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Preface to the second edition

The second edition of this book provides a more consistent presentation of
the square root algorithm in Chap 13. The presentation in the first edition
is less mature and there has been a significant development and enhanced
understanding of the square root algorithm following the publication of the
first edition.

A new chapter “Spurious correlations, localization, and inflation” is in-
cluded and discusses and quantifies the impact of spurious correlations in
ensemble filters caused by the use of a limited ensemble size. The chapter sug-
gests and discusses inflation and localization methods for reducing the impact
of spurious correlations and among others presents a new adaptive inflation
algorithm.

The improved sampling algorithm in Chap. 11 is improved and takes into
account the fact that sampling using too few singular vectors can lead to
physically unrealistic and too smooth realizations.

The experiments in Chapters 13 and 14 are all repeated with the updated
square root algorithms. In Chap. 14 a new section on the validity of the
analysis equation, when using an ensemble representation of the measurement
error covariance matrix, is included.

Finally the material in the Appendix is reorganized and the list of refer-
ences is updated with many of the more recent publications on the EnKF.

I am greateful for the interaction and many discussions with Pavel Sakov
and Laurent Bertino during the preparation of the second edition of this book.

Bergen, June 2009 Geir Evensen



Preface

The aim of this book is to introduce the formulation and solution of the
data assimilation problem. The focus is mainly on methods where the model
is allowed to contain errors and where the error statistics evolve through
time. So-called strong constraint methods and simple methods where the error
statistics are constant in time are only briefly explained, and then as special
cases of more general weak constraint formulations.

There is a special focus on the Ensemble Kalman Filter and similar meth-
ods. These are methods which have become very popular, both due to their
simple implementation and interpretation and their properties with nonlinear
models.

The book has been written during several years of work on the development
of data assimilation methods and the teaching of data assimilation methods to
graduate students. It would not have been completed without the continuous
interaction with students and colleagues, and I particularly want to acknowl-
edge the support from Laurent Bertino, Kari Brusdal, François Counillon,
Mette Eknes, Vibeke Haugen, Knut Arild Lisæter, Lars Jørgen Natvik, and
Jan Arild Skjervheim, with whom I have worked closely for several years.
Laurent Bertino and François Counillon also provided much of the material
for the chapter on the TOPAZ ocean data assimilation system. Contributions
from Laurent Bertino, Theresa Lloyd, Gordon Wilmot, Martin Miles, Jennifer
Trittschuh-Vallès, Brice Vallès and Hans Wackernagel, on proof-reading parts
of the final version of the book are also much appreciated.

It is hoped that the book will provide a comprehensive presentation of the
data assimilation problem and that it will serve as a reference and textbook
for students and researchers working with development and application of
data assimilation methods.

Bergen, June 2006 Geir Evensen
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1

Introduction

Does the solution of a dynamical model with conditions have any statistical
meaning or scientific purpose?

A model consists of a number of mathematical equations which are defined
to represent the interaction between various variables through certain physical
processes. In many cases the model excludes several processes or scales which
are believed to have less importance for the applications at hand. Even if the
model is a perfect representation of reality, its solution will not describe reality
unless we have perfect knowledge about the initial and boundary conditions
which are often difficult to prescribe with high accuracy.

From a single model integration we obtain a solution or realization without
knowledge about its uncertainty. In fact, the model solution is just one out of
infinitively many equally likely realizations. Thus, we should really consider
the time evolution of the probability density function (pdf) for the model state.
With knowledge of the pdf for the model state we can extract information
about the most likely estimate of the model state as well as its uncertainty.

In many applications we have an approximate dynamical model with un-
certain estimates of initial and boundary conditions. In addition we may have
measurements of the model solution collected at different space and time lo-
cations. The computation of the pdf of the model solution conditioned on
the measured observations defines the data assimilation or inverse problem
considered in the following chapters.

The accurate representation of the full pdf becomes extremely expensive
for high dimensional simulation models. Thus, data assimilation and inverse
methods must normally represent the pdf using statistical moments or an
ensemble of model states and then search for estimators such as the mean and
maximum likelihood with the associated covariance representing uncertainty.

There is now a large class of different data assimilation and inverse meth-
ods which for practical and computational efficiency implement different sta-
tistical and conceptual approximations. The different methods have different
properties which may depend on the dynamical system to which they are ap-
plied. Some methods will work well with linear dynamics but be completely
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2 1 Introduction

useless for nonlinear dynamics. Other methods may handle nonlinearity well
but computational requirements limit their use to low dimensional dynamical
systems.

Parameter estimation in dynamical models is a field of research which has
developed side by side with the developments in data assimilation. Tradition-
ally one searches for a set of parameters in the model which results in a model
solution that is consistent with a set of measurements. The methods used are
in many cases strongly related to traditional data assimilation methods. Still
there has been limited communication between the two communities. State-
ments like “one should not fiddle with model parameters but focus on the
estimation of the state” has been followed by statements similar to “state es-
timation does not provide any scientific knowledge, what matters is to identify
the parameters”. So who should we trust?

This book aims to explain the fundamental data assimilation and inverse
problem and the derivation and properties of the various methods which can
be used to solve it. It may serve as a text book for students who take an intro-
ductory course in data assimilation and inverse methods, but is also intended
as a reference book on the interpretation and implementation of advanced en-
semble methods. The book has been organized with fairly basic discussions of
traditional sequential and variational assimilation methods in the first chap-
ters. This is followed by a more elaborate discussion of the fully nonlinear
combined state and parameter estimation problem while the final part of the
book is giving an extensive discussion on the practical implementation of en-
semble methods.

Note also that much of the code used in the ensemble Kalman filter ex-
periments is available from the EnKF home page:

http://enkf.nersc.no,

together with other information which is useful for the implementation of the
EnKF.

The outline of the book is the following:
Chap. 2 summarizes basic statistical notation. This is just meant to be a

quick reference and it does not give a complete introduction to the subject.
In Chap. 3 we consider the time independent inverse problem; i.e. given a

first guess of a variable or model state and a set of measurements, what is the
best estimate of the state given the prior estimate and the measurements. A
linear unbiased variance minimizing analysis scheme is derived and shown to
be the optimal solution as long as the prior error statistics are Gaussian.

In Chap. 4 we introduce the time evolution of the model state through a
dynamical model and show how this problem can be solved using the Kalman
Filter (KF), the Extended Kalman Filter (EKF) and the Ensemble Kalman
Filter (EnKF). The methods rely on the analysis scheme derived in the pre-
vious chapter, and differ in the representation of error statistics and how this
evolve in time. Simple examples are used to illustrate the properties of the
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methods and we indicate issues related to the use of the methods with non-
linear dynamics.

Chap. 5 introduces the variational inverse problem. It discusses the impli-
cations of using the model as a weak or strong constraint but focus on the
solution of the weak constraint problem. The Euler–Lagrange equations are
derived and it is shown how they can be solved using the representer method.

In Chap. 6 the nonlinear variational inverse problem is considered. This
may alternatively be solved using substitution methods like gradient descent.
The different methods are used in simple examples which illustrate the prop-
erties of the nonlinear variational inverse problem.

Then in Chap. 7 we reformulate the data assimilation or inverse problem as
a combined state and parameter estimation problem using Bayesian statistics.
A fundamental result from this chapter is that if measurements at different
times are independent, they can be processed sequentially in time. Thus, the
Bayesian problem becomes a sequence of Bayesian subproblems. This result
is exploited when deriving sequential data assimilation algorithms for the
nonlinear assimilation problem in the following chapters.

In Chap. 8 the generalized inverse formulation is derived from the Bayesian
formulation, and it is shown that the solution becomes the maximum likeli-
hood estimator of the joint conditional pdf. Further, Euler–Lagrange equa-
tions for the generalized inverse are derived and they include the parameter
estimation case which is solved in a simple illustration.

The ensemble methods are rederived in Chap. 9 starting from the Bayesian
formulation. This leads to the Ensemble Smoother (ES) and the Ensemble
Kalman Smoother (EnKS) as ensemble methods for solving the generalized
inverse problem. The ensemble Kalman filter (EnKF) is then derived as a
special case of the EnKS where information is only carried forward in time.
Finally, the ensemble methods are examined in an example with the chaotic
Lorenz equations.

In Chap. 10 a simple but nonlinear optimization problem is considered. It
is shown that it can be solved using a statistical minimization method based
on the EnKS. This example illustrates the impact of non-Gaussian statistics
in the ensemble analysis update.

Chap. 11 discusses is some detail issues related to the sampling of ensemble
realizations. It presents a simple methodology for generating random realiza-
tions of smooth pseudo-random fields with anisotropic covariance structure.
An improved sampling scheme is presented which can be used to generate an
ensemble with better rank properties, and experiments are presented which
demonstrate the impact of ensemble size and the improved sampling algo-
rithm.

Chap. 12 discusses the use of model errors and in particular the case of
time correlated model errors. It includes a simple example illustrating how
model errors, as well as model bias and model parameters, can be estimated
using the EnKF and EnKS.
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Recently developed square root schemes, which avoid the perturbation of
measurements, are discussed in Chap. 13. The derivation of the square root
schemes is discussed and it is shown that an additional randomization of the
ensemble updates is still required. The square root schemes are evaluated and
compared with results from the original EnKF scheme.

In Chap. 14 we discuss how it is possible to consistently compute the
inversion in the different analyses schemes when the number of measurements
is much larger than the number of ensemble members. This discussion leads to
the final form of the EnKF analysis scheme where different pseudo-inversion
schemes can be used in combination with either the traditional analysis update
or the square root analysis. In particular the development of a sub-space
inversion has lead to a very efficient algorithm which is useful even with very
large data sets.

In Chap. 15 we evaluate the impact of spurious correlations caused by the
use of a finite ensemble size. The actual magnutude of the spurious correlations
is quantified and localization and inflation methods are demonstrated as tools
that may be used to reduce the influence of spurious correlations.

An operational ocean prediction system, which is based on the EnKF, is
presented in Chap. 16. The purpose is to illustrate what is really possible
today using state of the art ocean circulation models together with advanced
data assimilation schemes.

Another application, based on a reservoir simulation model, is given in
Chap. 17, where both the model state and model parameters are estimated
using the EnKF.

In Appendix A, some special issues related to the practical implementation
of the EnKF, as well as ensemble methods in general, are given, including the
use of nonlinear and non-synoptic measurements and the use of so-called time
difference data.

Finally in Appendix B a chronological listing of previous publications re-
lated to the EnKF and other ensemble methods is included.
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Statistical definitions

Basic statistical definitions which will be used in the following chapters are
explained. The following is only meant to be a quick reference on statisti-
cal notation and definitions and more elaborate textbooks can be used for a
comprehensive introduction to the subject.

2.1 Probability density function

Given a continuous random variable Ψ , we can associate a distribution func-
tion F (ψ). This is also named the cumulative density function or probability
distribution function, and it describes the probability that a realization of
Ψ takes a value less than or equal to ψ. We can relate it to a continuous
probability density function f(ψ), through

F (ψ) =
∫ ψ

−∞
f(ψ′)dψ′, (2.1)

thus f(ψ), when it exists, is just the derivative of the distribution function

f(ψ) =
∂F (ψ)
∂ψ

. (2.2)

The probability density function (pdf) gives the probability that a ran-
dom variable Ψ will take a particular value ψ. If a probability distribution
has density f(ψ), then the infinitesimal interval (ψ,ψ + dψ) has probability
f(ψ)dψ.

The pdf must satisfy the conditions

f(ψ) ≥ 0 for all ψ, (2.3)

which states that the probability for Ψ to take a value ψ, must be positive or
zero, and
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−∞
f(ψ)dψ = 1, (2.4)

that is, the probability of finding Ψ in the space of real numbers <1, is equal
to one.

Further, given f(ψ), the probability that ψ takes a value in the interval
[ψa, ψb] is

Pr
(
Ψ ∈ [ψa, ψb]

)
=
∫ ψb

ψa

f(ψ)dψ. (2.5)

The most common and useful distribution is the one called the normal
or Gaussian distribution. It is defined by its mean and variance and has a
bell shaped or Gaussian form. It represents a family of distributions of the
same general form, characterized by their mean µ, and the variance σ2. The
standard normal distribution is a normal distribution with a mean of zero and
a variance of one. The normal distribution has the pdf

f(ψ) =
1

σ
√

2π
exp

(
− (ψ − µ)2

2σ2

)
. (2.6)

A convenient aspect of a normal population distribution is that the follow-
ing empirical “rule of thumb” can be applied to the data: µ ± σ spans ap-
proximately 68% of the realizations, µ± 2σ spans approximately 95% of the
realizations, and µ± 3σ spans about 99% of the realizations.

The joint pdf describes the probability of two events together. Given two
random variables Ψ and Φ we can define the joint pdf f(ψ, φ).

The conditional pdf describes the probability of some event Ψ , assuming
the event Φ. The conditional pdf is denoted f(ψ|φ) which is read as the pdf
for Ψ given Φ. It is often called the posterior pdf.

The marginal pdf is the pdf of one event, ignoring any information about
the other event. It is obtained by integrating the joint pdf over the ignored
event; e.g. the marginal pdf for Ψ is f(ψ) =

∫∞
−∞ f(ψ, φ)dφ.

We also have that

f(ψ|φ) =
f(ψ, φ)
f(φ)

, (2.7)

or equivalently
f(ψ, φ) = f(ψ|φ)f(φ) = f(φ|ψ)f(ψ). (2.8)

The variables Ψ and Φ are said to be independent if f(ψ, φ) = f(ψ)f(φ).
From 2.8 we can write

f(ψ|φ) =
f(ψ)f(φ|ψ)

f(φ)
. (2.9)

This is Bayes’ theorem which is a general result in probability theory giving the
conditional probability distribution of a random variable Ψ given Φ in terms
of the conditional probability distribution of variable Φ given Ψ , often named
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the likelihood, and the marginal probability distribution of Ψ alone. In the
context of Bayesian probability theory, the marginal probability distribution of
Ψ alone is usually called the prior probability distribution or simply the prior.
The conditional distribution of Ψ given the “data” Φ is called the posterior
probability distribution or just the posterior. This is a general result and will
be used extensively in the following chapters.

In this book we will in several occasions refer to and use Bayesian statistics
to derive and explain data assimilation methods and their properties. In par-
ticular we will use a probability density function f(ψ), for the event ψ ∈ <n.
This is again related to the distribution function F (ψ), of the random variable
Ψ ∈ <n, through the equation

F (ψ1, . . . , ψn) =
∫ ψ1

−∞
· · ·
∫ ψn

−∞
f(ψ′1, . . . , ψ

′
n)dψ

′
1 . . . dψ

′
n, (2.10)

and the pdf is again defined as the derivative of the distribution function.
The pdf is a positive function of dimension n and it has the property that∫ ∞

−∞
· · ·
∫ ∞

−∞
f(ψ1, . . . , ψn)dψ1 . . . dψn = 1. (2.11)

Thus, the probability that ψ is located somewhere in <n is one. For each value
of ψ, f(ψ) gives the probability for this particular state. The pdf f(ψ) is also
named the joint pdf for (ψ1, . . . , ψn).

This joint pdf can be factorized into

f(ψ1, . . . , ψn) = f(ψ1)f(ψ2|ψ1)f(ψ3|ψ1, ψ2) · · · f(ψn|ψ1, . . . , ψn−1). (2.12)

Here f(ψ2|ψ1) is the likelihood of ψ2 given ψ1, and if n = 2 we get just
f(ψ1, ψ2) = f(ψ1)f(ψ2|ψ1), which is interpreted as the probability of ψ1 times
the likelihood of ψ2 given ψ1.

If the events, (ψ1, . . . , ψn) are independent we can write

f(ψ1, . . . , ψn) = f(ψ1)f(ψ2) · · · f(ψn). (2.13)

We will make frequent use of the pdf of a model state ψ, and the likelihood
function for a vector of measurements d, of the state which is written as
f(d|ψ). The joint pdf of the state and the measurements can be written

f(ψ,d) = f(ψ)f(d|ψ) = f(d)f(ψ|d), (2.14)

and we must have

f(ψ|d) =
f(ψ)f(d|ψ)

f(d)
, (2.15)

where the denominator is just the integral of the numerator, which normal-
izes the numerator such that the expression integrates to one. This is Bayes’
theorem, and in this context it states that the pdf of the model state given a
set of measurements is proportional to the pdf of the model state times the
likelihood function for the measurements.
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2.2 Statistical moments

The probability density function f(ψ), contains a huge amount of information,
especially for high dimensional systems, and actually much more information
than is normally needed. Instead of working with the full density it is often
convenient to define statistical moments of the density. These are defined from
the general expression of the expected value of a function h(Ψ),

E[h(Ψ)] =
∫ ∞

−∞
h(ψ)f(ψ)dψ. (2.16)

2.2.1 Expected value

The expected value of a random variable Ψ with distribution f(ψ), is defined
as

µ = E[Ψ ] =
∫ ∞

−∞
ψf(ψ)dψ. (2.17)

The expected value (or expectation) of a random variable represents the av-
erage one “expects” if an infinite number of samples are drawn from the
distribution. Note that the value itself may not be expected in the general
sense, it may be unlikely or even impossible, dependent on the shape of f(ψ).

2.2.2 Variance

If Ψ is a random variable, the variance is given by

σ2 = E
[(
Ψ − E[Ψ ]

)2] =
∫ ∞

−∞

(
ψ − E[Ψ ]

)2
f(ψ)dψ

= E
[
Ψ2
]
− E

[
Ψ
]2
.

(2.18)

That is, it is the expected value of the square of the deviation of Ψ from its
own mean. In other words, it is the average of the square of the distance of
each data point from the mean. It is thus the mean squared deviation. The
second line in 2.18 is often used for the practical computation of the variance.
It is just the second moment minus the square of the first moment.

An inconvenience is that the variance has a unit which is the square of the
data unit. For this reason it is common to use the square root of the variance
which is named the standard deviation, denoted σ. It can also easily be shown
that the variance does not depend on the mean, thus the variance of Ψ + b is
the same as the variance of Ψ . On the other hand the variance of aΨ is a2σ2.
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2.2.3 Covariance

Given two random variables Ψ and Φ and their respective probability den-
sity functions f(ψ) and f(φ), from which we can define the joint probability
f(ψ, φ) = f(ψ|φ)f(φ) = f(φ|ψ)f(ψ), their covariance is defined as

E
[(
Ψ − E[Ψ ]

)(
Φ− E[Φ]

)]
=
∫∫ ∞

−∞

(
ψ − E[Ψ ]

)(
φ− E[Φ]

)
f(ψ, φ)dψdφ

=
∫∫ ∞

−∞
ψφf(ψ, φ)dψdφ− E[Ψ ]E[Φ].

(2.19)

Note that the same conditions (2.3) and (2.4) also apply for f(ψ, φ). In the
case when the random variables Ψ and Φ are independent, f(ψ, φ) = f(ψ)f(φ)
and the covariance becomes zero.

2.3 Working with samples from a distribution

Clearly when the dimension of a probability function increases to more than
about 3–4 it becomes very impractical, if not impossible, to evaluate the inte-
grals by numerical integration on a regular grid. Suppose the dimension is 10
and we need 10 grid points in each direction to have a proper representation
of the density. A grid with 1010 nodes would then have to be stored which
would require 40 Giga bytes of storage and 1010 additions would be needed
to calculate the integral.

Fortunately there is an alternative to the direct numerical integration
which often works very well even for high dimensional systems. The ap-
proach is called the Markov Chain Monte Carlo (MCMC) methods, (see e.g.
Robert and Casella, 2004), and assumes that we have available a large number
N , of realizations from the distribution f(ψ).

2.3.1 Sample mean

Having a sample of independent realizations from the distribution f(ψ), i.e.
ψi, for i = 1, N , then the sample mean ψ, is given by

µ = E[ψ] ' ψ =
1
N

N∑
i=1

ψi. (2.20)

The “expected value” terminology is meant to connote that E[Ψ ] is, in some
sense, the “best guess” as to the possible outcome of Ψ , or said in another
way; the expected value is the value we expect to obtain if infinitely many
data are present, and the sample mean of these is computed. This is a reason
why E[Ψ ] is often called the mean of Ψ .
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2.3.2 Sample variance

The variance can be calculated from the formula

σ2 = E
[(
Ψ − E[Ψ ]

)2]
'
(
ψ − ψ

)2 =
1

N − 1

N∑
i=1

(
ψi − ψ

)2
,

(2.21)

where the denominator N − 1 is used instead of N to ensure that the formula
(2.21) becomes an unbiased estimator for the variance.

2.3.3 Sample covariance

The covariance can be calculated from the formula

Cov(ψ, φ) = E
[(
Ψ − E[Ψ ]

)(
Φ− E[Φ]

)]
'
(
ψ − ψ

)(
φ− φ

)
=

1
N − 1

N∑
i=1

(
ψi − ψ

)(
φi − φ

)
.

(2.22)

2.4 Statistics of random fields

Of special interest for us will be the statistics of so-called random fields Ψ(x)
where Ψ is now a function of x = (x, y, z, . . .).

2.4.1 Sample mean

Having an ensemble of independent samples from the distribution f(ψ(x)),
i.e. ψi(x), for i = 1, N , then the sample mean is given by

µ(x) ' ψ(x) =
1
N

N∑
i=1

ψi(x). (2.23)

2.4.2 Sample variance

The sample variance of an ensemble of independent samples from the distri-
bution f(ψ(x)), is given as

σ2(x) '
(
ψ(x)− ψ(x)

)2 =
1

N − 1

N∑
i=1

(
ψi(x)− ψ(x)

)2
. (2.24)
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2.4.3 Sample covariance

The covariance between two different locations x1 and x2 for the random
fields are given by

Cψψ(x1,x2) '
(
ψ(x1)− ψ(x1)

)(
ψ(x2)− ψ(x2)

)
=

1
N − 1

N∑
j=1

(
ψj(x1)− ψ(x1)

)(
ψj(x2)− ψ(x2)

)
.

(2.25)

Note that if x1 = x2, then (2.25) reduces to the definition of variance.
The covariance of Ψ between the two locations x1 and x2 defines how

values of Ψ , at different locations, are “varying together” or “covarying” . For
example, if the random fields Ψ are smooth we will expect that neighboring
points are correlated or covarying. The covariance can therefore be a measure
of smoothness.

2.4.4 Correlation

The correlation between the random variables Ψ(x1) and Ψ(x2) is defined by

Cor
(
ψ(x1), ψ(x2)

)
=

C(x1,x2)
σ(x1)σ(x2)

. (2.26)

Thus, the correlation is just a normalized covariance.

2.5 Bias

One meaning is involved in what is called a biased sample; if some elements
are more likely to be chosen in the sample than others, and those have
a higher/lower value of the quantity being estimated, the outcome will be
higher/lower than the true value.

Another kind of bias in statistics does not involve biased samples, but
rather the use of a statistics whose average value differs from the value of the
quantity being estimated. Suppose we are trying to estimate the true value ψt

of a parameter ψ using an estimator ψ̂ (that is, some function of the observed
data). Then the bias of ψ̂ is defined to be

E
[
ψ̂
]
− ψt. (2.27)

In words, this would be “the expected value of the estimator ψ̂ minus the true
value ψt”. This may be rewritten as

E
[
ψ̂ − ψt

]
, (2.28)
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which would read “the expected value of the difference between the estimator
and the true value”.

An example of a biased estimator of variance is

σ2
biased =

1
N

N∑
i=1

(
ψi − ψ

)2
, (2.29)

which differs from the formula (2.21) by the division by N rather than N − 1.
The proof that this is a biased estimator of the variance is left as an exercise.

2.6 Central limit theorem

The central limit theorem can be used to say something about the convergence
of the moments of a sample with increasing sample size.

Assume that we draw a number of samples of the random variable Ψ , each
with sample size N . We then have the following:

• The sample mean µ(ψ) from (2.23), computed from the different samples
is normally distributed, independent of the distribution for Ψ .

• The standard deviation of µ(ψ) as computed from the different samples
tends towards σ(Ψ)/

√
N .

Thus, if we compute the sample mean from a given sample, we can expect
that the error in the computed sample mean is normally distributed and given
by σ(Ψ)/

√
N . Importantly, the error decreases proportional to 1/

√
N .

The amazing and counter-intuitive property of the central limit theorem
is that no matter what the shape of the original distribution, the sampling
distribution of the mean approaches a normal distribution. Furthermore, for
most distributions, a normal distribution is approached very quickly as N
increases.



3

Analysis scheme

This chapter discusses the problem of how to combine a model prediction of
a state variable at a given time with a set of measurements available at this
particular time. It is assumed that error statistics of the model prediction as
well as the measurements are known and characterized by the respective error
covariances. Based on this information the so-called analysis scheme used in
linear data assimilation methods is presented in some detail. First the theory
is derived for the scalar case and then it is extended to the case with a spatial
dimension. An extensive analysis of the properties of the analysis scheme is
given and this introduces notation and concepts which are also valid for the
time dependent problems treated in the following chapters.

3.1 Scalar case

We start by deriving the optimal linear and unbiased estimator for a scalar
state variable combined with a single measurement.

3.1.1 State-space formulation

Given two different estimates of the true state ψt (e.g. a temperature at a
particular location and time):

ψf = ψt + pf , (3.1)

d = ψt + ε, (3.2)

where ψf may be a model forecast or a first-guess estimate and d is a measure-
ment of ψt. The term pf denotes the unknown error in the forecast and ε is the
unknown measurement error. The problem is now, to find an improved ana-
lyzed estimate ψa of ψt. Thus, additional information about the error terms
must be supplied and we make the following assumptions:
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pf = 0, (pf)2 = Cf
ψψ,

ε = 0, (ε)2 = Cεε, (3.3)

εpf = 0.

Here the overbar denotes ensemble averaging or expected value.
We now seek a linear estimator

ψa = ψt + pa = α1ψ
f + α2d, (3.4)

where we define
pa = 0, (pa)2 = Ca

ψψ. (3.5)

The definition (3.5) means that we assume that the error pa, in the analyzed
estimate is unbiased. Thus, the analyzed estimate itself becomes an unbiased
estimate of the true state ψt, i.e. ψa = ψt.

Inserting the estimates (3.1) and (3.2) in (3.4) we get

ψt + pa = α1(ψt + pf) + α2(ψt + ε). (3.6)

The expectation of this equation is

ψt = α1ψ
t + α2ψ

t = (α1 + α2)ψt. (3.7)

Thus, we must have

α1 + α2 = 1, or α1 = 1− α2, (3.8)

and a linear unbiased estimator for ψt is given as

ψa = (1− α2)ψf + α2d

= ψf + α2(d− ψf).
(3.9)

Using (3.1), (3.2) and (3.4) in this equation gives an expression for the error
in the analysis

pa = pf + α2(ε− pf). (3.10)

The error variance is then using (3.3)

(pa)2 = Ca
ψψ = (pf + α2(ε− pf))2

= (pf)2 + 2α2pf(ε− pf) + α2
2ε

2 − 2εpf + (pf)2

= Cf
ψψ − 2α2C

f
ψψ + α2

2(Cεε + Cf
ψψ),

(3.11)

and the minimum variance is defined by

dCa
ψψα2 = −2Cf

ψψ + 2α2(Cεε + Cf
ψψ) = 0. (3.12)

Solving for α2 gives
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α2 =
Cf
ψψ

Cεε + Cf
ψψ

, (3.13)

and the analyzed estimate becomes

ψa = ψf +
Cf
ψψ

Cεε + Cf
ψψ

(
d− ψf

)
. (3.14)

Further, the error variance of the analyzed estimate is now from (3.11) and
(3.13)

Ca
ψψ = Cf

ψψ − 2
Cf
ψψ

Cεε + Cf
ψψ

Cf
ψψ +

(
Cf
ψψ

Cεε + Cf
ψψ

)2 (
Cεε + Cf

ψψ

)
= Cf

ψψ −
(Cf

ψψ)2

Cεε + Cf
ψψ

= Cf
ψψ

(
1−

Cf
ψψ

Cεε + Cf
ψψ

)
.

(3.15)

3.1.2 Bayesian formulation

Given a probability density function f(ψ) for the first-guess estimate ψf , and
a likelihood function f(d|ψ) for the measurement d; then, from Chap. 2 we
have Bayes’ theorem

f(ψ|d) ∝ f(ψ)f(d|ψ). (3.16)

Thus, the posterior density for ψ given the measurement d, is proportional
to the product of the prior density for ψ times the likelihood function for the
measurement d.

Again consider the two estimates (3.1) and (3.2) of the true state ψt. In
the case with Gaussian statistics we can define the prior and likelihood as

f(ψ) ∝ exp
(
−1

2
(
ψ − ψf

) (
Cf
ψψ

)−1 (
ψ − ψf

))
(3.17)

and
f(d|ψ) ∝ exp

(
−1

2
(ψ − d)C−1

εε (ψ − d)
)
. (3.18)

Thus, the posterior density can be written as

f(ψ|d) ∝ exp
(
−1

2
J [ψ]

)
, (3.19)

where

J [ψ] =
(
ψ − ψf

) (
Cf
ψψ

)−1 (
ψ − ψf

)
+ (ψ − d)C−1

εε (ψ − d). (3.20)

The least squares solution ψa, that gives a minimum for J , also gives
a maximum of f(ψ|d), i.e. it is the maximum likelihood estimate. This will
always be true as long as all the error terms are normally distributed.
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The minimum value of J is found from

dJψ = 2
(
ψ − ψf

) (
Cf
ψψ

)−1
+ 2 (ψ − d)C−1

εε = 0. (3.21)

Solving for ψ gives again the result ψa in (3.14), thus, the minimum variance
estimate is also the maximum likelihood estimate in the case with Gaussian
priors.

3.2 Extension to spatial dimensions

Now we extend the discussion to involve a variable ψf(x), with a spatial
dimension which may be one or larger, e.g. x = (x, y, z) for a three dimensional
space. In the following discussion we adopt the notation used by Bennett
(1992) who gave a similar derivation for the time dependent problem.

3.2.1 Basic formulation

Assume now a multidimensional variable (e.g. a temperature field), and a vec-
tor of measurements d ∈ <M , which is related to the true state through the
measurement functional M ∈ <M , with M being the number of measure-
ments:

ψf(x) = ψt(x) + pf(x), (3.22)

d = M[ψt(x)] + ε. (3.23)

The term pf(x) is the error in the first-guess field ψf(x), relative to the truth
ψt(x). Further, we have defined the vector of measurement errors ε ∈ <M . The
measurement errors may be a composite of errors introduced when measuring
the variable and additional representation errors introduced when construct-
ing the measurement functional. This will be discussed in more detail in the
following chapters.

As an example of a measurement functional, a direct measurement would
be represented by a functional of the form

Mi[ψ(x)] =
∫
D
ψ(x)δ(x− xi)dx = ψ(xi), (3.24)

where xi is the measurement location, δ(x−xi) is the Dirac delta function, and
the subscript i denotes the component i of the measurement functional. Note
that in some of the following equations we will use a subscript on the vector
form of the measurement functional, e.g. M(3)[δψ(x3)] which just denote that
the integration is performed on the dummy variable x3 rather than x as is
used in (3.24).

The actual values of the errors pf(x) and ε are not known. Thus, to make
progress, a statistical hypothesis must be used, and we make the following
assumptions:
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pf(x) = 0, pf(x1)pf(x2) = Cf
ψψ(x1,x2),

ε = 0, εεT = Cεε, (3.25)

pf(x)ε = 0.

Thus, the means of the errors in the first-guess and the measurements are zero,
and there are no cross correlations between these error terms. Further, we have
knowledge of the forecast or first-guess error covariance between two points in
space Cf

ψψ(x1,x2), and the observation error covariance matrix Cεε ∈ <M×M .
Note that the error covariance differs from the sample covariance as defined
in (2.22) by referring to the true (unknown) state rather than the sample
average.

We are now defining a variational functional

J [ψ] =
∫∫

D

(
ψf(x1)− ψ(x1)

)
W f
ψψ(x1,x2)

(
ψf(x2)− ψ(x2)

)
dx1dx2

+
(
d−M(3)[ψ3]

)T
W εε

(
d−M(4)[ψ4]

)
,

(3.26)

where W f
ψψ(x1,x2) is defined as a functional inverse of Cf

ψψ(x1,x2) from∫
D
Cf
ψψ(x1,x2)W f

ψψ(x2,x3)dx2 = δ(x1 − x3), (3.27)

and W εε is the inverse of the measurement error covariance matrix Cεε. Here
we have used subscripts on the measurement operator and its argument, e.g.
M(3)[ψ3] indicating that the dummy variable for the integration is x3. This
has no implications in this expression but it will be useful in the following
derivation.

The variational functional (3.26) measures, in a weighted sense, the dis-
tance between an estimate ψ(x) and the forecast or first-guess ψf(x), plus the
distance between the estimate and the observations d. The field ψ(x) which
minimizes (3.26) is named ψa(x). The use of inverses of the error covariances
as weights, ensures that the variance minimizing estimate becomes equal to
the maximum likelihood estimate in the case with Gaussian error statistics.

3.2.2 Euler–Lagrange equation

To minimize the variational functional, (3.26), we can calculate the variational
derivative of J [ψ] and require that it approaches zero when the arbitrary
perturbation δψ(x) goes to zero. Thus, we have

δJ = J [ψ + δψ]− J [ψ] = O(δψ2). (3.28)

Evaluating (3.28) gives
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δJ = −2
∫∫

D
δψ(x1)W f

ψψ(x1,x2)
(
ψf(x2)− ψ(x2)

)
dx1dx2

− 2M(3)[δψ(x3)]TW εε

(
d−M(4)[ψ(x4)]

)
+O(δψ2) = O(δψ2).

(3.29)

Thus, to have an extrema of J we must have∫∫
D
δψ(x1)W f

ψψ(x1,x2)
(
ψf(x2)− ψa(x2)

)
dx1dx2

+ M(3)[δψ(x3)]TW εε

(
d−M(4)[ψa(x4)]

)
= 0.

(3.30)

To proceed we need to get the second term in under the integral and both
terms need to be proportional to δψ. We will now show that

M(3)[δψ(x3)]T =
∫
D
δψ(x1)MT

(3)[δ(x1 − x3)]dx1. (3.31)

We start by writing out the measurement of a Dirac delta function, δ(x1−
x3), as

Mi(3)[δ(x1 − x3)] =
∫
D
δ(x1 − x3)δ(x3 − xi)dx3 = δ(x1 − xi), (3.32)

for i = 1, . . . ,M where M is the number of measurements. The subscript (3)
onMi defines the variable the functional is operating on, thus, the integration
variable is x3. Multiplying this equation with δψ(x1) and integrating in x1

now gives∫
D
δψ(x1)Mi(3)[δ(x1 − x3)]dx1 =

∫
D
δψ(x1)δ(x1 − xi)dx1

= Mi(1)[δψ(x1)]
= Mi(3)[δψ(x3)].

(3.33)

where in the last line, we changed the dummy variable for the integration to
x3. Thus, we have obtained (3.31).

We also have that∫
D
Cf
ψψ(x1,x2)MT

i(3)[δ(x2 − x3)]dx2 = Cf
ψψ(x1,xi)

= Mi(2)[Cf
ψψ(x1,x2)].

(3.34)

Note that the second term of (3.30), i.e. the measurement term, is constant
in the integration with respect to x2. Equations (3.32–3.34) are verified for
i = 1, . . . ,M , and their results can be generalized and substituted into (3.30)
which then leads to∫∫

D
δψ(x1)

(
W f
ψψ(x1,x2)

(
ψf(x2)− ψa(x2)

)
+ MT

(3)[δ(x1 − x3)]W εε

(
d−M(4)[ψa(x4)]

))
dx1dx2 = 0,

(3.35)
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or since this must be true for all δψ we must have

W f
ψψ(x1,x2)

(
ψf(x2)− ψa(x2)

)
+ MT

(3)[δ(x1 − x3)]W εε

(
d−M(4)[ψa(x4)]

)
= 0.

(3.36)

This is the Euler–Lagrange equation for the variational problem, of which the
solution ψa must be a minimum of J .

Now multiply (3.36) with Cf
ψψ(x,x1) and integrate with respect to x1.

Using the definition (3.27) and the identity (3.34) we get the Euler–Lagrange
equation of the form

ψa(x)− ψf(x) = MT
(3)[C

f
ψψ(x,x3)]W εε

(
d−M(4)[ψa

4 ]
)
. (3.37)

3.2.3 Representer solution

A problem with the Euler–Lagrange equation (3.37) is that ψa is contained
on both sides of the equality sign. To resolve this we first define the vector
b ∈ <M as

b = W εε

(
d−M(4)[ψa

4 ]
)
, (3.38)

and then seek a solution of the form

ψa(x) = ψf(x) + bTr(x), (3.39)

where we have introduced the vector of representers r(x) ∈ <M .
Inserting this into (3.37) gives

ψf(x)− ψf(x) + bTr(x) = MT
(3)[C

f
ψψ(x,x3)]b, (3.40)

Thus, we get the influence functions or representers r(x) defined as

r(x) = M(3)[Cf
ψψ(x,x3)]. (3.41)

Now using (3.39) in (3.38) gives

b = W εε

(
d−M(4)[ψf

4 + bTr4]
)

= W εε

(
d−M(4)[ψf

4]
)
−W εεM(4)[b

Tr4]

= W εε

(
d−M(4)[ψf

4]
)
−W εεb

TM(4)[r4],

(3.42)

because of the linearity of M. Rearranging gives

b+W εεb
TM(4)[r4]) = W εε

(
d−M(4)[ψf

4]
)
, (3.43)

and, multiplying from the left with Cεε, we obtain

Cεεb+ bTM(4)[r4] = d−M(4)[ψf
4], (3.44)
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or (
MT

(4)[r4] +Cεε

)
b = d−M(4)[ψf

4], (3.45)

which is a linear system of equations for b. Rewriting by using (3.41) the
equation becomes(

M(3)MT
(4)[C

f
ψψ(x3,x4)] +Cεε

)
b = d−M(4)[ψf(x4)]. (3.46)

A solution can now be found from the equations (3.39), (3.41) and (3.45).

3.2.4 Representer matrix

Note that with direct measurements as given in (3.24), we have

Mi(3)MT
j(4)[C

f
ψψ(x3,x4)] = Cf

ψψ(xi,xj). (3.47)

The matrix Cf
ψψ(xi,xj) is often called the representer matrix and with direct

measurements it describes the covariances of the first-guess between the two
locations xi and xj .

3.2.5 Error estimate

It is possible to derive an error estimate for the analysis (3.39). The simplest
is to use the procedure as derived by Bennett (1992) for the time dependent
problem. From the definition of the error covariance in (3.25) we can write

Ca
ψψ(x1,x2) = (ψt(x1)− ψa(x1))(ψt(x2)− ψa(x2)), (3.48)

and insert the equation for the analysis to get

Ca
ψψ(x1,x2) = (ψt

1 − ψf
1 − b

Tr1)(ψt
2 − ψf

2 − b
Tr2)

= (ψt
1 − ψf

1)(ψ
t
2 − ψf

2)− 2(ψt
1 − ψf

1)b
Tr2 + rT

1 bb
Tr2.

(3.49)

We have used that b is a function of ψ and the representers r, are functions
of the covariance matrix and then ψ. Further, we used the property (AB)T =
BTAT for matrices A and B, and that the covariance is symmetrical in x1

and x2.
The first term is just Cf

ψψ while the two other terms will be treated next
and we now define for convenience

P = M(3)MT
(4)[C

f
ψψ(x3,x4)] +Cεε, (3.50)

and the residual or innovation

h = d−M(4)[ψf
4]. (3.51)
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Using (3.41), (3.50) and (3.51) in (3.45) gives b = P−1h. Furthermore,
by using (3.23), (3.25), (3.41) and (3.45), in addition to the two definitions
above, the second term in (3.49) becomes

−2(ψt
1 − ψf

1)b
Tr2

= −2(ψt
1 − ψf

1)(P
−1h)Tr2

= −2(ψt
1 − ψf

1)
(
P−1(d−M(4)[ψf

4])
)T
r2

= −2(ψt
1 − ψf

1)
(
P−1(M(4)[ψt

4] + ε−M(4)[ψf
4])
)T
r2

= −2(ψt
1 − ψf

1)M
T
(4)[ψt

4 − ψf
4]P

−1r2 + 0

= −2MT
(4)[(ψt

1 − ψf
1)(ψ

t
4 − ψf

4)]P
−1r2

= −2MT
(4)[C

f
ψψ(x1,x4)]P−1r2

= −2rT
1 P−1r2.

(3.52)

Here we have also used that ε = 0 from (3.25), and that P is a symmetrical
function of the covariance and can be moved outside the averaging.

Further, using (P−1h)T = hTP−1, the last term becomes

rT
1 bb

Tr2

= rT
1 P−1hhTP−1r2

= rT
1 P−1(d−M(1)[ψf

1])(d−M(2)[ψf
2])TP−1r2

= rT
1 P−1(M(1)[ψt

1] + ε−M(1)[ψf
1])(M(2)[ψt

2] + ε−M(1)[ψf
2])TP−1r2

= rT
1 P−1(M(1)[ψt

1 − ψf
1] + ε)(M(2)[ψt

2 − ψf
2] + ε)TP−1r2 (3.53)

= rT
1 P−1(M(1)MT

(2)[(ψt
1 − ψf

1)(ψ
t
2 − ψf

2)] + εεT)P−1r2

= rT
1 P−1PP−1r2

= rT
1 P−1r2.

Thus, an error estimate is given as

Ca
ψψ(x1,x2) = Cf

ψψ(x1,x2)

− rT(x1)
(
M(3)MT

(4)[C
f
ψψ(x3,x4)] +Cεε

)−1

r(x2).
(3.54)

where the definition for P has been used.

3.2.6 Uniqueness of the solution

By expressing the solution as in (3.39) not all arbitrary functions can be rep-
resented. To show that the solution (3.39) is the unique variance minimizing
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linear solution we proceed with the following argumentation using a geomet-
rical formulation, identical to the formulation used for the time dependent
problem by Bennett (1992). First define the inner product

< f(x1), g(x2) >=
∫∫

D
f(x1)W f

ψψ(x1,x2)g(x2)dx1dx2. (3.55)

Note that

< Cf
ψψ(x3,x1), ψ(x2) >

=
∫∫

D
Cf
ψψ(x3,x1)W f

ψψ(x1,x2)ψ(x2)dx1dx2

= ψ(x3),

(3.56)

thus, Cf
ψψ(x3,x1) is a “reproducing kernel” for the inner product (3.55) and

the expression (3.56) is true for every field ψ in any point x.
Recalling the definition of the representer (3.41) we get

< r(x1), ψ(x2) > =< M(1)[Cf
ψψ(x3,x1)], ψ(x2) >

= M(1)[< Cf
ψψ(x3,x1), ψ(x2) >]

= M(1)[ψ(x1)]

(3.57)

Thus, the measurement of a field ψ(x) is equivalent to projecting the field
onto the representer using the inner product (3.55).

The penalty function (3.26) can now be written entirely in terms of inner
products as

J [ψ] =< ψf − ψ,ψf − ψ > +(d− < ψ, r >)TW εε(d− < ψ, r >). (3.58)

Assume now that the minimizing solution is expressed as

ψa(x) = ψf(x) + bTr(x) + g(x), (3.59)

where g(x) is an arbitrary function orthogonal to the representers, i.e.

< g, r >= 0. (3.60)

Because of this identity the field g may be regarded as unobservable. Substi-
tuting (3.59) into (3.58) gives

J [ψa] =< rTb+ g, rTb+ g >

+ (d− < ψa, r >)TW εε(d− < ψa, r >)

= bT < r, rT > b+ bT < r, g > + < g, rT > b+ < g, g >

+ (d− < ψf , r > −bT < r, rT > − < g, r >)T

×W εε(d− < ψf , r > −bT < r, rT > − < g, r >).

(3.61)
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Defining the residual
h = d− < ψf , r >, (3.62)

and using the definition of the representer matrix,

R =< r3, r
T
4 >= M(3)[rT

3 ], (3.63)

and (3.41) and (3.47), we get the penalty function of the form

J [ψa] = bTRb+ < g, g > +(h−Rb)TW εε(h−Rb). (3.64)

The original penalty function (3.26) has now been reduced to a compact
form where the disposable parameters are b and g(x). If ψ minimizes J then
clearly < g, g >= 0 and thus

g(x) ≡ 0. (3.65)

The unobservable field g must be discarded, reducing J from the infinite
dimensional quadratic form (3.26) to the finite dimensional quadratic form

B[b] = bTRb+ (h−Rb)TW εε(h−Rb), (3.66)

where B[b] = J [ψa].

3.2.7 Minimization of the penalty function

The minimizing solution for b can again be found by setting the variational
derivative of (3.66) with respect to b equal to zero,

B[b+δb]−B[b] = 2δbTRb+2δbTRW εε(Rb−h)+O(δb2) = O(δb2), (3.67)

which gives
δbT

(
Rb+RW εε(Rb− h)

)
= 0, (3.68)

or
Rb+RW εε(Rb− h) = 0, (3.69)

since δb is arbitrary. This equation can be written as

R(b+W εεRb−W εεh) = 0, (3.70)

which leads to the standard linear system of equations

(R+Cεε)b = h, (3.71)

or
b = P−1h, (3.72)

as the solution for b. Note that we have used that R = M(i)[ri] for all i.



24 3 Analysis scheme

3.2.8 Prior and posterior value of the penalty function

Inserting the first-guess value ψf , into the penalty function (3.58) gives

J [ψf ] = (d− < ψf , r >)TW εε(d− < ψf , r >) = hTW εεh. (3.73)

This is known as the prior value of the penalty function.
Similarly by inserting the minimizing solution (3.72) into the penalty func-

tion (3.66) we get the following,

J [P−1h] = (P−1h)TR(P−1h) + (h−RP−1h)TW εε(h−RP−1h)

= hTP−1RP−1h+ hT(RP−1 − I)W εε(RP−1 − I)h
= hT

{
P−1RP−1 + (RP−1 − I)W εε(RP−1 − I)

}
h

= hT
{
P−1RP−1 + P−1(R−P)W εε(R−P)P−1

}
h

= hTP−1 {R+ (R−P)W εε(R−P)}P−1h

= hTP−1 {R+Cεε}P−1h

= hTP−1PP−1h

= hTP−1h

= hTb,

(3.74)

as long as b is given from (3.72). This is known as the posterior value of the
penalty function.

It is explained by Bennett (2002, section 2.3) that the reduced penalty
function is a X 2

M variable. Thus, we have a mean to test the validity of our
statistical assumptions, by checking if the value of reduced penalty function
is a Gaussian variable with mean equal to M and variance equal to 2M . This
could be done rigorously by repeated minimizations of the penalty function
using different data sets.

3.3 Discrete form

When discretized on a numerical grid, (3.22–3.23) are written as

ψf = ψt + pf , (3.75)

d = Mψt + ε, (3.76)

where M , now called the measurement matrix, is the discrete representation
of M.

The statistical null hypothesis H0 is then

pf = 0, pf(pf)T = Cf
ψψ,

ε = 0, εεT = Cεε, (3.77)

pfεT = 0.
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By using the same statistical procedure as in Sect. 3.1, or alternatively by
minimizing the variational functional

J [ψa] = (ψf−ψa)T(Cf
ψψ)−1(ψf−ψa)+(d−Mψa)TW εε(d−Mψa), (3.78)

with respect to ψa, one get,

ψa = ψf + rTb, (3.79)

where the influence functions (e.g. error covariance functions for direct mea-
surements) are given as

r = MCf
ψψ, (3.80)

i.e. “measurements” of the error covariance matrix Cf
ψψ. Thus, r is a matrix

where each row contains a representer for a particular measurement. The
coefficients b are determined from the system of linear equations

(MCf
ψψM

T +Cεε)b = d−Mψf . (3.81)

In addition the error estimate (3.54) becomes

Ca
ψψ = Cf

ψψ − rT
(
MCf

ψψM
T +Cεε

)−1

r. (3.82)

Thus, the inverse estimate ψa, is given by the first-guess ψf , plus a linear
combination of influence functions rTb , one for each of the measurements.
The coefficients b are clearly small if the first-guess is close to the data, and
large if the residual between the data and the first-guess is large.

Note that a more common way of writing the previous equations is the
following:

ψa = ψf +K(d−Mψf), (3.83)

Ca
ψψ = (I −KM)Cf

ψψ, (3.84)

K = Cf
ψψM

T(MCf
ψψM

T +Cεε)−1, (3.85)

where the matrix K is often called the Kalman gain. This can be derived
directly from (3.79)–(3.82) by rearranging terms, and it is the standard way
of writing the analysis equations for the Kalman filter to be discussed in
Chap. 4. The numerical evaluation of these equations, however, is simpler and
more efficient using the form (3.79)–(3.82)



4

Sequential data assimilation

In the previous chapter we considered a time independent problem and com-
puted the best conditional estimate given a prior estimate and measurements
of the state.

For time dependent problems, sequential data assimilation methods use
the analysis scheme from the previous chapter to sequentially update the
model state. Such methods have proven useful for many applications in mete-
orology and oceanography, including operational weather prediction systems
where new observations are sequentially assimilated into the model when they
become available.

If a model forecast ψf , and the forecast error covariance Cf
ψψ, are known

at a time tk, where we have available measurements d, with a measurement
error covariance matrix Cεε, it is possible to calculate an improved analysis
ψa, with its analyzed error covariance Ca

ψψ. A major issue is then how to
estimate or predict the error covariance Cf

ψψ for the model forecast at the
time tk.

This chapter will briefly outline the Kalman Filter (KF) originally pro-
posed by Kalman (1960), which introduces an equation for the time evolution
of the error covariance matrix. Further, the problems associated with the use
of the KF with nonlinear dynamical models will be illustrated. Finally a basic
introduction is given to the Ensemble Kalman Filter (EnKF) proposed by
Evensen (1994a).

4.1 Linear Dynamics

For linear dynamics the optimal sequential assimilation method is the Kalman
filter. In the Kalman filter an additional equation for the second-order sta-
tistical moment is integrated forward in time to predict error statistics for
the model forecast. The error statistics are then used to calculate a variance
minimizing estimate whenever measurements are available.

 
G. Evensen, Data Assimilation, 2nd ed., DOI 10.1007/978-3-642-03711-5_4,  
© Springer-Verlag Berlin Heidelberg 2009 
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4.1.1 Kalman filter for a scalar case

Assume now that a discrete dynamical model for the true state of a scalar ψ
can be written as

ψt(tk) = Gψt(tk−1) + q(tk−1), (4.1)

ψt(t0) = Ψ0 + a, (4.2)

where G is a linear model operator, q is the model error over one time step
and Ψ0 is an initial condition with error a.

The model error is normally not known and a numerical model will there-
fore evolve according to

ψf(tk) = Gψa(tk−1) (4.3)
ψa(t0) = Ψ0. (4.4)

That is, given a best estimate ψa, for ψ at time tk−1, a forecast ψf , is calculated
at time tk, using the approximate equation (4.3).

Now subtract (4.3) from (4.1) to get

ψt
k − ψf

k = G(ψt
k−1 − ψa

k−1) + qk−1. (4.5)

where we have defined ψk = ψ(tk) and qk = q(tk). The error covariance matrix
for the forecast at time tk is

Cf
ψψ(tk) = (ψt

k − ψf
k)2

= G2(ψt
k−1 − ψa

k−1)2 + q2k−1 + 2G(ψt
k−1 − ψa

k−1)qk−1

= G2Ca
ψψ(tk−1) + Cqq(tk−1).

(4.6)

We have defined the error covariance for the model state

Ca
ψψ(tk−1) = (ψt

k−1 − ψa
k−1)2, (4.7)

the model error covariance

Cqq(tk−1) = q2k−1, (4.8)

and the initial error covariance

Cψψ(t0) = Caa = a2. (4.9)

It is also assumed that there are no correlations between the error in the state,
ψt
k−1 − ψa

k−1, the model error qk−1, and the initial error a.
Thus, we have a consistent set of dynamical equations for the model evolu-

tion (4.3 and 4.4), and the error (co)variance evolution (4.6), (4.8) and (4.9).
At times when there are measurements available, an analyzed estimate can
be calculated using the equations (3.14) and (3.15), and when there are no
measurements available we just set ψa = ψf and Ca

ψψ = Cf
ψψ, and continue

the integration. These equations define the Kalman filter for a linear scalar
model, and thus constitute the optimal sequential data assimilation method
for this model given that the priors are all Gaussian and unbiased.
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4.1.2 Kalman filter for a vector state

If the true state ψt(x) is discretized on a numerical grid, it can be represented
by the state vector ψt. It is assumed that the true state evolves according to
a dynamical model

ψt
k = Gψt

k−1 + qk−1, (4.10)

where G is a linear model operator (matrix) and q is the unknown model
error over one time step. In this case a numerical model will evolve according
to

ψf
k = Gψa

k−1. (4.11)

That is, given the best possible estimate for ψ at time tk−1, a forecast is
calculated at time tk, using the approximate equation (4.11).

The error covariance equation is derived using a similar procedure as was
used for (4.6), and becomes

Cf
ψψ(tk) = GCa

ψψ(tk−1)GT +Cqq(tk−1). (4.12)

Thus, the standard Kalman filter consists of the dynamical equations
(4.11) and (4.12) together with the analysis equations (3.83–3.85) or alter-
natively (3.79–3.82).

4.1.3 Kalman filter with a linear advection equation

Here we illustrate the properties of the KF when used with a one-dimensional
linear advection model on a periodic domain of length 1000 m. The model has
a constant advection speed, u = 1 m/s, the grid spacing is ∆x = 1 m and the
time step is ∆t = 1 s.

Given an initial condition, the solution of this model is exactly known, and
this allows us to run realistic experiments with zero model errors to examine
the impact of the dynamical evolution of the error covariance.

The true initial state is sampled from a distribution N , with mean equal
to zero, variance equal to one, and a spatial de-correlation length of 20 m.

The first guess solution is generated by drawing another sample from N
and adding this to the true state. The initial ensemble is then generated by
adding samples drawn from N to the first guess solution. Thus, the initial
state is assumed to have an error variance equal to one.

Four measurements of the true solution, distributed regularly in the model
domain, are assimilated every 5th time step. The measurements are contami-
nated by errors of variance equal to 0.01, and we have assumed uncorrelated
measurement errors.

The length of the integration is 300 s, which is 50 s longer than the time
needed for the solution to advect from one measurement to the next (i.e.
250 s).

In Fig. 4.1 an example is shown where the model errors have been set to
zero. The plots illustrate the convergence of the estimated solution at various
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Fig. 4.1. Kalman filter experiment: reference solution, measurements, estimate and
standard deviation at three different times t = 5 (top), t = 150 (middle), and t = 300
(bottom)
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Fig. 4.2. Kalman filter experiment when system noise is included: reference solution,
measurements, estimate and standard deviation at three different times t = 5 (top),
t = 150 (middle), and t = 300 (bottom)

x-axis

S
o
lu
tio
n

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

Measurements
True solution
Estimated solution
Estimated Std.Dev.

x-axis

S
o
lu
tio
n

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

Measurements
True solution
Estimated solution
Estimated Std.Dev.

x-axis

S
o
lu
tio
n

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

Measurements
True solution
Estimated solution
Estimated Std.Dev.



32 4 Sequential data assimilation

times during the experiment, and show how information from measurements
is propagated with the advection speed and how the error variance is reduced
every time measurements are assimilated.

The first plot shows the result of the first update with the four mea-
surements. Near the measurement locations, the estimated solution is clearly
consistent with the true solution and the measurements, and the error vari-
ance is reduced accordingly. The second plot is taken at t = 150 s, i.e. after 30
updates with measurements. Now the information from the measurements has
propagated to the right with the advection speed. This is seen both from di-
rect comparison of the estimate with the true solution, and from the estimated
variance. The final plot is taken at t = 300 s and the estimate is now in good
agreement with the true solution throughout the model domain. Note also a
further reduction of the error variance to the right of the measurements. This
is caused by the further introduction of information from the measurements to
the already accurate estimate. In this case the estimated errors will converge
towards zero since we experience a further accumulation of information and
error reduction every 250 s of integration.

The impact of model errors is illustrated in Fig. 4.2. Here we note a linear
increase in error variance to the right of the measurements. This is caused by
the addition of model errors every time step. It is also clear that the estimated
solution deteriorates far from the measurement in the advection direction. The
converged error variance is larger than in the previous case. It turns out that
for linear models with regular measurements at fixed locations and stationary
error statistics, the error variance converges to an estimate where the increase
of error variance from model errors balances the reduction from the updates
with measurements.

In fact these examples were actually run using the Ensemble Kalman Filter
discussed below, but for a linear model the EnKF will converge exactly to the
KF with increasing ensemble size.

4.2 Nonlinear dynamics

For nonlinear dynamics the extended Kalman filter (EKF) may be applied, in
which an approximate linearized equation is used for the prediction of error
statistics.

4.2.1 Extended Kalman filter for the scalar case

Assume now that we have a nonlinear scalar model

ψt
k = G(ψt

k−1) + qk−1, (4.13)

where G(ψ) is a nonlinear model operator and q is again the unknown model
error over one time step. A numerical model will evolve according to the
approximate equation
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ψf
k = G(ψa

k−1). (4.14)

Subtracting (4.14) from (4.13) gives

ψt
k − ψf

k = G(ψt
k−1)−G(ψa

k−1) + qk−1. (4.15)

Now use the Taylor expansion

G(ψt
k−1) = G(ψa

k−1) +G′(ψa
k−1)(ψ

t
k−1 − ψa

k−1)

+
1
2
G′′(ψa

k−1)(ψ
t
k−1 − ψa

k−1)
2 + · · · ,

(4.16)

in (4.15) to get

ψt
k − ψf

k = G′(ψa
k−1)(ψ

t
k−1 − ψa

k−1)

+
1
2
G′′(ψa

k−1)(ψ
t
k−1 − ψa

k−1)
2 + · · ·+ qk−1.

(4.17)

By squaring and taking the expected value an equation for the evolution of
the error variance Cf

ψψ(tk) becomes

Cf
ψψ(tk) = (ψt

k − ψf
k)2

= (ψt
k−1 − ψa

k−1)2(G
′(ψa

k−1))
2

+ (ψt
k−1 − ψa

k−1)3G
′(ψa

k−1)G
′′(ψa

k−1)

+
1
4
(ψt
k−1 − ψa

k−1)4(G
′′(ψa

k−1))
2 + · · ·+ Cqq(tk−1).

(4.18)

This equation can be closed by discarding moments of third and higher order,
which results in an approximate equation for the error variance,

Cf
ψψ(tk) ' Ca

ψψ(tk−1)(G′(ψak−1))
2 + Cqq(tk−1). (4.19)

Together with the equations for the analyzed estimate and error variance,
(3.14) and (3.15), the dynamical equations (4.14) and (4.19) constitute the
extended Kalman filter (EKF) in the case with a scalar state variable.

