, ν = 0.3. The natural frequencies can be computed using Eq. (13.15):
ω11 = 98.6 rad/s = 15.7 Hz, ω12 = ω21 = 246.4 rad/s = 39.2 Hz, ω13 = ω31

= 492.8 rad/s = 78.4 Hz, ω22 = 394.3 rad/s = 62.8 Hz, ω23 =ω32 = 640.7
rad/s = 102.0 Hz, ω33 = 887.1 rad/s = 141.2 Hz.
The eigenfunctions related to the modes with i = 1, j = 2 and i = 2, j = 1
are
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q12(x, y) = q0 sin (πx) sin (2πy)

and
q21(x, y) = q0 sin (2πx) sin (πy) .

Any linear combination of these modes

K1 sin (πx) sin (2πy) + K2 sin (2πx) sin (πy)

is itself a mode. With simple trigonometric manipulations the expression of
the generic linear combination becomes

2 sin (πx) sin (πy)[K1 cos (πy) + K2 cos (πx)] .

The values of the coefficients yielding a mode shape whose nodal line coincides
with the diagonal of the square expressed by the equation x = y are readily
obtained. The equation of the nodal line is simply obtained by equating to zero
the expression of the mode shape given earlier.
By noting that the product outside brackets coincides with the first mode shape
and never vanishes inside the plate, the equation of the nodal lines can be
reduced to

K1 cos (πy) + K2 cos (πx) = 0.

Introducing the equation of the first diagonal of the plate x = y in the equation
so obtained, it follows that K1 + K2 = 0, i.e., K1 = −K2.
The equation of the other diagonal is x = 1−y. By introducing this expression
into the equation of the nodal lines it follows that K1 = K2. The mode shapes
so obtained are shown in Fig. 13.4.

FIGURE 13.4. Mode shapes corresponding to the multiple eigenvalues chosen in
such a way that the nodal lines coincide with the diagonals of the plate.

13.3 Vibration of membranes

A membrane is like a very thin plate, with a vanishingly small bending stiff-
ness, in which the restoring force is supplied by in-plane tensile forces. Like
the plate was the two-dimensional equivalent of the beam, the membrane
is the two-dimensional equivalent of the taut string. Also in this case the
equation of motion could be obtained by adding the in-plane forces to the
plate, taking into account the nonlinear coupling between flexural and ‘in-
plane’ behavior, linearizing and then reducing to zero the bending stiffness.
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This procedure would however be exceedingly, and actually nonnecessarily,
complex.

The dynamic equilibrium equation of a portion of membrane of length
dx and width dy is the same already seen for plates (Eq. (13.4))

ρh
d2uz

dt2
=

∂Fx

∂x
+

∂Fy

∂y
+ fz .

The shear forces cannot be obtained from the bending moments, which
do not exist in a membrane. They can however be directly derived from
the in-plane tensile forces, which are known. If T is the tensile force per
unit length acting in the plane of the membrane, when the mid-plane is
deflected to the deformed shape uz(x, y, z), the forces per unit length acting
on the sides parallel to x- and y-axes are, respectively,

Fx = T
∂uz

∂x
, Fy = T

∂uz

∂y
. (13.16)

By introducing Eq. (13.16) into Eq. (13.4), it follows that

ρh
d2uz

dt2
= T

(
∂2uz

∂x2
+

∂2uz

∂y2

)
+ fz . (13.17)

The study of the free oscillations can follow the same guidelines seen
for the plates, with the only obvious difference of dealing with a simpler
equation. The solution for free vibrations is again Eq. (13.12) and function
η(t) is harmonic. The normal functions q(x, y) can thus be obtained from
the equation

−ω2 ρh

T
q(x, y) =

∂2q(x, y)
∂x2

+
∂2q(x, y)

∂y2
. (13.18)

In this case the solution of the characteristic equation is straightforward.
The normal function q(x, y) can be assumed to be the product of a function
of x by a function of y

q(x, y) = q1(x)q2(y) (13.19)

obtaining

ω2 ρh

T
+

1
q1(x)

d2q1(x)
dx2

+
1

q2(y)
d2q2(y)

dy2
. (13.20)

Since this equation must hold for any values of x and y, it can be split
into the two equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d2q1(x)
dx2

= α2q1(x)

d2q2(y)
dy2

= β2q2(y),

(13.21)
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where
α2 + β2 = ω2 ρh

T
.

The general solution of Eq. (13.21) is
{

q1(x) = C1 sin(αx) + C2 cos(αx)
q2(y) = C3 sin(βy) + C2 cos(βy) . (13.22)

Also in this case some difficulties can be encountered in stating the
boundary conditions in all cases but that of the simplest geometrical shapes.
If the membrane is rectangular, of length a and width b, the boundary con-
ditions are simply stated assuming that

q1(x) = 0 for x = 0 and x = a
q2(y) = 0 for y = 0 and y = b.

(13.23)

From the conditions at x = 0 and y = 0, it follows immediately that
constants C2 and C4 are equal to 0. The conditions at x = a and y = b
allow to find a solution different from the trivial solution only if

α =
iπ

a
and β =

jπ

b
for i, j = 1, 2, 3, ... (13.24)

The relationship linking constants α and β to the frequency ω allows to
compute the eigenfrequencies of the membrane

ωij = π

√
T

ρh

√
i2

a2
+

j2

b2
for i, j = 1, 2, 3, ... (13.25)

The eigenfunctions are

qij = q0 sin
(

iπx

a

)2

sin
(

jπy

b

)2

, i, j = 1, 2, . . . ,

and coincide with those seen for the supported rectangular plate.

Remark 13.4 While in the case of a vibrating taut string the natural fre-
quencies are in harmonic proportion, i.e., are proportional to the sequence
of the natural numbers, the natural frequencies of a membrane are spaced
in a more complicated and less regular way. This partially explains the
peculiar characteristics of the sound of musical instruments based on a vi-
brating membrane, like the drum, as opposite to those based on vibrating
strings.

Also in the case of membranes no other boundary conditions will be dealt
with here, as even in the simple case of a circular membrane it is necessary
to resort to Bessel’s functions.
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13.4 Propagation of elastic waves in taut strings

Consider the taut string studied in the last part of Section 12.8. The equa-
tion of motion of the string (12.113)

d2ux

dt2
=

Fz

ρA

∂2ux

∂z2
(13.26)

can be considered as a wave equation and constant

v =

√
Fz

ρA

is the speed of propagation of the waves along the string. This can be
readily shown by taking an arbitrary function

f(ζ), where ζ = z ± vt,

and noting that its derivatives

d2f

dt2
= v2 ∂2f

∂ζ2
;

∂2f

∂z2
=

∂2f

∂ζ2
(13.27)

satisfy Eq. (12.113). Any function of z ± vt is a solution of the equation of
motion.

Since function f(ζ) = f(z) for time t = 0, it represents the initial de-
formed configuration of the string. As time goes on, the deformed config-
uration travels along the string toward the positive z-axis if the solution
with sign (−) is taken, or in the opposite direction if the solution with sign
(+) is considered. The motion of the deformed configuration, which does
not involve any actual movement of matter in the z-direction, takes place
with speed v. No change in shape takes place, apart from this displacement.

Remark 13.5 The actual motion of the string takes place in the x-direction
while the waves propagate in the z-direction. When this occurs, the wave
is said to be a transversal wave. In the case of the longitudinal behavior of
bars, which is governed by Eq. (12.9), however, the direction of the motion
and that of propagation coincide and the wave is said to be a longitudinal
wave.

The general solution of Eq. (12.113) can be expressed as

ux(z, t) = f1(z + vt) + f2(z − vt) , (13.28)

where f1 and f2 are two arbitrary functions that represent the shape of two
waves traveling to the left and right, respectively. Owing to the complete
linearity of the equation of motion, the solutions can simply be added to
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each other, and when the two waves meet along the string, the relevant
amplitudes can simply be added for any value of time and z-coordinate.

In the analysis performed up to now, the string has been considered
infinitely long and no boundary condition has been assumed. Consider an
indefinite string on the positive half of the z-axis. Assume that the origin
(z = 0) is a fixed point and that a general disturbance ux = f1(z + vt)
travels toward the origin (Fig. 13.5a). At a certain time the disturbance
reaches the end of the string, which is fixed (Fig. 13.5b).

The boundary condition can be introduced simply by adding a second
function f2(z− vt), i.e., by adding a second wave traveling to the right and
computing the unknown function f2 in such a way that the displacement
in the origin is always equal to zero:

ux(0, t) = f1(z + vt) + f2(z − vt) = 0 , for z = 0, at any time, (13.29)

i.e.,
f2(ζ) = −f1(−ζ). (13.30)

The complete solution of the equation of motion is

ux(z, t) = f1(z + vt) − f1(−z + vt). (13.31)

The first term is the original wave traveling toward the left and the
second term is a reflected wave, reversed in space and with opposite sign,
traveling toward the right. To show this reversal of shape, an unsymmetrical
disturbance is shown in Fig. 13.5. An easy way to visualize the reflection
of a wave at a fixed point is to consider the string as if it were infinite

FIGURE 13.5. Reflection of a wave at a fixed end of a semi-indefinite string.
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by adding a ghost string to the left of the origin. The original wave, after
reaching the origin, passes to the ghost string, while the reflected wave,
coming from the latter, passes on the actual string.

The solution of the equation of motion was first assumed to be of the type
of Eq. (12.8) and then of Eq. (13.28), i.e., as a stationary oscillation and
as a wave propagating along the system. Both have been claimed to be the
general solution of the problem, so they must in some way be equivalent.

At time t = 0, give it a disturbance of the type

ux(z, 0) = q0 sin
(

iπz

l

)
(13.32)

to a string extending from z = 0 to z = l. The solution can be expressed
as a wave traveling to the left and reflecting in the origin, a fixed point,

ux(z, t) = q0 sin
[
iπ

l
(z + vt)

]
− q0 sin

[
iπ

l
(−z + vt)

]
. (13.33)

Note that the boundary condition at the other end is satisfied because
Eq. (13.33) yields ux(l, t) = 0 for any value of t. By remembering some
simple trigonometric identities, Eq. (13.33) can be transformed to

ux(z, t) = 2q0 sin
(

iπz

l

)
cos

(
iπv

l
t

)
. (13.34)

The solution expressed by Eq. (13.34) is a standing wave because it does
not move along the string and it coincides with the vibration at the ith
natural frequency

ωi =
iπv

l
=

iπ

l

√
Fz

ρA
. (13.35)

Its shape coincides with the ith mode shape of the string. A harmonic
standing wave can thus be considered the sum of two identical harmonic
waves traveling in opposite directions.

Remark 13.6 The identity of the two ways of describing the free vibration
of a continuous system seen for the case of a taut string is general and also
applies to all other cases studied here, even if greater analytical difficulties
can arise.

For example, in the case of the axial vibration of a bar the ends can be
clamped or free. The reflection of a wave at a clamped end follows closely
what is seen for the strings while in the case of a free end the reflected wave
is not changed in sign:

f2(ζ) = f1(−ζ). (13.36)

The displacement at a free end is thus doubled with respect to the general
displacement in the bar.
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13.5 Propagation of sound waves in pipes

Although the detailed study of wave-propagation phenomena is well be-
yond the scope of this book, a simple model that allows the study of the
one-dimensional propagation of sound waves will be summarized. Consider
a pipe of cross-section A, filled with a gas with pressure p0 and density
ρ0. Assume that all parameters related to the local properties of the gas
(pressure p, density ρ, velocity in axial direction V ) are functions of the
axial z-coordinate alone (Fig. 13.6).

This assumption is equivalent to those at the base of beam theory and
allows a description of the phenomenon of wave propagation using only one
space coordinate. A first equation can be stated by observing that the net
flow into the control volume of length dz must be equal to the increase of
the mass contained in the same volume:

dρ

dt
Adzdt = [(ρV )z − (ρV )z+dz] Adt . (13.37)

This equation, generally referred to as the conservation of mass equation,
or simply the continuity equation, can be written as

dρ

dt
= −∂(ρV )

∂z
. (13.38)

The momentum of the gas contained in the control volume ρV Adz can
change during time dt owing to the momentum of the gas entering the same
volume and the total impulse of pressure forces:

d (ρV )
dt

Adzdt =
[
(ρV 2)z − (ρV 2)z+dz

]
Adt + (pz − pz+dz)Adt . (13.39)

The equation expressing the conservation of momentum is thus

d(ρV )
dt

= −∂(ρV 2)
∂z

− ∂p

∂z
. (13.40)

FIGURE 13.6. Wave propagation in a pipe filled with gas.



336 13. General Continuous Linear Systems

A third equation expressing the usual relationship between pressure and
density during adiabatic changes

p

p0
=

(
ρ

ρ0

)γ

, (13.41)

where γ is the ratio between the specific heat at constant pressure and
volume, respectively, can be added. Without entering into details about the
assumption of adiabatic wave propagation, Eq. (13.41) will be assumed to
be an expression of the conservation of energy. Equations (13.38), (13.39),
(13.40) and (13.41) are a set of three nonlinear equations describing sound-
wave propagation in the pipe.

A linearization of these equations can, however, be performed. Pressure,
density, and velocity can be expressed as small variations about the static
values p0, ρ0, and 0 (the gas is at a standstill as an average):

p = p0 + p1 , ρ = ρ0 + ρ1, and V = V1. (13.42)

Functions p1(z, t), ρ1(z, t), and V1(z, t) are all assumed to be small quan-
tities. The relevant equations can be simplified by neglecting the terms
containing products of small quantities, obtaining

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dρ1

dt
= −ρ0

∂V1

∂z

dV1

dt
= − 1

ρ0

∂p1

∂z

,
p1

p0
= γ

ρ1

ρ0
. (13.43)

By eliminating p1 and ρ1 these equations yield the following wave equa-
tion

d2V1

dt2
= γ

p0

ρ0

∂2V1

∂z2
. (13.44)

The speed of propagation of the waves, i.e., the speed of sound in the
gas, is

vs =
√

γp0

ρ0
=

√
γRT, (13.45)

where R is a constant depending on the nature of the gas and T is the ab-
solute temperature. For air at standard temperature, pressure, and density,
the value of γ is roughly 7/5, the pressure is about p0 = 1 × 105 Pa, and
the density is ρ0 =1.29 kg/m3; the speed of sound is thus vs = 330 m/s.

In order to evaluate the approximations linked with linearization, con-
sider a sound with an intensity of 140 dB, corresponding to the threshold
of pain. The measure of sound pressure in decibels is defined as

20 log10

(
p1

pref

)
,
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where the reference pressure pref = 2 × 10−5 Pa corresponds roughly to
the threshold of human hearing at a frequency of 1 kHz. With easy compu-
tations it is possible to show that the pressure at the threshold of pain is
of about 200 Pa. The ratio p1/p0 for such a very loud sound is then about
2 × 10−3 . This shows that the linearized theory is quite acceptable for
almost all practical applications.

This model can be applied to the propagation of sound in an infinitely
long pipe. If the length of the pipe is limited, appropriate boundary con-
ditions must be stated, and standing waves can be found. Note that the
speed of propagation of sound does not depend on the frequency, at least
in the case of the linearized theory. This is, however, not a general rule for
all wave-propagation phenomena: An example of waves that are dispersive,
i.e., their speed of propagation depends on the frequency, is that of water
waves in deep waters. The waveform of any wave can be considered the
superimposition of harmonic waves, each having its own frequency. If they
propagate at different speeds, the waveform distorts continuously during
propagation.

For a more detailed introduction to wave-propagation phenomena, the
already-mentioned book by R. Buckley4 can be referred to.

13.6 Linear continuous systems with
structural damping

Within the validity of the model of the complex modulus of elasticity, struc-
tural damping can be simply accounted for by substituting the Young’s
modulus E or the shear modulus G with the complex moduli E(1+ iη) and
G(1 + iη), respectively.

In the present section only homogeneous systems will be studied. In this
case a sort of proportional structural damping is present and the normal
modes found for the undamped system can be used to obtain a set of
uncoupled equations of motion, whose number is theoretically infinite. In
the more general case where the loss factor of the material is not constant,
this approach is no more possible, and the complex differential equation of
motion must be dealt with.

Consider as an example the bending behavior in xz-plane of a prismatic
homogeneous beam. Taking into account the loss factor of the material,
Eq. (12.59) transforms into

−ω2q(z) = E(1 + iη)
Iy

ρA

d4q(z)
dz4

. (13.46)

4R. Buckley, Oscillations and Waves, Adam Hilger Ltd., Bristol, 1985.
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Remark 13.7 Only a frequency-domain equation has been written, since
the hysteretic damping model can be used only in case of harmonic motion.

This equation is identical to Eq. (12.59), except for the term (1 + iη). If
ω∗ is a natural frequency of the undamped system, the complex frequency
of the damped system is

ν = is = ω∗√1 + iη. (13.47)

By separating the real and imaginary parts of the complex frequency
and remembering that η is usually very small if compared with unity, the
frequency and the decay rate are⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ω = �(s) = ω∗

√
1 +

√
1 + η2

2
≈ ω∗

σ = �(s) = −ω∗

√
−1 +

√
1 + η2

2
≈ −η

2
ω∗ .

(13.48)

The frequencies of the damped free vibrations are then very close to those
of the corresponding undamped system, while the decay rate is equal to
the corresponding natural frequency multiplied by half of the loss factor of
the material. The eigenfunctions of the undamped system can be used to
obtain the modal masses, stiffness, and forces (the latter in case of forced
vibrations).

13.7 Exercises

Exercise 13.1 A chisel has a square cross-section with side a = 10 mm and

length l = 500 mm. Compute the time needed for the pressure wave caused by a

hammer striking the end of the chisel to reach the bit. Assume that the bit of the

chisel is pressed against a rigid surface and can be considered perfectly clamped.

If the blow of the hammer causes a stress wave whose profile can be assumed to

be a trapezium, plot the profile of the incident wave and of the wave reflected back

at different times.

Exercise 13.2 Compute the length of a pipe with closed ends in such a way that

the air contained into it can vibrate with a fundamental frequency corresponding to

the central A (nominal frequency 440 Hz). Compute the other natural frequencies

and state whether they are multiples of the fundamental frequency. Data: γ ≈
7/5, p0 = 1.007× 105 Pa, ρ0 = 1.29 kg/m3.

Exercise 13.3 Compute the natural frequencies of a rectangular steel mem-

brane with ratio between the sides of 1:2, clamped at all edges. Data: a = 0.5 m,

b = 1 m, ρ = 7810 kg/m3, t = 0.1 mm, in-plane stress σ = 1 × 106 Pa.
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Exercise 13.4 Consider the membrane of the previous exercise. The supporting

frame receives a shock defined by a duration of 11 ms and an acceleration increas-

ing linearly from 0 to 20 g. State which modes are excited and compute through

numerical integration in time the time history of the modal oscillations. Compute

an upper bound for the maximum displacement at the center of the membrane.



14
Discretization of Continuous Systems

A number of discretization techniques were developed with the aim of
avoiding the overwhelming difficulties found in the solution of the partial
derivatives equations related to continuum models. They are particularly
useful when the shape of the continuous system, and hence the boundary
conditions, is complex. Their aim is to replace a discrete model for the
continuous one, i.e., to replace a model based on a set of ODEs for the
continuous model made of PDEs.

14.1 Overview of discretization techniques

Over the last two centuries, many discretization techniques have been
developed with the aim of replacing the equation of motion consisting of
partial derivative differential equations (with derivatives with respect to
time and space coordinates) with a set of linear ordinary differential equa-
tions containing only derivatives with respect to time. The resulting set of
equations, generally of the second order, is of the same type as seen for
discrete systems (hence the term discretization).

Another problem, which is now far less severe due to the growing power
of computers, is linked with the size of the eigenproblem obtained through
discretization techniques. Before the widespread use of electronic comput-
ers, the solution of an eigenproblem containing matrices whose order was
greater than a few units was very difficult, if not insoluble. Many techniques
were aimed at reducing the size of the eigenproblem or transforming it into
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a form that could be solved using particular algorithms. The possibility of
solving very large eigenproblems without long or costly computations did
actually change the basic approach to dynamic problems, making many
popular methods obsolete.

At a first sight it would seem straightforward to discretize any continuous
system through modal decomposition: The eigenfunctions allow to write a
set of ordinary differential equations of motion in the modal coordinates.
The fact that their number is theoretically infinite is not a problem: the
approximation obtained by using an adequate (usually quite low) number
of them is more than acceptable.

Unfortunately this strategy does not work: Searching for the eigenfunc-
tions is usually the most difficult step in solving a continuous system, and
the system must be discretized before and not after obtaining them.

It is difficult to make a satisfactory classification of discretization tech-
niques, and perhaps impossible to make a complete one. It is, however,
possible to attempt to group them in three classes.

The first class is that of the methods in which the deformed shape of
the system is assumed to be a linear combination of n known functions of
the space coordinates, defined in the whole space occupied by the body.
These methods could be labeled as assumed-modes methods, owing to the
similarity of these functions, which are arbitrarily assumed, with the eigen-
functions (i.e., the mode shapes) of the system.

The second class is that of the so-called lumped-parameters methods . The
mass of the body is lumped in a certain number of rigid bodies (sometimes
simply point masses) located at given stations in the deformable body.
These lumped masses are then connected by massless fields that possess
elastic, and sometimes damping, properties. Usually the properties of the
fields are assumed to be uniform in space. Because the degrees of freedom
of the lumped masses are used to describe the motion of the system, the
model leads intuitively to a discrete system. While the mass matrix of such
systems is easily obtained, it is often quite difficult to write the stiffness
matrix, or, alternatively, its compliance matrix.

To avoid such difficulty, together with that linked to the solution of large
eigenproblems, an alternative approach can be followed. Instead of dealing
with the system as a whole, the study can start at a certain station and pro-
ceed station by station using the so-called transfer matrices . Methods based
on transfer matrices were very common in the recent past, because they
could be worked out with tabular manual computations or implemented on
very small computers. Their limitations are now making them yield to the
finite element method. This change between the two approaches is not yet
complete, and many computer codes based on transfer matrices are still
in use.

It is also possible to model a continuous system by lumping the elastic
properties at given stations leaving the inertia properties as distributed
along the fields. Such methods were proposed but seldom used.
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A separate class can be assigned to the finite element method (FEM).
In the FEM, the body is divided into a number of regions, called finite
elements, as opposed to the vanishingly small regions used in writing the
differential equations for continuous systems. The deformed shape of each
finite element is assumed to be a linear combination of a set of functions of
space coordinates through a certain number of parameters, considered as
the degrees of freedom of the element.

Usually such functions of space coordinates (called shape functions) are
quite simple and the degrees of freedom have a direct physical meaning:
They are the generalized displacements at selected points of the element,
usually referred to as nodes . The analysis then proceeds by writing a set
of differential equations of the same type as those obtained for discrete
systems.

The use of the FEM can be limited to writing the stiffness matrix to
be introduced into a lumped-parameters approach; alternatively, it can be
used to write the mass matrix too. In this case, the mass matrix is said
to be consistent , because it is obtained in the same way as the stiffness
matrix.

Although often considered a separate approach, the dynamic stiffness
method will be regarded here as a particular form of the FEM in which
the shape functions are obtained from the actual deflected shape in free
vibration. The facts that it can be used only for free vibration or harmonic
excitation and that the dynamic stiffness matrix it yields is a function of
the frequency have prevented it from becoming very popular.

The FEM is gaining popularity for the unquestionable advantage of being
implemented in the form of general-purpose codes, which can be used for
static and dynamic analyses, and interfaced with CAD and CAM codes.

The finite difference method will not be dealt with, because it is consid-
ered more as a method for the solution of the differential equations obtained
from continuous models than as a discretization technique yielding a model
with many degrees of freedom from a continuous one. Actually, finite dif-
ference techniques are at present seldom used in structural dynamics.

The assumed-modes and lumped-parameters methods are dealt with in
the present chapter, while a whole chapter will be dedicated to the FEM.

14.2 The assumed-modes methods

The displacement field �u(x, y, z, t) of a general undamped continuous elastic
body can be approximated by a linear combination of n arbitrarily assumed
functions �qi(x, y, z), often referred to as assumed modes :

�u(x, y, z, t) =
n∑

i=1

ai(t)�qi(x, y, z) . (14.1)
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Expression (14.1) yields exact results if the assumed functions �qi(x, y, z)
are the eigenfunctions of the system and their number is infinite. In this
case, functions ai(t) that can be considered the generalized coordinates
expressing the deformation of the system are the modal coordinates.

If a finite number of coordinates are used, the results are clearly approx-
imate. The expressions of the kinetic and potential energies of the system
can be easily obtained from Eq. (14.1):

T =
1
2
ȧTMȧ , U =

1
2
aTKa , (14.2)

where a is a vector containing the n generalized coordinates ai(t) and M
and K are square matrices of order n that depend on the inertial and elastic
properties of the system, respectively, and on the assumed functions qi.

In the same way, also the virtual work performed by a given force distri-
bution �f(x, y, z, t) for the virtual displacement

δ�u(x, y, z) =
n∑

i=1

δai�qi(x, y, z) (14.3)

corresponding to a virtual change of the generalized coordinates δai is

δL =
∫

V

n∑
i=1

δai
�f(x, y, z, t) × �qi(x, y, z)dV. (14.4)

The equations of motion of the system can thus be computed through
Lagrange equations

Mä + Ka = f(t) , (14.5)

where the generalized forces fi are

fi =
∫

V

�f(x, y, z, t) × �qi(x, y, z)dV .

Equation (14.5) is formally identical to the equation of motion for discrete
systems. If the assumed functions qi(z) are the mode shapes, the mass and
stiffness matrices are diagonal and the non-zero elements coincide with the
modal masses and stiffnesses. Forces fi are the modal forces.

Many methods were developed following the lines summarized here; the
best known are the Ritz, Rayleigh–Ritz, and Galerkin methods. The aim
of the Raleigh method, for example, is to compute an approximate value
of the first natural frequency by transforming the original system, which
can be a continuous system (if used as a true discretization method) or
a system with many degrees of freedom (and then the method allows a
drastic reduction in the number of degrees of freedom), into a system with
a single degree of freedom.
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Only one arbitrary mode shape is thus assumed. It must be chosen in
such a way that it approximates the actual mode shape corresponding to the
natural frequency that is looked for, usually the lowest natural frequency,
and must be compatible with the constraints and the boundary conditions.

To assume a deformed shape different from the actual shape the system
takes in free vibration amounts to implicitly adding other constraints, which
have no physical meaning, and then to make the system stiffer than it
actually is.

Remark 14.1 Increasing the stiffness causes the relevant natural frequency
to grow: the Rayleigh method yields a value for the lowest natural frequency
which is always higher than the correct one. The closer the assumed mode
is to the actual mode shape, the lower the value of the natural frequency
computed through the Raleigh method is.

Among the infinite number of possible shapes that can be assumed, that
corresponding to the actual mode shape of the first natural frequency (the
first eigenfunction or eigenvector, if the system is discrete) yields the lowest
value of the natural frequency.

The method is very easily applied: A deflected shape is assumed, and the
corresponding kinetic and potential energies are computed. The mass and
stiffness of the system with a single degree of freedom are then obtained
and the natural frequency is computed. The Raleigh method allows very
quick computation of an approximate value of the first natural frequency
that often is quite close to the correct one.

Its ease of application made it to survive the introduction of numerical
methods that allow detailed analysis of very complex systems but involve
computation times and costs that are largely greater.

Example 14.1 Compute the first natural frequency of a prismatic, homo-
geneous simply supported beam using the Rayleigh method.
Compare the result with that obtained using the beam theory. Neglect the ro-
tational inertia of the cross-sections and shear deformation and assume a
parabolic assumed-mode shape. Using the reference frame shown in Fig. 14.1,
the parabolic assumed mode is expressed by the formula

q(ζ) = ζ(ζ − 1) ,

where ζ = z/l. The kinetic and potential energies corresponding to the deflected
shape aq(z) can be easily computed:

T =
1

2

∫ l

0

ρA [ȧq(z)]2 dz , U =
1

2

∫ l

0

EIy

[
a

∂2q(z)

∂dz2

]2

dz .
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The mass and stiffness of the system with a single degree of freedom and its
natural frequency are

m =

∫ l

0

ρA [q(z)]2 dz =
ρAl

30
, k =

∫ l

0

EIy

[
∂2q(z)

∂dz2

]2

dz =
4EIy

l3
,

ω =

√
k

m
=

10.95

l2

√
EIy

ρA
.

The value computed through the beam theory is

ω =
π2

l2

√
EIy

ρA
=

9.87

l2

√
EIy

ρA
.

The Rayleigh method leads to a value 9.9% in excess of the correct one. Dif-
ferent results would have been obtained if a different assumed-mode shape had
been used.

FIGURE 14.1. A simply supported beam; first mode shape and parabolic assumed
shape. The two shapes have been normalized in order to have the same amplitude.

Example 14.2 Compute the first natural frequency of the simply supported
shaft shown in Fig. 14.2a using a simplified approach based on the considera-
tion that the central part is much stiffer than the two equal ends.

Data: a = 200 mm, b = 100 mm, r1 = 5 mm, r2 = 20 mm, ρ = 7, 810 kg/m3,

and E = 2.1 × 1011 Pa.

For symmetry reasons, in the first mode the central part of the shaft remains

parallel to the rotation axis.
The simplest way to model the system as a single degree of freedom system is
to assume that the central part is a rigid body of mass

m = ρA2b =
π

4
ρd2

2b .

The two massless outer parts of the shaft can be assumed to be two beams with
length a clamped to the central part of the shaft and supported at the end of
the shaft. Each one has a stiffness
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k =
3EJ1

a3
=

3πEd4
1

64a3
.

The natural frequency of the spring–mass system is thus

ω =

√
2k

m
=

√
6EJ1

ρA2a3b
= 280.7 rad/s = 44.7 Hz .

Using the Rayleigh method, the assumed-mode shape can be expressed by a
parabolic shape at the sides and as a straight line in the center (Fig. 14.2b,
dotted line). The expression of function q(z), normalized so that its maximum
has a unit value, is

q(z) =
−z2 + 2az

a2
, for 0 ≤ z ≤ a

q(z) = 1 , for a ≤ z ≤ a + b

q(z) =
−z2 + 2z (a + b) −

(
b2 + 2ab

)
a2

, for a + b ≤ z ≤ 2a + b .

The mass of the single-degree-of-freedom model is thus

m =

∫ 2a+b

0

ρA [q(z)]2 dz = ρA1

∫ a

0

(
−z2 + 2az

a2

)2

dz+

+ρA2

∫ a+b

a

dz + ρA1

∫ 2a+b

a+b

[
−z2 + 2z (a + b) −

(
b2 + 2ab

)
a2

]2

dz.

Performing all computations, it follows that

m =
16

15
ρA1a + ρA2b .

In a similar way, it follows

k =

∫ l

0

EIy

[
∂2q(z)

∂dz2

]2

dz =
8EI1

a3
.

Note that the characteristics of the central part do not affect the stiffness. The
natural frequency is thus

ω =

√
k

m
=

√
8EJ1

ρa3
(

16
15

A1a + A2b
) = 304.4 rad/s = 48.5 Hz .

A much better assumption is to use a sine function for the end parts of the
shaft (full line in Fig. 14.2b):

q(z) = sin
(πz

2a

)
, for0 ≤ z ≤ a
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q(z) = 1 , for a ≤ z ≤ a + b

q(z) = sin

(
π

z2 + b + 2a

a

)
, for a + b ≤ z ≤ 2a + b .

Operating as seen before, it follows that

m =

∫ 2a+b

0

ρA [q(z)]2 dz = ρ (A1a + A2b) .

The stiffness is also easily computed:

k =

∫ l

0

EIy

[
∂2q(z)

∂dz2

]2

dz = EI1a
( π

2a

)4

.

The natural frequency is thus

ω =

√
k

m
=

π2

4

√
EJ1

ρa3 (A1a + A2b )
= 266.6 rad/s = 42.4 Hz .

The value computed through the FEM model based on 10 beam elements and
on the consistent mass matrix (see Chapter 15) is

ω = 264.6 rad/s = 42.1 Hz .

The results are compared in the following table, in which also the error with

respect to the FEM solution with consistent mass matrix is reported as well.

A first point is that all solutions yield results in excess to the correct one,

except for the lumped-parameters FEM approach. A good guess is that correct

solution is between 264.4 and 264.6 rad/s. The most simplified approach yields

already quite good results.

Spring–mass Assumed modes FEM (10 elements)
Parabolic. Sine Consistent Lumped

ω1 (rad/s) 280.7 304.4 266.6 264.6 264.4
ω1 (Hz) 44.7 48.5 42.4 42.1 42.1
Error (%) 6.1 15.1 0.7 – –0.07

The assumed-modes method yields results that depend much on the assumed

function used. With parabolic deflected shape a 15% error is obtained, while

with a sine function q(z) the error reduces to less than 1%. This quite large

difference is obtained with functions q(z) which are apparently very close.

It is possible to increase its precision by introducing iterative procedures
aimed at obtaining assumed modes that are closer to the actual first mode,
by loading the structure with a distribution of inertia forces corresponding
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FIGURE 14.2. Shaft with a central boss: (a) sketch of the system; (b) inflected
shape used for the computations of the first natural frequency (parabolic and
sine) and first mode shape obtained through a FEM model.

to the deformation q(x, y, z). The precision increases in this way, but the
main advantage of the method, namely its simplicity, is lost.

Remark 14.2 The greatest disadvantage of these approaches lies in their
very principle: Because they are based on the approximation of the dis-
placement field with functions defined in the whole field, they are not very
well suited to model systems containing discontinuities or, at least, abrupt
changes in characteristics, as often occurs in actual systems.

The assumed-modes methods will not be dealt with in further detail,
because their use in structural dynamics is now limited.

14.3 Lumped-parameters methods

Lumped-parameters methods are based on the discretization of continuous
systems by discretizing their physical structure. The inertial properties are
concentrated into a number of rigid bodies or point masses, located at
chosen points, often called stations or nodes. They are connected by the
fields to which the elastic properties of the structure are ascribed. There is
no conceptual difficulty in also considering its damping properties. External
force distributions are substituted by concentrated forces acting at the
stations. The generalized displacements at the nodes are assumed to be
generalized coordinates.



350 14. Discretization of Continuous Systems

The determination of the mass matrix is more or less an arbitrary process,
since it follows directly from the lumping of the system and is more a matter
of common sense and engineering judgment than of structural analysis. The
same can be said for the computation of the force vector.

It is obvious that some systems are better suited than others for this
type of modeling: In some cases the mass is already lumped in the actual
system and thus the model follows directly from the actual configuration.
In other cases, however, the inertial properties of the actual system are
distributed and many discretization schemes are possible. In this case it
may be advisable to try different models to understand how the results
are influenced by their complexity. The aim is clearly to reach the required
precision with the simplest, and consequently the least costly, model.

The construction of the stiffness matrix is usually a difficult part of
the computation. Traditionally, the compliance matrix B is obtained by
computing the influence coefficients instead of the stiffness matrix K. It
must be noted that the compliance matrix can be obtained only if the
stiffness matrix is non-singular, i.e., if the system is constrained in such
a way that no rigid-body motion is possible. If this does not occur, the
compliance approach is not feasible, at least in a direct way.

Moreover, while the stiffness matrix of most structural systems has a
band structure with a more or less narrow band, the compliance matrix
does not have a similar structure: Its only regularity is usually that of
being symmetrical.

For the aforementioned reasons, nowadays it is customary to resort to
the stiffness approach and to use the FEM to compute the stiffness matrix.
Many general-purpose FEM codes operate by default or as an option using
the lumped-parameters approach instead of the consistent approach.

14.4 Transfer-matrices methods

The lumped-parameters methods, as described in the preceding section,
involve long computations, mainly in two phases: the construction of the
stiffness matrix (or of the compliance matrix) and the solution of the eigen-
problem. To avoid such difficulties, a different approach to the computa-
tion of the natural frequencies was evolved: the transfer-matrices method.
Two applications of this approach are well known and were very widely
used, particularly when no automatic computing machines were in use:
Holzer’s method for torsional vibrations of shafts and Myklestadt’s method
for flexural vibrations of beam-like structures. Both were suited for tabular
computations, even if they required much computational work, and when
computers became available, computer codes based on them were written
and widely used. They are still used, at least in particular cases. Their
main limitation lies in the very principle of the transfer-matrices method,
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which is suited only for in-line systems, i.e., systems in which every station
is linked by two fields to only two other stations, a leading station and a
following station.

If the mass of the system is lumped in n nodes, the fields are n − 1.
The computation starts at the first station (often called station at the left,
as the structure is thought to go from left to right as a printed line) and
ends at the last (right) station. It is clear that no branched systems or
systems with multiple connections can be studied (unless by approximate
approaches in which a branch is concentrated in the station where it stems
from the main structure) and this is a serious drawback leading to the dif-
ficulty of writing general-purpose codes to deal with systems with different
geometrical configurations.

The aforementioned limitations explain why the transfer-matrices method
is now yielding to methods based on the study of the system as a whole,
without having to go through it step by step from one station to the next.

The method is based on the definition of state vectors and transfer matri-
ces. A state vector is a vector that contains the generalized displacements
and forces related to the degrees of freedom that characterize the ends of
each field, considered as insulated from the rest of the structure. Conse-
quently, each field has two state vectors, one at its left end and one at its
right end. The state vectors at the ends of a field are linked by the transfer
matrix of the field

sRi = Tf isLi , (14.6)

where subscript i refers to the ith field and R and L designate the right
and left ends, respectively. Tf i is the transfer matrix of the ith field.

The left end of the ith field and the right end of the (i − 1)th field
are located at the ith station, and between them there is the ith lumped
mass. The corresponding state vectors are not coincident because the mass
exerts generalized inertia forces on the node. They are linked by the transfer
matrix of the ith station

sLi = TnisRi−1 . (14.7)

The station transfer matrix contains inertia forces due to the lumped
mass that, in harmonic free vibrations, are functions of the square of the
frequency of vibration. On the contrary, the field is massless and the field
transfer matrix is independent of the frequency.

If there is a linear elastic constraint at the ith node, its stiffness can be
introduced into the expression of the station transfer matrix. In this way
it is possible to use the transfer-matrix method for systems in which the
constraints are applied to nodes other than the first and last ones. The case
of rigid constraints can be dealt with by introducing elastic constraints with
very high stiffness.
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The state vector at the left of the first station s0 and that at the right
of the last station sn can be linked together by the equation

sn = TnnTfn−1Tnn−1Tfn−2 · · · ·Tn2Tf1Tn1s0 = TGs0 . (14.8)

The overall transfer matrix

TG =
1∏

i=n

Ti (14.9)

is the product of all transfer matrices of all nodes and fields from the last
to the first, in the correct order

Remark 14.3 Matrix products depend on the order in which they are per-
formed, so the overall transfer matrix must be computed by strictly following
the aforementioned rule.

The overall transfer matrix is a function of the frequency ω of the oscil-
lations of the system or, better, of ω2.

Some elements of the state vectors s0 or sn are known: If a degree of
freedom is constrained, the corresponding generalized displacement is zero,
while if it is free the corresponding generalized force vanishes. This leads to
some simplifications, because some of the rows and columns of the overall
transfer matrix can be canceled.

Equation (14.8) yields a solution different from the trivial one, with all
state vectors equal to zero only if the overall transfer matrix is singular. Be-
cause such a matrix is a function of ω2, this condition leads to an equation
in ω2, which coincides with the characteristic equation of the eigenproblem
yielding the natural frequencies of the system.

The transfer-matrix approach is used to avoid solving an intricate eigen-
problem and an alternative approach is usually followed. A value of the
frequency ω is assumed, and the transfer matrices are computed and mul-
tiplied to obtain the overall transfer matrix. After canceling the rows and
columns following the constraint conditions, its determinant is computed:
If it vanishes, the frequency assumed is one of the natural frequencies.
If this does not occur, a new frequency is assumed and the computation
is repeated. By plotting the value of the determinant as a function of the
frequency, it is easy to obtain as many natural frequencies as needed. Oper-
ating along these lines, no matrix of an order greater than that of the state
vector (usually not higher than 4) must be dealt with. When the appropri-
ate rows and columns of the overall transfer matrix have been canceled, the
size of the determinant to be computed is usually not greater than 2. This
explains why the method could be used without resorting to computers,
even if long computations are usually involved.

Remark 14.4 Cases in which the system is constrained in such a way that
rigid-body motions are possible can be dealt with using the transfer-matrices
method, obtaining a first natural frequency equal to zero.
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14.5 Holtzer’s method for torsional vibrations
of shafts

Consider a lumped torsional system, i.e., a system consisting of rigid discs
connected by straight shafts possessing all the properties needed for the un-
coupling of the torsional modes from flexural and axial ones (Fig. 14.3a).
The system can result from the lumping of a more or less uniform contin-
uous system or can model a system that is actually made of concentrated
rotors and lightweight shafts. Where the torsional behavior is concerned,
each station has only 1 degree of freedom, rotation φz. The order of the
state vectors is then 2: It contains rotation φz and moment Mz.

The field transfer matrices are easily computed by considering that the
moment at the left is equal to the moment at the right because no moment
acts along the field, while the rotation at the right end is equal to the
rotation at the left end increased by the twisting of the field

⎧⎨
⎩

φzRi
= φzRi

+ Δφzi = φzRi
+

li
GiI ′Pi

MzLi

MzLi
= MzRi

.
(14.10)

The field transfer matrix is thus

{
φz

Mz

}
Ri

=

⎡
⎣ 1

li
GiI ′Pi

0 1

⎤
⎦ {

φz

Mz

}
Li

. (14.11)

The station transfer matrix is obtained by considering that the rotation
at the left of the ith station (i.e., the rotation at the right of the (i − 1)th
field) is equal to the rotation at the right, while the moment at the right
of the station is equal to that at the left of the station, increased by the
concentrated moment acting at the station. If no external moment acts on

FIGURE 14.3. Holtzer method: (a) sketch of the system, (b) moments acting on
the ith node and on the ith field.
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the station, the latter is due only to the inertia reaction which, in harmonic
motion, is proportional to the square of the frequency and to the rotation
φzLi

. If the station is constrained by a torsional spring of stiffness χc, the
moment χcφzLi

also acts on the node:

{
φzRi

= φzRi

MzLi
= MzRi

+ χcφzLi
− ω2JziφzLi

.
(14.12)

Since the state vector at the right of the ith station is the state vector
at the left of the ith field and the state vector at the left of the ith station
is the state vector at the right of the (i − 1)th field, the equation defining
the station transfer matrices is

{
φz

Mz

}
Li

=
[

1 0
−ω2Jzi + χc 1

] {
φz

Mz

}
Ri−1

. (14.13)

Once the transfer matrices have been obtained, it is easy to multiply them
to obtain the overall transfer matrix. Equation (14.8) takes the simple form

{
φz

Mz

}
n

=
[

T11 T12

T21 T22

] {
φz

Mz

}
0

. (14.14)

The boundary conditions are easily assessed. If the end at the left is free,
moment Mz0 must vanish. The second column is of no interest, because it
multiplies a vanishing moment. If the end at the right is also free, as often
happens with torsional systems, the second equation (14.14) reduces to

Mzn = T21φz0 = 0 , (14.15)

yielding a solution different from the trivial one φz0 = 0 only if T21 = 0.
Working in the same way for the other end conditions, the following

equations yielding the natural frequencies can be obtained:

Right end Left end Equation
Free Free T21 = 0
Free Clamped T22 = 0

Clamped Free T11 = 0
Clamped Clamped T12 = 0

As already said, the solution is usually obtained numerically, plotting
the appropriate element Tij as a function of ω, and looking for the values
of the frequency at which the curve crosses the frequency axis. The mode
shapes can be obtained by setting an arbitrary value (usually a unit value)
for Mz0 , if the left end is free, or for φz0 if it is clamped, and computing
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the state vectors after having introduced the value of the relevant natural
frequency. Because only the shape of the modes is defined, the arbitrarity
is not inconvenient, and it can be removed by normalizing the eigenvectors.

Example 14.3 Compute the natural frequencies of the system shown in

Examples 1.2 and 4.3 using Holtzer’s method. Show that if the global transfer

matrix is computed, it yields the same characteristic equation already obtained.
Starting the numeration of the nodes from the constrained end, the following
transfer matrices are obtained:

Tf 1 =

[
1 0.1
0 1

]
, Tn2 =

[
1 0

−ω2 1

]
,

Tf2 =

[
1 0.1
0 1

]
, Tn3 =

[
1 0

−4ω2 1

]
,

Tf3 =

[
1 0.25
0 1

]
, T n4=

[
1 0

−0.5ω2 1

]
.

The global transfer matrix obtained by performing the relevant matrix multi-
plications is

TG =

[
0.1ω4 − 1.35ω2 + 1 0.01ω4 − 0.235ω2 + 0.45

−0.05ω6 + 1.075ω4 − 5.5ω2 −0.005ω6 + 0.1575ω4 − 1.125ω2 + 1

]
.

The right end is free while the left end is clamped and the condition allowing

computation of the natural frequencies is T22 = 0, i.e.,

ω6 − 31.5ω4 + 225ω2 − 200 = 0 ,

which coincides with that obtained in Example 4.3.

The plot of element T22 of the global transfer matrix as a function of ω is

reported in Fig. 14.4. The curve can be used to evaluate the natural frequencies

without having to solve the characteristic equation.

In case of free–free boundary conditions a more usual formulation is based
on the elimination of moments Mzi from Eqs. (14.7) and (14.14). Remem-
bering the boundary condition at the left end, the following n equations
are readily obtained:

φzi =
(

1 − ω2Jzi

ki
+

ki−1

ki

)
φz(i−1) −

ki−1

ki
φz(i−2) for i = 0, 1, ..., i − 1 ,

(14.16)
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FIGURE 14.4. Plot used for the graphical computation of the natural frequencies
of Example 4.3 using Holzer’s method.

where φzi is the rotation at the right of the ith field, i.e., the rotation at
the (i + 1)th station and ki = GiI

′
Pi

/li is the torsional stiffness of the ith
field.

As usual, the computation starts by assuming a value of the frequency
ω. The rotation φz0 at the first station is arbitrarily assumed, usually by
setting it equal to unity.

The first of Eq. (14.16)

φz1 =
(

1 − ω2Jzi

ki

)
φz0 (14.17)

yields the rotation at the second station. All rotations are computed step
by step, until the rotation at the last station φz(n−1) is obtained.

From the boundary condition at the last station it follows that

n∑
i=1

ω2Jziφz(i−1) = 0 , (14.18)

which is equivalent to Eq. (14.15) and is used to check whether the fre-
quency is a natural frequency.

Remark 14.5 The physical meaning of Eq. (14.18) is clear: Since no con-
straint acts on the system, inertia torques ω2Jziφz(i−1) must be balanced.

The value of
n∑

i=1

ω2Jziφz(i−1)

is plotted against ω and the natural frequencies are obtained, as seen above.
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14.6 Myklestadt’s method for flexural vibrations
of beams

Another well-known method based on the transfer-matrices approach is
that introduced by Myklestadt for the flexural behavior of beams, originally
developed for the dynamic study of aircraft wings. It will be presented here
in a form different from that of the original paper by Myklestadt with the
aim of organizing it in the way generally seen for transfer-matrices methods.

Consider the bending behavior of a beam, modeled as a lumped-
parameters system, in the xz-plane. Because a moment of inertia Jy can
be associated with each station, they are considered rigid bodies rather
than point masses. Each end of a field is characterized by two degrees of
freedom: displacement ux and rotation φy; the order of the state vectors is
four, and they contain the shearing force Fx and bending moment My as
well. The computation of the transfer matrices follows the same guidelines
seen for Holtzer’s method. Considering the ith field, it follows that

• the shear force at the right end is equal to the shear force at the left
end, because no force acts on the field

• the bending moment at the right end is equal to the bending moment
at the left end, increased by the moment due to the shear force at
the left end

• the displacement at the right end is equal to the displacement at the
left end, increased by the displacements due to the rigid rotation and
to the deformation of the field

• the rotation at the right end is equal to the rotation at the left end
increased by the rotation due to bending deformation of the field

⎧⎪⎪⎨
⎪⎪⎩

uxRi
= uxLi

+ liφyLi
+ Δuxi

φyRi
= φyLi

+ Δφyi

FxRi
= FxLi

MyRi
= MyLi

+ liFxLi

. (14.19)

The increments of displacement and rotation Δuxi and Δφyi due to the
deformation of the field can be computed through the beam theory because
the ith field can be considered as a prismatic beam clamped at the left end
and loaded at the right end by a force FxRi

⎧⎪⎪⎨
⎪⎪⎩

(Δuxi)F = FxRi

(
l3i

3EIy
+

liχ

GA

)

(Δφyi)F = FxRi

l2i
2EIy

(14.20)
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and a moment MyRi

⎧⎪⎪⎨
⎪⎪⎩

(Δuxi)M = MyRi

l2i
2EIy

(Δφyi)M = MyRi

li
EIy

. (14.21)

The relationship linking the state vector at the left and at the right of a
field can thus be written as

⎧⎪⎪⎨
⎪⎪⎩

ux

φy

Fx

My

⎫⎪⎪⎬
⎪⎪⎭

Ri

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 li − l3i
6EIy

+
liχ

GA

l2i
2EIy

0 1 − l2i
2EIy

li
EIy

0 0 1 0
0 0 −li 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ux

φy

Fx

My

⎫⎪⎪⎬
⎪⎪⎭

Li

. (14.22)

Now consider the ith node. The displacement and the rotation at the left
of the node are equal to the displacement and the rotation at the right. The
force at the right is equal to the force at the left increased by the inertia
force due to mass mi which, in harmonic motion, is −ω2miux; the moment
at the right is equal to the moment at the left increased by the inertia
torque −ω2Jiy φy. If a constraint with stiffness kc and angular stiffness χc

is located at the node, the force at the left of the node must be increased by
kcux and the moment must be increased by χcφy. Using matrix notation,
the following expression for the transfer matrix of the ith node is obtained:

⎧⎪⎪⎨
⎪⎪⎩

ux

φy

Fx

My

⎫⎪⎪⎬
⎪⎪⎭

Li

=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

−ω2
i mi + kc 0 1 0

0 −ω2Jiy + χc 0 1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ux

φy

Fx

My

⎫⎪⎪⎬
⎪⎪⎭

Ri−1

.

(14.23)
Once the transfer matrices of all nodes and all fields have been obtained,

there is no difficulty in computing the global transfer matrix and introduc-
ing the boundary conditions in a way that is similar to that seen for the
Holtzer method.

Consider, for example, that both ends are supported: The displacement
and the bending moment must vanish in both sn and s0. Equation (14.8)
then becomes

⎧⎪⎪⎨
⎪⎪⎩

0
φy

Fx

0

⎫⎪⎪⎬
⎪⎪⎭

n

=

⎡
⎢⎢⎣

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

0
φy

Fx

0

⎫⎪⎪⎬
⎪⎪⎭

0

. (14.24)
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The first and fourth columns of the global transfer matrix can be can-
celed, because they multiply elements equal to zero in the state vector. The
first and last equations (14.8) reduce to the homogeneous equation[

T12 T13

T42 T43

] {
φy

Fx

}
0

=
{

0
0

}
, (14.25)

which yields a solution different from the trivial one only if

det
[

T12 T13

T42 T43

]
= T12T43 − T42T13 = 0 . (14.26)

In this case the possible boundary conditions are many; only a few of
them are reported here:

Right end Left end Equation
Free Free T31T42 − T41T32 = 0
Free Supported T32T43 − T42T33 = 0
Free Clamped T33T44 − T43T34 = 0

Supported Supported T12T43 − T42T13 = 0
Clamped Free T11T22 − T21T12 = 0
Clamped Clamped T13T24 − T23T14 = 0

The value of the determinant of the matrix of the coefficients is plotted
as a function of the frequency ω, and the values of the frequency for which
it vanishes are obtained in a way similar to that seen for the Holtzer’s
method.

Remark 14.6 The order in which the state variables are listed in the state
vector can be different from the one shown here. Before using any formula
from the literature the meaning of the subscripts of the elements of the
transfer matrix must be verified.

Example 14.4 Compute the natural frequencies of the beam shown in Fig.

14.5a using Myklestadt’s method. The beam has an annular cross-section with

inner and outer diameters of 80 mm and 100 mm, respectively, and the di-

mensions shown in the figure are l1 = l3 = 200 mm and l2 = 800 mm. The

main characteristics of the material are E = 2.1 × 1011 N/m2, ρ = 7, 810
kg/m3, and ν = 0.3.

The mass of the beam is lumped in seven stations (4.417 kg in all nodes except

the first and last ones where there is a mass of 2.209 kg). In the second and

sixth stations there are two supports. The rigid supports are modeled using

elastic constraints with a stiffness of 1 × 1011 N/m. The computation of the

global transfer matrix involves the multiplication of six field transfer matrices

and seven node transfer matrices.
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Because both ends are free, the plot of the determinant T31T42 −T41T32 of the

reduced global transfer matrix as a function of ω is reported in Fig. 14.5b, for

a range up to the third natural frequency.

The natural frequencies, up to the fifth, computed by searching the points at

which the plot of Fig. 14.5b (extended to higher frequencies) crosses the fre-

quency axis, are
ω1 = 2,158 rad/s = 343.4 Hz, ω2 = 5,091 rad/s = 810.2 Hz,
ω3 = 6,780 rad/s = 1,079.1 Hz, ω4 = 10,469 rad/s = 1,666.2 Hz, and
ω5 = 15,858 rad/s = 2,523.9 Hz .

FIGURE 14.5. (a) Sketch of the beam of Example 14.4. (b) Plot used for the
graphical computation of the natural frequencies using Myklestadt’s method.

14.7 Exercises

Exercise 14.1 Repeat the study of Example 4.3, computing also the three mode

shapes of the system.
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Exercise 14.2 Consider the transmission shaft of Exercise 12.1. Compute the

first four flexural natural frequencies using the Myklestadt method. Lump the mass

of the shaft in two, four, and eight stations.

Exercise 14.3 Consider the chimney studied in Exercise 12.2. Compute the

first three flexural natural frequencies using the Myklestadt method. Lump the

mass of the shaft in eight stations.

Exercise 14.4 Consider the beam of Example 4.1, but now take into account

also the mass of the beam. Compute the first three flexural natural frequencies

using the Myklestadt method, neglecting shear deformation. Lump the mass of the

shaft in eight stations. Repeat the study taking into account shear deformation.



15
The Finite Element Method

The finite element method is at present the most common discretization
method. Its success is due to the possibility of using it for a wide variety of
problems, but above all to the availability of computing machines of ever-
increasing power. The method yields usually models with a large number
(hundred thousands or millions) of degrees of freedom, but the ODEs so
obtained are easily implemented in general-purpose codes for digital com-
puters. It can be used for both time-domain and frequency-domain compu-
tations.

15.1 Element characterization

The finite element method is a general discretization method for the solu-
tion of partial derivative differential equations and, consequently, it finds
its application in many other fields beyond structural static and dynamic
analysis. The aim of this chapter is not to provide a complete survey of
the method, which can be dealt with only in a specialized text, but simply
to describe its main features, comparing it with the other discretization
techniques.

The FEM is based on the subdivision of the structure into finite ele-
ments, i.e., into parts whose dimensions are not vanishingly small. Many
different element formulations have been developed, depending on their
shape and characteristics: beam elements, shell elements, plate elements,
solid elements, and many others. A structure can be built by assembling
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elements of the same or different types, as dictated by the nature of the
problem and by the capabilities of the computer code used.

The FEM is usually developed using matrix notation to obtain formulas
easily translated into computer codes. The displacement is thus written
as a vector of order 3 in the tridimensional space (sometimes of higher
order, if rotations are also considered), and the equation expressing the
displacement of the points inside each element is

u(x, y, z, t) = N(x, y, z)q(t) , (15.1)

where q is a vector where the n generalized coordinates of the element are
listed and N is the matrix containing the shape functions. There are as
many rows in N as in u and as many columns as the number n of degrees
of freedom.

Usually the degrees of freedom of the elements are the displacements at
given points, referred to as nodes . In this case, Eq. (15.1) reduces to the
simpler form,

⎧⎨
⎩

ux(x, y, z, t)
uy(x, y, z, t)
uz(x, y, z, t)

⎫⎬
⎭ =

⎡
⎣ N(x, y, z) 0 0

0 N(x, y, z) 0
0 0 N(x, y, z)

⎤
⎦

⎧⎨
⎩

qx(t)
qy(t)
qz(t)

⎫⎬
⎭ ,

(15.2)

where the displacements in each direction are functions of the nodal dis-
placements in the same direction only. In this case matrix N has only one
row and as many columns as the number of nodes of the element. Equation
(15.2) has been written for a three-dimensional element; a similar formula-
tion can also be easily obtained for one- or two-dimensional elements.

Each element is essentially the model of a small deformable solid. The
behavior of the element is studied using an assumed-modes approach, as
seen in Section 14.2. A limited number, usually small, of degrees of freedom
is then substituted to the infinity of degrees of freedom of each element.
Inside each element, the displacement �u(x, y, z) of the point of coordinates
x, y, z is approximated by the linear combination of a number n of arbi-
trarily assumed functions, the shape functions.

The shape functions are, as already stated, arbitrary. The freedom in
the choice of such functions is, however, limited, because they must sat-
isfy several conditions. A first requirement is a simple mathematical for-
mulation: A set of polynomials in the space coordinates is thus usually
assumed.

The results of the analysis converge toward the exact solution of the
differential equations constituting the continuous model discretized by the
FEM, with decreasing element size (i.e., with increasing number of ele-
ments) if the shape functions
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• are continuous and differentiable up to the required order, which
depends on the type of element;

• are able to describe rigid-body motions of the element leading to
vanishing elastic potential energy;

• lead to a constant strain field when the overall deformation of the
element dictates so; and

• lead to a deflected shape of each element that matches the shape of
the neighboring elements.

The last condition means that when the nodes of two neighboring ele-
ments displace in a compatible way, all the interfaces between the elements
must displace in a compatible way.

Another condition, not always satisfied, is that the shape functions are
isotropic, i.e., do not show geometrical properties that depend on the ori-
entation of the reference frame.

Sometimes not all these conditions are completely met; in particular,
there are elements that fail to completely satisfy the matching of the de-
flected shapes of neighboring elements (see Section 15.4).

The nodes are usually located at the vertices or on the sides of the
elements and are common to two or more of them, but points that are
internal to an element may also be used.

The equation of motion of each element can be written following what
was said about the assumed-modes methods. The strains can be expressed
as functions of the derivatives of the displacements with respect to space co-
ordinates. In general, it is possible to write a relationship of the
type

ε(x, y, z, t) = B(x, y, z)q(t) , (15.3)

where ε is a column matrix in which the various elements of the strain
tensor are listed (it is commonly referred to as a strain vector but it is such
only in the sense that it is a column matrix) and B is a matrix1 containing
appropriate derivatives of the shape functions. B has as many rows as the
number of components of the strain vector and as many columns as the
number of degrees of freedom of the element.

If the element is free from initial stresses and strains and the behavior
of the material is linear, the stresses are obtained from the strains as

σ(x, y, z, t) = Eε = E(x, y, z)B(x, y, z)q(t) , (15.4)

where E is the stiffness matrix of the material. It is a symmetric square ma-
trix whose elements can theoretically be functions of the space coordinates

1Matrix B (capital b) must not be confused with the influence coefficients matrix B
(capital β).
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but are usually constant within the element. The potential energy of the
element can be expressed as

U =
1
2

∫
V

εT σσdV =
1
2
qT

(∫
V

BTEBdV

)
q . (15.5)

The integral in Eq. (15.5) is the stiffness matrix of the element

K =
∫

V

BTEBdV . (15.6)

Because the shape functions do not depend on time, the generalized
velocities can be expressed as

u̇(x, y, z, t) = N(x, y, z)q̇(t) .

In the case where all generalized coordinates are related to displacements,
the kinetic energy and the mass matrix of the element can be expressed as

T =
1
2

∫
V

ρu̇T u̇dV =
1
2
q̇T

(∫
V

ρNTNdV

)
q̇ ,

M =
∫

V

ρNTNdV .
(15.7)

If some generalized displacements are rotations, Eq. (15.7) must be mod-
ified to introduce the moments of inertia, but its basic structure remains
the same.

As already stated, the FEM is often used just to compute the stiffness
matrix to be used in the context of the lumped-parameters approach. In
this case, the consistent mass matrix (15.7) is not computed and a diagonal
matrix obtained by lumping the mass at the nodes is used. The advantage
is that of dealing with a diagonal mass matrix, whose inversion to compute
the dynamic matrix is far simpler than that of the consistent mass matrix.
The accuracy is, however, reduced or, better, a greater number of elements
is needed to reach the same accuracy, and then the convenience between
the two formulations must be assessed in each case.

Remark 15.1 As a general rule, the consistent approach leads to values
of the natural frequencies in excess with respect to those computed using the
lumped-parameters approach. If enough elements are used, the frequencies
obtained from the elastic continuum model lie in between those computed
through the lumped-parameters and the consistent approach.

If a force distribution f(x, y, z, t) acts on the body, the virtual work linked
with the virtual displacement

δu = Nδq
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and the nodal force vector can be expressed in the form

δL =
∫

V

δuT f(x, y, z, t)dV =
∫

V

δqTNT f(x, y, z, t)dV ,

f(t) =
∫

V

NT f(x, y, z, t)dV .
(15.8)

In a similar way, it is possible to obtain the nodal force vectors corre-
sponding to surface force distributions or to concentrated forces acting on
any point of the element.

The equation of motion of the element is then the usual one for discrete
undamped systems

Mq̈ + Kq = f(t) . (15.9)

Remark 15.2 The equations of motion and the relevant matrices have
been obtained here by closely following the assumed-modes approach, basi-
cally using Lagrange equations; this approach is neither the only one nor
the most common.

15.2 Timoshenko beam element

The beam element is one of the most common elements and is generally
available in all computer codes. Several beam formulations have been devel-
oped that differ owing to both the theoretical formulation and the number
of nodes and degrees of freedom per node. Some of them are Euler–Bernoulli
element, i.e., do not take into account shear deformation, while others are
Timoshenko elements.

The element that will be studied here is often referred to as the simple
Timoshenko beam. It is a prismatic homogeneous beam, with a node at each
end and six degrees of freedom per node, to which all considerations seen
in Section 12.1 apply. The relevant geometrical definition and the reference
frame used for the study are shown in Fig. 15.1.

Like in the beam studied in Chapter 12, each cross section has six degrees
of freedom, three displacements, and three rotations. The total number
of degrees of freedom of the element is thus 12. The vector of the nodal
displacements, i.e., of the generalized coordinates of the element, is

q = [ux1 , uy1, uz1 , φx1 , φy1 , φz1 , ux2 , uy2, uz2 , φx2 , φy2 , φz2 ]
T . (15.10)

Since the beam has the properties needed to perform a complete un-
coupling between axial, torsional, and flexural behaviors in each of the
coordinate planes, it is expedient to subdivide vector q into four smaller
vectors:
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FIGURE 15.1. Beam element: geometrical definitions and reference frame.

qA =
{

uz1

uz2

}
, qT =

{
φz1

φz2

}
, qF1 =

⎧⎪⎪⎨
⎪⎪⎩

ux1

φy1

ux2

φy2

⎫⎪⎪⎬
⎪⎪⎭

, qF2 =

⎧⎪⎪⎨
⎪⎪⎩

uy1

φx1

uy2

φx2

⎫⎪⎪⎬
⎪⎪⎭

.

(15.11)

Remark 15.3 If the rotational degree of freedom −φx were used instead
of φx the same equations could be used to describe the flexural behavior in
both planes. This approach is, however, uncommon because it would make
it more difficult to pass from the system of reference of the elements to that
of the whole structure (See Section 15.9).

By reordering the various generalized coordinates with the aim of clearly
showing such uncoupling, vector q can be written as

q =
[

qT
A qT

T qT
F1 qT

F2

]T
. (15.12)

The uncoupling between the various degrees of freedom makes it possible
to split the matrix of the shape functions into a number of submatrices,
most of which are equal to zero. The generalized displacement of the in-
ternal points of the element can be expressed in the form of Eq. (15.1)
as

u(z, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uz

φz

ux

φy

uy

φx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎣

NA 0 0 0
0 NT 0 0
0 0 NF1 0
0 0 0 NF2

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

qA

qT

qF1

qF2

⎫⎪⎪⎬
⎪⎪⎭

. (15.13)
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15.2.1 Axial behavior

The beam reduces to a bar for what the axial behavior is concerned.
Because each point of the element has a single degree of freedom, vector

u has a single component uz and matrix NA has one row and two columns
(the element has two degrees of freedom). Displacement uz can be expressed
as a polynomial in z or, better, in the nondimensional axial coordinate

ζ =
z

l
:

uz = a0 + a1ζ + a2ζ
2 + a3ζ

3 + . . . . (15.14)

The polynomial must yield the values of the displacements uz1 and uz2 at
the left end (node 1, ζ=0) and at the right end (node 2, ζ=1), respectively.
These two conditions allow computation of only two coefficients ai and thus
the polynomial expansion of the displacement must include only two terms,
i.e., the constant and the linear terms:

uz = a0 + a1ζ . (15.15)

By stating that the displacements at the two nodes are equal to uz1 and
uz2 , it follows {

uz1 = a0

uz2 = a0 + a1 , (15.16)

i.e., {
a0 = uz1

a1 = −uz1 + uz2 . (15.17)

The polynomial is thus

uz = uz1 − ζ (uz1 − uz2) , (15.18)

yielding the following matrix of the shape functions:

NA = [1 − ζ, ζ] . (15.19)

The axial strain εz can be expressed as

εz =
duz

dz
, (15.20)

or, using vector ε, which in this case has only one element

εz =
[

d

dz
(1 − ζ) ,

d

dz
ζ

] {
uz1

uz2

}
. (15.21)

Matrix

B =
[

d

dz
(1 − ζ) ,

d

dz
ζ

]
=

1
l

[−1 , 1] (15.22)
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has one row and two columns.
Also, vector σσ and matrix E have only a single element: the axial stress

σz and Young’s modulus E, respectively. The stiffness and mass matrices
can be obtained directly from Eqs. (15.6) and (15.7).

Remembering that

dV = Adz ,

they reduce to

KA =
∫ l

0

ABT EBdz =
EA

l

∫ 1

0

[
1 −1

−1 1

]
dζ =

EA

l

[
1 −1

−1 1

]
,

(15.23)

MA =
∫ l

0

ρANTNdz = ρAl

∫ 1

0

[
(1 − ζ)2 ζ(1 − ζ)
ζ(1 − ζ) ζ2

]
dζ =

=
ρAl

6

[
2 1
1 2

]
. (15.24)

If the mass is lumped half in each node, the mass matrix is simply

MAl
=

ρAl

2

[
1 0
0 1

]
. (15.25)

If an axial force distribution fz(t) that is constant along the space coordi-
nate z or a concentrated axial force Fzk

(t) located in the point of coordinate
zk acts on the bar, the nodal force vector is, respectively,

f(t) = l

[∫ l

0

{
(1 − ζ)

ζ

}
dζ

]
fz(t) = fz(t)

l

2

{
1
1

}
, (15.26)

or

f(t) = Fzk
(t)

⎧⎨
⎩

1 − zk

lzk

l

⎫⎬
⎭ . (15.27)

In the first case the distributed load has been reduced to two identical
forces; each is equal to half of the total load acting on the bar.

Remark 15.4 While the consistent mass matrix is different from the
lumped mass matrix, in this case an identical force vector would have been
obtained by simply lumping the load at the nodes. This is not, however, a
general rule; in other cases the consistent approach leads to a load vector
that is different from that obtained using the lumped-parameters approach.
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15.2.2 Torsional behavior

As stated in Section 2.2.3, the equations of motion governing the torsional
behavior of beams are formally identical to those governing the axial be-
havior. Using this identity, the characterization of the beam element in
torsion can be obtained from what has been seen for the axial behavior.
Matrix NT is identical to matrix NA

NT = [1 − ζ , ζ]

and the expressions of the relevant matrices and vectors are

MT =
ρIpl

6

[
2 1
1 2

]
, KT =

GI ′p
l

[
1 −1

−1 1

]
,

f(t)T =
1
2
lmz(t)

{
1
1

}
. (15.28)

15.2.3 Flexural behavior in the xz-plane

The expressions of the shape function are in this case more complex. Matrix
NF1 has two rows and four columns because it must yield the displacement
in the x-direction and the rotation about the y-axis of the generic cross
section of the beam when it is multiplied by vector qF1, which contains
four elements, namely, the displacements in the x-direction and the rotation
about the y-axis of the two nodes. The simplest approach would be that of
assuming polynomial expressions for the generalized displacements

{
ux = a0 + a1ζ + a2ζ

2 + a3ζ
3 + . . .

φy = b0 + b1ζ + b2ζ
2 + b3ζ

3 + . . . .
(15.29)

These polynomial expressions must yield the values of the displacements
ux1 and ux2 and of the rotations φy1 and φy2 at the left (node 1, ζ=0) and
at the right ends (node 2, ζ=1). These four conditions allow computation of
four coefficients ai and bi only. Each polynomial must thus include only two
terms, and both rotations and displacements must vary linearly along the
z-coordinate. This element formulation, although sometimes used, leads
to the very severe problem of locking, i.e., to the possibility of grossly
overestimating the stiffness of the element.

Although locking will not be dealt with in detail here (the reader can
find a detailed discussion on this matter in any good textbook on FEM),
an intuitive explanation can be seen immediately: If the beam is slender
the rotation of each cross section is very close to the derivative of the
displacement, as stated by the Euler–Bernoulli approach for slender beams.
The polynomial shape functions, when truncated at the second term, do
not allow the rotation to be equal to the derivative of the displacement
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and forces the curvature (approximated as the second derivative of the
displacement) to vanish. It can be shown that in this way the displacements,
i.e., the flexibility of the beam, are severely underestimated.

A simple cure for the problem is that of resorting to the Euler–Bernoulli
formulation, i.e., neglecting shear deformation and then assuming that the
rotation is coincident with the derivative of the displacement. In this case,
only the polynomial for ux needs to be stated, and the aforementioned four
conditions at the nodes can be used to compute the four coefficients of a
cubic expression of the displacement.

To avoid locking, a Timoshenko beam element can be formulated us-
ing the deformed shape computed using the continuous model assuming
that only end forces are applied to the beam as shape functions. This
Timoshenko beam element reduces to the Euler–Bernoulli element when
the slenderness of the beam increases and no locking occurs. The relevant
functions are

N11 =
1 + Φ(1 − ζ) − 3ζ2 + 2ζ3

1 + Φ
, N12 = lζ

1 + 1
2Φ(1 − ζ) − 2ζ + ζ2

1 + Φ
,

N13 = ζ
Φ + 3ζ − 2ζ2

1 + Φ
, N14 = lζ

− 1
2Φ(1 − ζ) − ζ + ζ2

1 + Φ
,

N21 = 6ζ
ζ − 1

l(1 + Φ)
, N22 =

1 + Φ(1 − ζ) − 4ζ + 3ζ2

1 + Φ
,

N23 = −6ζ
ζ − 1

l(1 + Φ)
, N24 =

Φζ − 2ζ + 3ζ2

1 + Φ
,

(15.30)
where

Φ =
12EIyχ

GAl2

is the ratio between the shear and the flexural flexibility of the beam.
When the slenderness of the beam increases, the value of Φ decreases,

tending to zero for an Euler–Bernoulli beam.
In beam elements some of the generalized coordinates are related to

rotations; as a consequence, Eqs. (15.6) and (15.7) cannot be used directly
to express the stiffness and mass matrices.

The potential energy can be computed by adding the contributions due
to bending and shear deformations. By using the symbols N1 and N2 to
express the first and second rows of matrix NF1, respectively, the two
contributions to the potential energy of the length dz of the beam are

dUf =
1
2
EIy

(
dφy

dz

)2

dz =
1
2
EIy{q}T

[
d

dz
N2

]T [
d

dz
N2

]
{q}dz ,

dUs =
1
2

GA

χ

(
φy − dux

dz

)2

dz = (15.31)
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=
12EIy

2Φl2
{q}T

[
N2 −

d

dz
N1

]T [
N2 −

d

dz
N1

]
{q}dz .

By introducing the shape functions into the expression of the potential
energy and integrating, the bending stiffness matrix is obtained

KF1 =
EIy

l3(1 + Φ)

⎡
⎢⎢⎣

12 6l −12 6l
(4 + Φ)l2 −6l (2 − Φ)l2

12 −6l
symm. (4 + Φ)l2

⎤
⎥⎥⎦ . (15.32)

The kinetic energy of the length dz of the beam is

dT =
1
2
ρAu̇2dz +

1
2
ρIyφ̇y

2
dz =

=
1
2
ρAq̇T NT

1 N1q̇dz +
1
2
ρIyq̇T NT

2 N2q̇dz . (15.33)

The first term on the right-hand side is the translational kinetic energy,
and the second expresses the rotational kinetic energy, which is often ne-
glected in the case of slender beams. By introducing the expressions of the
shape functions and integrating, the consistent mass matrix is obtained

MF1 =
ρAl

420(1 + Φ)2

⎡
⎢⎢⎣

m1 lm2 m3 −lm4

l2m5 lm4 −l2m6

m1 −lm2

symm. l2m5

⎤
⎥⎥⎦+

+
ρIy

30l(1 + Φ)2

⎡
⎢⎢⎣

m7 lm8 −m7 lm8

l2m9 −lm8 −l2m10

m7 −lm8

symm. l2m9

⎤
⎥⎥⎦ , (15.34)

where

m1 = 156 + 294Φ + 140Φ2 , m2 = 22 + 38.5Φ + 17.5Φ2 ,
m3 = 54 + 126Φ + 70Φ2 , m4 = 13 + 31.5Φ + 17.5Φ2 ,
m5 = 4 + 7Φ + 3.5Φ2 , m6 = 3 + 7Φ + 3.5Φ2 ,
m7 = 36 , m8 = 3 − 15Φ ,
m9 = 4 + 5Φ + 10Φ2 , m10 = 1 + 5Φ − 5Φ2 .

The consistent load vector due to a uniform distribution of shear force
fx(t) or of bending moment my(t) can be obtained directly from Eq. (15.8)

f(t)F1 = l

[∫ 1

0

NT
F1dζ

] {
fx(t)

my(t)

}
=

lfx(t)
12

⎧⎪⎪⎨
⎪⎪⎩

6
l
6

−l

⎫⎪⎪⎬
⎪⎪⎭

+
my(t)
1 + Φ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−l
Φl

2
l

Φl

2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

(15.35)
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Remark 15.5 In the present case the lumped load vector is different from
the consistent one.

15.2.4 Flexural behavior in the yz-plane

As already pointed out, the flexural behavior in the yz-plane must be stud-
ied using equations different from those used for the xz-plane, owing to
the different signs of rotation. Matrix NF2 can, however, be obtained from
matrix NF1 simply by changing the signs of elements with subscripts 12,
14, 21, and 23, and the mass and stiffness matrices related to plane yz are
the same as those computed for plane xz, except for the signs of elements
with subscripts 12, 14, 23, and 34 and their symmetrical ones. In the force
vectors related to external forces (distributed or concentrated) or external
moments, the signs of elements 2 and 4 or 1 and 3, respectively, must be
changed. If the beam is not axially symmetrical and the elastic and iner-
tial properties in the two planes are not coincident, different values of the
moments of inertia and the shear factors must be introduced.

15.2.5 Global behavior of the beam

The complete expression of the mass and stiffness matrices and of the nodal
force vector is respectively

M =

⎡
⎢⎢⎣

MA 0 0 0
0 MT 0 0
0 0 MF1 0
0 0 0 MF2

⎤
⎥⎥⎦ , (15.36)

K =

⎡
⎢⎢⎣

KA 0 0 0
0 KT 0 0
0 0 KF1 0
0 0 0 KF2

⎤
⎥⎥⎦ , f =

⎧⎪⎪⎨
⎪⎪⎩

fA
fT
fF1

fF2

⎫⎪⎪⎬
⎪⎪⎭

.

15.2.6 Effect of axial forces

One of the simplest geometric nonlinearity effects is the interaction between
an axial load and the flexural behavior of beams. In Section 12.8 it was
shown that if the axial load can be considered as a constant, it is possible
to study this interaction using a linearized model. The same also holds
when the FEM is used.

Consider the flexural vibration in the xz-plane of a Timoshenko beam
element, subjected to a constant and known axial force Fa. Such a force
must not be confused with the axial force Fz(t) acting on the element as
a consequence of bending, which is usually one of the unknowns in the
problem. If force Fa is not known, an iterative procedure must be followed.
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The axial force Fz due to the loads must be computed first, and then the
same force can be introduced in further dynamic computations.

Taking into account the lateral inflection of the beam, the axial strain in
correspondence to the neutral axis of the beam, which is usually expressed
as

εz = ∂uz/∂z ,

becomes

εz =
∂uz

∂z
+

1
2

(
∂uy

∂z

)2

. (15.37)

If the small term linked with lateral deflection is also considered, the
elastic potential energy due to the axial strain becomes

U =
1
2

∫ l

0

EAε2zdz =
1
2

∫ l

0

EA

[
∂uz

∂z
+

1
2

(
∂uy

∂z

)2
]2

dz ≈

≈ 1
2

∫ l

0

EA

(
∂uz

∂z

)2

dz +
1
2

∫ l

0

EA
∂uz

∂z

(
∂uy

∂z

)2

dz . (15.38)

The last expression was obtained by neglecting the term in (∂uy/∂z)4.
The first term of the potential energy has already been taken into account
in the computation of the stiffness matrix of the element. The second one
causes an increase of the potential energy, which can be considered by
adding a suitable matrix, the so-called geometric stiffness matrix, or simply
geometric matrix, to the stiffness matrix of the element. Assuming that the
axial force Fa = εzEA is constant and using the shape functions (15.30),
the increment of potential energy can be written in terms of matrix Kg1

for flexural behavior in the xz-plane in the form

ΔU =
1
2
εz

∫ l

0

EA

(
∂uy

∂z

)2

dz =
1
2
FaqT

F1Kg1qF1 , (15.39)

where

Kg1 =
Fa

30l(1 + Φ)2

⎡
⎢⎢⎣

k1 lk2 −k1 lk2

l2k3 −lk2 −l2k4

k1 −lk2

symm. l2k3

⎤
⎥⎥⎦ ,

k1 = 36 + 60Φ + 3Φ2 , k2 = 3 ,
k3 = 4 + 5Φ + 2.5Φ2 , k4 = 1 + 5Φ + 2.5Φ2 .

As for all other matrices describing flexural behavior, the geometric ma-
trix related to the yz-plane differs from that computed for the xz-plane for
the signs of elements 12, 14, 23, and 34 and their symmetricals, apart from
being computed using the appropriate value of Φ.

Apart from being used to take into account the effects of axial forces on
the flexural behavior, the geometric matrix allows the study of the elastic
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stability of a structure. Because an axial tensile force causes an increase of
stiffness while a compressive force has the opposite effect, the value of the
compressive axial force causing the stiffness matrix to be singular is the
buckling load of the element or of the structure. Geometric matrices can
also be defined for other types of elements.

15.3 Mass and spring elements

Consider a concentrated mass, or better, a rigid body located at the ith
node. Let q be the vector of the generalized displacements of the relevant
node, which may also contain rotations

q = [ux, uy, uz, φx, φy , φz] ,

if the node is of the type of those seen in the case of beam elements.
In the latter case, if the mass also has moments of inertia, let the axes of

the reference frame coincide with the principal axes of inertia of the rigid
body. The mass matrix is thus diagonal

M = diag[m, m, m, Jx, Jy, Jz] . (15.40)

A simpler expression is obtained when only the translational degrees of
freedom of the node are considered.

Remark 15.6 In many computer programs, different values of the mass
can be associated with the various degrees of freedom. This can account for
particular physical layouts, such as a mass constrained to move with the
structure in one direction and not in others.

Consider a spring element, i.e., an element that introduces a concentrated
stiffness between two nodes, say node 1 and node 2, of the structure. When
the nodes have a single degree of freedom, the generalized coordinates of
the element are

q = [u1, u2]T ,

and the stiffness matrix is

K =
[

k −k
−k k

]
. (15.41)

If the nodes, like those used with beam elements, have three translational
and three rotational degrees of freedom, three values of translational stiff-
ness kx, ky , and kz, and three values of rotational stiffness χx, χy, and χz

can be stated and matrices similar to that in Eq. (15.41) can be written
for each degree of freedom.
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15.4 Plate element: Kirchoff formulation

Consider a rectangular flat plate element with constant thickness
(Fig. 15.2a). The simplest formulation has four nodes at the corners; other
more complex formulations have additional nodes at the center of the sides
(8-node rectangular plate) or even at center of the element (nine nodes).
Elements with two or more nodes on each side (12, 16, etc., nodes) to which
4, 9, etc., nodes inside the element may be added, are also used.

Each node has 3 degrees of freedom, the translation uz in the z-direction
and rotations φx and φy. The total number of degrees of freedom of the
element in the figure is 12.

Consistently with the Kirchoff formulation (i.e., neglecting shear defor-
mation; Section 13.2), rotations are strictly linked with translation in the
z-direction

φy = −∂uz

∂x
, φx =

∂uz

∂y
. (15.42)

Using the nondimensional coordinates

ξ =
x

a
, η =

y

b
,

the following polynomial expression for the displacement uz can be as-
sumed:

uz = a1 + a2ξ + a3η + a4ξη + a5ξ
2 + a6η

2 + a7ξ
2η +

+a8ξη
2 + a9ξ

3 + a10η
3 + a11ξ

3η + a12ξη
3 . (15.43)

The 12 coefficients ai can be easily computed as functions of the nodal
displacements, obtaining the first line N1 of the shape functions matrix

FIGURE 15.2. Rectangular plate element with four nodes: geometrical definitions
and nodal displacements.
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N, which has 3 lines and 12 columns. The polynomials expressing the
rotations can be obtained by differentiating Eq. (15.43) with respect to x
and y

φy = −1
a

(
a2 + a4η + 2a5ξ + 2a7ξη + a8η

2 + 3a9ξ
2 + 3a11ξ

2η + a12η
3
)
,

φx = −1
b

(
a3 + a4ξ + 2a6η + a7ξ

2 + 2a8ξη + 3a10η
2 + a11ξ

3 + 3a12ξη
2
)

.

(15.44)
They allow to compute the remaining two lines N2 and N3 of the matrix

of the shape functions.
The shape functions so obtained are nonconforming, i.e., they do not

guarantee that the sides of two contiguous elements deform in a consistent
way. This can be shown by simply writing the deformation of one of the
sides parallel to the y-axis, for instance, the side between nodes 1 and 2 of
element 1 in Fig. 15.3

uz = a1 + a3η + a6η
2 + a10η

3,

φy = −1
a

(
a2 + a4η + a8η

2 + a12η
3
)
,

φx = −1
b

(
a3 + 2a6η + 3a10η

2
)

.

(15.45)

The deflected shape of the side depends on eight parameters and conse-
quently cannot be univocally determined by the six generalized displace-
ments of the two nodes at its ends. This means that although the nodes at
the end of two neighboring sides displace in the same way, the two sides can
assume different deformed configurations. However, the expressions of uz

and φx contain only four coefficients and these two generalized coordinates
are defined at the ends by 4 of the degrees of freedom of the two nodes.

FIGURE 15.3. Two plate elements in the undeformed and deformed conditions.
Since the shape functions are not conforming, rotations φy at the border between
the elements are not consistent.
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This means that the mentioned formulation guarantees that generalized
displacements uz and φx are consistent on the side between nodes 1 and 2.
On the contrary rotation φy is not consistent.

The same considerations can be applied to the other sides of the element:
While compatibility is insured for what displacements in z-directions and
rotations about an axis perpendicular to the sides, no compatibility can be
assessed for rotation about axes parallel to the sides. This means that the
overall deformation can show a ‘kink’ on the sides of the elements.

Remark 15.7 Such a ‘kink’ however cannot extend up to the nodes, since
at the nodes all generalized displacements are compatible. By increasing
the number of elements, this kink tends thus to disappear, and the errors
introduced by the nonconformity of the shape functions decrease.

Since the generalized displacements at the ith node can be expressed as

qi (t) =
[

uzi φxi φyi

]T
, (15.46)

the generalized displacements of the internal points of the elements are

⎧⎨
⎩

uz (x, y, t)
φx (x, y, t)
φy (x, y, t)

⎫⎬
⎭ =

⎡
⎣ N1 (x, y)

N2 (x, y)
N3 (x, y)

⎤
⎦

⎧⎪⎪⎨
⎪⎪⎩

q1 (t)
q2 (t)
q3 (t)
q4 (t)

⎫⎪⎪⎬
⎪⎪⎭

. (15.47)

The stiffness matrix can be obtained in the same way as for the Timo-
shenko beam element, with the difference that in the Kirchoff formulation
only the potential energy linked with bending deformation is taken into
account.

The generalized strain vector ε and the stress vector σ in this case con-
tain, respectively, the curvatures of the mid-plane of the plate and the
moments per unit length

ε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂2uz

∂x2

−∂2uz

∂y2

2
∂2uz

∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, σ =

⎧⎨
⎩

Mx

My

Mxy

⎫⎬
⎭ . (15.48)

Equation (15.3) still holds, provided that matrix B is

B =
[

−∂2NT
1

∂x2
−∂2NT

1

∂y2
−∂2NT

1

∂x∂y

]T

. (15.49)
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The stress–strain relationship (15.4) holds, provided that matrix E is
defined as

E =
Eh3

12 (1 − ν2)

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
1 − ν

2

⎤
⎥⎦

T

, (15.50)

as it can be immediately obtained from Eqs. (13.7) and (13.9).
Once that matrices B and E have been defined, the stiffness matrix is

readily obtained from Eq. (15.5).
If the rotational inertia of the cross section is neglected, only the shape

functions related to displacement uz enter Eq. (15.7) for the computation
of the mass matrix

M = ρh

∫ a/2

−a/2

∫ b/2

−b/2

NT
1 (x, y)N1(x, y) dx dy . (15.51)

The same holds for Eq. (15.8) allowing in this case the computation of
the nodal forces corresponding to a surface force distribution on the plate
element.

15.5 Plate element: Mindlin formulation

As stated in Section 13.2, the Mindlin plate formulation includes shear
deformation. The perpendiculars to the mid-plane in the undeformed con-
figuration remain straight but not necessarily perpendicular to the mid
surface after deformation, unlike to what happens in the Kirchoff plate.

Equation (15.42) does not hold any more and the expressions for rota-
tions must be defined independently from that for displacement uz. In the
case of a rectangular element with four nodes, the following polynomial
expressions can be stated instead of Eq. (15.43):

uz = a1 + a2ξ + a3η + a4ξη,
φy = a5 + a6ξ + a7η + a8ξη,
φx = a9 + a10ξ + a11η + a12ξη .

(15.52)

Also in this case the 12 coefficients ai can be easily computed as func-
tions of the nodal displacements, obtaining the whole matrix of the shape
functions N that has again 3 lines and 12 columns.

The mass and stiffness matrices and the nodal force vector can be ob-
tained in the same way as seen in Section 15.1. The present formulation has
however the tendency to lock when the thickness of the plate is small, i.e.,
when shear deformation becomes negligible. This can be easily shown by
writing the expressions of the curvatures of the plate, which are assumed
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to be coincident with the derivatives of the rotations φx and φy owing to
the small displacement assumption

∂φx

∂x
=

1
a

(a6 + a8η) ,
∂φx

∂x
=

1
a

(a11 + a12ξ) (15.53)

and the shear deformations

γz = −∂uz

∂x
− φy = −a2

a
− a4

a
η − a9 − a10ξ − a11η − a12ξη,

γy =
∂uz

∂x
− φx =

a3

b
+

a4

b
η − a5 − a6ξ − a7η − a8ξη .

(15.54)

If the plate is very thin and shear deformations vanish, all coefficients
except a1 are also vanishingly small. This causes also the curvatures of the
plate to be negligible, and the plate element results heavily overconstrained.
Practically, this results in an overestimating of the elements of the stiffness
matrix.

The most common procedures used in order to avoid, or at least to
reduce, the tendency of Mindlin plate elements to lock are the so-called
reduced integration and the selective integration practices. They are usually
employed when the integration required to compute the stiffness matrix is
performed numerically, mainly using Gauss technique.

The first method is simply based on the computation of the integrals
using an integration order lower than needed. The values of the integrals
are then underestimated and this balances, at least in an approximate
way, the overestimating of the stiffness matrix typical of ‘locked’ elements.
Its empirical nature and the possibility of giving way to other drawbacks,
makes the use of reduced integration not advisable. When the selective
integration is used, the various parts of the stiffness matrix are integrated
using different integration orders, so that the parts of the integrals giving
way to locking are underestimated. The results are usually acceptable and
this practice is common.

The use of elements with a larger number of nodes is effective, partic-
ularly when some nodes are not on the border of the elements: selective
integration on elements with quadratic shape functions with nine nodes
(one internal) leads to good results, while using cubic shape functions and
16 nodes (four internal) good results can be obtained even with complete
integration. Many alternative formulations for Mindlin plate elements have
been developed in order to prevent the element from locking: a deeper
discussion can be found in the books by Hinton and Owen and Bathe.2

2E. Hinton, D.R.J. Owen, Finite Element Software for Plates and Shells, Pineridge
Press, Swansea, 1984; K.J. Bathe, Finite Element Procedures in Engineering Analysis,
Prentice Hall, Englewood Cliffs, 1982.
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15.6 Brick elements

As an example of solid elements, the regular hexahedron 8-node element
will be described. In a similar way, a tetrahedron 4-node element or a
prismatic element with triangular bases with six nodes can be defined. If
other nodes are inserted at the center of the sides, the number of nodes
becomes, respectively, 20, 10, and 15. More complex elements, with nodes
also on the faces or even inside the element, have been formulated.

Consider the element shown in Fig. 15.4. Each node has 3 degrees of
freedom, leading to a total number of 24 degrees of freedom for the whole
element. Each internal point of the element has 3 degrees of freedom, the
displacements of the internal points in the direction of the axes

uz = a1 + a2ξ + a3η + a4ζ + a5ξη + a6ξζ + a7ηζ + a8ξηζ,
uy = a9 + a10ξ + a11η + a12ζ + a13ξη + a14ξζ + a15ηζ + a16ξηζ,
uz = a17 + a18ξ + a19η + a20ζ + a21ξη + a22ξζ + a23ηζ + a24ξηζ ,

(15.55)
where the nondimensional coordinates ξ and η are the same already defined
for the plate element, while coordinate ζ is referred to the thickness c of
the element in the z-direction.

With simple computations it is possible to show that the three rows of
the shape functions matrix N1, N2, and N3 are

⎡
⎣ N1

N2

N3

⎤
⎦ =

[
N11I N12I N13I N14I N15I N16I N17I N18I

]
,

(15.56)

FIGURE 15.4. Regular hexahedron element with eight nodes.
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where I is a 3×3 identity matrix and functions N1i are

N11 = 1 − ξ − η − ζ + ξη + ξζ + ηζ − ξηζ,
N12 = ξ − ξη − ξζ + ξηζ, N16 = ξζ − ξηζ,
N13 = η − ξη − ηζ + ξηζ, N17 = ηζ − ξηζ,

N14 = ξη − ξηζ, N18 = ξηζ
N15 = ζ − ξζ − ηζ + ξηζ

(15.57)

Since all generalized displacements are actual displacements, the general
formulation described in Section 15.1 is directly applicable without any
change. The strain vector is the usual column matrix representation of the
three-dimensional strain tensor ε

ε (x, y, z, t) =
[

εx εy εz γxy γxz γyz

]T (15.58)

and matrix B (x, y, z) in this case has 6 rows and 24 columns. Its various
rows, indicated as Bi, are

B1 =
1
a

∂N1

∂ξ
, B2 =

1
b

∂N2

∂η
,

B3 =
1
a

∂N3

∂ξ
, B4 =

(
1
b

∂N1

∂η
+

1
a

∂N2

∂ξ

)
, (15.59)

B5 =
(

1
c

∂N1

∂ζ
+

1
a

∂N3

∂ξ

)
, B6 =

(
1
c

∂N2

∂ζ
+

1
b

∂N3

∂η

)
.

Matrix E linking the stress vector σ

σ (x, y, z, t) =
[

σx σy σz τxy τxz τyz

]T (15.60)

with the already defined strain vector can be computed by inverting the
compliance matrix of the material. If the material is isotropic, it follows
that

E = E

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2 (1 + ν) 0 0
0 0 0 0 2 (1 + ν) 0
0 0 0 0 0 2 (1 + ν)

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

. (15.61)

The computation of the stiffness and mass matrices and of the nodal force
vector is straightforward and can be done directly using Eqs. (15.6)–(15.8).

Remark 15.8 Solid elements allow a very detailed modeling of complex
shapes but may lead a large number of degrees of freedom. R.H. Gallagher 3

3R.H. Gallagher, Finite Element Analysis, Prentice Hall, Englewood Cliffs, 1975.
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speaks of a curse of dimensionality to stress how quickly the number of de-
grees of freedom of a model grows from one-dimensional to two-dimensional
and to three-dimensional representations.

Consider as an example a one-dimensional structure, e.g., a bar, sub-
divided in 10 elements. It has 11 nodes, each having a single degree of
freedom: the total number of degrees of freedom is 11.

Now consider a two-dimensional structure, e.g., a square planar element.
If each side is subdivided into 10 parts, a total of 100 4-node rectangular
elements with 121 nodes is required. Since each node has 2 degrees of
freedom, the total number of degrees of freedom is 242.

If the corresponding three-dimensional structure is considered, for in-
stance, a cube with each side divided into 10 parts, a total of 1,000 8-node
brick elements with 1,331 nodes is required. Since each node has 3 degrees
of freedom, the total number of degrees of freedom is 3,993.

The large number of degrees of freedom usually involved with models
based on solid elements makes their use not very common for dynamic
studies. Reduction techniques (see Chapter 4) are very effective and largely
employed in connection with solid FEM modeling.

15.7 Isoparametric elements

The elements seen in the previous sections have all a regular shape and their
study was performed using a rectangular coordinate frame directly applied
to the element. This is however seldom applicable in actual cases, when the
use of more or less distorted elements is mandatory in order to adequately
model the geometry of the system. As an example, a 4-node rectangular
element can be distorted into a quadrilateral element whose sides are not
at right angle (Fig. 15.5a,b). The points of the latter, of coordinates (x, y),
can be put in a one-to-one relationship with the points of the former, on
which a set of non-dimensional coordinates (ξ, η) is stated. This mapping
can be expressed by the functions

{
x
y

}
=

{
f1 (ξ, η)
f2 (ξ, η)

}
. (15.62)

Functions f1 and f2 can be chosen in various ways, the most common
approach being using the shape functions to express also the distortion of
the element. In this case the element is said to be isoparametric.

In the general case of a brick element, Eq. (15.62) reduces to⎧⎨
⎩

x
y
z

⎫⎬
⎭ =

⎡
⎣ N(ξ, η, ζ) 0 0

0 N(ξ, η, ζ) 0
0 0 N(ξ, η, ζ)

⎤
⎦

⎧⎨
⎩

xi

yi

zi

⎫⎬
⎭ . (15.63)

where xi, yi, and zi are the coordinates of the nodes.
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FIGURE 15.5. Isoparametric elements obtained by distorting a 4-node and an
8-node rectangular element.

If the functions used in order to define the distortion of the elements are
polynomials whose degree is smaller than that of the shape functions, the
element is said to be subparametric; in the opposite case it is said to be
superparametric.

In the case of a general, 4-node quadrilateral isoparametric element whose
nodal coordinates are (xi, yi) (i = 1, ...4) mapped on a rectangular element
extending from ξ = −1 to ξ = 1 and from η = −1 to η = 1, the coordinate
transformation is{

x
y

}
=

[
N1x1 + N2x2 + N3x3 + N4x4

N1y1 + N2y2 + N3y3 + N4y4

]
, (15.64)

where

N1 = (1 − ξ) (1 − η) , N2 = (1 − ξ) (1 + η) ,
N3 = (1 + ξ) (1 − η) , N4 = (1 + ξ) (1 + η) .

(15.65)

The mapping is represented in Fig. 15.5a and b. An 8-node rectangular
element can be distorted with similar techniques into a curvilinear element,
whose sides are arcs of parabola, as shown in Fig. 15.5c and d.



386 15. The Finite Element Method

The shape functions are defined with respect to the undistorted element,
i.e., are functions of the coordinates ξ, η, ζ, while the differentiations needed
to compute matrix B and the integrations in Eqs. (15.6)–(15.8) yielding the
stiffness and mass matrices and the load vector are performed with respect
to x-, y-, z- coordinates. In order to pass from one coordinate frame to the
other the Jacobian matrix J of the coordinate transformation can be used.
The derivatives of the generic shape function Ni (actually, of any function)
with respect to ξ, η, ζ coordinates are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

∂x

∂η

∂y

∂η

∂z

∂η

∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= J

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (15.66)

The elementary volume dV is simply

dV = dx dy dz = det (J) dξ dη dζ . (15.67)

In the case of an isoparametric solid element, obtained by distorting a
hexahedron brick, Eq. (15.6) yielding the stiffness matrices transforms into

K =
∫ 1

−1

∫ 1

−1

∫ 1

−1

BTEB det (J) dξ dη dζ . (15.68)

Equations (15.7) and (15.8) yielding the mass matrix and the nodal force
vector transform into

M =
∫ 1

−1

∫ 1

−1

∫ 1

−1

ρNTN det (J) dξ dη dζ . (15.69)

f(t) =
∫ 1

−1

∫ 1

−1

∫ 1

−1

f(ξ, η, ζ, t)N det (J) dξ dη dζ . (15.70)

The integrations needed for the computation of the relevant matrices
and vectors cannot usually be performed in closed form, since functions
can be rather complex (the Jacobian matrix is included in matrix B and
appears explicitly). This complicates only marginally the construction of
the model, since the integration can be performed numerically element by
element without any trouble. The integration method usually employed
is Gauss method, which allows to obtain a good accuracy computing the
function to be integrated only in a limited number of points.

Isoparametric elements are by far the most common in routine FEM
computations.
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15.8 Some considerations on the consistent mass
matrix

As already stated, often the FEM is used only to compute the stiffness
matrix to be used in the context of the lumped parameter approach. In
this case the consistent mass matrix is not computed and a diagonal mass
matrix obtained by lumping the mass at the nodes is used. When using
beam elements, one half of the mass of each element can be lumped in
each node. Transversal moments of inertia are completely neglected, while
polar moments of inertia can be lumped in the same way as masses. If the
degrees of freedom are ordered as in Eq. (15.10), the mass matrix of the
element can thus be written in the form

M =
ρl

2
diag

[
A A A 0 0 Ip A A A 0 0 Ip

]
. (15.71)

It is also possible to insert transversal moments of inertia Ix and Iy into
Eq. (15.71), but this does not usually increase the accuracy of the lumped
parameter approach. The advantage is that of dealing with a diagonal mass
matrix, whose inversion in order to compute the dynamic matrix is far
simpler than that of the consistent mass matrix. As already stated, the
accuracy is however reduced or, better, a greater number of elements is
needed to reach the same accuracy and which formulation is more expedient
must be assessed in each case.

It can be easily shown that the values of the total mass obtained through
Eq. (4.55) using the two approaches are coincident.

If the beam undergoes a rigid body translational motion, vectors δi are

δx =
[

1 0 0 0 0 0 1 0 0 0 0 0
]T

δy =
[

0 1 0 0 0 0 0 1 0 0 0 0
]T

δz =
[

0 0 1 0 0 0 0 0 1 0 0 0
]T

. (15.72)

It is easy to verify that the value of the mass obtained by introducing
Eq. (4.55) and both formulations of the mass matrix into Eq. (4.55) is the
correct value of the mass of the beam

mt = ρAl .

Consider now a unit rigid body rotation of the beam element about
an axis passing through the center of mass and parallel to y-axis. The
displacement vector is

q =
[
− l

2 0 0 0 1 0 − l
2 0 0 1 0 0

]T . (15.73)

By using a procedure similar to that used to obtain Eq. (4.55), it is
possible to show that the expression

qT Mq (15.74)
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is nothing else than the moment of inertia Jy about the center of mass. By
inserting the consistent mass matrix into expression (15.74), it follows that

Jy = ρIyl +
ρAl3

12
. (15.75)

which coincides with the actual value.
By performing the same computation using the diagonal lumped mass

matrix (15.71), in which also transversal moments of inertia of the cross
sections are included, it follows that

Jy = ρIyl +
ρAl3

4
. (15.76)

Clearly, the approximation which is obtainable using Eq. (15.76) instead
of Eq. (15.75) is better if the length of the element is very small with respect
to the length of the structure, i.e., the accuracy increases when a finer mesh
is used.

Remark 15.9 In the case of beam elements, the consistent approach allows
to take into account exactly the inertia of the element in its rigid body
motions. It constitutes however an approximation, since the shape functions
used for the beam element yield the exact deflected shape (i.e., the deflected
shape obtained through the continuum theory) only in the case of beams
loaded at the ends. When inertia forces are applied along the element, the
shape functions do not coincide with the results obtainable from the beam
theory.

15.9 Assembling the structure

The equations of motion of the element are written with reference to a
local or element reference frame that has an orientation determined by the
features of the element. In a beam element, for example, the z-axis can
coincide with the axis of the beam, while the x- and y-axes are principal
axes of inertia of the cross section. The various local reference frames of
the elements have, in general, a different orientation in space.

To describe the behavior of the structure as a whole, another reference
frame, namely the global or structure reference frame, is defined. The ori-
entation in space of any local frame can be expressed, with reference to the
orientation of the global frame, by a suitable rotation matrix

R =

⎡
⎣ lx mx nx

ly my ny

lz mz nz

⎤
⎦ , (15.77)

where li, mi, and ni are the direction cosines of the axes of the former in
the global frame. The expressions qil and qig of the displacement vector
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qi of the ith node in the local and global reference frames are linked by the
usual coordinate transformation

qil = Rqig . (15.78)

The generalized coordinates in the displacement vector of the element
can be transformed from the local to the global reference frame using a
similar relationship in which an expanded rotation matrix R′ is used to
deal with all the relevant generalized coordinates. It is essentially made by
a number of matrices of the type of Eq. (15.77) suitably assembled together.

Remark 15.10 The assumption of small displacements and rotations al-
lows consideration of the rotations about the axes as the components of a
vector, which can be rotated in the same way as displacements.

The force vectors can also be rotated using the rotation matrix R′, and
the equation of motion of the element can be written with reference to the
global frame and premultiplied by the inverse of matrix R′, obtaining

R′−1MR′q̈g + R′−1KR′qg = fg . (15.79)

Because the inverse of a rotation matrix is coincident with its transpose,
the expressions of the mass and stiffness matrices of the element rotated
from the local to the global frame are

Mg = R′TMlR′ (15.80)

and
Kg = R′TKlR′ . (15.81)

Similarly, the nodal load vector can be rotated using the obvious rela-
tionship

fg = R′T fl . (15.82)

Once the mass and stiffness matrices of the various elements have been
computed with reference to the global frame, it is possible to easily obtain
the matrices of the whole structure. The n generalized coordinates of the
structure can be ordered in a single vector qg. The matrices of the various
elements can be rewritten in the form of matrices of order n×n, containing
all elements equal to zero except those that are in the rows and columns
corresponding to the generalized coordinates of the relevant element. Be-
cause the kinetic and potential energies of the structure can be obtained
simply by adding the energies of the various elements, it follows that

T =
1
2

∑
∀i

q̇T
g Miq̇g =

1
2
q̇T

g Mq̇g ;

U =
1
2

∑
∀i

qT
g Kiqg =

1
2
qT

g Kqg .
(15.83)
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Matrices M and K are the mass and stiffness matrices of the whole
structure and are obtained simply by adding all the mass and stiffness
matrices of the elements. In practice, the various matrices of size n× n for
the elements are never written. Each term of the matrices of all elements is
just added into the global mass and stiffness matrices in the correct place.

The matrices of the structure are easily assembled, and this is one of
the simplest steps. If the generalized coordinates are taken into a suitable
order, the assembled matrices have a band structure; many general-purpose
computer codes have a routine that reorders the coordinates in such a way
that the bandwidth is the smallest possible.

In a similar way the nodal force vector can be easily assembled

f =
∑
∀i

fi. (15.84)

Remark 15.11 The forces that are exchanged between the elements at the
nodes cancel each other in this assembling procedure, and then the force
vectors that must be inserted into the global equation of motion are only
those related to the external forces applied to the structure.

