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Editors’ Preface 


Disease mapping and risk assessment is now a major focus of interest in the area of public 
health. The geographical distribution of the incidence o f disease has a n  important role to 
play in the development of understanding the origins and causes of many diseases, and its 
role should not be underestimated. One of the earliest examples of the important role of 
geographical analysis of disease was the analysis of cholera outbreaks in the east and 
of London by John Snow in 1854. Snow constructed maps of the locations of cholera 
deaths and noted the particular elevated incidence around the Broad Street water 
pump, a source of water supply for the local area. Subsequently the local water com- 
pany was tasked with improving the supply quality. More recent examples of the use 
of geographical analysis can be found. The incidence of asbestos-related lung cancer 
amongst shipyard workers in Georgia, USA, was established by large-scale comparative 
mapping of the geographical distribution of the disease. Only once the mapped incidence 
had been examined did the link between shipyard employment and asbestos exposure 
risk become established. More recently, outbreaks of asthma in areas of Barcelona during 
the 1980s have been traced by geographical analysis to the unloading of soybean cargo 
in Barcelona harbour. Some examples of geographical analysis of clusters are provided 
later in this book. 

Besides the application of a geographical approach to the assessment of local excesses 
of disease incidence, there are now many branches in the study of geographical distri- 
bution of disease incidence. These branches reflect the varied needs of public health 
analysts and epidemiologists in their quest for the assessment of disease aetiology and 
the relationship between disease and factors contributing to its occurrence. First of all, 
there is a need to produce accurate maps of disease incidence sothat map-users can, with 
confidence, assess the true underlying distribution of disease. This branch of the subject 
is usually termed disease mapping, and there is now an  established range of methods 
which address this area of concern. Part I of this volume contains a range of contri- 
butions which focus on this subject area. Second, assessment of local aggregations of 
disease on maps is usually termed disease clustering, and this has become an important 
area of concern for public health. Part I1 of this volume provides a range of contri-
butions which assess the variety of methods currently available to deal with these 
problems. 

The assessment of the relations between disease incidence and variables or factors 
which could affect that incidence is the subject of spatial regression and ecological 
analysis. This subject area encompasses the situation where explanatory variables are 
measured at spatial locations or averaged over areas and are to be related to the distri- 
bution of the disease of interest. Ecological analysis usually also involves the problem 



xiv Editors'Preface 

of matching disease incidence given at one resolution level to variables possibly only 
available at aggregated levels of resolution. Part I11 of this volume focuses on issues 
related to this aspect. Health risk assessment around specific known putative (supposed) 
locations of hazard is now of considerable importance due to public demands on local 
health authorities to assess such risks. The highly publicised studies of the incidence of 
childhood leukaemia around nuclear facilities in the United Kingdom and more recently 
in France, are particular examples of such types of study. These studies represent a form 
of clustering study involving ecological analysis where the location centre is known and 
emphasis is placed on the exposure modelling around the putative source. Part IVof this 
volume focuses on methods which can be applied in these types of study. Finally, PartVof 
the volume focuses on a range of case studies on the application of methods to particular 
problems in analysis of the distribution of disease over geographical regions and their 
possible use for public health decision making. 

This book has arisen from a major initiative of the European Union within the Biomed 
2 programme of the 4th framework on Disease Mapping and Risk Assessment (contract 
number: BHM4-CT96-0633), in conjunction with the Rome Division of the European 
Center for Environment and Health, World Health Organisation (WHO), Regional Office 
for Europe. The culmination of this initiative was a WHO workshop which took place in 
October 1997 in Rome on Disease Mapping and Risk Assessment for Public Health 
Decision Making. This book follows from the ideas and contributions discussed during 
the workshop and it is hoped that it will form a marker of the state of the subject area at 
that time. The final report of the workshop appears as an appendix to this book. 

Andrew B. Lawson (Aberdeen) 
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18 Bayesian approaches to disease mapping 

Figure 2.1 (i‘ontirzued) 

from 0.15 for ‘departement’ 47 to 2.42 for ‘departement’ 48, which has the smallest 
population size and expected number of deaths. The five lowest SMRs and the five high- 
est are presented in Table 2.2. 

The standard errors of the SMRs range from 0.118 for ‘departement’ 42 to 1.212 for 
‘departement’ 48 (Table 2.2) which has the smallest population, tenfold smaller than 
‘departement’ 42. Ninety-five percent confidence intervals based on Poisson distribution 
that exclude unity are presented in Table 2.2. Testis cancer being vary rare in France, the 
problem of the interpretation of the variations shown on the map of SMRs (Figure 
2.2(a)) is emphasised. For instance, two (09,48) of the six ‘departements’ coloured in 
black have SMRs not significantly different from unity, and two (32.55)of the five ‘depar- 
tements’coloured in white have SMRs not significantly different from unity (Table 2.2) 
because they are based on very small populations. 

Actually, for a rare disease and small areas, since individual risks are heterogeneous 
within each area, the variability of the average risk of the area exceeds that expected 
from a Poisson distribution. Extra-Poisson variation can be accommodated by allowing 
relative risks to vary within each area. Bayesian methods can be used for this, giving 
smoothed estimates of relative risks. Indeed, even if the SMR is the best estimate of the 
rate, for each area considered in isolation, Bayesian rules produce sets of estimates 
having smaller squared-errors loss (when 11 2 3 ) than the set of SMRs. 
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Disease Mapping 

andIts Uses 

Andrew B. Lawson 

Uni\?ersit l j  of A berdecvi 

1.1 INTRODUCTION 

The representation and analysis of maps of disease incidence data is now established as 
a basic tool in the analysis of regional public health. The development of methods for 
mapping disease incidence has progressed considerably in recent years. 

One of the earliest examples of disease mapping is the map of the addresses of cholera 
victims related to the locations of water supplies, by John Snow in 1854 (Snow, 1854).In 
that case, the street addresses of victims were recorded and their proximity to putative 
pollution sources (water supply pumps) was assessed. 

The uses made of maps of disease incidence are many and various. Disease maps can 
be used to assess the need for geographical variation in health resource allocation, or 
could be useful in research studies of the relation of incidence to explanatory variables. 
In the first case, the purpose of mapping is to produce a map’clean’of any random noise 

Disfasf Mapping clnd Risk Assfssrtimt for Public Hfcl l t l i .  Edited byA.B. I,a.tvsonc’t d. 
(. 1999JohnUl ley  & Sons Ltd. 



4 Review of disease mapp ing  and  its iises 

atid atiy artclacts of population iwiation. 'l'his can be iichieiwi by ii variety of'tiiciins. In 
t lit. sthcyotid c'iise. specific hypotheses concerning incidetict~ are to bc a s s e s s t d  and acidi- 
tional itit'orniation inc*luded in the analysis (for example, c*oirariates). 'I'he first approac*h 
is close. 10 iniage processing, an t i  the second approach c ' i in  be regardcd iis ii spatial 
regrcbssioti approach. 'I'his latter area is sometimes termed 'ec*ological atialj*sis' atid 
itic.1udc.s t he atiiilysis of the relationship betiveen inc.idetic*e and explanatory \.;iri;ihles, 
it , t i ic*li  are available at a n  aggregated level. 'I'his includes the area of' the analysis 01' 
p i i t a t i i ~ ~sourccs of hetilt h hazard and  ii more gcsneral analj~sisof' thc rclat ion o !  diseiisc 
i t ic- i c i cnc*e to ex pla natory covar iates. 

'I'he types of data that arise in niapping exercises ciiti vary froni the locations ( u s u a l l ~ ~  
rc~id t~ t i t i a l )of' c'ases of disease, to counts of disease Ivit hin small archiis (e.g. c'ensus 
t rac ' ts~,atid cwiild involve functions of their distribution (e.g.ratcs o r  relati\ye risks). fhc.11 

c i a t a  type requires the choice of' ii geographic resolution or sc-aletit which the map is to 
bt. c.otistruc.tcd. This choicse inay be t'orc-ed on the analyst by existing geographic bound- 
iiriths, ot- c*an be Irccly detined by the purposc of' the mapping exercise. For esample, i i  

stud!. of' disease itic,idencc avithin the area of' ii toavn will, per force, 1iin.e the tonrti 
liinits a s  its boundary. tIonw.er, when ii  free c-hoice is a\vailable the anali\.st must niakth 
i i  triirttwfl'bt~tween resolution of'thc data and the precision of'mcasurenwnt. Study iireii 

dc\igti i5 disc-ussed tnorc fully by I , ; i \ t w n  and coworkers (I .anwti,  IWXb: I,mwn and 
\\';iller, 19%). I t '  rates o r  rclative risks ;ire to be mapped then there is ii  need to c.tioosc1 i i  

ret'ct - c b  11c * c  t b  'c' pe L*t ed rii t t' or c*()t i i  p a  r i sot i  gr()up. 'I'h ese d ii t ii inU s t be gcv )grliiph i c-ii11.1 ii 11d 
tc~niporalljr c*onf'orniable, o r  ii  statistical model Lvi11 be needed to  allo\t, correc.t tiiatching 
ot' clspec-ted to observed data. 1lvc.n i f '  the data art' c*onforniablc, niodcls are effective in 
s t ii ( ()t h i t ig geogriiph ic* ~ ~ t ir i iit ion . Ad j U st tile n t s for age (1r gender, f'() r clx ii  t i i  p I e. c*ii n be 
iic.c.otnplishtd by pre-processing the data or  bj' building such factors into t he model. 

I ti [\,hat follo\t~save attetiipt to re\.ieLv ii avide range of' issues related to c*iirrcbnt d e \ v  
lopnicbnts in disease mapping. In other chapters of' this \.olunitl there lire esatnples of 
the applic-ation of' mapping met hods. I t i  particular, detailed discussions of lkiyesiati 
atid timpiric.al kiyesiiiti niethods tire proirided by Illollik in ('Iiaptcr 2, and sotiic' tieuw- 
nict hodologics are esamined in C'hapters 3 -5. Edge cffecsts are cxatiiined in c'haptct- 6. 
,\ c.:iht' .;t iidy of' t tit. iist' of' diseasc. niapping in applic*ation to lung c'aiic-ct- in \iv)riieti is 
pro\.ided in ('hapter 32. 

1.2 SIMPLE STATISTICAL REPRESENTATION 

' l ' l i c ~rcpresc~ntation of disease incidcnce data can 1w-y frotn simple point maps for c-iises. 
and pic-torial representation ot' counts within tracts, to the mapping of' estiniates from 
cwtiiplex niodcls purporting to describe the structure of' the disease e"eiits. In the 101-
Iojt itig wctions LVC desc-ribe the range of mupping methods froin simple reprcsc~titatioti 
to tiiodel-based f'ortiis. Figure 1.1 displays ii typical example of thy type of datt t  coiiimonlj. 
t'outid in discase mapping studies. In this example t he address locations of cases are 
not :i\riiiliitde and t tic count of cases  within census tracts ;ire portrayed on the map. 

' h ~ otutidamental forms of data are usually found in these studirs. k'irst, the 
rvsidtlnt ial addrtwes of' c-iises of ii disease of interest a rc  available. In this case, ~ v e;ire 
cwticx~rticdabout thtx analysis of the coordinate locations of events. Note that t tic use of 
rt~sidc~tititillot-ation ;IS ii  factor in disease risk must be evaluated in any applicxtioti. 
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Figure 1.1 Falkirk, central Scotland: counts of respiratory cancer cases within census tracts for 
a fixed time period 

Alternative exposure locations, such as  workplace, may be more relevant in some dis- 
ease studies. The second form of data, which is more commonly encountered, is the tract 
count, where small areas of a region (tracts) are the basis for aggregating the case 
events into counts. In this case the exact residential locations are unknown. These 
data are often more readily available as the use of case addresses may be restricted due 
to medical confidentiality. Figure 1.1is a n  example of the latter data type. 

1.2.1 Standardised mortality/morbidity ratios and standardisation 

To assess the status of a n  area with respect to disease incidence it is convenient to 
attempt to first assess what disease incidence should be locally 'expected' in the area 
and then to compare the observed incidence with the 'expected' incidence. This 
approach has been traditionally used for the analysis of counts within tracts and can 
also be applied to case event maps. 

Case events 

Case events can be mapped as a map of point event locations. Define a realisation of i r ~  

case locations in a study window M! as {xi},i = 1,.. . , in. For the purposes of assess- 
ment of differences in local disease risk it is appropriate to convert these locations into 
a continuous surface describing the spatial variation in intmsit!j of the cases. Once this 
surface is computed then a measure of local variation is available at any spatial location 
within the observation window. Denote the intensity surface as X(x), where x is a spa- 
tial location. This surface can be formally defined as the first-order intensity of a point 
process on !N (see, for example, Lawson and Waller, 1996). This surface can be estimated 
by a variety of methods including density estimation (Hiirdle, 1991). 
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Siric-et he case’ eLwits oc-c-~irwithin a population that is spatially varying in its densitb. 
atid c-omposition,i t  is iniportant to niakc s0111e allowance Lvithin any study for this w r -  
iat ion. This population can  be ternied the ’at risk’ p o p i i l u l i o i i  or / i i w k ~ g r o u i ~ i I .  provide a n‘1‘0 
cast iriiate of t h e  ‘at risk’ population at spatial locations, i t  is neccssary to first c*lioosc~ ii 


nieiisurt~t hiit will represent the intensity of cases ’expected’at suc*hlocations. 1)efinethis 
nic~iix~ire x). ‘I’wopossibilities can  be explored. First, it is possible to obtain rates for iis !I( 
I lie c-ase disease from either the whole study window or ii larger enclosing region. 
l’sua11y these rates a re  available only aggregated into larger regions (e.g. census tracts). 
‘I’herates iirc obtained for U range of siibpopulation categories ivhich arc’ t hought to 
i i f f c ~ tt lit. c-ase disease incidence. For exainple. the age a n d  sex structure ot’ the popula- 
tion or the deprivation status of the area (see,for example, C’arstairs, 1981)coiild a f f c c - t  
t hc. aniount of population ’at risk’ from the case disease. ’I’heuse of siicli external rates is 
o f te~i  c.allcd ’c~iternal standardisation’ (Inskip fJt irl . ,  Ic)X3). Rates computed within w n -
h i i s  trac-ts~vi11be smoother than  those bwed 011 density estimation of case cb \wi t s ,  due to 
t lie iiggrcyqite le id  at which the rates art’ collected. A n  alternative met hod of assessing 
tlie’at risk’ population structure is to use a case eirent m a p  o f a  disease ivhich represents 
t lit. bac*hgroiind population but is not affected by the aetiologic~il processes of interest in 
the c- i i sc~disease. f:or t~sarnplc,[lie spatial distribution of coronary heart disease (CHI)I 
c o ~ i l c iproi,idcl ;I r‘oiitrol reprcwntat ion tor respiratorji c~;incer when the L i t  ter is the c i i w  

dist.asc in ii study of air polliition effects, iis (’H1) is less closelj~related to air pollution 
irislilt. Il‘hile exact matt-hirig of diseases in this tvay will i i l ~ u j ~ sbe diffic.ii11, there is a n  
ati\~ant;igc~in the use of c*ontrol diseases in case event examples. If ii realisation of thr. 
c*o~itroldisease is available in the form of ii point event map, then i t  is possible to also 
cwinputc i i n  estiniate of the first-order intensity of the control disease. This estimate 
c ’ i in  then be used to c-ompurethe intensity of case events with the intensity of‘the bac.1~-
ground. 

‘I’liec-oniparison olestiniates of A (  x )  and g(x )  c a n  he 1iiade in ii iyariety 01’~viiys.f:irst, i t  
is p o s h i b l t .  to niap I he ratio form: 

(secb. tor esairiple, Hithell, 1990; fklsall and  Diggle. 1995; Iiitvson and \2’iIliiinis, 1993). 
, \part froni ratio fornis i t  is also possible to map transforniutions of ratios (e.g. log 

K ( x 1 1 or to map 

(1 .2 )  

In all the a b o i ~approaches t o  the niapping of case event data some smoothing or 
intc~rpolation o t  the event or control data has to be made and the optimal choice. of 
snioot hing is 0 1  cwnsiderable iniportance given that tLvo tunctions iire being estimated. 
I t  is a l s o  possible to directly estimate K ( x )or I )  ( x )  (Kelsall and Diggle, 19951. 

Tmrt corints 

;\s in the analysis of case events, i t  is ~ i s u a lto assess maps of count data  b ~ ,comparison 
of the obseriwi counts with those counts ‘expected’ to arise given the tracts’ ‘at risk‘ 
population structure. ‘I’raclition~illy, the ratio of observed to expected cwiints within 
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tracts is called a Standardised MortalitylMorbidity Ratio (SMR) and this ratio is an esti- 
mate of relative risk within each tract (i.e. the ratio describes the relative risk of being in 
the disease group rather than the background group). The justification for the use of 
SMRs can be supported by the analysis of likelihood models with multiplicative 
expected risk (see, for example, Breslow and Day, 1987). 

Define 0 ,  as the observed count of the case disease in the ith tract, and e, as 
the expected count within the same tract. Then the SMK is defined as 

( 1 . 3 )  

The alternative measure of relation between observed and expected counts, which is 
related to an additive risk model, is the difference 

In both cases the comments made above about mapping counts within tracts apply. In 
this case it must be decided whether to express the R ior D , as fill patterns in each region 
or across regions, or to locate the result at some specified tract location. such as the 
centroid. If it is decided that these measures should be regarded as continuous across 
regions, then some further interpolation of R ior Dj must be made (see, for example, 
Breslow and Day, 1987, pp. 198-199). 

1.2.2 Interpolation and smoothing 

In many of the mapping approaches mentioned above, use must be made of interpola- 
tion methods to provide estimates of a surface measure at locations where there are no 
observations. Smoothing of SMRs has been advocated by Breslow and Day (1987). Those 
authors employ kernel smoothing to interpolate the surface (in a temporal application). 
One advantage of such smoothing is that the method preserves the positivity condition 
of SMRs: that is, the method does not produce negative interpolants. Geostatistical 
smoothing methods such as Kriging (Carrat and Valleron, 1992), which are designed to 
provide interpolation and prediction of continuous surfaces, do not preserve positivity, 
at least in their standard form. Kriging can be generalised to non-Gaussian models such 
as the lognormal, or applied to log transformed observations, thus assuring non-nega- 
tive interpolation. Other interpolation methods also suffer from this problem (see, for 
example, Lancaster and Salkauskas, 1986; Ripley, 1981). Many mapping packages utilise 
interpolation methods to provide gridded data for further contour and perspective view 
plotting (e.g. AXUM, SPILJS).However, often the methods used are not clearly defined or 
based on mathematical interpolants (e.g. the Akima interpolator). 

Note that the above comments also apply directly to case event density estimation. 
The use of kernel density estimation is recommended, as it  provides a parsimoneous 
description of the intensity surface. However, as with many smoothing operators. edge 
effects can occur due to the censoring of observations outside the study region (i.e. the 
smoother uses only data from within the region and so at locations close to the study 
region boundary there can be a n  error induced by censoring. Corrections for edge 
effects are available (see Chapter 6 in this volume). For ratio estimation. Kelsall and 
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Iliggle ( 1995) rtw)mniend the joint estimation o f  U common smoothing parameter 
li)r the numerator and denominator o f  K ( x )  when ii  control disease realisation is 
a\yailable. 

1.3 MODEL-BASED APPROACHES 

I t  is possible to proc-tmi by further assutiiing that ii piiranietric model undc>rlies the map 
of disease. ‘I’heniodels described here c a n  lead to  the construction of likcliliootis and to 
t h c  spcBc.ific*ationof prior distributions for paruiiieters, it ii 13ayesian approac-h is to be 
ad ()pt ed . 