It is clear that we now have an approximate equation for the error covari-
ance evolution, due to the linearization and closure assumption used. Thus,
the usefulness of the EKF will depend on the properties of the model dynam-
ics.

The EKF can also be formulated for measurements which are related to
the state variables by a nonlinear operator (see Gelb, 1974).

4.2.2 Extended Kalman filter in matrix form

The derivation of the EKF in matrix form is based on the same principles as
for the scalar case and can be found in a number of books on control theory
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(see e.g. Jazwinski , 1970, Gelb, 1974). Again we assume a nonlinear model,
but now the true state vector at time tk is calculated from

ψt
k = G(ψt

k−1) + qk−1, (4.20)

and a forecast is calculated from the approximate equation

ψf
k = G(ψa

k−1), (4.21)

where the model is now dependent of both time and space. The error statistics
are then described by the error covariance matrix Cf

ψψ(tk) which evolves
according to the equation

Cf
ψψ(tk) = G′

k−1C
a
ψψ(tk−1)G′T

k−1 +Cqq(tk−1)

+G′
k−1Θψψψ(tk−1)HT

k−1 +
1
4
Hk−1Γ ψψψψ(tk−1)HT

k−1

+
1
3
G′
k−1Γ ψψψψ(tk−1)T T

k−1

+
1
4
Hk−1C

a
ψψ(tk−1)CaT

ψψ(tk−1)HT
k−1

+
1
6
Hk−1C

a
ψψ(tk−1)ΘT

ψψψ(tk−1)T T
k−1

+
1
36

T k−1Θψψψ(tk−1)ΘT
ψψψ(tk−1)T T

k−1 + · · · ,

(4.22)

where Cqq(tk−1) is the model error covariance matrix, G′
k−1 is the Jacobi

matrix or tangent linear operator,

G′
k−1 =

∂G(ψ)
∂ψ

∣∣∣∣
ψk−1

, (4.23)

Θψψψ is the third order statistical moment, Γ ψψψψ is the fourth order statis-
tical moment, H is the Hessian, consisting of second order derivatives of the
nonlinear model operator, and T is an operator containing the third order
derivatives of the model operator.

The EKF is based on the assumption that the contribution from all the
higher order terms in (4.22), are negligible. By discarding these terms we are
left with the approximate error covariance equation

Cf
ψψ(tk) ' G′

k−1C
a
ψψ(tk−1)G′T

k−1 +Cqq(tk−1). (4.24)

The analogy between the vector and scalar cases is obvious.
A discussion of the case where higher order approximations for the error

variance evolution is used, is given by Miller (1994).
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Fig. 4.3. Example of an EKF experiment from Evensen (1992). The upper left plot
shows the stream function defining the velocity field of a stationary eddy. The upper
right plot shows the resulting error variance in the model domain after integration
from t = 0 till t = 25, note the large errors at locations where velocities are high.
The lower plot illustrates the exponential time evolution of the estimated variance
averaged over the model domain

4.2.3 Example using the extended Kalman filter

Evensen (1992) provided the first application of the EKF with a nonlinear
ocean circulation model. The model was a multi-layer quasi-geostrophic model
which represents well the mesoscale ocean variability. It solves a conservation
equation for potential vorticity.

In Evensen (1992) properties of the EKF with this particular model were
examined. It was found that the linear evolution equation for the error covari-
ance matrix leads to an unbounded linear instability. This was demonstrated
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in an experiment using a steady background flow defined by an eddy standing
on a flat bottom and with no beta effect (see left plot in Fig. 4.3). Thus,
vorticity is just advected along the stream lines with a velocity defined by the
stream function.

The particular stream function results in a velocity shear and thus supports
standard sheared flow instability. Thus, if we add a perturbation and advect it
using the linearized equations the perturbation will grow exponentially. This
is exactly what is observed in the upper right and lower plots of Fig. 4.3. We
started out with an initial variance equal to one in all of the model domain
and observe a strong error variance growth at locations of large velocity and
velocity shear in the eddy. The estimated mean square errors, which equals the
trace of Cψψ divided by the number of grid points, indicate the exponential
error variance growth.

This linear instability is not realistic. In the real world we would expect the
instability to saturate at a certain climatological amplitude. As an example,
in the atmosphere it is always possible to define a maximum and minimum
pressure which is never exceeded, and the same applies for the eddy field in
the ocean. A variance estimate which indicates unphysical amplitudes of the
variability cannot be accepted, and this is in fact what the EKF may provide.

The main result from this work was the finding of an apparent closure
problem in the error covariance evolution equation. The EKF applies a clo-
sure scheme where third- and higher-order moments in the error covariance
evolution equation are discarded. This results in an unbounded error variance
growth or linear instability in the error covariance equation in some dynamical
models. If an exact error covariance evolution equation could be used all linear
instabilities will saturate due to nonlinear effects. This saturation is missing
in the EKF, as was later confirmed by Miller et al. (1994), Gauthier et al.
(1993) and Bouttier (1994).

In particular Miller et al. (1994) gave a comprehensive discussion on the
application of the EKF with the chaotic Lorenz model. The too simplified
closure resulted in an estimated solution which was only acceptable in a fairly
short time interval, and thereafter unreliable. This was explained by a poor
prediction of error covariances Cf

ψψ, resulting in insufficient gain K, because
of a decaying mode which reflects the stability of the attractor.

A generalization of the EKF, where third and fourth order moments and
evolution equations for these were included, was also examined by Miller et al.
(1994) and it was shown that this more sophisticated closure scheme provided
a better evolution of error statistics which also resulted in sufficient gain to
keep the estimate on track.

4.2.4 Extended Kalman filter for the mean

The previous derivation is the most commonly used for the EKF. A weakness
of the formulation is that the so-called central forecast is used as the estimate.
The central forecast is a single model realization initialized with the best
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estimate of the initial state. For nonlinear dynamics the central forecast is
not equal to the expected value, and it is not clear how it shall be interpreted.

A different approach is to derive a model for the evolution of the first
moment or mean. This is done by expanding G(ψ) around ψ to get

G(ψ) = G
(
ψ
)

+G′
(
ψ
)(
ψ − ψ

)
+

1
2
G′′
(
ψ
)(
ψ − ψ

)2 + · · · . (4.25)

Inserting this in (4.13) and taking the expectation or ensemble average results
in the equation

ψk = G
(
ψk−1

)
+

1
2
G′′
(
ψk−1

)
Cψψ(tk−1) + · · · . (4.26)

In the vector case this equation becomes

ψk = G
(
ψk−1

)
+

1
2
Hk−1Cψψ(tk−1) + · · · . (4.27)

One may argue that for a statistical estimator it makes more sense to
work with the mean than a central forecast, after all, the central forecast does
not have any statistical interpretation. This can be illustrated by running an
atmospheric model without assimilation updates. The central forecast then
becomes just one realization out of infinitively many possible realizations and
it is not clear how one may relate this to the climatological error covariance
estimate. On the other hand the equation for the mean will provide an estimate
which converges towards the climatological mean and the covariance estimate
thus describes the error variance of the climatological mean. Until now, all
applications of the EKF for data assimilation in ocean and atmospheric models
have used an equation for the central forecast. However, the interpretation
using the equation for the mean will later on support the development of the
Ensemble Kalman Filter.

4.2.5 Discussion

There are two major drawbacks of the Kalman filter for data assimilation in
high dimensional and nonlinear dynamical models.

The first is related to storage and computational issues. If the dynamical
model has n unknowns in the state vector, then the error covariance matrix
Cψψ has n2 unknowns. Furthermore, the evolution of the error covariance
matrix in time requires the cost of 2n model integrations. Thus, clearly, the
KF and EKF in the present form, can only be practically used with fairly
low-dimensional dynamical models.

The second issue is related to the use of the EKF with nonlinear dynamical
models, which requires a linearization when deriving the error covariance evo-
lution equation. This linearization leads to a poor error covariance evolution
and for some models unstable error covariance growth. This may be resolved
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using higher order closure schemes. Unfortunately, such an approach is not
practical for a high dimensional model, since the fourth order moment requires
storage of n4 elements. In general one may conclude that a more consistent
closure is needed in the error covariance equation.

4.3 Ensemble Kalman filter

Another sequential data assimilation method which has received a lot of at-
tention is named the Ensemble Kalman Filter (EnKF). The method was origi-
nally proposed as a stochastic or Monte Carlo alternative to the deterministic
EKF by Evensen (1994a). The EnKF was designed to resolve the two major
problems related to the use of the EKF with nonlinear dynamics in large state
spaces, i.e. the use of an approximate closure scheme and the huge compu-
tational requirements associated with the storage and forward integration of
the error covariance matrix.

The EnKF has gained popularity because of its simple conceptual formu-
lation and relative ease of implementation, e.g. it requires no derivation of a
tangent linear operator or adjoint equations and no integrations backward in
time. Furthermore, the computational requirements are affordable and com-
parable to other popular sophisticated assimilation methods such as the rep-
resenter method by Bennett (1992), Bennett et al. (1993), Bennett and Chua
(1994), Bennett et al. (1996) and the 4DVAR method which has been much
studied by the meteorological community (see e.g. Talagrand and Courtier ,
1987, Courtier and Talagrand , 1987, Courtier et al., 1994, Courtier , 1997).

We will adapt a three stage presentation starting with the representation
of error statistics using an ensemble of model states, then an alternative to the
traditional error covariance equation is proposed for the prediction of error
statistics, and finally a consistent analysis scheme is presented.

4.3.1 Representation of error statistics

The error covariance matrices for the predicted and the analyzed estimate,
Cf
ψψ and Ca

ψψ, are in the Kalman filter defined in terms of the true state as

Cf
ψψ =

(
ψf −ψt

)(
ψf −ψt

)T
, (4.28)

Ca
ψψ =

(
ψa −ψt

)(
ψa −ψt

)T
, (4.29)

where the ensemble averaging defined by the overline converges to the expec-
tation value in the case of an infinite ensemble size. However, the true state is
not known, and we therefore define the ensemble covariance matrices around
the ensemble mean ψ,
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Ce
ψψ

)f =
(
ψf −ψf

)(
ψf −ψf

)T
, (4.30)(

Ce
ψψ

)a =
(
ψa −ψa

)(
ψa −ψa

)T
, (4.31)

where now the overline denote an average over the ensemble. Thus, we can
use an interpretation where the ensemble mean is the best estimate and the
spreading of the ensemble around the mean is a natural definition of the error
in the ensemble mean.

Since the error covariances as defined in (4.30) and (4.31) are defined as
ensemble averages, there will clearly exist an infinite number of ensembles
with an error covariance equal to Ce

ψψ. Thus, instead of storing a full covari-
ance matrix, we can represent the same error statistics using an appropriate
ensemble of model states. Given an error covariance matrix, an ensemble of
finite size will provide an approximation to the error covariance matrix. How-
ever, when the size of the ensemble N increases, the errors in the Monte Carlo
sampling will decrease proportional to 1/

√
N .

Suppose now that we have N model states in the ensemble, each of dimen-
sion n. Each of these model states can be represented as a single point in an
n-dimensional state space. All the ensemble members together will constitute
a cloud of points in the state space. Such a cloud of points can, in the limit
when N goes to infinity, be described using a probability density function

f(ψ) =
dN

N
, (4.32)

where dN is the number of points in a small unit volume and N is the total
number of points. With knowledge about either f(ψ) or the ensemble repre-
senting f(ψ) we can calculate whichever statistical moments (such as mean,
covariances etc.) we want whenever they are needed.

The conclusion so far is that the information contained by a full probability
density function can be exactly represented by an infinite ensemble of model
states.

4.3.2 Prediction of error statistics

In Evensen (1994a) it was shown that a Monte Carlo method can be used to
solve an equation for the time evolution of the probability density of the model
state, as an alternative to using the approximate error covariance equation in
the EKF.

For a nonlinear model where we appreciate that the model is not perfect
and contains model errors, we can write it as a stochastic differential equation
as

dψ = G(ψ)dt+ h(ψ)dq. (4.33)

This equation states that an increment in time will yield an increment in ψ,
which in addition, is influenced by a random contribution from the stochastic
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forcing term h(ψ)dq, representing the model errors. The dq term describes a
vector Brownian motion process with covariance Cqqdt. The nonlinear model
operator G is not an explicit function of the random variable dq so the Ito
interpretation of the stochastic differential equation is used instead of the
Stratonovich interpretation (see Jazwinski , 1970).

When additive Gaussian model errors forming a Markov process are used
one can derive the Fokker-Planck equation (also named Kolmogorov’s equa-
tion) which describes the time evolution of the probability density f(ψ) of
the model state,

∂f

∂t
+
∑
i

∂(gif)
∂ψi

=
1
2

∑
i,j

∂2f(hCqqh
T )ij

∂ψi∂ψj
, (4.34)

where gi is the component number i of the model operator G and hCqqh
T is

the covariance matrix for the model errors.
This equation does not apply any important approximations and can be

considered as the fundamental equation for the time evolution of error statis-
tics. A detailed derivation is given in Jazwinski (1970). The equation describes
the change of the probability density in a local “volume” which is dependent
on the divergence term describing a probability flux into the local “volume”
(impact of the dynamical equation) and the diffusion term which tends to
flatten the probability density due to the effect of stochastic model errors. If
(4.34) could be solved for the probability density function, it would be pos-
sible to calculate statistical moments like the mean and the error covariance
for the model forecast to be used in the analysis scheme.

A linear model for a Gauss-Markov process in which the initial condition is
assumed to be taken from a normal distribution will have a probability density
which is completely characterized by its mean and covariance for all times.
One can then derive exact equations for the evolution of the mean and the
covariance as a simpler alternative than solving the full Kolmogorov’s equa-
tion. Such moments of Kolmogorov’s equation, including the error covariance
(4.12), are easy to derive, and several methods are illustrated by Jazwinski
(1970, examples 4.19–4.21). This is actually what is done in the KF.

For a nonlinear model, the mean and covariance matrix will not in general
characterize the time evolution of f(ψ). They do, however, determine the
mean path and the dispersion about that path, and it is possible to solve
approximate equations for the moments, which is the procedure characterizing
the EKF.

The EnKF applies a so-called Markov Chain Monte Carlo (MCMC)
method to solve (4.34). The probability density is then represented by a large
ensemble of model states as discussed in the previous section. By integrat-
ing these model states forward in time according to the model dynamics,
as described by the stochastic differential (4.33), this ensemble prediction is
equivalent to solving the Fokker Planck equation using a MCMC method.
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Different dynamical models can have stochastic terms embedded within
the nonlinear model operator and the derivation of the associated Fokker
Planck equation may become very complex. Fortunately, the Fokker Planck
equation is not needed, since it is sufficient to know that it exists and the
MCMC method solves it.

4.3.3 Analysis scheme

The KF analysis scheme uses the definitions of Cf
ψψ and Ca

ψψ as given by
(4.28) and (4.29). We will now give a derivation of the analysis scheme using
the ensemble covariances as defined by (4.30) and (4.31).

As was shown by Burgers et al. (1998) it is essential that the observations
are treated as random variables having a distribution with mean equal to
the first guess observations and covariance equal to Cεε. Thus, we start by
defining an ensemble of observations

dj = d+ εj , (4.35)

where j counts from 1 to the number of ensemble members N . It is ensured
that the simulated random measurement errors have mean equal to zero. Next
we define the ensemble covariance matrix of the measurement errors as

Ce
εε = εεT, (4.36)

and, of course, in the limit of an infinite ensemble size this matrix will con-
verge towards the prescribed error covariance matrix Cεε used in the standard
Kalman filter.

The following discussion is valid both using an exactly prescribed Cεε and
an ensemble representation Ce

εε of Cεε. The use of Ce
εε introduces an addi-

tional approximation which sometimes is convenient when implementing the
analysis scheme. This approximation can be justified since normally the true
observation error covariance matrix is poorly known and the errors introduced
by the ensemble representation can be made less than the uncertainty in the
true Cεε by choosing a large enough ensemble size. Further, the use of an
ensemble representation for Cεε, has less impact than the use of an ensemble
representation for Cf

ψψ. Further, Cεε only appears in the computation of the
coefficients for the influence functions Cf

ψψM
T while Cf

ψψ appears both in
the computation of the coefficients and it determines the influence functions.
Note, however that there are specific issues related to the rank of Ce

εε when
the number of measurements becomes large as is discussed in Chap. 14.

The analysis step in the EnKF consists of the following updates performed
on each of the model state ensemble members

ψa
j = ψf

j +
(
Ce
ψψ

)f
MT

(
M
(
Ce
ψψ

)f
MT +Ce

εε

)−1(
dj −Mψf

j

)
. (4.37)

With a finite ensemble size, this equation will be an approximation. Further, if
the number of measurements is larger than the number of ensemble members,
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the matrices M
(
Ce
ψψ

)f
MT and Ce

εε will be singular, and a pseudo inversion
must be used (see Chap. 14).

Equation (4.37) implies that

ψa = ψf +
(
Ce
ψψ

)f
MT

(
M
(
Ce
ψψ

)f
MT +Ce

εε

)−1(
d−Mψf

)
, (4.38)

where d = d is the first guess vector of measurements. Thus, the relation
between the analyzed and predicted ensemble mean is identical to the relation
between the analyzed and predicted state in the standard Kalman filter, apart
from the use of

(
Ce
ψψ

)f,a and Ce
εε instead of Cf,a

ψψ and Cεε. Note that the
introduction of an ensemble of observations does not make any difference for
the update of the ensemble mean since this does not affect (4.38).

If the mean ψa is considered to be the best estimate, then it is an arbitrary
choice whether one updates the mean using the first guess observations d, or if
one updates each of the ensemble members using the perturbed observations
(4.35). However, it will now be shown that by updating each of the ensemble
members using the perturbed observations one also creates a new ensemble
with the correct error statistics for the analysis. The updated ensemble can
then be integrated forward in time till the next observation time.

We now derive the analyzed error covariance estimate resulting from the
analysis scheme given above, but using the standard Kalman filter form for
the analysis equations. First, (4.37) and (4.38) are used to obtain

ψa
j −ψ

a =
(
I −KeM

)(
ψf
j −ψ

f
)

+Ke

(
dj − d

)
, (4.39)

where we have used the definition of the Kalman gain,

Ke =
(
Ce
ψψ

)f
MT

(
M
(
Ce
ψψ

)f
MT +Ce

εε

)−1
. (4.40)

The derivation is then as follows,(
Ce
ψψ

)a =
(
ψa −ψa

)(
ψa −ψa

)T
=
((
I −KeM

)(
ψf −ψf

)
+Ke

(
d− d

))(
· · ·
)T

=
(
I −KeM

)(
ψf −ψf

)(
ψf −ψf

)T(
I −KeM

)T
+Ke

(
d− d

)(
d− d

)T
KT

e

=
(
I −KeM

) (
Ce
ψψ

)f (
I −MTKT

e

)
+KeC

e
εεK

T
e

=
(
Ce
ψψ

)f −KeM
(
Ce
ψψ

)f − (Ce
ψψ

)f
MTKT

e

+Ke(M
(
Ce
ψψ

)f
MT +Ce

εε)K
T
e

= (I −KeM)
(
Ce
ψψ

)f
.

(4.41)

The last expression in this equation is the traditional result for the minimum
error covariance found in the KF analysis scheme. This implies that the EnKF
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in the limit of an infinite ensemble size will give exactly the same result in the
computation of the analysis as the KF and EKF. Note that this derivation
clearly states that the observations d must be treated as random variables
to get the measurement error covariance matrix Ce

εε into the expression. It
has been assumed that the distributions used to generate the model state
ensemble and the observation ensemble are independent. In Chap. 13 we will
see that it is also possible to derive deterministic analysis schemes where the
perturbation of measurements is avoided. This reduces sampling errors but
may introduce other problems.

Finally, it should be noted that the EnKF analysis scheme is approximate
in the sense that it does not properly take into account non-Gaussian contribu-
tions in the prior for ψ. In other words, it does not solve the Bayesian update
equation for non-Gaussian pdfs. On the other hand, it is not a pure resampling
of a Gaussian posterior distribution. Only the updates are linear and these
are added to the prior non-Gaussian ensemble. Thus, the updated ensemble
will inherit many of the non-Gaussian properties from the forecast ensemble.
In summary, we have a very computational efficient analysis scheme where we
avoid traditional resampling of the posterior, and the solution becomes some-
thing between a linear Gaussian update and a full Bayesian computation. This
will be elaborated on in more detail in the following chapters.

4.3.4 Discussion

We now have a complete system of equations which constitutes the ensemble
Kalman filter (EnKF), and the similarity with the standard Kalman filter is
maintained both for the prediction of error covariances and in the analysis
scheme. For linear dynamics the EnKF solution will converge exactly to the
KF solution with increasing ensemble size.

We will now examine the forecast step a little further. In the EnKF each
ensemble member evolves in time according to the stochastic model dynamics.
The ensemble covariance matrix of the errors in the model equations, given
by

Ce
qq = dqkdqk

T, (4.42)

converges to Cqq in the limit of an infinite ensemble size.
The ensemble mean then evolves according to the equation

ψk+1 = G(ψk)

= G(ψk) + n.l.,
(4.43)

where n.l. represents the terms which may arise if G is nonlinear. Compare
this equation with the approximate equation for the mean (4.27) used with the
EKF, where only the first correction term is included. One of the advantages
of the EnKF is that it models the exact equation for the mean and there is no
closure assumption used since each ensemble member is integrated by the full
nonlinear model. The only approximation is the limited size of the ensemble.
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The error covariance of the ensemble evolves according to(
Ce
ψψ

)k+1 = G′ (Ce
ψψ

)k
G′T +Ce

qq + n.l., (4.44)

where G′ is the tangent linear operator evaluated at ψ in the current time
step. This is again an equation of the same form as is used in the standard
Kalman filter, except for the extra n.l.-terms that may appear ifG is nonlinear
as seen in (4.22). Implicitly, the EnKF retains all these terms also for the error
covariance evolution and there is no closure approximation used.

For a linear dynamical model the sampled Ce
ψψ converges to Cψψ for an

infinite ensemble size, and independently of the model, Ce
εε converges to Cεε

and Ce
qq converges to Cqq. Thus, in this limit the KF and the EnKF are

equivalent.
For nonlinear dynamics the EnKF includes the full effect of these terms

and there are no linearizations or closure assumptions used. In addition, there
is no need for a tangent linear operator or its adjoint, and this makes the
method very easy to implement for practical applications.

This leads to an interpretation of the EnKF as a purely statistical Monte
Carlo method where the ensemble of model states evolves in state space with
the mean as the best estimate and the spreading of the ensemble as the error
variance. At measurement times each observation is represented by another
ensemble, where the mean is the actual measurement and the variance of the
ensemble represents the measurement errors. Thus, we combine a stochastic
prediction step with a stochastic analysis step.

4.3.5 Example with a QG model

Evensen and van Leeuwen (1996) proved the EnKF’s capabilities with non-
linear dynamics in an application where Geosat radar altimeter data were
assimilated into a quasi geostrophic (QG) model to study the ring-shedding
process in the Agulhas current flowing along the southeast coast of South
Africa. This was the first real application of an advanced sequential assimi-
lation method for estimating the ocean circulation. It proved that the EnKF
with its fully nonlinear evolution of error statistics could be used with non-
linear and unstable dynamical models. In addition it showed that the low
computational cost of the EnKF allows for reasonably sized model grids to be
used.

A series of plots of the analyzed estimates for the upper layer stream func-
tion is given in Fig. 4.4 for different time steps. The results were in good
agreement with the assimilated data and the assimilation run was well con-
strained by the data.

A conclusion from this work was that the assimilation of data helped
compensate for neglected physics in the model. The QG model has a too slow
final wave steepening and ring shedding, caused by the lack of ageostrophic
effects in the model. This was accounted for by the assimilation of the data.
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Fig. 4.4. Example of an EnKF experiment for the Agulhas current system from
Evensen and van Leeuwen (1996)

In the experiment an ensemble size of 500 was used. The numerical grid
consisted of two layers of 51 × 65 grid points, and the total number of un-
knowns was 6630, which is 13 times the number of ensemble members. The
500 ensemble members were sufficient to give a good representation of the
gridded Geosat data and the space of possible model solutions.
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5

Variational inverse problems

The purpose of this chapter is to introduce the basic formalism needed for
properly formulating and solving linear variational inverse problems. Con-
trary to the sequential methods which update the model solution every time
observations are available, variational methods seek an estimate in space and
time where the estimate at a particular time is dependent on both past and
future measurements.

We start by discussing a very simple example to illustrate the inverse prob-
lem and in particular the effect of including model errors. Thereafter a simple
scalar model is used in a more typical illustration where the general formu-
lation of the inverse problem is discussed and the Euler–Lagrange equations
which determine the minimizing solution are derived.

Different methods are available for solving the Euler–Lagrange equations
and we briefly discuss the popular representer method (see Bennett , 1992,
2002) which has proven extremely useful for solving linear and weakly non-
linear variational inverse problems.

5.1 Simple illustration

We will start with a very simple example to illustrate the mathematical prop-
erties of a variational problem and the difference between a weak and a strong
constraint formulation. We define the simple model

dψt = 1, (5.1)
ψ(0) = 0, (5.2)
ψ(1) = 2, (5.3)

having one initial condition and one final condition. Clearly this is an over-
determined problem and it has no solution. However, if we relax the conditions
by adding unknown errors to each of them the system becomes
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dψt = 1 + q, (5.4)
ψ(0) = 0 + a, (5.5)
ψ(1) = 2 + b. (5.6)

The system is now under-determined since we can get whatever solution we
want by choosing the different error terms. A statistical hypothesis H0, is now
needed for the error terms,

q(t) = 0, q(t1)q(t2) = C0δ(t1 − t2), q(t)a = 0,

a = 0, a2 = C0, ab = 0, (5.7)

b = 0, b2 = C0, q(t)b = 0.

That is, we assume that we know the statistical behaviour of the error terms
through their first and second order moments. In this example the variances
are all set equal to C0 for simplicity.

It is now possible to seek the solution, which is as close as possible to the
initial and final conditions while at the same time it almost satisfies the model
equations, by minimizing the error terms in the form of a weak constraint
penalty function

J [ψ] = W0

∫ 1

0

(dψt− 1)2 dt +W0

(
ψ(0)− 0

)2 +W0

(
ψ(1)− 2

)2
, (5.8)

where W0 is the inverse of the error variance C0. Then ψ is an extremum of
the penalty function if

δJ [ψ] = J [ψ + δψ]− J [ψ] = O
(
δψ2

)
, (5.9)

when δψ → 0. Now, using

J [ψ + δψ] = W0

∫ 1

0

(dψt− 1 + dδψt)2 dt

+W0

(
ψ(0)− 0 + δψ(0)

)2 +W0

(
ψ(1)− 2 + δψ(1)

)2 (5.10)

in (5.9) and dropping the common nonzero factor 2W0, and all terms propor-
tional to O

(
δψ2

)
, we must have∫ 1

0

dδψt (dψt− 1) dt + δψ(0)
(
ψ(0)− 0

)
+ δψ(1)

(
ψ(1)− 2

)
= 0, (5.11)

or from integration by part,

δψ (dψt− 1)|10 −
∫ 1

0

δψ
d2ψ

dt2
dt

+ δψ(0)
(
ψ(0)− 0

)
+ δψ(1)

(
ψ(1)− 2

)
= 0.

(5.12)
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Fig. 5.1. Inverse solution from the simple example

This gives the following system of equations

δψ(0) (−dψt+ 1 + ψ)|t=0 = 0, (5.13)
δψ(1) (dψt− 1 + ψ − 2)|t=1 = 0, (5.14)

δψ

(
d2ψ

dt2

)
= 0, (5.15)

or since δψ is arbitrary

dψt− ψ = 1 for t = 0, (5.16)
dψt+ ψ = 3 for t = 1, (5.17)

d2ψ

dt2
= 0. (5.18)

This is an elliptic boundary value problem in time with mixed Dirichlet and
Neumann boundary conditions. The general solution is

ψ = c1t+ c2, (5.19)

and the constants in this case become c1 = 4/3 and c2 = 1/3.
In the case when we let the errors in the dynamical model go to zero, we

approach the strong constraint limit where the dynamical model is assumed
to be perfect. The strong constraint model solution is ψ = t + c2 from (5.4),
i.e. the slope is the one defined by the original model and no deviation of this
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is allowed. The free constant c2 will take a value between 0 and 1, depending
on the relative magnitude between the weights on the two conditions. In this
case with equal weight we will have c2 = 0.5.

By allowing for model errors to account for an imperfect model, we will
through a weak constraint variational formulation also allow for a deviation
from the exact model trajectory. This is important for the mathematical con-
ditioning of the variational problem, and we will later see that the weak con-
straint problem can be solved as easily as the strong constraint problem. The
results from this example are shown in Fig. 5.1. The upper and lower curves
are the respective solutions of the final and initial value problems. The weak
constraint inverse estimate is seen to have a steeper slope than the exact
model would allow, in order to obtain an estimate in better agreement with
the two conditions. The strong constraint estimate is shown for comparison.

Finally, it is interesting to examine what the KF solution becomes in this
example. The KF starts by solving the initial value problem until t = 1, thus
for t ∈ [0, 1) the solution is just ψ(t) = t. The initial error variance is set to C0

and the increase of error variance when integrating the model over one time
unit is also C0. Thus for the prediction at t = 1, the error variance equals
2C0. The update equation (3.14) then becomes

ψa = ψf +
Cf
ψψ

Cεε + Cf
ψψ

(
d− ψf

)
= 1 +

2C0

C0 + 2C0
(2− 1)

= 5/3.

(5.20)

This is in fact identical to the weak constraint variational solution at t =
1. Thus, could there be some connection between the problem solved by a
variational method and the KF? In fact it will be shown later that for linear
inverse problems, the KF and the weak constraint variational method, when
both formulated consistently and using the same prior error statistics, give
identical solutions at the final time. Thus for forecasting purposes, it does not
matter which method is used.

5.2 Linear inverse problem

In this section we will define the inverse problem for a simple linear model
and derive the Euler–Lagrange equations for a weak constraint variational
formulation.

5.2.1 Model and observations

Assume now that we have given a simple scalar model with an initial condition
and a set of measurements, all subject to errors,



5.2 Linear inverse problem 51

dψt = ψ + q, (5.21)
ψ(0) = Ψ0 + a, (5.22)

M
[
ψ
]

= d+ ε. (5.23)

The inverse problem can then be defined as finding an estimate which is close
to the initial condition and the set of measurements, while at the same time
it is almost satisfying the model equation.

5.2.2 Measurement functional

The linear measurement operator M
[
ψ
]
, of dimensionM equal to the number

of measurements, relates the observations d to the model state variable ψ(t).
As an example, a direct measurement of ψ(t) will have a measurement

functional of the form

Mi

[
ψ(t)

]
=
∫ T

0

ψ(t)δ(t− ti) dt = ψ(ti), (5.24)

where ti is the measurement location in time and the subscript i denotes the
component of the measurement functional.

Note for later use that the observation of the Dirac delta function becomes

Mi(2)

[
δ(t1 − t2)

]
=
∫ T

0

δ(t1 − t2)δ(t2 − ti)dt2 = δ(t1 − ti). (5.25)

The subscript (2) on Mi defines the variable that the functional is operating
on. Multiplying this with δψ(t1) and integrating with respect to t1 gives∫ T

0

δψ(t1)Mi(2)

[
δ(t1 − t2)

]
dt1 = δψ(ti) = Mi(1)

[
δψ(t1)

]
. (5.26)

5.2.3 Comment on the measurement equation

In (3.2) and (3.23) we defined a measurement equation where we related the
measurements to the true state, and ε became the real measurement errors.
Let us now write

d = dt + εd, (5.27)

which defines εd as the real measurement errors. In some cases we will also
have that

M
[
ψt
]

= dt + εM, (5.28)

which states that there is an additional error associated with the measurement
operator M. An example of such an error could be related to the interpolation
on a numerical grid when a measurement is located in the center of a grid
cell. We can then write
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d = M
[
ψt
]
+ εd − εM

= M
[
ψt
]
+ ε.

(5.29)

Thus, we can say that the measurement is related to the true state through
(5.29), where ε = εd − εM accounts for both measurement errors and errors
in the measurement operator.

In the measurement equation (5.23) there is no reference to the true value
ψt. In fact (5.23) is an equation which relates an estimate ψ to the measure-
ments d, allowing for a random error ε. Thus, we use this equation to impose
an additional constraint to the model defined by (5.21) and (5.22). The ran-
dom error ε that represents both the errors in the measurements and the
measurement operator now defines the accuracy of the measurement equation
(5.23), just as the random errors a and q define the accuracy of the model
equation and the initial condition.

5.2.4 Statistical hypothesis

Again a statistical hypothesis H0 is needed for describing the unknown error
terms and we adapt the following:

q = 0, q(t1)q(t2) = Cqq(t1, t2), q(t)a = 0,

a = 0, a2 = Caa, aε = 0, (5.30)

ε = 0, εεT = Cεε, q(t)ε = 0.

In addition we will now define the functional inverse Wqq of the model error
covariance Cqq, from the integral∫ T

0

Cqq(t1, t2)Wqq(t2, t3)dt2 = δ(t1 − t3), (5.31)

and Waa as the inverse of Caa.

5.2.5 Weak constraint variational formulation

A weak constraint cost function can now be defined as

J [ψ] =
∫∫ T

0

(dψ(t1)t1 − ψ(t1))Wqq(t1, t2) (dψ(t2)t2 − ψ(t2)) dt1dt2

+Waa

(
ψ(0)− Ψ0

)2 (5.32)

+
(
d−M

[
ψ
])T

W εε

(
d−M

[
ψ
])
.

Note that all first guesses, including the initial conditions, are penalized in
(5.32). This is required in order to have a well-posed problem with a unique
solution, as was shown by Bennett and Miller (1990).
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The time-correlation in the model weight has a regularizing effect. Model
errors are normally correlated in time, and the result of neglecting the time
correlation is that the estimate will have discontinuous time derivatives at
measurement locations.

5.2.6 Extremum of the penalty function

From standard variational calculus we know that ψ is an extremum if

δJ = J [ψ + δψ]− J [ψ] = O
(
δψ2

)
, (5.33)

when δψ → 0. Evaluating J [ψ + δψ] we get

J [ψ + δψ] =
∫∫ T

0

(dψt− ψ + dδψt− δψ)1Wqq(t1, t2)

× (dψt− ψ + dδψt− δψ)2 dt1dt2

+Waa

(
ψ(0) + δψ(0)− Ψ0

)2
+
(
d−M

[
ψ
]
−M

[
δψ
])T

W εε

(
d−M

[
ψ
]
−M

[
δψ
])
,

(5.34)

where the subscripts 1 and 2 denote functions of t1 and t2. This can be rewrit-
ten as

J [ψ + δψ] = J [ψ]

+ 2
∫∫ T

0

(dδψt− δψ)1Wqq(t1, t2) (dψt− ψ)2 dt1dt2

+ 2Waaδψ(0)
(
ψ(0)− Ψ0

)
− 2MT

[
δψ
]
W εε

(
d−M

[
ψ
])

+O
(
δψ2

)
.

(5.35)

Now, evaluating the variational derivative (5.33) and requiring that the re-
maining terms are proportional to δψ2, we must have∫∫ T

0

(dδψt− δψ)1Wqq(t1, t2) (dψt− ψ)2 dt1dt2

+Waaδψ(0)
(
ψ(0)− Ψ0

)
−MT

[
δψ
]
W εε

(
d−M

[
ψ
])

= 0.

(5.36)

This equation defines an extremum of the penalty function.

5.2.7 Euler–Lagrange equations

Start from (5.36) and define the “adjoint” variable λ as
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λ(t1) =
∫ T

0

Wqq(t1, t2) (dψt− ψ)2 dt2. (5.37)

We now insert this in (5.36) and use integration by part to eliminate the
derivative of the variation, i.e.∫ T

0

dδψtλdt = δψλ
∣∣∣t=T
t=0

−
∫ T

0

δψdλtdt. (5.38)

Then we use (5.26) to get the measurement term under the integral and
proportional to δψ.

Equation (5.36) then becomes

−
∫ T

0

δψ

(
dλt+ λ+ MT

(2)[δ(t1 − t2)]W εε

(
d−M

[
ψ
]))

1

dt1

+ δψ(0)
(
Waa

(
ψ(0)− Ψ0

)
− λ(0)

)
(5.39)

+ δψ(T )λ(T ) = 0.

To obtain the final form of the Euler–Lagrange equations, we first multiply
(5.37) with Wqq(t, t1) from the left, integrate in t1 and use (5.31). This results
in (5.40), given below. Further, assuming that the variation δψ in (5.39) is
arbitrary, we get an equation for λ and conditions at time t = 0 and t = T .
Thus, we have the following Euler–Lagrange equations:

dψt− ψ =
∫ T

0

Cqq(t, t1)λ(t1)dt1, (5.40)

ψ(0) = Ψ0 + Caaλ(0), (5.41)

dλt+ λ = −MT
(2)[δ(t− t2)]W εε

(
d−M

[
ψ
])
, (5.42)

λ(T ) = 0. (5.43)

This system of Euler–Lagrange equations defines the extrema ψ of J .
The system consists of the original forward model forced by a term that is
proportional to the adjoint variable λ in (5.40). The magnitude of this term is
defined by the model error covariance Cqq, thus large model errors give a large
contribution through the forcing term. The forward model is integrated from
an initial condition which also contains a similar correction term proportional
to the adjoint variable λ. The equation for λ can be integrated backward
in time from a “final” condition, while forced by delta functions scaled by
the residual between the measurement and forward model estimate ψ at each
measurement location. Thus, the forward model requires knowledge of the
adjoint variable to be integrated and the backward model uses the forward
variable at measurement locations. We therefore have a coupled boundary
value problem in time where the forward and backward models must be solved



5.2 Linear inverse problem 55

simultaneously. The system comprises a well-posed problem and as long as the
model is linear, it will have one unique solution, ψ.

The simplest approach for solving the Euler–Lagrange equations, may be
to define an iteration. An iteration for the system (5.40)–(5.43) can be de-
fined by using the previous iterate of λ when integrating the forward model.
However, this iteration will generally not converge as pointed out by Bennett
(1992).

5.2.8 Strong constraint approximation

A much-used approach relies on the assumption that the model is perfect,
i.e. Cqq = 0 in (5.40). This leads to the so-called adjoint method originally
proposed by Talagrand and Courtier (1987), Courtier and Talagrand (1987)
and later discussed in a number of publications, e.g. Courtier et al. (1994),
Courtier (1997). This removes the coupling to λ in the forward model. How-
ever, the system is still coupled through the λ appearing in the initial condi-
tion. One is then seeking the initial condition resulting in the model trajectory
which is closest to the measurements. The so-called adjoint method uses this
approach and defines a solution method where the system may be iterated as
follows:

dψlt− ψl = 0, (5.44)

ψl(0) = ψl−1(0)− γ
(
ψl−1(0)− Ψ0 − Caaλ

l−1(0)
)
, (5.45)

dλlt+ λl = −MT
(2)

[
δ(t1 − t2)

]
W εε

(
d−M(4)

[
ψl4
])
, (5.46)

λl(T ) = 0. (5.47)

The iteration defined for the initial condition uses that (5.41), or the ex-
pression in parantheses from (5.45), is the gradient of the penalty function
with respect to the initial conditions. Thus, the iteration (5.45) is a standard
gradient descent method where γ is the step length in the direction of the gra-
dient. It should be noted that when ψ = ψ(x), the dimension of the problem
becomes infinite, and when ψ(x) is discretized on a numerical grid, it becomes
finite and equal to the number of grid nodes.

Note also that while the weak constraint formulation with proper knowl-
edge of the error statistics defines a well-posed estimation problem where the
estimate will be located within the statistical uncertainties of the first guesses,
the strong constraint assumption violates this property of the inverse problem
since one assumes that the model is better than it actually is.

5.2.9 Solution by representer expansions

For linear dynamics, it is possible to solve the Euler–Lagrange equations (5.40–
5.43) exactly without using iterations. This can be done by assuming a solution
of the form
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ψ(t) = ψF (t) + bTr(t), (5.48)

λ(t) = λF (t) + bTs(t), (5.49)

as was previously also used for the time independent problem in (3.39). The
dimensions of the vectors b, r and s are all equal to the number of mea-
surements, M . Assuming this form for the solution is equivalent to assuming
that the minimizing solution is a first guess model solution ψF plus a lin-
ear combination of time dependent influence functions or representers r(t),
one for each measurement. For a comprehensive discussion of this method
see Bennett (1992, 2002). The practical implementation is discussed in great
detail by Chua and Bennett (2001).

Inserting (5.48) and (5.49) into the Euler–Lagrange equations (5.40–5.43)
and choosing first guesses ψF and λF that satisfy unforced exact equations

dψF t− ψF = 0, (5.50)
ψF (0) = Ψ0, (5.51)

dλF t+ λF = 0, (5.52)
λF (T ) = 0, (5.53)

gives us the following system of equations for the vector of representers r(t)
and corresponding adjoints s(t):

bT (drt− r − Cqqs) = 0, (5.54)

bT
(
r(0)− Caas

)
= 0, (5.55)

bT (dst+ s) = −MT
(2)

[
δ(t− t2)

]
W εε

(
d−M

[
ψF + bTr

])
, (5.56)

bTs(T ) = 0. (5.57)

If we define b as

b = W εε

(
d−M

[
ψF + bTr

])
, (5.58)

then (5.56) becomes

bT
(
dst+ s+ M(2)

[
δ(t− t2)

])
= 0, (5.59)

and the coupling to the solution on the right side of (5.56) is removed.
Equation (5.58) is exactly the same as (3.38) and the derivation in (3.42–

3.45) leads to the same linear system for the coefficients b,(
MT

[
r
]
+Cεε

)
b = d−M

[
ψF
]
. (5.60)

Given that b in general is nonzero, we now have the following set of equa-
tions in addition to (5.50–5.53):



5.3 Representer method with an Ekman model 57

drt− r = Cqqs, (5.61)
r(0) = Caas, (5.62)

from (5.54) and (5.55) for the representers, and

dst+ s = −M(2)

[
δ(t1 − t2)

]
, (5.63)

s(T ) = 0, (5.64)

from (5.59) and (5.57) for the adjoints of the representers.
The equations for s can now be solved as a sequence of final value problems

since they are decoupled from the forward equations for the representers.
As soon as s is found the representers can be solved for. Together with the
first guess solution ψF , found from solving (5.50)–(5.53), this provides the
information needed for solving the system (5.60) for b. The final estimate is
then found by solving the Euler–Lagrange equation of the form

dψt− ψ =
∫ T

0

Cqq(t, t1)λ(t1)dt1, (5.65)

ψ(0) = Ψ0 + Caaλ(0), (5.66)

dλt+ λ = −MT
(1)

[
δ(t− t1)

]
b, (5.67)

λ(T ) = 0. (5.68)

The numerical load is then 2M+3 model integrations, but note that only two
model states need to be stored in space and time. If the solution is constructed
directly from (5.48) all the representers need to be stored.

Thus, the representer expansion decouples the Euler–Lagrange equations
for the weak constraint problem, which can now be solved exactly without
any iterations. Further, the dimension of the problem is the number of mea-
surements, which is normally much less than the number of unknowns in a
discrete state vector.

5.3 Representer method with an Ekman model

In Eknes and Evensen (1997), the representer method was implemented with
an Ekman flow model and used to solve an inverse problem with a long time
series of real velocity measurements. In addition a parameter estimation prob-
lem was treated but this will be discussed later. The model used is very simple
and allows for a simple interpretation and demonstration of the method.

5.3.1 Inverse problem

The Ekman model was written in a nondimensional form as
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∂u

∂t
+ k × u =

∂

∂z

(
A
∂u

∂z

)
+ q, (5.69)

where u(z, t) is the horizontal velocity vector, A = A(z) is the diffusion co-
efficient and q(z, t) is the stochastic model error. The initial conditions are
given as

u(z, 0) = u0 + a, (5.70)

where a contains the stochastic errors in the first-guess initial condition u0.
The boundary conditions for the model are

A
∂u

∂z

∣∣∣∣
z=0

=
(
cd
√
u2
a + v2

a

)
ua + b0, (5.71)

A
∂u

∂z

∣∣∣∣
z=−H

= 0 + bH , (5.72)

where the position z = 0 is at the ocean surface and the lower boundary is at
z = −H, cd is the wind drag coefficient, ua is the atmospheric wind speed,
and b0 and bH are the stochastic errors in the boundary conditions.

Now a set of measurements d of the true solution is assumed given and
linearly related to the model variables by the measurement equation

M
[
u
]

= d+ ε. (5.73)

5.3.2 Variational formulation

A convenient variational formulation is

J [u] =
∫ T

0

dt1

∫ T

0

dt2

∫ 0

−H
dz1

∫ 0

−H
dz2 q

T(z1, t1)W qq(z1, t1, z2, t2) q(z2, t2)

+
∫ 0

−H
dz1

∫ 0

−H
dz2 a

T(z1)W aa(z1, z2)a(z2)

+
∫ T

0

dt1

∫ T

0

dt2 b
T
0 (t1)W b0b0(t1, t2) b0(t2) (5.74)

+
∫ T

0

dt1

∫ T

0

dt2 b
T
H(t1)W bHbH (t1, t2) bH(t2)

+ εTW εεε.

A simpler way of writing this may be

J [u] = qT •W qq • q
+ aT ◦W aa ◦ a
+ bT0 ∗W b0b0 ∗ b0
+ bTH ∗W bHbH ∗ bH
+ εTW εεε,

(5.75)
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where the bullets mean integration both in space and time, the open circles
mean integration in space, the asterisks mean integration in time. Here W εε

is the inverse of the measurement error covariance matrix Cεε, while the other
weights are functional inverses of the respective covariances. For the model
weight, this can be expressed as Cqq •W qq = δ(z1− z3)δ(t1− t3)I, or written
out, ∫ T

0

dt2

∫ 0

−H
dz2 Cqq(z1, t1, z2, t2)W qq(z2, t2, z3, t3)

= δ(z1 − z3)δ(t1 − t3)I.
(5.76)

These weights determine the spatial and temporal scales for the physical prob-
lem and ensure smooth influences from the measurements.

5.3.3 Euler–Lagrange equations

Following the procedure outlined in the previous sections, we can derive the
Euler–Lagrange equations. This leads to the forward model

∂u

∂t
+ k × u =

∂

∂z

(
A
∂u

∂z

)
+Cqq • λ, (5.77)

with initial conditions
u|t=0 = u0 +Caa ◦ λ, (5.78)

and boundary conditions

A
∂u

∂z

∣∣∣∣
z=0

= cd
√
u2
a + v2

a ua +Cb0b0 ∗ λ, (5.79)

A
∂u

∂z

∣∣∣∣
z=−H

= −CbHbH ∗ λ. (5.80)

In addition we obtain the adjoint model

−∂λ
∂t
−k×λ =

∂

∂z

(
A
∂λ

∂z

)
+MT

[
δ(z−z2)δ(t−t2)

]
W εε

(
d−M

[
u
])
, (5.81)

subject to the “final” condition

λ|t=T = 0, (5.82)

and the boundary conditions

∂λ

∂z

∣∣∣∣
z=0,z=−H

= 0. (5.83)

The system (5.77) to (5.83) is the Euler–Lagrange equations which here com-
prise a two-point boundary value problem in space and time, and since they
are coupled they must be solved simultaneously.
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5.3.4 Representer solution

Assuming a solution in the standard form

u(z, t) = uF (z, t) +
M∑
i=1

biri(z, t), (5.84)

λ(z, t) = λF (z, t) +
M∑
i=1

bisi(z, t), (5.85)

we find the equations for the representers and their adjoints. The M repre-
senters are found by solving the initial value problems

∂ri
∂t

+ k × ri =
∂

∂z

(
A
∂ri
∂z

)
+Cqq • si, (5.86)

with initial condition
ri|t=0 = Caa ◦ si, (5.87)

and boundary conditions

A
∂ri
∂z

∣∣∣∣
z=0

= Cb0b0 ∗ si, (5.88)

A
∂ri
∂z

∣∣∣∣
z=−H

= −CbHbH ∗ si. (5.89)

These equations are coupled to the adjoints of the representers si, which
satisfy the “final” value problems

−∂si
∂t

− k × si =
∂

∂z

(
A
∂si
∂z

)
+Mi[δ(z − z2)δ(t− t2)], (5.90)

with “final” conditions
si|t=T = 0, (5.91)

and boundary conditions

∂si
∂z

∣∣∣∣
z=0, z=−H

= 0. (5.92)

The coefficients b are again found by solving the system (5.60).

5.3.5 Example experiment

Here a simple example will be used to illustrate the method. A constant wind
with ua = (10 m s−1, 10 m s−1) has been used to spin up the vertical velocity
structure in the first-guess solution, starting with an initial condition u(z, 0) =
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Fig. 5.2. The u components of (from top to bottom) the first-guess estimate uF ,
the reference case u and the inverse estimate of u. The contour intervals are 0.05
m s−1 for all the velocity plots. The measurement locations are marked with a
bullet. The v components are similar in structure and not shown. Reproduced from
Eknes and Evensen (1997)

0 and then performing 50 hours of integration. The reference case, from which
velocity data are extracted, is generated by continuing the integration for
another 50 hours.

By measuring the reference case and adding Gaussian noise, nine simulated
measurements of u were generated; that is, a total of 18 measurements of u
and v components were used. The locations of the measurements are shown
in Fig. 5.2.

All error terms are assumed to be unbiased and uncorrelated, and the error
covariances were specified as follows:
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Fig. 5.3. The u component of (top to bottom) s5, Cqq • s5, r5, the adjoint λ, and
Cqq • λ. The measurement locations are marked with a bullet. The v components
are similar in structure and not shown. Reproduced from Eknes and Evensen (1997)
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Caa(z1, z2) = σ2
a exp

(
−
(
z1 − z2
la

)2
)
I, (5.93)

Cb0b0(t1, t2) = σ2
b0δ(t1 − t2)I, (5.94)

CbHbH (t1, t2) = σ2
bH δ(t1 − t2)I, (5.95)

Cqq(z1, t1, z2, t2) = σ2
q exp

(
−
(
z1 − z2
lq

)2
)
δ(t1 − t2)I, (5.96)

Cεε = σ2
oI. (5.97)

Here it has been assumed that the model and the boundary errors are uncor-
related in time. This is convenient for computational reasons, but for more
realistic applications, such a correlation should probably be included. The er-
ror variances all correspond to a 5–10% standard deviation of the variables
or terms they represent errors in. This means that all first guesses and the
model dynamics are assumed to be reasonably accurate and they all have sim-
ilar impact on the inverse solution. Small perturbations in the weights give
only small perturbations in the inverse estimate. However, large perturba-
tions may cause problems; for example, with zero weights on some of the first
guesses, the inverse problem may become ill-posed. The de-correlation lengths
are similar to the characteristic length scales of the dynamical system. This
ensures that the representers also become smooth with similar length scales
as the dynamical solution.

The first-guess, the reference solution, and the inverse estimate are given in
Fig. 5.2. The reference solution is regenerated quite well, even though the first-
guess solution is out of phase with the reference case and the measurements
do not resolve the time period of the oscillation. In fact, a single measure-
ment may suffice for reconstructing the correct phase since the corresponding
representer will carry the information both forward and backward in time,
although the errors will be larger with less measurements. Note that the qual-
ity of the inverse estimate is poorest near the initial time. This is probably
caused by a poor choice of weights for the initial conditions relative to the
initial condition that was actually used.

To illustrate the solution procedure using the representer method in more
detail, the u-components of the variables s5, r5, λ, and the right-hand sides
Cqq • s5 and Cqq • λ, are given in Fig. 5.3. These plots demonstrate how the
information from the measurements is taken into account and influences the
solution. Measurement number five corresponds to the u component at the
location (z, t) = (−20.0, 25.0).

The upper plot shows the u-component of s5 and it is clear from (5.90) that
it is forced by the δ-function at the measurement location. This information
is then propagated backward in time while the u and v components interact
during the integration.

Thereafter, si is used on the right-hand side of the forward equation for the
representer and is also used to generate the initial and boundary conditions.
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The convolution Cqq • s5, is a smoothing of s5 according to the covariance
functions contained inCqq, as can be observed from the second plot in Fig. 5.3.

The representer r5 is smooth and is oscillating in time with a period
reflecting the inertial oscillations described by the dynamical model. Note that
the representers will have a discontinuous time derivative at the measurement
location since the right-hand side Cqq • s5 is discontinuous there. However, if
a correlation in time was allowed in Cqq, then Cqq • s5 would be continuous
and the representer r5 would be smooth.

After the representers have been calculated and measured to generate the
representer matrix, the coefficient vector b is solved for and used in (5.81)
to decouple the Euler–Lagrange equations. The u-component of λ (Fig. 5.3)
illustrates how the various measurements have a different impact determined
by values of the coefficients in b, which again are determined by the quality of
the first-guess solution versus the quality of the measurements and the residual
between the measurements and the first-guess solution. After λ is found, the
right-hand side in the forward model equation can be constructed through the
convolution Cqq •λ, and this field is given at the bottom of Fig. 5.3. Clearly,
the role of this term is to force the solution to smooth the measurements.

5.3.6 Assimilation of real measurements

The representer implementation will now be examined using the LOTUS–
3 data set (Bowers et al., 1986) in a similar setup to the one used by
Yu and O’Brien (1991, 1992). The LOTUS–3 measurements were collected
in the northwestern Sargasso Sea (34◦ N, 70◦ W) during the summer of 1982.
Current meters were fixed at depths of 5, 10, 15, 20, 25, 35, 50, 65, 75 and
100 m and measured the in situ currents. A wind recorder mounted on top of
the LOTUS–3 tower measured the wind speeds. The sampling interval was 15
min, and the data used by Yu and O’Brien (1991, 1992) were collected in the
period from June 30 to July 9, 1982. Here, data from the same time period
are used. However, while Yu and O’Brien (1991, 1992) used all data collected
during the 10 days, we have used a sub-sampled data set consisting of mea-
surements collected at a 5-hour time interval at the depths 5, 25, 35, 50 and
75 m. The reason for not using all the measurements is to reduce the size of
the representer matrix MT

[
r
]
, and thus the computational cost. The inertial

period and the vertical length scale are still resolved, and it is expected that
mainly small-scale noise is rejected by subsampling the measurements.

The model was initialized by the first measurements collected on June
30, 1982. The standard deviation of the small-scale variability of the velocity
observations was estimated to be close to 0.025 m s−1, and this value was used
to determine the error variances for the observations and the initial conditions.
A similar approach was also used for the surface boundary conditions by
looking at small-scale variability of the wind data. The model error variance
was specified after a few test runs to give a relatively smooth inverse estimate
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Fig. 5.4. Weak constraint results from the LOTUS–3 assimilation experiment from
Eknes and Evensen (1997). Inverse estimate for the u component of velocity (red
lines), the time series of measurements (blue lines), and the subsampled measure-
ments (bullets), at 5, 25 and 50 m

which seemed to be nearly consistent with the model dynamics and at the
same time was close to the observations without over-fitting them.

The Ekman model describes wind driven currents and inertial oscilla-
tions only, while the measurements may also contain contributions from, e.g.
pressure-driven currents. Therefore some drift in the measurements has been
removed from the deepest moorings as was also done by Yu and O’Brien
(1991, 1992).

The results from the inverse calculation are shown in Fig. 5.4 as time
series of the u component of the velocity at various depths. The inverse esti-
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Fig. 5.5. Strong constraint results from the LOTUS–3 assimilation experiment
from Eknes and Evensen (1997). Inverse estimate for the u component of velocity
(red lines), the time series of measurements (blue lines), and the subsampled mea-
surements (bullets), at 5, 25 and 50 m

mate is plotted together with the full time series of the measurements. The
measurements used in the inversion are shown as bullets.

It is first of all evident that both the amplitude and phase of the inverse es-
timate are in good agreement with the measurements at all times and depths.
Note also that the inverse estimate is smooth and does not exactly interpolate
the measurements. By a closer examination of the inverse estimate, it is pos-
sible to see that the time derivative of the inverse estimate is discontinuous
at measurement locations. This is caused by neglecting the time correlation
in the model error covariances.
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For comparison, a strong constraint inversion was performed and the re-
sults are shown in Fig. 5.5. Note that the strong constraint inverse for a linear
model is easily solved for without any iterations simply by calculating the
representer solution with the model error covariance set to zero.

It is clear from comparisons that the strong constraint solution in the upper
part of the ocean is in reasonable phase with the measurements, as determined
by the initial conditions, while the amplitudes are not as good as in the weak
constraint inverse. The only way the amplitudes can change when the model is
assumed to be perfect is by vertical transfer of momentum from the surface.
This is seen to work reasonably well near the surface, while in the deeper
ocean, there is hardly any effect from the wind stress and the strong constraint
inverse solution is also far from the measurements. The solution is actually
rather close to a sine curve representing the pure inertial oscillations. The
strong constraint results from Yu and O’Brien (1992) are similar to ours and
also have the same problems with amplitude and phase. These results indicate
that model deficiencies, such as neglected physics, should be accounted for
through a weak constraint variational formulation to ensure an inverse solution
in agreement with the measurements.

5.4 Comments on the representer method

Some important comments should be made regarding the representer method.
For details we refer to the monographs by Bennett (1992, 2002).

1. As in (3.55) an inner product can be defined for the current time depen-
dent problem, and a reproducing kernel for this inner product becomes
the error covariance in time for the first guess state estimate. Thus, the
same theory as was used in Chap. 3 can be used again to prove properties
of the problem.

2. The representer solution provides the optimal minimizing solution of the
linear inverse problem. It was shown by Bennett (1992) that by assuming
a solution

ψ(t) = ψF(t) + bTr(t) + g(t), (5.98)

where g(t) is an arbitrary function orthogonal to the space spanned by
the representers, it can be shown that we must have g(t) ≡ 0, using a
procedure similar to the one presented for the time independent problem
in Sect. 3.2.6. This also shows that the solution is searched for in the
M -dimensional space spanned by the representers. Thus, we have reduced
the infinite dimensional problem defined by the penalty function to an
M -dimensional problem.

3. The representer method can only be used to solve linear inverse problems.
However, for nonlinear dynamical models, it can still be applied if one
can define a convergent sequence of linear iterates of the nonlinear model,
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where each linear iterate is solved for using the representer method. As
an example consider the equation

∂u

∂t
+ u

∂u

∂x
= · · · . (5.99)

If the solution of this equation can be found from the iteration

∂ui

∂t
+ ui−1 ∂u

i

∂x
= · · · , (5.100)

then one can also define a convergent sequence of linear inverse problems
which can be solved exactly using representer expansions. This approach
has been used with many realistic ocean and atmospheric circulation mod-
els by Bennett and coworkers and has proved to work well when the non-
linearities are not too strong. It was in fact used for an inversion of a
global atmospheric primitive equation model by Bennett et al. (1996).