15.10 Constraining the structure

One of the advantages of the FEM is the ease with which the constraints
can be defined. If the ith degree of freedom is rigidly constrained, the
corresponding generalized displacement vanishes and, as a consequence, the
ith column of the stiffness and mass matrices can be neglected, because they
multiply a displacement and an acceleration, respectively, that are equal
to zero.

Because one of the generalized displacements is known, one of the equa-
tions of motion can be neglected when solving for the deformed config-
uration of the system. The ith equation can thus be separated from the
others, which amounts to canceling the ith row of all matrices and of the
force vector. Note that the ith equation could, in this case, be used after
all displacements have been computed to obtain the value of the ith gen-
eralized nodal force, which, in this case, is the unknown reaction of the
constraint.

To rigidly constrain a degree of freedom, it is sufficient to cancel the
corresponding row and column in all matrices and vectors. This approach
allows simplification of the formulation of the problem, which is particularly
useful in dynamic problems, but this simplification is often marginal, as the
number of constrained degrees of freedom is very small, compared with the
total number of degrees of freedom.

To avoid restructuring the whole model and rewriting all the matrices,
rigid constraints can be transformed into very stiff elastic constraints.
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If the ith degree of freedom is constrained through a linear spring with
stiffness ki, the potential energy of the structure is increased by the poten-
tial energy of the spring

U =
1
2
kiq

2
i . (15.85)

To take the presence of the constraint into account, it is sufficient to
add the stiffness ki to the element in the ith row and ith column of the
global stiffness matrix. This procedure is very simple, which explains why
a very stiff elastic constraint is often added instead of canceling a degree
of freedom in the case of rigid constraints.

An additional advantage is that the reaction of the constraint can be
obtained simply by multiplying the large generalized stiffness ki by the
correspondingly small generalized displacement qi.

Example 15.1 Write the mass and stiffness matrices for the study of the

flexural behavior of the transmission shaft with a central joint sketched in Fig.

15.6. The joint, whose mass is mG, is supported by an elastic constraint with

stiffness kG. Use the FEM, neglecting shear deformation and rotational inertia

of the cross sections.

A two-beam element model is sketched in Fig. 15.6b. There are 4 degrees of

freedom of each element involved in flexural behavior in the xz-plane. Using

the Euler–Bernoulli approach, the stiffness matrices of the elements are

M =
EIy

l3

⎡
⎢⎢⎣

12 6l −12 6l
4l2 −6l 2l2

12 −6l
symm. 4l2

⎤
⎥⎥⎦ .

The total number of degrees of freedom of the unconstrained system is 7, be-

cause the connection between the elements is performed through a joint that

allows different rotations of the two elements at node 2. The two constraints

lock translational degrees of freedom at nodes 1 and 3, reducing the number

of degrees of freedom to 5. Directly considering the constraints, the map of

the degrees of freedom, i.e., the table stating the correspondence between the

degrees of freedom of the elements and those of the structure is as follows:

Element d.o.f. 1 2 3 4
1 type transl. rot. transl. rot.

Element d.o.f. 1 2 3 4
2 type transl. rot. transl. rot.

Global d.o.f. constr. 1 2 3 4 constr. 5
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FIGURE 15.6. (a) Sketch of the system and (b) model based on two beam ele-
ments.

Noting that the stiffness kG and the mass mG must be added to element 22,
the stiffness and mass matrices are

K =
EIy

l3

⎡
⎢⎢⎢⎢⎣

4l2 −6l 2l2 0 0
24 + k∗ −6l 6l 6l

4l2 0 0
4l2 2l2

symm. 4l2

⎤
⎥⎥⎥⎥⎦ ,

M =
ρA

420

⎡
⎢⎢⎢⎢⎣

4l2 13l −3l2 0 0
312 + m∗ −22l 22l −13l

4l2 0 0
4l2 −3l2

symm. 4l2

⎤
⎥⎥⎥⎥⎦ ,

where

k∗ =
kGl3

EIy
, m∗ =

420mG

ρAl
.

Example 15.2 Compute the natural frequencies of the beam of Example
14.4 using the FEM.
Repeat the computations using both the lumped-parameters and the consistent
approach and compare the results with those obtained using the Myklestadt
method. Regard the supports as both rigid and very stiff elastic constraints.
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The simplest approach is the lumped-parameters one. The model follows closely
what was seen in Example 14.4: The stiffness matrices of the six Timoshenko
beam elements are readily computed (they are all equal) and assembled. The
assembly procedure is so simple that a map is not even needed. Because there
are seven nodes and the element has 2 degrees of freedom per node (bending
in one of the lateral planes), the order of the matrices is 14.
The stiffness of the constraints is assumed to be 1 × 1011 N/m. This number
is then added to the elements 3,3 and 11,11 of the stiffness matrix. The mass
matrix is diagonal, with the lumped masses in the positions with odd subscript
and zeros in those with even subscripts, because the moments of inertia are
neglected. Because the mass matrix is singular, the stiffness matrix is inverted
to obtain the dynamic matrix D.
The natural frequencies, up to the fifth, are as follows:

ω1 = 2, 158 rad/s = 343.4 Hz, ω2 = 5, 091 rad/s = 810.6 Hz,
ω3 = 6, 780 rad/s = 1, 079.1 Hz, ω4 = 10, 469 rad/s = 1, 666.2 Hz,
ω5 = 15, 858 rad/s = 2, 523.9 Hz.

The values coincide up to the last digit reported with those computed using the
transfer-matrix approach.
By canceling the third and eleventh row and column of the stiffness and mass
matrices and again solving the eigenproblem, the following values of the first
five natural frequencies can be found:

ω1 = 2, 158 rad/s = 343.4 Hz, ω2 = 5, 093 rad/s = 343.4 Hz,
ω3 = 6, 790 rad/s = 1, 080.7 Hz, ω4 = 10, 488 rad/s = 1, 669.2 Hz,
ω5 = 15, 869 rad/s = 2, 525.6 Hz.

The results are close to the ones obtained earlier, showing that a stiffness of
1 × 1011 N/m for the constraints is high enough to model rigid supports.
The consistent mass matrices of the elements were then built and the eige-
nanalysis was repeated. The natural frequencies, computed assuming elastic
constraints with kc = 1 × 1011 N/m, are as follows:

ω1 = 2, 239 rad/s = 356.3 Hz, ω2 = 6, 031 rad/s = 959.8 Hz,
ω3 = 8, 241 rad/s = 1, 311.6 Hz, ω4 = 11, 989 rad/s = 1, 980.4 Hz,
ω5 = 20, 552 rad/s = 3, 271.0 Hz.

The values of natural frequencies resulting from the consistent approach are

higher than those obtained from the lumped model, as would be expected. The

difference is not small, particularly for the higher-order modes, and this shows

that the modelization with only six elements is too rough.

15.11 Dynamic stiffness matrix

As already stated, the finite element method yields approximate results
even in the case of beam elements, because the shape functions cannot
give way to the exact inflected shape. To overcome this limitation, which
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is more apparent than real, an exact method has been developed for beam
elements, in which the expression of the deflected shape obtained through
the continuous model is assumed.

In the case of a homogeneous, prismatic Euler–Bernoulli beam perform-
ing harmonic oscillations with frequency ω in the xz-plane, for example,
the general solution of Eq. (12.60) yielding the deflected shape with any
boundary condition is

q(z) = C1 sin(az) + C2 cos(az) + C3 sinh(az) + C4 cosh(az) , (15.86)

where

a =
√

ω 4

√
ρA

EIy
.

Constants Ci can be easily obtained from the boundary conditions, i.e.,
from the nodal generalized displacements. Note that in this case the shape
functions that can be obtained from Eq. (15.86) depend on the frequency ω
of the harmonic motion. They can be used to compute the mass and stiffness
matrices of the element in the usual way. In this case, these matrices contain
the frequency ω of the harmonic motion, and it is possible to directly write
the dynamic stiffness matrix

Kdyn = K− ω2M ,

which for the Euler–Bernoulli beam, is:4

Kdyn =
EIya

cos(al) cosh(al) − 1

⎡
⎢⎢⎣

a2k1 ak2 a2k3 ak4

−k1 ak4 k5

a2k1 ak2

symm. −k1

⎤
⎥⎥⎦ , (15.87)

where
k1 = sin(al) cosh(al) − cos(al) sinh(al) ,

k2 = sin(al) sinh(al) , k3 = sin(al) + sinh(al) ,

k4 = cos(al) − cosh(al) , k5 = sinh(al) − sin(al) .

A similar approach can be used, at least in principle, for any type of
element, provided that an expression of the type of Eq. (15.86) can be
obtained from a continuous model. The dynamic matrices of the various
elements can be assembled in the same way seen for mass and stiffness ma-
trices. When the response to harmonic excitation has to be computed, the
frequency of the motion is known and the computation is straightforward.

4See, for example, R.D. Henshell, G.B. Warburton, ‘Transmission of vibration
in beam systems’, Int. J. Numer. Meth. Eng., Vol. 1, 47–66, 1969. The dynamic
matrices for both Euler–Bernoulli and Timoshenko beams are reported in detail.
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On the contrary, when the natural frequencies of the system have to be
computed, the solution of the eigenproblem is quite complicated because it
is impossible to express it in standard form and then apply the usual nu-
merical methods. The solution follows the lines seen for methods based on
transfer matrices: A value of the frequency is assumed and the determinant
of the dynamic stiffness matrix is computed. The determinant is not equal
to zero, unless a natural frequency has been chosen, and new values of the
frequency are assumed. A plot of the value of the determinant as a function
of the frequency is then drawn. From the plot, the values of the frequency
that cause the determinant to vanish can be obtained. The problem here
is that the determinant of a fairly large matrix has to be computed many
times and this is, from a computational point of view, far more involving
than solving an eigenproblem in standard form using standard techniques.

The dynamic stiffness matrix, which is now a function of the frequency,
can be expressed as a power series in the frequency ω:

Kdyn = Kd0 + ω2Kd2 + ω4Kd4 + . . . .

It is possible to show that only even powers of ω are present and that the
first term Kd0 depends only on the elastic properties. In the case of beam
elements it is coincident with the stiffness matrix. The second term Kd2

depends only on the inertial properties and is coincident, except for the
sign, which is obviously changed, with the mass matrix. All other matrices
depend on both inertial and stiffness properties and represent a correction
of the potential and kinetic energies of the element due to a more precise
formulation of the displacement field. The standard approach can thus be
thought of as a truncation at the second term of the series for the exact
dynamic stiffness matrix.

The drawbacks of the dynamic stiffness matrix approach, mainly those
of leading to long and costly computations and of being applicable only
to harmonic motion, are greater, in the opinion of the author, than its
advantage of giving a better approximation, which can be obtained simply
by using a finer mesh, with far less computational difficulty.

Remark 15.12 The term exact used in this context means simply that it
leads to the same results of the beam theory, i.e., of the continuous model.
All the approximations linked to that model itself are, however, present.

15.12 Damping matrices

It is possible to take into account the damping of the structure in a way
that closely follows what has been said for the stiffness. If elements that can
be modeled as viscous dampers are introduced into the structure between
two nodes or between a node and the ground, a viscous damping matrix
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can be obtained using the same procedures used for the stiffness matrix of
spring elements or elastic constraints. Actually, the relevant equations are
equal, once the damping coefficient is substituted for the stiffness. If the
damping of some of the elements can be modeled as hysteretic damping,
within the limits of validity of the complex stiffness model, an imaginary
part of the element stiffness matrix can be obtained by simply multiplying
its real part by the loss factor.

Viscous or structural damping matrices are then assembled following the
same rules seen for mass and stiffness matrices.

Remark 15.13 If there is a geometric stiffness matrix, the imaginary part
of the stiffness matrix must be computed before adding the geometric matrix
to the stiffness matrix.

Remark 15.14 The real and imaginary parts of the stiffness matrices
must be assembled separately, because, when the loss factor is not constant
along the structure, they are not proportional to each other.

15.13 Finite elements in time

An alternative to the conventional finite element discretization as described
in Section 15.1 is the space–time approach in which time is considered as
an added dimension and the four-dimensional space–time is meshed in a
way similar to the tridimensional meshing of the standard FEM.

Equation (15.1) defining the shape functions now becomes

u(x, y, z, t) = N(x, y, z, t)q , (15.88)

where the elements of vector q are constants expressing the values of the
generalized coordinates of the element at different times and the shape
functions are functions of time and space coordinates.

The equation of motion of the element can be directly obtained from
Hamilton’s principle, stating that

∫ t2

t1

[δ(T − U) + δL] dt = 0 (15.89)

where δ(T − U) and δL are, respectively, the variation of the Lagrangian
of the system and the virtual work of nonconservative forces corresponding
to the virtual displacement δu. The generalized velocities, the strains, and
the virtual displacements can be expressed as

u̇(x, y, z, t) =
[
∂N
∂t

]
q , ε = Bq , δu = Nδq , (15.90)

where matrix B is of the same type as the matrix defined by Eq. (15.3),
the only difference being that in this case it is also a function of time.
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In the case where all generalized coordinates are related to displacements,
the Lagrangian of the element can be expressed as

T − U =
1
2
qT

(∫
V

ρ

[
∂N
∂t

]T [
∂N
∂t

]
dV

)
q − 1

2
qT

(∫
V

BT EBdV

)
q .

(15.91)
If a generalized force f(x, y, z, t) is acting on the element, Hamilton’s

principle can be written in the form

∫ t2

t1

∫
V

{
δqT

[
ρ

[
∂N
∂t

]T [
∂N
∂t

]
− BT EB

]
q + δqT NT f

}
dV dt = 0 ,

(15.92)
i.e.,

K∗q = f∗ , (15.93)

where matrix K∗ and vector f∗ are

K∗ =
∫

V ∗

{
−ρ

[
∂N
∂t

]T [
∂N
∂t

]
+ BTEB

}
dV ∗, (15.94)

f∗ =
∫

V ∗
NT fdV ∗ .

and volume V ∗ is the four-dimensional volume of the element.
The element matrices K∗ and force vectors f∗ are then assembled in the

usual way, and an equation of the same type as Eq. (15.93) for the whole
structure is written.

Remark 15.15 The number of degrees of freedom needed when using the
space–time approach is far larger than that resulting from conventional
FEM modeling.

An example of space–time modeling of a rectangular plate is shown in
Fig. 15.7. Because the structure is two dimensional in space, the model has
three dimensions. In the case shown in the figure, the elements are rectan-
gular in time and are arranged in regular layers along the time coordinate.
This is not necessarily the case, and the present method demonstrates its
greatest advantages when the mesh is tailored in time to suit the local
needs and triangular (hypertetrahedral) elements are used.

In the case of rectangular elements, the equations can be assembled layer
by layer first. In this way, the generalized coordinates can be partitioned
according to the time to which they refer, and the equation of the ith layer
can be written as [

Ai Bi

Ci Di

]{
qi−1

qi

}
=

{
f1i

f2i

}
, (15.95)
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FIGURE 15.7. Space–time model of a rectangular plate using rectangular ele-
ments arranged in regular layers in time.

where matrices Ai, Bi, Ci, and Di
5 are submatrices of K∗ for the ith

layer and the subscript in vector qi refers to time ti and not to the ith
layer.

Once the matrices for the layers are assembled, the solution can be ob-
tained starting from the first layer, in which the initial conditions are usu-
ally stated, and proceeding layer by layer in a way similar to conventional
step-by-step time integration. The equation for the ith layer can be written
in the form

Bi+1qi+1 = − (Di + Ai+1) qi − Ciqi−1 +
1
2

(
f2i−1 + f1i

)
. (15.96)

Equation (15.96) directly yields the values of the generalized coordinates
at time ti+1 from the values they take at time ti and ti−1.

The simplest type of shape functions for elements that are rectangular
in time is

N(x, y, z, t) =
[

N1(x, y, z)(1 − τ) N1(x, y, z)τ
]

, (15.97)

where τ = t/h is the nondimensional time obtained by dividing the time
t by the time step h and N1 is the matrix of the shape functions of the
conventional FEM approach. With simple computations, it is possible to
show that the integration in space can thus be performed independently

5Matrices A, Bi, Ci, and Di obviously have nothing to do with the matrices
with the same name referred to as the quadruple of the system.
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from the integration in time. By also taking into account the presence of a
possible Rayleigh dissipation function, Eq. (15.96) reduces to

(
M +

h2

6
K +

h

2
C

)
qi+1 = 2

(
M − h2

3
K

)
qi+

−
(
M +

h2

6
K − h

2
C

)
qi−1 +

h2

2
(fi−1 + fi) ,

(15.98)

where M , C, and K are the matrices computed using the conventional
FEM approach. Equation (15.98) is close to that obtained from the central
difference algorithm for step-by-step integration in time (see Section A.5).

However, as already stated, the space–time finite element approach gives
better results if the elements are not rectangular in time and the shape
functions cannot be expressed as the product of a function of space by a
function of time. There are some limitations on the ratio between the space
and the time dimensions of the elements, which should approach the prop-
agation velocity of the elastic waves in the material.6 This consideration
can cause a large increase is the number of degrees of freedom.

15.14 Exercises

Exercise 15.1 Repeat the computations of Exercise 12.1 using the FEM. Use

three, five, and seven Timoshenko beam elements.

Exercise 15.2 Compute the natural frequencies of the connecting rod of Ex-

ercise 12.7 using the FEM. Use the geometric matrix to take into account the

compressive axial force. First use a single beam element and then repeat the com-

putation using a finer subdivision.

Exercise 15.3 Consider the prismatic homogeneous beam sketched Fig. 15.8.

It is clamped at one end and supported at the other end. In its midpoint it is

connected to a frictionless prismatic slide constraining rotations. A mass m is

located at the midpoint where also a force F (t) is acting. Write the equation of

motion of the system using the FEM. Neglect the mass of the beam and its shear

deformation and keep the model as simple as possible.

Exercise 15.4 Repeat the computation of the first natural frequency of the sys-

tem studied in Example 9.1, assuming that during lift-off an acceleration of 6 g

acts on the beam in axial direction. Use the FEM and model the beam with a

single element.

6Z. Kaczkowski, ‘The method of finite space-time elements in dynamics of
structures’, J. Tech. Phys., Vol. 16, No. 1, 69–84, 1975. See also C. Bajer, C.
Bonthoux, “State-of-the-art in the space–time element method”, The Shock and
Vibration Digest, Vol. 23, 3–9, May 1991.
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FIGURE 15.8. Exercise 5.4: sketch of the system.

Exercise 15.5 Consider the transmission shaft of Example 15.1. Compute the

numerical value of the natural frequency using the Raleigh method. Compute the

first three natural frequencies and the mode shapes of the flexural vibrations using

a four-element subdivision and compare the result obtained for the first mode with

that previously obtained. Data: inner diameter = 70 mm, outer diameter = 90

mm, length of each part of the shaft = 500 mm, E = 2.1 × 1011 N/m2, ν = 0.3,

ρ = 7,810 kg/m3, mG = 2 kg, kG = 105 N/m.

Exercise 15.6 Repeat the dynamic analysis of the previous exercise by using

the component-mode synthesis. Subdivide the system into two substructures coin-

ciding with two spans of the shaft and take into account the first mode of each

part.

Exercise 15.7 Consider a frame made by three beams arranged as an equilat-

eral triangle. The frame is clamped at one of the vertices and carries two concen-

trated masses at the other vertices. Perform the dynamic analysis of the frame

using one beam element for each side. Data: annular cross section with inner

diameter = 50 mm, outer diameter = 70 mm, length of each side = 500 mm,

E = 2.1 × 1011 N/m2, ν = 0.3, concentrated masses at the vertices mc = 10 kg.

Exercise 15.8 Compute the field transfer matrix for a Timoshenko beam from

the stiffness matrix of an element of the same type.

Exercise 15.9 Consider the beam supported by an actuator studied in Example

12.4. Plot the roots locus at varying proportional gain as in Fig. 12.10b, for the two

cases of the sensor at the end of the beam and at the 90% of the length (the

actuator is always at the end of the beam). Use the same relationship between the

proportional and the derivative gain as in Example 12.4. Solve the problem using

the FEM, with 10 Euler–Bernoulli elements. Data: length l = 1 m, rectangular

cross section with thickness t = 50 mm and width w = 100 mm; density ρ = 7, 810

kg/m3, E = 2.1 × 1011 N/m2.



16
Dynamics of Multibody Systems

The previous chapters were mostly devoted to the study of elastic and
visco-elastic systems, dealt with under the assumptions of small displace-
ments and rotations. When some of the concentrated masses or deformable
solids are replaced by rigid bodies, possibly connected to each other not only
by springs and dampers but also by constraints of various nature, things
become more complicated. In most cases, when dealing with mechanisms,
displacements, and above all rotations, are not small and thus the equations
of motion cannot be reduced to a set of linear equations. Today the most
common approach is the use of multibody dynamics codes, operating in the
time domain through numerical integration of the equations.

16.1 General considerations

Consider a system made by a number of rigid bodies, connected to each
other by linkages that constrain a number of relative motions and by springs
and dampers operating in the same way as seen for the discrete systems
studied in the previous chapters.

The most general approach for dealing with systems of this kind is to
build a multibody model, i.e., by writing the equations of motion of the
various bodies and then adding the constraint equations that model the
connections between them. Most commercial computer codes widely used
in dynamic analysis operate along these lines.
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The number of degrees of freedom resulting from this approach may be
quite large: in tridimensional space each rigid body has 6 degrees of freedom
(see below) and thus a number of 6n second-order differential equations
must be written, if there are n rigid bodies.

Owing to the internal constraints, however, the number of degrees of
freedom of the system, i.e., the minimum number of parameters needed to
define the configuration of the system, may be much smaller. For instance,
if two of the bodies are connected with each other by a cylindrical hinge
a single parameter (the angle of rotation about the axis of the hinge) is
needed to define completely their relative position: the cylindrical hinge
thus constrains 5 degrees of freedom and can be modeled by a set of 5
algebraic equations.

The complexity of the study depends also on the configuration of the
system. If the various bodies constitute an open chain, or a tree system,
things are much simpler than in the case of a closed chain, or multiply
connected system. In many cases the same system can be set in open and
closed chain configurations, so it must be studied in different layouts.

An example of an open chain system is the robotic arm sketched in
Fig. 16.1. It can be modeled as made of six rigid bodies: the support, the
two beams, the wrist, and the two parts of the gripper. The number of
degrees of freedom of these bodies is thus 36 and the dynamic model of
the system consists of 36 second-order differential equations. The support
is constrained by a cylindrical hinge, allowing just a rotation about the
vertical axis. Also the two beams are constrained to the support and to
each other by cylindrical hinges, as is the wrist to the second beam and
the two parts of the gripper to the wrist: a total of six cylindrical hinges,
constraining 30 degrees of freedom. A further constraint is supplied by the

FIGURE 16.1. Sketch of a robotic arm with 5 degrees of freedom.
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two gear wheels that force the two parts of the gripper to move together,
by eliminating a further degree of freedom.

The constraint equations are thus 31. They can be used to eliminate 31
out of the 36 generalized coordinates, obtaining a set of five differential
equations in the five independent generalized coordinates. It must be em-
phasized that in the 36 equations of motion originally written, the forces
the various bodies exchange at the constraints are included; these forces
are then eliminated when the constraint equations are introduced. The 31
equations so eliminated can be used to compute the constraint forces.

If the internal constraints are holonomic and the system is of the tree
type, it is possible to resort to a simpler approach. One of the bodies may
be chosen as main body, to which a number of secondary, first-level bodies
are attached. Other secondary bodies, considered as second-level bodies,
are then attached and so on. Secondary bodies have only the degrees of
freedom allowed by the constraints. In this way, the minimum number of
equations needed for the study is directly obtained. Such equations are all
differential equations, usually of the second order. The forces exchanged at
the constraints between the bodies do not appear explicitly in the equations
and need not be computed in the dynamic study of the system as a whole.

The equations of motion of multibody systems may be obtained following
two different approaches that are usually widely defined as Eulerian and
Lagrangian. The first approach is based on writing the equations of motion
of the various bodies by stating directly the dynamic equilibrium equations,
usually in the form stating that the (generalized) external forces equal the
time derivatives of the (generalized) momenta. This approach leads to a full
set of differential equations to be combined with the constraint equations.

The Lagrangian approach is based on writing the kinetic and potential
energies of the system and then applying the methods of analytical dy-
namics, Lagrange equations being one of the most common approach. As
already stated, they can be written in two forms: a full set of equations,
whose number is equal to all the generalized coordinates, to which the
constraint equations must be added, possibly using the Lagrange multi-
pliers approach, or a reduced set of equations, written in the independent
generalized coordinates only.

Only this last approach will be followed in the present book.
It must be observed that multibody modeling is usually considered as a

branch of mechanics having little to do with vibration mechanics and is not
dealt with in books on vibration. This is done for a very good reason: Clas-
sical multibody models deal mostly with rigid bodies connected through
linkages which behave following kinematic rules and thus are not subjected
to vibration, not to mention that adding also this aspect of dynamics to
a book on vibration would end in too wide a scope to be pursued in a
reasonable way.

However, the trend in multibody dynamics is to include also deformable
bodies, usually modeled through the finite element method, and springs
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and dampers, giving this kind of models the ability do deal with vibration
problems.

Here a compromise is searched: In this short chapter the basics of the
motion of rigid bodies is dealt with, without any attempt at delving in
detail into multibody modeling, a field that has been the subject of many
specialized books. To be consistent with the previous chapters, mainly the
Lagrangian approach will be followed and no constraint equation is explic-
itly written.

Example 16.1 Study the linearized dynamics of the planar system shown

in Fig. 16.2. It is made of two rigid bodies, the first suspended on two elastic

supports, having different horizontal and vertical stiffness and the second one

connected to the first by two bars and forming a bi-filar pendulum. In the figure

an inertial reference frame OXY centered in the static equilibrium position O

of the center of mass G1 and a body-fixed frame G1xy are shown.

Since the system is planar, each rigid body has a total or 3 degrees of freedom,

so that, considering also the two bar connecting the bodies, the total number

of degrees of freedom is 4 × 3 = 12. The four cylindrical hinges constrain 2

degrees of freedom each, for a total of 8 degrees of freedom. The number of

independent degrees of freedom is thus 4.

Note that it is not a branched system, but includes a closed loop.

If the Lagrangian approach is followed, a minimum number of four generalized

coordinates is needed: a simple choice is to chose the horizontal and vertical

displacements X and Y of the first body and angles θ and φ that axis y and

line BG2 make with the vertical direction.
The position of the various points of interest in the inertial frame are

(
G1 − O

)
=

{
X
Y

}
,

(
Ai − O

)
=

{
X ± b cos(θ) + a sin(θ)
Y ± b sin(θ) − a cos(θ)

}
.

(
Bi − O

)
=

{
X ± c cos(θ) + d sin(θ)
Y ± c sin(θ) − d cos(θ)

}
,

(
Ci − O

)
=

{
X ± b cos(θ) + a sin(θ) + l sin(φ)
Y ± b sin(θ) − a cos(θ) − l cos(φ)

}
.

(
G2 − O

)
=

{
X + (d + e) sin(θ) + l sin(φ)
Y − (d + e) cos(θ) − l cos(φ)

}
.

The velocities of the centers of mass and the angular velocities of the two
bodies are

V1 =

{
Ẋ

Ẏ

}
, V2 =

{
Ẋ + (d + e) θ̇ cos(θ) + lφ̇ cos(φ)

Ẏ + (d + e) θ̇ sin(θ) + lφ̇ sin(φ)

}
, Ω1 = Ω2 = θ̇.
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FIGURE 16.2. Two-body planar system. (a) Static equilibrium configuration;
(b) deformed configuration.

Note that the two bodies have the same angular velocity, since the bi-filar
pendulum keeps them parallel to each other.
Neglecting the mass of the two beams, the kinetic energy of the system is thus

T = m1V
2
1 + m2V

2
2 + (J1 + J2) θ̇

2
,

i.e.,

T =
1

2
m

(
Ẋ2 + Ẏ 2

)
+

1

2
Jθ̇

2
+

1

2
m2l

2φ̇
2

+ m2flθ̇φ̇ cos(θ − φ) +

+m2fθ̇
[
Ẋ cos(θ) + Ẏ sin(θ)

]
+ m2lφ̇

[
Ẋ cos(φ) + Ẏ sin(φ)

]
,

where
m = m1 + m2 , J = J1 + J2 + m2f

2 , f = d + e .

Its linearized expression is

T =
1

2
m

(
Ẋ2 + Ẏ 2

)
+

1

2
Jθ̇

2
+

1

2
m2l

2φ̇
2

+ m2flθ̇φ̇ +

+m2fθ̇Ẋ + m2lφ̇Ẋ .

The gravitational potential energy is simply

Ug = mgY − m2gf cos(θ) − m2gl cos(φ) .

By linearizing and neglecting the constant terms, it follows that

Ug = mgY +
1

2
m2gfθ2 +

1

2
m2glφ2 .
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Some further assumptions are needed for the computation of the potential en-
ergy due to the suspension springs. To simplify the matter, assume that they
are linear, reacting to displacements of points Ai with a stiffness kv in vertical
direction and kh in horizontal direction. Taking into account that when Y = 0
the springs are already deformed, since they carry the static weight, the elastic
potential energy is

Ue =
1

2

2∑
i=1

[
KhX2

Ai
+ Kv (YAi − Y0i + a)2

]
,

i.e., neglecting the constant terms that do not enter the equations of motion,

Ue = KhX2 + KvY 2 +
(
Khb2 + Kva2) cos2(θ) +

(
Kha2 + Kvb2) sin2(θ) +

+2KhaX sin(θ) − 2aKv (Y − Y0 + a) cos(θ) − 2KvY (Y0i − a) .

Linearizing the expression of the elastic potential energy, it follows that

Ue = KhX2 + KvY 2 + Kθθ
2 + 2KhaXθ − 2KvY Y0i ,

where
Kθ = (Kh − Kv)

(
a2 − b2

)
− aKv (Y0 − a) .

The external forces are applied to the two centers of mass. Given a virtual
displacement

δs = [δX, δY , δθ, δφ]T ,

the virtual displacements of G1 and G2 are

δsG1 =

{
δX
δY

}
, δsG2 =

{
δX + (d + e) cos(θ)δθ + l cos(φ)δφ
δY + (d + e) sin(θ)δθ + l sin(φ)δφ

}
.

The virtual work of the external forces is

δL = (Fx1 + Fx2) δX + (Fy1 + Fy2) δY + [Fx2 cos(θ) + Fy2 sin(θ)] fδθ

+ [Fx2 cos(φ) + Fy2 sin(φ)] lδφ .

When the equations of motion are linearized, the external forces must not
contain the generalized coordinates, so

δL = (Fx1 + Fx2) δX + (Fy1 + Fy2) δY + Fx2fδθ + Fx2 lδφ .

The equations of motion can thus be obtained by introducing the relevant
derivatives into the Lagrange equations. The second equation uncouples from
the other ones, yielding

mŸ + 2KvY = −mg − 2KvY0i + Fy1 + Fy2 .

Assuming that Y = 0 and Qy = 0, the static equilibrium condition is readily
obtained:
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Y0i =
mg

2Kv
for i = 1, 2,

and thus the equation for the motion about the equilibrium position reduces to
that of a mass–spring system

mŸ + KvY = Fy1 + Fy2 .

Substituting for Y0i its value, the other equations can be summarized as

⎡
⎣ m m2f m2l

m2f J m2fl
m2l m2fl m2l

2

⎤
⎦

⎧⎨
⎩

Ẍ

θ̈

φ̈

⎫⎬
⎭ +

+

⎡
⎣ 2Kh 2Kha 0

2Kha K′
θ 0

0 0 m2gl

⎤
⎦

⎧⎨
⎩

X
θ
φ

⎫⎬
⎭ =

⎧⎨
⎩

Fx1 + Fx2

Fx2f
Fx2 l

⎫⎬
⎭ ,

where

K′
θ = 2 (Kh − Kv)

(
a2 − b2) + 2a2Kva + g (m2f − ma) .

The motion of the bi-filar pendulum is inertially coupled with that of the sus-

pending mass. The linearized equations of motion allow to study completely

the motion in the small about the static equilibrium position.

Remark 16.1 The previous example is in a way misleading: It deals with
a planar system and thus is too simple to represent the complexity of the
multibody approach. In particular, owing to both the two-dimensional na-
ture of the system and the small-displacement assumption, it was possible
to linearize the equations of motion, obtaining a formulation suitable for
a frequency-domain study. This is usually not the case when motion in
tridimensional space is possible.

16.2 Lagrange equations in terms
of pseudo-coordinates

Often the equations of motion in the state space are written with reference
to generalized velocities that are not simply the derivatives of the general-
ized coordinates. In particular, often it is expedient to use as generalized
velocities wi suitable combinations of the derivatives of the coordinates
vi = ẋi:

{wi} = AT {ẋi} . (16.1)

Remark 16.2 Equation (16.1) that defines the generalized velocities as
functions of the derivatives of the generalized coordinates is usually said to
be the kinematic equation of the system.
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The coefficients of the linear combinations included in matrix AT may
be constant, but in general are themselves functions of the generalized
coordinates.

Equation (16.1) may in general be inverted, obtaining1

{ẋi} = B {wi} , (16.2)

where
B = A−T (16.3)

and symbol A−T indicates the inverse of the transpose of matrix A.
In some cases matrix AT is a rotation matrix and its inverse coincides

with its transpose. In such cases

B = A−T = A .

However, in general this does not occur and

B �= A .

While vi are the derivatives of the coordinates xi, in general it is not pos-
sible to express wi as the derivatives of suitable coordinates.
Equation (16.1) can be written in the infinitesimal displacements dxi

{dθi} = AT {dxi} , (16.4)

obtaining a set of infinitesimal displacements dθi, corresponding to the
velocities wi. Equations (16.4) can be integrated, yielding displacements θi

corresponding to the velocities wi, only if

∂ajs

∂xk
=

∂aks

∂xj
.

If this is not the case, Eq. (16.4) cannot be integrated and velocities wi

cannot be considered as the derivatives of true coordinates. In such a case
they are said to be the derivatives of pseudo-coordinates.

As a first consequence of the nonexistence of coordinates corresponding
to velocities wi, Lagrange equation (3.37) cannot be written directly using
velocities wi, but must be modified to allow using velocities and coordinates
that are not directly one the derivative of the other.

The use of pseudo-coordinates is fairly common, in particular when
studying the dynamics of structures that perform also rigid-body motions
(robots, spacecraft, etc.). If, for instance, in the dynamics of a rigid body
the generalized velocities in a reference frame following the body in its mo-
tion are used, while the coordinates xi are the displacements in an inertial

1Matrices A and B here defined must not be confused with the dynamic matrix
A and with the input gain matrix B or the compliance matrix B.
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frame, matrix AT is simply the rotation matrix allowing to pass from one
reference frame to the other. In this case matrix B coincides with A, but
both are not symmetrical and then the velocities in the body-fixed frame
cannot be considered as the derivatives of true coordinates.

Remark 16.3 The body-fixed frame rotates and then it is not possible to
integrate the velocities along the body-fixed axes to obtain the displacements
along the same axes. That notwithstanding, it is possible to use the com-
ponents of the velocity along the body-fixed axes to write the equations of
motion.

The kinetic energy can be written in general in the form

T = T (wi, xi, t) .

The derivatives ∂T /∂ẋi included in the equations of motion are

∂T
∂ẋk

=
n∑

i=1

∂T
∂wi

∂wi

∂ẋk
, (16.5)

i.e., in matrix form, {
∂T
∂ẋ

}
= A

{
∂T
∂w

}
, (16.6)

where {
∂T
∂ẋ

}
=

[
∂T
∂ẋ1

∂T
∂ẋ2

...

]T

,

{
∂T
∂w

}
=

[
∂T
∂w1

∂T
∂w2

...

]T

.

By differentiating with respect to time, it follows that

∂

∂t

({
∂T
∂ẋ

})
= A

∂

∂t

({
∂T
∂w

})
+ Ȧ

{
∂T
∂w

}
. (16.7)

The generic element ȧjk of matrix Ȧ is

ȧjk =
n∑

i=1

∂ajk

∂xi
ẋi = ẋT

{
∂ajk

∂x

}
(16.8)

and then

ȧjk = wTBT

{
∂ajk

∂x

}
. (16.9)

The various ȧjk so computed can be written in matrix form

Ȧ =
[
wT BT

{
∂ajk

∂x

}]
. (16.10)
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The computation of the derivatives of the generalized coordinates
{∂T /∂x} is usually less straightforward. The generic derivative

∂T
∂xk

is

∂T ∗

∂xk
=

∂T
∂xk

+
n∑

i=1

∂T
∂wi

∂wi

∂xk
=

∂T
∂xk

+
n∑

i=1

∂T
∂wi

n∑
j=1

∂aij

∂xk
ẋj , (16.11)

where T ∗ is the kinetic energy expressed as a function of the generalized
coordinates and their derivatives (the expression to be introduced into La-
grange equation in its usual form), while T is expressed as a function of
the generalized coordinates and of the velocities wi. Equation (16.11) can
be written as

∂T ∗

∂xk
=

∂T
∂xk

+ wT BT ∂A
∂xk

{
∂T
∂w

}
, (16.12)

where product

wT BT ∂A
∂xk

yields a row matrix with n elements and that multiplied by the column
matrix {∂T /∂w} yields the required number.

By combining those row matrices, a square matrix is obtained:
[
wT BT ∂A

∂xk

]
, (16.13)

and thus the column containing the derivatives with respect to the gener-
alized coordinates is{

∂T ∗

∂x

}
=

{
∂T
∂x

}
+

[
wTBT ∂A

∂x

] {
∂T
∂w

}
. (16.14)

By definition, the potential energy does not depend on the generalized
velocities and then the term ∂U/∂xi is not influenced by the way the gen-
eralized velocities are written.

The Rayleigh dissipation function F can be written in terms of the ve-
locities w. Its derivatives are{

∂F
∂ẋ

}
= A

{
∂F
∂w

}
. (16.15)

The equation of motion (3.37) is thus

A
d

dt

({
∂T
∂w

})
+Γ

{
∂T
∂w

}
−

{
∂T
∂x

}
+

{
∂U
∂x

}
+A

{
∂F
∂w

}
= Q , (16.16)
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where

Γ =
[
wT BT

{
∂ajk

∂x

}]
−

[
wT BT ∂A

∂xk

]
(16.17)

and Q is a vector containing the n generalized forces Qi.
By premultiplying all terms by matrix BT = A−1 and attaching the

kinematic equations to the dynamic equations, the final form of the state-
space equations is obtained:
⎧⎪⎨
⎪⎩

d

dt

({
∂T
∂w

})
+ BTΓ

{
∂T
∂w

}
−BT

{
∂T
∂x

}
+ BT

{
∂U
∂x

}
+

{
∂F
∂w

}
= BT Q

{q̇i} = B {wi} .

(16.18)

16.3 Motion of a rigid body

16.3.1 Generalized coordinates

Consider a rigid body free in tridimensional space. Define an inertial ref-
erence frame OXY Z and a frame Gxyz fixed to the body and centered
in its center of mass. The position of the rigid body is defined once the
position of frame Gxyz is defined with respect to OXY Z, that is, once the
transformation leading OXY Z to coincide with Gxyz is defined. It is well
known that the motion of the second frame can be considered as the sum
of a displacement plus a rotation and then the parameters to be defined
are six: three components of the displacement, two of the components of
the unit vector defining the rotation axis (the third component need not
be defined and may be computed from the condition that the unit vector
has unit length) and the rotation angle. A rigid body has thus six degrees
of freedom in the tridimensional space.

There is no problem in defining the generalized coordinates for the trans-
lational degrees of freedom, since the coordinates of any point fixed to
the body expressed in any inertial reference frame (in particular, in frame
OXY Z) can be used, with the simplest, and the most obvious, choice being
usually the coordinates of the center of mass G. For the other generalized
coordinates the choice is much more complicated. It is possible to resort,
for instance, to two coordinates of a second point and to one of the coor-
dinates of a third point, not on a straight line through the other two, but
this choice is far from being the most expedient.

An obvious way to define the rotation of frame Gxyz with respect to
OXY Z is to express directly the rotation matrix linking the two reference
frames. It is a square matrix of size 3×3 (in tridimensional space) and then
has nine elements. Three of them are independent, while the other six may
be obtained from the first three using suitable equations.
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Alternatively, the position of the body-fixed frame can be defined stating
a sequence of three rotations about the axes. Since rotations are not vectors,
the order in which they are performed must be specified.

Start rotating, for instance, the inertial frame about the X-axis. The
second rotation may be performed about axes Y or Z (obviously in the
position they take after the first rotation), but not about the X-axis, be-
cause in the latter case the two rotations would simply add to each other
and would amount to a single rotation. Assume for instance to rotate the
frame about the Y -axis.

The third rotation may occur about either X-axis or Z-axis (in the new
position, taken after the second rotation), but not about the Y -axis.

The possible rotation sequences are 12, but may be subdivided into two
types: those like X → Y → X or X → Z → X , where the third rotation
occurs about the same axis as the first one, and those like X → Y → Z or
X → Z → Y , where the third rotation is performed about a different axis.

In the first case the angles are said to be Euler angles, since they are of the
same type of the angles Euler proposed to study the motion of gyroscopes
(precession φ about Z-axis, nutation θ about X-axis, and rotation ψ, again
about Z-axis). In the second case they are said to be Tait–Bryan angles.2

The possible rotation sequences are reported in the following table:

First X Y Z
Second Y Z X Z X Y
Third X Z X Y Y Z Y X Z Y Z X

Type E TB E TB E TB E TB E TB E TB

Euler angles are indeterminate when the plane containing the axes of the
first two rotations (xy in the first case) of the body-fixed frame is parallel
to the plane with the same name of the inertial frame, i.e., when the second
rotation angle vanishes.

In the dynamics of moving structures (road vehicles, aircraft, spacecraft,
etc.) the most common approach is using Tait–Bryan angles of the type
Z → Y → X so defined (Fig. 16.3):

• Rotate frame XY Z (whose XY plane is usually horizontal or parallel
to the ground) about Z-axis until axis X coincides with the projection
of x-axis on plane XY (Fig. 16.3a). Such a position of X-axis can be
indicated as x∗. The rotation angle between axes X and x∗ is the yaw
angle ψ. The rotation matrix allowing to pass from the x∗y∗Z frame
that will be referred to as the intermediate frame to the inertial frame

2Sometimes all sets of three ordered angles are said to be Euler angles. With
this wider definition also Tait–Bryan angles are considered as Euler angles.
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FIGURE 16.3. Definition of angles: yaw ψ (a), pitch θ (b), and roll φ (c).

XY Z is

R1 =

⎡
⎣ cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦ . (16.19)

• The second rotation is the pitch rotation θ about y∗-axis, leading axis
x∗ in the position of x-axis (Fig. 16.3b). The rotation matrix is

R2 =

⎡
⎣ cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

⎤
⎦ . (16.20)

• The third rotation is the roll rotation φ about x-axis, leading axes
y∗ and z∗ to coincide with axes y and z (Fig. 16.3c). The rotation
matrix is

R3 =

⎡
⎣ 1 0 0

0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎤
⎦ . (16.21)

The rotation matrix allowing to rotate any vector from the body-fixed
frame xyz to the inertial frame XY Z is clearly the product of the three
matrices

R = R1R2R3 . (16.22)

Performing the product of the rotation matrices, it follows

R =

⎡
⎣ c(ψ)c(θ) c(ψ)s(θ)s(φ) − s(ψ)c(φ) c(ψ)s(θ)c(φ) + s(ψ)s(φ)

s(ψ)c(θ) s(ψ)s(θ)s(φ) + c(ψ)c(φ) s(ψ)s(θ)c(φ) − c(ψ)s(φ)
−s(θ) c(θ)s(φ) c(θ)c(φ)

⎤
⎦ ,

(16.23)
where symbols cos and sin have been substituted by c and s.
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Sometimes roll and pitch angles are small. In this case it is expedient to
keep the last two rotations separate from the first one that usually cannot
be linearized.

The product of the rotation matrices related to the last two rotations is

R2R3. =

⎡
⎣ cos(θ) sin(θ) sin(φ) sin(θ) cos(φ)

0 cos(φ) − sin(φ)
− sin(θ) cos(θ) sin(φ) cos(θ) cos(φ)

⎤
⎦ (16.24)

that becomes, in the case of small angles,

R2R3 ≈

⎡
⎣ 1 0 θ

0 1 −φ
−θ φ 1

⎤
⎦ . (16.25)

The angular velocities ψ̇, θ̇, and φ̇ are not applied along x-, y-, and z-axes,
and then are not the components Ωx, Ωy, and Ωz of the angular velocity in
the body-fixed reference frame.3 Their directions are those of axes Z, y∗,
and x, and then the angular velocity in the body-fixed frame is

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ = φ̇ex + θ̇RT

3 ey + ψ̇
[
R2R3

]T
ez , (16.26)

where the unit vectors are obviously

ex =

⎧⎨
⎩

1
0
0

⎫⎬
⎭ , ey =

⎧⎨
⎩

0
1
0

⎫⎬
⎭ , ez =

⎧⎨
⎩

0
0
1

⎫⎬
⎭ . (16.27)

By performing the products, it follows that

⎧⎨
⎩

Ωx = φ̇ − ψ̇ sin(θ)
Ωy = θ̇ cos(φ) + ψ̇ sin(φ) cos(θ)
Ωz = ψ̇ cos(θ) cos(φ) − θ̇ sin(φ) ,

(16.28)

or, in matrix form

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ =

⎡
⎣ 1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)
0 − sin(φ) cos(φ) cos(θ)

⎤
⎦

⎧⎨
⎩

φ̇

θ̇

ψ̇

⎫⎬
⎭ . (16.29)

3Often symbols p, q, and r are used for the components of the angular velocity
in the body-fixed frame.
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If the pitch and roll angles are small enough to linearize the relevant
trigonometric functions, the components of the angular velocity may be
approximated as ⎧⎨

⎩
Ωx = φ̇ − θψ̇

Ωy = θ̇ + φψ̇

Ωz = ψ̇ − φθ̇ .

(16.30)

16.3.2 Equations of motion – Lagrangian approach

Consider a rigid body in tridimensional space and chose as generalized
coordinates the displacements X , Y , and Z of its center of mass and the
set of three Tait–Bryan angles ψ, θ, and φ defined in the previous section.
Assuming that the body axes xyz are principal axes of inertia, the kinetic
energy of the rigid body is

T = 1
2m

(
Ẋ2 + Ẏ 2 + Ż2

)
+ 1

2Jx

[
φ̇ − ψ̇ sin(θ)

]2

+

+ 1
2Jy

[
θ̇ cos(φ) + ψ̇ sin(φ) cos(θ)

]2

+

+ 1
2Jz

[
ψ̇ cos(θ) cos(φ) − θ̇ sin(φ)

]2

.

(16.31)

Introducing the kinetic energy into the Lagrange equations

d

dt

(
∂T
∂q̇i

)
− ∂T

∂qi
= Qi ,

and performing the relevant derivatives, the six equations of motion are
directly obtained. The three equations for translational motion are⎧⎨

⎩
mẌ = QX

mŸ = QY

mZ̈ = QZ .
(16.32)

The equations for rotational motion are much more complicated

ψ̈
[
Jx sin2(θ) + Jy sin2(φ) cos2(θ) + Jz cos2(φ) cos2(θ)

]
− φ̈Jx sin(θ)+

+θ̈ (Jy − Jz) sin(φ) cos(φ) cos(θ) + φ̇θ̇ cos(θ)
{[

1 − 2 sin2(φ)
]
×

× (Jy − Jz) − Jx} + 2φ̇ψ̇ (Jy − Jz) cos(φ) cos2(θ) sin(φ)+

+2θ̇ψ̇ sin(θ) cos(θ)
[
Jx − sin2(φ)Jy − cos2(φ)Jz

]
+

+θ̇
2
(−Jy + Jz) sin(φ) cos(φ) sin(θ) = Qψ,

ψ̈ (Jy − Jz) sin(φ) cos(θ) cos(φ) + θ̈
[
Jy cos2(φ) + Jz sin2(φ)

]
+

+2φ̇θ̇ (Jz − Jy) sin(φ) cos(φ) + φ̇ψ̇ (Jy − Jz) cos(θ)
[
1 − 2 sin2(φ)

]
+

+ψ̇φ̇Jx cos(θ) − ψ̇
2
sin(θ) cos(θ)

[
Jx − Jy sin2(φ) − Jz cos2(φ)

]
= Qθ,

(16.33)
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Jxφ̈ − sin(θ)Jxψ̈ − θ̇ψ̇Jz sin2(φ) cos(θ)+

−ψ̇θ̇ cos(θ)
{
Jx + Jy

[
1 − 2 sin2(φ)

]
− Jz cos2(φ)

}
+

+θ̇
2
(Jy − Jz) sin(φ) cos(φ) − ψ̇

2
(Jy − Jz) cos(φ) cos2(θ) sin(φ) = Qφ .

The generalized forces QX , QY , and QZ are the actual forces applied
in the direction of X-, Y -, and Z-axes, but Qψ, Qθ, and Qφ are not the
moments applied about axes X , Y , and Z of the inertial frame or x, y, and
z of the body-fixed frame.

Angle ψ does not appear explicitly in the equations of motion, and then
if the roll and pitch angles are small all trigonometric functions can be
linearized. If also the angular velocities are small, the equations of motion
for rotations reduce to ⎧⎨

⎩
Jzψ̈ = Qψ

Jy θ̈ = Qθ

Jxφ̈ = Qφ .
(16.34)

In this case, the kinetic energy may be directly simplified, by develop-
ing the trigonometric functions in Taylor series and neglecting all terms
containing products of three or more small quantities. For instance, the
term [

φ̇ − ψ̇ sin(θ)
]2

reduces to [
φ̇ − ψ̇θ + ψ̇θ3/6 + ...

]2

≈ φ̇
2

,

since all other terms contain products of at least three small quantities.
The kinetic energy thus reduces to

T ≈ 1
2
m

(
Ẋ2 + Ẏ 2 + Ż2

)
+

1
2

(
Jxφ̇

2
+ Jy θ̇

2
+ Jzψ̇

2
)

. (16.35)

Remark 16.4 This approach is simple only if the roll and pitch angles
and their derivatives with respect to time are small. If not, the equations
of motion obtained in terms of angular velocities φ̇, θ̇, and ψ̇ are quite
complicated and another approach is more expedient.

16.3.3 Equations of motion using pseudo-coordinates

Since often the forces and moments applied to the rigid body are written
with reference to the body-fixed frame, the equations of motion are best
written with reference to the same frame. The kinetic energy can then be
written in terms of the components vx, vy, and vz (often referred to as
u, v, and w) of the velocity and Ωx, Ωx e Ωx (often referred to as p, q, and
r) of the angular velocity.

If the body-fixed frame is a principal frame of inertia, the expression of
the kinetic energy is

T =
1
2
m

(
v2

x + v2
y + vz

2
)

+
1
2

(
JxΩ2

x + JyΩ2
y + JzΩ2

z

)
. (16.36)
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The components of the velocity and of the angular velocity in the body-
fixed frame are not the derivatives of coordinates, but are linked to the
coordinates by the six kinematic equations

V =

⎧⎨
⎩

vx

vy

vz

⎫⎬
⎭ = RT Ẋ = R

T

⎧⎨
⎩

Ẋ

Ẏ

Ż

⎫⎬
⎭ , (16.37)

Ω =

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ = AT

2 θ̇ =

⎡
⎣ 1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)
0 − sin(φ) cos(θ) cos(φ)

⎤
⎦

⎧⎨
⎩

φ̇

θ̇

ψ̇

⎫⎬
⎭ ,

(16.38)
that is, in more compact form,

w = AT q̇ , (16.39)

where the vectors of the generalized velocities and of the derivatives of the
generalized coordinates are

w =
[

vx vy vz Ωx Ωy Ωz

]T , (16.40)

q̇ =
[

Ẋ Ẏ Ż φ̇ θ̇ ψ̇
]T

, (16.41)

and matrix A is

A =
[

R 0
0 A2

]
. (16.42)

The second submatrix is not a rotation matrix (the first one is such) and
thus

A−1 �= AT ; B �= A . (16.43)

The inverse transformation is Eq. (16.2)

q̇ = Bw ,

where

B = A−T =
[

R 0
0 A−T

2

]
. (16.44)

None of the velocities included in vector w can be integrated to obtain
a set of generalized coordinates, and thus all components of the velocities
must be considered as derivatives of pseudo-coordinates.

The state-space equation, made of the six dynamic and the six kine-
matic equations, is then Eq. (16.18), simplified since in the present case no
potential energy and Rayleigh dissipation function is present:

⎧⎪⎪⎨
⎪⎪⎩

d

dt

({
∂T
∂w

})
+ BTΓ

{
∂T
∂w

}
−BT

{
∂T
∂q

}
= BT Q

{q̇i} = B {wi} .

(16.45)
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Here BTQ is just a column matrix containing the three components of
the force and the three components of the moment applied to the body
along the body-fixed axes x, y, and z.

The most difficult part of the computation is writing matrix BTT. Per-
forming somewhat difficult computations it follows4 that

BTΓ =

[
Ω̃ 0
Ṽ Ω̃

]
, (16.46)

where Ω̃ and Ṽ are skew-symmetric matrices containing the components
of the angular and linear velocities

Ω̃ =

⎡
⎣ 0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

⎤
⎦ , Ṽ =

⎡
⎣ 0 −vz vy

vz 0 −vx

−vy vx 0

⎤
⎦ . (16.47)

By separating the equations for translational and rotational degrees of
freedom, the first equation (16.45) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂

∂t

({
∂T
∂V

})
+ Ω̃

{
∂T
∂V

}
− RT

{
∂T
∂X

}
= F

∂

∂t

({
∂T
∂Ω

})
+ Ṽ

{
∂T
∂V

}
+ Ω̃

{
∂T
∂Ω

}
− A−1

2

{
∂T
∂θ

}
= M ,

(16.48)
where F and M are the forces and moments in the body-fixed reference
frame.

If the body-fixed axes are principal axes of inertia, the dynamic equations
are simply ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

mv̇x = mΩzvy − mΩyvz + Fx

mv̇y = mΩxvz − mΩzvx + Fy

mv̇z = mΩyvx − mΩxvy + Fz

JxΩ̇x = ΩyΩz (Jy − Jz) + Mx

JyΩ̇y = ΩxΩz (Jz − Jx) + My

JzΩ̇z = ΩxΩy (Jx − Jy) + Mx.

(16.49)

Remark 16.5 The equations so obtained are much simpler than Eq. (16.33).
The last three equations are nothing else than Euler equations.

4L. Meirovitch, Methods of Analytical Dynamics, McGraw-Hill, New York,
1970.
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16.3.4 Eulerian approach

The linear and angular momentum of a rigid body can be written in the
form

L = mV
H = JΩ . (16.50)

The velocity V and the angular velocity Ω may be written in any ref-
erence frame, but the latter must be consistent with the inertia tensor J.
Since J is constant only in a body-fixed frame, it is expedient to write the
angular velocity in the same frame, while the velocity V may be written
both in the inertial or in the body-fixed frame. The latter alternative will be
followed here to be consistent with what was done in the previous section.

If the body-fixed frame is the principal inertia frame of the rigid body,
the expression of the momenta is

L =

⎧⎨
⎩

mvx

mvy

mvz

⎫⎬
⎭ , H =

⎧⎨
⎩

JxΩx

JyΩy

JzΩz

⎫⎬
⎭ . (16.51)

The equations of motion are thus

dL
dt

= F ,
dH
dt

= M , (16.52)

where the forces and moments F and M must be expressed in the same
frame as L and H. The derivative must be computed with reference to an
inertial frame: The general expression for the derivative of a general vector
A in a non-inertial frame, having an absolute angular velocity Ω, is

dA
dt

∣∣∣∣
i

=
dA
dt

∣∣∣∣
ni

+ ΩΛA =
dA
dt

∣∣∣∣
ni

+ Ω̃A , (16.53)

where matrix Ω̃ is the skew-symmetric matrix defined by Eq. (16.47).
The equations of motion are thus

m
dV
dt

∣∣∣∣
ni

+ mΩ̃V = F, (16.54)

J
dΩ
dt

∣∣∣∣
ni

+ Ω̃JΩ = M , (16.55)

obtaining again Eq. (16.49):
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mv̇x = mΩzvy − mΩyvz + Fx

mv̇y = mΩxvz − mΩzvx + Fy

mv̇z = mΩyvx − mΩxvy + Fz

JxΩ̇x = ΩyΩz (Jy − Jz) + Mx

JyΩ̇y = ΩxΩz (Jz − Jx) + My

JzΩ̇z = ΩxΩy (Jx − Jy) + Mx.
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16.4 Exercises

Exercise 16.1 Consider the system of Example 16.1. Compute the natural fre-

quencies and the corresponding eigenvectors. A hammer with a mass mh = 5 kg

hits the pendulum horizontally with a speed Vh = 20 m/s. Assuming that all the

momentum of the hammer is transferred to the system with an inelastic shock,

and that the excitation can be considered as impulsive, compute the time history

of the system.

Numerical data: m1 = 20 kg, m2 = 15 kg, J1 = 0.6 kg m2, J2 = 0.3 kg m2,

kh = 1000 kN/m, kv = 10, 000 kN/m, a = 50 mm, b = 250 mm, c = 150 mm,

d = 80 mm, e = 20 mm, and l = 500 mm.

Exercise 16.2 Repeat the computations of Exercise 16.1, with springs 1,000

times softer and a pendulum with length l = 100 mm. Add an hysteretic damping

with a loss factor η = 0.01 applied to the elastic supports. Transform the hysteretic

damping into an equivalent viscous damping with constant damping coefficient,

computed for each mode.

Exercise 16.3 Write the nonlinear equations of motion for the system of Ex-

ample 16.1 and repeat the computation of the response to the impulse excitation

by numerical integration of the equations of motion. Compare the results with

those obtained in the previous section. Divide by a factor of 10 the impulse and

repeat the computation of the response.

Exercise 16.4 Repeat the computation of the response of the nonlinear system

of the previous exercise, assuming that at the moment of the shock the constraints

are severed and the system flies away falling down under the effect of gravity.



17
Vibrating Systems in a Moving
Reference Frame

In the preceding chapters vibrating systems were studied with reference to
an inertial frame or to a frame that only has a translational motion with
respect to an inertial frame. There are however cases in which a vibrating
system is located on a rigid body (in the following defined ‘carrier’) that can
undergo complex motion: In the case the carrier moves in a known way the
problem is easily (at least in theory) solved by adding the necessary inertia
forces. If however the motion of the carrier is influenced by the motion of
the system on board, the coupled problem is much more complex.

17.1 General considerations

The vibrational dynamics of discrete systems was studied up to now under
the assumption that the system is, on an average, stationary with reference
to an inertial frame. When the motion was studied in a moving reference
frame, its motion was assumed to be a translational one (since its velocity
has not been assumed to be constant in time, the reference frame is non-
inertial). The results so obtained may be used also to study cases where
the vibrating system is on board of an object that moves in a general way,
provided the dynamics of the carrier is uncoupled from the vibrational
dynamics and the inertial effects are generally small.

There are however cases when this simplification cannot be used. A space-
craft with large flexible appendages, such as solar panels or antennas, whose
natural frequencies are close to the frequencies involved in attitude control,
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FIGURE 17.1. Spring–mass system on a carrier rotating about point A.

or the turbojet rotor installed on an aircraft performing quick manoeuvres,
may be examples of systems in which uncoupling is impossible.

The coupled study of the motion of the carrier and the flexible system
carried on board may be fairly complex and usually yields nonlinear equa-
tions. When they can be linearized in an approximate way it is possible
to obtain closed-form solution and reach frequency-domain formulations
yielding natural frequencies, mode shapes, etc. When, on the contrary, no
linearization is possible the only approach is numerical integration in time.

A few very simple examples can show some peculiar characteristics of
moving vibrating systems.

Example 17.1 Write the equation of motion of a spring-mass system

located on a massless carrier that can rotate about point A (Fig. 17.1) with a

given law θ(t). The system has a single degree of freedom, and coordinate x,

measured from the fixed Point A, may be used to define the position of P.
The position of point P, referred to the inertial frame AXY , is

{
X
Y

}
=

(
P − A

)
= R

{
x
0

}
,

where

R =

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

]
.

It follows that {
X
Y

}
=

{
x cos (θ)
x sin (θ)

}
.

By differentiating the coordinates of point P, its velocity is obtained:
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{
Ẋ

Ẏ

}
=

{
ẋ cos (θ) − xθ̇ sin (θ)

ẋ sin (θ) + xθ̇ cos (θ)

}
.

The kinetic energy of the system is thus

T =
1

2
m

(
Ẋ2 + Ẏ 2

)
=

1

2
m

[
ẋ2 + θ̇

2
x2

]
.

The potential energy due to the spring is

U =
1

2
k (x − x0)

2 ,

where x0 is the length at rest of the spring.
The external forces are assumed to act on point P in the direction of the
rotating reference frame. The virtual displacement and the forces acting on
point P are

δx =
[

δx 0
]T

, f(t) =
[

fx fy

]T
.

The virtual work due to the external forces is thus

δL = fxδx .

By performing the relevant derivatives

d

dt

[
∂(T − U)

∂ẋ

]
= mẍ ,

∂(T − U)

∂x
= mθ̇

2
x − k (x − x0) ,

∂δL
∂δx

= fx ,

the equation of motion is found:

mẍ +
(
k − mθ̇

2
)

x = k x0 + fx .

The equation of motion is thus the same as for the standard spring–mass

system, with the centrifugal term mθ̇
2
x added at the right side.

The system is stable only if the angular velocity θ̇ is small enough: If

θ̇ >

√
k

m

the stiffness term becomes negative and no stable equilibrium position is found.

Remark 17.1 The angular velocity θ̇ =
√

k/m is what will be defined as
the critical speed in Chapter 23. The conclusion that above this speed the
system becomes unstable is strictly linked with the presence of the guide
constraining point P to move along x-axis.
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Example 17.2 Write the equations of motion of the system of Fig. 17.1 in

which the guide has been removed and point P is drawn toward both x- and y-

axes (with an offset x0) by a spring whose stiffness is k. This amounts to state

that point P is drawn toward the point with coordinates (x0, 0) by a spring

with the same stiffness in both x and y directions.

The law θ(t) is stated and thus the system has two degrees of freedom. The

displacements x and y may be used as generalized coordinates.
The position of point P, referred to the inertial frame OXY , is now

{
X
Y

}
=

(
P − O

)
= R

{
x
y

}
,

i.e., {
X
Y

}
=

{
x cos (θ) − y sin (θ)
x sin (θ) + y cos (θ)

}
.

By differentiating the coordinates of point P, its velocity is obtained:
{

Ẋ

Ẏ

}
=

{
ẋ cos (θ) − ẏ sin (θ) − xθ̇ sin (θ) − yθ̇ cos (θ)

ẋ sin (θ) + ẏ cos (θ) + xθ̇ cos (θ) − yθ̇ sin (θ)

}
.

The kinetic energy of the system is thus

T =
1

2
m

(
Ẋ2 + Ẏ 2

)
=

1

2
m

{
ẋ2 + ẏ2 + θ̇

2 [
x2 + y2

]}
+

+mθ̇ (ẏx − ẋy) .

The potential energy due to the spring is

U =
1

2
k

[
(x − x0)

2 + y2] .

The external forces are assumed to act in the direction of the rotating reference
frame. The virtual displacement and the forces acting on point P are

δx =
[

δx δy
]T

, f(t) =
[

fx fy

]T
.

The virtual work due to the external forces is

δL = fxδx + fyδy .

By performing the relevant derivatives, the Lagrange equations yield the equa-
tions of motion

m

[
1 0
0 1

] {
ẍ
ÿ

}
+ 2mθ̇

[
0 −1
1 0

] {
ẋ
ẏ

}
+

[
k − mθ̇

2 −mθ̈

mθ̈ k − mθ̇
2

] {
x
y

}
=

{
kx0 + fx

fy

}
.
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Again the equations of motion are linear, but now contain a gyroscopic matrix,

i.e., a skew-symmetric matrix multiplying the velocities. Neglecting the angular

acceleration (i.e., if the speed θ̇ is kept constant), the stiffness matrix now is

always positive semidefined and positive defined at all speeds except the critical

speed defined in the previous example. As it will be seen in Chapter 23, a stable

equilibrium position exists at all speeds.

Example 17.3 Repeat Example 17.1, but now the motion of the rotating

frame is not stated, i.e., law θ(t) is one of the unknowns of the problem. The

system has two degrees of freedom, and x and θ can be chosen as generalized

coordinates.
The position of point P is the same as before, and so is its velocity and its
kinetic energy

T =
1

2
m

(
Ẋ2 + Ẏ 2

)
=

1

2
m

[
ẋ2 + θ̇

2
x2

]
.

Also the potential energy is the same:

U =
1

2
k (x − x0)

2 .

The virtual displacements now are

δx =
[

δx δθ
]T

,

and the virtual displacement of point P in the inertial frame is

{
δX
δY

}
=

{
δx cos (θ) − δθx sin (θ)
δx sin (θ) + δθx cos (θ)

}
.

The forces acting in the inertial frame are

{
fX

fY

}
= R

{
fx

fy

}
.

If also a torque Mz acts on the rotating frame, the virtual work is

δL =

{
δX
δY

}T

R

{
fx

fy

}
+ δθMz ,

i.e.,
δL = δxfx + δθ (xfy + Mz) .

By performing the relevant derivatives the equations of motion are found:
{

mẍ +
(
k − mθ̇

2
)

x = fx + kx0

mθ̈x2 + 2mθ̇ẋx = xfy + Mz .
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Remark 17.2 These equations of motion are strongly nonlinear: As it will
be seen later this is typical when the dynamics of the ‘carrier’ (in this case
the rotating frame) interacts with the dynamics of the vibrating system.

The motion of the carrier is best studied modeling the system as a dis-
crete system, while the compliant part may be modeled as an elastic con-
tinuum. This approach is usually referred to as hybrid formulation of the
equations of motion and implies the mixed use of ordinary and partial
differential equations.

It became common in spacecraft dynamics in the 1980s: The spacecraft
body may often be considered as a rigid body, particularly when dealing
with attitude control, since its own natural frequencies are much higher
than the frequencies involved in attitude control, but some parts, like large
solar panel arrays or long antennas, may be so flexible that their vibration
modes affect the overall spacecraft dynamics.

Remark 17.3 The hybrid approach suffers from the same limitations seen
for continuous models: As soon as the configuration gets complicated, the
analytical difficulties suggest to resort to discretization and the model re-
turns to be completely made of ODEs.

In most cases, the continuous parts of the system are thus discretized, by
either using the FEM or resorting to modal coordinates. Actually, these two
approaches can be used together: A FEM modelization is used to compute
the eigenvalues and the eigenvectors and then a global dynamic model is
obtained in terms of modal coordinates.

Since the trend nowadays is toward discretization, particularly in con-
nection with the finite elements method, the hybrid formulation will be
used here only for stating the problem; further development will be based
on discretization techniques.

17.2 Vibrating system on a rigid carrier

Consider a compliant system attached to a rigid body (the carrier) free
to move in space. The carrier may be an actual material part of the over-
all system or may simply be reduced to a massless body whose only aim
is defining a body-fixed reference frame. A reference configuration of the
compliant system is also defined. It may be the configuration ‘at rest’ of
the compliant system, i.e., the configuration it takes when no force acts on
it.

When the compliant system is in its reference position it is possible to
define a global center of mass G and an inertia tensor J of the whole system
that can be considered as a rigid body.

Point Pc is the center of mass of the carrier.
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While the definition of the inertial frame is immaterial, two possible
choices can be made for the frame following the carrier in its motion. The
most obvious alternative is to locate its origin in the center of mass of the
carrier Gc and to state that its axes coincide with the principal axes of
inertia of the latter.

This, however, does not yield the simplest formulation of the equations
of motion. A much better choice is to center the frame fixed to the carrier
in the center of mass G of the whole system, frozen in a reference config-
uration. The body-fixed frame may be a principal frame of inertia of the
whole system, again in the reference configuration, but this is actually not
needed.

The position of a generic point belonging to the compliant system will
be defined as P0 when the body is in its undeformed position and as P
when the configuration is deformed. As shown in Fig. 17.2, vectors r and u
define the position of P0 and the displacement P−P0. The coordinates of
the center of mass of the carrier Pc and of a generic point P of the elastic
system in the inertial frame are

(
Pc − O

)
= X + Rrc ,

(
P − O

)
= X + R (r + u) ,

(17.1)

where

• X =
[

X Y Z
]T

G
is the vector defining the position of the center

of mass G of the system in the inertial frame,

• R is the rotation matrix of the carrier expressed by Eq. (16.23),

FIGURE 17.2. Sketch of a system made by a rigid carrier (full line) to which a
continuous compliant system (dashed line) is attached.
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• r =
[

x y z
]T

P
is the vector defining the position of point P in its

reference position P0 (usually corresponding to the undeformed con-
figuration of the elastic system), expressed in the body-fixed frame,
and

• u =
[

ux uy uz

]T

P
is the displacement vector of the same point

expressed in the same frame. In many cases, the displacement u may
be considered as a small displacement.

The generalized coordinates of the system are thus

q =
[

XT θT uT
]T

, (17.2)

where θ is the set of Tait–Bryan angles defined in Section 16.3.1.
The discrete part of the system has 6 degrees of freedom (the degrees of

freedom of the carrier), while vector u (x, y, z, t) contains the generalized
coordinates of the continuous part.

Using the same approach seen in the previous chapter (Eq. (16.37) and
(16.38)), the generalized velocities are

w =

⎧⎨
⎩

V
Ω
u̇

⎫⎬
⎭ = AT

⎧⎨
⎩

Ẋ
θ̇
u̇

⎫⎬
⎭=

⎡
⎣ RT 0 0

0 AT
2 0

0 0 I

⎤
⎦ q̇ , (17.3)

where I is a suitable identity matrix.
The velocity of point P expressed in the body-fixed frame is

VP = V + ΩΛ(r + u) + u̇ . (17.4)

By expressing the vector product in matrix notation, it follows that

VP = V + (r̃ + ũ)TΩ + u̇ , (17.5)

where

r̃ =

⎡
⎣ 0 −z y

z 0 −x
−y x 0

⎤
⎦ , (17.6)

and ũ is defined in a similar way.
The velocity can be expressed in terms of q̇ as

VP = RT Ẋ + (r̃ + ũ)T AT
2 θ̇ + u̇ . (17.7)

Given a set of virtual displacements δX, δθ, and δu, the virtual displace-
ments δxP, expressed in the body-fixed frame, are

δxP = RT δX + (r̃ + ũ)TAT
2 δθ+δu . (17.8)
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The virtual work of a distributed force f (x, y, z, t) applied to the flexible
body in the direction of the axes of the body-fixed frame is

δL =
∫

v

δxT
Pf dv =

∫
v

(
δXTRf + δθTA2(r̃ + ũ) f+δuT f

)
dv , (17.9)

where v is the volume occupied by the compliant part of the system.
If a force Fc and a moment Mc act on the carrier (the force is applied in

its center of mass Pc), the total virtual work acting on the system is thus

δL = δXT RFc+δθT A2 (r̃cFc + Mc)+

∫
v

[
δXT Rf + δθT A2(r̃ + ũ) f+δuT f

]
dv .

(17.10)

The kinetic energy of the infinitesimal volume dv about point P is

dT =
1
2
ρvT

PvPdv =
1
2
ρ

[
VT V + ΩT

(
r̃r̃T + 2r̃ũT + ũũT

)
Ω + (17.11)

+u̇T u̇ + 2VT
(
r̃T + ũT

)
Ω + 2VT u̇ + 2ΩT (r̃ + ũ) u̇

]
dv .

The kinetic energy of the carrier is

Tc =
1
2
mc

(
VT V + ΩT r̃cr̃T

c Ω + 2VT r̃T
c Ω

)
+

+
1
2
ΩTJcΩ (17.12)

The global inertia properties of the whole system in the reference con-
figuration are

m = mc +
∫

v

ρdv , J = Jc +
∫

v

r̃cr̃T
c ρdv .

Moreover, since point G is the overall mass center of the system,

mcr̃T
c +

∫
v

ρr̃T dv = 0 .

The total kinetic energy of the system is thus

T =
1
2
mVTV +

1
2
ΩTJΩ+

1
2

∫
v

ρu̇Tu̇dv+
1
2
ΩT

(∫
v

ρ (2r̃ + ũ) ũTdv

)
Ω+

(17.13)

+VT

(∫
v

ρũT dv

)
Ω + VT

∫
v

ρu̇dv + ΩT

∫
v

ρ (r̃ + ũ) u̇dv .

Remark 17.4 The kinetic energy contains terms that are products of more
than two velocities or displacements, leading to nonlinear terms in the equa-
tions of motion.
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The elastic potential energy due to the deformation of the rigid body
is not affected by generalized coordinates X and θ, but only by the co-
ordinates u and their derivatives with respect to the spatial coordinates.
Usually the first and the second derivatives u′ and u′′ are included, but
there may be cases in which also higher-order derivatives are present:

U = U (u, u′,u′′) . (17.14)

As it was seen in Section 12.8, it may be necessary to take into account
also nonlinear terms in the strains to include effects like the influence of
inertia forces on the elastic behavior of some parts of the system. A typ-
ical example is that of turbine blades: the rotation of the machine causes
centrifugal accelerations that in turn cause axial loading of the blades and
then an increase of their stiffness. In this case the angular velocity is usually
assumed to be constant (or at least stated as a known function of time) and
thus the problem may be linearized; in other cases true nonlinear effects
need to be considered.

As seen in Section 15.2.6 this may be accounted for easily through a
geometric matrix, but in general this matrix may be a function of the
accelerations acting on the system.

Also a Rayleigh dissipation function, which is independent from gener-
alized coordinates X and θ and from velocities V and Ω, can be defined.
It is a function only of u̇ (and possibly of u) and of their derivatives with
respect to space coordinates.

17.3 Lumped-parameters discretization

The compliant system is discretized as a number n of masses mi, connected
to each other and to the rigid body by springs and dampers. On each mass
a force Fi, expressed in the reference frame attached to the carrier, acts
(Fig. 17.3)

Let Pi be the position of the point where mass mi is located in the
deformed position and P0i the position of the same point in the reference
(undeformed) position.

The discretized system has now 3 (n + 2) degrees of freedom.
The kinetic energy of the system is still expressed by Eq. (17.13), where

the integrals are substituted by sums

T =
1
2
mVTV +

1
2
ΩTJΩ+

1
2

n∑
i=1

mi

(
u̇T

i u̇i + ΩT ũiũT
i Ω+2ΩT r̃iũT

i Ω+

(17.15)

+2VT ũT
i Ω + 2VT u̇i + 2ΩT r̃iu̇i + 2ΩT ũiu̇i

)
.
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FIGURE 17.3. Sketch of a system made by a rigid carrier to which a discrete
elastic system is attached.

Under the usual small-displacement assumption, the potential energy
and the Rayleigh dissipation function may be written in the usual way

U ≈ 1
2
uTKeu , F ≈ 1

2
u̇TCeu̇ , (17.16)

where vector u is now a vector, containing 3n elements, in which the various
vectors ui are listed one after the other and Ke and Ce are the stiffness
and damping matrices of the system when the carrier is fixed to the inertial
reference frame.

As already stated, inertia forces can affect the stiffness of the system.
To account for this it is possible to introduce a geometric matrix Kg that
may depend on the acceleration V̇, the angular velocity Ω or its derivative
Ω̇, but also on other effects like thermo-elastic stressing or any other load
conditions. These effects must be introduced in each case.

By operating in the usual way, the equations of motion are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t

({
∂T
∂V

})
+ Ω̃

{
∂T
∂V

}
− RT

{
∂T
∂X

}
= RTQX

∂

∂t

({
∂T
∂Ω

})
+ Ṽ

{
∂T
∂V

}
+ Ω̃

{
∂T
∂Ω

}
− A−1

2

{
∂T
∂θ

}
= A−1

2 Qθ

∂

∂t

({
∂T
∂u̇i

})
−

{
∂T
∂ui

}
+

{
∂U
∂ui

}
+

{
∂F
∂u̇i

}
= Qui ,

(17.17)
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where Qi are the vectors of the generalized forces obtained by differentiat-
ing the virtual work with respect to the relevant virtual displacements:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QX =
∂δL
∂δX

= R

(
Fc +

n∑
i=1

Fi

)

Qθ =
∂δL
∂δθ

= A2Mc + A2

[
r̃cFc +

n∑
i=1

(r̃i + ũi)Fi

]

Qui =
∂δL
∂δui

= Fi .

(17.18)

Remembering that

ãT b = b̃a , aT b̃ = b
T
ãT , ãa = 0 ,

by introducing the expressions of the kinetic energy, the first three equa-
tions yield

mV̇+mΩ̃V+
∑
∀i

mi

(
üi + 2Ω̃u̇i + ˙̃Ωui + Ω̃2ui

)
= Fc +

n∑
i=1

Fi . (17.19)

The three equations for the rotational degrees of freedom of the carrier
are

JΩ̇+Ω̃JΩ +
∑
∀i

mi

(
r̃iüi + ũiüi + Ω̃r̃iu̇ + 2 ˙̃uiũT

i Ω+

+ũiũT
i Ω̇ + 2r̃i

˙̃u
T

i Ω + 2r̃iũT
i Ω̇ + ũiV̇ + ṼũT

i Ω + Ω̃ũiV+

+Ω̃ũiu̇i + Ω̃ũiũT
i Ω + 2Ω̃r̃iũT

i Ω
)

= M0 + r̃cFc +
n∑

i=1

(r̃i + ũi)Fi .

(17.20)
The ith group of three equations yielding the behavior of the flexible

part of the system is

mi

(
üi + V̇ + r̃T

i Ω̇ + ũT
i Ω̇ − Ω̃T Ω̃ui − Ω̃T r̃T

i Ω − Ω̃T V + 2Ω̃ui

)
+

∂U
∂ui

= Fi.

(17.21)

Centrifugal and Coriolis forces are immediately identified in the expres-
sions of the equations of motion.

The equations can be written in matrix form as
⎡
⎢⎢⎢⎢⎣

mI 0 m1I m2I ...
J mir̃1 mir̃2 ...

m1I 0 ...
0 m2I ...

symm. ... ... ... ...

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V̇
Ω̇
ü1

ü2

...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ (17.22)
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+

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

mΩ̃ 0 2m1Ω̃ 2m2Ω̃ ...

0 Ω̃J Cθ1 Cθ2 ...

−m1Ω̃ C1θ 2Ω̃ 0 ...

−m2Ω̃ C2θ 0 2Ω̃ ...
... ... ... ... ...

⎤
⎥⎥⎥⎥⎥⎦

+
[

0 0
0 Ce

]
⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V
Ω
u̇1

u̇2

...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

(17.23)

+

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0 0 KX1 KX2 ...
0 0 Kθ1 Kθ2 ...
0 0 K11 0 ...
0 0 0 K22 ...
... ... ... ... ...

⎤
⎥⎥⎥⎥⎦ +

[
0 0
0 (Ke + Kg)

]
⎞
⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X
θ
u1

u2

...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Fc +
n∑

i=1

Fi

Mc + r̃cFc +
n∑

i=0

(r̃i + ũi)Fi .

F1

F2

...

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

where

Cθi = mi

[
Ω̃r̃i + 2r̃iΩ̃ + Ω̃ũi

]
,

Ciθ = miΩ̃T r̃i , KXi = Kii = mi

(
Ω̃2 + ˙̃Ω

)
,

Kθi = mi

(
2r̃i

˙̃Ω + ˙̃V
T

+ ¨̃u
T

i +ṼΩ̃ + Ω̃Ṽ
T
+2Ω̃r̃iΩ̃ + Ω̃ũiΩ̃ + ũi

˙̃Ω+2 ˙̃uiΩ̃
)

.

Example 17.4 Consider a rigid body (mass mrb, principal moments of in-

ertia Jrbx , Jrby , and Jrbz ). A mass m1 is free to move along its x-axis, con-

strained by a spring with stiffness k. At rest, the distance between the mass

center G of the whole system and points P and Pc (which lie on the x-axis)

is r and rc (Fig. 17.4).
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FIGURE 17.4. System made by a rigid body to which a mass, free to move along
x-axis, is attached through a spring.

Vectors u1 and r1 are simply uex and rex, where ex is the unit vector of

x-axis and the displacement u is the only deformation degree of freedom of the

system. The force acting on point P is F1; the forces and moments acting on

the carrier are reduced to a force F acting in point G and a moment M.
Matrix J reduces to

J =

⎡
⎣ Jrbx 0 0

0 Jrby + m1r
2 + mcr

2
c 0

0 0 Jrbz + m1r
2 + mcr

2
c

⎤
⎦ .

The first three equations reduce to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mv̇x + m1ü − m (Ωzvy − Ωyvz) − m1u
(
Ω2

y + Ω2
z

)
= Fx + F1x

mv̇y + m1uΩ̇z + m (Ωzvx − Ωxvz) + m1uΩxΩy + 2m1u̇Ωz = Fy + F1y

mv̇z − m1uΩ̇y − m (Ωyvx − Ωxvy) + m1uΩxΩz − 2m1u̇Ωy = Fz + F1z .

The following three equations are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

JxΩ̇x + ΩzΩy (Jz − Jy) = Mx

Ω̇y [Jy + m1u (2r + u)] + ΩzΩx [Jx − J ′
z − m1u (2r + u)] − m1uv̇z+

+ 2m1u̇ (r + u) Ωy + m1u (vxΩy − vyΩx) = My − rFz

Ω̇z [J ′
z + m1u (2r + u)] + ΩxΩy

[
J ′

y − Jx + m1u (2r + u)
]
+ m1uv̇y+

+ 2m1u̇ (r + u) Ωz + m1u (vxΩz − vzΩx) = Mz + rFy.

The last equation is

m1ü + m1v̇x − m1 (Ωzvy − Ωyvz) − m1 (r + u)
(
Ω2

y + Ω2
z

)
+ ku = F1x .
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17.3.1 Small elastic deformations

The displacements ui of the compliant part of the system are usually quite
small. In this condition some simplification can be introduced into the
equations of motion.

The mass matrix is unchanged. In the damping matrix only term Cθi is
changed:

Cθi = mi

(
Ω̃r̃i + 2r̃iΩ̃

)
.

Also in the stiffness matrix the only term to be modified is Kθi :

Kθi = mi

(
2r̃i

˙̃Ω + ˙̃V
T

+ṼΩ̃ + Ω̃Ṽ
T
+2Ω̃r̃iΩ̃

)
.

Also the second term of the force vector should be changed

M0 +
n∑

i=0

r̃iFi

so that the external forces act on the undeformed configuration, as usual
when the small-displacement assumption is considered.

More extensive simplification can be performed in specific cases. In motor
vehicle dynamics, for instance, if the x-axis lies in the symmetry plane of the
vehicle and is more or less parallel to the road plane, only the component vx

of the velocity cannot be considered as small. The other components vy and
vz , although not vanishing, in normal driving are small. Also the angular
velocities, except that of the wheels about their axis, can be considered
as small. The equations of motion can thus be reduced to a much simpler
form.

Another well-known example is rotordynamics. If the axis of rotation of
the rotor lies in z-direction, all velocities and angular velocities except Ωz

can be considered as small.

17.3.2 Fully linearized equations

A true simplification occurs when all rotations and generalized velocities
are considered as small quantities too (no assumption needs to be done on
rigid body displacements X):

mtV̇ +
∑
∀i

miüi = F +
∑
∀i

Fi , (17.24)

JtΩ̇ +
∑
∀i

mir̃iüi = M +
∑
∀i

r̃iFi, (17.25)

m1

(
üi + V̇ + r̃T

i Ω̇
)

+
∂U
∂ui

= Fi, (17.26)
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i.e.,
⎡
⎢⎢⎢⎢⎣

mI 0 m1I m2I ...
J mir̃1 mir̃2 ...

m1I 0 ...
0 m2I ...

symm. ... ... ... ...

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V̇
Ω̇
ü1

ü2

...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+
[

0 0
0 Ce

]
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V
Ω
u̇1

u̇2

...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

(17.27)

+
[

0 0
0 Ke + Kg

]
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X
θ
u1

u2

...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Fc +
n∑

i=1

Fi

Mc + r̃cFc +
n∑

i=0

r̃iFi .

F1

F2

...

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Example 17.5 Write the equations of motion of the previous example under
the assumptions of partial and full linearization.
If only displacement u is small, the equations of motion from 4 to 6 are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

JxΩ̇x + ΩzΩy (Jz − Jy) = Mx

Ω̇y

[
J ′

y + m1ur
]
+ ΩzΩx [Jx − J ′

z − 2m1ur] − m1 (r + u) v̇z+
+ 2m1u̇rΩy + m1 (r + u) (vxΩy − vyΩx) = My − rFz

Ω̇z [J ′
z + m1ur] + ΩxΩy

[
J ′

y − Jx + 2m1ur
]
+ m1 (r + u) v̇y+

+ 2m1u̇rΩz + m1 (r + u) (vxΩz − vzΩx) = Mz + rFy.

If on the contrary it is possible to fully linearize the equations, it follows that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mtv̇x + m1ü = Fx + F1x

mtv̇y + m1rΩ̇z = Fy + F1y

mtv̇z − m1rΩ̇y = Fz + F1z

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

JxΩ̇x = Mx

Ω̇yJ ′
y − m1rv̇z = My − rFz

Ω̇zJ ′
z + m1rv̇y = Mz + rFy

m1ü + m1v̇x + ku = F1x.

17.4 Modal discretization

The displacements u of the continuous compliant parts of the system can be
expressed in terms of modal coordinates (Eq. 12.26) once its eigenfunctions
are known:
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u(x, y, z, t) =
∞∑

i=0

ηi(t)qi(x, y, z) ,

or, by truncating the modal expansion after a number of terms,

u(x, y, z, t) = φ(x, y, z)η(t) ,

where η(t) is a column matrix containing the n modal coordinates retained
and φ(x, y, z) is a matrix containing n columns (in each column an eigen-
function) and three rows (the 3 components of the eigenfunction).

By introducing the modal coordinates into the expression for the kinetic
energy, it follows that

T =
1
2
mVT V +

1
2
ΩTJΩ+

1
2
η̇T

(∫
v

ρφTφdv

)
η̇+

(∫
v

ρrTΩ̃TΩ̃φdv
)

η+

+
1
2
ηT

(∫
v

ρφTΩ̃TΩ̃φdv
)

η + ΩTṼ
T

(∫
v

ρφdv

)
η+ (17.28)

+VT

(∫
v

ρφdv

)
η̇ + ΩT

(∫
v

ρr̃φdv

)
η̇ + ηT

(∫
v

ρφT Ω̃T φdv

)
η̇ .

One of the integrals is immediately computed:

M =
∫

v

ρφTφdv (17.29)

is the (diagonal) modal mass matrix of the compliant system.
Other integrals are straightforward:

M1 =
∫

v

ρφdv, (17.30)

M2 =
∫

v

ρr̃φdv (17.31)

are constant matrices with three rows and n columns.
The four integrals containing Ω̃ must be further developed to perform

the integration along the space coordinates.
Defining nine matrices Sij , whose size is 1 × n

Sij =
∫

v

ρrjφidv for i, j = x, y, z,

it follows that∫
v

ρrTΩ̃TΩ̃φdv = Ω2
x (Syy + Szz) + Ω2

y (Sxx + Szz) + Ω2
z (Sxx + Syy)+
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−ΩxΩy (Sxy + Syx) − ΩxΩz (Sxz + Szx) − ΩyΩz (Syz + Szy) .

A further set of nine matrices Tij , whose size is n×n, can be defined as

Tij =
∫

v

ρφT
i φjdv for i, j = x, y, z .

Note that
Tij = TT

ji for i, j = x, y, z .

Since in general the components along the axes of the eigenfunction do
not have peculiar orthogonality properties, the nine matrices Tij may be
all present and different.

It thus follows that∫
v

ρφTΩ̃TΩ̃φdv = Ω2
x (Tyy + Tzz)+Ω2

y (Txx + Tzz)+Ω2
z (Txx + Tyy)+

−ΩxΩy (Txy + Tyx) − ΩxΩz (Txz + Tzx) − ΩyΩz (Tyz + Tzy)∫
v

ρφT Ω̃φdv = Ωx (Tzy − Tyz) + Ωy (Txz − Tzx) + Ωz (Tyx − Txy) .

The expression of the kinetic energy can thus be expanded into the ex-
plicit form

T =
1
2
mVT V+

1
2
ΩT JΩ+

1
2
η̇TMη̇+Ω2

x (Syy + Szz)η+Ω2
y (Sxx + Szz)η+

+Ω2
z (Sxx + Syy)η − ΩxΩy (Sxy + Syx)η − ΩxΩz (Sxz + Szx)η+

−ΩyΩz (Syz + Szy) η +
1
2
ηTΩ2

x (Tyy + Tzz)η +
1
2
ηTΩ2

y (Txx + Tzz)η+

(17.32)

+
1
2
ηTΩ2

z (Txx + Tyy)η − 1
2
ηTΩxΩy (Txy + Tyx)η+

−1
2
ηTΩxΩz (Txz + Tzx) η − 1

2
ηTΩyΩz (Tyz + Tzy)η+

+ΩTṼ
T
M1η + VT M1η̇ + ΩTM2η̇ + ηTΩx (Tzy − Tyz) η̇+

+ηTΩy (Txz − Tzx) η̇ + ηTΩz (Tyx − Txy) η̇ .

The relevant derivatives can thus be performed:

∂T
∂V

= mV + Ω̃M1η + M1η̇ ,

d

dt

(
∂T
∂V

)
= mV̇ + M1η̈ + Ω̃M1η̇ + ˙̃ΩM1η ,
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∂T
∂Ω

= JΩ + U1η +
1
2
U2η + ṼTM1η + M2η̇ + U3η̇ ,

where

U1 =

⎧⎨
⎩

2Ωx (Syy + Szz) − Ωy (Sxy + Syx) − Ωz (Sxz + Szx)
2Ωy (Sxx + Szz) − Ωx (Sxy + Syx) − Ωz (Syz + Szy)
2Ωz (Sxx + Syy) − Ωx (Sxz + Szx) − Ωy (Syz + Szy)

⎫⎬
⎭ ,

U2 =

⎧⎨
⎩

ηT [2Ωx (Tyy + Tzz) − Ωy (Txy + Tyx)] − Ωz (Txz + Tzx)
ηT [2Ωy (Txx + Tzz) − Ωx (Txy + Tyx)] − Ωz (Tyz + Tzy)
ηT [2Ωz (Txx + Tyy)] − Ωx (Txz + Tzx) − Ωy (Tyz + Tzy)

⎫⎬
⎭ ,

U3 =

⎧⎨
⎩

ηT (Tzy − Tyz)
ηT (Txz − Tzx)
ηT (Tyx − Txy)

⎫⎬
⎭ .

U1 and U2 are functions of Ω and U2 and U3 are functions of η. The
two terms U2η and U3η̇ can thus be regarded as small quantities when
the modal displacements are small.

Proceeding with the derivatives, it follows that

d

dt

(
∂T
∂Ω

)
= JΩ̇+

(
M2 + U3

)
η̈ +

(
U1 +

1
2
U2 + ṼTM1

)
η̇+

+
(
U̇1 +

1
2
U̇2 + ˙̃VTM1

)
η + U̇3η̇ .

Neglecting small terms, it follows that

d

dt

(
∂T
∂Ω

)
= JΩ̇+M2η̈ +

(
U1 + ṼTM1

)
η̇ +

(
U̇1 + ˙̃VTM1

)
η ,

∂T
∂η̇

= Mη̇ + M
T

1 V+M
T

2 Ω + U4η ,

where

U4 = Ωx (Tzy − Tyz)
T + Ωy (Txz − Tzx)T + Ωz (Tyx − Txy)T ,

d

dt

(
∂T
∂η̇

)
= Mη̈ + M

T

1 V̇+M
T

2 Ω̇ + U4η̇ + U̇4η ,

∂T
∂η

= M
T

1 ṼΩ + U6η+U
T

5 Ω + UT
4 η̇ ,

where

U5 =

⎧⎨
⎩

Ωx (Syy + Szz) − ΩySxy − ΩzSxz

−ΩxSyx + Ωy (Sxx + Szz) − ΩzSyz

−ΩxSzx − ΩySzy + Ωz (Sxx + Syy)

⎫⎬
⎭ ,
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U6 = Ω2
x (Tyy + Tzz) + Ω2

y (Txx + Tzz) + Ω2
z (Txx + Tyy) +

−ΩxΩy (Txy + Tyx) − ΩxΩz (Txz + Tzx) − ΩyΩz (Tyz + Tzy) .
The potential energy and the Rayleigh dissipation function may be writ-

ten in the usual way

U ≈ 1
2
ηTKη , F ≈ 1

2
η̇TCη̇ . (17.33)

Remark 17.5 While K is diagonal, in general C is not.

Also the modal geometric matrix is generally not a diagonal matrix, and
it couples the various modes.

The virtual work of the forces applied to the system is

δL = δXTRF + δθTA2M +
∫

v

[
δθT A2ũf+δηT φT f

]
dv , (17.34)

where
F = Fc +

∫
v

fdv .

M = r̃cFc + Mc +
∫

v

r̃fdv .

Neglecting the term in ũf , which is negligible if the modal coordinates
are small, and introducing the modal forces

F =
∫

v

φfdv , (17.35)

the forces applied to the system reduce to

QX = F , Qθ = M , Qη = F . (17.36)

The equations of motion are still Eq. (17.17), where η has been substi-
tuted for q.

The final form of the equations of motion is thus⎡
⎣ mI 0 M1

0 J M2

M
T

1 M
T

2 M

⎤
⎦

⎧⎨
⎩

V̇
Ω̇
η̈

⎫⎬
⎭ +

+

⎛
⎜⎝

⎡
⎢⎣

m Ω̃ 0 2Ω̃M1

0 Ω̃J U1 + Ω̃M2

M
T

1 Ω̃ UT
5 2U4

⎤
⎥⎦ +

[
0 0
0 C

]⎞
⎟⎠

⎧⎨
⎩

V
Ω
η̇

⎫⎬
⎭+ (17.37)

+

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0 0
(

˙̃Ω + Ω̃
2
)

M1

0 0 Kθη

0 0 U̇4−U6

⎤
⎥⎥⎦ +

[
0 0
0 K + Kg

]⎞
⎟⎟⎠

⎧⎨
⎩

X
θ
η

⎫⎬
⎭ =

⎧⎨
⎩

F
M
F

⎫⎬
⎭ ,

where
Kθη = U̇1 + ˙̃VTM1 +

(
ṼΩ̃ − Ω̃Ṽ

)
M1 + Ω̃U1 .
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17.5 Planar systems

In case of a two-dimensional problem, the rigid body degrees of freedom are
only 3. Using a pseudo-coordinates approach, it is possible to use the two
components vx and vy of the velocity and the angular velocity about the
z-axis, which reduces to ψ̇. The displacement vector and the eigenfunctions
have only two components and are functions of just two coordinates. The
kinetic energy reduces to

T =
1
2
mVT V +

1
2
Jψ̇

2
+

1
2
η̇TMη̇ + ψ̇

2
(Sxx + Syy)η+

+
1
2
ηTψ̇

2
(Txx + Tyy)η + ψ̇

[
Vy −Vx

]
M1η+V

T
M1η̇+ (17.38)

+ψ̇M2η̇ + ηTψ̇ (Tyx − Txy) η̇ .

Now
M1 =

∫
v

ρφdv (17.39)

has two rows and n columns and

M2 =
∫

v

ρ
(
−yφx + xφy

)
dv (17.40)

is a matrix with one row and n columns.
The relevant derivatives can thus be performed:

∂T
∂V

= mV + ψ̇

{
−M1y

M1x

}
η + M1η̇,

d

dt

(
∂T
∂V

)
= mV̇ + M1η̈+ψ̇

{
−M1y

M1x

}
η̇ + ψ̈

{
−M1y

M1x

}
η .

Neglecting the small terms, the derivative with respect to ψ̇ is

∂T
∂ψ̇

= Jψ̇+2ψ̇ (Sxx + Syy)η +
[

Vy −Vx

]
M1η + M2η̇,

d

dt

(
∂T
∂ψ̇

)
= Jψ̈+M2η̈ +

[
2ψ̇ (Sxx + Syy) +

[
Vy −Vx

]
M1

]
η̇+

+
(
2ψ̈ (Sxx + Syy) +

[
V̇y −V̇x

]
M1

)
η,

∂T
∂η̇

= Mη̇ + M
T

1 V+M
T

2 ψ̇+ψ̇(Tyx − Txy)T
η,

d

dt

(
∂T
∂η̇

)
= Mη̈ +M

T

1 V̇+M
T

2 ψ̈ + ψ̇ (Tyx − Txy)T η̇ + ψ̈ (Tyx − Txy)T η,
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∂T
∂η

= ψ̇M
T

1

[
Vy −Vx

]T
+ψ̇

2
(Sxx + Syy)T +

+ψ̇
2
(Txx + Tyy)η + ψ̇ (Tyx − Txy) η̇ .

The expressions for the potential energy and the Rayleigh dissipation
function are the same as for the tridimensional case.

The final form of the equations of motion is thus
⎡
⎢⎢⎣

m 0 0 M1x

0 m 0 M1y

0 0 Jz M2

M
T

1x M
T

1y M
T

2 M

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

V̇x

V̇y

ψ̈
η̈

⎫⎪⎪⎬
⎪⎪⎭

+

+

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0 −mψ̇ 0 −2ψ̇M1y

mψ̇ 0 0 2ψ̇M1x

0 0 0 2ψ̇ (Sxx + Syy)
ψ̇M

T

1y −ψ̇M
T

1x −ψ̇ (Sxx + Syy)T −2ψ̇ (Tyx − Txy)

⎤
⎥⎥⎥⎦ +

(17.41)

+
[

0 0
0 C

]
⎞
⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩

Vx

Vy

ψ̇
η̇

⎫⎪⎪⎬
⎪⎪⎭

+

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0 0 0 −ψ̈M1y − ψ̇
2
M1x

0 0 0 ψ̈M1x − ψ̇
2
M1y

0 0 0 Kθθ

0 0 0 Kθη

⎤
⎥⎥⎥⎦+

+
[

0 0
0 K + Kg

]
⎞
⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩

X
Y
ψ
η

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

Fx

Fy

M
F

⎫⎪⎪⎬
⎪⎪⎭

,

where

Kθθ = 2ψ̈z (Sxx + Syy) + V̇yM1x − V̇xM1y+ψ̇
(
VyM1y + VxM1x

)

Kθη = ψ̈ (Tyx − Txy)T − ψ̇
2
(Txx + Tyy) .

17.6 Beam attached to a rigid body: planar
dynamics

Consider an Euler–Bernoulli beam attached to a rigid body (Fig. 17.5) and,
to simplify the problem, assume also that

• only the bending behavior of the beam is important,
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FIGURE 17.5. An Euler–Bernoulli beam attached to a rigid body performing a
planar motion.

• the displacement u is small,

• the problem is planar in the xy plane.

The rigid body has then 3 degrees of freedom (X , Y , and ψ) and each
point of the beam has an additional degree of freedom, displacement u.
The only non-zero component of the angular velocity, Ωz, reduces to ψ̇.

Without any loss of generality, it is possible to chose the direction of the
x-axis so that it is parallel to the axis of the beam. In this way vector u
and the eigenfunctions φ have a single component, along the y-axis. Vector
r reduces to

r =
[

xA + x′ yA

]T .

Assuming that the beam is clamped to the carrier and free at the other
end and that the beam is prismatic, the eigenfunctions are (see Section
12.4)

qi(ζ) =
1

N2
{sin(βiζ) − sinh(βiζ) − N1 [cos(βiζ) − cosh(βiζ)]} ,

where

ζ =
x′

l
, N1 =

sin(βi) + sinh(βi)
cos(βi) + cosh(βi)

,

N2 = sin(βi) − sinh(βi) − N1 [cos(βi) − cosh(βi)]

and coefficients βi are

β1 = 1.875 , β2 = 4.694 , β3 = 7.855 , β4 = 10.996 , βi = π(i − 0.5) .
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The modal masses and the modal stiffnesses are easily computed.
Assuming that the beam is prismatic,

M i =
∫ l

0

ρA [qi(x′)]2 dx′ =
1
4
ρAl =

1
4
m, ∀i ,

Ki =
∫ l

0

EI

[
d2qi(x′)

dx′2

]2

dx′ =
EI

l3
β4

i

4
, ∀i .

M1 and M2 have a single component, along the y- and z-axes, respec-
tively:

M1x = m

∫ 1

0

qi(ζ)dζ , (17.42)

M2 = m

∫ 1

0

(lζ + xa) qi(ζ)dζ . (17.43)

They must be computed numerically in each case.
Out of the nine matrices Sij and Tij , only Syx, Syy, and Tyy are different

from 0.
The modal geometric matrix is easily computed. The increase of the

potential energy due to the axial stresses (see Section 12.8, Eq. (17.44))

ΔU =
1
2

∫ l

0

Aσx

(
∂u

∂x′

)2

dx′ =
1
2
ηT

(∫ l

0

Aσx
∂qT

∂x′
∂q

∂x′ dx′

)
η . (17.44)

The axial stress due to rotation is

σxΩ =
∫ l

x′
ρψ̇

2
(u + xa) du = ρψ̇

2
l2

1 − ζ2 + 2ζA − 2ζAζ

2
. (17.45)

An axial stress may also be present due to the linear acceleration

σxV̇
=

∫ l

x′
ρV̇ du = ρV̇ l (1 − ζ) . (17.46)

The modal geometric matrix is thus

Kg = ρAl

(
ψ̇

2
K

∗
g +

V̇

l
K

∗∗
g

)
,

where K
∗
g and K

∗∗
g must be computed numerically in each case from the

equations

K
∗
g =

1
2

∫ 1

0

(
1 − ζ2

) ∂qT

∂ζ

∂q

∂ζ
dζ + ζA

∫ 1

0

(1 − ζ)
∂qT

∂ζ

∂q

∂ζ
dζ, (17.47)



17.7 The rotating beam 445

K
∗∗
g =

∫ l

0

(1 − ζ)
∂qT

∂ζ

∂q

∂ζ
dζ . (17.48)

The equations of motion are thus⎧⎪⎪⎨
⎪⎪⎩

Fx

Fy

M
F

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

m 0 0 0
0 m 0 M1

0 0 Jz M2

0 M
T

1 M
T

2 M

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

V̇x

V̇y

ψ̈
η̈

⎫⎪⎪⎬
⎪⎪⎭

+

+

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0 −mψ̇ 0 −2ψ̇M1

mψ̇ 0 0 0
0 0 0 2ψ̇yAM1

ψ̇M
T

1y 0 −ψ̇yAM
T

1 0

⎤
⎥⎥⎥⎦ +

[
0 0
0 C

]
⎞
⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩

Vx

Vy

ψ̇
η̇

⎫⎪⎪⎬
⎪⎪⎭

+

(17.49)

+

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0 0 0 −ψ̈M1

0 0 0 ψ̇
2
M1

0 0 0
(
2ψ̈zyA − V̇x+ψ̇Vy

)
M1

0 0 0 −ψ̇
2
M

⎤
⎥⎥⎥⎥⎦ +

[
0 0
0 K + Kg

]
⎞
⎟⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩

X
Y
ψ
η

⎫⎪⎪⎬
⎪⎪⎭

17.7 The rotating beam

Consider the planar system of Fig. 17.5, but now assume that the angular
velocity Ω of the carrier is constant and that point G is fixed. The motion
of the carrier is fully determined, and the only degrees of freedom are those
of the beam, i.e., the modal coordinates ηi.

The equations of motion are

Mη̈ +
(
C − Ω2yAM

T

1

)
η̇+

(
−Ω2M + K + Kg

)
η =F . (17.50)

If just one mode is considered and the modal mass is normalized to one,
the values of the parameters are

M = 1 , M1 = 1.5660 , K =
β4EI

l4ρA
=

β4EI

ml3
, (17.51)

Kg = 1.1933 + 1.5709ζA .

If ζA = 0 and ζA = 1, the usual values for the upper bounds Kg =
1.1933 and Kg = 2.7642 found in the literature for the rotating beam1 are
obtained.

1See, for instance, G. Genta, Dynamics of Rotating Systems, Springer, New York,
2005, p. 483.
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FIGURE 17.6. First four natural frequencies of a rotating beam as functions of
the nondimensional rotational speed. The frequency has been computed setting
the frequency of the nonrotating beam equal to one.