1.3.1 Likelihood models 

Case event datu 

1Isually the basic niodel for case event data is derived from the following assumptions: 

Individuals Lvithin the  study population behave independently ivith respect to 
d ist’iisc’ propensity, ii  f ter  ii 1Iowii11c‘c is inade for observed or u 11obser iwj c(111I()U nd i 11g 
\riiriiihles. That is, if’ the kictors affecting diseascl risk were fully spec-ified !or each 
ptmon, then they ivoulci have i i n  independent chance of contracting the disease. of 
i t i t  erest. 
‘I’hvundt.rl>~ing‘at risk‘ population hits ii cotitinuous spatial distribution, u-ithin the  
spec-itied study region. This assumption ;iIIou~sthe specificat ion of‘ii c u l t  inuous ‘at 
risk’ bat-kground for niodelling purposes. I f  this cvere not the case, tor example ~ v h e n  
iireiis within the study region cwntained IN)population, then thc study region would 
r tqU i re n ioc t  i f ic i i t ion. 
‘I’he ~-;iseevents iire unique, in that they occur iis single spatially separate events. 
‘I‘hisassunipt ion underlies the specification of point process models. 

(;i\reii the i i b o i ~assumptions, i t  is justified to  assume that the case tb\yents arise :is ii 

rt.iilisatioti of ii l’oisson point process, modulated by g(x), ii bac*kground function repre- 
wnting the ‘at risk’ population. ‘I’his process is governed by ii first order intensity: 

A (  x )  = /) . {I( x )  . /’( x : H )  [ 1 . 5 )  

111this delinition the loc-a1 intensity of cases consists of i i i i  overall region-n~idc rate it, 
tiiodilied by two spatially-dependent components: the g(x) function and f ( . )  represent-
ing ii  function of spatial location and possibly other parameters and associatcd covari- 
i i t c’ s ii  s we11. ‘I’ ht’se c-(1var iates c-oU 1d be obserired exp1a11atory vit r ia hlt’s ( c-on f oun d e b  r 
1Tariablt.s) or could be unobserved effects. For exatiiple, ii nuniber of random effects 

Ircprtwtititig unobser\wi heterogeneity could be included iis M ~ a s  o b s e r \ d  co\iari- 
ales. iis c.ould func.tions of other locations. The likclihood iissocTiated with t tic I’oisson 
proc”ess niodel is given by 

( 1 . O )  
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For suitably specified I(-),a variety of models can be derived. In the case of 
disease mapping, where only the background is to be removed without further 
model assumptions, then a reasonable approach to intensity parameterisation is 
w4 = P * , 9 ( 4  4 4 .  

Count event data 

In the case of observed counts of disease within tracts, then given the above 
Poisson process assumptions it can be assumed that the counts are Poisson distributed 
with. for each tract, a different expectation: Jr,,,X(u)du, where M7,denotes the area of 
the ith tract. The log likelihood based on a Poisson distribution is then, bar a constant 
only depending on the data, given by 

(1.7) 

Often a parameterisation in (1.7)is assumed where, as in the case event example. the 
intensity is defined as a simple multiplicative function of the background g(x). 

1.3.2 Random effects and Bayesian models 

In the above sections some simple approaches to mapping intensities and counts within 
tracts have been described. These methods assume that once all known and observable 
confounding variables are included within the g(x) estimation then the resulting map 
will be clean of all artefacts and hence depicts the true excess risk surface. However, it is 
often the case that unobserved effects could be thought to exist within the observed 
data and that these effects should also be included within the analysis. These effects 
are often termed rmtloitz effects, and their analysis has provided a large literature both 
in statistical methodology and in epidemiological applications (see, for example, Hreslow 
and Clayton, 1993; Cislaghi et al., 1995;Ghosh et al., 1998; Lawson et d.,1996; klanton 
ct (11.. 1981;Marshall, 1991b). Within the literature on disease mapping there has been a 
considerable growth in recent years in modelling random effects of various kinds. In 
the mapping context, a random effect could take a variety of forms. In its simplest form 
a random effect is an extra quantity of variation (or variance component) which is 
estimable within the map and which can be ascribed a defined probabilistic structure. 
This component can affect individuals or can be associated with tracts or covariables. A 
simple general specification has been suggested by Besag et al. (1991)in application to 
count data, and further developed to include additional effects (Lawson et d.,1996; 
Lawson, 1997).Define the intensity of the process at the ith location as 

A(%,) = P * g(xi) * Ci * 3r. 

where C I  = exp(t, + i l l  + 17,) and Ti =.f{C;=lh ( x ,  -yi)> This specification allows the 
inclusion of a variety of random effects at the ith observation level. Here, t is the trend 
component, and 1 4  and \?are components that describe extra variation. This extra varia- 
tion could arise from unobserved heterogeneity in the data. due to our inability to com-
pletely explain the individual or regional response to disease. These are non-specific 
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raiicioiii cffects in that they cio not lou i t (>random structures in the tnap but sirnpljr 
ciesc' r i b c ~t tie o rii I1 rii nd 0111 \,ariu t ion. I i sUii 11y Y is a s s11med t c) represent U ric()r re lated 
( o i ~ erd ispe r sion ) heterogeneit y ii 11d 1 1  rep re sent s t he spat i ii 11y cor re1 iited for171. 

'I'hc tinal term in this general modcl ) is a specific random effect, cwiiiiiionly knoivn 
a s  ii riindoni olijoct effect. This effect relates the observed locations to objects that  h a w  ii  
randoiii location. I n  this case the objects {y }  are k cluster centres, and bo th  {y.k }  itre 
i i n k i i o i v i i .  'I'he aim of i i n  analysis nrhich includes such effects nvuld be to estimate t h e  
loc-atioiis o t  clusters,/cluster centres bvithin the data. Other tjrpes of effect could be 
included within ii particular analysis. depending on [lie I e l ~ lof aggregation and appros-
imation used in the study. 

A Rayesian approach 

I t  is ntiliiral t o  c-onsider modelling random effects ivithin ii 13aq'esian friinieivork. 
i i l t  hotigh i t  is a l so  possible to integrate o i w  random effects and u s e  ii niarginal likeli- 
hood approach ( A itken. 1990). f:irst, rii ndom effect s i i a t  ci rii 1Iy have prior distributions. 
' I ' h r h  prior distributions for these parameters haLit. li!rperparameters which can h:iirv 
li!.pcrprior distributiolis also. In t h e  f u l l  Kqes ian  approach, inference is usually based 
o i i  siiiiiplt~sot' parameters from t h c b  joint posterior distribution. tlow\w-. i t  is also 
possible to adopt i i i i  iiitertiicdiatc approuch where the paranictcrs of the prior distribu- 
tions are estiniated and further inference is made cwnditional on thcse c~stimatcd 
paraiiictcrs. 'I'his tj*pe o f  empiriciil J3ajw approuch h a s  often beer1 applitd i n  discasc 
niapping ( h l a n t o n  c ~ t(11.. lC~H1: '1 's~ i takaw~i .1988). 

1;en'examplcs exist of simple Hayesian approaches to the analysis of case ciwit data 
i i i  disciisc niapping. 'I'he approiich of 1,;iwson ot i i l .  (1996)can be u s c d  wit 11 simple 
prior distributions for paranieters. 'I'hcir method rclieti on approsimatc Iiiiisiiiiuiii ii 

postvriori (h I t \ l ' )  estimation of local intensities b a s t d  on I>irichlet tile iirc'ii approxi- 
tiiations. '!'hey also compured these hlr\l' estimates Lvith f u l l  Haycsian modal cstirnatvs. 
For c - o u i i t  data ii number of exaniplc~s exist avhere independent I'oisson distributed 
cwunts, Lvith constant tract rate ( A , ) ,  iire associated ivit h prior distributions of'\iarying 
c.oniplesitics. The earliest examples of such ii 13ayesian approach are hlanton o t  t r l .  
1981) and 'I'sutakawa ( 1988). ('layton a n d  Kaldor (19%) also d e \ ~ l o p e dii 13ayesiaii 

tirial!rsis of ;I I'oisson likelihood model whew U ,  h u s  expectation H I  e ,  arid found t ha t  
i i ' i th the prior distribution giiyen by 0 ,  - (liimma(tr,,j)then t h e  posterior cstiriiiitc of 
0 ,  is 

tor cstiiiiattis of the li4'perpar~irneters obtained lrom considering t hc i1egatii.e 
biiionii;il likelihood tvhic-11 is the unconditional distribution of {of}. 1lciic.e. i t  ivoiild 
bci possible to rnap direc*tly the H I  estimates iis posterior nieiins. On t tic. other t i t i n d .  
the distribution of H ,  conditional on U ,  is Gaiiima(o, + ( k ,  e ,  + , I )  and it f u l l  13a~vsian 
approuc-h wrould require the sampling of 0,  from this disl ribut ion, possibly with 
suit iible sample siiIninuris~itioii. Other approaches a n d  iw-iants in the aiialysis of 
siniplt* mapping models h u i ~ >been proposed by I)eirinv and J,ouis ( l c P "  and hlarshall 
~1'"bl. 
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1.3.3 Mixture models and hidden structure 

The above model-based mapping methods have a common theme, namely the assump- 
tion that the structure of the map can be described by a model with a global structure. 
An alternative approach is to assume that the map consists of a number of components. 
and that the task is to identify these components. Each component could potentially 
have a complex structure and so the model could be regarded as a composite of simple 
global models. In some work (e.g. Schlattmann and Bohning, 1993) each area of the map 
is classified as belonging to one component. However. it is not essential to assume this 
feature and broader models are possible. 

Bohning and coworkers (Rohning et al., 1992,1998: Schlattmann and Hiihning. 1993; 
Schlattmann i't al., 1996) first proposed a mixture model for a disease map. where 
the count is considered to be governed by a Poisson distribution with intensity 
A, = ei. E:=,w,. Ay ,  where there are k components ( A y )  and weights (w,).Note that 
this model can be formulated as a Bayesian model with a discrete prior distribution for 
the number of components. These models can be sampled via iterative simulation meth- 
ods such as Markov chain Monte Carlo (MCMC) (Gilks Pt "1.. 1996a) or by Eh1 methods. 
More complex models with not only the nzargiizd count distributions as mixtures but 
also the spatial distribution could be fruitfully explored, 

SPATIO-TEMPORAL MODELLING 

The development of disease incidence in the spatial domain has been paralleled by the 
development of methods where time is implicitly included in the analysis. This extcn- 
sion can take a variety of forms depending on how the sampling of the process in time 
is made. For example, at one extreme, a date of diagnosis of a case may be known a s  well 
as  the residential location, whereas at another, only the count of cases within a small 
area tract within a time period may be available. In addition, many other forms of time- 
based information may arise: duration of periods of illness, longitudinal case history, 
intervention, or more general cohort effects. There could also be differences in approach 
depending on whether a n  evolutionarylsequential method is to be used (e.g. for screen- 
ing of events as they occur), or a n  analysis is based on the full time span studied. 
Furthermore, there may also be some need to gain greater ancillary or covariate infor- 
mation in such studies due to the extension of study over periods where such lrariables 
are likely to change. 

There has been some development of methods pertaining to small area counts in fixed 
time periods (Bernardinelli et d. ,1995b: Knorr-Held and Besag, 1998; Waller "t  (11.. 1997a; 
Xia e t  d ,1997).These approaches define either a Poisson likelihood for the counts with 
a log linear model for the spatial and spatio-temporal components, or a binomial model 
for the count within a finite population. Different authors have examined different para- 
meterisations of this model. For example, Bernardinelli et d. (1995b)have specified an 
area-specific factorial effect and space-time factor interaction. There has been only 
limited interest in models for case-event data. However, i t  is possible to propose a 
general approach to case-event space-time modelling by extension of the basic uncon- 
ditional intensity (1.5) to include temporal dependence. This general approach can be 
extended to small area counts also and so forms a general model. 
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n~ticrep is ii  constant background rate (in space x time units), g(x . t )  is ii tiiodiilation 
fir  tiction desc-ribing the spatio-tciiipor~il ‘at-risk’ pop~rlation bac*kgrotrnci in t he) stud^^ 
region. . / ‘ k  are appropriately defined functions of spacc~,time and spac-e-time, and O,x. 0, .  
anti 0 ,-[ arc paranieters relat ing to the spatial, temporal, atid spatio-teniporiil conipo- 
iients of the niodel. 

t I c w  c.ac*h c.otnpotient of the j ’ k  c’iiii represent ii ./ill/ niodel for tlie cotiipoiiciit, i.e. ,/ I 

c ii I i i tic I ude spat ia1 t re t id,  c ovar iate it nd co \ ~ ar ia tict’ t erIns, ii nd ./’? cii n c * ot i  t ii  i  I i s i ni i I ii  r 
tvrtiis for tlie tetiiporal effects. wliilej‘; c a n  coiituiti i i i t o w t i o r i  terms bet\i.cben the cotii-
ponents in space anti time. Note that this final term c‘ i in  include sqwmto spatial st rtic-
turt>s relating to interactions t t i i i t  iire not included in / ‘ I  or/’.. ‘l’htx exact spcx.ifii.atioti of’ 
eac-li of these c.otiiponents n.ill depend on the application, but the scparatioii of thescb 
t Iirt~3coriipotients is ht~lpfulin the formulation of coniponeiits. 

‘I’lieabo\.e intensity spec*ification ciiii be used iis i i  basis for the de\~eloptiieiitof like-
lihood atid Haytlsian models for ciisc eLwits. I f  ii c’an be assumed that thcl  civetits fortii ii 

iiiodulated t’oissoti proc’ess in space-time, then ii likelihood c a n  tw spec-iticd a s  in 1hc1 
sp:itial c-iise. 

Vote t h i i t  the above c,asc-c\.etit intensity specificat ion ciiti tic applicd in t tic spiic.c~--
titlit1 c’iise i8iplicresiniill iirt’ii rotrrits iire obs tmtd  \,i*ithin liscd time pcriods { I , } .  j = 

1 . . . . . 1. l>y H o t  ing tha t  

under the  ustial assuniptioii of I’oisson prowss regionalisatioii. In addition, t lie counts 
are intiepctidcnt c-onditional oti the intensity given, and this expectation c*iiii bc used 
at’ i t h i r i  ii  1i kel i hood mod et 1i ii g fra 1iitww-k or  iv i t h i 11 13ayesiii n iiiode1 c>xt eiisic)ns. I 11 

prt~\riotis published work in this area, cited abo\re, the expected count  is assumed to 
l i a r c l  cxinstant risk within ii given small-area t i i t ie  unit, az.1iic.h is i i n  approuiiiiation to 
ttic continuous intensity defined for the underlying case eLients. ‘I’tic. appropriateticss 
of \ i r c - l i  iiti approxitnat ion should be c.onsidercd in a n j r  gi\Tcn application. I f ‘  such 
i i i i  ~ipi’rosiiii~itioii is \ialid, tlicn i t  is str~iightfoi-\i~ard to t le r i \~>the nniiiinial ant i  
i i i i i  u I tiia 1 relat i1.e risk est imiit es 11nder the I’oisson I i IwI i hood niodel iissu nii tig 
1: { o , /  } = X I ,  1o l , ,  ( I l ,  . airhere o l I  is the expccted rate in the requircd region pcriod. 
The misitiial riiodcl estimate is O r , ,  = o , ,/oil , the space-timc eclui\,:ileiit of t tic ShIK.  
nvhi lc  the tiiininial motiel est  innate is 

Siiiooth spiicc~-time m a p s ,  e.g. empirical h y e s  or full kiyes relati\,c risk cstinnates, 
tvill lic be t \ l r t~nthese t\iv extrctnes. I f  t h c  fii11 integral intcnsiiy is ~rsc~i .t1it.n these 
cstitiiatcs ha17e the strtiis in their detioiiiiriators replacwi by integrals o i ~ rspace-timc 
11 11its. 
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1.5 CONCLUSIONS 

I n  this brief review we haye attempted to highlight important iireiis of development in 
methods in disease mapping and  to suggest iircas of potential new work. I t  is clear that 
approaches based on kiyesian methodology provide ;I flexible paradigm for t he a s s e s s -
ment of irariability of partimcter samples and sensitivity, and hIChlC‘ methods iire likely 
to faci 1i t  ii te t h is approach. 1% t en t i ii 11y frU it fu 1 a reiis wh ich niay bencli t from de ~ dop-
ment in the future are: the assessment of different scales of pattern or aggregation 
within ii study, the use of hidden structure models, and  tinally, space-time modelling of 
case eirent and count data. 

As in many ~ireasof statistical application, the use of models for diseasc~ mapping 
should be accompnnicd by the assessment of the goodness-of-fit of the modcl. arid 
airhere appropriate the sensitivity o f  the model to spccification i’~~ariation in assumptions. 
For goodness-of-fit niiiny global measures exist, e.g. for likclihood modcls the AI(’ 
(Akaike Inforniation Criterion) can be employed. This nic’asurc combines the iisscss-
mcnt o f  likelihood of ii model with the number of paranictcrs eniployed. Siniilarlj~, for 
13aycsian niodels the I3IC’ (13ayesian Information criterion) c’iiii be eniployed. Kcsidual 
analysis can also be employed to a s s e s s  pointwise goodness-of-fit. 
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Bayesian and Empirical 

Bayes Approaches to Disease 


Mapping 
Annie Mollie 

I NSZ: K A I 

2.1 INTRODUCTION 

The analysis of geographical variations in rates of disease mortality or incidence is use-
ful in the formulation of aetiological hypotheses. Disease mapping aims to elucidate t hc 
geographical distribution of underlying disease rates, and to ident i fy  areas with low or 
high rates. The two main conventional approaches are maps of standardised rates based 
on Poisson inference and maps of statistical significance. 'I'hc former has t he adirantagc 
of providing estimates of the parameters of interest, namely t hc disease rates, but rniscs 
two problems. 

First, for rare diseases and for small areas, variation in the observed number of 
events exceeds that expected from Poisson inference. In a given area. variation in the 
observed number of events is due partly to Poisson sampling, but also to extra-Poisson 
variation. 

To overcome this problem, Bayesian approaches have been developed in disease map-
ping. They consist of considering, in addition to the observed events in each area. prior 
information on the variability of disease rates in the overall map. Hayesian estimates of 
area-specific disease rates integrate the two types of information. Hayesian estimates 
are close to the standardised rates, when based upon a large number of events or per- 
son-years of exposure. However, with few events or person-years, prior informat ion on 
the overall map will dominate, thereby shrinking standardised rates towards the oiwa11 
mean rate. 

The second problem in using the conventional approach based on Poisson inference is 
that it does not take account of any spatial pattern in disease, i.e. the tendency for geo-
graphically close areas to have similar disease rates. Hayesian approaches with prior 
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Figure 2.1 (a)SMKs for leultaemias for females in France, 1986-93.’Uepartemcnts’ listed inTable 
2.1 are labelled. (b) Posterior mean of relative risks of mortality from leukaemias for females in 
France, 1986-93 (based on 10000 iterations of the Gibbs sampler, using a coilvolution 
Gaussian prior for the log relative risks). ‘Ilepartements’ listed in Table 2.1 are labelled 

percent confidence intervals based on Poisson distribution have been computed for each 
SMR. Those that exclude unity are presented in Table 2.1. 