4. From the algorithm as described above, it may seem like one has to solve
for a representer corresponding to each individual measurement, at the
cost of two model integrations for each. However, it turns out that it is
possible to solve the system (5.60) without first constructing the matrix
MT[r]. This is possible since only the product of MT[r] with an arbitrary
vector v is required if an iterative solver such as the conjugate gradient
method is used. This product can be evaluated by two model integrations
by using a clever algorithm which is described by Egbert et al. (1994) and
Bennett (2002). This is easily seen if we multiply the transposes of (5.61),
(5.62), (5.63) and (5.64) with v to get

∂rTv

∂t
+ rTv = Cqq •

(
sTv

)
, (5.101)(

rTv
)
(0) = Caa

(
sTv

)
(0), (5.102)

∂
(
sTv

)
∂t

+ sTv = −MT
[
δ
]
v, (5.103)(

sTv
)
(tk) = 0. (5.104)

Here we note that sTv = vTs is in this case a scalar function of time,
just like the original model state. One backward integration of the final
value problem defined by (5.103) and (5.104) results in the solution (sTv),
which is then used to solve the initial value problem, (5.101) and (5.102),
for the function (rTv). Since the measurement operator is linear, we then
get

M
[(
rTv

)]
= MT

[
r
]
v, (5.105)

which is needed in the iterative solver.
Thus, for each linear iterate, the representer solution can be found by a
number of model integrations equal to two times the number of conju-
gate gradient iterations to find b, plus two integrations to find the final
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solution. The conjugate gradient iterations converge quickly if a good pre-
conditioner is used and often a few selected representers are computed and
measured first to construct the preconditioner (Bennett , 2002).

5. Finally, the convolutions appearing in the Euler–Lagrange equations can
also be computed very efficiently if specific covariance functions are used.
In particular it is explained in Bennett (2002) how one can compute the
convolutions by solving simple differential equations using an approach
developed by Derber and Rosati (1989) and Egbert et al. (1994).

6. Note that the equation for b, (5.60), is similar to the one solved in the anal-
ysis scheme in the standard Kalman filter. Furthermore, in the Kalman
filter the representers or influence functions are defined as the measure-
ments of the error covariance matrix at a particular time, while in the
representer method the representers are functions of space and time. It
can be shown that the representers correspond to the measurements of
the space-time error covariance of the first guess solution. Thus, there
are similarities between the analysis step in the Kalman filter and the
representer method.

To summarize, the representer method is an extremely efficient methodology
for solving linear inverse problems and it is also applicable to many nonlinear
dynamical models. Note that the method requires knowledge of the dynam-
ical equations and numerical code to derive the adjoint equations. Further,
the actual derivation of the adjoint model and its implementation may be
cumbersome for some models. This is contrary to the ensemble methods that
will be discussed later. They only require the dynamical model as a black box
for integrating model states forward in time.
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Nonlinear variational inverse problems

This chapter considers highly nonlinear variational inverse problems and their
properties. More general inverse formulations for nonlinear dynamical models
will be treated extensively in the following chapters, but an introduction is
in place here. The focus will be on some highly nonlinear problems which
cannot easily be solved using the representer method. Examples are given
were instead, so-called direct minimization methods are used.

6.1 Extension to nonlinear dynamics

It was pointed out in the previous chapter that, rather than solving one non-
linear inverse problem, one may define a convergent sequence of linear iterates
for the nonlinear model equation, and then solve a linear inverse problem for
each iterate using the representer method.

On the other hand, it is also possible to define a variational inverse problem
for a nonlinear model. As an example, when starting from the system (5.21–
5.23) but with the right-hand-side of (5.21) replaced by a nonlinear function,
G(ψ), we obtain Euler–Lagrange equations on the form

dψt−G(ψ) =
∫ T

0

Cqq(t, t1)λ(t1)dt1, (6.1)

ψ(0) = Ψ0 + Caaλ(0), (6.2)

dλt+G∗(ψ)λ = −MT
(2)

[
δ(t− t2)

]
W εε

(
d−M

[
ψ
])
, (6.3)

λ(T ) = 0, (6.4)

where G∗(ψ) is the transpose of the tangent linear operator of G(ψ) evaluated
at ψ. Thus, like in the EKF we need to use linearized model operators, but
this time for the backward or adjoint equation. We can expect that this may
lead to similar problems as was found using the EKF.
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Note that, for nonlinear dynamics the adjoint operator (or adjoint equa-
tion) does not exist, since the penalty function no longer defines an inner
product for a Hilbert space. This is resolved by instead using the adjoint of
the tangent linear operator.

In the following we will consider a variational inverse problem for the
highly nonlinear and chaotic Lorenz equations and use this to illustrate typical
problems that may show up when working with nonlinear dynamics.

6.1.1 Generalized inverse for the Lorenz equations

Several publications have examined assimilation methods with chaotic and
unstable dynamics. In particular, the Lorenz model (Lorenz , 1963) has been
examined with many different assimilation methods. Results have been used
to suggest properties and possibilities of the methods for applications with
oceanic and atmospheric models which may also be strongly nonlinear and
chaotic.

The Lorenz model is a system of three first order coupled and nonlinear
differential equations for the variables x, y and z,

dxt = σ(y − x) + qx, (6.5)
dyt = ρx− y − xz + qy, (6.6)
dzt = xy − βz + qz, (6.7)

with initial conditions

x(0) = x0 + ax, (6.8)
y(0) = y0 + ay, (6.9)
z(0) = z0 + az. (6.10)

Here x(t), y(t) and z(t) are the dependent variables and we have chosen the
following commonly used values for the parameters in the equations: σ =
10, ρ = 28 and β = 8/3. We have also defined the error terms q(t)T =
(qx(t), qy(t), qz(t)) and aT = (ax, ay, az) which have error statistics described
by the 3× 3 error covariance matrices Cqq(t1, t2) and Caa. The system leads
to chaotic solutions where small perturbations of initial conditions lead to a
completely different solution after a certain time integration.

Measurements of the solution are represented through the measurement
equation

M[x] = d+ ε. (6.11)

Further, by allowing the dynamical model equations (6.5–6.7) to contain er-
rors, we obtain the standard weak constraint variational formulation,

J [x, y, z] =
∫∫ T

0

q(t1)TW qq(t1, t2) q(t2)dt1dt2

+ aTW aa a+ εTW εεε.

(6.12)



6.1 Extension to nonlinear dynamics 73

The weight matrix, W qq(t1, t2) ∈ <3×3, is defined as the inverse of the model
error covariance matrix, Cqq(t2, t3) ∈ <3×3, from∫ T

0

W qq(t1, t2)Cqq(t2, t3)dt2 = δ(t1 − t3)I, (6.13)

and we have the weight matrices, W aa = C−1
aa ∈ <3×3 and W εε = C−1

εε ∈
<M×M .

6.1.2 Strong constraint assumption

The strong constraint assumption leads to the adjoint method which has
proven to be efficient for linear dynamics, given that the strong constraint
assumption is valid.

The strong constraint assumption, solved by the adjoint method, has been
extensively used in the atmosphere and ocean communities. Particular effort
has been invested in developing the adjoint method for use in weather forecast-
ing systems, where it is named 4DVAR (4–dimensional variational method).
4DVAR implementations are today in operational or preoperational use at at-
mospheric weather forecasting centers, but common for these is that they still
only works well for rather short assimilation time intervals of one day or less.
The causes for this may be connected to the tangent linear approximation but
also to the chaotic nature of the dynamical model.

The strong constraint inverse problem for the Lorenz equations is defined
by assuming that the model is perfect, q(t) ≡ 0, and only the initial condi-
tions contain errors. A number of papers have examined the adjoint method
with the Lorenz model, see e.g. Gauthier (1992), Stensrud and Bao (1992),
Miller et al. (1994), Pires et al. (1996). In these works it was found that there
is a strong sensitivity of the penalty function with respect to the initial con-
ditions. In particular there is a problem when the assimilation time interval
exceeds a few times the predictability time of the model.

Miller et al. (1994) found that the penalty function changed from a nearly
quadratic shape around the global minimum, for short assimilation time in-
tervals, to a shape similar to a white noise process when the assimilation time
interval was extended.

This is illustrated in Fig. 6.1 which plots values of the cost function with
respect to variation in x(0) while y(0) = y0 and z(0) = z0 are kept constant
at their prior estimates. It is further assumed that all components of the
solution x(t) are observed at regular time intervals tj = j ∆tobs, for j =
1, . . . ,m, with ∆tobs = 1. We can then define the measurement equation for
each measurement time tj , as

Mj [x] = dj + εj , (6.14)

where εj represents the random errors in the measurements.



74 6 Nonlinear variational inverse problems

Fig. 6.1. Strong constraint penalty function for the Lorenz model as a function
of the initial x-value, keeping y and z constant, when using data in the intervals
t ∈ [0, 2] (upper plot), t ∈ [0, 4] (middle plot), and t ∈ [0, 8] (lower plot)
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The value of the penalty function can be evaluated from

JJ [x(0)] =
(
x(0)− x0

)T
W aa

(
x(0)− x0

)
+

J∑
j=1

(
dj −Mj

[
x
])T

W εε(j)
(
dj −Mj

[
x
])
,

(6.15)

where the subscript J , defines the length of the assimilation time interval and
indicates that measurements up to the J ’th measurement time are included.
The weights W aa and W εε(j) are three by three matrices and have the same
interpretation as in the previous sections.

The upper plot of Fig. 6.1 is for a very short assimilation time interval of
t ∈ [0, 2], i.e. only twice the characteristic time scale of the model dynamics.
It is clear that even for this short time-interval there are local minima in the
cost function and a very good prior estimate of the initial state is needed for
a gradient based method to converge to the global minimum near x(0) = 1.5.
In the middle plot the assimilation interval is extended to t ∈ [0, 4] and we
see that even though the basic shape is the same there now appear some
additional spikes and local minima in the cost function. When the assimilation
time interval is extended to t ∈ [0, 8] in the lower plot, the shape of the cost
function appears nearly as a white noise process. It is obvious that these cost
functions cannot be minimized using traditional gradient based methods, and
obviously, the strong constraint problem for the Lorenz equations becomes
practically impossible to solve for long assimilation time intervals, independent
of the method used.

It should at this time be noted that this is mainly a result of the formula-
tion of the problem, i.e. the assumption that the model is an exact representa-
tion of unstable and chaotic dynamics. It is not unlikely that similar problems
can occur in models of the ocean and atmosphere which resolves the chaotic
mesoscale circulation, and this may be one of the reasons why 4DVAR appears
to be limited to short assimilation time intervals in these applications.

The approach for resolving this problem in the atmospheric community has
been to solve a sequence of strong constraint inverse problems, of the form
(6.15), defined for separate subintervals in time. To illustrate this, assume that
we have divided the assimilation time interval into one-day sub-intervals, and
we define a strong constraint inverse problem for each one-day time interval
on the form (6.15). Thus:

1. We start by solving the first sub-problem for day one which results in an
estimate for the initial conditions at day one.

2. Integration of the model from this initial condition provides the strong
constraint inverse solution for day one.

3. We then use the inverse solution from the end of day one to specify the
prior estimate of the initial conditions for day two.

4. The problem now is that, for day two, one cannot easily compute an
estimate of a new updated prior error statistics W aa, for the initial con-
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ditions, that accounts for the new information introduced in the previous
inverse calculation. Thus, the original prior W aa is used repeatedly for
each sub-interval.

Using this procedure, there is no proper time evolution of the error covari-
ances, thus a different problem than the originally posed strong constraint
problem is solved. Estimation of the proper error covariance matrix would
require the computation of the inverse of the Hessian of the penalty function,
which equals the error covariance matrix for the estimated initial conditions,
followed by the evolution of this error covariance matrix through the assim-
ilation interval using an approximate error covariance equation like in the
EKF.

6.1.3 Solution of the weak constraint problem

We already saw that if the dynamical model is not too nonlinear, a convergent
sequence of linear iterates may be defined, and each iterate can be optimally
solved using the representer method. For dynamical models with stronger
nonlinearities the sequence of linear iterates may not converge and alternative
methods need to be used.

Another class of methods for minimizing (6.12) is named substitution
methods. These are methods that guess candidates for the minimizing so-
lution and then evaluate the value of the penalty function. Dependent of the
algorithm used the new candidate may be accepted with a specified probabil-
ity if it results in a lower value for the penalty function.

A discrete version of the penalty function is now needed and we represent
the model variables x(t), y(t), and z(t) on a numerical grid in time. The
variables are stored in the state vectors x, y, and z, all belonging to <n, i.e.
we have the vector xT = (x1, x2, . . . , xn), and similarly for y and z, where
n is the number of grid points in time. The discrete analog to (6.12) then
becomes

J [x,y,z] = ∆t2
n∑
i=1

n∑
j=1

q(i)TW qq(i, j) q(j) + aTW aa a+ εTW εεε, (6.16)

where q(i)T = (qx(ti), qy(ti), qz(ti)). Furthermore, there will be no integration
of the model equations required using the substitution methods and simple
numerical discretizations based on second order centered differences for the
time derivatives can be used, i.e.

xi+1 − xi−1

2∆t
= σ(yi − xi) + qx(ti),

yi+1 − yi−1

2∆t
= ρxi − yi − xizi + qy(ti),

zi+1 − zi−1

2∆t
= xiyi − βzi + qz(ti),

(6.17)
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where i = 2, . . . , n− 1 is the time-step index, with n the total number of time
steps.

Note that the evaluation of the double sum in (6.16) is costly. Here, an
alternative method like the one used for the convolutions in the representer
method could be used.

An even more efficient approach was used by Evensen and Fario (1997).
It is assumed that the model weight can be written as

W qq(t1, t2) = W qqδ(t1 − t2), (6.18)

where W qq is a constant 3 × 3 matrix. This eliminates one of the summa-
tions in the model term in (6.16) and allows for more efficient computational
algorithms. However, the correlation in time of the model errors has a time
regularizing effect on the inverse estimate which has now been lost.

To ensure a smooth solution in time the regularization is instead accounted
for by a smoothing term

JS [x,y,z] = ∆t
n∑
i=1

ηT
i W ηηηi, (6.19)

where ηT
i =

(
ηx(ti), ηy(ti), ηz(ti)

)
, with

ηx(ti) =
xi+1 − 2xi + xi−1

∆t2
, (6.20)

and W ηη is a weight matrix determining the relative impact of the smoothing
term.

It would have been more consistent to actually smooth the model errors
instead of the inverse estimate, since it can be shown that such a smoothing
constraint, used together with the penalty term for the model errors, would
define a norm. Moreover, there is a unique correspondence between such a
smoothing norm and a covariance matrix, as shown by McIntosh (1990). On
the other hand, the smoothing term as included here, will improve the condi-
tioning of the method since only smooth functions are searched for.

The penalty function now becomes

J [x,y,z] = ∆t
n∑
i=1

qT
i W qq qi + aTW aa a+ εTwε

+∆t
n∑
i=1

ηT
i W ηηηi.

(6.21)

For q1, qn, η1 and ηn we use second order one-sided difference formulas.

6.1.4 Minimization by the gradient descent method

A very simple approach for minimizing the penalty function (6.21) is to use a
gradient descent algorithm as was done by Evensen (1997), Evensen and Fario
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(1997). The gradient ∇(x,y,z)J [x,y,z], with respect to the full state vector
in time (x,y,z), is easily derived. When the gradient is known it can be used
in a descent algorithm to search for the minimizing solution. Thus, for the
Lorenz model we solve the iterationxy

z

i+1

=

xy
z

i

− γ

∇xJ [x,y,z]
∇yJ [x,y,z]
∇zJ [x,y,z]

i

. (6.22)

with γ being a step length. Given a first guess estimate, the gradient of the
cost function is evaluated and a new state estimate can be searched for in the
direction of the gradient.

The required storage for the gradient descent method is of order the size
of the state vector in space and time, which is the same as for the adjoint and
representer methods.

Note that, using a gradient descent method there is no need for any model
integrations. This is contrary to the representer and adjoint methods which
integrate both the forward model and the adjoint model, and to the Kalman
filter where the forward model is needed.

As long as the penalty function does not contain any local minima, the
gradient method will eventually converge to the minimizing solution. However,
the obvious drawback is that the dimension of the problem becomes huge
for high dimensional problems, i.e. the number of dependent variables times
the grid points in time and space. For the Lorenz model this becomes 3n.
This is normally much larger than the number of measurements which defines
the dimension of the problem as solved by the representer method. Thus, a
proper conditioning may be needed to ensure that high dimensional problems
converge in an acceptable number of iterations.

6.1.5 Minimization by genetic algorithms

With nonlinear dynamics the penalty function is clearly not convex in general
due to the first term in (6.21) containing the model residuals. However, both
the measurement penalty term and the smoothing norm will give a quadratic
contribution to the penalty function and if the weights, W εε and W ηη, are
large enough compared to the dynamical weightW qq, one can expect a nearly
quadratic penalty function. On the contrary, if the model residuals are the
dominating terms in the penalty function, clearly a pure descent algorithm
may get trapped in local minima and the solution found may depend on the
first guess in the iteration.

A special class of substitution methods contains the so-called genetic al-
gorithms. These are typically statistical methods which guess new candidates
for the minimizing solution at random or using some wise candidate selection
algorithm. Then an acceptance algorithm is used to decide whether the new
candidate is accepted or not. The acceptance algorithm is dependent on the
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value of the penalty function but also has a random component which allows
it to escape local minima.

Statistical versions of the genetic methods exploit the fact that the mini-
mizing solution can be interpreted as the maximum likelihood estimate of a
probability density function,

f(x,y,z) ∝ exp
(
−J

[
x,y,z

])
. (6.23)

Moments of f(x,y,z) could be estimated using standard numerical in-
tegration based on Monte Carlo methods using points selected at random
from some distribution. However, this would be extremely inefficient due to
the huge state space associated with many high dimensional models, such as
models of the ocean and atmosphere.

Metropolis algorithm

Instead a method by Metropolis et al. (1953) is useful, and we now illustrate
it for the variable ψT = (x,y,z). The algorithm samples a pdf by performing
a random walk through the space of interest. At each sample position ψ, a
perturbation is added to generate a new candidate ψ1, and this candidate is
accepted according to a probability

p = min
(

1,
f(ψ1)
f(ψ)

)
. (6.24)

The mechanism for accepting the candidate with probability p, is implemented
by drawing a random number ξ, from the uniform distribution on the interval
[0, 1] and then accepting ψ1 if ξ ≤ p. The conditional uphill climb, based
on the value of p and ξ, is due to Metropolis et al. (1953) and is named the
Metropolis algorithm. They also gave a proof that the method was ergodic,
i.e. any state can be reached from any other, and that the trials would sample
the probability distribution f(ψ). Clearly, in a high dimensional space with
strongly nonlinear dynamics, the random trials may be too random and most
of the time lead to candidates ψ1, with very low probabilities, which are only
occasionally accepted. Thus, the algorithm becomes very inefficient.

Hybrid Monte Carlo algorithm

In Bennett and Chua (1994) an alternative to a random walk, which provided
a significantly faster convergence, was used when solving for the inverse of
a nonlinear open ocean shallow water model. The algorithm which is due to
Duane et al. (1987) ensures that candidates with acceptable probabilities are
constructed. It is based on constructing the Hamiltonian

H[ψ,π] = J [ψ] +
1
2
πTπ, (6.25)
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and then deriving the canonical equations of motion in (ψ,π) phase space,
with respect to a pseudo time variable τ ,

∂ψi
∂τ

=
∂H
∂πi

= πi, (6.26)

∂πi
∂τ

= − ∂H
∂ψi

= − ∂J
∂ψi

. (6.27)

This system is integrated for a pseudo time interval, τ ∈ [0, τ1], using the
previously accepted value of ψ and a random guess for π(0) as initial condi-
tions. The Metropolis algorithm can then be used for the new guess ψ(τ1). In
Duane et al. (1987), it was proved that this algorithm also preserved detailed
balance, i.e.

f(ψ1,ψ2) = f(ψ2|ψ1)f(ψ1) = f(ψ1|ψ2)f(ψ2), (6.28)

which is needed for showing that a long sequence of random trials will converge
towards the distribution (6.23).

The interpretation of the method is clear. In the Hamiltonian (6.25), the
penalty function defines a potential energy while a kinetic energy is repre-
sented by the last term. The canonical equations describe motion along lines
of constant total energy. Thus, with a finite and random initial momentum,
the integration of the canonical equation over a pseudo time interval will re-
sult in a new candidate with a different distribution of potential and kinetic
energy. Unless the initial momentum is very large this will always result in a
candidate which has a reasonable probability. If the initial momentum is zero,
it will result in a candidate with less potential energy and higher probability.
If the initial candidate is a local minimum, the random initial momentum may
provide enough energy to escape the local minimum.

Note that, after a minimum of the variational problem has been found,
the posterior error statistics can be estimated by collecting samples of nearby
states. Thus, by using the hybrid Monte Carlo method to generate a Markov
chain that samples the probability function, a statistical variance estimate
can be generated. This method may be used to generate error estimates in-
dependently of the minimization technique used to solve the weak constraint
problem. Hence, it could also be used in combination with the representer
method which does not easily provide error estimates.

Simulated annealing

When working with a penalty function which has many local minima, the so-
called simulated annealing technique may be used to improve the convergence
to the stationary distribution, based on the method’s capability of escaping
local minima.
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The simulated annealing method (see Kirkpatrick et al., 1983, Azencott ,
1992) is extremely simple in its basic formulation and can be illustrated us-
ing an example where a penalty function J [ψ], which may be nonlinear and
discontinuous, is to be minimized with respect to the variable ψ:

ψ first guess
for i = 1 : . . .
ψ1 = ψ +∆ψ
if (J [ψ1] < J [ψ]) then
ψ = ψ1

else
ξ ∈ [0, 1] random number
p = exp

((
J [ψ]− J [ψ1]

)
/θ
)
∈ [0, 1]

if p > ξ then ψ = ψ1

end
θ = f(θ, i,Jmin)

end

Here ∆ψ might be a normal distributed random vector, but it is more
efficient to simulate it using the hybrid Monte Carlo technique just described.

The temperature scheme θ = θ(θ, i,Jmin) is used to cool or relax the
system and is normally a decreasing function of iteration counter i.

The trials will then converge towards a distribution

f(ψ) ∝ exp
(
−J [ψ]/θ

)
, (6.29)

By slowly decreasing the value of θ the distribution will approach the delta
function at the minimizing value ofψ. The clue is then to choose a temperature
scheme where one avoids getting trapped in local minima for too many itera-
tions, or where too many uphill climbs are accepted. In Bohachevsky et al.
(1986), it was suggested that the temperature should be chosen so that
p ∈ [0.5, 0.9]. Here also a generalized algorithm was proposed where p was
calculated according to p = exp

(
β(J [ψ]−J [ψ1])/(J [ψ]−Jmin)

)
, where β is

approximately 3.5 and Jmin is an estimate of the normally unknown minimum
value of the penalty function. Then the probability of accepting a detrimen-
tal step tend to zero as the random walk approaches the global minimum. If
a value of the cost function is found which is less than Jmin this value will
replace Jmin.

Simulated annealing was previously used by Barth and Wunsch (1990)
to optimize an oceanographic data collection scheme. The use of the hybrid
Monte Carlo method in combination with simulated annealing has been ex-
tensively discussed by Neal (1992, 1993) in the context of Bayesian training
of back-propagation networks. The method was also used to invert an inverse
for a primitive equation model on a domain with ill-posed open boundaries
by Bennett and Chua (1994). An application with the Lorenz equations was
discussed by Evensen and Fario (1997) and will be illustrated below.



82 6 Nonlinear variational inverse problems

Fig. 6.2. Errors in the difference approximation used for the time derivative,
plotted together with the reference solution used in the calculation of the errors.
The two similar curves for ∆t = 0.033 are comparing the actual calculated misfits
and the lowest-order error term in the discrete time derivative. Reproduced from
Evensen and Fario (1997)

6.2 Example with the Lorenz equations

We will now present an example where the gradient descent and the simulated
annealing algorithm are used with the Lorenz equations. This example is
similar to the one discussed by Evensen and Fario (1997).

6.2.1 Estimating the model error covariance

In an identical twin experiment it is possible to generate accurate estimates
of the model error covariance. First the reference or true solution is computed
using a highly accurate ordinary differential equation solver. Then the only
significant contribution to the dynamical error term qn, is the error introduced
in the approximate time discretization (6.17). These misfits can be evaluated
and used to determine the weight matrices W qq and W ηη, which are needed
in the inverse calculation.

An alternative is to evaluate the first order error term in the centered first
derivative approximation used in the discrete model equations (6.17), i.e. we
write for the time derivative of x(t),

∂x

∂t
=
x(t+∆t)− x(t−∆t)

2∆t
+

1
6
∂3x

∂t3
∆t2 + . . . , (6.30)

and evaluate the error term given the true solution.

-20

-15

-10

-5

0

5

10

15

20

0 1 2 3 4 5
Time

Dynamical errors

True solution
Misfit, dt=0.033
Misfit, dt=0.016



6.2 Example with the Lorenz equations 83

Fig. 6.3. Auto-correlation functions calculated for the computed dynamical misfits
for the x, y, and z component of the solution, and two auto-correlation functions
corresponding to the smoothing norm with γ = 0.0008 (curve A) and γ = 0.00001
(curve B). Reproduced from Evensen and Fario (1997)

In Fig. 6.2 the dynamical misfits are plotted using two different time steps.
Clearly, the errors increase with the length of the time step and the maximum
errors are located at the peaks of the reference solution. The two almost iden-
tical curves for ∆t = 0.033 are generated using the two different approaches
just described.

The error covariance matrix Cqq can be estimated from a long time series
of these errors, and is of course dependent on the time step used. In the
experiments presented here we use a time step of ∆t = 0.01667 and the
corresponding error covariance matrix then becomes

Cqq =

0.1491 0.1505 0.0007
0.1505 0.9048 0.0014
0.0007 0.0014 0.9180

 , (6.31)

where the integration has been performed for a long time interval t ∈ [0, 1667],
i.e. 100 000 time steps. The inverse of this matrix is used for W qq in the
penalty function (6.21).

6.2.2 Time correlation of the model error covariance

The errors are also clearly correlated in time. In Fig. 6.3 the auto-correlation
functions for the x, y, and z components of the dynamical errors are plotted.
Since it is inconvenient to use a full space and time covariance matrix, we
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introduce the smoothing term (6.19), which act as a regularization term on
the minimizing solution.

It can be shown that a smoothing norm of the type

||ψ|| =
∫ T

0

ψ2 + γψ2
ttdt (6.32)

has a Fourier transform equal to

ψ̂ =
(
1 + γω4

)−1
. (6.33)

The limiting behaviour for increasing frequency ω is then proportional to
(γω4)−1; thus high frequencies are penalized most strongly in the smoothing
norm. The ψ2 term is added here, as a first guess penalty, for illustrational
purposes. Without this term, the limiting behaviour for ω → 0 would be
singular and the corresponding auto-correlation function would become very
flat. In the actual inverse formulation, the dynamical and initial residual will
provide the first guess penalty, ensuring a well-behaved limiting behaviour
when f → 0.

An inverse Fourier transform of the spectrum (6.33) gives an auto-
correlation function which is shown in Fig. 6.3 for two values of γ, i.e.
γ = 0.0008 for curve A and γ = 0.00001 for curve B. For γ = 0.0008 the auto-
correlation function has a similar half width to the auto-correlation functions
of the dynamical errors. However, it turned out that for this value of γ the
inverse estimate became too smooth, i.e. the peaks in the solutions were to low
compared to the reference solution. We decided to use γ = 0.00001 which gave
an inverse estimate more in agreement with the reference solution. Based on
the time series of dynamical misfits in Fig. 6.2, it is also clear that the errors
are rather smooth for most of the time while they have sudden changes close
to the peaks of the reference solution. The computed auto-correlation function
will describe an “average” smoothness of the dynamical misfits which is too
smooth near the peaks in the reference solution. This can then justify the use
of the smaller smoothing weight γ = 0.00001.

The error covariance matrix Caa for the errors in the initial conditions,
and the measurement error covariance matrix Cεε, are both assumed to be
diagonal and with the same error variance equal to 0.5. The model error
covariance matrix is given by (6.31) and the smoothing weight matrix is chosen
to be diagonal and given by W ηη = γI with γ = 0.00001.

6.2.3 Inversion experiments

For all the cases to be discussed the initial condition for the reference case is
given by (x0, y0, z0) = (1.508870,−1.531271, 25.46091) and the observations
and first guess initial conditions are simulated by adding normal distributed
noise, with zero mean and variance equal to 0.5, to the reference solution.
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Fig. 6.4. Case A: The inverse estimate for x (top) and the terms in the penalty
function (bottom). The estimated solution is given by the solid line. The dashed line
is the true reference solution, and the diamonds show the simulated observations.
The same line types will be used also in the following figures. Reproduced from
Evensen and Fario (1997)

These are lower values than the variances equal to 2.0, used in Miller et al.
(1994) and Evensen and Fario (1997).

The first guess used in the gradient descent method was initially chosen as
the mean of the reference solution, i.e. about (0, 0, 23). However, there seems
to be a possibility for a local minima close to the zero solution where both
the dynamical penalty term and the smoothing penalty vanish. It is therefore
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Fig. 6.5. Case A: The inverse estimate for y (top) and z (bottom). Reproduced
from Evensen and Fario (1997)

not wise to use an estimate close to the zero solution as the first guess in the
descent algorithm. To reduce the probability of getting trapped in eventual
local minima, an objective analysis estimate, consistent with the measure-
ments, was used as a first guess in the descent algorithm. It was calculated
using a smoothing spline minimization algorithm which is equivalent to ob-
jective analysis (McIntosh, 1990). This could easily be done by replacing the
dynamical misfit term with a penalty of a first-guess estimate in the inverse
formulation (6.21). Some examples will now be discussed.
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Fig. 6.6. Case A: Statistical error estimates (standard deviations) for x together
with the absolute value of the actual errors. Reproduced from Evensen and Fario
(1997)

Case A

This case can be considered as a base case and is, except for the lower mea-
surement errors, similar to the case discussed by Miller et al. (1994); i.e. the
time interval is t ∈ [0, 20] and the distance between the measurements is
∆tobs = 0.25. The gradient descent method was in this case capable of finding
the global minimum when starting from the objective analysis estimate. The
minimizing solution for the three variables is given in Figs. 6.4 and 6.5 together
with the terms in the penalty function as a function of iteration. We find it
amazing how close the inverse estimate is to the reference solution. The qual-
ity of this inverse estimate is clearly superior to previous inverse calculations
using the extended Kalman filter or a strong constraint formulation.

From the terms in the penalty function given in Fig. 6.4, it is seen that the
first guess is close to the measurements and rather smooth, while the dynami-
cal residuals are large and contribute with more than 99 % of the total value of
the cost function. During the iterations, the dynamical misfit is reduced while
there is an initial increase in the smoothing and measurement terms, which
indicates that the final inverse solution is further from the measurements and
less smooth than the first guess.

The hybrid Monte Carlo method was used to estimate the standard de-
viations of the errors in the minimizing solution. These are plotted together
with the true differences between the estimate and the reference solution in
Fig. 6.6 for the x-component. The largest errors appear around the peaks of
the solution and the statistical and true errors are similar.
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Fig. 6.7. Case B: The inverse estimate for x (top) and the penalty function (bot-
tom). Reproduced from Evensen and Fario (1997)

Case B

Here, we extended the time interval to T = 60, to test the sensitivity of
the inverse estimate with respect to a longer time interval. The number of
measurements is increased by a factor of 3 to give the same data density as
in Case A. Note that the value of the cost function is also increased by about
a factor of 3. This case behaves similarly to Case A, with convergence to the
global minimum at a similar rate as in Case A. In Fig. 6.7 the x-component
of the solution is given together with the terms in the penalty function.
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Fig. 6.8. Case C: The inverse estimate for x (top) and the penalty function (bot-
tom). Reproduced from Evensen and Fario (1997)

An important conclusion from this example is that by using a weak con-
straint variational formulation for the inverse, the strong sensitivity with re-
spect to perturbations in initial conditions which is observed for strong con-
straint variational formulations, is completely removed. The weak constraint
formulation allows the dynamical model to “forget” very past and future in-
formation. The convergence of the inverse calculation therefore has a “local”
behaviour where the current estimate at two distant locations have vanishing
influence on each other.
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Fig. 6.9. Case C: The inverse estimate for x (top) and the penalty function (bot-
tom) when the reference solution is used as the first guess in the gradient descent
algorithm. Reproduced from Evensen and Fario (1997)

Case C

When the distance between the measurements is increased to ∆tobs = 0.50,
a solution is found which misses several of the transitions, as seen in the
solution for the x-component given in Fig. 6.8 together with the terms in the
penalty function. This is an indication that the gradient algorithm converged
to a local minimum. We can verify that this is in fact the case by running
another minimization where the true reference solution is used as the first
guess for the gradient method. The result is given in Fig. 6.9 where, after
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Fig. 6.10. Case C1: The inverse estimate for x (top) and the penalty function (bot-
tom) where a genetic algorithm based on simulated annealing is used. Reproduced
from Evensen and Fario (1997)

a minor initial adjustment, the algorithm converges to the global minimum
which has a significantly lower value of the cost function and which captures
all the transitions. Thus, we can conclude that when the measurement density
is lowered the measurement term will give a smaller quadratic contribution to
the cost function and at some stage local minima start to appear.
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Case C1

This case is similar to Case C, but now the hybrid Monte Carlo method
is used in combination with simulated annealing for minimizing the penalty
function. The minimizing solution is in this case given in Fig. 6.10. Note that
the number of iterations required for convergence is higher in this case than
in the previous ones. This is due to perturbations caused by the annealing
process that allows uphill moves to migrate out of local minima. The method
used here is actually not proper annealing but should be denoted quenching,
since the system is cooled too fast to guarantee that the global minimum
will be found. In fact, in a similar case in Evensen and Fario (1997) a local
minimum was found.

6.2.4 Discussion

A weak constraint variational formulation for the Lorenz model has been
minimized using a gradient descent method.

It has been illustrated that by imposing the dynamical model as a weak
constraint, by allowing the dynamics to contain errors, this leads to a better
posed problem than the strong constraint formulation. The weak constraint
formulation eliminates the sensitivity with respect to the initial conditions
since, by allowing for model errors, the estimate can deviate from an exact
model trajectory and thereby forget very past and future information. Further,
there are no limitations on the length of the assimilation interval.

The inverse was calculated using the full state in “space” and time as
control variables. The huge state space associated with such a formulation is
the main objection against using a gradient descent method for a weak con-
straint inverse calculation. It could be compared to the mathematically very
appealing representer method (Bennett, 1992), where the solution is searched
for in a space with dimension equal to the number of measurements. On the
other hand, with a gradient descent approach there is no need to integrate
any dynamical equations, since a new candidate for the solution in space and
time is substituted in every iteration. This gives rise to the notation substi-
tution methods, where the important issue is the method used for proposing
the solution candidates.

A gradient descent method will always provide a solution. However, it
may be a local minimum if the penalty function is not convex. Statistical
methods based on simulated annealing in combination with a hybrid Monte
Carlo method for generating the candidates are much more expensive than a
gradient descent approach but has a higher probability of finding the global
minimum. The genetic methods will, for practical problems, only lead to a
marginal improvement since they can only solve a slightly more difficult prob-
lem to a much larger cost. Thus, one should rather try to define a better posed
problem, e.g. by introducing additional measurements.
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It should be noted that with reasonable good measurement coverage the
penalty function is essentially convex, but when either the number of measure-
ments is decreased or with poorer quality of the measurements, the quadratic
contribution to the penalty function from the measurement term has less in-
fluence and nonlinearities in the dynamics may give raise to local minima.
Thus, the success of the substitution methods is strongly dependent on the
measurement density. With sufficient number of measurements the algorithms
converged to the global minimum of the weak constraint problem. When the
number of measurements decreased, this resulted in a penalty function with
multiple local minima and the gradient descent method was unable to con-
verge to the global minimum.

It should also be pointed out that the gradient descent method does not
directly provide error estimates for the minimizing solution. However, if the
gradient descent method is first used to find the solution then the hybrid
Monte Carlo method can be used to sample from the posterior distribution
function and error variance estimates can be calculated.

An example of this method was used by Natvik et al. (2001) with a sim-
ple but nonlinear three component marine ecosystem model. In this case the
dimension of the problem was equal to three variables times the number of
grid nodes in time. Results similar to those found by Evensen (1997) were
obtained, and the global minimum was found in the cases with sufficient mea-
surement density. With a small number of measurements the gradient method
converged to a local minimum.

The substitution methods solve for a state vector which consists of the
model state vector in space and time. Clearly, this can be very large for realis-
tic models and it does not appear to be a smart approach since we noted that
the real dimension of the linear inverse problem equals the number of mea-
surements. If the number of grid nodes is large, slow convergence is expected,
and this was indeed a result from these studies.

In a final case, similar to case A, but only using measurements of the
x-component of the solution, the global minimum was still found using the
gradient descent method. In this case the estimates for y and z were entirely
determined by the choice of model error covariance matrix and interactions
through the dynamical equations. However, this case converged significantly
slower. This is a result of poor conditioning and can be expected since the
quadratic contribution from the measurement term is lower when only the
x-component of the solution is measured. It also indicates that if the method
is used with high dimensional problems, or with to sparse measurements,
convergence problems may become crucial.



7

Probabilistic formulation

In the previous chapters we have discussed some traditional data assimilation
methods and illustrated these with some simple examples. We will now present
a mathematically and statistically consistent formulation of the combined
parameter and state estimation problem. The starting point is Bayes’ theorem
which defines the posterior probability density function of the poorly known
parameters and the model solution conditioned on a set of observations.

In the following chapters it will be seen that both the generalized inverse
formulation and the EnKF as well as ensemble smoothers can be derived
from Bayes’ theorem. In addition it will be possible to properly interpret
different assimilation methods and understand the assumption and approxi-
mations they relay on, and what they solve for.

The introduction of poorly known parameters does not complicate the
discussion much. It is done since the parameter estimation problem is closely
related to the state estimation problem, and it should in fact be treated as a
combined parameter and state estimation problem. This is a fact that many
works on parameter estimation have ignored, probably because the theoretical
foundation for these problems and their solution methods have not previously
been worked out.

7.1 Joint parameter and state estimation

The parameter estimation problem for a dynamical model can in a general
form be formulated as “how to find the joint pdf of the parameters and model
state, given a set of measurements and a dynamical model with known uncer-
tainties.”

This is vastly different from the traditional approach which is normally
formulated as either “how to find an estimate of the parameters which is as
close as possible to the first guess values of the parameters and which results
in a model solution which is as close as possible to a set of measurements”
or even simpler “how to find the parameters resulting in a model solution
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which is as close as possible to a set of measurements”. Using these defini-
tions, the dynamical model is considered to be perfect except for the errors in
the poorly known parameters. A cost function, which measures the distance
between the model solution and the measurements plus the deviation between
the estimated parameter and its prior with some relative weight, is normally
minimized with respect to the parameters.

Alternatively, a pure state estimation problem as was considered in the
previous chapters can be defined. One is then searching for the pdf of the
model solution given a number of measurements related to the model solution.

7.2 Model equations and measurements

We define a model with associated initial and boundary conditions on the
spatial domain D with boundary ∂D, and a set of observations,

∂ψ(x, t)
∂t

= G
(
ψ(x, t),α(x)

)
+ q(x, t), (7.1)

ψ(x, t0) = Ψ0(x) + a(x), (7.2)
ψ(x, t)|∂D = Ψ b(ξ, t) + b(ξ, t), (7.3)

α(x) = α0(x) +α′(x), (7.4)
M[ψ,α] = d+ ε. (7.5)

The model state ψ(x, t) ∈ <nψ is a vector consisting of the nψ model variables
where each variable is a function of space and time. The nonlinear model is
defined by (7.1) where G(ψ,α) ∈ <nψ is the nonlinear model operator. More
general forms can be used for the nonlinear model operator, but the present
one will suffice to demonstrate the methodologies considered here.

The model state is assumed to evolve in time from the initial state
Ψ0(x) ∈ <nψ defined in (7.2), under the constraints of the boundary con-
ditions Ψ b(ξ, t) ∈ <nψ defined in (7.3). The coordinate ξ is running over the
surface ∂D where the boundary condition is defined.

We have defined α(x) ∈ <nα as a set of nα poorly known parameters of the
model. These can be both a vector of spatial fields, in the form they are written
here, or a vector of scalars, and they are assumed to be constant in time. A
first guess value α0(x) ∈ <nα , of the vector of parameters α(x) ∈ <nα , is
introduced through (7.4).

Additional conditions are present in the form of the measurements d ∈
<M . These can be direct point measurements of the model solution or more
complex parameters which are nonlinearly related to the model state. For the
time being we will restrict ourselves to the case with linear measurements. An
example of a direct measurement functional is then

Mi[ψ] =
∫∫

ψT(x, t)δψiδ(t− ti)δ(x− xi)dtdx, (7.6)
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where the integration is over the space and time domain of the model. The
measurement di, is related to the model state variable as selected by the vector
δψi , and evaluated at the space and time location (xi, ti). If a three-variable
model is used and the second variable is measured, then δψi becomes the
vector (0, 1, 0)T while δ(t− ti) and δ(x− xi) are Dirac delta functions.

In (7.1–7.5) we have also included unknown error terms which are repre-
senting the errors in the model equations, the initial and boundary conditions,
the first guess for the model parameters and the measurements. Without these
error terms the system as given above is over-determined and has no solution.
On the other hand, when we introduce these error terms without additional
conditions there are infinitively many solutions of the system. The way to pro-
ceed is to introduce a statistical hypothesis about the errors, e.g. assuming
that they are normally distributed with means equal to zero and known error
covariances.

7.3 Bayesian formulation

We now consider the model variables, the poorly known parameters, the initial
and boundary conditions and the measurements as random variables which
can be described by pdfs.

The joint pdf for the model state as a function of space and time and
the parameters is f(ψ,α). Further, for the measurements we can define the
likelihood function f(d|ψ,α), thus we can measure both the model state and
the parameters. Using Bayes’ theorem the parameter estimation problem can
be written as

f(ψ,α|d) ∝ f(ψ,α)f(d|ψ,α). (7.7)

We have not included a denominator which normalizes the right-hand-side,
thereby writing proportional to, ∝, rather than equal to.

Parameter estimation problems normally do not include the model state
as a variable to be estimated. It is more common to first solve for the poorly
known parameters alone, and then rerun the model to find the model solution.
This implicitly assumes that the model, with the new estimates of the param-
eters, does not contain any errors. Generally, this is not a valid assumption.

In the dynamical model, we have specified initial and boundary conditions
as random variables and we have included prior information about the pa-
rameters. Thus, we define the pdfs f(ψ0), f(ψb) and f(α), for the estimates
ψ0, ψb and α, of the initial and boundary conditions, and the parameters.
We then write instead of f(ψ,α),

f(ψ,α,ψ0,ψb) = f(ψ,α|ψ0,ψb)f(ψ0)f(ψb)
= f(ψ|α,ψ0,ψb)f(ψ0)f(ψb)f(α).

(7.8)

Equation (7.7) should accordingly be written as
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Fig. 7.1. Discretization in time. The time interval is discretized into k + 1 nodes,
at the times t0 to tk, where the model state vector ψi = ψ(ti) is defined. The
measurement vectors dj are available at the discrete subset of times ti(j), where
j = 1, . . . , J

f(ψ,α,ψ0,ψb|d) ∝ f(ψ|α,ψ0,ψb)f(ψ0)f(ψb)f(α)f(d|ψ,α), (7.9)

where it is also assumed that the boundary conditions and initial conditions
are independent, although, this may not be true for their intersection at t0.
Here the pdf f(ψ|α,ψ0,ψb) is the prior density for the model solution given
the parameters and initial and boundary conditions.

7.3.1 Discrete formulation

In the following discussion it is convenient to work with a model state which
is discretized in time, i.e. ψ(x, t) is represented at fixed time intervals as
ψi(x) = ψ(x, ti) with i = 0, 1, . . . , k. Please refer to Fig. 7.1 for further
illustration.

Furthermore, we define the pdf for the model integration from time ti−1

to ti as f(ψi|ψi−1,α,ψb(ti)), which assumes that the model is a first order
Markov process. In the general case when model errors are time correlated
this could be written as f(ψi|ψk, . . . ,ψi+1,ψi−1, . . . ,ψ0,α,ψb(ti)) which for
simplicity is written as f

(
ψi|
{
ψl 6=i

}
,α,ψb(ti)

)
.

The joint pdf for the model solution and the parameters in (7.8) can now
be written

f(ψ1, . . . ,ψk,α,ψ0,ψb) ∝ f(α)f(ψb)f(ψ0)
k∏
i=1

f(ψi|ψi−1,α,ψb). (7.10)

We now assume that the measurements d ∈ <M can be divided into subsets
of measurement vectors dj ∈ <mj , collected at times ti(j), with j = 1, . . . , J
and 0 < i(1) < i(2) < . . . < i(J) < k. The subset dj will only depend on
ψ(ti(j)) = ψi(j) or α. Further, it is assumed that the measurement errors are
uncorrelated in time. We can then write

f(d|ψ,α) =
J∏
j=1

f(dj |ψi(j),α). (7.11)
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From Bayes’ theorem, we now get

f(ψ1, . . . ,ψk,α,ψ0,ψb|d) ∝

f(α)f(ψ0)f(ψb)
k∏
i=1

f(ψi|ψi−1,α)
J∏
j=1

f(dj |ψi(j),α).
(7.12)

The general case, when the model is not a first order Markov process,
becomes

f(ψ1, . . . ,ψk,α,ψ0,ψb|d) ∝

f(α)f(ψ0)f(ψb)
k∏
i=1

f
(
ψi|
{
ψl 6=i

}
,α
) J∏
j=1

f(dj |ψi(j),α),
(7.13)

i.e. the model state at time ti is dependent on the model state at all other
times. This is the case when time correlated model errors are used. The pre-
vious equations constitute the most general formulation of the state and pa-
rameter estimation problem.

7.3.2 Sequential processing of measurements

We will now assume that the model can be written as a first order Markov
process. This is not a strong assumption or simplification. It was shown by
Reichle et al. (2002) and Evensen (2003) that in the case of time correlated
model errors, it is still possible to reformulate the problem as a first order
Markov process by augmenting the model errors to the model state vector.
A simple equation forced by white noise can be used to simulate the time
evolution of the model errors.

Evensen and van Leeuwen (2000) showed that a general smoother and fil-
ter could be derived from the Bayesian formulation given in (7.12). We now
rewrite (7.12) as follows:

f(ψ1, . . . ,ψk,α,ψ0,ψb|d) ∝ f(α)f(ψ0)f(ψb)
i(1)∏
i=1

f(ψi|ψi−1,α)f(d1|ψi(1),α)

...
i(J)∏

i=i(J−1)+1

f(ψi|ψi−1,α)f(dJ |ψi(J),α)

k∏
i=i(J)+1

f(ψi|ψi−1,α).

(7.14)
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This expression can be evaluated sequentially in time as shown below, and
the result will be identical to the one obtained by direct evaluation of (7.12),

f(ψ1, . . . ,ψi(1),α,ψ0,ψb|d1) ∝
f(α)f(ψ0)f(ψb)
i(1)∏
i=1

f(ψi|ψi−1,α)f(d1|ψi(1),α), (7.15)

f(ψ1, . . . ,ψi(2),α,ψ0,ψb|d1,d2) ∝
f(ψ1, . . . ,ψi(1),α,ψ0,ψb|d1)

i(2)∏
i=i(1)+1

f(ψi|ψi−1,α)f(d2|ψi(2),α), (7.16)

...
f(ψ1, . . . ,ψi(J),α,ψ0,ψb|d1, . . . ,dJ) ∝

f(ψ1, . . . ,ψi(J−1),α,ψ0,ψb|d1, . . . ,dJ−1)
i(J)∏

i=i(J−1)+1

f(ψi|ψi−1,α)f(dJ |ψi(J),α), (7.17)

f(ψ1, . . . ,ψk,α,ψ0,ψb|d1, . . . ,dJ) ∝
f(ψ1, . . . ,ψi(J),α,ψ0,ψb|d1, . . . ,dJ)

k∏
i=i(J)+1

f(ψi|ψi−1,α). (7.18)

From these equations it is clear that, as long as the model is a first order
Markov process and the measurements are available at discrete times with
errors uncorrelated in time, we can process the measurements sequentially in
time.

In (7.15) we compute the joint conditional pdf for the solution in the
interval [t1, ti(1)], the parameter α and the initial and boundary condition,
given the measurements d1.

This joint conditional pdf becomes the prior in (7.16) where the infor-
mation from the measurements d2 are introduced and the time interval is
extended to [t1, ti(2)]. Thus, we compute the joint conditional pdf for the so-
lution in the interval [t1, ti(2)], the parameter α and the initial and boundary
condition, given the measurements d1 and d2.

We can continue this sequential updating until all measurements have been
processed and we get the pdf in (7.17). Thereafter, (7.18) is the prediction of
ψi(m)+1, . . . ,ψk, starting from the joint conditional pdf from (7.17).



7.4 Summary 101

We note again that these equations do not introduce any important ap-
proximations and thus describe the full inverse problem. Further, we claim
that for many problems this sequential procedure provides a better posed
approach for solving the inverse problem than trying to process all the mea-
surements simultaneously as is normally done in variational formulations. The
sequential processing is also very convenient for typical forecasting problems
where new measurements can be processed when they arrive without recom-
puting the full inversion.

7.4 Summary

We have formulated the combined parameter and state estimation problem us-
ing Bayesian statistics and have seen that, under a condition of measurement
errors being independent in time and the dynamical model being a Markov
processes, a recursive formulation can be used for Bayes’ theorem where mea-
surements are processed sequentially in time.

The assumption of the model being a Markov process can be relaxed by
defining a first order auto-regressive formula for the model errors and aug-
menting the model errors to the model state. In this case the Bayesian for-
mulation also solves for the model errors.

It is seen that by augmenting the poorly known parameters to the model
state we obtain a formulation where the model state and the parameters are
solved for simultaneously. Hence, we have a combined parameter and state
estimation problem.

In the next chapter we will use the standard Bayesian formulation as
given by either (7.12) or (7.13) to derive the generalized variational inverse
formulation for the combined parameter and state estimation problem.

Then in Chap. 9 the Ensemble Smoother (ES) is derived from the standard
Bayesian formulation while the recursive form of Bayes’ theorem, given by
(7.15–7.18), is used to derive the Ensemble Kalman Smoother (EnKS) and
the Ensemble Kalman Filter (EnKF).
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Generalized Inverse

The variational inverse problems discussed in Chap. 5 can be derived from
the Bayesian formulation presented in the previous Chapter by assuming
Gaussian statistics for the priors. This was previously demonstrated by
van Leeuwen and Evensen (1996) using the results from Jazwinski (1970).
We will now derive the generalized inverse formulation for the combined pa-
rameter and state estimation problem starting from Bayes’ theorem. Further,
the resulting Euler–Lagrange equations are derived and we discuss some so-
lution methods which also allow for the estimation of poorly known model
parameters.

8.1 Generalized inverse formulation

We start from (7.13) and define Gaussian statistics for all the priors, transition
densities and likelihoods which occur on the right-hand-side.

8.1.1 Prior density for the poorly known parameters

Assume that we have available a prior estimate α0(x) ∈ <nα , of α(x) ∈
<nα , as defined in (7.4). Furthermore, the poorly known parameters α(x)
are assumed to be smooth functions of the spatial coordinates with Gaussian
distributed errors. These conditions have the impact of a regularization of the
inverse problem since they effectively reduce the degrees of freedom of the
problem.

The smoothness of the estimated parameters is controlled by the defini-
tion of an error covariance Cαα(x1,x2) ∈ <nα×nα . Here indices on x, i.e.
x1,x2, . . ., denote dummy variables in D. We can then define the inverse of
Cαα(x1,x2), as W αα(x1,x2), from∫

D
Cαα(x1,x3)W αα(x3,x2)dx3 = δ(x1 − x2)I, (8.1)
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where I ∈ <nα×nα is the diagonal identity matrix.
Note that a discretization of the parameter on a spatial grid leads to the

use of matrices Cαα and W αα. Equation (8.1) is then replaced by a matrix-
matrix multiplication, defining Cαα as the matrix inverse of W αα.

The prior pdf for α then becomes

f(α) ∝ exp
(
−1

2

∫∫
D

(
α(x1)−α0(x1)

)T
W αα(x1,x2)

(
α(x2)−α0(x2)

)
dx1dx2

)
.

(8.2)

8.1.2 Prior density for the initial conditions

The errors in the initial conditions are also assumed to have a Gaussian
distribution, where Ψ0(x) ∈ <nψ is the prior for the initial state, and
Caa(x1,x2) ∈ <nψ×nψ defines the error covariance of the initial condition.
As above we define the inverse of the error covariance W aa(x1,x2), from∫

D
Caa(x1,x3)W aa(x3,x2)dx3 = δ(x1 − x2)I, (8.3)

with I ∈ <nψ×nψ .
The prior pdf for the initial state then becomes

f(ψ0) ∝ exp
(
−1

2

∫∫
D

(
ψ0(x1)− Ψ0(x1)

)T
W aa(x1,x2)

(
ψ0(x2)− Ψ0(x2)

)
dx1dx2

)
.

(8.4)

8.1.3 Prior density for the boundary conditions

For the boundary condition which is defined on ∂D for all times t ∈ [t0, tk],
we define the covariance Cbb(ξ1, t1, ξ2, t2) ∈ <nψ×nψ which has the inverse
W bb(ξ1, t1, ξ2, t2) defined as∫ tk

t0

∫
∂D
Cbb(ξ1, t1, ξ3, t3)W bb(ξ3, t3, ξ2, t2)dξ3dt3

= δ(ξ1 − ξ2)δ(t1 − t2)I,
(8.5)

where xb is a coordinate over the surface ∂D and I ∈ <nψ×nψ . The prior pdf
for the boundary conditions then becomes

f(ψb) ∝ exp
(
−1

2

∫∫
δD

∫∫ tk

t0

(
ψ(ξ1, t1)−ψb(ξ1, t1)

)T
W bb(ξ1, t1, ξ2, t2)

(
ψ(ξ2, t2)−ψb(ξ2, t2)

)
dt1dt2dξ1dξ2

)
.

(8.6)
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8.1.4 Prior density for the measurements

We will continue using the assumption that measurement errors are uncorre-
lated in time, although at least for the variational formulation this assumption
is not required. With Cεε(ti(j)) = W−1

εε (ti(j)) ∈ <mj×mj , with mj being the
number of measurements at time ti(j), we can write

f(dj |ψi(j),α) ∝

exp
(
−1

2

(
dj −Mj

[
ψi(j),α

])T

W εε(ti(j))
(
dj −Mj

[
ψi(j),α

]))
,

(8.7)

for the prior information on the measurements. Here, we have used the vector
of measurement functionals Mj ∈ <mj , which corresponds to the vector of
measurements dj ∈ <mj , and which takes the model state vector at the time
ti(j), and possibly the parameter α, as arguments.

For the further discussion we write

f(d|ψ,α) ∝
m∏
j=1

f(dj |ψi(j),α)

= exp
(
−1

2

m∑
j=1

(
dj −Mj

[
ψi(j),α

])T

W εε(ti(j))
(
dj −Mj

[
ψi(j),α

]))

= exp
(
−1

2

(
d−M

[
ψ,α

])T

W εε

(
d−M

[
ψ,α

]))
, (8.8)

where W εε is a matrix with the J sub-matrices, W εε(ti(j)), on the diagonal.

8.1.5 Prior density for the model errors

Given a dynamical model we define the probability density functions for the
model error using an assumption of Gaussian statistics. The model residual
term is obtained from a short derivation and for simplicity we use a scalar
model. The extension to a more general model like (7.1) is straight-forward.

We start by defining the discrete dynamical scalar model as

ψi+1 = ψi +G(ψi, α)∆t+ qi. (8.9)

Here the function G(ψi, α) is a nonlinear model operator and qi is an additive
stochastic noise process. More general noise processes such as G(ψi, qi) can
be treated as additive if we augment qi to the state vector and define an
additional equation which models qi as an additive noise process.

It is useful to represent the noise as

qi = σ
√
∆tωi, (8.10)

where ωiωj = Ωi,j has unit variance and further defines correlations in time.
Then σ is the standard deviation of the stochastic noise and the factor

√
∆t
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ensures that the increase of variance with time will be independent of the time
step used.

We can define the error covariance of the model noise as

Cqq(i, j) = qiqj = σ2∆tωiωj , (8.11)

or
Cqq = σ2∆tΩ, (8.12)

i.e. for white model noise the increase in variance over a time unit is σ2. The
case with coloured noise is further treated in Chap. 12.

Now define the inverse W qq of Cqq such that W qqCqq = I, thus

W qq = σ−2∆t−1Ω−1. (8.13)

We can now define the squared and weighted model residual terms,
qiWqq(i, j)qj , and the sum over i and j defines the measure of the total model
misfit. In the limit when ∆t→ 0 we can write∑

ij

qi
∆t

∆tWqq(i, j)∆t
qj
∆t

=
∑
ij

(
ψi+1 − ψi

∆t
−Gi

)
∆tWqq(i, j)∆t

(
ψi+1 − ψi

∆t
−Gi

)

→
∫∫ tk

t0

(
∂ψ

∂t
−G(ψ, α)

)
t1

Wqq(t1, t2)
(
∂ψ

∂t
−G(ψ, α)

)
t2

dt1dt2,

(8.14)

where Gi = G(ψi, α). If model errors are uncorrelated in time then Wqq(i, j) =
σ−2∆t−1δ(i− j), and the sum will be over qiWqq(i)qi, thus we get,

∑
i

qiWqq(i)qi →
∫ tk

t0

(
∂ψ

∂t
−G(ψ)

)
Wqq(t)

(
∂ψ

∂t
−G(ψ)

)
dt. (8.15)

The relation to the transition densities in (7.12) and (7.13), when we as-
sume Gaussian statistics, is

f(ψi|
{
ψl 6=i

}
,α) ∝ exp

(
−1

2

∑
j

qiWijqj

)
, (8.16)

and
k∏
i=1

f(ψi|
{
ψl 6=i

}
,α) ∝ exp

(
−1

2

∑
ij

qiWijqj

)
, (8.17)

where we can replace the summations with the integrals from (8.14) and (8.15)
in the limit when ∆t→ 0 .
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8.1.6 Conditional joint density

Now, introducing the scalar products

• ≡
∫ tk

t0

∫
D

dxdt, ◦ ≡
∫
D

dx, ? ≡
∫ tk

t0

∫
∂D

dξdt, (8.18)

we can write the conditional pdf (7.13) as

f(ψ1, . . . ,ψk,α,ψ0,ψb|d) ∝ exp
(
−1

2
J [ψ,α]

)
, (8.19)

where we have defined the function

J [ψ,α] =
(
∂ψ

∂t
−G(ψ,α)

)T

•W qq •
(
∂ψ

∂t
−G(ψ,α)

)
+ (ψ0 − Ψ0)T ◦W aa ◦ (ψ0 − Ψ0)

+ (ψ −ψb)T ?W bb ? (ψ −ψb)
+ (α−α0)T ◦W αα ◦ (α−α0)

+
(
d−M

[
ψ
])T

W εε

(
d−M

[
ψ
])
.