If the system is undamped and yA = 0, and introducing the nondimen-
sional frequency and speed

Ω∗ = Ω

√
ml3

EI
, ω∗ = ω

√
ml3

EI
, (17.52)

the dependence of the natural frequencies on the speed is

ω∗ =
√

eig
[
Ω∗2

(
K

∗
g − I

)
+ β4

i

]
. (17.53)

The first four natural frequencies in the rotation plane of a rotating beam
with ζA = 1 are plotted as functions of the nondimensional rotational speed
in Fig. 17.6. In the plot the results obtained with the minimum number
of modes (number of modes equal to the order of the natural frequency)
and with 10 modes are superimposed. It is clear that, although the geomet-
ric matrix couples the various modes, the errors due to neglecting modal
coupling are very small.

17.8 Exercises

Exercise 17.1 Consider the system of Example 17.1 and add two equal viscous

dampers with damping coefficient c in parallel to the springs. Write the equation

of motion, using both the rotating coordinate frame Axy and the inertial frame

OXY . Study the stability of the system.
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Exercise 17.2 Consider the rigid body with a mass m1 free to move along its

x-axis, studied in Example 17.4 and shown in Fig. 17.4. At rest, the distance

between the mass center G of the whole system and points P and Pc (which lie

on the x-axis) is r and rc.

Compute the time history of the motion of the system with the following initial

condition: X0 = Y0 = Z0 = u0 = 0, φ0 = θ0 = ψ0 = 0, Ẋ0 = 10 m/s, Ẏ0 = 200

m/s, Ż0 = 500 m/s, u0 = Ẋ0 (i.e., point P is initially at rest in the X-direction

of the inertial frame), φ̇0 = θ̇0 = ψ̇0 = 10 rad/1. Use the fully nonlinear, the

semilinearized, and the linearized approaches.

Repeat the computation with initial conditions on the angular velocities 100

times smaller.

Data mrb = 20 kg, Jrbx = 4 kg m2, Jrby = 4 kg m2, Jrbz = 6 kg m2, m1 = 5

kg, r1 = 300 mm, and k = 20 kN/m.

Exercise 17.3 Consider an isotropic beam clamped radially to a rigid disc ro-

tating at constant speed Ωz on stiff bearings. Assume the rotation axis as Z-axis

and the axis of the beam as x-axis. Compute the first natural frequency both in

the rotation plane and in a plane containing the rotation axis using the modal

approach (consider a single mode in each plane).

Data radius of the disc R = 300 mm, length of the beam l = 500 mm, circular

cross-section with radius r = 20 mm, ρ = 7, 810 kg m3, and E = 2.1×1011 N/m2.

Exercise 17.4 Consider a rigid body to which a beam is clamped (Fig. 17.7).

The axis of the beam coincides with the x-axis of the body, which is a principal

axis of inertia.

Compute the time history of the motion of the system through modal approx-

imation. Consider only the first mode of the beam in xy-plane and the first one

in xz-plane.

FIGURE 17.7. Beam clamped to a rigid body moving in the three-dimensional
space.



448 17. Vibrating Systems in a Moving Reference Frame

Data mrb = 20 kg, Jrbx = 4 kg m2, Jrby = 4 kg m2, Jrbz = 6 kg m2, xA = 200

mm, length of the beam l = 500 mm, annular cross-section with inner radius

ri = 8 mm and outer radius r0 = 9 mm, ρ = 7, 810 kg m3, and E = 2.1 × 1011

N/m2.

Initial condition: X0 = Y0 = Z0 = 0, φ0 = θ0 = ψ0 = 0, η10 = η20 = 0,

Ẋ0 = 10 m/s, Ẏ0 = 15 m/s, Ż0 = 20 m/s, φ̇0 = θ̇0 = ψ̇0 = 10 rad/s,

η̇10
= η̇20

= 0.



18
Free Motion of Conservative Nonlinear
Systems

The linearized approach seen in the previous chapters is just an approxi-
mation. If this simplifying assumption is removed and nonlinear modeling
is pursued both the methods used in the study and the results obtained may
change deeply, not only quantitatively but also qualitatively. While in some
cases only small refinements are obtained, in others new phenomena enter
the picture.

18.1 Linear versus nonlinear systems

Only linear systems were studied in the previous chapters. The real world
is, however, generally nonlinear, and the use of linear models is always a
source of approximation. In structural dynamics, the linearized approach
is often justified by a number of considerations:

1. The study of linear systems can be performed using a set of second-
order linear differential equations that yield a general solution by
superimposing the solution of the homogeneous equations (defining
the free behavior of the system) to a particular solution of the com-
plete equations (defining the forced behavior). Above all, it is possible
to resort to modal analysis and other techniques directly linked with
the linearity of the model.

2. The behavior of structures is well approximated by linear models if



452 18. Free Motion of Conservative Nonlinear Systems

– Stresses and strains are low enough not to exceed the proportion-
ality limit of the material, and displacements are small enough
not to introduce geometrical nonlinearities.

– No inherently nonlinear element is present or, at least, influ-
ences their behavior in a significant way. Among the more com-
mon nonlinear devices, rolling element bearings (particularly
ball bearings), elastomeric springs and dampers, and non-
symmetric shock absorbers can be mentioned.

– No inherently nonlinear mechanism considerably influences the
behavior of the system. The main sources of nonlinearity are
play, Coulomb friction, and dependence of structural damping
of most materials on the amplitude of the stress cycle.

3. The linearization of the equations of motion allows one to obtain
interesting information on the behavior of nonlinear systems. The
behavior of the system about an equilibrium position or, as is usually
said, its behavior in the small, allows assessment of the stability of
the equilibrium. Even if no linearization is, strictly speaking, possible,
a linearized analysis may yield important results.

The behavior of a nonlinear system may be qualitatively different from
that of the corresponding linearized system, and thus the behavior in the
large can differ significantly from the behavior in the small.

At least a qualitative knowledge of the behavior of nonlinear systems is
needed by the structural analyst, even if he plans to use, in most cases,
linearized analysis: The differences between the actual behavior of a struc-
ture or machine and the predicted one are often explained by the departure
from linearity of some of its components.

One of the phenomena that can occur in nonlinear systems is chaotic
vibration: its occurrence is usually linked with situations in which small
changes in the initial conditions lead to large variations of the behavior
of the system. The study of chaotic vibration is usually based on the nu-
merical integration in time of the equations of motion or on the use of
experimental techniques. This field is still mainly studied by theoretical
mechanicists, whose work have found, until now, limited practical applica-
tion in structural analysis; only a short account on chaotic vibration will
be given here.

18.2 Equation of motion

18.2.1 Configuration space

A simple model of a conservative nonlinear system with a single degree of
freedom is shown in Fig. 18.1a. It is similar to the linear system shown
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FIGURE 18.1. Conservative nonlinear system with a single degree of freedom.

in Fig. 1.1a, except that the force exerted by the nonlinear spring is not
proportional to the displacement x but can be expressed by the general
function f(x), or, better, f(x − xA). The symbol used in Fig. 18.1a, al-
though common, is not as widely used as the corresponding symbol for
linear springs. The symbol shown in Fig. 18.1b is sometimes used when the
force is also an explicit function of time.

The equation of motion of a nonlinear, conservative, time-invariant sys-
tem is

mẍ + f(x − xA) = F (t) − mg . (18.1)

Remark 18.1 Since the system, although nonlinear, is time invariant, the
equation describing its free behavior is autonomous.

The absolute acceleration to which the inertia force is proportional is
ẍiner = ẍrel + ẍA, and Eq. (18.1), written in terms of relative displacements
becomes

mẍrel + f(xrel) = F (t) − mg − mẍA . (18.2)

In this case, the system is not insensitive to a time-independent trans-
lation of the reference frame and, consequently, the constant terms of Eq.
(18.2) cannot be neglected or studied separately.

If function f(x) can be subdivided into a linear part, kx, and a nonlinear
part, f ′(x), and omitting the subscript rel, the equation of motion (18.2)
can be written as

mẍ + kx + f ′(x) = F (t) − mg − mẍA . (18.3)

The aforementioned equations can be extended to multi-degree-of-free-
dom systems. By separating the nonlinear part of the equations from the
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linear part, the equations of motion of a general conservative, time-invariant,
nonlinear system can be written in the following matrix form:

Mẍ + Kx + μg = f(t) . (18.4)

Matrices M and K, all of order n × n, define the behavior of the lin-
ear system that can be associated to the original system and are defined
accordingly with what seen in Chapter 1.

Vector g contains the nonlinear part of the system. It consists of n func-
tions gi, which, in the most general case, are

gi = gi(x, μ, t) ,

although it will be considered here as independent from time. Parameter μ
is a number controlling the relative size of the nonlinear and linear parts of
the system. With increasing μ, the behavior of the system gets less linear
and, generally speaking, the solution of the equations of motion becomes
increasingly difficult.

Another way of writing the equation of motion of a time-invariant con-
servative nonlinear system is

M (x) ẍ + K (x)x = f(t) , (18.5)

where the matrices of the system are assumed to be functions of the gen-
eralized coordinates.

18.2.2 Modal coordinates

Also in the case of nonlinear systems it is possible to resort to the modal
transformation using the modal coordinates of the linearized system. Any
possible point in the configuration space can be thus defined and, hence,
the description of any possible deformed shape of the nonlinear system can
be described using modal coordinates. Equation (18.4) can thus be written
in the form

Mη̈ + Kη + μΦTg = f(t) . (18.6)

However the equations of motion (18.6) are not uncoupled owing to the
nonlinearity of the system. All functions gi, which are now functions of
the modal coordinates ηi, can be present in each equation . If the system
is only weakly nonlinear, coupling can be neglected and the behavior of
the system can be approximated using a number of nonlinear equations
describing systems with a single degree of freedom.

Remark 18.2 Modal uncoupling is only an approximation in the case of a
nonlinear system, even if no damping is present. Moreover, there is no way
to estimate the approximation so introduced. In many cases modal coupling
makes the modal formulation (18.6) of the equation of motion practically
useless.
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18.2.3 State space

The motion can be studied with reference to the state space also in the
case of nonlinear systems. Operating in the same way as seen in Section
1.6 and using the derivatives of the coordinates

v = ẋ

as auxiliary coordinates, the usual definition of the state vector

z =
{

v
x

}

is obtained.
The equation of motion (18.2) of a system with a single degree of freedom

can be written in the form

ż =

{
− 1

m
[f(x) − F (t)]

v

}
. (18.7)

If Eq. (18.4) can be used and the linear part of the system can be sep-
arated from the nonlinear one, the state space equation of a nonlinear
time-invariant system can be written in the form

ż = Az +
{

−μM−1g
0

}
+ Bu(t) . (18.8)

where the dynamic matrix, the input gain matrix, and the input vector are
defined in Section 1.6.

Also in this case, nonlinearity can be introduced by writing matrices that
depend on the state vector

ż = A (z) z + B (z)u(t) . (18.9)

The two latter equations are not exactly equivalent, and in particular
the last one can be used also for non-conservative systems.

18.2.4 Motion about an equilibrium position (in the small)

If the input acting on the system is constant in time, a static equilibrium
position x0 can be easily obtained by assuming that both velocity and
acceleration are equal to 0. In the case of a system with a single degree of
freedom (Eq. 18.2), it follows that

f(x0) = F0 − mg , (18.10)

where F0 is a constant value of the force F (t) and x0 is the equilibrium
position.
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Remark 18.3 The nonlinear equation (18.10) may have a number of dif-
ferent solutions, i.e., the system may have several equilibrium positions.

If function f(x) can be differentiated with respect to x in the point of the
state plane with coordinates x = x0 and ẋ = 0, the motion in the vicinity
of an equilibrium position or motion in the small can be studied through
the following linearized equation:

mẍ +
(

∂f

∂x

)
x = x0

ẋ = 0

(x − x0) = F (t) − mg − mẍA . (18.11)

The linearized equation (18.11) allows the study of the stability of the
static equilibrium position. If the derivative

(∂f/∂x)x=x0, ẋ=0

is positive, when point P is displaced from the equilibrium position, a force
opposing this displacement is produced: The equilibrium position is stat-
ically stable. If it is negative, the equilibrium position is unstable; if it
vanishes, the knowledge of the higher-order derivatives is needed to ana-
lyze the behavior of the system.

In the case of systems with many degrees of freedom, the state equation
(18.8) can be linearized as

ż =

⎡
⎣ 0 −M−1

(
K + μ

[
∂gi

∂xj

])

I 0

⎤
⎦ z + Bu(t) , (18.12)

where (∂gi/∂xj) is the Jacobian matrix containing the derivatives of func-
tions g with respect to x.

18.3 Free oscillations

Assume that x0 is an equilibrium position and, without loss of generality,
that f(x0) = 0. The free oscillations about such a position can be studied
using the equation

mẍ + f(x) = 0 . (18.13)

Equation (18.13) is nonlinear but autonomous. If function f(x) is sub-
stituted by its Taylor series about point x0, since f(x0) = 0, the equation
of motion becomes

mẍ + (x − x0)
(

∂f

∂x

)
x=x0

+
(x − x0)2

2!

(
∂2f

∂x2

)
x=x0

+ · · · = 0 . (18.14)

There is no general closed-form solution to Eq. (18.13), so the study of
the dynamic behavior of nonlinear systems is often performed by resorting
to numerical experiments.
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Remark 18.4 Numerical simulation is a very powerful tool without which
many phenomena could not even be discovered. However, it has the draw-
back of supplying general information on the behavior of the system only at
the cost of performing a large quantity of experiments. In this, numerical
simulation is very similar to physical experimentation.

In many cases it is possible to resort to techniques yielding results that,
although only being approximated, are valid in general, at least from a
qualitative viewpoint.

To get a physical insight to the relevant phenomena, greater stress will be
placed on analytical techniques, even when the equations they yield need,
at any rate, to be solved numerically. The reader must, however, be aware
that only the simultaneous use of analytical and numerical techniques yields
useful information on the behavior of most nonlinear systems.

Consider a system whose behavior is modeled by Eq. (18.13). Assume
that f(x) is an odd function of x−x0, and set the origin of the x-coordinate
in the static equilibrium position (x0 = 0). If the derivative ∂f/∂x in the
origin is positive, force −f(x) is a symmetrical restoring force keeping mass
m in the static equilibrium position. The motion of the system consists of
undamped oscillations centered about the position of static equilibrium.
Since function f(x) is odd, only the derivatives whose order is odd are
present in Eq. (18.14).

Truncating the series in Eq. (18.14) after the second term, the charac-
teristics of the nonlinear spring can be expressed by the law

f(x) = kx(1 + μx2) . (18.15)

This type of restoring force is often referred to as a Duffing-type restor-
ing force, because its general properties were first studied in detail by
G. Duffing in 1918.1

Remark 18.5 Equation (18.15) can be considered as the expression of Eq.
(18.14) for a system with an odd restoring force (which makes even powers
to disappear), truncated at the second term. It can thus be regarded as a
second approximation, where the first approximation is linearization.

Parameter μ has the dimensions of a length at the power −2. Constant
k is usually positive, a condition necessary to lead to a stable static equi-
librium position at x = 0. If μ is positive, the spring is said to be of the
hardening type, because its stiffness increases with the displacement. On
the contrary, if μ is negative, the spring is said to be of the softening type.
Equation (18.15) is plotted in nondimensional form in Fig. 18.2.

1G. Duffing, Erzwungene Schwingungen bei veränderlicher Eigenfrequenz, F. Vieweg
u. Sohn, Braunschweig, Germany, 1918.



458 18. Free Motion of Conservative Nonlinear Systems

FIGURE 18.2. Law f(x) expressed as a third-degree polynomial with two terms;
nondimensional plot for both hardening and softening systems.

In the case of a ‘Duffing-type’ hardening system there is a single equi-
librium position and it is stable. A softening system has three equilibrium
positions, but two of them are unstable.

If both k and μ are negative, the equilibrium position in the origin is
unstable, but two other stable equilibrium position exist. Systems of this
type have been widely used in studies on the chaotic behavior of mechan-
ical systems. If on the contrary k is negative and μ is positive no stable
equilibrium positions exist.

The potential energy yielding a Duffing-type restoring force is

U =
1
2
kx2

(
1 + μ

x2

2

)
. (18.16)

18.4 Direct integration of the equations of motion

Consider a system with f(x) an odd function of x, positive when x is
positive. The acceleration can be written as

ẍ =
1
2

d(ẋ2)
dx

. (18.17)

Equation (18.13) can be rearranged in the form

d(ẋ2)
dx

= − 2
m

f(x) . (18.18)

The physical meaning of Eq. (18.18) is clear: The variation of the kinetic
energy of the system is, at any instant, equal to the work performed by
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the force −f(x) in the displacement dx. By separating the variables and
integrating, the following expression is obtained:

ẋ2 = − 2
m

∫
f(x)dx + C . (18.19)

Since the system is symmetrical with respect to point x = 0, the un-
damped free oscillations are symmetrical about this point. During oscilla-
tion, the velocity vanishes at the extreme position xm: ẋ = 0 for x = xm.
The constant of integration in Eq. (18.19) and the limits of integration can
be computed. Equation (18.19) can then be integrated again, obtaining

t =
√

m

2

∫ x

0

du√∫ xm

u
f(u′)du′

, (18.20)

where the dummy variables u and u′ have been introduced. Equation
(18.20), obtained assuming that at time t = 0 mass m (i.e., point P) passes
through the equilibrium position, is the law of motion of the system. In-
stead of being expressed as x = x(t), it is in the form t = t(x) and obviously
applies only for one-quarter of the period of oscillation, with 0 ≤ x ≤ xm.
Since all quarters of the period are identical, it describes completely the
motion.

The period of oscillation is four times the time needed to reach the max-
imum amplitude xm and can be easily computed

T = 4
√

m

2

∫ xm

0

dx√∫ xm

x f(u)du
. (18.21)

Remark 18.6 The period is a function of the amplitude of oscillation:
This is a general feature of nonlinear systems.

If the velocity at any position is known, Eq. (18.19) can be used to
compute the value of the amplitude of the motion. As an example, if the
initial velocity (ẋ)0 is known, the value of xm, i.e., the amplitude of the
oscillation, can be obtained from the equation

(ẋ)20 =
2
m

∫ xm

0

f(x)dx . (18.22)

Remark 18.7 Equations (18.20) to (18.22) allow the free motion of an
undamped nonlinear autonomous system to be studied in detail. Unfortu-
nately, the integral of Eq. (18.20) can be solved in closed form only in a few
particular cases and, generally speaking, numerical integration is needed.

This approach is, however, much simpler than numerical integration of
the equation of motion, because only a simple integral has to be performed
numerically.
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Consider again a system with a Duffing-type restoring force. The rela-
tionship between the maximum elongation in free vibration and the speed
at the equilibrium position is obtained by equating the potential energy
(Eq. 18.16) to the kinetic energy at the equilibrium position

1
2
m(ẋ)20 =

1
2
kx2

m

(
1 + μ

x2
m

2

)
. (18.23)

This equation can be solved in the velocity, yielding

ẋ0 = xm

√
k

m

(
1 + μ

x2
m

2

)
, (18.24)

or in the amplitude:

xm =

√√√√1 −
√

1 + 2m
k μ(ẋ)20

|μ| . (18.25)

From Eq. (18.25), it is clear that oscillatory motion of softening systems
is possible only if the amplitude is not greater than

√
1/|μ|. If this value

is reached, the force is no more restoring and causes point P to move
indefinitely away.

Remark 18.8 All the equations reported so far must be used with care in
the context of softening systems, always verifying that the displacements
are small enough, or, which is the same, that the total energy of the system
is not higher than the maximum potential energy it can store.

The waveform of the free oscillations, obtained by numerically integrating
Eq. (18.20), is reported in nondimensional form in Fig. 18.3 for different
values of the nondimensional parameter μx2

m. From Fig. 18.3, it is clear that
all curves are quite close to the sine wave characterizing the behavior of the

FIGURE 18.3. Time history of the free oscillations of a system with nonlinear
restoring force of the type shown in Fig. 18.2.
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FIGURE 18.4. Frequency of the fundamental harmonic as a function of the am-
plitude of the free oscillations of a system with a law f(x) of the type shown in
Fig. 18.3. The period and frequency are made nondimensional by dividing by the
values characterizing the linear system.

linear system (μ = 0). Only in the case of softening systems oscillating with
an amplitude close to the maximum possible amplitude is the waveform far
from that of a harmonic oscillation. The period, obtained by numerical
integration of Eq. (18.21), is plotted as a function of xm

√
|μ| in Fig. 18.4a.

The frequency of the fundamental harmonic is shown in Fig. 18.4b. The
frequency increases with the amplitude (i.e., the period of oscillation gets
shorter) in the case of hardening systems, while decreases in the case of
softening ones. As already stated, the dependence of the period on the
amplitude of oscillation is a general rule for nonlinear systems.

The free response x(t) is not harmonic, because of the nonlinearity of
function f(x). It is, however, periodic with period T and can easily be
transformed into a series of harmonic terms. Because function f(x) was
assumed to be odd, only terms whose circular frequency is an odd multiple
of the fundamental frequency 2π/T are present. If at time t = 0 the system
passes through the origin, the law x(t) can be expressed as

x = xm

[
a1 sin

(
2π

T
t

)
+ a3 sin

(
6π

T
t

)
+ · · · + ai sin

(
2iπ

T
t

)
+ . . .

]
.

(18.26)
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FIGURE 18.5. Time history of the free oscillations of a system with nonlinear
restoring force of the type f ′(x) = kx2n−1.

Example 18.1 Consider a hardening restoring force expressed by the odd
function

f(x) = kx(2n−1)

with n an integer positive number. If n > 1 no linearized solution can be found,
since (∂f/∂x)x=0 = 0.
The time history of the free oscillations and the maximum elongation are
expressed by the equations

t =
√

n

√
m

2

∫ x

0

du√
x2n

m − u2n
, xm =

[
(ẋ)0

√
n

√
m

2

]1/n

.

If n = 1 the system behaves linearly and the time history x(t) is harmonic.
If n → ∞ the system can be assimilated to two rigid walls in the points of
coordinates x = 1 and x = −1, with point P bouncing between the walls,
moving at a constant speed. If n �= 1, no closed-form integration of the equation
of motion is possible. When n = 2, i.e., the restoring force follows a cubic law
in the displacement, the value of the period is

T =
4

xm

√
2m

k

∫ 1

0

dχ√
1 − χ4

,

where χ = x/xm.
By using the approximate value of the elliptical integral, the period can be
expressed as

T =
7.4164

xm

√
m

k
.
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As usual for nonlinear systems, the period is a function of the amplitude, in
this case being proportional to the reciprocal of the latter. The law x(t) for
different values of n is plotted in nondimensional form for different values of
n in Fig. 18.5.
The values of the first five coefficients of the series for the response were
computed numerically and listed in the following table

a1 a3 a5 a7 a9

n = 1 (linear) 1 0 0 0 0
n = 2 0.9522 −0.0440 0.0025 −0.0004 0.0002
n = 3 0.9238 −0.0641 0.0094 −0.0015 0.0004
n = 4 0.9045 −0.0745 0.0152 −0.0036 0.0010
n = 5 0.8907 −0.0804 0.0195 −0.0058 0.0019

n → ∞ 0.8106 −0.0901 0.0324 −0.0165 0.0100

The coefficients were computed by numerically integrating equation (18.20)
(Gauss method) in 400 steps in each quarter of period, and then using a dis-
crete Fourier algorithm (1,600 points in the period).
The numerical errors can be significant in the higher-order harmonics, except
for the case with n → ∞, in which a closed-form solution exists: ai = 8/(iπ)2

The table shows that the response of the system is not far from being harmonic,
i.e., the contribution of all harmonics except the first is quite small, even
if the nonlinearity is strong. This is due to the fact that function f(x) is
odd. If no symmetry was assumed, higher-order harmonics would have been
more important, and all harmonics, including a constant term (zero-order
harmonic), could have been present.

18.5 Harmonic balance

A different approach to the study of both free and forced oscillations of
nonlinear systems is to approximately evaluate a few (or even just one) of
the terms of the series (18.26). In the case of free oscillations of the un-
damped system, this approach yields an approximate relationship between
the amplitude and the value of the fundamental frequency of the motion.

The simplest technique, based on the introduction of a series solution
of the type of Eq. (18.26) into the equation of motion, is the so-called
harmonic balance. Because all harmonics of the time history of the motion
must be balanced, a set of nonlinear algebraic equations in the amplitudes
of the various harmonics is obtained. The procedure is approximate for two
reasons: The series (18.26) is truncated, usually after a few terms (or even
after the first one), and some of the harmonic terms cannot be balanced,
because the number of equations obtained is greater than the number of
unknowns.



464 18. Free Motion of Conservative Nonlinear Systems

Remark 18.9 Although it may seem too an empirical approach, if prop-
erly used with sound engineering common sense, this is a powerful tool for
solving many nonlinear problems.

Example 18.2 Find an approximate solution for the fundamental harmonic
of the free response of an undamped system whose nonlinear spring has a
characteristic expressed by Eq. (18.15)

f (x) = kx
(
1 + μx2

)
.

If only the fundamental harmonic is retained, the solution can be expressed
in the form

x = xm sin(ωt) .

By introducing this time history into the equation of motion, it follows

(−mω2 + k)xm sin(ωt) + kμx3
m sin3(ωt) = 0 .

By remembering some trigonometric identities and introducing the natural
frequency of the linearized system ω0 =

√
k/m, the latter equation yields

[
1 −

(
ω

ω0

)2
]

xm sin(ωt) +
3

4
μx3

m sin(ωt) − 1

4
μx3

m sin3(3ωt) = 0 .

To satisfy this equation for all values of time, the coefficients of both sin(ωt)
and sin(3ωt) must vanish. The first condition leads to the equation

[
1 −

(
ω

ω0

)2
]

+
3

4
μx2

m = 0 ,

which is the required relationship linking the frequency of the fundamental har-
monic with the amplitude. Balancing the third harmonic would lead to another
equation in the unknown xm that cannot be satisfied, owing to the intrinsic
approximations of the method.
The relationship between the amplitude and the frequency

ω

ω0
=

√
1 +

3

4
μx2

m

is shown in nondimensional form in Fig. 18.6a, together with the solution

already reported in Fig. 18.4b. The precision obtained through the harmonic

balance technique is very good in the case of hardening systems and, for soft-

ening systems, when the amplitude of the oscillations is small or the system

is mildly nonlinear, i.e., for small values of parameter |μ|x2
m. With increasing

values of |μ|x2
m, the solution loses precision. In particular, the value of the

amplitude at which the natural frequency vanishes, i.e., the period tends to

infinity or the system no longer has an oscillatory behavior, is
√

4/3|μ|, while

the correct value is
√

1/|μ|.
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FIGURE 18.6. System with Duffing-type law f(x) (Fig. 18.2). (a) Approximate
values of the frequency of free oscillations as a function of the amplitude obtained
using harmonic balance, compared with the results obtained through numerical
integration. For hardening systems, the curves are completely superimposed. (b)
Time history of the free oscillations computed using the harmonic balance tech-
nique (1 and 2 harmonics) and numerical integration (xm

√
|μ| = 0.8788).

A better approximation can be obtained by assuming a solution in which two
harmonics are included:

x = a1 sin(ωt) + a2 sin(3ωt) .

There are now two unknowns and two harmonics can be balanced.

By introducing the assumed time history of the solution into the equation of
motion, it follows

(−mω2 + k)a1 sin(ωt) + (−9mω2 + k)a2 sin(3ωt)+

+kμ [a1 sin(ωt) + a2 sin(3ωt)]3 = 0 .

By remembering some trigonometric identities and introducing the natural
frequency of the linearized system ω0 =

√
k/m, the latter equation yields

a1

{[
1 −

(
ω

ω0

)2
]

+
3

4
μ

(
a2
1 + 2a2

2 − a1a2

)}
sin(ωt)+

+

{
a2

[
1 − 9

(
ω

ω0

)2
]

+
1

4
μ

(
−a3

1 + 3a3
2 + 6a2

1a2

)}
sin(3ωt)+

+
3

4
μa1a2 (−a1 + a2) sin(5ωt) − 3

4
μa1a

2
2 sin(7ωt) − 1

4
μa3

2 sin(9ωt) = 0
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Only the first two harmonics can be balanced, yielding the two equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 −
(

ω

ω0

)2

+
3

4
μ

(
a2
1 + 2a2

2 − a1a2

)
= 0

a2

[
1 − 9

(
ω

ω0

)2
]

+
1

4
μ

(
−a3

1 + 3a3
2 + 6a2

1a2

)
= 0

The first equation can be solved in the frequency

(
ω

ω0

)2

= 1 +
3

4
μ

(
a2
1 + 2a2

2 − a1a2

)
.

Introducing it into the second equation and introducing the nondimensional
amplitudes

a∗
i = ai

√
|μ| ,

it follows
51a∗3

2 − 27a∗
1a

∗2
2 +

(
21a∗2

1 ± 32
)
a∗
2 + a∗3

1 = 0 ,

where the upper sign holds for hardening and the lower one for softening sys-
tems.
It is then possible to state various values of a∗

1 and to compute the correspond-
ing values of a∗

2 and of the frequency.
The amplitude of the poly-harmonic motion is

xm = a1 − a2 .

The frequency computed in this way is plotted in Fig. 18.6a, dashed line. In
the case of the hardening system there is little difference, while for the soften-
ing system the result is closer to that obtained by numerically integrating the
equation of motion.
Consider the case of a softening system and assume that a1

√
|μ| = 0.99.

The nondimensional frequency is ω/ω0 = 0.5583, and the amplitude of the
third harmonics is a2

√
|μ| = 0.0740. The amplitude of the oscillation is thus

xm

√
|μ| = 0.9160, and the corresponding nondimensional frequency computed

using a mono-harmonic solution is ω/ω0 = 0.6088.
The time history during half a period is shown in nondimensional form in Fig.
18.6b, where the solutions obtained through harmonic balance are compared
with that obtained by numerically integrating the equation of motion. From
the plot it is clear that adding the third harmonics improves dramatically the
results.

18.6 Ritz averaging technique

Other solution methods are the so-called averaging techniques. Into this
category fall, among others, the method of Kirilov and Bogoljubov and that
usually referred to as the Ritz averaging method, which will be described
in detail. Practically, they are based on the substitution of some nonlin-
ear functions with their average over one period, thus obtaining simplified
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expressions yielding approximate results. Usually, averaging is based on
energy consideration.

The Ritz averaging technique is based on the observation that in free
undamped vibrations the average value of the virtual work done in a com-
plete cycle must vanish. The solution x(t) is approximated with a linear
combination of arbitrary time functions2

x(t) =
n∑

i=1

aiφi(t) , (18.27)

where ai are constants and φi are arbitrary functions of time. If f(x) is an
odd function, functions φi can be the harmonic terms of the series (18.26).

When looking for a first approximation of the fundamental harmonic of
the time history of the motion, only one function φi is used. As in the
case of the harmonic balance technique, constants ai can be computed by
introducing the solution (18.27) into the equation of motion. The latter
clearly cannot be satisfied exactly, because only an approximation of the
true time history has been assumed. Instead of requiring that the equation
of motion be satisfied at each instant, which is impossible, the equation of
motion is satisfied as an average over one period of the motion.

The equation of motion (18.13) states that elastic and inertial forces
must always be in equilibrium. If a virtual displacement δx is imposed on
the system starting from an equilibrium condition characterized by given
values of the position and velocity, the virtual work done by the applied
forces must vanish, i.e.,

[mẍ + f(x)] δx = 0 . (18.28)

Using an averaged approach, this condition cannot be satisfied exactly.
Although not vanishing in any instant, the virtual work must be equal to
zero as an average over a period: The integral of Eq. (18.28) over one period
is thus equal to zero. If a set of n virtual displacements are stated using the
same functions φi assumed in the definition of the time history, it follows

2Equation (18.27) must not be confused with expression (14.1) used in con-
nection with the assumed-modes method. In the latter, the unknowns ai(t) are
functions of time, and the assumed functions are functions of the space coor-
dinates. The problem is that of obtaining the deformed shape of the system,
continuous or discrete, which is approximated by arbitrary functions, while the
time history is not difficult to compute (in the case of free oscillations, it is har-
monic). In this case, however, the system is nonlinear; then the difficulty lies in
the determination of the time history, which is approximated by the arbitrary
time functions. In the case of systems with a single degree of freedom, the un-
knowns are constants. They are functions of space coordinates if the method
is applied to continuous systems or vectors for multi-degree-of-freedom discrete
systems.
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that

δx =
n∑

i=1

δaiφi(t) . (18.29)

The averaged expression of the virtual work is thus

δL =
n∑

i=1

∫ T

0

[
ẍ +

f(x)

m

]
δaiφi(t)dt = 0 . (18.30)

Because the virtual displacements δai are arbitrary, each term of the sum
must vanish in order to satisfy Eq. (18.30)

∫ T

0

[
ẍ +

f(x)

m

]
φi(t)dt = 0, for i = 1, 2, . . . , n . (18.31)

Remark 18.10 The n equations (18.31) are a set of nonlinear equations
in the n unknowns ai. Their solution usually requires the use of numerical
techniques and may constitute a difficult mathematical problem.

Example 18.3 Repeat the computation of Example 18.2 by resorting to the
Ritz averaging technique. The same nonharmonic solution used in Example
18.2 is assumed. There is only one function of time

φ(t) = sin(ωt)

and, correspondingly, only one unknown coefficient, a = xm. Equation (18.31),
reduces to

∫ T

0

[
xm

(
k

m
− ω2

)
sin(ωt) +

k

m
μx3

m sin3(ωt)

]
sin(ωt)dt = 0 .

Remembering that

∫ T

0

sin2(ωt)dt =
π

ω
,

∫ T

0

sin4(ωt)dt =
3π

4ω
,

and introducing the natural frequency of the linearized system ω0 =
√

k/m,
the equation linking the fundamental frequency of the free vibration with the
amplitude is [

1 −
(

ω

ω0

)2
]

+
3

4
μx3

m= 0 ,

This result is coincident with that obtained through the harmonic balance tech-
nique. Also in this case, a second-approximation solution could be obtained by
using two arbitrary functions instead of one.
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18.7 Iterative techniques

Iterative methods are restricted to weakly nonlinear and non-autonomous
systems (or quasi-linear systems), i.e., systems whose equation of motion
can be separated into a part containing only linear terms and a second one,
relatively small with respect to the first, containing the nonlinear terms.
What weakly actually means is difficult to assess, and the applicability of
this approach depends on many factors, including the method used and
the nature of the problem. If the equation of motion of a system with a
single degree of freedom is written in the form of Eq. (18.4), the dynamic
equilibrium between inertia and nonlinear restoring forces is

ẍ = −ω2
0x − μ

f ′ (x)
m

, (18.32)

where ω0 is the natural frequency of the linearized system ω0 =
√

k/m. By
adding a term ω2x at both sides, it follows

ẍ + ω2x =
(
ω2 − ω2

0

)
x − μ

f ′ (x)
m

. (18.33)

A zero-order approximation solution, with the same harmonic behavior
in time than the solution of the linearized system, but with a different
frequency, can be stated

x(0) = xm sin (ωt) . (18.34)

The zero-order solution (Eq. (18.34)) is then introduced at right-hand
side of the equation of motion (18.33) in order to obtain a new first order
solution

ẍ(1) + ω2x(1) =
(
ω2 − ω2

0

)
x(0) − μ

f ′
(
x(0)

)
m

. (18.35)

If the system is mildly nonlinear (μ is small), ω cannot be much different
from ω0 and both the terms at right-hand side are small. The process is
repeated until the required precision is obtained.

Example 18.4 Compute the first-approximation solution for a system with
a Duffing-type nonlinearity. With the present notation function f ′ (x) is

f ′ (x)

m
= ω2

0x3 ,

Equation (18.35) then becomes

ẍ(1) + ω2x(1) =
(
ω2 − ω2

0

)
xm sin (ωt) − μω2

0 x3
m sin3 (ωt) .

By remembering the identity
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sin3 (α) =
3

4
sin (α) − 1

4
sin (3α) ,

the equation

ẍ(1) + ω2x(1) =

[
ω2 − ω2

0

(
1 +

3

4
μx2

m

)]
xm sin (ωt) +

1

4
μω2

0 x3
m sin (3ωt)

can be regarded as the equation of motion of a system whose natural frequency
is ω, excited by two harmonic forces with frequencies ω and 3 ω. The solution
of the equation of motion of the system must have an oscillatory character,
while, owing to the fact that the exciting frequency coincides with the natural
frequency of the system, the amplitude builds up to infinity, growing linearly
in time. The term in sin (ωt) originates then a secular term, which must be
eliminated:

ω2 − ω2
0

(
1 +

3

4
μx2

m

)
= 0 .

This relationship between the frequency of the oscillation and the amplitude
allows a first approximation of the frequency to be obtained:

ω = ω0

√
1 +

3

4
μx2

m ,

which coincides with those obtained through harmonic balance and Ritz aver-
aging technique.
The equation above can be considered the equation of motion of an undamped
linear system with a harmonic excitation and its solution is the sum of the
‘free oscillation’ solution (harmonic with frequency ω) added to the solution
regarding the forced oscillations (harmonic with frequency 3 ω).
Using the equations developed in Chapter 6, the following solution is obtained

x(1) = C1 sin (ωt) + C2 cos (ωt) − 1

32
μ x3

m sin (3ωt) .

Constants C1 and C2 can be obtained from the initial conditions. If at time
t = 0 the system passes through the origin, C2 must vanish. As the maximum
amplitude, reached at ωt = π/2, is xm, it follows

C1 = xm

(
1 − 1

32
μx2

m

)
.

The first-approximation solution is thus

x(1) = xm

(
1 − 1

32
μx2

m

)
sin (ωt) − 1

32
μ x3

m sin (3ωt) .

The first-approximation solution obtained through the iterative technique
shown is already better than that obtained from harmonic balance or Ritz av-
eraging technique with a single harmonic, since it allows to obtain an estimate
of the amplitude of the third harmonics.
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18.8 Perturbation techniques

In perturbation techniques the solution is assumed to be a power series
of a small parameter linked with the nonlinear part of the system, e.g.,
parameter μ of Eq. (18.4).

x = x(0) + μx(1) + μ2x(2) + μ3x(3) + ... (18.36)

The equation of motion (18.32) can be written, for the sake of compact-
ness, as

L (x) = N (x) (18.37)

where

L (x) = ẍ + ω2
0x , N (x) = −μ

f ′ (x)
m

(18.38)

are, respectively, the linear and the nonlinear parts of the equation of mo-
tion. By introducing Eq. (18.36) into the equation of motion (18.37), it
follows that

L
(
x(0)

)
+ μL

(
x(1)

)
+ μ2L

(
x(2)

)
+ ... = μN

(
x(0) + μx(1) + μ2x(2) + ...

)
(18.39)

The right-hand side can be expanded in a power series of μ, yielding

L
(
x(0)

)
+ μL

(
x(1)

)
+ μ2L

(
x(2)

)
+ ... =

= μ
[
N0

(
x(0)

)
+ μN1

(
x(0), x(1)

)
+ μ2N2

(
x(0), x(1), x(2)

)
+ ...

] (18.40)

In the case of an autonomous undamped system, the nonlinear operator
N (x) is proportional to f ′ (x), whose power series expansion about point
x0 is simply

f ′ (x) = f ′
(
x(0)

)
+ μx(1) df ′ (

x(0)
)

dx
+ μ2

(
x(2) df ′ (

x(0)
)

dx
+

1

2!
x(1)2 d2f ′ (

x(0)
)

dx2

)
+ ...

(18.41)

By introducing Eq. (18.41) into Eq. (18.39) and equating the coefficients
of the like terms in μ, the following set of equations can be obtained

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ(0) + ω2
0x

(0) = 0

ẍ(1) + ω2
0x

(1) = − 1
mf ′ (x(0)

)

ẍ(2) + ω2
0x

(2) = − 1
mx(1) df ′(x(0))

dx

ẍ(3) + ω2
0x

(3) = − 1
mx(2) df ′(x(0))

dx − 1
2mx(1)2 d2f ′(x(0))

dx2

.................

(18.42)
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which can be solved recursively. The generating solution x(0) can be ob-
tained from the first equation (18.42) and coincides with the solution of
the linear equation. It is very easy to verify that if the solution

x(0) = xm sin (ω0t + Φ) (18.43)

of the linear system is introduced as a generating solution, secular terms
increasing to infinity are obtained, at least if only a limited number of
terms in the series for x (t) are retained. The term secular derives from the
astronomical field, in which the perturbation technique was first applied.
This difficulty is mainly due to the presence of the nonlinear term affecting
the frequency of oscillation and not only their amplitude.

This could be taken into account by retaining enough terms of the series,
but this leads to strong computational difficulties.3 Here a solution based
on Lindstedt’s Method, which assumes that, if the solution of the equation
of motion is oscillatory, the nonlinear term alters the period of an amount
of the order of μ, will be shown. The frequency can thus be expressed by
the power series in μ

ω = ω0 + μω1 + μ2ω2 + μ3ω3 + ... (18.44)

where the frequency of the linear system is

ω0 =
√

k/m .

It is advisable to use a nondimensional time variable

τ = ωt , (18.45)

spanning from 0 to 2π in a period. All derivatives with respect to time can
be expressed as functions of the derivatives with respect to τ

ẋ = ω
dx

dτ
= ωx′., ẍ = ω2 d2x

dτ2
= ω2x′′., ..., (18.46)

i.e.,

ẋ = ω0x
′ + μω1x

′ + μ2ω2x
′ + ...

ẍ = ω2
0x

′′ + 2μω0ω1x
′′ + μ2

(
ω2

1 + 2ω0ω2

)
x′′ + ...

.................

(18.47)

3L. Meirovitch, Methods of Analytical Dynamics, McGraw-Hill, New York,
1970.
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By introducing Eq. (18.47) into Eq. (18.40), the following set of equations
can be obtained
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω2
0x

′′(0) + ω2
0x

(0) = 0

ω2
0x

′′(1) + ω2
0x

(1) = − 1
mf ′ (x(0)

)
− 2ω0ω1x

′′(0)

ω2
0x

′′(2) + ω2
0x

(2) = − 1
mx(1) df ′(x(0))

dx −
(
ω2

1 + 2ω0ω2

)
x′′(0) − 2ω0ω1x

′′(1)

.................
(18.48)

The components of the frequency ωi can be computed by assuming that
each function x(i) is periodical in τ with a period of 2π

x(i) (τ + 2π) = x(i) (τ) (18.49)

Example 18.5 Consider again a system with a Duffing-type nonlinearity
and repeat the computation of the first-approximation solution.
Introducing the relevant expression of function f ′ (x), i.e., f ′ (x) = mω2

0x3,
Eq. (18.48) reduce to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′′(0) + x(0) = 0

x′′(1) + x(1) = −x(0)3 − 2ω∗
1x′′(0)

x′′(2) + x(2) = −3x(1)x(0)2 −
(
ω∗2

1 + 2ω∗
2

)
x′′(0) − 2ω∗

1x′′(1)

.................

where ω∗
i = ωi/ω0.

As usual for autonomous systems, without any loss of generality, time t = 0
will be assumed in such a way that x = 0 for t = 0. The generating solution,
with the mentioned initial condition, is simply

x(0) = xm sin (τ ) .

Remembering the usual expression for sin3 (τ ), the second equation becomes

x′′(1) + x(1) = −xm

(
3

4
x2

m − 2ω∗
1

)
sin (τ ) +

1

4
x3

m sin (3τ ) .

Again the first term at right-hand side is a secular term, since the frequency

of the excitation of the linear undamped system coincides with its natural

frequency. In order to eliminate the secular term, the coefficient of sin (τ )

must vanish, as already seen in detail when dealing with the iterative method
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3

4
x2

m − 2ω∗
1 = 0 , i.e ω∗

1 =
3

8
x2

m .

Once the secular term has been eliminated, and proceeding as seen with itera-
tive techniques, it follows that

x(1) = C1 sin (τ ) + C2 cos (τ ) − 1

32
x3

m sin (3τ ) .

Constants C1 and C2 can be obtained from the initial conditions. If x = 0 at
time t = 0, C2 vanishes. As the maximum amplitude, reached at τ = π/2, is
xm, the value of constant C1 is

C1 = −x3
m

32
.

The final expression of solution x(1) is thus

x(1) = −x3
m

32
[sin (τ ) + sin (3τ )] .

This solution leads to a frequency and a time history of the free oscillations
that coincide with those obtained by using the iterative technique if the series
in μ is truncated after the first term.
The third equation (18.48) yields

x′′(2) + x(2) = xm

(
21

128
x4

m + 2ω∗
2

)
sin (τ )− 3

16
x3

m sin (3τ )− 3

128
x5

m sin (5τ ) .

By equating to zero the secular term, the following value of ω∗
2 can be obtained

ω∗
2 = − 21

256
x4

m .

Once that the secular term has been eliminated, the expression of x(2) becomes

x(2) = C1 sin (τ ) + C2 cos (τ ) +
3

128
x3

m sin (3τ ) +
1

1024
x5

m sin (5τ ) .

The values of the constants of integration can be obtained by the usual proce-
dure

C1 = − 23

1024
x5

m , C2 = 0

The complete solution, up to the third approximation, is thus

x = xm

(
1 − 1

32
μx2

m + 23
1024

μ2x4
m

)
sin (ωt)+

− 1
32

μ x3
m

(
1 − 24

32
μx2

m

)
sin (3ωt) + 1

1024
μ2x5

m sin (5ωt) ,

where the frequency is

ω = ω0

(
1 +

3

8
μx2

m +
21

256
μ2x4

m

)
.
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TABLE 18.1. Values of the nondimensional frequency and coefficients of the first
three harmonics of the response of a system with a Duffing-type law f(x) with
different values of the nondimensional parameter μx2

m.

μx2
m ω/ω0 a1/xm a3/xm a5/xm

0 Num. Int. 1.0000 1.0000 0.00000 0.000000
Exact 1 1 0 0

0.25 Num. Int. 1.0892 0.9934 –0.00658 0.000043
Har. bal. (1h.) 1.0897 1 –
Har. bal. (2h.) 1.0891 0.9934 –0.0066 –

Iterative 1.0897 0.9922 –0.00781 –
Perturbation 1.0886 0.9936 –0.00634 0.000061

1 Num. Int. 1.3178 0.9817 –0.01796 0.000321
Har. bal. (1h.) 1.3229 1 –
Har. bal. (2h.) 1.3197 0.9820 –0.0180 –

Iterative 1.3229 0.9688 –0.03125 –
Perturbation 1.2930 0.9912 –0.00781 000977

–0.25 Num. Int. 0.9004 1.0095 0.00963 0.000523
Har. bal. (1h.) 0.9014 1 –
Har. bal. (2h) 0.9004 1.0096 0.0096 –

Iterative 0.9014 1.0078 0.00781 –
Perturbation 0.9011 1.0092 0.00928 0.000610

–0.75 Num. Int. 0.6370 1.0536 0.05666 0.003230
Har. bal. (1h) 0.6614 1 –
Har. bal. (2h) 0.6331 1.0574 0.0574 –

Iterative 0.6614 1.0234 0.02344 –
Perturbation 0.6726 1.0361 0.03662 0.000549

By comparing the solutions obtained using iterative and perturbation tech-
niques, it is clear that the two solutions (time histories and frequencies) are
coincident up to the terms in μ.
The frequency and the coefficients of the series expressing the time history,
computed using the perturbation and the iterative methods are compared in
Table 18.1 with those obtained by integrating numerically the equation of mo-
tion and applying a Fourier transform to the solution. Note that systems with
μx2

m = 1 or μx2
m = −0.75 cannot be defined as weakly nonlinear.

In this case, harmonic balance yields the best results (in the sense of closer to
those obtained through numerical integration).

18.9 Solution in the state plane

By rewriting the state equation (18.7) for the free behavior of an undamped
system and explicitly introducing the velocity v = ẋ, the following equation
is obtained
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{
v̇ = − 1

m
f(x) ,

ẋ = v ,
(18.50)

or, by eliminating time between the two equations,

dv

dx
= −f(x)

mv
. (18.51)

The last equation directly yields the slope of the trajectories of the sys-
tem in the state plane and can be integrated without problems, at least
numerically. When the system is linear, function f(x) is simply kx, the
integration yields the equation of elliptical trajectories

v2 +
k

m
x2 = C . (18.52)

Their size is determined by the value of the constant of integration C,
which depends on the initial conditions.

Consider the system studied in Fig. 18.2, whose nonlinear part has a third
power characteristic. Introducing Eq. (18.15) into Eq. (18.51), separating
the variables, and integrating, it follows that

v2 +
k

m
x2

(
1 +

μ

2
x2

)
= C . (18.53)

Equation (18.53) is plotted in Fig. 18.7 in nondimensional form for var-
ious values of constant C. Defining the nondimensional states

v∗ = v
√
|μ|m

k
, x∗ = x

√
|μ| ,

FIGURE 18.7. State portrait of a system whose restoring force is expressed by
Eq. (18.15). Nondimensional velocity v∗ = v

√
|μ|m/k as a function of the nondi-

mensional displacement x∗ = x
√

|μ| for (a) hardening and (b) softening systems.
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the behavior of all possible systems whose function f(x) is of the type of
Eq. (18.15) can be summarized in just two plots: one for hardening (Fig.
18.7a) and one for softening systems (Fig. 18.7b).

Remark 18.11 All trajectories run from left to right in the upper half-
plane, where the velocity is positive, and from right to left in the lower
half-plane.

If the system is hardening there is a single equilibrium position and the
trajectories are very similar to ellipses (circles, in the nondimensional plot)
for small amplitudes. With growing amplitudes, the curves are elongated
on the velocity axis and they lose the shape of ellipses. The equilibrium
point is what is called a singular point of the center type. No trajectory
can pass through that point, but all of them orbit around it.

In the case of softening systems there are three equilibrium points: one
stable (the origin) and two unstable. The state portrait is divided into five
domains or basins of attraction by a separatrix. The first domain of attrac-
tion is centered in the origin and is the basin of the stable solution. In it,
the motion is periodic, with trajectories of elliptical (circular) form, if the
amplitude is small, and an increasingly elongated form (along the displace-
ment axis) with growing amplitude. In the two basins of attraction that lie
above and below the first one, the motion is nonperiodic and characterized
by high speed. Point P comes from the right (lower basin) or left (upper
basin) and slows down, feeling a repulsive force unless the force changes
sign in correspondence with the unstable equilibrium position. It is then
caught by the central force field of the origin, accelerates again, and dashes
past it. It then slows down again until the force changes sign at the other
unstable equilibrium position and then accelerates away under the effect of
the repulsive force field.

The other two domains of attraction, on the right and on the left, are
characterized by large displacement and relatively small speed. The motion
is again nonperiodic, and point P comes toward the origin, but the repulsive
force prevents it from reaching the unstable equilibrium position and drives
it back.

The separatrices pass through the unstable equilibrium points: They rep-
resent the trajectory of a point that has just enough energy to reach the
unstable equilibrium position but gets there with vanishingly small speed.
The two unstable equilibrium points are again singular, this time of the
saddle type.

If the linear term is repulsive instead of attractive, i.e., k is negative, the
state portraits are of the type shown in Fig. 18.8. When μ is negative, i.e.,
the coefficient of the term containing the third power of the displacement is
positive, the behavior is of the hardening type (Fig. 18.8a). There are three
static equilibrium positions, one unstable in the origin and two stable ones.
The separatrix defines three domains of attraction. The motions taking
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FIGURE 18.8. State portrait of a system whose restoring force is expressed by
Eq. (18.15), as in Fig. 18.7, but with a negative value of the stiffness k. Nondi-
mensional velocity v∗ = v

√
|μ|m/k as a function of nondimensional displacement

x∗ = x
√

|μ| for (a) hardening (in this case with negative value of μ) and (b) soft-
ening systems.

place in the two domains centered in the two stable equilibrium positions,
corresponding to two centers, are simple oscillatory motions about the equi-
librium positions. If the amplitude is small, these motions are almost har-
monic, while the trajectories depart from a circular shape when the ampli-
tude grows. The domain of attraction lying outside the separatrix is that
of oscillatory motions of large amplitude that cross all three equilibrium
positions and are centered about the origin. The origin is a saddle point.

In the case of softening systems with repulsive linear stiffness, no oscil-
latory motion is possible and nonperiodic motions occur in the whole state
space. The origin is again a saddle point.

Remark 18.12 The approximate methods seen in the previous sections are
applicable only within the domains of attraction of the stable equilibrium
positions, while the state-space solution yields exact results in the whole
state plane.

A more detailed analysis of the state-plane approach and a review of
the possible singular points will be seen in Chapter 20, when dealing with
damped systems.

18.10 Exercises

Exercise 18.1 Study the free oscillations of an undamped pendulum using the

technique described in Section 18.4.

Exercise 18.2 Repeat the study of the undamped oscillations of a pendulum

by approximating the restoring force as a Duffing-type force. Compare the re-
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sults with those obtained using the Ritz averaging technique and those obtained

in Exercise 18.1.

Exercise 18.3 Repeat the study performed in Exercise 18.1 by resorting to the

state plane. Plot the state trajectories and compare the results obtained with those

shown in Fig. 18.7b.

Exercise 18.4 Consider the double pendulum of Exercise 4.5. Write the

nonlinear equations of motion and those obtained by retaining two terms of the

series for the trigonometric functions of the generalized coordinates. Study by

numerical integration of the equations of motion the free motion starting from a

configuration with only angle θ2 different from 0 and all velocities equal to 0. Per-

form the computation for two cases with θ20 = 2◦ and 60◦, respectively. Compare

the results with those obtainable from the linearized system (analytical solution).



19
Forced Response of Conservative
Nonlinear Systems

When a linear system is excited by a harmonic forcing function, its response
is harmonic. In the same conditions the response of a nonlinear system is
more complex: not only the waveform is not harmonic, a thing that can be
expressed by saying that it includes higher-order harmonics, but also other
harmonic components, like subharmonics and combination tones, may ap-
pear. In case of conservative systems, a free response that does not decay
quickly in time is also present: Owing to nonlinearity the free and forced re-
sponses interact in a complex way. Generally speaking, this complex motion
can be studied only by numerical (or physical) experiments.

19.1 Approximate evaluation of the response to a
harmonic forcing function

Forced oscillation of a conservative nonlinear system can be studied by
using the non-autonomous equation obtained by adding a forcing function
to Eq. (18.13). By separating the linear part of the restoring force f(x)
from the nonlinear part as in Eq. (18.3), the following nonlinear and non-
autonomous equation is obtained:

mẍ + kx + f ′(x) = F (t) . (19.1)

The solution of Eq. (19.1) is, from the mathematical viewpoint, a
formidable task, and no general solution can be obtained except by
numerically integrating the equation of motion.
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Among the many approximated approaches, the Ritz averaging technique
can be used by introducing the virtual work due to the forcing function F (t)
into Eq. (18.31), which becomes

∫ T

0

[
ẍ +

k

m
x +

f ′(x)
m

+
f(x)
m

− F (t)
m

]
φi(t)dt = 0 , (19.2)

for i = 1, 2, . . . , n.
If the number of functions φi(t) is large (usually when it is greater than

1) the computational difficulties can become overwhelming.
When the forcing function is harmonic, or at least periodic, the results

obtained through harmonic balance are usually identical to those achievable
through averaging techniques. The complexity of the analysis grows very
rapidly with the number of harmonics considered.

If both the nonlinear part f ′(x) of f(x) and the non-autonomous part
of F (t) are small, iterative or perturbation techniques can be used. In the
latter case, Eq. (18.37) must be modified to include the forcing function:

L (x) = N (x) + F (t) . (19.3)

A set of equations similar to those seen for free vibration are obtained,
with the difference that now the generating solution is the solution of the
non-autonomous equation

ẍ(0) + ω2
0x

(0) =
F (t)
m

. (19.4)

Remark 19.1 Unfortunately, little general insight into the relevant phe-
nomena can be gained through solutions of this type, due to the impossibility
of resorting to the superimposition technique. The advantages of these com-
plex analytical techniques over the numerical integration of the equation of
motion are thus questionable.

If the forcing function is harmonic in time with frequency ω, assuming
that at time t = 0 it vanishes while increasing from negative values, it
follows that

F (t) = f0 sin(ωt) .

If the Ritz averaging technique is used, it is not necessary to assume that
the nonlinear part of the restoring force f ′(x) is small. The accuracy of the
results is, however, better in the case of mildly nonlinear systems.

To evaluate approximately the fundamental harmonic of the response,
the steady-state response can be assumed to be periodic, with a period
equal to the period of the forcing function, and in phase with the latter
owing to the lack of damping. Reducing the response to its fundamental
harmonic, a time history of the type

x = xm sin(ωt) (19.5)
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can be assumed. If function f ′(x) is not odd, even harmonics, including a
constant term, are also present and Eq. (19.6) can lead to poor results, even
when only an approximation of the fundamental harmonic is searched.

By applying the Ritz averaging technique in the form of Eq. (19.2), it
follows that ∫ T

0

[mẍ + kx + f ′(x) − f0 sin(ωt)] sin(ωt)dt = 0 . (19.6)

By defining a nondimensional time variable τ = ωt, whose values span
from 0 to 2π in a period, introducing Eq. (19.5) into Eq. (19.6) and inte-
grating, it follows that

xm

[
1 −

(
ω

ω0

)]2

− f0

k
+

1
kπ

∫ 2π

0

f ′(x) sin(τ)dτ = 0 . (19.7)

Equation (19.7) allows the amplitude of the response xm to be computed
as a function of the amplitude and the frequency of the forcing function.
Once function f ′(x) has been stated, it can easily be transformed through
Eq. (19.5) into a function of time and then integrated, at least numerically.
The frequency response, i.e., the amplitude of the response as a function
of the forcing frequency, can thus be readily obtained.

Often, it is simpler to obtain the frequency response in the form of a
function ω(xm) instead of in the more common form xm(ω) by solving Eq.
(19.7) in the frequency

ω

ω0
=

√
1 − f0

kxm
+

1
kπxm

∫ 2π

0

f ′(x) sin(τ)dτ . (19.8)

19.2 Undamped Duffing’s equation

19.2.1 First-approximation solution

Consider a system whose restoring force is that studied in Fig. 18.2, on
which a harmonic forcing function is acting. The relevant equation of mo-
tion, often referred to as undamped Duffing’s equation, is

mẍ + kx(1 + μx2) = f0 sin(ωt) . (19.9)

As usual with nonlinear systems, there is no general solution to Eq.
(19.9), but different techniques can be used to obtain approximate solu-
tions. As already stated, the solution of the equation of motion of a nonlin-
ear system is, generally speaking, non-harmonic, even if the forcing function
is harmonic. However, a good approximation, at least of the fundamental
harmonic of the response, can be found using the Ritz averaging technique
and assuming a mono-harmonic time history.
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By introducing the nonlinear function f ′(x) = kμx3 into Eq. (19.8), it
follows that

ω

ω0
=

√
1 − f0

kxm
+

3
4
μx2

m =

√
1 −

(
xmk

f0

)−1

+
3
4

μf2
0

k2

(
xmk

f0

)2

.

(19.10)
The second form of Eq. (19.10) evidences two nondimensional parame-

ters, namely

xm
k

f0
and

√
|μ|f0

k
.

The first is nothing other than the magnification factor defined in the
way already seen for linear systems. It can be plotted as a function of the
nondimensional frequency of the forcing function ω/ω0. The second defines
the nonlinearity of the system. If such a parameter vanishes, the response of
the linear system is found. Otherwise, the dependence of the magnification
factor on

√
|μ|f0/k shows that the magnification factor is a function of the

amplitude of the excitation as well as of the parameters of the system. This
is typical of nonlinear systems.

The amplitude of the response xm is plotted as a function of the forcing
frequency, using the amplitude of the forcing function f0/k as a parameter,
in Fig. 19.1a and b, for the cases of hardening and softening systems, re-
spectively. Note that the solution obtained here is only an approximation
that gets worse when the value of the nondimensional frequency ω/ω0 is far
from unity. The approximation is particularly bad in static conditions, as
can be immediately assessed by comparing the expression for the amplitude
obtainable from Eq. (19.10) with (ω = 0) and the expression obtainable

FIGURE 19.1. Response of an undamped system governed by Duffing’s equation;
amplitude of the response as a function of the frequency for various values of
the amplitude of the harmonic forcing function; plot for (a) hardening and (b)
softening systems in nondimensional form.



19.2 Undamped Duffing’s equation 485

directly from the equation of motion (19.9) rewritten for static conditions
(constant forcing function, ẍ = 0).

The dashed curves have been obtained from Eq. (19.10) by setting to zero
the amplitude of the forcing function. They yield the frequency of the free
oscillations as a function of their amplitude and coincide with the curves
of Fig. 18.6. Such curves are often referred to as the backbone or skeleton
of the response and are very important in the evaluation of the response to
harmonic excitation of nonlinear systems, both undamped and damped.

Remark 19.2 The backbone curve expresses the resonance conditions for
a nonlinear system, in the sense that defines the amplitude–frequency re-
lationship at which the nonlinear restoring force balances the inertia force,
at least as an average.

Three zones can be identified in the frequency response, like in the case
of linear systems:

1. At low frequency the behavior of the system is dominated by the
stiffness, which, in this case, is nonlinear. The magnification factor
depends on the force f0; the phase is 0.

2. At high frequency the behavior is dominated by the inertia of mass
m. Because inertia forces are linear, the response is very similar to
that of the linear system; the phase is 180◦.

3. When conditions approach those typical of free oscillations, i.e., when
the curve xm(ω/ω0) approaches the backbone, a sort of resonance
occurs and the behavior of the system is dominated by damping.
Little can be said by using an undamped model.

In the nonlinear case, however, the resonance peak is not straight, but
rather it slopes to the right for hardening systems and to the left for soft-
ening ones. Consequently, there is no finite value of the frequency for which
the amplitude of the response grows to infinitely large values when damping
tends to zero.

Consider a hardening system excited at very low frequency. The response
corresponds to point A in Fig. 19.2a. With increasing frequency, the am-
plitude of the response grows, following the line AFB, always remaining in
phase with the excitation. After reaching point F, however, the solution is
no longer the only possible one, and, at a certain frequency, mainly defined
by the damping of the system (point B), the amplitude drops at the value
corresponding to point C in the figure, and the phase lag shifts to 180◦. At
higher frequencies, line CD is followed.

If, on the contrary, the frequency is decreased from that of point D, line
DCE is followed, with a phase of 180◦. At frequencies lower than that of
point E, no solution with a phase of 180◦ exists, and an increase in the
amplitude of the response, accompanied by a change of phase to 0, occurs
(line EF). The amplitude then decreases following line FA.
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FIGURE 19.2. Jump phenomenon in (a) hardening and (b) softening systems.

Remark 19.3 This behavior is often referred to as the jump phenomenon
and is typical of nonlinear systems. It also holds, qualitatively, for systems
governed by nonlinear equations other than Duffing’s equation.

A similar behavior is shown by softening systems, as illustrated in Fig.
19.2b. The path followed when the frequency of the excitation increases is
AFBCD, with a jump at BC. When the frequency is reduced, the path is
DCEFA, with a downward jump at EF. While the downward jumps (BC in
hardening systems and EF in softening systems) occur at a frequency that is
often not well determined, depending mainly on damping but also on exter-
nal disturbances, the frequency at which the upward jumps occur (BC and
EF, respectively) can be computed, at least within the first-approximation
solution, using the undamped model.

Remark 19.4 In case of softening systems the expression of the backbone
gets less and less accurate with decreasing frequency and also the accuracy
with which the higher branch of the response is obtained becomes worse.
The whole part of the plot of Fig. 19.2b close to points G and E has little
meaning.

It is easy to verify that the frequency at which point E is located in Fig.
19.2a or point B is located in Fig. 19.2b is

ω

ω0
=

√√√√1 ± 3

√
81
16

|μ|
(

f0

k

)2

, (19.11)

where the upper sign holds for hardening systems and the lower one for
softening systems.

It is possible to demonstrate that when three values of the amplitude
are found, the greatest and the smallest correspond to stable conditions
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of the system, while the intermediate one is unstable and cannot actually
be obtained. The unstable branch is the one indicated as EG in Fig. 19.2a
(hardening system) and BG in Fig. 19.2b (softening system). The attraction
domains of the solutions will be studied in detail when dealing with the
damped Duffing’s equation.

19.2.2 Higher harmonics

As already stated, the time history of the response is not harmonic; since
the restoring force is an odd function of x, only odd harmonics, with fre-
quencies 3ω, 5ω, . . ., are present. These harmonics, whose frequency is
higher than the forcing frequency, are usually referred to as super-harmonics.
Although their amplitude is usually not great, their presence is a symptom
of nonlinearity, like a sloping resonance peak.

A detailed study of the harmonic content of the solution of Duffing’s
equation, based on the perturbation technique, is reported in the mentioned
book by L. Meirovitch, where the interested reader can find all the details.

Harmonic motion is used as a generating solution. The amplitude of
the response is computed by stating that the secular terms, present in the
equation yielding the second term of the power series x(1), vanish. The same
value of the amplitude obtained using the Ritz averaging technique is so
obtained. Solution x(1), which contains two terms with frequencies ω and
3ω, is thus obtained by stating that the secular terms that appear in the
solution for x(2) vanish. Note that while obtaining the solution for the third
harmonic, a new estimate for the amplitude of the fundamental harmonic is
obtained, but it is usually close to that previously found. The analysis can
continue obtaining new harmonics and corrections for the already computed
results, but the relevant computations become very involving.

A different approach, based on harmonic balance, is shown here. As it
was done for the free response, a second-approximation solution can be
searched assuming that the response to a forcing function

f = f0 sin(ωt) (19.12)

is
x = a1 sin(ωt) + a2 sin(3ωt) . (19.13)

Operating as done in Example 18.2, by introducing the assumed time
history of the solution into the equation of motion, and balancing the first
two harmonics, it follows that⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a1

[
1 −

(
ω

ω0

)2

+
3
4
μ

(
a2
1 + 2a2

2 − a1a2

)]
=

f0

k

a2

[
1 − 9

(
ω

ω0

)2
]

+
1
4
μ

(
−a3

1 + 3a3
2 + 6a2

1a2

)
= 0 .

(19.14)
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The fifth, seventh and ninth harmonics cannot be balanced.
By introducing the nondimensional parameters

ω∗ =
ω

ω0
, a∗

i = ai

√
|μ| , f∗ =

√
|μ|f0

k
(19.15)

the equations reduce to
⎧⎪⎨
⎪⎩

3a∗2
1 + 6a∗2

2 − 3a∗
1a

∗
2 ± 4

(
1 − ω∗2) ∓ 4

f∗

a1
= 0

−a∗3
1 + 3a∗3

2 + 6a2
1a

∗
2 ± 4a∗

2

(
1 − 9ω∗2) = 0 ,

(19.16)

where the upper and lower signs refer to hardening and softening systems,
respectively.

If instead of computing a∗
i as a function of ω∗, the frequency is obtained

as a function of the amplitude, the first equation reduces to

ω∗ =
1
2

√
±3a∗2

1 ± 6a∗2
2 ∓ 3a∗

1a
∗
2 + 4 − 4

f∗

a1
. (19.17)

Substituting the value of ω∗ into the second equation, it follows that

51a∗3
2 − 27a∗

1a
∗2
2 +

(
21a∗2

1 ± 32 ∓ 36
f∗

a1

)
a∗
2 + a∗3

1 = 0 . (19.18)

Consider now an hardening system and drive it at a generic frequency ω
with a nondimensional amplitude f∗ = 1. The nondimensional frequency
response is shown in Fig. 19.3, where the response obtained considering
just the first harmonic is also reported.

FIGURE 19.3. Nondimensional frequency response of a hardening Duffing-type
system. Forcing amplitude f∗ = 1. Amplitude of the first (a) and third (b)
harmonics. The dashed line refers to the solution obtained by considering just
the first harmonics.
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Generally speaking, the difference between the solution with a single
harmonic and that obtained by taking into account also the third harmonic
is not large, but there is a small frequency range, not far from ω/ω0 = 1/3,
where a strong third harmonic is present. This is easily explained, since in
that zone a sort of resonance between the third harmonics of the excitation
and the free motion of the system occurs. Since the system is hardening, the
resonance peak slopes to the right and this resonance occurs at a frequency
in excess to ω0/3.

At frequencies higher than ω0/3 there is a possibility of a super-harmonic,
with a large amplitude of the third harmonic and a correspondingly low
value of the first harmonic. It is however questionable whether this type of
motion can be sustained in an actual system, owing to damping (see next
chapter).

Consider an excitation occurring at a frequency ω = ω0/2. From Fig.
19.3, it is possible to obtain that the amplitude of the motion computed
balancing just the first harmonics is

a∗
1 = 0.8073.

Considering two harmonics, three solutions are obtained. The amplitudes
are

a∗
1 = 0.7307 , a∗

1 = 0.3842 , a∗
1 = 0.3023 ,

a∗
3 = −0.2402 , a∗

3 = 1.1779 , a∗
3 = −1.2151 .

The relevant time histories are shown in Fig. 19.4, where they are com-
pared with solutions obtained through numerical integration. To force the
system to oscillate in the required way, the numerical integration was
started with the initial conditions computed from the harmonic balance
solution. The presence of a strong third harmonic is confirmed and the
harmonic balance solution with two harmonic predicts quite accurately the
motion of the system. The solution with a single harmonic on the contrary
yields quite inaccurate results.

FIGURE 19.4. Time histories of the forced oscillations of the nonlinear system of
Fig. 19.3 at a frequency ω = ω0/2. The solutions obtained through harmonic bal-
ance are compared with those computed by numerically integrating the equation
of motion.
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Remark 19.5 If the initial conditions corresponding to the solution with a
single harmonics are used to start numerical integration, a solution that is
anyway different from a mono-harmonic oscillation is obtained. This shows
that no mono-harmonic solution is possible when the system is excited in
a frequency range where a strong third harmonics is present.

Some difference between the solution with two harmonics and that ob-
tained by numerically integrating the equation of motion anyway exists:
higher-order harmonics, although weak, are present. In a frequency range
close to ω0/5 a strong fifth harmonic is expected; close to ω0/7 a seventh
harmonics and so on.

The response of a softening system driven at a generic frequency ω with
a nondimensional amplitude f∗ = 0.1 is shown in Fig. 19.5. Owing to the
greater complexity of the plot, the sign of the amplitude is also reported.

Here a strong third harmonics is found below the frequency ω/3, since
the resonance peaks is sloping to the left instead of the right. Consider an
excitation occurring at a frequency ω = ω0/10. From Fig. 19.5, it is possible
to obtain that the amplitudes of the motion computed balancing just the
first harmonics are

a∗
1 = 1.0946 , 0.1019 , − 1.1964 .

Considering two harmonics, nine solutions are obtained. The amplitudes
are

a∗
1 = 1.1731 , a∗

3 = 0.3271 ; a∗
1 = 0.6386 , a∗

3 = −0.4545 ;
a∗
1 = 0.5919 , a∗

3 = 0.7757 ; a∗
1 = 0.1019 , a∗

3 = −0.0003 ;
a∗
1 = −0.1120 , a∗

3 = 1.0899 ; a∗
1 = −0.1525 , a∗

3 = −1.0807 ;
a∗
1 = −0.3749 , a∗

3 = −0.9748 ; a∗
1 = −0.5901 , a∗

3 = 0.6403.
a∗
1 = −1.2759 , a∗

3 = −0.3325 .

FIGURE 19.5. Same as Fig. 19.3, but for a softening system.
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Six of the relevant time histories (in order, the first five and the last
one in the list above) are shown in Fig. 19.6. The results contradict com-
pletely those of Fig. 19.4: now harmonic balance fails in obtaining accept-
able results, except for the fourth case. The time histories obtained through
numerical integration show a strong ninth harmonic that was clearly not
included into the analysis. The fourth case is an exception: the amplitude
is so low that the system behaves almost linearly, and the motion is prac-
tically harmonic: Just balancing the first harmonic is enough to get good
results. The results obtained with a single harmonic are reported only for
the branches of the response where they exist.

The poor behavior of the harmonic balance approach in this case is due
to the low value of the forcing frequency at which the time history was
computed (ω = ω0/10). This leads to a strong response on high-order
harmonics, with a strong fifth harmonic; close to ω0/7 a seventh harmonics
is expected and so on. A completely different picture would have been
obtained if a higher frequency were used. Such a low frequency was used
to show that the upper branch of the response lying in the low-frequency
region obtained using approximated approaches is much questionable in
the case of softening systems.

FIGURE 19.6. Time histories of the forced oscillations of the nonlinear system
of Fig. 19.5 at a frequency ω = ω0/10.
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The results reported here were obtained using an undamped model. As
it will be seen in the next chapter, damping can deeply modify this picture.

19.2.3 Subharmonics

Harmonics whose frequency is a submultiple of the forcing function (i.e.,
subharmonics) can also be excited. In linear systems, subharmonics can
be present when the frequency of the forcing function is a multiple of the
natural frequency; these subharmonic oscillations are, however, seldom ob-
served because the damping of the system makes them disappear quite
soon. The presence of sustained subharmonic oscillations is then another
characteristic feature of nonlinear systems. In the case of a system governed
by Duffing’s equation, only odd subharmonics, i.e., subharmonics with fre-
quencies ω/3, ω/5, ω/7, ..., are found, because the restoring force is an odd
function of the displacement.

A simple way of computing the subharmonic response to a forcing
function

f = f0 sin(ωt)

is assuming a response of the type

x = a1 sin
(ω

3
t
)

+ a2 sin(ωt) . (19.19)

Operating as done for super-harmonics and balancing the first two har-
monics, it follows that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1

[
1 − 1

9

(
ω

ω0

)2

+
3
4
μ

(
a2
1 + 2a2

2 − a1a2

)]
= 0

a2

[
1 −

(
ω

ω0

)2
]

+
1
4
μ

(
−a3

1 + 3a3
2 + 6a2

1a2

)
= f0 .

(19.20)

The first equation yields immediately that

a1 = 0

is a solution. The corresponding value of a2 is the solution of the equation

a2

[
1 −

(
ω

ω0

)2
]

+
3
4
μa3

2 = f0 (19.21)

and coincides with the amplitude obtained by assuming a mono-harmonic
time history.

This fact is very significant: solutions in which no subharmonic is present
are always possible.
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By introducing the usual nondimensional parameters, the equations yield-
ing the other solutions reduce to

⎧⎪⎪⎨
⎪⎪⎩

3a∗2
1 + 6a∗2

2 − 3a∗
1a

∗
2 ± 4

(
1 − ω∗2

9

)
= 0

−a∗3
1 + 3a∗3

2 + 6a2
1a

∗
2 ± 4a∗

2

(
1 − ω∗2) ∓ 4f0 = 0 ,

(19.22)

where the upper signs refer to hardening systems and the lower ones to
softening systems.

The nondimensional frequency is thus

ω∗ = 3

√
1 ± 3

4
(a∗2

1 + 2a∗2
2 − a∗

1a
∗
2) . (19.23)

Substituting the value of ω∗ into the second equation, it follows that

a∗3
1 + 21a∗

2a
∗2
1 − 27a∗2

2 a∗
1 + 51a∗3

2 ± 32a∗
2 ∓ 4f∗ = 0 . (19.24)

Consider again a hardening system driven at a generic frequency ω with
a nondimensional amplitude f∗ = 0.5. The nondimensional frequency re-
sponse computed using a time history containing the fundamental harmonic
and the subharmonic of order 1/3 is shown in Fig. 19.7.

The solution in which the subharmonic is not present is the same al-
ready studied. At high frequency, above 3 ω0, two responses containing a
strong subharmonic are present. When this occurs, the amplitude of the
fundamental harmonic is very small, and the motion is almost a pure sub
harmonic oscillation. To show the value of a∗

2, an enlargement of the zone
of the plot for low amplitudes is reported in Fig. 19.7b.

FIGURE 19.7. Subharmonic response of a hardening Duffing system. The zone
of figure (a) close to the ω-axis is enlarged in (b) to show the very low amplitude
of the synchronous component of the subharmonic response.
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FIGURE 19.8. Time histories of the system studied in Fig. 19.7 at a nondimen-
sional frequency ω∗ = 4. The responses related to five different solutions have
been obtained using harmonic balance and numerical integration.

This is clearly seen in Fig. 19.8 where the time histories of the motion at a
nondimensional frequency ω/ω0 = 4 are shown. The amplitudes computed
using the harmonic balance method are

• Responses with a single harmonic, i.e., with vanishing a∗
1:

a∗
2 = 4.48871 , a∗

2 = −0.03334 , a∗
2 = −4.45538 ;

• Responses with a subharmonic:

a∗
1 = −0.9898 , a∗

2 = −0.0548 ; a∗
1 = 1.0267, a∗

2 = 0.0171 .

The first and the last two plots deal with the three mono-harmonic re-
sponses. The one with the small amplitude is obtained so well with har-
monic balance that it cannot be told from the solution obtained through
numerical integration. The two with large amplitude show stronger nonlin-
ear effects, as it should be expected, and the actual response is not so well
computed assuming that the response is harmonic.
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The motion was followed for 3 periods, i.e., for a period of the third
subharmonic, to show that no subharmonic is present.

The two intermediate solutions are clearly dominated by the subhar-
monic. The solution obtained using harmonic balance gives fair results,
even if the numerical integration shows some difference in both amplitude
and frequency. At any rate it is clear that the period of the numerical
solution is close to that of the third subharmonic.

A similar effect is usually reported for softening systems, with the dif-
ference that now the range at which the subharmonic resonance starts is
below and not above the frequency 3ω0. However, like in the case of the
super-harmonics seen above, the motion of softening systems is much more
complicated: By integrating numerically the equation of motion a mixture
of subharmonics and super-harmonics is often found.

As already stated, while super-harmonics are nothing else than a distor-
tion of the waveform and thus are inherent to any solution of a nonlinear
system (they tend to disappear only at low amplitude, when the system
tends to behave linearly), subharmonics are not necessarily present and can
appear only if suitable conditions are given.

19.2.4 Combination tones

When a linear system is excited by a poly-harmonic forcing function (i.e., a
forcing function that can be considered the sum of harmonic components),
the response is also poly-harmonic and can be computed by adding the
responses to each component of the excitation.

In the case of nonlinear systems, the response is much more complex,
and if a Fourier analysis is performed, it contains harmonics that are not
present in the excitation. This could be expected, because the effect of
distorting the waveform, which is peculiar to nonlinear systems, is exactly
that of introducing new harmonics.

Consider a system governed by Duffing’s equation excited by a forcing
function consisting of the sum of two harmonic components ω1 and ω2. By
using perturbation techniques, a first-approximation solution containing
harmonic components with frequencies ω1, ω2, 2ω1 + ω2, 2ω1 − ω2, ω1 +
2ω2, ω1 − 2ω2, 3ω1, and 3ω2 is obtained. The fundamental harmonics with
frequencies ω1 and ω2, which would have been in the response of a linear
system, are then present together with higher-order harmonics (third order,
in this case), combination tones, and possibly subharmonics. If the solution
is carried on to higher-order approximations, other harmonics are found.

If two forcing frequencies are close to each other, the response of a linear
system gives way to a beat, as already seen. The period of the beat tends
to infinity, when the two frequencies tend to coincide. This is not the case
of nonlinear systems, where the phenomenon of entrainment of frequency
takes place.
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When the two forcing frequencies get close enough to each other, the
beat disappears and the two excitations combine giving way to a single
oscillation. The frequency range in which this occurs is referred to as the
interval of synchronization.

19.3 Conclusions

No allowance for the presence of damping was taken in the present chapter
devoted to the study of the forced response of a nonlinear system to a
harmonic or periodic excitation. Energy dissipation can change deeply this
picture, making it impossible for the system to oscillate at certain frequen-
cies with certain amplitudes.

In the case of a hardening Duffing oscillator, for example, the oscillation
with the largest amplitude is possible only up to a certain frequency due
to damping, as it will be seen in the next chapter.

Subharmonic oscillation may also be prevented by damping.
Another point not considered is stability. The fact that a certain oscilla-

tion, with given values of amplitude and frequency, has been found using
the methods seen above does not mean that the system necessarily can
oscillate in a stable way in these conditions. As it will be seen further on,
when different values of the amplitude of the oscillation are found at a
certain frequency, not all of them correspond to stable motions. In gen-
eral, listing the absolute values of the amplitudes in ascending order, they
correspond alternatively to stable and unstable conditions.

The particular higher-order harmonics and combination tones found in
connection with the Duffing equation are typical of systems governed by
this equation, or more in general of systems with a symmetrical character-
istic. Other frequencies would have been obtained if a different restoring
force was assumed, and in particular even-order super- and subharmonics
would have been found.

A non-symmetrical characteristic can be obtained by a simple transla-
tion of a symmetrical one. For instance, adding a static load to a system
governed by the Duffing equation causes it to work about a different static
equilibrium condition and thus to behave in a non-symmetrical way. Even-
order harmonics may enter the picture.

Example 19.1 Evaluate the amplitude of the fundamental harmonic of the
response to a harmonic forcing function of a piecewise linear system, i.e., a
system in which the characteristic of the restoring force can be represented
by a number of straight lines. Assume that the restoring force is expressed by
an odd function of the displacement and that there are only two values of the
stiffness (Fig. 19.9a).
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Function f ′(x) expressing the nonlinear part of the restoring force is

f ′(x) = k(α − 1)(x + x1) for x < −x1,
f ′(x) = 0 for − x1 < x < x1,
f ′(x) = k(α − 1)(x − x1) for x > x1,

where k is the linearized stiffness and coincides with k1 and

α =
k2

k1
.

Function f ′(x) must be integrated separately in each of the fields identified in
Fig. 19.9b. The first expression for f ′(x) holds between τ3 and τ4, while the
third equation holds between τ1 and τ2. Function f ′(x) vanishes between 0 and
τ1, τ2 and τ3, and τ4 and 2π. The integral to be introduced into Eq. (19.8) is
simply

∫ 2π

0

f ′(x) sin(τ )dτ = k(α − 1)

{∫ π−τ1

τ1

[
xm sin2(τ ) − x1 sin(τ )

]
dτ+

+

∫ 2π−τ1

π+τ1

[
xm sin2(τ ) − x1 sin(τ )

]
dτ

}
,

where the value of τ1 is

τ1 = arcsin

(
x1

xm

)
.

The response of the system can thus be easily computed through Eq. (19.8). By
performing the integration and writing the response in nondimensional form,
it follows that

ω

ω0
=

√
1 − f0

kx1

x1

xm
+ (α − 1)

[
1 +

sin(2τ1) − 2τ1

π
− 4x1

πxm
cos(τ1)

]
.

This expression holds only if xm > x1, otherwise the system behaves as if it
were linear. The response is plotted in Fig. 19.9c in nondimensional form, for
the case with α = 2. If α > 1, as in the case shown, the behavior is that of
hardening systems, with a resonance curve leaning to the right.
It must be stressed that the solution so obtained is only an approximation, that
is better if the response is close to a harmonic function. In the case studied,
this happens if the amplitude is either only slightly higher than x1 or very
much higher than the same value. The limiting case with xm � x1 is that of
a linear system with stiffness k2, whose natural frequency is

ω = ω0

√
α .
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FIGURE 19.9. System with a piecewise linear characteristic: (a) force–
displacement curve; (b) law x(τ ) (only the fundamental harmonic is considered);
(c) approximate response in nondimensional form.

19.4 Exercises

Exercise 19.1 Consider the system of Example 15.1 and substitute for the lin-

ear support with stiffness kG a nonlinear support with a hardening characteristic

of the same type as seen for Duffing’s equation. Compute the backbone of the re-

sponse. Assume that a harmonic excitation with variable frequency and amplitude

20 N acts on the central joint. Compute the fundamental harmonic of the response

in the range of frequencies between 1 and 100 Hz (only a first approximation is

required).

Data: inner diameter = 70 mm, outer diameter = 90 mm, length of each part

of the shaft = 500 mm, E = 2.1 ×1011 N/m2, ν = 0.3, ρ = 7,810 kg/m3, mass of

the joint 2 kg, linear stiffness of the central support 105 N/m, μ = 5 ×107 1/m2.

Exercise 19.2 Consider again the transmission shaft studied in Example 15.1,

excited by the same force as in Exercise 19.1. Instead of assuming that the support

of the joint has a nonlinear elasticity, study the nonlinear effect due to the axial

force when the constraints at the ends and all joints are infinitely stiff in axial

direction. Assume that the bending compliance of the beams is negligible compared

to that of the joint, and assume that the deformed shape is the same used for the

solution with the Rayleigh method.

Exercise 19.3 Consider the system of Example 1.2. Replace the shaft connect-

ing the first moment of inertia to point A with a nonlinear element with a cubic

hardening characteristic. The linear part of the stiffness coincides with the stiff-

ness in Example 1.2, while μ = 30 1/rad2. Compute a first approximation of the

fundamental harmonic of the frequency response of the system when a moment

with an amplitude of 0.5 N m and frequency varying between 0 and 6 rad/s acts on
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the third inertia. Compare the results obtained with those shown in Fig. 7.11. Do

not resort to modal coordinates, but use dynamic reduction to reduce the nonlinear

problem to a single equation.

Exercise 19.4 Repeat the computations of the preceding exercise by resorting

to modal coordinates. State whether the coupling between the modes due to the

nonlinear behavior of the system is large.

Exercise 19.5 A rotating machine is suspended through a system of elastomeric
springs whose force–displacement characteristics can be approximated by the equa-
tion

F = k1x − k2x
3 + k3x

5 .

where k1 = 105 N/m, k2 = 4 × 108 N/m3, and k3 = 1012 N/m5. The total

mass of the system is m = 100 kg and the product of the mass of the rotor by

its eccentricity is mrε = 0.5 kg m. Neglecting the weight of the system and the

damping of the suspension, compute a first approximation of the fundamental

harmonic of the response of the system when the angular velocity of the machine

spans between 100 and 1,000 rpm.

Exercise 19.6 Repeat the computations of the previous exercise without ne-

glecting the weight of the machine and compare the results.



20
Free Motion of Damped Nonlinear
Systems

Damping causes the amplitude of free vibration to decay in time and limits
the amplitude of forced vibration. In nonlinear systems however its effects
are more complex and a closer mixing of restoring and damping forces
may occur. While in linear systems stability is an intrinsic property of
the system, when nonlinearities are present a system may be either stable
or unstable depending on the working conditions. While the stability in the
small is easily assessed, the general stability is much more difficult to study.

20.1 Nonlinear damping

If the force exerted by the nonlinear spring of Fig. 18.1a can be expressed by
the general function f(x, ẋ), or, better, f(x− xA, ẋ− ẋA), instead of being
function of the displacement only, the system becomes non-conservative,
i.e., dissipates energy during the motion.

If the restoring force is also an explicit function of time, its equation of
motion becomes

mẍ + f(x − xA, ẋ − ẋA, t) = F (t) − mg , (20.1)

or in terms of relative coordinate (Eq. 18.2)

mẍrel + f(xrel, ẋrel, t) = F (t) − mg − mẍA . (20.2)

In addition to being nonlinear, the system is non-autonomous, because
time appears explicitly in the equation through the forcing function F (t)
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and function f(x, ẋ, t). Also the equation for the study of free vibrations is
then non-autonomous.

If the restoring and damping forces are just f(x, ẋ) (i.e., is not an explicit
function of time), a simple way to represent the characteristics of the system
is to plot a tridimensional diagram of the type shown in Fig. 20.1, often
referred to as state force mapping. The figure refers to the so-called Van
der Pol oscillator, whose function f(x, ẋ) is

f(x, ẋ) = x − μẋ
(
1 − x2

)
. (20.3)

There are cases in which function f(x, ẋ) can be subdivided into a linear
part, cẋ + kx, and a nonlinear part, f ′(x, ẋ), and the equation of motion,
written in terms of relative coordinates (Fig. 18.1), becomes

mẍ + cẋ + kx + f ′(x, ẋ) = F (t) − mg − mẍA , (20.4)

which corresponds to Eq. (18.3) with damping added.
As seen for the case of conservative systems, Eq. (20.4) can be extended

to multi-degrees-of-freedom systems in the form

Mẍ + Cẋ + Kx + μg = f(t), (20.5)

where matrix C, of order n × n, is the damping matrix of the linearized
system, defined in Chapter 3. Vector g now consists of n functions gi, which,
in the most general case, are gi = gi(x, ẋ, μ, t).

FIGURE 20.1. State force mapping for a nonlinear element characterized by the
function f(x, ẋ) = x − μẋ

(
1 − x2

)
, with μ = 0.2 (Van der Pol’s equation).
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The modal coordinates of the linearized undamped system allow to trans-
form Eq. (20.5) in the modal form

Mη̈ + Cη̇ + Kη + μΦTg = f(t) . (20.6)

The modal equations of motion (20.6) are not uncoupled, not only owing
to the nonlinear terms, but also because the modal-damping matrix is not
diagonal, except in the case of proportional damping. As shown in Chapter
5, in many cases the modal coupling due to damping can be neglected and
the situation is similar to that seen for undamped nonlinear systems.

Remark 20.1 As seen for undamped nonlinear systems, a strong modal
coupling can make the modal formulation (20.6) of the equation of motion
practically useless.

Also the state-space formulation of the equations of motion is similar to
that seen in Chapter 18,

ż =

{
− 1

m
[f(x, ẋ, t) − F (t)]

ẋ

}
, (20.7)

with the only difference that now function f depends also on the velocities
ẋ.

Again, if the linear part of the system can be separated from the nonlinear
one, the state-space equation can be written in the form

ż = Az +
{

−μM−1g(x, ẋ, t)
0

}
+ Bu(t) . (20.8)

20.2 Motion about an equilibrium position
(in the small)

The static equilibrium position is not affected by damping, and the motion
in the small can be studied with reference to the same points in the state
space as seen for the undamped system. If function f(x, ẋ) can be dif-
ferentiated with respect to x and ẋ in the point of the state plane with
coordinates x = x0, ẋ = 0, the motion in the vicinity of an equilibrium
position or motion in the small can be studied through the linearized
equation:

mẍ+
(

∂f

∂ẋ

)
x = x0

ẋ = 0

ẋ+
(

∂f

∂x

)
x = x0

ẋ = 0

(x−x0) = F (t)−mg−mẍA , (20.9)

which corresponds to Eq. (18.11), but has a damping term added.
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The study of the static stability of the equilibrium position follows the
same lines seen in Chapter 6, but the presence of damping allows the study
of the dynamic equilibrium, i.e., to assess whether the system tends to
return to the equilibrium position in time or tends to depart from it. If the
derivative (

∂f

∂ẋ

)
x=x0, ẋ=0

is positive, the system shows a damped behavior, and if the position is
statically stable, dynamic stability is also assured. If it is negative, self-
excited divergent oscillations are to be expected. Finally, if it vanishes an
undamped behavior can be predicted.

In the case of systems with many degrees of freedom, the state equation
(20.8) can be linearized as

ż =

[
−M−1

(
C + μ

[
∂gi

∂ẋj

])
−M−1

(
K + μ

[
∂gi

∂xj

])
I 0

]
z + Bu(t) ,

(20.10)
where [∂gi/∂ẋj ] and [∂gi/∂xj ] are Jacobian matrices containing the deriva-
tives of functions g with respect to ẋ and x. The stability in the small can
be studied as usual by computing the eigenvalues of the dynamic matrix
of the linearized system.

Apart from studying the stability in the small, i.e., in the vicinity of an
equilibrium point, in the case of nonlinear systems, it is possible to define a
stability in the large. The stability of nonlinear systems will be dealt with
in Section 20.6.

20.3 Direct integration of the equation of motion

Consider a system of the type shown in Fig. 18.1, in which the restoring
force is a function not only of the position of point P but also of its velocity.
If f(x0, 0) vanishes, the free oscillations about the equilibrium point (x0, 0)
can be studied using a nonlinear autonomous equation that is similar to
Eq. (18.13):

mẍ + f(x, ẋ) = 0 . (20.11)

As already stated, if the derivative (∂f/∂ẋ)x=x0,ẋ=0 is positive, the
motion in the small is damped. In the opposite case, function f(x, ẋ) has
an exciting effect on the motion.

Remark 20.2 Generally speaking, it is not said that function f(x, ẋ) main-
tains its damping or exciting properties in the whole field in which it is
defined, and the motion in the large may be complex.

Function f(x, ẋ) may have, for example, a damping effect for large values
of x and an exciting nature for values of x smaller than a given quantity,



20.3 Direct integration of the equation of motion 505

like in the case of the Van der Pol oscillator of Eq. (20.3). In this case, the
motion in the large is self-excited at small amplitudes and damped in the
case of large motions, and the existence of a limit cycle in the phase plane
x, ẋ, to which all oscillations tend with time, can usually be demonstrated.

There are cases in which function f(x, ẋ) can be considered as the sum
of a function of the displacement x and a function of the velocity ẋ, i.e., in
which the restoring and the damping forces act in a separate way. Using
the symbol f(x) for the former and β(ẋ) for the latter, Eq. (20.11) reduces
to

mẍ + β(ẋ) + f(x) = 0 . (20.12)

As in the case of undamped systems, Eq. (20.11) can be rewritten as a
first-order differential equation:

1
2
m

d
(
ẋ2

)
dx

= −f(x, ẋ) . (20.13)

In general, however, no separation of the variables is possible, and Eq.
(20.13) cannot be integrated in the way seen for the undamped systems
in Section 18.4. Each case has to be studied in a particular way, often
yielding only qualitative results. To obtain quantitative results, it is usually
necessary to resort to approximate methods, like iterative or perturbation
procedures, or to the numerical integration of the equations of motion.

Remark 20.3 Note that the motion is, strictly speaking, not periodic since
the amplitude decreases (or increases) in time. The Ritz averaging technique
cannot be used unless the system is lightly damped, and thus the reduction
of amplitude in each period is small enough to be neglected.

Example 20.1 Consider a nonlinear system in which a damper following
the Coulomb model is added to a device providing a restoring force having no
damping component. The term Coulomb damping is commonly used for a drag
force that is independent of the speed. It has important practical applications
since it can be used as a first-approximation model for dry friction.
Equation (20.12) can be used, and function β(ẋ) can be expressed in the form

β(ẋ) = F
ẋ

|ẋ| ,

where F is the absolute value of the drag force. By introducing the afore-

mentioned expression for β(ẋ) into Eq. (20.13), the following equation can be

obtained:
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1

2

d(ẋ)2

dx
=

−f(x) ∓ F

m
,

where the upper sign holds when the velocity is positive. It can be integrated
as

(ẋ)2 =
2

m

∫
[−f(x) ∓ F ] + C ,

with the obvious limitation that when the sign of the velocity changes, the
integration must be interrupted and resumed with a different sign and a differ-
ent value of the constant C. By separating the variables and integrating, the
following relationship between t and x can be obtained:

t = ±
√

m

2

∫
du√∫

[−f(x) ∓ F ] dx + C
+ C1 .

This equation can be studied in a way not much different from that seen for
undamped systems in Section 18.4.
Assume that force f(x) is linear with displacement x (f(x) = kx). If at time
t = 0 the mass is displaced in the position x = x0 (with positive value of
x0) and then released with vanishingly small velocity, the lower sign in the
equation must be chosen at the beginning, because the velocity is negative, at
least for a while.
This holds only if the restoring force is strong enough to overcome dry friction,
i.e., x0 > F/k; otherwise no motion results. Actually a greater value of the
friction is to be expected when the mass m is at standstill, but this effect will be
neglected here. It is easy to perform the integration and to compute the value
of constant C, obtaining

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ẋ)2 =
2

m

(
−kx2

2
+ Fx +

kx2
0

2
− Fx0

)
,

t = ±
√

m

2

∫
du√

x2
0 − 2F

k
x0 + 2F

k
u − u2

+ C1,

where constant C1 and the sign must be chosen so that x = x0 for t = 0 and
that x decreases with increasing time. By performing the integration it follows
that

t = ±
√

m

2
arcsin

(
kx − F

kx0 − F

)
+ C1 ,

or, expressing x as a function of time and introducing a phase angle Φ,

x =

(
x0 −

F

k

)
sin

(√
k

m
t + Φ

)
+

F

k
=

(
x0 −

F

k

)
cos

(√
k

m
t

)
+

F

k
.

The last expression is obtained considering that at time t = 0 the mass m

is in x0 and the phase angle Φ is equal to π/2. It holds for half a period

(0 < t < π
√

m/k).
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FIGURE 20.2. Free oscillations of a linear system with dry friction (Coulomb
damping).

The motion in the first half-period follows a harmonic law, with the only dif-
ference with respect to the undamped case of being centered about the value
F/k instead of being centered on the time axis. The study can then proceed
in the same way for the second half-period, remembering that the sign of the
velocity is changed and that the starting value of x is that obtained at the end
of the first half-period.
At the end of a full period the position of mass m is x2 = x0 − 4F/k.
The amplitude decreases by the quantity 4F/k in a period. The motion then
proceeds, as shown in Fig. 20.2, with half-periods of a cosine law, all with the
same frequency (that of the undamped system), each one with an amplitude
reduced by the amount 2F/k. Eventually the mass stops within the band with
half-width F/k and all motion is extinguished.
The motion so obtained has some similarities with that obtained for viscous
damping, in particular where the frequency is concerned, but with the impor-
tant difference that the law of motion is included, at least within the usual
approximations, between two straight lines of equation

x = ±
(

x0 −
2F

π
√

mk
t

)
,

and that the motion extinguishes in a finite time in a position that is differ-
ent from the equilibrium position of the spring. The number n of half-periods
needed to stop the system is

n = int

(
x0k

2F
+

1

2

)
.
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20.4 Equivalent damping

When damping is small, it is possible to approximate the behavior of the
system by adding a suitable equivalent linear damping to the undamped
system. This linear damping can be chosen so that the energy it dissipates
in a cycle is the same dissipated by the actual damping. If damping is small
enough to allow neglect of the decrease of amplitude occurring in a cycle
and neglecting also preloading, the energy dissipated in the period T can
be computed as

L =
∫ T

0

−f(x, ẋ)ẋdt . (20.14)

Assuming that the time history of the motion is substantially harmonic,
the law x(t) can be expressed by Eq. (19.5) as

x = xm sin(ωt) ,

obtained by neglecting all harmonics except the fundamental. The expres-
sion of the energy dissipated is thus

L = −xm

∫ 2π

0

−f(x, ẋ) cos(ωt)d(ωt) . (20.15)

The energy dissipated in a cycle by the equivalent linear damping is

Leq = −
∫ T

0

ceqẋ
2dt = −x2

mωceq

∫ 2π

0

cos2(ωt)d(ωt) = x2
mceqπω . (20.16)

By equating the two expressions for the energy dissipated in a cycle, the
following value of the equivalent damping is obtained

ceq =
1

xmπω

∫ 2π

0

f(x, ẋ) cos(ωt)d(ωt) =
1

xmπω

∫ 2π

0

β(ẋ) cos(ωt)d(ωt) ;

(20.17)
the second expression holds if Eq. (20.12) can be used, i.e., if the restoring
force and the damping force are independent of each other. The integral
in Eq. (20.17) can be easily computed, at least numerically, once that law
f(x, ẋ) (or β(ẋ)) has been defined. The equivalent damping depends thus
on both the amplitude and the frequency of the motion.

Remark 20.4 This definition of the equivalent damping is consistent with
that given in Section 3.4.3 for structural damping. In that case, however,
the equivalent damping was independent from the amplitude of the motion,
because structural damping is a form of linear damping.
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Example 20.2 Compute the equivalent damping for aerodynamic damping.
If the Reynolds number is high enough, aerodynamic forces are proportional
to the square of the velocity; law β(ẋ) can thus be expressed as

β(ẋ) = cẋ|ẋ| .

By introducing this law into Eq. (20.17), it follows that

ceq=
cxmω

π

[∫ π/2

−π/2

cos3(ωt)d(ωt) +

∫ 3π/2

π/2

− cos3(ωt)d(ωt)

]
=

8cxmω

3π
.

20.5 Solution in the state plane

The equation yielding the trajectories in the state plane is still Eq. (20.18),
where function f now depends on both position and velocity:

dv

dx
= −f(x, ẋ)

mv
. (20.18)

In general, it is impossible to integrate it in closed form, but there is no
difficulty in obtaining the state portrait by numerical integration.

For a system with a Duffing-type restoring force expressed by Eq. (18.15),
linear damping, and no excitation, the equation of the trajectories in the
state plane is

dv

dx
= −kx(1 + μx2) + cv

mv
. (20.19)

Stating a nondimensional velocity

v∗ = v
√
|μ|m/k

and a nondimensional coordinate

x∗ = x
√
|μ| ,

the behavior of the system depends on a single nondimensional parameter,
the damping ratio

ζ =
c

2
√

km
.

The state portrait is plotted in Fig. 20.3 in nondimensional form for a value
of ζ = 0.1. The two plots are related to hardening (Fig. 20.3a) and softening
systems (Fig. 20.3b).

Remark 20.5 The state portraits are qualitatively different from those
related to the undamped system reported in Fig. 18.7.
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FIGURE 20.3. State portrait of a system whose restoring force is expressed by
Eq. (18.15). Nondimensional velocity v∗ = v

√
|μ|m/k as a function of nondimen-

sional displacement x∗ = x
√

|μ| for (a) hardening and (b) softening systems.

Nondimensional damping ζ = c/2
√

km = 0.1.

If the system is hardening there is a single equilibrium position and the
trajectories are spirals that wind inward, toward the equilibrium point in
the origin. Because all trajectories tend to the singular point, this is an
attractor and its basin of attraction extends to the whole state plane. A
singular point of this type is said to be a stable focus .

The state portrait for softening systems (Fig. 20.3b) is more complex. In
this case there are three singular points, corresponding to the equilibrium
positions. The one in the center is again a stable focus, but now its basin
of attraction does not encompass the whole state plane, but only the zone
that lies within the two separatrices.

The other two singular points are saddle points and are repellors because
the state trajectories tend to depart from them, even if they can be ini-
tially attracted. The parts of the plane outside the basin of attraction of
the stable equilibrium positions are characterized by nonperiodic motions,
which are essentially not different from the ones seen for the undamped
system.

If the linear term is repulsive instead of attractive, i.e., the stiffness k
is negative, the state portraits are of the type shown in Fig. 20.4. When
μ is also negative, i.e., the coefficient of the term containing the third
power of the displacement is positive, the behavior is of the hardening type
(Fig. 20.4a). There are three static equilibrium positions: one unstable in
the origin and two stable ones. The corresponding singular points are a
saddle point and two stable foci.

The separatrix defines two domains of attractions, whose shape in this
case is quite intricate. The domain of the focus on the right has been



20.5 Solution in the state plane 511

FIGURE 20.4. State portrait of a system whose restoring force is expressed by
Eq. (18.15), as in Fig. 20.3, but with a negative value of the stiffness k. Nondi-
mensional velocity v∗ = v

√
|μ|m/k as a function of nondimensional displacement

x∗ = x
√

|μ| for (a) hardening (in this case with negative value of μ) and (b) soft-

ening systems. Nondimensional damping ζ = c/2
√

|k|m = 0.1.

hatched in the figure to make the state portrait easier to understand. All
motions end up in either of the foci, but the interwoven nature of the
domains of attraction makes the final result quite sensitive to the initial
condition. Consider, for example, a motion starting from rest with point P
on the negative side of the x-coordinate. If the initial value of x is small,
the motion is attracted toward the equilibrium position at the left. With
increasing absolute value of x, however, motions that are attracted alter-
natively by the two different equilibrium positions are found.

In the case of softening systems with repulsive linear stiffness, no oscil-
latory motion is possible and nonperiodic motions occur in all domains of
attraction. The origin is again a saddle point.

The types of singular points seen up to this point (centers, foci, and
saddle points) are not the only possible ones. A singular point is an equi-
librium position of the system; it can easily be found from Eq. (20.2), which,
without loss of generality, can be written as

f(x0, 0) = 0 ,

because static forces acting on the system can be included in function
f(x, ẋ).

The free motion in the small in the vicinity of the singular point can
easily be studied using the homogeneous linear equation associated with
Eq. (20.9).
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20.6 Stability in the small

The usual practical definitions of static and dynamic stabilities can be
used. The first one defined a case when the stiffness is positive and point
P is attracted toward the equilibrium position when displaced, while in
the second case damping is zero or positive. If it is zero, the time history
does not diverge, while if it is positive the time history actually reaches the
equilibrium position, at least asymptotically (asymptotic stability).

More elaborate definitions for stability are needed, however. Consider
a vector �X(t) in the state plane, whose components are x(t) and v(t),
and use the symbol | �X(t)| for its euclidean norm. Following Liapunov, an
equilibrium position defined by

�X0 = {x0, 0}

is stable if, for any arbitrarily small positive quantity ε, there exists a
positive quantity δ such that the inequality

| �X(t) − �X0| < ε for 0 ≤ t < ∞ (20.20)

holds if
| �X(0) − �X0| < δ .