However, the SMRs highlighted on the map (Figure 2.l(a)) are often those based on 
the least reliable data and not specifically those significantly different from unity: 
among the 11 ‘departenients’ coloured in dark grey, only four have a significant SMR 
and among the 18 SMRs represented in white or light grey, only seven are significant. 
For instance, ‘departements’ 13,16,23and 69 are all coloured in dark grey but 16 and 23 
have a high SMR (1.18 and 1.20, respectively) based on a small population and not sig- 
nificantly different from unity, whereas ‘departements’ 13 and 69 have lower SMRs (1.13 
and 1.15, respectively) based on two of the largest populations, significantly different 
from unity. Likewise ‘departements’ 10,29 and 46 are all coloured in light grey but 10 
and 46 have a low SMR (0.82 and 0.79, respectively) based on a small population, not 
significantly different from unity, whereas ‘departement’ 29 has a higher SMR (0.87) 
based on a larger population, significantly different from unity. 

The second example consists of 1122 deaths from testis cancer among males (0.51per 
100000). The SMRs (Figure 2.2(a))vary widely around their mean 1.01 (s.d. =0.46) 
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Figure 2.1 (i‘ontirzued) 

from 0.15 for ‘departement’ 47 to 2.42 for ‘departement’ 48, which has the smallest 
population size and expected number of deaths. The five lowest SMRs and the five high- 
est are presented in Table 2.2. 

The standard errors of the SMRs range from 0.118 for ‘departement’ 42 to 1.212 for 
‘departement’ 48 (Table 2.2) which has the smallest population, tenfold smaller than 
‘departement’ 42. Ninety-five percent confidence intervals based on Poisson distribution 
that exclude unity are presented in Table 2.2. Testis cancer being vary rare in France, the 
problem of the interpretation of the variations shown on the map of SMRs (Figure 
2.2(a)) is emphasised. For instance, two (09,48) of the six ‘departements’ coloured in 
black have SMRs not significantly different from unity, and two (32.55)of the five ‘depar- 
tements’coloured in white have SMRs not significantly different from unity (Table 2.2) 
because they are based on very small populations. 