(8.20)

Thus, for Gaussian priors, maximization of the conditional joint density in
(7.13) is equivalent to minimization of J as defined in (8.20). The minimum
of J is also the maximum likelihood solution for ψ and α as defined by the
conditional joint pdf in (8.19).

The penalty function as defined by J will have a global minimum, but
it may not be unique if the model is nonlinear. It can also possess several
local minima and there is a risk of converging to one of these. It is also clear
that in the case with no measurements there is a unique solution. This is the
prior model solution, or central forecast, from (7.1–7.4) with all error terms
set to zero, which then gives a value of J ≡ 0. It corresponds to the maximum
likelihood solution of the prior joint pdf and is therefore also named the modal
trajectory (see Jazwinski , 1970).

The generalized inverse problem as defined by (8.20) may appear very com-
plex at first. The introduction of parameters to be estimated, in addition to
the state variables, leads to a strongly nonlinear problem even if the dynamical
model is linear. However, iterative schemes have been used for the parame-
ters in connection with the representer method by Eknes and Evensen (1997)
and more recently by Muccino and Bennett (2001). This methodology will be
further discussed and illustrated with an example from Eknes and Evensen
(1997) in the following sections. The formulation of the combined parameter
and state estimation problem was also discussed by Evensen et al. (1998).

From these studies, it became clear that the parameter estimation prob-
lem is difficult to solve using standard minimization algorithms due to the
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inherent nonlinearities. Other approaches for minimizing the penalty function
(8.20) may use the direct iterative methods from Chap. 6 where candidates
for a solution are generated, e.g. using the gradient of J with respect to the
parameters and state variables, or even using genetic algorithms. Common for
the direct methods is that they are extremely time consuming. The gradient
methods may get trapped in local minima. The genetic algorithms should con-
verge to a global minimum but are orders of magnitude more costly than the
gradient methods. Because of this, other approaches have introduced assump-
tions of, e.g. zero model errors and sometimes also zero errors in the initial
and/or the boundary conditions. It is clear that one then solves a different
problem than the one originally posed and one will not find the correct so-
lution unless these approximations are valid. In fact, one can find unphysical
values of parameters which compensate for neglected errors in the model or
conditions.

The state space associated with the variables ψ(x) and α(x) can be huge.
This has motivated some approaches for parameter estimation where α(x)
is approximated by a set of parameters with a smaller effective dimension. It
should be noted that the use of a prior like (8.2) correctly reduces the effective
dimension of α(x) in a statistically consistent manner, and the problem with
large state spaces is significantly reduced.

8.2 Solution methods for the generalized inverse problem

We will now use a simple scalar model formulation to illustrate some of the
methods that may be used for minimizing (8.20). The use of a scalar model
simplifies the notation and we avoid the specification of boundary conditions.

8.2.1 Generalized inverse for a scalar model

With ψ(t) being a scalar model state, the system of equations now becomes

∂ψ

∂t
= G(ψ, α) + q, (8.21)

ψ(t0) = Ψ0 + a, (8.22)
α = α0 + α, (8.23)

M
[
ψ
]

= d+ ε. (8.24)

The penalty function then simplifies to

J [ψ, α] =
(
∂ψ

∂t
−G(ψ, α)

)
•Wqq •

(
∂ψ

∂t
−G(ψ, α)

)
+
(
ψ(t0)− Ψ0

)
Waa

(
ψ(t0)− Ψ0

)
+
(
α− α0

)
Wαα

(
α− α0

)
+
(
d−M

[
ψ
])T

W εε

(
d−M

[
ψ
])
.

(8.25)
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Note that, since there is no spatial dimension, we now have

• ≡
∫ tk

t0

dt, (8.26)

and the product ◦, is replaced by scalar multiplication.

8.2.2 Euler–Lagrange equations

Note first that ψ is a function of α, since changing α will result in a differ-
ent ψ. From standard variational calculus we know that (ψ(α), α) defines an
extremum if

δJ = J
[
ψ(α+ δα) + δψ′, α+ δα

]
− J

[
ψ(α), α

]
= O

(
δα2, δψ′2

)
, (8.27)

when δα → 0 and δψ′ → 0. Here, δα is a perturbation of the parameters,
which also results in a perturbation ψ which becomes ψ(α + δα) − ψ(α).
The perturbation δψ′ is a perturbation of ψ which is independent of any
perturbation of α.

Note that

ψ(α+ δα) + δψ′ = ψ(α) + ψαδα+ δψ′ +O
(
δα2, δψ′2

)
= ψ(α) + δψ +O

(
δα2, δψ′2

)
,

(8.28)

where we have defined
ψα =

∂ψ

∂α
, (8.29)

and the total perturbation of ψ,

δψ = ψαδα+ δψ′. (8.30)

The nonlinear model operator can be expanded as

G
(
ψ(α+ δα) + δψ′, α+ δα

)
= G

(
ψ(α), α

)
+
∂G

∂ψ
(ψαδα+ δψ′) +

∂G

∂α
δα+O

(
δα2, δψ′2

)
= G

(
ψ(α), α

)
+
∂G

∂ψ
δψ +

∂G

∂α
δα+O

(
δα2, δψ′2

)
.

(8.31)

Evaluating δJ from (8.27) we get

δJ
2

= δαWαα(α− α0)

+ δψ(t0)Waa

(
ψ(t0)− Ψ0

)
+MT

[
δψ
]
W εε

(
d−M

[
ψ
])

+
∫ tk

t0

(
∂δψ

∂t
− ∂G

∂ψ
δψ − δα

∂G

∂α

)
λ(t)dt

+O
(
δα2, δψ′2

)
,

(8.32)
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where we have defined the “adjoint” variable

λ(t1) =
∫ tk

t0

Wqq(t1, t2)
(
∂ψ

∂t
−G(ψ, α)

)
2

dt2, (8.33)

where the subscript 2 denotes function of t2. Multiplying this equation with∫ tk
t0

dt1Cqq(t, t1) from the left gives the equation

∂ψ

∂t
−G(ψ, α) = Cqq • λ, (8.34)

which is the original model with a representation of the model error involving
a product between the model error covariance and the adjoint variable on the
right hand side.

We now have from integration by part∫ tk

t0

∂δψ

∂t
λ dt = δψλ

∣∣∣tk
t0
−
∫ tk

t0

δψ
∂λ

∂t
dt. (8.35)

Furthermore,

MT
[
δψ
]

=
∫ tk

t0

δψMT
[
δ(t− t1)

]
dt1, (8.36)

which is easy to demonstrate, e.g. using a direct measurement functional,

Mi

[
δ(t− t1)

]
=
∫ tk

t0

δ(t− t1)δ(t1 − ti)dt1 = δ(t− ti). (8.37)

We can then write the variation (8.32) as

δJ
2

= δαWαα(α− α0)

+ δψ(t0)Waa

(
ψ(t0)− Ψ0

)
+ δψ(tk)λ(tk)− δψ(t0)λ(t0) (8.38)

−
∫ tk

t0

δψ
∂λ

∂t
+ δψ

∂G

∂ψ
λ+ δα

∂G

∂α
λ+ δψMT

[
δ
]
W εε

(
d−M

[
ψ
])
dt

+O
(
δα2, δψ′2

)
.

We then reorder the terms to be proportional to either one of the variations
δα, δψ, δψ(t0) and δψ(tk), to get

δJ
2

= δα

(
Wαα(α− α0)−

∫ tk

t0

∂G

∂α
λ dt

)
+ δψ(t0)

(
Waa

(
ψ(t0)− Ψ0

)
− λ(t0)

)
+ δψ(tk)λ(tk)

−
∫ tk

t0

δψ

(
∂λ

∂t
+
∂G

∂ψ
λ+MT

[
δ
]
W εε

(
d−M

[
ψ
]))

dt

+O
(
δα2, δψ′2

)
.

(8.39)
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If we require that δJ = O
(
δα2, δψ′2

)
we must have

∂ψ

∂t
= G(ψ, α) + Cqq • λ, (8.40)

ψ(t0) = Ψ0 + Caaλ(t0), (8.41)
∂λ

∂t
= −∂G

∂ψ
λ−MT

[
δ
]
W εε

(
d−M

[
ψ
])
, (8.42)

λ(tk) = 0, (8.43)

α = α0 + Cαα

∫ tk

t0

∂G

∂α
λ dt. (8.44)

These equations define the Euler–Lagrange equations for the weak constraint
problem. They constitute a coupled two point boundary value problem in time
for ψ and λ. The forward model is forced by a term representing model errors
while the backward model is forced by impulses at measurement locations.
The model operator of the backward model is the adjoint of the tangent
linear forward model.

8.2.3 Iteration in α

It is common to define an iteration in α as follows

αl+1 = αl − γ

(
αl − α0 − Cαα

∫ tk

t0

∂G

∂α

∣∣∣∣ψl
αl

λl dt

)
. (8.45)

Here, the expression in the parentheses is just the gradient of the penalty
function with respect to α, and γ is a step length. Thus, the iteration (8.45)
is just the gradient descent method.

8.2.4 Strong constraint problem

A majority of previous works on parameter estimation solve a simpler version
of the variational problem defined by (8.20) or (8.25). The parameter is still
iterated as in (8.45), but an additional common simplification is to assume
that the dynamical model has zero model errors, i.e. the prior for the model
error covariance Cqq is set to zero. This corresponds to an infinite weight on
the dynamical model which then must be satisfied exactly. From the Euler–
Lagrange equations (8.40–8.43), it is seen that this eliminates the coupling of
the dynamical model to the adjoint variable λ, although the initial condition
still depends on λ. The so-called adjoint method solves this strong constraint
problem by iteration of the initial conditions, using an equation similar to

ψl+1(t0) = ψl(t0)− γ
(
ψl(t0)− Ψ0 + Caaλl(t0)

)
, (8.46)
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where the step length γ, may differ from the one used in (8.45). One can
also choose to iterate both (8.45) and (8.46) simultaneously, or use an outer
iteration of (8.45) and inner iteration for (8.46).

A further simplification is to assume that the initial conditions also are
perfect, i.e. Caa ≡ 0. This is equivalent to introducing an infinite weight on
the term for the initial conditions in (8.20) and it will be exactly satisfied.
This additional simplification completely decouples the dynamical model from
the adjoint variable. The solution is then an exact model trajectory given the
estimated parameter α. This is a commonly used form for the parameter esti-
mation problem and it corresponds to minimizing a cost function containing
the data misfit term and the prior term for the parameters. It is efficiently
solved using the adjoint method and iterating the parameter, i.e. solve (8.40–
8.44) with Cqq and Caa set to zero.

The Euler–Lagrange equations for the strong constraint problem is most
commonly derived from a Lagrangian function where the model and initial
conditions are included using Lagrangian multipliers, i.e.

L[α, λ, µ] = (α− α0)Wαα(α− α0)

+
(
ψ(t0)− Ψ0

)
µ

+
(
d−M

[
ψ
])T

W εε

(
d−M

[
ψ
])

+
∫ tk

t0

(
∂ψ

∂t
−G(ψ, α)

)
λ dt.

(8.47)

Variation with respect to µ returns the initial condition while variation with
respect to λ returns the model. The variation with respect to α returns the
Euler–Lagrange equations for the strong constraint problem as found above,
i.e. (8.40–8.44) with Cqq and Caa equal to zero. Thus, the Euler–Lagrange
equations are decoupled and a solution can be found for α if the iteration
(8.45) converges. This approach is normally named the adjoint method or
4DVAR method for parameter estimation.

An alternative approach for solving the strong constraint problem can be
derived as follows. Evaluating the variation of (8.47) with respect to α when
realizing that ψ is a function of α gives

δL
2

= δαWαα(α− α0)

+ δαψα(t0)µ

+ δαMT
[
ψα
]
W εε

(
d−M

[
ψ
])

+ δα

∫ tk

t0

(
∂ψα
∂t

− ∂G

∂ψ
ψα −

∂G

∂α

)
λdt

+O
(
δα2
)
,

(8.48)

where we have used that δα is independent of time and that the measurement
operator is linear. Since in addition λ and µ are arbitrary multipliers, we must
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have

∂ψ

∂t
= G(ψ, α), (8.49)

ψ(t0) = Ψ0, (8.50)
∂ψα
∂t

=
∂G

∂ψ
ψα −

∂G

∂α
, (8.51)

ψα(t0) = 0, (8.52)

α = α0 + CααMT [ψα]W εε

(
d−M

[
ψ
])
. (8.53)

Thus, we have derived a system of equations which consists of the original
dynamical model with initial condition and an equation and initial condition
for the sensitivity of ψ with respect to α, i.e. ψα. An equation for α includes
the first guess value and an update term which includes the impact of mea-
surements. It may be convenient to define an iteration in α as

αl+1 = αl − γ

(
αl − α0 − CααMT [ψαl]W εε

(
d−M

[
ψl
]))

. (8.54)

For each iteration in α we can solve the system (8.49–8.52) by forward
integrations. There is no adjoint equation or backward integration involved.
The forward models (8.49) and (8.51) should be integrated in parallel since
the tangent linear operator in (8.51) is evaluated at the current estimate
of the solution ψ. Note that the size of ψα, and the cost of solving (8.51),
is proportional to the number of parameters included. In this example, we
only have a single parameter and ψα becomes a scalar. Thus, with a low
number of parameters this may be a more efficient approach than the adjoint
method for solving the strong constraint parameter estimation problem. On
the other hand, the adjoint method finds the gradient from one forward and
one backward integration, independent of the number of parameters involved,
but requires the model solution as a function of space and time to be stored
and used for evaluation of the adjoint model operator.

8.3 Parameter estimation in the Ekman flow model

In Sect. 5.3 the representer method was used to solve the generalized in-
verse problem for an Ekman flow model. The discussion was taken from
Eknes and Evensen (1997) which also considered the estimation of poorly
known parameters in the model. In particular the first guesses of the wind
drag and the vertical diffusion coefficient, cd0 and A0(z), were allowed to con-
tain errors, i.e.

cd = cd0 + pcd , (8.55)
A(z) = A0(z) + pA(z), (8.56)
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where pcd and pA(z) are the unknown error terms. Thus a combined state
estimation and parameter estimation problem was formulated and the penalty
function for the state estimation problem given in (5.75) was extended to
include two terms which penalize the deviation of estimated parameters from
the first guess. Using the notation from Sect. 5.3, the generalized inverse for
the combined parameter and state estimation problem was formulated as

J [u, cd, A] = qT •W qq • q
+ aT ◦W aa ◦ a
+ bT0 ∗W b0b0 ∗ b0
+ bTH ∗W bHbH ∗ bH
+ pA ◦WAA ◦ pA
+ pcdWcdcdpcd

+ εTW εεε,

(8.57)

where the weight Wcdcd is the inverse of the error variance Ccdcd of pcd , and
WAA is the inverse of the error covariance CAA of pA. Since the wind drag
coefficient and the vertical diffusion are allowed to contain errors, the variation
of the penalty function with respect to these parameters must also be taken.
This results in the additional equations

cd = cd0 + Ccdcd

∫ T

0

λT (0, t) uadt, (8.58)

A = A0 − CAA •
∂λT

∂z

∂u

∂z
, (8.59)

for the wind drag coefficient and the diffusion parameter. The addition of the
two equations (8.58) and (8.59) to the system of Euler–Lagrange equations
(5.77) to (5.83) makes the overall inverse problem nonlinear.

In Sect. 5.3 it was illustrated how the representer method could be used
to solve exactly the Euler–Lagrange equations for the weak constraint inverse
problem when A(z) and cd are known. When the parameters are allowed
to contain errors, the inverse problem becomes nonlinear and therefore an
iteration was used for A(z) and cd in (8.58) and (8.59). In each iteration, the
representer technique was used to solve for the corresponding inverse estimate.

The equations (8.58) and (8.59) were iterated using a gradient descent
method, i.e.

cl+1
d = cld − γ

(
cld − cd0 − Ccdcd

∫ tk

t0

(λl)T
√
u2
a + v2

auadt

)
, (8.60)

Al+1(z) = Al(z)− γ

(
Al(z)−A0(z) + CAA •

(
∂ul

∂z

)T
∂λl

∂z

)
. (8.61)
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Fig. 8.1. The estimation of the eddy viscosity profile A(z), from the identical twin
experiment. Reproduced from Eknes and Evensen (1997)

Note that the expressions inside the parantheses are the actual gradients used
in the gradient descent algorithm. The constant γ determines the length of
the steps in the direction of the gradient in the parameter space and has an
important impact on the convergence. The equations (8.60) and (8.61) are
now iterated to generate new guesses cl+1

d and Al+1, which are used to solve
for ul+1 and λl+1 using the representer method.

The identical twin experiment from Eknes and Evensen (1997) resulted in
estimates of the parameters as shown in Figs. 8.1 and 8.2. For the statistical
priors used in this experiment we refer to Eknes and Evensen (1997). The
estimation of the diffusion parameter A(z) is illustrated in Fig. 8.1 where the
first-guess A0(z) and the reference A(z) are shown together with the esti-
mate of A(z). The weak signal below the Ekman layer makes it difficult to
correct an erroneous first-guess of the diffusion parameter in the deep ocean.
Note also that the estimate of A(z) does not coincide with the reference dif-
fusion parameter but is located somewhere in between the first-guess A0(z)
and the exact A(z) at most of the depths. At some depths the estimate is
located to the left of both the first guess and the reference diffusion. This is
not unexpected for this nonlinear problem where the minimum of the penalty
function determines both the inverse solution and estimated parameters si-
multaneously, and these are mutually dependent. The estimation of the wind
drag coefficient Cd is shown in Fig. 8.2. It converges to a value somewhere in
between the first-guess and the reference value.
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Fig. 8.2. The estimation of the wind-drag coefficient cd, from the identical twin
experiment. The number of iterations is given along the x axis. Reproduced from
Eknes and Evensen (1997)

It was pointed out by Bennett (1992) and Yu and O’Brien (1991) that
without a smoothing regularization on the diffusion coefficient A(z), it is not
clear if there is any difference in varying A(0) or cd in the surface condition
(5.79), since A(z) may then become discontinuous. However here, the non-
diagonal weight will ensure a smooth A(z). It is therefore expected that a
vertical profile of the solution for u, which is consistent with the measure-
ments, will determine the profile for A(z), while cd will adjust to provide the
correct surface forcing.

This illustration of a methodology for solving the combined state and pa-
rameter estimation problem considered a fairly simple dynamical model and
it was shown that a better solution could be obtained both for the state
and the parameters. The same methodology has later been examined by
Muccino and Bennett (2001) with a nonlinear dynamical model (Korteweg-de
Vries equation) containing several parameters.

They also defined an outer iteration of the parameter. Since the model
dynamics is nonlinear, a sequence of linear inverse problems is next defined for
each iterate of the parameter and each of these is solved using the representer
method. It was found that the parameter estimation skill was limited due
to the nonlinear and dispersive properties of the dynamical system. Further,
they observed problems with convergence of the parameters, in particular
when several parameters were estimated simultaneously. They had a fairly
negative conclusion and suggested that one should rather admit errors in the
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dynamical equations than fiddle with the empirical formulas in the dynamical
equations.

8.4 Summary

In this chapter we have derived the generalized inverse formulation for the
combined state and parameter estimation problem. The starting point was
the Bayes’ theorem on the form (7.13) where all the data are introduced
simultaneously together with an assumption of Gaussian priors. This led to
the generalized inverse formulation in the form of a penalty function which is
quadratic in the errors. From the generalized inverse, we derived the Euler–
Lagrange equations which, in the parameter estimation case, pose a nonlinear
problem even if the dynamical model is linear. We showed how we could resolve
this nonlinearity by defining an iteration for the parameters to be estimated
and then use the representer method to solve for the state for each iterate of
the parameters.

Note that it is also possible to define a sequence of variational problems
for each of (7.15–7.18) and the solution of one variational problem would then
become the prior for the next. This could be a sensible approach except that
the variational methods, such as the representer and adjoint methods, do not
easily provide statistical information about the errors of the estimate, which
is needed when the estimate is used as a prior for the next inversion. On
the other hand, the genetic algorithms result in a sample of the posterior
distribution, which might be used as the prior for the next inversion.
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Ensemble methods

The focus in this Chapter will be on three methods, the Ensemble Smoother
(ES), the Ensemble Kalman Smoother (EnKS) and the Ensemble Kalman Fil-
ter (EnKF). They belong to a general class of so-called particle methods which
use a Monte Carlo or ensemble representation for the pdfs, an ensemble inte-
gration using stochastic models to model the time evolution of the pdfs, and
different schemes for conditioning the predicted pdf given the observations.

Specific for the ES, EnKS and EnKF is the introduction of an assumption
of a Gaussian pdf for the model prediction. This makes it possible to represent
the pdf for the model prediction using only the mean and covariance of the
pdf and a linear update equation can then be used. The discussion below will
also allow for the estimation of poorly known model parameters.

9.1 Introductory remarks

Going back to the original Bayes’ problem formulated as (7.12) or (7.13), we
now assume that all the prior densities are known. The joint pdf for the model
prediction until tk is given by (7.10).

In Sect. 4.3 we derived the EnKF on the assumption that errors statistics
could be described by error covariances represented by an ensemble of model
states. The same approach can also be used when working with general pdfs.

Given a large sample of realizations for each of the prior pdfs, the joint pdf
(7.10) can be evaluated by integration of each individual realization forward
in time using stochastic model equations. The prior pdfs do not need to be
Gaussian distributed. The densities can be represented to a desired accuracy
by using a sufficiently large number N , of realizations for each of them.

The dynamical model equation (7.1) can be rewritten as a stochastic
model, similar to (4.33), as

dψ = G(ψ,α)dt + h(ψ,α)dq, (9.1)
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where we have now introduced the poorly known parameters α. Thus, to a
small increment in time dt, is associated a random increment dq, representing
the model error, leading to an increment in the model state dψ. The model
errors are described by the samples of f(ψi|ψi−1,α).

As in Sect. 4.3 it is possible to derive Kolmogorov’s equation for the evo-
lution of the pdf in time. The use of the stochastic model (9.1) to integrate an
ensemble of model states forward in time is equivalent to solving Kolmogorov’s
equation using a Monte Carlo method. It turns out that this is the most effi-
cient way to solve this equation for high dimensional and nonlinear problems
where analytical solutions don’t exist and direct numerical integration be-
comes impossible due to the numerical cost. Further, using the Monte Carlo
approach there are no approximations other than the use of a limited ensem-
ble size. Thus, an ensemble representation of the prior pdfs and a stochastic
ensemble integration results in a consistent ensemble representation of the
joint pdf for the model evolution.

Combining the joint pdf for the model evolution (7.10) with the Bayesian
update equation (7.12) we get

f(ψ1, . . . ,ψk,α,ψ0,ψb|d)

∝ f(ψ1, . . . ,ψk,α,ψ0,ψb)
m∏
j=1

f(dj |ψi(j),α).
(9.2)

The computation of the Bayesian analysis (9.2) is complicated for arbitrary
distributions and high dimensions. However, the use of importance sampling
makes it possible to evaluate the mean and covariance of the posterior distri-
bution in (9.2).

We adopt for simplicity a notation where ψ contains the model solution
at all time instants and also includes the initial and boundary data, and the
parameters. The expected value of a function of h(ψ), given the posterior
distribution in (9.2), then becomes

E[h(ψ)] =
∫
h(ψ)f(ψ|d)dψ

=
∫
h(ψ)f(d|ψ)f(ψ)dψ

f(d)

=
∫
h(ψ)f(d|ψ)f(ψ)dψ∫
f(d|ψ)f(ψ)dψ

≈
∑
i h(ψi)f(d|ψi)∑

i f(d|ψi)
.

(9.3)

The summation is over the ensemble members. Thus, we can evaluate ex-
pected values of functions of ψ using the ensemble representation for the
model prediction. Using h(ψ) = ψ results in the variance minimizing estima-
tor which is the expected value for ψ of the posterior distribution in (9.2).
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Further, defining s(ψ) = (ψ−E[ψ])(ψ−E[ψ])T results in the posterior error
covariance.

In van Leeuwen and Evensen (1996) the formula (9.3) was examined for
solving the inverse problem using a nonlinear ocean circulation model with
6400 unknowns. It was found that the weights for most of the ensemble mem-
bers became negligible and only very few ensemble members contributed in
the summation. Thus, it was concluded that a very large ensemble size would
be needed to properly represent the full pdf for the posterior.

Another class of methods named particle filters solves the full Bayesian
update equation using importance resampling techniques. They introduce a
resampling step, which results in a new ensemble having the correct posterior
distribution. Some resampling schemes are discussed in Chen et al. (2004) and
in several of the articles in Doucet et al. (2001). Common for these is that they
use schemes where ensemble members with low weights are rejected while mul-
tiple copies are generated of the ensemble members with large weights. This
helps reducing the effect of degeneracy resulting from using an ensemble where
only a few ensemble members have significant weights. There are several ap-
plications where these methods have worked well for low-dimensional systems,
but common for these is the requirement of a very large number of ensemble
members, a need for resampling of the posterior joint pdf, and extremely high
computational cost for high-dimensional models.

Some other implementations of nonlinear filters have been based on ei-
ther a kernel approximation, Miller et al. (1999), Anderson and Anderson
(1999a) and Miller and Ehret (2002); or a particle interpretation, Pham
(2001), van Leeuwen (2003) and Chen et al. (2004), although more research
is needed before these can be claimed to be practical for realistic high di-
mensional systems. See also the Sequential Monte Carlo Methods Particle
Filtering webpage, www-sigproc.eng.cam.ac.uk/smc, for more information.

9.2 Linear ensemble analysis update

For the case with a linear dynamical model and Gaussian prior pdfs, the
pdf for the model prediction in (7.10) will also be Gaussian. The variance
minimizing analysis in this case also equals the MLH estimate.

We can evaluate the mean of the ensemble prediction ψf(x, t), as a
function of space and time, and its associated ensemble error covariance
Cf
ψψ(x1, t1,x2, t2). We also have the measurements d, with error covariance

Cεε. The linear variance minimizing analysis or MLH estimate is then, from
(9.2), using (8.8), defined by the minimum of

J [ψa] =
(
ψa −ψf

)T

•
(
Cf
ψψ

)−1

•
(
ψa −ψf

)
+
(
d−M

[
ψa
])T

C−1
εε

(
d−M

[
ψa
])
.

(9.4)
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This defines a Gauss-Markov interpolation in space and time and has the well-
known minimizing solution and associated error covariance estimate given by

ψa = ψf +MT
[
Cf
ψψ

](
MT

[
M
[
Cf
ψψ

]]
+Cεε

)−1(
d−M

[
ψf
])
, (9.5)

Ca
ψψ = Cf

ψψ −MT
[
Cf
ψψ

](
MT

[
M
[
Cf
ψψ

]]
+Cεε

)−1

M
[
Cf
ψψ

]
. (9.6)

These equations should be compared with the analysis equations derived in
Chap. 3 for the time-independent problem, in particular (3.26) which defines
the problem and (3.39), (3.46) and (3.54), for the solution and error estimate.
The derivation of (9.5) and (9.6) is identical to the one given for the time
independent case.

From these equations it is also seen that if we define the representer func-
tions as the measurements of the space-time error covariance for the model
prediction

r = M
[
Cf
ψψ

]
, (9.7)

then the analysis equations (9.5) and (9.6) becomes just

ψa = ψf + rT
(
MT

[
r
]
+Cεε

)−1(
d−M

[
ψf
])
, (9.8)

Ca
ψψ = Cf

ψψ − rT
(
MT

[
r
]
+Cεε

)−1

r. (9.9)

Comparison of (9.8) with (5.60) illustrates the similarity between the repre-
senter method and Gauss-Markov interpolation in space and time. A more
elaborate discussion is given by McIntosh (1990) and Bennett (1992, 2002).
In Bennett (1992) is is actually shown that the representers equal measure-
ments of the space time error covariance matrix. Thus, for linear dynamics
and Gaussian priors, the representer method and (9.5) will provide the same
result in the limit of an infinite ensemble size.

For a nonlinear dynamical model, the pdf for the model evolution will
become non-Gaussian even if the prior pdfs are Gaussian. In this case (9.5)
and (9.6) will provide only an approximate solution. Still these formulas may
provide a useful solution if the prior pdf is nearly Gaussian. It should again be
pointed out that only the update is linear and the updated ensemble will in-
herit some of the non-Gaussian contributions contained in the prior ensemble.
Thus, the method is doing more than just resampling a Gaussian posterior
pdf. The actual ensemble implementation of (9.5) is described below and re-
sults in the Ensemble Smoother method.

9.3 Ensemble representation of error statistics

The ensemble covariance is defined as
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Cψψ =
(
ψ −ψ

) (
ψ −ψ

)T
. (9.10)

The ensemble mean ψ, is regarded as the best-guess estimate, while the en-
semble spread defines the error variance. The covariance is determined by
the smoothness of the ensemble members. A covariance matrix can always
be represented by an ensemble of model states and this representation is not
unique.

As in Evensen (2003) we have defined the matrix holding the ensemble
members ψ(x, ti) ∈ <nψ , at time ti, where nψ is the number of variables in
the state vector. Further, we augment the state vector with the poorly known
parameters α(x) ∈ <nα , where nα is the number of parameters in α, and
write the matrix A(x, ti) ∈ <n×N , with n = nψ+nα, holding the N ensemble
members of ψ and α at time ti, as

Ai = A(x, ti) =
(
ψ1(x, ti) ψ2(x, ti) . . . ψN (x, ti)
α1(x, ti) α2(x, ti) . . . αN (x, ti)

)
. (9.11)

Note that we have used a time index on α even though the parameters are
supposed to be constant in time. This is to be able to distinguish between the
estimates of α at different times, which in the EnKF and EnKS change at
each update with measurements.

The ensemble mean is stored in each column of A(x, ti) which can be
defined as

A(x, ti) = A(x, ti)1N , (9.12)

where 1N ∈ <N×N is the matrix where each element is equal to 1/N . We can
then define the ensemble perturbation matrix as

A′(x, ti) = A(x, ti)−A(x, ti) = A(x, ti)(I − 1N ). (9.13)

The ensemble covariances Ce
ψψ(x1,x2, ti) ∈ <n×n, can be defined as

Ce
ψψ(x1,x2, ti) =

A′(x1, ti)
(
A′(x2, ti)

)T
N − 1

. (9.14)

Now, given the ensemble matrices for the different instants in timeA(x, ti′),
for i′ = 1, . . . , i, we can define the ensemble matrix for the joint state from t0
to ti as

Ãi =

A(x, t0)
...

A(x, ti)

 . (9.15)

The space-time ensemble covariance between the model states at two arbitrary
times t1 and t2 then becomes

C̃
e

ψψ(x1, t1,x2, t2) =
Ã
′
i(x1, t1)

(
Ã
′
i(x2, t2)

)T
N − 1

. (9.16)
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9.4 Ensemble representation for measurements

At the data time ti(j), we have given a vector of measurements dj ∈ <mj ,
with mj being the number of measurements at this time. We can define the
N vectors of perturbed measurements as

dlj = dj + εlj , l = 1, . . . , N, (9.17)

which can be stored in the columns of a matrix

Dj =
(
d1
j ,d

2
j , . . . ,d

N
j

)
∈ <mj×N . (9.18)

The ensemble of measurement perturbations, with mean equal to zero, can be
stored in the matrix

Ej =
(
ε1j , ε

2
j , . . . , ε

N
j

)
∈ <mj×N , (9.19)

from which we can construct the ensemble representation of the measurement
error covariance matrix

Ce
εε(ti(j)) =

EjE
T
j

N − 1
. (9.20)

9.5 Ensemble Smoother (ES)

The ES was proposed by van Leeuwen and Evensen (1996) as a linear variance
minimizing smoother analysis. It computes an approximate update of (9.2)
using the linear update (9.5). In fact, it can be shown that if each individual
ensemble member is updated independently using (9.5), using the perturbed
observations from (9.18), then the updated ensemble will have the correct
mean and covariance as defined by the analysis (9.5) and (9.6). It was shown
in Burgers et al. (1998) that the perturbation of measurements is required to
obtain the correct covariance.

The linear ES analysis equation then becomes for Ã
a

k, as defined in (9.15),

Ã
a

k = Ãk +MT
[
C̃

e

ψψ

] (
MT

[
M
[
C̃

e

ψψ

]]
+Ce

εε

)−1 (
D −M

[
Ãk

])
, (9.21)

where we have used

D =

 D1

...
Dm

 , M =

M1

...
Mm

 , (9.22)

and

Ce
εε =

C
e
εε(ti(1))

. . .
Ce
εε(ti(m))

 . (9.23)
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Fig. 9.1. Illustration of the update procedure used in the ES. The horizontal axis
is time and the measurements are indicated at regular intervals. The vertical axis
indicates the number of updates with measurements. The blue arrows represent the
forward ensemble integration, while the red arrows are the introduction of measure-
ments

The total number of measurements is M =
∑m
j=1mj . Thus, we have D ∈

<M×N , M∈ <M , and Ce
εε ∈ <M×M .

We now define the ensemble of innovation vectors as

D′ = D −M
[
Ãk

]
, (9.24)

the measurements of the ensemble perturbations S ∈ <M×N , as

S = M
[
Ã
′
k

]
, (9.25)

and the matrix C ∈ <M×M as

C = SST + (N − 1)Ce
εε. (9.26)

Using (9.24–9.26) together with the definitions of the ensemble error co-
variance matrices in (9.16) and (9.20), the analysis (9.21) can be expressed
as

Ã
a

k = Ãk + Ã
′
kMT

[
Ã
′
k

] (
M
[
Ã
′
k

]
MT

[
Ã
′
k

]
+ (N − 1)Ce

εε

)−1

D′

= Ãk + Ãk(I − 1N )STC−1D′

= Ãk

(
I + (I − 1N )STC−1D′

)
= Ãk

(
I + STC−1D′

)
= ÃkX,

(9.27)

where we have used (9.13) and 1NST ≡ 0. Thus, the updated ensemble can
be considered as a combination of the forecast ensemble members.
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Equation (9.27) converges towards the exact solution of the Bayesian for-
mulation with increasing ensemble size if the assumption of Gaussian statistics
is true. This requires that all priors are Gaussian and that a linear model is
used. In this linear case it will also converge towards the representer solution.

The representer solution and the ES solution will differ in the case with
nonlinear dynamics. Using the ES we should be concerned about the validity of
the Gaussian approximation and the required ensemble size. When using the
representer method we need to consider the convergence of the iteration, the
validity of the tangent linear approximation, and whether the modal trajectory
is a good estimator. Further, the computation of the posterior errors is not
straight forward in the representer method.

In Evensen and van Leeuwen (2000) it was illustrated that the ES may
have problems with nonlinear dynamical models. The method was examined
with the nonlinear Lorenz model where it turned out that the Gaussian ap-
proximation for the pdf of the model evolution was too crude.

9.6 Ensemble Kalman Smoother (EnKS)

We will now present an alternative approach, by Evensen and van Leeuwen
(2000), which solves the recursion (7.15–7.18) using an ensemble representa-
tion for the error statistics.

In (7.15), the joint pdf for the model prediction until ti(1) is

f(ψ1, . . . ,ψi(1),α,ψ0,ψb) ∝

f(α)f(ψ0)f(ψb)
i(1)∏
i=1

f(ψi|ψi−1,α).
(9.28)

Similar to the procedure used in the ES, this joint pdf can be evaluated using
a large ensemble of realizations for each of the prior pdfs and integrating these
forward in time using the stochastic model equations.

The stochastic integration results in an ensemble representation of the
joint pdf for the model solution ψ1, . . . ,ψi(1), the initial condition ψ0, the
boundary condition ψb, and the poorly known parameters α.

The major problem is now the efficient computation of the joint pdf con-
ditional on the measurements d1, given the ensemble representation of (9.28);
i.e. we need to solve (7.15) rewritten as

f(ψ1, . . . ,ψi(1),α,ψ0,ψb|d1) ∝
f(ψ1, . . . ,ψi(1),α,ψ0,ψb)f(d1|ψi(1),α),

(9.29)

which gives the update based on the first set of measurements at ti(1).
The EnKS is similar to the ES, except that it processes the measurements

sequentially in time. Starting from the initial ensemble stored inA0, a forward
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stochastic integration of the ensemble until the first available data set, gives
the ensemble prediction

Ã
f

i(1) =


A0

Af
1

...
Af
i(1)

 . (9.30)

Using the ES update (9.27) with (9.30) using the first set of measurements d1,
which solves (9.29) under the assumption of a Gaussian pdf for the predicted
ensemble, we get

Ã
a

i(1) = Ã
f

i(1) + Ã
f′
i(1)MT

1

[
Ã

f′
i(1)

]
×
(
M1

[
Ã

f′
i(1)

]
MT

1

[
Ã

f′
i(1)

]
+ (N − 1)Ce

εε(ti(1))
)−1

D′
1

= Ã
f

i(1) + Ã
f

i(1)(I − 1N )ST
1C

−1
1 D′

1

= Ã
f

i(1)

(
I + (I − 1N )ST

1C
−1
1 D′

1

)
= Ã

f

i(1)

(
I + ST

1C
−1
1 D′

1

)
= Ã

f

i(1)X1.

(9.31)

Here we have used the definitions of innovation vectors,

D′
j = Dj −Mj

[
Ã

f

i(j)

]
, (9.32)

the measurements of the ensemble perturbations Sj ∈ <mj×N ,

Sj = Mj

[
Ã

f′
i(j)

]
, (9.33)

and the matrix Cj ∈ <mj×mj ,

Cj = SjS
T
j + (N − 1)Cεε(ti(j)). (9.34)

The update (9.31) is identical to the ES update in the case where the time
interval covers t ∈ [t0, ti(1)], and the data are all contained in d1. The EnKS
provides an approximate ensemble representation for the joint pdf conditional
on d1, in (9.29), and this serves as a prior for a continued ensemble integration
until the next time when measurements are available, and then a new update
is computed.

The general update equation for the measurements at the time ti(j), can
be written

f(ψ1, . . . ,ψi(j),α,ψ0,ψb|d1, . . . ,dj) ∝
f(ψ1, . . . ,ψi(j),α,ψ0,ψb|d1, . . . ,dj−1)f(dj |ψi(j),α).

(9.35)
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Fig. 9.2. Illustration of the update procedure used in the EnKS. The horizontal axis
is time and the measurements are indicated at regular intervals. The vertical axis
indicates the number of updates with measurements. The blue arrows represent the
forward ensemble integration, the red arrows are the introduction of measurements,
while the green arrows denote updates. Thus, the blue arrows indicate the EnKF
solution as a function of time, which is updated every time measurements are avail-
able. The magenta arrows are the updates for the EnKS, which goes backward in
time, and which is computed following the EnKF update every time measurements
are available

Now, define the ensemble prediction matrix

Ã
f

i(j) =


Ã

a

i(j−1)

Af
i(j−1)+1

...
Af
i(j)

 , (9.36)

where the ensemble prediction Af
i(j−1)+1, . . . ,A

f
i(j) is obtained by ensemble

integration starting from the final analyzed result in Ã
a

i(j−1). We can then
compute the EnKS update based on (9.35), using the measurements at time
ti(j) as,

Ã
a

i(j) = Ã
f

i(j)Xj , (9.37)

with Xj defined as
Xj = I + ST

j C
−1
j D

′
j . (9.38)

Here the predicted ensemble Ã
f

i(j) has been updated from all previous mea-
surements d1, . . . ,dj−1. The update from measurements at time ti(j) adds
the incremental information included in the measurements at the time ti(j).
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Further, the combination Xj , is only dependent on the ensemble at the time
ti(j), and then only at the measurement locations. Thus, the update can be
characterized as a weakly nonlinear combination of the prior ensemble.

9.7 Ensemble Kalman Filter (EnKF)

The EnKF can be most easily characterized as a simplification of the EnKS
where the analysis acts on the ensemble only at the measurement times. Thus,
there is no information propagated backward in time like in the EnKS.

We now only consider the analysis step at time ti(j), and the analysis
equation (9.37) is rewritten as

Aa
i(j) = Af

i(j)Xj , (9.39)

where the ensembles at all prior times are discarded in the analysis.

9.7.1 EnKF with linear noise free model

Referring to the notation used in Fig. 7.1, let us examine the EnKF with a
linear model with no model errors, i.e.

Ai+1 = FAi. (9.40)

It was shown in Evensen (2004) that, given the initial ensemble stored in A0,
the ensemble forecast at time tk, becomes

Ak = F kA0. (9.41)

If the EnKF is used to update the solution at every time tj , where j =
1, . . . , J , the ensemble solution at time tk becomes

Ak = F kA0

J∏
j=1

Xj , (9.42)

where Xj is the matrix defined by (9.38) which when multiplied with the
ensemble forecast matrix at time ti(j) produces the analysis ensemble at that
time. Thus, starting withA0, the assimilation solution at time ti(1) is obtained
by multiplication of F i(1) withA0 to produce the forecast at time ti(1) followed
by the multiplication of the forecast with X1.

Note that the expression A0

∏J
j=1Xj is the EnKS solution at time t0.

Thus, for the linear noise-free model, (9.42) can also be interpreted as a for-
ward integration of the smoother solution from the initial time t0, until tk,
where Ak is produced.

This means that for a linear model without model errors, the EnKF so-
lution at all times is a combination of the initial ensemble members, and the
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Fig. 9.3. Illustration of the update procedure used in the EnKF. The horizontal axis
is time and the measurements are indicated at regular intervals. The vertical axis
indicates the number of updates with measurements. The blue arrows represent the
forward ensemble integration, the red arrows are the introduction of measurements,
while the green arrows is the EnKF update algorithm. Thus, the blue arrows indicate
the EnKF solution as a function of time, which is updated every time measurements
are available

dimension of the affine space spanned by the initial ensemble does not change
with time as long as the operators F andXj are of full rank. Thus, the quality
of the EnKF solution is dependent on the rank and conditioning of the initial
ensemble matrix, A0.

9.7.2 EnKS using EnKF as a prior

The EnKS is a straight forward extension of the EnKF. As the EnKF uses the
ensemble covariances in space to spread the information from the measure-
ments, the EnKS uses the ensemble covariances in space and time to spread
the information also backward in time.

Thus, we can write the analysis update at a time tl from measurements
available at a later time ti(j) as,

Aa(x, tl) = A(x, tl) +A′(x, tl)ST
j C

−1
j D

′
j , (9.43)

whereD′
j from (9.32), Sj from (9.33), and Cj from (9.34) are evaluated using

the ensemble and measurements at the time ti(j).
It is then seen that the update at the time tl, uses exactly the same com-

bination of ensemble members as was defined by Xj in (9.38) for the EnKF
analysis at the time ti(j). Thus, we can write the EnKS analysis at a time
ti ∈ [ti(j−1), ti(j)), as
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AEnKS(x, ti) = AEnKF(x, ti)
J∏
l=j

X l. (9.44)

It is then a simple exercise to compute the EnKS analysis as soon as the EnKF
solution has been found. This requires only the storage of the coefficient ma-
trices Xj , for j = 1, . . . , J , and the EnKF ensemble matrices for the previous
times where we want to compute the EnKS analysis. Note that the EnKF
ensemble matrices are large, but it is possible to store only specific variables
at selected locations where the EnKS solution is needed. An illustration of
the sequential processing of measurements is given in Fig. 9.2.

9.8 Example with the Lorenz equations

The example from Evensen (1997) was in Evensen and van Leeuwen (2000)
used to intercompare the ES, EnKS and EnKF, and the results from this in-
tercomparison are now presented. The chaotic Lorenz model by Lorenz (1963)
is used. It was discussed in Chap. 6, and consists of a system of three cou-
pled and nonlinear ordinary differential equations, (6.5–6.7) with initial con-
ditions (6.8–6.10).

9.8.1 Description of experiments

For all the cases to be discussed the initial conditions for the reference case
are given by (x0, y0, z0) = (1.508870,−1.531271, 25.46091) and the time in-
terval is t ∈ [0, 40]. The observations and initial conditions are simulated by
adding normal distributed noise with zero mean and variance equal to 2.0
to the reference solution. All of the variables x, y and z are measured. The
initial conditions used are also assumed to have the same variance as the ob-
servations. These are the same values as were used in Miller et al. (1994) and
Evensen (1997).

The model error covariance is defined to be diagonal with variances equal
to 2.000, 12.13, and 12.31 for the three equations (6.5–6.7), respectively. These
numbers define the error variance growth expected over one time unit in the
model. The reference case is generated by integrating the model equations
including the stochastic forcing corresponding to the specified model error
variances. The stochastic forcing is included through a term like

√
∆t
√
σ2dω

where σ2 is the model error variance, and dω is drawn from the distribution
N (0, 1).

In the calculation of the ensemble statistics an ensemble of 1000 members
is used. This is a fairly large ensemble but it is chosen to prevent the possibility
of drawing erroneous conclusions due to the use of a too small ensemble. The
same simulation was rerun with various ensemble sizes and the differences
between the results were negligible even using 50 members of the ensemble.
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Fig. 9.4. Ensemble Smoother: The inverse estimate (red line) and reference solution
(blue line) for x are shown in the upper plot. The lower plot shows the corresponding
estimated standard deviations (red line) and the absolute value of the difference
between the reference solution and the estimate, i.e. the real posterior errors (blue
line). Reproduced from Evensen and van Leeuwen (2000)

9.8.2 Assimilation Experiment

The three methods discussed above will now be examined and compared in
an experiment where the distance between the measurements is ∆tobs = 0.5,
which is similar to Experiment B in Evensen (1997).

In the upper plots in Figs. 9.4–9.7, the red line denotes the estimate and
the blue line is the reference solution. In the lower plots the red line is the
standard deviation estimated from ensemble statistics, while the blue line is
the true residuals with respect to the reference solution.
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Fig. 9.5. Ensemble Kalman Filter: See explanation in Fig. 9.4. Reproduced from
Evensen and van Leeuwen (2000)

Ensemble Smoother Solution

The ES solution for the x-component and the estimated error variance are
given in Fig. 9.4. It was found that the ES performed rather poorly with the
current data density. Note, however, that even if the fit to the reference tra-
jectory is rather poor, it captures most of the transitions. The main problem
is related to the estimate of the amplitudes in the reference solution. This is
linked to the appearance of non-Gaussian contributions in the distribution for
the model evolution, which can be expected in such a strongly nonlinear case.

Remember that the smoother solution consists of a first guess estimate,
which is the mean of the freely evolving ensemble, plus a linear combination of

-20

-15

-10

-5

0

5

10

15

20

0 5 10 15 20 25 30 35 40
time t

EnKF: Estimate

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40
time t

EnKF: Errors



134 9 Ensemble methods

Fig. 9.6. Ensemble Kalman Smoother: See explanation in Fig. 9.4. Reproduced
from Evensen and van Leeuwen (2000)

time-dependent influence functions or representers which are calculated from
the ensemble statistics. Thus, the method becomes equivalent to a variance-
minimizing objective analysis method where the time dimension is included.

In the ensemble smoother the posterior error variances can easily be cal-
culated by performing an analysis for each of the ensemble members and then
evaluating the variance of the new ensemble. Clearly, the error estimates are
not large enough at the peaks where the smoother performs poorly. This is
again a result of neglecting the non-Gaussian contribution from the probability
distribution for the model evolution. Thus, the method assumes the distribu-
tion is Gaussian and believes it is doing well. Otherwise the error estimate
looks reasonable with minima at the measurement locations and maxima in
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Fig. 9.7. Lagged Ensemble Kalman Smoother: See explanation in Fig. 9.4. Repro-
duced from Evensen and van Leeuwen (2000)

between the measurements. Note again that if a linear model is used the pos-
terior density will be Gaussian and the ensemble smoother will, in the limit of
an infinite ensemble size, provide the same solution as the Kalman smoother
or the representer method.

Ensemble Kalman Filter Solution

The EnKF does a reasonably good job at tracking the reference solution with
the lower data density, as can be seen in Fig. 9.5. One transition is missed
near t = 18, and there are also a few other locations where the EnKF has
problems, e.g. t = 1, 5, 9, 10, 13, 17, 19, 23, 26, and 34. The error variance
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estimate is consistent, showing large peaks at the locations where the estimate
obviously has problems tracking the reference solution. Note also the similarity
between the absolute value of the residual between the reference solution
and the estimate, and the estimated standard deviation. For all peaks in the
residual there is a corresponding peak for the error variance estimate.

The error estimates show the same behaviour as was found by Miller et al.
(1994) with very strong error growth when the model solution passes through
the unstable regions of the state space, and otherwise weak error variance
growth or even decay in the stable regions. Note for example the low error
variance when t ∈ [28, 34] corresponding to the oscillation of the solution
around one of the attractors.

The probably surprising result is that the EnKF performs better than the
ensemble smoother. This is at least surprising based on linear theory, where
one has learned that the Kalman smoother solution at the end of the time
interval is identical to the Kalman filter solution, and the additional infor-
mation introduced by propagating the contribution of future measurements
backward in time further reduces the error variance compared to the filter so-
lution. Note again that if the model dynamics are linear, the EnKF will give
the same solution as the Kalman filter, and the ensemble smoother will give
the same result as the Kalman smoother, in the limit of an infinite ensemble
size.

Ensemble Kalman Smoother Solution

In Fig. 9.6 the solution obtained by the EnKS is shown. Clearly, the esti-
mate is an improvement upon the EnKF estimate. The solution is smoother
in time and seems to provide a better fit to the reference trajectory. Looking
in particular at the problematic locations in the EnKF solution, these are all
recovered in the smoother estimate. Note, for example, the additional tran-
sitions in t = 1, 5, 13, and 34, in the EnKF solution which have now been
eliminated in the smoother. The missed transition at t = 17 has also been
recovered in the smoother solution.

The error estimates are reduced throughout the time interval. In particular
the large peaks in the EnKF solution are now significantly reduced. As for
the EnKF solution there are corresponding peaks in the error estimates for
all the peaks in the residuals which proves that the EnKS error estimate is
consistent with the true errors.

This is a very promising result. In fact the EnKS solution with ∆tobs = 0.5
seemed to do as well or better than the EnKF solution with ∆tobs = 0.25 (see
Evensen, 1997).

In Fig. 9.7 the result from a lagged smoother is shown. In this case the mea-
surement information in propagated backward in time only for a short time
interval. This is motivated by the assumption that the impact of measure-
ments is negligible outside an interval of length similar to the predictability
time of the model. A time lag of 5 time units was used and the results are
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almost indistinguishable from the full smoother solution. Thus, a significant
saving of storage and CPU should be possible for more realistic applications
when using the lagged smoother.

9.9 Discussion

The similarity or connection between the EnKS and EnKF has been clar-
ified. The EnKS is the optimal smoother solution for the linear problems
with Gaussian statistics. The EnKF is a simplification which does not project
information backward in time. After the final measurement time ti(m), the
EnKF and EnKS state and parameter estimates are identical and the EnKF
is therefore ideal for forecasting purposes.

The ensemble methods introduce an approximation by using only the mean
and covariance of the prior joint pdf when computing the posterior ensemble in
(9.35). Thus, it is effectively assumed that the prior joint pdf is Gaussian when
computing the updates. This means that the EnKS and the EnKF will not
give the correct answer if the prior joint pdf has non-Gaussian contributions.
On the other hand the ensemble methods have proven to work well with a
large number of different nonlinear dynamical models.

The ES method is similar to simple kriging or Gauss-Markov interpola-
tion in space and time, using an ensemble representation for the space-time
error covariance matrix. For a linear problem this will give exactly the same
results as solving the problem with sequential processing of measurements,
or minimizing the generalized inverse formulation (8.20). However, when the
model is nonlinear, the long integration of the model, unconstrained by mea-
surements, allows for the development of strongly non-Gaussian contributions
in the prior density. In Evensen and van Leeuwen (2000) the EnKF, EnKS,
and ES were compared using the highly nonlinear Lorenz equations, and it
was demonstrated that the non-Gaussian contributions in the ES lead to re-
sults which were significantly worse than those obtained using the EnKF and
EnKS. Further it was suggested that the sequential introduction of measure-
ments, with Gaussian distributed errors, actually introduced “Gaussianity”
to the ensemble representing the conditional joint density.

The derivation of the ensemble methods allowed for the estimation of
poorly known model parameters. Examples involving parameter estimation
using the EnKF and EnKS will be presented in the following chapters.
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Statistical optimization

Optimization problems are often solved by minimizing a cost function in
search of the global minimum. The solution then corresponds to the max-
imum likelihood estimate. Many solution methods, e.g. gradient methods,
search only for the minimum of the cost function, and do not provide in-
formation about the uncertainty of the solution. The uncertainty can be es-
timated using statistical sampling based on the Metropolis or hybrid Monte
Carlo methods from Chap. 6, or by examining the inverse of the Hessian of the
cost function around the minimum value. We will now formulate an optimiza-
tion problem in a Bayesian setting and show how it can be solved using the
EnKS. This results in a statistical estimate of the solution and provides error
estimates. Several examples are used to illustrate the difference between the
exact Bayesian solution and the approximate EnKS solution. Furthermore,
the examples illustrate properties of the EnKS when used with non-Gaussian
distributions and nonlinear measurement operators.

10.1 Definition of the minimization problem

The EnKS can be used to solve time independent optimization problems. A
typical problem could involve a set of parameters α(x) ∈ <nα , which is input
to a function or model which outputs a vector of fields ψ(x) ∈ <nψ , on the
spatial domain D. In addition we have available some observations of the true
field ψt(x). The problem is then to find the set of input parameters α, which
gives the best possible correspondence between the simulated fields and the
observations. Such optimization problems are usually solved by first defining
an appropriate cost function and then solving for the minimum. However,
if the functional mapping is nonlinear, the cost function is likely to contain
local minima and the global minimum may be hard to find. Furthermore,
traditional methods do not allow the functional mapping to contain errors
nor do they provide any information about the uncertainties of the solution.
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10.1.1 Parameters

We start by defining a set of first-guess parameters αf(x) ∈ <nα , which can
be either constants or functions of the spatial coordinate, and we assume that
they contain stochastic errors α′(x) ∈ <nα , with mean equal to zero and
known covariance Cαα(x1,x2) ∈ <nα×nα . This is represented in the following
equation

α(x) = αf(x) +α′(x), (10.1)

which states that the estimated value of α should be close to the prior αf ,
but allowed to deviate from it according to the uncertainty represented by the
stochastic error term.

10.1.2 Model

We then define our function or model which connects the simulated realization
ψ(x), to the parameters α(x), as

ψ(x) = G(α) + q(x), (10.2)

where G(α) ∈ <nψ is the nonlinear model operator and q(x) ∈ <nψ is an
additive stochastic term representing the errors in the model. We assume
that the model errors have a Gaussian distribution with mean equal to zero
and known covariance Cqq(x1,x2) ∈ <nψ×nψ . Thus, for any realization αj ,
we can simulate a realization ψj(x). The case with non-additive model errors,
e.g.G(α, q), can be treated using an approach which is similar to the one used
for estimation of time correlated model errors in Chap. 12.

10.1.3 Measurements

The M measurements of the true mapping are stored in the data vector
d ∈ <M . We assume that the measurements can be related to a simulated
realization through the measurement functional

M
[
ψ(x)

]
= d+ ε, (10.3)

where ε ∈ <M represents random measurement errors. Here M
[
ψ(x)

]
∈ <M

just projects the functional mapping ψ(x), onto the measurements. It will
typically be similar to (7.6) but excluding the time variable in this case. Thus,
given a fieldψ(x), we can find the prediction of the measurement of the field by
evaluating M

[
ψ(x)

]
. Also for the random measurement errors ε, we assume

Gaussian statistics with zero mean and known covariance Cεε ∈ <M×M .
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10.1.4 Cost function

A cost function can be defined as

J [α,ψ] =
∫∫

D

(
α−αf

)T
1
W αα(x1,x2)

(
α−αf

)
2
dx1dx2

+
∫∫

D

(
ψ −G(α)

)
1
W qq(x1,x2)

(
ψ −G(α)

)
2
dx1dx2

+
(
d−M

[
ψ
])T

W εε

(
d−M

[
ψ
])
.

(10.4)

This is a fairly general cost function which measures the errors in the
first-guess parameters, the model and the measurements, in a weighted least
squares sense. The subscripts, 1 and 2, denote functions of x1 and x2, respec-
tively. It is natural to assume that the weights W αα and W εε are inverses of
the error covariances, Cαα and Cεε, as before, see Chap. 8. For the weight,
W qq(x1,x2), we define∫

D
W qq(x1,x2)Cqq(x2,x3)dx2 = δ(x1 − x3)I, (10.5)

with δ(x1 −x2) being the Dirac delta function and I ∈ <nψ×nψ the diagonal
identity matrix.

If the model is assumed to be perfect we can rewrite the cost function as

J [α] =
∫∫

D

(
α−αf

)T
1
W αα(x1,x2)

(
α−αf

)
2
dx1dx2

+
(
d−M

[
G(α)

])T

W εε

(
d−M

[
G(α)

])
.

(10.6)

This is the standard cost function which is minimized in many applications.

10.2 Bayesian formalism

In a Bayesian formalism we can derive the cost function by assuming that we
have given the pdf for the parameters α as f(α), and the pdf for the model as
f(ψ|α). Furthermore, we have the likelihood for the measurements d, given
as

f(d|α,ψ) = f(d|ψ), (10.7)

since the measurements, in this case, are assumed to be independent of α.
Bayes’ theorem states that

f(α,ψ|d) ∝ f(d|α,ψ)f(α,ψ)
= f(d|ψ)f(ψ|α)f(α).

(10.8)

If we assume Gaussian statistics for all the errors we get
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f(α) ∝ exp
(
−1

2

∫∫
D

(
α−αf

)T
1
W αα(x1,x2)

(
α−αf

)
2
dx1dx2

)
, (10.9)

f(ψ|α) ∝ exp
(
−1

2

∫∫
D

(
ψ −G(α)

)
1

×Wqq(x1,x2)
(
ψ −G(α)

)
2
dx1dx2

)
,

(10.10)

and

f(d|ψ) ∝ exp
(
−1

2

(
d−M

[
ψ
])T

W εε

(
d−M

[
ψ
]))

. (10.11)

Insertion of these into (10.8) gives

f(α,ψ|d) ∝ exp
(
−1

2
J [α,ψ]

)
. (10.12)

Maximization of (10.12), which results in the maximum likelihood solution, is
equivalent to minimization of the cost function as defined in (10.4).