This means that any trajectory starting within a circle of radius δ cen-
tered in the equilibrium point in the state plane remains within a circle of
radius ε for all values of time. If to this condition it is added that

lim
t→∞

| �X(t) − �X0| = 0 , (20.21)

then the equilibrium position is asymptotically stable. This definition also
holds for systems with many degrees of freedom, provided vector �X(t) has
as many components as the number of dimensions of the state space. The
linearized homogeneous equation of motion associated with Eq. (20.9) has
a solution of the type

x = x0 + aest . (20.22)

By introducing solution (20.22) into the equation of motion (20.9), the
following characteristic equation yielding the value of s is readily obtained:

s2 +
(

∂f

∂ẋ

)
x = x0

ẋ = 0

s +
(

∂f

∂x

)
x = x0

ẋ = 0

= 0 . (20.23)

If the roots of the equation are real and have the same sign, the singular
point is a node. If they are positive the node is unstable; if they are negative
the node is stable. An example of a stable node is the equilibrium position
of an overdamped linear system.
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If the roots of the equation are real but their signs are different, the
singular point is a saddle point. An example was shown in Fig. 18.7b. The
motion in the vicinity of a node or saddle point is nonperiodic.

If the roots of the equation are imaginary and obviously have opposite
signs, since they must be conjugate, the singular point is a center and the
motion is an undamped oscillation. An example of a center is the equilib-
rium position of Fig. 18.6a.

If the roots of the equation are complex conjugate, the singular point is
a focus. If their real part is positive, the focus is unstable; if it is negative,
the focus is stable. An example of a stable focus is the equilibrium position
of Fig. 20.3a. The motion is a damped or self-excited oscillation.

A stable node or stable focus is strictly attractors; centers can also be
called attractors because all state trajectories lying within a certain basin
orbit about them.

The roots of Eq. (20.23) can be reported on the complex plane, obtaining
a plot of the same type as those shown in Table 20.1. As already stated

TABLE 20.1. Various types of singular points for a system with a single degree of
freedom together with the corresponding position of the roots of Eq. (20.23) on
the Argand plane. Note that the center has been considered as an intermediate
situation between stable and unstable singular points.

Type Stable (attractor) Unstable (repellor)

Node

Saddle

Center

Focus
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for linear systems, this type of representation is very useful, particularly
when the stability of a system with many degrees of freedom has to be
studied: If any root lies at the right of the imaginary axis, i.e., it has a
positive real part, the system is unstable. If the influence of the variation
of a parameter on the stability of the system has to be studied, the plot
can be drawn for different values of the relevant parameter. Each root then
describes a curve on the complex plane (the root locus), and the onset
of instability corresponds to the value of the parameter that causes one
of the curves to cross the imaginary axis. Also, if stability in the large is
considered, apart from singular points, there are attractors and repellors
of another type: the limit cycles.

Remark 20.6 If the number of dimensions of the state space is greater
than two, other types of singular points exist, and other types of attractors,
as toroidal attractors and strange attractors, can be present.

20.7 The Van der Pol oscillator

The Van der Pol oscillator is described by the equation

mẍ + c(x2 − 1)ẋ + kx = 0 , with c > 0 . (20.24)

By introducing the nondimensional time, the damping ratio, and the
natural frequency of the linearized system

τ = ω0t , ζ =
c

2
√

mk
, ω0 =

√
k

m
,

the equation of motion can be written in the nondimensional form

d2x

dτ2
+ 2ζ(x2 − 1)

dx

dτ
+ x = 0 . (20.25)

The state portrait, obtained by numerical integration with ζ = 0.1, is
shown in Fig. 20.5. The central singular point is an unstable focus. All
trajectories tend to a stable limit cycle, which has a shape tending to a
circle when ζ → 0. Within the limit cycle the behavior of the system is
self-excited; outside, it is damped.

The time histories obtained for three different values of ζ (ζ = 0.05,
ζ = 0.5, ζ = 50) are shown in Fig. 20.6. In all three cases the starting point
in the state plane is the origin, or, better, a point close to the origin since in
the numerical simulation starting from an unstable point is not sufficient
to allow self-excitation of the oscillation. The numerical integration was
performed for 100 units of the nondimensional time to allow the amplitude
to grow, and then other 100 units were recorded.
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FIGURE 20.5. State portrait of the Van der Pol oscillator.

FIGURE 20.6. Time histories of the free oscillations of a Van der Pol oscillator
with three different values of ζ (ζ = 0.05, ζ = 0.5, ζ = 50).

For small values of ζ the waveform is almost harmonic and its frequency
almost coincides with that of the linearized system (ω0). If the value of ζ
is large, the waveform is almost a square wave, i.e., the oscillator snaps
between two positions. This behavior is often called relaxation oscillations .



516 20. Free Motion of Damped Nonlinear Systems

Notice that a damper of this kind dissipates energy at large amplitudes
and introduces energy into the system for small amplitudes. It must be
able to exchange energy with the system in both directions (as is usually
said, to work in four quadrants), and then must be considered as an active
system.

The Van der Pol oscillator is just an example of a system giving way to
a limit cycle surrounding an equilibrium point.

Remark 20.7 If a single singular point is surrounded by several limit
cycles nested within each other, they are alternatively stable and unstable,
with the unstable limit cycles acting as separatrices between the attractors
represented by the stable ones. Sometimes two limit cycles, a stable and an
unstable one, can merge into one another and give way to a semi-stable
limit cycle, which acts as an attractor on one side and as a repellor, or
separatrix, on the other side.

20.8 Exercises

Exercise 20.1 Plot the state force surface for the restoring force acting on

a damped pendulum without assuming that the displacement from the vertical

position is small.

Exercise 20.2 Study the pendulum already dealt with in Exercise 18.1, but now

add a viscous damper. Plot the state trajectories and compare the results obtained

with Fig. 20.3b.

Exercise 20.3 An oscillator with Duffing-type hardening restoring force is dam-

ped by dry friction. Compute the time history of the free motion by numerically

integrating the equations of motion. First use a linearized restoring force and

compare the results with those obtained in Example 20.1; then repeat the study

using the fully nonlinear equation.

Data mass m = 1 kg, linear stiffness k = 100 kN/m; nonlinear parameter

μ = 500 1/m2, friction force F = 40 N. Initial conditions: x0 = 100 mm, v0 = 0.

FIGURE 20.7. Spring–mass system sliding on a moving belt.
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Exercise 20.4 A mass m is linked by a spring with stiffness k to a fixed point

and slides on a belt moving at a speed V (Fig. 20.7). Assuming that the friction

coefficient between the belt and the mass is f when there is relative motion and fs

(fs > f) when the mass is not moving with respect to the belt, compute the time

history of the mass using the state-plane approach. Compute the time history also

for the case with fs = f .

Data: m = 10 kg, k = 500 N/m, f = 0.6, fs = 1.2, V = 1 m/s, g = 9.81 m/s2.

Initial condition: at time t = 0 the mass is in the equilibrium point (x0 = 0) and

does not slip on the belt (v0 = V ).



21
Forced Response of Damped Nonlinear
Systems

Damped nonlinear systems may exhibit a wide variety of forced responses,
even when they are excited by the simplest harmonic functions. These re-
sponses may span from quasi-harmonic or poly-harmonic to very complex
nonperiodic. While approximated analytical techniques can yield approxi-
mations of the former, only experimental studies, either based on physical
experiments or on numerical integration in time, can yield a complete pic-
ture. In particular, even very simple systems may exhibit complex chaotic
behavior: this issue has not yet been fully understood.

21.1 Reduction of the size of the problem

There are cases where not all the equations of motion of the system are
nonlinear, or at least the mathematical model can be reduced to a formula-
tion of this kind. A case of practical interest is, for instance, that of a linear
system constrained by a number of supports having nonlinear behavior.

Since the solution of a nonlinear set of equations becomes rapidly more
difficult with increasing number of equations, it would be very expedient
to reduce the size of the nonlinear set of equation to a minimum.

Consider a system with many degrees of freedom modeled by an equation
of the type of Eq. (18.4), with a damping matrix added and functions gi

not depending explicitly on time. Assume also that some of the functions
gi vanish.
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The degrees of freedom can be reordered, listing first those correspond-
ing to equations containing a nonlinear part and then all the others. The
equations of motion can thus be written in the form

[
M11 M12

M21 M22

] {
ẍ1

ẍ2

}
+

[
C11 C12

C21 C22

] {
ẋ1

ẋ2

}
+

+
[

K11 K12

K21 K22

] {
x1

x2

}
+ μ

{
g
0

}
=

{
f1(t)
f2(t)

}
.

(21.1)

A possible way to get rid of a number of linear equations, thus reduc-
ing the size of the problem, is by resorting to Guyan reduction. Some of
the nonlinear degrees of freedom are regarded as master degrees of free-
dom while the others are considered as slave: The usual Guyan reduction
technique allows thus to eliminate some of the equations, yielding a set
of equations that are fewer in number than the original ones. Functions
gi may even contain slave coordinates, but this does not introduce difficul-
ties because they are easily computed from the master coordinates through
Eq. (10.2).

Remark 21.1 As usual with Guyan reduction, the procedure yields only
approximate results; if a large-scale condensation leading to the suppression
of all linear degrees of freedom is performed, these approximations may well
lead to unacceptable results.

The extent of the reduction of the size depends on the nature of the
system and a suitable strategy needs to be decided in each case. There
are cases in which it is possible to eliminate all linear degrees of freedom,
reaching a nonlinear system whose size is as small as possible, but usually
a trade-off between complexity and precision must be attempted.

A completely different approach is resorting to modal reduction. Follow-
ing that seen in Section 10.7, a coordinate transformation matrix

Ψ =
[

I 0
−K−1

22 K21 Φ

]
(21.2)

can be defined, where Φ is the eigenvector matrix of the MK system (i.e.,
in this case, the undamped linearized system) whose matrices are M22 and
K22.

As usual with coordinate transformations based on the eigenvector ma-
trix, it is possible to use a reduced number of modes by resorting to the
reduced eigenvector matrix Φ∗. Operating in this way matrix Ψ is no more
square and the final number of degrees of freedom is reduced, but the
nonlinear part of the equation is not affected.

The reduction is only approximated, not only owing to the coupling due
to damping but also because the nonlinearities affect the behavior of the
whole system, introducing a further coupling.
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21.2 First approximation of the response to a
harmonic forcing function

21.2.1 Systems with a single degree of freedom

Consider a nonlinear system with a single degree of freedom excited by a
harmonic forcing function. If the equation of motion is written separating
the linear part of the restoring and damping forces from the nonlinear part
expressed by function f ′(x, ẋ) and introducing the natural frequency of the
linearized system ω0 and its damping ratio ζ, the equation of motion is

ẍ + 2ζω0ẋ + ω2
0x +

ω2
0

k
f(x, ẋ) =

ω2
0

k
f0 sin(ωt) . (21.3)

As it was done when searching for a first approximation of the undamped
system, assume that the response is harmonic in time. Due to damping,
the response will not be in phase with the excitation, and when searching
a first approximation of the fundamental harmonic, two unknowns must
be stated: the amplitude and the phase of the response, or the amplitude
in phase and the amplitude in quadrature. Instead of working in phase
with the excitation, it is simpler to assume that time t = 0 is the instant
when the response vanishes, i.e., to work in phase with the response. The
response can thus be assumed to be of the type of Eq. (19.5)

x = xm sin(ωt) ,

and the unknown phase can be included in the expression of the forcing
function, which becomes

f0 sin(ωt + Φ) .

Using the Ritz averaging technique, it follows that
∫ T

0

[
ẍ + 2ζω0ẋ + ω2

0x +
ω2

0

k
f(x, ẋ) − ω2

0

k
f0 sin(ωt + Φ)

]
φ(t)dt = 0 ,

(21.4)
where the arbitrary function φ(t) has been assumed as

φ(t) = sin(ωt) ,

and the unknown a is the amplitude xm. By remembering that
∫ 2π

0

sin(α) cos(α)dα = 0 ,

and introducing the nondimensional time τ = ωt, it follows that
[
1 −

(
ω

ω0

)2
]

xm − f0

k
cos(Φ) +

1
kπ

∫ 2π

0

f ′(x, ẋ) sin(τ)dτ = 0 . (21.5)
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Equation (21.5) contains the two unknowns, xm and Φ, and another equa-
tion, which can be readily obtained by observing that the energy dissipated
by the system must be equal to the work performed by the excitation, is
needed. Again, instead of equating the relevant quantities in each instant,
the equation is written as an average in a cycle. The energy dissipated in
a cycle is expressed by the integral

Ld =
∫ T

0

[
ẍ + 2ζω0ẋ + ω2

0x +
ω2

0

k
f ′(x, ẋ)

]
ẋdt . (21.6)

By introducing the expression of the velocity ẋ into Eq. (21.6) and inte-
grating, it follows that

Ld = 2πζω0ω
2xm +

ωω2
0xm

k

[∫ 2π

0

f ′(x, ẋ) cos(τ)dτ

]
. (21.7)

The work performed by the forcing function in a cycle is

Lf =
ω2

0

k

∫ T

0

f0 sin(ωt − Φ)ẋdt =
πxmωω2

0

k
f0 sin(Φ) . (21.8)

Equating expressions (21.7) and (21.8), the required equation is obtained:

2ζ
ω

ω0
xm +

1
kπ

∫ 2π

0

f ′(x, ẋ) cos(τ)dτ − f0

k
sin(Φ) = 0 . (21.9)

Equations (21.5) and (21.9) allow the phase and the amplitude of the
response to be computed, once function f ′(x, ẋ) has been stated.

Often, however, the problem can be solved in a simpler way. Assume
that the nonlinear restoring force can be expressed by function f ′(x) while
the nonlinear damping force can be expressed by function β′(ẋ) and that
f ′(x) and β′(ẋ) are odd functions of x and ẋ, respectively. This means that
β′(−ẋ) = −β′(ẋ) and f ′(−x) = −f ′(x). Displacement x(t) expressed by
Eq. (19.5) is itself an odd function of time, while its derivative, the velocity,
is an even function of time. From this, it follows that functions β′(τ) and
f(τ) are even and odd, respectively. A consequence of this consideration is
that

∫ 2π

0

β′(ẋ) sin(τ)dτ = 0 ;
∫ 2π

0

f ′(x) cos(τ)dτ = 0 . (21.10)

Note that if functions β′(ẋ) and f ′(x) are not odd, the center of the forced
oscillations does not coincide with the static equilibrium position, and the
assumption that the response can be approximated with a simple harmonic
motion of the type of Eq. (19.5) becomes unacceptable. At least a constant
term of the displacement must be included, and the whole procedure shown
here must be modified.
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Actually, if Eq. (21.10) is not satisfied, the restoring force f ′(x) would
enter Eq. (21.9), i.e., would participate in the energy dissipation, which is
clearly not the case.

By replacing function f ′(x, ẋ) with functions β′(ẋ) and f ′(x) and remem-
bering Eq. (21.10), Eqs. (21.5) and (21.9) reduce to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
1 −

(
ω

ω0

)2
]

xm +
1
kπ

∫ 2π

0

f ′(x) sin(τ)dτ =
f0

k
cos(Φ) ,

2xmζ
ω

ω0
+

1
kπ

∫ 2π

0

β′(ẋ) cos(τ)dτ =
f0

k
sin(Φ) .

(21.11)

By adding the squares of the two equations (21.11), a relationship al-
lowing the amplitude of the response to be computed as a function of the
driving frequency is readily obtained:

{[
1 −

(
ω

ω0

)2
]

xm +
1

kπ

∫ 2π

0

f ′(x) sin(τ)dτ

}2

+

+
[
2xmζ

ω

ω0
+

1
kπ

∫ 2π

0

β′(ẋ) cos(τ)dτ

]2

=
(

f0

k

)2

.

(21.12)

The phase can be easily computed by dividing the second equation (21.11)
by the first:

Φ = arctan

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2xmζ
ω

ω0
+

1
kπ

∫ 2π

0

β′(ẋ) cos(τ)dτ
[
1 −

(
ω

ω0

)2
]

xm +
1

kπ

∫ 2π

0

f ′(x) sin(τ)dτ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (21.13)

21.2.2 Systems with many degrees of freedom

If the system has many degrees of freedom, but is excited by a harmonic
forcing function, it is possible to proceed in the same way. If only a first
approximation of the fundamental harmonic of the response to a harmonic
forcing function

f = f0s sin(ωt) + f0c cos(ωt) (21.14)

is to be obtained, a solution of the type

x = x0s sin(ωt) + x0c cos(ωt) (21.15)

can be assumed.
If the excitation is not synchronized, it is impossible to state a single

phase reference and thus it is advisable to use as unknowns directly the
sine and cosine components of the response.
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Operating in the same way seen for systems with a single degree of
freedom, and applying the Ritz averaging technique, it follows that

∫ T

0

[Mẍ + Cẋ + Kx + μg (x, ẋ) − f0s sin(ωt) − f0c cos(ωt)] sin(ωt)dt = 0 ,

(21.16)∫ T

0

[Mẍ + Cẋ + Kx + μg (x, ẋ) − f0s sin(ωt) − f0c cos(ωt)] cos(ωt)dt = 0.

(21.17)
Introducing the solution (21.15) and performing the integrations, the

following set of equations is obtained
{ (

K−ω2M
)
x0s − ωCx0c + fns = f0s,

ωCx0s +
(
K−ω2M

)
x0c + fnc = f0c , (21.18)

where

fns (x0s,x0c) =
ω

π

∫ T

0

μg (x, ẋ) sin(ωt)dt, (21.19)

fnc (x0s,x0c) =
ω

π

∫ T

0

μg (x, ẋ) cos(ωt)dt . (21.20)

By introducing a complex amplitude

x0 = x0s + ix0c, (21.21)

the equation reduces to

Kdynx0 + fns (x0s,x0c) + ifnc (x0s,x0c) = f0s + ifnc , (21.22)

where
Kdyn = K− ω2M + iωC

is the usual dynamic stiffness matrix of the linearized system, which is
generally complex.

If not all degrees of freedom are related to the nonlinear behavior of the
system, the dynamic stiffness matrix can be partitioned in the same way as
the matrices in Eq. (21.1) and subjected to dynamic reduction (i.e., to the
usual procedure of static reduction but performed on the dynamic stiffness
matrix). The fact that when the system is damped the dynamic stiffness
matrix is complex does not complicate the relevant computations.

Remark 21.2 The dynamic stiffness matrix is a function of the frequency
of the forcing function ω and then when computing the frequency response
of the system, the reduction procedure has to be repeated for each value of
the frequency. Moreover, no result can be obtained at those frequencies for
which matrix Kdyn22(ω) is singular.
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This technique allows the reduction of the number of nonlinear equations
to be solved, but the computation of the response, although easier than
that of the original system, is still a formidable problem. Since dynamic
reduction does not introduce any error, the only source of approximation
is having assumed that the response is harmonic, a thing that never holds
exactly in the case of nonlinear vibrating systems.

If the system is undamped (i.e., with C = 0 and functions gi depending
only on the coordinates) and all forcing functions are in phase, also all the
responses, reduced to their fundamental harmonic, are in phase with each
other and with the excitation. Their time histories can be written in the
form

f(t) = f0 sin(ωt) , x(t) = x0 sin(ωt) .

The equations of motion of the reduced system are then

Kdyncond
x0 +

1
π

∫ 2π

0

g sin(ωt)d(ωt) = f0cond
, (21.23)

which is the required set of algebraic nonlinear equations.
Generally speaking, the integration can be performed without much dif-

ficulty. The problem of solving the set of nonlinear algebraic equations can,
however, be difficult, particularly in the fields of frequency where more
than one solution exists. There is a number of computation procedures
that can be used, but the Newton–Raphson method is usually the best
choice, although it cannot guarantee convergence in all cases.

Also in the case of systems with many degrees of freedom, it is possible
to plot the backbone of the response, which is usually made of a number
of separate branches equal to the number of natural frequencies of the
linearized system. The backbone can be obtained simply by computing the
response to a vanishingly small excitation.

21.3 Duffing’s equation with viscous damping

Consider a nonlinear system governed by Duffing’s equation, to which a
linear viscous damper has been added. The equation of motion is

mẍ + cẋ + kx(1 + μx2) = f0 sin(ωt) . (21.24)

The procedure seen in the preceding section can be used provided that

f ′(x) = kμx3 ; β′(ẋ) = 0 . (21.25)

Remembering that
∫ 2π

0

f ′(x) sin(τ)dτ = kμ

∫ 2π

0

[xm sin(τ)]3 sin(τ)dτ =
3π

4
kμx3

m , (21.26)
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Equations (21.12) and (21.13) allow the amplitude and the phase of the
response to be computed

⎧⎪⎪⎨
⎪⎪⎩

[
(k − mω2)xm +

3
4
kμx3

m

]2

+ x2
mc2ω2 = f2

0 ,

Φ = arctan
(

cω

k − mω2 + 3
4kμx2

m

)
.

(21.27)

The phase so obtained is that of the exciting force with respect to the
displacement and is positive, i.e., the force leads the displacement.

By introducing the nondimensional frequency and amplitude of the dis-
placement and the forcing function

ω∗ =
ω

ω0
, x∗

0 = x0

√
|μ| , f∗ =

√
|μ|f0

k
, (21.28)

and the damping ratio, the first equation (21.27), can be expressed in the
following nondimensional form:

ω∗4 − 2ω∗2
[
1 +

3
4
x∗2

0 − 2ζ2

]
+

[
1 +

3
4
x∗2

0

]2

−
(

f∗

x∗
0

)2

= 0 . (21.29)

Equation (21.29) can be solved in the frequency and function x∗
0(ω∗) can

then be obtained from function ω∗(x∗
0). Unfortunately, because such a plot

is a function of two parameters, namely, excitation and damping, it is not
possible to summarize the general behavior of the system in a single chart.

The amplitude and phase, computed with a single value of the excitation√
μf0/k = 1 and some different values of ζ, are plotted in Fig. 21.1. The

FIGURE 21.1. Amplitude and phase of the response of a system governed by
Duffing’s equation (hardening spring) with viscous damping under the effect of a
harmonic excitation;

√
μf0/k = 1. Phase −Φ of the displacement with respect to

the force, which is negative, as in the case of linear systems, has been plotted.
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FIGURE 21.2. Same as Fig. 21.1, but for softening systems;
√

μf0/k = 0.25.

plot refers to hardening systems. For ζ = 0 the solution of the undamped
system is obtained. With increasing values of the damping, the resonance
peak gets smaller. The jump phenomenon is present only for small values
of the damping, as can be easily inferred from the consideration that at
high values of ζ only one possible value of the amplitude can be found
at any value of the frequency. The same consideration can be drawn from
the plot of the phase against the frequency. At high damping, the phase
changes continuously from 0◦ to 180◦ with increasing frequency. If the
damping is small enough, an abrupt variation of phase takes place when
the system jumps from one configuration to the other. It is interesting to
note that the frequency at which the phase takes the value of 90◦ depends
on the damping. Such a value of the phase occurs when the amplitude curve
crosses the resonance line, i.e., the backbone of the response.

The case of a softening system is shown in Fig. 21.2. At high values
of damping the curves split into two parts; the lower one is that actually
followed by the system and the upper one is merely a theoretical result,
affected by strong approximations. A similar pattern is shown by the plot of
the phase, in which the curves are constituted by two branches at low values
of the damping, when the jump phenomenon is present. The phase takes a
value of 0 at low frequency, to decrease slowly following the upper branch
until the jump occurs. The phase then shifts beyond −90◦, to decrease
in absolute value slightly and then increases up to −180◦ at very high
frequency. At high values of damping, when no jump occurs, the phase
follows the line on the right.

Remark 21.3 The results here reported are approximate and refer only
to the fundamental harmonic of the response. For a more complete eval-
uation of the response it is possible to resort to the harmonic balance ap-
proach or to perturbation techniques, which lead to long computations. The
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numerical integration of the equations of motion is nowadays the most com-
mon approach.

21.4 Duffing’s equation with structural damping

It is also possible to use the structural damping model in the case of non-
linear systems. Consider, for example, a system with a single degree of
freedom with a hardening spring whose characteristic is of the type seen
in Duffing’s equation, and assume that the response x(t) can be approxi-
mated as a harmonic law. To introduce structural damping, use the complex
stiffness model with regard to the linear part of the restoring force of the
system

f(x) = kxm sin(ωt + η) + μkx3
m sin3(ωt) . (21.30)

The linear part of the restoring force is out of phase with respect to the
displacement, and a hysteresis cycle of the type shown in Fig. 21.3, curve
a, is obtained (the phase is assumed to be equal to the loss factor η).

If the whole reaction f(x) is assumed to lag the displacement (i.e., ωt+η
is introduced also in the term in sin3), a hysteresis cycle of the type shown in
Fig. 21.3, curve b, is obtained. The hysteresis cycles shown in Fig. 21.3 allow
modeling the actual behavior of many machine elements as elastomeric
springs and vibration insulators.

The response of a system governed by Duffing’s equation with structural
damping of the type of Eq. (21.30) can be easily computed:

FIGURE 21.3. Nonlinear hysteresis cycles.
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FIGURE 21.4. Amplitude and phase of the response of a system governed by
Duffing’s equation (hardening spring) with structural damping as defined by
Eq. (21.30) under the effect of a harmonic excitation;

√
μf0/k = 1.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω∗4 − 2ω∗2
[
1 +

3
4
x∗2

0

]
+ (1 + η2)

[
1 +

3
4
x∗2

0

]2

−
(

f∗

x∗
0

)2

,

Φ = arctan
(

η
1 + 3

4x∗2
0

1 − ω∗2 + 3
4x∗2

0

)
.

(21.31)

The response is plotted in Fig. 21.4 for f∗ =
√

μf0/k = 1 and various
values of the loss factor η.

21.5 Backbone and limit envelope

Also in the case of damped systems it is possible to define the backbone
of the response. If the amplitude of the forcing function vanishes, the first
equation (21.11) yields the backbone of the response

ω

ω0
=

√
1 +

1
kπxm

∫ 2π

0

f ′(x) sin(τ)dτ . (21.32)

The backbone depends neither on damping nor on the forcing func-
tion. Actually it is a feature of the conservative part of the system and
is more correlated to its free behavior than to the response to a given
excitation.

Remark 21.4 The role of the backbone of a nonlinear system is the same
that the natural frequency has for linear systems; on the backbone, inertia
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forces balance nonlinear restoring forces (as an average on a cycle) and the
response lags the excitation by 90◦.

The value of the amplitude in such resonant conditions can be computed
by stating that the phase lag is 90◦. From the second equation (21.11), it
follows that

ω

ω0
=

f0

2ζkxm
− 1

2ζkπxm

∫ 2π

0

β′(ẋ) cos(τ)dτ , (21.33)

or in case of the Duffing’s equation with linear damping,

ω

ω0
=

f0

2ζkxm
. (21.34)

Equations (21.33) and (21.34) define a curve in the xm(ω) plane that is
usually referred to as a limit envelope. It divides the plane into two regions:
The one spanning under the curve includes all possible working conditions,
since the forcing function can supply the energy needed to sustain the
oscillations. In the zone above the limit envelope, the energy dissipated by
damping is greater than that supplied by the excitation and thus no steady
oscillation is possible.

The presence of a limit envelope explains the downward jump phenomenon
that could not be explained by the undamped model. What causes the am-
plitude to suddenly decrease is the impossibility of the forcing function to
sustain the larger amplitude against energy dissipations.

Remark 21.5 While the backbone defines the conditions in which there
is equilibrium between inertia forces and restoring forces (resonance con-
ditions), the limit envelope states the conditions for equilibrium between
damping and external forces.

Remark 21.6 The limit envelope does not depend on the mass of the sys-
tem or on the type of restoring force. In particular, it does not change
whether the restoring force is linear, hardening, or softening, provided that
damping and the forcing functions are not changed.

The response of a damped nonlinear system with a single degree of free-
dom can easily be approximated by cutting the undamped response us-
ing the limit envelope (Fig. 21.5). This procedure is the generalization of
that shown in Fig. 7.2d for linear systems. The properties of the backbone
and the limit envelope are valid for any type of functions f ′(x) and β′(ẋ)
(provided they are odd) and any law linking the amplitude of the forcing
function f0 to the frequency ω.

Remark 21.7 In some cases the limit envelope can be completely above
the backbone, with no intersection between them. The amplitude in this
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FIGURE 21.5. Response of a nonlinear damped system with a single degree of
freedom approximated by cutting the undamped response with the limit envelope.

case grows indefinitely, with no downward jump with increasing frequency,
since the forcing function is powerful enough to sustain the oscillation with
the larger amplitude at any value of the frequency.

The limit envelope, in general, does not exist for multi-degrees-of-freedom
systems. However, when it exists, it is a very powerful tool for understand-
ing the system’s behavior.

FIGURE 21.6. (a) Scheme of the system and force–displacement characteristics
of the elastomeric springs; (b) first approximation of the fundamental harmonic
of the response, backbone, and limit envelope. The response of the undamped
system is also reported.
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Example 21.1 A rotating machine is suspended through a system of elas-
tomeric springs whose force–displacement characteristics (Fig. 21.6a) can be
approximated by the equation

F = k1x − k2x
3 + k3x

5 ,

where k1 = 105 N/m, k2 = 4 × 108 N/m3, and k3 = 1012 N/m5 (see Exercise
19.5). The damping of the suspension system will be assumed to be of the
viscous type, with damping coefficient c = 1,200 Ns/m. The total mass of
the system is m = 100 kg, and the product of the mass of the rotor by its
eccentricity is mrε = 0.5 kg m.
Compute a first approximation of the fundamental harmonic of the response
when the angular velocity of the machine spans between 20 and 300 rpm.
The unbalance causes a force whose vertical component varies harmonically
with frequency ω equal to the rotational speed Ω of the machine

F = mrεΩ
2 sin(Ωt).

The equation of motion of the system is

mẍ + cẋ + k1x − k2x
3 + k3x

5 = mrεΩ
2 sin(Ωt) .

The natural frequency and the damping ratio of the linearized system are

ω0 =

√
k1

m
= 31.62 rad/s ; ζ =

c

2
√

k1m
= 0.19 .

The backbone and the limit envelope of the response can be obtained directly
from Eqs. (21.32) and (21.33)

ω

ω0
=

√
1 − 3k2

4k1
x2

m +
15k3

24k1
x4

m ;
ω

ω0
=

mrεω
2

2ζk1xm
.

The amplitude of the fundamental harmonic of the response can be computed
using Eq. (21.12). By performing the relevant integrations and rewriting the
equation as a quadratic equation in ω2, it follows that

(
ω

ω0

)4
[
1 −

(
mrε

mxm

)2
]
− 2

(
ω

ω0

)2 (
1 − 3k2

4k1
x2

m +
15k3

24k1
x4

m − 2ζ2

)
+

+

(
1 − 3k2

4k1
x2

m +
15k3

24k1
x4

m

)2

= 0 .

The frequency response of the system is plotted, together with the backbone
and the limit envelope, in Fig. 21.6b. Also the undamped response is plotted
in the same figure.
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Example 21.2 Consider a linear system with dry friction, modeled as
shown in Example 20.1 using the Coulomb damping model, excited by a har-
monic forcing function. The equation of motion is

mẍ + F
ẋ

|ẋ| + kx = f0 sin(ωt) .

The integral defining the equivalent damping must be computed separately for
the parts of the cycle in which the velocity is positive (−π/2 < ωt < π/2) or
negative (π/2 < ωt < 3π/2)

ceq =
4F

xmπω
; ζeq =

2Fω0

xmπωk
.

The amplitude of the response of the linear system with equivalent damping
can be computed using Eq. (7.6). Note that in this case damping depends on
amplitude and a further rearranging of the equations is required to obtain the
following frequency response:

xm =
f0

k

√√√√√√√√
1 −

(
4F

πf0

)2

1 −
(

ω

ω0

)2
; Φ = arctan

⎡
⎢⎢⎢⎢⎣

−1√(
πf0

4F

)2

− 1

⎤
⎥⎥⎥⎥⎦ .

An apparently inconsistent result is thus obtained, because at resonance the
amplitude tends to infinity, in spite of damping, at least if

F

f0
<

π

4
.

This can, however, be easily explained by the consideration that both the en-
ergy dissipated by damping and the energy input due to the exciting force are
proportional to the amplitude. Thus, if dry friction is small enough to allow
the system to oscillate, it cannot avoid the building up of an infinite amplitude
at resonance. The case with viscous damping was different, as the drag force
was proportional to the amplitude, and consequently, the energy dissipated was
proportional to its square. No matter how low the damping of the system was,
there was a finite value of the amplitude for which the energy dissipated by
damping was equal to the work performed by the excitation.
The same conclusion can be immediately drawn from the study of the limit
envelope. By introducing the equivalent damping into the equation of the limit
envelope, it follows that

F

f0
=

π

4
.

This expression does not represent a line on the ω,xm plane, i.e., no limit
envelope actually exists, but it is nevertheless the condition for which motion
is possible, as stated earlier.
The results here obtained are only approximated and are close to the correct
results only if the motion of the system is not far from being a harmonic
motion.
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FIGURE 21.7. Response of a system with linear restoring force and Coulomb
damping to a harmonic excitation: exact solution (full lines) against the current
approximate solution (dashed lines). In the hatched region the motion is not
continuous; in the zone in the lower left corner more than one stop occurs in each
cycle.

An exact solution to the problem was obtained by Den Hartog (J.P. Den
Hartog, “Forced vibrations with combined coulomb and viscous damping”,
Trans. ASME, Vol. 53, 1931.) and is reported in Fig. 21.7. In the part of Fig.
21.7 lying within the hatched region, the motion is not continuous but contains
at least one stop at each cycle. In the part in the lower left corner, the motion
stops at least twice each cycle, and no solution was found. The dashed lines
are the solutions obtained from the current model using the equivalent damping
concept. In the vicinity of the resonance peak, the approximate curves are very
close to those obtained in the aforementioned paper, as could be expected. On
the contrary, when the motion is intermittent, or, generally speaking, when
damping is not small, the approximate solution is quite far from the correct
one. Where motion is intermittent no phase has been computed, because the
very concept of phase loses its meaning. Also, in cases where the approximate
solution leads to the conclusion that no motion is possible, an exact solution
exists.

21.6 Multiple Duffing equations

Consider an undamped structure whose behavior is linear, supported on
a number m of elastic constraints with a force–elongation characteristic of
the type used in Duffing’s equation:

Fi = −kixi(1 + μix
2
i ) .

Assume that the system is discretized in such a way that the generalized
displacements of the supporting points are chosen as the first m generalized
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coordinates and the linear part of the characteristic of the supports is
accounted for in the stiffness matrix of the system. Note that each function
gi contains only the generalized coordinate xi. It is then possible to separate
the nonlinear part of the problem from the linear part, eliminating the
last n − m equations by dynamic reduction. By using the Ritz averaging
technique, Eq. (21.23) becomes

Kdyncond
x0 +

1
π

{∫ 2π

0

kiμix
3
i sin(ωt)d(ωt)

}
= f0cond

, (21.35)

where
xi = x0i sin(ωt) .

By performing the integrations, the following set of m algebraic equations
is obtained:

Kdyncond
x0 +

3
4
{kiμix

3
0i
} = f0cond

, (21.36)

where the condensed matrix and vector must be computed for each value
of the frequency ω. A set of m cubic equations is so obtained.

In the particular case of a system with 2 degrees of freedom, a simple
solution can be found by solving one of the unknowns from the equation in
which it is at first power and then substituting it into the other equation.
From the first equation the following value for x02 can be obtained

x02 =
f01 − K11x01 − 3

4k1μ1x
3
01

K12
.

By introducing this value of x02 into the second equation of motion, it
yields an equation in x01 that can be solved numerically.

If the system is damped things are much more complex. Assuming that
no nonlinear damping is present, the same system seen above leads to the
following equation:

Kdyn (x0s + ix0c) + fns (x0s,x0c) + ifnc (x0s,x0c) = f0s + ifnc , (21.37)

where

fns =
ω

π

(∫ T

0

kiμix
3
0i

sin(t)dt

)
, (21.38)

fnc =
ω

π

{∫ T

0

kiμix
3
0i

cos(t)dt

}
, (21.39)

and
x0 = x0s sin(ωt) + x0c cos(ωt) . (21.40)

Since

[a sin (ωt) + b cos (ωt)]3 =
3
4
a

(
b2 + a2

)
sin (ωt)+ (21.41)
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+
3
4
b
(
b2 + a2

)
cos (ωt) +

1
4
a

(
3b2 − a2

)
sin (ωt) +

1
4
b
(
b2 − 3a2

)
cos (ωt) ,

the integrals of Eqs. (21.38) and (21.39) are

∫ 2π

0

[x0s sin (ωt) + x0c cos (ωt)]3 sin (ωt)d (ωt) =
3π

4
x0s

(
x2

0s + x2
0c

)
,

(21.42)
∫ 2π

0

[x0s sin (ωt) + x0c cos (ωt)]3 cos (ωt) d (ωt) =
3π

4
x0c

(
x2

0s + x2
0c

)
.

The ith element of vector fns + ifnc is thus

fnsi + ifnci =
3
4
kiμi

(
x2

0si
+ x2

0ci

)
(x0si + ix0ci) , (21.43)

i.e.,

fns + ifnc =
3
4
diag

{
kiμi

(
x2

0si
+ x2

0ci

)}
(x0s + ix0c) . (21.44)

The equation allowing to compute the amplitude of the response from
the amplitude of the excitation is

[
Kdyn +

3
4
diag

{
kiμi

(
x2

0si
+ x2

0ci

)}]
(x0s + ix0c) = f0s + ifnc , (21.45)

The reduced dynamic stiffness matrix is a function of the frequency that
must be computed numerically for each value of ω. Only in the case where
no dynamic reduction has been performed, the mass, stiffness and damping
matrices of the linear part of the model can be introduced separately into
the equation.

Example 21.3 Consider the rigid beam on nonlinear springs with linear

dampers in parallel sketched in Fig. 21.8a, excited by a harmonic forcing

function applied to the center of mass. Assume the following data: m = 10

kg, a = 50 mm, b = 120 mm, radius of inertia r =
√

J/m = 80 mm,

μ1 = μ2 = μ = 80, 000 1/m2, k1 = k2 = k = 10 kN/m, c1 = c2 = c = 30

Ns/m, f0 = 10 N. With simple computations the mass, damping and stiffness

matrices, and the force vector can be shown to be
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FIGURE 21.8. Sketch (a) and response (b) of a nonlinear system with 2 degrees
of freedom, excited by a harmonic forcing function applied in the center of mass.
Amplitude of the displacements of the supporting points.

M=
m

l2

[
a2 + r2 ab − r2

ab − r2 b2 + r2

]
, C = c

[
1 0
0 1

]
,

K = k

[
1 0
0 1

]
, f0=

f0

l

{
a
b

}
.

Equation (21.37) is a nonlinear set of two complex equations and no closed
form solution is possible. An efficient approach is to resort to the Newton–
Raphson method and, in this context, it is expedient to separate the real part
of the equations from their imaginary part. The four resulting equations of
motion can be written in the form

p (xi) = 0,

where function p (xi) is

p (xi) =

{[
−ω2M+K −C

C −ω2M+K

]
+ g′

}
⎧⎪⎪⎨
⎪⎪⎩

{
x1s

x2s

}
{

x1c

x2c

}
⎫⎪⎪⎬
⎪⎪⎭

−
{

f0
0

}
,

and the nonlinear function g′ is

g′ =
3kμ

4
diag

[
x2

1s + x2
1c x2

2s + x2
2c x2

1s + x2
1c x2

2s + x2
2c

]
.

The vector of the unknowns at the (i + 1)th iteration is obtained from the
vector at the ith iteration from the usual relationship

x(i+1) = x(i) − S−1
(
x(i)

)
p

(
x(i)

)
,

where the Jacobian matrix S is
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S =

[
−ω2M+K −C

C −ω2M+K

]
+

+
3kμ

4

⎡
⎢⎢⎣

3x2
1s + x2

1c 0 2x1sx1c 0
0 3x2

2s + x2
2c 0 2x2sx2c

2x1sx1c 0 x2
1s + 3x2

1c 0
0 2x2sx2c 0 x2

2s + 3x2
2c

⎤
⎥⎥⎦ .

The response in terms of the modulus of the complex amplitude at the sup-
ports was computed twice, once starting from ω = 0 and proceeding with small
increases of frequency and each time using as starting solution that obtained
in the previous computation, and once doing the same, but starting from a
high value of frequency (ω = 100 rad/s) and decreasing it to 0. The results are
shown in Fig. 21.8b.
The first computation yields the downward jumps, while the second one the
upward jumps. The results are compared with the results obtained from the
linearized system.
This procedure yields only an approximation of the fundamental harmonic of
the result, and even for that only some of the possible solutions are found.
Other possible solutions that might exist are not found in this way.
The same results are converted to displacement at the center of gravity xG and
rotation θ in Fig. 21.9b using the relationship

{
xG

θ

}
=

1

a + b

[
a b
1 −1

] {
x1

x2

}
.

It is clear that the second mode is much less excited than the first one and

thus it is much less affected by nonlinearities.

FIGURE 21.9. Same as Fig. 21.8, but in terms of amplitude of the displacement
of the center of mass xG and of rotation θ.
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21.7 Approximated sub- and super-harmonic
response

To compute the response including other harmonics it is possible to resort
to the Ritz averaging technique, the harmonic balance, or other approaches.
In general, if the forcing function is harmonic, it is possible to write

f (t) = f0s sin(ωt) + f0c cos(ωt) . (21.46)

The response can be written as

x (t) =
m∑

i=1

x0s sin(kiωt) +
m∑

i=1

x0c cos(kiωt) , (21.47)

where m is the number of harmonics of the response that are considered
and ki is the order or the various harmonics. For instance, ki = 1/3 for the
third subharmonics and 3 for the third super-harmonics.

If the system has n degrees of freedom and m harmonics are taken into
account, the unknowns sine and cosine components of the amplitude are
2 mn.

An exception is when one of the harmonic is a zero-order harmonic, i.e.,
a term constant in time. When ki = 0, the component in sine does not
exist and the unknowns are 2 mn− 1.

By introducing the response and the excitation into the equation of mo-
tion (20.5)

Mẍ + Cẋ + Kx + μg = f(t) ,

it can be transformed into a set of algebraic nonlinear equations.
It can be shown that the nonlinear function g can be transformed into

g =
m∑

i=1

gis sin(kiωt) +
m∑

i=1

gic cos(kiωt) + ... .

Expressions gis and gic are now nonlinear functions of the sine and co-
sine amplitudes of the various harmonics, and the (...) show that there
are additional terms that cannot be balanced and thus must be dropped.
Harmonic balance is anyway an approximated procedure.

By balancing the harmonics, the following set of nonlinear equations is
obtained

p(x0) = Kdx0 + μg(x0) − f0 = 0 ,

where

Kd =

⎡
⎢⎢⎢⎢⎣

K− k2
1ω

2M −k1ωC 0 0 ...
k1ωC K− k2

1ω
2M 0 0 ...

0 0 K − k2
2ω

2M −k2ωC ...
0 0 k2ωC K − k2

2ω
2M ...

... ... ... ... ...

⎤
⎥⎥⎥⎥⎦ ,
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x0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1s

x1c

x2s

x2c

...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, g0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g1s

g1c

g2s

g2c

...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, f0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1s

f1c

f2s

f2c

...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

If the forcing function is mono-harmonic, as in Eq. (21.46), only the
first two components of vector f0 are present. If it is poly-harmonic, also
combination tones should be introduced. It is possible, but the number of
harmonics so introduced becomes large.

The difficulty lies usually in defining functions g1. Even using symbolic
computer codes, it is quite a long and difficult process.

If the equation is solved using the Newton–Raphson procedure, the so-
lution at the (i + 1)th iteration is obtained from that at the ith iteration
using the equation

x(i+1)
0 = x(i)

0 − S−1(x(i)
0 )p(x(i)

0 ) ,

where the Jacobian matrix is

S = Kd + μ

[
∂g0i

∂x0j

]
.

21.7.1 Damped Duffing equation

The first super-harmonic of the Duffing equation is the third harmonics.
The solution is thus

x = x1s sin (ωt) + x1c cos (ωt) + x2s sin (3ωt) + x2c cos (3ωt) .

Since it is possible to balance only the first two harmonics

g1s =
3
4
k

[
x2

1cx2s + x2
1cx1s − x2

1sx2s + 2x1sx
2
2s + 2x1sx

2
2c − 2x1cx1sx2c + x3

1s

]
,

g1c =
3
4
k

[
x1cx

2
1s + 2x1cx

2
2c + 2x1cx

2
2s + x2

1cx2c − x2
1sx2c + 2x1cx1sx2s + x3

1c

]
,

g2s =
1
4
k

[
6x2

1sx2s + 6x2
1cx2s + 3x2

1cx1s + 3x2
2cx2s − x3

1s + 3x3
2s

]
,

g2c =
1
4
k

[
3x2cx

2
2s + 6x2

1cx2c − 3x1cx
2
1s + 6x2

1sx2c + x3
1c + 3x3

2c

]
.

The system has a single degree of freedom and thus a set of four alge-
braic equations is needed to obtain the amplitudes of the sine and cosine
components of the two harmonics. The nondimensional results in terms
of the moduli a1 and a2 of the amplitudes of the fundamental and third
harmonics for a case with f0

√
μ/k = 1 (the same as Fig. 19.3) and ζ = 0.1

are reported in Fig. 21.10. The solution obtained taking into account the
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FIGURE 21.10. Response of a hardening system with f0
√

μ/k = 1 and ζ = 0.1.
(a) Amplitude of the fundamental harmonic; (b) amplitude of the third harmonic.

super-harmonic is compared with that obtained by approximating the time
history with a harmonic law. As was seen in Fig. 19.3 for the undamped
system, the range where a strong super-harmonic response is found is quite
limited and damping prevents from reaching very large amplitudes. The
jump phenomenon is not affected by the presence of the third harmonic.

To obtain a subharmonic response is much more difficult. If a solution
of the type

x = x1s sin
(ω

3
t
)

+ x1c cos
(ω

3
t
)

+ x2s sin (ωt) + x2c cos (ωt)

is assumed, it is easy to check that also in the damped case a solution in
which the amplitude subharmonic vanishes exists. While it is impossible to
rule out that other solutions exist, it is difficult to obtain that the solution
algorithm converges on it. Moreover, it is impossible to state, using this
simplified approach, whether and with which initial conditions the subhar-
monic oscillation is actually started. Only numerical or physical experiment
can shed light on the matter, and only for the specific condition in which
the experiment is performed.

21.8 Van der Pol method: stability of the
steady-state solution

The approach seen in Section 21.2 allows a first approximation of the
fundamental harmonic of the steady-state response to a harmonic forc-
ing function to be obtained. The so-called Van der Pol method relies on
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similar approximations but also allows the study of solutions that are not
restricted to steady-state motions; it is a powerful tool in the study of the
stability of the motion. Consider a nonlinear non-autonomous equation of
motion of the type

mẍ + f(x, ẋ) = f0 cos(ωt), (21.48)

and assume that the solution has the form

x(t) = x1(t) cos(ωt) + x2(t) sin(ωt) + x, (21.49)

where x1 and x2 are slowly varying functions of time and a constant dis-
placement x is taken into account for considering the case of non-symmetrical
damping or restoring force. The motion is then a harmonic motion with
slowly varying amplitude. x1 and x2 are the in-phase and in-quadrature
amplitudes, respectively, while x is usually vanishingly small because, in
many cases, function f(x, ẋ) is odd in both x and ẋ.

It is possible to show that by introducing the solution (21.49) into Eq.
(21.48) and neglecting the second derivatives of functions x1 and x2 with
respect to time, which are negligible due to the assumption that the am-
plitude varies slowly in time, the problem reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= F1(x1, x2, x) ,

dx2

dt
= F2(x1, x2, x) ,

0 = F3(x1, x2, x) .

(21.50)

In the case where x is vanishingly small, the last equation is not present.
Only this case will be studied in detail here. Equation (21.50) can be dealt
with using the same methods as for the study of Eq. (18.50), and the motion
can be studied in the (x1, x2)-plane. This plane is sometimes referred to
as the Van der Pol plane, but the terms phase and state plane are also
common. The author thinks that the latter terms are better reserved to the
(x, ẋ)-plane, to avoid confusion. Neglecting x, Eq. (21.50) can be reduced
to

dx2

dx1
=

F2(x1, x2)
F1(x1, x2)

, (21.51)

which allows plotting the trajectories of the system in the Van der Pol plane
and obtaining the steady-state solution as fixed points in the same plane.
The stability of the steady-state solutions can be studied in the same way
seen for the stability of equilibrium positions in the phase plane.

Consider, for example, Duffing’s equation. By introducing the solution
(21.49) into the equation of motion and neglecting the terms containing the
second derivatives of x1 and x2 with respect to time, those containing the
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product of their derivatives for the damping coefficient, and those contain-
ing the trigonometric functions of 3 ωt (as seen for the harmonic balance
method) and then equating the coefficients of the sine and cosine of ωt, it
follows that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx1

dt
=

1
2ω

[
(ω2

0 − ω2)x2 − 2ζωω0x1 +
3
4
μω2

0x2(x2
1 + x2

2)
]

,

dx2

dt
=

1
2ω

[
−(ω2

0 − ω2)x1 − 2ζωω0x2 +
f0

k
ω2

0 − 3
4
μω2

0x1(x2
1 + x2

2)
]

.

(21.52)
Equation (21.52) is just Eq. (21.50) with the right-hand sides defining

functions F1 and F2. The trajectories obtained by numerically integrating
Eq. (21.51) for ζ = 0.1, f0

√
μ/k = 1, and two values of ω/ω0 are plotted

in nondimensional form in Fig. 21.11.
The three singular points are the steady-state solutions that coincide

with those obtained using the Ritz averaging or the harmonic balance
techniques. The solutions with the maximum and minimum amplitudes
correspond to stable foci, while the intermediate one is a saddle point. The
stability of the former two solutions and the instability of the last one are
so demonstrated.

The basins of attraction of the two stable solutions have a complex shape
and are quite interwoven. This means that starting from a certain position
in the Van der Pol plane (i.e., starting from an oscillation with a cer-
tain amplitude and phase), the system settles to the oscillation with larger
amplitude; starting from an oscillation with larger amplitude, the steady-
state condition with smaller amplitude is obtained. Also the phase can be

FIGURE 21.11. Trajectories in the Van der Pol plane for a system governed by
Duffing’s equation, with ζ = 0.1 and f0

√
μ/k = 1; nondimensional plots drawn for

ω/ω0 = 2.0 and 2.2, respectively. The hatched zone is the basin of attraction of
the stable solution with larger amplitude.
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important in deciding which solution the system will tend to, although the
importance of phase decreases with growing amplitude, as the separatrices
tend to assume a more circular form.

Consider a system governed by Duffing’s equation, excited by a forcing
function with a frequency lower than that at which three solutions can
exist. There is only one solution, a stable focus in the Van der Pol plane. If
the forcing frequency is increased, at a certain moment two more solutions
appear and the plane splits into two domains of attraction. The domain of
the larger solution is very large and that of the smaller one is very narrow.

With increasing frequency the smaller domain of attraction grows while
the other one reduces. In the center of the frequency range in which three
solutions exist, the two domains have comparable extensions (left-hand side
of Fig. 21.11). The domain of the larger solution reduces its size, to disap-
pear at the frequency at which the jump takes place and three solutions no
longer exist. This explains why it can be difficult to sustain an oscillation
with the larger amplitude near the jump frequency: When the domain of
attraction of this solution is very small, as in the right-hand side of Fig.
21.11, and the solution is very near the separatrix, any small change of
amplitude makes the system shift toward the other solution.

To study the stability of a singular point x10 , x20 , Eq. (21.50) can be
easily linearized about it. Because it is a singular point, functions F1 and
F2 vanish and the linearized equation reduces to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx1

dt
=

(
∂F1

∂x1

)
x10 ,x20

x1 +
(

∂F1

∂x2

)
x10 ,x20

x2 ;

dx2

dt
=

(
∂F2

∂x1

)
x10 ,x20

x1 +
(

∂F2

∂x2

)
x10 ,x20

x2 .
(21.53)

By assuming a solution of the type x = aest, the following characteristic
equation is obtained

det

⎡
⎢⎣

(
∂F1
∂x1

)
x10 ,x20

− s
(

∂F1
∂x2

)
x10 ,x20(

∂F2
∂x1

)
x10 ,x20

(
∂F2
∂x2

)
x10 ,x20

− s

⎤
⎥⎦ = 0 , (21.54)

i.e.,
s2 + βs + γ = 0 ,

where⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β = −
(

∂F1

∂x1

)
x10 ,x20

−
(

∂F2

∂x2

)
x10 ,x20

,

γ =
(

∂F1

∂x1

)
x10 ,x20

(
∂F2

∂x2

)
x10 ,x20

−
(

∂F1

∂x2

)
x10 ,x20

(
∂F2

∂x1

)
x10 ,x20

.
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From the signs of the real and imaginary parts of the solutions s it is
possible to state whether the point is a saddle, a node, a focus, or a center
and to study its stability, following the same rules seen in Section 3.5.3.

Remark 21.8 The Van der Pol method is as approximate as are the har-
monic balance method and Ritz averaging technique, both used with only the
fundamental harmonic: It is practically an application of harmonic balance
to slowly varying nonstationary motions.

Its main advantage is that of eliminating time by working in a plane
characterized by a reference frame rotating with angular velocity equal to
the forcing frequency ω in the complex plane of Fig. 7.1, the only difference
being that the direction of the ordinate axis is reversed. In that plane, the
equation of motion is autonomous, and a bi-dimensional state plane can be
used. In this sense, the Van der Pol plane is a state plane.

21.9 Strongly nonlinear systems

All the methods seen in the previous sections lead to approximated solu-
tions of the equation of motion. In most of them the time history of the
response is assumed to be harmonic or, at best, poly-harmonic. In others
the solution of the linearized system is assumed as a first approximation
and then is corrected in steps leading to better and better approximations.

These approaches however work only if the system behaves as a weakly
nonlinear system, meaning either that the system is weakly nonlinear in
itself or that it operates in conditions (i.e., small amplitude oscillations)
preventing its nonlinear nature from strongly affecting its behavior.

Moreover, with increasing importance of nonlinearities, these methods
become computationally heavier and heavier. If the response of the system
is almost harmonic, the results obtained by using the harmonic balance
method with just the fundamental harmonic are good and easily obtained.
If two harmonics are used the computations start becoming time consum-
ing. If many harmonics are required for obtaining a good approximation,
the mentioned methods become soon overwhelmingly complex, even if sym-
bolic computer codes are used to obtain the nonlinear set of algebraic equa-
tions. Moreover, once the nonlinear algebraic equations are obtained, their
solution may be a formidable problem, and above all it may be very difficult
to obtain all significant solutions.

If the system is strongly nonlinear, its behavior may be qualitatively
different from what can be found using these approximated methods and
can be studied only through numerical or physical experiments. Clearly
also numerical integration of the equations of motion yield approximated
results, but this term has a different meaning. As a first point, all solu-
tions obtained from mathematical models are only approximations of the
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behavior of actual systems, but this is obvious. Numerical integration in-
troduces approximations owing to the discretization in time on which it is
based, but usually the related errors can be reduced to a minimum, even if
at the cost of increasing computer time.

The problem linked with this numerical approach to nonlinear dynamics
is that the resulting time history depends not only quantitatively but also
qualitatively on the forcing function and the initial conditions. Even in case
of a model as simple as the Duffing equation the number of simulations
required to be reasonably confident that all possible solutions have been
explored may be large. And at the end one can never be sure that all
possible outcomes have been investigated.

A problem is also to resort to representations that allow to put in a single
chart (or a limited number of charts) all significant results. One of the most
common of such representations is the Poincaré map. Since it is based on
the state space, this map can be actually plotted in the case of systems
with a single degree of freedom. When the number of degrees of freedom is
equal to 2 or larger, only bi- or tridimensional sections of the state space
can be plotted.

21.10 Poincaré mapping

As already stated in Section 1.6, in the case of non-autonomous systems the
state space must have one added dimension: time. The trajectories related
to a system with a single degree of freedom are thus tridimensional curves.
The equation of motion of the system can be easily written in the form of
a set of three autonomous equations in the variables x, v, and t

⎧⎨
⎩

v̇ = F (x, v, t) ,
ẋ = v ,
ṫ = 1 ,

(21.55)

where function F (x, v, t) also includes the forcing function. In the case of
periodic motion, the trajectories wind around the time axis, assuming the
shape of a helix whose pitch is equal to the period of the response.

Consider, for example, a linear damped system with ζ = 0.2, excited at a
frequency slightly smaller than the natural frequency (ωn/ω = 1.5). Assume
that at time t = 0 the system is at a standstill and the forcing function is at
its maximum positive value. The tridimensional phase trajectory, computed
using Eq. (7.11), is plotted in Fig. 21.12a. The choice of a linear system
for this example is due to the fact that an exact solution for the time
history exists. The time history is plotted in Fig. 21.12b. Clearly, it is the
projection of the phase trajectory on the (x, t)-plane. The state projection,
i.e., the projection of the tridimensional trajectory on the (x, v)-plane, is
plotted in Fig. 21.12c; the projected trajectory intersects at many points.
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FIGURE 21.12. Behavior of a linear damped system excited by a harmonic forcing
function in the state space. The dots are the positions at time t = 0 and after a
number of periods of the forcing function: (a) tridimensional state trajectories;
(b) time history as the projection of the state trajectory on (x, t)-plane; (c) state
projection on (x, v)-plane; (d) trajectories in the Van der Pol plane; (e) Poincaré
map. Nondimensional plot with ζ = 0.2 and ωn/ω = 1.5.

The dots in the figure are the positions at time t = 0 and after 1, 2, ...
periods of the forcing function.

The Van der Pol plane was seen in Section 21.8 with the Van der Pol
approximate method. Actually, it can be defined by the following coordinate
transformation:⎧⎪⎨

⎪⎩
x(t) = x1(t) cos(ωt) + x2(t) sin(ωt) ,

1
ω

v(t) = −x1(t) sin(ωt) + x2(t) cos(ωt) .

(21.56)

The first equation (21.56) coincides with Eq. (21.49) when the constant
term in the latter has been neglected: Coordinate transformation (21.56)
defines the Van der Pol plane as well as Eq. (21.49). The inverse transfor-
mation is obviously

⎧⎪⎪⎨
⎪⎪⎩

x1(t) = x(t) cos(ωt) − 1
ω

v(t) sin(ωt) ,

x2(t) = x(t) sin(ωt) +
1
ω

v(t) cos(ωt) .

(21.57)
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No assumption on functions x1(t) and x2(t), such as they are slowly
varying in time, has been made and, consequently, the exact trajectory can
be represented. If ω is the fundamental frequency of the response, the Van
der Pol plane can be considered a plane that travels along the time axis
while rotating about the origin with angular velocity ω. The trajectories
then unwind in the Van der Pol plane, yielding a sort of state portrait with
non-intersecting lines.

The trajectory in the Van der Pol plane for the system of Fig. 21.12
has been plotted in Fig. 21.12d. In the same figure the trajectory obtained
using the Van der Pol method, i.e., assuming that functions x1(t) and x2(t)
are slowly varying in time, has been plotted with a dashed line.

Remark 21.9 The approximations linked with the Van der Pol solution
in this case do not affect the steady-state solution, because it is exactly
harmonic, but only the way in which it is reached.

A more common way of representing the tridimensional trajectory on a
plane is the so-called Poincaré mapping or Poincaré section. A set of points
on the tridimensional trajectory is sampled with an interval equal to the
period of the forcing function and then projected on the (x, v)-plane. When
studying the steady-state motion with a period equal to the period of the
forcing function, all points on the Poincaré map are superimposed on each
other. If the system starts from a nonstationary motion, a set of points
that gets closer and closer to the one related to the stationary condition is
obtained. The attractor on the Poincaré map for a system that undergoes
a steady-state oscillation with a period equal to the period of the forcing
function is thus a single point. The Poincaré mapping of the tridimensional
trajectory shown in Fig. 21.12a is plotted in Fig. 21.12e.

As already stated, a nonlinear system excited by a harmonic forcing func-
tion with frequency ω can, in certain cases, exhibit what is usually called a
subharmonic oscillation, i.e., an oscillatory motion whose fundamental fre-
quency is smaller than that of the forcing function, usually a submultiple
of it. A subharmonic of order n is a solution with fundamental frequency
equal to ω/n, i.e., with a period equal to n times the period of the forcing
function. Because the points used for the construction of the Poincaré map-
ping are sampled with a period equal to that of the excitation, the map for
steady-state oscillations is made of n distinct points. The attractor is then
a set of n points, usually referred to as periodic points , which are cyclically
touched at regular intervals by the tridimensional state trajectory.

In the Poincaré map different attractors may exist, separated by lines
that define their basins of attraction. Also, simple point attractors can co-
exist with n-point attractors: This simply means that depending on the
initial conditions, i.e., depending on the basin of attraction in which the
first point is, the motion can evolve into a periodic motion with funda-
mental frequency ω or into a subharmonic motion with frequency ω/n. To
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FIGURE 21.13. Domains of attraction in the Poincaré map for Duffing’s equa-
tion. From C. Hayashi, Nonlinear Oscillations in Physical Systems, Princeton
University Press, Princeton, N.J., 1985.

show the basins of attraction in the Poincaré map, some plots obtained
by Hayashi from Duffing’s equation with vanishing linear stiffness, using a
specially designed analog computer, are reported in Figs. 21.13 and 21.14.
The domains of attraction reported in Fig. 21.13 refer to a particular set of
parameters for which two stable steady-state solutions exist (points 2 and
3). Point 1 is a saddle point corresponding to an unstable solution and lies
on the separatrix of the domains of attraction.

The whole picture is not very different from those reported in Fig. 21.11,
although the latter was only approximate, having been obtained with the
Van der Pol method.

A far more complicated situation is reported in Fig. 21.14. Working with
the same equation, but with different values of the parameters, subharmonic
solutions of the third order have also been obtained, and the domains of
attraction become very intricate. Again solutions 2 and 3 correspond to
periodic attractors with fundamental frequency equal to the frequency of
the forcing function, and solution 1 is a saddle point, as in Fig. 21.13. In
this case, however, two subharmonic solutions of the third order also exist.
The one represented by periodic points 4, 5, and 6 is unstable and the
points lay on the separatrix, while the solution represented by points 7,
8, and 9 is stable. Note that all domains of attraction of the subharmonic
solution lie within the domain of attraction of solution 2.
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FIGURE 21.14. Domains of attraction in the Poincaré map for Duffing’s equation,
as in Fig. 21.13, but with different values of the parameters. From C. Hayashi,
Nonlinear Oscillations in Physical Systems, Princeton University Press, Prince-
ton, N.J., 1985.

21.11 Chaotic vibrations

The possibility of performing numerical experiments on nonlinear differen-
tial equations that cannot be integrated analytically allowed the discovery
that a system modeled using a standard differential equation, and hence
a fully deterministic model, can give way to a seemingly random motion.
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Actually, the possibility of obtaining irregular time histories from a deter-
ministic system excited by a regular forcing function had been observed for
a long time, but was usually ascribed to noise or the influence of some exter-
nal disturbances rather than the intrinsic behavior of the system. However,
it is clear that such irregular behavior may take place in many systems due
to their own characteristics and that very simple models can also simulate
this behavior.

The study of the forced response of the Van der Pol equation did show
that in the cases in which two stable attractors exist, when starting the
motion from certain positions of the state space the initial transient can
hesitate to choose the attractor to converge to. An arbitrarily long transient
shifting from the region around one attractor to the region around the other
can be present before the motion eventually settles out. This behavior is
now known as transient chaos .

Another form of chaotic behavior, perhaps the true one, is persistent
chaos. When a system undergoes such a process, the seemingly random
motion will not settle out in time, and no attractor, in the conventional
sense, is present. Because chaotic motion does not die out, it is possible
to identify a different sort of attractor, typical of chaotic motion, which is
called a strange or chaotic attractor.

To give way to chaotic motion, the state space must have at least three
dimensions, and the system must be quite sensitive to the initial conditions.
The latter condition seems to be the key factor for chaotic behavior. The
first deep study on systems that are very sensitive to initial conditions was
performed by Lorentz in 1963 on a three-equation model of atmospheric
dynamics for weather predictions. He found that very slight changes in
some parameters lead, after time, to large variations in the results.

Consider, for example, the following damped Duffing equation with van-
ishing linear stiffness:

ẍ + 0.05ẋ + x3 = 7.5 cos(t).

This very equation has been studied by Ueda,1 and the results have
also been reported by many other authors. To show how much the time
history of the system can depend on the initial conditions, two time histories
starting from the conditions x = 3, v = 4 and x = 3.1, v = 4.1 for t = 0
are plotted in Fig. 21.15a. The time histories are initially very similar but,
as times goes on, the differences quickly build up, and after time they do
not look related anymore. Of course, the system is fully deterministic, and
every time a computation is started with exactly the same initial conditions,
identical results are found. However, if the initial conditions are known in

1Y. Ueda, ‘Steady motion exhibited by Duffing’s equation: A picture book of regular
and chaotic motions’, New Approaches in Nonlinear Problems in Dynamics, P.J. Holmes
(Editor), SIAM, Philadelphia, 1980, 311–322.
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an approximate way, completely different results are obtained depending
on the approximation chosen.

A system that shows this behavior is said to be structurally unstable. To
define structural stability, it is possible to verify whether two trajectories
starting in the state space within a sphere of small radius δ tend to remain
close to each other within a sphere with a limited radius or separate. To
show the same behavior in the state projection, the projection of the state
trajectories on the (x,v)-plane of the system studied in Fig. 21.15a is re-
ported in Fig. 21.15b. The heavy dots denote the position at the ends of
each cycle, i.e., the points that enter the Poincaré map.

FIGURE 21.15. (a) Time history and (b) state projection for a system modeled
by the equation ẍ + 0.05ẋ + x3 = 7.5 cos(t) with two slightly different initial
conditions.
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The time history and state projection seem quite irregular, but if the
system is followed for a longer period of time, a particular form of regularity
emerges. After the transient dies out, although the time history does not
show any regularity or periodicity, all points of the Poincaré map settle on
a very complicated geometrical figure that is the attractor of the system.
The attractor resulting from the aforementioned equation, usually referred
to as the Ueda attractor , is shown in Fig. 21.16.

The Ueda attractor is one of the better-studied chaotic attractors. Its
shape is quite complex, and its structure follows a fractal geometry. This is
a general feature of strange attractors. To show the fractal structure, a very
detailed representation must be obtained, which means that the numerical
integration must be carried on for many cycles with sufficient precision.
A great deal of computer time is needed to perform detailed studies on
chaotic vibrations.

In addition to a strange attractor, another characteristic feature of chaotic
motion is the spectrum of the time history. Although the response of a linear
system to a harmonic excitation is mono-harmonic and that of a nonlin-
ear non-chaotic system contains a number of harmonics (usually very few),
when chaotic motion is present a continuous spectrum, like those encoun-
tered in random vibrations, is found.

FIGURE 21.16. Ueda attractor represented as a Poincaré map; picture obtained
following the system through 8,000 cycles.
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Obviously the phenomena are different, because there is nothing random
in chaotic motion. If the same numerical experiment is repeated several
times with exactly the same initial conditions, the same outputs are ob-
tained. And even if the initial conditions are different, once steady-state
chaotic motion is achieved, the same attractor is found. The presence of
a well-defined attractor makes it clear that under the random-like appear-
ance, there is an underlying order.

The power spectral density of the law x(t) shown in Fig. 21.15a is shown
in Fig. 21.17. The motion was followed for many periods, and then a fast
Fourier algorithm was applied on a set of 8,192 points. The fundamental
frequency and some higher harmonics are clearly visible, but the spectrum
is continuous as if broadband noise were present, as is typical for chaotic
vibrations.

The Duffing equation can give way to chaotic response to harmonic exci-
tation not only with the values of the various parameters considered here.
Actually, chaotic motion has been observed with both hardening and soft-
ening systems, with positive, negative, or vanishing linear parts. The pres-
ence of multiple equilibrium positions is then not needed to enable the
occurrence of chaotic vibrations.

What is actually needed for chaotic motion is strong nonlinearity. The
more experimental work, physical and numerical, is performed on chaotic
vibration, the more this type of behavior seems to be a common possibility
for heavily nonlinear systems.

FIGURE 21.17. Power spectral density of the law x(t) shown in Fig. 21.15a
obtained using a fast Fourier algorithm on a set of 8,192 points and Hanning
windowing.
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Much theoretical and experimental work is still needed before chaotic
behavior of mechanical systems can be fully understood and design methods
based on it developed. For now, the study of chaotic systems is mostly a
theoretical issue, pursued by mathematicians and mechanicists with strong
theoretical interests. The author, however, thinks that these studies may,
in the future, supply the basis for applicative studies that will influence
design and structural analysis methods.

The interested reader can find more details on these topics in the many
specialized texts that have been published in the last 20 years. Some of
them are listed in the bibliography.

21.12 Exercises

Exercise 21.1 Consider the quarter-car model studied in Example 9.2. Sub-

stitute the linear spring with a spring with cubic characteristics with the same

stiffness and a nonlinear parameter μ = 400 m−2. Plot the frequency response of

the system for amplitudes of the excitation equal to 10 and 25 mm.

Exercise 21.2 Add a linear viscous damper with damping coefficient c = 200

Ns/m located on the central support to the system studied in Exercise 19.5.

Plot the limit envelope and compute the forced response of the system, using

the same excitation of Exercise 19.5. State whether the system shows the jump

phenomenon.

Exercise 21.3 Repeat the computations of Exercise 19.3 without neglecting

damping.

Exercise 21.4 Consider an oscillator governed by the equation

ẍ + 0.2ẋ − x
(
1 − x2) = 0.3 cos (1.29 t) .

Compute the forced response starting from the initial condition x = 0, ẋ = 0 for

t = 0 using numerical integration. Plot the time history and state-space trajectory

for 20 cycles and plot the Poincarè map for a larger number of cycles.



22
Time Variant and Autoparametric
Systems

A particular class of time-variant systems that has many interesting
applications is that in which the parameters of the system are periodic in
time. In this case the periodic variation of the characteristics of the system
can act as an excitation, the so-called parametric excitation. Time-variant
systems may be linear, and then a solution can be demonstrated to exist
and be unique, or nonlinear. In the latter case their solution is even more
complex than that of the nonlinear systems studied in the previous chap-
ters. Another class of systems is that of autoparametric systems; they have
some characteristics in common with parametrically excited systems, but
their behavior is usually strictly linked with the nonlinear nature of their
mathematical models.

22.1 Linear time-variant systems

All systems studied in the previous sections were modeled using equations
whose homogeneous part did not contain functions of time. There are,
however, many systems of practical importance for which models of this
type do not hold. The simplest time-variant model is a linear system in
which the mass, damping, or stiffness are functions of time. By dividing
the equation by the mass, it is possible to eliminate the dependence on
time of the first term, obtaining an equation of motion of the type

ẍ + p1(t)ẋ + p2(t)x = f(t) . (22.1)
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Up to this point, only two types of excitation were considered, namely
external excitation and self-excitation. The first, studied in several sections
of this book, is due to a forcing function f(t) applied to the system. At least
in linear systems, it does not depend on the generalized coordinates. An
external exciting force supplies energy to the system, from some external
energy source.

Self-excitation is linked with the homogeneous equation of motion and
thus with the very nature of the system. It involves some sort of instability
and requires that either the system is provided with energy that can be used
to excite vibration or it is able to extract energy from the environment.

The simplest case occurs when the stiffness is negative or when the stiff-
ness matrix is negative defined, and an example is the inverted pendulum.
Here the energy is supplied by the gravitational field. Other possibilities
are the presence of a circulatory matrix or of negative damping.

Equation (22.1) may be excited in another way: Even if the external
excitation is set to zero, i.e., if f(t) = 0, the presence of the functions
of time in the homogeneous equation can act as an excitation. Because
this type of excitation acts from within the parameters of the system, it is
usually referred to as parametric excitation.

It can coexist with external excitation and self-excitation.
Equation (22.1) is linear, although its coefficients are not constant, and

its general solution can be obtained by adding a particular solution of
the complete equation to the general solution of the homogeneous equa-
tion. Moreover, any linear combination of the solutions of the homogeneous
equation is itself a solution.

A particular case of time-dependent systems that has a great practical
importance is that of models expressed by linear second-order differential
equation of the type of Eq. (22.1) (or a set of such equations) in which
functions p1(t) and p2(t) are periodic functions of time with period T .

The study of homogeneous equations of this type was published by
Floquet in 1883 and hence is usually referred to as Floquet theory.

Under the only added condition that p1(t) is differentiable with respect
to time, it is possible to demonstrate that the homogeneous equation asso-
ciated to the homogeneous of motion (22.1) can be reduced to the form

ẍ∗ + p(t)x∗ = 0 , with p(t) = p(t + T ) , (22.2)

where

x = x∗e−
1
2

∫
p1(t)dt , p(t) = p2 −

1
4
p2
1 −

1
2
ṗ1.

This means that the free behavior of the damped system can be ob-
tained from that of an undamped system by multiplying the time history
of the latter by an appropriate decaying factor and slightly modifying the
frequency by a change of the stiffness. This clearly holds also for linear
systems with constant parameters.
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In the latter case,

p1(t) =
c

m
, p2(t) =

k

m
, p(t) =

k

m

(
1 − ζ2

)
(22.3)

and
x = x∗e−

1
2

c
m t = x∗e−ζ

√
k
m t .

It is easy to verify that Eq. (22.2)

ẍ∗ + p(t)x∗ =

(
ẍ + 2ζ

√
k

m
ẋ +

k

m
x

)
eζ
√

k
m t = 0 (22.4)

coincides with the usual equation of motion of a linear system multiplied
by eζ

√
k
m t. Since the latter factor is always positive, the two equations

coincide.

22.2 Hill’s equation

Equation (22.2)

ẍ + p(t)x = 0 , with p(t) = p(t + T ) , (22.5)

is usually referred to as Hill’s equation, because it was first studied by Hill
is 1886 in the determination of the perigee of lunar orbit. From Floquet
theory, it follows that the two independent solutions xi(t), whose linear
combinations yield all possible solutions of the homogeneous equation, can
be written as

xi(t) = eαitφi(t) i = 1, 2 , (22.6)

where functions φi(t) are periodic with period T and constants αi can be
complex. From Eq. (22.6) it immediately follows that if the real parts of
constants αi are positive, the solution is unbounded and the behavior of
the system is unstable. If the imaginary part of the same constants is not
vanishingly small, the result is the product of a function with period T
by another function whose period can be different, and then the solution
can be an oscillation, damped or self-excited, whose period can be different
from that of function p(t).

Since function p(t) is periodic with period T , it can be written as a
Fourier series:

p(t) = p0 +
∞∑

i=1

[p1i cos (iωt) + p2i sin (iωt)] , (22.7)

where
ω =

2π

T
. (22.8)
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If only the constant term is considered, the Hill’s equation reduces to the
usual equation of an undamped system with constant parameters.

If the first terms only are considered, stating t = 0 at the instant when p
reaches its maximum, the equation reduces to the Mathieu equation. Using
symbols δ and 2ε for the coefficients of the series for p(t), it can be written
as

ẍ +
[
δ + 2ε cos(ωt)

]
x = 0 . (22.9)

Considering the first two terms in cosine (plus the constant term), the
Whittaker-Hill equation is obtained:

ẍ +
[
A + B cos(ωt) + C cos(2ωt)

]
x = 0 . (22.10)

Approximated solutions can be obtained by writing the solution (22.6)
as a Fourier series truncated at the first n terms:

x(t) = eαt

{
a0 +

n∑
k=1

[ak cos (kωt) + bk sin (kωt)]

}
(22.11)

or

x(τ) = eαt
n∑

k=−n

φkeikt (22.12)

and then obtaining the 2n + 1 unknowns ak and bk (or φk) from a set of
2n + 1 linear algebraic equations.

22.3 Pendulum on a moving support:
Mathieu equation

Consider a pendulum suspended to a point A that can move with a pre-
scribed law (Fig. 22.1). To obtain the equation of motion through the La-
grange equation, the position and the velocity of point P must be computed:

{
x
y

}
P

=
{

xA + l sin(θ)
yA − l cos(θ)

} {
ẋ
ẏ

}
P

=
{

ẋA + lθ̇ cos(θ)
ẏA + lθ̇ sin(θ)

}
.

(22.13)
The kinetic and potential energies are immediately obtained:

T = 1
2m

{
ẋ2

A + ẏ2
A + l2θ̇

2
+ 2θ̇l

[
ẋA cos(θ) + ẏA sin(θ)

]}
,

U = mg
[
yA − l cos(θ)

]
.

(22.14)

Lagrange equation thus yields the equation of motion

θ̈ +
ẍA

l
cos(θ) +

g + ÿA

l
sin(θ) = 0 . (22.15)
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FIGURE 22.1. Pendulum on a moving support: sketch of the system.

Equation (22.15) is a nonlinear equation with parametric excitation.
If the amplitude of the motion is small, it can be linearized, obtaining

θ̈ +
g + ÿA

l
θ = − ẍA

l
. (22.16)

If the supporting point moves only in the x-direction, i.e., in the same
direction in which the pendulum moves for small movements about the
equilibrium (vertical) position, the equation of motion becomes

θ̈ + ω2
pθ = − ẍA

l
, (22.17)

where

ωp =
√

g

l
(22.18)

is the natural frequency of the small oscillations of the pendulum. The
excitation due to motion of the supporting point has the usual effects that
can be easily computed using the techniques seen in Chapter 6.

If the supporting point moves only in the y-direction the equation of
motion is

θ̈ +
g + ÿA

l
θ = 0 . (22.19)

Remark 22.1 The direction in which the supporting point moves is at
right angle to the motion of the pendulum in the equilibrium position. If the
pendulum could move along a straight line, the two motions are uncoupled
and no excitation would occur. The motion of the pendulum occurs how-
ever along an arc of a circle and thus it moves slightly also in y-direction,
so that there is some excitation. From the equation it is clear that this
excitation grows with increasing θ, or, better, sin (θ) if no linearization is
performed.
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The motion of the supporting point in y-direction thus provides a para-
metric excitation. The homogeneous equation (22.19) is a Hill’s equation.

If the motion in the y-direction of the supporting point is harmonic with
amplitude A and frequency ω

yA = A cos(ωt) ,

remembering that the amplitude of the acceleration is equal to that of the
displacement multiplied by −ω2, without loss of generality the equation of
motion can be written as

θ̈ +
[
ω2

p − A

l
ω2 cos(ωt)

]
θ = 0 . (22.20)

Introducing the nondimensional parameters

τ =
ωt

2
, δ =

(
2ωp

ω

)2

, ε = −2A

l
,

it becomes a Mathieu equation in its standard form (22.9)

d2θ

dτ2
+

[
δ + 2ε cos(2τ)

]
θ = 0. (22.21)

Its solution is of the type of equation (22.6) where function φ(τ) is pe-
riodic with period equal to π and, consequently, can be expressed by the
following Fourier series

φ(τ) =
∞∑

k=−∞
φke2ikτ (22.22)

and then

θ(τ) = eατ
∞∑

k=−∞
φke2ikτ =

∞∑
k=−∞

φke(α+2ik)τ . (22.23)

Remembering that

2 cos(2τ) = e2iτ + e−2iτ

and introducing the series expressing the solution into the equation of mo-
tion (22.21), the latter yields

∞∑
k=−∞

φk

[
(α + 2ik)2 + δ

]
e(α+2ik)τ +

+ε

∞∑
k=−∞

φk

{
e[α+2i(k+1)]τ + e[α+2i(k−1)]τ

}
= 0 .

(22.24)
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By separately equating the various terms of Eq. (22.24), a set made of
an infinity of equations is obtained:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . . . . . . . . . . . . . . . .

. . . (α − 4i)2 + δ ε 0 0 0 . . .

. . . ε (α − 2i)2 + δ ε 0 0 . . .

. . . 0 ε α2 + δ ε 0 . . .

. . . 0 0 ε (α + 2i)2 + δ ε . . .

. . . 0 0 0 ε (α + 4i)2 + δ . . .

. . . . . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

. . .
φ−2

φ−1

φ0

φ1

φ2

. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0. (22.25)

Equation (22.25) can be used to compute the exponent α of Eq. (22.6) by
equating to zero the determinant of the matrix of the coefficients. Such a
determinant, which has an infinity of rows and columns, is usually referred
to as Hill’s infinite determinant. Although it is impossible to obtain an exact
solution of this eigenproblem, approximate solutions are readily obtainable
by only considering the central part of the determinant. For example, if
only the central part with dimension 3 × 3 is retained, the constant term
and the fundamental harmonic of the series in Eq. (22.22) are computed.
This will be referred to as first approximation.

The second approximation, allowing the computation of the second har-
monic of the series, comes from the 5×5 determinant obtained considering
all terms written explicitly in Eq. (22.25).

Hill’s determinant can be also used to assess the stability of the motion.
The motion is unstable, i.e., the amplitude grows indefinitely in time, if the
real part of exponent α is positive. The motion can be stable or unstable
depending on the values of parameters δ and ε: It is possible to plot the
boundary of the regions in which an unstable behavior is present on the
(δ,ε)-plane simply by setting to zero the real part of α. When α = 0 an
undamped oscillation with nondimensional period equal to π is obtained,
while when α = ±i the undamped motion has a period 2π.

By introducing these values of α, the equation stating that Hill’s deter-
minant is equal to zero becomes an eigenproblem in δ, if ε is stated, or in ε
if δ is stated. The hatched regions in Fig. 22.2a are the regions of instability
in the (δ,ε)-plane obtained from the fourth-order approximation (determi-
nant whose size is 9 × 9). These results are obviously only approximate,
because a reduced form of Hill’s determinant has been used.

When δ is negative the motion is almost always unstable, except for a few
combinations of δ and ε. A negative δ physically means that the pendulum
is inverted and the values of ε leading to stability correspond to values of
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FIGURE 22.2. Regions of instability in the (δ,ε)-plane for Mathieu equation: (a)
without damping; (b) with damping.

the parametric excitation causing the pendulum to be stable in its inverted
position.

Remark 22.2 High values of δ correspond to low forcing frequencies: to
stabilize the inverted pendulum δ must be quite low and hence high forcing
frequencies are required. Also the values of ε required for stabilization are
high, i.e., the supporting point must move at fairly high frequency with large
amplitudes. The lower the frequency, the larger is the required amplitude.

When δ is positive, i.e., the pendulum is in its normal position, the fields
of instability are very narrow unless the parametric excitation ε is quite
large. There are however values of δ for which the instability conditions
reach the ε axis: Instability occurs for very small values of the excitation,
i.e., the system becomes self-excited (autoparametric excitation).

The first value of δ for which this occurs is δ = 1, i.e.,

ω = 2ωp .

The frequency of the excitation is twice the natural frequency of the
pendulum, i.e., the pendulum performs two oscillations in a cycle of the
forcing frequency.

Remark 22.3 This kind of resonance could be expected, since the pendu-
lum moves up and down twice for each oscillation cycle; thus at ω = 2ωp

there is a sort of resonance between the vertical motion of the supporting
point and the oscillation of the pendulum.

Other resonant conditions occur when

δ = 4, 9, ... = i2 for i = 2, 3, ... .
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Including also the previously seen value, the values of ω for autopara-
metric instability are

ω =
2ωp

i
for i = 1, 2, 3, ... . (22.26)

If damping is not neglected, the linearized homogeneous equation of mo-
tion of the pendulum in nondimensional form is

d2θ

dτ2
+ 2ζ

dθ

dτ
+ [δ + 2ε cos(2τ)]θ = 0 , (22.27)

where

ζ =
Γ

ml2ω
= ζ∗

√
δ and ζ∗ =

c

2ml2ωp
.

By using the transformation seen for Eq. (22.2), Eq. (22.27) can be
reduced to a Mathieu equation in standard form. The presence of damping
reduces the growth rate of the oscillations from α to α − ζ and modifies
the natural frequency from

√
δ to

√
δ − ζ2. The regions of instability for

ζ = 0.1, computed using the fourth approximation of Hill’s determinant,
are plotted in Fig. 22.2b. The effect of damping is that of reducing the
instability regions, particularly for low forcing frequencies, i.e., high values
of δ.

There are many different approaches, all approximate, to the study of
the Mathieu and Hill equations. Only that based on Hill’s determinant
is shown here, because it is a very suitable tool for the study of systems
with many degrees of freedom and is very easily implemented on digital
computers.

Example 22.1 Consider a pendulum whose length is 0.5 m, connected to a
support that can move in a vertical direction (along the y-axis in Fig. 22.1).
Using the results obtained from the Mathieu equation, choose the values of the
frequency and the amplitude of the harmonic time history of the displacement
of the supporting point so that the inverted vertical position of the pendulum is
stable. Verify this stability by numerically integrating the equation of motion
of the pendulum with initial conditions corresponding to a displacement from
the vertical of 0.05 rad (about 2.86◦).
At first the relevant portion of the stability map of Fig. 22.2a is plotted in
Fig. 22.3a. A point lying within the stability zone is chosen (point A, with
δ = −0.1, ε = 0.75). The frequency and the amplitude of the motion of the
supporting point are immediately computed (note that g = −9.81 m/s2, as the
pendulum is inverted):
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FIGURE 22.3. (a) Boundary of the stability zone for the inverted pendulum
in the (δ, ε)-plane (Fig. 22.2a); (b) time histories of the response of the inverted
pendulum with and without parametric excitation supplied by the vertical motion
of the supporting point.

ω =

√
4g

lδ
= 28 rad/s = 4.45 Hz ; |A| =

lε

2
= 0.188 m .

The equation of motion of the pendulum, without making any small oscillations
assumption, is then

θ̈ −
[
19.62 + 294.78 cos(28t)

]
sin(θ) = 0 .

The result of the numerical integration of the equation of motion of the system,
with initial conditions θ = 0.05, θ̇ = 0, is reported in Fig. 22.3b, with the time
history computed without taking into account parametric excitation. From the
figure, it is clear that the prescribed motion of the supporting point allows the
inverted pendulum to oscillate about the vertical position while it falls off if
the supporting point is fixed.

22.4 The elastic pendulum

The pendulum on a moving support is an interesting example of a system
in which the excitation, which is essentially an external excitation since
it is due to a motion of the supporting point imposed from outside, acts
through the variability of the coefficients of the equation of motion. If the
amplitude of the oscillations is small, the equation of motion is linear and
can be written in the form of a Mathieu equation in its standard form.

In many cases a system can undergo parametric excitation without the
need of external excitation. The simplest of these autoparametric systems1

is the elastic pendulum, i.e., a pendulum in which the suspension wire has
been replaced by a spring.

1See A. Tondl, T. Ruijgrok, F. Verhulst, R. Nabergoj, Autoparametric Resonance in
Mechanical Systems, Cambridge University Press, 2000.
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Assume that the length at rest of the pendulum under the effect of the
weight of mass m is l and that the stiffness of the spring is k.

The position of point P (Fig. 22.4a) is

(
P − O

)
=

{
(l + x) sin (θ)

− (l + x) cos (θ)

}
, (22.28)

where x is the stretching of the spring and θ is the rotation of the pendulum.
The velocity of point P is

{
ẋ
ẏ

}
P

=
{

ẋ sin (θ) + θ̇ (l + x) cos (θ)
−ẋ cos (θ) + θ̇ (l + x) sin (θ)

}
. (22.29)

The kinetic energy of the system is thus

T =
1
2
m

[
ẋ2 + θ̇

2
(l + x)2

]
. (22.30)

Since in the static equilibrium conditions used to define the stretching of
the spring x, the spring has already a deformation equal to mg/k, the sum
of the gravitational and elastic potential energies is

FIGURE 22.4. Elastic pendulum: sketch of the system: (a) time histories (c) and
(d) trajectory (b) of point P for a system with α = 0.5, starting from a position
with x/l = 0.4 and θ = 0.01 with zero speed.
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U = −mg (l + x) cos (θ) +
1
2
k

(
x +

mg

k

)2

. (22.31)

By introducing the kinetic and potential energies into the Lagrange equa-
tions and performing the relevant derivatives, the equations of motion are
found: ⎧⎪⎨

⎪⎩
ẍ − θ̇

2
(l + x) + g [1 − cos (θ)] +

k

m
x = 0

θ̈ (l + x)2 + 2θ̇ẋ (l + x) + g (l + x) sin (θ) = 0 .

(22.32)

By introducing the natural frequencies of the spring and the pendulum,
the nondimensional displacement and time and the ratio between the nat-
ural frequencies

ωs =

√
k

m
, ωp =

√
g

l
, x∗ =

x

l
, τ = ωst , α =

ωp

ωs
, (22.33)

the equations of motion become
⎧⎪⎨
⎪⎩

x∗′′ − θ′2 (1 + x∗) + α2 [1 − cos (θ)] + x∗ = 0

θ′′ + 2θ′x∗′ 1
1 + x∗′ +

α2

1 + x∗′ sin (θ) = 0 ,
(22.34)

where (′) and (′′) indicate the first and second derivatives with respect to
the nondimensional time τ .

If the equations are linearized
{

x∗” + x∗ = 0
θ” + α2θ = 0 (22.35)

they uncouple and reduce to the those of a spring–mass system and of a
pendulum.

Remark 22.4 The reason of this uncoupling is clear: in the linear case
the spring is involved in the motion of point P which is always in a perpen-
dicular direction to that of the pendular motion: the two motions cannot
influence each other. This is different from what is seen for the pendulum
on a moving support, where the two directions are perpendicular only for
θ = 0.

Even if the amplitude of the oscillations is small, the interaction is thus
essentially a nonlinear phenomenon, due to the terms in θ′2 and θ′x∗′.
Stating that θ is small, it is possible to obtain a semi-linearized equation
of motion: It is however a nonlinear equation.

Like all homogeneous equations, Eq. (22.34) has a trivial solution, with
x = 0 and θ = 0.
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There is also a semitrivial solution, with θ = 0 (for all values of time,
and then also θ′ = 0 and θ′′ = 0) and x �= 0. Stating θ = 0 in the equations
of motion, the first reduces to

x∗′′ + x∗ = 0 (22.36)

while the second one is always satisfied. The motion is that of a spring–mass
system that moves vertically, without oscillating.

On the contrary a semitrivial solution with x = 0 and θ �= 0, i.e., a
pendular oscillation of the system without deformations of the spring, does
not exist. Introducing x = 0 into the equation of motion it follows that⎧⎨

⎩
−θ′2 + α2 [1 − cos (θ)] = 0

θ′′ + α2 sin (θ) = 0 .
(22.37)

This equation has no solution, except for the trivial one θ = 0.
Apart from the trivial and the semitrivial solutions, there are other

solutions that cannot be obtained in closed form since the equations are
essentially nonlinear.

Of particular interest is the case with α = 1/2, i.e, with a natural fre-
quency of the spring system equal to twice that of the pendulum. A sort
of nonlinear beat takes place: The energy swaps from the pendulum to
the spring, as shown in Fig. 22.4b–d. The waveforms show clearly that the
system behaves in a nonlinear way.

22.5 Autoparametric systems

Usually vibrating systems constituted by two or more subsystems which
can influence each other to the point that one may destabilize the other are
called autoparametric systems. The conditions for this destabilization to oc-
cur are referred to as autoparametric resonance. In most cases they are non-
linear, and hence the term ‘destabilize’ must be interpreted with caution:
The system may be unstable in the small, but with growing
amplitude a stable limit cycle or even a subsequent decrease of the am-
plitude may occur.

This is the case of the elastic pendulum studied in the previous sec-
tion: When the autoparametric resonance occurs, the motion of the spring
(involving mostly coordinate x) destabilizes the pendular motion (involving
coordinate θ), causing its amplitude to grow at the expense of the spring
motion, as seen in Fig. 22.4b and c. With growing amplitude this instability
is reduced and then the pendular motion starts reducing again, giving way
to what has been called a nonlinear beat.

Since it must be made of at least two subsystem, an autoparametric
system must have at least two degrees of freedom. Like in the case of the
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elastic pendulum, the coupling between the two subsystems is strictly linked
with nonlinearities.

22.5.1 Pendulum on elastic support: free response

A typical autoparametric system is the pendulum on a mass–spring–damper
system shown in Fig. 22.5. Here the damped mechanical oscillator is the
principal system, while the pendulum is the secondary system. The first
moves in y-direction, while for small amplitudes the pendulum moves in
x-direction. As typical for autoparametric systems, the coupling is caused
by the nonlinearities and may have a large effect on its behavior.

The position and velocity of point P are

(
P − O

)
=

{
l sin (θ)

y − l cos (θ)

}
, (22.38)

{
ẋ
ẏ

}
P

=
{

θ̇l cos (θ)
ẏ + θ̇l sin (θ)

}
, (22.39)

where y is the y-coordinate of point C.
Operating as usual, the Lagrangian of the system is

T − U =
1
2
mtẏ

2 +
1
2
m

[
l2θ̇

2
+ 2lẏθ̇ sin (θ)

]
− mtgy+

+mgl cos (θ) − 1
2
k

(
y − mtg

k

)2

, (22.40)

FIGURE 22.5. Pendulum on an elastic support. Sketch of the system.
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where
mt = m + M .

Owing to the presence of the two dampers, a Rayleigh dissipation func-
tion can be defined

F =
1
2
cẏ2 +

1
2
cpθ̇

2
. (22.41)

The equation for free motion is
{

mtÿ + mlθ̈ sin (θ) + ml2θ̇
2
cos (θ) + cẏ + ky = 0

ml2θ̈ + mlÿ sin (θ) + mgl sin (θ) + cpθ̇ = 0 .
(22.42)

Again, all coupling disappears if the system is linearized. The nonlinear
system has a trivial solution, with y = 0 and θ = 0, and a semitrivial
solution, with θ = 0 and y the solution of the equation

mtÿ + cẏ + ky = 0 , (22.43)

i.e., the usual equation of motion of a spring–mass–damper system.
Nontrivial solutions can be studied by numerical integration, as seen for

the elastic pendulum.

Remark 22.5 No free unstable motion is possible, since no energy source
able to compensate for energy dissipation is present.

22.5.2 Pendulum on elastic support: forced response

Assume that a force
F = F0 cos (ωt)

acts on mass M in y-direction. By introducing the following nondimensional
parameters

ω1 =
√

k

mt
, ωp =

√
g

l
, α =

ωp

ω1
,

μ =
m

mt
, ζ1 =

c

2
√

kmt

, ζp =
cp

2μl2
√

kmt

τ = ωt , f0 =
F0

kl
, β =

ω1

ω
, y∗ =

y

l

(now the nondimensional time is related to the frequency of the excitation
and not to the natural frequency of the system) the equations reduce to
the nondimensional form:⎧⎨

⎩
y∗′′ + μθ′′ sin (θ) + μθ′2 cos (θ) + 2ζβy∗′ + β2y∗ = β2f0 cos (τ)

θ” + y∗′′ sin (θ) + 2ζpβθ′ + α2β2 sin (θ) = 0 .
(22.44)
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The pendulum acts as a sort of dynamic vibration absorber and, when
tuned, can effectively reduce the amplitude of vibration of the main system.
Tuning here occurs when α = 1/2, i.e., when the pendulum performs one
oscillation in the time the main systems perform two oscillations. This is
fairly obvious, since the pendulum performs two up–down cycles in each
oscillation, while the main system performs only one.

However, here the coupling is nonlinear and thus the effectiveness of the
pendulum depends on the amplitude. When the motion of the mass is small,
the pendulum does not move, and the solution is again a semitrivial solution
with θ = 0 (although y∗ �= 0). At a certain amplitude the pendulum starts
being effective and absorbs a large part of the vibration energy, subtracting
it from the main system. This behavior is often referred to as vibration
quenching.

The stability of the trivial, semitrivial, and nontrivial solutions is studied
in the book by A. Tondl et al.2 mainly on the base of small displacements
assumptions.

Here only an example is reported to show the phenomenon; owing to the
strong nonlinearity of the system, the study was performed using numerical
integration in time.

Assume the following values of the relevant parameters:

α =
1
2

, μ = 0.1 , ζ = 0.02 , ζp = 0.04 , f = 0.02 .

The forcing function is applied for 500 units of the nondimensional time,
i.e., for about 80 cycles of the forcing function, starting from

y∗ = 0.01 , θ = 0.02 , y∗′ = 0 , θ′ = 0 .

The position is slightly deviated from the position at rest, since starting
from exactly θ = 0 would cause a motion following the semitrivial solution
(in the numerical simulation no perturbation is present if not explicitly
introduced).

Various values of β spanning from 10 to 0.5 (i.e., of the forcing frequency,
from ω/ω1 = 0.1 to ω/ω1 = 2) were introduced. The results for β = 1, i.e.,
for a resonant excitation on the main system, are reported in Fig. 22.6a, b,
and d. At resonance, the amplitude starts growing toward the amplitude
of the system without pendulum (y∗ = 0.5), but after a number of periods
(about 8) the pendulums kicks in and starts absorbing (and dissipating)
energy reducing the amplitude of the main system. A steady-state solution
with an amplitude about 1/5 of that of the system without pendulum is
eventually reached.

2A. Tondl, T. Ruijgrok, F. Verhulst, R. Nabergoj, Autoparametric Resonance in
Mechanical Systems, Cambridge University Press, Cambridge, 2000.
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FIGURE 22.6. Pendulum on a spring–mass–damper system. Time history of the
oscillations of the main system (a) and of the pendulum (b), trajectory of point
P (d) and dependence of the amplitude of the motion of the main system on the
forcing frequency (c). Data: α = 0.5, μ = 0.1 , ζ = 0.02 , ζp = 0.04, f = 0.02 .
Resonant conditions, except for (c).

Remark 22.6 Very large oscillations of the pendulum are obtained; in
some cases the pendulum performs even full revolutions about its suspension
point. Clearly in this case no semi-linearized solutions could be used.

The steady-state amplitude for different values of the forcing frequency
(or better, of ω/ω1) is reported in Fig. 22.6c. Outside resonance the ampli-
tude of the response is that of the system without pendulum: The semitriv-
ial solution is stable and the presence of the pendulum has no effect. In
quasi-resonant or resonant conditions the quenching phenomenon occurs:
the pendulum absorbs and then dissipates much of the energy (thanks to
its damper) reducing the amplitude of oscillation of the main system.

This effect is quite sensitive to the parameters of the system. The results
obtained for β = 1 with the same values of the parameters except for ζp

are shown in Fig. 22.7a.
Quenching occurs with moderate damping of the pendulum. If it is in-

creased the motion of the pendulum is reduced and less energy is transferred
from the main system with a resulting larger amplitude of the motion of
the latter. With very little pendulum damping the amplitude of its motion
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FIGURE 22.7. Dependence of the amplitude of the system of Fig. 22.7 on the
damping of the pendulum (a) and on the amplitude of the forcing function (b).
Nondimensional plot.

is increased, but the amplitude of the vibration of the main system remains
low.

To show the strong nonlinearity of the phenomenon, the dependence of
the amplitude of the response on the amplitude of the force is shown in
Fig. 22.7b. In the case of the linear system the plot is a straight line. In this
case, the quality factor is 25 and hence the nondimensional displacement is
25 times the nondimensional force. With the pendulum, at low amplitudes
quenching does not occur, since the pendulum does not move (semitrivial
solution). At a certain amplitude quenching starts, and the amplitude of
the response is almost independent from the amplitude of the excitation:
by increasing the energy introduced into the system, the energy supplied to
the pendulum increases, but the energy ending in the main system is almost
constant. At a certain point the pendulum is unable to absorb more energy,
and the amplitude of the response of the main system starts growing again.
At very large amplitudes, quenching becomes again marginal.

Remark 22.7 What has been shown for a pendulum on a single-degree-of-
freedom system can be extended to multi-degrees-of-freedom systems, pro-
vided the oscillation of the pendulum occurs in a direction perpendicular to
that of the vibration of the supporting point.

It is possible to conclude that a pendulum oscillating in the same di-
rection of the vibration of the supporting point is a standard dynamic vi-
bration absorber, and if the amplitude of the oscillations is small, a linear
phenomenon occurs. Tuning occurs when the two frequencies are equal.

On the contrary, if the oscillation is at right angles with the vibration
of the supporting point, an autoparametric resonance occurs and the phe-
nomenon is strongly nonlinear even in the case of small oscillations. Tuning
occurs when the frequency of the pendulum is half the frequency of the main
system.



22.6 Exercises 575

22.6 Exercises

Exercise 22.1 A dynamometric test rig for rockets has a stiffness k = 800

kN/m and a damping c = 100 Ns/m. A rocket with a mass of m0 = 2,000 kg is

fired on it. The rate at which the fuel is burnt is assumed to be constant ṁ = 10

kg/s, the total amount of fuel is mf = 1,600 and the exhaust velocity is v = 2,000

m/s. Compute the time history of the system for a time equal to 120% of the burn

time of the rocket.

Exercise 22.2 Plot the map of Fig. 22.2b, for ζ = 0.05.

Exercise 22.3 Repeat the computation of the time history of the system studied

in Example 22.1 (Fig. 22.3b), comparing the results obtained using the linearized

and nonlinear equation of motion. Repeat the comparison assuming an initial

displacement 10 times larger.

Exercise 22.4 Consider the system studied in Example 22.1 working at point

A in Fig. 22.3a. Compute the eigenvalues α of the system taking into account a

different number of harmonics, from 1 to 4.



23
Elementary Rotordynamics:
The Jeffcott Rotor

The simplest model for understanding the vibrational behavior of rotating
machinery is the so-called Jeffcott rotor, consisting of a point mass lo-
cated on a massless elastic, and possibly damped, shaft. Several peculiar
features of the vibrational behavior of rotors, like the unbalance response,
self-centering, and the roles of rotating and nonrotating damping, can be
studied using this much simplified model.

23.1 Elementary rotordynamics

While usually structures are stationary with respect to an inertial frame of
reference, apart from the vibratory motion studied by structural dynamics,
many machines contain rotating elements that may vibrate owing to their
elasticity and inertia. Rotating bodies and structures are usually defined
rotors.

Following the ISO definition, a rotor is a body suspended through a set
of cylindrical hinges or bearings that allow it to rotate freely about an axis
fixed in space. Transmission shafts, parts of reciprocating machines that
have only rotational motion, and many other rotating machine elements can
thus be considered rotors. If no reference is made to the type of supports
or their existence, space vehicles or celestial bodies rotating about an axis
whose direction is constant can also be regarded as rotors, at least for some
features of their behavior.
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Remark 23.1 While rotors on fixed bearings, or fixed rotors, are studied
under the assumption that the spin speed is imposed (usually is constant),
isolated, or free, rotors are governed by the conservation of linear and an-
gular momenta. It is possible to show that under the assumption of small
displacements and rotations the two assumptions coincide.

The parts of the machine that do not rotate will be referred to with the
general definition of stator.

Some simplifications that allow the linearization of the mathematical
model of rotors can be made. The rotor has, in the undeformed configu-
ration, a well-defined and fixed rotation axis, which coincides with one of
the baricentrical principal axes of inertia, if the rotor is perfectly balanced.
Actually, this is only approximately true, but the unbalance, i.e., the devi-
ation from this ideal condition, is usually small. The displacement of the
rotational axis from its nominal position due to the deformations of the sys-
tem is also assumed to be small. The two assumptions of small unbalance
and small displacement allow the linearization of the equations of motion
in a way consistent with what was seen for the case of the dynamics of
structures where similar small-displacement assumptions were required to
obtain linear equations of motion.

Some cases that, strictly speaking, could not be studied using the afore-
mentioned assumptions can still be dealt with in the same way. Consider,
for example, the rotor of an aircraft turbojet during maneuvered flight. The
direction of the axis of the rotor changes continuously in time, and no small-
angle assumption can be considered for this motion. However, the motion
of the rotor can be studied in a reference frame that is fixed to the aircraft,
provided that the motion of the latter can be considered independent of the
dynamic behavior of the first and the related inertia forces are added. This
way of separating the problem into its dynamic and quasi-static parts is
possible if the characteristic times of the different phenomena under study
are widely different. In the example given earlier, this is clearly the case if
the frequencies that characterize the motion of the rotor of the turbine with
respect to the aircraft are of several Hertz (periods of fractions of seconds),
while the rotations of the airframe have characteristic times of the order
of several seconds. On the contrary, the seismic actions on the rotor of a
machine in a building can have frequencies of the same order of magnitude
as those that characterize the rotor itself, and the problem may have to be
studied without any uncoupling being possible.