Actually, for a rare disease and small areas, since individual risks are heterogeneous 
within each area, the variability of the average risk of the area exceeds that expected 
from a Poisson distribution. Extra-Poisson variation can be accommodated by allowing 
relative risks to vary within each area. Bayesian methods can be used for this, giving 
smoothed estimates of relative risks. Indeed, even if the SMR is the best estimate of the 
rate, for each area considered in isolation, Bayesian rules produce sets of estimates 
having smaller squared-errors loss (when 11 2 3 ) than the set of SMRs. 
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Table 2.1 Estimates of relatiiie risks of mortality from leukaemias for females in France, 19Xh-93 
(selected 'departements'sho~~.n,ordered by decreasingSMK) 

~~~ 

i 'departements' g i  ei SMR si CIss ((SMR) Mean Median PI9$ 

23 C'rcuse 76 63.3 1.20 0.138 (0.96-1.50) 1 . 0 3  1.03 (0.92-1.17 1 

27 f ure 158 133.4 1.18 0.094 (1.01-1.39) 1.06 1s)h ( (  1.96 -1.19I 

1h C' harcnte 142 120.7 1.18 0.099 (0.99-1.39) 1.06 1.05 (0.95-1. I  8I 
80  Somme 183 156.4 1.17 0.086 (1.01-1.36) 1.08 1.( 18 (0.98- 1.20) 

(79 Khbnc 485 420.2 1.15 0.052 (1.06-1.26) 1.10 1.10 (1.01-1.19) 

1 3  13ouches-du-Rhdne 597 527.2 1.13 0.046 (1.04-1.23) 1.10 1.10 (1.02-1.18) 
. . .  . . .  . . .  . . .  . . .  . . .  . . .  . . .  . . .  

92 tiauts-&-Seine * 363 404.6 0.90 0.047 (0.81-1.00) 0.93 0.93 (0.8(7-1.011 

29 Fin isti're 24i 280.8 0.87 0.056 (0.77- 0.99) 0.90 0.90 (0.81-0.99) 
-71 0  Xube l >  91.1 0.82 0.095 (0.66-1.o3)  0.94 0.95 (0.84 -1U6) 

22 Ci, tcls-d'A rmor 155 192.9 0.80 0.065 (0.69-0.94) 0.88 0.88 fa7-w 
4h Lot 5() 63.5 0.79 0.111 (0.58-1.04) 0.94 0.94 IQlgii;rW 
(7 5 Hautcs-Pyrenees 64 8 3.6 0.77 0.096 (0.60-0.97) 0.91 0.91 * -@9 -1.03) 
2h I>ri,mc 94 127.5 0.74 0.076 (0.60-0.91) 0.89 (1.89 (0.7'9-1110) 
15 C'a I1t ;I I 42 58.1 0.72 0.112 (0.52-0.98) 0.93 0.93 (0.82- 1.05) 
09 Aricge 39 56.2 0.69 0.111 (0.50- 0.94) 0.91 0.91 (0.78-1.( 14) 
0 5  Hautcs-Alpes 21 36.1 0.58 0.127 (0.36-0.89) 0.91 0.92 (0.79-1.( ) 5 )  

i : number of the 'departemetit'. 
y l :  observcd number of deaths in the ith'departement'. 
o I:expected number of deaths in the ith 'dcpartement'. 
SMK: standardised mortality ratio for the ith 'departemcnt'. 
s , :  estimated standard error of the ShIK in the ith'departement'. 
CI r(Sh1K):95%confidence interval of the ShlK in the ith'departement' based on l'oisson distribution. 
Mean: posterior mean estimated from 10000 cycles of the Gibbs sampler using a convolution (hussian prior on 

the log relative risks. 
Median: posterior median estimated from 1 0  000 cycles of the Gibbs sampler using a convolution (;aussian 

prior on the log relative risks. 
1'1 :95';;)posterior interval estimated from 10000 cycles of the Gibbs sampler using a convolution (hussiany j t  

prior on the log relative risks. 
**DPpartcnient'92 is a small 'departcnicnt'around Paris and is not labelled on the maps. 

2.3 HIERARCHICAL BAYESIAN MODEL OF RELATIVE RISKS 

2.3.1 Bayesian inference for relative risks 

Hayesian approaches in this context combine two types of information: the information 
provided in each area by the observed deaths described by the Poisson likelihood [y1 r]. 
and prior information on the relative risks specifying their variability in t he owra11 map, 
summarised by their prior distribution [r]. 

Bayesian inference about the unknown relative risks r is based on the marginal pos-
terior distribution [rly]lx [ y (r] x [ r ] .The likelihood function of the relative risks r for 
the data (number of deaths) y is the product of IZ independent Poisson distributions. 
since ,11, can be assumed to be conditionally independent given r and !I, depends only 
on r , :  
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Figure 2.2 (a)SMKs for testis cancer for males in France, 1986-93.'Uepartements' listed inTable 
2.2 are labelled. (b) Posterior mean of relative risks of mortality from testis cancer for males in 
France, 1986-93 (based on 10 000 iterations of the Gibbs sampler, using a convolution Gaussian 
prior for the log relative risks). 'Departements' listed in'l'able 2.2 are labelled 

The prior distribution [r] reflects prior belief about variation in relative risks over the 
map. It  is supposed to be parameterised by hyperparameters y and denoted [ r 173.The 
joint posterior distribution of the parameters (r.y )  is [r.pIy] cx [ylr]x [rlr]x [?I. 
Thus the marginal posterior distribution for r given the data y is 

A point estimate of the relative risks is given by a measure of location of this distribu- 
tion: typically the posterior mean E [ r I y] or the posterior median. However, direct eva- 
luation of these parameters through analytic or numerical integration is not generally 
possible. 

Another measure of location of this posterior distribution easier to compute and 
often used in image analysis applications (Besag, 1986,1989) is the posterior mode or 
maximum a posteriori (MAP)estimate that maximises [ r I y,y]. MAP estimation can be 
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performed using penalised likelihood inaximisat ion ( Clayton and Kernardinelli. 1992) 
and has been applied to disease mapping (l‘sutakawa. 1985; Bernardinelli and hionto- 
moli, 1992). 

Standard Bayesian analysis considering a completely specified prior distribution 
A,[ Y I ] with known hyperparameters y is seldom used in practice. The empirical 

Bayes (EB) approach assumes that hyperparameters are unltnown and are dram7n froiii 
an unspecified distribution. The fully Kayesian formulation comprises a three-stage 
hierarchical model in which the hyperprior distribution [y] is specified. 

2.3.2 Independent priors 

If the prior belief suggests an unstructured heterogeneity of the relative risks, they will 
be considered to be independent gi17en “1. In this case the simplest prior assuming 
exchangeable relative risks is the product of independent and identical distributions: 



21 Bagesian approaches to disease mapping 

Table 2.2 Estimates of relative risks of mortality from testis cancer for males in France. lc)Xh-93 
(selected i l~partements 'shown. ordered by decreasing SMK) 

i 'departements' g i  ei SMR s i  CISj$; (SMR)  Mean Median PIvj 

I.ozi.re 4 1.65 2.42 1.212 (( 1.66 -6.211 0.97 0.96 
Indre 12 5 . 3 3  2.25 0.650 (1.16 -3.94) 1.24 1.22 
t Iautc-Sacine 10 4.64 2.15 0.682 (1.03 -3.96) 1.14 1.1 3 
A rii.gc> 6 3.20 1.8; 0.765 (( 1.69-4.()91 0.94 0.94 
('6 tcs-d'A rmor 19 10.8h 1.75 0.401 (1.05-2.73) 1.39 1.39 
('6tc-d' Or 1; 9.8; 1.72 0,418 (1.00-2.75) 1.1 5 1.1 3 
h lorbiha 11 20 12.14 1.65 0.368 (1.01-2.54) 1 . 3 i  1.34 
I,oirc-,4tlaiitiqiie 3 0  1979 1.52 0.277 (1.02-2.17) 1.29 1.28 

Ornc h 5.8h 1.02 0.418 (0.38-2.2 31 1.10 1.10 
. . .  . . .  

15 15.21 (1.99 0.255 (0.55-1.63) 1.10 1.10 (0.78 1.48I 
4 4.3; 0.92 (1.458 (0.25-2 .35 1 0.85 0.85 (0.57- 1.261 

4 4.40 0.91 0.455 (0.25-2.331 ().89 ().X9 (0.f10- 1 .3o t  
14 29.01 0.48 0.129 (0.26-0.81) 0.68 0.69 (0.47- 0.92) 
h 13.52 0.44 0.181 (0.16-0.97) 0.89 (1.91 (0.59 ~ 1.221 
1 3.94 0.25 0.254 10.01-1.41 1 0.90 0.91 (0.5X 1.31) 

1 4.08 0.24 0.245 (0.01- 1 . 3 0 )  0.75 0.70 (0.48- 1.12 J 

3 14h3 0.21 0.118 (0.04 -0.60) 0.69 0.71 (0.45-0.97) 
1 5.87 0.17 0.170 (0.00-0.95) 0 . X h  0.87 (0.55 ~ 1.221 

1;11 

i :  tiuriiber ot'thcB ili.partcmcnt'. 
g r :obscir\td nurnbcr o f  deaths in the ith'rli.partci~icrit'. 
c l  : cxpcctcd number of deaths in the ith itipartcmcnt'. 
ShlR:  stanciarc1isc.d mortality ratio for the ithilipartcmcmt'. 
s,:estiinatcd standard error of thc  ShlK in the i t h  ilipartemcnt'. 

hltll: 95% contidenc.c interiral of the ShlK in the ith iii.partcrncnt' based on I'oisson distributiori. 
h t w n :  posterior mean estimated froin 10  000 c.gclc~of'thc. (;ibbs sampler using a convolution (;aussi:in prior on 

t tic log rclat i1.e risks. 
hlcdian: posterior mcdian estimated lrom 1 0  000 cyc~lcsof the (;ibbs sampler using a corivolutiori (;aussian 

prior on the log relatitv risks. 
1'1 : 95",,postc'rior intcmul cstimatcd from 10 000cyles  of thc (;ibbs siiinplcr using ii conrolirtioi~(;iiussianL,i8 

prior on thc  log relative risks. 

The most convenient choice for [ r , I-,] is the conjugate with the Poison  likelihood, the 
garnnia prior Gamma(sc, z i ) ,  with mean z//o and variance v / ( k  ': 

' exp { -

Alternatively a normal prior distribution N(I/.n ' )  ivith m e a n  11 and variance CT'on 
each log relative risk I,= log(r,)can  be used: 

'1;) allow for area-specific covariates, each o f t  hese tivo priors can be easily generalised 
IcAYl, 1987, 1989; 'I'sutakawa d.,( p t(hlunton vt d., 1985: 'I'sutakawii, 1988: Clayton and  

KaIdor, 1987). 

1 (1.57 0.15 0.152 (0.00-0.85) ().74 0.75 (0.48- I 
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Even if the choice of the conjugate prior can be justified a s  an appropriate 
distribution for modelling population risk processes (Manton et al.. 1981, 1987),and 
leads to estimates that have the best robustness properties in the class of all priors 
having the same mean and variance (Morris, 1983), gamma priors cannot be easily 
generalised to  allow for spatial dependence, unlike normal priors. 

2.3.3 Spatially structured priors 

Prior knowledge may indicate that geographically close areas tend to have similar rela- 
tive risks, i.e. there exists a local spatially structured variation in relative risks. To 
express this prior knowledge, nearest neighbour Markov random field (I1IKF) models 
are convenient. For this class of prior models, the conditional distribution of the relative 
risk in area i, given values for relative risks in all other areas j # i, depends only on the 
relative risk values in the neighbouring areas 3i of area i. Thus relative risks have B 

locally dependent prior probability structure. Their joint distribution is determined ( u p  
to a normalising constant) by these conditional distribution (Hesag, 1974).Gaussian 
M R F  models on the log relative risks specify the conditional distribution of s,to be nor- 
mal with mean depending upon the mean of sj in the neighbouring areas. 

The usual forms of conditional Gaussian autoregression (Hesag. 1974),first used on 
the log relative risks in Hayesian mapping by Clayton and Kaldor (1987),assume that 
the conditional variance is constant, and hence are not strictly appropriate for irregular 
maps where the number of neighbours varies. For irregular maps, intrinsic Gaussian 
autoregression is more suitable (Hesag ( ~ tal., 1991)as the conditional irariance of log 
relative risk s lgiven all other s,’s is inversely proportional t o  the number of neighbour- 
ing areas \ v I  of area i. The joint posterior distribution of x given the hyperparameter 
?(=  C T )  is then: 

The mean of [ X I  71 is zero and its inverse variance-covariance matrix has diagonal 
elements w,,/o’ and off-diagonal elements - w r  + / 0 2 ,where the \vr,  are prescribed 
non-n eg at i ire ave ig h t s \v it h : 

w,,= 1 if  i and j are adjacent areas, 
\vII= 0 otherwise. 
and w,, = Cl:, \v,,. 

Then, the normal conditional distribution of the log relative risk s,.given all other s,’s 
and the hyperparameter CT. has mean and variance given by: 

where D i  denotes the set of areas adjacent to area i. \ v I t  its cardinal and ifthe mean of 
the s,‘s for j E 8i. 
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In practic-e it is often unclear how to choose between an unstructured prior and it 
purely spatially structured prior. An intermediate distribution on the log relative risks 
that ranges from prior independence to  prior local dependence, called a convolution 
Gaussian prior, has been proposed (Hesag, 1989; Hesag and Mollie, 1989). In this 
prior model the log relative risks are supposed to be the sum of two independent 
c' om pc nent s: 

x = w + v ,  

where v is ii normal model with zero mean and variance A'. describing the unstruc- 
tured heterogeneity of the relative risks, and U is an intrinsic Gaussian autoregression 
with conditional variances proportional to K' representing local spatially structured 
viiriiit ion. 

'I'he conditional iuriance o f  the log relative risk s,, given all the other s,'s and the 
hyperparmieters ti and h ,  is the sum of the viiriiinces o f  the independent components 
11 anti v: 

t i2  = 0 corresponds to  ii total independence o f  the risks whereas A'  = 0 leads to ii 

purely local dependence modelled by the intrinsic Gaussian autoregression. 
'I'he parameters ti' and A' control the strength o f  each component: t i ' /X '  small 

reflects an unstructured heterogeneity, whereas K ' /A '  large indicates that a spatially 
structured variation dominates. 

This model can be generalised to  allow for covariate effects (Mollik, 1990:Clayton and 
Hernardinelli, 1992;Clayton ot  d.,1993). 

2.4 EMPIRICAL BAYES ESTIMATION OF RELATIVE RISKS 

A s  previously noted, ii fully Hayesian analysis based on the marginal posterior distribu- 
tion [rly]is often intractable. The ER idea consists i n  approximating [rly]by the mar- 
ginal posterior distribution for r given the data y and the hyperparameters :J which is 
given by 

where the unknown hyperpurarneters are substituted by suitable estimates 
denoted 3. This tipproximat ion is relevant i f  the distribution [J 1 y] is iw-y sharply 
concentrated at 5 .  Generally these estimates are MlXs  derived from t hct marginal 
likelihood o f  -,: 

using the information relevant to  the overall map structure, contained in [y1 a,]. 

The t:H estimate of the relative risks is then the posterior mean evaluated at the MIX 

-, : E[r ]y .< ] .  
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The conjugate gamma prior 

For t he conjugate gamma prior for the relative risks, the marginal posterior distribution 
[rly,31 is the product of 11 marginal posterior distributions [ I - ,  I!/,, 0.I / ]  which are a l so  
gamma d is t r ibu ted. 

Thus the posterior mean of the relative risk for the ith area is ii wx5ghtcd average 
between the ShlK for this area and the prior mean of the re1atii.c risks on the ovcrii11 
map, the weight being imrersely related to the iwiunce of the ShIR. Since this i1arianc-e 
is large for ii rare disease and for small areas, a more important weight is giIwi to the 
prior mean for every area, thereby producing a smoot hed map. 

Non-conjugate priors 

Honiever, in general cases where the prior distribution is not conjugate with the likeli-
hood, the marginal posterior distribution [rI y,71 is non-standard and must be approxi- 
mated to  iillow direct calculation of the posterior mean. 

For multivariate normal priors on log relative risks, Clayton and Gildor (19%’;)used a 
multinormal approximation for the marginal posterior distribution of x. I n  addition, a s  
the marginal likelihood of 7 is rarely tractable, its maximisation requires the Eh1 algo-
rithm (1)empstcr o r  d.,1977).even in the simplest case of independent normal priors. 
This method has been used b~ Clayton and Kaldor (19%)a n d  hlollit. and Kichardson 
(1991)to smooth maps for rare diseases or small areas. 

Disadvantages of EB estimation 

The theoretical problem with EH methods is that even i f  the substitution of iinto [rly,71 
instead of using [r1 y], usually yields acceptable point estimates (1)eeIy and 1,indlcy 
19S11, the Lrariability in r is underestimated because no allowincc is made for thc unc-c’r- 
tainty in 3.Thus ‘nai1.c’ EH confidence intervals for r based on thc estimated 17ariatic.e o f  
the posterior [rly, are too narrow. 

‘Ihallow for the uncertainty in 3 two approaches. reviewed by Louis (1991), haire been 
proposed in the EH context: adjustments based on the delta method (Morris, 19S3) or 
bootstrapping the data y (Laird and Louis. 1987). In the context of disease mapping, 
13iggcri et r r l .  (1993) followed the latter to the obtain confidence limit for r but using 
t he conjugate gam m i i  prior. However, thesc tech n iques arc compu t ii t iona I ly d i fficu It , 
cspecinlly in using non-conjugate priors. 

Another disadvantage of EH estimation is that it may not provide an adequate. 
description of the true dispersion in the rates. This problem h a s  been addressed bj, 
Ilevine and 1,ouis (1994)and Ilevine ot al. (1994a,b) using a constrained ER estiniator. 

2.5 FULLY BAYESIAN ESTIMATION OF THE RELATIVE RISKS 

The fully Hayesian approach gives ii third way to incorporate ixriability in  t hc hyper- 
parameters 7 in specifying the hyperprior distribution [7]and basing infc‘rcncc about r 
on the marginal posterior distribution [r1 y]. Howe\~i-,except i n  the ciisc’ of conjugate 
priors and hyperpriors, this distribution is often intractable. 
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lVorking directly with this posterior distribution [rly] will require analytic approxi- 
niiit ion s or nu me r ica 1 e m1u ii t io11 of integra 1s ('I'su t ii kawa, 1985; Tie rne y and K adii ne, 
1980).Otherwise Monte Carlo niethods permit drawing samples from the joint posterior 
distribution [r,3 Iyj and ience from the marginal posteriors [rI y] and 3 lY1. 

3.5.1 Hyperpriors 

Classical choices for the hyperprior distribution ] generalljr assume independence 
between the hyperparameters and may also assume ii non-informative distribution for 
some hyperparanieters. However, ii non-informative uniform distribution IJ(-x .4 x ) 
for the logarithm of the scale parameter 0' (or ti' and A')  results in a n  improper poster- 
ior ivith i i n  infinite spike at = 0 (or K' = 0 and A '  = O),  forcing t i l l  relative risks to be 
eqLl i l l .  

For independent normal or niultivariate normal priors for the log relatiiie risks. ii more 
general class of hpperpriors for the iniwse variance B(= U ' or k 'and X ' )  is conju- 
gate gamma distributions with parameters assumed specified. \$'it h the convolution 
(~aussiati prior on the log relatiire risks, in the absence of information about the relatiive 
importance of each c.omponent LI and w, it  is reasonable to assume that they ha\^ the 
siinie strengt h and thus to choose ~raguegainma hyperpriors with means 2Jvar 
( log(ShlK))for X 'and 2/\\Tvar (log(Sh1K))fork ', where wis the mean o f w ,  and with 
large brariances ( Hernartiinell i and hlon tomoli, 1992: Mol lib, 1c196). 

A rclat i1.e insensit iivity of the relatiw risks estimates to the choice of hyptlrpriors h a s  
been found in  ii particular example of Ihyesian mapping, with the convolution (bus-
siari prior and i n \ ~ r s c  clii-squared ciistrihutions on prior \rariances (Hernardinc~lli ot r i l . ,  

1'1 95 i l l .  

2.5.2 Monte Carlo methods: Gibbs sampling 

'I'he basic idea of the general illetropolis algorit hni is to simulate a hlarkov chain whose 
equilibriuni distribution is the desired distribution (Gilks rit (!I., 199ha).A n  adaptation of 
this algorit hni, i.e. (%bs sampling. is particularly convenient for M K F  [\.here the joint 
posterior distribution is complicated but full cwnditional distributions haiye simple forms 
and need t o  be specified only up to ;i normalising constant ( ( ; i l k  1996). 

For the hicwrchical niodel discussed abotre, the j o i n t  posterior distribution o f  the log 
relati\Te risks r and hyperparanieters is (hilolli6, 1996)-I 

(;ibbs sampling consists in visiting each parameter (log relative risks s,,i = 1 . .  . . 1 1 .  

and hyperparanieters 7 )  in turn and simulating ii new value for this parameter from 
its full coiiditional distribution given the current ~wlues for the reniaining paranic.ters. 
For instunc-e, using the decomposition 
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a new value of the log relative risk s,is drawn given the current values (sr.j # i )  and -1 ' 
from the full conditional distribution: 

and a new value of -, is drawn given the current values x '  from the full conditional dis- 
t ribution: 

In theory, if the chain is irreducible, aperiodic and positive. recurrent, the joint distri- 
bution of the sample values of (x,7)  converges to the joint posterior distribution [x.7 Iy] 
and hence the distribution of the sample values of x (respectively of 3 ) convcrges to the 
marginal posterior distribution [x I y] (resp. ['y Iy]) (Geman and Geman, 1984; Koberts 
and Polson. 1994;Roberts, 1996;Tierney, 1996). Thesc distributions can be approximated 
by the empirical distributions of the sample values gcnerated after convergence has 
been achieved. 

In practice, after a sufficiently long burn-in of samples discarded for calculations, 
dependent samples approximately from the joint posterior are obtained. Several conver- 
gence diagnostics have been proposed (Cowles and Carlin, 19%). 

Although the implementation of Gibbs sampling is quite easy, i t  may be very ineffi- 
cient since it involves sampling from many non-standard but log conciivc distributions. 
The basic technique of rejection sampling has been improiwl by i i n  adapti\Te reject ion 
sampling method (Gilks and Wild, 1992). 

When interest is in estimating the log relative risks x. t he marginal posterior distribu- 
tion of [xly]can be approximated. ignoring the 7 values. For each area, point estimates 
can be obtained from the simulated values, for example the posterior mean from the 
samplc mean. the posterior median from the sample median, and interval estiniation 
is a l so  a\rail:ible by computing Hayesian credible intervals. 

2.5.3 Examples 

IJsing a fully Hayesian model with a convolution Gaussian prior for the log relative risks 
for each set of data, we performed a single run of the Gibbs sampler with ii burn-in of 
1000  iterations followed by 10000 further cycles. 

The mean of the number of neighbours being = 5 for 'cli.partements' in France and 
var(1og (SMK))about 0.015 for leukaemias among females. gamma hyperpriors on the 
inverse variances have been set to have a mean of 2 i  for ti 'and 135 for X ', whereas' viir (log(ShIK) )z0.31 for testis cancer in males led us to choose 1.3 for thc mean ofti 
and 6.5 for that of X '. All variances have been set cqual to 104. 

For leukaemias among females, the heterogeneity component A'  wiis found to have ii  

posterior mean of 0.0039, a posterior median of 0.0036 with ii %'!h Haycsian c-rediblc 
interval (O.OOl8-O.OOiO), and the spatially structured component ti' had ii postcrior 
mean of 0.0041, ii posterior median of 0.0035 with a 95% Hayesian credible interval 
(0.0008-0.01lj).The fully Hayesian estimates of relatitie risks in  f3guI-e2.1 ( b )show less 
\mriation than thc ShlKs (E'igurc 2.1 (a ) ) .They vary from 0.88 for ilcpartcnient' 22 to 1.10 
for ili'partemcnt' 69 urifh rnciin 0.99 (s.d.=0.05). Extrcnic cstimatcs bascd on small 
populations, for instance for 'rlkpartements' 05. 09, 10, 15, 2 3. 46 and h5 ('l'ablc 2.1) ha\ic 