Standard minimization of the cost function (10.4) using gradient methods
may be difficult since this requires derivatives of G(α) and M

[
ψ
]

and if the
model operator in sufficiently nonlinear these methods are likely to get trapped
in local minima. Furthermore, the dimension of the problem becomes high
since we need to minimize with respect to both α and ψ(x) simultaneously.

10.3 Solution by ensemble methods

The EnKS does not minimize the cost function directly. Rather it takes the
pdfs and likelihood functions as a starting point, and represents these using
large ensembles of realizations. To illustrate, we could start by sampling N
realizations αf

j , from f(α) as defined in (10.9). We then compute the N

realizations ψf
j , by evaluating the stochastic model (10.2) for the N parameter

sets αf
j . The simulated realizations are then measured to generate an ensemble

of predicted measurements. Thus, we have,

αf
j = αf +α′j , (10.13)

ψf
j(x) = G(αf

j) + qj(x), (10.14)

d̂j = M
[
ψf
j

]
, (10.15)

where d̂j is the prediction of the measurements given αj . Note that in (10.15)
it would also be possible to introduce a stochastic error term to take into
account representation errors in the measurement operator.

It is also possible to combine these equations and write
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d̂j = M
[
G(αf +α′j) + qj(x)

]
, (10.16)

where only α is used as a state vector, but we will retain the form (10.13–
10.15). The state vector which originally consisted of only α can then be
extended to include both the functional mapping and the predicted measure-
ments, i.e. we define the realizations

Ψ f
j =

 αf
j

ψf
j(x)
d̂j

 . (10.17)

From the N realizations Ψ f
j , it is possible to compute the symmetrical ensem-

ble covariance

Cf
ΨΨ =

Cf
αα(x1,x2) Cf

αψ(x1,x2) Cf
αd(x1)

Cf
ψα(x1,x2) Cf

ψψ(x1,x2) Cf
ψd(x1)

Cf
dα(x2) Cf

dψ(x2) Cf
dd

 . (10.18)

Thus, we have defined the first-guess covariance matrices between the com-
ponents of the state vector; Cf

αα ∈ <nα×nα , Cf
ψψ ∈ <nψ×nψ , Cf

dd ∈ <M×M ,
Cf
αψ ∈ <nα×nψ , Cf

αd ∈ <nα×M and Cf
dψ ∈ <M×nψ .

We can now define the cost function

J [Ψ ] =
(
Ψ − Ψ f

)T
W ΨΨ

(
Ψ − Ψ f

)
+
(
d−MΨ f

)T
W εε

(
d−MΨ f

)
.

(10.19)

Note thatW εε is the inverse of the error covariance matrix of the measurement
errorsCεε, whileCdd is the ensemble covariance matrix of the model predicted
measurements. We have defined M as a matrix operator which extracts the
predicted measurements from Ψ , i.e.

M =

0nα×nα 0nα×nψ 0nα×M

0nψ×nα 0nψ×nψ 0nψ×M

0M×nα 0M×nψ MM×M

 . (10.20)

The first-guess estimate is computed as the mean of the first-guess ensem-
ble and we write, with the overline denoting ensemble average,

Ψ f =

αf

ψf

d̂

 , (10.21)

where αf = αf . We have defined the inverse of the covariance CΨΨ as W ΨΨ ,
using the now-familiar definitions for the inverses of covariances which are
functions of the spatial coordinate.
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10.3.1 Variance minimizing solution

From the theory outlined in Chaps. 3 and 9, it is easy to show that the variance
minimizing solution Ψa, of (10.19) becomes

Ψa = Ψ f +CΨΨM
T
(
MCΨΨM

T +Cεε

)−1 (
d−MΨ f

)
. (10.22)

This can be written in simpler form asαa

ψa

d̂
a

 =

α
f

ψf

d̂

+

Cαd

Cψd

Cdd

 (Cdd +Cεε)
−1
(
d−M

[
G(αf)

])
, (10.23)

or if only α is solved for we write

αa = αf +Cαd (Cdd +Cεε)
−1
(
d−M

[
G(αf)

])
. (10.24)

10.3.2 EnKS solution

The EnKS solves (10.23) using an ensemble representation for Ψ ; i.e. given an
ensemble of realizations αf

j , for the parameters we compute the corresponding
ensembles of realizations, ψf

j(x) and d̂j , using the defined prior error statistics
for the stochastic terms. The covariances in CΨΨ are all evaluated directly
from the ensemble of realizations Ψ j .

The EnKS can be used to update the whole ensemble, Ψ j with j = 1, N ,
not just the mean, and the result is a full ensemble of parameters αa

j , consis-
tent with the priors and data. Further, the spread of the ensemble of param-
eters also determines the uncertainty of the estimated parameters.

The actual procedure is similar to the one used in Chap. 9. We store the
ensemble members in the matrix A, defined as

A = (Ψ1,Ψ2, . . . ,ΨN ). (10.25)

Then the ensemble mean is stored in each column of A which can be defined
as

A = A1N , (10.26)

where 1N ∈ <N×N is the matrix where each element is equal to 1/N . We can
then define the ensemble perturbation matrix as

A′ = A−A = A(I − 1N ). (10.27)

The first-guess ensemble-covariance representation of Cf
ΨΨ in (10.18), can be

defined as

Ce
ΨΨ =

A′A′T

N − 1
. (10.28)
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Example F (x) xprior yprior σx σy σq

1a y = x 1.0 −1.0 1.0 0.3 1.0
1b y = x 1.0 −1.0 1.0 0.3 0.1
2 y = x2 1.0 −1.0 1.0 0.3 1.0
3 y = x2(x2 − 2) 1.0 −1.0 1.0 0.3 1.0
4a y = cos(x) 1.0 −1.0 1.0 0.3 1.0
4b y = cos(x) 1.0 −1.0 1.0 0.3 0.1
4c y = cos(x) 1.0 −1.0 4.0 0.3 1.0

Table 10.1. Parameters used in the different examples. Here xprior is the first-guess
of x, while yprior is the “observation” of y. The standard deviations for the errors in
the priors and the model are σx, σy and σq

We then define N vectors of perturbed measurements as

dj = d+ εj , j = 1, . . . , N, (10.29)

which can be stored in the columns of a matrix

D = (d1,d2, . . . ,dN ) ∈ <M×N . (10.30)

The ensemble of measurement perturbations, with mean equal to zero, can be
stored in the matrix

E = (ε1, ε2, . . . , εN ) ∈ <M×N , (10.31)

from which we can construct the ensemble representation of the measurement
error covariance matrix

Ce
εε =

EET

N − 1
. (10.32)

We can then write

Aa = Af +A′f
(
MA′f

)T(
MA′f

(
MA′f

)T +EET
)(
D −MAf

)
, (10.33)

which is the equation solved in the EnKS. This equation has the nice property
that the covariance of Aa is the correct expected covariance of the analyzed
estimate.

10.4 Examples

A simple example is now used to illustrate the difference between standard
minimization problems and statistical estimation. We start by defining a sim-
ple scalar model or mapping y = F (x), where x now takes the role of the
poorly known parameter α, and y takes the role of the observed variable ψ.
The standard cost function for this problem becomes



146 10 Statistical optimization

J [x] = (x− x0)2/σ2
x + (d− F (x))2/σ2

y. (10.34)

When using a Bayesian approach, we can evaluate the product of the
Gaussian pdf for the prior and the pdf for the model evolution, assuming
Gaussian model errors, i.e.

f(x, y) = f(y|x)f(x) ∝ exp
(
−1

2
(x− x0)2

σ2
x

− 1
2

(y − F (x))2

σ2
q

)
. (10.35)

The joint conditional pdf becomes

f(x, y|d) ∝ exp
(
−1

2
(x− x0)2

σ2
x

− 1
2

(y − F (x))2

σ2
q

− 1
2

(d− y)2

σ2
y

)
. (10.36)

Figs. 10.1–10.7 display the resulting cost functions and pdfs for several
mappings as defined in Table 10.1, and using different input parameters. The
joint pdf with its marginal pdfs, modes and mean are shown in the upper left
plot. The upper right plot shows the similar pdf but as estimated from a large
ensemble of realizations. The lower left plot shows the joint pdf conditional
on the measurement and the lower right plot is the corresponding pdf as
computed from the samples conditioned on the data using the EnKS.

In Cases 1a and 1b, shown in Figs. 10.1 and 10.2, we assume the linear
model F (x) = x. In these cases the cost function becomes quadratic, and the
marginal pdfs are all Gaussian as would be expected. This case in particular
illustrates the impact of model errors. In Case 1a the joint pdf for the pre-
diction in the upper plots shows a large uncertainty while in Case 1b, it is
narrow and nearly aligned along the line y = x. In Case 1b the most likely
solution is found close to the line y = x and consistent with the prior for y,
i.e. the pdf for the measurement of y. It is also consistent with the minimum
of the cost function. In Case 1a, a completely different solution is found which
reflects that the model prediction has a great uncertainty and this leads to a
situation where the measurement of y has less impact on the estimate of x.
The apparent tilt of the predicted joint pdf in Case 1a is expected. The reason
is that, given a value for x, the model uncertainty introduces an uncertainty
in the y value (which is symmetrical in the y-direction about a point on the
y = x line). In Cases 1a and 1b the maximum likelihood estimate from the
joint pdf is identical to the maximum likelihood estimate from the marginal
pdfs as well as the estimated mean. This will be true only in the case with a
linear model and Gaussian priors. It is also clear that the EnKS in this case
produces a consistent result, as is expected.

In Case 2 we introduce a nonlinearity using the function F (x) = x2. Still
the problem has only one global minimum and no local minima. In this case
we see from Fig. 10.3 that both the joint pdf and marginal pdfs become non-
Gaussian. We can also differentiate between the maximum likelihood estimate
from the joint and marginal pdfs as well as the mean. Thus, here we will have
to choose which estimator to use. From the two lower plots it is also clear that
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Fig. 10.1. Case 1a: Joint and conditional pdfs using the linear function F (x) = x
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Fig. 10.2. Case 1b: Same as Fig. 10.1 but with more accurate model
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Fig. 10.3. Case 2: Joint and conditional pdfs using the quadratic function F (x) = x2
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Fig. 10.4. Case 3: Joint and conditional pdfs using the nonlinear function F (x) =
x2(x2 − 2)



10.4 Examples 151

x

C
os
tf
un
ct
io
n

4 3 2 1 0 1 2 3 40

20

40

60

80

100

x

y

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

marg_J
Prior
Prior

mode_y
mean_y
margmode_y

x

y

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

marg_Samp
Prior
Prior

mode_y
mean_y
margmode_y

x

y

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

marg_C
Prior
Prior

mode_y
mean_y
margmode_y

x

y

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

marg_EnKS
Prior
Prior

mode_y
mean_y
margmode_y

Fig. 10.5. Case 4a: Joint and conditional pdfs using the nonlinear function F (x) =
cos(x)
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Fig. 10.6. Case 4b: Same as Fig. 10.5 but with high accuracy of the model
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Fig. 10.7. Case 4c: Same as Fig. 10.5 but with weak penalty on first-guess which
results in a bimodal pdf



154 10 Statistical optimization

the joint pdf estimated from the EnKS differs slightly from the analytical pdf.
Thus, in this case the EnKS will give a slightly different estimate than an
exact Bayesian solver, and this is due to the approximate linear update used.

In Case 3, shown in Fig. 10.4, we consider the function F (x) = x2(x2−2),
which leads to a cost function with both a local and global minimum. It is
interesting to note that the introduction of model errors in this case leads
to a predicted joint pdf which is unimodal. Thus, a unique solution is found
and the EnKS solution contains some of the same characteristics as the exact
analytical solution.

In Cases 4a–4c, shown in Figs. 10.5–10.7, we use the function F (x) =
cos(x), and examine again the impact of the prior statistics for the model
errors as well as errors in the initial guess. In Case 4a we set both the standard
deviation for the model error and for the prior of x to one. Again the cost
function contains an additional local minimum while the Bayesian approach
leads to unimodal pdfs. The EnKS solution is fairly consistent. In Case 4b the
model is very accurate, and again we converge towards a solution where the
Bayesian estimate is close to the global minimum of the cost function. Note
also that it is the rather accurate prior pdf which ensures that the joint pdf
is unimodal. This is clearly illustrated in Case 4c where a low accuracy on
the prior for x is used. In this case the joint conditional pdf has a bimodal
structure and the mean falls between the peaks in the pdf and is not useful
as an estimator. On the other hand, both the modes of the conditional joint
and marginal pdfs provide realistic and similar estimates. The EnKS has a
problem in this case and is not capable of reproducing the bimodal structure.
It also provides a solution which has a fairly low probability.

10.5 Discussion

This chapter has considered the use of the EnKS as an optimization or pa-
rameter estimation method for nonlinear mappings. There is a clear analogy
between this problem and the analysis step used in traditional data assimi-
lation problems; e.g. if we consider the variable x, to be an initial state, and
y to be a prediction by the nonlinear model, then this becomes analogous to
the standard EnKS analysis step where the observation of y is assimilated.
Alternatively, if we consider x to be the prediction at a certain time, and y
to be a nonlinear measurement at the same time, related to x through an
equation like (10.16) with α replaced with x, then these examples resembles
the EnKF update step using a nonlinear measurement functional.

Thus, it is clear that the EnKF and EnKS can handle certain levels of
nonlinearity in both the model prediction and measurement functional. Even
if the prior ensemble is non-Gaussian the ensemble methods will in many cases
provide an updated ensemble having a realistic pdf. When the prior ensemble
is non-Gaussian, the analyzed ensemble will inherit some of the non-Gaussian
structures. On the other hand, it is also possible to make the EnKS and EnKF
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fail completely; e.g. if the weight on the prior is low and a multimodal pdf
develops, this may result in non-physical solutions.

From the analytical (left columns) and ensemble representation (right
columns) of the joint pdfs in Figs 10.1–10.7, it is clear that the uncondi-
tioned joint and marginal pdfs are indistinguishable in all the cases. This il-
lustrates that the stochastic ensemble integration which solves Kolmogorov’s
equation (4.34) gives the same result as the multiplication of the prior pdf with
the transition density, as is expected. Note also that, while Kolmogorov’s equa-
tion provides only the marginal densities, the ensemble integration allows for
computation of the joint pdf if we track ensemble members in time; i.e we can
evaluate the joint density from the pairs of points (xl, yl) where l = 1, . . . , N .
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Sampling strategies for the EnKF

The purpose of this Chapter is to present some algorithms for generating
ensemble members, and model and measurement perturbations. There is a
number of simulation methods available for generation of random realizations
with different kinds of statistical properties, and we refer to the text books by
Lantuéjoul (2002) and Chilés (1999) for further information. It is also shown
that by selecting the initial ensemble, the model noise and the measurement
perturbations wisely, it is possible to achieve a significant improvement in the
EnKF results, without increasing the size of the ensemble.

11.1 Introduction

The ensemble methods use Monte Carlo sampling for generation of the initial
ensemble, the model noise and the measurement perturbations. When defining
an ensemble of realizations we need to specify the statistical properties of
the distribution we are sampling from. In particular we need to ensure that
the smoothness properties of the realizations are realistic for the physical
variables they represent. The smoothness of a realization can be described by
a covariance function or even better by a quantity named the variogram. For a
field where the smoothness is independent of position, the variogram becomes

γ(h) = C(0)− C(h), (11.1)

where C(h) is the covariance of points located a distance |h| apart. It is easy
to show that γ(0) = 0, γ(h) ≥ 0 and −γ(h) = γ(h). An extensive discussion
of the variogram and its use in geostatistics is given in Wackernagel (1998).

Typical variograms are shown in Fig. 11.1 for a field with exponential,
spherical and Gaussian covariance functions. The exponential covariance func-
tion is defined as

Cexp(h) ∝ exp
(
−|h|
a

)
(11.2)

 
G. Evensen, Data Assimilation, 2nd ed., DOI 10.1007/978-3-642-03711-5_11, 
© Springer-Verlag Berlin Heidelberg 2009 
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Fig. 11.1. The left plot shows exponential, spherical and Gaussian covariance func-
tions and the right plot shows the corresponding variograms

with a being a de-correlation length. Note that the exponential correlation
function is continuous but not differentiable at the origin. The spherical cor-
relation function is given by

Csphere(h) =

{
1− 1.5|h|/a+ 0.5|h|3/a3 for 0 ≤ |h| ≤ a

0 for |h| > a,
(11.3)

where again a defines the de-correlation length. A Gaussian correlation func-
tion is given by

Cgauss(h) ∝ exp
(
−|h|

2

a2

)
. (11.4)

We can define the range of the covariance functions as the distance where the
covariance has a significant value. For the spherical covariance function the
range is equal to a, while for the exponential and Gaussian it is common to
define the ranges as 3a and

√
3a.

From the behaviour of the variograms when |h| approaches zero, it is
clear that the Gaussian variogram corresponds to realizations that are rather
smooth, while the exponential variogram corresponds to fields with more noisy
behaviour. The spherical covariance functions corresponds to realizations with
smoothness located somewhere between the exponential and Gaussian.

When simulating random fields, we need to know the statistical properties
of the fields we are sampling to ensure that the realizations are physically
acceptable for the process or variable they are meant to represent.

11.2 Simulation of realizations

The problem is now to simulate N realizations ψi(x) for i = 1 . . . N , which
has zero mean and covariance given by Cψψ(x1,x2). The following proce-
dure can be used to compute smooth random fields with mean equal to zero,
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variance equal to one, and a specified covariance that determines the smooth-
ness of the fields. The algorithm is an extension of the one presented in the
Appendix of Evensen (1994b). We have used a Gaussian covariance function
that makes sense in ocean simulations where smooth realizations are used.
The method has some resemblance with the spectral method described by
Lantuéjoul (2002) but uses a fast Fourier transform and exploits that the
covariance matrix is diagonal in the Fourier space.

11.2.1 Inverse Fourier transform

Let ψ = ψ(x, y) be a continuous field, which can be described by its Fourier
transform

ψ(x, y) =
∫ ∞

−∞

∫ ∞

−∞
ψ̂(k)eik·xdk. (11.5)

We are using an nx × ny grid. Further, we define k = (κl, λp), where l and p
are integer indices and κl and λp are wave numbers in the x and y directions,
respectively. We now get a discrete version of (11.5),

ψ(xn, ym) =
∑
l,p

ψ̂(κl, λp)ei(κlxn+λpym)∆k, (11.6)

where xn = n∆x and ym = m∆y. For the wave numbers, we have

κl =
2πl
xnx

=
2πl
nx∆x

, (11.7)

λp =
2πp
yny

=
2πp
ny∆y

, (11.8)

∆k = ∆κ∆λ =
(2π)2

nxny∆x∆y
. (11.9)

11.2.2 Definition of Fourier spectrum

In Evensen (1994a) the following Gaussian form were used for the Fourier
coefficients,

ψ̂(κl, λp) =
c

∆k
e−(κ2

l+λ
2
p)/r

2
e2πiφl,p , (11.10)

where φl,p ∈ [0, 1] is a uniformly distributed random number that introduces
a random phase shift. With increasing l and p the wave numbers κl and λp
will give an exponentially decreasing contribution, and large wave numbers
corresponding to small scales are penalized. This choice of Fourier coefficients
leads to isotropic covariances for the simulated fields, i.e. the smoothness is
the same in all directions.

Here we have used the property that the Fourier transform of the Gaus-
sian function (11.4) also becomes a Gaussian function. Clearly we can define
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other Fourier coefficients, e.g. corresponding to the exponential or spherical
covariances if this is what we want to simulate.

A further extension of this algorithm to account for asymmetrical and ro-
tated covariance functions is straight-forward. Defining de-correlation lengths
for the principal directions in the Fourier space as r1 and r2, and a rotation
angle as θ, we can define

a11 =
cos2(θ)
r21

+
sin2(θ)
r22

, (11.11)

a22 =
sin2(θ)
r21

+
cos2(θ)
r22

, (11.12)

a12 =
(

1
r22
− 1
r21

)
cos(θ) sin(θ), (11.13)

and the Fourier coefficients as

ψ̂(κl, λp) =
c

∆k
e−(a11κ

2
l+2a12κlλp+a22λ

2
p)e2πiφl,p . (11.14)

This Fourier spectrum has different scales in the two principal directions and
the principal direction is rotated an angle θ. With r1 = r2 = r this formula
reduces to (11.10).

Now, (11.14) may be inserted into (11.6), and we get

ψ(xn,ym) =

c
√
∆k

∑
l,p

e−(a11κ
2
l+2a12κlλp+a22λ

2
p)e2πiφl,pei(κlxn+λpym), (11.15)

for the inverse Fourier transform that defines the random fields.
It should be noted that we want (11.15) to produce real fields only. Thus,

when the summation over l, p is performed, all the imaginary contributions
must add up to zero. This condition is satisfied whenever

ψ̂(κl, λp) = ψ̂∗(κ−l, λ−p), (11.16)

where the asterisk denotes complex conjugate, and in addition

Im ψ̂(κ0, λ0) = 0. (11.17)

11.2.3 Specification of covariance and variance

The formula (11.15) can be used to generate an ensemble of random fields
with a covariance determined by the parameters c, r1 and r2.

An expression for the covariance is given by

ψ(x1, y1)ψ(x2, y2) =

(∆k)2
∑
l,p,r,s

ψ̂(κl, λp)ψ̂(κr, λs)ei(κlx1+λpy1+κrx2+λsy2) (11.18)
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By using (11.16), and by noting that the summation runs over both pos-
itive and negative r and s, we may insert the complex conjugate instead,
i.e.

ψ(x1, y1)ψ(x2, y2)

= (∆k)2
∑
l,p,r,s

ψ̂(κl, λp)ψ̂∗(κr, λs)ei(κlx1−κrx2+λpy1−λsy2)

= c2
∑
l,p,r,s

e−(a11(κ
2
l+κ

2
r)+2a12(κlλp+κrλs)+a22(λ

2
p+λ

2
s))

e2πi(φl,p−φr,s)ei(κlx1−κrx2+λpy1−λsy2).

(11.19)

We assume that the fields are uncorrelated in wave space. Thus, there is
only a distance dependence for the covariance, and the statistical properties
of the simulated fields will be independent of the position. We can then set
l = r and p = s, and the above expression becomes

ψ(x1, y1)ψ(x2, y2)

= c2
∑
l,p

e−2(a11κ
2
l+2a12κlλp+a22λ

2
p)ei(κl(x1−x2)+λp(y1−y2)). (11.20)

The variance at the location (x, y), should be equal to 1, and from this
equation we then get

ψ(x, y)ψ(x, y) = 1 = c2
∑
l,p

e−2(a11κ
2
l+2a12κlλp+a22λ

2
p). (11.21)

This equation is invariant with respect to θ and can therefore be expressed
with θ = 0 as

1 = c2
∑
l,p

e−2(κ2
l /r

2
1+λ2

p/r
2
2), (11.22)

and we can solve for c.
Further, we define de-correlation lengths rx and ry for the spatial fields

in the two principal directions, and we require the covariance along the prin-
cipal directions corresponding to both distances rx and ry to be equal to
e−1. Thus, in (11.20) we set θ = 0 and evaluate ψ(x1 + rx, y1)ψ(x1, y1) and
ψ(x1, y1 + ry)ψ(x1, y1), which both should equal e−1, to get

e−1 = c2
∑
l,p

e−2(κ2
l /r

2
1+λ2

p/r
2
2) cos(κlrx), (11.23)

e−1 = c2
∑
l,p

e−2(κ2
l /r

2
1+λ2

p/r
2
2) cos(λpry). (11.24)

By inserting for c2 from (11.22), we get
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e−1 =
∑
l,p

e−2(κ2
l /r

2
1+λ2

p/r
2
2) cos(κlrx)/

∑
l,p

e−2(κ2
l /r

2
1+λ2

p/r
2
2), (11.25)

e−1 =
∑
l,p

e−2(κ2
l /r

2
1+λ2

p/r
2
2) cos(λpry)/

∑
l,p

e−2(κ2
l /r

2
1+λ2

p/r
2
2). (11.26)

This is a system of two nonlinear equations which can be solved for r1 and r2.
Thereafter we can compute c from (11.22). The formula (11.15) can then be
used to simulate an ensemble of random fields with variance 1 and covariance
determined by the de-correlation lengths rx and ry and the rotation angle θ.

Using that the denominator appearing in (11.25) and (11.26) is always
positive and larger than zero, we can write the two conditions as

F1 =
∑
l,p

e−2(κ2
l /r

2
1+λ2

p/r
2
2)(cos(κlrx)− e−1) = 0, (11.27)

F2 =
∑
l,p

e−2(κ2
l /r

2
1+λ2

p/r
2
2)(cos(λpry)− e−1) = 0. (11.28)

These are easily solved using a Newton method, where we also need the deriva-
tives

∂F1

∂r1
=
∑
l,p

e−2(κ2
l /r

2
1+λ2

p/r
2
2) 4κ

2
l

r31
(cos(κlrx)− e−1), (11.29)

∂F1

∂r2
=
∑
l,p

e−2(κ2
l /r

2
1+λ2

p/r
2
2)

4λ2
p

r32
(cos(κlrx)− e−1), (11.30)

∂F2

∂r1
=
∑
l,p

e−2(κ2
l /r

2
1+λ2

p/r
2
2) 4κ

2
l

r31
(cos(λpry)− e−1), (11.31)

∂F2

∂r2
=
∑
l,p

e−2(κ2
l /r

2
1+λ2

p/r
2
2)

4λ2
p

r32
(cos(λpry)− e−1). (11.32)

An efficient approach for finding the inverse transform in (11.15) is to
apply a two-dimensional fast Fourier transform (FFT). The inverse FFT is
calculated on a grid that is a few characteristic lengths larger than the com-
putational domain to ensure non-periodic fields (Evensen, 1994b).

To summarize, we are now able to simulate two-dimensional pseudo ran-
dom fields with variance equal to one and a prescribed anisotropic covariance.

11.3 Simulating correlated fields

A simple formula can be used to introduce correlations between the simulated
realizations. Such correlated fields are useful in ocean and atmospheric models
where there can be vertical correlations between levels or layers in the model.
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As an example, a simulated temperature field at two nearby depths will be
correlated if there is strong vertical mixing such as within the ocean mixed
layer. Another example relates to the simulation of model errors where we
expect there to be a finite time correlation.

The equation

ψk(x) = ρψk−1(x) +
√

1− ρ2wk(x), (11.33)

can be used for simulating correlated realizations. Here we assume that wk(x)
is a random realization sampled from a distribution with zero mean and vari-
ance equal to one, while ψk−1(x) is the previous realization, to which ψk(x)
should be correlated. The wk(x) fields are typically generated by an algo-
rithm similar to the one described in the previous section. Thus, starting with
ψ1(x) = w1(x) the formula (11.33) can be used to recursively simulating the
correlated fields.

The coefficient ρ ∈ [0, 1) determines the correlation of the stochastic forc-
ing, e.g. ρ = 0 generates a white sequence, while ρ = 1 will remove the
stochastic forcing and we obtain a random field identical to initial guess
ψ0(x) = w0(x). More generally the covariance between ψi(x) and ψj(x) be-
comes

ψi(x)ψj(x) = ρ|i−j| = exp
(
ln ρ |i− j|

)
. (11.34)

The variance of the simulated fields will be equal to one and we obtain a
sequence of random fields with an exponential variogram where a = −1/ ln ρ.

11.4 Improved sampling scheme

Based on the works by Pham (2001) and Nerger et al. (2005) it should be
possible to introduce some improvements in the EnKF by using a more clever
sampling for the initial ensemble, the model noise, and the measurement per-
turbations. We will now examine a sampling scheme that effectively produces
results similar to those obtained in the SEIK filter by Pham (2001). The
scheme does not add significantly to the computational cost of the EnKF and
may lead to a significant improvement in the results.

The EnKF computes the update as a combination of the predicted ensem-
ble realizations. Thus, the analysis is contained in the space spanned by the
original ensemble, and clearly it will be dependent on the properties of the
ensemble. In general one can say that the ensemble matrix Af should satisfy
the following:

1. The ensemble realizations should be realistic and physically acceptable
fields.

2. The rank of the ensemble should be rank(Af) = min(n,N)
3. The condition number of the ensemble, defined as the ratio between the

largest and smallest singular value, should be small.
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The first condition ensures that the realizations are sampled with the correct
spatial variability and smoothness, and is required for a nonlinear model to
provide realistic results. The second condition just means that the ensemble
spans an N -dimensional space, while the last condition says something about
the linear independence between the ensemble members.

11.4.1 Theoretical foundation

In the SEIK filter by Pham (2001) an algorithm is used where the initial en-
semble is sampled from the first dominant eigenvectors of the error covariance
matrix Cψψ. The algorithm introduces a maximum rank and conditioning of
the ensemble matrix, and ensures that the ensemble provides a best possible
representation of the error covariance matrix for a given ensemble size.

We now start by defining an error covariance matrix Cψψ. Given Cψψ, we
can compute the eigenvalue decomposition

Cψψ = ZΛZT, (11.35)

where the matrices Z and Λ contain the eigenvectors and eigenvalues of Cψψ.
The full rank error covariance matrix can be approximated using its en-

semble representation Ce
ψψ ' Cψψ,

Ce
ψψ =

1
N − 1

A′(A′)T (11.36)

=
1

N − 1
UΣV TV ΣUT (11.37)

=
1

N − 1
UΣ2UT. (11.38)

This expression is similar to the definition (9.14) when excluding the time di-
mension and using a discrete representation ψ, of the state. Here, A′ contains
the ensemble perturbations, and is defined as a discrete version of the formula
(9.13), while U , Σ and V T result from a singular value decomposition1, and
contain the singular vectors and singular values of A′. In the limit when the
ensemble size goes to infinity the n singular vectors in U will converge towards
the n eigenvectors in Z and the square of the singular values Σ2, divided by
N − 1, will converge towards the eigenvalues Λ.

Thus, there are two strategies for defining an accurate ensemble approxi-
mation Ce

ψψ, of Cψψ. The first approach is the standard Monte Carlo method

1 The singular value decomposition of a rectangular matrix A ∈ <m×n is A =
UΣV T whereU ∈ <m×m and V ∈ <n×n are orthogonal matrices andΣ ∈ <m×n

contains the p = min(m, n) singular values σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 on the
diagonal. Further, UTAV = Σ. Note that numerical algorithms for computing
the SVD when m > n often offers to compute only the first p singular vectors in
U since the remaining singular vectors (columns in U) are normally not needed.
However, for the expression UUT = I to be true the full U must be used.
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where we increase the ensemble size N , by sampling additional model states
and adding these to the ensemble. As long as the addition of new ensemble
members increases the space spanned by the overall ensemble, this approach
will result in an ensemble covariance Ce

ψψ that is a more accurate represen-
tation of Cψψ.

Alternatively we can improve the rank/conditioning of the ensemble by
ensuring that the first N singular vectors in U are similar to the N first
eigenvectors in Z. The absolute error in the representation Ce

ψψ of Cψψ will
be smaller for ensembles sampled in the space spanned by the first N singular
vectors in U than for Monte Carlo ensembles of ensemble size N . In other
words, we want to generate A such that rank(A) = N and the condition
number, defined as the ratio between the largest and smallest singular val-
ues, κ2(A) = σ1(A)/σN (A), is minimal. This second approach has a flavour
of quasi-random sampling, which ensures better convergence with increasing
sample size. That is, we choose ensemble members that have less linear de-
pendence. Note that the constraint of generating physically acceptable fields
implies that in some cases more than N singular vectors must be used when
defining the sampling space, to avoid sampling too smooth realizations.

11.4.2 Improved sampling algorithm

For most applications the size of Cψψ is too large to allow for the direct
computation of eigenvectors. An alternative algorithm for generating an N -
member ensemble with better conditioning, is to first generate a larger “start
ensemble” of size αN , with α being an integer larger than one, and then to
resample N members along the first βN dominant singular vectors of the
large start ensemble. Here β ∈ (1, . . . , α) is an integer that determines the
number of singular vectors used when resampling the new improved ensemble.
The algorithm from Evensen (2004) uses β = 1, and may in some cases
sample realizations based on a too small set of singular vectors, resulting in
too smooth and unphysical realizations.

Given a large ensemble of realizations Â
′
∈ <n×αN we compute the sin-

gular value decomposition
Â
′
= ÛΣ̂V̂

T
, (11.39)

with Û ∈ <n×n, Σ̂ ∈ <n×αN , and V̂ ∈ <αN×αN .
The new ensemble can then be sampled from

A′ = ÛΣ̃ΘT, (11.40)

where Σ̃ ∈ <n×βN contains the first βN singular values multiplied by√
(βN)/(αN) to obtain the correct variance, i.e.,

Σ̃(:, :) =

√
β

α
Σ̂(:, 1 : βN), (11.41)
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defines the energy spectrum that penalizes the high wave numbers (or singular
vectors). Note that we for simplicity have assumed that both αN and βN are
less than the dimension of the state vector n.

The random matrix Θ ∈ <N×βN has orthonormal rows and can be
generated by extracting the first N rows of the random orthogonal matrix
Θ ∈ <βN×βN that is computed using the algorithm described in Sec. 11.6.
Thus, each row inΘ defines a linear combination of the scaled singular vectors
that results in a random realization.

11.4.3 Properties of the improved sampling

The sampling scheme has some interesting properties.

1. When αN is large the singular vectors in Û converge towards the eigen-
vectors Z of the exact covariance matrix Cψψ. Furthermore, the scaled

product of singular values, Σ̂Σ̂
T
/(αN), will converge to the exact eigen-

values ofCψψ. Thus, it is important to choose α sufficiently large to ensure
a good estimate of the true eigenvectors and eigenvalues.

2. By sampling from the space of the βN dominant singular vectors in Û ,
using the scaled truncated spectrum as stored in Σ̃, and using an orthog-
onal random matrix Θ, we generate realizations that are all contained in
the βN dimensional subspace defined by the first βN modes in Û .

3. The samples are approximately orthogonal on the weighted or scaled inner
product defined by

< a, b >=
1
βN

(a)TC−1
ψψb. (11.42)

When we insert the eigenvalue factorization for Cψψ and the singular
value decomposition for A′ we obtain

< A′,A′ > =
1
βN

ΘΣ̃
T
Û

T(
ZΛZT

)−1
ÛΣ̃ΘT

=
1
βN

ΘΣ̃
T
Û

T(
ÛΛÛ

T)−1
ÛΣ̃ΘT

=
1
βN

ΘΣ̃
T
Λ−1Σ̃ΘT

≈ αN

βN
ΘΣ̃

T(
Σ̂Σ̂

T)−1
Σ̃ΘT

≈ ΘΣ̃
T(
Σ̃Σ̃

T)−1
Σ̃ΘT

= ΘIβNΘ
T

= I ∈ <N×N ,

(11.43)

where we have used (11.41).
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Fig. 11.2. The plot shows the normalized singular values of ensembles which are
generated using start ensembles of different sizes, with the lower line correspond-
ing to the start ensemble of 100 members. Clearly, the condition of the ensemble
improves when a larger start ensemble is used

4. With β = 1 as in the original scheme, these realizations give a non-unique
low-rank best representation of the error covariance matrix, but due to the
truncation of scales, the realizations may be nonphysical and too smooth.

5. With β > 1 the realizations no longer provide the low-rank best repre-
sentation of the error covariance matrix, but they are still orthogonal on
the inner product (11.42) and with β sufficiently large it is possible to
generate realizations that include the physical scales of importance.

As long as the initial ensemble is chosen large enough the algorithm just
described will provide an ensemble that is similar to what is used in the SEIK
filter, and the SVD algorithm has a lower computational cost than the explicit
eigenvalue decomposition of Cψψ when n is large.

Before the ensemble perturbation matrix A′ is used, it is important to
ensure that the mean is zero and the variance takes a value as specified. This
correction can be applied by subtracting an eventual ensemble mean and then
rescaling the ensemble members to obtain the correct variance. As will be seen
below, ensuring that the ensemble has the correct mean and variance, makes
a positive impact on the quality of the results. Note that the removal of the
mean of the ensemble leaves the maximum possible rank of A′ to be N − 1.

As an example, a 100-member ensemble has been generated using start
ensembles of 100, 200, . . . , 800 members. The size of the one-dimensional model
state is 1001 and the characteristic length scale of the solution is 4 grid cells.

Singular value

N
or
m
al
iz
ed
si
ng
ul
ar
va
lu
e
sp
ec
tr
um

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

n=100
n=200
n=300
n=400
n=500
n=600
n=700
n=800



168 11 Sampling strategies for the EnKF

The singular values (normalized to the first singular value) for the resulting
ensemble is plotted in Fig. 11.2 for the different sizes of start ensemble. Clearly,
there is a benefit of using this sampling strategy. The ratio between singular
values 100 and 1, is 0.21 when standard sampling is used. With increasing size
of the start ensemble the conditioning improves until it reaches 0.59 for 800
members in the start ensemble.

11.5 Model and measurement noise

We now assume a linear model operator defined by the full rank matrix G.
With zero model noise, the ensemble at a later time tk, can be written as

Ak = GkA0. (11.44)

Thus, the rank introduced in the initial ensemble will be preserved as long as
G is full rank, and Ak will span the same space as A0.

With system noise the time evolution of the ensemble becomes

Ak = GkA0 +
k∑
i=1

Gk−iQi, (11.45)

where Qi denote the ensemble of model noise used at time ti. Thus, the rank
and conditioning of the ensemble will also depend on the rank and conditioning
of the model noise introduced.

For a nonlinear model operator, G(ψ, q), where q is the model noise, the
evolution of the ensemble can be written as

Ak = Gk (. . .G2 (G1 (A0,Q1) ,Q2) . . . ,Qk) . (11.46)

Using a nonlinear model there is no guarantee that the nonlinear transfor-
mations will preserve the rank of A and the introduction of wisely sampled
model noise may be crucial to maintain an ensemble with good rank properties
during the simulation. Thus, the same procedure as used when generating the
initial ensemble can be used when simulating the system noise. This approach
ensures that a maximum rank is introduced into the ensemble, and it may
counteract any rank reduction introduced by the model operator.

The EnKS and EnKF analysis algorithms in (9.37) and (9.39) with Xj

defined in (9.38), use perturbed measurements through D′
j . The improved

sampling procedure can then be used when generating the measurement per-
turbations. The improved sampling then leads to a better conditioning of the
ensemble of perturbations and the ensemble covariance Ce

εε becomes a bet-
ter approximation of Cεε. The impact of improved sampling of measurement
perturbations is significant and will be demonstrated in the examples below.
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11.6 Generation of a random orthogonal matrix

A orthogonal random matrix is best generated using the following procedure.
Start with a matrix of random independent normal distributed numbers Y ∈
<N×N , and compute the QR factorization

Y = QR, (11.47)

where Q ∈ <N×N is random and orthogonal andR ∈ <N×N is upper triangu-
lar. The factorization is normally best computed using Householder reflections.
The QR decomposition of a non-singular matrix is only unique if we require
that the diagonal elements of R are all positive. Thus, we can define Ξ as a
diagonal matrix with elements equal to −1 or 1, or with elements Ξjj = eiθj

on the the unit circle in the case when Y is complex, and write

Q′ = QΞ, (11.48)

R′ = RΞ−1, (11.49)

and we have
Y = QR = Q′R′. (11.50)

As suggested by Mezzadri (2007) we follow the QR decomposition by a mul-
tiplication of Q with the inverse of a diagonal matrix Ξ ∈ <N×N , defined
as

diag(Ξ) =
(
R1,1/|R1,1|, . . . ,RN,N/|RN,N |

)
. (11.51)

This procedure leads to a matrix R′ where all diagonal elements are positive,
and a unique random orthogonal matrix Q′ that is shown by Mezzadri (2007)
to be distributed with Haar measure.

11.7 Experiments

The impact of ensemble size and improved sampling is now discussed in some
detail using the one-dimensional linear advection model from Sect. 4.1.3. The
solution of this model is exactly known, which allows us to run realistic exper-
iments with zero model errors to examine the impact of the sampling schemes
used.

In most of the following experiments an ensemble size of 100 members is
used. A larger start ensemble is used in many of the experiments to generate
ensemble members and/or measurement perturbations that provide a better
representation of the error covariance matrix. Otherwise, the experiments dif-
fer in the sampling of measurement perturbations and the analysis scheme
used. In Fig. 4.1 an example is shown from one of the experiments.
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Experiment N Sample fix βini βmes Residual Std. dev.

A 100 F 1 1 0.762 0.074

B 100 T 1 1 0.759 0.053

C 100 T 2 1 0.715 0.065

D 100 T 4 1 0.683 0.062

E 100 T 6 1 0.679 0.071

H 100 T 6 30 0.627 0.053

I 100 T 1 30 0.706 0.060

B150 150 T 1 1 0.681 0.053

B200 200 T 1 1 0.651 0.061

B250 250 T 1 1 0.626 0.058

Table 11.1. Summary of experiments. The first column is the experiment name, in
the second column N is the ensemble size used, then “Sample fix” is true or false
and indicates if the sample mean and variance is corrected, βini is a number which
defines the size of the start ensemble used for generating the initial ensemble as
βiniN , similarly βmes denote the size of the start ensemble used for generating the
measurement perturbations, followed by the analysis algorithm used. The two last
columns contain the average RMS errors of the 50 simulations in each experiment
and the standard deviation of these

11.7.1 Overview of experiments

Several experiments are carried out as listed in Table 11.1. For each of the
experiments, 50 EnKF simulations are performed to allow for a statistical
comparison. In each EnKF simulation, the only difference is the random seed
used. Thus, every EnKF simulation has a different and random true state, first
guess, initial ensemble, set of measurements, and measurement perturbations.

The standard version of the EnKF analysis scheme is used with a full rank
matrix C = SST +(N−1)Cεε that is factorized by computing the eigenvalue
decomposition ZΛZT = C, to get

C−1 = ZΛ−1ZT, (11.52)

where all matrices are of dimension m×m. Thus, we solve the standard EnKF
analysis (9.39) with the definition (9.38), where measurements are perturbed,
i.e. at each assimilation time we compute

Aa = Af
(
I + STZΛ−1ZT

(
D −M

[
Af
]))

, (11.53)

where we have dropped the update index j.
In all the experiments the residuals are computed as the Root Mean Square

(RMS) errors of the difference between the estimate and the true solution
taken over the complete space and time domain. For each of the experiments
we have plotted the mean and standard deviation of the residuals from the 50
EnKF simulation in Fig. 11.3.
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Fig. 11.3. Mean and standard deviation of the residuals from each of the experi-
ments

It is also of interest to examine how well the predicted errors represent the
actual residuals (RMS as a function of time). In the summary Figs. 11.4 and
11.5 we have plotted the average of the predicted errors from the 50 EnKF
simulations as the thick full line. The thin full lines indicate the one standard
deviation spread of the predicted errors from the 50 EnKF simulations. The
average of the RMS errors from the 50 EnKF simulations is plotted as the
thick dotted line, with the associated one standard deviation spread shown
by the dotted thin lines.

Table 11.2 gives the probabilities that the average residuals from the exper-
iments are equal, as computed from the Student’s t-test. Probabilities lower
than, say 0.5, indicate statistically that the distributions from two experiments
are significantly different.

The further details of the different experiments are described below.

Exp. A is the pure Monte Carlo case using a start ensemble of 100 members
where all random variables are sampled “randomly”. Thus, the mean and
variance of the initial ensemble and the measurement perturbations will
fluctuate within the accuracy that can be expected using a 100 member
sample size.

Exp. B is similar to Exp. A except that the sampled ensemble perturbations
are corrected to have mean zero and the correct specified variance. The
correction is applied by subtracting an eventual mean from the random
sample and then dividing the members by the square root of the ensemble
variance. As will be seen below, this correction leads to a small improve-
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Exp B B150 B200 B250 C D E H I

A 0.86 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0
B150 0.01 0 0.01 0.86 0.86 0 0.03
B200 0.04 0 0.01 0.04 0.04 0
B250 0 0 0 0.91 0
C 0.01 0.01 0 0.48
D 0.75 0 0.06
E 0 0.04
H 0

Table 11.2. Statistical probability that two experiments provide an equal mean
for the residuals as computed using the Student’s t-test. A probability close to one
indicates that it is likely that the two experiments provide distributions of residuals
with similar mean. The t-test numbers higher than 0.5 are printed in bold

ment in the assimilation results and is therefore used in all the following
experiments. This experiment is also used as a reference case in the further
discussion that illustrates the performance of the EnKF algorithm.

Exps. B150, B200 and B250 are similar to Exp. B but use respectively en-
semble sizes of 150, 200 and 250 members.

Exps. C, D and E are similar to Exp. B except that the start ensembles used
to generate the initial 100 member ensemble contain respectively 200, 400
and 600 members. Exp. E is used as a reference case illustrating the impact
of the improved initial sampling algorithm.

Exp. H examines the combined impact of improved sampling of both mea-
surement perturbations and the initial ensemble. The results should be
compared with those of Exp. E to examine the additional impact improved
sampling of measurement perturbations.

Exp. I should be compared with Exps. H and B. It uses improved sampling
of measurement perturbations but standard sampling for the initial con-
ditions. Thus, comparing it with results from Exp. B gives the impact of
improved sampling of measurement perturbations.

11.7.2 Impact from ensemble size

We now compare the experiments Exps. B, B150, B200 and B250 to evaluate
the impact of ensemble size on the performance of the EnKF. From Fig. 11.3 it
is seen that the residuals, as expected, are decreasing when the ensemble size
is increased. In practical applications we are naturally limited by the number
of ensemble members we can afford to run. However, from the central limit
theorem, the accuracy in the EnKF estimate will improve proportionally to
the square root of the ensemble size. In most published applications of the
EnKF a typical ensemble size is around 100 members. This ensemble size
is clearly much less than effective dimension of the solution space of many
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dynamical models, but in many cases a so-called localization or local analysis
computation is often used to effectively increase the dimension of the space
where the solution is searched for (see Chap. 15).

When comparing the time evolution of the residuals and the estimated
standard deviations for the Exps. B, B150 and B250 in Fig. 11.4, we ob-
serve that the residuals show a larger spread between the EnKF simulations
than the estimated standard deviations. The estimated standard deviations
are internally consistent between the simulations performed in each of the ex-
periments. The residuals are also generally larger than the ensemble standard
deviations, although there is a significant improvement observed due to the
increase in ensemble size.

11.7.3 Impact of improved sampling for the initial ensemble

Using the procedure outlined in Sect. 11.4 several experiments are performed
using start ensembles of 100–600 members to examine the impact of using
an initial ensemble with better properties. The standard Exp. B is used as a
reference while in the Exps. C, D and E, larger start ensembles of respectively
200, 400 and 600 members are used to generate the initial 100 member en-
semble. In all the experiments discussed here we could sample the realizations
from the first 100 singular vectors, thus β = 1 in (11.41).

In Fig. 11.3 it is seen that just doubling the size of the start ensemble to
200 members (Exp. C ) has a significant positive effect on the results, and using
a start ensemble of 400 members (Exp. D ) leads to a further improvement.
The use of an even larger start ensemble of 600 members (Exp. E ) does not
provide a statistically significant improvement over Exp. D in this particular
application, with a rather small state space.

The time evolutions of the residuals and the estimated standard devia-
tions for the Exps. B and E in Figs. 11.4 and 11.5, show the same trend as
was found for the Exps. B, B150 and B250 above, where residuals show a
larger spread between the simulations than the estimated standard deviations
and the residuals are larger than the ensemble standard deviations. Some im-
provement is seen when going from Exp. B to Exp. E due to the improved
sampling of the initial ensemble.

It was also found when comparing Exps. B150 and B200 with Exp. E that
an ensemble size between 150 and 200 is needed in the standard EnKF to
get similar improvement as was obtained with improved sampling of a 100
member initial ensemble, using a start ensemble of 600.

These experiments clearly show that the improved sampling is justified for
the initial ensemble. It is computed once and the additional computational
cost is marginal. Thus, the improved sampling could be utilized to apply the
filter algorithm with a smaller ensemble size and less computing time than
required in the normal EnKF algorithm while still obtaining a comparable
result.
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Fig. 11.4. RMS residuals and ensemble singular value spectra for some of the
experiments. The left column shows the time evolution for RMS residuals (dashed
lines) and estimated standard deviations (full lines). The thick lines show the means
over the 50 simulations and the thin lines show the means plus/minus one standard
deviation. The right column shows the time evolution of the ensemble singular value
spectra for the experiments

11.7.4 Improved sampling of measurement perturbations.

The Exps. H and I use the improved sampling of measurement perturbations
with a large start ensemble of perturbations of 30 times the ensemble size. The
impact of this improved sampling is illustrated by comparing the Exp. I with
Exps. B, and then Exp. H with Exp. E, in Fig. 11.3. There is clearly a signif-
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Fig. 11.5. See explanation in Fig. 11.4

icant positive impact resulting from the improved sampling of measurement
perturbations.

11.7.5 Evolution of ensemble singular spectra

Finally, it is of interest to examine how the rank and conditioning of the
ensemble evolves in time and is impacted by the computation of the analysis.
In Figs. 11.4 and 11.5 we have plotted the singular values for the ensemble at
each analysis time for some of the experiments. The initial singular spectrum
of the ensemble is plotted as the upper thick line. Then the dotted lines
indicate the reduction of the ensemble variance introduced at each analysis
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update, until the end of the experiment where the singular spectrum is given
by the lower thick line.

It is clear from Exps. B and E that the conditioning of the initial ensemble
improves when the new sampling scheme is used. Furthermore, it is seen from
Exps. B, B150 and B250 that increasing the ensemble size does not add much
to the representation of variance in the error subspace. This result can be
expected with the simple low-dimensional model state considered here.

11.7.6 Summary

The previous experiments have quantified the impact of using an improved
sampling scheme in the EnKF. The improved sampling attempts to generate
ensembles with full rank and a conditioning that is better than what can
be obtained using random sampling. The improved sampling is used for the
generation of the initial ensemble as well as for the sampling of measurement
noise.

In the experiments discussed here it is possible to obtain a significant im-
provement in the results from the standard EnKF analysis scheme if improved
sampling is used both for the initial ensemble and the measurement pertur-
bations. It is expected that similar improvements can be obtained in general
since the improved sampling provides a better representation of the ensemble
error covariances and of the state space where the solution is searched for.

It is important to point out that these results may not be directly transfer-
able to other more complex dynamical models. In the cases discussed here the
dimension of the state vector (1001 grid cells) is small compared to typical ap-
plications with ocean and atmospheric models. Thus, although we expect that
the use of improved sampling schemes in most cases can lead to an improve-
ment in the results, it is not possible to quantify this improvement in general.
Note that it is important to choose β large enough to capture the singnificant
singular values, to provide realizations that are physically acceptable.

We have not examined fully the potential impact a nonlinear model will
have on the ensemble evolution. The use of nonlinear models will change the
basis from that of the initial ensemble, and may even reduce the rank of the
ensemble. This suggests that the improved sampling should be used for the
model noise as well, to help maintain the conditioning of the ensemble during
the forward integration.

From these experiments we can give the recommendation that improved
sampling should always be considered for both the initial ensemble and the
sampling of measurement perturbations. The experiments have shown that
there is a potential for either a significant reduction of the computing time or
an improvement of the EnKF results, using the improved sampling schemes.
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Model errors

We will now discuss the use of model errors in the ensemble and representer
methods. A particular focus will be on the impact of time-correlated model
errors. A simple scalar equation is used to illustrate the use of the ensemble
and the representer methods for combined parameter and state estimation in
this case.

12.1 Simulation of model errors

In the previous chapter we learned how to introduce a correlation between
the random fields. We will now study in more detail how this can be used to
simulate time correlated model errors, and how we can introduce the correct
variance in each realization to properly represent the magnitude of the actual
model error.

Again we assume that wk(x) is a sequence of white noise drawn from a
distribution of smooth pseudo random fields with mean equal to zero and
variance equal to one.

Equation (11.33) ensures that qk(x) is drawn from a distribution with
variance equal to one as long as the variance of the distribution for qk−1(x)
equals one. Thus, this equation will produce a sequence of time correlated
pseudo random fields with mean equal to zero and variance equal to one. The
covariance in time between qi(x) and qj(x) is given by the formula (11.34).

12.1.1 Determination of ρ

The factor ρ in (11.33) should be related to the time step used and a specified
time de-correlation length τ . Equation (11.33), when excluding the stochastic
term, resembles a difference approximation to

∂q

∂t
= −1

τ
q, (12.1)
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which states that q is damped with a ratio e−1, over a time period t = τ . A
numerical approximation becomes

qk =
(

1− ∆t

τ

)
qk−1, (12.2)

where ∆t is the time step. Thus, we define ρ as

ρ = 1− ∆t

τ
, (12.3)

where τ ≥ ∆t.

12.1.2 Physical model

A discrete stochastic model is now defined as

ψk(x) = G(ψk−1(x)) +
√
∆tσcqk(x), (12.4)

where σ is the standard deviation of the model error and c is a factor to be
determined. The choice of the stochastic term is explained next.

12.1.3 Variance growth due to the stochastic forcing

To explain the choice of the stochastic term in (12.4) we will use a simple
random walk model for illustration, i.e.

ψk(x) = ψk−1(x) +
√
∆tσcqk(x). (12.5)

This equation can be rewritten as

ψk(x) = ψ0(x) +
√
∆tσc

k−1∑
i=0

qi+1(x). (12.6)

The variance can be found by squaring (12.6) and taking the ensemble
average, i.e.

ψs(x)ψs(x) = ψ0(x)ψ0(x) +∆tσ2c2

(
s−1∑
k=0

qk+1(x)

)(
s−1∑
k=0

qk+1(x)

)
(12.7)

= ψ0(x)ψ0(x) +∆tσ2c2
s−1∑
j=0

s−1∑
i=0

qi+1(x)qj+1(x) (12.8)

= ψ0(x)ψ0(x) +∆tσ2c2
s−1∑
j=0

s−1∑
i=0

ρ|i−j| (12.9)

= ψ0(x)ψ0(x) +∆tσ2c2

(
−s+ 2

s−1∑
i=0

(s− i)ρi
)

(12.10)

= ψ0(x)ψ0(x) +∆tσ2c2
s− 2ρ− sρ2 + 2ρs+1

(1− ρ)2
, (12.11)



12.1 Simulation of model errors 179

where (11.34) has been used and s denote the number of time steps. The
double sum in (12.9) is just summing elements in a matrix and is replaced
by a single sum operating on diagonals of constant values. The summation in
(12.10) has an explicit solution (Gradshteyn and Ryzhik , 1979, formula 0.113).

We now define the number n such that n∆t = 1, thus n is the number of
time steps over one time unit. It is clear from (12.11), that if c = 1, then the
increase in variance over s time steps is equal to

sσ2

n

1− ρ2 − 2ρ/s+ 2ρs+1/s

(1− ρ)2
. (12.12)

Thus, with ρ = 0 the increase in variance is just sσ2/n as would be expected.
However, with coloured noise the increase in variance may become significantly
higher, dependent on the value of ρ.

In cases where we know the exact statistics of the stochastic noise process,
although these cases are rare, this additional variance increase is realistic.
On the other hand, in many cases we may have an estimate of the expected
variance increase σ2 over a time unit, and we may anticipate that the noise
process is coloured. In that case we will need to use the scaling factor c to
obtain a noise process which results in a realistic variance increase per time
unit.

The two equations (11.33) and (12.4) provide the standard framework
for introducing stochastic model errors when using the EnKF. The for-
mula (12.11) provides the mean for scaling the perturbations in (12.4) when
changing ρ and/or the number of time steps per time unit to ensure that the
ensemble variance growth over a time unit equals σ2.

It is natural to assume that the increase in variance over s time steps
should be equal to sσ2/n, e.g. if s = n this corresponds to integration over
one time unit and the increase in variance becomes σ2. We then have the
formula

sσ2

n
= c2

sσ2

n

1− ρ2 − 2ρ/s+ 2ρs+1/s

(1− ρ)2
, (12.13)

which we can solve for c to get

c2 =
(1− ρ)2

1− ρ2 − 2ρ/s+ 2ρs+1/s
. (12.14)

If the sequence of model noise qk(x) is white in time, i.e. ρ = 0, we get
c ≡ 1 as is expected. Thus, when (12.5) is iterated, c = 1 leads to the correct
increase in ensemble variance given by σ2 per time unit. The formula (12.14)
is identical to the one proposed by Evensen (2003) but it was given for s = n
and integration over one time unit.

For red model noise, with ρ ∈ (0, 1), the formula (12.14) still gives the
correct answer, i.e. if the model is integrated s time steps, the variance at
time step s has increased by sσ2/n. However, a problem with this approach is
that the variance increase is not linear, and if the integration is continued for
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Fig. 12.1. The plot shows the variance using the different definitions for c. The
expected variance is plotted as the red curve. The estimated variance from the
Brownian motion (12.5) using the definitions (12.15) (blue curve), and (12.14) with
s = n (green curve). The formula (12.19) results in the black curve

more than s time steps the variance will increase too fast. This is seen from the
green curve in Fig. 12.1 where c is evaluated for s = n, as in Evensen (2003),
but the integration continues for a much longer time interval. The reason for
the too large variance increase is that we have neglected correlations in time
exceeding one time unit in the continued integration.

A better value for c, which can be used for long time integrations, is
obtained by considering the limiting behaviour of the formula (12.11) when s
becomes large. The solution for c when the number of time steps, s, goes to
infinity in the formula (12.14) becomes

c2 =
1− ρ

1 + ρ
. (12.15)

A plot of the estimated variance increase as a function of time for the Brownian
motion process given by (12.5), is shown as the blue curve in Fig. 12.1. It is
clear that the formula (12.15) gives a too weak variance increase initially but
after an integration for a time period similar to the range of the exponential
time correlation function used, the correct linear variance increase is obtained.