Another common assumption is that of axial symmetry. The dynamic
study of an axi-symmetrical rotor is greatly simplified and is usually per-
formed using a nonrotating reference frame. If, on the contrary, the rotor
cannot be considered axially symmetrical, the study becomes very compli-
cated, unless an axial symmetry assumption can be made on the nonrotat-
ing parts of the system. In the latter case, a reference frame that rotates at
the angular velocity of the rotor can be used and simplified equations can
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be obtained. If both stator and rotor are isotropic with respect to the ro-
tation axis, very simple models can be devised. In these simple models the
rotor is usually modeled as a beam-like structure, on which concentrated
mass elements, sometimes with their moments of inertia, are located.

23.2 Vibrations of rotors: the Campbell diagram

As already stated, a rotor is a body that is free to rotate about a well-
defined axis. Usually the dynamic study of rotors is performed under the
assumption that the angular velocity about the axis of rotation, usually re-
ferred to as spin speed, is constant, at least in its average value. Because the
natural frequencies of a deformable rotor, or more generally, of a machine
that contains a rotor, can depend on the spin speed, the dynamic behavior
of such systems is usually summarized by a plot of the natural frequencies
as functions of the rotational speed.

Because in many cases the frequencies of the exciting forces also depend
on the speed, they can be reported on the same plot, obtaining what is
generally known as a Campbell diagram. If the dynamic behavior of the
system can be described in terms of complex frequencies, the decay rate
plot , in which the decay rates are reported as functions of the spin speed,
can be obtained together with the Campbell diagram. Alternatively, the
frequency can be plotted against the decay rate, obtaining what is generally
referred to as a roots locus .

There are cases in which, in spite of what was said earlier, the natural
frequencies are constant with respect to the rotational speed: The Campbell
diagram in this case is made of horizontal straight lines.

Remark 23.2 The Campbell diagram can be plotted only in the case of
linear systems, because only in this case does the very concept of natural
frequencies apply. However, in the case of nonlinear systems, the Campbell
diagram of the linearized system may yield important information on the
behavior of the system.

Example 23.1 A case in which the natural frequencies of the system are

strongly influenced by the spin speed is that of the rotating pendulum, a pen-

dulum attached to the outer radius of a disc rotating at a constant angular

velocity (Fig. 23.1a).

As the angular velocity Ω of the disc is imposed, the system only has 2 degrees

of freedom, and angles θ (between the projection of line PC on the plane of

the disc and radius OC) and φ (between line PC and the mentioned plane)

can be assumed to be generalized coordinates.
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FIGURE 23.1. Rotating pendulum. (a) Sketch of the system and generalized
coordinates, (b) Campbell diagram, (c) situation in the xy-plane, (d) situation
in a plane containing the z-axis.

All other force fields except the centrifugal field are neglected.

The position of point P is

(P-O) =

⎧⎨
⎩

r cos(Ωt) + l cos(φ) cos(Ωt + θ)
r sin(Ωt) + l cos(φ) sin(Ωt + θ)

l sin(φ)

⎫⎬
⎭ .

By differentiating the expressions of the coordinates with respect to time, the
velocity of point P is readily obtained

	VP=

⎧⎨
⎩

−Ωr sin(Ωt) − φ̇l sin(φ) cos(Ωt + θ) − l(Ω + θ̇) cos(φ) sin(Ωt + θ)

Ωr cos(Ωt) − φ̇l sin(φ) sin(Ωt + θ) + l(Ω + θ̇) cos(φ) cos(Ωt + θ)

φ̇l cos(φ)

⎫⎬
⎭ .

The kinetic energy of the mass located in point P is simply

T =
1
2
m|�VP|2 =

1
2
m

[
Ω2r2 + φ̇

2
l2 + l2(Ω + θ̇)2 cos2(φ)+

−2Ωrlφ̇ sin(φ) sin(θ) + 2Ωrl(Ω + θ̇) cos(φ) cos(θ)
]
.
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The equations of motion can be easily obtained by resorting to Lagrange equa-
tions:

{
lθ̈ cos2(φ) − 2l(Ω + θ̇)φ̇ cos(φ) sin(φ) + Ω2r cos(φ) sin(θ) = 0,

lφ̈ + l(Ω + θ̇)2 cos(φ) sin(φ) + Ω2r sin(φ) cos(θ) = 0 .

The equations of motion are nonlinear, but can be linearized in the study of

the small oscillations of the pendulum about the static equilibrium position

{
lθ̈ + Ω2rθ = 0,

lφ̈ + Ω2(r + l)φ = 0 .

The linearized equations can also be obtained directly from an expression of

the kinetic energy truncated after quadratic terms. By introducing the series

for the sine and cosine and neglecting products of the generalized coordinates

in which terms of order greater than two are contained, the kinetic energy can

be written as

T =
1

2
m

[
Ω

2

(r + l)2+φ̇
2
l2+θ̇

2
l2−Ω2l(r + l)φ2−Ω2rlθ2+2Ωl(r + l)θ̇

]
.

The expression of the kinetic energy can be subdivided into three terms:

T0 =
1
2
m

[
Ω2(r + l)2 − Ω2l(r + l)φ2 − Ω2rlθ2

]

is independent of the generalized velocities.

Apart from a constant term, whose derivatives are nil, it yields the so-called

geometric stiffness terms in the equation of motion. As usual in rotating sys-

tems, they constitute a centrifugal stiffening and are proportional to the square

of the spin speed:

T1 = mΩl(r + l)θ̇

is linear in the generalized velocities. However, this term is independent of the

displacements, and its derivatives in the equations of motion are nil; there is

no gyroscopic term in the equations of the rotating pendulum:

T2 =
1
2
m

[
φ̇

2
l2 + θ̇

2
l2

]

is quadratic in the generalized velocities and yields the inertia terms of the

equations of motion, which are also present in natural systems.

The motion in the rotation plane xy is uncoupled, within the validity of the

linearization of the equations of motion, from the motion in axial direction z.

The former is the equation of motion of a pendulum whose length is l within

a constant force field whose acceleration is rΩ2, and the latter is the equation

motion of the same pendulum within a constant force field whose acceleration

is (r + l)Ω2. The natural frequencies of the motions outside and within the

rotation planes are, respectively,
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ω1 = Ω

√
1 +

r

l
, ω2 = Ω

√
r

l
.

The Campbell diagram, shown in Fig. 23.1b for the case in which r = l, is then
made of two straight lines. A simple explanation of the different behaviors of
the system in a plane containing the axis of rotation and a plane perpendicular
to it (xy-plane) is shown in Fig. 23.1c and d. In the former, the restoring force
acting on the pendulum in a direction perpendicular to line PC is

Fc sin (φ) ≈ mΩ2(r + l)φ .

In the xy-plane the restoring force is

Fc sin (θ − α) ≈ mΩ2(r + l)(θ − α) .

As α ≈ θl/(r + l), the restoring force is ≈ mΩ2rθ.
The analysis reported here shows a simple case in which the natural frequency
of the system depends on the angular velocity. It also shows how the cylindrical
symmetry of the centrifugal field induces a sort of anisotropy into the system:
The behavior in the xy-plane is different from that in any plane containing the
axis of rotation. The rotating pendulum also has some important technological
applications and will be studied again when dealing with damping of torsional
vibration.

23.3 Forced vibrations of rotors: critical speeds

Often rotors are subjected to forces that vary in time, and sometimes their
time history is harmonic. This is the case, for example, of forces due to the
unbalance of the rotor itself, which can be described as a vector rotating
with the same angular speed as the rotor and whose components in the fixed
reference frame vary harmonically in time with circular frequency equal
to the rotational speed Ω. In other cases the time history is less regular
but, if it is periodical, can always be represented as the sum of harmonic
components. In the case of rotors there are also, however, instances in which
the forcing functions can be described only in statistical terms.

In the first two cases the frequency of the forcing function or of its har-
monic components is often linked with the spin speed of the rotor and can
be plotted on the Campbell diagram. In the case of the excitation due to
unbalance, for example, the forcing frequency can be represented on the
(ωΩ)-plane by the straight line ω = Ω, i.e., by the bisector of the first
quadrant. In this case, the excitation is said to be synchronous . The re-
lationship linking the frequency of the forcing function to the spin speed
is often of simple proportionality and can be represented on the Campbell
diagram by a straight line through the origin.

The spin speeds at which one of the forcing functions has a frequency
coinciding with one of the natural frequencies of the system are usually
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FIGURE 23.2. Graphical representation of the critical speeds in the case in which
the forcing frequencies are proportional to Ω while the natural frequencies are
constant.

referred to as critical speeds and can be identified on the Campbell diagram
by intersecting the curves related to the natural frequencies with those
related to the forcing frequencies. A case in which the natural frequencies
are independent of the speed and the forcing frequencies are proportional
to Ω is reported in Fig. 23.2.

Not all the intersections on the Campbell diagram are equally dangerous.
If the frequency of a forcing function coincides with the natural frequency of
a mode that is completely uncoupled with it (or, better, if the modal force
corresponding to the forcing function and the resonant mode is vanishingly
small), no resonance actually occurs. For example, if the frequency of the
driving torque (i.e., of the torsional moment on the rotor) is coincident
with a flexural natural frequency of the rotor and torsional and flexural
behaviors are completely uncoupled, no resonance takes place. In other
cases the resonance can be very weak and the damping of the system can
be sufficient to avoid any measurable effect.

There are, however, cases in which a very strong resonance takes place
and the rotor cannot operate at or near a critical speed without strong
vibrations and even a catastrophic failure. In particular, the resonances due
to the coincidence of one of the flexural natural frequencies with the spin
speed are particularly dangerous. They can be detected on the Campbell
diagram by the intersection of the curves related to the natural frequencies
with the straight line ω = Ω. They are usually referred to as flexural critical
speeds , without further indications, while other critical speeds related to
bending behavior, which are usually less dangerous, are often said to be
secondary critical speeds.

When a rotor operates at a critical speed, with the meaning just given,
the amplitude of the vibration grows linearly in time and only the damping
of the stator and the supports (as will be shown later, the damping of the
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rotor is completely ineffective in this case) and the unavoidable nonlinear-
ities, which show up when the amplitude grows, can prevent the failure of
the rotor. Actually, it is possible to design rotating machinery in such a
way that operation at a critical speed is possible for a limited period of
time, but it is, at any rate, necessary that the normal operating range be
either below or above the critical speeds and that sustained operation at
critical speed be avoided. Examples of machines operating above the first
critical speed are domestic washing machines: In the transition between the
washing and the spinning modes the crossing of a critical speed is generally
easily detected from strong vibrations, even without instruments.

The speed range spanning from zero to the first critical speed is usu-
ally referred to as the subcritical range; above the first critical speed the
supercritical range starts. A growing number of machines work in the super-
critical range, and then at least one of the critical speeds must be crossed
during start-up and shut-down procedures.

If the Campbell diagram related to flexural vibrations is made by straight
lines parallel to the Ω-axis, i.e., if the natural frequencies are independent
of the speed, the numerical values of the critical speeds coincide with those
of the natural frequencies at standstill, as can be seen from Fig. 23.2.

Remark 23.3 Some confusion between the concepts of critical speed and
natural frequency that can still be found can probably be ascribed to this.
Even if the numerical values are coincident, the two physical phenomena
are different, particularly where the stressing of the rotor is concerned.

The force due to unbalance, which can be expressed in a stationary ref-
erence frame as a vector rotating with angular velocity Ω, has a constant
direction if seen in a reference frame fixed to the rotor. If the machine is
axially symmetrical, as will be seen in the following sections, at the critical
speed the rotor rotates in a deflected configuration but does not vibrate,
in the sense that there is no cyclic stressing.

Remark 23.4 The flexural critical speed can be defined as the speed at
which the centrifugal forces due to the bending of the rotor are in indifferent
equilibrium with the elastic restoring forces, and from this point of view the
situation is more similar to that characterizing elastic instability than that
typical of vibratory phenomena. A rotor operating at a critical speed is not
subject to vibration but is a source of periodic excitation that can cause
vibration, often very strong, in the nonrotating parts of the machine.

The very concept of critical speed has been defined with reference to a
linear system, and it is impossible to define critical speeds in this sense in
the case of nonlinear rotors. However, a more general definition of critical
speed, as a speed in which strong vibrations are encountered, is often used.
This definition, which also holds in the case of nonlinear rotors, has a certain
degree of arbitrarity, because the amplitude of the vibration depends on
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the cause that produces it. In the case of nonlinear rotors the speed at
which the maximum amplitude is reached, i.e., the critical speed following
the last definition, also depends on the entity of the exciting causes (for
example, the unbalance in the case of flexural critical speeds). The critical
speeds of linear systems are, on the contrary, characteristic of the system
and are independent of the excitations.

23.4 Fields of instability

Rotors can develop an unstable behavior in well-defined velocity ranges.
The term unstable can have several meanings, and different definitions of
stability exist, one of the most common being that introduced by Liapunov
and reported in Section 20.6.

However, this theoretical definition of stability may be difficult to apply
in many engineering situations, and a technical definition of stability can
be used: The behavior of a machine is considered stable when the ampli-
tude of vibration in normal operation does not exceed a value considered
acceptable. For rotating machinery, it was stated by A. Muszynska that1

a rotating machine is stable if its rotor performs a pure rotational motion
around an appropriate axis at a required rotational speed and this motion is
not accompanied by other modes of vibrations of the rotor, its elements or
other stationary parts of the machine, or, if such vibrations take place, their
amplitudes do not exceed admitted, acceptable values. The stable rotating
machine is immune to external perturbing forces, i.e., any random perturba-
tion cannot drastically change its behavior. Such a perturbation causes only
a transient decaying process leading to a previous regime of performance,
or to a new one, which is included in the acceptable limits.

When studying the behavior of damped linear systems, the amplitude of
free vibration was seen to decay exponentially in time, owing to the energy
dissipation due to damping. In the case of rotors, however, there is a source
of energy, the centrifugal field, that may in some cases cause an unbounded
growth in time of the amplitude of free vibrations. The frequency ranges in
which this growth occurs, i.e., in which self-excited vibrations can develop,
are usually called instability fields or instability ranges, and the speed at
which the first such field starts is the threshold of instability.

Remark 23.5 Instability ranges must not be confused with critical speeds:
Critical speeds are a sort of resonance between a natural frequency and a
forcing function acting on the rotor, while in instability ranges true self-
excited vibrations occur.

1A. Muszynska, Rotor Instability, Senior Mechanical Engineering Seminar, Carson
City, June 1984.
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For an instability range to occur, some source of energy to sustain the
vibration with increasing amplitude is needed; in the present case the en-
ergy can be supplied by the kinetic energy linked with rotation at the spin
speed Ω. It is easy to verify that the kinetic energy stored in the rotor is
greater by some orders of magnitude than the elastic potential energy the
rotor can store without failure.

Consider, for example, a thin ring with radius r and material density ρ
rotating at speed Ω. As the hoop stress in the ring is simply

σh = ρΩ2r2 ,

the relationship linking the kinetic energy with the stress is

T =
1
2
mr2Ω2 =

1
2

mσh

ρ
.

The maximum potential energy the ring can store in an axi-symmetrical
tensile deformation is

U =
1
2

V σ2
U

E
=

1
2

mσ2
U

Eρ
,

where V and σU are the material volume and the ultimate strength, re-
spectively. The ratio between the kinetic energy and the potential energy
corresponding to a deformation causing the failure of the ring (at failure
σh = σU ) is

T
U =

E

σU
.

By introducing the expression of the hoop stress into the last equation,
it is easy to see that ratio E/σU is nothing other than the ratio vs/VU

between the speed of sound in the material and the peripheral velocity at
failure of the ring, whose value is usually far greater than 10. The kinetic
energy stored in the rotor is then at least one or two orders of magnitude
greater than the energy needed to deform the rotor until failure occurs.
Similar considerations would hold for other geometrical configurations or
deformation patterns.

Remark 23.6 It is then sufficient that a small portion of the kinetic en-
ergy of the rotor is transformed into deformation potential energy to cause
failure. This situation is typical of structural elements that are in close con-
tact with an energy source that can excite and sustain vibration, another
case being that of aeroelastic vibrations.

It is easy, at least from a theoretical point of view, to predict the onset
of unstable working conditions in a linear system. If the time history of the
system is expressed in the form

x = x0e
iωt , (23.1)
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the sign of the decay rate, i.e., of the imaginary part of the complex fre-
quency ω, gives directly the stability condition: If it is positive the am-
plitude decays exponentially in time (stable condition), while unstable
operation is characterized by the negative imaginary part of the complex
frequency. The plot of the decay rate as a function of the spin speed must
then be drawn with the Campbell diagram. At vanishingly small speeds all
decay rates are obviously positive, because there is no external source of
energy that can excite vibration. With increasing speed the decay rate of
some modes can decrease, showing a reduction of stability. If at a certain
value of the spin speed Ω one of them vanishes and then becomes negative,
that speed is the threshold of instability of the system.

It is clear that when the time history is written in the form

x = x0e
st , (23.2)

the system is stable if the real parts of all complex eigenvalues are negative.
Actually, it can be difficult to evaluate the decay rate with enough pre-

cision, because it is influenced by many factors that are difficult to eval-
uate, one of them being damping. Often, it is only possible to perform a
first-approximation theoretical or numerical study, whose results must be
verified experimentally.

As a general rule, if the conditions for uncoupling of flexural, axial, and
torsional behaviors are met, only the first can give way to self-excited
vibration. There are many mechanisms that can cause unstable conditions,
including internal rotor damping due to material damping and friction
between the various components assembled by bolting, riveting, shrink fit-
ting, and so on; rubbing between stator and rotor; and fluid viscosity in
journal bearings and seals. All the mentioned mechanisms are potentially
dangerous, but they do not necessarily always cause instability. The better
known destabilizing effects are those due to the material damping in the
rotor and viscosity in lubricated journal bearings. The latter can cause the
well-known oil whip phenomenon, which consists in very strong vibrations
starting from a speed that is, in many cases, close to twice the first flexural
critical speed.

To make it easier to distinguish between critical speeds and fields of
instability, the following features can be listed:

Critical speeds
• They occur at well-defined values of the spin speed.
• The amplitude grows linearly in time if no damping is present. It

can be maintained within reasonable limits and, as a consequence, a
critical speed can be passed.

• The value of the speed is fixed, but that of the maximum amplitude
depends on the amplitude of the perturbation. In particular, the main
flexural critical speeds do not depend on the amount of unbalance,
but the amplitude increases with increasing unbalance.
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Fields of instability
• Their span is usually quite large. Often all speeds in excess of the

threshold of instability give way to unstable behavior.
• If a threshold of instability exists, it is usually located in the super-

critical range.
• The amplitude grows exponentially in time. It grows in an uncon-

trollable way, and then working above the threshold of instability is
impossible. When it falls within the working range, the system must
be modified to raise it well above the maximum operating speed.
Only possible nonlinearities of the system can maintain the ampli-
tude within a limit, giving way to a limit cycle.

23.5 The undamped linear Jeffcott rotor

23.5.1 Free whirling

The simplest model that can be used to study the flexural behavior of ro-
tors is the so-called Jeffcott rotor , consisting of a point mass attached to a
massless shaft. The only force acting on the mass m is that due to the elas-
ticity of the shaft. The weight of the rotor is thus neglected, but this does
not detract much from the validity of the model. The stiffness k providing
the restoring force can be considered the stiffness of the shaft, the support-
ing structure, or a combination of the two. The two schemes sketched in
Fig. 23.3 yield the same results, as long as the system is undamped and
axially symmetrical.

Point P, in which mass m is fixed, is always contained in the xy-plane.
This statement is justified by the uncoupling between axial and radial mo-
tions and relies on the small-displacement assumptions that are at the base
of linear structural analysis.

A model with 2 degrees of freedom can thus be used for the study of the
flexural behavior. The equations of motion of mass m are simply{

mẍ + kx = 0,
mÿ + ky = 0,

(23.3)

where x and y are the coordinates of point P at the generic time t.
The equations of motion along each axis are coincident with the equation

of the free motion of a system with a single degree of freedom and their
solution is a harmonic motion with frequency

ωn =

√
k

m
.

The motion of point P can thus be thought of as the combination of two
harmonic motions taking place along axes x and y with the same frequency
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FIGURE 23.3. Sketch of a Jeffcott rotor. The model is sketched in its deformed
configuration at the time in which point P crosses the xz-plane; (a) flexible shaft
on stiff supports, (b) stiff shaft on compliant supports.

ω, coinciding with the natural frequency of the nonrotating shaft. They
can add to each other giving way to a trajectory of point P that can be
circular, elliptical, or straight in any direction in the xy-plane, depending
on the initial conditions.

The same result could be obtained using the complex coordinate

z = x + iy (23.4)

in the xy-plane. By multiplying the second part of Eq. (23.3) by the imag-
inary unit i and adding the two equations, it follows that

mz̈ + kz = 0 . (23.5)

The solution of this homogeneous differential equation is

z = z0e
iωt ,

where z0 is, generally speaking, a complex number

z0 = x0 + iy0 .

By introducing this solution into Eq. (23.5), the latter yields a homoge-
neous algebraic equation that has solutions other than the trivial solution
z0 = 0 only if
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ω = ±
√

k

m
.

The general solution of Eq. (23.5) is thus

z = Z1e
i
√

k
m t + Z2e

−i
√

k
m t . (23.6)

The physical meaning of Eq. (23.6) is obvious: z is a vector that rotates
in the xy-plane with angular velocity ω. If the amplitude z0 is real, point
P crosses the x-axis at time t = 0. The motion expressed by Eq. (23.6) is
the superimposition of a circular forward or direct motion (i.e., occurring
in the same direction as the spin speed) and a circular backward motion.
They both occur at an angular velocity, often called whirl speed , equal to
the natural frequency of the nonrotating system. In the following study,
the spin speed Ω will always be considered positive: A forward motion
will then be characterized by positive whirl speed ω (first quadrant of the
Campbell diagram), while a backward motion is characterized by a negative
value of ω (fourth quadrant of the Campbell diagram). The result of the
superimposition of the two motions depends on the initial conditions, i.e.,
on the values of complex constants Z1 and Z2. If, for example, Z2 is equal
to 0 a circular forward whirling occurs, while if the two constants are equal
and real a harmonic vibration along the x-axis takes place.

The result obviously cannot depend on which solution is used, either that
based on the study of the motion in the xz- and yz-planes (Eq. 23.4) or
that based on the use of complex coordinates (Eq. 23.5). However, they
enlighten different aspects of the phenomenon, and their results are not
exactly equivalent. In the first, ω is the frequency of two harmonic motions
in two planes and its sign has no physical meaning. Vector eiωt, which can
be used to express the motion in the form

x = x0e
iωt , y = y0e

iωt ,

is a rotating vector in the complex plane and only the real components of
x0e

iωt and y0e
iωt have a physical meaning.

In the solution of Eq. (23.5) ω is, however, a true angular velocity, and
the relevant vector rotates in the physical space and not in the complex
plane. The deflected shape rotates about the undeformed configuration
with angular velocity ω, although no rotation of a material object with
that speed takes place. As a consequence, its sign states the direction of
rotation of the deflected configuration.

At any rate, the natural frequency of the rotor or the whirl speed does
not depend on the spin speed Ω: The Campbell diagram of a Jeffcott rotor
is then made of straight lines, as shown in Fig. 23.2. The flexural critical
speed, defined as the speed at which the natural frequency of the system
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is coincident with the frequency of rotation, coincides with the natural
frequency of the nonrotating system:

Ωcr =

√
k

m
. (23.7)

23.5.2 Unbalance response

In real life, the center P of mass m cannot be exactly coincident with
the center C of the cross-section of the shaft. The distance between the
two points may be small, but the presence of the eccentricity ε (Fig. 23.3)
causes a static unbalance mε that can strongly affect the behavior of the
system.

If the angle between line CP and the x-axis is imposed by the driving
system, i.e., function θ(t) can be regarded as a known function of time, the
number of degrees of freedom of the system is again equal to 2. Assuming
the displacements x and y of point C as generalized coordinates, the posi-
tion and velocity of point P and the Lagrangian function are, respectively,

(P-O) =
{

xP

yP

}
=

{
x + ε cos(θ)
y + ε sin(θ)

}
,

VP =
{

ẋP

ẏP

}
=

{
ẋ − εθ̇ sin(θ)
ẏ + εθ̇ cos(θ)

}
,

T − U =
1
2
m

{
ẋ2 + ẏ2 + ε2θ̇

2
+2εθ̇ [−ẋ sin(θ) + ẏ cos(θ)]

}
− 1

2
k

(
x2 + y2

)
.

(23.8)
The equation of motion of the shaft can easily be obtained through the

Lagrange equation. By performing the relevant derivatives and remem-
bering that no assumption of constant spin speed θ̇ has been made, the
following equations of motion are obtained:

⎧⎨
⎩

m
[
ẍ − εθ̇

2
cos(θ) − εθ̈ sin(θ)

]
+ kx = 0,

m
[
ÿ − εθ̇

2
sin(θ) + εθ̈ cos(θ)

]
+ ky = 0 .

(23.9)

By multiplying the second equation of motion (23.9) by the imaginary
unit i and adding the two equations, the following equation of motion in
terms of the complex coordinate z is readily obtained:

mz̈ + kz = mε
(
θ̇
2 − iθ̈

)
eiθ . (23.10)

The homogeneous equation is the same Eq. (23.5) already studied and
does not contain the angular velocity of the rotor.
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If the angular velocity of the rotor Ω = θ̇ is assumed to be constant,
angle θ can be expressed as Ωt, and Eq. (23.10) reduces to

mz̈ + kz = mεΩ2eiΩt , (23.11)

whose particular integral is simply

z = z0e
iΩt .

By introducing it into Eq. (23.11) the latter transforms into the algebraic
equation

(−mΩ2 + k)z0 = mεΩ2 , (23.12)

which yields
z0 = ε

mΩ2

k − mΩ2
= ε

Ω2

Ω2
cr − Ω2

, (23.13)

where Ωcr is the critical speed defined by Eq. (23.7). The value of the
amplitude z0 so obtained is real and, as a consequence, vector (C–O), i.e.,
z, rotates with velocity Ω in the xy-plane remaining in line with vector
(P–C). The value of Ω that causes the denominator of the expression for z0

in Eq. (23.13) to vanish, i.e., that causes the amplitude to reach an infinite
value, is coincident with the flexural critical speed of the rotor.

The amplitude of motion of point C due to the presence of the unbalance
mε, i.e., the unbalance response, is reported as a function of the speed in
the nondimensional plot of Fig. 23.4a. In the subcritical range, the ampli-
tude grows from zero to a value tending to infinity at the critical speed,
always remaining positive. In the supercritical range, however, the value
of the amplitude z0 is negative, and its absolute value decreases mono-
tonically with the speed. When the speed tends to infinity the amplitude
tends to −ε.

The sign of the solution determines the equilibrium configurations as
shown in Fig. 23.4b and c. When the solution is positive, in the subcritical
field, points O, C, and P are aligned in the mentioned order and the center
of mass of the rotor lies outside the deformed configuration of the shaft.
In the supercritical field, however, point P lies between points C and O,
and when the speed tends to infinity the amplitude z0 tends to −ε, or
point P tends to point O. This phenomenon is usually referred to as self-
centering because the rotor tends to rotate about its center of mass instead
of its geometrical center. When the behavior is controlled by the stiffness,
rotation takes place about a point close to the geometrical center, while
when it is dominated by the inertia it occurs about a point close to the
mass center.

The motion of point C can thus be expressed as the superimposition of
a free motion that can be circular, elliptical, or even rectilinear occurring
with frequency
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FIGURE 23.4. Unbalanced Jeffcott rotor sketched at time t.

FIGURE 23.5. (a) Unbalance response of an undamped Jeffcott rotor. Nondimen-
sional amplitude as a function of the nondimensional spin speed. Configuration
of the system in (b) subcritical conditions and (c) supercritical conditions.
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ω =

√
k

m

and a circular motion with angular speed Ω. The amplitude of the first is
controlled by the initial conditions and is independent of the speed. The
presence of damping will cause the free motion to decay in time or, in some
cases, to increase in time as will be shown in the following section. The
amplitude of the second is strongly influenced by the speed and is constant
in time. The unbalance response has been computed assuming constant spin
speed: Fig. 23.5 gives the amplitude of the motion at the various speeds
and cannot be used to describe the time history of the amplitude during
the acceleration of the rotor.

Remark 23.7 The Jeffcott rotor is obviously an oversimplification of real-
world rotors but, nevertheless, allows understanding and modeling, at least
qualitatively, some of the most important phenomena typical of rotor dy-
namics, namely critical speeds and self-centering.

Remark 23.8 The coincidence of the critical speed, computed from the
unbalance response or from the free behavior of the system, with the natural
frequency of the undamped system is a peculiar characteristic of the Jeffcott
model or, more generally, of all those rotors in which the natural frequency
does not depend on the speed, and must not be considered a general feature.

23.6 Jeffcott rotor with viscous damping

23.6.1 Free whirling

When considering a damped rotor it is very important to distinguish be-
tween the damping effects that can be associated to the stationary parts
of the machine, usually referred to as nonrotating damping, and those di-
rectly associated with the rotor, or rotating damping. The former usually
has a stabilizing effect that the designer can use to achieve the required
stability in the whole working range of the machine. The latter, on the
contrary, can usually reduce the amplitude of vibration in subcritical con-
ditions but shows destabilizing effects in the supercritical range. Designers
must then be very careful when studying machines operating in the super-
critical range, taking into account that all mechanisms increasing energy
dissipation within the rotor, such as material damping, friction in threaded,
riveted, shrink-fitted connections in built-up rotors, splined shafts, inter-
shaft dampers in multi-shaft machines, etc., may cause severe instability
problems.

The model of Fig. 23.3 can be extended to the damped system simply
by adding the generalized forces due to damping to the right-hand side of
Eq. (23.10). Because the generalized coordinates are the displacements in
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the x- and y-directions of point C, such forces are the components in the
directions of the x- and y-axes of damping forces applied to the point mass
in point C.

Assuming a viscous damping model and using the complex notation, the
force due to nonrotating damping is

�Fn = Fnx + iFny = −cnẋ − icnẏ = −cnż , (23.14)

where cn is the nonrotating damping coefficient.

Remark 23.9 In the model of Fig. 23.3b the nonrotating damping force
may be due to the supports. Otherwise it may be due to any other damping
device, provided that energy is dissipated in an element that does not rotate.

A rotating reference frame Oξηz (Fig. 23.6) must be introduced for the
study of rotating damping. The origin and z-axis of the rotating frame are
the same as those of the fixed reference frame Oxyz of Fig. 23.3, but axes
ξ and η rotate in the xy-plane at the same speed of the rotor. When the
rotational speed is constant, the angle between the two reference frames is
simply θ = Ωt. Let a complex coordinate ζ be defined in the ξη-plane

ζ = ξ + iη = ze−iθ . (23.15)

From Eq. (23.15), the derivative of the complex coordinate ζ is readily
obtained:

ζ̇ = (ż − iθ̇z)e−iθ .

The force due to rotating viscous damping, with damping coefficient cr,
can be expressed in the Oξηz frame by the simple equation

�Frξη
= −crζ̇ = −cr(ż − iθ̇z)e−iθ . (23.16)

The expression of the force Frxy in the Oxyz frame is readily obtained
from that of vector Frξη

, expressed in the Oξηz frame

�Frxy = �Frξη
eiθ = −cr(ż − iθ̇z) . (23.17)

FIGURE 23.6. Reference frames Oxyz and Oξηz at time t.
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Introducing the expressions (23.14) and (23.17) for the forces due to
nonrotating and rotating damping on the right-hand side of the equation
of motion (23.10), it follows that

mz̈ + (cr + cn)ż + (k − icrθ̇)z = mε(θ̇
2 − iθ̈)eiθ . (23.18)

Remark 23.10 Rotating damping has been assumed here to be synchronous,
i.e., to rotate at the same speed as the rotor. It is provided by any damping
device that dissipates energy in an element rotating at the angular velocity
Ω.

If the spin speed is constant, Eq. (23.18) is easily modified by neglecting
the term in θ̈. In the latter case, the equation of motion is formally identical
to the equation of motion of a mass m suspended on a spring with complex
stiffness

k − iΩcr

and a viscous damper with damping coefficient cn + cr on which a force
with harmonic time history with frequency Ω = θ̇ and amplitude mεΩ2 is
acting.

Equation (23.18) can be solved, as usual, by adding a particular integral
to the complementary function. The solution of the homogeneous equation
yielding the behavior of a perfectly balanced rotor is the usual one,

z = z0e
iωt ,

where both the amplitude z0 and the frequency ω are expressed by com-
plex numbers. By introducing this solution into Eq. (23.18), the following
characteristic equation is obtained:

mω2 + i(cr + cn)ω + k − iΩcr = 0 . (23.19)

The imaginary part is

cnω + cr (ω − Ω) . (23.20)

Nonrotating damping has the same effect as in vibrating structures, and
is always stabilizing (provided that cn is positive).

Rotating damping multiplies a term, (ω − Ω), that may be either positive
or negative. Three cases are possible:

• Subcritical operation (Ω < ω). The rotating damping term is positive
and has a stabilizing effect.

• Synchronous operation (Ω = ω). The rotating damping term vanishes
and has no effect whatsoever.

• Supercritical operation (Ω > ω). The rotating damping term is neg-
ative and has a destabilizing effect.
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This is also true for other forms of damping, like hysteretic damping:
all forms of rotating damping are stabilizing in subcritical operation and
destabilizing above the critical speed.2

The roots of this quadratic equation with complex coefficients are

ω = i
cr + cn

2m
±

√
−(cr + cn)2 + 4m(k − iΩcr)

4m2
. (23.21)

The real and imaginary parts of the complex frequency can be easily
separated by resorting to the well-known formula

√
a ± ib =

√√
a2 + b2 + a

2
± i

√√
a2 + b2 − a

2
, (23.22)

which yields

ω = ± 1√
2

√√√√
Γ +

√
Γ2 +

(
Ωcr

m

)2

+ i

⎡
⎢⎣ cr + cn

2m
∓ 1√

2

√√√√−Γ +

√
Γ2 +

(
Ωcr

m

)2

⎤
⎥⎦ ,

(23.23)

where

Γ =
k

m
− (cr + cn)2

4m2
. (23.24)

Two values of the complex whirl frequency or whirl speed ω can be found
for each value of the spin speed Ω. They are not conjugate, because Eq.
(23.19) has complex coefficients. Without loss of generality, because it is
sufficient to assume that at time t = 0 point C crosses the x-axis, the
amplitude z0 can be assumed to be real. Separating the real part ωR of
the complex frequency ω from the imaginary part ωI , the time history can
then be written as ⎧⎨

⎩
x = z0e

−ωIt cos(ωRt),

y = z0e
−ωIt sin(ωRt) .

(23.25)

A logarithmic spiral is thus obtained as the result of two damped or
amplified harmonic motions. The real part of ω has the meaning of a true
angular velocity: It is the angular velocity at which the deflected shape
rotates about the undeformed configuration. The imaginary part is a decay
rate: If it is positive the amplitude decays in time and point C tends to
point O. The rotor has a stable behavior as whirl motion tends to reduce
its amplitude.

If ωI is negative the amplitude grows exponentially in time. The motion
is unstable, as any small perturbation can trigger this self-excited whirling.

2G. Genta , On a Persisting Misunderstanding on the Role of Hysteretic Damping
in Rotordynamics, Journal of Vibration and Acoustics, Vol. 126, July 2004, 469–471,
G. Genta , On the Stability of Rotating Blade Arrays, Journal of Sound and Vibration,
273, 2004, pp. 805–836.
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The first of the two values of ω obtained in Eq. (23.23) (the one with the
upper signs) has a positive real part and an imaginary part that may be
either positive or negative. It corresponds to a forward whirl mode, which
may be either damped or self-excited, depending on the sign of ωI . With
simple computations, the condition for stability can be shown to be

Ω <

√
k

m

(
1 +

cn

cr

)
. (23.26)

The rotor is then stable in the subcritical range, i.e., when the speed is
lower than the critical speed

√
k/m of the undamped system. In the su-

percritical field, stability depends on the value of ratio cn/cr between the
nonrotating and the rotating damping. If there is no nonrotating damping,
the motion is unstable in the whole supercritical range. Increasing nonro-
tating damping, the threshold of instability becomes higher.

The second value of ω (lower signs in Eq. (23.23)) has a negative real part
and a positive imaginary part. It corresponds to a damped backward whirl
mode that usually damps out quite fast and has little practical interest.

Equation (23.23) can be rewritten in the following nondimensional form:
⎧⎨
⎩

ω∗
R = ±

√
Γ∗ +

√
Γ∗2 + Ω∗2ζ2

r ,

ω∗
I = ζr + ζn ∓

√
−Γ∗ +

√
Γ∗2 + Ω∗2ζ2

r ,
(23.27)

where

ω∗ = ω

√
m

k
, Ω∗ = Ω

√
m

k
, ζr =

cr

2
√

km
,

ζn =
cn

2
√

km
, Γ∗ =

1 − (ζn + ζr)2

2
.

The nondimensional whirl frequency ω∗ is then a function of the spin
speed Ω∗ and of only two parameters ζn and ζr. The real and imaginary
parts of ω∗ are plotted as functions of the spin speed in Fig. 23.7. Four
values of ζr have been considered, and rotating and nonrotating damping
have been assumed to be equal (ζn = ζr).

It is clear that the real part of ω is little affected by the presence of
damping: A value of ζn equal to 0.1 is already quite high and the curve
ωR(Ω) is very close to that of the undamped case. The first and fourth
quadrants of the (ωR, Ω)-plane have been shown in the Campbell diagram.
When using the complex notation, the sign of ωR has an important physical
meaning and it is advisable to plot at least two quadrants of the ωR, Ω-
plane: the first and second, or, as in the figure, the first and fourth.

Another way of representing the real and imaginary parts of the complex
whirl frequency is the roots locus (Fig. 23.8), in which the imaginary parts
of eigenvalues

s = iω
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FIGURE 23.7. (a) Real and (b) imaginary parts of the complex whirl frequency as
functions of the spin speed in nondimensional form. The curves for four different
values of damping have been plotted. Rotating and nonrotating damping have
been assumed to be equal: The threshold of instability is then twice the critical
speed.

are plotted as functions of the real parts. As usual for root loci, a solution of
the type of Eq. (23.2) is assumed: The imaginary part of s has the meaning
of whirl speed, while the real part is the decay rate (negative for stability):

�(s) = −�(ω) , �(s) = �(ω) .

Remark 23.11 A difference between roots loci in general dynamics (e.g.,
that of Fig. 23.8) and those encountered in rotordynamics is that the latter
are not symmetrical with respect to the real axis. This is because the eigen-
values are not conjugate or, in physical terms, the forward and backward
complex whirl speeds are not equal (in the present case, the absolute values
of ωR are equal, while those of ωI are not).
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FIGURE 23.8. Nondimensional roots locus for the same system as Fig. 23.7

23.6.2 Unbalance response

If the rotor is not perfectly balanced, it is necessary to resort to the non-
homogeneous equation (23.18). If the angular acceleration is neglected, the
complementary function and the particular integral are, respectively,

z = Z1e
iω1t + Z2e

iω2t ; z = z0e
iΩt . (23.28)

The first allows the description of the motion of the perfectly balanced
rotor, while the second yields the response to the static unbalance mε. It is
a synchronous whirling, i.e., a whirling with ω = Ω. The amplitude of the
unbalance response is then obtained by introducing the particular integral
into the equation of motion, obtaining

z0(−mΩ2 + iΩcn + k) = mεΩ2 . (23.29)

As already seen, rotating damping does not enter Eq. (23.29): Unbalance
produces a synchronous excitation, i.e., an excitation that rotates in the
xy-plane at the same speed Ω as the rotor, and the latter rotates in the
deflected configuration but is not subject to deformations that change in
time.

The situation occurring in this condition is sketched in Fig. 23.9: In (a),
a whirling shaft is shown in its deflected configuration, and in (b), the
situation occurring in the xy-plane is sketched. As the spin speed is equal
to the whirl speed, the zone of the cross-section of the shaft subjected to
tensile stresses (shaded part close to point B) remains always under tensile
loading, whereas that subjected to compression is always compressed. The
situation is similar to that of the Moon, which always shows the same
side to the Earth. In this condition, the material constituting the rotor is
subjected to a constant stress state, which is good on one side as the rotor
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FIGURE 23.9. (a) Sketch of a shaft undergoing circular synchronous whirling,
i.e., with whirl speed ω equal to the spin speed Ω; (b) situation on the xy-plane:
The shaded area of the cross-section is under tensile stress.

is not subjected to fatigue, but on the other side, the internal damping
of the material cannot dissipate energy and hence limit the amplitude,
particularly when the system is working at a speed close to a critical speed.

The flexural critical speeds can, in fact, be defined as the speeds at which
the centrifugal forces due to the bending of the rotor are in indifferent
equilibrium with the elastic restoring forces, and from this point of view,
the situation is more similar to that characterizing elastic instability than
that typical of vibratory phenomena. A rotor operating at a critical speed
is then not subject to vibration but is a source of periodic excitation that
can cause vibrations, often very strong, in the nonrotating parts of the
machine.

The amplitude z0 is obviously expressed by a complex number. By sep-
arating the real from the imaginary part, it follows that

�(z0) =
mεΩ2(k − mΩ2)

(k − mΩ2)2 + Ω2c2
n

= ε
Ω∗2

(1 − Ω∗2
)

(1 − Ω∗2)2 + 4ζ2
nΩ∗2 ,

�(z0) = − mεΩ3cn

(k − mΩ2)2 + Ω2c2
n

= −ε
2Ω∗3

ζn

(1 − Ω∗2)2 + 4ζ2
nΩ∗2 ,

|z0| = ε
Ω∗2

√
(1 − Ω∗2)2 + 4ζ2

nΩ∗2
,

Φ = arctan
(
−2Ω∗ζn

1 − Ω∗2

)
.

(23.30)

The amplitude and phase of z0 are plotted in nondimensional form as
functions of the speed in Fig. 23.10. The different curves have been obtained
with different values of the nonrotating damping ζn. The equation yielding
the unbalance response is identical to that yielding the amplitude of the



604 23. Elementary Rotordynamics:The Jeffcott Rotor

FIGURE 23.10. Nondimensional amplitude and phase of the unbalance response
for three different values of nonrotating damping. Full line indicates curves for
different values of damping; dashed line indicates line connecting the peaks.

response of a vibrating system with a single degree of freedom to a harmonic
excitation whose amplitude is proportional to the square of the frequency.
Fig. 23.10 is then identical to Fig. 7.6b. The damped resonance peak lies
at the right of the undamped resonance, as was the case for Fig. 7.6b, and
not on the left, as in Fig. 7.2.

The situation in the xy-plane is shown in Fig. 23.11b. Since angle Φ is
always negative, point C always lags the line forming an angle of Ωt with
the x-axis, i.e., ξ-axis. The delay is exactly 90◦ at the critical speed. The

FIGURE 23.11. (a) Situation in the xy -plane in subcritical conditions, at the
critical speed, and in supercritical conditions; (b) trajectories of point C in the
ξη-plane expressed in nondimensional form.



23.6 Jeffcott rotor with viscous damping 605

plot of the real and imaginary parts of the complex amplitude z0 yields
directly the trajectory of point C in the ξη-plane (Fig. 23.11b). By adding
vector ε to vector z0, the trajectory of point P is obtained.

The plot of the trajectory of C is very similar to a Nyquist diagram,
with the important difference that the latter is plotted in the complex
plane, while the former gives the actual position of point C in the ξη-plane
in the physical space.

Remark 23.12 The term trajectory has been used with an extended mean-
ing: All these figures were obtained neglecting the angular acceleration, and
the points of the trajectories refer to steady-state conditions at different
speeds and are not successive positions during an acceleration of the rotor.
However, if the acceleration is very slow and dynamic effects linked to it
can be neglected, the curves of Fig. 23.11b can be assumed to be at least a
good approximation for the actual trajectories in the ξη-plane.

Remark 23.13 Self-centering is strictly linked with an increase of phase
Φ from 0◦ to −180◦, i.e., to a rotation of point C in the ξη-plane.

If point C were constrained to remain on the ξ-axis, like in Example
17.1, no self-centering would occur, as in the case of the system sketched
in Fig. 23.12, where mass m is allowed to move along a rotating guide and
is constrained to the center of rotation O by a spring of stiffness k. The
system is only apparently similar to the Jeffcott rotor of Fig. 23.3: If the
length of the guide were infinite, it would behave similar to a Jeffcott rotor
in the subcritical field, but in supercritical conditions point P would not
come back to the self-centered position and would remain at infinity (or,
in real life, at the end of the guide).

In the damped Jeffcott rotor of Fig. 23.3, the motion of point C can
be considered as the superimposition of a backward inward-spiral motion,
which usually decays very quickly in time, a forward spiral motion, whose

FIGURE 23.12. A system in which mass m is constrained to move along the
ξ-axis of the rotating reference frame. No self-centering is possible.
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amplitude can be decreasing, constant, or increasing in time depending
on the stability of the system, and a circular synchronous motion, with
constant amplitude. The amplitude of the latter depends on the spin speed
and the eccentricity ε.

23.7 Jeffcott rotor with structural damping

Rotating and nonrotating damping have been supposed to be of the viscous
type. This can be a realistic model for nonrotating damping, particularly
when dampers of the squeeze-film type are used, but a structural damp-
ing model is usually better suited for rotating damping. There is no diffi-
culty in introducing the complex stiffness model described in Section 3.4.1.
Equation (3.62) yielding the equivalent damping must, however, be modi-
fied into

ceq =
ηk

|ωm| ,

where ωm is the frequency at which the material goes through the hysteresis
cycle. It coincides with |ωR|, modulus of the real part of the whirl frequency
ω, in the case of nonrotating damping, while it takes the value |ωR − Ω|
for rotating damping. If they are both of the structural type, by neglecting
the imaginary part of frequency ω in the computation of ωm, Eq. (23.19)
for the study of free whirling becomes

−mω2 + k + i

(
ωR

|ωR|
ηnkn +

ωR − Ω
|ωR − Ω|ηrkr

)
= 0 . (23.31)

The terms neglected operating in this way

−ηnkn
ωI

|ωR|
− ηrkr

ωI

|ωR − Ω|

are very small with respect to k, at least if the loss factor is small and ωR

is different enough from Ω.

Remark 23.14 The imaginary part of the whirl frequency vanishes at the
threshold of instability. Equation (23.31) yields exact results in this case.

Equation (23.31) can be written in the form

−mω2 + k + i(±ηnkn ± ηrkr) = 0 . (23.32)

In the case of forward subcritical motion, the positive signs hold; in
supercritical conditions the sign of ηn is positive and that of ηr is negative.
They are both negative in the case of backward motion (Fig. 23.13).
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FIGURE 23.13. Signs of ωR and ωR − Ω in the various zones of the Campbell
diagram.

The characteristic equation can be solved in the same way as in the case
of viscous damping. The real and imaginary parts of the whirl frequency
are ⎧⎪⎨

⎪⎩
ωR = ± 1√

2m

√
k +

√
k2 + (knηn ± krηr)2 ,

ωI =
1√
2m

√
−k +

√
k2 + (knηn + krηr)2 ,

(23.33)

in the case of backward or forward subcritical whirl; in the supercritical
field, the imaginary part is

ωI = 1√
2m

√
−k +

√
k2 + (knηn − krηr)2 if ηnkn > ηrkr,

ωI = − 1√
2m

√
−k +

√
k2 + (knηn − krηr)2 if ηnkn < ηrkr .

(23.34)
The condition for stability in the supercritical field is then ηnkn > ηrkr.

If this condition is satisfied, no threshold of instability exists and the system
is stable at any speed. If, on the contrary, it is not satisfied, the threshold
of instability coincides with the critical speed and no supercritical running
is possible.

The case in which there are different types of damping can be studied in
the same way. If rotating damping is of the structural type and nonrotating
damping is viscous, the condition for stability is

cn > ηrkr

√
m

k
.

In the case of the unbalance response, rotating damping has no influence
on the behavior of the system. If nonrotating damping is of the structural
type, the amplitude and phase of the unbalance response are
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|z0| = ε
Ω∗2

√
(1 − Ω∗2)2 + η2

n

,

Φ = arctan
(

−ηn

1 − Ω∗2

)
.

(23.35)

The assumption of constant loss factor is only an approximation, partic-
ularly for conditions close to synchronous whirling. If ω = Ω, ωm vanishes,
and the very concept of hysteretic damping loses meaning.

If the dependence of the loss factor from the frequency is known, the
free whirling frequencies can be computed iteratively. Because the whirl
speed is little influenced by the value of the damping, the procedure can
converge quickly. For the computation of the unbalance response, however,
the dependence of damping from the frequency introduces no computa-
tional difficulty. Other effects, such as the dependence of damping from the
value of the maximum stress, introduce nonlinearities into the model and
make the solution very difficult.

23.8 Equations of motion in real coordinates

Equation (23.18) can be written using the real coordinates x and y

[
m 0
0 m

]{
ẍ
ÿ

}
+

[
cn + cr 0

0 cn + cr

] {
ẋ
ẏ

}
+ (23.36)

+
[

k Ωcr

−Ωcr k

] {
x
y

}
= mε

{
θ̇
2
cos(θ) + θ̈ sin(θ)

θ̇
2
sin(θ) − θ̈ cos(θ)

}
.

Equation (23.36) has the form of Eq. (3.41), where the skew-symmetric
gyroscopic matrix G vanishes while the skew-symmetric circulatory matrix
H is present and contains rotating damping. As it will be shown better
for gyroscopic systems, imaginary terms in the equation based on complex
coordinates correspond to skew-symmetric terms when real coordinates are
used. The presence of a circulatory matrix is linked with destabilizing ef-
fects, like in the current case rotating damping.

23.9 Stability in the supercritical field

The steady-state unbalance response of an undamped or damped Jeffcott
rotor was computed in the preceding sections. However, no conclusion about
the stability of the equilibrium position of the system was reached. A simple
way to state the stability of the equilibrium position is by observing that
the complete solution of the equation of motion can be obtained by adding
the solution for free whirling to the unbalance response. When the first one
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leads to a stable behavior, the overall behavior of the system is stable. The
equilibrium position is then stable in the whole supercritical range up to
the previously computed threshold of instability.

However, better evidence can be obtained by writing the equation of mo-
tion with reference to the rotating reference frame Oξη shown in Fig. 23.6.
If the angular velocity Ω is constant, the position, velocity, and acceleration
of point C can be expressed as functions of complex coordinate ζ

⎧⎪⎪⎨
⎪⎪⎩

z = ζeiΩt ,

ż =
(
ζ̇ + iΩζ

)
eiΩt ,

z̈ =
(
ζ̈ + 2iΩζ̇ − Ω2ζ

)
eiΩt .

(23.37)

By introducing Eq. (23.37) into the equation of motion of the damped
system (23.18) written for constant speed and rearranging the various
terms, it follows that

mζ̈ + (cn + cr + 2imΩ)ζ̇ + (k − mΩ2 + iΩcn)ζ = mεΩ2 . (23.38)

Note that the main differences between Eq. (23.18) written in the in-
ertial frame and Eq. (23.38) are the presence of the terms 2imΩζ̇ linked
with Coriolis acceleration and mΩ2ζ due to centrifugal forces and the fact
that in the rotating frame unbalance forces are constant, in both direction
and modulus. From Eq. (23.38), the static equilibrium equation is readily
obtained. By equating to zero all derivatives of the generalized coordinates
with respect to time, the equilibrium position ζ0 is obtained:

ζ0 =
mεΩ2

k − mΩ2 + iΩcn
. (23.39)

Equation (23.39) coincides with Eq. (23.30). The stability of the equi-
librium position is easily studied by assuming that the motion of point C
occurs in the vicinity of the position expressed by Eq. (23.39)

ζ(t) = ζ1(t) + ζ0 . (23.40)

By introducing Eq. (23.40) into the equation of motion (23.38) and re-
membering the expression for the equilibrium position (23.39), the following
equation for the motion about the equilibrium position is obtained:

mζ̈1 + (cn + cr + 2imΩ)ζ̇1 + (k − mΩ2 + iΩcn)ζ1 = 0 . (23.41)

The solution of Eq. (23.41) is of the usual type

ζ1 = ζ10e
iω′t ,

yielding a spiral motion about the equilibrium position whose amplitude
can be either decreasing or increasing in time depending on the sign of
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the imaginary part of the complex frequency ω′. By introducing this so-
lution into Eq. (23.41), the following characteristic equation allowing the
computation of the complex frequency is readily obtained:

−mω′ 2 +
[
i(cn + cr) − 2mΩ

]
ω′ + k − mΩ2 + iΩcn = 0 . (23.42)

The solution of the characteristic equation is

ω′ = −Ω + i
cr + cn

2m
±

√
−(cr + cn)2 + 4m(k − iΩcr)

4m2
. (23.43)

By comparing Eq. (23.43) with Eq. (23.21), it is immediately clear that
the imaginary parts of the two expressions are equal and the real parts
differ by a term equal to −Ω. This result is expected because the former is
expressed in a frame of reference that rotates at an angular velocity equal
to Ω with respect to the one in which Eq. (23.21) is expressed. Because the
imaginary part of the complex frequency is the same as that given by Eq.
(23.21), when condition (23.26) for stability is satisfied, the motion about
the equilibrium position is, in the rotating reference frame, a decaying spiral
and the equilibrium position is stable.

The equation of motion in the rotating frame (23.38) can be written
using the real coordinates ξ and η instead of the complex coordinate ζ,
obtaining

[
m 0
0 m

]{
ξ̈
η̈

}
+

[
cn + cr −2mΩ
2mΩ cn + cr

] {
ξ̇
η̇

}
+ (23.44)

+
[

k − mΩ2 −Ωcn

Ωcn k − mΩ2

]{
ξ
η

}
=

{
mεΩ2

0

}
.

Remark 23.15 In this case both the gyroscopic G and the circulatory ma-
trix H are present, the first being due to Coriolis forces. A sort of centrifu-
gal stiffening (the terms −mΩ2 in K) is present but is again due to the
non-inertial reference frame rather than a true centrifugal stiffening.

23.10 Acceleration through the critical speed

If the angular velocity of the rotor is not constant, the equation of motion
for the lateral behavior of the damped system is Eq. (23.18). A third equa-
tion must be added to express the dependence of the angular displacement
θ on the driving torque Mz. Because the third degree of freedom of the
system is linked with rotation about the z-axis, the polar moment of iner-
tia Jz cannot be neglected. No torsional elasticity of the shaft is taken into
account, because the driving torque is assumed to be directly applied to a
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torsionally stiff rotor and the Lagrangian of the system is expressed by Eq.
(23.8), to which a term

1
2
Jz θ̇

2

must be added.
By performing the relevant derivatives of the Lagrangian with respect to

the angular coordinate θ and its derivative θ̇, the equation of motion for
rotations about the z-axis is

(Jz + mε2)θ̈ + mε [−ẍ sin(θ) + ÿ cos(θ)] = Mz . (23.45)

Equation (23.45), which can be expressed in terms of the complex coor-
dinate z, and Eq. (23.18) are the equations of motion of the system

{
mz̈ + (cr + cn)ż + (k − iθ̇cr)z = mε(θ̇

2 − iθ̈)eiθ ,

(Jp + mε2)θ̈ + mε�
(
z̈e−iθ

)
= Mz .

(23.46)

The same equations can be written in a rotor-fixed reference frame, which
in this case does not rotate at constant speed. Equations (23.37) expressing
the absolute position, velocity, and acceleration as functions of the same
characteristics expressed in the rotating frame must be modified to take
into account the fact that the rotational speed is not constant

⎧⎪⎪⎨
⎪⎪⎩

z = ζeiθ ,

ż =
(
ζ̇ + iθ̇ζ

)
eiθ ,

z̈ =
(
ζ̈ + 2iθ̇ζ̇ + iθ̈ζ − θ̇

2
ζ
)

eiθ .

(23.47)

The equations of motion written with reference to the rotating frame are
thus
{

mζ̈ + (cn + cr + 2imΩ)ζ̇ + (k − mΩ2 + iΩcn + imθ̈)ζ = mε(θ̇
2 − iθ̈) ,

(Jp + mε2)θ̈ + mε�
(
ζ̈ + 2iθ̇ζ̇ + iθ̈ζ − θ̇

2
ζ
)

= Mz ,

(23.48)
or, using real coordinates,

[
m 0
0 m

]{
ξ̈
η̈

}
+

[
cn + cr −2mθ̇

2mθ̇ cn + cr

] {
ξ̇
η̇

}
+

+

[
k − mθ̇

2 −θ̇cn − mθ̈

θ̇cn + mθ̈ k − mθ̇
2

]{
ξ
η

}
= mε

{
θ̇
2

−θ̈

}
, (23.49)

(Jp + mε2)θ̈ + mε
(
η̈ + 2θ̇ξ̇ + θ̈ξ − θ̇

2
η
)

= Mz . (23.50)
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The study of an accelerating Jeffcott rotor can be performed following
two different schemes: Either the time history of the driving torque or
that of the angular displacement can be stated. In the first case, the two
equations are coupled and the solution can be very complicated. In the
second case, however, they uncouple and the first equation directly yields
the flexural behavior of the system, while the second allows the computation
of the time history of the driving torque needed to follow the assumed
acceleration law. The laws θ(t), Ω(t) = θ̇(t), and a(t) = θ̈(t) are known and
there is no difficulty in numerically integrating the equations of motion.

Even if in the literature some solutions for the constant acceleration case
can be found,3 they are so complicated that today it is easier to perform
the numerical integration of the equations of motion. The amplitude of
the motion of a Jeffcott rotor with ζn = 0.1 and ζr = 0.01 accelerating
from standstill to a speed equal to three times the critical speed with con-
stant acceleration is plotted in Fig. 23.14a. The plot has been obtained in
nondimensional form, using the following nondimensional parameters:

ξ∗ =
ξ

ε
, η∗ =

η

ε
, τ =

t

t1
=

ta

Ωcr
, a∗ =

a

Ω2
cr

.

Remark 23.16 The nondimensional time τ and the nondimensional ve-
locity Ω∗ coincide, because time has been made nondimensional with refer-
ence to time t1 needed to reach the critical speed.

With low values of the acceleration, the motion follows a pattern sim-
ilar to that seen for the steady-state case, as was easily predicted. With
increasing values of the acceleration, the peak amplitude is reduced and
the self-centered conditions are reached after some oscillations are damped
out. The oscillations become stronger with increasing acceleration.

The trajectory of point C in the rotating plane is shown in Fig. 23.14b.
From this plot, it is clear that the oscillations are actually the result of a
spiral motion of the system taking place about the self-centered position.

Remark 23.17 In the case here studied the threshold of instability is never
exceeded and the motion is stable. When the speed becomes higher than
the threshold of instability, the spiral stops decaying and starts growing as
unstable behavior develops.

The driving torque needed to perform the acceleration is shown in
Fig. 23.15. Actually, the nondimensional torque plotted is only the amount
of torque that exceeds the value aJz needed to accelerate a perfectly bal-
anced rotor. Also, strong oscillations are visible here in the supercritical
field. In Fig. 23.15 the curve related to a vanishingly small acceleration has
also been plotted. The equation of this curve can be obtained in the closed

3See, for example, F.M. Dimentberg, Flexural vibrations of rotating shafts,
Butterworths, London, 1961.
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FIGURE 23.14. Motion of a Jeffcott rotor with ζn = 0.1 and ζr = 0.01 crossing
a critical speed with constant acceleration. Nondimensional plot for some values
of the angular acceleration; (a) time history of the amplitude; (b) trajectory in
the rotating plane ξ∗η∗.

FIGURE 23.15. Nondimensional driving torque needed to perform the accelera-
tion through the critical speed. Same system as in Fig. 23.14.
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form by imposing that the displacement ζ is constant in time at the value
expressed by Eq. (23.39) and stating a = 0 in the second Eq. (23.48)

Mz = mε�(−ζΩ2) =
2kε2Ω∗5

ζn

(1 − Ω∗2)2 + 4ζ2
nΩ∗2 .

The above equation yields the torque needed to drive the rotor at con-
stant speed against the drag provided by nonrotating damping due to the
unbalance of the rotor. The drag due to rotordynamics has a peak at the
critical speed, whose value is

Mzmax =
kε2

2ζn
. (23.51)

If the driving torque is smaller than the value given by Eq. (23.51), the
rotor stalls, i.e., it fails to accelerate beyond the critical speed. All the power
supplied by the driving system is dissipated by nonrotating damping, and
acceleration is no longer possible. Obviously, the value so computed must
be added to that required to overcome all other forms of drag, such as
aerodynamic or bearing drag. In the high supercritical range, the torque
needed to operate at constant speed grows linearly with speed. From the
above equation, it follows that

lim
Ω→∞

Mz = 2kε2Ω∗ζn . (23.52)

23.11 Exercises

Exercise 23.1 Consider a rotor with a mass of m = 20 kg, running on two

bearings with a stiffness kb = 5 MN/m. Assuming that the center of mass is at

midspan, compute the critical speed and the response to an unbalance mε = 400

gmm using the Jeffcott rotor model.

Exercise 23.2 Consider the Jeffcott rotor of the previous exercise, but add a

rotating damper with damping cr = 3.5 kNs/m and assume that the damping of

the bearings is cnb = 1.2 kNs/m. Compute the Campbell diagram, the decay rate

plot, the roots locus, and the unbalance response.

Exercise 23.3 Repeat the study performed in Exercise 23.2, but assuming that

damping can be modeled as hysteretic damping. The loss factor of the supports is

ηn = 0.15. Rotating damping can be modeled as a loss factor ηr = 0.2, applied to

a spring having the same stiffness k of the system.

Exercise 23.4 Consider the damped Jeffcott rotor of Exercise 23.2. Compute

the response to an acceleration from standstill to 12000 rpm in 0.4 s at constant

acceleration and then follow the motion for a further 0.4 s. Plot the amplitude of

the response, the trajectory in the rotating plane, and the driving torque.



24
Dynamics of
Multi-Degrees-of-Freedom Rotors

Real-life rotors are much more complex than Jeffcott rotors and more real-
istic models are needed. The rotor must be modeled at least as a rigid body
(versus the point mass of the Jeffcott rotor) and its moments of inertia,
which can produce gyroscopic effects, must be accounted for. If the rotor is
flexible, multi-degrees-of-freedom models are needed.

24.1 Model with 4 degrees of freedom: gyroscopic
effect

24.1.1 Generalized coordinates and equations of motion

In the Jeffcott model the rotor was assumed to be a point mass. When
studying the acceleration through the critical speed, the moment of inertia
about the axis of rotation was introduced, but this had no effect on the
flexural behavior. Actually, the rotor’s moments of inertia can considerably
influence its dynamic behavior since they are responsible for the gyroscopic
moments that cause the natural frequencies of bending modes to depend
on the spin speed and the Campbell diagram to be different from a number
of straight lines running in a horizontal direction.

The simplest model to evaluate this effect is still that in Fig. 23.3, where
a rigid body is located in P instead of a point mass. It has nonvanishing
moments of inertia and one of its principal axes of inertia coincides, in the
undeformed position, with the z-axis.
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Its ellipsoid of inertia has axial symmetry with respect to the same axis.
The principal moments of inertia of the rigid body will be referred to as
the polar moment of inertia Jp about the rotation axis and the transversal
moment of inertia Jt about any axis in the rotation plane.

If Jp > Jt, the body is usually referred to as a disc; the limiting case
is that of an infinitely thin disc in which Jp = 2Jt. If Jp = Jt, the inertia
ellipsoid degenerates into a sphere and the situation is, in many aspects,
similar to that of the Jeffcott rotor. If Jp < Jt, the rotor is usually referred
to as a long rotor.

Assume also that, owing to small errors, the position of point P , in which
the center of mass of the rigid body is located, does not coincide with that
of point C, the center of the shaft. The distance between the two points is
the eccentricity ε. Moreover, the axis of symmetry of the rigid body does
not coincide exactly with the rotation axis. The angle between them is the
angular error χ. These two errors, which are assumed to be small, cause a
static unbalance and a couple unbalance, respectively.

Strictly speaking, the system has 6 degrees of freedom, and six gener-
alized coordinates must be defined for the study of its dynamic behavior.
The uncoupling between axial, flexural, and torsional behaviors seen for
beams will be assumed to hold for the elastic part of the system. The same
uncoupling also occurs for the inertial part of the model and a model with
4 degrees of freedom is sufficient for the study of the flexural behavior at
constant speed, at least under wide simplifying assumptions.

The generalized coordinates will be defined with reference to the frames
shown in Fig. 24.1a.

• Frame OXY Z: Inertial frame, with its origin in O and its Z-axis
coinciding with the rotation axis of the rotor.

• Frame OΞHZ with its origin in O and its Z-axis coinciding with
that of the preceding frame: Axes Ξ, H rotate in the XY -plane with
angular velocity Ω, in the case of constant speed operation. In the
case of variable speed, angle θ between the two systems coincides

FIGURE 24.1. (a) Reference frames and (b): unbalance conditions in the Cξηζ
reference frame.
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with the same angle defined in Fig. 23.4. It will be referred to as a
rotating frame.

• Frame CX ′Y ′Z ′ with origin in C: Its axes remain parallel with those
of frame OXY Z. The X ′Y ′-plane remains parallel to the XY -plane.

• Frame Cxyz with origin in C: Its z-axis coincides with the rotation
axis of the rigid body in the deformed position and the x- and y-axes
are defined by the following rotations:

- Rotate the axes of CX ′Y ′Z ′ frame about the X ′-axis by an angle
φX′ until the Y ′-axis enters the rotation plane of the rigid body
in its deformed configuration. Let the axes so obtained be the
y- and z∗-axes. The rotation matrix allowing one to express the
components of a vector in CX ′yz∗ frame from those referred to
CX ′Y ′Z ′ frame (or to the inertial frame, as the directions of
their axes coincide) is

R1 =

⎡
⎣ 1 0 0

0 cos(φX′) sin(φX′ )
0 − sin(φX′) cos(φX′ )

⎤
⎦ .

- Rotate the frame so obtained about the y-axis until the X ′-
axis enters the rotation plane of the rigid body in its deformed
configuration. Let the axis so obtained be the x-axis and the
rotation angle be φy. Let the matrix expressing this second
rotation be

R2 =

⎡
⎣ cos(φy) 0 − sin(φy)

0 1 0
sin(φy) 0 cos(φy)

⎤
⎦ .

After the two mentioned rotations, the z-axis coincides, apart from
the angular error χ, with the symmetry axis of the rigid body in its
deformed configuration. Frame Cxyz is centered in the center of the
shaft of the rigid body and follows it in its whirling motion. However,
it does not rotate with the spin speed Ω. It will be referred to as
whirling frame.

• Frame Cξηz with origin in C: It is obtained from frame Cxyz by ro-
tating the x- and y-axes in the xy-plane by an angle equal to rotation
angle θ of the rotor corresponding to the spin speed. If rotation oc-
curs with constant spin speed Ω, angle θ is equal to Ωt. Frame Cξηz
is actually fixed to the rigid body, although not being centered in its
center of mass owing to the eccentricity ε, and not being principal of
inertia due to the angular error χ. It will be referred to as rotating
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and whirling frame. The matrix allowing one to express a vector in
the Cξηz-frame from the components in the Cxyz-frame is

R3 =

⎡
⎣ cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0
0 0 1

⎤
⎦ .

As already stated, the rotor is assumed to be slightly unbalanced. As
the position of the rotor in the Cξηz-frame is immaterial, the principal
axis of inertia corresponding to the moment of inertia Jp will be assumed
to be parallel to the ξz-plane. Because the static unbalance cannot be as-
sumed to lie in the same plane as the couple unbalance, the eccentricity
cannot be assumed to lie along the ξ-axis, as was the case of the Jeffcott
rotor. The conditions of unbalance are summarized in Fig. 24.1b, where
the static unbalance is shown to lead the couple unbalance of a phase
angle α. A fourth rotation matrix R4 allowing passage from the rotor
system of reference Cξηz to the principal axes of the rigid body is thus
defined as

R4 =

⎡
⎣ cos(χ) 0 − sin(χ)

0 1 0
sin(χ) 0 cos(χ)

⎤
⎦ .

Take the X-, Y -, and Z-coordinates of point C and angles φX′ , φy,
and θ as generalized coordinates of the rigid body. A small displacement
assumption on coordinates X , Y , Z, φX′ , and φy will allow great simplifi-
cation of the problem. Coordinate θ, on the contrary, cannot be considered
small.

To compute the kinetic energy of the rigid body, the velocity of its cen-
ter of mass (point P) and its angular velocity expressed in the principal
system of inertia must be computed. The position of point P is easily
obtained

(P − O) =

⎧⎨
⎩

X
Y
Z

⎫⎬
⎭ + RT

1 RT
2 R′

3
T

⎧⎨
⎩

ε
0
0

⎫⎬
⎭ , (24.1)

where matrix R′
3 is a matrix identical to R3, but obtained substituting

angle θ + α to angle θ. The small-displacement assumption allows the lin-
earization of the trigonometric functions of angles φX′ and φy and the
neglect of some terms, which are of the same order of magnitude as those
that are neglected when truncating the series for the trigonometric func-
tions after the first term. Equation (24.1) then reduces to

(P − O) =

⎧⎨
⎩

X + ε cos(θ + α)
Y + ε sin(θ + α)

Z + ε [φX′ sin(θ + α) − φy cos(θ + α)]

⎫⎬
⎭ . (24.2)
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The velocity of the center of mass or the rotor is easily computed by
performing the derivatives of vector (P − O) with respect to time. As angle
α is constant, it follows that

VP =

⎧⎪⎨
⎪⎩

Ẋ − εθ̇ sin(θ + α)
Ẏ + εθ̇ cos(θ + α)

Ż + ε
[
(θ̇φX′ − φ̇y) cos(θ + α) + (θ̇φy + φ̇X′) sin(θ + α)

]
⎫⎪⎬
⎪⎭ .

(24.3)

In the third line of Eq. (24.3) there are two terms: The first is the veloc-
ity in the axial direction due to the displacement of point C in the same
direction, and the second is the velocity in the axial direction due to the ec-
centricity and rotations of the cross section of the shaft. It is easy to verify
that the last term causes a coupling between bending and axial behaviors
of the rotor; however, if the eccentricity is small, it is negligible compared
to the first one. In the following developments, all terms containing the
product of the eccentricity or the angular error by a small quantity will be
neglected and no axial–flexural coupling will be obtained. The translational
kinetic energy is thus

Tt =
1
2
mV 2

P =
1
2
m

{
Ẋ2 + Ẏ 2 + Ż2 + (24.4)

+ε2θ̇
2
+ εθ̇

[
−Ẋ sin(θ + α) + Ẏ cos(θ + α)

]}
.

For the computation of the rotational kinetic energy, the angular velocity
must be expressed with reference to a frame coinciding with the principal
axes of the rotor. The three components of the angular velocity can be
considered vectors acting in different directions: φ̇X′ along the X ′-axis,
φ̇y along the y-axis, and θ̇ along the z-axis. Using the relevant rotation
matrices, the components of the angular velocity along the principal axes
of inertia of the rotor Ω are

Ω = R4R3R2

⎧⎨
⎩

φ̇X′

0
0

⎫⎬
⎭ + R4R3

⎧⎨
⎩

0
φ̇y

0

⎫⎬
⎭ + R4

⎧⎨
⎩

0
0
θ̇

⎫⎬
⎭ . (24.5)

By remembering the small-displacement assumptions, Eq. (24.5) redu-
ces to

Ω =

⎧⎨
⎩

φ̇X′ cos(θ) + φ̇y sin(θ) − χθ̇

−φ̇X′ sin(θ) + φ̇y cos(θ)
φ̇X′ [χ cos(θ) + φy] + φ̇yχ sin(θ) + θ̇

⎫⎬
⎭ . (24.6)
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Since the components of Ω are referred to the principal axes of iner-
tia, neglecting the small terms, the rotational kinetic energy can be easily
computed as

Tr =
1
2

{
Jt(φ̇

2

X′ + φ̇
2

y + χ2θ̇
2
) + Jt(θ̇

2
+ 2θ̇φ̇X′φy)+ (24.7)

+2θ̇χ(Jp − Jt)
[
φ̇X′ cos(θ) + φ̇y sin(θ)

]}
.

The equations of motion can be obtained as usual through the Lagrange
equation. In this case it is expedient to introduce into the Lagrange equa-
tions only the expression of the kinetic energy and then to add the elastic
reaction of the shaft directly, as external generalized forces. The general-
ized forces Qi that must be included in the equations of motion related to
the translational degrees of freedom are simply the forces FX , FY , and FZ

applied on the rigid body in the direction of the axes of the inertial frame.
By performing the relevant derivatives, the first three equations of motion
are obtained with simple computations

⎧⎪⎪⎨
⎪⎪⎩

mẌ = mε
[
θ̈ sin(θ + α) + θ̇

2
cos(θ + α)

]
+ FX ,

mŸ = mε
[
−θ̈ cos(θ + α) + θ̇

2
sin(θ + α)

]
+ FY ,

mZ̈ = FZ .

(24.8)

The generalized forces to be introduced into the three equations of motion
related to the rotational degrees of freedom are not exactly the moments
about the axes of the Cxyz frame because the first generalized coordinate
for rotation is referred to the X ′-axis. It is easy to show that the generalized
forces are related to the components of the moment acting on the rigid body
in the directions of the axes of Cxyz frame by the equations

QφX′ = Mx cos(φy) + Mz sin(φy), Qφy = My, Qθ = Mz . (24.9)

By using expressions (24.9) for the generalized forces, performing all the
relevant derivatives and linearizing again, the following equations of motion
can be obtained:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Jtφ̈X′ + Jpθ̈φ̇y + Jpθ̇φ̇y = χ(Jt − Jp)[θ̈ cos(θ) − θ̇
2
sin(θ)]+

+Mx + φyMz ,

Jtφ̈y − Jpθ̇φ̇X′ = χ(Jt − Jp)[θ̈ sin(θ) + θ̇
2
cos(θ)] + My ,

(Jp + Jtχ
2 + mε2)θ̈ + mε

[
Ÿ cos(θ) − Ẍ sin(θ)

]
+

+χ(Jp − Jt)[φ̈X′ cos(θ) + φ̈y sin(θ)] = Mz .

(24.10)

Moment Mz can be obtained from the last equation and substituted
into the first. Since Mz is multiplied by the small quantity φy, in the first
equation only the term Jpθ̈ needs to be considered. By introducing the
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value of the moment about the z-axis into the first equation, it reduces to
the form

Jtφ̈X′ + Jpθ̇φ̇y = χ(Jt − Jp)[θ̈ cos(θ) − θ̇
2
sin(θ)] + Mx . (24.11)

Equation (24.11) and the last two Eq. (24.10) are the three equations of
motion for the rotational degrees of freedom.

24.1.2 Behavior of the system at constant speed

The equation related to the translational degree of freedom along the z-axis
uncouples from the others. If the angular velocity of the rotor is constant,
the last equation also uncouples and the flexural behavior can be studied
separately from axial and torsional behaviors. By stating that θ = Ωt, the
four relevant equations of motion reduce to

⎧⎪⎪⎨
⎪⎪⎩

mẌ = mεΩ2 cos(Ωt + α) + FX ,

mŸ = mεΩ2 sin(Ωt + α) + FY ,

Jtφ̈X′ + JpΩφ̇y = −χΩ2(Jt − Jp) sin(Ωt) + Mx ,

Jtφ̈y − JpΩφ̇X′ = χΩ2(Jt − Jp) cos(Ωt) + My .

(24.12)

The only forces and moments acting on the rigid body in P that will
be considered are those due to the elastic reaction of the shaft. Because
the behavior of the shaft is assumed to be linear, they are linked to the
generalized coordinates by the stiffness matrix of the shaft. The situation
in the xz-plane is similar to that in the yz-plane, but if the same elements
of the stiffness matrix are used, owing to the axial symmetry of the shaft,
the different sign conventions in the two coordinate planes compel to use
opposite signs for the elements with subscripts 12 and 21

{
FX

My

}
= −

[
K11 K12

K12 K22

]{
X
φy

}
,

{
FY

Mx

}
= −

[
K11 −K12

−K12 K22

]{
Y

φX′

}
.

(24.13)

Note that while forces are defined with reference to the undeflected con-
figuration, as is typical of the linear theory of elasticity, moments are, on
the contrary, referred to the xyz-axes, which follow the deflected configu-
ration. This is essentially equivalent, because rotations are assumed to be
small, and amounts to release one of the usual simplifications of the the-
ory of elasticity. By introducing the expressions (24.13) of the forces and
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moments into the equations of motion (24.12), it follows that
⎧⎪⎪⎨
⎪⎪⎩

mẌ + K11X + K12φy = mεΩ2 cos(Ωt + α) ,

mŸ + K11Y − K12φX′ = mεΩ2 sin(Ωt + α) ,

Jtφ̈X′ + JpΩφ̇y − K12Y + K22φX′ = −χΩ2(Jt − Jp) sin(Ωt) ,

Jtφ̈y − JpΩφ̇X′ + K12X + K22φy = χΩ2(Jt − Jp) cos(Ωt) .
(24.14)

Equations (24.14) can be written in the following matrix form:

⎡
⎢⎣

m 0 0 0
0 Jt 0 0
0 0 m 0
0 0 0 Jt

⎤
⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

Ẍ

φ̈y

Ÿ

φ̈X′

⎫⎪⎪⎬
⎪⎪⎭

+ Ω

⎡
⎢⎣

0 0 0 0
0 0 0 −Jp

0 0 0 0
0 Jp 0 0

⎤
⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

Ẋ

φ̇y

Ẏ

φ̇X′

⎫⎪⎪⎬
⎪⎪⎭

+

+

⎡
⎢⎣

K11 K12 0 0
K12 K22 0 0
0 0 K11 −K12

0 0 −K12 K22

⎤
⎥⎦

⎧⎪⎨
⎪⎩

X
φy

Y
φX′

⎫⎪⎬
⎪⎭ = Ω2

⎧⎪⎨
⎪⎩

mε cos(Ωt + α)
χ(Jt − Jp) cos(Ωt)

mε sin(Ωt + α)
−χ(Jt − Jp) sin(Ωt)

⎫⎪⎬
⎪⎭ .

(24.15)

If −φX′ is used instead of φX′ as the generalized coordinate for rotations
about the X-axis, the stiffness matrix assumes a more regular pattern with
all terms positive and the skew-symmetric gyroscopic matrix, containing
the polar moments of inertia, is replaced by its transpose.

It is possible to define a set of complex coordinates that allow the equa-
tions of motion to be written in a more compact form{

z = X + iY ,
φ = φy − iφX′ .

(24.16)

Multiplying the second Eq. (24.15) by the imaginary unit i and adding
it to the first one, and multiplying the third equation by −i and adding it
to the fourth one, reduces the equations of motion to

{
mz̈ + K11z + K12φ = mεΩ2ei(Ωt+α) ,

Jtφ̈ − iΩJpφ̇ + K12z + K22φ = χΩ2(Jt − Jp)eiΩt ,
(24.17)

or, in a more compact form,

Mq̈− iΩGq̇ + Kq = Ω2feiΩt . (24.18)

The vectors of the complex coordinates and of the unbalances and the
mass, gyroscopic, and stiffness matrices in Eq. (24.18) are

q =
{

z
φ

}
, M =

[
m 0
0 Jt

]
, G =

[
0 0
0 Jp

]
,

K =
[

K11 K12

K12 K22

]
, f =

{
mεeiα

χ(Jt − Jp)

}
.
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Remark 24.1 All matrices are symmetric when using the complex coor-
dinate notation, while when using real coordinates the gyroscopic matrix is
skew symmetric.

The presence of damping can be accounted for in a very easy way if the
viscous or hysteretic damping models can be accepted. Like in the case of
the Jeffcott model, it is important to distinguish between nonrotating and
rotating damping and to introduce separately the two damping matrices. In
the case of viscous damping, the equation of motion of the damped system
is

Mq̈ + (Cn + Cr − iΩG)q̇ + (K − iΩCr)q = Ω2feiΩt , (24.19)

where the structure of matrices Cn and Cr is similar to that of the stiffness
matrix.

Remark 24.2 By linearizing the equation of motion of a rotating gyro-
scopic system a linear equation very similar to that of a discrete vibrating
system has been obtained. The main differences are the presence of the gy-
roscopic matrix and, in the case of damped systems, of a term iΩCr linked
to rotating damping. Obviously, when the spin speed Ω tends to zero, the
equation of motion of a nonrotating system is obtained.

24.1.3 Free whirling of the undamped system

The free whirling of the undamped system can be studied using the homo-
geneous equation associated with Eq. (24.17). Introducing a solution of the
type

z = z0e
iωt , φ = φ0e

iωt

into the equation of motion, the following algebraic linear equations are
readily obtained:

{
z0

(
−mω2 + K11

)
+ φ0K12 = 0 ,

z0K12 + φ0

(
−Jtω

2 + JpωΩ + K22

)
= 0 .

(24.20)

The characteristic equation allowing computation of the whirl frequency
is

det
[

−mω2 + K11 K12

K12 −Jtω
2 + JpωΩ + K22

]
= 0 , (24.21)

which yields

ω4−Ωω3 Jp

Jt
−ω2

(
K11

m
+

K22

Jt

)
+Ωω

K11Jp

mJt
+

K11K22 − K2
12

mJt
= 0 . (24.22)

Equation (24.22) has four real roots, two of which are positive. The
Campbell diagram of the system is of the type shown in Fig. 24.2: At each
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speed Ω, four whirl modes, occurring at different frequencies, are possi-
ble. Two of them occur in the forward direction and two in the backward
direction.

Because all solutions of Eq. (24.22) are real, the corresponding eigenvec-
tors qi are also real. At time t = 0, both Y and φX′ vanish: the z-axis
is contained in a plane also containing the Z-axis and rotating about the
latter with a constant angular velocity equal to the whirl speed ω. The
axis of the rotor describes a cone whose axis is the rotor axis in its unde-
formed position. Because the deflected shape is contained in a plane, the
motion could have been studied in such a plane from the beginning, using
a model with only 2 degrees of freedom. This model, however, cannot be
used to study the damped system, and a more general model was preferred
from the beginning. Actually, the free whirling of the system can be more
complex because the motion is the combination of all four circular whirling
motions that occur at different frequencies

q =
4∑

k=1

qkeiωkt . (24.23)

The gyroscopic terms couple the behavior in the planes passing through
the rotation axis and make it impossible for the system to perform ellipti-
cal or rectilinear motions. An equation of the type of Eq. (24.23) can yield
elliptical motions only in the case in which two of the eigenfrequencies
ωk have the same modulus and opposite sign, as in the case of the Jeff-
cott rotor. The introduction of gyroscopic moments causes forward whirl
frequencies to be different from backward whirl frequencies and all whirl
motions to be circular. Obviously, the four circular modes can add to each
other, yielding Lissajous curves. Another effect of gyroscopic moments is
causing the whirl frequencies to be functions of the spin speed. Generally
speaking, the frequency of forward modes increases with speed, while the
frequency of backward modes decreases.

To avoid solving Eq. (24.22) in ω, the Campbell diagram can be obtained
solving the same equation in Ω. The equation is linear in this unknown and
a closed-form solution can be easily found:

Ω =
mJtω

4 − (JtK11 + mK22)ω2 + K11K22 − K2
12

ωJp(mω2 − K11)
. (24.24)

From Fig. 24.2 it is clear that the Campbell diagram has three horizon-
tal asymptotes; two for backward motions and one for forward whirling.
Another asymptote has the equation ω = ΩJp/Jt. The intersections be-
tween the curve ω(Ω) and the bisector of the first quadrant ω = Ω yield
the conditions for forward synchronous whirling, i.e., the critical speeds.
By introducing condition Ω = ω into Eq. (24.22) the following quadratic
equation in Ω2 is obtained:

Ω4m(Jp − Jt) − Ω2
[
(Jp − Jt)K11 − mK22

]
− K11K22 + K2

12 = 0 . (24.25)
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FIGURE 24.2. Campbell diagram of a system made by a rigid rotor on elastic
supports.

By neglecting the negative solutions corresponding to the intersections
of curve ω(Ω) with the straight line ω = Ω lying in the third quadrant of
the ωΩ-plane, the following values of the critical speed are obtained:

Ωcr =

√√√√K11(Jp − Jt) − mK22 ±
√[

K11(Jp − Jt) + mK22

]2 − 4m(Jp − Jt)K2
12

2m(Jp − Jt)
.

(24.26)

Introducing the ratio

δ =
Jp − Jt

m
,

Eq. (24.26) can be written in the more compact form

Ωcr =
1√
2m

√√√√
K11 −

K22

δ
±

√(
K11 +

K22

δ

)2

− 4
K2

12

δ
. (24.27)

If Jp < Jt or δ < 0, as happens in the case of long rotors, there are two
real solutions and, as a consequence, two values of the critical speed.

If, on the contrary, Jp > Jt or δ > 0, as happens in the case of discs, one
of the solutions is imaginary and only one critical speed exists.
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If K12 = 0, i.e., if translational and rotational degrees of freedom are
uncoupled, the two equations can be studied separately and the Campbell
diagram degenerates into two straight lines with equations

ω = ±
√

K11

m
,

as in the case of Jeffcott rotors, a curve that has for asymptotes the Ω-axis
in backward whirling, and a curve with the asymptote

ω = Ω
Jp

Jt

in forward whirling. The straight lines and the curves can cross either in
the first quadrant, as in Fig. 24.2, or in the fourth quadrant. The values of
the critical speed are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΩcrI =

√
K11

m
,

ΩcrII
=

√
−K22

mδ
=

√
− K22

Jp − Jt
.

(24.28)

The second value is real only if δ < 0, i.e., Jt > Jp.
Consider a rotor made by a rigid gyroscopic body attached to a flexible

uniform shaft running on rigid bearings (Fig. 24.3). The stiffness matrix of
the system is

FIGURE 24.3. Influence of the gyroscopic moment on critical speeds.
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K =
3EIl

a(l − a)

⎡
⎢⎢⎣

l2 − 3al + 3a2

a2(l − a)2
2a − l

a(l − a)
2a − l

a(l − a)
1

⎤
⎥⎥⎦ . (24.29)

The influence of the gyroscopic moment on the critical speeds can be
shown by plotting the values of the critical speed or, better, of ratio Ωcr/Ω∗

cr,
where Ω∗

cr is the critical speed computed neglecting gyroscopic effects, as
functions of δ or, better, of the nondimensional parameter

δ

l2
=

Jp − Jt

ml2
.

The graph, plotted for various values of a/l, is shown in Fig. 24.3. If the
rotor is at midspan, i.e., if a/l = 0.5, the gyroscopic moment has no effect
on critical speed in the case of a disc rotor while causing a second critical
speed in the case of long rotors.

In all other cases, a disc-type rotor causes an increase in the critical
speed, which is sometimes explained by saying that the gyroscopic moment
causes a stiffening of the system. It is only a phenomenological explanation
because no actual stiffening takes place.

In the case of a long rotor, the critical speed decreases and a second
critical speed, usually quite higher than the first, is present.

Remark 24.3 The values of

|Jp − Jt|
ml2

are in practice quite small, particularly in the case of long rotors, and
Fig. 24.3 holds only for a narrow zone about the ordinate axis. On the
right side of this narrow zone the discs are too thin and they can no longer
be considered as rigid bodies, and on the left the rotor becomes too slender
to be considered as rigid again.

The considerations drawn from Fig. 24.3, although obtained for a par-
ticular case, are, however, qualitatively applicable in general.

24.1.4 Unbalance response of the undamped system

The unbalance response can be easily studied starting from Eq. (24.18),
whose particular integral can be expressed in the form

z = z0e
iΩt , φ = φ0e

iΩt ,

where the amplitudes zo and φo are, in general, complex numbers because
static and couple unbalances do not lie in the same plane, i.e., the phase
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angle α is, in general, not equal to zero. The effects of the two types of
unbalance can be studied separately, and then the relevant solutions can
be added to each other.

In the case of a static unbalance with vanishing phase α, the amplitude
of the response is ⎧⎪⎨

⎪⎩
z0 = mεΩ2 (Jp − Jt)Ω2 + K22

Δ
,

φ0 = −mεΩ2 K12

Δ
,

(24.30)

where

Δ = −m(Jp − Jt)Ω4 + [K11(Jp − Jt) + mK22] Ω2 + K11K22 − K2
12 .

In the case of couple unbalance, the response is
⎧⎪⎨
⎪⎩

z0 = χΩ2(Jp − Jt)
K12

Δ
,

φ0 = χΩ2(Jp − Jt)
mΩ2 − K11

Δ
.

(24.31)

Equations (24.30) and (24.31) are plotted in Fig. 24.4 for the same rotor
as in Fig. 24.2 with l/a = 4. As is clear from the figure, in the current case,
self-centering occurs at speeds in excess of the critical speed in the case of
static unbalance, while a certain self-centering also occurs in the subcritical
field in the case of couple unbalance.

This happens because the system has only one critical speed (Jp > Jt),
and the natural frequency at standstill related to the rotational mode is
lower than that linked with the translational mode.

FIGURE 24.4. Amplitude of the unbalance response for the same rotor of
Fig. 24.2 with l/a = 4: (a) response to static unbalance and (b) response to
couple unbalance.
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Example 24.1 The schematic cross section of a turbomolecular pump is
reported in Fig. 24.5, together with a few basic dimensions. Knowing that the
operating speed is 30,000 rpm, the first critical speed must be lower than 15,000
rpm and the second must be above the working range, state the diameter of
the shaft.
The rotor of the pump can be modeled as a rigid body attached to a massless
shaft, with its center of mass at the connection point. The inertia character-
istics of the rigid body are m = 6 kg, Jp = 0.035 kg m2, and Jt = 0.055 kg
m2. The material of the shaft has a Young’s modulus E = 2.1 × 1011 N/m2.
The mass of the shaft has been neglected, and the model with 2 complex de-
grees of freedom can be used. The model is sketched in Fig. 24.5. Choose as
generalized coordinates the displacement and rotation at the center of mass of
the rigid body, neglect the compliance of the bearings and of the stator of the
machine, and assume that the shaft has constant diameter.

The stiffness matrix can be computed using the FEM. However, due to the

simple geometry, it is possible to compute the compliance matrix by applying

a unit force and a unit moment in point P and computing the displacement

and rotation in the same point (for simple geometries like the current one, the

relevant formulas are reported in many handbooks), the compliance matrix B

is obtained:

B =
1

6EI

[
2l22(l1+l2) l2(2l1+3l2)
l2(2l1+3l2) 2(l1+3l2)

]
.

The stiffness matrix K is obtained by inverting the compliance matrix β

K=
6EI

l32(4l1+3l2)

[
2(l1+3l2) −l2(2l1+3l2)

−l2(2l1+3l2) 2l22(l1+l2)

]
=

= I

[
1.3696 −0.0445
−0.0445 0.001644

]
×1016.

The critical speeds can be computed using Eq. (24.26):

ΩcrI = 0.8611 × 107
√

I rad/s = 0.88223 × 108
√

I rpm,

ΩcrII = 5.504 × 107
√

I rad/s = 5.2566 × 108
√

I rpm .

The large difference between the first and the second critical speeds allows the
choice of a low value of the first critical speed without any danger that the sec-
ond is located within the working range. By assuming that ΩcrI = 10,000 rpm,
a value of the moment of inertia of the shaft I = 1.479 × 10−8 m4 and then a
shaft diameter of 23.4 mm is obtained. Choosing a value of 24 mm, the mo-
ment of inertia is I = 1.628×10−8 m4 and the critical speeds are ΩcrI =10,490
rpm, ΩcrII = 67, 080 rpm, respectively. The second value is quite high, and it
is likely that other critical speeds are located between the computed values. A
more realistic model, which also takes into account the mass of the shaft and
the compliance of the bearings, must, however, be used to obtain them.
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FIGURE 24.5. Schematic drawing of a turbomolecular pump (Vacuum Tech-
nology; Its Foundation, Formulae and Tables, Leybold-Heraeus, Köln, Germany)
and model of the rotor. The drawing refers to a machine no longer in production.

24.2 Rotors with many degrees of freedom

The Jeffcott rotor and the model with 4 degrees of freedom allow at least a
qualitative understanding of the dynamic behavior of linear axi-symmetrical
rotors, modeled as a point mass or a rigid body connected to a massless elas-
tic shaft running in massless elastic bearings. These models are, however,
inadequate to supply quantitative information on the behavior of complex
rotating systems, and more accurate models are needed in the design stage.

The next step is modeling rotors as beam-like objects: The degrees of free-
dom are the lateral displacements and the rotations of the cross sections. This
approach is usually referred to as one-dimensional modeling, since the prop-
erties of the rotor depend on one coordinate only, the axial coordinate z.

In the present text the study is limited to this simple approach; for more
detailed modeling, like the one-and-a-half-dimensional approach, in which
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the rotor is still basically a beam-like object, but the flexibility of the disks
is accounted for in a simplified way, or the full tridimensional approach the
reader can refer to specialized texts.1

Also, in the case of rotors, both the continuum and the discretized
approaches are possible, at least in theory.

24.2.1 Continuum models

Consider a rotor that can be modeled as a beam slender enough to use the
standard beam theory. If the supports can be assumed to be rigid, there
is no difficulty computing the natural frequencies at standstill. If the polar
moment of inertia of the cross-sections can be neglected, gyroscopic mo-
ments do not significantly affect the dynamic behavior of the system when
rotating and the natural frequencies are independent of the spin speed. The
values computed for the nonrotating beam hold for any value of the speed
Ω, the Campbell diagram is made by straight lines parallel to the Ω-axis,
and the values of the critical speeds coincide with those of the natural
frequencies.

Transmission shafts with a simple geometrical shape are usually mod-
eled as cylindrical Euler–Bernoulli beams. There is, however, no difficulty
studying the dynamic behavior of a cylindrical shaft, taking into account
the rotational inertia of the cross-section and shear deformation. Also, the
gyroscopic effect can be accounted for, and it is possible to show that the
three effects are of the same order of magnitude: If one of them is consid-
ered, it is advisable to include them all. Gyroscopic effects cause a stiffen-
ing of the system, which increases with increasing speed. In critical speed
conditions, usually the combined effect of the three phenomena is that of
increasing the critical speed, while at standstill they cause a decrease of
the natural frequency.2

The continuum approach is, however, feasible only in the case of very sim-
ple geometrical shapes, such as shafts with constant cross-section. Dealing
with more complicated shapes using the continuum approach leads to ana-
lytical difficulties, and today the most popular methods are based on some
discretization technique. In particular, methods based on transfer matrices
were, and still are, widely used, even if they are now yielding to the FEM.

Remark 24.4 Very often, rotors are modeled using beam elements, with
inertial properties modeled using the lumped or the consistent approach.
Although there is no difficulty using other types of elements, the relevant

1See, for instance, G. Genta, Dynamics of Rotating Systems, Springer, New York,
2005.

2See, for example, F.M. Dimentberg, Flexural vibrations of rotating shafts, Butter-
worths, London, 1961; G. Genta, “Consistent matrices in rotor dynamics”, Meccanica,
Vol. 20, (1985), 235–248.
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gyroscopic matrices are usually not available to users of standard finite
element codes.

24.2.2 Lumped-parameters models: Myklestadt–Prohl method

Among lumped-parameters methods, the transfer matrix approach, namely,
the Myklestadt method was, and still is, widely used in rotor dynamics,
mainly for critical speed prediction. The formulation seen in Section 14.6
holds with the only difference of adding the gyroscopic moment in the node
transfer matrices expressed by Eq. (14.23). As it can be easily obtained from
the second Eq. (24.20), the gyroscopic moment due to the ith rigid body
located in the ith node can be accounted for by replacing

ωΩJp − ω2Jt

for
−ω2Jt

in the expression of the generalized inertia force related to the rotational
degree of freedom. By performing the mentioned substitution in Eq. (14.23),
the Myklestadt method is easily converted to the study of the dynamic
behavior of rotors. If the aim is only to evaluate the critical speeds, it is
possible to introduce ω = Ω = Ωcr into the node transfer matrix, which
becomes

Tin =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

−miΩ2
cr + kc 0 1 0
0 −(Jti − Jpi)Ω2

cr + χc 0 1

⎤
⎥⎥⎦ . (24.32)

The computation follows the guidelines already seen in Section 14.6 with-
out modifications.

When using the stiffness or compliance approach, the whole structure is
modeled as for nonrotating systems in Section 14.6. If complex coordinates
are used, the relevant equations are either Eq. (24.18) or (24.19), depending
on whether or not damping is neglected. The size of all matrices and vectors
is equal to the number of complex degrees of freedom, which coincides with
the number of degrees of freedom related to bending behavior in the xz-
and yz-planes. Mass, stiffness, and damping matrices M, K, and C are
those related to the flexural behavior of the nonrotating system in the xz-
plane, although the choice of the relevant plane depends on the way in
which the complex coordinates were defined. This is obvious because the
equation of motion must become the same that describes the free behavior
of the nonrotating system when the spin speed Ω tends to zero. Also, in
this case the stiffness matrix can be directly obtained using the FEM or
from the matrix of the coefficients of influence.
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If the complex coordinates are ordered as follows:

q =
[

z1 φ1 z2 φ2 . . . zn φn

]T
, (24.33)

matrices M and G and vector f of the unbalances are, respectively,

M = diag
[

m1 Jt1 m2 Jt2 . . . mn Jtn

]
,

G = diag
[

0 Jp1 0 Jp2 . . . 0 Jpn

]
, (24.34)

f =
[

m1ε1e
iα1 (Jt1 − Jp1)χ1e

iβ1 . . . mnεneiαn (Jtn − Jpn )χneiβn
]T

.

The phases αi and βi are needed to take into account the possible dif-
ferent orientations in space of the vectors expressing static and couple un-
balances. Rotating damping matrix Cr can be built in the same way as for
general damping matrices, taking into account only the contribution to the
overall energy dissipation due to rotating parts of the machine.

24.2.3 Models with consistent inertial properties

There is no difficulty in adding the contribution of rotation to the kinetic
energy of an element of any type into the FEM. The mass matrix that
results from this approach is coincident with that related to the nonrotating
model. Also, the stiffness and damping matrices are not affected by the fact
that the system rotates, apart from a possible geometrical effect due to the
stiffening of the element that can be ascribed to centrifugal stressing. This
effect, which is usually neglected in the formulation of the beam elements
used to model rotating shafts, must be considered when dealing with beam
elements in a direction perpendicular to the rotation axis, such as those
used to model turbine blades, propellers, and similar structural members.
If centrifugal stiffening must be considered, it can be generally taken into
account by adding a term of the type Ω2KΩ to the stiffness matrix, where
KΩ is a matrix of constants that can be computed at the element level and
then assembled in the usual way.

The effect of axial forces acting on the rotor can be accounted for by
using the standard formulation of the geometric matrix.

The greatest difference between a finite element model for a rotor and
that for the corresponding nonrotating structure is the presence in the first
of a gyroscopic term. It is possible to show that the consistent gyroscopic
matrix of a beam element is identical to the part of the mass matrix related
to the rotational inertia of the cross-sections in which the polar moment of
the cross-section Iz is substituted for the transversal moment of inertia Iy.
As in the case of an axi-symmetrical beam Iz = 2Iy, the gyroscopic matrix
is equal to twice the rotational contribution to the mass matrix. If there
is damping in the system, the damping matrices of the nonrotating and
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rotating elements can be assembled separately, directly yielding the two
matrices Cn and Cr to be introduced into the equations of motion. The
consistent unbalance vectors for a linear distribution of static and couple
unbalance are

f = a1

{
εξ1 + iεη1

εξ2 + iεη2

}
+ a2

{
χη1 − iχξ1

χη2 + iχξ2

}
, (24.35)

where

a1 =
ρAl

120(1 − Φ)

⎡
⎢⎢⎣

42 + 40Φ 18 + 20Φ
l(6 + 5Φ) l(4 + 5Φ)
18 + 20Φ 42 + 40Φ
−l(4 + 5Φ) −l(6 + 5Φ)

⎤
⎥⎥⎦ ,

a2 =
ρIy

12(1 − Φ)

⎡
⎢⎢⎣

−6 −6
l(1 + 4Φ) l(−1 + 2Φ)

6 6
l(−1 + 2Φ) l(1 + 4Φ)

⎤
⎥⎥⎦

and the other symbols have the same meaning seen in Section 15.2. The
eccentricity of the elements has been defined by the components along the
ξ- and the η-axes in correspondence to the two end nodes of the element.
The couple unbalance has been defined in the same way, even if it is difficult
to correctly define a distributed couple unbalance.

The matrices of the elements can be assembled and condensed in the
same way as for nonrotating structures. Gyroscopic matrices are condensed
using the same algorithm as for mass matrices.

The model can also include the stator of the machine as well as various
rotors with different rotating speeds, provided that the whole system is
axially symmetrical, as in the case of multishaft turbines.

24.3 Real versus complex coordinates

The equations of motion of axi-symmetrical rotors were obtained in the
preceding sections with reference to a set of complex coordinates of the type
defined by Eq. (24.16). The use of complex coordinates is very convenient
in the case of axi-symmetrical systems, particularly if damping is neglected,
because it allows to study the system using a model whose size is half the
size of the same problem expressed in real coordinates.

Remark 24.5 Even if the coordinates are complex, all relevant matrices
are real and the computation of the critical speeds, the undamped Camp-
bell diagram, and the undamped unbalance response does not involve actual
working with complex numbers, as will be shown in detail in the following
sections.
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Another advantage of the use of complex coordinates is that of obtain-
ing the response in terms of rotating vectors that rotate in the physical
space, directly giving complete information about the orbits of the various
nodes and the direction of the whirling motions. Using real coordinates the
rotating vectors are defined with reference to the complex plane and the
whirling motion is obtained as the composition of harmonic vibrations in
the directions of the x- and y-axes.

The main limitation of the complex coordinate approach is that it deals
with difficulty with elliptical orbits, as those occurring in the case of non-
axisymmetrical machines, as will be seen in Chapter 25.

Equation (24.19) can be written by separating the real part of each equa-
tion from the imaginary part, obtaining

[
M 0
0 M

]
ẍ +

(
Ω

[
0 G

−G 0

]
+

[
C 0
0 C

])
ẋ+ (24.36)

+
([

K 0
0 K

]
+ Ω

[
0 Cr

−Cr 0

])
x = Ω2

{
�(feiΩt)
�(feiΩt)

}
,

where
x = [� (q)T

,� (q)T ]T

and C is the total damping matrix,

C = Cn + Cr .

Remark 24.6 In the case of complex coordinates all matrices were sym-
metrical, but the use of real coordinates results in skew-symmetrical gyro-
scopic and rotating damping (circulatory) matrices.

The real coordinates x defined earlier differ from the standard real coor-
dinates used for the study of nonrotating systems for what the sign of the
rotational degrees of freedom related to rotation about the x-axis is con-
cerned. In many cases, a generalized form of Eq. (24.15) is used, in which
the sign conventions for rotational coordinates are those standard in the
FEM. The equation of motion of the damped system is thus

[
Mx 0
0 My

]
ẍ∗ +

(
Ω

[
0 Gxy

−Gyx 0

]
+

[
Cx 0
0 Cy

])
ẋ∗+

+
([

Kx 0
0 Ky

]
+ Ω

[
0 Crxy

−Cryx 0

])
x∗ (24.37)

= Ω2

{
fx cos(Ωt) − fy sin(Ωt)
fx sin(Ωt) + fy cos(Ωt)

}
,

where matrices with subscript x are the same as for complex coordinates,
matrices with subscript y are similar, except for the sign of elements with
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subscripts made by two numbers whose sum is odd. Matrices with sub-
scripts xy and yx have signs that differ from those of the corresponding
matrices in Eq. (24.36) and are such that the global gyroscopic and rotating
damping matrices are skew-symmetrical. Vector x∗ is a vector containing
the generalized coordinates and is of the type of the vector of the general-
ized coordinates of Eq. (24.15).

The order of the degrees of freedom shown in Eqs. (24.36) and (24.37),
with all coordinates related to the xz-plane listed one after the other fol-
lowed by those related to the other plane, is just an indication because it
would lead to matrices with a very large band. Actually, the degrees of
freedom are mixed at the element level and the structure of the matrices
shown here holds for the matrices of the elements and not for those related
to the whole structure.

24.4 Fixed versus rotating coordinates

Although the flexural behavior of rotating axi-symmetrical systems can be
studied using an inertial coordinate frame as seen in the preceding sections,
it is possible to use a set of coordinates based on the rotating frame O ΞHZ.