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disappeared and the map has  been iilniost totally smoothed (Figure 2.1 (b ) ) .  On the other 
hand, c~xtremcestiiinates based on w r y  large populations for 'cikpartements' 1 3 and 69 
or on moderate populations for 'di.partenicnts' 22, 20. 29, and 80 arc maintained. 

\ y eNi liet y- I i pcrc*ent t h y csi iin c-redible in t erva I s cxc lud i ng u n ity ii rc on Iy 10 u r. for 'di.pa r-
tenicnts' 13,22,29 and 69, which are ncarly those highlighted in Figure 2.1 (b) .Posterior 
niedians are' \'cryclose to postcrior rineans (rl'tit~le2.11 and produce exactly t he same map. 

For testis cancer aniong males. t tic heterogeneity c,oniponcnt A'  wiis found to ha\v ii 
postcrior nieiin of 0.0272, ii posterior median of 0.0228 with U 95'!;)Baycsian ewdible 
intertwl ( 0 , 0 0 ~ ~ ~ - 0 . 0 8 0 ~ ) ,and the  spatially structured e-omporicnt 6' had a posterior 
mean of 0.0546, :I posterior median of 0.0450 with ii 95'X) Hayesian credible intcwal 
( 0 . 0 0 ~ ~ ~ - 0 . 1 6 ~ 8 ) .'l'he f u l l y  Hayesian estimates of relative risks in Figure 2.2 ( b )show 
niuch less t+~riation than the SMKs (Figure 2.2 ( a ) ) :they w r y  from 0.h8 for 'dCpartc- 
tnent' 69 to I .  39 for 'dCpartenient' 22 with nieiin 0.98 (s.d.=0.16). Kxtrcnic cbstimatcs 
based on \ w y  sniall populations for 'dbpartements' 09,48 and 55 have disappcarcd. like 
t hose ha\.ing intermediatc populations but neighbours ivith opposite estimatc risks 
Ii i~parterncnts '21 and 49). whereas cst iniiite risks for iibpartcrnents' 32, 3h. Ii and 70. 
t i l t  hough ha\ring sniall populatiotis. arc less changed because their neighbours also 
l i a \ ~ >similar risk estimates ('l'able 2.2).On the other hand, extreme estirnatcls hascd on 
large populations tor 'dbpartcnicnt' h9 are maintuincd, like those based on intcrnnediate 
populations but neighbours with similar risk estimates for 'ctdpartcmcnts' 22.42.44 and 
56. hloreover, risk cstimiites of iibpartements' 35 and 61 that have neighbours with high 
estimated risks, haiv bcwi raiscd. and that of ili.partements' 4 3 and 82 hart becn 
slightly r c d u c ~ d ,  even i f  their populations a re  small ('l'able 2.2). Ninc!y-fii,e pcrccnt 
Hayesian c' red i b Ie i n t crva I s for iti.pa r tc tiien t s' 42 ii rid h9 on Iy cxc 1U dc 11n i ty. I'os t erior 
niediaris are very e*lose to posterior nieci~is(Table 2. I )  and produc-e ii ifcry similar niap. 
'I'hc spatial structurc of the re1atii.c risks is shown in k'igurc 2.2 (b) :ri 
the s o u t  h-east and soiith-wcbst to the north and nort h-west. 

2.5.4 Convergence study 

Many convergence diagnostics have been proposed (C'owles and C'arlin, 19%) based 
either on a single chain or niultiple chains, or both, either quantitative or  graphical, 
i i t ic i  eit hcr uni\xriate or using the full joint distribution. According to these authors 
t h c w  diagnostics should be used with caution because many of them can  t i i l  t o  detect 
the sort of convergence failure they were designed to identify. They suggested using ii 
iwriety of diagnostics and rec*ommended that automated c-onvergcricc nionitoring 
should be a\vidcd. 

l h - cacti set of data. cotivergcnce has been checked running  four parullel chains 
~rs ingdifierent o\wdispcrsed starting points, cwch of them with a burn-in of 1000 itcra-
tions follonwi by 10000 further c~yclcs. Visual inspection of these chains has been done 
by plotting t h e  saliiplcd \ d u e s  for ii subset of log relative risks and for both \w iance  
cotiiponcnts. ('on\icrgence for the log relative risks w a s achieved i'ery quickly (lessthan 
1 0  iterations), \\thereas i t  c * o u l d  be slocver tor both iwriance parametcm. M'c e*oniputed 
the 'estiniated potential scale reduction' fi indicating the t'actor by whic*h Hayesian 
c' red ible i n t cbr \'a I s ni ig h t be sh r i i n k i 1 i terat ions were cont i nued i ndeli n i t  ely ( (klnna n 
arid Kubin, 1992a: (;elman, ICY"):for Ieukacmias in  fcmalcs i< = I . 0 0 5 4  for ,s ', 
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k = 1. 0 0 ~ 2for A' ancl for testis cancer in males k = 1.005 7 for K ', k = I .OO 30 for A '  
and o"cr the 94 log relati\ic risks, the maximum ~ralueof k w u s  1.0015. I n  practice, 
values of k greater than  1.2 indicate poor convergence. 

2.5.5 Sensitivity to hyperprior choices 

Investigating the influence of hyperprior choices on Iciikaemias aniong feniiilcs. LVC 

chose different means  and \rariancw for the hyperpriors oii K ' and X ': moderate 
changes in these choices did not affect the parameter estimates or the maps even when 
the ratio of the means is different to G?, On the other hand, \'cry high hypcrprior iiieiins 

and variances for K ' and x ' produced totally smoothed maps which do not reall!. 
match urith the fact that  95'16, Hayesian credible interirals siill cxclude unity for thc  siinic' 
three 'di.partements' ( 13, 22 a n d  29). 

Ik i ta  on testis cancer in males being inore sparse, the results are iiiorc sensiti\Tc to the 
hypcrprior choice. Moderate c h n g e s  also produced very similar estimates or maps, 
whereas larger means, res ilting in stronger belief in the existence of geographical var-
iation, tcndcd to increase the smoothing. M'hatciw, 95';;) t3ayesian cmdible intervals 
excluding unity reniainetf for the same two 'dkpartcmcnts' (42 and h9)  a n d  thc ~ , i sua l  
impact giiien by the s m o o t  led maps even more emphasised, is i i lwi iys  the siinic. 

2.6 CONCLUSION 

For ii rare disease und for sriiull areas, the Hayesian approac-liesovcr'coiiie t hc  problem of 
overdispersion of the classical ShlKs. Indeed, they smooth SAlKs based on unrc~liable 
data but preserve those based on  large populations, a s  stionw in t he examples. thycsian 
estimates of the relative risks are then easier to interpret. 

'I'hcl fully kiyesian method, tvhich consists of simulating t tic joint postcrior distribu- 
tion, h a s  the great advantage over the EH method, in that i t  not only produces both point 
and intcrval estimates for the relative risks, but a l so  permits computations of appro-
priate statistics to ii specific problem. 

'['he Kaycsian approaches raise the problem of choosing an appropriate prior for t tic' 
relative risks. I t  seems that the convolution Gaussian prior giiTes B satisf;ic*tor!~ iiitcr- 
mediate prior betiz7cen independence and a pure local spatiallj~ structured dcpcndcwcc 
of t he risks. 

However, one  should be careful in using Hayesian methods. In fact, assessing atid 
mon i tor i n g con\^rgcncc may be d ifficu 1t part ic u lar1s h e11 con"e rgenc'c i s s 1o u r  : t h is 
may bc either due to the sparseness of the data and  thc  large number of gcographic.al 
areas studied, or caused by model misspecific-ation suc.h iis highly c-orrelatcd paramc~tcr 
cst iniiit es. 

Secondly, the results may be sensitive to the hyperprior choices. depending o n  thc 
sparseness of the data. In the case of very sparse data,  folloitring Hcrnardinelli cl t r l .  

( IcN51, stronger hyperpriors than non-informative ones, c.g. gamnia hypcrpriors, arc' 
to be recwmnicnded first to increase the reliability and t he spcwi of t hc* con\w-gcmc*cof 
the (:ibbs sampler, and second bee-ausc in epidemiology, cscx'pt in \'cry specific. circwm-
stances, very high variations of ri between arciis are unlikcly to he cncountercd. 
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Addressing Multiple Goals in 

Evaluating Region-Specific

Risk Using Bayesian 
Methods 

Erin M. Conlon and Thomas A. Louis 

Ui1iwrsir!j of Aliriiiosotci 

3.1 INTRODUCTION 

I n  a broad array of statistical models and applied contests. 13aycs and empirical Baycs 
approaches can produce more valid, efficient and informati\Tc statistical c\raluutions 
than traditional approaches (Carlin and Louis, 1996;Christianscn and hlorris, 1997;(kl-
man ot (11.. 1995).The beauty of the Hayesian approach is its ability to structure c-ompli-
c ate d as s essments, g u id e de ~ ~ lopm e n t of appro p r iat e s t at i s t i C*R 1 model s ii  n d i n fc re 11ccs 
and produce summaries that properly account for all uncwtaintics. Computing inno~,a-  
tions enable the implementation of complex, relevant models a n d  applications burgeon 
(Hesagand Green, 1993; Carlin and Louis, 1996:Gilks of l i l . ,  1996al. 

i7alid analysis of spatially and temporally configured data requires an  appropriate 
sampling model, a n  accounting for covariate effects and a n  accounting for spatio ’tem- 
poral corrclation. A principal goal is the stabilisation of estimated disease rates or rcla- 
t i w  risks in small areas while retaining sufficient geographic resolution for producing 
maps. conducting health assessments and developing health policy. Hierarchical Hayes-
ian models haire proven very effective in accomplishing these goals (Hesag c’t “l . ,  1991: 
Clayton and Hernardinelli, 1992; Clayton and Kaldor, 1987: Crcssie, 1992, 1993; I k r i n c ~  
r t  d . ,1994a,b; Pickle o r  nl. ,  1996;Waller r t  d. ,1997a,b; Xia i ’ t  ( I / . ,  1997). Stabilisation 
results from ‘borrowing information’ from other regions, usually with relati\dy higher 
illeight giiien to nearby regions ITia a prior distribution that includes spatial correlation. 
This approach captures the influence of unmeasured or poorly measured csposurcs 
and other co\wiates that arc spatially correlated. 

Edited hy.4.13. 1,mi WII (’1 ( I /Div(ww ,!J(ippi~ig r i r r r l  K i \ k .  \ s \c \ \~r~(nr t t  / o r  I ’ t rh l i r  H ~ ~ r l ~ / r .  
( 1999 John\\‘ilc.y K Sons 1 , t d  
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1'01 icy-re1ei.an t envi ron tile11t a 1 ii ssessme n t s i nvolve synthesis of i n for mat ion (e.g. 
disease rates or relat ive risks) from ;I set of related geographic regions. Most cw~iiiiionly, 
indi\Tidiial rates iire estimated and used for ii variety of iissessnients. However, estimates 
of the histogram or empirical distribution function (edf)o f  the  underlying rates (for 
esmiple. to evaluate the number of rates above i i  threshold) or comparisons a m o n g  
the regions, for example by ranking t o  prioritise eniiironniental i i ~ ~ e ~ ~ i i i e n t s ,c ' a n  be 
of equal importance. While posterior means are the 'obvious' and effective estimates 
for region-specific parameters. the ed! of the posterior means is underdispersed and 
never ~ u l i d  for estiiiiat irig the edf of the true, underlying parameters. Also, cl'fect itrc 
estimates of the ranks of the paranieters should target them directly. Ranking 
observed data usually produces poor est iniutes and ranking j>osterior ~ i i eansc - a n  bc> 
inap p r() p r iii te. 

Though no single set of ~ ~ i l u e scan be optinial for all goals, in  niiiny policj. settings 
c*on iiiiu 11ic-at ion ii nd cwdi bi 1i ty \I? i 11 be en ha  nced by rep or t i n g i i  single set o1 c's t i  i i i i i  t es 
with good performance for all three goals (Shen and 1,ouis. lW8). In  this chapter c v c ~  

\ y eprest)nt ii c*ii  se st U dy on 11 ( nv  i I1f'eren t i ii  1 ii  11d descr i pt i goa1s deter111 i ne ii  ppr()pr i ii t e 
suniitiiirit~sof the posterior cfistribution. \\'e foc.us on hot\. to use the posterior distribu- 
tion for turious goals and not on choice of or e~~a lua t ion  of the prior distribution and the 
likelihood. Homww-, we twictly coinpare cxc1iange;ible and spat i d  corrclat ion priors. 
After out lining goals. inodds and i n e t  hods, tz't' ana lyse  data on lip cancer in  Scwtland 
u s i ng spat i i i  I  c-( )r re 1ii t ion mode1s t () co111pa re ii  pproi i c*hcs to est i m at  i ng reg ioI i-s pe c-i 1ic 
paraine t ers, t he pa rii meter cd1' h ist ograni and parameter ranks. 

3.2 MODELS 

C'onsider disease preLdence or  incidence data that are available a s  summary counts or 
rates for ii  defined region such iis ;I county, district or census tract for ii single time per- 
iod (e.g. ii  year). llenote a n  observed count by , ~ j k ,  with k = 1. . . . . K indexing regions. 
' 1I he observation is ii count generated from ii population base of size I I and a smi -~ 

pling tiiodel (likelihoodl parametrised by ii baseline rate and ii region-specific relative 
risk ( . ' k .  12'ithin ii region, data may be available for subgroups such a s  gender, race and 
exposure. hlodcls for @ = ( t 1  I , . . . , ( , ' A )  

' I '  should incorporate this information. 
13ayesian model I in g e nt ii  i  1s four stages: 

1. Specitication of the likelihood for the observed counts conditional on the base rate a n d  
relative risks. Mk use the Poisson distribution. 

2. Specification of the distributions at each higher level of the sampling hierarchy, in 
ou r  case the prior distribution for the vector of r e l a t i a~  risks @ and the hj-perprior 
distributioti for unknowns in this prior. M'e use ii lognormal prior and appropriate 
hy perpriors. 

3 .  C'omputntion of the posterior distribution of @ or other parameters of interest. \Vc use 
the H[I(;S (Carlin and 1,ouis. 1996;(Uks ct " I . ,  199ha)software. 

4. lise ofthis posterior for inference, possibly guided by a loss function. 

\\k c-oncentrate 0 1 1  steps 1. 2 and 4. I h t i l  reccmtly step 3 iviis dif'ficult or impossible for 
all but the most basic Kayesiun models. Ho\ve\w, modern llarko\, chain hlonte Carlo 
c.ornpirt~ition~ilalgorith~ns allow t h e  use of realistic models. 
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3.2.1 The hierarchical model 

\With X = ( X  1 . . . . . X K ) “  the matrix of region-specific covariate Lwtors, we use: 

where i i i k  is the expected count under a null, constant relative risk niodel and q is ;i 
17ector of parameters that determines the prior. With the 3 known, the postcrior for $ is 
proportional to  .f(y1 $)!I($/ X ,3). but using i t  requires ~iiathcmatical or hlontc C’arlo 
approximations. More generally, once the posterior distribution is available i t  can be 
used to make env i ron men t a 1 assess me n ts and to i n fo rni en v i ronnicln t ii 1 po1icy 

For iritrJriiri1 stcindnr.tlisrrtioii, the i i i k  are estimated by I I ~ (C ky k /  1 I I L )  and i i r c  

assumed to be known in that their sampling variation is ignored. This approach is used 
by Clayton and Kaldor (1987),but models can be generalised to accommodate statistical 
uncertainty. If the expected counts are defined with respect to  some external rcfercncc, 
then the model is ~ w r l - i i d l ! jstrriidrrrdisrd (see, for example. Hcrn~irdinelli and hlontonioli, 
1992). In either case, the directly estimated relative risks (via maximum likc4ihood, A l l , )  
are = g k / i ~ k .  

‘I’o complete the model the prior (;I) for $ and hyperprior ( 1 1 )  for 3 must bc specificd. 
Models can incorporate a variety of i i i r i i i i  c f f k , t  and i i i r (w i r~ t io i iterms. ‘I’hc folloazring 
provides a quite general form. Conditional on 3 in (3.1). let 

log( b ’ k )  = X k  a + O k  + O k .  ( 3 . 2 )  

The vector 3 includes a and parameters specifying the distribution of the 0s and the QS,  

The Xka term introduces covariate effects, the Ok are iid random effects that produce t i n  

exchangeable model with extra-Poisson variation, and the o k are random effects that 
induce spatial correlation. The Xka component of the model standardises and adjusts 
for age. gender, exposure and other potential confounders. ‘I’hercforc. t he 0s i i ~ i d~3 s arc’ 
adjusted random effects for region-specific log relative risks. ‘I’hcir iuriat ion c-an bc. 
vieived a s  compensation for model misspecification, for example failure to include 
important covariates. Including additional covariatcs can reduce the magnitude of 
these random effects. 

A variety of popular models are contained within this structure (Hesag c’t r i l . ,  1991; 
Hernardinelli and Montomoli, 1992; Clayton and Kaldor. 1987; C’layton and Hernardi-
nelli. 1992).Correlation structures can depend on inter-region distances (Ikvinc (it it!. , 

1993a),or on nearest neighbours (Hesag “t al., 1991;Waller r’t r i l . ,  1997a,b).Such neigh- 
bours can be defined as regions contiguous to region k,  or perhaps as regions within ;I 

prescribed distance of region k .  
We are in t erested i n m a k i ng i n fere nces on reg ion-s pcci fi c-. c o w  r ia t c-ad j us t etl r c h t ive 

risks, pk = e“A ‘ ( ’ A .  Similar issues and approaches apply to making inferences on the I ‘ L  

or other parameters. 
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3.2.2 The exchangeable model 

The pure ( ~ s ~ , / ~ t ~ ~ i ~ ~ ( ~ t r ~ ~ ~ ~ ~tiiodr4 sets 

'Ii)provide some insight, assume that in the exchangeable model ( 3 . 3 )  the sampling 
distribution ( f )  is (hussian (rather than I'oisson) Lvith conditional mean HI, and Iuri- 
iince o f .Then 

m c i  all region-specific posterior distributions hare posterior means (Phl) that are 
shrunken from the hlL estimate towards a common value with the amount of shrinkage 
depending on the relationship between T' and the region-specific variance 0:. Setting 
T 0 produces coniplete shrinkage to 0;  r = x leaves the M I ,  estimates unchanged. 
ll'ith ii h i s s o n  sampling distribution similar shrinkage occurs, but  there is no closed 
form for the Phi, 

3.2.3 The conditional autoregressive model 

A pure sptrtitrl ( w w l ~ r t i o r i11 io t i r4  sets O k  0 and builds ii correlntion niodel lor the c;)s. 
generallq~with correlations that decrease with distance. The conditionally autoregres- 
siire (C 'AK)  model is relati\djy easily implemented using t3IJGS kind h a s  proiwi t . l f t~c- t i~rc~.I t  
builds the full joint distribution from complete conditional distributions for each (:)I, 

given all others. The (JS are (hussian with conditional mean for ~ 3 kgiven all other (.IS ii 

\freighted average ot' these others with weights decreasing with distance. 'I'he condi-
tional irariance depends on the weights. For weights w k , .  k ,  j = 1. . . . . K :  

( 3.5) 

'I'he hyperparameter X controls the strength of the spatial similarity induced by the 
CAK prior: larger values of'X indicate stronger spatial correlations between neighbour- 
ing regions. Setting X = x produces complete shrinkage to ii cornmon value: X = 0 pro-
duces PM = hIL. Importantly, these situations are both special cascs of the 
exchangeable model (T' = Oand T' = x,respectively) and it may be difficult to choose 
bcttveen the two prior structures. 
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The weights can be very general so long as they are compatible with a 'legal' joint 
distribution for the OS. They can depend on Euclidean distance, adjacency, or another 
metameter that carries information on statistical correlation. In the cidjncwicy 1 r z o c 1 0 1  
the weights are \ v k ,  = 1 i f  areas k and j share a common boundary; \ v k ,  = 0 otherwise. 

The posterior distribution of ~k (or a transform of i t )  depends on all the observed data 
and on the weights. For example, the posterior mean for p k  = e"k is determined by the 
region-specific MI, relative risk ( ! j k / r ~k ) ,  the overall relative risk, a value determined by 
'nearby' regions and the covariate model Xa. 

3.3 GOALS AND INFERENCES 

3.3.1 Mapping via posterior means 

A crude map is produced by coding the region-specific M I ,  rate or (adjusted) relathre risk 
estimates. If some of the MI,s have a high standard error or a high coefficient of \~nriation 
(due to small i l k  or mk).then the MI, map will be visually distorted because thcsc esti- 
mates will tend to be at the extremes. Mapping MI,s can produce sampling variation- 
induced 'hot-spots' and overdispersion of the histogram of estimated rates. I f  the h l I s  
are stable (for example, when computed for entire countries: WHO, 1997). then distor- 
tions will be small and the hlI, map will give a valid display. 

Plotting 21 feature o f  the posterior distribution (e.g. posterior mean, median. mode or 
other summary) srtiooths the crude map and reduces or eliminates many of these pro- 
blems. A prior with spatial correlation locally stabilises the estimates by borrowing 
information from other regions with greater influence from nearby regions. 

7'0 see the potential advantage of a spatial correlation m o d c ~ l ,consider sc~,cral  rate 
estimates from contiguous regions, each estimate higher than the rate estimate 
pooled over all regions and each with a large standard error. As shown in (3.41, t h e  
pure exchangeable model will shrink each estimated relative risk quite subst mtially 
towards the overall mean (the Bk are near l),ignoring the spatial information that 
the regions are contiguous. The spatial correlation model will shrink t he estimated 
rates from the contiguous regions towards a cluster mean and shrink this cluster 
mean tou~ards the overall mean by a relatively moderate amount. 'fhe resulting 
estimates will retain the local signal in the data. This same phenomenon occurs fot-
each collection of regions and the Hayesian formalism. aided by considerable com-
putation, is the only way to obtain the joint posterior distribution. Generall~~, Phis 
from ii CAK model will be more spread out than those from a n  exchangeablc m o d c ~ l .  

3.3.2 The edf/ histogram and ranks 

\4k consider situations where in addition to the region-specific rclative risks, their histo- 
gram or edf and their ranks are of interest. One may i j k h  to estimate thc histogram of 
true, underlying region-specific relative risks and compare t h c w  histogranis ainong 
countries. Or, one may want t o  estimate the fraction of regions ~ ' i t h  rc1atii.c~ risks that 
exceed a threshold or to rank regions to prioritise environmental risk i~ssess~nc~nts.  



3 6  Multiple goals in evaluating region-specific risk 

Similar goals apply in education and medicine (Goldstein and Spiegelhalter, 1996:Laird 
and Imuis, 1989)and other applications. 

Estimating the edfof the underlying parameters by the edf o f the  YMs and producing 
ranks by ranking 1Ws are intuitively appealing. Unfortunately. this appeal is misguided. 
The histogram of the Pkls is underdispersed relative to the desired edf and ranking the 
Phls c - a n  produce suboptimal ranks. lise o f  the coordinate-specific MLs solves neither of 
these problems. Their edf is oLw-dispersed and ranks bused on them generally perform 
\‘cry poorly. \‘rilid inferencw require structuring using loss functions designed for these 
estiniation goals. 

Estimating the histogram and 4df 

[[sing the formulation of Shen and Louis (1998),define the ed!  

Lvhere I (  1 is the indicator function. \Ve use the integrated squared error loss (ISEI,)to 
structure estimating G. \j’itIi i i ( t ) ;I candidate estimate, ISH, == j ” ~ E ; ( t )- ~ ( t ) ]‘ < ( t ) c i t ,  