We can chose any value for s when evaluating the formula (12.14) for c.
Thus, we can always obtain the correct variance at a certain time step, e.g. at
a time when we are going to update the solution with measurements, but we
would need to switch to the limiting value for c from (12.15) for the continued
integration.
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Fig. 12.2. The plot shows the value of c as a function of time, computed from
(12.14) (red curve) and from (12.19) (blue curve)

It is possible to do better than this. We can use a formula with ci =
c(i) being a function of the time step i, and require that the variance has
the correct value at all time steps. We then need to introduce ci inside the
summation in (12.6) and we get

ψk(x) = ψ0(x) +
√
∆tσ

k∑
i=1

ciqi(x), (12.16)

where we for simplicity also changed the summation index. As before we can
write

ψs(x)ψs(x) = ψ0(x)ψ0(x) +∆tσ2
s∑
j=1

s∑
i=1

cicjρ
|i−j|. (12.17)

Now, assuming the increase in variance over s time steps to be equal to
sσ2/n we get

sσ2

n
=
σ2

n

s∑
j=1

s∑
i=1

cicjρ
|i−j|, (12.18)

which can be rewritten as

s =
s−1∑
j=1

s−1∑
i=1

cicjρ
|i−j| +

(
2
s−1∑
i=1

ciρ
|s−i|

)
cs + c2s. (12.19)

By using the definition for s (or rather s− 1) in (12.18), we can write (12.19)
as
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s = s− 1 +

(
2
s−1∑
i=1

ciρ
|s−i|

)
cs + c2s, (12.20)

where the double sum is eliminated.
Here (12.20) is a recursion of a second order scalar equations for cs. Using

that c1 = 1 we can solve it recursively in each time step for cs, s ∈ (2,∞), and
we have resolved the issue with the too low initial variance increase. It is also
clear that after a few time steps, exceeding the range of the time correlations
specified, we approach the limiting value (12.15) for c. In Fig. 12.2 we have
plotted c from (12.13) as a function of s as the red curve, and c from (12.19)
as a function of time as the blue curve. Note that there is one sequence of
positive and one of negative solutions for cs which only differ in the sign and
we can pick either.

12.1.4 Updating model noise using measurements

From the previous discussion is should be clear that when red model noise is
used, correlations will develop between the red noise and the model variables.
Thus, during the analysis step it is also possible to consistently update the
model noise as well as the model state. This was illustrated in an example by
Reichle et al. (2002). We now introduce a new state vector which consists of
ψ(x) augmented with q(x). Equations (11.33) and (12.4) can then be written
as (

qk(x)
ψk(x)

)
=
(

ρqk−1(x)
G(ψk−1(x)) +

√
∆tσcqk(x)

)
+
(√

1− ρ2wk−1

0

)
.

(12.21)

During the analysis we can now compute covariances between the observed
model variable and the model noise vector q(x), which is updated together
with the state vector. This will lead to a correction of the mean of q(x) as
well as a reduction of the variance in the model noise ensemble. Note that this
procedure estimates the actual error in the model for each ensemble member,
given the prescribed model error statistics.

The form of (11.33) ensures that, over time, qk(x) will approach a distri-
bution with mean equal to zero and variance equal to one, as long as we don’t
update qk(x) in the analysis scheme. In the case when qk(x) is updated it will
be relaxed back towards a process with zero mean and variance equal to one.

12.2 Scalar model

We now define a simple scalar equation containing a poorly known parameter
α, which has a first guess value α0 = 0, while the true value is α = 1. We also
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have a set of measurements of the true solution, which in this case becomes
a constant ψ(t) = 3. Similarly to the system of equations (7.1–7.5) we now
allow the model equation, the initial condition, the first guess parameter and
the measurements to contain errors and write,

∂ψ

∂t
= 1− α+ q, (12.22)

ψ(0) = 3 + a, (12.23)
α = 0 + α′, (12.24)

M[ψ] = d+ ε. (12.25)

The model is defined on the interval t ∈ [0, 50], thus using the notation from
Chap. 7, t0 = 0 and tk = 50. We have used G(ψ, α) = 1 − α, so the model
operator is linear and independent of ψ. There are nine measurements of ψ
taken at the discrete times ti(j) = 5j, for j = 1, . . . , 9, and the measurement
functional for measurement number j becomes just

Mj [ψ] =
∫ 50

0

ψ(t′)δ(t′ − ti(j))dt′ = ψ(ti(j)). (12.26)

It should be noted that the simple form used for G(ψ, α), will result in
a linear inverse problem even though α is included as a variable to be esti-
mated. This will not be the case in general, since linear models containing,
e.g. a product of ψ and α, will lead to nonlinear inverse problems when the
parameter α, is considered as a variable to be estimated.

12.3 Variational inverse problem

The formulation of the variational inverse problem and the representer method
is now derived for the simple linear combined parameter and state estimation
problem, using the methodology explained in Chap. 8.

12.3.1 Prior statistics

We have to make assumptions about the statistical properties of the error
terms added to (12.22–12.25). It is common to assume simple statistical forms
for the priors, i.e. the error terms all have zero mean and the statistics is
described by a covariance. Further, we assume that the different error terms
are uncorrelated.

For the model errors q, we assume an exponential correlation in time

Cqq(t1, t2) = σ2 exp(−|t2 − t1|/τ), (12.27)

with σ2 being the model error variance and τ the correlation length in time.
The weight Wqq is defined from



184 12 Model errors

Wqq(t1, t2) • Cqq(t2, t3) = δ(t1 − t3), (12.28)

where the bullet denote integration in t2.
The error in the initial condition a, is determined by the variance Caa

with inverse Waa = 1/Caa, and similarly the error in α is given by Cαα with
inverse Wαα = 1/Cαα. For the measurements the errors are described by the
measurement error covariance matrix Cεε with matrix inverse W εε.

12.3.2 Penalty function

The generalized inverse formulation (8.20) for the problem stated above be-
comes

J [ψ, α] =
(
∂ψ

∂t
− 1 + α

)
t1

•Wqq(t1, t2) •
(
∂ψ

∂t
− 1 + α

)
t2

+ (ψ0 − 3)Waa(ψ0 − 3)
+ (α− 0)Wαα(α− 0)

+ (d−M[ψ])TW εε(d−M[ψ]).

(12.29)

12.3.3 Euler–Lagrange equations

By setting the variational derivative of J [ψ, α] with respect to α equal to
zero, noting that ψ depends on α, we get the Euler–Lagrange equations

∂ψ

∂t
= 1− α+ Cqq • λ, (12.30)

ψ(0) = 3 + Caaλ(0), (12.31)
∂λ

∂t
= −M[δ]W εε(d−M[ψ]), (12.32)

λ(50) = 0, (12.33)

α = α0 −Wαα

∫ 50

0

λ dt. (12.34)

This is a coupled two point boundary problem in time, where the forward
model (12.30) depends on the adjoint variable λ, and the adjoint backward
model (12.32) depends on ψ. Note that the simple form of G(ψ, α) leads to
an adjoint model (12.32) where the term gψλ in (8.42) vanishes.

If the true value of α is known, we eliminate the last equation (12.34) and
are left with a linear inverse problem where the solution is defined by (12.30–
12.33). This is still a coupled two point boundary value problem in time but
a direct solution can be obtained using the representer method.
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12.3.4 Iteration of parameter

We define an iteration of α to get a sequence of linear iterates for the Euler–
Lagrange equations. Thus, we write

αl = αl−1 − γ

(
αl−1 − α0 +Wαα

∫ 50

0

λl−1dt
)
, (12.35)

where the expression in the parentheses is the gradient of the penalty function
with respect to the parameter α, and γ is a step length in a gradient descent
method. Thus, for each iterate αl, we need to solve

∂ψl
∂t

= 1− αl + Cqq • λl, (12.36)

ψl(0) = 3 + Caaλl(0), (12.37)
∂λl
∂t

= −M[δ]W εε (d−M[ψl]) , (12.38)

λl(50) = 0. (12.39)

12.3.5 Solution by representer expansions

Assume a solution of the form

ψ(t) = ψF(t) + bTr(t), (12.40)

λ(t) = λF(t) + bTs(t), (12.41)

i.e. the solution is a first guess solution ψF(t) and λF(t) plus a linear combi-
nation b of influence functions or representers r(t), and their adjoints s(t).
There is one representer and associated adjoint for each measurement. We
have now dropped the l-index for the iteration of the parameter α.

We insert (12.40) and (12.41) into (12.36–12.39). When assuming that b
is undetermined and arbitrary we get a system of equations for the first guess
solution,

∂ψF

∂t
= 1− α+ Cqq • λF, (12.42)

ψF(0) = 3 + CaaλF(0), (12.43)
∂λF

∂t
= 0, (12.44)

λF(50) = 0. (12.45)

These equations have the solution λF(t) = 0, and ψF is just the solution of
the original dynamical model with no information from the measurements
included.

By choosing the coefficients b to satisfy (5.60), we find the following set of
equations for the representers and their adjoints
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∂r

∂t
= Cqq • s, (12.46)

r(0) = Caas(0), (12.47)
∂s

∂t
= −M[δ], (12.48)

s(50) = 0. (12.49)

These equations are now decoupled, i.e. (12.48) can be integrated backward
in time from the final conditions (12.49) to find s. Thereafter the system in
(12.46) can be integrated forward in time from the initial conditions (12.47).

The symmetric positive definite representer matrix MT[r], can be con-
structed by measuring the representers as soon as they have been solved for.
Knowing ψF, b which is found from (5.60) and r, we can construct the optimal
minimizing solution of the linear iterate from (12.40), given a value for α.

12.3.6 Variance growth due to model errors

In the previous sections we found that the variance growth of a stochastic
model increased when the noise process representing the model errors became
coloured. This also has implications for the representer method. If we want
to compare solutions using the representer method and the ensemble meth-
ods with coloured noise, we also need to introduce a correction factor in the
representer method.

We start by noting that the representer corresponding to a particular direct
measurement equals the space-time covariance function for the corresponding
measurement location, and its value at the measurement location is equal to
the prior variance at that location.

On discrete form we can write the model error covariance as the matrix

C(ti, tj) = σ2crep exp(−|i− j|∆t/τ), (12.50)

for i and j taking values from 0 to the number of time steps and we have
introduced the factor crep in the definition of the model error covariance.

Thus, we write the solution of (12.46) for each component, j of r, at the
corresponding measurement location ti(j), in discrete form as

rj(ti(j)) = rj(ti(j)−1) +∆t

i(j)∑
i=0

C(ti(j), ti)sj(ti)∆t. (12.51)

Note that the summation in the convolution for measurement j can be stopped
at i = i(j) since sj is zero for ti > ti(j). From this equation we can write

rj(ti(j)) = rj(0) +
σ2crep
n

i(j)∑
k=1

i(j)∑
i=0

exp(−|k − j|∆t/τ)sj(ti)∆t, (12.52)
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where we have used that n = 1/∆t is the number of time steps over one time
unit.

Thus, as in the previous chapter we can now determine crep so that for
each representer it will have the correct variance at the measurement location
ti(j),

i(j)σ2

n
=
σ2crep
n

i(j)∑
k=1

i(j)∑
i=0

exp(−|k − j|∆t/τ)sj(ti)∆t, (12.53)

which we can solve for crep to get

crep = i(j)/
i(j)∑
k=1

i(j)∑
i=0

exp(−|k − j|∆t/τ)sj(ti)∆t. (12.54)

Note that we will get a slightly different value of c for measurements at dif-
ferent time locations, and probably a limiting value should be used, since a
different value for crep at different time locations will lead to an unsymmetrical
representer matrix.

12.4 Formulation as a stochastic model

For the ensemble methods we write the dynamical model (12.22) on stochastic
form similarly to (12.21), i.e.(

qi
ψi

)
=
(

ρqi−1

ψi−1 + (1− α)∆t+
√
∆tσciqi

)
+
(√

1− ρ2 wi−1

0

)
,

(12.55)

where wi is a white noise process with zero mean and unit variance, ρ ∈ [0, 1)
determines the time correlation and ci is the factor from (12.19) which is used
to tune the variance increase in time during the stochastic integration.

12.5 Examples

We will now discuss some examples where the system (12.22–12.25) is solved
using the representer method, the EnKF and the EnKS. We will discuss the
standard state estimation case where the parameter α is known, the state es-
timation case when an erroneous value is used for α and the model therefore is
biased, and the case where we estimate both the model state and the parame-
ter. We will consider both the case with white and coloured model noise. The
examples are similar to, but not identical to the ones from Evensen (2003).

In all the cases we have used an initial and measurement variance equal
to nine and the model error variance is equal to one. In the cases with time
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correlated model noise the time scale of the correlation is τ = 2. The number
of ensemble members is 1000 and the time step is ∆t = 0.1. In the cases with
parameter estimation the parameter error variance is set to four.

The results from the experiments are presented in the Figs. 12.3–12.7. The
measurements are plotted as bullets, the representer solution is plotted as the
red line, the EnKF solution is given by the blue line and the EnKS solution
is plotted as the green line. In addition we have included the EnKF and the
EnKS solution plus and minus the estimated standard deviation as the blue
and green dashed lines. Note that for the representer solution there is no error
estimate, but if there where it would be identical to the EnKS error estimate
in the limit of an infinite ensemble size.

12.5.1 Case A0

We first consider an example where the parameter α = 1 is assumed to be
known. This corresponds to a linear inverse calculation where we solve for
ψ as a function of time given the observations. The results are presented in
Fig. 12.3.

The representer solution is the maximum likelihood solution and can be
used a reference. Note that, due to the use of white noise this curve will have
discontinuous time derivatives at the measurement locations, a property of
the representer and EnKS solutions when white model errors are used.

The EnKF estimate has discontinuities at the measurement locations due
to the analysis updates. During the integration between the measurement lo-
cations the ensemble mean satisfies the dynamical part of the model equation,
i.e. the time derivative of the solution is zero. The ensemble standard devi-
ation is reduced at every measurement time, and increases according to the
stochastic forcing term during the integration between the measurements.

The EnKS provides a continuous curve and is thus a more realistic estimate
than the EnKF solution. It is clear that the EnKS solution is very similar to
the representer solution, and it only differs due to the use of a finite ensemble
size. Note that from the central limit theorem, we could run the EnKS experi-
ments many times, and the resulting estimates would be normally distributed
with a standard deviation given by σ/

√
N . A quick estimate is computed by

setting σ ≈ 2 and N = 1000, and we get a standard deviation of 0.06 which
seems to be consistent with the difference between the EnKS and representer
solution in this case and the cases to follow.

From the ensemble standard deviation for the EnKS, there is clearly an im-
pact backward in time from the measurements and the overall error estimate
is smaller than for the EnKF. The minimum errors are found at the measure-
ment locations as expected. After the final measurement update the EnKF
and EnKS solutions are identical, thus, for forecasting purposes it suffices to
compute the EnKF solution.
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Fig. 12.3. Cases A0 and A1: Pure state estimation with unbiased model. The upper
plot shows the results from Case A0 with white model noise while the lower plots
shows the results from Case A1 where coloured model noise is used
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Fig. 12.4. Case A1: The system noise estimated by the EnKF (upper plot) and the
EnKS (lower plot)
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12.5.2 Case A1

This experiment is similar to Case A0 but we have now introduced time
correlated model noise. The first impression from the lower plot in Fig. 12.3
is that all curves are smoother and less noisy in this case. The EnKS and
representer solutions are now also smooth at the measurement locations as is
expected when time correlated model noise is used.

An important difference between this and the previous case is that now
the EnKF solution sometimes shows a positive or negative trend during the
integration between the measurements. This is caused by the assimilation
updates of the model noise which introduces a “bias” in the stochastic forcing.
This is seen in upper plot of Fig. 12.4 which plots the EnKF solution as the
blue line, the EnKF estimate for the model noise as the red line, and the
standard deviation of the model noise as the red dashed lines. It is clearly
seen that the model noise is being updated at the assimilation steps, e.g.
note the large updates at the second and sixth measurements. These updates
introduce a bias in the system noise which helps relaxing the solution in the
direction of the measurements. Thus, as we will see below, the model noise
can help counteract a bias in model. Note that during the integration between
the measurements the bias slowly relaxes back toward zero in agreement with
the equation used for the simulation of the model noise.

The estimated EnKS system noise is presented as the red solid line in the
lower plot of Fig. 12.4 and also here the time derivatives are continuous at
the measurement locations. In fact, this estimated model noise is the forcing
needed to reproduce the EnKS solution when a single model is integrated
forward in time starting from the initial condition estimated by the EnKS;
i.e. the solution of

ψk = ψk−1 +
√
∆tσcq̂k,

ψ0 = ψ̂0,
(12.56)

with q̂k and ψ̂0 being the EnKS estimated model noise and initial condition
respectively, will exactly reproduce the EnKS estimate. Obviously, the esti-
mated model noise is the same as is computed and used in the forward Euler
Lagrange equation in the representer method. This points to the similarity
between the EnKS and the representer method, which for linear models will
give identical results when the ensemble size becomes infinite.

12.5.3 Case B

We now consider a case where we have an erroneous value, α = 0, and the
model thus contains a bias, always predicting a line with slope equal to one,
while the true solution should have zero slope. In this case we are not at-
tempting to estimate the parameter, but rather trying to solve the inverse
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Fig. 12.5. Cases B0 and B1: Pure state estimation with biased model. The upper
plot shows the results from Case B0 with white model noise while the lower plot
shows the results from Case B1 where coloured model noise is used
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Fig. 12.6. Cases C0 and C1: Combined parameter and state estimation with biased
model. The upper plot shows the results from Case C0 with white model noise while
the lower plot shows the results from Case C1 where coloured model noise is used
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Fig. 12.7. Case C1. Convergence of parameter value over time using the EnKF and
EnKS

problem in the case when the model contains a bias. The results are pre-
sented in Fig. 12.5 for the cases with τ = 0 and τ = 2. Again it is seen that
the EnKS and representer solutions are nearly identical and they provide a
good estimate of the true solution over most of the time interval. There is an
exception for the estimate near the beginning and end of the time interval
where the bias in the model cannot be corrected for. It is clear that the EnKS
provides a significantly better result than the EnKF for this particular case.
This is partly related to the measurement frequency and the fact that the in-
formation from only past and present measurements is insufficient to properly
constrain the evolution of the filter.

The reason that the EnKS and the representer methods provide good re-
sults for most of the time interval is that they are both finding good estimates
of the model error, i.e. qi from (12.55) for the EnKS, and λ(t) for the rep-
resenter method, which corrects for the bias. However, this correction is not
maintained after the final measurement due to the limited time correlation
specified.

12.5.4 Case C

In this case we also start out with an erroneous value, α = 0, but assume that
the parameter contains an error of variance equal to 4. The inverse solution is
given in Fig. 12.6. It is clear that both the representer method and the EnKS
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provide realistic and very similar results. Further, the bias observed from
the previous case is entirely eliminated since we have now also computed
an estimate of α which in the representer method converged to 0.96 and
in the EnKF and EnKS we obtained the value 0.94. Thus, as expected we
obtained values in between the first guess of α = 0 and the true value of
α = 1. We cannot expect to converge exactly to the true value since we have
included a prior error statistics for the parameter. This prior is needed to
ensure the existence of a solution independent of the number of measurements
assimilated. We also observe that the EnKF solution initially shows a strong
bias, but this is quickly reduced after a few updates with measurements.

In Fig. 12.7 we have plotted the estimated value for α as a function of time
for the EnKF and EnKS. We have also included the one standard deviation
of the errors in the plot. We started out with a value of α equal to zero and
set the prior variance for the parameter equal to four. It is seen that the
EnKF provides an update of the parameter at each measurement time, and
at the same time the estimated error variance is reduced. In this example
the parameter estimate converges quickly, and the standard deviation of the
error is reduced at each update with measurements. The final estimate for the
error standard deviation of the parameter is 0.16 corresponding to an error
variance of 0.026, so a significant improvement is obtained in the parameter
estimate. Note also that the EnKS propagates information backward in time
and thus provides a time independent estimate of α which is identical to the
final estimate from the EnKF.

Using the representer method, the iterations on α in (12.35) converged
quickly in around 10 iterations when an iteration step, γ = 0.01, was used,
and we did not attempt to optimize or tune this value further.

12.5.5 Discussion

The conclusion from these experiments is that the EnKF, EnKS and represen-
ter method all provide the same solution of the inverse state and parameter
estimation problem as long as the model is linear and the assumption of Gaus-
sian priors is valid. It should be emphasized that this example has used a very
simple linear model and we do expect that the associated inverse formulation
is fairly well posed and easy to solve. Hence, for the representer method, the
penalty function for each linear iterate is quadratic without local minima, and
a unique solution is always obtained.

For the EnKF, we do not have to consider effects of non-Gaussian error
statistics since the model is linear. Thus, we have considered a very sim-
ple problem where we would expect both the representer method and the
EnKF/EnKS methods to work well.

It is also interesting to see that the case with no measurements are ac-
counted for using both the representer and the ensemble methods. In the
representer method the solution then becomes the first guess solution ψF .
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This corresponds to the mode, or modal trajectory, of the joint pdf defined
by, e.g. (7.10), and the value of α becomes the prior value α0.

The Ensemble methods provide a pure ensemble integration when no mea-
surements are available. Clearly, we can store the ensemble at all times and
compute the modal trajectory as well. However, we believe that the mode of
the marginal pdf would be a better estimator. An argument for this is that a
single model realization from a nonlinear model does not make any statistical
sense. It is just one out of infinitively many possible realizations.

In the ensemble methods the mean is used as the best estimator. This is
mostly a practical choice since the estimation of the mode will require the use
of a much larger ensemble. Thus, the estimate from the EnKF and EnKS when
no measurements are assimilated is just the evolution of ensemble mean. This
corresponds to the mean of the marginal pdf which also happens to be equal
to the mean of the joint pdf. Thus, in the ensemble methods the ensemble
mean is the best estimate and it comes with an associated error covariance
estimate.
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Square Root Analysis schemes

The perturbation of measurements used in the EnKF standard analysis is
an additional source of sampling error. The works by Anderson (2001),
Whitaker and Hamill (2002), Bishop et al. (2001), the review by Tippett et al.
(2003), and the paper by Evensen (2004), have developed “square root” im-
plementations of the analysis scheme where the perturbation of measure-
ments is avoided. The square root methods are intuitively very appealing
but there are also some pitfalls as pointed out by Lawson and Hansen (2004)
and Leeuwenburgh et al. (2005). See also the papers by Sakov and Oke (2008)
and Livings et al. (2008) for a revised interpretation and mathematical anal-
ysis of the square root schemes. The version of the square root scheme from
Evensen (2004), modified according to the findings of Sakov and Oke (2008)
and Livings et al. (2008), is presented below. A simple linear advection model
is used to demonstrate the impact of the different analysis schemes as well as
the impact of using the improved sampling technique from the previous chap-
ter when generating the initial ensemble and measurement perturbations.

13.1 Square root algorithm for the EnKF analysis

The square root schemes presented by Anderson (2001), Whitaker and Hamill
(2002), and Bishop et al. (2001), all introduced some kind of approximation
to make them efficient, e.g. the use of a diagonal measurement error covari-
ance matrix or knowledge of the inverse of the measurement error covariance
matrix. Here the simpler and more direct variant of the square root analysis
scheme, by Evensen (2004), is derived, which solves for the analysis without
imposing any additional approximations.

The square root algorithm is used to update the ensemble perturbations
and is derived starting from the traditional analysis equation for the covariance
update in the Kalman Filter (9.6). The time index is in the remainder of this
chapter dropped for convenience. When using the ensemble representation for
the error covariance matrix, Cψψ, as defined in (9.14), (9.6) can be written
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Aa′Aa′T = A′
(
I − STC−1S

)
A′T, (13.1)

where we have used the definitions of S and C from (9.33) and (9.34), i.e.
S = M[A′] is the measurement of the ensemble perturbations and C =
SST +(N − 1)Cεε, with Cεε being the measurement error covariance matrix.
We have for simplicity dropped the ’f’ superscript on Af and Af′.

13.1.1 Updating the ensemble mean

In the square root scheme, the analyzed ensemble mean is computed from the
standard Kalman filter analysis equation, which can be obtained by multiply-
ing the first line in (9.39) from the right with 1N , so that each column in the
resulting equation for the mean becomes

ψ
a

= ψ
f
+A′STC−1

(
d−Mψ

f
)
. (13.2)

13.1.2 Updating the ensemble perturbations

The following derives an equation for the ensemble analysis by defining a
factorization of (13.1) where there are no references to the measurements or
measurement perturbations.

We start by forming C as defined in (9.34). For now we assume that
C−1 exists, which requires that the rank of the ensemble be greater than the
number of measurements. The low-rank case involves pseudo inversion and is
discussed in Chapter 14. Note also that the use of a full rank Cεε can result
in a full rank C even when m ≥ N .

By computing the eigenvalue decomposition ZΛZT = C, we obtain the
inverse of C as

C−1 = ZΛ−1ZT, (13.3)

where Z ∈ <m×m is an orthogonal matrix and Λ ∈ <m×m is diagonal. The
eigenvalue decomposition may be the most demanding computation required
for the analysis when m is large. An efficient alternative inversion algorithm
is presented in Chapter 14.

We now write (13.1) as

Aa′Aa′T = A′
(
I − STZΛ−1ZTS

)
A′T

= A′
(
I − (Λ−

1
2ZTS)T(Λ−

1
2ZTS)

)
A′T

= A′
(
I −XT

2X2

)
A′T,

(13.4)

where X2 ∈ <m×N is defined as

X2 = Λ−
1
2ZTS, (13.5)
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and where rank(X2) = min(m,N − 1). Thus, X2 is a projection of S onto
the eigenvectors of C scaled by the square root of the eigenvalues of C.

Next we compute the singular value decomposition of X2 given by

U2Σ2V
T
2 = X2, (13.6)

with U2 ∈ <m×m, Σ2 ∈ <m×N and V 2 ∈ <N×N . Since U2 and V 2 are
orthogonal matrices, (13.4) can be written

Aa′Aa′T = A′
(
I −

(
U2Σ2V

T
2

)T(
U2Σ2V

T
2

))
A′T

= A′
(
I − V 2Σ

T
2Σ2V

T
2

)
A′T

= A′V 2

(
I −ΣT

2Σ2

)
V T

2A
′T

=

(
A′V 2

√
I −ΣT

2Σ2

)(
A′V 2

√
I −ΣT

2Σ2

)T

.

(13.7)

Thus, a solution for the analysis ensemble perturbations is

Aa′ = A′V 2

√
I −ΣT

2Σ2. (13.8)

As noted in Wang et al. (2004) the update equation (13.8) does not conserve
the mean of the ensemble perturbations, and in fact leads to the produc-
tion of outliers that contain most of the ensemble variance as explained in
Leeuwenburgh et al. (2005), and which is further illustrated in the example
below.

We now write the square root update in the more general form

Aa′ = A′T , (13.9)

where T is a square root transformation matrix.
It is shown in Sakov and Oke (2008) and Livings et al. (2008) that in or-

der for the square root analysis scheme to be unbiased and preserve the zero
mean in the updated perturbations, the vector (1/N)1, where 1 ∈ <N has all
components equal to 1, must be an eigenvector of the square root transforma-
tion matrix T . As noted in Sakov and Oke (2008) and Livings et al. (2008),
this condition is not satisfied for the update in (13.8).

Multiplying (13.9) from the right with the vector 1 and assuming that
(1/N)1 is an eigenvector of T , we can write

0 = Aa′1 = A′T1 = λA′1 = 0. (13.10)

Equation (13.10) shows that a sufficient condition for the mean to be unbiased
is that (1/N)1 be an eigenvector of T . If the transform matrix is of full rank,
then this condition is also necessary (Livings et al., 2008).
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The symmetric square root solution for the analysis ensemble perturba-
tions is defined as

Aa′ = A′V 2

√
I −ΣT

2Σ2V
T
2 . (13.11)

It is easy to show that (13.11) is also a factorization of (13.7) since V 2 is an or-
thogonal matrix. As shown in Sakov and Oke (2008) and Livings et al. (2008),
the symmetric square root has an eigenvector equal to (1/N)1 and is unbi-
ased. In addition, the symmetric square root resolves the issue with outliers in
the factorization used in (13.8). The analysis update of the perturbations be-
comes a symmetric contraction of the forecast ensemble perturbations. Thus,
if the predicted ensemble members have a non-Gaussian distribution, then the
updated distribution retains the shape but the variance is reduced.

A randomization of the analysis update can be used to generate updated
perturbations that better resemble a Gaussian distribution (Evensen, 2004).
Thus, we write the symmetric square root solution (13.11) as

Aa′ = A′V 2

√
I −ΣT

2Σ2V
T
2Θ

T, (13.12)

where Θ is a mean-preserving random orthogonal matrix, which can be com-
puted using the algorithm from Sakov and Oke (2008).

13.1.3 Properties of the square root scheme

The properties of the square root schemes are illustrated in Figure 13.1, which
shows the resulting ensemble updates using several variants of the EnKF
analysis scheme. The Lorenz equations (6.5)–(6.7) are used since the strong
nonlinearities lead to the development of a non-Gaussian distribution for the
forecast ensemble. Three observations are used in the update step. Each en-
semble member is plotted as a circle in the x, y plane. In both Figure 13.1a and
Figure 13.1b the forecast ensemble members are plotted as the blue circles,
which have a non-Gaussian distribution in the x, y plane.

In Figure 13.1a the updated analysis from the “one-sided” square root
scheme in (13.8) is shown as the yellow circles. It can be seen that N − 3
of the updated ensemble perturbations collapse onto (0, 0), while the three
nonzero “outliers”, one for each measurement, determine the ensemble vari-
ance. However, one of the outliers is too close to zero to be distinguished from
the other points at zero. The variance of the updated ensemble is correct, but
the analysis introduces a bias through a shift in the ensemble mean. The shift
in the mean should come as no surprise since we do not impose a condition
for the conservation of the mean when the update equation is derived. It is in
fact shown in Section 13.1.6 that for a three variable model, and with three
measurements and a diagonal measurement error covariance matrix, we ob-
tain an ensemble with three outliers while the remainder of the perturbations
collapse onto zero.
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Fig. 13.1. Forecast and analysis ensembles for the Lorenz equations illustrating
properties of the analysis schemes discussed in the text. The data used in these plots
were contributed by Dr. Pavel Sakov.

x (Amplitude)

y
(A
m
pl
itu
de
)

-0.003 -0.0025 -0.002 -0.0015 -0.001 -0.0005 0 0.0005
-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

Forecast
SQRT Sym
EnKF No-pert
SQRT one-sided

(a)

x (Amplitude)

y
(A
m
pl
itu
de
)

-0.003 -0.0025 -0.002 -0.0015 -0.001 -0.0005 0 0.0005
-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

Forecast
SQRT Sym MPRR
EnKF

(b)



202 13 Square Root Analysis schemes

In Figure 13.1a the updated analysis from the symmetric square root
scheme in (13.11) is shown as the red circles. This scheme has the property
that it rescales the ensemble of perturbations without changing the original
shape of the perturbations. Thus, the scheme allows for preserving possible
non-Gaussian structures in the ensemble during the update. We also note that
the symmetric square root scheme from (13.11) is unbiased and thus preserves
the mean (Sakov and Oke, 2008).

In Figure 13.1b the updated analysis from the symmetric square root
scheme from (13.12) that includes an additional mean-preserving random ro-
tation, is plotted using the green circles. It is clear that the ensemble of up-
dated perturbations now has a Gaussian shape, and the non-Gaussian shape
of the forecast ensemble perturbations is lost. The random rotation completely
destroys any prior structure in the ensemble by randomly redistributing the
variability among all of the ensemble members. Thus, the random rotation
acts as a complete resampling from a Gaussian distribution, but represented
by the ensemble space, while preserving the ensemble mean and variance.

Figure 13.1b also shows the updated analysis from the standard EnKF
scheme from (9.39), where the measurements are randomly perturbed to rep-
resent their uncertainty. The standard EnKF analysis becomes similar to the
symmetric square root analysis with random rotation. As with the symmetric
square root analysis, most of the non-Gaussian shape of the forecast ensem-
ble is lost. However, only the increment in the standard EnKF analysis is
Gaussian, and some of the non-Gaussian properties of the forecast ensemble
is retained, as indicated by the two outliers that represent the tail of the
distribution seen in the forecast ensemble.

It is also interesting to consider the standard EnKF scheme when used
without perturbation of measurements. It is then clear from (4.41) that the
variance is reduced twice by the additional multiplication with I −KeM re-
sulting from Ce

εε in (4.41) being identical to zero when the measurements are
not treated as stochastic variables. Figure 13.1a shows that the EnKF scheme
without perturbation of measurements preserves the shape of the forecast dis-
tribution in the same way as the symmetric square root scheme, although the
variance is too low. Thus, the perturbation of measurements in EnKF both
increases the ensemble variance to the “correct” value, and introduces addi-
tional randomization. The randomization is different from the one observed
in (13.12) since only the increments are randomized in the EnKF scheme with
perturbation of measurements.

It is currently not clear which of the analysis schemes, that is, the standard
EnKF (9.39), the symmetric square root (13.11), or the symmetric square
root with random rotation (13.12), is best in practice. Probably, the choice
of analysis scheme depends on the dynamical model, and possibly also on the
measurement density and ensemble size used. For a linear dynamical model,
the forecast distribution is Gaussian, and the random rotation is not needed.
Thus, we then expect the symmetric square root (13.11) to be the best choice.
On the other hand, for a strongly nonlinear dynamical model where non-
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Gaussian effects are dominant in the predicted ensemble, the symmetric square
root with a random rotation (13.12) or EnKF with perturbed measurements
(9.39) may work better. Both of these schemes introduce Gaussianity into the
analysis update, and a Gaussian forecast ensemble may lead to more consistent
analysis updates.

The random rotation might be considered as a re-sampling from a Gaus-
sian distribution at each analysis update. Note again that the random rotation
in the square root filter, contrary to the measurement perturbation used in
EnKF, completely eliminates all non-Gaussian contributions that may be con-
tained in the forecast ensemble.

13.1.4 Final update equation

In Chap. 9 it was shown that the EnKF analysis update can be written as

Aa = AX, (13.13)

where X is an N ×N matrix of coefficients. The square root schemes can also
be written in the same simple form. We start by writing the analysis as the
updated ensemble mean plus the updated ensemble perturbations,

Aa = A
a

+Aa′. (13.14)

The updated mean can, using (13.2), be written as

Aa = A+A′STC−1
(
D −M

[
A
])

= A1N +A(I − 1N )STC−1 (D −M [A])1N

= A1N +ASTC−1 (D −M [A])1N ,

(13.15)

and from (13.12) the updated perturbations become

Aa′ = A′V 2

√
I −ΣT

2Σ2V
T
2Θ

T

= A(I − 1N )V 2

√
I −ΣT

2Σ2V
T
2Θ

T.

(13.16)

Combining the previous equations we get (13.13) with X defined as

X = 1N + STC−1 (D −M[A])1N + (I − 1N )V 2

√
I −ΣT

2Σ2V
T
2Θ

T.

(13.17)
Thus, we still search for the solution as a combination of ensemble members,
and it also turns out that forming X and then computing the matrix multi-
plication in (13.13) is the most efficient algorithm for computing the analysis
when many measurements are used. Note that we already have C−1 from
(13.3). The mean-preserving random rotation Θ is included in the equation
but can be removed by setting Θ = I and the scheme then reverts to the
symmetrical square root scheme.



204 13 Square Root Analysis schemes

13.1.5 Analysis update using a single measurement

We will now look at the special case where a single measurement (m = 1) is
used. The matrix inversion in (13.3) then becomes a scalar inverse and using
the notation from the eigenvalue decomposition we have Z = 1 and Λ is the
scalar λ = SST + (N − 1)Cεε. Thus, from (13.5) we get X2 = λ−

1
2S.

The singular value decomposition (13.6) of X2 then equals λ−
1
2 times the

singular value decomposition of S,

λ−
1
2UΣV T = λ−

1
2S = X2. (13.18)

Here we must have U = U2 = 1, and Σ ∈ <1×N has the value σ =
√
SST in

the first location and zero in the remainder locations. Further, V ∈ <N×N has
the vector S/

√
SST in the first column and vectors orthogonal to S in the

other columns. Thus, we can write the singular value decomposition (13.8) of
X2 as

X2 = Σ2V
T
2 , (13.19)

where we have
Σ2 = (λ−

1
2σ, 0, . . . , 0), (13.20)

and V 2 = V .
The one-sided analysis equation (13.8) then gives the following at the

measurement location

Sa = SV 2

√
I −ΣT

2Σ2

= λ
1
2Σ2V

T
2 V 2

√
I −ΣT

2Σ2

=
(
σ
√

1− σ2/λ, 0, . . . , 0
)
.

(13.21)

The matrix
√
I −ΣT

2Σ2 is diagonal with ones on the diagonal except for the

first element which is
√

1− σ2/λ. Further, the first element contains all of the
variance of the analysis at the measurement location, which also implies that
the mean of the updated ensemble perturbations is non-zero.

We note that λ = σ2 + (N − 1)Cεε, thus the variance at the measurement
location becomes

SaSaT

N − 1
=

σ2

N − 1

(
1− σ2/(N − 1)

σ2/(N − 1) +Cεε

)
, (13.22)

which is identical to (3.15).
For state spaces where n > 1 the rank of the ensemble is reduced to one

at the measurement locations, while the rows of A′ corresponding to other
grid points will generally not be parallel to S and the rank will be maintained.
Note, however, that imposed spatial correlations will lead to poor conditioning
of the ensemble at grid points close to the measurement location.
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The update equation for symmetric square root scheme (13.11) includes
the additional multiplication with V T

2 and becomes

Sa =
(
σ
√

1− σ2/λ, 0, . . . , 0
)
V T

2

=
√

(1− σ2/λS.
(13.23)

It is clear that the symmetric square root scheme is a symmetric contration
of all the ensemble perturbations, where the zero mean of the perturbations
is preserved.

13.1.6 Analysis update using a diagonal Cεε

With more than one measurement the situation from the previous section
changes but the same problem occur with the one-sided analysis equation
(13.8) when Cεε is diagonal. We now consider the case with 1 < m < N . Then
the eigenvectors Z, will be identical to the singular vectors U , of S = UΣV T,
and we can write

X2 = Λ−
1
2ZTS = Λ−

1
2ΣV T. (13.24)

Thus, the singular value decomposition of X2 becomes again (13.6) but with

Σ2 = Λ−
1
2Σ, (13.25)

containing m nonzero elements on the diagonal, V 2 = V and U2 = I.
Then each of the m columns in ST will be contained in the space defined

by the first m columns of V 2. Thus, in the update, the first m ensemble
perturbations will represent the analysis variance while the remainder will be
zero.

The one-sided square root analysis scheme (13.8) results in an updated
ensemble where the ensemble variance is reduced in directions defined by
the rotation V 2. In cases when ST is fully represented by a selection of sin-
gular vectors, as is the case when a single measurement is used and if m
measurements are used with a diagonal Cεε, then the ensemble variance at
the measurement locations is represented by the first m ensemble members.
This finding is consistent with the results from the Lorenz equations shown
in Fig. 13.1.

13.2 Experiments

The impact of using the square root analysis scheme from the previous section
will now be examined in some detail using the model and configuration from
Sect. 11.7.
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Experiment N βini Residual Std. dev.

F 100 1 0.69632 0.51328E-01

FS 100 1 0.68856 0.67178E-01

G 100 6 0.59581 0.39345E-01

GS 100 6 0.60496 0.40811E-01

Table 13.1. Summary of experiments. The first column is the experiment name,
in the second column N is the ensemble size used, βini is a number which defines
the size, βiniN , of the start ensemble when using the improved sampling scheme
from section 11.4 for generating the initial ensemble. The two last columns contain
the average RMS errors of the 50 simulations in each experiment and the standard
deviation of these

13.2.1 Overview of experiments

Four experiments are carried out as listed in Table 13.1. For each of the
experiments, 50 EnKF simulations are performed to allow for a statistical
comparison. In each simulation, the only difference is the random seed used.
Thus, each simulation will have a different and random true state, first guess,
initial ensemble, and set of measurements. The further details of the different
experiments are as follows:

Exp. F is an experiment where a standard Monte Carlo ensemble is used for
generating the 100 member initial ensemble without improved sampling.
It is thus similar to and can be compared with Exp. B from Sect. 11.7.

Exp. FS is similar to Exp. F except that the mean preserving random rotation
is used.

Exp. G is similar to Exp. F except that the initial ensemble is sampled from
a start ensemble of 600 members as in Exp. E from Sect. 11.7. It examines
the benefit of combined use of improved initial sampling and the square
root algorithm.

Exp. GS is similar to Exp. G except that the mean preserving random rotation
is used.

The analysis is computed from the square root implementation of the anal-
ysis scheme using the final update equation (13.13) with the update matrix
defined by (13.17). As in Sect. 11.7 a full rank matrix C = SST +(N −1)Cεε

is assumed and inverted by computing the eigenvalue decomposition and using
(13.3). The final update equation becomes

Aa = A
(
1N + STZΛ−1ZT (D −M [A])1N

+ (I − 1N )V 2

√
I −ΣT

2Σ2V
T
2Θ

T
)
.

(13.26)

The residuals are computed as the Root Mean Square (RMS) errors of the
difference between the estimate and the true solution taken over the complete
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Fig. 13.2. Mean and standard deviation of the residuals from each of the experi-
ments. Included are also Exps. B,E,H and I from Sect. 11.7

space and time domain. For each of the experiments we plot the mean and
standard deviation of the residuals in Fig. 13.2.

The Table 13.2 gives the probabilities that the average residuals from the
experiments are equal, as computed from the Student’s t-test. Probabilities
lower than, say 0.1, indicate statistically that the distributions from two ex-
periments are significantly different.

It is also of interest to examine how well the predicted errors represent
the actual residuals (RMS as a function of time). In the summary Figs. 13.3
we have plotted the average of the predicted errors from the 50 simulations
as the thick full line. The thin full lines indicate the one standard deviation
spread of the predicted errors from the 50 simulations. The average of the
RMS errors from the 50 simulations is plotted as the thick dotted line, with
associated one standard deviation spread shown by the dotted thin lines.

13.2.2 Impact of the square root analysis algorithm

The four experiments Exps. F, FS, G and GS, using the square root algorithm
are compared with the results from the standard EnKF cases Exps. B, E, H
and I, from Sect. 11.7. The Exp. B did not use improved sampling, Exp. E used
improved sampling for the initial ensemble, Exp. I used improved sampling
for the measurement perturbations, and Exp. H used improved sampling both
for the initial ensemble and the measurement perturbations.

From the residuals plotted in Fig. 13.2, the random rotation does not seem
to influence or degrade the results of the square root algorithm when used with
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Fig. 13.3. Left column shows the time evolution for RMS residuals (dashed lines)
and estimated standard deviations (full lines). The thick lines show the means over
the 50 simulations and the thin lines show the means plus/minus one standard
deviation. The right column shows the time evolution of the ensemble singular value
spectra for some of the experiments
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Exp E F FS G GS H I

B 0 0 0 0 0 0 0
E 0.16 0.49 0 0 0 0.04
F 0.52 0 0 0 0.37
FS 0 0 0 0.17
G 0.26 0 0
GS 0.02 0
H 0

Table 13.2. Statistical probability that two experiments provide an equal mean
for the residuals as computed using the Student’s t-test. A probability close to one
indicates that it is likely that the two experiments provide distributions of residuals
with similar mean

linear systems. The Exps. F and FS are very similar in performence, and so are
Exps. G and GS. The time evolutions of the residuals in Exps. F, FS, G and
GS, plotted in Fig. 13.3, show as with the standard EnKF, an underestimate
of the residuals and otherwise behaviour that is similar to what was seen
using the standard EnKF. However, there is a clear improvement in the cases
Exps. G and GS where improved sampling is used for the initial ensemble.

It is of interest to examine how the rank and conditioning of the ensemble
evolves in time and is impacted by the computation of the analysis. In the right
column of Fig. 13.3 we have plotted the singular values for the ensemble at
each analysis time. The initial singular spectrum is plotted as the upper thick
line. Then the dotted lines indicate the reduction of the ensemble variance
introduced at each analysis update, until the end of the experiment where the
singular spectrum is given by the lower thick line. The initial spectra from
Exps. F and FS are significantly different from the ones seen in the standard
EnKF in Chap. 11. The square root scheme seems to lead to a reduction
of variance that converges to a flat spectrum, which shows that the square
root scheme weights the singular vectors more equally than the EnKF, which
showed a tendency to loss of rank in the ensemble.

From Fig. 13.2 and Table 13.2 we observe that Exps. F and FS are similar
in performence to the Exps. E and I. Further, the Exps. G and GS are superior
to all the other experiments, but only slightly better than Exp. H. The square
root scheme in Exps. F and FS provides an improvement to the standard
EnKF in Exp. B and the results are similar to Exp. I where the EnKF is used
with improved sampling for the measurement perturbations. When improved
sampling is used for the initial ensemble, the square root scheme in Exps. G
and GS provide the results with the lowest residuals, and slightly better than
the standard EnKF with improved sampling of both the initial ensemble and
the measurement perturbations in Exp. H.



14

Rank issues

It is in the previous chapters stated that the EnKF analysis scheme may
have problems in cases where the number of measurements is larger than the
number of members in the ensemble or when the matrix C for some reason has
poor conditioning. In this chapter we will discuss these difficulties and propose
algorithms that still makes it possible to use the EnKF analysis schemes in
cases with poor conditioning. Thus, we provide an extended discussion of the
rank problem as was introduced in Evensen (2004).

14.1 Pseudo inverse of C

The matrixC that must be inverted in the analysis schemes is in (9.26) defined
as

C = SST + (N − 1)Cεε. (14.1)

As in the previous chapters we define S = M
[
Af′] as the measurements of the

ensemble perturbations, and Cεε is the measurement error covariance matrix.
The analysis scheme for the EnKF is in (11.53) given as

Standard EnKF analysis

Aa = Af
(
I + STC−1

(
D −M

[
Af
]))

,
(14.2)

with D being the ensemble of perturbed measurements.
In the square root scheme we compute the update of the mean which is

derived from (14.2) by multiplication from the right by 1N , where 1N is an
N -dimensional quadratic matrix with all elements equal to 1/N . Thus, we get
the update for the mean (13.2), written as

A
a

= Af
(
1N + STC−1

(
D −M

[
A

f]))
. (14.3)

The perturbations are updated according to (13.12), i.e.
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Aa′ = Af′V 2

√
I −ΣT

2Σ2V
T
2Θ

T, (14.4)

which is derived from a factorization of (13.1), i.e.

Aa′Aa′T = Af′
(
I − STC−1S

)
Af′T. (14.5)

Equations (14.3) and (14.4) can be combined into one single equation, similar
to (13.26), as

Standard square root analysis

Aa = Af

(
1N + STC−1

(
D −M

[
Af
])

1N

+ (I − 1N )V 2

√
I −ΣT

2Σ2V
T
2Θ

T

)
.

(14.6)

For the definition of the various matrices we refer to Chap. 13 where the
square root scheme was derived.

It is seen that in both the EnKF and the square root algorithm we need
to compute the inverse of C. In the previous discussion an eigenvalue factor-
ization is used when inverting C. In cases where the dimension of C is large,
or if nearly dependent measurements are assimilated, it is possible that C be-
comes numerically singular and the pseudo inverse C+ of C must be used. It
is convenient to formulate the analysis schemes in terms of the pseudo inverse,
since we have C+ ≡ C−1, when C is of full rank. The algorithm is then valid
in the general case.

14.1.1 Pseudo inverse

The pseudo inverse of the quadratic matrix C with eigenvalue factorization

C = ZΛZT, (14.7)

is defined as
C+ = ZΛ+ZT. (14.8)

The matrix Λ+ is diagonal and with p = rank(C) it is defined as

diag(Λ+) = (λ−1
1 , . . . , λ−1

p , 0, . . . , 0), (14.9)

with the eigenvalues λi ≥ λi+1.
The pseudo inverse has the following properties

CC+C = C, C+CC+ = C+, (14.10)

(C+C)T = C+C, (CC+)T = CC+. (14.11)
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Furthermore,
x = C+b, (14.12)

is the least squares solution of the problem

Cx = b, (14.13)

when C is singular.

14.1.2 Interpretation

It is useful to attempt an interpretation of the algorithm when using the
pseudo inverse for C. We start by storing the p nonzero elements of diag(Λ+)
on the diagonal of Λ−1

p ∈ <p×p, i.e.

diag(Λ−1
p ) = (λ−1

1 , . . . , λ−1
p ). (14.14)

We then define the matrix containing the first p eigenvectors in Z as
Zp = (z1, . . . ,zp) ∈ <m×p. It is clear that the product ZpΛ−1

p Z
T
p is the

Moore-Penrose or pseudo inverse of the original matrix C.
We now define the projected measurement operator M̃ ∈ <p×n as

M̃ = ZT
pM, (14.15)

the ensemble of p projected measurements

D̃ = ZT
pD, (14.16)

and the p projected measurements of the ensemble perturbations S̃ ∈ <p×N ,
as

S̃ = ZT
pM

[
A′
]

= M̃
[
A′
]

= ZT
p S. (14.17)

This corresponds to the use of a measurement antenna which is oriented along
the p dominant principal directions of C (see Bennett , 1992, Chap. 6). The
analysis equation in the original EnKF analysis scheme then becomes

Aa = Af
(
I + S̃

T
Λ−1
p

(
D̃ − M̃

[
Af
]))

. (14.18)

Thus, the analysis is just the assimilation of the p rotated and projected
measurements in the space where C̃ = Λp is diagonal.

14.1.3 Analysis schemes using the pseudo inverse of C

The modification required for the EnKF and square root analysis schemes
to use the pseudo inverse of C is minor. The same equations and derivation
are used, it is only necessary to perform a truncation of the spectrum at the
desired variance level, i.e. one need to decide how many eigenvalues to include
and set the remainder to zero. Then Λ+ is defined and used instead of Λ−1.
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Fig. 14.1. Solution at the final time using the traditional EnKF analysis scheme
with pseudo inversion of C. The upper plot is the solution with truncation at 90%
of the variance of the eigenvalue spectrum, while the lower plot is with truncation
at 99.9% of the variance

14.1.4 Example

The advection example from Sects. 11.7 and 13.2 is now used to illustrate
the importance of being able to handle a rank deficient C. We first con-
struct a case where we have five measurements located at neighbouring grid
points. The measurement error covariance matrix is also nondiagonal, and it
is assumed that the measurement errors are correlated with a Gaussian co-
variance function of de-correlation length equal to 20. This leads to a matrix
C with a ratio of the largest over smallest eigenvalue of order 105. Thus, the
conditioning of C is rather poor and the use of a pseudo inversion may be
advantageous.

We now run two experiments similar to Exp. E from Sect. 11.7, and Exp. G
from Sect. 13.2, and plot the solution at the final time t = 300, for different
truncations of the eigenvalue spectrum. The results are plotted in respectively
Figs. 14.1 and 14.2 for the traditional EnKF and the square root analysis
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Fig. 14.2. Solution at the final time using the square root analysis scheme with
pseudo inversion of C. The upper plot is the solution with truncation at 90% of
the variance of the eigenvalue spectrum, while the lower plot is with truncation at
99.9% of the variance

algorithms. It is seen that the inversion, using a truncation of the eigenvalue
spectrum where 90% of the variance, corresponding to a single eigenvalue, is
retained, leads to stable solutions. On the other hand, when the truncation is
accounting for 99.9% of the variance, which retains four eigenvalues, both the
traditional EnKF and square root scheme result in unstable inversions.

We now increase the number of measurements to 200, and use the same
Gaussian error covariance matrix for the measurement errors. The results at
t = 25, after 5 updates with measurements, are plotted in Fig. 14.3 for the
traditional EnKF analysis and the square root analysis. In this case around
40 significant eigenvalues were included when a truncation at 99% of the
variance was specified. It is clear that both schemes produce a stable inversion
which is consistent with the measurements. For this case we also plotted the
eigenvalue spectrum of C at each of the updates in Fig. 14.4. It is seen that
there are around 40–50 significant eigenvalues for all the updates, and there is
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Fig. 14.3. Solution at time t = 25 using the EnKF scheme in the upper plot and
square root scheme in the lower plot, and with a truncation accounting for 99% of
the variance of the eigenvalue spectrum

a reduction of the variance for all of the significant eigenvalues, corresponding
to the reduction of ensemble variance at the measurement locations.

Thus, it is clear that both the EnKF and the square root scheme can handle
cases with dependent measurements and a larger number of measurements
than ensemble members. Note that we may expect problems if the number of
significant eigenvalues becomes larger than the number of ensemble members.

14.2 Efficient subspace pseudo inversion

In cases with many measurements the computational cost becomes large since
Nm2 operations are required to form the matrix C and the eigenvalue de-
composition requires O(m3) operations. An alternative inversion algorithm
which reduces the factorization of the m×m matrix to a factorization of an
N × N matrix is now presented. The algorithm computes the inverse in the
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Fig. 14.4. Eigenvalue spectrum of C in the cases shown in Fig. 14.3. Results from
the EnKF and square root schemes are shown in the upper and lower plots, respec-
tively.

N -dimensional ensemble space rather than the m-dimensional measurement
space.

14.2.1 Derivation of the subspace pseudo inverse

We start by assuming that S has rank p ≤ min(m,N−1). The equality can be
satisfied when the ensemble consists of linearly independent members and the
measurement operator has full rank, i.e. the measurements are independent.

Number of eigenvalue

E
ig
en
va
lu
e
sp
ec
tr
u
m

0 20 40 60 80 100
10-12

10-10

10-8

10-6

10-4

10-2

100

102

Number of eigenvalue

E
ig
en
va
lu
e
sp
ec
tr
u
m

0 20 40 60 80 100
10-12

10-10

10-8

10-6

10-4

10-2

100

102



218 14 Rank issues

Fig. 14.5. Solution after 5 updates using the traditional EnKF, the square root
scheme, and the new square root scheme with subspace projection of Cεε and pseudo
inversion of C. The upper plot shows the solution with uniform distribution of 200
measurements and a diagonal Cεε. The middle plot is similar to the upper one but
with a nondiagonal Cεε. The lower plot has clustered the measurements and also
uses a nondiagonal Cεε
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The SVD of S is
U0Σ0V

T
0 = S, (14.19)

with U0 ∈ <m×m, Σ0 ∈ <m×N and V 0 ∈ <N×N . The SVD of S can be
computed using O(6mN2 +N3) floating point operations when only the first
N singular vectors are needed, and this is a significant saving when m� N .
The subspace S is now defined by the first p singular vectors of S as contained
in U0.

The pseudo inverse of S is defined as

S+ = V 0Σ
+
0 U

T
0 , (14.20)

where Σ+
0 ∈ <N×m is a diagonal matrix with elements defined as diag(Σ+

0 ) =
(σ−1

1 , σ−1
2 , . . . , σ−1

p , . . . , 0). Thus, by computing the pseudo inversion in (14.20)
it is also possible to use the algorithm with the number of measurements being
less than N−1 and also with dependent measurements or dependent ensemble
members.

We define Ĩp ∈ <m×m, which has the first p diagonal elements equal to
one and the remainder of the elements in the matrix are zero, from the matrix
product Σ0Σ

+
0 = Ĩp.

Using the singular value decomposition (14.19) in the expression for C, as
defined in (14.1), we obtain

C =
(
U0Σ0Σ

T
0U

T
0 + (N − 1)Cεε

)
(14.21)

= U0

(
Σ0Σ

T
0 + (N − 1)UT

0CεεU0

)
UT

0 (14.22)

≈ U0Σ0

(
I + (N − 1)Σ+

0 U
T
0CεεU0Σ

+T
0

)
ΣT

0U
T
0 (14.23)

= SST + (N − 1)(SS+)Cεε(SS+)T. (14.24)

In (14.22) the matrix UT
0CεεU0 is the projection of the measurement error

covariance matrix Cεε onto the space spanned by the m singular vectors of
S, contained in the columns of U0.

Then in (14.23) we introduce an approximation by effectively multiplying
UT

0CεεU0 from left and right by the matrix Σ0Σ
+
0 = Ĩp ∈ <m×m. Thus, we

extract the part of Cεε contained in the subspace consisting of the p dominant
directions in U0, i.e. the subspace S.

The matrix SS+ = U0ĨpU
T
0 in (14.24) is a Hermitian and normal matrix.

It is also an orthogonal projection onto S. Thus, we essentially adopt a low-
rank representation for Cεε which is contained in the same subspace as the
ensemble perturbations in S.

We use the expression for C as given in (14.23), i.e.

C ≈ U0Σ0(I +X0)ΣT
0U

T
0 , (14.25)

where we have defined

X0 = (N − 1)Σ+
0 U

T
0CεεU0Σ

+T
0 , (14.26)
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which is an N ×N matrix with rank equal to p and it requires m2N +mN2 +
mN floating point operations to form it. We then proceed with an eigenvalue
decomposition

Z1Λ1Z
T
1 = X0, (14.27)

where all matrices are N ×N , and insert this in (14.25) to get

C ≈ U0Σ0(I +Z1Λ1Z
T
1 )ΣT

0U
T
0

= U0Σ0Z1(I +Λ1)ZT
1Σ

T
0U

T
0 .

(14.28)

Now the pseudo inverse of C becomes

C+ ≈ (U0Σ
+T
0 Z1)(I +Λ1)−1(U0Σ

+T
0 Z1)T

= X1(I +Λ1)−1XT
1 ,

(14.29)

where we have defined X1 ∈ <m×N of rank N − 1 as

X1 = U0Σ
+T
0 Z1. (14.30)

14.2.2 Analysis schemes based on the subspace pseudo inverse

By replacing C−1 in (14.2) with the pseudo inverse C+, from (14.29), we can
easily compute the EnKF analysis using the subspace pseudo inversion by
carrying out the matrix multiplications in

EnKF analysis by subspace pseudo inversion

Aa = Af
(
I + STX1(I +Λ1)−1XT

1

(
D −M

[
Af
]))

.
(14.31)

Similarly the square root algorithm uses (14.3) with C−1 replaced by C+

from (14.29),

A
a

= Af
(
1N + STX1(I +Λ1)−1XT

1

(
D −M

[
A

f]))
, (14.32)

to compute the updated ensemble mean.
Using the expression (14.5) together with the pseudo inverse from (14.29)

we can derive the update equation for the analysis perturbations in the square
root scheme

Aa′Aa′T = Af′
(
I − STC+S

)
Af′T

= Af′
(
I − STX1(I +Λ1)−1XT

1 S
)
Af′T

= Af′
(
I −

(
(I +Λ1)−

1
2XT

1 S
)T((I +Λ1)−

1
2XT

1 S
))
Af′T

= Af′
(
I −XT

2X2

)
Af′T,

(14.33)
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where we have defined X2 as

X2 = (I +Λ1)−
1
2XT

1 S = (I +Λ1)−
1
2ZT

1 ĨpV
T
0 , (14.34)

which also has rank equal to p. We then end up with the final update equation
(14.4) by following the derivation defined in (13.6–13.7).

Equations (14.32) and (14.4) can be combined into one single equation,
similar to (14.6), as

SQRT analysis by subspace pseudo inversion

Aa = Af

(
1N + STX1(I +Λ1)−1XT

1

(
D −M

[
Af
])

1N

+ (I − 1N )V 2

√
I −ΣT

2Σ2V
T
2Θ

T

)
.

(14.35)

It is clear that, for m > p, this subspace algorithm will be an approxima-
tion except for some special cases. First, if Cεε is diagonal, then the matrix
SST and C will have the same eigenvectors as defined by U0, thus there is no
approximation involved. On the other hand if Cεε is nondiagonal the eigen-
vectors will differ and the projection onto the S-space eliminates the part of
C which is orthogonal to the S-space. Fortunately, in many applications this
is a modest approximation.