A set of complex coordinates r, related to the coordinates q, can thus be
obtained using the relationship

r = qe−iΩt (24.38)

and the equation of motion (24.19) transforms into the following equation:

Mr̈ +
[
Cn + Cr + iΩ(2M− G)

]
ṙ+

+
[
K− Ω2(M − G) + iΩCn

]
r = Ω2f .

(24.39)

The same considerations seen for Eq. (23.38) obtained for the Jeffcott
model also hold for Eq. (24.39). Also in the case of rotating coordinates it
is possible to chose between the complex coordinates approach seen earlier
and an alternative formulation of the problem based on real coordinates.
The relevant equation can be easily obtained by separating the real and
imaginary parts of Eq. (24.39). The gyroscopic, Coriolis, and nonrotating
damping terms give way to skew-symmetrical matrices. The use of rotating
coordinates, which is not very convenient in the case of axi-symmetrical
systems, becomes advisable when dealing with machines including a non-
isotropic rotor (see Chapter 25).
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24.5 State-space equations

All the preceding equations can be written with reference to the state space.
If complex coordinates are used, the state vector is

z =
{

q̇
q

}
. (24.40)

The corresponding state matrix and product Bu due to unbalance are,
respectively,

A =

⎡
⎣ −M−1

(
Cn + Cr − iΩG

)
−M−1

(
K + Ω2KΩ − iΩCr

)

I 0

⎤
⎦ ,

(24.41)

Bu = Ω2eiΩt

{
f
0

}
. (24.42)

Note that the dynamic matrix is complex, due to the presence of the
gyroscopic and rotating damping (circulatory) terms and, as a consequence,
its eigenvalues are non-conjugated. When the roots locus, with the spin
speed used as a parameter, is plotted, it is not symmetrical with respect
to the real axis. This was also the case for the Jeffcott rotor, as shown in
Fig. 23.8, but in the current case it also occurs for the undamped system
owing to the gyroscopic term.

State-space equations can also be written with reference to real coordi-
nates, in which case a real dynamic matrix is always obtained. Rotor-fixed
coordinates can also be used.

24.6 Static solution

In this section, the term static solution will be referred to as the computa-
tion of the deformed shape and of the stress and strain fields of a rotor under
the effects of constant forces. The relevant equation yielding the static dis-
placement is easily obtained by adding a vector of static nonrotating forces
fn on the right-hand side of Eq. (24.19) and neglecting all terms containing
the time derivatives of the generalized coordinates. There is no difficulty in
introducing the hysteretic damping matrix K′′

r , i.e., the imaginary part of
the complex stiffness matrix related to the rotating part of the system into
the equation of motion, remembering that in the case of a static solution
the whirl speed Ω vanishes. Taking into account centrifugal stiffening, it
follows that (

K + Ω2KΩ − iΩCr − iK′′
r

)
q = fn. (24.43)

Neglecting centrifugal stiffening, from Eq. (24.43) it is clear that the
static solution for an undamped rotating system coincides with that of the
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corresponding nonrotating structure but, in case of a damped rotor, the
deflected shape is influenced by the spin speed. This effect is easily un-
derstood if the force vector is assumed to be real, i.e., if all forces and
moments act in the same plane, e.g., in the xz-plane, as in the case of a
rotor loaded by self-weight. The presence of imaginary terms in the ma-
trix of the coefficients of Eq. (24.43) results in a complex displacement
vector q. The presence of damping causes a lateral deviation of the de-
formed shape of the rotor from the plane in which all loads are acting.
In the case of viscous damping, this deviation depends on the spin speed.
Its measurement in a rotating–bending fatigue test has been suggested
several times and was actually used to measure the internal damping of
materials.

24.7 Critical-speed computation

Critical speeds can easily be computed from the homogeneous equation of
motion (24.18), yielding free whirling, by adding the condition ω = Ω. The
following eigenproblem is obtained:

(
− Ω2(M − G − KΩ) + K

)
q = 0 . (24.44)

Note that the size of the eigenproblem, in which only real quantities are
involved, is equal to the number of complex degrees of freedom. Math-
ematically, the problem is that already seen for the computations of the
natural frequencies of an undamped vibrating system whose mass matrix is
M−G−KΩ. The only difference is that in the current case the mass matrix
can be nonpositive definite. All properties of eigenvectors seen for vibrating
systems still hold because they were related only to the symmetry of the
relevant matrices: If matrix M − G − KΩ is nonpositive definite, the only
consequence is that some of the modal masses are negative and the cor-
responding eigenvalues are imaginary.3 The eigenvectors are m-orthogonal
only if complex coordinates are used: The real coordinates approach yields
a skew-symmetrical gyroscopic matrix and makes it necessary to resort to
a set of left and right eigenvectors.

In many cases excitations whose frequency is a multiple of the spin speed
can be present. As will be seen in Chapter 25, often the excitation provided
by constant forces on slightly nonsymmetrical rotors is accounted for by
intersecting the Campbell diagram with the straight line ω = 2Ω, while the
excitation due to lubricated journal bearings is studied using the straight

3For a detailed discussion of the meaning of the negative modal masses, see, for
example, G. Genta and F. De Bona, “Unbalance response of rotors: A modal approach
with some extensions to damped natural systems”, Journal of Sound and Vibrations,
140(1), (1990), 129–153.
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line ω = Ω/2. The secondary critical speeds occurring at the intersection of
the generic straight line ω = hΩ can be computed from the eigenproblem

(
− Ω2(h2M − hG − KΩ) + K

)
q0 = 0. (24.45)

Also, in this case the use of complex coordinates allows the performance
of the modal analysis of the system using mode shapes that are k- and
m-orthogonal.

24.8 Unbalance response

The response to a generic unbalance distribution can be easily obtained
by computing a particular integral of Eq. (24.18) or (24.19), which has the
form

q = q0e
iΩt .

The algebraic equation yielding the response of the damped system is
readily obtained

(
− Ω2(M − G− KΩ) + iΩCn + K

)
q0 = Ω2f . (24.46)

In the case of undamped systems, Eq. (24.46) has no solution when the
spin speed coincides with a critical speed and the matrix of the coefficients
is singular. If vectors εi and angles χi are not all contained in the same
plane, i.e., all phases αi and βi are not equal, vector f is complex and
the solution q is also complex. Physically, this means that the deflected
shape is a skew line. However, the matrix of the coefficients of Eq. (24.46)
remains real and no actual working with complex numbers is needed. The
real and imaginary parts of the solution can be obtained separately, solving
two sets of real linear equations with the same matrix of the coefficients.

The computation of the response to an arbitrary unbalance distribution
is formally similar to the computation of the response of a vibrating system
excited by a harmonic forcing function, the differences being that the ro-
tational speed Ω is used in the equation instead of the frequency ω, the
excitation vector Ω2f is proportional to Ω2, and the mass matrix of the
system

M − G− KΩ

can be nonpositive definite. Some of its eigenvalues may be negative, in
terms of Ω2, and then some of the critical speed can be imaginary, as was
seen in detail in Section 24.1.3. The response in terms of displacement is
more similar to an inertance than to a dynamic compliance.

When damping is not neglected, the response to unbalance is very similar
to the response of a damped vibrating system to harmonic excitation, but
only nonrotating damping enters the equation of motion. The matrix of
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the coefficients never becomes singular, because it has no real eigenvalue.
It is, however, complex, and, if software for use with complex numbers is
not available, the solution of Eq. (24.46) involves the solution of a set of
equations whose size must be doubled in order to work with real numbers:
The number of equations is then equal to the number of real coordinates,
and using complex coordinates leads to little computational advantage.

The response to unbalance of an axi-symmetrical system could also be
easily studied using rotating coordinates. In this case, the response is noth-
ing other than the static response to forces that are constant in both mod-
ulus and direction, and the critical speeds are a sort of elastic instability
condition, in which the stiffness matrix of the system becomes singular.

24.9 Campbell diagram and roots locus

To plot the Campbell diagram the whirl frequencies of the system must
be computed as functions of the spin speed. If the stability of the system
has to be studied, damping must also be taken into account. This does
not make the problem conceptually more complicated but computations
become much longer. In the case of viscous damping, the basic equation is
the homogeneous equation associated with Eq. (24.19)

Mq̈ + (Cn + Cr − iΩG)q̇ + (K + Ω2KΩ − iΩCr)q = 0 . (24.47)

The roots locus is directly obtained by computing the eigenvalues of
the dynamic matrix (24.41); to take into account structural damping, it is
sufficient to add to the stiffness matrix K the expression

±iK′′
n ± iK′′

r ,

where the double signs have the same meaning seen in Fig. 23.13.
The Campbell diagram is often referred to a solution of the type

q = q0e
iωt

instead of
q = q0e

st .

In this case, it is possible to find the complex whirl frequencies ω as
eigenvalues of the matrix[

M−1(ΩG + iCn + iCr) M−1(K + Ω2KΩ ± iK′′
n ± iK′′

r − iΩCr)
I 0

]
. (24.48)

Operating in this way, a real eigenproblem must be solved in the case of
undamped systems.

If the Campbell diagram has to be plotted by scanning the ωΩ-plane
using m values of the spin speed Ω, an eigenproblem of order 2n, where n
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is the number of complex degrees of freedom, must be solved m times. The
computation is thus time consuming, and large-scale condensation may be
necessary to keep computer time within reasonable limits.

If the real-coordinate approach is used, the size of the problem doubles
and the information on the direction of the whirl motion included in the
eigenvalues is lost: To distinguish between forward and backward modes
the eigenvectors must be studied.

In the case of the damped system, the solution of a complex eigenprob-
lem requires a further doubling of the size of the relevant matrices, when
no software for complex algebra is available. Moreover, if there is struc-
tural damping, several eigenproblems with the different signs present in
Eq. (24.48) must be solved for each value of the spin speed. A maximum of
four eigenproblems need to be solved, in the case where all forms of damp-
ing are present. After obtaining the solutions, there is no difficulty checking
where the real part of the various solutions is located in the Campbell dia-
gram and then in choosing which eigenvalues are to be discarded, following
the scheme of Fig. 23.13. The presence of damping makes the computa-
tion of the Campbell diagram much heavier. In most cases, however, the
presence of damping has little effect on the values of the whirl frequencies,
while deeply affecting the decay rate. A good strategy is first studying the
undamped system to locate the critical speeds and to define the general
pattern of the whirl frequencies and then computing the complex whirl fre-
quencies at some selected values of the speed, mainly in the supercritical
range, where the occurrence of instability can be suspected.

In the case of undamped systems, a solution of the type

q = q0e
iωt

allows the obtaining of an eigenproblem with real matrices while assuming
that

q = q0e
st

the dynamic matrix is complex. On the contrary, if damping is not ne-
glected, the two notations lead to similar complexities and it may be expe-
dient to use the second solution.

24.10 Acceleration of a torsionally stiff rotor

If the elastic behavior of the system is such that axial, torsional, and flexural
behaviors are uncoupled, the same considerations seen in Section 23.10 for
the simple model with 6 degrees of freedom also hold for more complex
models. In particular, within the frame of the linearized theory, the axial
degrees of freedom are uncoupled from flexural behavior. If the rotor is
torsionally stiff, i.e., the torsional rotations of all cross sections are equal,
and the acceleration is performed with an imposed law θ(t), the flexural



642 24. Dynamics of Multi-Degrees-of-Freedom Rotors

behavior can also be studied independently, using equations of the type of
the first two Eq. (24.8), the second Eq. (24.9), and Eq. (24.10). The only
equation for the rotational degree of freedom is an equation of the type
of the third Eq. (24.9). By introducing the usual complex coordinates, it
follows that
⎧⎪⎨
⎪⎩

Mq̈ + (Cn + Cr − iΩG)q̇ + (K− iΩCr)q = (Ω2 − iΩ̇)feiθ ,

Mz = JptotΩ̇ + �
(
f
T
q̈e−iθ

)
,

(24.49)

where centrifugal stiffening has been neglected and Jptot is the total moment
of inertia of the rotor about the z-axis, also taking into account static and
couple unbalances. By introducing θ̈ = 0 and the solution for steady-state
whirling into the last Eq. (24.49), the driving torque needed to maintain a
constant angular velocity is readily obtained.

To perform the numerical integration in time of Eq. (24.49) it is easier
to resort to rotating coordinates, as seen for the case of the Jeffcott rotor.
The relevant equations of motion are thus

Mr̈ +
[
Cn + Cr − iΩ(2M− G)

]
ṙ +

[
K− Ω2(M − G)+

+i(Ω̇M + ΩCn)
]
r = (Ω2 − iΩ̇)f ,

Mz = Jptot Ω̇ + �
[
f
T
(
r̈ + iΩ̇r + 2iΩṙ− Ω2r

)]
.

(24.50)

The rotating reference frame used for Eq. (24.50) rotates at a variable
spin speed Ω(t), as defined by Eq. (23.47).

Example 24.2 Study the dynamic behavior of the rotor of a small gas tur-
bine sketched in Fig. 24.6a using both the FEM and the Myklestadt–Prohl
method. The finite element model, which can be used for the lumped param-
eters approach, is sketched in Fig. 24.6b. It consists of 10 beam and 2 mass
elements. The compressor and turbine rotors can be considered rigid bodies;
the stiffness of beam elements 2,3,7, and 8 is thus large (large diameter) and
their mass is zero (vanishing material density) because the relevant mass is
introduced as concentrated mass elements at nodes 3 and 8. The main char-
acteristics of the elements are as follows:

El. number 1 2 3 4 5 6 7 8 9 10
φi [mm] 15 0 0 55 60 60 0 0 30 20
φo [mm] 30 120 120 63 68 68 150 150 40 30
l [mm] 30 68.3 34.2 30 88 88 25 30 40 20
ρ [kg/m2] 7810 0 0 7810 7810 7810 0 0 7810 7810
E [MN/m2] 210 000
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FIGURE 24.6. Sketch of the rotor of a small gas turbine rotor (a) and model for
dynamic analysis (b).

FIGURE 24.7. Mode shapes at the first four critical speeds computed using the
model with 20 degrees of freedom.
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The characteristics of the mass elements are as follows:

Element number 1 2

Node number 3 8
m [kg] 20.81 18.2
Jp [kgm2] 0.285 0.269
Jt [kgm2] 0.174 0.142

The bearings, located at nodes 1 and 10, are modeled as rigid supports. If, in
the construction of the global stiffness matrix, they must be considered elastic
bearings, a very high value of the stiffness, k = 1015 N/m, can be used.
Solution using the FEM – consistent mass matrices.
If the bearings are modeled as very stiff elastic constraints, the total number
of complex degrees of freedom of the model is 22; there are only 20 degrees of
freedom if the constraints are considered rigid. The critical speeds are computed
using all degrees of freedom and through Guyan reduction.
In the latter case two condensation schemes are considered; a very strong
reduction in which only 2 degrees of freedom are retained (translations at nodes
3 and 8) and a more detailed scheme, in which 6 master degrees of freedom are
considered (translations at nodes 3, 4, 6, 7, 8, and 9). The results are reported
in the following table:

Master degrees of freedom 2 6 20

ΩcrI [rad/s] 2,080 2,032 2,028
ΩcrII [rad/s] 4,445 4,312 4,304
ΩcrIII [rad/s] – 34,062 32,130
ΩcrIV [rad/s] – 534,380 795,010

It is clear that the first critical speed can be computed with good precision even
with the simplest model, and its precision is still acceptable when searching the
second critical speed.
The first four mode shapes obtained from the complete model are reported in
Fig. 24.7. From the mode shapes, it is also evident that the third and fourth
modes are mainly due to the deformation of the shaft connecting the turbine
to the compressor: To compute such critical speeds with greater accuracy, the
use of a finer model in the relevant zones is advisable.

The Campbell diagram of the system is reported in Fig. 24.8a. The interme-

diate reduction scheme has been used, since the diagram extends to speeds in

excess of the second critical speed.

Solution with Myklestadt–Prohl method.
The computation of the first two critical speeds is performed by assuming var-
ious values of the speed from 0 to 5,000 rad/s and computing the value of the
determinant, which must vanish at the critical speeds. The result is reported
in Fig. 24.8b. The values of the first two critical speeds are

ΩcrI = 1, 888 rad/s and ΩcrII = 3, 833 rad/s .
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FIGURE 24.8. (a): Campbell diagram of the rotor in Figure 24.6. (b): Graph for
the computation of the critical speeds of the same system, using Myklestadt-Prohl
method.

The results so obtained are lower than those previously computed. This is
consistent with the consideration that the computation has been performed
by lumping the mass of the shaft at the nodes and neglecting the gyroscopic
effects of the shafts. Note that higher values would have been obtained if the
shear deformation of the shaft were neglected:

ΩcrI = 2, 115 rad/s and ΩcrII = 4, 919 rad/s .

Shear deformation is important in this case because the shaft is not slender

and the results obtainable from a Euler–Bernoulli approach can be affected by

large errors.

24.11 Exercises

Exercise 24.1 Consider the transmission shaft of Exercise 15.5. Plot the Camp-

bell diagram and compute the critical speeds.

Exercise 24.2 A flywheel must store 1 kW h at 17,000 rpm, with a working

range between 8,500 and 17,000 rpm. Knowing that the energy density at the

maximum speed of the rotor is 8 W h/kg and that the transversal moment of

inertia is equal to 65% of the polar moment of inertia, compute its mass and

moments of inertia.

The flywheel runs on a pair of ball bearings. Knowing that the span between the

bearings is 400 mm, the center of mass is at 30% of the span, and the stiffness of

each bearing is 108 N/m, compute the Campbell diagram and the critical speeds.

If a critical speed falls within a range spanning between 60% of the minimum

operating speed and 130% of the maximum operating speed, change the stiffness
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of the bearings in such a way that it is moved either below or above the stated

range.

Exercise 24.3 Compute the unbalance response of the system of the previous

exercise. If two solutions were obtained, compute both responses. Compute the

unbalance mε needed to keep the total force due to static unbalance on the stator

of the machine within 200 N in the whole working range (compute the forces from

the amplitude of the orbits at the bearing locations). Compute the forces due to

a couple unbalance due to two opposite static unbalances equal to half of the one

earlier computed, applied in the planes of the bearings.

Exercise 24.4 Assume that the bearings of the flywheel of the preceding ex-

ercise are characterized by a loss factor η = 0.08. Compute the unbalance re-

sponse from standstill to the maximum operating speed with the static unbalance

computed and, if a critical speed must be passed, the maximum forces exerted on

the stator. Compute the driving torque and power needed to overcome the drag

due to nonrotating damping and the minimum torque and power needed to avoid

stalling when crossing the critical speed.

Exercise 24.5 The flywheel of the preceding exercise is operated by an electric

motor whose maximum power is 20 kW. Assuming that the controller maintains

constant the driving torque during acceleration from standstill, compute the time

needed to reach the maximum operating speed, neglecting the flexural behavior of

the rotor. By integrating numerically in time the equations of motion, compute

the unbalance response during an acceleration with the constant rate computed

earlier. Compute the driving torque actually needed to follow the stated velocity

time history and compare it with the torque supplied by the motor.

Exercise 24.6 Compute the critical speeds and plot the Campbell diagram of a

Stodola–Green rotor (a rigid body attached at the end of a prismatic beam which

is clamped at the other end) using both the Jeffcott rotor model and the model

with 2 complex degrees of freedom.

Data. Beam: outer diameter do = 40 mm, inner diameter di = 30 mm, length

l = 500 mm, and Young’s modulus E = 2.1 × 1011 N/m2. Inertial properties:

m = 10 kg, Jp = 1 kgm2, and Jt = 0.6 kgm2.

Exercise 24.7 Consider the small gas turbine of Example 24.2. Study the de-

pendence of the first two critical speeds with the bearing stiffness, in the field

105 < k < 1010 N/m.

Exercise 24.8 Consider again the same small turbine of the previous exercise,

assuming that the stiffness of the bearings is k = 108 N/m. Assume that the

material constituting the shaft has a loss factor ηr = 0.01, while the loss factor

of the bearings is ηn = 0.02. Compute the Campbell diagram, the decay rate plot

and the roots locus. If an instability range is found, compute the threshold of

instability.

Repeat the analysis assuming that the loss factor of the bearings is ηn = 0.005.



25
Nonisotropic Rotating Machines

The rotors studied in the previous chapters were assumed to be axially sym-
metrical. In the present chapter this assumptions will be dropped, and more
general models will be introduced to understand the effects of the lack of
axial symmetry of the stator, the rotor, or both.

The assumption of axial symmetry of the whole machine is usually not
verified exactly in real life, and sometimes an axi-symmetrical model can
be only a very rough approximation of the actual system.

If a rotating machine is not isotropic about the rotation axis, the devia-
tion from symmetry can concern only the rotor, only the stator, or both.
In the first two cases, the model is not exceedingly complicated, but in
the third case no exact solution of the relevant equations of motion can be
found.

In some cases the system displays a nonisotropic behavior, even if all
the parts of the machine are geometrically axi-symmetrical. This occurs
particularly when the rotor runs on lubricated journal bearings: Under the
effect of external forces the journal takes an off-center position within the
bearing and reacts in different ways to the forces acting in the various
planes including the rotation axis.

In the following sections the study of unsymmetrical rotors will be dealt
with in subsequent steps. At first a very simple configuration, based on
the Jeffcott rotor, will be studied. After the relevant phenomena have
been qualitatively understood using this simplified model, a more complete
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study, allowing quantitative results to be obtained even for complex sys-
tems, will be expounded.

25.1 Jeffcott rotor on nonisotropic supports

Consider the case of the rotor in Fig. 23.3b but assume that the stiffness of
the supports is not isotropic in the xy-plane. All other assumptions made in
Section 23.5.1, in particular the linearity of the system and the assimilation
of the rotor to a point mass, will be retained. The motion will be studied in
the xy-plane. In this plane the polar diagram of the stiffness of the supports
is an ellipse, the so-called ellipse of elasticity.

Without any loss of generality, axes x and y will be assumed to coincide
with the axes of the ellipse of elasticity, i.e., to be the principal axes of
elasticity of the supporting structure and the stiffness along the x-direction
to be lower than that along the y-direction. The elastic reaction of the shaft
in this case is

Fx = −kxx , Fy = −kyy . (25.1)

By introducing the two different values of the stiffness into the equation
of motion (23.9), the latter transforms into

{
mẍ + kxx = mε[θ̇

2
cos(θ) + θ̈ sin(θ)] ,

mÿ + kyy = mε[θ̇
2
sin(θ) − θ̈ cos(θ)] .

(25.2)

In the case of constant spin speed θ̇ = Ω, Eq. (25.2) with θ̈ = 0 still
holds. From the homogeneous equation, it is clear that there are two natural
frequencies, one (the lower) related to the motion in the xz-plane and the
other related to the motion in the yz-plane:

ωn1 =

√
kx

m
, ωn2 =

√
ky

m
. (25.3)

They are not influenced by the spin speed, and then the Campbell dia-
gram is made by two straight lines.

Remark 25.1 The motions in the two planes occur at different frequen-
cies, so the two harmonic motions cannot combine to make circles or el-
lipses.

Remark 25.2 The fact that the two natural frequencies are independent
of the spin speed causes the two critical speeds to coincide with the natural
frequencies: Ωcr1 = ωn1 and Ωcr2 = ωn2 .

At the first critical speed the motion reduces to a straight vibration along
the x-axis, and at the other critical speed it reduces to a straight motion
along the y-axis.
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The unbalance response can be obtained directly from Eq. (25.2) with
θ̈ = 0. The response is in each plane equal to the response of the Jeffcott
rotor, computed using the stiffness related to that plane

x0 =
mεΩ2

kx − mΩ2
, y0 =

mεΩ2

ky − mΩ2
. (25.4)

The unbalance response can be subdivided into three speed ranges
(Fig. 25.1):

• From standstill to the first critical speed: The responses in the two
planes have the same sign and are out of phase from each other by
90◦, as clearly seen from Eq. (25.2), where the excitation is expressed
by a sine and a cosine function. The orbit grows mainly along the x-
axis and has the shape of an elongated ellipse. Approaching the first
critical speed, the axis of the orbit along the x-axis tends to infinity.

• From the first to the second critical speed: The response along the x-
axis is negative, having already crossed the critical speed; that along

FIGURE 25.1. Unbalance response of a Jeffcott rotor on anisotropic supports.
Amplitude of the motion along the x - and y-axes as a function of the speed and
orbits at some selected values of Ω; ratio between the stiffnesses in the two planes
α = ky/kx = 2.
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the y-axis is positive. When they combine, they give way to an el-
liptical motion in the backward direction. Close to the first critical
speed the ellipse is elongated along the x-axis, and close to the second
it is elongated in the other direction. There is an intermediate speed
at which the amplitudes in the two planes are equal and the orbit is
circular. Unbalance, an excitation that by definition is applied in the
forward direction, can thus excite a backward synchronous whirling
of the rotor.

• Above the second critical speed: The amplitudes in both planes are
of the same sign, and they both tend to the same value, namely, to
−ε. An elliptic forward whirling that tends to become circular with
increasing speed is so obtained; self-centering takes place normally. It
could easily be expected that in the high supercritical field the elastic
anisotropy has little influence on the dynamic behavior of the rotor:
The behavior of the system is dominated by inertia forces that are
clearly isotropic.

The behavior of the Jeffcott rotor on anisotropic supports has been stud-
ied here using real coordinates. Although not very common, it is also pos-
sible to use complex coordinates to study nonsymmetrical rotors. As usual,
it is possible to add the first Eq. (25.2) to the second equation multi-
plied by the imaginary unit i. By introducing the mean and the deviatoric
stiffness ⎧⎪⎪⎨

⎪⎪⎩
km =

1
2
(kx + ky)

kd =
1
2
(kx − ky) ,

(25.5)

the equation for the unbalance response in terms of complex coordinates is

mz̈ + kmz + kdz = mεΩ2eiΩt , (25.6)

where z is the conjugate of the complex number z. The solution of the
homogeneous equation is of the type

z = z1e
iωt + z2e

−iωt ,

which gives way to elliptical orbits. It can be introduced into the homoge-
neous equation of motion, yielding

(
−ω2

[
m 0
0 m

]
+

[
km kd

kd km

]) {
z1

z2

}
=

{
0
0

}
. (25.7)

Equation (25.7) can easily be solved in ω, yielding the values of the whirl
frequencies coinciding with those expressed by Eq. (25.3).

The particular integral that allows the unbalance response to be
computed is
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z = z1e
iΩt + z2e

−iΩt .

By introducing it into the equation of motion and solving for the am-
plitudes of the forward and backward components z1 and z2, the following
unbalance response is obtained:

z =
mεΩ2

(kx − mΩ2)(ky − mΩ2)

[
(km − mΩ2)eiΩt − kde

−iΩt

]
. (25.8)

It is easy to demonstrate that the orbits expressed by Eq. (25.8) coincide
with those expressed by Eq. (25.4). The possibility of backward whirling
to be excited by unbalance is, however, more obvious when complex coor-
dinates are used: At the speed

Ωb =

√
km

m

the amplitude of the forward component vanishes, and the orbit is a circular
backward whirl with amplitude

z0b
= ε

kd

km
.

If the system is damped, the field in which backward whirling occurs is
reduced and can, if damping is large enough, disappear altogether. When
reaching the first critical speed, the amplitude of the elliptical orbits re-
mains limited while the axis of the ellipse is not exactly aligned with one
of the axes of elasticity of the supports. The orbit starts then to rotate in
the xy-plane and to become thinner: if at a certain speed it reduces to a
line, a reversal of the direction of whirling occurs.

The elliptical backward orbit then continues its rotation, with increasing
and then decreasing width, until it again becomes a straight line and a
new reversal of the whirling direction takes place. When forward whirling
occurs, the direction of the larger axis of the ellipse has a direction close
to the other axis of elasticity of the supports and the speed is close to the
second critical speed.

If damping is large enough, the orbit never reduces to a line and the
reversal of its direction does not occur.

The unbalance response of a Jeffcott rotor with rotating and nonrotating
damping ratio ζr = 0.01 and ζn = 0.1 is shown in Fig. 25.2. With these
values of the damping ratios, backward whirling actually occurs. Due to
the complexity of the behavior, a new representation is used: The orbits
are plotted in a tridimensional graph, stacked along the spin-speed axis.
It was proposed to designate this representation as an orbital tube.1 The
tube starts as a point at zero speed and then enlarges, taking an elliptical

1C. Delprete, G. Genta, S. Carabelli, Orbital tubes, Meccanica, 32, 1997, pp. 485–492.
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FIGURE 25.2. Nondimensional unbalance response of a damped Jeffcott rotor on
anisotropic supports; (a) orbital tube, i.e., representation of the orbits at different
speeds as a tri-dimensional plot; (b) orbital view; (c) and (d) projections on the
Ωx- and Ωy-planes, respectively.

cross-section. At very high speed, due to self-centering, it tends to a circular
cylinder with radius equal to the eccentricity.

The projection on the xy-plane (orbital view) directly gives the orbits
at various speeds, superimposed on each other. The projections on the Ωx-
and Ωy-planes give the peak-to-peak amplitude as a function of the spin
speed.

25.2 Nonisotropic Jeffcott rotor

Now consider a Jeffcott rotor of the type shown in Fig. 23.3a, in which the
stiffness of the shaft is not isotropic. The polar diagram of the stiffness is
now an ellipse whose axes can be assumed, without loss of generality, to lie
along the ξ- and η-axes. It is then possible to write an equation similar to
Eq. (25.1) but referred to the Oξηz-frame:

Fξ = −kξξ , Fη = −kηη.
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When dealing with rotating asymmetry, it is advisable to write the equa-
tion of motion with reference to the rotating frame. By introducing the
mean and deviatoric stiffness, defined as in the preceding section but with
reference to the Oξηz-frame and neglecting damping, the equation of mo-
tion (23.38) becomes

mζ̈ + 2iΩmζ̇ − mΩ2ζ + kmζ + kdζ = mεΩ2eiα , (25.9)

where α is the angle between the ξ-axis and the direction of the unbal-
ance vector in the ξη-plane (Fig. 24.1b). Using real coordinates, the same
equation transforms into

[
m 0
0 m

] {
ξ̈
η̈

}
+

[
0 −2mΩ

2mΩ 0

] {
ξ̇
η̇

}
+ (25.10)

+
[

kξ − mΩ2 0
0 kη − mΩ2

] {
ξ
η

}
= mεΩ2

{
cos(α)
sin(α)

}
.

The unbalance response is easily obtained as a steady-state solution of
Eq. (25.10)

ξ =
mεΩ2 cos(α)
kξ − mΩ2

, η =
mεΩ2 sin(α)
kη − mΩ2

, (25.11)

which represents, in a fixed reference frame, a circular whirling. The denom-
inators of Eq. (25.11) vanish for two values of the spin speed, the critical
speeds of the system

ΩcrI =

√
kξ

m
, ΩcrII =

√
kη

m
. (25.12)

The free whirling of the system can easily be obtained from the homo-
geneous equation (25.9) or (25.10), being immaterial whether real or com-
plex coordinates are used. In the first case the solution of the homogeneous
equation (25.10) is

ξ = ξ0e
iω′t , η = η0e

iω′t ,

and ω′ is a complex whirl speed in the ξη-plane. It does not coincide with
the whirl speed ω in the xy-plane but is linked with the latter by the
obvious relationships

�(ω) = �(ω′) + Ω , �(ω) = �(ω′) .

The homogeneous equation (25.10) then yields an eigenproblem in ω′

[
Ω2

crI
− ω′2 − Ω2 −2iΩω′

2iΩω′ Ω2
crII

− ω′ 2 − Ω2

]{
ξ0

η0

}
= 0 . (25.13)
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By introducing the nondimensional speeds and the stiffness ratio

ω′∗ =
ω′

ΩcrI

, ω∗ =
ω

ΩcrI

, Ω∗ =
Ω

ΩcrI

, α∗ =
kη

kξ
,

the characteristic equation can be written in nondimensional form

ω′ ∗4 − ω′ ∗2
(1 + α∗ + 2Ω∗2

) + (1 − Ω∗2
)(α∗ − Ω∗2

) = 0 . (25.14)

The stiffness ratio α∗ is greater than unity if kξ < kη. By first solving
Eq. (25.14) in ω′ ∗2

it follows that

ω′ ∗2
= Ω∗2

+
1 + α∗

2
±

√
2Ω∗2(1 + α∗) +

(1 − α∗)2

4
. (25.15)

The expression under the square root in Eq. (25.15) is always positive:
The two solutions for ω′∗2

are then always real. The one with the upper
sign (+) is always positive and yields two real solutions in ω′∗, one positive
and one negative. The solution with the lower sign (−) is positive only if

Ω∗4
− Ω∗2

(1 + α∗) + α∗ > 0.

As α∗ was assumed to be greater than unity, the last condition can be
written in the form

Ω∗ < 1 ; α∗ < Ω∗ , i.e., Ω <

√
kξ

m
;

√
kη

m
< Ω . (25.16)

If condition (25.16) is satisfied, the characteristic equation (25.14) has
four real roots – two positive and two negative. The behavior of the system
is stable. If, however, the value of the spin speed Ω lies between the two
critical speeds of the system, as shown by condition (25.16), two imaginary
roots are found. Because the equation of motion has real coefficients, the
solutions are conjugate numbers, or, if they have vanishing real parts, they
have opposite signs. A negative imaginary solution then exists, which cor-
responds to an unstable behavior of the system, with amplitude growing
indefinitely with exponential law. The presence of an elastic anisotropy of
the rotating parts of the system causes the occurrence of an instability
range that spans from the lowest to the highest critical speed.

The Campbell diagram ω(Ω) for a system with

α∗ =
kη

kξ
= 2

obtained from Eq. (25.15) is plotted in Fig. 25.3. All four quadrants of
the ω, Ω-plane have been reported, even if just two of them, the first and
fourth, for example, give a complete picture of the situation.
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FIGURE 25.3. Campbell diagram for an anisotropic Jeffcott rotor; ratio between
the stiffnesses in the two planes α∗ = kη/kξ = 2.

The same conclusions already seen can be drawn from the figure. At
low speed, up to the first critical speed, there are four solutions. Those on
branches a and d of the curve come from the solution (25.15) with the upper
sign (+) and are a forward and a backward whirl. Those on branch b come
from the solution with the lower sign (−) and are one backward and one
forward or both forward, depending on the value of Ω. At high speed, above
the second critical speed, the situation is similar, the difference being that
the solutions coming from the expression with the lower sign (−) are both
forward motions and lie on branch c of the curve. If the value of the speed
lies in the instability range spanning between the critical speeds, there are
two real solutions, on branches a and d of the curve, and two imaginary
ones, not reported in the figure. The negative imaginary solution causes
the behavior of the system to become unstable.

Rotating damping, which can cause the system to become unstable at
high speed, reduces the instability range between the critical speeds. A
similar effect is due to nonrotating damping, which, however, is stabilizing
at any speed. If damping is high enough, the instability range gets smaller
and can disappear altogether. The homogeneous equation of motion of the
damped system in the rotating frame is

[
m 0
0 m

]{
ξ̈
η̈

}
+

[
cn + cr −2mΩ
2mΩ cn + cr

] {
ξ̇
η̇

}
+ (25.17)
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+
[

kξ − mΩ2 −Ωcn

Ωcn kη − mΩ2

] {
ξ
η

}
= {0} .

By introducing the solution for free whirling into Eq. (25.17), the follow-
ing characteristic equation is obtained

det

[
−mω′2 + iω′(cn + cr) − mΩ2 + kξ −mΩ(2iω′ + cn)

mΩ(2iω′ + cn) −mω′2 + iω′(cn + cr) − mΩ2 + kη

]
= 0 .

(25.18)

Remark 25.3 The system of Fig. 23.12 can be considered a limiting case
of an asymmetrical rotor: The stiffness along the η-axis is infinitely high,
causing a second critical speed that tends to infinity. The field of instability
extends for all values of Ω that are above the critical speed.

25.3 Secondary critical speeds due to rotor weight

All conditions in which there is resonance between one of the natural fre-
quencies of the system and an exciting force different from the rotating
force due to unbalance will be referred to as secondary critical speeds. It is
well known that when constant bending forces, such as the self-weight of
a rotor whose axis is horizontal, act on the rotor, the critical speeds and
the Campbell diagram are not influenced by the presence of such forces.
Whirling takes place about the deflected configuration of the rotor, but,
due to linearity, the two effects, namely, static bending and whirling, do
not interact. It is, however, well known that the weight of a rotor with a
horizontal axis can cause the occurrence of secondary critical speeds, whose
values are about half of those of primary critical speeds, or, more exactly,
are located at the intersections on the Campbell diagram of the curves for
free whirling with the straight line ω = 2Ω. The presence of these secondary
critical speeds is linked to the deviations from a perfect axial symmetry of
the rotor.

In the case of the Jeffcott rotor studied in the preceding section, these
secondary critical speeds are easily deduced from Fig. 25.3. In the figure
an intersection of branch b of the curve with the Ω-axis is clearly visible.
The system has, at a well-determined speed, a natural frequency that is
vanishingly small and then, at that speed, a sort of resonance with a static
force, i.e., with a force constant in modulus and direction, is possible.

The phenomenon may be easier to understand with reference to the
rotating frame Oξηz, in which condition ω = 0 is seen as ω′ = −Ω. A
constant force in the xy-plane, as self-weight of a horizontal rotor, is seen in
the ξη-plane as a force rotating with speed −Ω, which can cause resonance
when the natural frequency of the system has the same frequency.

The same phenomenon can also be seen in a different way. When the
stiffness of the shaft is not isotropic in the ξη-plane, its polar diagram is



25.4 Equation of motion for an anisotropic machine 657

an ellipse, the ellipse of elasticity. The functions of time expressing the
stiffnesses kx(t) and ky(t) are periodic in time, if the angular speed Ω is
constant, and their period is equal to half a revolution (frequency equal to
2Ω). The conditions for resonance occur when the curves on the Campbell
diagram intersect the straight line ω = 2Ω.

The two ways of seeing the same phenomenon are equivalent: From Fig.
25.3 it is clear that at the same value of the speed at which a branch of the
curve intersects the Ω-axis, another intersects the line ω = 2Ω. From the
characteristic equation, if

�(ω) = �(ω′) + Ω

is the real part of a solution for free whirling,

�(ω) = −�(ω′) + Ω

is also the real part of another solution. The value of the secondary critical
speed for the Jeffcott rotor of Fig. 25.3 can be easily computed by introduc-
ing the condition ω′ = −Ω into Eq. (25.14) and solving it in Ω. It follows
that

Ω∗ =

√
α∗

2(1 + α∗)
, i.e., Ω∗ =

√
kξkη

2(kξ + kη)
. (25.19)

If kξ and kη tend to a single value k, α∗ → 1, the value of the secondary
critical speed tends to

Ωcrs =
1
2

√
k

m
=

1
2
Ωcr . (25.20)

Remark 25.4 Equation (25.20) holds only in the case of a Jeffcott rotor;
in all other cases the secondary critical speeds can be found at the intersec-
tions of the curve ω(Ω) with the line ω = 2Ω.

Remark 25.5 All secondary critical speeds characterized by the condition
ω > Ω, as is the case for those excited by self-weight, occur in the subcritical
region and usually cannot trigger unstable behavior. The internal damping
of the rotor is in these conditions stabilizing and, generally speaking, no
unstable behavior is expected in the subcritical region.

Also inertial anisotropy, i.e., difference in the moments of inertia about
transversal baricentrical axes, has effects similar to those seen for elastic
anisotropy.

25.4 Equation of motion for an anisotropic
machine with many degrees of freedom

Consider a beam element of the type studied in Section 15.2, for which
all the assumptions for uncoupling among flexural, torsional, and axial
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behavior hold. If the principal axes of inertia and elasticity lie in the xz-
and yz-planes (hereafter designated by subscripts x and y), the mass and
stiffness matrices related to flexural behavior can be written in the form

M =
[

Mx 0
0 My

]
, K =

[
Kx 0
0 Ky

]
, (25.21)

where matrices related to the two bending planes are shown in Section
15.2. In the following analytical development, the generalized coordinate
for rotation in the yz-plane will be −φx instead of φx, in such a way that
matrices related to the xz- and yz-planes are equal if an element is axially
symmetrical. In this way, the introduction of complex coordinates will be
straightforward.

When assembling the structure, assume that the global reference frame
has the same z-axis as those of each element, but that the x-axes of the
elements are rotated by an angle α with respect to the global reference
frame. The rotation matrix is

R′ =
[

cos(α) I sin(α) I
− sin(α) I cos(α) I

]
, (25.22)

and the stiffness matrix in the global reference frame is

Kg =
[

cos2(α)Kx + sin2(α)Ky sin(α) cos(α)(Kx − Ky)
sin(α) cos(α)(Kx − Ky) sin2(α)Kx + cos2(α)Ky

]
. (25.23)

By introducing the mean and deviatoric stiffness matrices of the elements

Km =
1
2
(Kx + Ky) , Kd =

1
2
(Kx − Ky),

Eq. (25.23) can be written as

Kg =
[

Km + Kd cos(2α) Kd sin(2α)
Kd sin(2α) Km − Kd cos(2α)

]
. (25.24)

If the element belongs to the rotor, angle α must be substituted by α+θ,
or, in the case of constant spin speed Ω, by α + Ωt.

All the aforementioned considerations hold for mass and damping matri-
ces and for elements other than beam elements. Note that, in general, all
mean and deviatoric matrices of structural elements are symmetrical, with
the exception of the stiffness and damping matrices of the elements used to
model lubricated journal bearings in linearized theories (see Section 4.10).
Once all matrices of the elements have been obtained and expressed in the
global reference frame, it is possible to assemble the various elements to
obtain the matrices related to the whole structure. Obviously, the rotating
elements must be assembled separately from the nonrotating elements.
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Due to the presence of the deviatoric matrices (it is sufficient that a single
element has a nonvanishing deviatoric matrix), the structure of the assem-
bled matrices is more complex than that of Eq. (25.21). For the stiffness
matrix it follows that

K =
[

Kx Kxy

Kyx Ky

]
. (25.25)

Due to the presence of the coupling terms with xy- and yx-subscripts, a
new definition of the mean and deviatoric matrices for the whole structure
is needed ⎧⎪⎪⎨

⎪⎪⎩
Km =

1
2
(Kx + Ky) + i

1
2
(Kyx − Kxy)

Kd =
1
2
(Kx − Ky) + i

1
2
(Kyx + Kxy) .

(25.26)

Note that, except in the mentioned case of elements used for the lin-
earized modeling of hydrodynamic bearings, the matrices with subscripts
xy and yx are equal and the mean matrices are real. On the contrary, de-
viatoric matrices are, in general, complex. Using the complex-coordinate
approach and the definitions of mean and deviatoric matrices given by Eq.
(25.26), the equation of motion describing the flexural behavior of a general
system containing stationary elements and elements rotating at constant
spin speed Ω can be shown to be2

Mmq̈ + (Cm − iΩG)q̇ + (Km − iΩCrm)q + Mnd
q̈ +

+Mrd
e2iΩt(q̈ + 2iΩq̇) + Cnd

q̇ + Crd
e2iΩtq̇ + (25.27)

+Knd
q + (Krd

− iΩCrd
)e2iΩtq = Fn + Ω2Fre

iΩt .

Matrices and vectors with subscript r are related to the rotating ele-
ments, and those with subscript n are related to the stator of the machine.
The mean matrices without r or n subscripts are related to the whole
system and are obviously the sum of the corresponding nonrotating and
rotating mean matrices. The nonrotating force vector is related to static
forces, while the rotating vector is related to forces that are stationary in a
reference frame rotating at the spin speed Ω. Because the latter are usually
unbalance forces, their magnitude is proportional to the square of the spin
speed.

Remark 25.6 All terms containing the deviatoric matrices of rotating el-
ements have coefficients that are periodic functions of time, with periods
equal to half of the period of rotation. Moreover, the complex conjugate of
the vector of the generalized coordinates is present in the terms related to
deviatoric matrices.

2G. Genta, “Whirling of unsymmetrical rotors: A finite element approach based on
complex coordinates”, Journal of Sound and Vibration, 124(1), (1988), 24–53.
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Equation (25.27) is a linear differential equation with periodic coefficients
of the type studied by the Floquet theory. If all deviatoric matrices van-
ish, as with axi-symmetrical systems, Eq. (25.27) reduces to the constant
coefficient equation (24.19) already studied for isotropic rotors.

25.4.1 General system with anisotropic stator

Consider a system whose behavior is modeled by Eq. (25.27), but with an
isotropic rotor. The simplest of the systems of this type is the Jeffcott rotor
on nonisotropic supports studied in Section 4.8.2. Because all deviatoric
matrices related to the rotor vanish, Eq. (25.27) reduces to the following
differential equation with constant coefficients:

Mmq̈ + (Cm − iΩG)q̇ + (Km − iΩCrm)q+

+Mnd
q̈ + Cnd

q̇ + Knd
q = Fn + Ω2Fre

iΩt.
(25.28)

Equation (25.28) involves actually working with complex coordinates,
because deviatoric matrices are generally complex, and, consequently, the
advantage of resorting to complex coordinates depends on the time and
cost-effectiveness of the available subroutines for computations involving
complex numbers. Alternatively, it is possible to use the same equation of
motion written in terms of real coordinates[

Mx Mxy

Myx My

]
ẍ +

(
Ω

[
0 G

−G 0

]
+

[
Cx Cxy

Cyx Cy

])
ẋ+

+
([

Kx Kxy

Kyx Ky

]
+ Ω

[
0 Cr

−Cr 0

])
x = (25.29)

= Ω2

{
�(freiΩt)
�(freiΩt)

}
+

{
�(fn)
�(fn)

}
,

where the real-coordinates vector is defined as in Eq. (24.36).
The solution for static loading is similar to the corresponding solution

for axi-symmetrical systems, i.e., a constant vector q = q0, leading to the
equation

(Km − iΩCrm)q0 + Knd
q0 = fn, (25.30)

or, if real coordinates are used,
([

Kx Kxy

Kyx Ky

]
+

[
0 Cr

−Cr 0

])
{x0} =

{
�(fn)
�(fn)

}
. (25.31)

The inflected shape, then, is a line (generally a skew line) that remains
fixed in space. Rotating damping couples the behavior in the xz- and yz-
planes, even if the coordinate planes are planes of symmetry for the stator.

The unbalance response is a synchronous elliptical whirling. The solution
of the equation of motion can be expressed in the form
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q = q1e
iΩt + q2e

−iΩt ,

i.e., as the sum of two circular whirling motions taking place at speed Ω
in opposite directions. Both q1 and q2 are, generally speaking, complex
vectors, that physically correspond to elliptical orbits not having axes x
and y as axes of symmetry. The unknowns of the problem are then 4n
in number, i.e., the imaginary and real parts of two vectors of size n. By
introducing this solution into the equation of motion (25.31), the latter
yields [

A11 A12

A21 A22

] {
q1

q2

}
= Ω2

{
fr
0

}
, (25.32)

where

A11 = −Ω2(Mm − G) + iΩCnm + Km ,
A12 = −Ω2Mnd

+ iΩCnd
+ Knd

,
A21 = −Ω2Mnd

− iΩCnd
+ Knd

,
A22 = −Ω2(Mm + G) − iΩ(Cnm + 2Crm) + Km .

(25.33)

Rotating damping now enters the equation yielding the unbalance re-
sponse: The shaft no longer rotates in the deformed configuration but ac-
tually vibrates, in the sense that each part of it experiences stresses that
vary with time.

In the case of undamped systems, Eq. (25.32) reduces to([
Km Knd

Knd
Km

]
− Ω2

[
Mm − G Mnd

Mnd
Mm + G

]) {
q1

q2

}
= Ω2

{
fr
0

}
,

(25.34)
which is real if the stator is symmetrical with respect to the coordinate
planes. Note that the mean mass matrix is always real and coincides with
its conjugate.

By equating the determinant of the matrix of the coefficients of Eq.
(25.34) to zero, an eigenproblem in Ω2 allowing the critical speeds to be
computed, is obtained. At certain speeds, vector q1 vanishes; this physically
corresponds to a circular backward whirling motion due to unbalance, as
was shown in Section 25.1 for the Jeffcott rotor.

The equation corresponding to Eq. (25.34) but obtained using real coor-
dinates, and the complexity of the relevant computations, is very similar.

In the case of free whirling, the orbits of the system are elliptical. The
relevant solution of the homogeneous equation of motion is of the type

q = q1e
iωt + q2e

−iωt,

which leads to the following algebraic equation(
−ω2

[
Mm Mnd

Mnd
Mm

]
+ ωΩ

[
G 0
0 −G

]
+ iω

[
Cm Cnd

Cnd
Cm

]
+

+
[

Km Knd

Knd
Km

]
− iΩ

[
Cr 0
0 −Cr

]) {
q1

q2

}
= 0. (25.35)
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The corresponding solution in terms of real coordinates is

x = �(x0e
st) ,

which yields the following algebraic equation

(
s2

[
Mx Mxy

Myx My

]
+ sΩ

[
0 G

−G 0

]
+ s

[
Cnx + Cr Cnxy

Cnyx Cny + Cr

]
+

+
[

Kx Kxy

Kyx Ky

]
+ Ω

[
0 Cr

−Cr 0

])
x0 = 0. (25.36)

In the case of an undamped system whose stator is symmetrical with
respect to the coordinate planes, the two approaches are exactly equivalent,
as both lead to a set of 2n real algebraic equations. The eigenvalues from Eq.
(25.35) are real and those from Eq. (25.36) are imaginary. The eigenvectors
of the former are real, and those of the latter are made up of real and
imaginary terms, depending on the phasing of the various motions added
to give the various orbits.

In the most general case, Eq. (25.35) yields a set of 2n complex equa-
tions, and Eq. (25.36) are always real. In the author’s opinion, however,
the physical interpretation is more straightforward in the case of the for-
mer equation, even if it is not sufficient to find out the sign of the eigenvalue
ω to assess whether the whirl motion occurs in the forward or backward
direction. In fact, if ω is a solution of the eigenproblem, −ω is also a so-
lution and, consequently, each mode is found twice, with opposite signs of
�(ω).

Remark 25.7 Whirling may occur, in some modes, in the forward direc-
tion at certain points of the rotor and in the backward direction at other
points. They are sometimes referred to as mixed modes.

Remark 25.8 Although only the study of the eigenvectors can make clear
which mode occurs in the forward or backward direction, the author feels
that the physical interpretation of the solution is somehow more clear when
using complex coordinates.

Example 25.1 Consider the rotor of the small gas turbine studied in Exam-
ple 24.2. Compute the critical speeds and plot the Campbell diagram assuming
that the rigid bearings are substituted by nonisotropic supports, whose stiffness
is 1.2×107 N/m in the vertical plane and 8×106 N/m in the horizontal plane.

The dynamic study will be performed using the same FEM model seen in

Example 24.2, with the only difference that when performing matrix conden-

sation, the translational coordinates of nodes 1 and 11 (i.e., the displacements
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FIGURE 25.4. Mode shapes at the first four critical speeds computed using the
model with eight degrees of freedom.

at the supports) are retained. The complex-coordinates approach will be fol-
lowed, and the mean and deviatoric stiffness of the supports is first computed:
km = 1 × 107 N/m, kd = 2 × 106 N/m.
A first computation is then run, neglecting the deviatoric stiffness, by simply
assembling the mean stiffness of the bearings in the stiffness matrix of the
rotor, in position 1, 1 and 11, 11.
The values of the critical speeds obtained from a condensation scheme with
eight master degrees of freedom (corresponding to the scheme with six master
degrees of freedom of Example 24.2) are 652.9, 1,352, 34,029, and 57,920 rad/s.
Note that, compared with the case with stiff bearings, the first two critical
speeds are reduced, and the third is almost unchanged. The fourth is completely
different, as can be explained by plotting the mode shapes (Fig. 25.4): In the
fourth mode the deformation is mainly localized at the bearing on the turbine
side, which in the previous model was assumed to be stiff.
The Campbell diagram is plotted in Fig. 25.5a.
If the anisotropy of the supports is not neglected, the deviatoric stiffness matrix
must be built: It is a matrix with almost all elements equal to zero, except for
two on the main diagonal that are equal to kd. The other deviatoric matrices
are equal to zero. Eq. (25.34) can be used to compute the following values of
the first 10 critical speeds (in rad/s):

588.2, 698.0, 768.3, 1, 362, 1, 463,
3, 530, 33, 617, 34, 029, 51, 632, 57, 938.
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FIGURE 25.5. Campbell diagram of the rotor of Fig. 24.6 (a) with nonrigid
isotropic bearings and (b) with anisotropy of the bearings not neglected. Full
lines, anisotropic system; dashed lines, mean isotropic system.

Many critical speeds are found; from the undamped analysis it is impossible
to state the severity of such critical conditions, which can be obtained only by
plotting an unbalance response of the damped system.
The Campbell diagram has been reported in Fig. 25.5b. Only one quadrant of
the diagram has been plotted, because it contains all the information. From
the diagram, it is impossible to state which modes are related to forward or
backward whirling; a clue, however, is that the branches sloping upward are
related to forward whirling. The curves computed for the isotropic system are
also reported on the same plot (dotted lines).

Note that the effects of the anisotropic bearings are quite limited, particularly

where the higher-order modes are concerned.

25.4.2 General system with anisotropic rotor

Consider a system modeled by Eq. (25.27), but whose stator is isotropic.
The simplest system of this type is the anisotropic Jeffcott rotor studied in
Section 4.8.3. All deviatoric matrices related to the stator vanish, and Eq.
(25.27) reduces to

Mmq̈ + (Cm − iΩG)q̇ + (Km − iΩCrm)q+

+Mrd
e2iΩt(q̈ + 2iΩq̇) + Crd

e2iΩtq̇+ (25.37)

+(Krd
− iΩCrd

)e2iΩtq = Fn + Ω2Fre
iΩt .

Equation (25.37) can be transformed into an equation with constant
coefficients by resorting to the rotating coordinates defined by Eq. (24.38)

Mmr̈ + [Cm + iΩ(2Mm − G)] ṙ+

+
[
−Ω2(Mm − G) + Km + iΩCn

]
r+ (25.38)
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+Mrd
r̈ + Crd

ṙ +
(
Ω2Mrd

+ Krd

)
r = Fne−iΩt + Ω2Fr .

Alternatively, it is possible to use the same equation of motion written
in terms of real coordinates[

Mx Mxy

Myx My

]
ẍ +

(
−Ω

[
Myx − Mxy Mx + My − G

−Mx − My + G Myx − Mxy

]
+

+
[

Crx + Cn Crxy

Cryx Cry + Cn

])
ẋ+ (25.39)

+
([

Kx Kxy

Kyx Ky

]
− Ω2

[
My − G −Myx

−Mxy Mx − G

]
+

+Ω
[

0 −Cn

Cn 0

])
x =

{
�(fne−iΩt)
�(fne−iΩt)

}
+ Ω2

{
�(fr)
�(fr)

}
,

where the real-coordinates vector is

x = [�(r)T ,�(r)T ]T .

The study of the unbalance response is easier than that of a static load-
ing because the deformed configuration is stationary with respect to the
reference frame. The solution of Eq. (25.39) for static loading is of the type

r = r1e
−iΩt + r2e

iΩt ,

leading to the equation
[

A11 A12

A21 A22

]{
q1

q2

}
=

{
fn
0

}
, (25.40)

where
A11 = −iΩCrm + Km ,

A12 = −iΩCrd
+ Kd ,

A21 = −iΩCrd
+ Kd ,

A22 = −2Ω2(2Mm − G) − iΩ(Crm + 2Cn) + Km .

The same solution can be written with reference to the fixed frame as

q = reiΩt = r1 + r2e
2iΩt.

The obvious meaning of r1 is the mean inflected shape, which is fixed in
space, while r2 is a component of the deflected shape, which rotates at a
speed equal to 2Ω. Static loading then causes the onset of vibrations, seen
by the stator as occurring with a frequency 2Ω and by the rotor with a
frequency Ω.

By equating to zero the matrix of the coefficients of Eq. (25.40), an
eigenproblem in Ω is obtained. It yields the values of the secondary critical
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speeds due to a constant load distribution, as seen in Section 25.3 for the
Jeffcott rotor.

The solution of the problem related to a given unbalance distribution is
straightforward, leading to a synchronous circular whirling. The solution
of the equation of motion is constant, r = r0, leading to the equation
[
−Ω2(Mm − G) + Km + iΩCn

]
r0 +

(
Ω2Mrd

+ Krd

)
r0 = Ω2fr . (25.41)

Once written in the fixed reference frame, the solution is

q = r0e
iΩt .

The response to unbalance is, consequently, a pure circular synchronous
whirling, and rotating damping has no effect on the behavior of the sys-
tem because the rotor does not vibrate but merely rotates in the deflected
configuration.

The solution for the free whirling of the system is of the type

r = r1e
iω′t + r2e

−iω′t ,

i.e., an elliptical whirling with reference to the rotating frame ξηz. From
the equation of motion (25.38), an algebraic equation is obtained:

(
−ω′2

[
Mm Md

Md Mm

]
+ ω′Ω

[
2Mm + G 0

0 2Mm − G

]
+

+iω′
[

Cm + Crm Crd

Crd
Cn + Crm

]
+ iΩ

[
Cn 0
0 −Cn

]
+

+
[

−Mm + G Md

Md −Mm + G

]
+

[
Km Knd

Knd
Km

]) {
r1

r2

}
= 0. (25.42)

By expressing the same solution in the fixed frame, it yields

q = r1e
iωt + r2e

i(2Ω−ω)t.

The orbits are then elliptical when seen in the rotating frame, but become
Lissajous curves when seen in the fixed frame. The equation of motion could
be written directly in terms of fixed coordinates, obtaining an equation in
which the whirl speed ω is present instead of ω′

(
−ω2

[
Mm Md

Md Mm

]
+ ωΩ

[
G 2Md

2Md 4Mm − G

]
+

+Ω2

[
0 0
0 −4Mm + 2G

]
+ iω

[
Cm + Crm Crd

Crd
Cn + Crm

]
+

−iΩ
[

Crm Crd

Crd 2Cn + Crm

]
+

[
Km Knd

Knd
Km

]) {
r1

r2

}
= 0. (25.43)
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It is then not necessary, even in this case, to resort to the rotating frame.
The problem of finding the fields of instability of systems with many degrees
of freedom can easily be solved by obtaining the eigenvalues of Eq. (25.43)
and then studying the sign of the imaginary part of the complex frequency.

25.4.3 General system with anisotropic stator and rotor

If neither the stator nor the rotor have axial symmetry, the linear equation
of motion has periodic coefficients in both the rotating and nonrotating
reference frames. As seen in Section 22.1, no general method exists to solve
equations of this kind. Because the coefficients are periodic functions of time
with period π/Ω, the solution of the homogeneous equation associated with
Eq. (25.27) is of the type

q = q1(t)eiωt + q2(t)e−iωt,

where both vectors q1 and q2 are periodic functions of time with the same
period, i.e., with fundamental frequency equal to 2Ω. The general solution
is then the sum of a number of terms of the type mentioned earlier, each
with its value of ω, plus a solution of the complete equation. The study of
the stability of the system can thus be performed in the same way as in
the case with constant q1 and q2.

As seen in Section 22.3 for Hill’s equation, unknown functions q1 and q2

can be expressed by trigonometric series

q =
∞∑

j=−∞

(
q1j e

i(ω+2jΩ)t + q2j e
−i(ω+2jΩ)t

)
. (25.44)

By introducing Eq. (25.44) into the homogeneous equation associated to
Eq. (25.27), the following algebraic equation is readily obtained

∞∑
j=−∞

(
Ajq1j e

i(ω+2jΩ)t + Bjq2j e
−i(ω+2jΩ)t + Cjq1j

e−i(ω+2jΩ)t +

+Djq2j
ei(ω+2jΩ)t + Ejq1j

e−i[ω+2(j−1)Ω]t + Ejq2j
ei[ω+2(j+1)Ω]t

)
= 0.

(25.45)
By separately equating to zero the various terms of Eq. (25.45) and

stating

Aj = −(ω + 2jΩ)2Mm + Ω(ω + 2jΩ)G + i(ω + 2jΩ)Cm + Km − iΩCrm ,

Bj = −(ω + 2jΩ)2Mm − Ω(ω + 2jΩ)G + i(ω + 2jΩ)Cm + Km + iΩCrm ,

Cj = −(ω + 2jΩ)2Mnd
+ i(ω + 2jΩ)Cnd

+ Knd
, (25.46)

Dj = −(ω + 2jΩ)2Mnd
+ i(ω + 2jΩ)Cnd

+ Knd
,
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Ej = [−ω2−2ωΩ(2j−1)−4jΩ2(j−1)]Mrd
+i(ω+2jΩ)Crd

+Krd
−iΩCrd

,

Fj = [−ω2−2ωΩ(2j+1)−4jΩ2(j+1)]Mrd
+i(ω+2jΩ)Crd

+Krd
+iΩCrd

,

the following infinite set of algebraic equations is readily obtained
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . . . .
F−2 A−1 D−1

C−1 B−1 E0

F−1 A0 D0

C0 B0 E1

F0 A1 D1

C1 B1 E2

F1 A2 D2

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. . .
q1−1

q2−1

q10

q20
q11

q21
q12

. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= {0} .

(25.47)
The homogeneous equation (25.47) has solutions different from the trivial

one only if the matrix of the coefficients is singular. An eigenproblem,
similar to the one linked with Hill’s infinite determinant (Eq. (22.25)), but
with a bandwidth 3n, is obtained. Approximate solutions can be obtained
by considering a limited array of 2m rows by 2m columns, in terms of
matrices (the actual number of rows and columns is 2 m× n), centered on
the matrices with subscript 0. Let these limited matrices be denoted by Zm

and let matrix A0 be Z0.
The zero-order approximation involving matrix Z0 deals with a symmet-

rical system having the mean properties of the actual system.
Matrices Aj and Bj contain the mean properties of the system, matrices

Cj and Dj are related to the unsymmetrical characteristics of the stator,
and matrices Ej and Fj are related to the unsymmetrical properties of the
rotor.

The first-order approximation obtained by considering matrix

Z1 =
[

A0 B0

C0 D0

]

coincides with the solution of a system with isotropic rotor (with mean
properties) running on an asymmetrical stator (with the actual properties).

The equation allowing the study of a system with a symmetrical stator
and an asymmetrical rotor is

[
B0 E1

F0 A1

] {
q20

q11

}
= 0. (25.48)

The infinite set of equations (25.47) and the corresponding nonhomo-
geneous set that includes the forcing functions, represent a general model
for rotating machinery. The solution of the eigenproblem, however, is not
easy. The equations must be rearranged to obtain an eigenproblem in stan-
dard form, which results in a further doubling of the size of the problem,
becoming 4mn and then a problem of a large order must be faced.
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If �(ω) is the real part of the solution of the eigenproblem, also

�(ω) + 2jΩ , �(ω) − 2jΩ ∀j

are real parts of other solutions. This explains the apparent inconsistency
of the number of the eigenvalues, which tend to infinity when increasing the
size of the matrix Zm: While obtaining a better precision, solutions whose
real parts are equal to those already obtained plus a multiple of 2Ω are
obtained. Vectors qj with j greater than 1 usually add only a small ripple
on the basic solution, which is given by the vectors with j ≤ 1. Third-order
approximations should, consequently, give results that accurately simulate
the behavior of the actual system.

Solutions for nonhomogeneous problems, like those related to the re-
sponse to static loading and unbalance, can be obtained in a similar way.
In the former case the solution can be expressed by the series

q = q0 +
∞∑

j=1

q1j e
2ijΩt +

∞∑
j=1

q2j e
−2ijΩt. (25.49)

The mean response, the forward components, and the backward compo-
nents are written separately in Eq. (25.49). By using this expression of the
deflected shape, the following infinite set of equations can be obtained from
the equation of motion (25.27)⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A0q0 + C0q0 + E1q11
= fn

F0q0 + A1q11 + D1q21
= {0}

C1q11 + B1q21
+ E2q12 = {0}

F1q21
+ A2q12 + D1q22

= {0}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

(25.50)

where the relevant matrices can be obtained from Eq. (25.47) by setting
ω = 0. Here, again, a good approximation can be obtained by considering
only the components q0, q11, and q21, i.e., by resorting to a reduced set
formed by the first three equations (25.50) in which the term in E2 has
been neglected. The size of the problem is thus reduced to 3n equations.

The response to an arbitrary unbalance distribution is similarly obtained
by assuming a solution of the type

q =
∞∑

j=1

q1j e
i(2j+1)Ωt +

∞∑
j=1

q2j e
−i(2j+1)Ωt. (25.51)

By using the expressions (25.51) for the deflected shape, the following
infinite set of equations can be obtained from the equation of motion (25.27)⎡

⎢⎢⎢⎢⎣

A0 D0

C0 B0 E1

F0 A1 D1

C1 B1 E2

. . . . . . . . .

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q10

q20

q11

q21

. . .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= Ω2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fr
{0}
{0}
{0}
. . .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (25.52)
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FIGURE 25.6. Sketch of an asymmetric rigid rotor on asymmetric elastic
supports.

Here the relevant equations can be obtained from Eq. (25.47) by setting
ω = Ω. In this case a good approximation can be obtained by considering
only the first four equations in which the term in E2 has been neglected.
The size of the problem thus reduces to 4n equations.

25.5 Exercises

Exercise 25.1 Plot the Campbell diagram and the decay rate plot of a non-

isotropic Jeffcott rotor running in isotropic supports. Study first the undamped

system and then consider also damping. State whether an instability range ex-

ists.

Data: m = 10 kg, kξ = 105 N/m, kη = 2 × 105 N/m, cn = 400 Ns/m, cr = 40

Ns/m.

Exercise 25.2 Consider the gas turbine of Example 24.2. Repeat the dynamic

analysis substituting the rigid bearings with isotropic supports with a radial stiff-

ness of 107 N/m, with unsymmetrical supports, with a stiffness of 1.2×107 N/m

in the vertical plane and 8.9 × 106 N/m in the horizontal plane.

Exercise 25.3 Consider a rigid unsymmetrical rotor running on two identi-

cal anisotropic bearings (Fig. 25.6) and model it as a 4 degrees of freedom (two

complex) system. Assuming that the principal directions of both supports are the

same, so that matrices Kxy and Kyx vanish, compute the Campbell diagram and

the decay rate plot. Data: m = 10 kg, Jξ = 0.312 kg m2, Jη = 0.648 kg m2,

Jp = 0.56 kg m2, kx = 1.2 × 105 N/m, ky = 0.8 × 105 N/m, a = 100 mm,

b = 300 mm.

Exercise 25.4 Consider the same system of the previous exercise. Compute the

unbalance response due to an eccentricity of 10 μm in the direction of the ξ-axis.

Plot the orbit of the center of mass at a speed of 76 rad/s.



26
Nonlinear Rotors

When rotors contain nonlinear element or work outside their linearity range,
phenomena typical of nonlinear systems, like the dependence of the fre-
quency of free vibration from the amplitude, the jump, or even determinis-
tic chaos, may be present. Unlike nonlinear vibrating systems, a harmonic
solution (circular whirling) is still possible, even if it is no more a unique
solution. Circular whirling can be studied through closed-form solutions of
the equation of motion, but for studying the other solution numerical inte-
gration in time must be used.

26.1 General considerations

It is well known that the behavior of both lubricated journal bearings and
rolling-element bearings is strongly nonlinear and can cause rotors to be-
have in a nonlinear way. However, many other mechanisms may have sim-
ilar effects, including nonlinear elasticity or dry friction. Often they can
be neglected and nonlinear parts can be modeled as linear, or even rigid,
elements. This is usually the case, for example, of bearings when they
are much stiffer than other parts of the machine. This simple approach,
however, may not be suitable in some cases and, consequently, the non-
linear problem must be faced. The determination of the critical speed, at
least in the usual terms, and the plotting of the Campbell diagram become
thus impossible, and the study is generally limited to the computation of
the response of the system to given forcing causes, usually unbalance. A
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definition of critical speeds as those speeds at which the response of the
system becomes very large, is possible, but the fact that they depend on
the particular unbalance distribution makes their computation of limited
use.

Remark 26.1 Nonlinearity makes it impossible to study separately free
whirling and the effects of static and dynamic loads because the dynamic
behavior can be strongly influenced by the presence of static loads.

In the case of nonlinear rotors there is a deep difference between the be-
havior of axi-symmetrical and nonisotropic systems. If the system is axially
symmetrical, circular whirling is an exact solution of the problem, although
nonlinearity makes other solutions possible.

Remark 26.2 Contrary to what is seen for general nonlinear vibrating
systems, in this case it is possible to obtain an exact solution of the equa-
tion of motion in closed form. This is generally impossible in the case of
anisotropic systems, for which the usual approximation techniques seen in
Part II must be used.

26.2 Nonlinear Jeffcott rotor: equation of motion

Consider a Jeffcott rotor of the type seen in Section 23.5.1, but with restor-
ing and damping forces that are nonlinear functions of the displacement and
velocity, respectively. The axial symmetry of the system, however, causes
the restoring force to have the same direction as the displacement and the
damping force to have the same direction as the velocity. By resorting to
the complex coordinate z, defined by Eq. (23.4), the restoring force and
the forces due to nonrotating and rotating damping can be expressed in
the form ⎧⎨

⎩
�Fe = −kz [1 + f(|z|)] ,
�Fdn = −cnż [1 + βn(|ż|)] ,
�Fdr = −cr(ż − iΩz) [1 + βr(|ż − iΩz|)] .

(26.1)

Note that no interaction between restoring and damping force has been
assumed: The current model is not the most general nonlinear Jeffcott
rotor.

By introducing the expressions of the nonlinear forces into the equation
of motion of the Jeffcott rotor (Eq. (23.18)) written for constant spin speed,
it follows

mz̈ + (cn + cr)ż + (k − iΩcr)z + [cnβn(|ż|) + crβr(|ż − iΩz|)] ż +

+kf(|z|)z − iΩcrβr(|ż − iΩz|)z = mεΩ2eiΩt + Fn .
(26.2)
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Equation (26.2) can be used to study the free behavior of the system (free
circular whirling), the effect of a static load Fn (of weight, for example),
or that of an eccentricity of mass m. The presence of nonlinear terms,
however, makes it impossible to perform a general study by superimposing
the various solutions and to obtain non-circular whirling by adding forward
and backward whirling of different amplitudes.

26.3 Unbalance response

Consider the undamped system whose model can be obtained from Eq.
(26.2) by neglecting all terms related to damping, linear, and nonlinear,
and the nonrotating force. A possible solution allowing the response to the
static unbalance mε to be computed is

z = z0e
iΩt .

Remark 26.3 Circular whirling is an exact solution of the nonlinear equa-
tion of motion and not just an approximation of the fundamental harmonic
of the response. As a consequence, there are no higher-order harmonics in
the response. This does not mean that there cannot be higher-order harmon-
ics, because circular whirling is only one of the possible solutions; however,
it can be demonstrated to be stable, at least in some conditions, and has
been found both experimentally and by numerical experimentation.

Introducing this solution into the equation of motion, the following alge-
braic equation is readily obtained:

[
k − mΩ2 + kf(|z0|)

]
z0 = mεΩ2 . (26.3)

The backbone of the response can be obtained by assuming that the
unbalance is vanishingly small, i.e., by solving the homogeneous equation
associated with Eq. (26.3).

Because the backbone defines, in the case of vibrating systems, the con-
ditions for a sort of nonlinear resonance, here the situation on the backbone
is similar to that occurring at a critical speed.

Example 26.1 Compute the unbalance response of an undamped rotor char-
acterized by a function f(|z|) of the same type as that seen for Duffing’s equa-
tion: f(|z0|) = μ|z0|2.
The algebraic equations allowing computation of the amplitude of the circular
whirling and the backbone are

(
1 − m

k
Ω2 + μ|z0|2

)
z0=

m

k
εΩ2 ,
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1−m

k
Ω2+μ|z0|

2= 0 .

The equation yielding the backbone is

z0=

√
mΩ2 − k

kμ
.

A result that is quite similar to that obtained for Duffing’s equation is
obtained. Some important differences, however, must be mentioned: Ω here
is the spin speed and not a circular frequency, and the excitation is pro-
portional to Ω2. Moreover, since whirling is circular, the nonlinear element
does not oscillate along the force–displacement characteristic but actually
rotates, maintaining a given deformation. Most considerations regarding
multiple solutions and the jump phenomenon, however, hold in general,
regardless of the particular law f(|z|).

The same circular whirling solution also holds in the case of damped
systems. The algebraic equation that can be obtained in the usual way is

[
1 − m

k
Ω2 + f(|z0|) + iΩ

cn

k
+ iΩ

cn

k
βn(|Ωz0|)

]
z0 =

m

k
εΩ2 . (26.4)

As easily predictable, rotating damping plays no role in determining
the conditions for synchronous whirling. The amplitude z0 is, in this case,
expressed by a complex number, as already seen in the linear case. By
separating the real and imaginary parts of Eq. (26.4) and introducing the
phase Φ of the response with respect to the unbalance vector, which is, as
usual, assumed to be along the ξ-axis, it follows that

⎧⎪⎨
⎪⎩

z0

[
1 − m

k
Ω2 + f(|z0|)

]
=

m

k
εΩ2 cos(Φ) ,

z0cn [1 + βn(|Ωz0|)] = −mεΩ sin(Φ) .

(26.5)

The amplitude and phase of the response are thus
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|z0|2
{[

1 − m

k
Ω2 + f(|z0|)

]2

+
(

Ωcn

k

)2

[1 + βn(|Ωz0|)]2
}

=
(m

k
ε
)2

Ω4 ,

Φ = − arctan
[
Ωcn

1 + βn(|Ωz0|)
k − mΩ2 + kf(|z0|)

]
.

(26.6)
Also, in the case of the nonlinear Jeffcott rotor, it is possible to obtain a

limit envelope of the response. By stating that the phase Φ is equal to −90◦,
the second Eq. (26.5) directly yields the equation of the limit envelope

z0cn [1 + βn(|Ωz0|)] = mεΩ . (26.7)
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FIGURE 26.1. Unbalance response for a nonlinear Jeffcott rotor with linear
damping. The characteristic of the nonlinear spring is assumed to be of the hard-
ening Duffing type.

If damping is linear, the limit envelope is just a straight line whose equa-
tion is

z0 =
Ωmε

cn
.

Some results obtained for a restoring force of the Duffing type with hard-
ening characteristic and linear damping are shown in nondimensional form
in Fig. 26.1. The plot has been obtained for a nondimensional nonlinear
parameter

μ∗ = με2 = 0.25

and various values of the nondimensional damping

ζn =
cn

2
√

km
.

The differences with the usual results obtained for damped Duffing’s
equation are that the peak amplitude occurs now at the right of the back-
bone instead of on the left (the same thing happens in linear systems)
and the curves do not close for low values of the damping. This suggests a
greater difficulty in experiencing the jump phenomenon and, consequently,
self-centering.

Remark 26.4 Self-centering is much more difficult in the case of non-
linear rotors than in the linear case, and higher nonrotating damping is
needed to work in the supercritical range. The jump, needed to obtain the
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self-centered configuration, takes place when the energy supplied by the forc-
ing function is not sufficient to sustain the motion with higher amplitude. In
rotating systems the forcing function is due to unbalance, and the amount
of energy supplied by the centrifugal field is large. This can be seen from
the shape of the limit envelope, which may not cross the backbone.

26.4 Free circular whirling

A possible solution of the homogeneous equation associated with Eq. (26.2),
i.e., of the model for a perfectly balanced Jeffcott rotor, is

z = z0e
iωt .

Remark 26.5 This solution, representing a circular free whirling of the
system, is again an exact solution of the equation of motion.

To avoid greater analytical complexities without losing generality of the
results, damping will be assumed to be linear. By introducing the solu-
tion for circular free whirling into the homogeneous equation of motion, it
follows that{

1 − m

k
ω2 + f(|z0|) + i

[
ωΩ

cn

k
+ (ω − Ω)

cr

k

]}
z0 = 0 . (26.8)

Equation (26.8) has a solution different from the trivial solution z0 = 0
only if the expression in braces is equal to zero. An equation in ω is so
obtained, which yields

⎧⎨
⎩

ω∗
R = ±

√
Γ∗ +

√
Γ∗2 + Ω∗2ζ2

r ,

ω∗
I = ζn + ζr ∓

√
−Γ∗ +

√
Γ∗2 + Ω∗2ζ2

r ,
(26.9)

where the nondimensional speeds Ω∗ and ω∗ and the damping ratios ζn and
ζr are defined in the usual way, with reference to the linearized system, and

Γ∗ =
1 + f(|z0|) − (ζn + ζr)2

2
.

Equation (26.9) is very similar to the corresponding expression for the
linear case, with the difference that in the current case the whirl speed is
a function of the amplitude of the motion. As is obvious for a nonlinear
system, the Campbell diagram loses any meaning. A three-dimensional plot
in which the amplitude |z0| is reported as a function of Ω and ωR can, how-
ever, be introduced. The Ω,ωR-plane of the tridimensional plot coincides
with the Campbell diagram of the linearized system. The first Eq. (26.9)
defines a surface expressing all the possible conditions of free whirling; it
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FIGURE 26.2. Tridimensional plot for the study of the free whirling of the non-
linear Jeffcott rotor studied in Fig. 26.1.

can be considered the backbone of the system at varying spin speed Ω. The
intersection of the surface with the |z0|, ωR-plane expresses the relationship
linking the natural frequency with the amplitude at standstill: It is then the
backbone of the nonrotating system for a whirling mode in the xy-plane.

One of the mentioned plots has been reported in nondimensional form
in Fig. 26.2. The figure has been plotted for a system with ζn = ζr = 0.3.
The Campbell diagram of the linearized system coincides with that plotted
in Fig. 23.7 (curve for the corresponding value of the damping ratio). The
stability threshold of the linearized system is at Ω∗ = 2.

The intersection of the surface with the plane of equation ω = Ω gives
the conditions for free synchronous whirling: It then coincides with the
backbone of the unbalance response shown in Fig. 26.1.

From the second Eq. (26.9) it is possible to obtain the condition for
stability

Ω <
√

1 + f(|z0|)
√

k

m

(
1 +

cn

cr

)
. (26.10)

The threshold of stability depends on the amplitude, as shown in Fig.
26.2, where the unstable part of the surface is dashed. If the spin speed Ω is
lower than the threshold of instability of the linearized system, the motion
is always stable and the amplitude of free whirling decays to zero. On the
contrary, when the linearized analysis shows an unstable behavior in the
small, the nonlinear effects reduce the instability, and the result is a motion
with growing amplitude until the border separating the full lines from the
dotted lines is reached. The amplitude corresponding to these conditions is
that of a sort of limit cycle that constitutes an attractor for all free whirling
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motions. The amplitude of the limit cycle is a function of the speed and
grows with increasing Ω.

This situation holds for hardening systems and qualitatively can be ex-
tended to systems with many degrees of freedom.

26.5 Stability of the equilibrium position

The stability of the equilibrium position for the unbalance response of the
system can be obtained in the same way as for linear systems. Consider a
damped nonlinear Jeffcott rotor whose restoring and damping forces have
a cubic (Duffing type) and linear characteristic, respectively, and neglect
nonrotating forces. The equation of motion in the rotating ξη reference
frame can be easily obtained:
⎧⎨
⎩

mξ̈ + (cn + cr)ξ̇ − 2mΩη̇ +
[
k − mΩ2 + kμ(ξ2 + η2)

]
ξ − cnΩη = mεΩ2 ,

mη̈ + (cn + cr)η̇ + 2mΩξ̇ +
[
k − mΩ2 + kμ(ξ2 + η2)

]
η + cnΩξ = 0 .

(26.11)
The behavior of the system depends on three nondimensional param-

eters: the damping ratios ζn and ζr and the nonlinearity parameter ε2μ.
Equation (26.11) can also be used to study the motion of the system in non-
stationary conditions with reference to the rotating frame. The unbalance
response can be immediately computed by assuming a stationary solution
in the ξη-plane. This result coincides with the solution already obtained in
Section 23.9. The study of the stability in the small about the equilibrium
position can be performed in the usual way. If ξ1(t) and η1(t) are small
displacements from the equilibrium position ξ0, η0, the equation of motion
can be linearized, obtaining, in nondimensional terms,

[
1 0
0 1

] {
ξ∗

′′
1

η∗′′
1

}
+

[
2(ζn + ζr) −2Ω∗

2Ω∗ 2(ζn + ζr)

] {
ξ∗

′
1

η∗′
1

}
+

+

⎡
⎣ 1 − Ω∗2

+ μ∗
(
3ξ∗

2

0 + η∗2

0

)
2 (−Ω∗ζn + μ∗ξ∗0η∗

0)

2 (Ω∗ζn + μ∗ξ∗0η∗
0) 1 − Ω∗2

+ μ∗
(
ξ∗

2

0 + 3η∗2

0

)
⎤
⎦

{
ξ∗1
η∗
1

}
= 0,

(26.12)

where, apart from the damping ratios and the usual nondimensional speed,
the other nondimensional quantities are defined as

ξ∗ =
ξ

ε
, η∗ =

η

ε
, τ = t

√
k

m
, μ∗ = με2 ,

and prime denotes differentiation with respect to τ .
The stability of the motion in the vicinity of an equilibrium position

can be assessed by studying the sign of the decay rate of the small oscil-
lations. Because the solution of a simple fourth-degree algebraic equation
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is required, the study can be carried on in closed form. Proceeding in this
way it follows that, in the case of hardening systems, when three equilib-
rium positions are found, the solution with the largest amplitude is always
stable. The intermediate solution is found to be unstable (saddle point),
while the smallest solution (the self-centered one) is stable only up to a
certain speed, which depends essentially on the ratio between the nonro-
tating and the rotating damping. Note that the nonlinearity of the system
ensures that the stability condition for the unbalance response will not co-
incide with the stability condition of the free whirling, i.e., of the perfectly
balanced system.

Equation (26.11) can be used to study numerically the behavior of the
system in nonstationary conditions with the aim of assessing the stability
in the large and the possibility of the existence of steady-state solutions
different from those already obtained. An example of trajectories is shown
in Fig. 26.3. The figure has been obtained in conditions yielding three
stationary solutions, two of which are stable.

The trajectories tend to the stable solutions, even if a certain attraction
is also felt toward the saddle point, which is unstable. By integrating the

FIGURE 26.3. Trajectories in the rotating plane starting from four different
points, one belonging to the domain of attraction of the lowest solution and
three to the other domain. Values of parameters: Ω∗ = 2, μ∗ = 0.2, ζn = 0.2,
ζr = 0.03.
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FIGURE 26.4. Basins of attraction of the equilibrium positions at different values
of the speed computed by numerically integrating the equations of motion; same
values of the parameters as in Fig. 26.3.

equations of motion of the system for different values of the speed, using as
starting positions different pairs of values of coordinates ξ, η, the domains
of attraction of the various solutions at different speeds can be obtained.
The results obtained for some values of the speed are reported in Fig. 26.4.
The figure was obtained using the same values of the parameters as for
Fig. 26.3, numerically integrating the equations of motion 81,000 times for
each value of the speed until a stable equilibrium position was found. In
some cases, a few hundred steps were sufficient; in others, the motion had
to be followed for thousands of steps.

The two domains of attraction are clearly well defined, and the unstable
solution lies on the separatrix of the two attraction domains. At low speed,
when the self-centered solution just starts existing, its domain of attraction
is very small. By increasing the speed, the domain of attraction of the self-
centered solution grows, and at the speed at which the jump occurs it
extends for the whole plane. The physics of the phenomenon consequently
does not show any critical dependence on the initial conditions, and chaotic
behavior was never encountered.

Some solutions found in the literature in which chaotic behavior of an
axi-symmetrical rotor has been found are available. However, a key factor
that can trigger chaotic behavior of rotating systems seems to be the lack
of axial symmetry, either due to geometric or material anisotropy or due
to the presence of mechanisms such as bearing clearance or static loading,
which make an isotropic system to operate in an offset position. At any
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rate, it must be stressed that the domains of attraction should be plotted
in the state space, which in the current case has four dimensions (two
positions and two velocities) and not in the space of the configurations as
in Fig. 26.4.

26.5.1 Systems with many degrees of freedom

A very general mathematical model of a nonlinear rotor can be obtained
from Eq. (26.11) by adding a generic vector function f(qi, q̇i, θ, t) to take
into account the behavior of the nonlinear part of the system and by intro-
ducing the term (Ω2 − ia) instead of Ω2 to allow us to take into account
angular accelerations

+Mmq̈ +
(
Cm − iΩG

)
q̇ +

(
Km − iΩCrm

)
q + Mnd

q̈+

+Mrd
e2iθq̈ + Cnd

q̇ +
(
Crd

+ 2iΩMrd

)
e2iθq̇ + Knd

q+

+
(
Krd

+ iΩCrd

)
e2iθq + f(qi, q̇i, θ, t) =

(
Ω2 − ia

)
freiθ + fn .

(26.13)

Equation (26.13) has been obtained with only the assumption of un-
coupling among flexural, axial, and torsional behavior and neglecting cen-
trifugal stiffening. The latter can be accounted for simply by introducing
appropriate stiffness matrices proportional to Ω2.

The equation that allows us to describe the rotational degree of freedom
of the system, which is just one due to the assumption of a torsionally rigid
rotor, is again Eq. (24.49), which is not affected by either nonlinearities or
deviations from axial symmetry.

In general, it is reasonable to expect that the time history of the ac-
celerating system has a simpler expression in the rotating frame, where
a slow variation of generalized coordinates in time should occur, than in
the fixed frame, where the relevant quantities vary with a frequency equal
to the rotational speed. However, if the system is nonisotropic, the unbal-
ance response is at least poly-harmonic and then fast variation can occur
in both the rotating and nonrotating frames. By introducing the rotating
coordinates expressed by Eq. (24.38) into Eq. (26.13), it yields

Mmr̈ +
[
Cm + iΩ

(
2Mm − G

)]
ṙ +

[
Km − Ω2

(
Mm − G

)
+

+i

(
aMm + ΩCrm

)]
r + Mnd

e−2iθ r̈ +
(
Cnd

+ 2iΩMnd

)
e−2iθ ṙ+

+
[
Knd

− Ω2Mnd
− i

(
aMnd

+ ΩCnd

)]
e−2iθr + Mrd

r̈ + Crd
ṙ+
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+
(
Krd

+ Ω2Mrd
− iaMrd

)
r + f ′(ri, ṙi, θ, t)}e−iθ =

=
(

Ω2 − ia

)
fr + fne−iθ . (26.14)

The equation yielding the driving torque is still the second Eq. (24.50).
If the angular acceleration is not vanishingly small, Eq. (26.14) must be

integrated numerically in time, and as a consequence there is no concep-
tual difficulty taking into account both nonlinearities and asymmetry. If
software allowing us to deal with complex quantities is available, there
is no need to split the equation into its real and imaginary parts be-
fore integration: Once laws a(t), Ω(t), and θ(t) are stated, the numeri-
cal integration is straightforward. In general, Eq. (26.14) is a powerful
tool to study by numerical integration in time many difficult rotordy-
namics problems, like constant speed whirling of unsymmetrical rotors or
chaotic behavior due to the simultaneous presence of nonlinearities and
asymmetry.

A simple example of the behavior of a nonlinear rotor performing a con-
stant rate acceleration–deceleration cycle is shown in Fig. 26.5. The system
is a nonlinear Jeffcott rotor of the same type already studied in Fig. 26.1,
and the results are shown in nondimensional form, as in Fig. 23.14. The
values of the nondimensional parameters used for the simulation are

a∗ = 0.01 , ζr = 0.01 , ζn = 0.10 , με2 = 0.03 .

In the same figure, the solutions obtained from the usual steady-state
approach are reported (dashed lines). Note that the values of the parame-
ters are such that the system can experience a downward jump and achieve

FIGURE 26.5. Acceleration and deceleration of a nonlinear Jeffcott rotor through
the critical speed; (a) amplitude of the motion, compared with the amplitude in
steady-state operation; (b) driving torque. (a∗ = 0.01, ζr = 0.01, ζn = 0.10 and
με2 = 0.03; Ωcr is the critical speed of the linearized system.)
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a self-centered condition. As in the linear case, the presence of the angu-
lar acceleration reduces the peak amplitude; however, in the linear case
the displacement peak occurs at a higher speed than that characterizing
the maximum steady-state amplitude, but the jump here occurs at a lower
speed. The curve related to spin down is different from that related to the
acceleration phase. This also occurs for linear rotors, when angular accel-
eration is accounted for, but here this effect is far greater, because both
acceleration and nonlinearity contribute to it.

If the system is axially symmetrical and the spin speed is constant, Eq.
(26.13) can be simplified as

Mq̈ +
(
Cn + Cr − iΩG

)
q̇ +

(
K − iΩCr

)
q+

+f(q0i , q̇0i) = Ω2freiΩt + fn .

(26.15)

If no nonrotating force acts on the structure, the unbalance response is
a circular whirling that can be expressed by the solution

z = z0e
iΩt .

It must be stressed again that circular whirling is an exact solution of the
equation of motion, not just an approximation of the fundamental harmonic
of the response, as is customary in nonlinear vibrating systems. Introducing
this solution into Eq. (26.15) and considering the presence of a nonrotating
structural damping matrix K′′

n, the unbalance response of a nonlinear rotor
with many degrees of freedom is readily obtained

(
K− Ω2(M − G) + i(ΩCn + K′′

n)
)
z0 + fi(z0i) = Ω2fr. (26.16)

To reduce the size of the problem, the condensation techniques described
in Chapter 10 can be used, particularly when fewer generalized coordinates
are directly linked with nonlinearities, as when dealing with a rotor that
is linear in itself but runs on nonlinear bearings. A first reduction of the
number of degrees of freedom is performed by eliminating those degrees of
freedom not directly involved in nonlinearities with which a small fraction
of the total mass is associated. This procedure, basically a Guyan reduction,
introduces approximations, which are usually very small if the degrees of
freedom to be dropped are chosen with care. The equations of motion are
then divided into two groups: a linear and a nonlinear set of equations.
A second dynamic condensation procedure, that must be applied at each
value of the spin speed at which the unbalance response is to be obtained,
can then follow to eliminate all the linear degrees of freedom.

In some particular cases the solution of the nonlinear problem can eas-
ily be performed, because it reduces to a single nonlinear equation. This
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includes the case of an undamped linear rotor supported by two nonlinear
bearings, one of which has a behavior that can be approximated by a cubic
characteristic. For the solution of the general problem, in which the nonlin-
ear functions can have complicated expressions and there are many degrees
of freedom, the Newton–Raphson method seems to be the most appropri-
ate choice. In this case it is advisable to write the equation of motion using
real coordinates instead of complex ones.

The iterative algorithm allowing the computation of the solution of Eq.
(26.16) at the (i+1)th iteration from that at the ith iteration is

xi+1 = xi − hS(xi)−1p(xi) , (26.17)

where h is a relaxation constant, and the vector of the unknown x, the
elements of Jacobian matrix S(x), and the functions p(x) are defined as

x =
{

�(z0)
�(z0)

}
=

{
xξ

xη

}
, Sij =

∂pi(x)
∂xj

,

p(x) =
[

K− Ω2(M − G) −Ω(Cn + K′′
n)

Ω(Cn + K′′
n) K− Ω2(M − G)

]
x+

+{f(x)} − Ω2

{
�(f)r

�(f)r

}
. (26.18)

If there is no damping in the system and the unbalance distribution is
contained in a plane (i.e., vector fr is real), the computation of the response
is much simpler because vector z0 is also real. All the aforementioned equa-
tions still hold, but they can be written directly using the unknowns z0.
The number of equations is, consequently, halved, and, in some particular
cases, the solution of the nonlinear part can be reduced to the solution of
a single nonlinear equation.

Because the backbone curves are related to the undamped system, they
can be computed using the same approach as for the latter, simply by
neglecting the forcing vector fr in the definition of functions p(z0).

The convergence of the generalized Newton–Raphson method can be, in
some cases, a source of potential problems. In many cases, the basins of at-
traction of the solutions take very complicated shapes, or the computation
can lock itself into a cycle without reaching any actual solution of the basic
equation. For example, the domains of attraction of the various solutions
plotted for the Jeffcott rotor already studied in Fig. 26.4 are reported in
Fig. 26.6. The map was plotted for a value of the nondimensional speed
Ω∗ = 2, at which three solutions (two stable and an unstable one) exist.

The structure of the map is fractal, as can be seen by enlarging selected
zones, and the unstable solution also has a nonvanishing attraction domain.
A consequence of the fractal structure of the map is the fact that there
are zones in which very small changes of the initial values assumed for
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FIGURE 26.6. Basins of attraction of the solutions for the equilibrium positions of
the system of Fig. 26.1 at a speed Ω∗ = 2, computed through the Newton–Raph-
son iterative technique.

the computation cause large differences on the solution obtained. When
comparing the maps of Figs. 26.3 and 26.5 it is clear that the fractal nature
of the second is strictly linked with the mathematical procedure used for
the solution of the equation (i.e., the Newton–Raphson technique) and has
nothing to do with the actual physical behavior of the system.

No improvement of the mathematical behavior of the equations has been
obtained by introducing a relaxation factor. The map of the domains of
attraction changes but retains its fractal structure and the characteristics
of showing a domain of attraction of the unstable solution; however, the
number of iterations required often increases.

The results obtained for the Jeffcott rotor show the fairly good con-
vergence characteristics of the Newton–Raphson technique. Obviously this
does not guarantee an equally well-behaved nature of the general math-
ematical model for systems with many degrees of freedom. The following
considerations, however, can be extrapolated and used as guidelines in the
solution of more complex problems:

• It seems that numerical damping is not of great use in avoiding non-
convergence.

• Attractive stable cycles can be found, particularly in the fields just
above a critical speed of the linearized system. After each iteration, it
is necessary to check not only whether convergence has been obtained,
but also whether the computation has been locked in a stable cycle.

• If this circumstance occurs, the computation can be started again
using a different set of initial values. When operating in a self-centered
branch, a good guess could be trying to start from a vector x obtained
by multiplying the one of the preceding attempt by a constant smaller
than one; in a high branch of the response a constant greater than 1
can be used.
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FIGURE 26.7. Amplitude of the orbit of the center of gravity of the (a) nonlinear
and linearized rotors and (b) bearing forces as functions of the speed.

• The fractal nature of the domains of attraction can cause large dif-
ferences in the results to be produced by small changes in the trial
vector x. The solution can also converge on an unstable branch of the
response.

• The stable branches should be obtained using as a trial vector the
result obtained in the previous computation.

• The aforementioned considerations also hold for the computation of
the various branches of the backbone. Here, however, a trivial solution
with all the elements of x vanishingly small exists and, therefore, the
procedure must be started outside the basin of attraction of the trivial
solution. A suggestion is to start at a speed just above a critical speed
of the linearized system (for hardening systems) with a trial vector
proportional to the eigenvector of the linearized system corresponding
to the mentioned critical speed.

Example 26.2 A flywheel, with a working range between 8,500 and 17,000
rpm, has a mass m = 125 kg and moments of inertia Jp = 2.272 kg m2 and
Jt = 1.477 kg m2.
It runs on a pair of ball bearings whose nonlinear characteristic can be ap-
proximated by the expression

F = −2 × 107(1 + 1010(|z|)2)z

and whose damping properties can be modeled as hysteretic damping applied

only to the linear part of the stiffness with loss factor η = 0.08.
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Knowing that the center of mass is at 30% of the span between the bearings
(400 mm), study the response to a static unbalance mε = 438 × 10−6 kg m
and state whether self-centering is possible. Compute the forces exerted on the
stator.
Because the distances of the center of mass of the rotor from the bearings are
a = 120 mm and b = 280 mm, respectively, the matrices entering into the
mathematical model of the linearized system are

M=

[
125 0
0 1.477

]
, G =

[
0 0
0 2.272

]
,

K= k

[
2 a − b

a − b a2 + b2

]
=

[
40 −3.2

−3.2 1.856

]
×106 .

In this case it is expedient to use as generalized coordinates the displacements
at the bearing locations. The complex coordinates z and φ can be obtained from
the complex coordinates z1 and z2 using a transformation matrix T

{
z
φ

}
=T

{
z1

z2

}
=

1

l

[
b a
1 −1

] {
z1

z2

}
.

The equation of motion of the undamped system is thus

M∗
{

z̈1

z̈2

}
−iΩG∗

{
ż1

ż2

}
+K∗

{
z1

z2

}
+kμ

{
|z1|2z1

|z2|2z2

}
= Ω2f∗eiΩt,

where
M∗=TT MT , G∗=TT GT

K∗=TT KT=

[
k 0
0 k

]
, f∗=TT f=

mε

l

{
b
a

}
.

The solution for circular whirling can be obtained from Eq. (26.16):

(
− Ω

2

(M∗−G∗)+K∗(1 + iη)

) {
z10

z20

}
+kμ

{
|z10 |2z10

|z20 |2z20

}
= Ω2f∗ .

The solution can be performed using the Newton–Raphson algorithm. The ex-
pression of the Jacobian matrix is simply

S=

(
− Ω

2

(M∗−G∗)+K∗(1 + iη)

)
+ 3kμ

[
|z10 |2 0

0 |z20 |2
]

.

Note that all matrices and vectors are complex and, if software allowing the
use of complex numbers is available, there is no need to double the number of
equations to work with real numbers.

The solution is performed twice. By increasing the speed from zero, the higher

branch is obtained, and by reducing the speed from the maximum value the

lower, self-centered branch is computed. At each speed, the solution obtained

in the previous computation is chosen as the starting solution. The results

are plotted in Fig. 26.7. From the figure it is clear that self-centering is not

possible, due to the low value of nonrotating damping. Correspondingly, the

forces on the bearings are very high.
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26.6 Exercises

Exercise 26.1 Consider the Jeffcott rotor with nonlinear Duffing-type restoring

force and linear damping studied in Fig. 26.1 and following. Compute the unbal-

ance response, the backbone, and the limit envelope for the case with cn = 400

Ns/m. Repeat the computation for cn = 600 Ns/m. Data: m = 10 kg, k = 105

N/m, μ = 2 × 109 1/m2, ε = 10−5 m, Ω = 200 rad/s.

Exercise 26.2 Consider the same Jeffcott rotor of Exercise 26.1. Choose four

values of the initial conditions belonging to different domains of attraction and

integrate numerically the equation of motion until the system settles in a circular

whirling. Verify whether the steady-state solution is one of the exact solutions

of the equation of motion and whether the solution corresponds to that obtained

through Newton–Raphson technique. Data: m = 10 kg, k = 105 N/m, μ = 2×109

1/m2, cn = 400 Ns/m, cr = 60 Ns/m, ε = 10−5 m, Ω = 200 rad/s. Suggestion:

perform the computations in the rotating frame with a nondimensional formu-

lation of the equation of motion and use the starting conditions shown in Fig.

26.3.

Exercise 26.3 Compute the unbalance response of an undamped Jeffcott rotor

with Duffing-type nonlinearity by using Newton–Raphson technique and plot a

map showing, for each value of the speed, toward which solution the computation

converges with the various value of the starting amplitudes (consider values of z∗
0

within the range [−5, 5]). Does a set of points exist from which no convergence

is obtained?

Exercise 26.4 Compute the response of the system of the previous exercise

without neglecting damping and using Newton–Raphson algorithm. Plot a map

of the basins of attractions of the solution in the ξ∗η∗ plane (within the range

[−6, 4]) at constant speed. Choose a value Ω∗ = 2 for the nondimensional speed

and ζn = 0.2 for the nonrotating damping.

Exercise 26.5 Compute the unbalance response of the flywheel of Exercise 24.5

assuming that the bearings have the hardening characteristic F = 2 × 107(1 +

1010z2)z and that the hysteretic damping, with η = 0.2, applies only to the linear

part of the stiffness.

Study the response obtained and state whether self-centering is possible. Com-

pute the forces exerted on the stator.



27
Dynamic Problems of Rotating
Machines

The behavior of a rotor may be strongly influenced by that of its bearings
and dampers, particularly when they are intrinsically nonlinear. The main
characteristics of lubricated and magnetic bearings and whirl dampers are
here summarized. The important topic of rotating machinery diagnostic is
also touched upon.

27.1 Rotors on hydrodynamic bearings

27.1.1 Oil whirl and oil whip

It is very well known that rotors running on journal bearings show particu-
lar dynamic problems due to the fluid film, usually referred to as oil whirl
and oil whip.

The first is a whirling of the rotor, taking place at a frequency of about
half the speed of rotation (sometimes referred to as half-frequency whirl)
and is superimposed to the other whirling motions, particularly the syn-
chronous whirling due to unbalance. Its amplitude is usually not large and
does not constitute an actual problem. At a speed that is usually not far
from twice the first critical speed, the motion becomes more severe and can
rapidly degenerate in a very violent, sometimes destructive, whirling that
takes place at a frequency almost independent of the speed and coincident
with the first natural whirl frequency of the rotor. This motion is usually
referred to as oil whip.
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A simple heuristic explanation of the phenomenon states that the whirling
takes place at about half the rotational frequency by noting that the oil
in the bearing moves around at a speed that is about half the peripheral
velocity of the journal, providing a sort of rotating damping whose speed
of rotation is close to half the spin speed. The behavior of the system is
unstable in the region of the Campbell diagram lying below the straight
line ω = Ω/2 and the threshold of instability can be found easily by inter-
secting it with the lowest branch of the Campbell diagram (Fig. 27.1). If
the lowest branch of the Campbell diagram is a horizontal straight line, as
is the case of the Jeffcott rotor, the threshold of instability occurs at twice
the critical speed of the rotor.

The mentioned heuristic explanation also accounts for the fact that the
frequency of the oil whirl is slightly lower than half the rotational speed,
usually in the range of 0.45–0.48 Ω: The average velocity of the oil film is
slightly lower than half the peripheral speed of the journal, depending on
the clearance and the exact velocity profile.

However, the phenomenon is more complex, and the actual behavior
of the lubricant film must be modeled in some detail. In particular, the
intrinsic nonlinear nature of the bearing cannot be neglected, which makes
the study of the dynamic behavior of the system more complex than the
simple linear rotordynamic study that is often sufficient when no allowance
is taken for the compliance of journal bearings. In particular, the whirl–
whip transition is not as abrupt as shown in Fig. 27.1.

FIGURE 27.1. Oil whip and oil whirl on the Campbell diagram.
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27.1.2 Forces exerted by the oil film on the journal

Consider the journal bearing sketched in Fig. 27.2a. Assume that the bear-
ing is perfectly aligned, i.e., the axes of the bearing and of the journal are
parallel. The nonrotating reference frame Oxyz is centered in the center
of the bearing and has the directions of its axes fixed in space, while the
directions of the axes of reference frame Ox′y′z, whose axis x′ contains the
center of the journal C, are not fixed if point C moves about point O. Ini-
tially, only stationary motion will be considered: the coordinates x and y
of the center of the journal are independent from time t and, consequently,
reference frame Ox′y′z is fixed in space and angle β is constant.

Assume that the pressure is linked to the thickness of the fluid film by
the well-known Reynolds equation1

1
6

[
1

R2
j

∂

∂θ

(
h3

μ

∂p

∂θ

)
+

∂

∂z

(
h3

μ

∂p

∂z

)]
= Ω

∂h

∂θ
+ 2

∂h

∂t
, (27.1)

where μ is the viscosity of the lubricant and

Ω = Ωj − Ωb ,

where subscripts b and j refer to the bearing and the journal, respectively.
Usually, the bearing does not rotate; hereafter, it will be assumed that

Ωb = 0 , Ωj = Ω .

FIGURE 27.2. Lubricated journal bearing: (a) geometrical definitions, (b) po-
sition of the journal when a load P acts along the y-axis; solution obtained for
stationary conditions from Eq. (27.5).

1O. Reynolds, ‘On the theory of lubrication and its applications to Mr. Towers’
experiments, Philosophical Transaction of the Royal Society of London, Vol. 177, (1886),
154–234.
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The film thickness h is easily expressed as a function of the coordinates
of the center of the journal with respect to the center of the bearing

h = c[1 − x∗ cos(θ) − y∗ sin(θ)] = c[1 − ε∗ cos(θ′)] , (27.2)

where the clearance c is simply given by the difference of the radii

c = Rb − Rj ,

and the nondimensional eccentricity and coordinates are

ε∗ =
ε

c
, x∗ =

x

c
, y∗ =

y

c
.