where (( t ) is ii weight function. For lSt<l,,the Kayesian formalism produces the posterior 
tispcc*ted \~;ilueof ( ; K  iis the optimal estimate: 

ivhich is the postc’vior prohbi/it,q that ii p k  chosen at  random from the collection 
of‘1 ) s  t h a t  generated the data is less than or equal to t .  I f  (; is cwntinuous. then so 
is ( j h .  

‘11) sec’ the reason for not using PMs to produce the  edf, consider the mean and 
\~arianc.r. computed froiii ( j  h .  ‘I’he ~iieanis t tie same a s  the aiw-age of the coordinate- 
spcc,ific* posterior iiieiins (f)l)’l’ = ( 1 / K )  C ,)!’”), but thc. \rari;ince induc-ed by the ecff is 
the suiii: 

\i-Iicrt~ is the posterior \rariance for region k .  An edf based oii the l’hls produc-clsonly\ p i  

the !irst tcrni-they art‘ iitiderdispersed. A similar devclopment for the coorditi~itt.-spe- 
ciiic k11,s shows that they are o\t~rdispcrsed. ‘I’herelore, (If,o r  i i  discretised Lrcrsion of i t  
should be used i is  the estimated edfot  the p s .  

\\b need ;i discrete \version and use the Shen and 1,ouis ( lcNS)optima discrct isation: 

( ; A .  h a s  Il-lilSS ( l / K )  at : U ,  = (I, I ( % ) ,  j =  l , . . .  K .  ( 3 .9 )  
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estimates by retaining the location and shape of the histogram produced by the poster- 
ior means, but adjusting its variance to equal (3.8): 

Estimating ranks 

In general, the optimal ranks for the p k  are neither the ranks of the o b s e r \ d  data nor 
the ranks o f  the posterior means. Laird and Louis (1989)structured the approwh iis 

Kfolloaz~s. Represent the ranks, R ( =  K 1 , .  . . , K K )  by. K k  = rank(pi)  = E, , 11,,,,,,,1. 'I'hc 
smallest p h a s  rank . IJse squared error loss for estimating he ranks, producing t tic 
optima1 est iniates: 

The K k  are shrunk towards the mid-rank (K + l)/L and generally the /?iare not inte-
gers. Though this feature can be attractive (because integer ranks can oiw--rcpresent 
distance and under-represent uncertainty), we will need integer ranks. 7'0 obtain thcm. 
rank the K k , producing: 

kk = rank(Xk). ( 3 . 1 0 )  

See Laird and 1,ouis (1989)for the posterior covariance of the ranks and  (hldstcin and 
Spiegelhalter (1996), Morris and Christiansen (1996).and Stern and Cressie ( I99h) for 
other approaches and examples. 

3.3.3 Triple-goal estimates 

No single set of values can be optimal for estimating the parameter histogram. para- 
meter ranks and region-specific parameters, but communication and credibility ayill 
be enhanced by 'triple-goal'cstimates with a histogram that is a good estimate of the 
parameter histogram, with ranks that are good estimates of the parameter ranks, and 
with values that are good estimates of region-specific parameters. 

Shen and 1,ouis (1998) develop 'GR' estimates (parameter estimates computed by 
combining estimates of G and of the K): p f r  = c K k .They compare the ILII,, Phi, Cl3 and 
GR estimates and show that the GK are optimal for estimating G Kand the K h .  Further-
more, although the CH are generally better than the (;R for estimating rcgion- 
specific parameters, the difference in performance is small and both the G K  and C H  
pay only a modest price in estimating region-specific parameters compared with the 
use of the PM. 



38 Multiple goals in evaluating region-specific risk 

3.4 USING MONTE CARLO OUTPUT 

Our models iire estimated using MC’MC‘ via H1JGS (see the Appendix). We outline, using 
hlC’h1C’ output, hocz7 to compute estimates of the p s ,  (i, and various estimated ranks. 
Ass~rme that hlChlC’ has been run and that we have a n  I x K array in which rows 
( i  = 1 , .  . . . I )  index the draws from the chain (draws from the posterior distribution) 
and columns ( k  = 1 ,  . . . , k’) index the region. The chains have been stripped of burn- 
in \ d u e s .  IZk have available p l i  = e”  i and can compute a wide variety of summaries, 
i ncIU (1 i ng: 

0 The region-specific posterior means: /I!”’ = p. k .  

0 The region-specitic posterior variances, v k  . 
0 Sk = ranks of the pi”’. 
0 The posterior expected ranks: K k  = K . k .  where K l k  is the rank of region k among the 

p , ~ .k = 1. . . . . K .  The standard error of K k is the sample standard error of the K I k .  l h e  
Ki iire not integers. 

0 = ranks of the Kk. 
0 = the posterior tnodal ranks computed as the mode o f t h e  K , k .  i = 1 . . . . . I. (Avery 

large I will be needed to produce valid modes.) 
0 ’I’he I,ouis-(;hosh constrained estimates p i ” .  
0 (;k:rl’heedfof U 1 ,  . . . ~ U,,. ‘1’0 find the Us. pool all IK RIIC’MC’ output values (all p , k )  and 

for C = 1 . .  . . , K let: U ,  = the [ ( I  - 0 . 5 > I ] t l 1smallest value in the pooled output. This 
is the { 1 0 0 [ ( 1- O . S ) / K ] ) t hpercentile in the pooled output. 

0 ’I’he Shen-I,ouis parameter estimates: fitr = U R i .  

Having samples from the posterior distribution enables straightforward computation of 
most sunimiiries. For example, for ranking one can compute median ranks and poster- 

~ior intervals. For inference on the L I = p k  exis, one can directly use the \lChlC’ output, 
including samples from the posterior distribution of x.  

3.5 SCOTTISH LIP CANCER DATA ANALYSIS 

3.5.1 The dataset 

This dataset (IAKC’, 1985)includes information for the 56 countries of Scotland pooled 
over the years 1975-80. The dataset includes observed and expected male lip cancer 
cases. the male population-years-at-risk, a covariate measuring the fraction of the popu- 
lation engaged in agriculture. tishing or forestry (AFF), and the location of each county 
expressed as a list o f  adjacent counties. Expected cases are based on the male population 
count and the age distribution in each county, using internal standardisation. 

\Ve report in detail on the model: 

with (.>following the C’AK model in ( 3 . 5 )  using adjacency indicators for the 14)s and 
taking the p k  as the parameters of interest. Since the CAK model implicitly includes a 
non-zero intercept. a n  intercept is not needed in the regression model. \4’e make limited 
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comparisons with the pure exchangeable model (dk in (3.11)replaced by fSk :  the regrcs- 
sion augmented by an  intercept (1 0) .  

3.5.2 Estimates of prior parameters 

For both the exchangeable and CAR models we used 2 0 0 0  samples from the posterior 
distribution of (1 and A, after stripping 1000 burn-in values from the H l K X  output (sec 
the Appendix). For the exchangeable model the priors for ( I ( )  and (1 are normal with 
mean 0 and variances 1 0 ”  and IO’, respectively. These are essentially flat priors. ‘I‘hc 
reciprocal prior variance (r-’) is gamma with mean =1, variance = 1000. l’able 3.1 
gives results for the exchangeable model. 

For the CAR model the prior for (1 is normal with mean 0 and variance 1 0 ’ .  The pre- 
cision parameter X is gamma with mean =0.25 and variance =1000. rl’able 3.2 gives 
results for the CAR model. 

The posterior mean and standard deviation of Q depend on the random effects struc- 
ture. Estimates for it report the impact of changes in the fraction of AFF. Vor the 
exchangeable model, ( i p ” ’  = 6.95 implies a doubling of the relative risk for c\Tery 0.1 
increase in AIY. For the CAK model, o p m  = 4.04 implies ii 50% increase in relati\re risk. 

3.5.3 Posterior means 

Figures 3.1 and 3.2 display the ML and PM estimates of relative risk and the s.d. of the 
ML. (The middle line displays the ML estimates with‘whiskcrs’ with length proportional 
to the s.d. The bottom line displays the PMs.) Notice that in Figure 3.1 shrinkage towiirds 
the overall [ d u e  is more pronounced for regions with relatively unstable blI,s than for 
regions with relatively stable MLs.A comparison of Figures 3.1 and 3.2 s h o w  that the 

Table 3.1 Posterior moments for the exchange-
able model parameters 

Posterior Poste r ior 
Parameter mean s.d. 

(1 0 - 0.51 0.16 
(1  6.95 1.33 
T 0.62 0.09 

Table 3.2 Posterior moments for the CAR model 
parameters 

Post er io r Posterior 
Parameter mean sad. 

(I 4.04 1.13 
x 2.54 1.19 
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Scotland lip Cancer Data 

SD 

0.0 0.40 0.81 1.21 1.81 2.02 2.42 2.82 3.22 3.63 

Figure 3.1 hlasimuin likelihood estimates (h l l , )  of relatiire risk. their estimated standard errors 
ISI)1 md posttlrior tiieati ( l ’ k l )  relative risks c.ompiitcd from thc exc*hangeablemodel. N o t c  that 
t i r h t h n  thc hl l , l<= 0. thc cstimatcd SI)= 0 

Scotland Lip Cancer Data 

1 SD 
I 

ML 

PM 

0.0 0.40 0.81 1.21 1.01 2.02 2.42 2.82 3.22 3.03 

Relative Risk 

Figure 3.2 hlasinium likelihood estimates (MA)of relative risk. their estimated standard errors 
(SI))atid posterior me;~ti (I’hl) relativc. risks c*ompiited from t h e  C’l\R tnodel. Kote tha t  when the 
XlI ,F ,  = 0, the estimated S1) = 0 
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Scotland Lip Cancer Data 

GR 


ML 

PM 
I 

I I I I I I f 1 I I 

0.0 0.40 0.81 1.21 1.61 2.02 2.42 2.82 3.22 3.63 

Relative Risk 

Figure 3.3 G R ,  h l l , ,  and Ph! estimates of relati\rc risk for t h c  <’AI< m o d c 4  

Phls from the CAK model are more spread out than are those for the exchangeable 
model. The CAR model preserves more of the local signal. Also, note that for both the 
exchangeable and CAR models the lines between the hll, and I%! axes cross, indicating 
that ranks based on PMs are different from those based on hll,s. 

A study o f the  regions with the fifth and sixth largest hlI, estimates (regions 8 and 9)  
provides a good comparison of the exchangeable and CAK models; t hc i n  tlucncc of 
including spatial correlation. These regions have approximately the same M I ,  est imates 
(2.37 and 2.34, respectively) with approximately the same standard deviation. In 1:igure 
3.1 the l’hls a l so  are similar and are moved substantially towards the ~raluc1. In Figure 
3.2 the PMs are quite different. Region 9 has six neighbours and a Phl shrunken sub- 
stantially toavards 1 because the average of the ML estimates for its neighbours (1.W)is 
given considerable weight by the CAR prior. In contrast, region 8’s only ncighbour 
(region 6, actually separated by water) has hlL = 1.41, but this i d u e  is g i \ w  relati\~ely 
little urcight by the CAK prior but sufficient variance stabilisation to ;nuid thc shrinkage 
produced by the exchangeable prior. The foregoing is only ii partial explanation. 
The CAR prior produces very complicated relationships among observed and posterior 
distributions. Sorting these out requires a n  MCMC approach. 

GR and PM 

Hencefort h. we consider only the CAR model. Figure 3.3 compurcs C;R, hlI ,  and l’hl 
esitmates of relative risk. Note that the spread of the (;K estimates lies between that for 
the hlI, and t h c b  I’M, that the ranks of the G R  estimates are different from those for the 
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MIJ and the PM, that some of the GR estimates are farther from the shrinkage target 
than are the IvlI,, and that lines cross, indicating different ranks from the differcnt esti- 
mates. For each region, and in both the exchangeable and CAR models. the PAl  is closer 
to the shrinkage target than is the MI,. For each model the GR cstimatc can be farther 
from the target than is the ML (the models ‘stretch’an7ay from the target). Stretching is 
possible whenever region-specific sampling variances (controlled by the H I  k in our appli- 
cation) have a large relative range. In this situation. a low-variance MLwith rank below 
but not at K can have k = K and GR estimate c k .  

3.5.4 Histograms 

Figure 3.4 displays histogranis of the ML, PM, CB and G R  cstimates of relati1.e risk. These 
show the spread relations noted in Figure 3.3 and allow a comparison of shape. The CR 
and G R  estimates are similar for this data set. 

Fable 3.3 presents percentiles and moments for the MI,, PM, CB, and GR estimates. 
Note that all have approximately the same mean and that the varianccs are ordered: 
PM <CH G K  <MI,. Quantiles document the shape differences of the histograms 
in Figure 3.4. These comparisons for the exchangeable model (not s h o ~ v n )  are 

Table 3.3 Percentiles and moments for the 
hl l , ,  Phl, CR and G R  estimates from t h e  C A R  
model 

Moments 

ML PM 
Mean 1.04 0.92 

s.d. 0.78 0.57 

Mean 0.96 0.95 
s.d. 0.67 0.hi  

CB GR 

Quantiles 

ML P M  
10% 0.28 0.41 
25% 0.4 0.5 

Median 50% 0.84 0.67 
75‘% 1 . 3 3  1.29 
90‘%, 1.32 1.92 

10‘% 0.38 0.37 
25% 0.48 0.48 

Median 50% 0.66 0.70 
75‘% 1 . 3 i  1.23 
90% 2.14 1.92 

CB GR 
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more pronounced because I’hls computed from i t  are less spread out than in the (’AK 
mode I. 

3.5.5 Ranks 

Figure 3.5 reports on ranks using the Lrarious approaches, with K (the !/-axis) taken its 

the gold standard. Note that the ranks based on the ILII, are very different from the best 
est iniate, n.hile the Phl, (’H and (;K approaches produc.e ranks that h;i\ve ii monotone 
relat ion ivi t  h K. Of course, ii monotonicity relation is assured for t he (’IK estiniates. Note 
that tn’o All, cstiniales itre tied at 0 though their K differ. producing two dots plotted for 
rank 1. 

‘I’ables 3.4 and 3.5 provide dd i t iona l  detail on ranking. They shoM7 how identitication 
of extreme regions depends on the approach taken. Note that based on the MI,s. region 8 
is onc of the live highest, but is not so categorised b y  I’hls, C‘Bs or GKs. Its standard error 
is sufficiently large relative to other regions with large M1,s that its posterior distribution 
is pulled back toward 1 more than the other contenders. Similarly, based on the M L s ,  
regions 43, 55 and 56 are three of the fi1.e lowest relati\~b risk regions, but none achieves 
this status based on the P A l s ,  C’Hs or (;Ks. 

3.5.6 Transforming the parameter of interest 

I !  \ye were to rcpeat the foregoing analyses with target parameter 0 = log(p )  rather 
than p. then the G K  estimates would map directly by the log transforni (they arc’ niono- 
tone-t ranstorm eyuivariant) and the K and k would not change (they are inonotone- 
transforni inr.ariant I. This transform eyuivariance and invariance itre very attrac-tive 

0 10 20 30 40 50 0 10 20 30 40 50 

ranked(ML) ranked(Ph4) 

ia 


0 10 20 30 40 50 0 10 20 30 40 50 

ranked(C6) ranked(GR) 

Figure 3.5 C’ondi l ion i i l  cspcc.ltd ranks ( K )  \‘ersus ranked h l l , ,  Phi, (’13 rc~lalii~erisk csliniates tor 
1hc ( ’ / \I< nnodel 
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Table 3.4 Highest five relative risk regions. 1 M  CH and GK from 
the CAR model 

ML PM CB GR 
Rank region region region region 

56 1 1 1 1 
55 3 2 2 2 
54 2 3 3 11 
53 5 11 11 5 
52 8 5 3 3 

Table 3.5 Lowest five relative risk regions. Ph1, CB and G K  from 
the CAK model 

~ ~~ ~ 

ML PM CB GR 
Rank region region region region 

1 55 49 49 49 
2 5h 53  53 53 
3 5 1  54 54 54 
4 53 42 42 42 
5 43 48 48 45 

properties not shared by the PM and CB estimates. Furthermore, direct logarithmic 
transformation of the MI,s requires avoiding taking the log o f  0 (usually by adding 
(1 (< 1) to yk and 1to mk). Hierarchical models avoid such nd I ioc ,  fixups. 

3.6 CONCLUSION 

In a fully Hayesian approach, all inferences are determined by the posterior distribution 
and a loss function. Statistical inferences generated by this formdism often have 
excellent frequentist properties. Hierarchical structuring and the Bayesian posterior 
computations are especially important in multi-dimensional settings and where goals 
are non-standard. As we illustrate, intuitive approaches such a s  using posterior nicans 
to produce a histogram or ranks can perform very poorly. For the triple goals of estimat- 
ing individual parameters, the parameter histogram and ranks, the new G R  estimates 
(which combine an estimate of G with an estimate of R )  are preferred over maximum 
likelihood (ML), posterior means (PM) or constrained Bayes (CH) .Though the PMs are 
optimal for estimating individual parameters, the GR or CB estimates produce a toler- 
able increase in squared error loss and generally outperform MI, estimates. The adiwi- 
tages of reporting one set of estimates argue in favour of the G K  approach. Of course, i f  
estimating individual parameters is of dominant importance. then the PM or other para- 
meter-specific estimates should be used. 

Hayes and empirical Bayes hierarchical models with fixed effects for covariate in flu-
ences and some combination of exchangeable and correlated region-specific random 
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effects have the potential to reflect the principal features of environmental assessments. 
However, the approach must be used cautiously and models must be suRciently flexible 
to incorporate important relations among exposure, geography and response and to 
accommodate the main stochastic features. Models must be robust. In addition to possi-
ble non-robustness to misspecification of the sampling distribution (1)(a potential pro- 
blem shared by all methods), inferences from hierarchical models may not be robust to 
prior misspecilication. A broadened class of priors (e.g. replace the Gaussian distri- 
bution by the t-family) can add robustness as can the use of semi- and non-parametric 
priors (Escobar. 1994: Magder and Zeger. 2996; Shen and Louis, 199i).Whatever choices 
are made for the prior and likelihood, goals and loss functions should determine how 
the posterior distribution is used for inference. 

Considerable progress has been made in developing and implementing hierarchical 
models. Their important role in risk assessment and environmental policy energises 
and justifies accelerated methodologic research and development of applied insights. 
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APPENDIX: IMPLEMENTING BUGS 

For the spatial CAK model, the posterior distribution of the slope on AFF ((11, 

the precision parameter for the CAR variance (A)  and the gs are calculated as follows. 
The prior for n is normal with mean 0 and variance 10'. essentially a flat prior. The 
precision parameter A has a gamma prior with both mean and variance as free param- 
eters. Several means and variances were tried; posterior distributions were insensitive 
t o  ii wide range of choices. Reported results are based on a prior mean of 0.25 and var- 
iance of 2000.With Normal(a,b) denoting a normal distribution with mean (1 and var- 
iance 6 and similarly for Gamma(u,b), the CAK model (see equations 3.1 and 3.5) is 
programmed in HIJGS as follows: 

Yk 'v Poisson(r u  k @ k ) ,  

log(\'k) = ( I A F F ~+ O k ,  

a - Normal(0, 10'). 
b J k  - Normal($k, Vk), 
( ' k  = number of neighbours of k ,  

1 
S k  = - @ I -

( ' k  
I E neighbours(k) 

1 -I'k = 
A r k  ' 

A - Gamma(O.25, 1000), 
p 

k 
l = Y k 111 /( . 
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Running this model in BUGS gives the q5ik ,  i = 1, .. . , 2 0 0 0 ,  k = 1 , .. . , 56, after drop- 
ping a burn-in of 1000.Inferences for a transform of 0 (such as our parameter of interest 
pk = e:) are based on the transformed bjk. 

Implementation of the exchangeable model is similar. 
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Disease Mapping with 

Hidden Structures Using 

Mixture Models 
D. Bohning and P. Schlattmann 

Free UiiiV Prsit!l Herl ill 

4.1 INTRODUCTION 

The analysis of the spatial variation of disease and its subsequent representation on ii 
map has become a n  important topic in epidemiological research. Identification of 
spatial heterogeneity of disease risk gives valuable hints for possible exposure and 
targets for analytical studies. 

Another important use of disease mapping may be seen in disease surveillance and 
health outcome research. Especially in cancer registries, maps are used to  fiicilitatc 
reporting of the public health situation and frequently maps are a starting point for 
cluster in ves t igat ions. 

The first step in the construction of disease maps is usually the choice of an epidemio- 
logical measure which shall be presented on the map. An often used measure is the 
Standardised Mortality Ratio, SMR = O / E ,  where the expected cases E are calculated 
based on a reference population, and 0 denotes the observed cases. 

A common approach in map construction is the choropleth method (Howe, 1990). 
This method implies categorising each area and then shading or colouring the indivi- 
dual regions accordingly. Frequently the categorisation of the individual region is of 
particular importance. 

Traditional approaches to categorisation are based on the percentiles o f  the SMK dis-
tribution. Most cancer atlases use this approach, usually based on quartiles, quintiles or 
sixtiles. 

In our first example we present data from the former GIIR within the time period from 
1980 to 1989. The map of Figure 4.1 presents the regional distribution of childhood 
leukaemia in the former GDR. 
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Figure 4.1 Map based on percentiles 

Figure 4.2 Map based on significance level with maximum likelihood estimate 6 = 0.99 
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There has been a debate in the media about whether there is a n  excess of childhood 
leukaemia in the vicinity of the nuclear power plant Rossendorf close to Dresden in the 
south-east of the GDR. According to this percentile map there is a n  increased risk in the 
districts of Selbnitz and Dresden, both of which are close to the power plant. These dis- 
tricts are located in the south-east of the GDR, close the Czech border. This map seems to 
support the hypothesis of an increased risk of leukaemia in that area, But maps based 
on the percentiles of the SMR distribution are likely to reflect only random fluctuations 
in the corresponding small counts. The blank area in the following maps refers to the 
former western part of Berlin. 

Thus another frequently used approach (Walter and Birnie, 1991) is based on the 
assumption that the observed cases Oi of the individual region follow a Poisson distribu- 
tion with 

where again E , denotes the expected cases in the region labelled i. Computation of the p 
value is done under the null hypothesis 0 = 1or based on the maximum likelihood esti- 
mator 0= Cli, O,/ E l ,  where the latter is called the adjusted null hypothesis (n is 
the number of areas). 

Again, based on this probability map (Figure 4.2) there is a significant excess in the 
district of Selbnitz. But probability maps based on a Poisson assumption face the pro- 
blem of misclassification as well. Here regions with a large population tend to show sig- 
nificant results. Additionally, even if the null hypothesis of constant disease risk is true, 