Interestingly, the update of the perturbations in the square root algorithm
does not suffer from this approximation since C−1 is already projected onto
the S-space through the matrix product STC−1S in (14.5).

14.2.3 An interpretation of the subspace pseudo inversion

A simple interpretation of the subspace pseudo inversion for the case when
m � N is given by Skjervheim et al. (2006). We start by computing the
singular value factorization of S as in (14.19), and realize that Σ0 is diagonal
and only the first p ≤ N − 1 singular values are larger than zero, i.e. the
rank of S equals p. We then write the EnKF analysis scheme (14.2), with
D′ =

(
D −M

[
Af
])

, as

Aa = Af

(
I + ST

(
SST + (N − 1)Cεε

)−1

D′
)

(14.36)

= Af

(
I + ST

(
U0Σ0Σ

T
0U

T
0 + (N − 1)Cεε

)−1

D′
)

(14.37)

= Af

(
I + ST

(
U0

(
Σ0Σ

T
0 + (N − 1)UT

0CεεU0

)
UT

0

)−1

D′
)

(14.38)

= Af

(
I + STU0

(
Σ0Σ

T
0 + (N − 1)UT

0CεεU0

)−1

UT
0D

′
)

(14.39)

= Af

(
I + Ŝ

T
(
Σ0Σ

T
0 + (N − 1)UT

0CεεU0

)−1

D̂
′
)
. (14.40)
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Here we have defined the rotated operators

D̂
′
= UT

0D
′, (14.41)

M̂ = UT
0M, (14.42)

Ŝ = UT
0 S = M̂Af′. (14.43)

It is clear that the original assimilation of m measurements in (14.36) is equiv-
alent to the assimilation of m rotated measurements in (14.40), where the

rotation is defined such that the matrix product ŜŜ
T

becomes diagonal.
We now take this one step further and define the projection operatorU0p =

SS+ which consists of the first p columns of U . We can then define the
projections

D̂
′
p = UT

0pD
′, (14.44)

M̂p = UT
0pM, (14.45)

Ŝp = UT
0pS = M̂pA

f′, (14.46)

all of dimension <p×N , and in addition we define Σ0p ∈ <p×p to hold the p
significant singular values on the diagonal. We can then write an approximate
EnKF analysis equation as

Aa = Af

(
I + Ŝ

T

p

(
Σ0pΣ

T
0p + (N − 1)UT

0pCεεU0p

)−1

D̂
′
p

)
. (14.47)

It is left as an exercise to show that this equation is identical to (14.31). Thus,
we can interpret the subspace EnKF analysis scheme as the assimilation of
a set of measurements after they have been projected onto the subspace S
as defined by the first p singular vectors of S. This projection allows us to
assimilate very large data sets to a low cost in a stable algorithm. However,
one can imagine cases where the subspace S is too small to properly represent
the measurements. This problem can be resolved by either using a larger
ensemble size or one may use a local analysis update as will be discussed in
the Appendix.

14.3 Subspace inversion using a low-rank Cεε

With large data sets one will have to generate and store the measurement error
covariance matrix, Cεε ∈ <m×m, and multiply it with the singular vectors
in U0 at the cost of Nm2 floating point operations. In the EnKF we have
simulated measurement perturbations that reflect the error statistics of the
measurement errors. It is clear that given the measurement perturbations we
can use these to represent a low-rank approximation of the measurement error
covariance matrix.
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14.3.1 Derivation of the pseudo inverse

We now replace Cεε with a low-rank version Ce
εε = EET/(N − 1), in (14.24)

to get

C = SST +EET

≈ SST + (SS+)EET(SS+)

= SST + ÊÊ
T
,

(14.48)

where Ê = (SS+)E is the projection of E onto the first p singular vectors in
U0, with p still being the rank of S. When we project E onto S we reject all
possible contributions in S⊥, and we can only account for the measurement
variance contained in S.

Replacing Cεε with EET/(N − 1) in (14.23) we get

C ≈ U0Σ0

(
I +Σ+

0 U
T
0EE

TU0Σ
+T
0

)
ΣT

0U
T
0 (14.49)

= U0Σ0

(
I +X0X

T
0

)
ΣT

0U
T
0 , (14.50)

where we have defined
X0 = Σ+

0 U
T
0E, (14.51)

which is an N×N matrix with rank equal to N−1 and it requires mN2 +N2

floating point operations to form it. The approximate equality sign introduced
in (14.49) denotes that all components in E contained in S⊥ are removed.

We then proceed with a singular value decomposition

U1Σ1V
T
1 = X0, (14.52)

where all matrices are N ×N , and insert this in (14.50) to get

C ≈ U0Σ0(I +U1Σ
2
1U

T
1 )ΣT

0U
T
0

= U0Σ0U1(I +Σ2
1)U

T
1Σ

T
0U

T
0 .

(14.53)

Now the pseudo inverse of C becomes

C+ ≈ (U0Σ
+T
0 U1)(I +Σ2

1)
−1(U0Σ

+T
0 U1)T

= X1(I +Σ2
1)
−1XT

1 ,
(14.54)

where we have defined X1 ∈ <m×N of rank N − 1 as

X1 = U0Σ
+T
0 U1. (14.55)
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14.3.2 Analysis schemes using a low-rank Cεε

By replacing C−1 in (14.2) with the pseudo inverse C+, from (14.54), we can
easily compute the EnKF analysis using the subspace pseudo inversion by
carrying out the matrix multiplications in

EnKF subspace analysis with low-rank Cεε

Aa = Af
(
I + STX1

(
I +Σ2

1

)−1
XT

1

(
D −M

[
Af
]))

.
(14.56)

Similarly the square root algorithm uses (14.3) with C−1 replaced by C+,
from (14.54),

A
a

= Af
(
1N + STX1

(
I +Σ2

1

)−1
XT

1

(
D −M

[
A

f]))
, (14.57)

to compute the updated ensemble mean.
Using the expression (14.54) for the inverse in (14.5) we get the following

derivation of the perturbation updates in the square root analysis scheme,

Aa′Aa′T = A′
(
I − STC+S

)
A′T

= A′
(
I − STX1

(
I +Σ2

1

)−1
XT

1 S
)
A′T

= A′
(
I −

((
I +Σ2

1

)− 1
2XT

1 S
)T

((
I +Σ2

1

)− 1
2XT

1 S
))
A′T

= A′
(
I −XT

2X2

)
A′T,

(14.58)

where we have defined X2 as

X2 =
(
I +Σ2

1

)− 1
2XT

1 S =
(
I +Σ2

1

)− 1
2UT

1 ĨpV
T
0 . (14.59)

We then end up with the same final update equation (14.4) by following
the derivation defined in (13.6–13.7).

Thus, we have replaced the explicit factorization of C ∈ <m×m, with an
SVD of S ∈ <m×N , and this is a significant saving when m � N . Fur-
ther, by using a low-rank version for Cεε we replace the matrix multiplication
Σ+

0 U
T
0Cεε in (14.23) with the less expensive Σ+

0 U
T
0E. Thus, there are none

matrix operations that requires O(m2) floating point operations in the new
algorithm.

Equations (14.57) and (14.4) can be combined into one single equation,
similar to (14.35), as
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SQRT subspace analysis with low-rank Cεε

Aa = Af

(
1N + STX1(I +Σ2

1)
−1XT

1

(
D −M

[
Af
])

1N

+ (I − 1N )V 2

√
I −ΣT

2Σ2V
T
2Θ

T

)
.

(14.60)

Note that if we set Λ1 = Σ2
1 in (14.56) and (14.60) these equations becomes

identical to respectively (14.31) and (14.35). Similarly, by replacing the ex-
pressions X1(I +Σ2

1)
−1XT

1 and X1(I +Λ1)−1XT
1 in these equations, with

ZΛ+ZT or ZΛ−1ZT they become identical to the analysis equations (14.2)
and (14.6).

14.4 Implementation of the analysis schemes

For the practical implementation we first note that we can choose from three
different algorithms when computing the pseudo inverse of C. We can use a
standard pseudo inversion based on an eigenvalue decomposition of C, or we
can use the subspace pseudo inversion with either a full measurement error
covariance matrix Cεε, or with a low-rank representation of the measurement
error covariance matrix Ce

εε = EET/(N − 1). From the standard eigenvalue
factorization we obtain Z and Λ. For the two subspace algorithms we obtain
X1 and either (I +Σ2

1) or (I +Λ2
1).

Thereafter, we can choose between the computation of a traditional EnKF
analysis or a square root analysis. Each of these schemes requires the evalu-
ation of the matrix multiplied with A in one of (14.2), (14.31) or (14.56) for
the EnKF and one of (14.6), (14.35) or (14.60) for the square root algorithm.
The final multiplication with A to compute the updated ensemble is the same
for all of the algorithms.

Thus, it is clear that it is possible to combine all of these algorithms
into one efficient routine where the user can choose between different pseudo
inversions and analysis schemes. In this routine one should also include specific
code for handling the case with a single observation where a scalar inverse can
be used. Note also that in the EnKF with few observations, it is more efficient
to reorder the matrix multiplications and rewrite (14.2) as

Aa = Af +
(
AfST

)(
C−1

(
D −M

[
Af
]))

. (14.61)

The standard analysis scheme needs to compute a matrix multiplication for
the final update which requires nN2 floating point operations. When n > m
this becomes the most expensive computation in the analysis scheme. Note
also that, in the standard scheme, mN2 operations are required when ST is
multiplied with the m×N matrix C−1

(
D −M

[
Af
])

.
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However, with few observations it is more efficient to first compute the
product AfST, which requires nmN floating point operations. The additional
multiplication with the matrix C−1

(
D−M

[
Af
])

requires another nmN op-
erations. Thus, when 2nmN < (n + m)N2 this procedure is more efficient.
For the assimilation of a single observation this reduces the computation by
a factor N/2.

14.5 Rank issues related to the use of a low-rank Cεε

It has recently been shown by Kepert (2004) that the use of an ensemble rep-
resentation Ce

εε for Cεε, in some cases leads to a loss of rank in the ensemble
when m > N . The rank problem may occur both using the EnKF analysis
scheme with perturbation of measurements and using the square root algo-
rithm. However, it is not obvious that the case with m > N and the use of a
low-rank representation Ce

εε of Cεε, should pose a problem. After all, the final
coefficient matrix which is multiplied with the ensemble forecast to produce
the analysis, is an N ×N matrix.

The following will revisit the analysis by Kepert (2004) and extend it to a
more general situation. Further, it will be shown that the rank problem can be
avoided when the measurement perturbations, used to represent the low-rank
measurement error covariance matrix, are sampled under specific constraints.

The EnKF analysis equation (14.2) can be rewritten as

A = A+A′ST
(
SST +EET

)+(
D −M

[
A

f])
+A′ +A′ST

(
SST +EET

)+(E − S),
(14.62)

where the first line is the update of the mean and the second line is the update
of the ensemble perturbations. Thus, for the standard EnKF is suffices to show
that rank(W ) = N − 1 to conserve the full rank of the state ensemble, with
W defined as

W = I − ST
(
SST +EET

)+(S −E). (14.63)

Similarly, for the square root algorithm W is redefined from (14.5) as

W = I − ST
(
SST +EET

)+
S. (14.64)

We consider the case where m > N −1 that is shown to cause problems in
Kepert (2004). Define S ∈ <m×N with rank(S) = N − 1, where the columns
of S span a subspace S of dimension N − 1. Further, we define E ∈ <m×q
with rank(E) = min(m, q − 1), where E contains an arbitrary number q, of
measurement perturbations.

As in Kepert (2004) one can define the matrix Y ∈ <m×(N+q) as

Y = (S,E), (14.65)
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and the matrix C becomes
C = Y Y T, (14.66)

with rank
p = rank(Y ) = rank(C). (14.67)

Dependent on the definition ofE we have min(m,N−1) ≤ p ≤ min(m,N+
q − 2). One extreme is the case where q ≤ N and E is fully contained in S,
in which case we have p = N − 1.

The case considered in Kepert (2004) is another extreme which has q = N ,
and p = min(m, 2N − 2). This corresponds to a situation which is likely to
occur when E is sampled randomly and includes components along N − 1
directions in S⊥.

We define the SVD of Y as

UΣV T = Y , (14.68)

with U ∈ <m×m, Σ ∈ <m×(N+q) and V ∈ <(N+q)×(N+q).
The pseudo inverse of Y is defined as

Y + = V Σ+UT, (14.69)

where Σ+ ∈ <(N+q)×m is a diagonal matrix with the diagonal defined as
diag(Σ+) = (σ−1

1 , σ−1
2 , . . . , σ−1

p , 0, . . . , 0).
Both the equations forW in (14.63) and (14.64) can be rewritten in a form

similar to what was used by Kepert (2004). Introducing the expressions (14.68)
and (14.69) in (14.64), and defining IN to be the N -dimensional identity
matrix, we get

W = IN − (IN ,0)Y T(Y Y T)+Y (IN ,0)T

= IN − (IN ,0)V ΣTΣ+TΣ+ΣV T(IN ,0)T

= (IN ,0)V

{
IN+q −

(
Ip 0
0 0

)
N+q

}
V T(IN ,0)T

= (IN ,0)V
(

0 0
0 IN+q−p

)
N+q

V T(IN ,0)T.

(14.70)

The similar expression for W in (14.63) is obtained by replacing the ma-
trix, (IN ,0) ∈ <N×(N+q), with (IN ,−IN ,0) ∈ <N×(N+q).

We need the N + q matrix in (14.70) to have a rank of at least N − 1 to
maintain the rank of the updated ensemble perturbations. Thus, we require
that N + q − p ≥ N − 1 and get the general condition

p ≤ q + 1. (14.71)

With q = N this condition requires p ≤ N + 1. This is only possible when all
singular vectors of E, except two, are contained in S. Thus, it is clear that
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a low-rank representation of Cεε using N measurement perturbations E, can
be used as long as the selected perturbations do not increase the rank of Y
to more than N + 1.

It is also clear that if the constrained low-rank representation E ∈ <m×N ,
is unable to properly represent the real measurement error covariance, it is
possible to increase the number of perturbations to an arbitrary number q > N
as long as the rank p satisfies the condition (14.71).

In Kepert (2004) it was assumed that the rank p = 2N − 2. That is,
E has components in N − 1 directions of S⊥. Then, clearly, the condition
(14.71) is violated and this results in a loss of rank. It was shown that this
problem can be resolved using a full rank measurement error covariance matrix
(corresponding to the limiting case when q ≥ m + 1). Then, p = rank(Y ) =
rank(Ce

εε) = m and the condition (14.71) is always satisfied.
As an example, assume now that we have removed r columns from the

matrix E ∈ <m×(q=m+1). We then get the reduced E ∈ <m×(q=m+1−r) of
rank equal to m− r. In this situation we can consider two cases. First, if the
removed perturbations are also fully contained in S, then the removal does
not lead to a reduction of p which still equals m. In this case we can write the
condition (14.71), for r ≤ N − 1, as

p = m ≤ m+ 2− r, (14.72)

which is violated for r > 2. Secondly, assume that the removed perturbations
are fully contained in S⊥. Then the rank p will be reduced with r and we
write the condition (14.71) as

p = m− r ≤ m+ 2− r. (14.73)

We can continue to remove columns of E contained in S⊥, without violating
the condition (14.71), until there are onlyN−1 columns left inE, all contained
in S.

From this discussion, it is clear that we need the measurement error pertur-
bations to explain variance within S. Note that the subspace pseudo inversion
schemes automatically projects the measurement error covariance matrix or
the measurement perturbations onto S.

14.6 Experiments with m � N

The following experiments are performed to evaluate the properties of the
analysis schemes in the case where m � N . An experimental setup, similar
to the advection example from Sect. 4.1.3, is used. However, now 500 mea-
surements are assimilated in each update step. Thus, there is a measurement
at every second grid point. The measurements have correlated errors of de-
correlation length equal to 20 m. The error variance of the measurements is
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Fig. 14.6. Time evolution for RMS residuals (dotted lines) and estimated standard
deviations (full lines) for all 50 simulations in the respective experiments
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Fig. 14.7. Time evolution of the ensemble singular value spectra for some of the
experiments
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Fig. 14.8. Average residual and standard deviation for the 10 cases

set to 0.09, corresponding to a standard deviation of 0.30 and the number of
assimilation steps is 5.

Ten experiments, which differ in the choice of analysis scheme (EnKF or
SQRT) and inversion algorithm for C, are run. In addition, both an exact and
a low-rank representation of Cεε are used. The experiments are summarized
in Table 14.1 where EnKF and SQRT denote the analysis scheme used. EIGC
denote the inversion algorithm based on the eigenvalue factorization from
Sect. 14.1, SUBC denote the subspace inversion discussed in Sect. 14.2, and
SUBE means the subspace inversion using the measurement perturbations
rather than the full measurement error covariance matrix, as presented in
Sect. 14.3. In the different experiments we have specified either a full rank
measurement error covariance matrix Cεε, or a low-rank version defined as
Ce
εε = EET/(N − 1).
It is straight-forward to sample normal correlated perturbations for each

element of E with the correct statistics. This sampling is performed by using
the same sampling scheme as is used to generate the initial ensemble and then
measuring each member to create the columns in E. In all the experiments
we use improved sampling of order six for the initial ensemble and order four
for the measurement perturbations.

Note that E is sampled with rank equal to N − 1. When projected onto
U0p, i.e. the sub-space S spanned by the first p singular vectors in U0, we are
not guaranteed that the rank ofUT

0pC
e
εεU0p orU0pE is equal toN−1. IfE has

columns which are orthogonal to U0p, these do not contribute when projected
onto U0p. This corresponds to the assimilation of perfect measurements and
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Exp. 1Z EnKF EIGC Cεε Exp. 6Z SQRT EIGC Cεε

Exp. 2Z EnKF EIGC Ce
εε Exp. 7Z SQRT EIGC Ce

εε

Exp. 3Z EnKF SUBC Cεε Exp. 8Z SQRT SUBC Cεε

Exp. 4Z EnKF SUBC Ce
εε Exp. 9Z SQRT SUBC Ce

εε

Exp. 5Z EnKF SUBE E Exp. 10Z SQRT SUBE E

Table 14.1. List of experiments. See explanation in text

will lead to a corresponding loss of rank in the updated ensemble. We did not
experience this to be a problem in the present experiments.

The use of a low-rank representation for Cεε is valid, and if UT
0pC

e
εεU0p =

UT
0pCεεU0p, the results will be the same as the results obtained using a full

rank Cεε. This equality is nearly satisfied here since the random sampling
of E used the same correlation functions as was used to generate the initial
ensemble. Probably, in this case, the use of a diagonal error covariance matrix
would be more difficult to represent properly by a low-rank random ensemble
of smooth members.

It is also clear that the projection of Cεε onto the S-space may lead to
a lower measurement variance than specified in the full rank Cεε, thus there
may be a need to rescale Ce

εε to avoid over-fitting the data, in which case the
EnKF will predict too low estimated standard deviations.

As before we have run 50 assimilation simulations for each experiment
to be able to give a statistical comparison of results between the different
experiments. The time evolution of the residuals and singular spectra are
presented in Figs. 14.6 and 14.7. It is clear that the residuals are rather similar
for all the experiments, which appear to provide consistent solutions.

In Fig. 14.8 we have plotted the mean and standard deviation of the residu-
als as predicted by the 50 assimilation simulations in each experiment. We ob-
serve that the square root experiments have lower residuals than the standard
EnKF experiments. In addition, the exeperiments using the exact measure-
ment error covariance matrix, i.e. Exps. 1, 3, 5 and 7 have poorer performence
than the corresponding experiments where the measurement perturbations are
used to represent the error covariance. This result may be linked to the dis-
cussion on the use of an ensemble based measurement error covariance matrix
in the derivation of the update equations for the EnKF in Section 14.7.

The two EnKF Exps. 1 and 2 provide statistically similar results as do the
three EnKF Exps. 2, 4 and 5. Similarly the two square root Exps. 6 and 8 are
statistically indistinguisable as are the three square root Exps. 7, 9 and 10.
Thus, the different inversion schemes do not seem to influence the results and
may be used independently.

The experiments using the SQRT scheme seem to do a slightly better job
than those using the EnKF in this experiment. All experiments were rerun
starting from different random seeds and this confirmed the results.
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Exp 2Z 3Z 4Z 5Z 6Z 7Z 8Z 9Z 10Z

1Z 0.96 0.27 0.71 0.35 0 0.02 0 0 0
2Z 0.23 0.72 0.31 0 0.01 0 0 0
3Z 0.50 0.85 0 0.10 0 0 0
4Z 0.61 0 0.04 0 0 0
5Z 0 0.07 0 0 0
6Z 0 0.57 0.10 0.11
7Z 0 0 0
8Z 0.02 0.02
9Z 0.78

Table 14.2. Statistical probability that two experiments provide an equal mean
for the residuals as computed using the Student’s t-test. A probability close to one
indicates that it is likely that the two experiments provide distributions of residuals
with similar mean

From the previous theoretical analysis, the new low-rank square root
scheme introduces an approximation by projecting the measurements onto
the S sub-space, and it was seen that this approximation both stabilises the
computation of the analysis and also makes it computationally more efficient.
However, when a low-rank Ce

εε is used, a scheme is required for the proper
sampling of measurement perturbations in S.

14.7 Validity of analysis equation

The analysis scheme for the EnKF is derived in Sect. 4.3, and we find the well
known result for the analyzed error covariance matrix in Eq. (4.41), i.e.,(

Ce
ψψ

)a = (I −KeM)
(
Ce
ψψ

)f
. (14.74)

The current equation is derived under the assumption of an infinite en-
semble of realizations, and zero correlation between the measurement pertur-
bations and ensemble of model anomalies. When a finite ensemble is used,
an additional correction term that represents the cross correlations between
measurement perturbations and the model anomalies arise in the equation.
In addition, it is seen below that an additional error term is introduced if an
exact measurement error covariance matrix is used in the Kalman gain.

We now define a Kalman gain that is based on a measurement error co-
variance matrix Ce

εε represented in terms of an ensemble of measurement
perturbations

Ke =
(
Ce
ψψ

)f
MT

(
M
(
Ce
ψψ

)f
MT +Ce

εε

)−1

. (14.75)

The error covariance update is then derived as
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(14.76)

Thus, (14.76) implies that EnKF in the limit of an infinite ensemble size
gives the same result as the KF. It is assumed that the distributions used
to generate the model-state ensemble and the observation ensemble are in-
dependent. Using a finite ensemble size, neglecting the cross-term introduces
sampling errors.

As previously pointed out in Chap. 4, the derivation (14.76) shows that
the observations d must be treated as random variables to introduce the
measurement error covariance matrix Ce

εε into the expression. That is,

Ce
εε = εεT =

(
d− d

)(
d− d

)T
. (14.77)

Note that the use of an ensemble representation of the measurement error
covariance matrix leads to an exact cancellation in the second last line in
(14.76), since we can write

Ke

(
M
(
Ce
ψψ

)f
MT +Ce

εε

)
KT

e

= Ke

(
M
(
Ce
ψψ

)f
MT +Ce

εε

)(
M
(
Ce
ψψ

)f
MT +Ce

εε

)−1

M
(
Ce
ψψ

)f
= KeM

(
Ce
ψψ

)f
. (14.78)

If a full-rank measurement error covariance matrix is used in the Kalman Gain
(14.75), then (14.78) is only approximately true with a finite ensemble size
and gives rise to an additional error term.
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Thus, we conclude that the use of a low-rank measurement error covariance
matrix, represented by the measurement perturbations, when computing the
Kalman gain, reduces the sampling errors in EnKF. The remaining sampling
errors come from neglecting the cross-correlation term between the measure-
ments and the forecast ensemble, which is nonzero with a final ensemble size,
and from the approximation of the state error covariance matrix using a finite
ensemble size.

The above derivation assumes that the inverse in the Kalman gain (14.75)
exists. However, the derivation also holds when the matrix in the inversion is
of low rank, for example, when the number of measurements is larger than the
number of realizations and the low-rank Ce

εε is used. The inverse in (14.75)
can then be replaced with the pseudoinverse, and we can write the Kalman
gain as

Ke =
(
Ce
ψψ

)f
MT

(
M
(
Ce
ψψ

)f
MT +Ce

εε

)+

. (14.79)

When the matrix in the inversion is of full rank, (14.79) becomes identical to
(14.75). Using (14.79) the expression (14.78) becomes
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(14.80)

where we have used the property Y + = Y +Y Y + of the pseudoinverse.
It should be noted that the EnKF analysis scheme is approximate in the

sense that non-Gaussian contributions in the predicted ensemble are not prop-
erly taken into account. In other words, the EnKF analysis scheme does not
solve the Bayesian update equation for non-Gaussian pdfs. On the other hand,
the EnKF analysis scheme is not just a re-sampling of a Gaussian posterior dis-
tribution. Only the updates defined by the right hand side of (4.37), which are
added to the prior non-Gaussian ensemble, are linear. Thus, the updated en-
semble inherits many of the non-Gaussian properties from the forecast ensem-
ble. In summary, we have a computationally efficient analysis scheme where
we avoid re-sampling of the posterior.

14.8 Summary

A comprehensive analysis is given on the use of the EnKF and square root
analysis schemes when used with large data sets. It is seen that the inver-
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sion of C may become poorly conditioned, and a pseudo inversion may be
required. The analysis schemes are reformulated using a standard pseudo in-
version based on an eigenvalue factorization of C followed by a truncation
of the eigenvalue spectrum to only account for the significant eigenvalues.
This algorithm seems to work well in many cases. However, when the number
of measurements becomes large it is inefficient, since a matrix of dimension
m×m needs to be factorized at a cost proportional to O(m3).

An alternative pseudo inversion is derived where the measurements are
projected onto a sub-space S, spanned by the measured ensemble perturba-
tions. It is seen that approach may introduce an approximation in some cases.
In particular, if the measurement error covariance matrix is diagonal then the
eigenvectors of SST and C are identical and there is no approximation intro-
duced. On the other hand, ifCεε is nondiagonal the eigenvectors will differ and
the projection onto the S-space eliminates the part of C that is orthogonal
to the S-space. Fortunately, this is mostly noise in many applications.

The sub-space pseudo inversion can be computed at a cost of O(Nm2)
which is a significant saving when m � N . However, it is also seen that a
further speedup is possible if a low-rank representation is used for the measure-
ment error covariance matrix. In particular, if we write the measurement error
covariance matrix as (N−1)Ce

εε = EET, and represent it by the measurement
perturbations E, it is possible to compute the analysis without forming Ce

εε.
This approach further reduces the cost of the inversion to be proportional to
O(N2m), and the algorithm allows us to compute the analysis update using
very large data sets. An important point is that the measurement pertur-
bations must be sampled to span S to avoid a loss of rank in the updated
ensemble.



15

Spurious correlations, localization, and
inflation

The use of a finite ensemble size to approximate the error covariance matrix
introduces sampling errors that are seen as spurious correlations over long
spatial distances or between variables known to be uncorrelated. The spurios
correlations imply that variables that are supposed to be uncorrelated with
an observation, experience a small unphysical update. Over time and with
many data, the spurious updates may cancel out and the drift in the mean
may be negligible. However, with each spurious update there is an associ-
ated reduction of ensemble variance and over time the ensemble variance may
significantly underestimate the true variance. This problem is present in all
EnKF applications and can lead to filter divergence. On the other hand, the
consistency of the updated variance improves when a larger ensemble is used.

In the following we will first examine and demonstrate the impact of the
spurious correlations in a simple example. Thereafter we will look at two
approaches for minimizing the impact of the spurious updates, i.e., ensemble
inflation and localization.

15.1 Spurious correlations

The following example, which is based on the linear advection case from
Fig. 4.2, illustrates the variance reduction resulting from spurious correla-
tions.

The ensemble of model states are stored in A ∈ <n×N . An additional en-
semble B ∈ <nrand×N is generated, where each row contains random samples
from a Gaussian distribution with mean equal to zero and variance equal to
one, and the entries in different rows are sampled independently. Thus, B
is the ensemble matrix for a state vector of independent variables with zero
mean and unit variance. At analysis times we compute the updates(

Aa

Ba

)
=
(
Af

Bf

)
X. (15.1)
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The predicted ensemble Af is the result of the ensemble integration using
the advection model, while Bf does not evolve according to any dynamical
equation. Thus, at an update time Bf equals Ba from the previous update
time. The update matrix X can be defined from any of the analysis equations
in Chap. 14.

Since the correlations between B and the predicted measurement pertur-
bations S become zero in the limit of an infinite ensemble size, it follows
that

lim
N→∞

BST

N − 1
= 0. (15.2)

However, due to the finite ensemble size, (15.2) cannot be exactly satisfied, and
Ba experiences a small update and associated reduction of variance through
the update in (15.1).

As in the advection example, at every analysis step we compute the matrix
X based on the four measurements, and then apply it toB according to (15.1).

The variance reduction resulting from the spurious correlations is illus-
trated in Fig. 15.1. This plot shows the decrease of the average variance of
the random ensemble B, resulting from EnKF with 100 and 250 realizations,
and from the symmetric square root scheme using 100 realizations. The value
nrand = 100 is found to be sufficient, when using 100 realizations, to obtain a
consistent result that is independent of the random sampling of B.

EnKF with 100 realizations is repeated 5 more times using different ran-
dom seeds to verify that the result is independent of the seed. A nearly linear
decrease of variance is obtained during the first 50 updates, while for the final
12 updates the decrease is lower. The reason for the lower error variance re-
duction in the final part of the experiment is that the information assimilated
at one measurement location propagates to the next measurement location
during 50 updates. Thus, after 50 updates the ensemble variance is lower at
the measurement locations, and the relative weight on the data compared to
the prediction is decreased. EnKF with 250 realizations experiences a signifi-
cantly lower impact from spurious correlations, as expected.

The square root scheme is slightly less influenced by the spurious correla-
tions, and an explanation can be that the measurement perturbations in the
EnKF update increases the strength of the update of individual realizations
and thus amplifies the impact of the spurious correlations.

In many dynamical systems, the variance decrease caused by spurious
correlations may be masked by strong dynamical instabilities. The impact of
the spurious correlations may then be less significant. On the other hand, in
parameter-estimation problems, the spurious correlations clearly lead to an
underestimate of the ensemble variance of the parameters.
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Fig. 15.1. Variance reduction of a random ensemble due to spurious correlations, as
a function of analysis updates. EnKF with 100 realizations is compared with EnKF
with 250 realizations as well as the square root scheme using 100 realizations. EnKF
with 100 realizations is repeated using different seeds to ensure that the results are
consistent.

15.2 Inflation

A covariance inflation procedure (Anderson and Anderson, 1999b) can be
used to counteract the variance reduction observed due to the impact of spu-
rious correlations, as well as other effects leading to underestimation of the
ensemble variance. The impact of ensemble size on noise in distant covariances
is examined in Hamill et al. (2001), while the impact of using an “inflation
factor” as discussed in Anderson and Anderson (1999b) is evaluated. The in-
flation factor is used to replace the forecast ensemble according to

ψj = ρ(ψj −ψ) +ψ, (15.3)

with ρ slightly greater than one (typically 1.01). The inflation procedure is
also used in Pham (2001), where EnKF is examined in an application with the
Lorenz attractor, and results are compared with those obtained from different
versions of the singular evolutive extended Kalman (SEEK) filter and a parti-
cle filter. In Pham (2001), ensembles with very few members are used, which
favors methods like the SEEK where the “ensemble” of EOFs is selected to
best represent the model attractor.

Several approaches adaptively estimate an optimal inflation parameter.
In Wang and Bishop (2003) the covariance inflation is estimated based on
the sequence of innovation statistics, while in Anderson (2007a) a method is
presented that is based on augmenting the inflation parameter to the model
state where it is updated as a parameter in the EnKF analysis computations.
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Online estimation of the inflation parameter is also studied in Li et al. (2009)
together with the simultaneous estimation of observation errors. It is found
that the estimation of inflation alone does not work properly without accurate
observation error statistics, and vice versa.

Clearly, the inflation parameter becomes a tuning parameter and optimally
it is best estimated adaptively. The need for inflation depends on the use of
a local versus global analysis scheme, and the use of a local scheme can to a
large extent reduce the need for an additional inflation.

Anderson (2009a) proposes a method for adaptively estimating a spa-
tially and temporally varying inflation parameter using a Bayesian algorithm.
The algorithm is recursive and updates the inflation parameter with time.
Sacher and Bartello (2008) discuss the sampling errors in EnKF and pro-
poses an analytical expression for the optimal covariance inflation method
which depends on the Kalman gain, the analyzed variance, and the number
of realizations.

15.3 An adaptive covariance inflation method

Here we describe an alternative Monte Carlo approach for estimating the
inflation coefficient needed to compensate for the variance reduction resulting
from spurious correlations. In the spurious correlation example, as presented in
Fig. 15.1, an independent ensemble is used to quantify the variance reduction
due to spurious correlations. A simple algorithm for correcting the analyzed
ensemble perturbations in each analysis step goes as follows.

At each analysis time we generate the additional ensemble matrix Bf with
random normally distributed numbers, such that the mean in each row is
exactly zero, and the variance is exactly equal to one. We thus sample the
matrix randomly from N (0, 1). Then, for each row, first subtract any nonzero
mean, then compute the standard deviation and scale all entries by it. Then,
compute the analysis update according to (15.1). For each row inBa, compute
the standard deviation. The inflation factor ρ is then defined as one over the
average of the standard deviations from each row in Ba. The accuracy of
the estimated inflation factor depends on the number of realizations used as
well as the number of rows in B. It is expected that with a low number of
realizations additional rows in B might compensate for the sampling errors
when computing the inflation factor.

This algorithm provides a good first approximation of the inflation factor
needed to counteract variance reduction due to long-range spurious corre-
lations resulting from sample noise. The estimated inflation factor depends
on the number of realizations used, the number of measurements, and the
strength of the update determined by the innovation vector and both the
predicted and measurement error covariance matrices. A question remains,
as to whether the inflation is best applied equally for the whole model state,
including at the measurement locations.
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15.4 Localization

We now discuss the use of localization to reduce spurious correlations. Two
classes of localization methods are currently used, namely, covariance local-
ization and local updating.

In Houtekamer and Mitchell (2001) the ensemble covariance matrix is mul-
tiplied with a specified correlation matrix through a Schur product (entry-
wise multiplication). The specified correlation functions are defined with lo-
cal support and thus effectively truncate the long-range spurious correlations
produced by the limited ensemble size. Covariance localization is used in
Bishop et al. (2001), Hamill et al. (2001), Whitaker and Hamill (2002), and
Anderson (2003).

We can assume that only measurements located within a certain distance
from a gridpoint impact the analysis in that gridpoint. This assumption allows
for an algorithm where the analysis is computed gridpoint by gridpoint, and
only a subset of observations, located near the current gridpoint, is used in
each local analysis. This approach is used in Haugen and Evensen (2002),
Brusdal et al. (2003), and Evensen (2003), and is also the approach used in
the local EnKF in Ott et al. (2004). In addition to reducing the impact of
long-range spurious correlations, the localization methods make it simpler to
handle large data sets where the number of measurements is much greater
than the number of ensemble realizations.

Another reason for computing the local analysis is the fact that EnKF is
computed in a space spanned by the ensemble members. This subspace may be
rather small compared to the total dimension of the model state. Computing
the analysis gridpoint by gridpoint implies that, for each gridpoint, a small
model state is solved for in a relatively large ensemble space. The analysis then
results from a different combination of ensemble members for each gridpoint,
and the analysis scheme is allowed to reach solutions not originally represented
by the ensemble. In many applications the local analysis scheme significantly
reduces the impact of a limited ensemble size and allows for the use of EnKF
with high-dimensional model systems.

The degree of approximation introduced by the local analysis depends
on the range of influence defined for the observations. In the limit that this
range becomes sufficiently large to include all of the data, the solution for all
the gridpoints becomes identical to the standard global analysis. The range
parameter must be tuned and should be large enough to include the infor-
mation from measurements that contribute significantly, but small enough to
eliminate the spurious impact of remote measurements.

The local analysis algorithm goes as follows. We first construct the input
matrices to the global EnKF, that is, the measured ensemble perturbations
S, the innovations D′, and either the measurement perturbations E or the
measurement error covariance matrix Cεε. We then loop through the model
grid, and, for each gridpoint, for example, (i, j) for a two-dimensional model,
we extract the rows from these matrices corresponding to measurements that
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are used in the current update, and then compute the matrix X(i,j) that
defines the update for gridpoint (i, j).

The analysis at gridpoint (i, j) becomes

Aa
(i,j) = A(i,j)X(i,j) (15.4)

= A(i,j)X +A(i,j)(X(i,j) −X), (15.5)

where X is the global solution, while X(i,j) becomes the solution for a local
analysis corresponding to gridpoint (i, j) where only the nearest measurements
are used in the analysis. Thus, it is possible to compute the global analysis
first, and then add the corrections from the local analysis if these effects are
significant.

The quality of the EnKF analysis is connected to the ensemble size used.
We expect that, to achieve the same quality of the result, a larger ensemble is
needed for the global analysis than the local analysis. In the global analysis,
a large ensemble is needed to properly explore the state space and to provide
a consistent result that is as good as the local analysis. Note also that the
use of a local analysis scheme is likely to introduce non-dynamical modes,
although the amplitudes of these modes are small if a large enough influence
radius is used when selecting measurements. We also refer to the discussions on
localization and filtering of long-range correlations by Mitchell et al. (2002).

15.5 Adaptive localization methods

In adaptive localization methods, the assimilation system itself is used to
determine the localization strategy. Such algorithms are useful since the dy-
namical covariance functions change in space and time, and the spurious cor-
relations depend on the ensemble size. Thus, every assimilation problem and
ensemble size requires a separate tuning of the localization parameters.

The hierarchical approach in Anderson (2007b) uses several small ensem-
bles to explore the need for using localization in the analysis. This approach
uses a Monte Carlo method based on splitting the ensemble into several small
ensembles to assess the sampling errors and the spurious correlations. This
method is a statistically consistent approach to the problem. However, the
localization is optimized for a small ensemble and may become suboptimal
when used with the full ensemble including all realizations.

An alternative localization method in Bishop and Hodyss (2007) is based
on the online computation of a flow-dependent moderation function that is
used to damp long-range and spurious correlations. This method is named
SENCORP for “smoothed ensemble correlations raised to a power”. The idea
is that the moderation functions can be generated from a smoothed covariance
function, which, when raised to a power, damps small correlations.

In Fertig et al. (2007) a local analysis method handles measurements that
are integral parameters of the model state. In this case it is not easy to use
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distance based localization. Instead an alternative algorithm is used to select
the measurements to be used in an update of the variables at a particular
gridpoint, where only the measurements that are significantly correlated with
the model variables in the particular gridpoint are assimilated.

Thus, while traditional localization methods are distance based, Anderson
(2007b), Bishop and Hodyss (2007), and Fertig et al. (2007) discuss adaptive
localization methods where the assimilation system determines whether cor-
relations are significant or spurious, and whether a particular measurement
shall be used in the update of a particular model variable. The further devel-
opment of adaptive localization methods is important for many applications
where distance-based methods are less suitable.

Finally, it is not clear how the local analysis scheme is best implemented
in EnKS. One approach is to define the local analysis to use only measure-
ments in a certain space-time domain, taking into account the propagation
of information in the model together with the time scales of the model. In
Khare et al. (2008) EnKS is used with a high-dimensional atmospheric circu-
lation model. The impact of spurious correlations related to the lag time in a
lagged EnKS is studied, and it is pointed out that the lagged implementation
facilitates localization in time.

15.6 A localization and inflation example

The advection model is used to examine the impact of inflation and local-
ization in the EnKF. It is in all previous examples found that the EnKF
with global updates leads to an underestimate of the ensemble variance ir-
respective of the kind of analysis scheme used, as is seen in Figs. 11.4, 11.5,
13.3, and 14.6. We will now repeat the EnKF case from Exp. B discussed in
Chap. 11, where the standard EnKF scheme is used to compute the updates
and standard sampling is used for the initial ensemble, but introducing differ-
ent localization and inflation schemes. When using the advection model there
are no model errors or dynamical instabilities and the only cause for ensemble
collapse are the spurious correlations introduced by using a limited ensemble
size.

As an initial test of the impact of inflation we tried a range of inflation
parameters on the advection example with global analysis updates, using both
the EnKF and the SQRT schemes. The results are plotted in Fig. 15.2 where
we show the average residual over the 50 last timesteps as a function of the
inflation parameter for 10 assimilation experiments initialized with different
random seeds. The upper plot shows the results from the EnKF experiments
while the middle plot shows the corresponding results from the SQRT scheme.
In the lower plot we give the best constant inflation parameters for the 10
EnKF and SQRT experiments. In the EnKF, an inflation parameter in the
range from 1.028 to 1.045 seems to give the best result with the average
best inflation parameter equal to 1.034. When using the SQRT scheme the
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Fig. 15.2. Residual as a function of inflation parameter for 10 experiments with
different random seeds. The upper plot is for the EnKF while the middle plot shows
the corresponding result using the SQRT filter. The lower plot gives the best inflation
parameter for the 10 experiments with different random seeds, plotted both for the
EnKF and the SQRT filter.
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Fig. 15.3. The estimated adaptive inflation parameter as a function of updates for
the 10 experiments. The upper plot is for the EnKF while the lower plot shows the
results from the SQRT scheme.

corresponding range of best inflation parameters is from 1.013 to 1.033, with
an average of 1.020. If we use the average residual over the whole time interval
as our measure for the impact of inflation, we actually find that the results
are better with a weak deflation, rather than using inflation. This result may
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Fig. 15.4. Residual using an adaptive inflation parameter versus the inflation pa-
rameter for the 10 different experiments.

be specific for this particular example and we choose to use the residual at
the final part of the simulation as the measure, since we want the filter to
converge and reduce the residual over time.

Fig. 15.3 shows the adaptive inflation parameters from the 10 EnKF exper-
iments in the upper plot and for the 10 SQRT experiments in the lower plot.
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It is clear that the inflation factors are consistent in between the experiments
with different random seed. For both the EnKF and the SQRT scemes, the
qualitative evolution of the inflation parameter with time are similar. There
is a reduction of the inflation after the first update and a further reduction af-
ter 50 updates when information from one measurement location has reached
the location of the next measurement. Until the 50th update the inflation is
slightly less in EnKF than in the SQRT scheme, while for the last 50 updates
the EnKF scheme has a much lower inflation factor than the SQRT scheme.
The reduced inflation factor after 50 updates is due the reduced innovation at
this time. For the SQRT scheme, the inflation factor is contained in the range
of best constant inflation factors, while for EnKF the adaptive inflation factor
is slightly below the corresponding range of best constant inflation factors.

In Fig. 15.4 we plot the residuals from the different assimilation experi-
ments, using both the best constant inflation and the adaptive inflation. It
is seen that the SQRT scheme results in lower overall residuals for all the
experiments when compared with the EnKF. It is also clear that the adaptive
inflation results in residuals that are very similar and matching those from the
best constant inflation. This result is positive with respect to using the adap-
tive inflation, since we cannot really be certain that we use the best constant
inflation in real applications.

It is stressed that there is no history in the adaptive inflation parameter.
The inflation parameter is computed only from the predicted variance, the
ensemble size implicitly through the spurious correlations, the number and
location of the measurements, and the measurement innovations. Further-
more, the adaptive inflation can only help avoiding ensemble collapse caused
by spurious correlations. An additional underestimation of variance caused by
an inability of the ensemble to represent the true state will not be corrected
for by the adaptive inflation.

On the other hand, the use of localization makes it possible to search for
solutions not contained in the original ensemble. In the examples to follow
we examine the impact of using inflation as well as the distance based and
adaptive localization. The following experiments are run:

Exp. B is the EnKF reference case using the global EnKF analysis scheme.
The case is a rerun of the original Exp. B from Chap. 11, and the results
are not identical to the original experiment, probably both due to the use
of a different random seed, and the fact that the code has been updated
since the original experiment was run. The major difference is that the
final residual is slightly higher in the rerun.

Exp. BI is identical to Exp. B but uses the adaptive inflation discussed above.
Exp. F250 is identical to Exp. B but uses an ensemble size of 250 realizations

and the SQRT analysis scheme.
Exp. F250I is identical to Exp. BI but uses an ensemble size of 250 realizations

and the SQRT analysis scheme
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Fig. 15.5. Time evolution for RMS residuals (dotted lines) and estimated standard
deviations (full lines) for all 50 simulations in the respective experiments

Exp. BL is similar to Exp. B but a traditional distance based local analysis
scheme is used to compute the update. In this experiment only measure-
ments located within a distance of two characteristic length scales are
used in the update at a particular gridpoint.

Exp. BLS is similar to Exp. BL but an additional smoothing by a Shapiro
filter is applied to all realizations after each update.

Exps. BLA20, BLA25 and BLA30 use adaptive localization where a trunca-
tion level at a correlation of respectively 0.20, 0.25, and 0.30 is used when
selecting the measurements to retain in the update of a particular grid-
point.

Exps. BLA20S, BLA25S and BLA30S are similar to Exps. BLA20, BLA25
and BLA30 but an additional smoothing by a Shapiro filter is applied to
all realizations after each update.

In Figs. 15.5, 15.6 we show the residuals as a function of time for the different
experiments. In Exp. B we note that there is a large mismatch between the
predicted errors and the mean of the squared residuals. The underestimation
of the ensemble variance is caused partly by the variance reduction introduced
by the spurious correlations and partly by the inability of the 100 member
ensemble to properly represent the true solution. From Exp. BI it is clear that
the use of the adaptive inflation only leads to a partial improvement in the
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Fig. 15.6. Time evolution for RMS residuals (dotted lines) and estimated standard
deviations (full lines) for all 50 simulations in the experiments with localization.
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Fig. 15.7. The upper plot shows the final estimate from one of the EnKF simulations
in Exp. BL, while the lower plot shows the corresponding result for Exp. BLS.

overall representation of the errors during the final part of the experiment.
The estimated errors are slightly larger, and the residuals at the final time are
slightly reduced, but one cannot say that the inflation has fixed the problem
of under-representation of the error variance. Exps. F250 and F250I repeats
the Exps. B and BI but using a larger ensemble size of 250 members and
the SQRT analysis scheme as in Exp. F from Chap. 13 to avoid any impact
of measurement perturbations. The large size of the ensemble ensures that
the full solution space is well represented by the ensemble. In this case the
adaptive inflation leads to an ensemble variance that is fairly close to and
consistent with the true residuals. Thus, the impact of spurious correlations
is corrected for by the adaptive inflation.

The distance-based localization used in Exp. BL results in a significant
improvement in the residuals compared to Exps. B and BI and the results are
as good as for the Exp. FI. The actual residuals matches well the estimated
variance and the residuals are significantly reduced. The localization allows
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Fig. 15.8. The upper plot shows the final estimate from one of the EnKF sim-
ulations in Exp. BLA25, while the lower plot shows the corresponding result for
Exp. BLA25S.

for the solution to be found outside the original space spanned by the initial
ensemble and it is now possible to properly represent the true solution by
the updated ensemble members. In the current example, only measurements
located within a distance equal to two characteristic lengths from a particular
gridpoint is used to update the gridpoint.

In the upper plot of Fig. 15.7 we show the final estimated solution in one
EnKF experiment using the distance based localization as in Exp. BL. It is
seen that the localization introuces some small scale noise in the estimate.
This noise might be reduced by using a sufficiently large influence radii for
the measurements, but with a limited ensemble size there will always be some
noise introduced into the estimate when a distance based localization method
is used without any smoothing. In the current model with exact advection
there is no dissipation or diffusion and once introduced the noise is retained
in the solution. The noise does not result in any nummerical problems for this
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Fig. 15.9. Average residual and standard deviation from the experiments.

particular model, but for a more realistic and nonlinear model some kind of
smoothing needs to be introduced. The smoothing may be implicit diffusion in
the numerical schemes or an explicit filtering of the solution using for example
the Shapiro filter. In Exp. BLS we have repeated Exp. BL but applied a second
order Shapiro filter on each realization after each update step. It is clear from
Figs. 15.6 and 15.7 that the application of the Shapiro filter removes the small
scale noise without significantly impacting the residuals.

The adaptive localization, which is based on a truncation using the corre-
lation functions, also provides a significant improvement to the results when
examining the residuals. The improvement is nearly as good as those obtained
using the distance based localization. It appears that a truncation at a cor-
relation around 0.30 gives the optimal result, which is in agreement with the
results from Fertig et al. (2007). However, a closer examination of the upper
plot in Fig. 15.8, which show the final estimated solution in one EnKF experi-
ment using the adaptive localization in Exp. BLA25, shows that the adaptive
localization introduces more noise in the estimate than is seen in the example
with distance based localization. On the other hand, the lower plot shows
that the use of the Shapiro filter effectively filter away the noise and makes
the adaptive localization an alterntive to consider, in particular for models
where the influence regions for the measurements are poorly known.
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Finally, in Fig. 15.9 we have plotted the averaged residuals for all the
experiments. It is not clear if the average over the whole time period is the
best measure, since the impact of the early large residuals will dominate the
result. On the other hand, we plot the average residuals here as well since
they are also plotted for the experiments in the previous chapters. The results
can be qualitatively derived from the residuals plotted in Figs. 15.5 and 15.6,
and we find that the average residuals increase when we introduce inflation
in Exp. B. The final residuals in Exp. BI are lower and in better consistence
with the estimated residuals. In Exp. F250I we find that the introduction of
inflation leads to a residual that is in good agreement with the estimated
errors, even though the average residuals are slightly increased. The use of
distance based localization in Exp. BL results in the lowest average residuals
of all the experiments. The use of the Shapiro filter only slightly impacts the
results in Exp. BLS but also leads to more physically acceptable realizations
without discontinuities. For the adaptive localization, it seems that a fairly
strong truncation at a correlation of 0.30 gives the best result, and clearly in
this case the smoothing of the realizations should be included.
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An ocean prediction system

The ocean modelling community has been in the forefront when it comes to
developing advanced data assimilation systems and taking these into use in
real applications. This chapter will briefly present one such system, named
TOPAZ, forming the North Atlantic and Arctic component of the European
“MERSEA” integrated system, and being one of the contributors to the inter-
national Global Ocean Data Assimilation Experiment (GODAE). The system
is based on the latest scientific developments in terms of ocean modelling with
the Hybrid Coordinate Ocean Model (HYCOM) and data assimilation with
the EnKF.

16.1 Introduction

The need for high quality predictions of marine parameters has been well iden-
tified. During recent years, offshore oil-exploration activities have expanded
off the continental shelfs to deeper waters. Drilling and production of oil and
gas at depths of 2000 meters or more are ongoing at several locations, and
the Arctic Shelf contains considerable gas resources in ice-covered areas. This
has introduced a need for real time forecasts of oceanic currents and sea-ice
which in some cases may have severe impact on the safety related to drilling,
production and critical operations. In addition, sustainable exploitation of
marine resources through commercial fisheries and fish farming are becom-
ing increasingly important. Fisheries management systems will benefit from
accurate prediction of marine parameters such as nutrient and plankton con-
centrations, and this will lead to more accurate monitoring and prediction of
fish stocks. Thus, there are needs for operational monitoring and prediction
of both physical and biological marine parameters.

An ocean data assimilation system allows for the integration of remote-
sensing and in situ observations of ocean, ice, biological, and chemical vari-
ables, with coupled marine ecosystem (Natvik and Evensen, 2003a,b) and ice-
ocean general circulation models (Brusdal et al., 2003, Lisæter et al., 2003).
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This integration can best be done using advanced data assimilation techniques.
In the ocean community there has been a strong focus on the development
and implementation of consistent data assimilation techniques that can be
used with primitive equation models and also models of the marine ecosys-
tem. Further, the real time processing and flow of observational data have now
been developed to a degree where both satellite and in situ data are available
in near real time. Several ocean forecasting systems are exploiting this real
time flow of observed information in data assimilation systems and provide
operational ocean forecasts.

The TOPAZ system consists of the HYCOM ocean model (Bleck , 2002)
which has been coupled to two different sea-ice models, one is a simple model
for ice-thickness and ice-concentration while the other is multi-category sea-
ice model which represents ice-thickness distributions. Further, four ecosystem
models of increasing complexity have been integrated in the system.

The TOPAZ system has been developed to meet the needs from future
users of marine parameters. The system development has been supported by
two previous European Commission funded projects, i.e. the DIADEM and
TOPAZ projects, and current work is aimed at integration into the European
MERSEA system within the MERSEA Integrated Project. TOPAZ results
are displayed on the web-page http://topaz.nersc.no as well as validation
statistics against in situ data provided by the Coriolis center.

16.2 System configuration and EnKF implementation

The model domain used for the TOPAZ prediction system is shown in
Fig. 16.1. The grid is created using a conformal mapping of the poles to
two new locations using the algorithm outlined in Bentsen et al. (1999). The
horizontal model resolution varies from 11 km in the Arctic to 18 km near the
Equator.

The TOPAZ system has a huge state vector consisting of 79.6 million
variables just for the physical ocean parameters. The inclusion of the marine
ecosystem multiplies the number of unknowns by a factor 2 to 3, depending on
the ecosystem model formulation used. The system uses 100 members in the
ensemble, thus the computational cost of running the system is 100 times the
cost of running a single model. Fortunately, the members evolve completely
independently of each other and the new parallel clusters with multiple CPUs
are very well tailored to this kind of application. Clearly, to a similar com-
putational cost it is possible to run a single model with quadruple resolution.
On the other hand, we then lose the opportunity to update this single model
consistently with the observations, and simplified and less consistent assimi-
lation schemes need to be used. We would also lose the possibility to generate
error estimates for the predictions.

The number of observations assimilated is huge. It consists of satellite
observed sea level anomalies merged from four satellites (ERS2, Jason1, EN-
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Fig. 16.1. Surface temperature and sea ice concentrations in the North Atlantic
and Arctic Ocean with the TOPAZ system as viewed in Google Earth.

VISAT and GEOSAT follow on), available from Collecte Localisation Satel-
lites (CLS) on a grid containing 100 000 observations in the North Atlantic
at each assimilation cycle. In addition, TOPAZ assimilates 40 000 gridded
ice concentration data from SSM/I and 8000 sea surface temperature obser-
vations (Reynolds SST), still with relatively low resolution (120 km at the
Equator). When higher resolution products (25 km) will be available from
the Medspiration project the number of SST data assimilated will increase to
around 200 000 observations depending on cloud coverage.

Clearly, it is a challenge to represent the solution search space for such
a large state vector and when assimilating this many measurements using
only a limited ensemble size. It is possible to use the sophisticated analysis
schemes discussed in the previous chapters, but for this particular system a
slight modification is required. In Haugen and Evensen (2002), Brusdal et al.
(2003), Evensen (2003), Ott et al. (2004) an algorithm named “local analysis”
was used. This is a rather simple approach where the analysis update is com-
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puted grid point by grid point, and using only observations located within a
certain distance from the grid point, see Chap. 15 for a detailed discussion. In
an ocean model it is convenient to consider this as an update of grid column
by grid column since the depth is much less than the horizontal scale of the
model.

The local analysis is spatially discontinuous and the updated ensemble
members may not represent solutions of the original model equations, but
the deviation should not be to large as long as the range of influence is large
enough. In addition the updated ensemble members are not represented in the
space spanned by the predicted ensemble. In fact, the use of an update matrix
which varies smoothly throughout the grid effectively reduces the dimension
of the problem. That is, in an ocean model where we update the solution grid
column by grid column, we are solving many small problems instead of one
large. In the TOPAZ system the number of unknowns in each grid column
is of the same order as the number of ensemble members (113 for 22 hybrid
vertical layers), as well as the number of local observations (50 at most).

The quality of the EnKF analysis is clearly connected to the ensemble
size used. We expect that a larger ensemble is needed for the global analysis
than the local analysis to achieve the same quality of the result. That is, in
the global analysis a large ensemble is needed to properly explore the state
space and to provide a consistent result for the global analysis. We expect
this to be application dependent. Note also that the use of a local analysis
scheme is likely to introduce non-dynamical modes, although the amplitudes
of these will be small if a large enough influence radius is used when selecting
measurements. In dynamical models with large state spaces, the local analysis
allows for the computation of a realistic analysis result while still using a
relatively small ensemble of model states. This also relates to the discussions
on localization and filtering of long range correlations by Mitchell et al. (2002).

The TOPAZ system is run every week and produces two weeks forecasts.
The propagation and analysis steps are orchestrated by a collection of scripts
in the following way: every Tuesday the observations are collected and the
analysis is run sequentially for each observed variable1, then a single member
forecast is run until the two-weeks forecast, initialized by the ensemble aver-
age, the whole ensemble is then propagated by the model with perturbed forc-
ing fields (winds and thermodynamic forcing). The communication between
the analysis and propagation steps is done by files so that both executables
are distinct and mostly independent. This allows separate upgrades of the
model and analysis codes. The propagation step requires 1200 CPU hours per
week but is “embarrassingly parallel” and the hundred independent jobs are
easily patched into the supercomputer idle time. TOPAZ runs on the super-

1 This is meant to avoid scaling issues when assimilating different types of obser-
vations and it is in theory correct in the Gaussian case as all statistics (mean and
variance-covariance) are updated by each observation set. This is not the case
with OI-type of methods because the background covariance remains unchanged.
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computing facilities of Parallab at the University of Bergen that are shared
with many other users but the privileges required by the operational system
are relatively small and do not represent a nuisance to other users.

The single member forecast dumps boundary conditions for nested models.
Running an ensemble forecast is also possible starting from the latest analysis
ensemble.

16.3 Nested regional models

To meet the end users needs of high resolution accurate information, regional
models with very high resolution are embedded into the TOPAZ system in
the target areas where mesoscale processes must be properly resolved. The
nested models depend on the basin-scale model but the global system is not
dependent on the regional models, thus each nested system can be tuned
on purpose to satisfy one application without disturbing the globality of the
system.

With the inclusion of a nesting capability and the assimilation of both
in situ data and data from a variety of satellite sensors, the TOPAZ system
constitutes a state of the art and flexible operational ocean prediction sys-
tem. The model system has been designed to be easily extensible to other
geographical areas including the global domain and it allows for nesting of an
arbitrary number of regional high resolution models with arbitrary orientation
and horizontal resolution.

Regional high-resolution models covering the Gulf of Mexico, the North
Sea and the Barents Sea are currently receiving boundary conditions from
TOPAZ and are run in real time. The Gulf of Mexico model uses data as-
similation based on the ensemble OI method presented in Appendix A.4. It
is used to predict the location of the Loop Current and the formation and
propagation of rings in the Gulf of Mexico, and thus provides valuable infor-
mation related to deep water drilling and oil production facilities in the Gulf
of Mexico.

The only observations assimilated in the regional model are the sea surface
heights from satellite altimeters, that are available with three days delay. The
data assimilation is therefore performed one week back in time and assimilates
gridded maps that are representative of a weekly average. The model is then
integrated over the past week and two weeks forecast in the future. When
necessary, e.g. when the situation is particularly dynamic, the nested system
can be updated twice a week, independently from the updates of the outer
model.