Equation (27.1) can be used to obtain the pressure distribution in the
fluid film. However, if a numerical solution is considered as not general
enough, some simplifications must be introduced to allow the pressure to
be computed in closed form. If the bearing is assumed to be very long, it is
possible to neglect the fluid flow and pressure gradient in axial direction,
obtaining the so-called long-bearing approximation, often associated with
the name of Sommerfeld. Equation (27.1) reduces to

1
6R2

j

∂

∂θ

(
h3

μ

∂p

∂θ

)
= (Ωx − 2ẏ) sin(θ) − (Ωy + 2ẋ) cos(θ) . (27.3)

In stationary conditions, the pressure distribution around the journal can
be expressed by the relationship

p − p0 = −6μΩ
(

Rj

c

)2
ε∗

2 + ε∗2

2 − ε∗ cos(θ′)
[1 − ε∗ cos(θ′)]3

sin(θ′) . (27.4)

Pressure p0 is the pressure at θ′ = 0, i.e., where the oil film is at its
minimum thickness. It can be computed by assuming that the pressure
attains a known value where the oil supply is located. The components of
the force the journal receives from the oil film in the x′- and y′-directions
can be obtained by integrating the pressure on the journal surface
⎧⎪⎪⎨
⎪⎪⎩

Fx′ =
∫ 2π

0

(p − p0) cos(θ′)dθ = 0 ,

Fy′ =
∫ 2π

0

(p − p0) sin(θ′)dθ = 12πμΩRjl

(
Rj

c

)2
ε∗

(2 + ε∗2)
√

1 − ε∗2
,

(27.5)
where l is the length of the bearing in the axial direction.

The force exerted by the oil film on the journal is thus directed along
the y′-axis and the displacement occurs in the x′-direction. The journal
is displaced in a direction perpendicular to the direction of the load, as
shown in Fig. 27.2b, in which the load P acts in the vertical direction.
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By linearizing the expression of the forces about the central position, the
following expression is obtained:

{
Fx

Fy

}
= −K

{
x
y

}
= −6πμΩl

(
Rj

c

)3 [
0 1

−1 0

] {
x
y

}
. (27.6)

Remark 27.1 The stiffness matrix obtained from the linearization of the
bearing has vanishing elements on the main diagonal and is skew-symmetrical.
Although the first feature is linked to the particular oversimplified formula-
tion used, the non-symmetrical structure of the stiffness matrix is general.

In a similar way, if the center of the journal C moves, i.e., if its x- and
y-coordinates are not constant in time, it is possible to compute the forces
due to this motion and then, by linearizing about the central position of
the journal, to obtain a damping matrix

{
Fx

Fy

}
= −C

{
ẋ
ẏ

}
= −12πμl

(
Rj

c

)3 [
1 0
0 1

] {
ẋ
ẏ

}
. (27.7)

Consider a circular whirling with very small amplitude ε and whirl speed
ω. The position and velocity of the center of the journal are{

x
y

}
= ε

{
cos(ωt)
sin(ωt)

}
,

{
ẋ
ẏ

}
= ε

{
− sin(ωt)

cos(ωt)

}
, (27.8)

and the force that the journal receives from the oil film is
{

Fx

Fy

}
= −12πμlε

(
Rj

c

)3 (
Ω
2
− ω

) {
sin(ωt)

− cos(ωt)

}
. (27.9)

This force is directed tangentially to the orbit of point C and, if ω < Ω/2,
its direction is the same as the velocity of point C. The force drives the
shaft along its motion with destabilizing effects.

If, however, ω > Ω/2, the direction of the force is opposite that of the
velocity and it opposes the whirling motion with stabilizing effects. The
same results already seen and sketched in Fig. 27.1 are then obtained. They
are, however, affected by the assumptions used, mainly by the linearization
about the central position, which is acceptable only in the case of very
lightly loaded bearings, and by the pressure distribution expressed by Eq.
(27.4) and plotted as a function of angle θ′ in Fig. 27.3 for some selected
values of the eccentricity ε∗.

From the figure, it is clear that when the eccentricity is high and the
inlet pressure low, very low values of the absolute pressure can be reached
in some parts of the oil film, or even negative absolute pressures, which is
physically without meaning. When the pressure becomes lower than the va-
por pressure of the lubricant at the relevant temperature, cavitation occurs
and the oil film ruptures.
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FIGURE 27.3. Pressure distribution on the journal along angle θ′ for various val-
ues of the nondimensional eccentricity ε∗. Long-bearing assumption, Eq. (27.4).

A usual approach for the study of bearings with partially cavitated oil
film is assuming that the pressure in the non-cavitated part of the bearing
is equal to that computed by assuming a complete oil film. Because the
pressure in the cavitated part of the bearing can be neglected, the same
formulas already seen for the computation of the forces can be used, pro-
vided that the integration is performed between angles θ1 and θ2, defining
the region on which the oil film extends.

A simple approach, usually referred to as fully cavitated bearing, is as-
suming that the oil film extends between θ′ = π and θ′ = 2π, i.e., in the
region in which the value of the pressure is higher than p0. Once angles
θ1 and θ2 have been defined, the static forces corresponding to a given
displacement of the journal, i.e., to a pair of values xst and yst of the co-
ordinates of point C, can be computed. For small motions about the static
equilibrium position it is possible to linearize the expressions of the forces
and to compute the stiffness and damping matrices of the bearing. In the
case of the long-bearing assumption, the relevant equations are

f =
6μR3

j lΩ

c2

{
I7

I8

}
,

C = −

⎡
⎢⎢⎣

(
∂Fi

∂ẋj

)
x1 = xst

x2 = yst

⎤
⎥⎥⎦ =

6μR3
j l

n2c3

[
I9 I10

I11 I12

]
, (27.10)

K = −

⎡
⎢⎢⎣

(
∂Fi

∂xj

)
x1 = xst

x2 = yst

⎤
⎥⎥⎦ = − 6μR3

j lΩ

(2 + n2)c3

[
I1 + I2 −I4 + I5

I6 + I5 −I1 + I3

]
,

where



27.1 Rotors on hydrodynamic bearings 695

I1 =

∫ θ2

θ1

1 + h∗
st

h∗3
st

sin(θ) cos(θ)dθ , I2 =

∫ θ2

θ1

(2 + h∗
st)

ω

h∗
st

cos2(θ)dθ ,
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ω
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ω cos(θ)dθ , I8 =
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ω sin(θ)dθ ,
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st) cos(θ)dθ , I10 =
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st) cos(θ)dθ ,
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θ1

(−Rx∗
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st cos(θ) + y∗
st sin(θ) , ω =

x∗
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st cos(θ)

h∗3
st

,

R = 2ωh∗
st

1 + h∗
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2 + ε∗2 , S =
1

(1 + ε∗)2
− 1

h∗2
st

.

The integrals in Eq. (27.10) must be solved numerically, but this does
not imply long and costly computations.

If the bearing is relatively short and the long-bearing approach does
not seem applicable, the flow in the circumferential direction can be ne-
glected obtaining the so-called short-bearing approximation. By neglecting
the term linked with the circumferential pressure gradients in Reynolds
equation (27.1) and introducing into the latter the expression of the film
thickness, it follows that

1
6

∂

∂z

(
h3

μ

∂p

∂z

)
= (Ωx − 2ẏ) sin(θ) − (Ωy + 2ẋ) cos(θ) . (27.11)

By operating in the same way as for the long-bearing Sommerfeld ap-
proximation, the following expressions for the forces in static conditions
and the stiffness and damping matrices are obtained:
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,
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]
,
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where
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∫ θ2
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.

For the intermediate case of a bearing with non-negligible length, several
authors have suggested approximate solutions, usually obtained from the
Sommerfeld solution, multiplied by a function of the axial coordinate. Such
approximate pressure distributions are usually more satisfactory than ei-
ther of the two solutions mentioned earlier, because they take into account
both axial and circumferential flows.

A solution of this type was proposed by Warner.2 The pressure distri-
bution is obtained by multiplying the pressure computed for an infinitely
long-bearing p∞ (Sommerfeld solution) by a coefficient

CW = 1 −
cosh

[(
2z
l

) (
γl

2Rj

)]

cosh
(

γl
2Rj

) , (27.13)

where

γ2 =

∫ θ2

θ1

[1 + ε∗ cos(θ)]3
(

dp∞
dθ

)2

dθ

∫ θ2

θ1

[1 + ε∗ cos(θ)]3p2
∞dθ

.

In the case of the Warner solution, if the derivatives of coefficient CW

with respect to the position and velocity are neglected, the expressions
of the forces and of the stiffness and damping matrices can be directly
obtained by multiplying those obtained for the long-bearing case by the
factor

C′
W = 1 − 2Rj

γl
tanh

(
γl

2Rj

)
, (27.14)

obtained by integrating coefficient CW in the axial direction.

2P.C. Warner, ‘Static and dynamic properties of partial journal bearings’, Journal of
Basic Engineering, Trans. ASME, Series D, 85, (1963), 244.
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Many other bearing types were developed with the aim of reducing the
inherent instability of plain bearings. In the case of complex geometries
there is no chance of obtaining a closed-form solution, or at least a solution
computed with simple numerical integrations. Either experimental results
or a more detailed numerical modeling of the fluid film are thus needed.
They are presented in the form of general charts applicable to a given family
of bearings. Nondimensional parameters, related to the average pressure

pm =
F

2Rjl
,

are commonly used. One of them is the Sommerfeld number, defined as

S =
μΩ

2πpm

(
Rj

c

)2

=
μΩRj l

πF

(
Rj

c

)2

. (27.15)

The Sommerfeld number is well suited to the study of long bearings. For
the short-bearing model, the load factor

O =
2pm

μΩ

(
c

Rj

)2 (
2Rj

l

)2

=
F

μΩlRj

(
c

Rj

)2 (
2Rj

l

)2

(27.16)

is commonly used. Barwell in 1956 proposed calling the load factor the
Ocvirk number, and here it will be referred to with the symbol O. The two
nondimensional parameters are linked by the relationship

O =
1

πS

(
2Rj

l

)2

. (27.17)

The position of the center of the journal in stationary conditions is uni-
vocally determined, given a certain type of bearing, once the Sommerfeld
number (or any other relevant nondimensional parameter) is stated. Charts
giving the nondimensional coordinates of the center of the bearing x∗ and
y∗, or better, the eccentricity ε∗ and the attitude angle β, as functions of
the Sommerfeld number, summarize the static behavior of the bearing. The
attitude angle defines the direction of the displacement of the center of the
journal with respect to the direction of the force F , as shown in Fig. 27.4a.
In the case of a non-cavitated long bearing, the attitude angle is equal to
90◦ for any value of the Sommerfeld number.

In many cases, the minimum thickness of the oil film

h∗
min = 1 − ε∗

is given instead of the eccentricity. The plot of the eccentricity and the
attitude angle as functions of the load factor for a fully cavitated short
bearing is reported in Fig. 27.4b.
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FIGURE 27.4. Lubricated journal bearing: (a) definition of the attitude angle β
(load P acting along y-axis); (b) eccentricity and attitude angle as functions of
the load factor for a fully cavitated short bearing.

In Fig. 27.5 the elements of the stiffness and damping matrices for the
same bearing in Fig. 27.4b are reported in nondimensional form as functions
of the load factor. Similar graphs for a grooved bearing with ratio

l

2Rj
= 0.5

are reported in Fig. 27.6. Graphs of the type shown in Fig. 27.4, 27.5, and
27.6 are reported in the literature for different types of lubricated bearings.3

27.1.3 Interaction between the behavior of the oil film and
that of the structure

The behavior of lubricated journal bearings was studied first by Robertson
in 1933,4 who investigated the stability of the ideal 360◦ infinitely long jour-
nal bearing. Using the expressions for the film forces obtained by Harrison
in 1913,5 he concluded that the rotor will be unstable at all speeds rather
than at speeds above twice the first critical speed. This is easily ascribed
to the fact that with a non-cavitated oil film the attitude angle, i.e., the
angle between the direction of the load and that of the displacement of the
journal, is 90◦ and the radial stiffness of the bearing vanishes.

Once a model of the bearing is introduced into the model of the ro-
tor, a nonlinear problem results. The static equilibrium position, i.e., the

3Many charts and tables for bearings of different types are reported in T. Someya,
Journal-Bearing Databook, Springer, Berlin, 1989.

4D. Robertson, ‘Whirling of a journal in a sleeve bearing’, Philosophical Magazime.,
Series 7, Vol. 15, (1933), 113–130.

5W.J. Harrison, ‘The hydrodynamical theory of lubrication with special reference to
air as lubricant’, Transaction of Cambridge Philosophical Society, Vol. 22, (1913), 39.
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FIGURE 27.5. Elements of the stiffness and damping matrices for the same bear-
ing as Fig. 27.4b as functions of the load factor. The static force is assumed to
act in the y-direction.

FIGURE 27.6. Elements of the stiffness and damping matrices for a grooved
bearing as functions of the Sommerfeld number: ratio l/2Rj = 0.5. (J.S. Rao,
Rotor dynamics, Wiley Eastern, New Delhi, 1983, 110–111.) The plots have been
transformed to report the curves in a way that is more consistent with Fig. 27.5.
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position the rotating shaft takes under the effects of static loads, is first
obtained. The motion about this equilibrium position is then studied using
a linearized model. This approach gives a general picture of the behavior
of the rotor where the small oscillations are concerned and allows to study
its stability in the small.

If a small unbalance is present, provided it gives way to displacements
small enough not to go beyond the field in which the linearization holds, the
unbalance response can be studied and the relevant results can be super-
imposed on those related to the free whirling. The well-known statement
that the whirling (and eventually whipping) due to the lubricant does not
interact with unbalance response holds exactly in this condition.

In this study the rotor is assumed to be axially symmetrical, while no sim-
ilar assumption is made with regard to the stator. The intrinsic asymmetry
of a loaded journal bearing makes it impossible to exploit the symmetrical
characteristics of the stator, and on the contrary, an asymmetrical rotor
loaded by static forces will produce an elliptical whirling, which is incom-
patible with the assumption of the existence of a stationary equilibrium
position. If the rotor is not isotropic, it must be replaced by a symmetrical
rotor with average properties in the computation of the static equilibrium
position.

When the amplitude grows larger the nonlinear behavior cannot be ne-
glected also in the dynamic study. The usual approach is numerically in-
tegrating the equations of motion to study the stability in the large. In
this case the behavior of the fluid film can be studied in greater detail, and
the hydrodynamic equations can be integrated numerically, for instance,
to study the effects of misalignments between the bearing and the journal,
e.g., due to bending deformations of the shaft, on cavitation.

For the study in the small, the journal bearings are modeled using the
conventional eight-coefficient linearized model, i.e., by computing a stiffness
and a damping matrix as shown in Section 27.1.2. Due to the influence of
the static loads on the dynamic properties of the bearings, a nonlinear static
problem is first solved for each value of the spin speed at which the dynamic
computation is to be performed. The definition of the parameters of the
bearing then follows and the eigenproblem yielding the eigenfrequencies
of the linearized system is solved. The stability of the free whirling of the
system can thus be assessed. The response to a small unbalance can also be
obtained without any difficulty and the applicability of the result obtained
to the actual system can be checked by verifying whether the computed
motion of the journal is actually small.

When the rotor is supported on more than two bearings, their misalign-
ment can have a large effect on the dynamic behavior of the machine by
inducing preloads that affect the stiffness of the bearings. This can also
be used by inducing by purpose such preloads through a control system to
tailor the dynamic characteristics of the machine. The displacements of the
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bearing center with respect to the nominal position can be introduced into
the model to also allow the study of this effect.

If the system is statically determined, the static loads on the bearings can
be computed. Once the forces are known, it is possible to compute the two
components of the relative displacement of the journals (with respect to
the bearings) and then the eight coefficients characterizing their dynamic
behavior. If graphs of the type of Fig. 27.5 are not available, it is possible,
at least when the long- or the short-bearing assumptions can be made,
to resort to an iterative technique such as the Newton–Raphson method.
Note that the solution of the static problem is usually unique, and severe
convergence problems are not expected.

If the system is not statically determinate, however, the loads on the
bearings depend on the deformation of both the stator and the rotor and
on possible misalignments. A coupled problem that is far more complex
must be solved. The equation allowing the static deflected configuration
of the rotor to be studied is Eq. (24.43). By also introducing structural
damping and writing explicitly the forces due to weight, it yields

[
K− i(ΩC + K′′)

]
q = fn + gM(δx + iδy) , (27.18)

where vector fn contains static forces, not including weight, while the ele-
ments of vector δx + iδy vanish for the rotational degrees of freedom and
are equal to the cosines of the angle between the vertical direction and the
x- and y-axes for translational coordinates.

Remark 27.2 The deformed equilibrium position depends on the angular
velocity only if there is viscous damping.

The internal damping of the rotor will be assumed to be of the structural
(hysteretic) type, because it allows the computations referred to the rotor
to be performed only once. However, there is no difficulty modifying the
equations to also take into account viscous damping.

Since when the Newton–Raphson technique is used for the solution of
the nonlinear set of equations there is some advantage to resorting to real
coordinates, Eq. (27.18) can be rewritten in the form

K∗
{

xr

yr

}
= f∗r , (27.19)

where

K∗ =
[

K K′′

−K′′ K

]
, f∗r =

{
fxn

fyn

}
+ g

{
Mδx

Mδy

}
,

and vectors xr and yr contain the real and imaginary parts, respectively,
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of the complex coordinates of the rotor. The stiffness matrix is singular
because the rotor has been considered unsupported and this part of the
system is underconstrained.

It is possible to separate the vectors of the generalized coordinates into
two subsets: the first, labeled with subscript 1, containing the displace-
ments at the supporting points (i.e., the centers of the journals), and the
second, with subscript 2, containing all other generalized displacements.
The hydrodynamic bearings will be assumed to react only to translations
of the journal, so the first set contains a number of elements equal to twice
the number of the bearings. If the model of the bearing is modified to also
include the moment due to angular displacements, the inclusion of the ro-
tational degrees of freedom in this set of displacements is straightforward.
By partitioning accordingly the relevant matrices and vectors, it follows
that

[
K∗

11 K∗
12

K∗
21 K∗

22

]
⎧⎪⎪⎨
⎪⎪⎩

{
x
y

}
1{

x
y

}
2

⎫⎪⎪⎬
⎪⎪⎭

=
{

f∗1
f∗2

}
. (27.20)

By applying the usual techniques of static reduction and assuming the
generalized coordinates of the first group as master degrees of freedom, Eq.
(27.18) reduces to

Kcondr

{
x
y

}
1

= fcondr , (27.21)

where the expressions of the condensed matrices are the usual ones and the
internal generalized coordinates of the rotor are expressed by Eq. (10.2).

The model of the stator can be built in a way similar to that seen for
the rotor, with two important differences. The stator does not need to be
axially symmetrical and, because it is stationary, its static deformation is
not affected by its damping. The equilibrium equation for the stator is
Eq. (27.19) where subscript r has been replaced by s. Matrices M∗ and
K∗ are, in general, symmetrical and contain the coupling terms between
the behavior in the xz- and yz-planes. Also, in this case it is possible
to separate the vectors of the generalized coordinates into two subsets:
the first, labeled with subscript 3, containing the displacements at the
supporting points (i.e., the center of the bearings) and the second, with
subscript 4, containing all other generalized displacements, and then to
resort to static reduction techniques.

The equilibrium equation referred to the displacements of the bearings
is then Eq. (27.21) where subscripts r and 1 have been substituted with s
and 3, respectively. It can be reduced through the usual algorithm.

Note that because the interface between stator and rotor is represented
by the bearings, which react only to translations, the sets of generalized
coordinates with subscripts 1 and 3 contain only displacements and no
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rotations. This allows the use of conventions for the rotations of the stator
and the rotor that are not consistent and the use of any standard FEM code
to build the model of the stator even if the conventions for rotations about
the x-axis are different from those used in the model of the rotor. Any type
of element can be used in both models, provided that the displacements at
the interface are measured with reference to the same axes.

The relative displacements xi and yi of the center of the ith journal
with respect to the center of the ith bearing can be easily obtained from
the displacements xi1 and yi1 of the former and the displacements xi3

and yi3 of the latter, where subscripts 1 and 3 refer to the partitioning
of the generalized coordinates. Taking into account that the center of the
ith bearing may be displaced by the quantities Δix and Δiy , with respect
to the nominal position when no force acts on the bearing, the relative
displacement of the journal with respect to the bearing can be expressed
as {

xi

yi

}
=

{
xi1 − xi3 − Δix

yi1 − yi3 − Δiy

}
. (27.22)

Equation (27.22) allows the computation of the relative displacement of
the bearing and then of the forces Fx and Fy that the journal receives from
the oil film through numerical integration of the bearing model or the use
of experimental graphs. The interaction between stator and rotor can thus
be expressed by adding the forces due to the oil film to Eq. (27.21) for the
rotor and the corresponding one for the stator

⎧⎪⎪⎨
⎪⎪⎩

Kcondr

{
x
y

}
1

+
{

fx
fy

}
= fcondr ,

Kconds

{
x
y

}
3

−
{

fx
fy

}
= fconds .

(27.23)

If the number of bearings is m, Eq. (27.23) is a set of 4m nonlinear
equations with the 4m unknowns representing the displacements of the
journals and the bearings in the x- and y-directions. The number of non-
linear equations can, however, be reduced because the actual unknowns of
the nonlinear part of the equation are the differences between the displace-
ments of the rotor and the stator, which are only 2m in number. Because
the reduced stiffness matrix of the rotor is generally singular and cannot be
inverted, the second set of Eq. (27.23) can be multiplied by KcondrK

−1
conds

and added to the first, obtaining the following nonlinear equation, which
can be solved by resorting to the Newton–Raphson iterative technique

Kcondrx + A
{

fx({x− Δ})
fy({x− Δ})

}
= f∗∗ , (27.24)

where

x =
{

x1 − x3

y1 − y3

}
, A = I + KcondrK

−1
conds

,
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f∗∗ = fcondr − KcondrK
−1
conds

fconds .

Once the values of the relative displacements x of the bearings in the
static equilibrium position have been computed, the eight coefficients that
characterize the dynamic behavior of the bearing can be easily obtained.
Note that the solution of the static problem must be repeated for each
value of the speed at which the natural frequencies are to be computed.
Even if no viscous damping is considered and the relevant matrices can be
computed only once, the forces in the bearing are strongly influenced by
the speed.

The dynamic study in the small can be performed using the model de-
scribed in Section 25.4.1, because the lubricated journal bearings cause the
nonrotating parts of the machine to behave in an anisotropic way. Both
real and complex coordinates can be used. Free whirling and unbalance
response can be studied, the latter only if the amplitude of the response is
small enough not to exceed the linearity limits.

Remark 27.3 If the static forces acting on the bearings are vanishingly
small, as in the case of a vertical bearing without static loading, the lin-
earized model can supply only a very rough approximation of the actual
behavior of the system. The system is generally unstable in the small and
only a true nonlinear analysis allows the limit cycle to be found.

To study the motion in the large and to find the limit cycles that can
occur when the motion in the small is unstable, it is necessary to resort to
numerical integration of the equations of motion. This can be performed
using the same model described earlier, even if more detailed models of
the oil film, also including angular misalignments of the bearings, are de-
scribed in the literature. The inherent instability of plain journal bearings
makes them unsuitable for high-speed supercritical machinery and many
other bearing configurations have been developed with the aim of overcom-
ing this difficulty. In particular, tilting pad bearings allow the instability
problem to be solved completely at the cost of a reduction of damping at
low speed and of added overall complexity. Among the many papers and
books existing on this subject, those by Tondl and Muszynska6 are worth
mentioning.

Problems similar to those linked with lubricated journal bearings are
also encountered in other cases in which a fluid is interposed between the
stator and the rotor, as, for example, in labyrinth and liquid seals. In all
cases, one of the most effective measures aimed at reducing the instability
problems is the decrease of the peripheral velocity of the fluid around the

6See, for example, A. Tondl, Some problems in rotor dynamics, Czechoslovak
Academy of Sciences, Prague, Czechoslovakia, 1965, and A. Muszynska, Rotor insta-
bility, Senior Mechanical Engineering Seminar, Carson City, June 1984.
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FIGURE 27.7. Sketch of the system used as example, together with the plot of
the real and imaginary parts of the eigenvalues as functions of the spin speed.

shaft. This can be done using anti-swirl vanes, by roughening the stator
walls, or by injecting the fluid in the tangential, backward direction.

Example 27.1 Consider the rotor sketched in Fig. 27.7. It is made of a

massless flexible shaft on which a disk with mass m and moments of inertia

Jp and Jt is fitted.

The shaft is supported on one side by a rigid bearing and on the other side by
a hydrodynamic journal bearing. Due to the nonlinearity of the system, it is
impossible to perform a general study and actual data must be stated: rotor:
a = 85 mm, b = 255 mm, diameter of shaft = 25.4 mm, m = 20 kg, Jp = 1
kgm2, and Jt = 0.7 kgm2; bearing: l = 16 mm, c = 35.2 μm, and μ = 0.02
Ns/m2.
Let the bearing be modeled using the short-bearing assumption, with a fully
cavitated film, i.e., with the oil film extending only for 180◦.
The imaginary and real parts of the eigenvalues, i.e., the actual whirl frequency
and the decay rate, are plotted in Fig. 27.7. The whirl frequency is compared
to the values obtained assuming that both bearings are rigid.
Due to the use of real coordinates (the size of the relevant matrices is 6, after
reduction), it is not possible to distinguish immediately between forward and
backward whirl motions without analyzing the eigenvectors. However, a clue
is that the modes related to branches that slope downward on the Campbell
diagram are backward modes.

From the plot it is clear that the presence of the hydrodynamic bearing has little

influence on the whirl frequencies of the system but causes an added frequency

to be present. This new mode, clearly an oil whirl, follows almost exactly the

line ω = Ω/2. The decay rate is always negative, i.e., the motion is stable, but

the oil whirl mode becomes unstable at about 2,000 rad/s.
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The transition between oil whirl and oil whip occurs exactly when the line ω =

Ω/2 crosses the first forward whirl mode, as predicted by the usual approximate

criteria. As a conclusion, the behavior of the system is practically coincident

with what could be expected using the approximate criteria, and the picture

of the phenomenon shown in Fig. 27.1 holds. This is, however, not a general

result, because in more complicated cases the presence of the bearings can have

a more important effect on the dynamic behavior.

27.2 Dynamic study of rotors on magnetic bearings

Magnetic suspension has been proposed for many applications, from vehi-
cles to models in wind tunnels. In the field of rotating machinery, magnetic
bearings can drastically reduce bearing drag, while completely avoiding
the presence of lubricant and wear. The greatest advantages of magnetic
bearings are, however, related to the dynamic behavior of the rotor: The
stiffness and damping of the bearing system can be tailored for the appli-
cation and can be adjusted following the operating conditions. In the case
of active bearings, the control system can be used not only to maintain
the rotor in the required position as a rigid body, minimizing the effects of
unbalance and reducing the needs of strict balancing tolerances, but also
to control the deformation modes.

The main goal of magnetic bearings is to keep the suspended body in
the proper position and avoid rigid-body modes: A complete suspension
must then constrain the six modes of a rigid body in space. In the case of
a vehicle or rotor, one of the rigid-body modes must be left unconstrained
(rotation about the axis, for a rotor) and a five-axis suspension is needed.
Electromagnetic forces can be exerted by a passive device, based on per-
manent magnets or by uncontrolled electromagnets,7 or by an active device
suitably controlled.

A consequence of Earnshaw theorem is that a magnetic suspension based
on a five-passive-axes layout is unstable except if diamagnetic materials or
an electrodynamic layout are used. The choice is then between the use of a
hybrid suspension system, in which at least one of the degrees of freedom of
the rotor is constrained by a mechanical bearing, and that of a device that
is at least partially active (or better controlled). The solutions span from
that of a one-active-axis suspension, in which two passive radial bearings
control the four degrees of freedom linked with the lateral behavior of the
rotor and one axial active bearing restrains axial motion, to a fully active
five-axis suspension, with active radial and axial bearings.

7It would be better to use the terms uncontrolled and controlled instead of passive
and active: A bearing using uncontrolled electromagnets is actually active since it uses
external power.
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The acronym AMB is commonly used for active magnetic bearing.
In this section the equations of motion for the lateral behavior of a linear

axi-symmetrical rotor running on a set of active radial bearings will be
obtained.

By resorting to the complex coordinates defined in Section 24.1.2 (Eq.
(24.16)), the equation of motion of the rotor–stator system is

Mq̈ + (Cn + Cr − iΩG)q̇ + (K − iΩCr)q = fc + fn + Ω2freiΩt, (27.25)

where vector fc includes the forces exerted by the magnetic bearings on
the rotor and the stator, and the stiffness matrix K is singular with four
vanishing eigenvalues because the four rigid-body motions of the rotor are
unconstrained. The real part of vector fc relates to the forces due to the
magnetic bearings in the xz-plane, while its imaginary part is linked with
the forces exerted in the yz-plane.

Assume that each actuator is made by four electromagnets as shown in
Fig. 27.8: Coils 1 and 3 are responsible for the force in the x-direction and
coils 2 and 4 for the force in the y-direction. As a first approximation, the
force exerted by a single coil depends on the current i and the air gap t
between stator and rotor following the law

F = K

(
i

t

)2

, (27.26)

where K is a constant that includes all design parameters of the act-
uator.

FIGURE 27.8. Sketch of an electromagnetic actuator of a magnetic bearing.
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Usually, to linearize the overall behavior of the bearing, the coils are fed
with a constant current, referred to as bias current, on which the control
current is superimposed (see Example 27.3). A so-called static compensa-
tion current i′0 is superimposed to the bias current i0 of the two coils acting
in the same direction to withstand any static load. The bias and compen-
sation currents in coils 1 and 3 acting in the x-direction can be written as
i0 + i′0 and i0 − i′0. The total x-component of the force Fc exerted by the
two identical coils 1 and 3 is

Fx = K

[(
i0 + i′0 + ix
c − d − ux

)2

−
(

i0 − i′0 − ix
c + d + ux

)2
]

, (27.27)

where ix, c, d, and ux are, respectively, the control current, the radial
clearance, the static offset, and the radial displacement.

Remark 27.4 Equation (27.27) holds only if i0 − i′0 − ix > 0: In the op-
posite case, the controller should switch off one of the coils, and the system
works in nonlinear conditions.

An actuator that works with a bias current high enough to allow all coils
to be always energized is said to work as a ‘class A’ actuator while a ‘class
B’ actuator works with only one of the two coils on, the one that carries
the load. The intermediate condition, in which at least one coil is switched
on and off, can be referred to as ‘mixed-mode’ working.

The force expressed by Eq. (27.27) can be linearized about the condition
with ix = 0, ux = 0 as

Fx = F0 + Kiix + Kuux , (27.28)

where

F0 = K

[(
i0 + i′0
c − d

)2

−
(

i0 − i′0
c + d

)2
]

,

Ki =
(

∂Fx

∂ix

)
ix = 0
ux = 0

= 2K

[
i0 + i′0
(c − d)2

+
i0 − i′0
(c + d)2

]
, (27.29)

Ku =
(

∂Fx

∂ux

)
ix = 0
ux = 0

= 2K

[
(i0 + i′0)

2

(c − d)3
+

(i0 − i′0)
2

(c + d)3

]
.

If the sensor–actuator pair is co-located (the sensor reads the displace-
ment at the location the actuator exerts the control force) and the control
system is an ideal decentralized, proportional derivative (PD) controller,



27.2 Dynamic study of rotors on magnetic bearings 709

the magnetic bearing can be modeled as a spring–damper system. The
control current the amplifiers supply to the actuators is in this case

ix = −Ka (Kcpos + Kcdȯs) , (27.30)

where Ka, Kcp, and Kcd are the gain of the power amplifier and the pro-
portional and derivative gains of the controller, respectively, and os is the
output of the sensor. Since

os = Ksux , (27.31)

where Ks is the gain of the sensor, the force exerted by the actuator is

Fx = F0 + KiKaKs (Kcpux + Kcdu̇x) + Kuux , (27.32)

i.e.,

Fx = F0 + (−KiKaKsKcp + Ku)ux − KiKaKsKcdu̇x . (27.33)

The equivalent stiffness k and damping c of the controlled magnetic bear-
ing are

k = −Ku + KiKaKsKcp , c = KiKaKsKcd. (27.34)

The stiffness depends on the gains of the control loop but also on Ku,
which is the absolute value of the negative electromechanical stiffness, ex-
pressing the instability of the bearing in open-loop conditions predicted by
the Earnshaw theorem.

Remark 27.5 Co-location of sensors and actuators simplifies the analy-
sis and greatly reduces the possibility of unstable behavior but is seldom a
realistic assumption. More realistic models in which the sensors and the
actuators are located at different positions are needed.

If the actuator operates in a central position, i.e., if d = 0, Eq. (27.34)
reduces to

F0 = 4K
i0i

′
0

c2
, Ki = 4K

i0
c2

, Ku = 4K
i20 + i′0

2

c3
. (27.35)

The force F0 acting on the bearing determines the value of the current
i′0 and hence affects the stiffness of the bearing. As a consequence, if the
static forces acting in the x- and y-directions are not equal, as in the case
of horizontal rotors, the behavior is anisotropic even if the geometrical and
electrical characteristics are equal in the two directions. This effect is strong
if the bearing operates with low bias currents and can be accounted for by
using different gains of the controller for the two directions but, generally
speaking, complete compensation is not possible.
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When this occurs, the rotor exhibits the usual behavior of a rotor running
on anisotropic bearings and, if damping is low enough, backward whirling
occurs in the speed range spanning between the two rigid-body critical
speeds in the two reference planes. The behavior of a spindle running on
a five-active-axes magnetic suspension with decentralized PID controller is
summarized in Fig. 27.9.8 The figure has been obtained by recording the
amplitude and phase of the synchronous components of the displacements
in the x- (horizontal) and y- (vertical) directions during a spin-down test.

The greater stiffness in vertical direction is clear from the figure and
occurs albeit the controller has a higher gain in horizontal direction to
partially compensate for the anisotropy. A very simple PID decentralized
controller has been used; if a more sophisticated control technique were

FIGURE 27.9. Dynamic behavior of a spindle running on a five-active-axes mag-
netic suspension with decentralized PID controller: same type of representation
of the orbits at different speeds as in Fig. 25.2, except that in this case the ex-
perimental values of the synchronous components of the displacements measured
during a spin-down test have been used.

8S. Carabelli, C. Delprete, G. Genta, ‘Control strategies for decentralized control of
active magnetic bearings’, 4th International Symposium on Magnetic Bearings, Zurich,
August 1994.
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implemented, both anisotropy and amplitude at the critical speeds could
have been controlled better.

Alternatively, a bias current larger than that required to withstand the
static forces acting on the bearing can be used to obtain an almost isotropic
behavior.

Equation (27.25) can be written with reference to the state space as

ż = Az + Bcuc(t) + Bnun(t) + Brur(t)eiΩt , (27.36)

where

• vector z contains the n complex state variables q̇ and q;

• vector uc(t) contains the r control input functions. It can be written
in complex form, and the real and imaginary parts of its components
are related to the forces in the two coordinate planes xz and yz.
Vectors un(t) and ur(t) are input vectors related to nonrotating and
rotating forces, which, in the most general case, can be functions of
time. They can be real vectors, in some cases simply scalar quantities,
but it is possible to formulate the equations in such a way that they
are complex;

• A is the complex dynamic matrix of the system,

A =
[

−M−1(Cn + Cr − iΩG) −M−1(K − iΩCr)
I 0

]
; (27.37)

• matrices Bi are real or complex matrices that link the forces due to
the control devices, nonrotating and rotating forces with the various
inputs.

The equations linking the outputs of the system with the state vectors
and control equations are the same as those already seen in Section 11.3
and need not be repeated here. The only difference between a controlled
structure and a controlled rotor is the presence of the imaginary terms
due to the gyroscopic matrix added to the damping matrix and those due
to rotating damping added to the stiffness matrix. The gain matrices and
vector of the state variables are complex.

Consider the rigid rotor sketched in Fig. 27.10a suspended on a four-
active-axes magnetic suspension. Assume that the study of the lateral be-
havior of the system can be performed separately from the axial behavior
and that the sensor–actuator pairs are co-located.

Remark 27.6 The assumption of co-located sensors and actuators can be
dropped when a model with many degrees of freedom is used and the dis-
placements at the location of both sensors and actuators enter the equation
of motion.
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FIGURE 27.10. Rigid rotor on a four-axis active magnetic suspension: (a) sketch
of the system; (b) block diagram, evidencing gyroscopic coupling between the
xz- and yz-planes.

The rotor is assumed to be affected by static and couple unbalance and
a constant lateral force due to weight acts in the xz-plane. There are two
complex degrees of freedom, and, using the complex-coordinate notation
seen in Section 8.3.2, the dynamic matrix and the state vector are

A =

⎡
⎢⎢⎣

0 0 0 0
0 iΩδ 0 0
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ , z =

⎧⎪⎪⎨
⎪⎪⎩

ẋ + iẏ

φ̇y − iφ̇x

x + iy
φy − iφx

⎫⎪⎪⎬
⎪⎪⎭

, (27.38)

where

δ =
Jp

Jt
.

Both the stiffness and damping matrices vanish due to the fact that no
mechanical support of the rotor exists.

The nonrotating forces due to weight, the rotating forces due to un-
balance, and the control forces can be summarized in the following input
vectors

Bnun =

⎧⎪⎪⎨
⎪⎪⎩

−g
0
0
0

⎫⎪⎪⎬
⎪⎪⎭

, Brure
iΩt = Ω2

⎧⎪⎪⎨
⎪⎪⎩

εeiα

χ(1 − δ)
0
0

⎫⎪⎪⎬
⎪⎪⎭

eiΩt , (27.39)

Bcuc =

⎡
⎢⎢⎣

1/m 1/m
−a/Jt b/Jt

0 0
0 0

⎤
⎥⎥⎦

{
Fcx1

+ iFcy1

Fcx2
+ iFcy2

}
.
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In a similar way, the output of the system, i.e., the complex displacements
and velocities at the transducer location, is

y =

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 + iẏ1

ẋ2 + iẏ2

x1 + iy1

x2 + iy2

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

1 −a 0 0
1 b 0 0
0 0 1 −a
0 0 1 b

⎤
⎥⎥⎦ z . (27.40)

Assume that a decentralized control strategy, in which each axis is con-
trolled independently, is implemented. This simplifies the control unit de-
sign, which reduces to a set of simpler units, each acquiring the informa-
tion regarding the displacements and velocities in one radial direction at
the bearing location and supplying the control input to the actuators that
provide the control force in the corresponding direction. Each controller is
then a SISO control system. To provide the required damping, the infor-
mation regarding velocities is also required, possibly using velocity sensors,
but usually by differentiating in time the displacements. In the case of de-
formable rotors, however, a state feedback performed through a suitable
observer seems to be more appropriate, particularly where the response to
external disturbances is concerned.9

Assuming a complete axial symmetry, which is consistent only with the
case of a bearing completely unloaded from static forces, using a simple
proportional–derivative control such as the one summarized by Eq. (11.27),
and assuming that the reference position is characterized by a zero value
of the displacements, the control forces for the rotor of Fig. 27.10a can be
expressed as

{
Fcx1

+ iFcy1

Fcx2
+ iFcy2

}
=

{
Fcx10

+ iFcy10

Fcx20
+ iFcy20

}
+ (27.41)

+
[

Kd1 0 Kp1 − Ku10 0
0 Kd2 0 Kp2 − Ku2

]
z .

where
Kp = KiKaKsKcp , Kd = KiKaKsKcd

are the overall closed-loop proportional and derivative gain (Eq. (27.34)).
If the system is not axi-symmetrical, the use of complex coordinates im-

plies a form of the relevant equations that include the conjugate of the state
vector (see Section 9.1). The complex-coordinate approach is, however, not
the only possible one and is best suited to cases in which the characteris-
tics of the magnetic bearings are isotropic in the xy-plane. If this is not the

9P. Larocca, D. Fermental, E. Cusson, ‘Performance comparison between central-
ized and decentralized control of the Jeffcott rotor’, 2nd International Symposium on
Magnetic Bearings, Tokyo, July 1990.
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case, owing to bearing or control system anisotropy, the real and imaginary
parts of equations from (27.36) to (27.41) can be separated in the same way
seen in Chapter 24 for general rotordynamics. Real equations with double
size are then obtained. The dynamic matrix A is in this case

A =

⎡
⎢⎣

−M−1(Cn + Cr) −ΩM−1G −M−1K −ΩM−1Cr

ΩM−1G −M−1(Cn + Cr) ΩM−1Cr −M−1K
I 0 0 0
0 I 0 0

⎤
⎥⎦ ,

(27.42)
where the various matrices are referred to flexural behavior in the xz-plane.
The relevant matrices for the rigid rotor of Fig. 27.9, studied using real
coordinates, are the following:

Open-loop dynamic matrix

A =

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

0 0 0 0
0 0 0 Ωδ
0 0 0 0
0 −Ωδ 0 0

⎤
⎥⎥⎦ 0

I 0

⎤
⎥⎥⎥⎥⎦ . (27.43)

State vector

z =
[

ẋ φ̇y ẏ −φ̇x x φy y φx

]T
.

Nonrotating input gain matrix and input vector

Bnun =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩

−g
0
0
0

⎫⎪⎪⎬
⎪⎪⎭

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Unbalance input gain matrix and input vector

Brur =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩

ε cos(α + Ωt)
χ(1 − δ) cos(Ωt)

ε sin(α + Ωt)
χ(1 − δ) sin(Ωt)

⎫⎪⎪⎬
⎪⎪⎭

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (27.44)

Control input gain matrix and input vector

Bcuc =

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

1/m 0 1/m 0
−a/Jt 0 b/Jt 0

0 1/m 0 1/m
0 −a/Jt 0 b/Jt

⎤
⎥⎥⎦

0

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

Fcx1

Fcy1

Fcx2

Fcy2

⎫⎪⎪⎬
⎪⎪⎭

.



27.2 Dynamic study of rotors on magnetic bearings 715

Output vector

y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1

ẏ1

ẋ2

ẏ2

x1

y1

x2

y2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −a 0 0 0 0 0
0 1 0 −a 0 0 0 0
1 0 b 0 0 0 0 0
0 1 0 b 0 0 0 0
0 0 0 0 1 0 −a 0
0 0 0 0 0 1 0 −a
0 0 0 0 1 0 b 0
0 0 0 0 0 1 0 b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

z. (27.45)

Controller gain matrix

Ky =

⎡
⎢⎢⎣

kdx1
0 0 0 kpx1

0 0 0
0 kdy1

0 0 0 kpy1
0 0 0

0 0 kdx2
0 0 0 kpx2

0
0 0 0 kdy2

0 0 0 kpy2

⎤
⎥⎥⎦ . (27.46)

Note that the coupling between the xz- and yz-planes is due only to the
gyroscopic terms. This is clearly shown in the block diagram of Fig. 27.10b,
where matrices A are those of the corresponding non-gyroscopic system in
each of the two planes xz and yz. The block G supplies the gyroscopic
coupling between the two planes, and its gain is proportional to the spin
speed Ω. Note that in Fig. 27.10 an output control acting separately in the
xz- and yz-planes is used. On the contrary, no assumption on a control
system acting separately on the two bearings has been made.

A simple PD or, better, a PID control can be used but more complex
control laws are common. As a first thing, actual controller–actuator sys-
tems have a cut-off frequency that is influenced more by the characteristics
of the actuator than by the controller.

A more complex dependence of the gain from the frequency can be used
to obtain better performance: A high static stiffness could be useful in
many applications, as machine-tool spindles, while low stiffness at high
frequency can allow the system to work in supercritical conditions, using
self-centering to reduce balancing requirements. Compensators are usually
introduced into the control system to perform these tasks.

Remark 27.7 Active magnetic bearings are usually unsuitable for appli-
cations where high static stiffness is required, while are at their best for
soft-mounted rotors.

Apart from the dependence of the gain on the frequency, it is also possible
to introduce a dependence of the control law on the spin speed, producing
a Campbell diagram in which the dependence of the various natural fre-
quencies from the spin speed is different from that due to the gyroscopic
effect alone. Also, the unbalance response can be strongly affected by the
dependence of the gains of the control system on the speed, and smooth
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running can be achieved without the need of strict balancing tolerances.
While the dependence of the stiffness on the frequency can shift the crit-
ical speeds, its dependence on the speed can make some critical speeds
disappear altogether.

The separate control of each bearing can be suitable if only rigid-body
behavior is to be controlled. When the control system is aimed at controlling
the deformation modes, a true multivariable control system, based on an
observer to perform state feedback, can be used, even if at the cost of added
complexity.

Remark 27.8 The modal approach is still possible, but the modal gyro-
scopic matrix is, generally speaking, non-diagonal, as is the modal damp-
ing matrix. However, while the latter is usually small and the errors due to
neglecting the out-of-diagonal terms are negligible, the same does not hold
for the first.

The modal gyroscopic matrix can be reduced to a diagonal matrix to
uncouple the modes even in this case, but errors due to spillover can be
large. Their amount depends on the actual rotor configuration and must
be checked in each case.

Using either the complex- or real-coordinates approach, it is possible to
study the closed-loop dynamics of the system. Although the results obtain-
able are not in principle dissimilar from those typical of rotors running on
bearings of other type, the particular features of magnetic bearings can pro-
duce a different behavior. The control system can introduce a much higher
damping than that achievable with mechanical means. This is favorable in
both fighting high-speed instability and reducing unbalance response when
crossing critical speeds.

The whole pattern of the Campbell diagram can be strongly affected:
The usual consideration that damping affects the decay rate but has little
influence on the natural frequencies is no longer valid at the high damping
levels obtainable in controlled systems. Some modes can become, in the
whole speed range or only a part of it, overdamped, and the relevant branch
of the Campbell diagram can go to zero and then disappear. The cut-
off frequency of the control system and actuators may be lower than the
maximum rotational frequency of the rotor, reducing both the stiffness and
the damping of the supports at the frequencies of synchronous whirling.
This effect can affect favorably the unbalance response, particularly in the
case of low stiffness.

Many strategies aimed at obtaining a sort of self-balancing have been at-
tempted and used. The simplest is that of using a notch filter centered on a
frequency that follows the spin speed and remains synchronized. Although
this is effective in achieving a self-centered configuration, it has poor rejec-
tion characteristics for disturbances at the synchronous frequency and is
not advisable. A feedforward strategy in which the synchronous disturbance
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FIGURE 27.11. Campbell diagram of a rigid rotor on magnetic bearings: (a)
imaginary part and (b) real part of the Laplace variable s.

due to unbalance is measured by averaging in time the outputs of the
sensors at that frequency and then is fed to the controller, forcing the rotor
to spin about its principal axis of inertia, yields very interesting results.

A last dynamic problem to be studied in the case of a rotor on magnetic
bearings is the dynamic behavior in the case of failure of the control system.
Usually rotors running on magnetic bearings are provided with a set of
emergency touch-down bearings, usually of the rolling-element type, that
can perform the spin-down task in the case of high-speed failure of the
control system.

The dynamic study of the spin-down on the emergency bearings, a non-
linear process, is difficult and is performed by numerically integrating the
equations of motion in time. The rotor first falls down until it is in contact
with the emergency bearings, then a phase of rubbing is initiated, with
possible rebounds, until the inner race of the emergency bearings gains the
required speed and the rotor spins in a new configuration. This rigid-body
behavior is accompanied by deflections and vibrations, and it is very im-
portant that the structural integrity of the system is warranted, avoiding
undue contact between the rotor and the stator.

Example 27.2 Consider a rigid, isotropic rotor supported by two magnetic
radial bearings and assume that the geometric configuration corresponds with
that of Fig. 27.10.

The main data are m = 3 kg; Jp = 0.02 kg m2; Jt = 0.015 kg m2; a = 200

mm; b = 100 mm. Compute the gain matrix of the control system assuming

that each bearing is controlled separately and that a complete axial symme-

try is required. Plot the Campbell diagram and compute the control forces at

20,000 rpm, assuming that the rotor has a residual static unbalance follow-

ing the ISO quality grade G 2.5 (see Chapter 28). The control system should

provide uncoupling between translational and rotational modes and locate the

first critical speed in the vicinity of 2,500 rpm = 261.8 rad/s. Assume that the

time constant of the control system is equal to 1 ms.
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FIGURE 27.12. Roots locus of the same system in Fig. 27.11.

Using complex coordinates, the closed-loop dynamic matrix A − BcKyC is

Acl =

⎡
⎢⎢⎢⎢⎢⎣

−k1

m
−k2

m
−k4

m
−k5

m

−k2

Jt
−k3

Jt
−k5

Jt
−k6

Jt

1 0 0 0
0 1 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

where

k1 = kd1 + kd2 , k2 = −akd1 + bkd2 , k3 = a2kd1 + b2kd2 − iΩJp ,
k4 = kp1 + kp2 , k5 = −akp1 + bkp2 , k6 = a2kp1 + b2kp2 .

Uncoupling between translational and rotational modes implies that

akd1 = bkd2 , akp1 = bkp2 ,

and the condition on the critical speed of the corresponding undamped system
yields

√
(kp1 + kp2)/m = Ωcr = 261.8 rad/s.

The values of the stiffness gains thus obtained are

kp1 = 6.85 × 104 Nm , kp2 = 1.37 × 105 Nm .

The terms to be included in the closed-loop gain matrix are

kpt = kp1 +kp2 = 2.056×105 N/m , kpr = a2kp1 +b2kp2 = 4, 110 Nm/rad.
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The damping gains can be obtained assuming a given value for the damping
ratio of a particular mode, say, the translational mode. Assuming a damping
ratio of 1/3, the following values are obtained

kd1 = 349.1 Ns/m , kdt = kd1 + kd2 = 523.6 Ns/m ,
kd2 = 174.5 Ns/m , kdr = a2kd1 + b2kd2 = 10.47 Nsm/rad .

The static deflection of the system is immediately obtained

xst = −mg/kdt = 0.14 mm .

The control system can be set to compensate for the static deflection and to
maintain the rotor in the center of the bearing notwithstanding the weight.
The stiffness gain so computed also includes the negative stiffness linked
with the open-loop behavior of the bearing; the time constant of the sensor–
controller–actuator subsystems should be applied only to the part of the overall
gain linked with Kp and not to that linked with Ku. As a first-order approxi-
mation, the contribution of the negative stiffness will be neglected.
The Campbell diagram can be easily computed. As the controller is assumed
to have a non-vanishing time constant, the gain matrix Ky is not constant:

Ky =
1

1 + sτ

[
kd1 0 kp1 0
0 kd2 0 kp2

]
.

By transforming the equations of motion in the Laplace domain and remem-
bering that the translational and rotational modes are uncoupled, the equations
allowing the plotting of the Campbell diagram are

mτs3 + ms2 + skdt + kpt = 0

for the translational mode and

Jtτs3 + (Jt − iΩτJp)s2 + (kdr − iΩJp)s + kpr = 0

for the rotational mode. The whirl frequency, i.e., the imaginary part of the
Laplace variable s, and the decay rate, i.e., the real part of s, are plotted in
Fig. 27.11. Also, in the same figure the solution obtained for a vanishingly
small time constant of the control system is reported. The roots locus is shown
in Fig. 27.12.
Due to uncoupling between translational and rotational rigid-body modes, the
response to static unbalance can be plotted by resorting to the equation for
translational motion alone(

−mΩ2 + i
Ω

1 + iΩτ
kvt +

1

1 + iΩτ
kdt

)
(x + iy) = mεΩ2eiΩt .

The amplitude of the response to static unbalance is plotted in nondimensional

form in Fig. 27.13. The system is much damped, but the presence of a cut-off

frequency, affecting the damping and the stiffness, causes an increase of the

amplitude at the critical speed. The rotor self-centers quickly in the supercrit-

ical range.
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FIGURE 27.13. Unbalance response of a rigid rotor on magnetic bearings.

Unbalance quality grade G 2.5 at 20,000 rpm = 2,094 rad/s corresponds to
an eccentricity ε = 1.19 μm, i.e., with a mass of 3 kg, to a residual unbalance
mε = 3.58 g mm (see Chapter 28). The response of the system at 20,000 rpm
is

(x + iy)0 = −1.236 − 0.012i μm for τ = 1 ms ,
(x + iy)0 = −1.203 − 0.102i μm for τ = 0 .

The total control force acting on the rotor is simply

Fc =

(
i

Ω

1 + iΩτ
kvt +

1

1 + iΩτ
kdt

)
(x + iy) =

= mΩ2(x + iy) + mεΩ2eiΩt .

The modulus of the control force is then

|Fc| = 0.594 N for τ = 1 ms ,
|Fc| = 1.347 N for τ = 0 ,

and is shared between the two bearings following their stiffnesses (2/3 on bear-

ing 1 and 1/3 on bearing 2). Note that the control forces are small, even if

the balancing quality grade is not high, particularly in the case of the less stiff

control, with higher time constant. Actually, smooth running is obtained with

even less strict balancing tolerances.
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FIGURE 27.14. Active axial magnetic bearing. (a) Scheme of the control system;
(b) force–displacement characteristics.

Example 27.3 Consider a rotor running on a one-active-axis magnetic sus-
pension. The radial bearings are of the passive type, based on permanent mag-
nets.
The axial suspension must be active, because the passive radial bearings have
a negative (destabilizing) axial stiffness. The mass of the rotor is m = 0.8 kg,
and the linearized axial stiffness of the radial suspension is kz = −5×104 N/m.
The axial actuator is made by a pair of electromagnets whose force–current
characteristic is

Fc =
μ0SN2I2

4d2
,

where I is the current, μ0 = 4π × 10−7 is the vacuum permeability, S =
1.2 × 10−3m2 is the surface of the pole pieces, N = 160 is the number of
turns, and d = 0.5 mm is the nominal air gap.
The axial position is measured by a sensor that outputs a voltage proportional
to the axial displacement u from the nominal position (air gap of 2.5 mm)
through the law

Vs = V0 + au ,

where constants V0 and a take the values 0.85 V and 300 V/m, respectively,
when the input voltage to the sensor is 12 V.
The quadratic law linking the magnetic force to the current in the coil compels
a choice between two alternatives: to use a control system that supplies the
coil with a current proportional to the square root of the displacement in such
a way that a restoring force proportional to the displacement is exerted or to
add a constant current to the current proportional to the displacement supplied
by the control system. In the latter case the coils exert two forces, which in
the equilibrium position are equal and opposite; when the shaft is displaced
axially the force due to one coil is reduced while the other increases and the
restoring effect is obtained. A detailed scheme of the control system, following
the second of the two approaches, is shown in Fig. 27.14a.
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Note that the voltage signal
V2 = V1G1

is differentiated to supply an input to the current generators that is propor-
tional to both the axial displacement and velocity. A damping effect is thus
obtained. The voltage supplied to the current generators driving the coils is
then

V5 = V4 ∓ G1V1 ∓ G1G2
dV

dt
= V4 ∓ aG1(u + G2u̇) ,

where the upper signs hold for the coil nearer the end at which the sensor is
located. The current supplied to the coils is then

Ii = G3V5 = I0 ± aG1G3(u + G2u̇) ,

the upper sign being referred to coil 1. When both coils are operating, the force
they exert (positive if directed upward, i.e., in a direction to cause an increase
of the displacement u) is

F =
μ0SN2

4
I0

[
I2
2

(d − u)2
− I2

1

(d + u)2

]
.

The expression of the force can be linearized, obtaining

F =
μ0SN2

4

[
aG1G3(u + G2u̇) − I0

d
u

]
.

The total stiffness and damping of the axial suspension are, respectively,

Kz =
μ0SN2

4
I0

[
aG1G3 − I0

d

]
− kz , Cz =

μ0SN2

4
I0aG1G3G3 .

The second term in brackets is the open-loop stiffness, which is negative. It can
cause the axial instability of the bearing, which, if the current is not controlled,
is unstable.
To achieve a stable behavior in the axial direction, the stiffness must be posi-
tive. Assuming the following values for the current I0 and the gains,

I0 = 1 A , G1 = 10 , G2 = 3 × 10−4 s , G3 = 0.9 A/V ,

the values of the axial stiffness and damping are

Kz = 58, 100 N/m , Cz = 125 Ns/m .

The system is then axially stable. The axial natural frequency and the damping
ratio are

ωn = 269 rad/s , ζ = 0.29 .

The force–displacement characteristic of the axial suspension is reported in
Fig. 27.14b. The curve obtained from the linearized equation is compared with
those obtained from the nonlinearized equation and the curve obtained when
no constant current is supplied (I0 = 0).
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27.3 Flexural vibration dampers

As seen in the previous sections, in many instances it is important to in-
crease nonrotating damping to achieve the required stability. The easiest
way is by introducing one or more dampers, which must be nonrotating,
i.e., located within the stator or interposed between the stator and the ro-
tor, being careful in the second case that the element that dissipates energy
is restrained from rotating. In machines containing rotors working at dif-
ferent speeds, like multi-shaft turbines, it is also possible to use intershaft
dampers, i.e., dampers located between two shafts rotating at different
speeds; they, however, must be studied carefully because they can cause
instability in particular working conditions.

When a damper is nonrotating, the only constraint in its placement is
that it must be located between two points of the machine with relative
displacement as large as possible in the modes of vibrations that must
be controlled. It is possible to use pure dampers, namely, elements that
react to a relative velocity between the two attachment points but not to
a relative displacement or elements that can also supply a restoring force
apart from the damping force.

Generally speaking, flexural vibration dampers are of the dissipative type
and use the viscosity of a liquid, usually oil, or the internal damping of some
material, usually an elastomer. Active or passive electromagnetic dampers
are also entering the application stage.

An example of an elastomeric damper is shown in Fig. 27.15a. It is a
damped support, made by a cylindrical elastomeric element into which a
rolling element bearing is inserted. Devices of the type shown are simple

a b c

FIGURE 27.15. Flexural vibration dampers: (a) elastomeric type; (b) squeeze–
film damper; (c) damped support of the squeeze-film type.
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and low cost, but their drawback is that they are subject to overheating.
The energy dissipated by the damper is totally converted into heat within
the elastomeric mass and, due to the low thermal conductivity of most
elastomeric materials, can cause its temperature to increase, even to the
point of causing a deterioration of the characteristics of the material. If the
damper starts overheating, the internal damping of the material usually
decreases, causing an increase of the amplitude of the vibration, which, in
turn, increases the heat generation in the damper. An unstable increase of
temperature quickly leading to the complete destruction of the element can
result. Dampers of this type can be used only after an accurate thermal
analysis has demonstrated their applicability.

An oil damper, of the type generally referred to as a squeeze-film damper,
is shown in Fig. 27.15b. A journal, which is restrained from rotating by a
pin, is connected to the rotor through a rolling element bearing. The journal
is located in a bearing and the oil between them is prevented from moving
axially by seals at the ends. Radial movements of the journal cause the oil to
move circumferentially, and this movement provides the required damping.
Using the models seen in the previous section it is easy to state that the
stiffness of the oil film is vanishingly small, because no relative rotation
between journal and bearing occurs, and that there is no destabilizing effect
linked to the circumferential motion of the oil. If the behavior of the device
about the centered position can be linearized and the long-bearing model
is used because of the axial seals, the damping matrix can be expressed by
Eq. (27.7).

Since the clearance between the stator and the rotor is very small, the
nonrotating journal can be allowed to touch the stator and to be supported
by it. The damper thus becomes a damped support and its rolling bearing
supports the weight of the rotor. The damper works in an eccentric position
and the linearized solution does not hold any more.

In the damper of Fig. 27.15c, the journal is connected to the bearing by
a spring and the device can provide both a damping and a restoring force.
More than a damper, it can then be defined as a damped support.

Squeeze-film dampers, which are very common, introduce nonlinearities
into the system because their damping depends on the amplitude of the
motion. The aforementioned linearization holds only for motions with very
small amplitude.

A different approach is using electromagnetic interactions between stator
and rotor to generate damping forces. Electromagnetic dampers can essen-
tially be of two kinds: uncontrolled dampers in which the damping action is
due to induced currents in either a solid conductor (and then the term eddy
currents damper is used) or in a purposely designed electric circuit, or con-
trolled dampers in which a suitably controlled actuator directly supplies
the damping forces. The latter are essentially similar to active magnetic
bearings, in which the controller has only a derivative branch and thus the
actuator is not required to levitate the rotor. They are usually referred to
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as active magnetic dampers (AMD), with the usual confusion between the
terms controlled and active.

Two examples are shown in Fig. 27.16a and b. The general layout is
the same as that of the AMB of Fig. 27.8: the cross-sections represented
here are through the pole pieces of two opposite electromagnets. While the
damper in Fig. 27.16b is identical to a bearing, the only difference being in
how the control action is performed, the damped support in Fig. 27.16a has
also a nonrotating spring that supports the rotor through a ball bearing.
The difference between the two is exactly the same as that between the
squeeze film dampers in Fig. 27.15b and c.

Although the layout differences between AMBs and AMDs are minimal,
the operating differences are large. The former must supply forces large
enough to levitate the rotor and are unstable in open loop, while the sec-
ond must supply only damping forces and their open-loop instability can
be easily overcome by the action of the spring supporting the rotor (Fig.
27.16a) or of the supports that must be at any rate provided (Fig. 27.16b).
An AMD can be switched on only when needed, e.g., when crossing the
critical speed to limit the amplitude or at high supercritical speeds to fight
instability.

Uncontrolled (sometimes referred to as passive) electromagnetic dampers
can be subdivided into two classes: motional dampers (MEMDs) and trans-
former dampers (TEMDs). In the former the damping action is due to in-
duced currents in a conductor moving in a magnetic field (Fig. 27.16c). In
the figure the conductor is a solid disc moving (whirling but not rotating)
together with rotor, while the permanent magnet and the magnetic circuit

FIGURE 27.16. Electromagnetic dampers. Active magnetic damper (AMD) or
transformer electromagnetic damper (TEMD) with (a) and without (b) support-
ing spring; (c) motional electromagnetic damper (MEMD).
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are stationary: The induced currents are therefore eddy currents. A coil
could be used instead of a solid disc: In this case it could be shunted on
a variable resistor or on an electric circuit of various types, with the re-
sult of making it possible to control the damping action by controlling the
characteristics of the latter. A MEMD of this type can be considered as a
semi-active device, since little power is required for the control action.

As a first approximation a motional electromagnetic damper behaves like
a viscous damper, providing a force proportional to the relative velocity.
Actually the damping coefficient depends on the frequency and its transfer
function is that of a first-order system (Fig. 11.11), with a cut-off frequency

ωp =
R

L
, (27.47)

where R and L are, respectively, the resistance and the inductance of the
electric circuit through which the induced current flows. If a solid disc has
a very low inductance, its resistance is very low as well, and the cut-off
frequency can fall within the working range of the device. This effect must
be carefully considered when designing electromagnetic dampers.

The transfer function (mechanical impedance) of a MEMD is thus

G(s) =
F

ẋ
=

c

1 + s
ωp

, (27.48)

where c is the damping coefficient at very low frequency. The device is
equivalent to a spring and a damper in series (Maxwell’s damper, Fig.
3.4c).

In transformer dampers, the induced currents are caused by changes in
the reluctance of the magnetic circuit. They have the same physical layout
of AMD, with the only difference that the current supplied to the coil
to produce the magnetic field is not controlled: Two examples of TEMD
are thus those shown in Fig. 27.16a and b. When the shaft whirls, the
reluctance of the magnetic circuit changes, inducing a current in the coil
and producing the required damping action.

The coil producing the field must be supplied by a source simulating as
closely as possible a voltage generator and must be shunted on a circuit
whose impedance is as low as possible. The lower the resistance the higher
the damping produced, while a low inductance is needed to keep low the
frequency of the electric pole (see below).

It is possible to separate the coil producing the field (or even to substitute
it with a permanent magnet) from that in which the induced currents flow,
but this does not change the basic layout. The impedance of the circuit in
which the induced currents flow must be anyway low.

Summarizing, it is possible to say that in MEMD what moves is the
copper (the conductor) while in TEMD what moves is the iron (an element
of the magnetic circuit).
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The mechanical impedance between the electromagnetic force and the
relative velocity is

G(s) =
F

ẋ
=

1
s

kem

1 + s
ωp

, (27.49)

where constant kem is the negative stiffness of the open-loop magnetic
bearing and the frequency of the electric pole ωp has the same expression
seen for MEMDs.

By inserting a spring with positive stiffness k > |kem| between stator and
rotor, as in Fig. 27.16a, the mechanical impedance becomes

G(s) =
F

ẋ
=

1
s

(
kem

1 + s
ωp

+ k

)
. (27.50)

By introducing the frequency

ωz = ωp
kem + k

k
, (27.51)

and the total stiffness of the damper

kt = kem + k , (27.52)

the mechanical impedance can be written as

G(s) =
F

ẋ
=

kt

s

1 + s
ωz

1 + s
ωp

. (27.53)

FIGURE 27.17. Nondimensional amplitude and phase of the mechanical
impedance of a TEMD with ωp = 1000ωz .
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To ensure stability, the frequency ωz must be smaller than the frequency
ωp of the electric pole.

The mechanical impedance of a TEMD is thus equivalent to that of the
parallel of a spring and a spring and a damper in series (Kelvin’s damper,
Fig. 3.4e). It is reported in Fig. 27.17 in nondimensional form for the case
with ωp = 1000ωz.

Remark 27.9 The same device can thus work as a TEMD or as an AMD,
depending on whether the controller is switched off or on.

Remark 27.10 The damping due to energy dissipations caused by induced
currents has the stabilizing effects of nonrotating damping only if the circuit
in which the eddy currents flow is stationary. If the solid conductor or the
coil rotates, the electromagnetic damping must be considered as a rotating
damping, with all the possible stability problems in supercritical conditions.

27.4 Signature of rotating machinery

The experimental analysis of the vibrations caused by rotating machinery
yields much useful information on their working conditions and allows the
discovery of possible problems before their consequences become too se-
vere and, in some cases, even predicts their occurrence. The ultimate aim
of the analysis is to diagnose the state of the machine to be able to perform
preventive maintenance. To monitor the dynamic behavior of the machine,

FIGURE 27.18. Cascade plot.
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it is often sufficient to attach transducers that can measure the acceler-
ation, velocity, or displacement in selected locations. In some machines,
the transducers can be mounted permanently, and the signal they supply
can be monitored continuously or at regular intervals or even only when
working anomalies become apparent.

Different kinds of sensors are available, but now they are almost always
connected to electronic data-acquisition systems that can perform vari-
ous types of analyses and supply the relevant information in the form the
user feels is more useful. In particular, it is expedient to perform a har-
monic analysis of their output to obtain the acceleration or displacement
spectrum. A common and useful way of representing these spectra is the
so-called cascade plot: a sort of tridimensional plot in which the spectra ob-
tained at different spin speeds are reported in the planes with Ω constant in
a tridimensional space ω, Ω, amplitude (Fig. 27.18). Often, the frequency
is reported in Hertz, and the spin speed is in revolutions per minute or
revolutions per second.

Usually, the terms cascade plot and waterfall plot are used for two dif-
ferent types of diagrams. In the first, the spectra are plotted at different
spin speeds; in the second, they are obtained at the same speed but at
different times. The waterfall plot is not used to study the behavior of
the machine in different working conditions but to follow the evolution
in time of its dynamic behavior. The cascade plot has some similarity
with the tridimensional plot of Fig. 26.2, except that ω and Ω are ex-
changed. There is, however, a major difference: In the plot of Fig. 26.2,
the amplitude is the total amplitude of a mono-harmonic motion, or bet-
ter, of circular whirling, while in the cascade plot the amplitude of the
various harmonic components is reported as a function of the frequency
after performing the harmonic analysis of the non-harmonic waveform. In
the plot, it is possible to identify, at each speed, the frequencies of the
various motions of the rotor. If different transducers are placed in dif-
ferent radial planes then, by comparing the phases of the relevant sig-
nals, it is possible to assess the direction of the various whirl compo-
nents. From the frequency and phase information, it is possible to study
the causes that produce the vibration and to decide the proper correcting
actions.

For example, the synchronous component is usually linked with unbal-
ance and can be corrected by performing a more accurate balancing, while
a component with frequency equal to twice the rotational speed is gener-
ally linked with rotor anisotropy and can be corrected by making it more
symmetrical. As a general rule, balancing the rotor has very little effect on
all non-synchronous components.

Each machine produces a characteristic vibration spectrum, which is of-
ten referred to as the mechanical signature of the machine. Any alteration
in time of the signature, as evidenced by a waterfall plot, is the symp-
tom of an anomaly of the working conditions and must be considered very
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TABLE 27.1. Characterization of forced and self-excited rotor vibrations.

Forced or resonant vibrations Self-excited vibrations

Relationship be-
tween frequency
and speed

Frequency is equal to (i.e., syn-
chronous with) the spin speed
or a whole number or rational
fraction of spin speed

Frequency is nearly constant
and essentially independent of
spin speed or any external exci-
tation or/and is at or near one
of the shaft natural frequencies

Relationship be-
tween amplitude
and speed

Amplitude will peak in a nar-
row band of spin speed wherein
the rotor’s natural frequency
is equal to the spin speed or
to a whole number multiple or
a rational fraction of the spin
speed on external excitation

Amplitude will suddenly in-
crease at a threshold speed and
continues at high or increasing
levels as spin speed is increased

Whirl direction Almost always forward
whirling

Generally forward whirling,
but backward whirling has
been reported

Rotor stressing Static stressing in case of syn-
chronous whirling

Oscillatory stressing at fre-
quency equal to ω − Ω

Correcting actions 1. Introduce damping to li-
mit peak amplitudes at critical
speeds. 2. Tune the system’s
critical speeds to be outside
the working range. 3. Elimi-
nate all deviations from ax-
ial symmetry in the system as
built or as induced during op-
eration (e.g., balancing)

1. Increase damping to in-
crease the threshold of instabil-
ity above the operating speed
range. 2. Raise the rotor natu-
ral frequencies as high as pos-
sible. 3. Identify and eliminate
the instability mechanism

Influence of dam-
ping

Addition of damping may re-
duce peak amplitude but does
not affect the spin speed at
which it occurs

Addition of damping may raise
the speed at which instability
occurs but usually does not af-
fect the amplitude after onset

Influence of system
geometry

Excitation level and hence am-
plitude are dependent on some
lack of axial symmetry in the
rotor mass distribution or ge-
ometry or external forces ap-
plied to the rotor. Amplitudes
may be reduced by refining the
system to make it more axi-
symmetric or balanced

Amplitudes are independent of
system axial symmetry. Given
an infinitesimal deflection to
an otherwise axi-symmetric
system, the amplitude will self-
propagate for whipping speeds
above the threshold of instabil-
ity

carefully. It can actually be linked with a problem that has occurred or is
developing. The importance of correctly diagnosing problems before they
actually occur, in reducing costs linked with maintenance and with the
unavailability of the machine, is clear.
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Some tables that can help in the identification of the causes of anomalies
in the dynamic behavior of rotating machinery are here reported from a
paper by F. Ehrich and D. Childs10 (Tables 27.1, 27.2, and 27.3).

TABLE 27.2. Diagnostic table of self-excited vibrations of rotating machinery.

Mechanism Ratio ω/Ω Direction

Internal rotor damping 0.2 < ω/Ω < 1 (ω/Ω = 0.5) Forward

Hydrodynamic bearings,
labyrinth, or liquid seals

ω/Ω < 0.5 (0.45 < ω/Ω <
0.48)

Forward

Blade-tip clearance excita-
tion

Dependent on fluid force
levels

Forward

Centrifugal pump and com-
pressor whirl

Dependent on fluid force
levels

Forward

Propeller and turboma-
chinery whirl

Dependent on fluid force
levels

Backward, if the vertex of
the cone described in the
whirl motion is after the ro-
tor (referring to the direc-
tion of the fluid flow). For-
ward in the opposite case

Excitation due to fluid
trapped in rotors

0.5 < ω/Ω < 1.0
(0.7 < ω/Ω < 0.9)

Forward

TABLE 27.3. Design correcting actions to reduce instability.

Mechanism Correcting action

Internal rotor damping Minimize number of separate elements in rotor; restrict
span of rabbets and shrink-fitted parts; provide secure
lock up on assembled elements

Hydrodynamic bearings Install tilting pad or rolling element bearings

Labyrinth seals Add swirl brakes at seal inlets to reduce the inlet
tangential velocity. Replace rotor-mounted labyrinth
vanes with stator-mounted vanes. Replace labyrinth
seals with honeycomb seals

Liquid seals for pumps Introduce swirl webs or brakes at seal inlet; roughen
stator elements

Blade-tip clearance No ready measures that do not affect the unit excita-
tion operating efficiency

Centrifugal pump and com-
pressor whirl

Not well understood

Propeller and turboma-
chinery whirl

Modify mode shapes to minimize angular motion of the
plane of turbomachinery

Excitation due to fluid
trapped in rotors

Introduce drain holes to eliminate fluid accumulation
or axial webs to inhibit rotation of fluid

10F. Ehrich, D. Childs, ‘Self-excited vibration in high performance turbomachinery’,
Mechanical Engineering, May, (1984).
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27.5 Exercises

Exercise 27.1 Consider the same rigid rotor used for Exercise 26.5, but substi-

tute the ball bearings with a pair of plain journal bearings. Modeling the bearings

using the short-bearing assumption, with a fully cavitated film, i.e., with the oil

film extending only for 180◦, compute the position of the center of the journals

at all speeds up to the maximum operating speed, perform the dynamic analysis

in the small, and plot the Campbell diagram, studying the stability of the system.

Bearing data: diameter of shaft = 60 mm, l = 40 mm, c = 40 μm, μ = 0.02

Ns/m2.

Exercise 27.2 Consider the gas turbine of Example 24.2. Repeat the dynamic

analysis substituting the rigid bearings with two journal bearings of the type seen

in Exercise 27.1, but with journal diameter 35 mm and length 30 mm.

Exercise 27.3 Compute the Campbell diagram of the rotor (Example 24.2) op-

erating on two magnetic bearings. Assume a bearing stiffness of 107 N/m and

use a simple control in which each bearing is controlled independently, without

attempts to specifically control deformation modes.

Exercise 27.4 Consider the rotor on active magnetic bearings of the previous

exercise, but instead of locating the sensors at the same positions as the actuators

(nodes 1 and 11), assume that the sensor for the actuator at node 1 is located at

node 2 and that for the actuator at node 11 is located at node 10. Plot again the

Campbell diagram and the decay rate plot and compare the results with those of

the co-located system. Does non-co-location affect stability?



28
Rotor Balancing

All rotors, particularly those intended to operate at high rotational speed,
must be balanced before starting their service life and sometimes balancing
procedures must be repeated from time to time. Balancing is the subject of
standards and is dealt with in a wide literature.

28.1 General considerations

The designer must take into account balancing requirements and provide
the possibility of removing or adding masses in proper locations since the
early design stages. Balancing must be regarded as one of the construction
stages, to be performed after assembling the whole rotor or before, on its
components, if they must be balanced separately (which usually does not
avoid a further balancing process on the assembly), and balancing toler-
ances must be stated in a way that is not conceptually different from what
is done for other types of tolerances, dimensional or geometrical.

The balance conditions of a rotor can change in time, and periodic rebal-
ancing may be needed. In some cases it is not just the case of a slow change
of balancing conditions in time, but of continuous variations occurring as
consequence of operating and environmental conditions, wear and aging.
This phenomenon can be quite severe and is usually referred to as wan-
dering unbalance; it can be caused by thermal deformations of the rotor,
material inhomogeneity, cracks, loose tolerances in built-up rotors, and the
like.
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Some rotors must be balanced several times during the first runs at
subsequent higher speeds, in order to reach good balancing conditions at
operating speed and running temperature. Even if the rotor is correctly
balanced in operating conditions, poor balance may be encountered during
start-up, until steady-state conditions are reached.

Rotor balancing has been the object of standards and designers must
refer to them in stating balancing tolerance at the design stage. Standards
are stated for the various types of machines, but it is the duty of the de-
signer to verify that the stresses and deformations caused by the maximum
residual unbalance prescribed are not beyond allowable limits. He must
also be sure that the prescribed balancing tolerances are strict enough to
prevent the rotor from being a source of unwanted vibration and noise for
the surrounding environment. As with all tolerances, it must be remem-
bered that it is impossible to reach a perfect balancing and that it is not
necessary, and generally not advisable (at least from the economical point
of view), to impose too-strict balancing requirements.

From the point of view of balancing, rotors are usually divided into two
categories: rigid and deformable rotors. This subdivision, which is accepted
by ISO standards, is in a certain way arbitrary, because no rigid body exists
in the real world. A rotor can belong to either class, depending on the speed
at which it is supposed to operate and, in particular, a speed at which any
rigid rotor ceases to behave as such always exists. The balancing of rigid and
deformable rotors will be only briefly summarized in the following sections:
The reader can find all the required details in specialized monographs, in
particular, those published by firms that build balancing machines.1

28.2 Rigid rotors

Following the ISO 1925 standard, a rotor can be considered rigid if it can
be balanced by adding or removing mass in two arbitrarily chosen planes
perpendicular to the rotation axis and if its balance conditions are practi-
cally independent from speed up to the maximum allowable speed. If this
condition is satisfied, the rotor can be assimilated to a rigid body.

If the inertia of the stator is neglected and its elastic properties, referred
to the center of mass of the rotor, are summarized in the stiffness and
damping matrices K and Cr, a model with four real degrees of freedom
(two complex ones) is adequate to study its flexural dynamic behavior
(See Section 24.1.1). The balance conditions of the machine can then be
summarized by two parameters: the eccentricity ε (or the static unbalance
mε) and angle χ between the principal axis of inertia of the rotor and the
rotation axis (or the couple unbalance (Jp − Jt)χ).

1As an example, see H. Schneider, Balancing technology, Schenck, Darmstadt, 1974.
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Standards use the peripheral velocity of the center of mass of the rotor
as a measure of the static unbalance

VG = Ωmaxεmax (28.1)

and define a quality grade for balancing, usually referred to as G, as the
maximum allowable peripheral velocity of the center of mass, expressed in
mm/s. A rotor that has to be balanced in the class G = 2.5 at 10,000 rpm,
for example, must have an eccentricity smaller than

εmax =
VG

Ωmax
= 2.38 μm , (28.2)

which results in a peripheral velocity of the mass center of 2.5 mm/s.
The maximum values of the residual eccentricity are plotted as functions

of the maximum operating speed for different values of the quality grade in
Fig. 28.1. The quality grades suggested by ISO standard 1940 for different
types of rotors are reported in Table 28.1.

The mentioned standards consider only eccentricity and then static un-
balance. In the case of a rigid rotor running on two bearings, a couple

FIGURE 28.1. Maximum residual eccentricity as a function of the maximum
operating speed for quality grades between G = 0.4 and G = 630 mm/s.
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TABLE 28.1. Quality grades G suggested for different types of rotors (ISO 1940).

Grade Examples

G 4000 Crankshaft drives of rigidly mounted slow marine diesel engines with
an uneven number of cylinders.

G 1600 Crankshaft drives of rigidly mounted large two-cycle engines.

G 630 Crankshaft drives of rigidly mounted large four-cycle engines,
crankshaft drives of elastically mounted marine diesel engines.

G 250 Crankshaft drives of rigidly mounted fast four-cylinder diesel engines.

G 100 Crankshaft drives of fast diesel engines with six or more cylinders,
complete engines (gasoline or diesel) for cars, trucks, and locomotives.

G 40 Car wheels, wheel rims, wheel sets, drive shafts, crankshaft drives of
elastically mounted fast four-cycle engines (gasoline or diesel) with
six or more cylinders, crankshaft drives for engines of cars, trucks,
and locomotives.

G 16 Drive shafts (propeller shafts, cardan shafts) with special require-
ments, parts of crushing machinery, parts of agricultural machinery,
individual components of engines (gasoline or diesel) for cars, trucks,
and locomotives, crankshaft drives of engines with six or more cylin-
ders under special requirements.

G 6.3 Parts of process plant machinery, marine main turbine gears (mer-
chant service), centrifuge drums, fans, assembled aircraft gas turbine
rotors, flywheels, pump impellers, machine tools and general ma-
chinery parts, normal electrical armatures, individual components of
engines under special requirements.

G 2.5 Gas and steam turbines, including marine main turbines (mer-
chant service), rigid turbogenerator rotors, rotors, turbocompressors,
machine-tool drives, medium and large electrical armatures with spe-
cial requirements, small electrical armatures, turbine-driven pumps.

G 1 Tape recorder and phonograph (gramophone) drives, grinding ma-
chine drives, small electrical armatures with special requirements.

G 0.4 Spindles, discs, and armatures of precision grinders, gyroscopes.

unbalance due to two static unbalances, each equal to half the maximum
allowable static unbalance placed at the bearing locations and phased at
180◦, is considered a limit. Let d be the distance between the bearings; it
follows that

|χ(Jp − Jt)|max = mεmax
d

2
. (28.3)

Rigid rotors are normally balanced using balancing machines. They can
be either the high-stiffness or the low-stiffness type. Rigid (high-stiffness)
balancing machines are machines in which the rotor can be spun on two very
stiff supports provided with force transducers. The unbalance condition of
the rotor is obtained from the measurement of the forces it exerts on its
supports. Low-stiffness machines are similar to the former but the supports
are more or less free to move and the transducers measure a quantity linked
with their motion, usually the acceleration but sometimes the displacement
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or velocity. The unbalance of the rotor is obtained from the displacement
measurements. Two planes perpendicular to the rotation axis are chosen,
as far from each other as possible, on which masses can be either added or
removed.

The maximum values of the residual unbalance on the two balancing
planes are computed from the allowable residual unbalance corresponding
to the required quality grade. The actual unbalance state of the rotor is
then determined, spinning the rotor on a balancing machine.

Modern balancing machines are provided with data-acquisition systems
that perform all needed computations and directly supply the values of the
unbalance on the two correction planes and all information on the masses
to be added or removed in them (amount of mass, radius, and angular
position). Once the correction has been performed, a further measurement
aimed at checking whether the required tolerance has been achieved usually
follows.

The need to add or remove mass in the two planes at the same angular
position is a clear symptom of a static unbalance. If the corrections must be
phased 180◦ from each other, the unbalance is purely a couple unbalance.
Generally, the phasing is neither at 0◦ nor at 180◦, corresponding to a
general state of dynamic unbalance, defined as the sum of static plus couple
unbalance.

In some cases, the various parts that constitute a rotor must be balanced
separately. The balancing tolerances of the various parts must be stated,
remembering that unbalance is a vector quantity and that in the assembly
process unbalances usually add to each other in a random way. The absolute
value of the unbalance is, in the most unfavorable case, equal to the sum of
the absolute values of the unbalances of the parts. Dimensional tolerances
of the various parts and their effects on the relative position of the various
parts must also be considered.

If possible, the rotor must be balanced after assembly, possibly on its
bearings in such a way that the tolerances of the bearings and their seats
are also accounted for.

Some rotors (e.g., rotors whose size exceeds the possibilities of available
balancing machines, high-precision machinery) are balanced directly on-
site. The machine is instrumented and the synchronous component of the
vibration of the machine is monitored at different speeds. The amplitude
and phase of the synchronous component give all the information needed
to identify and correct the unbalance.

28.3 Flexible rotors

Balancing flexible rotors is much more difficult than balancing rigid rotors
and, strictly speaking, it cannot be performed on balancing machines. The
stiffness of the supports of the machine has, in fact, great influence on
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the deflected shape of the rotor, and then balancing should be performed
directly on the whole machine. The process of balancing the whole machine
is generally referred to as field balancing. It is, however, still possible, in
some cases, to resort to a balancing machine, provided that its stiffness is
not too different from that of the stator of the actual machine and proper
allowance is taken for the unavoidable differences.

Strictly speaking, a flexible rotor is balanced only if each of its cross-
sections is statically and dynamically balanced. In practice, it is not neces-
sary that this condition be met to achieve the required aim, namely main-
taining the effects of unbalance (vibrations, stresses, noise, etc.) within
tolerable limits in the whole working range of the machine.

The flexible nature of the rotor and the difficulties that can be encoun-
tered in the balancing process are directly linked with the ratio between
the maximum operating speed and the first flexural critical speed due to a
bending mode of the rotor.

If the rotor has to operate at speeds far lower than the first critical
speed (below about half of it), it can be assumed to be rigid. When the
operating speed is close to the first critical speed, the possibility that the
rotor inflects, assuming a shape not far from the first mode shape, must
be taken into account. Correspondingly, close to the nth critical speed,
the inflected shape is not dissimilar from the nth mode shape (nth eigen-
vector or eigenfunction, depending on the model used for the dynamic
analysis).

The inflected shape can always be considered as a linear combination of
the mode shapes2 and if the rotor operates between two critical speeds,
the dominant modes are those related to them. If the rotor has to operate
above the nth critical speed, in order to be balanced in the whole working
range it must be balanced with reference to the first n + 1 mode shapes.

From a practical point of view, ISO standards subdivide rotors into five
classes. Rigid rotors, as described in the preceding section, belong to the
first class.

Rotors of the second class are defined as semirigid, i.e., rotors that cannot
be considered rigid but can be balanced in a low-speed balancing machine.
This class is subdivided into eight subclasses, from 2a to 2h, as shown in
Table 28.2.

The third class contains the true flexible rotors, which cannot be balanced
using a low-speed balancing machine, but requires balancing at high speed.
From this class, the rotors belonging to classes 4 and 5 are excluded. Rotors
of the fourth class are said to be special flexible rotors, which are defined
as rotors that would be rigid or semirigid but to which one or more flexible

2This property holds also if the gyroscopic effect is taken into account, see G. Genta
and F. De Bona, “Unbalance response of rotors: a modal approach with some extensions
to damped natural systems”, Journal of Sound and Vibration, 140 (1), 1990, 129–153.
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components have been added. The fifth class contains flexible rotors, which
would belong to class 3 or 4, but for which balancing at a single speed
(generally at the operating speed) is required.

Two procedures are usually considered for field balancing of flexible ro-
tors: modal balancing and the influence coefficients method.

28.3.1 Modal balancing

The first practice is based on balancing the rotor at the various critical
speeds, starting from the lowest. The correction masses must be located
in the planes in which the relevant mode shape has large displacements.
Generally speaking, the number of the correction planes must be equal to
the order of the critical speed.

It is possible to demonstrate that it is possible to correct the unbalance
at the general ith critical speed without disturbing the balance conditions
of the previous i − 1 modes, which have already been balanced.

Consider a rotor modeled as a discretized, multi-degree-of-freedom sys-
tem. The unbalance response can be computed using Eq. (24.46). To bal-
ance the system at the first critical speed means to add to the unbalance
distribution f to another unbalance distribution fb1, which causes the modal
force due to unbalance related to the first mode to vanish

f1 = qT
1 (f + fb1) = 0 . (28.4)

If balancing is performed by adding the unbalance m1ε1 at the jth gener-
alized coordinate (vector fb1 has all elements equal to zero except the jth,
whose value is m1ε1Ω2), the modal unbalance that has been added is

qT
1 fb1 = m1ε1qj1Ω2 .

From Eq. (28.4), the value of the unbalance to be added to balance the
first mode shape is immediately obtained

m1ε1qj1Ω2 = −qT
1 f . (28.5)

To balance the second mode, the two unbalances m2rε2r and m2sε2s

are added corresponding to the rth and sth generalized coordinates. The
second mode is balanced if

(m2rε2rqr2 + m2sε2sqs2)Ω2 = −qT
2 f + fb1 . (28.6)

The second mode can be balanced without disturbing the balancing,
already achieved, of the first mode if the modal force corresponding to the
first mode remains equal to zero after the addition of the new balancing
masses at the generalized coordinates r and s

m2rε2rqr1 + m2sε2sqs1 = 0 . (28.7)
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TABLE 28.2. Rotors of class 2 (semirigid rotors).

Equations (28.6) and (28.7) allow computation of the two correction
unbalances m2rε2r and m2sε2s.

The correction of the third mode can be performed in the same way:
The three correction unbalances can be computed using an equation of the
type of Eq. (28.6), stating that the modal force corresponding to the third
mode must vanish, plus two equations of the type of Eq. (28.7) stating that
the balancing of the third mode does not affect the balancing conditions
at the previously balanced modes. In a similar way, all other modes can be
balanced.

What has been shown is actually a demonstration that modal balanc-
ing is possible, not the procedure to practically implement the balancing
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process. The knowledge of the unbalance distribution f , which is generally
unknown, and of the mode shapes is not required. It is, however, clear that
the computation of the mode shapes allows to identify the planes in which
the correcting action is most effective, because the balancing masses must
be located at the loops of the mode shape, or at least not too near to the
nodes, where they would be ineffective.

Before starting modal balancing, the rotor can be balanced as a rigid
body on a balancing machine. There is no agreement on the advisability of
this practice, but, generally speaking, rigid-body balancing can be omitted
if the starting unbalance is not severe enough to prevent operating close
the first critical speed, as needed to start the modal balancing process.

It can happen that a rotor, that has been balanced at the first n critical
speeds, causes strong vibrations at the maximum operating speed, which is
between the nth and the (n+1)th critical speeds, without being possible to
reach the latter to complete the balancing procedure. The strong vibrations
are caused, in this case, by the unbalanced higher modes and, in particular,
the (n+1)th mode. In this case the last corrections are implemented, taking
into account the mode shape that is predicted at the (n+1)th critical speed,
even if it is not materially possible to reach it.

28.3.2 Influence coefficients method

The influence coefficients method is based on the observation that the vi-
brations detected in a number of measuring points can be considered the
effect of a number of concentrated unbalances in a number of arbitrarily lo-
cated planes. This addition process implies that the behavior of the system
is linear.

Let the number of measuring points be n, the number of speeds at which
the balancing process is performed be m, and the number of planes in which
the correction masses are to be located be q. Due to the linearity of the
system, the m×n responses zi obtained in the n measuring points at the m
test speeds are linked to the q unknown unbalances miεi in the q correction
planes by the general linear relationship

{z}m×n = [A](m×n)×q{mε}q. (28.8)

The responses zi, which can be displacements, as implicitly assumed in
Eq. (28.8), but also accelerations or velocities, and the unbalances miεi

are all vectors and coincide with the complex quantities z and mε in the
preceding sections.

If the influence coefficients in matrix A, whose size is (m × n) × q, were
known, Eq. (28.8) could be used directly to compute the unknown unbal-
ances from the vibration measurements, provided that matrix A is square,
i.e., the number of correction planes q is equal to the product of the number
of test speeds m by the number of measuring points n and is non-singular.
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The coefficients of influence are easily determined. A known unbalance
mjrj is introduced in a generic correction plane (the jth), in a known
angular position. The tests are repeated, and a set of new m×n responses
z∗i are measured. They are linked to vector {mε}∗ through Eq. (28.8):

z∗ = A{mε}∗ ,

where vector {mε}∗ has all elements that coincide with those of the vector
in Eq. (28.8) except for the jth element, which has been incremented by
the known unbalance mjrj .

By subtracting Eq. (28.8) written for unbalances {mε} and {mε}∗, it
follows that

z∗ − z = A
[

0 0 . . . mjrj . . . 0
]T

. (28.9)

The jth column of matrix A is then simply obtained by dividing the dif-
ference between vectors z∗ and z by mjrj . The procedure can be repeated
by removing the previously added unbalance from the jth plane and adding
a new known unbalance in another plane. The matrix of the coefficients of
influence is thus obtained, column after column, and the unbalance distri-
bution {mε} is obtained:

{mε} = A−1z . (28.10)

The rotor is then balanced by introducing in the q correction planes
suitable unbalances equal and opposite to the ones computed. The balanced
conditions of the rotor are thus achieved, at least at the speeds at which
the tests have been performed.

The procedure described here is the extension to flexible rotors of the
usual procedure for the calibration of the balancing machine for rigid rotors.
In the latter case, only one test speed is chosen (m = 1), because the
balance conditions are independent of the speed. By using two measuring
points (n = 2), the number of the required correction planes reduces to 2
(q = 2).

The quality of the balancing of a flexible rotor can only be stated from
the amplitude of the synchronous component of the vibrations measured
on the running machine. Table 28.3, from an ISO recommendation, can
supply detailed indications.
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TABLE 28.3. Balance-quality criteria for flexible rotors.

Range of effective pedestal synchronous vibration velocity Correction
(mm/s), r.m.s. factor

.28 .45 .71 1.12 1.8 2.8 4.5 7.1 11.2 18 28 45 71 C1 C2 C3

A B C D
I Small electric motors (up to 15 kW) .63

Superchargers .63 2
Gyroscopes .63 2

A B C D
II Paper making machines .63

Med. size elec. motors and gener. (17–75 kW), norm. foundations .63 4
Electric motors and gener. up to 3000 kW, special foundations .63 4 20
Pumps and compressors .63 8 15
Small turbines .63 4 8

A B C D
III Large electric motors .63 5

Turbines and generators, rigid and heavy foundations .63 5 20
A B C D

IV Large electric motors, turbines and generators, light foundations .63 3 10
Small jet engines .63

A B C D
V Jet engines larger than category IV .63 2 10

Balance quality Correction factors
A = Precision quality C1 = Measurement in high-speed balancing
B = Commercially acceptable machine at service speed where
C = In need of attention at bearing conditions are different

next overhaul from service conditions
D = In need of immediate attention C2 = Shaft vibrations measured in or

adjacent to the bearings
C3 = Shaft vibrations measured at location

of maximum shaft lateral deflection.

Example 28.1 Consider the turbomolecular pump studied in Example 24.1.

Compute the unbalance response at operating speed, knowing that the balancing

quality grade required is G = 2.5.
The peripheral velocity of the center of mass corresponding to a quality grade
G = 2.5 is of 2.5 mm/s. The maximum value of the eccentricity is then εmax =
VG/Ωmax = 0.00714 mm.

Because the distance between the two balancing planes is 260 mm, the max-

imum value of the couple unbalance is |χ(Jp − Jt)|max = mεmaxd/2 =

5.57 × 10−6 kgm 2 .
The responses to static and couple unbalance at 30,000 rpm can be computed
from the equations

[
5.715 −5.591

−5.591 129

]
× 107q =

{
422.9

0

}
,

[
5.715 −5.591

−5.591 129

]
× 107q =

{
0

54.99

}
,
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which yield the following values of the displacements and rotations:

q =

{
−4.0990
−0.3088

}
× 10−6 (static unbalance),

q =

{
−4.001

4.089

}
× 10−8 (couple unbalance).

From the results obtained, it is clear that at 30,000 rpm the rotor is almost

completely self-centered, where static unbalance is concerned, and couple un-

balance causes very small deformations of the shaft.

28.4 Exercises

Exercise 28.1 Consider the same system studied in Exercise 24.1. Assuming

that the central joint is balanced to a quality grade G = 16 for a maximum speed

of 10,000 rpm and that the central support has a hysteretic damping with loss

factor η = 0.1, compute the unbalance response up to a speed equal to 1.5 times

the first critical speed.

Exercise 28.2 Compute the driving torque and power needed to overcome the

drag due to nonrotating damping in the case of the shaft of Exercise 24.1 balanced

to a quality grade G = 16. Compute the minimum torque and power needed to

avoid stalling when crossing the critical speed.

Exercise 28.3 Consider the turbomolecular pump of Example 24.1. Design a

magnetic suspension system to achieve the same goals with a shaft stiff enough

to allow the rotor to be considered rigid in the whole working range. Compute the

response to a residual static unbalance corresponding to a quality grade G = 6.3.

Assume a time constant for the control system equal to 1 ms.

Exercise 28.4 Repeat the computations of the previous exercise without ne-

glecting the compliance of the shaft. Assume that the shaft has a diameter of 8

mm.



29
Torsional Vibration of Crankshafts

Reciprocating machines usually are provided with crank mechanisms to
transform the reciprocating motion of the pistons into the rotating motion
of the shaft. The crankshaft is subject to strong dynamic problems, among
which torsional vibration is usually the most important. Owing to the geo-
metrical and mechanical complexity of the system, it is impossible to study
this dynamics with the same precision that is common in the modeling of
rotating machinery.

29.1 Specific problems of reciprocating machines

Machines containing reciprocating elements have some characteristic dy-
namic problems. In many cases, their solution is difficult and designers
cannot ensure working conditions as smooth as those typical of machines
containing only rotating elements. In many cases it is already a difficult task
to avoid strong vibrations, which are uncomfortable for users and danger-
ous to structural safety. Often extensive experimentation is required even
to reach this limited goal.

Most reciprocating machines are based on the crank mechanism, often
in the form of a crankshaft with several connecting rods and reciprocating
elements. Such devices cannot, in general, be exactly balanced: The iner-
tial forces they exert on the structure constitute a system of forces whose
resultant is not vanishingly small and is variable in time. The geometric
configuration of the system made by a crankshaft, connecting rods, and
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reciprocating elements is complex, and crankshafts not only do not possess
axial symmetry but often do not have symmetry planes. In these condi-
tions, the uncoupling among axial, torsional, and flexural behavior, seen
for beam-like elements, is no longer possible, if not as a rough approxima-
tion, and vibration modes become complicated.

The external forces acting on the elements of reciprocating machines are
usually variable in time, often with periodic law. Also the forces exerted by
hot gases on the pistons of reciprocating internal-combustion engines and
other forces typical of reciprocating machines are periodic. Their time his-
tories are not harmonic but, once harmonic analysis has been performed,
they can be considered as the sum of many harmonic components whose
frequencies are usually multiples, by a whole number or a rational fraction,
of the rotational speed of the machine. The possibilities of resonance be-
tween these forcing functions and the natural frequencies of the system are
many.

The most dangerous vibrations are usually linked to modes that are es-
sentially torsional. In this chapter the attention will be concentrated on the
torsional vibrations of reciprocating machines, dealing with axial and com-
posite vibrations only marginally. It must, however, be kept in mind that
all vibrations of crankshafts are composite vibrations, and no uncoupling
is strictly possible.

29.2 Equivalent system for the study of torsional
vibrations

29.2.1 Equivalent inertia

The traditional approach to the study of torsional vibrations of recipro-
cating machines is based on the reduction of the actual system made of
crankshafts, connecting rods, and reciprocating elements to an equivalent
system, usually modeled as a lumped-parameters system, whose torsional
behavior can be studied separately from axial and bending modes (Fig.
29.1). The model of the reciprocating machine so obtained is then coupled
to a model, usually based on the lumped-parameters approach, including all
the rotating elements connected to the crankshaft, e.g., the driven machine
in the case of an engine or the motor operating the compressor.

The inertia of the cranks and the reciprocating elements is lumped into
a number (one for each crank) of moments of inertia (flywheels). The mo-
ments of inertia are then connected to each other by straight shafts, whose
diameter is equal to the diameter of the relevant part of the actual shaft,
or, more often, has a standard conventional value, and whose length is com-
puted in such a way that the torsional stiffness of the equivalent shaft is as
close as possible to the actual stiffness of the shaft.
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FIGURE 29.1. Sketch of the crankshaft: (a) actual system; (b) equivalent system,
lumped-parameters model.

Remark 29.1 The equivalent system is made by a straight shaft on which
moments of inertia are located and thus the uncoupling among torsional,
axial, and flexural behavior is possible. The construction of the equivalent
system thus reduces to the computation of the moment of inertia of the
flywheels simulating the inertia of the cranks and of the equivalent lengths
of the shafts and its dynamic study is straightforward.

Consider the crank mechanism sketched in Fig. 29.2. It is made of a
disc, with a crankpin in B on which the connecting rod PB, whose center
of mass is G, is articulated. The reciprocating parts of the machine are
articulated to the connecting rod in P. The actual position of the center
of mass of the reciprocating elements, which can include the piston as well
as the crosshead and other parts, is not important in the analysis; in the
following study this point will be assumed to be located directly in P.
Note that the axis of cylinder, i.e., the line of motion of point P, does not
necessarily pass through the axis of the shaft; the offset d will, however,
be assumed to be small. Let Jd, Jb, mb, and mp be the moments of inertia
of the disc that constitutes the crank and of the connecting rod (about
its center of mass G) and the masses of the connecting rod and of the
reciprocating parts, respectively.
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FIGURE 29.2. Sketch of the crank mechanism.

The coordinates of points B, G, and P can be expressed in the reference
frame Oxy shown in Fig. 29.2 as functions of the crank angle θ as

(B − O) =
{

r cos(θ)
r sin(θ)

}
, (G − O) =

{
r cos(θ) + a cos(γ)
r sin(θ) − a sin(γ)

}
,

(29.1)

(P − O) =
{

r cos(θ) + l cos(γ)
d

}
.

Angle γ is linked to angle θ by the equation

r sin(θ) = d + l sin(γ) , (29.2)

i.e.,

sin(γ) = α sin(θ) − β ,

where

α =
r

l
, β =

d

l
.

Ratios α and β are expressed by numbers smaller than 1, and in practice
they are quite small; usually α ≤ 0.3 and β = 0. In the case of an ideal
crank mechanism, in which the connecting rod is infinitely long (α = 0)
and the axis of the cylinder passes through the axis of the crank (β = 0),
the motion of the reciprocating masses is harmonic when the crank speed
is constant.

Because θ̇ is the angular velocity of the crank, its kinetic energy is simply
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Td =
1
2
Jdθ̇

2
. (29.3)

The speed of the reciprocating masses can be easily obtained by differ-
entiating the third equation (29.1) with respect to time and obtaining the
expression for γ̇ from Eq. (29.2):

Vp = −rθ̇ sin(θ) − lγ̇ sin(γ) = −rθ̇

[(
1 + α

cos(θ)
cos(γ)

)
sin(θ) − β

cos(θ)
cos(γ)

]
.

(29.4)
The kinetic energy of the reciprocating masses is

Tp =
1
2
mpr

2θ̇
2
f1(θ) , (29.5)

where

f1(θ) =
[
sin(θ) + α

sin(2θ)
2 cos(γ)

− β
cos(θ)
cos(γ)

]2

.

Instead of computing the kinetic energy of the connecting rod by writing
the velocity of its center of mass G, it is customary to substitute the rod
with a system made of two masses m1 and m2, located at the crankpin B
and the wrist pin P, respectively, and a moment of inertia J0. To correctly
simulate the connecting rod, such a system must have the same total mass,
moment of inertia, and position of the center of mass. These three condi-
tions allow for three equations yielding the following values for m1, m2,
and J0:

m1 = mb
b

l
, m2 = mb

a

l
,

J0 = Jb − (m1a
2 + m2b

2) = Jb − mbab .

(29.6)

Generally speaking, the moment of inertia of masses m1 and m2 is greater
than the actual moment of inertia of the connecting rod and, consequently,
the term J0 is negative.

Remark 29.2 The negative moment of inertia has no physical meaning
in itself: the minus sign indicates that this is just a term which must be
subtracted in the expression of the kinetic energy.

The kinetic energy of mass m1 can be computed simply by adding a
moment of inertia m1r

2 to that of the crank.
Similarly, the kinetic energy of mass m2 can be accounted for by adding

m2 to the reciprocating masses. The effect of the moment of inertia J0 can
be easily computed

TJ0 =
1
2
J0γ̇

2 =
1
2
J0θ̇

2
f2(θ) , (29.7)
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where

f2(θ) = α2

[
cos(θ)
cos(γ)

]2

.

The total kinetic energy of the system shown in Fig. 29.2 is, consequently,

T =
1
2
θ̇
2 [

Jd + m1r
2 + (m2 + mp)r2f1(θ) + J0f2(θ)

]
=

1
2
Jeq(θ)θ̇

2
.

(29.8)
The whole system can be modeled, from the viewpoint of its kinetic

energy, by a single moment of inertia variable with the crank angle Jeq(θ),
rotating at the angular velocity θ̇.

In the study of the torsional vibrations, the motion of each section of the
crankshaft can be expressed as the superimposition of a rigid-body rotation
with angular velocity Ω and a vibrational motion expressed by the torsional
rotation φz(t). Angle θ can be expressed as

θ(t) = Ωt + φz(t) , (29.9)

and the kinetic energy (Eq. (29.8)) is

T =
1
2
Jeq(θ)(Ω + φ̇z)

2 . (29.10)

Equation (29.10) holds in general, even if the average velocity Ω of
the shaft varies in time; in all subsequent computations, however, only
constant-rate rotation will be assumed and derivatives of Ω with respect
to time will be neglected. To study the vibrations in a shaft rotating at
variable speed, a law Ω(t) can be assumed, and the equations that follow
can be accordingly modified.

The equation of motion of the crank in terms of the generalized coordi-
nate φz(t) can be obtained from the Lagrange equation. By performing all
the relevant derivatives, it follows that

Jeqφ̈z +
1
2
(Ω + φ̇)2

∂Jeq(θ)
∂θ

= M , (29.11)

where M is the moment due to all external actions on the crank (elastic
and damping reaction of the shaft, forces applied on the piston, etc.).

Equation (29.11) is a second-order differential equation in φz. It is nonlin-
ear even if the moment M is a linear function of the generalized coordinate
φz (as when the shaft has a linear elastic behavior) or of its derivative (as
when linear damping is present), due to the fact that its coefficients, apart
from being variable in time, are functions of the coordinate φz .