misclassification occurs. It can be shown (Schlattmann and Biihning. 1993)that prob- 
ability maps do not provide a consistent estimate of heterogeneity of disease risk. A false 
positive probability map may cause unnecessary public concern, especially if a disease 
map such as childhood leukaemia is presented, which is attached to highly emotional 
effects. Thus, the question remains whether the observed excess risk in the Dresden area 
is merely a methodological artefact. 

4.2 THE EMPIRICAL BAYES APPROACH 

4.2.1 The parametric model 

A more flexible approach is given in random effects models, i.e. models where the dis- 
tribution of relative risks Oi between areas is assumed to have a probability density 
function ~ ( 6 ) .The 0, are assumed to be Poisson distributed conditional on 6 ,  with 
expectation 6 ,E,. 

Several parametric distributions like the gamma distribution or the lognormal distri- 
bution have been suggested for g(6); for details see Clayton and Kaldor (1987)or Mollie 
and Richardson (1991).Among the parametric prior distributions the gamma distribu- 
tion has been used several times for epidemiologic purposes (Martuzzi and Hills, 1995; 
see also Chapter 25 in this volume). In the case that the 6 , are assumed to be gamma 
distributed, with 8, N r(a,v),the parameters a and U have to be estimated from the 
data. The marginal distribution P(Oj = o j )  = J;" Po(o,.6 ,E,)g(B)d6, where g (.) follows 
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a gamma distribution with parameters Q and U.  Here we are led to a parametric mixture 
distribution. By applying Bayes’ theorem we can estimate the posterior expectation for 
the relative risk of the individual area. The main distinction between empirical and full 
Bayesian methods can be seen in the fact that in the case of the empirical Bayes meth- 
odology the parameters of the prior distribution are estimated as point estimates & and i. 
from the data. Thus the posterior expectation of the relative risk are obtained condi- 
tional on these point estimates. In a full Bayesian approach a probability model for the 
whole set of parameters is specified (the prior distribution of cv and v included) and the 
posterior expectation of the relative risk is integrated over the posterior distribution of a, 

and U.  The posterior expectation of the relative risk of the individual area is then given as 
a n  empirical Bayes estimate by 

First, in areas with a large population size the SMR, based on this empirical Bayes 
approach change very little compared with the maximum likelihood estimates, whereas 
for areas with small population size the SMR, shrinks to the global mean. Secondly, if 
the prior distribution is estimated to have small variance, then this is reflected in a large 
amount of shrinkage. Thus parametric empirical Bayes methods provide variance-mini- 
mised estimates of the relative risk of the individual area. But these methods still face 
the problem that they need a post hoc classification of the posterior estimate of the 
epidemiological measure in order to produce maps. 

However, as can be seen in Figure 4.3 when using the same scale as in Figure 4.1, we 
obtain a homogeneous map of disease risk of childhood leukaemia in the former GDR. 

Figure 4.3 Map based on the gamma distribution 
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4.2.2 The non-parametric mixture model approach 

Now let us assume that our population under scrutiny consists of subpopulations with 
different levels of disease risk 8,. Each of these subpopulations with disease risk 8, repre-
sents a certain proportion y ,  of all regional units. Statistically, this means that the mix- 
ing distribution reduces to a finite mass point distribution. Here we face the problem of 
identifying the level of risk for each subpopulation and the corresponding proportion of 
the overall population. One can think of this situation as a Iiidrtcii (or I m i t )  structure, 
since the subpopulation to which each area belongs remains unobserved. These sub-
populations may have different interpretations. For example, they could indicate that 
an important covariate has not been taken into account. Consequently, it is straight- 
forward to introduce a n  unobserved or latent random vector Z of length k consisting 
of only OS besides one 1at some position (say the jth), which then indicates that thc 
area belongs to the jth subpopulation. Taking the marginal density over the unobscrvcd 
random variable Z we are led to a discrete semiparametric mixture model. If  we iissumc 
a non-parame t ric parameter distribution 

for the mixing density g(8)  (which can be shown to be always discrete in its nature), 
then we obtain the mixture density as a weighted sum of Poisson densities for each area 
i: 

k k 


f ( O l l P . E , )  = ~ p , f ( O , , O , , E , ) ,  with cp,= 1 and p ,  2 0, j = 1 , .. . . k.  
/ = I  j= 1 

Note that the model consists of the following parameters: the number of components 
k,  the k unknown relative risks 81,. . . ,Ok and k - 1 unknown mixing weights 
y 1, . . . ,pk-1. To find the maximum likelihood estimates there are no closed form solu- 
tions available; suitable algorithms are given by Bohning "t  r r l .  (1992). An over\kw of 
reliable algorithms may be found in Bohning (1995).Public domain software to estimate 
the parameters of the mixture is available with the package C.A. MAN (Hiihning ('t ( ~ l . ,  
1992).For the special case of disease mapping the package Dismap M'in (Schlattmann. 
1996) may be used. A general strategy implies calculating the non-parametric masi- 
mum likelihood estimator (NPMLE) and then applying a backward selection strategy 
to determine the number of components by means of the likelihood ratio statistic 
(Schlattmann and Bohning, 1993). Applying Bayes' theorem and using the estimated 
mixing distribution as a prior distribution we are able to compute the probability that 
each region belongs to a certain component: 

The ith area is then assigned to that subpopulation j for which it has the highest poster- 
ior probability of belonging. In terms of the latent vector %. Hayes' theorem gives us its 
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Figure 4.4 Map based on the mixture distribution, where I stands for 

posterior distribution. For the leukaemia data we find a one-component or homoge- 
neous model, i.e. with constant disease risk 6 = 0.99 and common weight p = 1. 
Clearly, in contrast to Figure 4.1 and 4.2 we obtain, in accordance with Figure 4.3, a 
homogeneous map for the leukaemia data (Figure 4.4).This could also be thought of as 
using the empirical Bayes estimate based on a posterior distribution which is a constant 
value for all regions equal to 6 = O , /  E, ,  in this case. 

In general we can compute the posterior expectation for this model as follows: 

In this special case of a homogeneous solution the posterior expectation reduces to 
the maximum likelihood estimate of the relative risk 8.Table 4.1 contains the crude 
SMR, the Poisson probability and empirical Bayes estimates for regions in the Dresden 
area. Here EB stands for empirical Bayes estimates based on the gamma distribution as 
prior distribution and MIX-EB stands for the posterior expectation of the relative risk 
based on the mixture distribution. Clearly, we conclude that there is no excess risk in 
the Dresden area based on the spatial resolution of ‘Landkreise’. Further investigations 
would need to refine the spatial resolution. However, in the case of routine maps pro- 
duced by a cancer registry we would avoid a false positive result. 
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Table 4.1 Relative risk estimates for areas close to Rossendorf 

Area Cases Expected cases SMR EB MIX-EB Pr(0 = oi)  

Dresden (City) 32 34.41 0.93 0.99 0.99 0.38 
Dresden (area) 10 6.8 1.47 0.99 0.99 0.15 
Selbnitz 9 3.53 2.55 0.99 0.99 0.01 
Pirna 7 7.07 0.99 0.99 0.99 0.49 
Bischofswerda 2 4.44 0.45 0.99 0.99 0.18 

4.3 THE VALIDITY OF THE MIXTURE MODEL APPROACH FOR 
MAP CONSTRUCTION 

The non-parametric mixture approach to map construction of the leukaemia data yields 
different results compared with traditional methods. These results are not necessarily 
more reliable. In simulation studies done by Schlattmann (1993) the mixture model 
approach of map construction was compared with traditional approaches of map con- 
struction such as using the percentiles of the SMR distribution or the approach based on 
the Poisson significance level. Various situations of heterogeneity have been simulated, 
assuming different levels of disease risk with two and three subpopulations. For each 
individual region therefore the true status of disease risk was known. The total number 
of different 'true'maps generated was 150.For each of these'true' maps 2500 replications 
have been done in order to assess the percentage of correct classifications for each indi- 
vidual region and different approaches of map construction. Figure 4.5 shows the over- 
all median percentage of correct classifications based on this simulation study, together 
with a 95% confidence interval. 

As can be seen in the figure the mixture model approach provides by far the highest 
percentage of correct classifications compared with traditional methods. As a referee 
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Figure 4.5 Percentage of correct classifications 
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pointed out, a more interesting exercise would be to compare the validity of empirical 
and full Bayesian methods. The authors are involved in a simulation study which seeks 
to investigate this point. 

4.4 EXTENSIONS OF THE MIXTURE MODEL APPROACH 

In a second example we investigate the regional distribution of lip cancer in males in the 
GDR from 1980 to 1989. When investigating the heterogeneity of these data we find a 
mixture model with three components as follows: 

f(ol.p. E , )  = ~ . ~ 9 7 P O ( ~ , ,0.449.E , )  + 0.680Po(Ol. 0.970, E,)  
+ 0.223 Po(O,,2 .176, Ei). 

The log likelihood is - 657.75 compared with - 770.70 for a homogeneous model. 
Clearly heterogeneity is present for these data and three different levels of disease risk 
are identified: about 10%of all regions have a very low disease risk half the size of the 
standard. 68% have the same disease risk as the standard, and 22% of the regions have a 
disease risk which is twice as high as that of the standard. The map in Figure 4.6 is based 
on this mixture model. 

Frequently one is interested only in residual heterogeneity, i.e. the question to be 
answered is whether heterogeneity remains after having adjusted for known covari- 
ates. In the homogeneous case covariates are included through Poisson regression (Bre- 
slow and Day, 1975).This leads to a loglinear model, where the Poisson parameter is 
given by 8, = exp(LP,), with the linear predictor LPi = Q + P1xl l  + . . . + P h f x r l ~ f +  

Figure 4.6 Map based on the mixture model 
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log E , .  Exponentiating Oj  = a + J I X , ~  + log E ,  we have a generalisation + . . . +d, j~x, , j~  
for the Poisson model @ , E , .  

Now the question arises: How do we include known covariates in the mixture model? 
The inclusion of covariates leads into the area of ecologic studies. For a detailed discus- 
sion see Chapter 13 in this volume. A natural extension of the homogeneous Poisson 
regression model is given by the mixed Poisson regression model (Dietz, 1992; Schlatt- 
mann et d.,1996). An extension of the univariate Poisson mixture density 
0, -1.11Po(0,.81, E , )  + . . . +pkPo(O,,8k, E , )  is given by a random effects model where 
the random parameter P is discrete finite with 

, with pi = ( o j ,l j , , ,  . . . ,ij,,,l)‘I’ and j = 1 . .  . . .k ,  . . .  P k  

where AI denotes the number of covariates in the Poisson regression model. The condi- 
tional distribution of 0, is given by 0, -E:=,p,Po(O,,exp(LP,,)), with linear predictor 
LP, ,  = 0,+ ,j l ,x l ,  + . . . + ,3,~,,x~~,+ 1ogEj. The number (AA+ 1) of parameters in the 
Poisson regression is the same for each subpopulation. The univariate mixture model 
approach may be considered as a special case with mixing only over the intercepts ( I ,  

and JI, = . . . = Jl l f ,= 0 , j  = 1,.. . ,k, where k denotes the number of components and 
M denotes the number of covariates. Again estimation may be done by maximum like- 
lihood. If the indicator variables Zi, were known, then the maximum likelihood estima- 
tors for the parameters would simply be the MLEs from each component groups. Again. 
there are no closed form solutions available for maximum likelihood estimates. An 
adaptation of the EM algorithm by Dempster et d .  (1977) has been developed by Dietz 
(1992). See also Mallet (1986) for a discussion of maximum likelihood estimation. A 
detailed description can be found in Schlattmann et d. (1996)as well. The computations 
involved may be done with the program Dismap Win. 

In our example we include a n  important covariate for lip cancer. Exposure to IJI’ light 
is considered an important risk for lip cancer. Since there is no direct mciisure for cxpo- 
sure to ITV light available, the surrogate measure AFF is applied. The covariate AFF 
describes the percentage of people working in agriculture, fisheries and forestry. Several 
models are fitted to the data. The first covariate-adjusted mixture model is obtained by 
using the adaptation of the EM algorithm, as described earlier in the text. This covari- 
ate-adjusted mixture model is a random effects model where a random effects model 
over the intercepts and a fixed effect for the covariate is modelled. The extension of this 
model assumes a full random effects model, i.e. the effect of the covariate may differ in 
each component o f  the mixture model. This second model provides a considerable 
improvement of the log likelihood, the value of the likelihood ratio statistic equals 8.08. 
The 95% bootstrapped critical value of the LRS is 7.5. Hence we conclude that the 
second covariate-adjusted mixture model is appropriate for the lip cancer data. 
Table 4.2 shows the estimatcs of the various models. 

After adjusting for the proportion of people working in agriculture, forestry and fish- 
eries, we still find residual heterogeneity, as indicated by a covariate-adjusted mixturc 
model with three components and a random effects for the covariate AFF (Figure4.7). I f  
we compute the mean relative risk as the mean predicted value for each cw~iponent, 
then the low-risk group has a weight of 28% and a relative risk estimate of 0.7, the inter- 
mediate risk group has a relative risk estimate of 1.22 with a corresponding weight of 
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Table 4.2 Parameter estimates of covariate-adjusted mixture models 

Components k Weight pi  (S.E.) Intercept i j  (S.E.) AFF Bj (S.E.) Log L 

k =  1 1.0 - 0.397 (0.03) 3.21 (0.19) - 652.39 
0.25 (0.09) - 0.80 (0.14) 

k =  3 0.67 (0.09) - 0.24 (0.06) 2.88 (0.14) - 629.00 
0.08 (0.04) 0.40 (0.10) 
0.28 (0.09) - 0.79 (0.17) 2.93 (0.94) 

k =  3 0.66 (0.09) - 0.25 (0.06) 3.16 (0.33) - 624.96 
0.06 (0.03) 0.80 (0.16) 0.61 (1.43) 

Figure 4.7 Map based on the covariate-adjusted mixture model AFF 

66%.The high-risk group has mean relative risk of 2.43. Note that after the covariate is 
adjusted for a change in the appearance of the map can be observed, there is a drop from 
22% to 6% in the proportion of the high-risk group. It is also noteworthy that the pro- 
portion of the medium-risk group remains almost the same, whereas the proportion of 
the low-risk group increases. Comparing Figures 4.4 and 4.6 we observe a shift from 
‘high-risk’ areas to ‘medium-risk’ areas and a shift from ‘medium-risk’ areas to low-risk 
areas. 

4.5 DISCUSSION AND CONCLUSIONS 

Mixture models provide a valid method to detect and model heterogeneity of disease 
risk. The special and important case of homogeneous disease risk is detected in contrast 
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to traditional methods of mapping. Heterogeneity of disease risk is detected as well and 
a valid model-based classification of the individual region is provided. 

From a public health point of view these are quite desirable properties. A reliable map 
facilitates the reporting of data of a cancer registry. Especially in the case of a homoge- 
neous disease risk there is less danger of a false positive cluster alarm induced by a 
reported map in contrast to traditional methods of disease mapping. In this circumstance 
the situation 'of a disease in search of exposure' is avoided. However, the primary goal of 
such a map is to separate signal from noise in the data. The absence of evidence is not 
necessarily evidence of absence. But disease maps avoid selection effects in the assess- 
ment of disease risk, since there is no a priori determined point source. If one is interested 
in the investigation of the hypothesis, for example of increased risk in the vicinity of 
nuclear power plants, then there could follow further analyses with a refined level of spa- 
tial aggregation as a second step and methods that address the effect of point sources. 

One of the specific methodological attractive features of the non-parametric mixture 
approach consists in the fact that an estimate of the number of subpopulations is pro- 
vided. This can be viewed as one example of inference for an object which is not fixed in 
its dimension (Richardson and Green, 1997). This paper investigated a Bayesian 
approach to address the uncertainty of the estimate of k. A likelihood approach would 
use likelihood ratio tests. In this case it  is important to keep in mind that the asymptotic 
null distribution of the likelihood ratio is non-standard (Biihning et 111.. 1994).Alterna-
tively, simulation or Bootstrap ideas (Schlattmann and Hiihning, 1997, 1999) can be 
applied to address the variability of k. These ideas are currently under investigation. 

As with other empirical Bayes methods the posterior expectation of the epideniiolo- 
gical measure of the individual region can be obtained. Inclusion of the spatial struc- 
ture such as an adjacency matrix into the model is easily achieved within a full 
Bayesian framework (Besag t t  id., 1991; see also Chapter 2 in this volume. In contrast. 
inclusion of a n  adjacency matrix into mixture models is difficult and not straightfor- 
ward. There have been some efforts to use auto models (Besag, 1974)for the purpose of 
disease mapping. Here the basic idea is in line with auto regressive modelling. namely 
that the distribution of the 0,is based on its adjacent regions. This model has been used 
by FerrAndiz 4f al. (1995)and Divino et d.(1998).An extension o f  these models within 
the mixture model framework has been proposed by Schlattmann and Biihning (1997, 
1999). However, the use of auto models for the purpose of disease mapping is highly 
controversial (Lawson, 1996b) due to the fact that a normalising constant has to be 
taken into account which allows only negative values for the spatial parameters 7 ,.,. As 
a result there is still a need for further research in order to address spatial autocorrela- 
tion into the mixture model framework. 

However, for practical purposes of disease mapping with DismapWin available mix- 
ture models are a valuable tool for analysing the heterogeneity o f  disease risk. Mixture 
models are a methodological satisfactory method of classification of the indiLlidual 
region and thus may be a starting point in risk assessment based on disease maps. 

4.6 APPENDIX: DETAILS ABOUT THE PROGRAM DismapWin 

DisniapM7in has been developed to provide software for the mixture model approach to 
disease mapping described in this chapter. DismapMJin runs MS-U'indows requiring at 
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least MS-Windows 3.x. DismapWin reads either ASCII or Ilbase data files. Boundary files 
are read in the Epimap format. 'l'hus each boundary file delivered or created with Epi- 
map may be used with DismapWin. Maps may be constructed using traditional methods 
of map construction like percentiles, significance level or the mixture model and empiri- 
cal Hayes framework as described in this chapter. This may be done either for rates, 
SMKs or continuous variables. The mixed Poisson regression approach is available a s  
well. The individual maps are displayed on the screen, and paper copies may be obtained 
with any printer or device supported by MS-Windows. Maps may be copied to the clip- 
board and from there to word processors. Also implemented are some tests for autocor- 
relation like Moran's 1, Ohno-Aoki, etc. and tests for heterogeneity like the test by (;ail, 
the likelihood ratio statistic, etc. Empirical Bayes estimators for rates or SMRs are com- 
puted as well. [Jtility programs provide the computation of an adjacency matrix for a 
given boundary tile. Another utility program provides parametric bootstrapping to 
obtain critical values for the likelihood ratio statistic, which is needed to determine the 
number of components in a mixture or to obtain standard error estimates. The program 
may be obtained from the Internet at the IIKI,  h t  t p  ://www .medizin.fu-ber  -
lin.de/sozmed/DismapWin.html. 
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Inferencefor Extremes in 
Disease Mapping 

H. Stern and N. Cressie 

011 io Stnte U I Ii vcrsitg  

5.1 INTRODUCTION 

Maps of disease-incidence or disease-mortality rates are often used to identify regions 
with unusually high rates. Such areas may then undergo detailed study to determine 
whether any specific risk factors can be ascertained. Bayes or empirical Hayes point esti- 
mates based on a form of squared error loss are commonly used to create the maps; see, 
for example,Tsutakawa et al. (1985), Clayton and Kaldor (1987), Manton of crl .  (1989), Mol- 
lie and Richardson (1991), Cressie (19921, Breslow and Clayton (1993), and Hernardinelli 
et d.(1995a). These estimates typically underestimate rates for those regions in the tails 
of the distribution of underlying rates, which are often the parts of the distribution of 
most interest of epidemiologists. 

In this chapter we reconsider the Bayesian approach to inference about disease- 
incidence or disease-mortality rates, emphasising the power and flexibility of the 
posterior distribution for addressing a wide range of scientific questions. In particular. 
for inference about extremely high rates we consider loss functions that emphasise the 
extreme order statistic and its antirank (the ith antirank is the region corresponding to 
the ith order statistic). Although closed-form estimates are not available, simulation 