Figure 16.2 shows the observed limits of the Loop Current and two rings
in the Northern and Northwestern Gulf of Mexico. The loop current and its
detached rings may have large velocities, and when these exceed 1.5 m/s, the
security of the staff and equipment is threatened and many operations have
to be postponed, causing major financial losses.
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Fig. 16.2. Predicted sea-surface heights (isolines) overlaid a map of satellite ob-
served sea surface temperatures (not yet assimilated) for the Gulf of Mexico on 29th

March 2006, showing accurate positioning of the Loop Current and a detached ring.
Red colours indicate high temperatures and the blue colours denote cold water.

The model nowcast (i.e. estimate at the current date) represents well the
Loop Current and the two detached rings and agree well with the measured
current directions, but some inaccuracies remain in the locations and extents
of these features. We expect that the remaining errors are not far from being
irreducible with respect to the chaotic behaviour of the small scales features,
their representation by the model and in the observations. The next major
improvement of the user product would therefore be a probabilistic forecast
based on an ensemble. It would indicate the areas where the forecast can be
given with some confidence and those where the situation is too chaotic to be
predicted.

16.4 Summary

The real time operation of the system has proved to be feasible and relies on
the availability of remote sensing products in near real time, and atmospheric
forcing fields from the meteorological forecasting centers. The forecasts of
eddies in the Gulf of Mexico have been presented to potential users in the
offshore oil industry by Ocean Numerics Ltd., revealing their strong interest
in the way the problem is tackled and providing useful feedback for the future
product developments. Oil companies have also invested into the Barents Sea
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high-resolution model which is nested into the TOPAZ system in the perspec-
tive of offshore exploration and production in the ice-covered Shtokman field.
The latter system provides information on ice-ocean conditions and will be
the basis for an ice and iceberg forecasting system.

There is now a strong consensus in the offshore industry, within funding
agencies and among ocean researchers, on the need for development of op-
erational ocean prediction systems. It is expected that several such systems
will be established in the near future, covering the global ocean and providing
valueable information about the state of the ocean both to commercial users
and the public.
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Estimation in an oil reservoir simulator

The EnKF has recently been taken into use with simulation models for oil
and gas reservoirs, with the purpose of estimating poorly known parameters
and to improve the predictive capability of the models. There are economical
benefits of obtaining a model which best possible represents the reservoir.
Optimally, it could be used for predicting the future production and to assist
in the planning of new production and injection wells. A better model also
provides insight and understanding regarding the properties of the reservoir.

Parameter estimation in reservoir simulation models is often named “his-
tory matching” by reservoir engineers, and the purpose is to find model pa-
rameters that result in simulations which better match the production history.
History matching has traditionally been considered as a manual process where
the engineer wisely tunes parameters and the impact is examined through
model simulations.

Recently, there has been a growing interest in more mathematical and
statistical methods for history matching. These involve both brute force direct
minimization techniques and gradient methods based on the use of adjoints.
Common for these is that they have all considered a pure parameter estimation
problem, and not the combined parameter and state estimation problem as
was advocated in the previous chapters.

An alternative approach based on the EnKF was proposed by Nævdal et al.
(2003), where the reservoir model state and parameters were updated sequen-
tially in time, using the information contained in pressure and rate measure-
ments from production wells. There are now several groups continuing this
work and below an application of the EnKF for history mathing in an oil
reservoir model is discussed.

17.1 Introduction

An oil reservoir often consists of layers of sand and shale, each characterized
by their respective porosity and permeability. The sands and shales are sed-
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Fig. 17.1. Cross-section through the reservoir simulation model. Red colour repre-
sents gas, green denotes oil and blue is water

iments deposited on the seabed during different geological regimes, and are
characterized by the porosity, φ(x), describing the fraction of a sand body
which can accommodate fluids and the permeability, kh(x), which describes
how well fluids can flow in the reservoir. Normally the porosity of the reser-
voir sands is about 10–30 %, dependent on the grain size which varies for
different depositional environments. The permeability is measured in a unit
named Darcy, where 1 Darcy (D) is of order 10−12 m2. Typical reservoirs have
permeabilities in the range 0.1–10 D.

For reservoir sands to contain hydro-carbons, the permeable sands must
be overlaid by an impermeable shale, or cap-rock, which prevents the oil and
gas from escaping the reservoir. During geological time the sand layers fold
and tilt, and faults may develop. The faults may become impermeable as well.
Thus, the reservoir boundaries consist of the cap-rock and impermeable faults
which enclose the oil and gas.

The density of gas is much less than the density of oil and water, and
the mobility of gas is also much higher than for oil and water. Oil is also
lighter than water and in a hydrostatic equilibrium we find gas overlaying oil
and water below the oil. Fig. 17.1 shows a cross section of an oil reservoir
in the North Sea. This reservoir is limited by an upper impermeable layer of
shale and the horizontal extension is determined by two sealing faults. The
depths of the gas-oil contact (GOC ) and water-oil contact (WOC ) are clearly
identified. Note also the four faults located within the reservoir.

A reservoir simulation model describes the flow of oil, gas and water in the
reservoir. The state vector in a reservoir model consists of the reservoir pres-
sure, P , and saturations of water, gas and oil; Sw, Sg and So. The knowledge
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of two saturations allows for the computation of the third one. In addition one
often includes variables describing the amount of gas which is in a fluid state
at reservoir conditions and which becomes gas at the surface, Rs, and also gas
in the reservoir which condensates and becomes fluid at surface conditions,
Rv. When a well is drilled into the reservoir and operated at a pressure lower
than the reservoir pressure, this sets up gradients in the reservoir pressure
and the reservoir fluids start flowing towards the well.

The reservoir model is coupled to a model describing the flow of fluids
in the wells. There are both production wells where oil, gas and water are
produced from the reservoir, and injection wells which are used to pump
water, gass and sometimes other chemicals into the reservoir to maintain the
reservoir pressure and to force the oil and gas towards the production wells.
The wells are often controlled by valves at the surface which regulate the rate
of flow in the well and thus the pressure in the well.

Recent studies with reservoir simulation models suggest that the EnKF
can be used for improved reservoir management. This was first proposed by
Nævdal et al. (2002, 2003) who used the EnKF in a simplified reservoir model
to estimate the permeability of the reservoir. They showed that there could
be a great benefit of using the EnKF to improve the model through parame-
ter estimation, and that this could lead to improved predictions. These initial
works have been followed by several more recent publications (see the listing
in the Appendix). These have mostly considered simplified reservoirs and var-
ious test cases. The estimated parameters comprise porosity and permeability
and the data assimilated have been well pressures and rates. An exception is
Skjervheim et al. (2005) where seismic 4D-data were assimilated as well. In
the next sections we describe an implementation of the EnKF with a reservoir
simulator for a North Sea field example.

17.2 Experiment

It is clear that there are large uncertainties when it comes to defining the exact
properties of the reservoir. Geologists and geophysicists start by estimating
the location of the top of the reservoir. Then, using seismic data together with
log-data from test wells, combined with a good geological understanding of
the depositional processes, they develop a conceptual model for the layering
of different sand types and shales in the reservoir. A structural geologist will
analyse the presence of faults in the reservoir and develop a structural model.
This will also be based on the relatively few test wells and the seismic data.
Using data from the test wells one attempts to identify the locations of the
fluid contacts, as well as the properties of the oil, gas and water in the reservoir.
One can then build a set of initial models or realizations of the reservoir using
various statistical simulation methods.
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17.2.1 Parameterization

The first step in the history matching procedure is to identify the parameters
which determines the uncertainty of the model and need to be estimated. We
have now assumed that the structural model is fairly accurate, i.e. the loca-
tions of faults and layers in the model are reasonable. This may not be the
case but it is currently not clear how the EnKF can be used to estimate struc-
tural parameters, since the update equation in the EnKF combines ensemble
members, and these all need to be defined on the same numerical grid.

Fluid contacts

In the current application we have identified large initial uncertainties in the
oil-water and gas-oil contacts, WOC and GOC. The reservoir consists of sev-
eral compartments which are separated by more or less insulating faults. Un-
less we have vertical wells penetrating the contacts it is difficult to obtain
good estimates of them. The depths of the contacts varies between different
isolated regions and we only have information from wells drilled through a few
of these. The initial uncertainty of the WOC had in some regions standard
deviations of up to 30 m. Thus, a major set of parameters to be estimated is
the WOC and GOC in the different regions of the model, since this determines
the volume of oil in the reservoir as well as the optimal vertical location of
horizontal production wells.

Fault transmissibilties

With a large number of faults and only few pressure measurements there
is a large uncertainty in the assumed fault transmissibilities. Thus, we also
include the set of transmissibilities, multflt , of the faults as parameters to be
estimated.

Vertical layer transmissibilties

The vertical flow in the reservoir is normally determined by the vertical per-
meability. In the current experiment we set the vertical permeability equal to
10 % of the horizontal permeability which is included as a parameter to be
estimated. Instead of estimating the vertical permeability directly we include
a parameter, multz , which describes how well fluids will flow between model
layers. This is a constant for each layer, which is multiplied with the vertical
permeability to get the effective vertical communication between two layers.
Some of the model layers are also assumed to be more or less impermeable
for vertical flow and the estimates of multz should allow us to determine the
layers with low vertical communication.
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Porosity and permeability fields

We have also included the full three dimensional porosity and permeability
fields, φ(x) and kh(x), as variables to be estimated. The porosity is important
to be able to estimate the volume of oil a part of the reservoir can contain, e.g.
by increasing the porosity in a region we allow for more oil to be accommo-
dated there. The permeability determines how well fluids are flowing through
the reservoir and need to be adjusted to match the observed production rate
as well as the timing of the water breakthrough.

17.2.2 State vector

For the combined parameter and state estimation problem we define the state
vector to contain dynamic variables of the reservoir model, such as the pressure
and saturations, and static variables as defined above. With the parameters
included in this example the EnKF update of each ensemble member can be
written in a simple form as

Update

P
Sw

Sg

Rs

kh
φ

multz
multflt
WOC
GOC


j

=

Forecast

P
Sw

Sg

Rs

kh
φ

multz
multflt
WOC
GOC


j

+
∑
i

αji

Covariances

C(P, di)
C(Sw, di)
C(Sg, di)
C(Rs, di)
C(kh, di)
C(φ, di)
C(multz , di)
C(multflt , di)
C(WOC , di)
C(GOC , di)


j

,
(17.1)

where j is a counter for the ensemble members and i is a counter for the
measurements. The coefficients, αji, define the impact each measurement has
on the update of the ensemble members.

It is seen that the different dynamic and static variables are updated by
adding weighted covariances between the modelled measurements and the
variables, one for each measurement. Note that both the state variables and
the various parameters are updated simultaneously.

The reason why it is possible to update the parameters given only rate
information from the wells, is that the rates are dependent on the properties
of the reservoir as given by the parameter set defined above. Thus, there will
exist correlations between reservoir properties and the observed production
rates.

Considering that the porosity and permeability are defined as 3D fields
with one unknown on each grid node, there is a large number of parameters
to be estimated in the current system. However, the number of degrees of
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freedom of the parameter space is much less than the actual number of pa-
rameters. The reason is that the porosity and permeability are smooth fields
and do not consist of independent numbers in each grid node. The smoothness
is prescribed from prior statistics through horizontal and vertical correlations
which characterizes each depositional environment in the model. This effec-
tively reduces the actual dimension of the problem and makes it tractable
using a finite ensemble size in the EnKF.

In a particular application, where we are trying to estimate, e.g. the per-
meability, this implies that we can only expect to find corrections to the
permeability estimates which can be represented in the space spanned by the
initial permeability ensemble. This is, however, only a practical restriction
since its impact can be reduced by either increasing the ensemble size or by
chosing the initial ensemble wisely.

Another issue considers the scales which can be estimated for permeability.
This is also clearly dependent on the initial choice of ensemble members. The
“smoothness” of the members should be chosen to represent the true scales
of the permeability field while keeping in mind that the limited number of
wells and measurements certainly constrains the scales which can be resolved
or estimated.

The model has about 82 000 active grid nodes, and the state vector then
consists of 328 000 dynamic variables, 5 WOC and GOC contacts, 42 fault
transmissibilities, 24 vertical multipliers, and 82 000 parameters for each of
the porosity and permeability. An initial ensemble of 100 model states were
generated.

Priors for the first guesses of the parameters are constructed based on
the interpretation and information available from several data sources in the
project. In particular the ensemble of contacts are simulated as independent
numbers drawn from a Gaussian distribution with the mean equal to a best
guess estimate and standard deviations of 20 m. Note that the contacts are
only used initially to initialize the model, and then define the vertical satu-
ration profile for each region. By including the contacts in the state vector,
they will be updated in every assimilation step, although they are not used
explicitly in the model but rather indirectly through the updates of the satu-
rations. At the end of the assimilation experiment we have obtained improved
estimates of the contacts, which can then be used in new model simulations
or oil volume calculations.

The first guesses of the fault transmissibilities are set to either 1.0, 0.1 or
0.001 and with standard deviations of 20 %. This took into account knowledge
about some of the faults that are known to be almost closed.

The vertical multipliers had first guesses equal to 1.0 except for three of the
layers that were assumed to have low vertical permeability from the well-log
data. Standard deviations were set to 10–20 %.

The porosity and permeability fields are simulated using the algorithm
from Sect. 11.2, based on average values, uncertainties, and Gaussian vari-
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ograms with horizontal and vertical de-correlation lengths, as specified from
the geological interpretation of the reservoir.

17.3 Results

Initially we ran a pure ensemble integration of the prior ensemble. The spread
of the results then provides an indication if the parameter space and the per-
turbations used, lead to a realistic representation of the uncertainty in the
model predictions. In Fig. 17.2 we have plotted, as the red curves, the to-
tal accumulated oil production from the first 20 ensemble members together
with the actual production. The upper plot shows the total accumulated field
production while the middle and lower plots show the prediction of the accu-
mulated production from the two individual production wells, P1 and P2. It
is clear that the uncertainties in the initial parameter space leads to a large
uncertainty in the model predictions. Without access to the production his-
tory it would not be possible to discriminate between the different realizations
since all of them represent a statistically valid representation of the reservoir.
From the individual wells it is also clear that there is a problem in the simula-
tion of P1 where we have very little spread and much to large oil production.
The simulation of P2 leads to a huge uncertainty, but it also captures the
magnitude of the observed production.

In the EnKF experiment we have assimilated the production rates of oil
(OPR), the gas-oil-ratio (GOR) and the water cut (WCT), from the two pro-
duction wells. In the assimilation run we obtained rates of oil, water and gas
which were in good agreement with the observations, as is expected since
these are also the data assimilated. Another verification test was therefore
performed. The ensemble of estimated parameters, i.e. porosity and perme-
ability, fault and vertical multipliers, and the initial contacts, were all used
in a new pure ensemble integration starting from time zero. The results from
this simulation are plotted as the blue curves in Fig. 17.2. It is clear that the
initially predicted uncertainties have been significantly reduced, and this must
be attributed to the use of improved values of the static model parameters.
Thus, we have successfully managed to compute improved estimates of a total
of more than 164 000 poorly known model parameters.

The estimates of the porosity and permeability for one of the model layers
are plotted in Fig. 17.3. The ensemble mean for the estimated porosity and
permeability are given, respectively, in the upper and lower plots in the left
column. It is clear that the estimated fields have developed clear and signifi-
cant structures when compared with the first guess ensemble mean which was
constant throughout the model layer. The standard deviations are reduced by
approximately 25% during the assimilation updates.

Another test was also carried out where results were compared with a third
production well, P3, which was excluded from the assimilation experiment.
It was shown that the ensemble of improved model parameters resulted in
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Fig. 17.2. Ensemble prediction based on initial ensemble of realizations. The total
accumulated field oil production is shown in the upper plot. The middle and lower
plots show the total accumulated oil production for the two wells
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Fig. 17.3. Estimated porosity and permeability (left column) with standard devi-
ations (right column) in one of the model layers
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a significant improvement also for this well. This is an indication that the
estimated model parameters are realistic and the improved realizations may
then be used for the simulation and design of future wells.

17.4 Summary

The EnKF provides an ideal framework for real-time updating and prediction
in reservoir simulation models. Every time new observations are available and
are assimilated there is an improvement of the model parameters, and the
associated model saturations and pressure. Thus, the analyzed ensemble pro-
vides optimal realizations which are conditioned on all previous data, and
which can be used in a prediction of the future production. A single realiza-
tion could be integrated forward in time starting from the ensemble mean or
median, to obtain a quick forecast. Alternatively, the whole ensemble could be
used in a forward integration to provide a future prediction with uncertainty
estimates.

The EnKF has provided a tool for parameter estimation in cases with large
number of poorly known parameters. It does not appear to suffer from the
curse of dimensionality and multiple local minima, which have been observed
in many other methods. This must be attributed to the sequential processing
of observations, but also the fact that the EnKF also allows for model errors
in addition to errors in the estimated parameters. Furthermore, the solution
is searched for in the space spanned by the ensemble members rather than the
high dimensional parameter space. Clearly, this approach should be examined
in applications with other dynamical models as well.



A

Other EnKF issues

Below we have discussed some more specific issues related to the implemen-
tation and use of the EnKF. The assimilation of nonlinear measurements is
discussed and particular limitations of the method in this case is pointed
out. The EnKF also allows for the assimilation of non-synoptic measurements
meaning that, e.g. measurements which are arriving continuously in time, can
be assimilated in batches at regular discrete time intervals. Finally, it is also
possible to assimilate so-called time difference data, i.e. measurements which
depend on the model state at two or more different times. A good example
is the difference in the seismic response between surveys taken at different
times, a commonly used data set in oil reservoir applications.

A.1 Nonlinear measurements in the EnKF

The original Kalman filter can only use measurements which are linearly re-
lated to the model state. The measurement operator is defined as a matrix,
and this matrix needs to be multiplied with the error covariance matrix of the
model state. If the observations are nonlinear functions of the model state this
matrix formulation becomes invalid and the traditional solution is to linearize
and iterate.

In the EnKF we take another approach, where we exploits that we never
evaluate the full error covariance matrix, but rather work with the measure-
ment of ensemble perturbations (Evensen, 2003). We start by augmenting the
model state with a diagnostic variable which is the model prediction of the
measurement. We first define the ensemble of m model predicted measure-
ments as

Â = (m(ψ1), . . . ,m(ψN )) ∈ <m×N , (A.1)

and the ensemble matrix{
A

Â

}
=
{

A
m(A)

}
∈ <(n+m)×N , (A.2)

G. Evensen, Data Assimilation, 2nd ed., DOI 10.1007/978-3-642-03711-5_BM2,  
© Springer-Verlag Berlin Heidelberg 2009 
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where m is the number of ensemble equivalents added to the original model
state.

The EnKF analysis scheme can then be written as{
Aa

Â
a

}
=
{
A

Â

}
+

{
A′

Â
′

}
Â
′T(
Â
′
Â
′T

+ (N − 1)Cεε

)−1(
D − Â

)
. (A.3)

Normally we would just compute the EnKF analysis as

Aa = A+A′Â
′T(
Â
′
Â
′T

+ (N − 1)Cεε

)−1(
D − Â

)
, (A.4)

and we note that Â
a

is never computed. Moreover, the analysis equation uses
the covariance between m(ψ) and ψ, through A′Â

′T
.

The analysis is then a combination of model predicted error covariances
between the observation equivalents, m(ψ), and all other model variables.
Thus, we have a fully multivariate analysis scheme.

Note that the measurement of the analysis ensemble members m(Aa), is
not equal to the analyzed modelled measurement Â

a
= m(A)a, the reason

being the nonlinearity introduced by the nonlinear measurement functional.
The residual between Â

a
and m(A)a will thus serve as a measure of the

approximation introduced using this algorithm.
In general we have seen that as long as the measurement functional is a

monotonic function of the model state, and not too nonlinear, this procedure
appears to work well. A non-monotonic function becomes problematic since
it is then not clear whether an increase in the measurement value should lead
to an increase or decrease in the update. Furthermore, a too nonlinear mea-
surement functional may lead to a strongly non-Gaussian probability density
function for the measured ensemble forecast, and the EnKF analysis scheme
will fail.

This procedure has successfully been used for assimilation of sea level
anomalies in an ocean modelling system in Chap. 16, where the sea level
anomalies are weakly nonlinear functions of the model state. Further, in the
reservoir application in Chap. 17, we assimilated rate measurements from
production wells, which are nonlinearly related to the flow in the reservoir,
and the flow in the reservoir is again nonlinearly related to the properties
of the reservoir that we wish estimate. There is of course no guarantee that
these measurements are monotonic functions, but it is anticipated that in a
simplified picture, an increase in permeability will lead to an increase in the
flow of oil in the reservoir, which leads to an increased production rate.

In Chap. 9 we defined the analysis equation as the minimum of the cost
function (9.4). As long as the measurement operator is linear, the minimum
of (9.4) is also the minimum variance estimate. This is no longer true for a
nonlinear measurement operator, where the ensemble analysis equation intro-
duces a linearization when computing the update. On the other hand, we now
define N cost functions as
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J [ψa
j ] =

(
ψa
j −ψ

f
j

)T

•
(
Cf
ψψ

)−1

•
(
ψa
j −ψ

f
j

)
+
(
dj −m

(
ψa
j

))T

C−1
εε

(
dj −m

(
ψa
j

))
,

(A.5)

i.e. there is one cost function for each ensemble member. The bullets denote
integration over the space where the state vector is defined. We can then
derive the N analysis equations

ψa
j = ψf

j+A
′mT

(
A′
)(
m
(
A′
)
mT

(
A′
)
+(N−1)Cεε

)−1(
dj−m

(
ψf
j

))
, (A.6)

which constitutes the equations solved in the EnKF, and where the ensemble
average provides the EnKF solution.

It is clear that the solution obtained from (A.6) does not exactly corre-
spond to the minimum of (A.5), due to the linearization used when deriving
(A.6) from (A.5). Thus, an alternative analysis scheme could be defined where
(A.5) is solved directly, e.g. using a gradient method. Most effectively this
may be done by solving (A.6) to get a first guess and then carrying out a
few iterations using the gradient of (A.5) in a descent algorithm. The result-
ing algorithm will then to some degree resemble the randomized maximum
likelihood algorithm (see e.g. Gao and Reynolds, 2005).

In the linear case these methods will both provide the same result, but
(A.6) is a closed form solution and is the computationally most efficient. With
modest nonlinearities in the measurement operator, the results should not be
very different. With highly nonlinear measurement operators we also expect
that the direct minimization of (A.5) may converge to local minima and the
global solution may be hard to find. More research is needed to evaluate the
use of these schemes when nonlinear measurement operators are used.

A.2 Assimilation of non-synoptic measurements

In some cases measurements occur with high frequency in time. An example
is along track satellite data. It is not practical to perform an analysis every
time there is a measurement. Further, the normal approach of assimilating,
at one time instant, all data collected within a time interval, is not optimal.
Based on the theory from Evensen and van Leeuwen (2000), it is possible to
assimilate the non-synoptic measurements at one time instant by exploiting
the time correlations in the ensemble. Thus, a measurement collected at a
previous time allows for the computation of M[A] at that time and thereby
also the innovations. By treating these as augmented model variables, like in
the case with nonlinear measurements, (A.4) can again be used but with Â

′

now being interpreted as the measurements of the ensemble perturbations.
This procedure was presented in Evensen (2003) and has been further

discussed by Hunt et al. (2004), where it is denoted four-dimensional ensemble
Kalman filtering. The approach provides a simple and efficient approach for



276 A Other EnKF issues

handling non-synoptic measurements which occur in many applications. The
actual implementation only requires the measurements of the ensemble and
the ensemble perturbations, which are evaluated and accumulated during the
forward ensemble integration. Then, at the analysis time, this information is
used to update the ensemble.

A.3 Time difference data

Time difference data, i.e. data which are related to the model state at two or
more time instances, are difficult to assimilate using sequential assimilation
methods. However, there is a way to do this properly when using the EnKF,
and the algorithm is based on the formulation of the EnKS.

A detailed discussion of the algorithm is given by Skjervheim et al. (2006).
It was shown that, given a data set which depends on the model state at two
distinct times, tk and tj with tk < ti < tj , and where ti denotes update times
using synoptic data in between tk and tj , one should proceed as follows:

During the forward integration, the updated ensemble at time tk is aug-
mented to the model state. Thus, at time tk we start with the augmented
ensemble {

Aa
k

Aa
k

}
. (A.7)

Then at time ti = tk+1 we will have integrated the dynamic part of the
ensemble forward in time, while the augmented part is kept constant to get{

Af
i

Aa
kk

}
. (A.8)

Here Af
i is just the forecast ensemble at time ti while Aa

kk is the analyzed
ensemble at time tk, updated with measurements up to time tk.

An ensemble update at time ti is computed using the EnKF analysis equa-
tion as {

Aa
i

Aa
ki

}
=
{
Af
iXi

Aa
kkXi

}
, (A.9)

where Aa
ki is just the smoother solution at time tk where the measurements

at time ti have been assimilated.
This procedure continues until time tj where the time difference data is to

be assimilated, and we have the augmented ensemble as{
Af
j

Aa
kj

}
. (A.10)

We then use the time difference measurement operator which relates the
measurements to both Af

j and Aa
kj and compute a standard EnKF analysis.

This procedure has proven to work well for the assimilation of seismic time
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difference data in Skjervheim et al. (2006), and should also be applicable to
other types of data which are related to the model state at different time
instants.

A.4 Ensemble Optimal Interpolation (EnOI)

Traditional optimal interpolation (OI) schemes have estimated or prescribed
covariances using an ensemble of model states which has been sampled dur-
ing a long time integration. Normally the estimated covariances are fitted to
simple functional forms which are used uniformly throughout the model grid.

Based on the ensemble formulation used in the EnKF it is natural to
derive an OI scheme where the analysis is computed in the space spanned
by a stationary ensemble of model states sampled, e.g., during a long time
integration. This approach is denoted ensemble optimal interpolation (EnOI),
and was presented in Evensen (2003)

The EnOI analysis is computed by solving an equation similar to the
update of the mean in the EnKF, see e.g. (13.2) but written as

ψa
EnOI(x) = ψf

EnOI(x)

+ αA′ST
(
αSST + (N − 1)Cεε

)−1
(
d−M

[
ψf

EnOI(x)
])
.

(A.11)

The analysis is now computed for only one single model state, and a parameter
α ∈ (0, 1] is introduced to allow for different weights on the ensemble versus
measurements. Naturally, an ensemble consisting of model states sampled over
a long time period will have a climatological variance which is too large to
represent the actual error in the model forecast, and α is used to reduce the
variance to a realistic level.

The EnOI method allows for the computation of a multivariate analysis
in dynamical balance, just like the EnKF. However, a larger ensemble may be
useful to ensure that it spans a large enough space to properly represent the
correct analysis.

The EnOI can be an attractive approach to save computer time. Once the
stationary ensemble is created, only a single model integration is required in
addition to the analysis step where the final update cost is reduced to O(nN)
floating point operations because only one model state is updated. The method
is numerically extremely efficient but it will always provide a suboptimal so-
lution compared to the EnKF. In addition it does not provide consistent error
estimates for the solution. The publications Counillon and Bertino (2009a,b),
Counillon et al. (2009) further examines and developes the EnOI, and also a
hybrid EnOI–EnKF method, with an ocean circulation model for the Gulf of
Mexico and the applicability of the method is demonstrated for a case where
the EnKF becomes too computationally expensive.
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Crononogical listing of EnKF publications

Here we attempt to provide a chronological listing of the publications involv-
ing ensemble methods. In addition it is pointed to other recently proposed
ensemble based methods and some smoother applications.

B.1 Applications of the EnKF

Applications involving the EnKF are numerous and start with the initial work
by Evensen (1994a) and an additional example in Evensen (1994b) where it
is shown that EnKF resolve the closure problems reported from applications
of the extended Kalman filter (EKF).

An application with assimilation of altimeter data for the Agulhas region
is discussed in Evensen and van Leeuwen (1996) and later in a comparison
with the ensemble smoother (ES) by van Leeuwen and Evensen (1996).

An example with the Lorenz equations is presented by Evensen (1997)
where it is shown that the EnKF can track the phase transitions and find
a consistent solution with realistic error estimates even for a chaotic and
nonlinear model.

Burgers et al. (1998) review and clarify some points related to the pertur-
bation of measurements in the analysis scheme, and give a nice interpretation
supporting the use of the ensemble mean as the best estimate.

Houtekamer and Mitchell (1998) introduce a variant of the EnKF where
two ensembles of model states are integrated forward in time, and statistics
from one ensemble is used to update the other. The use of two ensembles
is motivated by suggesting that it reduces possible inbreeding in the anal-
ysis. This has, however, lead to some dispute discussed in the comment by
van Leeuwen (1999b) and the reply by Houtekamer and Mitchell (1999).

Miller et al. (1999) include the EnKF in a comparison with nonlinear fil-
ters and the extended Kalman filter, and conclude that it perform well, but
can be beaten by a nonlinear and more expensive filter in difficult cases where
the ensemble mean is not a good estimator.
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Madsen and Cañizares (1999) compare the EnKF and the reduced rank
square root implementation of the extended Kalman filter with a 2–D storm
surge model. The problem is weakly nonlinear and good agreement is found
between the EnKF and the extended Kalman filter implementation.

Echevin et al. (2000) study the EnKF with a coastal version of the Prince-
ton Ocean Model and focus in particular on the horizontal and vertical struc-
ture of multivariate covariance functions from sea surface height. It is con-
cluded that the EnKF captures anisotropic covariance functions resulting from
the impact of coastlines and coastal dynamics, and has a particular advantage
over simpler methods for such problems.

Evensen and van Leeuwen (2000) rederive the EnKF as a suboptimal
solver for the general Bayesian problem of finding the posterior distribution
given densities for the model prediction and the observations. From this for-
mulation the general filter is derived and the EnKF is shown to be a subop-
timal solver of the general filter where the prior densities are assumed to be
Gaussian distributed.

Hamill and Snyder (2000) construct a hybrid assimilation scheme by com-
bining 3DVAR and the EnKF. The estimate is computed using the 3DVAR
algorithm but the background covariance is a weighted average of the time
evolving EnKF error covariance and the constant 3DVAR error covariance. A
conclusion is that with increasing ensemble size the best results are obtained
with larger weight on the EnKF error covariance.

Hamill et al. (2000) report from working groups in a workshop on ensemble
methods.

Keppenne (2000) implements the EnKF with a two layer shallow water
model and examine the method in twin experiments assimilating synthetic
altimetry data. The focus is on the numerical implementation on parallel
computers with distributed memory and the approach is found to be efficient
for such systems. The impact of ensemble size is also examined and it is
concluded that realistic solutions can be found using a modest ensemble size.

Mitchell and Houtekamer (2000) introduce an adaptive formulation of the
EnKF where the model error parameterization is updated by incorporating
information from the innovations during the integration.

Park and Kaneko (2000) present an experiment where the EnKF is used
to assimilate acoustic tomography data into a barotropic ocean model.

Grønnevik and Evensen (2001) examine the EnKF for use in fish stock as-
sessment, and also compare it with the ensemble smoother (ES) and ensemble
Kalman smoother (EnKS).

Heemink et al. (2001) examine different approaches that combine ideas
from Reduced Rank Square Root (RRSQRT) filtering and the EnKF to derive
computationally more efficient methods.

Houtekamer and Mitchell (2001) continue the examination of the two-
ensemble approach and introduce a technique for computing the global EnKF
analysis in the case with many observations, and also a method for filtering
of long range spurious correlations caused by a limited ensemble size.
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Pham (2001) reexamines the EnKF in an application with the Lorenz
attractor and compare results with those obtained from different versions
of the singular evolutive extended Kalman (SEEK) filter and a particle filter.
Ensembles with very few members are used and favour methods like the SEEK
where the “ensemble” of EOFs is selected to best possible represent the model
attractor.

Verlaan and Heemink (2001) apply the RRSQRT and EnKF filters in test
examples with the purpose of classifying and defining a measure of the degree
of nonlinearity of the model dynamics. Such an estimate may have an impact
on the choice of assimilation method.

Hansen and Smith (2001) propose a method for producing analysis en-
sembles based on integrated use of the 4DVAR method and the EnKF. A
probabilistic approach is used and leads to high numerical cost, but an im-
proved estimate is found compared to 4DVAR and the EnKF used separately.

Hamill et al. (2001) examine the impact of ensemble size on noise in dis-
tant covariances. They evaluate the impact of using an “inflation factor” as
introduced by Anderson and Anderson (1999a), and also the use of a Schur
product of the covariance with a correlation function to localize the back-
ground covariances as discussed by Houtekamer and Mitchell (2001). The in-
flation factor is used to replace the forecast ensemble according to (15.3) with
an inflation parameter being slightly greater than one (typically 1.01). The
purpose is to account for a slight under-representation of variance due to the
use of a small ensemble.

Bishop et al. (2001) use an implementation of the EnKF in an observation
system simulation experiment. Ensemble predicted error statistics are used
to determine the optimal configuration of future targeted observations. The
application typically aims at a case where additional targeted measurements
can be deployed over the next few days and the deployment can be optimized
to minimize the forecast errors in a selected region. The method is a square
root filter and is named “ensemble transform Kalman filter”. The ensemble
transform Kalman filter is further examined by Majumdar et al. (2001).

Reichle et al. (2002) give a nice discussion of the EnKF in relation to the
optimal representer solution. They find good convergence of the EnKF to-
wards the representer solution with the difference being caused by the Gaus-
sian assumptions used in the EnKF at analysis steps. These are avoided in
the representer method which solves for the maximum likelihood smoother
estimate.

Anderson (2001) proposes a method denoted the “ensemble adjustment
Kalman filter” where the analysis is computed without adding perturbations
to the observations. A drawback may be the required inversion of the mea-
surement error covariance when it is nondiagonal. This method becomes a
variant of the square root algorithm used by Bishop et al. (2001).

Bertino et al. (2002) apply the EnKF and the RRSQRT filter with a model
for the Odra estuary. The two methods are compared and used to assimilate
real observations to assess the potential for operational forecasting in the
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lagoon. The model is relatively linear and the EnKF and the RRSQRT filter
provide similar results.

Eknes and Evensen (2002) examine the EnKF with a 1–D three-component
marine ecosystem model with focus on sensitivity to the properties of the as-
similated measurements and the ensemble size. It is found that the EnKF can
handle strong nonlinearities and instabilities, which occur during the spring
bloom.

Allen et al. (2002) takes the Eknes and Evensen (2002) work one step fur-
ther by applying the method to a 1–D version of ERSEM for a site in the
Mediterranean Sea. They show that even with such a complex model it is
possible to find an improved estimate by assimilating in situ data into the
model.

Haugen and Evensen (2002) use the EnKF to assimilate sea level anoma-
lies and sea surface temperature data into a version of the Miami Isopycnic Co-
ordinate Ocean Model (MICOM) by Bleck et al. (1992) for the Indian Ocean.
The paper provides an analysis of regionally dependent covariance functions in
the tropics and subtropics and the multivariate impact of assimilating satellite
observations.

Mitchell et al. (2002) examine the EnKF with a global atmospheric gen-
eral circulation model with simulated data resembling realistic operational
observations. They assimilate 80 000 observations daily. The system is ex-
amined with respect to required ensemble size, and the effect of localization
(local analysis at a grid point using only nearby measurements). It is found
that severe localization can lead to imbalance, but with sufficiently large ra-
tio of influence for the measurements, this problem is reduced and no digital
filtering is required. In the experiments they also include model errors and
demonstrate their importance to avoid filter divergence. This work is a sig-
nificant step forward and it shows promising results with respect to using the
EnKF with atmospheric forecast models.

Whitaker and Hamill (2002) propose another version of the square root
schemes where the perturbation of observations is avoided. The scheme is
tested for small ensemble sizes (10–20 members) where it shows a clear benefit
when compared to the EnKF, which has larger sampling errors with small
ensemble sizes.

Nævdal et al. (2002) use the EnKF in a reservoir application to estimate
model permeability. They show that there may be a great benefit of using
the EnKF to improve the model through parameter estimation, and that this
may lead to improved predictions.

Brusdal et al. (2003) discuss an application similar to the Indian Ocean
application by Haugen et al. (2002), but focus on the North Atlantic. In ad-
dition, this paper presents and compares the theoretical background of the
EnKF, EnKS, and the SEEK filter, and in addition evaluate results from
these methods.

Natvik and Evensen (2003a,b) present the first realistic 3–D application of
the EnKF with a marine ecosystem model. The papers prove the feasibility of
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assimilating SeaWiFS ocean colour data to control the evolution of a marine
ecosystem model. In addition several diagnostic methods are introduced that
can be used to examine statistical and other properties of the ensemble.

Keppenne and Rienecker (2003) implement a massively parallel version
of the EnKF with the Poseidon isopycnic coordinate ocean model for the
tropical Pacific. They demonstrate the assimilation of in situ observations and
focus on the parallelization of the model and analysis scheme for computers
with distributed memory. They also show that regionalization of background
covariances has negligible impact on the quality of the analysis.

Bertino et al. (2003) use the EnKF with a simple ecosystem model and
introduce a transformation of the biological variables, based on a Gaussian
anamorphosis, to make the ensemble predictions more Gaussian. It is shown
that the use of the transformation results in a more consistent analysis up-
date. This approach seems promising for handling modest deviations from
Gaussianity in the predicted ensemble.

Lisæter et al. (2003) present the first application of the EnKF, or any ad-
vanced data assimilation system, with a coupled ice-ocean general circulation
model for assimilation of sea-ice concentration data. The results of the study
are positive and it is concluded that the assimilation of the sea-ice concentra-
tions have a positive impact on the evolution of the Arctic ocean and sea-ice.
The study yields an improved understanding of seasonally dependent corre-
lations between ice and ocean variables and it is clear that a simple OI based
assimilation scheme can not properly handle this problem.

Evensen (2003) reviews the EnKF and introduce a new notation or formu-
lation of the method in the ensemble space. The paper discuss issues related
to the formulation of red model noise, the computation of an efficient local
analysis, and the assimilation of non-synoptic and nonlinear measurements.
It further, reformulates the EnKS in the new ensemble notation and presents
an ensemble optimal interpolation (EnOI) scheme. The use of the EnKF and
EnKS for parameter and bias estimation is illustrated. Much focus is given
to the practical implementation of the analysis scheme, and an efficient but
approximate algorithm is presented that is correct for large ensemble sizes
and small number of measurements. The algorithm is later shown to perform
poorly for large number of measurements by Kepert (2004), and better algo-
rithms where this approximation is avoided is proposed by Evensen (2004).

Zang and Malanotte-Rizzoli (2003) compare an implementation of a re-
duced rank extended Kalman filter with the EnKF. The model is a quasi-
geostrophic ocean model, which dependent on a viscosity parameter exhibit
various degrees of nonlinearity. It was found that the EnKF can handle both
the strongly and weakly nonlinear cases, while the reduced rank extended
Kalman filter only workes well with the nearly linear model.

Lorentzen et al. (2003) use the EnKF for parameter estimation in a two-
phase flow reservoir model. It is shown that the tuning of parameters using
the EnKF results in more consistent solutions from the reservoir model.
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Nævdal et al. (2003) continue the development of the EnKF for estimation
of permeability fields in a reservoir model, and found that the EnKF can
handle large parameter sets with promising results.

Kivman (2003) uses the EnKF for sequential parameter estimation in the
nonlinear and stochastic Lorenz system. Results are compared with the se-
quential importance resampling filter (SIR) which is shown to perform better
than the EnKF in this case. This improvement can be expected since the SIR
solves the full Bayesian update problem without any linearizations, but on
the other hand it cannot easily handle models with large state spaces where
huge ensemble sizes may be needed.

van Leeuwen (2003) uses a sequential importance resampling filter (SIR)
with the Korteweg-De Vries equation and compares results with the EnKF.
It is found that the SIR can handle the nonlinearity better than the EnKF.
In fact the linear analysis in the EnKF sometimes produce slightly negative
values for some of the ensemble members, which causes the model to go un-
stable. This instability may be avoided by including a numerical correction
on the updated results. Still the general conclusion that the SIR will better
handle nonlinear or non-Gaussian distributions, is valid, but at the expense
of integrating a much larger ensemble.

Snyder and Zhang (2003) use the EnKF to assimilate simulated Doppler
radar observations of radial velocity in a nonhydrostatic, cloud scale model.
The results suggest that the EnKF can handle the nonlinearities in the dy-
namics of moist convection.

Crow and Wood (2003) examine the EnKF for assimilation of remotely
sensed observations of surface brightness temperature in a land surface moist
model. Even though the distributions are characterized by skewness it is con-
cluded that the EnKF results in improved estimates.

Anderson (2003) discusses different ensemble Kalman filters and in partic-
ular presents a local least squares framework for ensemble filtering that leads
to an efficient two step update procedure, consisting of the computation of
the update increments followed by the ensemble member update. Relations to
Bayesian estimation and some nonlinear filters are also discussed.

Tippett et al. (2003) summarize the square root filters developed by Bishop
et al. (2001), Anderson (2001) and Whitaker and Hamill (2002).

Wang and Bishop (2003) compare forecast schemes based on a breeding
technique and an EnKF (ensemble transform Kalman filter, ETKF) and find
that the EnKF based forecasts outperform the breeding forecasts. In addi-
tion, they propose to estimate a covariance inflation based on the sequence of
innovation statistics.

Kepert (2004) discusses the approximate analysis scheme from Evensen
(2003) and the use of a low-rank representation of the measurement error
covariance matrix. It is clearly pointed out that the analysis scheme from
Evensen (2003) perform poorly with large number of measurements. Further,
the use of a low-rank representation of the measurement error covariance
matrix may lead to a loss of rank in the ensemble during the update step.
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Evensen (2004) introduce a new square root implementation of the EnKF.
The one-sided scheme (13.8) was derived as in Chap. 13, but it was not realized
that the symmetrical square root should be used to avoid the bias in the mean
and the representation of variance by a few outliers. These problems were
partially fixed by applying a randomization step. Thus we refer to Chap. 13
for an upated and consistent derivation of the square root scheme. In addition,
a sub-space pseudo inversion algorithm is introduced that significantly reduce
the computational cost when many observations are used. It is also shown
that the problems using a low rank measurement error covariance matrix, as
pointed out by Kepert (2004), can be avoided by ensuring that the low rank
measurement error covariance matrix is fully contained in the space defined
by the measurement of the ensemble perturbations, i.e. the matrix S. See also
the discussion in Chap. 14 on this issue.

Lawson and Hansen (2004) compare deterministic ensemble filters, i.e.
square root filters without randomization, with stochastic ensemble filters
like the traditional EnKF with measurement perturbations. They identified
some problems with the deterministic filters that gave updated ensembles with
rather poor properties, in particular when using large ensemble sizes.

Annan and Hargreaves (2004) discuss an application of the EnKF for pa-
rameter estimation in the Lorenz model. The estimation is performed in a
climatological sense, to produce a model with the correct climatology.

Ott et al. (2004) provide an extended discussion on the use of the local
analysis computation from Evensen (2003).

Hunt et al. (2004) elaborate further on the use on non-synoptic measure-
ments as is discussed in Evensen (2003), and point out that the EnKF can
easily be used to consistently assimilate measurements taken at times differing
from the actual analysis time. This is particularly useful when assimilating a
stream of data with high frequency in time.

Zou and Ghanem (2004) discuss the use of the EnKF for multi-scale data
assimilation, which relates to the assimilation of measurements of processes
with different scales.

Nohara and Tanaka (2004) use the EnKF to update the forecast ensemble
in atmospheric ensemble predictions.

Dowell et al. (2004) extend the work by Snyder and Zhang (2003) to as-
similate real observations from Doppler radar in a supercell storm event. They
study the impact of the choice of initial ensemble and localization in the EnKF
and obtain acceptable results.

Gu and Oliver (2004) examine the EnKF for combined parameter and
state estimation in a standardized reservoir test case. They obtain promising
results using a fairly small ensemble size but also point out several issues for
further investigation.

Annan et al. (2005) perform another parameter estimation study, using
the EnKF an intermediate complexity atmospheric general circulation model,
with the objective of tuning the model climatology. It is concluded that the



286 B Crononogical listing of EnKF publications

EnKF provides a promising alternative to traditional Bayesian sampling meth-
ods and it can handle the curse of dimensionality.

Nerger et al. (2005) compare the EnKF in its traditional implementation
with the singular evolutive extended Kalman filter (SEEK) from Pham et al.
(1998), and the more sophisticated singular evolutive interpolated Kalman
filter (SEIK) by Pham (2001). It should be noted that the EnKF with im-
proved sampling as discussed in Chap. 11 will have similar properties and
computational cost as the SEIK filter. Further, with the new subspace inver-
sion schemes the analysis in the EnKF will be computationally more efficient
than the SEIK, and it also handles a non-diagonal measurement error covari-
ance matrix.

Caya et al. (2005) compare the EnKF with 4DVAR for radar data assim-
ilation in an atmospheric general circulation model. Simulated data are used,
and several aspects of the EnKF versus 4DVAR are discussed.

Hacker and Snyder (2005) use the EnKF for assimilation of surface obser-
vations in a 1D atmospheric planetary boundary layer model. Results show
that the simulated observations can be assimilated by the EnKF, and they
effectively constrain the evolution of the model.

Zhang et al. (2005) examine the possibilities of applying an ensemble
Kalman filter with a global ocean circulation model used for ENSO fore-
casting. They find that the EnKF based predictions appear to improve upon
previous 3DVAR results.

Hamill and Whitaker (2005) study how to account for model errors re-
lated to unresolved scales in a dynamical model. Parameterizations such as
covariance inflation and additive errors are examined.

Leeuwenburgh (2005) assimilates simulated along-track radar altimeter
data into an ocean general circulation model for the tropical Pacific, to ex-
amine how well the subsurface dynamics are recovered from surface measure-
ments. The assimilation of altimeter data using the EnKF shows a positive
impact and it is concluded that it might lead to improved ENSO forecasts.

Houtekamer et al. (2005) further discuss their implementation of the EnKF
in a near operational setting and compare its performance with the 4DVAR
implementation. They conclude that operationally interesting results can be
obtained with the EnKF using an ensemble of moderate size and the current
development will continue.

Moradkhani et al. (2005) discuss a dual state-parameter estimation prob-
lem in hydrological models using the EnKF. It is concluded that their method
is a useful alternative to traditional parameter estimation methods.

Gao and Reynolds (2005) compare the EnKF with another method named
randomized maximum likelihood. They use the same reservoir example as
Gu and Oliver (2004), and point out certain similarities between the methods.

Liu and Oliver (2005a,b) examine the EnKF for facies estimation in a
reservoir simulation model. This problem is highly nonlinear and the reservoir
consists of sand and shale classes of vastly different porosity and permeability.
Thus, the pdf for the petro-physical parameters will be multi-modal, and it is
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not clear how the EnKF can handle this nonlinearity. A method is used, where
the facies distribution for each ensemble member is represented by two normal
distributed Gaussian fields, using a method named truncated pluri-Gaussian
simulation (Lantuéjoul , 2002).

Wen and Chen (2005) provide another discussion on the use of EnKF for
estimation of the permeability field in a two dimensional reservoir simulation
model, and they also examine the impact of ensemble size in their experiments.

Lorentzen et al. (2005) provide another example where the EnKF is ap-
plied with the model from Gu and Oliver (2004), and they focus on the sta-
bility of the results with respect to the choice of initial ensemble.

Skjervheim et al. (2005) use the EnKF to assimilate 4D seismic data. It
is shown that the EnKF can handle the large seismic data sets and that a
positive impact can be found despite a high noise level in the data.

Zafari and Reynolds (2005) use simple but highly nonlinear models to ex-
amine the validity of the linear update scheme used by the EnKF. They con-
clude that the EnKF has problems with multimodal distributions where the
mean is not a good estimator, but on the other hand obtain reasonable results
with a less nonlinear but more realistic reservoir model. They also show that
the rerun algorithm proposed by Wen and Chen (2005) is inconsistent and
should not be used.

Szunyogh et al. (2005) examine an implementation of a local EnKF with a
state-of-the-art operational numerical weather prediction model using simu-
lated measurements. It is shown that a modest sized ensemble of 40 members
can track the evolution of the atmospheric state with high accuracy.

Keppenne et al. (2005) introduce a bias correction in scheme in the EnKF.
They add a variable for the bias which is estimated online along with the
model state and show that this makes it possible to correct for systematic
model errors.

Houtekamer and Mitchell (2005) describe the implementation of the EnKF
us at the Canadian Meteorological Centre and demonstrates that the EnKF
can be used for operational atmospheric data assimilation. The paper also
provides an enlightening review of the EnKF and its properties. In particular
there is an interesting discussion related to localization and sampling errors.

Eben et al. (2005) use the EnKF to update a model of tropospheric ozone
concentrations and to compute short term air quality forecasts. They find that
the EnKF updated estimates provide improved initial conditions and lead to
better forecasts of the next day’s ozone concentration maxima.

Baek et al. (2006) dicuss different approaches for introucing the estimation
of bias using an EnKF and they obtain good results dependent on the quality
of the parameterization used for the bias.

Mendoza et al. (2006) examine the EnKF in a magneto-hydrodynamic
model for space weather prediction and obtain good estimates of the dynamics
of the system.

Zhou et al. (2007) examine the performance of the EnKF in a land surface
data assimilation experiment. The results are compared with a more sophis-
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ticated sequential importance resampling (SIR) filter, and it is found that
for the problem studied the EnKF performs almost as well as the SIR filter.
Furthermore, it is emphasized that the EnKF will lead to scewed and even
multimodal distribution dispite the normality assumption imposed when com-
puting the analysis updates. The overall conclusion is that the EnKF provides
surprisingly good performance in the land surface application, both with re-
spect to the representation of nonnormal distributional properties as well as
its ability to provide a accurate conditional means.

Torres et al. (2006) use the EnKF in application with the ERSEM ecosys-
tem model. They use the EnKF on transformed variables as in Bertino et al.
(2003), which they found to improve the results.

Anderson (2007b) introduces a hierarchical approach using several small
ensembles to explore the need for using localization in the analysis. The
method uses a Monte Carlo method based on an ensemble of ensemble Kalman
filters for assesing the sampling errors and the spurious correlations resulting
from a small ensemble.

Bishop and Hodyss (2007) propose an alternative localization method
based on the online computation of a flow dependent moderation function
that is used to damp long range and spurious correlations. The method is
named SENCORP for “smoothed ensemble correlations raised to a power”.
The idea is that the moderation functions can be generated from a smoothed
covariance function that when raised to a power dampes small correlations.
The resulting moderation functions appearently work quite well in the exper-
iment presented in the paper.

Anderson (2007a) presents an adaptive algorithm for estimation of an in-
flation parameter. The method is based on augmenting the inflation parameter
to the model state where it is updated as a parameter in the EnKF analy-
ses computations. The method leads to an improvement of the results of an
assimilation experiment.

Hunt et al. (2007) give a detailed review of the implementation of the “lo-
cal ensemble transform Kalman filter”. The derivation of the analysis equa-
tions and the numerical implementation differs somewhat from what has been
described in the previous chapters, but provide interesting and efficient alter-
natives.

Fertig et al. (2006) compare a 4D-VAR implementation with an EnKF,
assimilating asynchroneous observations. The two methods provide results
with similar errors dependent on the choices of assimilation time window and
update frequency.

Fertig et al. (2007) propose a local analysis method that handles measure-
ments that are integral parameters of the model state. The idea is that the
covariance matrix of the predicted measurements is computed globally us-
ing the full model state, while the updates are computed locally grid-point
by grid-point, and only the measurements which have significant correlations
with the model variables in the local grid-point are assimilated. This some-
what relates to the SENCORP algorithm by Bishop and Hodyss (2007) which
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uses moderation functions based on the predicted covariances to reduce the
measurement impact in areas and for variables not significantly correlated to
the data.

Szunyogh et al. (2008) discuss in detail the implementation of a local en-
semble transform Kalman filter with the NCEP global model. They conclude
that the accuracy of the method is competitive with operational algorithms
and it can efficiently handle large number of measurements.

Khare et al. (2008) study the EnKS with a high dimensional atmospheric
circulation model. They discuss the impact of spurious correlations related to
the lag time in a lagged EnKS, pointing out that the lagged implementation
serves as an important localization in time. Successful experiments indicate
that the EnKS has a potential for ranalysis computations.

Whitaker et al. (2008) compare an implementation of the EnKF with the
operational NCEP global data assimilation system (GDAS). The ensemble
data assimilation system outperforms a reduced-resolution version of the op-
erational 3DVAR data assimilation system. In particular the improvement is
strong in data sparse regions. They also introduce an interesting observation
thinning algorithm where observations with little information content (do not
lead to significant variance reduction) are filtered out. In particular the thin-
ning algorithm improves the analysis when there are unaccounted-for error
correlations between nearby observations. The need for the thinning is elimi-
nated if the error correlations are properly specified in the measurement error
covariance matrix.

Fertig et al. (2008) demonstrate that it is possible to esitmate and correct
for observation biases using an EnKF. The bias in satellite radiance observa-
tions is augmented to the model state and estimated online, and the estimated
bias parameters significantly reduces the analysis errors as well as the observa-
tion bias. An inflation parameter is used to prevent the bias ensemble spread
to collapse due to spurious correlations resulting from the use of a limited
number of ensemble members.

Wan et al. (2008) examine the initialization of an EnKF for a HYCOM
model of the Pacific Ocean using different horizontal correlation lengths. They
perturb the 3-dimensional thicknesses of density layers and the 3D tempera-
ture in the ocean mixed layer.

Zheng and Zhu (2008) use the EnKF in an intermediate coupled atmosphere-
ocean ENSO forecast model, assimilating realistic sea level anomalies and sea
surface temperatures. They focus on the design of balanced model errors.

Lin et al. (2008a) use the EnKF with a realistic dust transport model for
Northern China and validated the results against independent observations.
A large inflation factor is used to maintain the ensemble spread.

Lin et al. (2008b) use the EnKF with a model bias correction following
Lin et al. (2008a). The bias correction is a state-augmentation parameter es-
timation for the emissions and surface stress.

Livings et al. (2008) provide an extensive theoretical discussion of the for-
mulation and properties of square root filters.
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Sakov and Oke (2008) gives a similar and parallel discussion to Livings et al.
(2008) on the square root filters. These two papers are a ”must read” for ev-
eryone working with square root filters.

Sacher and Bartello (2008) discuss the sampling errors in EnKF and pro-
poses an analytical expression for the optimal covariance inflation method
which depends on the Kalman gain, the analyzed variance, and the number
of realizations.

Li et al. (2009) study the online estimation of the inflation parameter in
the EnKF and simultanously estimate the observation errors. They find that
the estimation of inflation alone does not work appropriately without accurate
observation error statistics, and vice versa.

Zupanski et al. (2008) discuss a maximum likelihood Ensemble filter that
may better handle nonlinear measurement operators by minimizing the cost
function for each analysis step rather than solving the standard EnKF update
equations.

Anderson (2009a) proposes a method for adaptively estimating a spatially
and temporally varying inflation parameter using a Bayesian algorithm. The
algorithm is recursive and updates the inflation parameter with time.

A special issue on ensemble methods in IEEE Control Systems Magazine
reviews state of the art for the EnKF. The issue provides four EnKF papers.
In Lakshmivarahan and Stensrud (2009) the focus is on using the EnKF in
meteorological applications, Mandel et al. (2009) uses EnKF in wild-land fire
models, Anderson (2009b) studies different EnKF formulations and Evensen
(2009) provides a tutorial and review of the EnKF.

B.2 Other ensemble based filters

The EnKF can also be related to some other sequential filters such as the
singular evolutive extended Kalman (SEEK) filter by Pham et al. (1998),
Brasseur et al. (1999), Carmillet et al. (2001) (see also Brusdal et al., 2003,
Nerger et al., 2005, for a comparison of the SEEK and the EnKF); the re-
duced rank square root (RRSQRT) filter by Verlaan and Heemink (2001); and
error subspace statistical estimation (ESSE) by Lermusiaux and Robinson
(1999a,b) and Lermusiaux (2001) that can be interpreted as an EnKF where
the analysis is computed in the space spanned by the EOFs of the ensemble.

B.3 Ensemble smoothers

Some publications have focussed on the extension of the EnKF to a smoother.
The first formulation was given by van Leeuwen and Evensen (1996) who
introduced the ensemble smoother (ES). This method has later been ex-
amined in Evensen (1997) with the Lorenz attractor; applied with a QG
model to find a steady mean flow by van Leeuwen (1999a) and for the
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time dependent problem in van Leeuwen (2001); and for fish stock assess-
ment by Grønnevik and Evensen (2001). Evensen and van Leeuwen (2000)
re-examined the smoother formulation and derived a new algorithm with bet-
ter properties named the ensemble Kalman smoother (EnKS). This method
has also been examined in Grønnevik and Evensen (2001) and Brusdal et al.
(2003), and more recently by Khare et al. (2008)

B.4 Ensemble methods for parameter estimation

There are now several publications discussing the potential of using the
EnKF for parameter estimation. We refer to Evensen (2003) which out-
lines how the model state can be augmented with a set of poorly known
parameters, and the joint model state and parameters are then updated si-
multaneously. Applications of the EnKF for parameter estimation include,
Nævdal et al. (2002), Lorentzen et al. (2003), Kivman (2003), Nævdal et al.
(2003), Annan and Hargreaves (2004), Gu and Oliver (2004), Annan et al.
(2005), Moradkhani et al. (2005), Lorentzen et al. (2005), Gao and Reynolds
(2005), Wen and Chen (2005), Liu and Oliver (2005a,b), Skjervheim et al.
(2005), and Zafari and Reynolds (2005).

B.5 Nonlinear filters and smoothers

Another extension of the EnKF relates to the derivation of an efficient method
for solving the nonlinear filtering problem, i.e. taking non-Gaussian contribu-
tions in the predicted error statistics into account when computing the anal-
ysis. These are discarded in the EnKF (see Evensen and van Leeuwen, 2000),
and a fully nonlinear filter is expected to improve the results when used with
nonlinear dynamical models with multimodal behaviour where the predicted
error statistics is far from Gaussian. Implementations of nonlinear filters in the
assimilation community have been based on either kernel approximations or
particle interpretations, e.g. see Miller et al. (1999), Anderson and Anderson
(1999a), Pham (2001), Miller and Ehret (2002) and van Leeuwen (2003). See
also the particle filter web page

http://www-sigproc.eng.cam.ac.uk/smc,

which contains a number of references to people and publications relevant
to sequential Monte Carlo Methods and particle filtering. More research is
needed before these can claimed to be practical for realistic high dimensional
systems.
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transmissibility, 266
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variance, 8, 10
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