The conventional approach to the study of reciprocating machines is
based on a number of simplifications of the equation of motion (29.11) of
the crank mechanism aimed at obtaining a linear differential equation with
constant coefficients.
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The first simplification is to replace a constant moment of inertia Jeq

in the term Jeqφ̈z for the actual value that is a function of θ. A second
simplification is to assume that angle φz is small enough to be neglected
in the expression of θ in the second term of Eq. (29.11), that consequently
reduces to

Jeq φ̈z = M − 1
2
Ω2

[
∂Jeq(Ωt)

∂(Ωt)

]
. (29.12)

The last term of Eq. (29.12) is independent from angle φz and its deriva-
tives. It is a known function of angle Ωt and hence of time and can be dealt
with as an external excitation applied to the system. The aforementioned
approach clarifies why and under which assumptions it is possible to sub-
stitute each crank with a constant moment of inertia on which suitable
inertia forces (inertia torques), variable in time with known time history,
act together with the actual external forces due to the working fluid and
the other parts of the system.

Remark 29.3 The study of the free oscillations of the system, performed
by resorting to the homogeneous equation associated with Eq. (29.12), does
not take into account such inertia forces and considers only the mean mo-
ment of inertia Jeq.

For the computation of both Jeq and the inertia forces, it is possible
to resort to series expansions of functions f1(θ) and f2(θ), which can be
expressed as trigonometric series of angle θ, whose coefficients are functions
of nondimensional parameters α and β.

In the limiting case of α = β = 0, corresponding to an infinitely long
connecting rod (piston moving with harmonic time history), the expressions
for f1(θ) and f2(θ) are particularly simple

f1(θ) = sin2(θ) =
1 − cos(2θ)

2
, f2(θ) = 0 . (29.13)

In practice, it is impossible to neglect the fact that the length of the con-
necting rod is finite, even if α is usually not greater than 0.3. By expressing
cos(γ) as √

1 − [α sin(θ) − β]2 ,

computing the Taylor series in α and β for functions f1(θ) and f2(θ), and
truncating it retaining all terms containing powers up to the fifth, the
following trigonometric polynomials can be obtained:

f1(θ) = a0 +
7∑

i=1

ai cos(iθ) +
6∑

i=1

bi sin(iθ),

f2(θ) = c0 +
4∑

i=1

ci cos(iθ) +
3∑

i=1

di sin(iθ).

(29.14)
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The coefficients of the trigonometric series are

a0 = 8+2α2(1+6β2)+8β2(1+β2)+α4

16 , b3 = −αβ 2+α2+4β2

2 ,

a1 = α128+16α2(2+15β2)+48β2(4+5β2)+15α4

256 , b4 = α2β 12+15α2+30β2

32 ,

a2 = − 16+α4−16β2(1+β2)
32 , b5 = β α3

4 ,

a3 = −α128+24α2(2+15β2)+48β2(4+5β2)+27α4

256 , b6 = −β 15α4

128 ,

a4 = −α2 2+α2+12β2

16 , c0 = α2 4+α2(1+6β2)+4β2

8 ,

a5 = α3 16+15α2+120β2

256 , c2 = α2 1+β2

2 ,

a6 = α4

32 , c4 = −α4

8 ,

a7 = − 3α5

256 , d1 = d3 = −β α3

2 ,

b1 = −βα1+α2+2β2

2 , c1 = c3 = d2 = 0 ,

b2 = −β 128+48α2(2+5β2)+16β2(4+3β2)+75α4

128 .

If the axis of the cylinder passes through the center of the crank (β = 0),
as is usually the case, all coefficients bi and ci vanish, as was easily pre-
dictable, because for symmetry reasons f1(θ) and f2(θ) are even functions
of θ. Functions f1(θ) and f2(θ) are reported in Fig. 29.3 for two differ-
ent values of α with β = 0. The results obtained using the series (29.14)
with simplified expressions of the coefficients (considering only the first
three non-vanishing harmonic terms for f1(θ) and the first two for f2(θ)
and only the powers of α up to the third) are compared with the exact
solutions. The lines are completely superimposed, and the approximation
obtainable in this way is clearly very good. By retaining the first seven
harmonic terms in cos(θ) and the first six terms in sin(θ), the equivalent
moment of inertia can be expressed as

Jeq = Jeq +
7∑

i=1

Jci cos(iθ) +
6∑

i=1

Jsi sin(iθ) , (29.15)

FIGURE 29.3. Functions f1(θ) and f2(θ).
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where
Jeq = Jd + m1r

2 + a0(m2 + mp)r2 + J0c0 ,
Jci = ai(m2 + mp)r2 + J0ci ,
Jsi = bi(m2 + mp)r2 + J0di .

Also in this case, all terms in sine vanish if the axis of the cylinder passes
through the center of the crank (β = 0).

If α = 0, the expression for the mean equivalent moment of inertia re-
duces to

Jeq = Jd + m1r
2 + r2 m2 + mp

2
. (29.16)

Some authors1 suggest using for Jeq the reciprocal of the average value
of function 1/Jeq on a complete revolution of the shaft. This procedure,
once implemented by plotting function 1/Jeq and then graphically comput-
ing the mean, is based on the observation that the square of the torsional
natural frequency is proportional to 1/Jeq . The equivalent system so com-
puted has a natural frequency equal to the mean square value of the natural
frequencies of the actual system, computed in the various positions.

By introducing the series computed earlier for functions f1(θ) and f2(θ)
in the last term of the equation of motion (29.11), approximate expressions
for the inertia forces are obtained. This part of the analysis of the system
will be included in the study of the forced oscillations, because the inertia
forces are introduced into the computation as external excitations.

Instead of resorting to expressions of the type of Eq. (29.14), it is sim-
pler to use the expressions of f1(θ) and f2(θ) in which cos(γ) has been
substituted by its expression as a function of angle θ

f1(θ) =

⎡
⎣sin(θ) +

α sin(θ) cos(θ) − β cos(θ)√
1 − [α sin(θ) − β]2

⎤
⎦

2

,

f2(θ) =
α2 cos2(θ)

1 − [α sin(θ) − β]2
,

(29.17)

and to numerically compute the values of Jeq, Jci , and Jsi through a fast
Fourier transform of function Jeq(θ) computed using Eq. (29.15).

The function usually needs to be computed in a small number of points
(32 or 64) but if many harmonics are required like in the present case, more
points can be needed. However, even if 1,024 or 2,048 points are needed,
the computation is very fast on any computer.

The approximate procedure outlined here leads to results that can be
very rough, particularly in those cases in which the inertia forces due to
reciprocating masses are high. However, one of the aims of designers of

1See, for example, C.B. Biezeno and R. Grammel, Technische Dynamik, Springer,
Berlin, 1953.
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reciprocating machinery is reducing the mass of reciprocating elements,
particularly in the case of fast machines, and this approach can be used in
many cases with confidence.

Remark 29.4 Even with the mentioned limitations, the approach described
here is the only one that allows the behavior of a complex machine to be
predicted without resorting to numerical experiments.

Example 29.1 Compute the values of Jeq, Jci , and Jsi up to the seventh

harmonic for a crank and piston unit with the following data: stroke: 2r = 85

mm; mass of complete piston: mp = 0.540 kg; mass of connecting rod: mb =

0.420 kg; length of connecting rod: lb = 181 mm; distance a (Fig. 29.2): a =

78 mm; moment of inertia of connecting rod: Jb = 0.0015 kg m2; moment of

inertia of crank: Jd = 0.00447 kg m2.

Compare the results obtained from Eq. (29.14) with those obtained through fast

Fourier transform of function Jeq(θ) computed using Eq. (29.15).
The value of ratio α is α = r/l = 0.235 and β = 0. From Eq. (29.6) it follows
that m1 = 0.239 kg, m2 = 0.181 kg, and J0 = −0.0019 kg m2. Because β = 0,
all coefficients bi and di vanish; coefficients ai and ci are

a0 = 0.5071, a1 = 0.1191,
a2 = −0.5001, a3 = −0.1199,
a4 = −007082, a5 = 0.0008509,
a6 = 0.00009499, a7 = −0.000008364,
c0 = 0.0279, c1 = 0.0001551,
c2 = −0.0007029, c3 = 0.0001562,
c4 = −0.000008510, c5 = 0.000001108,
c6 = 0.0000001237, c7 = −0.00000001089.

All Jsi vanish, and the results for Jeq and Jci are reported in the following
table

Eq. (29.14) FFT 32 points FFT 128 or more points

Jeq 5.50969 × 10−3 5.50968 × 10−3 5.50968 × 10−3

Jc1 1.55056 × 10−4 1.55056 × 10−4 1.55056 × 10−4

Jc2 −7.02940 × 10−4 −7.02937 × 10−4 −7.02937 × 10−4

Jc3 −1.56153 × 10−4 −1.56157 × 10−4 −1.56157 × 10−4

Jc4 −8.51037 × 10−6 −8.49719 × 10−6 −8.49719 × 10−6

Jc5 1.10817 × 10−6 1.11079 × 10−6 1.11079 × 10−6

Jc6 1.23709 × 10−7 1.20490 × 10−7 1.20466 × 10−7

Jc7 −1.08929 × 10−8 −1.16848 × 10−8 −1.18246 × 10−8
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Remark 29.5 The results obtained from the FFT are more correct than
those computed through Eq. (29.14) because the latter are obtained by trun-
cating the series in the powers of α and β.

29.2.2 Equivalent length

To completely define the equivalent system, the stiffness of the portions of
shaft connecting the flywheels must be computed. The equivalent system
is modeled as a lumped-parameters system and, consequently, the various
flywheels have a vanishing axial length: The portions of the actual shaft
modeled by the equivalent stiffnesses must be contiguous, each starting in
the same position where the previous one ends.

It is not possible to compute their stiffness by modeling each part or the
crank as a simple body (beams loaded in torsion for the journals, beams
loaded in bending and torsion for the crankpins, beams loaded in bending
for the crank webs, etc.). The geometric complexity, the presence of fillets,
and the very small slenderness of the beams make it impossible to resort
to such approach.

There are three ways to evaluate the equivalent stiffness, namely

• experimental evaluation,

• use of semi-empirical methods, and

• numerical modeling, mainly using the FEM.

The experimental evaluation clearly yields the most reliable results, but
it obviously cannot be performed at the design stage without building mod-
els or prototypes with additional cost and time required for the dynamic
analysis.

Empirical and semi-empirical formulas, which allow at least approximate
evaluations to be obtained, have been suggested by many authors and can
be found in several handbooks.2

They are mainly based on simple mathematical models and modified on
the basis of experimental results. They yield the equivalent stiffness or the
equivalent length of a shaft with a given cross-section, which is the same.
They yield fairly accurate results, provided they are used with care, without
attempting to apply them outside the field for which they are suggested.
One of the mentioned formulas, usually referred to as Carter’s formula, is

leq = (2c + 0, 8b) +
3
4
a

D4 − d4

D′4 − d′4
+

3
2
r
D4 − d4

bs3
, (29.18)

2See, for example, E.J. Nestorides, A Handbook on Torsional Vibration, Cambridge
Univ. Press, 1958; or W. Ker Wilson, Torsional Vibration Problems, Chapman & Hall,
1963.
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FIGURE 29.4. Sketch of the crankshaft for the computation of the equivalent
length.

where the notation refers to Fig. 29.4. It is particularly suited for fast
internal-combustion engines. Another common formula is the so-called Tu-
plin’s formula, particularly suited for large diesel engines (same notation
as Fig. 29.4)

leq =
2c + 0, 15D

1 −
(

d
D

)4 +
(a + 0, 15D)(D4 − d4)[
1 −

(
d′

D′

)4
]
(D′4 − d′4)

+
[
2b − 0, 15(D + D′)

]
×

×D4 − d4

s4 − d4
+ r

(
0, 065

D

b
+ 0, 58

)
D4 − d4

bs3
+ 0, 016

D4 − d4

b2s
.

(29.19)
It is possible to resort to a third approach based on the construction

of numerical models of a single crank and to evaluate their static stiffness
by numerical methods, mainly the FEM. This is much simpler than the
complete simulation of the crankshaft using the same numerical approach.
Only one crank (or half, for symmetry) needs to be modeled, if all cranks
are equal, and the computation reduces to a static evaluation.

Nevertheless, the geometric complexity and the uncertainties on how to
constrain the mathematical model can make this computation more difficult
than it appears.

Strictly speaking, the lack of symmetry couples torsional and flexural
deformations, and the stiffness of the basement of the engine and the pres-
ence of the oil films in the bearings can affect the results.

The equivalent stiffness and length, computed through any of the men-
tioned approaches, are linked to each other through the obvious formula

k = G
Ip

leq
. (29.20)
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FIGURE 29.5. Geared system: Sketch of the (a) actual system and (b) equivalent
system; (c) planetary gear train. Sketch of the system and notation.

29.2.3 Geared systems

Consider the system sketched in Fig. 29.5a in which the two shafts are
linked by a pair of gear wheels, with transmission ratio τ . For the study of
the torsional vibrations of the system, it is possible to replace the system
with a suitable equivalent system, in which one of the two shafts is substi-
tuted by an expansion of the other (Fig. 29.5b). This substitution can be
performed only if no allowance is taken for backlash, which would introduce
nonlinearities. Assuming also that the deformation of gear wheels is negli-
gible, the equivalent rotations φ∗

i can be obtained from the actual rotations
φi simply by dividing the latter by the transmission ratio τ = Ω2/Ω1:

φ∗
i =

φi

τ
. (29.21)

The kinetic energy of the ith flywheel, whose moment of inertia is Ji, and
the elastic potential energy of the ith span of the shaft are, respectively,

T = 1
2Jiφ̇

2

i = 1
2J∗

i φ̇
∗2

i ,

U = 1
2ki

(
φ2

i+1 − φ2
i

)
= 1

2k∗
i

(
φ∗2

i+1 − φ∗2

i

)
,

(29.22)

where the equivalent moment of inertia and stiffness are, respectively,

J∗
i = τ2Ji , k∗

i = τ2ki . (29.23)

If the system includes a planetary gear train, the computation can be
performed without difficulties. The equivalent stiffness can be computed
simply from the overall transmission ratio, and in the computation of the
equivalent inertia the total kinetic energy of the rotating parts must be
taken into account.
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The angular velocities of the central gear Ω1, of the ring gear Ω2, of the
revolving carrier Ωi, and of the intermediate pinions Ωp of the planetary
gear shown in Fig. 29.5c are linked by the equation

Ω1 − Ωi

Ω2 − Ωi
= −r2

r1
, Ωp = (Ω1 − Ωi)

r1

rp
− Ωi . (29.24)

The equivalent moment of inertia of the system made of the internal gear,
with moment of inertia J1, the ring gear, with moment of inertia J2, the
revolving carrier, with moment of inertia Ji, and n intermediate pinions,
each with mass mp and moment of inertia Jp, referred to the shaft of the
internal gear is

Jeq = J1 + J2

(
Ω2

Ω1

)2

+ (Ji + nmpr
2
i )

(
Ωi

Ω1

)2

+ nJp

(
Ωp

Ω1

)2

. (29.25)

If the deformation of the meshing teeth must be accounted for, it is
possible to introduce into the model two separate degrees of freedom for
the two meshing gear wheels, modeled as two different inertias, and to
introduce between them a shaft whose compliance simulates the compliance
of the transmission. This is particularly important when a belt or flexible
transmission of some kind is used instead of gear wheels.

In a machine there may be several shafts connected to each other, in
series or in parallel, by gear wheels with different transmission ratios. The
equivalent system is referred to one of the shafts and the equivalent inertias
and stiffnesses of the elements of the others are all computed using the
ratios between the speeds of the relevant element and the reference one.
The equivalent system will thus be made of a set of elements, in series or in
parallel, following the scheme of the actual system, but with rotations that
are all consistent. If the compliance of the gears is to be taken into account
in detail, the nonlinearities due to the contacts between the meshing teeth
and backlash must be considered. The study becomes far more complex
and the methods seen in Part II for nonlinear systems must be used.

29.3 Computation of the natural frequencies

In many cases, the equivalent system reduces to a single shaft on which
a number of moments of inertia are located. The system is thus in-line,
and it is possible to use the transfer-matrices method. The Holzer method,
described in detail in Section 14.5, for decades was the most common tool
for dealing with this problem. It is, however, possible and more compu-
tationally efficient to resort to a stiffness approach. There is no difficulty
writing the stiffness matrix of each span of the shaft, modeled as a beam
element and assembling them into a global stiffness matrix. In the case of
in-line systems, a tridiagonal stiffness matrix is obtained.
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Remark 29.6 The stiffness matrix is singular because there is no con-
straint to prevent the system from performing rigid rotations: It cannot be
inverted, and the compliance matrix is not available.

The mass matrix is even simpler: Because the inertia properties are
lumped, the mass matrix is diagonal.

The equation of motion for the study of the free behavior of the system
of Fig. 29.5b is, for example,

⎡
⎢⎢⎢⎢⎣

J1 0 0 0 0
0 J2 0 0 0
0 0 J3 + J∗

3 0 0
0 0 0 J∗

4 0
0 0 0 0 J∗

5

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ̈1

φ̈2

φ̈3

φ̈
∗
4

φ̈
∗
5

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ (29.26)

+

⎡
⎢⎢⎢⎢⎣

k1 −k1 0 0 0
−k1 k1 + k2 −k2 0 0
0 −k2 k2 + k∗

3 −k∗
3 0

0 0 −k∗
3 k∗

3 + k∗
4 −k∗

4

0 0 0 −k∗
4 k∗

4

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ1

φ2

φ3

φ∗
4

φ∗
5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
0
0
0
0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

The system is underconstrained, the first natural frequency is equal to
zero, and the corresponding mode is a rigid-body rotation about the axis
of the shaft. Usually only the non-vanishing natural frequencies are consid-
ered: They are n− 1 if the system has n degrees of freedom. If the system
is damped the study can be performed without difficulty using the FEM,
but the presence of damping can introduce some complexities when using
transfer matrices.

In the case of in-line systems, it is possible to resort to the transfer-
matrices approach, but when the geometry is more complicated, it is nec-
essary to resort to the stiffness approach. However, in the case of branched
systems, when the secondary branches stemming from the main system
have little influence on the dynamic behavior of the latter, it is still possi-
ble to use the Holzer method by approximating each branch with a single
inertia located at the connection point. The simplifications that can be
introduced in this way are, however, very small, if modern computing fa-
cilities are used, and they do not justify the approximations so introduced.

The stiffness matrix of a branched or multiply connected system can
easily be built using the assembly procedures seen for the FEM. It is no
longer tridiagonal, even if it usually still has a band structure, and it is
possible to resort to the usual algorithms to reorder the list of the general-
ized coordinates, reducing the bandwidth to a minimum. The mass matrix,
on the contrary, is always a diagonal matrix if the model is based on a
lumped-parameters approach. The damping matrix usually has the same
type of structure of the stiffness matrix, except that a number of elements
can give vanishingly small contributions to damping.
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FIGURE 29.6. Equivalent system.

Example 29.2 Compute the torsional natural frequencies of a diesel six-
cylinder, four-stroke-cycle engine driving an electric generator unit.

The main characteristics of the system are bore: φ = 300 mm; area of the

pistons: A = 706.8 cm2; stroke: 2r = 450 mm; firing order: 1-5-3-6-2-4; speed:

Ω = 500 rpm (52.33 rad/s); mass of complete piston: mp = 70.5 kg; mass of

connecting rod: mb = 100.6 kg; length of connecting rod: lb = 950 mm; distance

a (Fig. 29.2): a = 270 mm; moment of inertia of connecting rod: Jb = 16.383

kg m2. Geometric data of crankshaft (Fig. 29.4): a = 136 mm, b = 92 mm, c

= 73 mm, D = 240 mm, d = 80 mm, D′ = 230 mm, d′ = 80 mm, s = 400

mm. Moment of inertia of crank web: Jd = 14.880 kg m2; moment of inertia of

flywheel: J6 = 98 kg m2; stiffness engine-flywheel shaft: k6 = 66×106 Nm/rad;

moment of inertia of generator: J7 = 49 kg m2; stiffness flywheel-generator

shaft: k7 = 15 × 106 Nm/rad.

Equivalent system: Moments of inertia. The value of ratio α is α = r/l =

0.2368. From Eq. (29.6) it follows that m1 = 72.008 kg, m2 = 28.591 kg,

J0 = −2.087 kg m2. The mean equivalent moment of inertia is thus Jeq = 21

kg m2.

Equivalent system: Stiffness of cranks. From Eq. (29.19) (Tuplin’s formula),

it follows that leq = 513.79. The stiffness of the shaft that separates each pair

of contiguous equivalent inertias is then

k =
GJp

leq
= 51 × 106 Nm/rad.

The scheme of the equivalent system is reported in Fig. 29.6.
Natural frequencies and mode shapes. The mass matrix of the system is the
following diagonal matrix:

M = diag
{

21 21 21 21 21 21 98 49
}

.
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FIGURE 29.7. Torsional modes of the system in Fig. 29.6.

The stiffness matrix is a tridiagonal matrix:

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

51 −51 0 0 0 0 0 0
−51 102 −51 0 0 0 0 0
0 −51 102 −51 0 0 0 0
0 0 −51 102 −51 0 0 0
0 0 0 −51 102 −51 0 0
0 0 0 0 −51 117 −66 0
0 0 0 0 0 −66 81 −15
0 0 0 0 0 0 −15 15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 106.

The natural frequencies and mode shapes can easily be obtained by solving the
eigenproblem, det(K − ω2M) = 0, which yields the following matrix of the
eigenvalues:

[ω2]

= diag
{

0 0.210 0.499 1.486 3.468 5.789 7.867 9.245
}
× 106 .

The natural frequencies of the system are thus

ω0 = 0 , ω1 = 458 rad/s = 72 Hz ,
ω2 = 704 rad/s = 112 Hz , ω3 = 1, 219 rad/s = 194 Hz ,
ω4 = 1, 862 rad/s = 296 Hz , ω5 = 2, 406 rad/s = 382 Hz ,
ω6 = 2, 804 rad/s = 446 Hz , ω7 = 3, 040 rad/s = 483 Hz .

The mode shapes are reported in Fig. 29.7.
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29.4 Forced vibrations

29.4.1 Driving torque

The elements of reciprocating machines are loaded by forces variable in
time, which in many instances can excite torsional vibrations of the shaft. In
this section, only the forces originating the driving torque in reciprocating
engines will be studied in detail but the same considerations can be referred
to reciprocating compressors and similar machines. The fact that a term of
the equation of motion coming from the derivatives of the kinetic energy,
i.e., from the inertia of the system, can, under widely used assumptions, be
considered as due to inertia forces applied to the system with known time
history was explained in detail in Section 29.2.1. The corresponding inertia
forces will then be included in the external forcing functions. A moment,
varying in time with known time history, equal to the sum of a driving
torque and an inertia torque, will be considered as acting on each flywheel
of the equivalent system.

The pressure of the gases contained in the cylinder p(t) varies in time
during the working cycle of the engine. The virtual displacement δs of
the piston corresponding to a virtual displacement δθ of the crank and the
corresponding virtual work δL performed by the pressure can be expressed,
respectively, as

δs =
Vp

θ̇
δθ , δL = p(t)Aδs = p(t)rA

√
f1(θ)δθ , (29.27)

where function f1(θ) is given by Eq. (29.5) and A is the area of the piston.
The generalized force Mm due to the pressure p(t) is, consequently,

Mm =
d(δL)
d(δθ)

= p(t)rA
√

f1(θ) . (29.28)

It must be noted that Mm(t) is a function of the generalized coordinate
φz(t) through function f1(θ). Usually this dependence is neglected, intro-
ducing into Eq. (29.28) a simplified expression of the crank angle θ = Ωt.
This assumption introduces negligible errors, at least in the case of vibra-
tions with small amplitude, and is usually considered acceptable; at any
rate, it is consistent with all the other simplifications seen earlier.

In the case of gas compressors, steam engines, or two-stroke-cycle internal-
combustion engines, function p(t) is periodical with fundamental frequency
equal to the rotational velocity Ω of the shaft. In the case of four-stroke-
cycle internal-combustion engines, the period of function p(t) is doubled,
i.e., its fundamental frequency is equal to Ω/2 (see, for instance, Fig. 29.8).

Because the generalized force (moment) Mm(t) is periodical, with the
same frequency of law p(t), it can be expressed by a trigonometric polyno-
mial, truncated after m harmonic terms
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FIGURE 29.8. Pressure acting on the piston and diving torque (divided by the
area of the piston) in a four-stroke-cycle engine as functions of the crank angle.

Mm = A0 +
m∑

k=1

Ak cos(kΩ′t) +
m∑

k=1

Bk sin(kΩ′t) , (29.29)

where the frequency Ω′ of the fundamental harmonic is equal to Ω, except
for the case of four-stroke-cycle internal-combustion engines in which

Ω′ =
Ω
2

,

and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A0 =
1
2π

∫ 2π

0

Mmd(Ω′t) ,

Ak =
1
π

∫ 2π

0

Mm cos(kΩ′t)d(Ω′t) , k = 1, 2, . . . ,

Bk =
1
π

∫ 2π

0

Mm sin(kΩ′t)d(Ω′t) , k = 1, 2, . . . .

(29.30)

The coefficients of the polynomial can be computed from the theoretical
or experimental law p(t), and empirical expressions can be found in the
literature. The driving torque depends at any rate on the working con-
ditions of the machine; the coefficients Ai and Bi can be assumed to be
proportional to the average driving torque A0 or to the product of half
the displacement (the area of the piston times crank radius) by the mean
indicated pressure.

29.4.2 Inertia torque

The inertia torque, i.e., the moment acting on the flywheel simulating the
crank as a result of the variability of the equivalent moment of inertia, can
be obtained by introducing Eq. (29.8) into Eq. (29.12)
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Mi = −1
2
Ω2

[
r2(m2 + mp)

df1(θ)
dθ

+ J0
df2(θ)

dθ

]
, (29.31)

where functions f1(θ) and f2(θ) are expressed by Eqs. (29.5) and (29.7).
By introducing the series (29.14) and remembering that θ ≈ Ωt, it follows
that

Mi = Ω2

[ ∞∑
k=1

a∗
k cos(kΩt) +

∞∑
k=1

b∗k sin(kΩt)

]
. (29.32)

Coefficients a∗
k and b∗k can be computed from those of series (29.14)

⎧⎪⎨
⎪⎩

a∗
k =

k

2
[
r2(m2 + mp)ak + J0ck

]
,

b∗k = −k

2
[
r2(m2 + mp)bk + J0dk

]
.

(29.33)

Remark 29.7 The fundamental harmonic of the inertia torque Mi is al-
ways Ω. Moreover, if the axis of the cylinder passes through the center of
the crank (β = 0), there are only harmonics in sine (all b∗k = 0). The har-
monics in the series for Mi coincide with those in the series for the driving
torque Mm, although being less in number.

The series for the total forcing torque acting on the equivalent flywheels
simulating the cranks is then obtained by adding the relevant terms of the
series for Mm and Mi.

29.4.3 Torsional critical speeds

The frequency of each harmonic of the forcing function acting on the cranks
is proportional to the rotational speed of the machine. In the case of two-
stroke-cycle internal-combustion engines or other reciprocating machines in
which the duration of the working cycle corresponds to a single revolution
of the crankshaft, the frequency of the various harmonics is equal to whole
multiples of the rotational speed

ωi = kΩ .

In the case of four-stroke-cycle internal-combustion engines the frequency
of the fundamental harmonic is equal to half of the rotational speed Ω and
the frequency of the kth harmonic is

ωi =
k

2
Ω .

The torsional natural frequencies of the equivalent system are indepen-
dent of the rotational speed. The resonance conditions, defining the tor-
sional critical speeds, can then be studied using a Campbell diagram of
the type shown in Fig. 29.8. There are many resonance conditions, and it
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FIGURE 29.9. Torsional Campbell diagram of a six-cylinder four-stroke-cycle
internal-combustion engine.

is very difficult, usually impossible, to avoid some of them being located
within the working range of the machine. Not all resonance conditions are
equally dangerous, and the dynamic stressing of the shaft at the various
critical speeds must be evaluated to understand their severity.

Example 29.3 Compute the torsional critical speeds of the diesel engine

electric generator unit studied in Example 29.2.

The Campbell diagram of the system is plotted in Fig. 29.9. In the speed range

from 0 to 600 rpm (overspeed of 20%) there are six critical speeds linked with

the first 20 harmonics of the forcing function. The ones nearest to the max-

imum speed are those related to the 14th and 15th harmonic (ω = 7Ω and

ω = 15Ω /2). They are Ωcr14 = 624.8 rpm and Ωcr15 = 583.1 rpm.

29.4.4 Forcing functions on the cranks of multi-cylinder
machines

The total torque acting on the ith crank, obtainable as a sum of moments
Mm and Mi, can be expressed as a trigonometric polynomial, whose terms
are characterized by different amplitudes and phases. If the various cranks,
reciprocating parts, and working cycles of a multi-cylinder machine are all
equal, the time histories of the moments acting on the various nodes of
the equivalent system are all equal but are timed in a different way. Be-
cause each harmonic component of the moment acting on the cranks can
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be represented as the projection on the real axis of a vector rotating in
the complex plane with constant angular velocity, it is possible to draw,
for each harmonic, a plot in which the various vectors acting on the dif-
ferent cranks are represented. If the amplitudes of these vectors are all
equal, as in the case when all cranks are equal, the diagram is useful only
to compare the phases of the vectors, and they are traditionally plotted
with unit amplitude. The phasing of the vectors depends on the geometric
characteristics of the machine and, in the case of four-stroke-cycle engines,
on the firing order. These diagrams are usually referred to as phase-angle
diagrams .

Consider, for example, an in-line four-stroke-cycle internal-combustion
engine. If the working cycles of the various cylinders are evenly spaced in
time, the cranks that fire subsequently must make an angle of 4π/n rad,
where n is the number of cylinders. In the case of a four-in-line engine,
this angle is 180◦, and the most common geometric configuration of the
crankshaft is that shown in Fig. 29.10a, chosen because it allows the best
balancing of inertia forces. In the same figure, the configuration of the
crankshaft of a six-in-line engine is also shown.

In the case of the four-cylinder engine, the possible firing orders are
two: 1-2-3-4 and 1-3-4-2. In both cases, it is impossible to prevent two
contiguous cylinders from firing immediately one after the other. The phase-
angle diagrams for the first four harmonics are plotted in Fig. 29.10b, for
the second of the two firing orders.

FIGURE 29.10. (a) Configuration of the crankshaft and crank angle diagrams
for in-line four-stroke-cycle four- and six-cylinder internal-combustion engines.
In the latter case the configuration shown is just one of the possible choices; (b)
phase-angle diagrams for the same engines.
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If the order of the harmonic is a whole multiple of the number of cylin-
ders, all rotating vectors are superimposed, i.e., the forcing functions acting
on all cranks are all in phase. These harmonics are usually the most danger-
ous and are often referred to as major harmonics. The phase-angle diagrams
for the (n + i)th harmonic coincide with that related to the ith harmonic
and, consequently, only the first n phase-angle diagrams are usually plotted.

The phase-angle diagrams are plotted so that they directly supply the
phasing of the excitation on the various cranks with respect to that acting
on a crank chosen as reference, usually the first one. The phase of each
harmonic with respect to the fundamental one must be taken into account
when adding their effects. The forcing function acting on the jth crank can
be expressed by the following series, truncated at the mth harmonic

Mtotj = Mmj +Mij =
m∑

k=0

Mmk
ei(kΩ′i+Φmk

+δjk)+
m∑

i=0

Mik
ei(kΩ′i+Φik

+δjk) ,

(29.34)
where

• Mmk
and Φmk

are the amplitude and phase of the kth harmonic of
the driving torque, respectively. With reference to the series (29.29)
approximating the driving torque, their values are Mmk

=
√

A2
k + B2

k

and Φmk
= arctan(Ak/Bk), respectively.

• δjk
is the phase of the kth harmonic acting on the jth crank, as

obtained from the phase-angle diagram. If the diagram is referred to
the first crank, δjk

= 0 for j = 1.

• Mik
and Φik

are the amplitude and phase, respectively, of the kth
harmonic (referred to the fundamental harmonic Ω′ and not to the
rotational speed Ω) of the inertia torque. If

Ω′ = Ω ,

the order of the harmonic to be introduced into Eq. (29.34) coincides
with that in Eq. (29.32); if, on the contrary,

Ω′ =
Ω
2

,

the amplitude of the odd harmonics vanishes while even harmonics
correspond with those whose order is halved in Eq. (29.32). If the
axis of the cylinder passes through the center of the shaft, the phases
φik

are all equal to π/2, as all terms in cos(kΩt) vanish.

Phases δjk
of the harmonics of the driving torque Mmk

coincide with
those of the harmonics of the inertia torque Mik

.
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29.4.5 Evaluation of the damping of the system

Although the response of the system in conditions far from resonance can
be computed from an undamped model, the response at resonance can be
obtained only after the damping of the system has been evaluated, and the
precision of the results is strictly dependent on the precision with which
damping is known. Because the resonant conditions are usually the most
dangerous, this part of the dynamic analysis is important, and the difficulty
in estimating the damping is one of the factors limiting the usefulness of the
dynamic analysis and the need of resorting to extensive experimentation.
If damping were mostly due to the internal damping of the material, there
would be no difficulty introducing a proportional damping with modal-
damping ratio equal for all modes: ζj = η/2, where η is the loss factor of
the material of the crankshaft.

Actually, damping is due to many causes, like friction between moving
parts (e.g., the piston and the cylinder wall), electromagnetic forces, and
the presence of fluid in which some rotating parts move. Neglecting them
would lead to a large underestimate of damping, and it is usually necessary
to resort to experimental results, obtained from machines similar to the
one under study and to empirical or semi-empirical formulas and numerical
values reported in the literature.

Usually the damping due to the crank mechanism is evaluated by intro-
ducing a damping force acting on the crankpin proportional to the area of
the piston and the velocity of the crankpin. The damping moment acting
on the jth crank is

Md(t) = k′Ar2 , (29.35)

where k′ is a coefficient whose dimension is a force multiplied by time and
divided by the third power of a length. In SI units, it is expressed in Ns/m3.
Values of k′ included in the range between 3,500 and 10,000 Ns/m3 for in-
line aircraft engines and between 15,000 and 1.5 × 106 Ns/m3 for large
internal-combustion engines can be found in the literature. The span of
these ranges is large, and these values must be regarded only as indicative;
only experimental results on machines similar to the one under study can
be reliable. The use of Eq. (29.35) leads to the assumption that in each
crank there is a viscous damper with damping coefficient equal to

cj = k′Ar2 .

The damping of the other elements connected to the shaft (propellers,
brakes, electrical machines) can be evaluated by assuming that they pro-
vide a braking torque on the relevant node that is proportional to the
instantaneous angular velocity at the power p through coefficient k′′

Mdj(t) = k′′

[
Ω +

m∑
k=1

φ̇zjk
(t)

]p

, (29.36)
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where subscript j refers to the jth node of the model and k denotes the kth
harmonic. All harmonics are assumed to act in phase, an approximation
that does not affect the results obtained later. This type of damping is
clearly nonlinear, but can be linearized by introducing in the computation
a viscous damping, equivalent from the viewpoint of energy dissipation, for
each harmonic. By introducing the harmonic time history of each compo-
nent of the velocity φ̇zjk

(t), the energy dissipated in a cycle is

L =
∫ T

0

k′′

[
Ω +

m∑
k=1

kΩ′φzjk0
cos(kΩ′t)

]p+1

dt . (29.37)

By computing the (p+1)th power of the binomial within the integral
sign, it follows that

L =
∫ T

0

k′′Ωp+1dt +
(

p + 1
1

) ∫ T

0

k′′ΩpΩ′
m∑

k=1

kφzjk0
cos(kΩ′t)dt +

+
(

p + 1
2

) ∫ T

0

k′′Ωp−1Ω′2
[

m∑
k=1

kφzjk0
cos(kΩ′t)

]2

dt + · · · .

(29.38)
The first integral of Eq. (29.38) is constant and corresponds to the aver-

age braking power
P = k′′Ωp+1

applied in the relevant node. It can be used to compute coefficient k′′, as
the average power is generally known.

The second integral vanishes, while the third contains terms in the squares
of cosine function and terms in which there are products of cosines with dif-
ferent arguments. The latter vanish once they are integrated over a whole
period. The fourth term also vanishes. If the series (29.38) is truncated
after the fourth term, the braking torque, excluding the contribution due
to the constant term, is

L =
(

p + 1
2

)
πk′′Ωp−1Ω′

m∑
k=1

kφ2
zjk0

, (29.39)

corresponding to that due to a viscous damper with equivalent damping
coefficient

ceq =
(

p + 1
2

)
k′′Ωp−1 . (29.40)

If p = 1, it is a true viscous damper and ceq coincides with k′′.
If p = 2, as is often assumed in the case of propellers, k′′ is expressed in

SI units as Nms2 and
ceq = 3k′′Ω .
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If p = 3, k′′ is expressed in SI units as Nms3 and

ceq = 6k′′Ω2 .

The damping matrix of the system can be obtained by applying in the
various nodes the viscous dampers whose damping coefficients have been
computed above and is diagonal. This way of evaluating the damping of the
system is an approximation that can be rough. However, it is often used in
practice because there are no simple alternatives.

29.4.6 Forced response of the system

Once the forcing functions have been obtained, there is no difficulty, at least
from a theoretical viewpoint, to compute the response of the system at the
various speeds. Usually the problem of computing the forced response of
the system is subdivided into two parts: the evaluation of the response
to the harmonics of the forcing function that are not in resonance and
that related to the resonant harmonics. The first problem can be solved by
resorting to the undamped system; for the second it is necessary to resort
to the damped model.

A vector of the driving functions, whose terms are expressed by the series
(29.34), can be added on the right-hand side of the equation of motion
(29.26), to which the damping matrix obtained in Section 29.4.5 has also
been added

J{φ̈z} + C{φ̇z} + K{φz} =
m∑

(k=1)

msk
sin(kΩ′t) +

m∑
(k=1)

mck
cos(kΩ′t),

(29.41)
where, to avoid confusion with the moments M , the symbol J (not to be
confused with the identity matrix I) has been used for the mass matrix be-
cause all its elements are mass moments of inertia; m indicates the vectors
in which the moments are listed. The coefficients of the terms in cosine and
sine, respectively, expressed by Eq. (29.34) have been collected in vectors:

mck
= {mmk

cos(Φmk
+ δk)} + Ω2{mik

cos(Φik
+ δk)},

msk
= {mmk

sin(Φmk
+ δk)} + Ω2{mik

sin(Φik
+ δk)}. (29.42)

They are clearly functions of Ω2, due to the presence of inertia torques.
The series are truncated at the mth harmonic, and the static component of
the torque has been neglected. In the case of major harmonics of a machine
in which all elements are equal and distance d is equal to zero, all δjk

vanish
and Φik

are all equal to π/2.
The solution of Eq. (29.41) can be obtained directly by adding the re-

sponses to the various harmonic components

φ =
m∑

k=1

φzk
=

m∑
k=1

φzsk
sin(kΩ′t) +

m∑
k=1

φzck
cos(kΩ′t). (29.43)
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The amplitudes of the components in sine and cosine of the response can
be obtained by solving the following linear sets of equations

[
K− k2Ω′2J −kΩ′C

kΩ′C K − k2Ω′2J

] {
φzsk

φzck

}
=

{
msk

mck

}
. (29.44)

If damping is neglected, as is customary when the response in conditions
far from resonance is obtained, Eq. (29.44) uncouples into two separate
linear sets of equations. Equation (29.44) must be solved at each rotational
speed and for each harmonic of the forcing function; however, the compu-
tation is usually not heavy, because the order of the matrices, equal to the
number of the degrees of freedom of the equivalent system, is small.

The amplitude of the oscillations at each node of the system, due to
each harmonic of the forcing function, can be easily computed. Once the
amplitudes are known, there is no difficulty obtaining the dynamic stressing
of each span of the shaft. The maximum value of the shear stress in the
shaft spanning from the jth to the (j+1)th node is

τmaxj (t) =
kj(φzj+1 − φzj )

Wj
, (29.45)

where Wj is the torsional section modulus of the relevant shaft element.
The torsional displacements at the nodes are not in phase, and then it is
impossible to obtain the twist angle of each span as difference of amplitude
between the end sections. The components in phase and in quadrature must
be accounted for separately, and the amplitude of the twist angle, needed to
compute the stress, must be obtained from the two components. The shear
stress so computed is variable in time with poly-harmonic time history; the
time histories of the stresses due to the various harmonics, each with its
amplitude, phase, and frequency, should then be added to each other and
to the static stressing, and the fact that their consequences on the overall
fatigue of the shaft are different should be considered.

In practice, a much simpler approach is followed, not because of the
long computations involved, which with a modern computer could be dealt
without problems, but because the phasing of the harmonics can be difficult
to evaluate (near the resonance the phase is quickly variable) and predicting
the fatigue life of a machine element subject to poly-harmonic stressing
is still difficult. The amplitudes of the stress cycles due to the various
harmonics are computed and added together, often limiting the sum to the
few most important harmonics. This procedure leads to overestimating the
amplitude of the variable component of the stress and then is conservative.

The shear stresses so computed must be added to those due to other
causes and, using a suitable failure criterion, to stresses due to bending,
axial forces, shrink fitting, surface forces, etc. The stress concentrations due
to the complex geometric shape of crankshafts can be quite high, and the
analyst cannot neglect them.
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29.4.7 Modal computation of the response

The computation of the response of the system can also be performed
following a modal approach, which is essentially equivalent to uncoupling
the equations of motion by neglecting the elements of the modal-damping
matrix outside the main diagonal. The equation yielding the jth modal
amplitude is then

η̈j + 2ζjωj η̇j + ω2
j ηj =

m∑
(k=1)

[
qT

j msk
sin(kΩ′t) + qT

j mck
cos(kΩ′t)

]
,

(29.46)
where qj is the jth eigenvector of the undamped system, normalized in
such a way that the corresponding modal mass has a unit value, and the
modal-damping ratio ζj is

ζj =
qT

j Cqj

2ωj
. (29.47)

The number of modal equations (29.46) is equal to the number of modes
with non-vanishing eigenfrequency; however, only a few modes need to be
considered, and in most cases only the response corresponding to the first
mode is computed.

Usually further approximations are introduced and the computation of
the response follows the approach seen in Fig. 7.2d. On the basis of the
considerations seen in Section 7.1, a harmonic of the forcing function with
frequency kΩ′ is resonant with the sth mode if

ωs

√
1 − 2ζs ≤ kΩ′ ≤ ωs

√
1 + 2ζs .

Outside the mentioned frequency range, the undamped system can be
used to compute the response of the relevant (jth) mode:

ηj =
m∑

k=1

[
qT

j msk
sin(kΩ′t) + qT

j mck
cos(kΩ′t)

ω2
j + k2Ω′2

]
. (29.48)

Once the modal responses have been recombined, the amplitudes

φ = Φη

and the shear stresses are obtained.
If one of the harmonics of the forcing function is close to one of the nat-

ural frequency, the relevant amplitude must be obtained from the damped
model. The deformed shape in resonance is assumed to be equal to the cor-
responding mode shape, which amounts to the assumption that the modal
responses are uncoupled even if the system is damped, i.e., to neglect the
out-of-diagonal elements of the modal-damping matrix, and to neglect the
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contribution of the other modes. The displacements are then in phase with
each other because the eigenvector is a real eigenvector of an undamped
system.

The oscillations in the various points of the shaft are in phase with each
other, but they are neither in phase nor in quadrature with the forcing
functions, which are not in phase with each other. Only in the case of the
major harmonics are the forcing functions in phase with each other and, in
resonance, in quadrature with the response.

Consider the case in which the kth harmonic is in resonance with the sth
mode, i.e.,

kΩ′ = ωs .

Because the deformed shape is assumed to be proportional to the sth
mode shape, it follows that

φ(t) = αqs sin(kΩ′t), (29.49)

where α is a proportionality coefficient that depends on the criterion used
for normalizing the eigenvectors. The phasing of the response was assumed
to be equal to zero, i.e., the shaft is assumed to be in the undeformed
configuration at time t = 0. If the largest value of the eigenvector is assumed
to be equal to unity, α is the maximum amplitude of the deflected shape:
In modal terms, α is nothing other than the amplitude ηs0 of the sth modal
coordinate. It can be computed through Eq. (7.7), written using the modal
quantities

α =
F s

Csωs

=
F s

CskΩ′ , (29.50)

where

Cs = qT
s Cqs =

n∑
j=1

ceqj q
2
sj

. (29.51)

The computation of the modal force is more complex. If Moj is the
amplitude of the kth harmonic of the forcing function applied to the jth
node and δj is the phase lag between the moment applied to the jth node
and that applied to the first node obtainable from the phase-angle diagram
(δ1 = 0), it follows that3

Mj(t) = M0j sin(kΩ′t + δj) = (29.52)

=
[
M0j cos(δj)

]
sin(kΩ′t) +

[
M0j sin(δj)

]
cos(kΩ′t) .

3In the remainder of this section modal forces are written in phase with the forcing
function on the first node, while rotations are written in phase with the rotation of the
same node. Because only the amplitude is required, the choice of the instant in which
t = 0 is immaterial.
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The in-phase and in-quadrature (with reference to the first node) com-
ponents of the modal force must be computed separately. They are

F sphase
=

n∑
j=1

qsj M0j cos(δj) , F squad
=

n∑
j=1

qsj M0j sin(δj) . (29.53)

The amplitude of the modal response and the phase delay between the
response and the kth harmonic of the forcing function applied at the first
node are, respectively,

α =

√√√√√
⎡
⎣ n∑

j=1

qsj M0j cos(δj)

⎤
⎦

2

+

⎡
⎣ n∑

j=1

qsj M0j sin(δj)

⎤
⎦

2

kΩ′
n∑

j=1

ceqj q
2
sj

, (29.54)

β = arctan

[
F sfase

F squad

]
= arctan

⎡
⎢⎢⎢⎢⎣

n∑
j=1

qsj M0j cos(δj)

n∑
j=1

qsj M0j sin(δj)

⎤
⎥⎥⎥⎥⎦ .

In the literature, the same result is often obtained using energetic rea-
soning: The energy dissipated by damping is equated to the work of the
forcing functions. The amplitude is often obtained using the graphical con-
struction shown in Fig. 29.11, where the modal force F s for the resonance
of the fifth harmonic of the forcing function with the first natural frequency
of a four-stroke-cycle in-line six-cylinder engine is computed graphically.

Because the rotations at the various nodes are assumed to be in phase
at resonance, the computation of the stresses is particularly simple; the
amplitude of the twist angle of each span is just the difference between the
amplitudes of the rotations at the ends.

Remark 29.8 In many cases the approximations linked with the whole
modeling of the system, in particular where the equivalent inertia and damp-
ing are concerned, justify the use of the approximations seen earlier, partic-
ularly those linked with modal uncoupling, and make it useless to compute
the response with greater precision. However, there are cases where the con-
tribution of the nonresonant harmonics to the total stressing is not small,
even for harmonics that are very far from resonance.

The modal approximation becomes rough in this instance because the
overall shape of the response can be far from the first mode shape, and the
response is far better computed using a non-modal approach (see Example
29.4).
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FIGURE 29.11. Graphical computation of the modal force for the resonance
between the fifth harmonic and the first natural frequency (k = 5, s = 1) in an
in-line four-stroke-cycle six-cylinder internal-combustion engine: (a) phase-angle
diagrams for the fifth harmonic; (b) mode shape of the first natural frequency;
(c) computation of the modal force.

Example 29.4 Consider the diesel engine generator unit of Example 29.2.

Compute the stresses due to torsional vibrations in the most critical part of

the crankshaft using both modal and non-modal approaches.

When damping is required, assume a coefficient k′ = 2 × 105 Ns/m3 for the

cranks and use Eq. (29.40) with p =3 for the generator (compute coefficient

k′′ from the steady-state power).

Assume that the diameters of shafts number 6 and 7 are 200 and 130 mm,

respectively. The harmonic components of the driving torque at full power are

Harmonic Ak [Nm] Bk [Nm] Harmonic Ak [Nm] Bk [Nm]

0 3,448.4 − 11 −839.7 1,114.9
1 5,763.3 5,267.8 12 −808.8 853.3
2 3,176.8 8,119.6 13 −727.1 655.6
3 779.8 8,050.4 14 −662.8 541.7
4 −446.4 6,435.8 15 −635.9 420.1
5 −743.0 4,853.6 16 −592.2 274.1
6 −820.8 3,795.8 17 −518.9 170.2
7 −963.5 2,962.4 18 −453.4 111.1
8 −1,024.0 2,193.0 19 −396.9 46.6
9 −939.4 1,645.6 20 −324.0 −13.8
10 −855.0 1,350.3
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The model of the system and the mass and stiffness matrices are the same
as in Example 29.2. The damping matrix is a diagonal matrix; the terms
corresponding to the cranks are

cii = k′Ar2 = 2 × 105 × 706.8 × 10−4 × 0.2252 Nms/rad .

For the damping in node 8 (generator), coefficient k′′ can be easily computed
from the steady-state component of the torque. At 500 rpm = 52.4 rad/s it
leads to a power of 180.6 kW per cylinder, i.e., to a total power of 1,084 kW;
as p = 3, the values of k′′ and c88 are

k′′ = P/Ωp+1 = 0.144 Nms3 , c88 = 6k′′Ω2 = 2.364 Nms/rad.

However, this value of the damping is linked with the load on the generator.

Because in some cases the most dangerous conditions can be those in which

the engine works with no load (only inertia torques act on the cranks), it is

conservative to neglect the damping of the generator, which leads in most cases

to an overestimate of the dynamic stresses.
The static stresses can be easily computed, obtaining the following values for
the shafts from the first to the last:

τs1 = 1.46 MN/m2, τs2 = 2.93 MN/m2, τs3 = 4.39 MN/m2,
τs4 = 5.86 MN/m2, τs5 = 7.32 MN/m2, τs6 = 13.17 MN/m2,

τs7 = 47.96 MN/m2 .

The most stressed shaft is that linking the engine to the generator. The dy-

namic stresses are computed using two different procedures, modal and non-

modal. For the modal approach, the modal mass, stiffness, and damping for

the first mode are computed, obtaining

M1 = 103.35 , K1 = 2.171 × 107 , C1 = 1, 949 (ζ1 = 0.021) .

The first modal system is much underdamped. The maximum dynamic stresses

in the first mode occur in element number 7. The dynamic stresses in this

element corresponding to the various modes and the total dynamic stress are

plotted in Fig. 29.12a as functions of the speed.

When performing the non-modal computation, the element in which the max-

imum stress takes place depends on the harmonic considered: It is then advis-

able to plot the total stress due to all harmonics in each element (Fig. 29.12b).

From the comparison of the results obtained through the two procedures, it is

clear that in this case the approximations due to the modal approach are not

acceptable, because of the large contribution of the nonresonant harmonics to

the overall deformation, resulting in a response shape that is very different

from the first mode shape. For example, at a speed of 50 rad/s = 477 rpm, the

stresses in MN/m2 due to the 18th harmonic (very close to resonance) in the

various elements are
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FIGURE 29.12. Dynamic stresses computed through the modal approximation
with a single mode (stresses in element number 7 due to the various harmonics,
separately and jointly, a) and the non-modal approach (stresses in all elements
due to all harmonics, b).

Element 1 2 3 4 5 6 7

Modal 2.509 4.800 6.677 7.976 8.585 12.666 28.336
Non-modal 2.512 4.815 6.716 8.058 8.728 12.998 28.223

The two approaches lead to close results. The same results, computed for the

first harmonic, which is far from resonance, are

Element 1 2 3 4 5 6 7

Modal 0.4822 0.9226 1.283 1.533 1.650 2.434 5.446
Non-modal 3.3200 3.3194 0.007 3.321 3.325 0.010 0.013

The results in this case are different, and the modal computation gives unre-

liable results.
The maximum value of the dynamic stress within the working range occurs in
element number 7 at 487 rpm (resonance of the 15th harmonic) and takes a
value of 65.04 MN/m2 (the modal approach would lead to a value of 111.075
MN/m2). The total stresses are thus

τ = 47.09 ± 65.04 MN/m2 .

Example 29.5 Consider a four-stroke-cycle six-cylinder in-line engine with

a total capacity of 3,000 cm3.
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Assume that the engine is coupled with the transmission through a very soft
coupling, which causes a complete dynamic uncoupling of the engine from the
transmission in the whole frequency field of interest. The equivalent system is
then made of seven equivalent inertias (the six cranks and the flywheel) and
six equivalent shafts (Fig. 29.13a).

The main characteristics of the system are number of cylinders: 6; bore: φ

= 86 mm; area of the pistons: A = 58.09 cm2; stroke: 2r = 85 mm; firing

order: 1-5-3-6-2-4; speed: Ω = 6,000 rpm (638.3 rad/s); reciprocating masses

(1 cylinder): mp + m2 = 0.720 kg; length of connecting rod: lp = 181 mm;

crankpin: outer diameter d0 = 45 mm, inner diameter di = 10 mm; ratio α

= 0.235.

Equivalent moments of inertia of the cranks and the flywheel [kg m2]: Jeq1

= 0.00551; Jeq2 = Jeq5= 0.00489; Jeq3 = Jeq4 = 0.00602; Jeq6 = 0.00625;

Jeq7 = 0.06753. Equivalent stiffness of the shafts [MNm/rad]: k1 = k2 = k3 =

k4 = k4 = 0.392; k6 = 0.455.
Computation of the natural frequencies. The mass and stiffness matrices of
the system are

M = diag
{

551 489 602 602 489 625 6753
}
× 10−5 ,

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

392 −392 0 0 0 0 0
−392 784 −392 0 0 0 0

0 −392 784 −392 0 0 0
0 0 −392 784 −392 0 0
0 0 0 −392 784 −392 0
0 0 0 0 −392 847 −455
0 0 0 0 0 −455 455

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 103 .

The natural frequencies and mode shapes can be easily obtained by solving the
usual eigenproblem, which yields the following natural frequencies and eigen-
vector for the first mode with natural frequency different from zero, normalized
in such a way that the largest element has a unit value

ω0 = 0,
ω1 = 2, 445 rad/s = 391 Hz,
ω2 = 6, 242 rad/s = 993 Hz,
ω3 = 9, 607 rad/s = 1, 529 Hz,
ω4 = 12, 485 rad/s = 1, 987 Hz,
ω5 = 15, 300 rad/s = 2, 435 Hz,
ω6 = 16, 349 rad/s = 2, 602 Hz,

{q1} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.000000
0.915283
0.761752
0.537715
0.263907

−0.029741
−0.280269

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The corresponding mode shape is plotted in Fig. 29.13b. The modal mass and
stiffness for the first mode are, respectively,

M1= qT
1 Mq1= 0.0205 , K1= qT

1 Kq1= 123, 450.
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FIGURE 29.13. (a) Equivalent system; (b) first torsional mode.

Relationship between shaft twisting and shear stresses
If one of the shafts is twisted by angle θi, the corresponding torsional moment
is Mt = θiki. If the inner and outer diameters of the most loaded part, usually
the crankpin, are di and d0, respectively, for all cranks, the maximum value
of the shear stress is

τmax =
Mt

Wt
= 2.191 × 1010θi N/m2 .

When the shaft vibrates with the first mode shape, the most stressed crank is
the fifth. The corresponding twist angle is θ5 = 0.294q1. The proportionality
relationship between the maximum value of the shear stress and the amplitude
of the first eigenvector is then

τmax

q1
= 0.6434 × 1010 N/m2rad = 6, 434 MN/m2rad .

Computation of the harmonics of the forcing function and of the
modal forces The curves of the power P and the mean indicated pressure pmi

as functions of the engine speed are plotted in Fig. 29.14. The curve expressing
the mean indicated pressure can be approximated by the expression

pmi = −0.960 × 10−5Ω2 + 8.26 × 10−3Ω − 0.475 ,

where the angular velocity is in rad/s and the pressure is in MPa.
To evaluate the harmonics of the driving torque, the empirical formula for
the four-stroke-cycle engines reported on the already-mentioned book by Ker
Wilson (Practical Solution of Torsional Vibration Problems, Vol. 2, Chapman
& Hall, London, 1963, 218) will be used. Using the notation in this book, and
particularly using the symbol k for the order of the harmonic, the formula can
be written in the form

Mm0 = pmirA
1

2π
, Mmk = pmirA

25

50
√

2
k

+ 5k2

.
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FIGURE 29.14. Power and the mean indicated pressure as functions of the engine
speed.

Only the amplitude of each harmonic can be computed from the formula; the

phase remains unknown. In practice, the phase is important only to add the

inertia torque to the driving torque, and this is important only for harmonics 2,

4, 6, and 8. In the mentioned book, these harmonics are reported separately for

the components in phase and in quadrature. The nondimensional amplitudes

M∗
mk

= Mmk/pmirA are reported in the following table:

k A∗
k B∗

k M∗
mk

k M∗
mk

0 − − 0.160 11 0.040
1 − − 0.330 12 0.034
2 0.330 0.140 0.360 13 0.029
3 − − 0.290 14 0.025
4 0.220 −0.040 0.220 15 0.022
5 − − 0.160 16 0.019
6 0.110 −0.048 0.120 17 0.017
7 − − 0.092 18 0.015
8 0.051 −0.051 0.072 19 0.014
9 − − 0.058 20 0.012
10 − − 0.048

Note that the fundamental frequency is equal to Ω/2. If the moment of inertia

J0 and all terms in α with powers higher than 2 are neglected, the four non-

vanishing harmonics of the inertia torque can be expressed as

Mik
= mar2Ω2bk ,
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where ma is the total mass of the reciprocating elements and nondimensional

coefficients bk are

b2 = 0.0588 , b4 = −0.5 , b6 = −0.176 , b8 = −0.0138 .

The modal forces can be computed by considering the six moments acting on
the cranks, which are equal in amplitude but out of phase from each other,
following the phase-angle diagram. The amplitude of the force due to the kth
harmonic is

F 1k = {q1}T {M}k , i.e., |F1k | =

∣∣∣∣∣
6∑

j=1

q1j Mkj

∣∣∣∣∣ .

The sum must be considered a vector sum. The phase-angle diagrams are those

shown in Fig. 29.10 for the six-cylinder engine. From the figure, it is clear that

the diagrams for harmonics 2 and 4 are the mirror image of each other, and

then the relevant modal forces are equal. The same holds for harmonics 1

and 5. Remembering that the diagrams for harmonics beyond the sixth are

equal to those of the first six, only four types of phase-angle diagrams exist.

Considering the first 24 harmonics, they are as follows:
Group 1: Harmonics 1, 7, 13, and 19 and their mirror images 5, 11, 17, and
23. The phase angles are those shown in the first diagram. The in-phase and
in-quadrature components of the modal force are, from Eq. (29.53),

F 1kphase
= qT

1 {Mj cos(δj)} = Mk

[
q11 cos(0) + q12 cos(120◦) +

+q13 cos(240◦) + q14 cos(60◦) + q15 cos(300◦) + q16 cos(180◦)
]

= 0.592Mk ,

F 1kquad
= qT

1 {Mj sin(δj)} = Mk =
[
q11 sin(0) + q12 sin(120◦)+

+q13 sin(240◦) + q14 sin(60◦) + q15 sin(300◦) + q16 sin(180◦)
]

= 0.370Mk ,

The amplitude of the modal force is then |F 1k | = 0.698Mk .

Group 2: Harmonics 2, 8, 14, and 20 and their mirror images 4, 10, 16, and

22. By operating as for the first group, it follows that |F 1k | = 0.290Mk .

Group 3: Harmonics 3, 9, 15, and 21. |F 1k | = 1.90Mk .

Group 4: Major harmonics 6, 12, 18, and 24. |F 1k | = 3.45Mk.

Response of nonresonant harmonics.
Computing of the response in conditions far from resonance is straightforward.
The modal amplitude of the response is

|η1k | =
|F 1k |

K1 −
(
k Ω

2

)2
M1

.

Compute, for example, the response to the sixth harmonic at 6,000 rpm. The
mean indicated pressure at that speed is 0.924 MPa. The sixth harmonic be-
longs to group four (major harmonics). The forcing moment due to the driving
torque has components Ak and Bk, which can be computed using the data re-
ported in the previous table:
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FIGURE 29.15. Dynamic shear stresses in the most loaded part as functions of
the speed: the first 24 harmonics of the forcing function and first torsional natural
frequency.

A6 = 0.11pmiAr = 25.11 , B6 = −0.048pmiAr = −10.96 .

The moment due to inertia torques is

Mi6 = −0.176maΩ2r2 = −90.36,

and the total moment is

M6 =
√

(A6 + Mi6)2 + B2
6 = 66.16 .

The total moment, due to gas pressure and inertia forces, is smaller than
the moment due to inertia forces alone. The most critical condition for the
harmonic considered at the speed of 6,000 rpm occurs when the engine is driven
from the outside, without any working fluid in it. The stress analysis will then
be performed in the corresponding condition. The value of the modal force is

|F 16 | = 3.45Mi6 = 311.74 .

The amplitude of the modal response at 6,000 rpm is then

η16 =
|F 1k |

K1 −
(
k Ω

2

)2
M1

= 6.159 × 10−3 ,

and the corresponding maximum value of the stress is
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τmax = 6, 434 q1 = 39.63 MN/m2 .

Response of resonant harmonics. To compute the response in resonant condi-
tions, it is necessary to assume a value of the damping of the system. An em-
pirical procedure reported in the already-mentioned book by Ker Wilson (page
706 and following) will be followed: The amplitude at resonance is obtained
as the product of the static deformation of the modal system by a suitable
amplification factor

ηimax = Himax

F i

Ki

.

The amplification factor is obtained through the empirical formula

Himax =
500√

16 + 145τ∗ .

Shear stress τ∗ is the maximum stress, in MN/m2, that would be in the shaft if

it were deformed following the first mode, in static conditions, by the relevant

modal force.
Consider the resonance between the seventh harmonic and the first natural
frequency. The critical speed is

Ωcr7 =
2ω1

7
= 701.43 rad/ s = 6, 698 rpm ;

the mean indicated pressure at that speed is pmi = 0.597 MPa.
The amplitude of the driving torque and the corresponding modal force are

Mm7 = 0.092PmiAr = 13.56 , |F 17 | = 0.70 , M7 = 9.46 .

The amplitude of the static deformation and the static maximum value of the
shear stress corresponding to the modal force are, respectively,

η1st =
|F 17 |
K1

= 7.669 × 10−5 , τ∗ = 6, 434q1st = 0.494 MN/m2 .

The amplification factor, computed using the aforementioned formula, and the
damping ratio are, respectively,

H7max =
500√

16 + 145τ∗
= 53.43 , ζ7 =

1

2H7max

= 0.0094.

The amplitude of the modal response and the corresponding value of the shear
stress are

η17 = Hmaxη1st = 4.09 × 10−3 , τmax = 6434q1 = 26.3 MN/m2.
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The responses in terms of maximum shear stress for the first 24 harmonics are

shown in Fig. 29.15. They were computed considering the modal system as a

damped system with a single degree of freedom whose damping is obtained, for

each harmonic, following the same procedure seen for the seventh. The shear

stresses due to the various harmonics are then combined by simply adding their

amplitudes. This procedure, which neglects the phase, is clearly conservative.
Total stresses. The maximum value of the total stress due to torsional vibration
in the working speed range of the machine occurs at a speed of 5,200 rpm in
correspondence to the resonance peak of the ninth harmonic. The value of the
total shear stress is τmax = 104 MN/m2. At the speed of 5,200 rpm (544.5
rad/s), the engine can produce a power of 150 kW. The more loaded crank is
the fifth, where the static stress is equal to 5/6 of the stress corresponding to
the maximum power

τmaxst =
5

6

Pmax

Ω

16de

π(d4
e − d4

i )
= 12.83 MN/m2 .

The shaft undergoes fatigue loading with cycles included between the limits

τ = 12.83 ± 104 MN/m2 .

Because the stressing is mostly due to the resonant ninth harmonic, the fre-

quency of the fatigue loading can be assumed to be equal to the first natural

frequency of the shaft, 391 Hz. Note that in the current case the non-modal

computation would have yielded very similar results because most of the stress-

ing is due to resonating harmonics.

29.5 Torsional instability of crank mechanisms

A second-approximation formulation of the equation of motion of the sys-
tem consisting of the crank, the connecting rod, and the reciprocating
parts can be obtained by introducing the trigonometric polynomial (29.15)
expressing the equivalent moment of inertia into the equation of motion
(29.11)

Jeqφ̈z +

{
n∑

j=1

Jcj cos[j(φz + Ωt)] +
n∑

j=1

Jsj sin[j(φz + Ωt)]

}
φ̈z +

+
1

2
(Ω + φ̇z)

{
−

n∑
j=1

jJcj sin[j(φz + Ωt)] +

n∑
j=1

jJsj cos[j(φz + Ωt)]

}
= M .

(29.55)

Equation (29.55) is the exact equation of motion of the system if an
infinity of harmonic terms is considered. Actually, a good approximation
is obtained by resorting to a small value of n. If the amplitude of the
oscillations is small enough, the trigonometric functions of angle jφz can be
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FIGURE 29.16. Crank mechanism: model used for the study of the torsional
instability.

linearized. By remembering a few trigonometric identities and linearizing
the resulting equation, neglecting the products of small quantities, Eq.
(29.55) reduces to

Jeqφ̈z + φ̈z

n∑
j=1

[
Jcj cos(jΩt) + Jsj sin(jΩt)

]
− φ̇zΩ

n∑
j=1

j
[
Jcj sin(jΩt)+

−Jsj cos(jΩt)
]
− 1

2
φzΩ2

n∑
j=1

j2
[
Jcj cos(jΩt) + Jsj sin(jΩt)

]
+

−1
2
Ω2

n∑
j=1

j
[
Jcj sin(jΩt) + Jsj cos(jΩt)

]
= M .

(29.56)
Equation (29.56) is a linear differential equation with coefficients that

are functions of time. It can be used as a starting point to build a second-
approximation model of the reciprocating machine. This approach is, how-
ever, quite complex and only a simplified case is reported here.4 Consider
a single-cylinder engine with a simplified geometry such that α = 0 and
β = 0. Assume that the crank is connected to a large flywheel, so large
that its motion is not affected by torsional vibrations (Fig. 29.16). Assum-
ing that the flywheel rotates at constant speed Ω, the system has a single
degree of freedom, namely, the angle of torsion φz of the shaft. The be-
havior of the shaft is linear, with stiffness k, a viscous damper acts on the

4For a detailed study, see E. Brusa, C. Delprete, G. Genta, “Torsional vibration of
crankshafts; effects of nonconstant moments of inertia”, Journal of Sound and Vibration,
205, 2, (1997), 135–150.
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crank with damping coefficient c, producing a moment proportional to the
speed φ̇z + Ω, and the driving torque is Mm(t). The equation of motion
(29.56) reduces to

φ̈z[1 − ε cos(2Ωt)] + 2εΩ2φz cos(2Ωt) + 2εΩφ̇z sin(2Ωt)+

+2ζω0(Ω + φ̇z) + ω0φz = −εΩ2 sin(2Ωt) + ω2
0

Mm(t)
k

,
(29.57)

where

ω0 =

√
k

Jeq

, ζ =
c

2
√

kJeq

, ε =
(m2 + mp)r2

2Jeq

.

The inertial term on the right-hand side of Eq. (29.57) coincides with
the inertia torque acting on the equivalent system. If the small terms are
neglected, Eq. (29.57) reduces to the equation of motion of the equivalent
system studied in the preceding section, with the added conditions that
the connecting rod is infinitely long and damping is included in the form
studied in Section 29.4.5.

Equation (29.57) is neither a Mathieu nor a Hill equation but can be
solved by using the same methods in Section 22.3 and particularly by re-
sorting to a series expansion of the solution and finding the coefficients
using an infinite determinant. Due to the complexity of the study, only
some results obtained by M.S. Parisha and W.D. Carnegie5 through nu-
merical experimentation will be reported here. The equation for the free
oscillations of the system obtained from Eq. (29.57) by neglecting both
the driving torque and the drag torque linked with the constant angular
velocity Ω can be written in the nondimensional form as

d2φz

dτ2
[1 − ε cos(2τ)] + 2

dφz

dτ
[ε sin(2τ) + ζ

ω0

Ω
] +

+φz

[
2ε cos(2τ) +

(ω0

Ω

)2
]

= 2ζ
ω0

Ω
− ε sin(2τ) ,

(29.58)

where τ = Ωt is the nondimensional time. Because the behavior of the
system depends only on three nondimensional parameters – ε, ζ, and ω0/Ω
– the study of the stability of the system can be easily performed by nu-
merically integrating the equation of motion with different values of the
parameters and checking whether it develops an unstable behavior.

Some of the plots that define the zones in which the system is unstable
are summarized in Fig. 29.16. The undamped system has two instability
ranges, one at a rotational speed equal to half the natural frequency of the
equivalent system and the other at a speed equal to ω0 (Fig. 29.17).

5M.S. Parisha, W.D. Carnegie, “Effect of the variable inertia on the damped torsional
vibrations of diesel engine systems”, Journal of Sound and Vibration, 46, 3, (1976).
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FIGURE 29.17. Instability ranges of the system sketched in Fig. 29.16 with dif-
ferent values of damping.

If ε tends to zero, the same results seen in the previous sections are
obtained: An infinitely small instability range is found at the torsional crit-
ical speeds found on the Campbell diagram by intersecting the horizontal
straight line ω = ω0 with the lines ω = 2 Ω and ω = Ω. The instability
range reduces to the torsional critical speeds due to the first two harmonics
of moment Mi. With increasing ε, the two instability ranges grow larger
and, if ε is large enough, it is impossible to operate at speeds in excess of
the natural frequency.

The presence of damping reduces the fields of instability and makes it
possible to operate at any speed, provided that ε, i.e., the mass of the
reciprocating elements, is not too large.

The instability range located close to the critical speed due to the har-
monic with ω = Ω is less affected by damping than that corresponding to
the condition ω = 2Ω and thus is the most dangerous. The effect of damp-
ing reduces with increasing values of ε. These results confirm that there is
no instability range if ε is lower than 4ζ in the zone close to ω/Ω =1 and
lower than 4

√
2ζ in the zone close to ω/Ω = 1/2. They are applicable, at

least qualitatively, well beyond the simplified model used to obtain them.
They also hold for the cranks of multi-cylinder engines for the evaluation of
the effects of the mass of the reciprocating elements on the overall stability
of the system.

29.6 Exercises

Exercise 29.1 Consider the engine of Example 29.5 and repeat the dynamic

analysis using a non-modal approach. Because the way of taking into account

damping used in the example is strictly linked with the modal approach, use the



788 29. Torsional Vibration of Crankshafts

procedure described in Section 29.4.5 with a coefficient k′ = 56, 000. Assume that

the diameter of element 6 is 45 mm.

Exercise 29.2 Repeat the computation of Exercise 29.1 using the modal ap-

proach, with the damping defined earlier and compare the results with those ob-

tained in Example 29.5 and in Exercise 29.1.

Exercise 29.3 The engine of Exercise 29.1 is connected to a blower with a

moment of inertia of 0.6 kg m2 through a shaft of length 3 m and a joint whose

stiffness is 20 kNm/rad. The moment of inertia of the part of the joint on the

blower shaft is 0.05 kg m2, and the inertia of the other part of the joint is already

included in the moment of inertia of the flywheel. Compute the diameter to the

drive shaft in order not to exceed a static stressing of 40 MN/m2 in steady-state

working and repeat the eigenanalysis of the system. Assume that the damping

of the blower can be computed through Eq. (29.40) with p = 2 and compute the

dynamic stressing of the system. Does the presence of the blower significantly

affect the behavior of the engine?

Exercise 29.4 Just after the elastic joint of the system of Exercise 29.3, con-

nect a water pump, whose moment of inertia is 0.1 kg m2, through two gear wheels

with transmission ratio 1.3. The pinion gear has a diameter of 200 mm, and both

gears are 45 mm thick. Assume that the shaft leading to the pump is 4 m long

and has a diameter of 50 mm, and estimate the moments of inertia of the gear

wheels, assuming they are made of steel. Neglect the compliance of the meshing

gears. Repeat the dynamic analysis, with the main aim of evaluating the dynamic

torque on the gear wheels and the dynamic stressing on the shaft of the pump.

Exercise 29.5 A marine unit is made by four engines of the type described

in Example 10.5 driving two propellers through gear wheels. The engines work

in pairs, the two engines being assembled with the flywheels one close to the

other, connected through a shaft 600 mm long, whose diameter is computed in

order not to exceed a shear stress of 30 MN/m2 in static conditions. The two

pairs are located side by side, driving a common shaft through gear wheels. The

transmission ratio is 0.9, the diameter of the pinion gear is 208 mm, and the

thickness of the gear wheels is 30 mm. The common shaft is 4 m long, and its

diameter is chosen for the same value of the static shear stress as the other shafts

connecting the engines. Two propeller shafts, 6 m long, are then driven with a

transmission ratio of 0.4. The diameter of the pinion gear is 200 mm, and the

thickness of the wheels is 30 mm.

Draw a detailed sketch of the system. Knowing that the moments of inertia of

the propellers are 12 kg m2, estimating the moments of inertia and the geometric

properties of all elements, and neglecting damping due to the propellers, compute

the natural frequencies and the dynamic stressing of the system.



30
Vibration Control in Reciprocating
Machines

Many reciprocating machines, in particular internal-combustion engines,
are provided with suitable devices to control torsional vibration of the
crankshaft. There are many different types of torsional vibration dampers
and, after more than a century of development, research in this field is still
very active.

30.1 Dissipative dampers

Various kinds of damping devices are used to control torsional vibration of
reciprocating machines when it is impossible to prevent one of the critical
speeds yielding severe dynamic stressing from falling within the working
range or, more generally, when the amplitude of the torsional vibrations is
incompatible with the safe operation of the machine. Many different types
of such devices were developed, each with its field of application due their
different mechanical, thermo-mechanical, and cost characteristics.

Often torsional vibration dampers are applied at one end of the crankshaft
and are made of a flywheel (usually referred to as a seismic mass), whose
geometric configuration can be of a wide variety of types, connected to the
shaft by suitable elastic and damping elements. In many applications there
may be only one of these elements, and sometimes the restoring force can be
supplied by the centrifugal field due to rotation and the seismic mass may
have the shape of a counterbalance of the crankshaft. The conceptual lay-
out of almost all torsional vibration dampers can be reduced to the damped
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vibration absorber of Fig. 7.12 or to the Lanchester damper, with the obvi-
ous differences that now it is applied to a multi-degree-of-freedom system
and that instead of masses, stiffnesses, and dampers, there are moments
of inertia and torsional stiffnesses and dampers. Without including all the
possible types of torsional vibration dampers, they can be subdivided into
three types:

• dissipative dampers,

• damped vibration absorbers, and

• rotating-pendulum vibration absorbers.

A viscous torsional vibration damper is the Lanchester damper applied
to one of the ends of the crankshaft and consists of a flywheel, generally
shaped as a ring free to rotate within a casing filled with a fluid with high
viscosity, for example, a silicon-based oil (Fig. 30.1a).

Damping in this case is of the viscous type, i.e., the drag torque is pro-
portional to the angular velocity, and the damping coefficient depends on
the clearance between the ring and the housing and on the characteristics
of the fluid. It is greatly influenced by the temperature of the fluid. The
model for the dynamic study of the system must be modified by adding
the moment of inertia of the casing, in the node in which the damper is
applied, and adding a new node in which the inertia of the ring is lumped.
The two nodes are connected by a viscous damper and a spring with zero
stiffness.

For a first-approximation evaluation of the optimum damping it is possi-
ble to assume that the presence of the damper does not significantly affect

FIGURE 30.1. Dissipative torsional vibration damper: (a) sketch of the system
and (b) model for the dynamic study.
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the natural frequencies. Under this assumption, the behavior of the damper
can be studied separately, assuming the time history of the motion of the
node where it is applied. With reference to Fig. 30.1b, assume that the
time history at node 1 where the damper is applied (the seismic mass is
lumped in node 0) is harmonic,

φ1(t) = φ10 sin(ωt) .

Also, the time history of node 0 is harmonic but with by a phase lag Φ :

φ0(t) = φ00 sin(ωt + Φ) .

The model so obtained is formally identical to that of a system with
a single degree of freedom excited by the displacement of the supporting
point. The response can be computed using Eq. (7.6), where Js replaces m
and k = 0. Remembering that

2ζωn =
c

m

and introducing the ratio

α =
Js

c
,

it follows that

�(H) =
1

1 + (αω)2
, �(H) =

(αω)
1 + (αω)2

. (30.1)

At time t = 0 the angular displacement between the seismic mass and
its housing reaches its maximum, and the relative displacement can be
expressed as

[φ0(t) − φ1(t)] = |φ0 − φ1| cos(ωt) = φ10

αω√
1 + (αω)2

cos(ωt) . (30.2)

The energy dissipated in a period by the damper is

Ed =
∫ T

0

c
[
φ̇0(t) − φ̇1(t)

]2

dt = cφ2
10

π
J2

s ω3

c2 + J2
s ω2

. (30.3)

It is easy to verify that both conditions c = 0 and c → ∞ lead to a
vanishingly small energy dissipation: in the first case because the seismic
mass does not interact with the system and in the second because nodes 1
and 0 are rigidly connected. The value of the damping coefficient leading
to a maximum energy dissipation is obtained by differentiating Eq. (30.3)
and equating the derivative to zero. The value of the optimum damping so
obtained is

copt = Jsω . (30.4)
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Even if the value of the optimum damping depends on the frequency,
dampers of this type allow a substantial reduction of the amplitude of
vibration in a wide frequency range.

The type shown in Fig. 30.1 is quite common, but other types are also
used. In that shown in Fig. 30.2a the seismic mass is made by a hollow
flywheel inside which a sort of lever or balance wheel is located. Some cavi-
ties inside the flywheel are filled with a high-viscosity fluid that is pumped
by the balance wheel from one cavity to the other through calibrated pas-
sages during torsional vibration. Tuning screws allow the passages to be
restricted to tune the value of the damping coefficient.

Another type of damper is shown in Fig.30.2b. The seismic mass is made
of two disc flywheels pressed against a disc rigidly connected to the shaft
by spring-loaded set screws. The mating surfaces of the flywheels and the
disc are lined by friction material, constituting the damping element. In
this case damping is due to dry friction, and the behavior of the system is
nonlinear. The term Lanchester damper should be used, strictly speaking,
only for dampers of this type, not for all dissipative dampers with zero
stiffness.

All dissipative dampers are subject to heating, even overheating, because
they convert mechanical energy into heat. It is thus necessary to check that
they can dissipate all the thermal energy they produce, which can be done
using formulas of the type of Eq. (30.3), at least in terms of average power
in a given period of time. Usually a limit to the ratio between the thermal
power and the external surface of the damper is assumed. For the type in

FIGURE 30.2. Dissipative torsional vibration dampers: (a) viscous damper and
(b) dry friction damper (Lanchester damper).
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Fig. 30.1a, for example, it is suggested not to exceed 1.9 × 104 kW/m2 in
continuous working and 5 × 104 kW/m2 for short periods of time.

30.2 Damped vibration absorbers

Vibration absorbers were dealt with in Section 7.8. Also in the case of
torsional vibration absorbers, they introduce a new natural frequency and
change the natural frequency on which they are tuned. The distance be-
tween the two resonance peaks increases with increasing moment of inertia
of the seismic mass. Because an undamped vibration absorber is effective
in a very narrow frequency range, outside which it is not only ineffective
but also causes new resonances, the seismic mass is connected to the shaft
through a system that has a certain amount of damping. In this case it is
possible to obtain a response that is fairly flat in a wide range of frequencies,
as clearly shown in Fig. 7.12d.

From a practical viewpoint, all dampers shown in the previous section can
be converted into damped vibration absorbers simply by adding an elastic
element between the shaft and the seismic mass, which allows tuning the
damper on the required frequency. The seismic mass can be shaped as a
disc or a balance wheel, as in the case of the damper of Fig. 30.3a, which
is very similar to that shown in Fig. 30.2a, except that in the former the
balance wheel is the seismic mass and the casing is attached to the shaft.

The elastomeric dampers widely used on small automotive diesel engines
(Fig. 30.3b) can be considered dissipative vibration absorbers. The elas-
tomeric elements provide both elasticity and damping and can be shaped

FIGURE 30.3. Damped torsional vibration absorbers: (a) viscous damper with
balance wheel and (b) elastomeric damper.
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FIGURE 30.4. Dynamic stresses computed through a non-modal approach.

in such a way as to obtain the required values for both. Care must be ex-
erted to insure that the amount of heat generated within the damper is not
too large, particularly considering the low thermal conductivity and poor
high-temperature characteristics of elastomeric materials. Overheating is
dangerous because it usually causes the damping capacity of the material
to decrease and, consequently, the amplitude of the vibration to grow, with
further increase of heating. This easily results in a complete destruction of
the damper and severe fatigue problems of the whole system.

Example 30.1 Add a damped vibration absorber to the front end of the

diesel engine of Example 29.4.

Assume a moment of inertia of 6 kg m2 for the casing, connected to the
first crank through a shaft whose stiffness is equal to the shaft connecting
the last crank to the flywheel, and a moment of inertia of 26 kg m2 for
the seismic mass. Compute the stiffness needed to tune the damper on
the first natural frequency of the system and assume for the damping
the optimum value computed in Section 30.1 for the springless damper.
Repeat the computation of the stresses and compare the results.
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The equivalent system now includes 10 nodes, with node 1 located at the seis-
mic mass and node 2 at the damper case. The diameter of element 2 is assumed
to be 200 mm. A first computation is run with a zero value of the stiffness of
the damper, obtaining the first natural frequency of the system without seismic
mass of 445.2 rad/s = 70.86 Hz; the casing of the damper has little effect on
the first natural frequency. To tune the damper on the first natural frequency,
its stiffness must be

kdamp = Jdampω2
1 = 5.53 × 106 Nm/rad.

The nonvanishing natural frequencies of the undamped system are then com-
puted:

ω1 = 55 Hz , ω6 = 376 Hz ,
ω2 = 67 Hz , ω7 = 442 Hz ,
ω3 = 114 Hz , ω8 = 482 Hz ,
ω4 = 192 Hz , ω9 = 627 Hz ,
ω5 = 290 Hz .

The presence of the damper introduces two new values in place of the old value

for the first mode and a high natural frequency linked mostly to the presence

of the damper casing. The remaining values are little affected. The value of

the damping can be assumed to be

cdamp = Jdampω1 = 1.16 × 104Nms/rad :

The computation of the dynamic response is only performed using a
non-modal approach, because the presence of the damper makes the as-
sumption of modal uncoupling even less realistic than in Example 10.4
(Fig. 30.4). The maximum value of the dynamic stress within the work-
ing range occurs in element number 4 (not taking into account the shaft
between damper and first crank, which will be indicated as element num-
ber 0) at 500 rpm and takes a value of 38.70 MN/m2. The total stress
is thus

47.09 ± 38.70 MN/m2
.

The damper is quite effective and reduces dynamic stressing by about
40%. Element number 7 is the most stressed only at speeds above the
working range and that no well-defined resonance peak occurs.

Also torsional vibration dampers can exploit eddy currents produced in
a conductor moving in a magnetic field as a means to dissipate energy. The
functional layout can be that of the viscous damper of Fig. 7.12a, with or
without a spring to tune the seismic mass on a given frequency. An example
is shown in Fig. 30.5: a solid conductor disc is rigidly connected to the shaft,
while the housing acts as a seismic mass. A number of permanent magnets
are attached to the inside of the housing, so that the magnetic field crosses
the disc: Since the magnets have the shape of sectors and are magnetized
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FIGURE 30.5. Torsional damped vibration absorber based on a motional elec-
tromagnetic damper (MEMD).

in opposite way, the field has no axial symmetry, and any relative rotation
of the housing with respect to the disc causes eddy currents to flow in the
latter.

Following the classification seen in Chapter 27, it is a motional electro-
magnetic damper (MEMD). In the case of the figure there is also a spring,
so that the device can be considered as a damped vibration absorber.

30.3 Rotating-pendulum vibration absorbers

Rotating-pendulum vibration absorbers are among the few non-dissipative
dampers that have been widely used. The conceptual scheme of such devices
was shown in Fig. 23.1, the only difference being that in this case the
pendulum is constrained to move in the xy-plane. The natural frequency
of the free oscillations of the pendulum is proportional to the rotational
speed

ω = Ω
√

r

l
.

Because the various harmonics of the forcing function are characterized
by a frequency proportional to the rotational speed, once the vibration
absorber is tuned at a certain speed on a given harmonic, it remains locked
on that in the whole working range of the machine.

To analyze the behavior of rotating-pendulum vibration absorbers, a
more complex model than that shown in Fig. 23.1 is needed, as the tor-
sional vibration of the disc at which the pendulum is attached cannot be
neglected. Consider the scheme of Fig. 30.6, in which a pendulum of mass
m and length l is hinged to a disc whose moment of inertia is J . Let the
disc be in node 1 of the discretized model and the node where the system
is connected, through a shaft with stiffness k, be node 0. The aim of the
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FIGURE 30.6. Rotating-pendulum vibration absorber; model with two degrees
of freedom.

analysis is building a rotating-pendulum vibration absorber element to be
assembled to the finite element model of the system. The velocity of point
P can be computed as in Example 23.1, where φ2 and Ω + φ̇1 are substi-
tuted for θ and Ω, respectively, and angle φ is assumed to be zero, because
the pendulum is constrained to remain in the xy-plane. The kinetic and
potential energies of the system sketched in Fig. 30.3 are, respectively,

2T = J(Ω + φ̇1)2 + m|VP |2 = (J + mr2)(Ω + φ̇1)2+
+ml2(Ω + φ̇1 + φ̇2)2 + mrl(Ω + φ̇1)(Ω + φ̇1 + φ̇2) cos(φ2),

2U = kφ2
1 .

(30.5)
By performing the required derivatives, linearizing the trigonometric

functions of angle φ2, and neglecting the terms containing products of gen-
eralized coordinates and their derivatives, the equation of motion of the
free oscillations of the system sketched in Fig. 30.6 is

[
J + m(r + l)2 ml(r + l)

ml(r + l) ml2

]{
φ̈1

φ̈2

}
+

[
k 0
0 mrlΩ2

] {
φ1

φ2

}
=

{
0
0

}
.

(30.6)
It is easy to verify that if a moment with harmonic time history with

frequency ω is applied to node 1 or the same node is excited by a harmonic
motion of the constraint, the ratio between the amplitude of the oscillation
of the disc and that of the pendulum is

φ10

φ20

=

l

r
−

(
Ω
ω

)2

1 +
l

r

. (30.7)



798 30. Vibration Control in Reciprocating Machines

The amplitude at node 1 then vanishes if the pendulum is tuned on the
frequency ω, i.e., if

r

l
=

(ω

Ω

)2

.

The presence of a rotating-pendulum vibration absorber in the nth node
of the system can be accounted for in the mathematical model simply by
adding a further degree of freedom, the oscillation angle of the pendulum,
and assembling the following mass and stiffness matrices between the nth
node and the added one:

M = m

[
(r + l)2 l(r + l)
l(r + l) l2

]
, K = Ω2

[
0 0
0 mrl

]
. (30.8)

The length of the pendulum must, in general, be very small, particularly
when the vibration absorber is to be tuned on a high-order
harmonic. If tuning has to be performed on the sixth harmonic of a four-
stroke-cycle internal-combustion engine, for example, characterized by ratio
ω/Ω = 3, the length of the pendulum must be equal to 1/9 of the radius at
which it is hinged. Very short pendulums result from the need of tuning at

FIGURE 30.7. Rotating-pendulum vibration absorbers: (a) roller type, dimen-
sions refer to the case in which the rotational inertia of the roller is neglected,
and (b) and (c) bi-filar pendulum type.
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higher-order frequencies. Different solutions to the problem of building very
short pendulums with sufficient mass have been forwarded. Two of them
are sketched in Fig. 30.7. The rotating pendulum of Fig. 30.7a is made
by a roller, free to move in a circular slot in one of the crank webs. The
solution of Fig. 30.7b is equivalent to a bi-filar pendulum and allows very
small values of length l to be achieved. The system of Fig. 30.7c is made
by four rotating pendulums of the type shown in Fig. 30.7b attached to a
single disc. They can have different values of the length l, in order to be
tuned on different harmonics of the forcing function.

30.4 Experimental measurement of torsional
vibrations

The torsional vibrations of reciprocating machines are particularly danger-
ous because they have little effect on the overall motion of the machine
and, hence, are very difficult to detect without suitable instrumentation.
This is because the shaft is not constrained against rotation and the iner-
tia forces due to torsional vibration are completely balanced, at least if the
relevant modes are completely uncoupled from other modes. Their effects
on the nonrotating parts of the machine, which would be completely nil in
the case of the equivalent system, are, at any rate, small. Those warning
signs, such as noise and vibrations transferred to other parts of the ma-
chine that usually allow detection of dynamic problems, are absent or at
least small. An engine or a compressor can thus work with high levels of
dynamic stresses without the operator realizing it until failure occurs. Only
the use of suitable instruments allows verification that the level of torsional
vibrations is low enough not to cause problems.

The preceding statement is not completely true for modern car engines,
which drive a number of accessories (air conditioner, a large alternator, etc.)
through belts. When torsional vibrations are excited, they exert forces that
are variable in time on the supports of the accessories, and the resulting
vibration can be detrimental to the acoustic and vibrational comfort of
the vehicle and to structural safety. Recently, torsional vibration dampers,
which were limited to diesel engines, started to be used on many spark-
ignition engines and complicated types aimed to reduce the transmission
of vibrations to the accessories appeared.

Torsional vibration can be detected from cyclic variations of the instant
rotational velocity or directly from measurements of the dynamic stressing
of the rotating parts of the machine. Speed variations can be detected
using the devices usually included in all rotating machinery to measure the
rotational speed, provided they are sensitive enough.

A common device is a magnetic pick-up that produces a pulse each time
a tooth of a ferromagnetic gear wheel passes in front of it. If the speed
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varies periodically in time, the frequencies of the torsional oscillations can
be obtained from a Fourier analysis of the signal.

However, this method is limited where the maximum vibration frequency
detectable is concerned, because the period of time between the passages
of two subsequent teeth must be much smaller than the period of the fre-
quency to be detected, particularly if the amplitude also has to be mea-
sured. Laser velocity transducers can detect the peripheral velocity of the
rotor, allowing the torsional vibrations of the machine to be accurately as-
sessed. An advantage of these methods is the absence of the need to transfer
signals from the rotor to the stationary parts of the machine.

Alternatively, it is possible to use electric strain gauges on the shaft to
directly measure the variable components of the stresses. The strain gauges
must be located close to the nodes of the mode shape of the harmonic under
study, because the stresses reach their maximum value in these locations.
When using strain gauges it is necessary to transfer the signal from rotating
to stationary parts of the machine. This can be done either by using slip
rings and brushes, which are similar to those of DC motors, or by more
modern magnetic, radio, or optical contactless systems. Instead of locating
the strain gauges directly on the shaft, it is possible to add a seismic mass
connected to the shaft through a low-stiffness spring system and to locate
the strain gauges on these springs.

If the natural frequency of the seismic mass is lower than the first tor-
sional natural frequency of the system, all the harmonics of the oscillation
can be detected. Also in this case, a device that can transfer the signal
to the stationary parts of the machine must be provided. Many types of
instruments, mostly of the mechanical type, which were used in the past,
are now obsolete except for particular applications.

30.5 Axial vibration of crankshafts

Crankshafts of reciprocating machines can be subject to axial vibration,
or better, since the modes of the various types are all coupled, to vibra-
tion modes that are mostly axial. They can be dangerous because of the
possibility of excitation by gas pressures and inertia forces of reciprocating
parts due to the coupling of the various modes. In the past, axial vibrations
were an actual danger only in a few cases, mainly linked with slow large
internal-combustion engines, but the modern tendency toward higher stress
levels, speed, and power/mass ratio caused them to become an important
factor in the design of a wider class of reciprocating machines.

The simplified models used for the study of axial vibration are simi-
lar to those seen in the context of torsional vibration. An equivalent sys-
tem is obtained by lumping the masses in some nodes and evaluating the
axial stiffness of the various parts of the crankshaft. Usually, the largest
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compliance is due to the cranks, because the crankwebs and crankpins bend
during axial vibration, and the straight parts of the shaft are much stiffer
and can often be considered rigid in the study of the lower modes.

The stiffness can be computed using the semi-empirical or empirical for-
mulas reported in the literature, numerical methods, or experimental tests.
The equivalent masses are, in this case, constant and no inertia forces due
to the reciprocating elements must be taken into account. The masses are
only those of the shaft because, due to the axial clearance in the bearings,
the mass of the connecting rods is not involved in axial vibration.

The equivalent system for the study of torsional vibration is undercon-
strained, but that for axial vibrations is axially kept in position by the
thrust bearing, usually modeled as an elastic constraint. All other bearings
are usually not considered: They allow axial displacements of the order of
magnitude of the amplitude of axial vibration. Once the equivalent system
has been obtained, there is no difficulty studying free vibration. Usually, an
in-line system is obtained and transfer-matrices procedures, like the Holzer
method, can be used even if more modern approaches based on the FEM
are now common. Because the equivalent system is a lumped-parameters
system, there is no difficulty obtaining the modal forces due to the connect-
ing rods by measuring or computing, using empirical formulas or numerical
methods, the axial displacements due to unit forces applied by the connect-
ing rods. The study of forced vibrations can thus be performed.

Also in this case there can be dangerous resonance conditions, even if
the excitation is much smaller for axial than for torsional vibration, due to
the lower damping of the system. The same procedures seen for torsional
vibration allow the amplitude and the stresses to be obtained. If they exceed
the allowable limits, it is possible to resort to suitable dampers, possibly
made of a seismic mass, free to move in the axial direction, or a piston that
can move in axial direction (and to rotate, because it is connected to the
shaft) together with the shaft, in a cylinder full of viscous fluid, rigidly or
elastically mounted to the basement of the machine.

Note that the elastomeric damper shown in Fig. 30.7b also acts as an
axial vibration damper. It is possible to tune the damper on two different
frequencies, for torsional and axial vibrations, by tailoring the shape of the
elastomeric element and thus the ratio between the axial and the torsional
stiffness. The ratio between the mass and the moment of inertia can also
be changed, at least within some limits, to achieve the required tuning.

30.6 Short outline on balancing of reciprocating
machines

Reciprocating machines are a source of vibration, not only as a result of
the variation in time of the driving torque, causing torsional vibration of
the crankshaft and a reaction torque on the basement that varies in time,
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but also for the inertia forces due to reciprocating parts. The crank mech-
anism itself is a source of vibration even when it produces no driving or
braking torque. Crank mechanisms are included in a wide variety of com-
mon machines, and the problem of balancing their inertia forces has been
widely studied: Whole books have been devoted to this subject.1 Many
devices, sometimes quite complicated, have been suggested, and, in many
cases, used with the aim of improving the smoothness of reciprocating en-
gines and compressors. Due to the complexity of the problem, only a short
outline of the subject is presented here.

The inertia forces due to the crank mechanism can be studied using the
same scheme seen for the study of the effects of the static unbalance of a
rotor. Consider a single-cylinder machine supported on elastic mountings
that allow the whole system to be displaced in the x- and y-directions
(Fig. 30.8a). The crank is assumed to be made of a statically balanced
disc D, the crankpin B, whose mass is included in the mass m1 of the
connecting rod, and a counterweight C, that is considered a point mass. If
the rotational speed Ω of the disc is assumed to be constant, remembering

FIGURE 30.8. (a) Model for the study of the inertia forces acting in the x- and
y-directions in a crank system; (b) scheme of the arrangement for balancing first-
and second-order forces in a single-cylinder machine. First-order moments of the
counterweights: shaft 1: m1rB + F1/2Ω

2; shafts 2 and 2’: F1/4Ω
2; shafts 3 and

3’: F2/8Ω
2; and (c) balancing second-order forces.

1See, for example, W.Thomson, Fundamentals of Automobile Engines Balancing,
Mech. Eng. Publ. Ltd., 1978).
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the definition of function f1(θ) (Eq. 29.5), the velocities of points O, C, B,
and P are

VO =
{

ẋ
ẏ

}
, VB =

{
ẋ − rBΩ sin(Ωt)
ẏ + rBΩ cos(Ωt)

}
,

VC =
{

ẋ + rCΩ sin(Ωt)
ẏ − rBΩ cos(Ωt)

}
, VP =

{
ẋ + rBΩ

√
f1(Ωt)

ẏ

}
.

(30.9)

If the connecting rod is modeled in the usual way (two point masses
m1 in B and m2 in P and a massless moment of inertia J0), the kinetic
energy of the whole system made by the crank, the connecting rod, and
the reciprocating masses is

T =
1
2
mt(ẋ2 + ẏ2) +

1
2
JeqΩ2 + Ω(mCrC − m1rB)× (30.10)

× [ẋ sin(Ωt) − ẏ cos(Ωt)] − (m2 + mp)rB ẋΩ
√

f1(Ωt) ,

where
mt = md + mC + m1 + m2 + mP ,

Jeq = Jd + mCr2
c + m1r

2
B + (m2 + mP )r2

Bf1(Ωt) + J0f2(Ωt) .

In computing the derivatives of the kinetic energy that enter the equation
of motion, the rotational velocity Ω will be assumed as a constant. If this
assumption is dropped, a further generalized coordinate, for example, the
rotation angle θ, must be introduced, and the torsional behavior of the shaft
can be studied with the effects of unbalance. By introducing the series for
1/ cos(γ) truncated at the second term into the expression for

√
f1(θ), it

follows that

√
f1(θ) = sin(θ) +

α

4
(4 + α2 + 2β2) sin(2θ)+ (30.11)

−α3

8
sin(4θ) − α2β

2
cos(θ) +

α2β

2
cos(3θ) .

By performing the relevant derivatives, using Eq. (30.11) for
√

f1(θ) and
assuming that the axis of the cylinder passes through the center of the crank
(β = 0), the following equations of motion are obtained:

⎧⎪⎪⎨
⎪⎪⎩

mtẍ = Qx − Ω2(mCrC − m1rB) cos(Ωt) + Ω2(m2 + mP )r2
B×

×
[
cos(Ωt) +

α

2
(4 + α2) cos(2Ωt) − α3

2
cos(4Ωt)

]
,

mtÿ = Qy − Ω2(mCrC − m1rB) sin(Ωt) .
(30.12)
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The last terms on the right-hand side of Eq. (30.12) are the unbalance
forces acting on the crank. If the first-order moment mCrC is equal to that
of mass m1, the inertia forces due to rotating masses are balanced and no
force acts in the y-direction. Nevertheless, reciprocating masses m2 and mP

cause inertia forces in the x-direction to be produced. They are periodic
in time with fundamental frequency equal to Ω and cannot be balanced
by simple means such as adding counterweights. The unbalance forces in
the x-direction consist of a first-order component with amplitude F1 and
frequency Ω, a second-order force with amplitude F2 and frequency 2Ω,
and a third-order component with amplitude F3 and frequency 4Ω. Their
amplitudes are

F1 = Ω2rB(m2 + mP ) ,

F2 = Ω2 α(4+α2)
2 rB(m2 + mP ) ,

F3 = Ω2 α3

2 rB(m2 + mP ) .

(30.13)

If more terms in the series for 1/ cos(γ) were considered, slightly different
expressions of the forces would have been obtained together with higher-
order terms. From a practical viewpoint, however, all forces of third and
higher order are considered negligible.

A first action aimed at reducing unbalance forces is that of overbalancing
the shaft, i.e., of using a counterbalance greater than that needed to balance
the rotating masses alone. If half of the reciprocating masses are balanced,
i.e., if

mCrC = m1rB +
1
2
rB(m2 + mp) , (30.14)

the unbalance forces acting on the system in the x- and y-directions are,
respectively,

⎧⎨
⎩

Fx = 1
2F1 cos(Ωt) + F2 cos(2Ωt) + F3 cos(4Ωt) ,

Fy = − 1
2F1 sin(Ωt) .

(30.15)

The resultant of the unbalanced first-order forces is a force with am-
plitude F1/2, rotating with angular velocity Ω in a direction opposite the
direction of rotation. The first-order force is so halved and transformed
from a force pulsating in the x-direction to a force rotating in the back-
ward direction. It can be completely balanced by a counterweight with
first-order moment (m2 + mP )rB/2 rotating in the backward direction.

To avoid inertia torques, such a counterweight should rotate in the same
plane of disc D and have the same axis of rotation. In practice, two coun-
terweights located at the sides of the crank, each with a first-order moment
equal to half that computed, must be used. In a similar way, second-order
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forces can be balanced by using two counterbalances, each having a first-
order moment equal to F2/8Ω2, rotating at a speed that is double the
rotational speed in opposite directions. The scheme of Fig. 30.8b shows a
possible arrangement in which first- and second-order forces are completely
balanced. However, this scheme is very complicated, and in practice single-
cylinder machines are seldom balanced.

In the case of multi-cylinder machines, first-order forces can be balanced
simply by choosing a suitable phasing of the cranks. Because the cranks are
located in different planes, care must be taken to balance both the forces
and the moment due to unbalance. All first-order forces and moments are
balanced in the case of the schemes of Fig. 29.10. To balance second-order
forces it is possible to use a scheme of the type shown in Fig. 30.8c. Ar-
rangements of this type are used to improve the smoothness of the engine
in high-class motor cars, for example. In this case, often the axes of the
two balancing shafts are not located in a plane perpendicular to the axis of
the cylinder to produce a torque with a frequency equal to 2Ω, which can
balance the harmonic with the same frequency in the driving torque of the
engine (Fig. 30.8c). This can be done only approximately, because the am-
plitude of the inertia torque is proportional to the square of the rotational
speed, while that of the driving torque varies in time in an arbitrary way,
being controlled by the driver.

30.7 Exercises

Exercise 30.1 A large marine drive system consists of a four-cylinder diesel

engine with a detuner and a long drive shaft with variable diameter.

The geometry of the system can be summarized by subdividing it into 17 ele-

ments connecting 18 stations. In station 1 is the seismic mass of the detuner, in

station 2 the part of the detuner connected to the crankshaft, in stations 3, 4, 5,

and 6 the cranks, in station 7 the flywheel, and in station 18 the propeller.

The inertial and geometric properties of the fields from 2 to 17, which can be

either cylindrical or conical, are reported in Table 30.1.

The stiffness of the detuner (field 1) is equal to 7.8 × 106 Nm/rad and the

Young’s modulus of the material is E = 2.1× 1011 N/m2. Draw a detailed sketch

of the system. Compute the natural torsional frequencies of the system, with and

without the detuner, by using a finite element model with more than 18 nodes

to model the conical parts of the propeller shaft with prismatic elements. For

the eigensolution, the model can be condensed using only eight master degrees of

freedom. Plot the first four mode shapes, computing the rotations in all nodes, so

as to obtain a detailed deformed shape of the propeller shaft.

Exercise 30.2 Consider the marine drive of the previous exercise. In node

8 the engine shaft ends with a gear wheel, which meshes with two gear wheels
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TABLE 30.1. Exercise 30.1; inertial and geometrical properties.
Node J [kg m2] Node J [kg m2]

1 280 5 2,580
2 111 6 2,218
3 2,260 7 450
4 2,620 18 4,180

Field Type D [mm] l [mm] Field Type D [mm] l [mm]

2 cyl. 500 1,584 10 con. 585–495 145
3 cyl. 500 2,592 11 cyl. 495 276
4 cyl. 500 3,264 12 con. 495–585 145
5 cyl. 500 2,592 13 cyl. 585 5,532
6 con. 500–450 2,520 14 con. 585–495 145
7 cyl. 450 1,200 15 cyl. 495 276
8 con. 450–585 145 16 con. 495–585 145
9 cyl. 585 3,276 17 cyl. 585 5,040

located on propeller shafts identical to the one in the previous exercise. Neglect

the compliance of the meshing gears.

Compute the torsional eigenfrequencies and the mode shapes of the system,

with the following data: moment of inertia of the propellers, the gear wheel on the

engine shaft, and the propeller shafts are 3,200 kg m2, 150 kg m2, and 220 kg m2,

respectively; gear ratio is 0.86.

Exercise 30.3 Repeat the computations of the previous exercise, assuming that

the stiffness of the meshing gears, relative to the driven systems, is 120 × 106

Nm/rad.

Exercise 30.4 Repeat the study of Example 30.1 using a springless dissipative

damper.

Exercise 30.5 Study a dissipative damper to be added at the free end of each

crankshaft of the engines of Exercise 29.5 to reduce dynamic stressing.
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