from the full posterior distribution can be used to obtain Bayes estimates for these loss 
functions. 

In the next section the spatial model used to analyse disease-incidence or disease- 
mortality rates in n geographic regions is described. Section 5.3 describes a Hayesian 
simulation-based approach to drawing inferences from data using this model. Lip can- 
cer mortality rates in the n = 56 districts of Scotland are used as an illustration (these 
geographic districts defined local governing district councils from 1974 until the 1995 
reorganisation of local government). Section 5.4 introduces the need for summaries of 
the posterior distribution and considers Bayes estimates derived under a traditional. 
quadratic loss function. We also consider constrained Bayes estimates in this section. 
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Section 5.5 introduces alternatikres t o  the quadratic loss function. ?’he various point esti- 
mates are demonstrated on Scotland lip cancer data in Section 5.6. 

5.2 SPATIAL MODELS FOR DISEASE INCIDENCE OR 
MORTALITY 

5.2.1 A Gaussian-Gaussian probability model 

Let 0 represent the vector of observed disease-incidence counts or the number of deat hs 
from ii particular disease from r i  geographic regions or districts, and E represent the 
vector of expected counts adjusted for variation in demographic factors across the II  

regions. The ratio O , / E ,  is a disease-incidence rate relative to population norms, or B 

standardised mortality rate (SMK)when dealing with mortality data. Although 0 may 
be described best by a Poisson distribution, we iissunie here that, after a suitable trans- 
formation, disease-incidence or disease-mortality data can be thought of as approxi- 
mately Gaussian. This approach was used successfully by Cressie and C’han (1989)to 

model sudden-inf~int-death rates in the 1 0 0  counties of North Carolina. In the example 
that foIlows. we take 

which is the Freeman-Tukey transformation of the observed count divided by the 
square root of the expected count. The Freeman-Tukey transformation is similar to 
the somewhat simpler square-root transformation; it has the advantage that it is a bet- 
ter ~rariance-stabilising transformation over a wider range of expected counts (Freeman 
and ‘I’ukey, 1950).Let 8, = E ( U , )  and X I  = E ( O , ) / E , .Then A represents a vector of rela- 
tive risk parameters. We obtain a n  approximate relationship between the parameters 0 ,  
and A ,  by taking a ‘I’aylor series expansion of E: ( Y , )  around E (0,):  

( 5 . 2 )  

This approximation is most accurate when E: (01)= X I E l  is large, a condition that fails 
for some of the districts. Conditional on 8, the observed (transformed) data Y iire 
modclled as Gaussian; that is, 

with I1 a known matrix. The results in this chapter apply for any  known 0, although we 
have taken 11to be diagonal in our example. 

The underlying rates 8 iire modelled iis Gaussian with mean depending on the ri x p 
covariate matrix X and a variance matrix that incorporates spatial relationships among 
the districts. Specific.ally. 

where fl  is the unknown regression coefficient vector, C’ = (c,,) is it matrix 
measuring spatial association, (.+) is a parameter measuring spatial dependence, ,’I1 



65 Spatial models for disease incidence or mortality 

is a known diagonal matrix chosen so that r is symmetric and positive-definite, and 
r 2  is a scale parameter. The Gaussian model on 8 is an example of the conditional 
autoregressive model (see, for example, Besag, 1974; Cressie, 1993, Section 6.6 1. Idet 

'I-
N ,  = { j : ",, # 0) represent the 'neighbours'of i and &, = (81,.. . , O , - 1 ,  8,, 1 . .  . . ,O,,) . 
Then we may equivalently write 

( X S ) ,  + Q [ ' I , (O ,  - ( X P ) , ) , ~ - 1 ~ ~ 1= ~ 3 ,  . . . . 11. (5 .5)  
I €  v, 

where ( X S ) ,is the ith element of the vector Xfl. That is to say, the conditional autore- 
gressive model assumes there is an association between the rate in region i and the rates 
in neighbouring regions. The parameter 4 and the matrix C determine the degree of 
association. 

Summing up, after a suitable transformation the data are fit to a hierarchical Gaus- 
sian-Gaussian model. Our results in this chapter, motivated by applications in disease 
mapping, can be used in any problem where a Gaussian-Gaussian model is used (e.g. 
Efron and Morris, 1973). In general, fl, o', r2,and Q are unknown parameters. In the 
next few sections we consider several approaches to inference for these parameters 
and 8. As needed, we assume a (non-informative) prior distribution for these para- 
meters: 

where the distribution of 0 is restricted to the range of values (Omin, o ~ , ~ ~ ~) for which r is 
positive-definite (Cressie, 1993, Section 7.6). 

The Gaussian-Gaussian model is desirable because it permits us to compare a wide 
range of inference procedures, although negative values of 6 and Yare in the support of 
the joint distribution when in reality these quantities can never be negative for the Free- 
man-Tukey transformation. Given our interest in large values of 8, this was not a major 
problem for our analysis. A logarithmic transformation would avoid this problem. An 
alternative model, e.g. a Poisson-log Gaussian model, would also avoid the problem of 
negative rates but would require more computational effort to carry out all of the ana- 
lyses considered here. The Poisson-log Gaussian has been used by a number of authors 
in this setting; see, for example, Besag et nl. (1991). 

5.2.2 Choosing the variance matrix 

The choice of the variance matrix, r,of the underlying transformed rates, 8, is impor- 
tant because this is how the spatial association enters into the model. Recall from (5.3) 
that the variance matrix of the conditional autoregressive (CAR)Gaussian model is 

where 0,C, and 11'1 are chosen so that SP is symmetric and positive-defnitc and 
= diag(m 1 1 ,  . . . . I H , , , , ) .  The conditional variance must be positive so that 
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and consideration of Q, ' makes it apparent that Q, is symmetric if and only if 

Furthermore. positive-definiteness is obtained if and only if  

,where Q ~ =~r l l  ~',qmax= T ] , ,  and 711 < 0 < rl,, are, respectively, the smallest and 
largest eigenvalues of M ' ' L C M '!'' (Cressie, 1993,p. 559). 

There are a large number of choices for M ,  C, and 4that meet the conditions required 
for I' to be a symmetric, positive-definite variance matrix. A common model for spatial 
association is the intrinsic conditional autoregression proposed by Besag ut d.(1991) 
and obtained by choosing 

(i)  n i l l  = I Iv,I ' , the inverse of the number of neighbours of the ith region, i = 1. . . . . ri:  

(iii) o = 1 = 

Hesag ut  rr l .  (1991)analysed data using a Poisson-log Gaussian probability model that 
incorporated this CAR model for spatial association and a vector of independent (7aus- 
sian distributed random effects to model general (non-spatial) heterogeneity of rates. 
That model has subsequently been used by Clayton and Bernardinelli (1992),Hreslow 
and Clayton (1993),Hernardinelli c't al. (1993, Besag et d. (1995),amongst others. The 
degree of spatial association in the Hesag et al. (1991)model is determined by the relative 
magnitudes of the spatial-association variance component and the heterogeneity var- 
ia n c e component . 

Cressie and Chan (1989)proposed the following choice for a CAR variance matrix 
(which we use in subsequent sections): 

(iv) u i , ,  = E l  I ,  the inverse of the expected count in the ith region. i = 1 , . . . . ri;  

(v, " I J =  (E:, /E:,) '  ', j E N , ,  and
elsewhere, i = 1.. . . , 11; 

( i r i )  G3 E (QlI l l I1 .  O I I l i l Y ) .  

Alternative specifications in Cressie and Chan (1989)incorporate a measure of the dis- 
tance between two districts but we have not done so here to remain consistent with 
other analyses of the Scotland lip cancer data. The additional non-spatial heterogeneity 
used by Hesag e t  id. (1991)enters our Gaussian-Gaussian probability model through the 
variance matrix c = O'ZI. 

The notable differences between the two proposals are the choice of the conditional 
(or partial) variances ( m l l= I N I I versus n i I l  = E:, ' ), the choice of spatial-dependence 

= { m 1 I / m J J }coefficients ( c I I= m I lversus If'),and the choice of the spatial-depen- 
dence parameter (0= dlllilX We now discuss the last two of versus 4 E (~lt l l l , ,oItlELX)). 
these differences further. The spatial-dependence coefficients differ in that E,c I I= 1 
under ( i i )  with no similar normalisation under (v). Both specifications appear reason- 
able in that they lead to similar variance matrices in the Scotland lip cancer example. 
The choice of 0 represents another difference, with o = Oltl,lxin ( i i i )  providing maximal 
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spatial association. The variance matrix r is singular at 4 m a y t  leading to an improper 
prior distribution of 8 which, as usual, should be considered carefully before implemen- 
tation. By contrast, (vi) is straightforward to deal with. It allows the data to suggest likely 
values for from among those for which F is positive-definite because, a priori, it is 
allowed to vary over its parameter space, ($min, dmaX}.With 0 fixed at its maximum 
value, Besag ct al. (1991) assess the degree of spatial association by looking at the relative 
contribution of the two variance components, the spatial-association-related variance 
r 2and a general (non-spatial) heterogeneity parameter (analogous to our 0’). Another 
difference concerns the conditional correlation implied by the given choices of Q and 
{ c I I } .A result of Cressie (1993, Section 7.6) shows that ~ L c I l c I Icorr’{O,,Ol~O-,.-,}= 

which u7e might call the partial or conditional correlation (it should be noted that 
the notation here differs slightly from that of Cressie’s Section 7.6).Now, the choice 

c ~ c ~ ~of (i i)  and (i i i )  yields ~ ~ = IN, I -’IN,1 -’.~ That is, the model only allows weak 
partial correlations that vary according to the neighbourhood structure and behave 
like products of partial variances. By contrast, choice of (v)and (vi)yields d2clIcl ,= Q 2  

for Q E ( d m i l i .  qrnax),regardless of the choice of partial variances n i l , ,  and therefore 0’ 
is interpretable as a partial correlation squared that is invariant to the neighbour- 
hood structure. In what is to follow, we assume (iv), (v), and (vi) for the model for 
Yand 8. 

5.3 BAYESIAN INFERENCE VIA SIMULATION 

5.3.1 The simulation approach 

We describe the Bayesian approach to inference in the Gaussian-Gaussian model using 
lip cancer data from Scotland to demonstrate. Table 5.1 repeats the lip cancer data from 
Breslow and Clayton (1993) with district names provided in Cressie (1993, Section 7.5).A 
map showing the 56 districts of Scotland is also provided in Cressie (1993, p. 538).These 
56 geographic districts helped define the local government structure of Scotland prior 
to the 1995 reorganization of local government. The table gives observed cases of lip 
cancer (0),expected cases (E), the standardised mortality rate ( O / E ) , the Freeman- 
Tukey transformed data ( Y ) ,a single covariate measuring the percent of the population 
engaged in outdoor industry (agriculture, fishing, forestry, abbreviated to A W ) and the 
neighbours of each district. The identification numbers in the table represent the ranks 
of the districts according to the ratio O/E. 

We apply the Gaussian-Gaussian model of Section 5.2 to the data with 111, C. and 
Q given by (iv)-(vi) of that section. The covariate matrix X in the model for the under- 
lying rates 8 contains a column of ones corresponding to the intercept and a 
column containing the variable AFF. The variance of Y in the model is o’D, where 
I) is assumed to be diagonal with ith element E,:’. This choice for L) is motivated by 
a delta-method argument for the variance of the Freeman-Tukey transformed 
data. Specifically, if 0 , were Poisson with mean X i E l , then the delta-method suggests 
that the variance of Y ,  is approximately l / E , .  Note that this argument would also 
suggest fixing oL= 1and, as we dicuss below, it is necessary to make some assumption 
about o2for the lip cancer data because the data do not enable us to estimate r’ and 0‘ 

separately. 
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Table 5.1 Scotland lip canccr data 

ID District name Q E QIE Y AFF Neighbours 

Sk y c - 1 ~ ~hals h 9 1.38 6.52 5.25 5.9. 11,19 

I h  11fT- I ~ U Ch it11 39 8.66 4.50 4.27 i.1 0  

C h i t  hncss 11 3.04 3.62 3.89 (1. 1 2 
13erwickshire 9 2.53 3.56 3.87 18,20,28 
Koss -C'roniarty 15 4.26 3.52 3.81 1.11, 12. 13, 19 

Orkney 8 2.40 3 . 3 3  3 . 2 3  3.8 

Moray 2h 8.11 3.21 3.62 2.I (  1, 1 3. 1h, I7 
Shet la rid 7 2.30  3.04 3 .61  6 

I m h a b c r  h 1.98 3 .03  3.62 1.11,17,19.23,29 
Gordon 20 6.63 3.02 3.52 2,  i.16.22 
\l'cstcrn Isles 1 3  4.40 2.95 3.50 1,5.9,12 
Sut herland 5 1.79 2.79 3.50 3 . 5 .  11 
Na ir 11 3 1.08 2.78 3.59 5.7. 17. 19 
N'i gtow 11 8 3.31 2.42 3.20 3 1 ,  32, 35 
NL k'ife 17 i.84 2 . l i  2.99 25.29.50 
Ki  ncxrdine 'I 4.55 1.98 2.89 7,10, l7,21,22.29 
13adcnoch 2 1.07 1.8; 3.04 7,9.13.16, 19,29 
1: t t rick i 4.18 1.67 2.h8 4,20.28. 3 3,55.5h 
I iivcr iiess 9 5.53 1 . 6 3  2.h2 I .  5.9. 1 3 ,  17 
Kox burg h 7 4.44 1.58 2.6(1 4.18.55 
:\ ngU s Ih 10.46 1.53 2.51 Ih29, 5(1 

:\bcrdcen 3 1  22.67 1.3; 2. 36 10. Ih  
A rgy11-f3u tc I 1  8.77 1.25 2.29 9.29, 34,36. 3 i .  39 
C' Iydcsd it Ic i 5.h2 1.25 2.31 27. 3 0 .  31+44,47,48.55. 5h 
K i  rkc-aldy 19 15.47 1.23 2.25 15.26.29 
1) i i  11 l'e r r i i  I i11c 15 12.49 1.20 2.2 3 25.29.42.43 
iv it h s d a Ic 7 h.04 1.16 2.2 3 24, 31, 32.55 
llast I ,oth ia i i  1 0  8.96 1.12 2.16 4.18. 33.45 
I'crt h -Kinross lh 14.37 1.11 2.14 9, 15. 10, 17.21.2 3.25,20. 34.4 3 ,  50 
\ k s t  I ,othian 11 10.20 1.08 2.12 24, 38,42,44,45,5h 

C'U m nock- lhon 5 4.i5 1.05 2.15 l4.24,17. 32, 35 40.47 
StCRU r t ry 3 2.88 1.04 2.20 14.27,3 1 ,  35 
hlidlot hian i 7.03 1.00 2.06 18.28,45.56 
Stirling 8 8.53 0.94 2.00 23.29. 39,40,4~,43,51,52,54 
Kyle -Carric k 11 12.32 0.89 1.93 14. 3 1 ,  32. 3 Z  4h 
I nvcw lydc 9 10.10  0.89 1.94 2 3 ,  3;. 39.41 
C'u ti ni ng hait ic  11 12.08 0.87 1.'I( 1 2 I, 35, 3 h  41.4h 
hl o t 1  k I il l i d  s 8 9.35 O M  1.91 30,42s44,49,51,54 
l h i  it1barton (3 7.20 0.83 1.90 2 3 ,  34, Wh40.4 1 

C'lydcbank 4 5-27 0.X 1.85 34, 39-4I ,  49.52 
Kcri l'rew 10 18.76 0.53 1.50 3h 37, 39.40,4ti 49. 5 3 

Fa I k i rk 8 15.78 0.51 1.47 2h. 3 0 .  34, 38,4 3,  51 

c' lackma 11 nan 2 4.32 0.4h 1.51 2(7,29, 34.42 
hlot hcrcvcll h 14.0 3 0.41 1 . 3 3  24. 30,  38.48,19 
Edinburgh 19 50.i2 0.37 1.24 28. 3 0 .  33.  5h 
Kilmarnock 3 8.20 0.37 1 . 3 0  31. 35. 3i,41,47.i3 

t a s t  Kilbridt, 2 5.59 0.30 1 . 3 3  24, 31.4h48.49.53 
1 laiiiiltoii 3 9.34 0.32 1.22 44,4i,49 
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Table 5.1 ( c m t i n r t e d )  

ID District name Q E QIE Y AFF Neighbours 

49 (;lasgowT 28 88.66 0.32 1.13 0 38,40,4 1,44,47,48.52.5 3,54 

5 0  Ilundcc 6 19.62 0.31 1.15 1 1521.29 

51 Cumbcrnauld 1 3.44 0.29 1.30 1 34, 38,42,54 

52 Bearsden 1 3.62 0.28 1.27 0 34.40,49.54 

53 khstivood 1 5.74 0.17 1.01 1 4 1,4h4i,49 

54 Strat hkelvin 1 7.03 0.14 0.91 1 34, 38.49.51.52 

55 A n nandale 0 4.16 0.00 0.49 10 1x.20.24,27, 5h 

56 Tweeddale 0 1.76 0.00 0 7 5  10 18.24, 3 0 ,  33.45.55 

Applying the Bayesian paradigm for drawing inferences under the model of Section 
5.2. we focus our attention on the joint posterior distribution of the model paranicters: 

Inferences about 8 or the other model parameters can be obtained using suitable sum- 
maries of the posterior distribution. In analysing the Scotland lip cancer data we rely on 
a simulation approach and base our inferences on realisations from the posterior distri- 
bution p(0.a‘. r 2 ,0, Y ) .One approach to obtaining realisations from the full poster- 
ior distribution would apply Markov chain Monte Carlo (MCMC)methodology. However, 
because of the Gaussian-Gaussian hierarchical model, we are able to use analytic 
results and a discrete approximation to the marginal posterior distribution of r 2  and c> 

to produce a direct simulation algorithm. The direct simulation approach does not 
require that we assess the convergence of a Markov chain, but it does rely on a discrete 
approximation. We describe the approach more fully in the next paragraphs. 

To begin, we rewrite the joint posterior distribution (5.7)as 

with 

and 

and 

( 5 . 1 0 )  
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1 
7’(Zwhere y is the rank of the matrix X, r=rL@= - q C ) - M ,  and Pr = 

X ( X ’ r  X)  -’X’r I .  Thus, draws from the posterior distribution (5.7)can be obtained 
by first drawing from the joint posterior distribution of a’, r’, @, (5.10) and then 
sampling 8 and p from the relevant Guassian distributions ( (5.9) and (5.8),respectively). 

We examined the shape of the posterior distribution (5.10) for ( a 2 ,r’, and d) on a grid 
of values for a number of prior distributions. Several interesting results are obtained. 
First. for 0 = 0 (corresponding to no spatial relationship), the model simplifies and, mar- 
ginally, \’, has variance proportional to o2+ r 2 (recall 13 = M in our case). There is no 
information in the data to permit separate estimation of a’ and r 2in this case. For posi- 
tive values of 0,the data appears to provide little information for separately estimating 
o7and T ~ .For most of the prior distributions on a 2and r’ that we considered, the mode 
of the posterior distribution of (a’, r 2 ,and Q) has a 2  equal zero. For certain other 
choices of the prior distribution for o2and r 2we obtain a mode with 7’ = 0. Given this 
difficulty in identifying the tw70 variance parameters we choose to fix 0’. There is no 
evidence of extra-Poisson variability in the counts once covariates and spatial associa- 

5 10 15 

tausq 

Figure 5.1 Contour plot of the logarithm of the marginal posterior distribution 
p ( r h ~ Y , o ~= 1) 
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tion are included in the model, which leads us  to choose o2 = 1,the value suggested by 
the Freeman-Tukey transformation. With o2= 1,we construct a discrete approxima- 
tion to the marginal posterior distribution, p ( . r 2 ,QIY, o2= 1) supported on a grid of 
values in (0,161 x (@mint @ m a x ) .  A contour plot of the logarithm of the marginal posterior 
distribution is shown in Figure 5.1. From this plot we see clearly that the data support 
values of the spatial-dependence parameter 4 near, but below, its upper limit omax. 

5.3.2 Simulation results 

To illustrate the types of results produced under the Bayesian paradigm, we provide in 
Table 5.2 summaries of 2000 simulations from the posterior distribution. We transform 
the posterior simulations of 8 to R using A j  = 02/4, which is an approximation to the 
inverse of the transformation (5.2). A more accurate inverse transformation can be 
derived but it relies on large expected counts.Values of 8, less than zero are mapped into 
A, = 0;these are possible under the Gaussian-Gaussian model but occurred rarely. The 
posterior median and a 95% central posterior interval are provided for the X,s, the two 
extrema X j h )  and X ), and the remaining model parameters. Figure 5.2 shows empiri- 
cal posterior distributions based on 2000 simulations of the rates A, for four of the 
17 = 56 districts in the Scotland lip cancer data along with the corresponding observed 
values of the SMR, O,/E,.We chose the districts with the highest (Skye-Lochalsh; 1)and 
lowest (Annandale; 55) value of the transformed counts {U,}and the highest ( G l a ~ g o ~ ;  
49) and lowest (Badenoch; 17) values of { E j } .  Two features are noteworthy. First, the 
variance of the posterior distributions are largest where there are few data (e.g. districts 
like Badenoch and Skye-Lochalsh where E ,  is small) and smallest where there are sub- 
stantial data (e.g. Glasgow). Secondly, there is a tendency for the rates corresponding to 
the extreme observed values to be shrunken towards the value that would be predicted 
by the regression surface X f l .  Most of the posterior draws from Skye-Lochalsh are lower 
than the observed value and most of the draws for Annandale are higher than the 
observed value. 

The effect of the covariate, AFF, can be assessed by considering the posterior distribu- 
tion for the slope parameter B2. On the basis of the posterior simulations displayed in 
Table 5.2, we estimate the posterior median of , B 2  to be 0.07 and a central 95% posterior 
interval to be (0.04, 0.10).The posterior distribution provides strong support for a 
positive association between the covariate A F F  and the underlying rates. 

In this chapter, interest is in the largest rate and the identity of the region possessing 
the largest rate. Clearly, the simulations from the posterior distribution allow for a direct 
assessment of these quantities. Define 

A(,,) max{Aj : i = 1 , .. . , n} ,  
i (n)  5 {i : A j  = A(,,)}. 

Figure 5.3 shows the results of a simulation f r o r n ~ ( A ( ~ ~ )  1 Y ,u2 = 1)for the Scotland lip 
cancer data, obtained directly from the simulations of p ( 0 l  Y ,o2= 1) via transforma- 
tion. The first two posterior moments, based on 2000 realizations, are computed to be 

E ( X ( j 6 ) I Y .o2 = 1)= 6.28; {var (A(56)  I Y ,o2= 1))”” = 1.47. 
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Table 5.2 Posterior inference for A and other parameters 
~ 

Posterior distribution Posterior distribution 

Parameter 2.5% Median 97.5% Parameter 2.5% Median 97.5% 

2.72 5.78 9.51 0.78 1.24 1.81 
2.70 3.23 5.(12 0.58 1.Oi 1.w 
1.55 3.03 5.10 0.42 1.05 1.99 
1.67 3.38 5.6 3 0.50 1.50 3.01 
1.81 3.11 4.69 0.52 1.06 1.79 
1.65 3.34 5.64 0.44 0.90 1.51 
1.88 2.80 3.90 0.50 0.92 1.43 
1.1 1 2.53 4.75 0.39 0.81 1.39 
1.21 2.8 3 5.33 0.56 0.97 1.52 
1.78 2.83 3.99 0.34 0.72 1.26 
1.47 2.61 4s 18 0.52 1.10 1.85 
1.18 2.94 5.56 0.22 0.70 1.34 
0.85 3.12 6.58 0.29 0.53 0.86 
1.24 2.50 4.17 0.43 0.79 1.21 
1.13 1.85 2.79 0.21 0.80 1.71 
1.1 5 2.14 3.41 0.20 (1.45 (1.M1 
(1.hl 2.42 5.69 0.30 0.44 ( 1.62 
(1.65 1.49 2.69 0.19 0.52 1.( 15 
(1.88 1.71 27 6  0.09 0.42 1.05 
(1.69 1.54 2.hh 0.14 0.41 (1.82 
0.86 1.41 2.12 0.26 0.37 0.50 
1.09 1.50 1.97 0.21 0.42 ( 1 . 3 1  
0. i l  1.28 2.00 0.03 0.42 12 2  
(1.48 1.12 1.98 (I.(14 0.41 1.15 
0 . i O  1.10 1.63 0.05 0.29 (1.79 
(1.H1 1.03 1.62 (I*(14 0.2i (1.73 
0.53 1.12 1.94 0.01 0 2 8  (1.9(1 

0.59 1.10 1.79 (1.00 0.26 1.38 

\ i t,) 4.15 h.03 9.55 X , I l  0.00 0.08 0.26 

> 
T - 1.58 2.72 4.21 1 1.21 1.52 1*86 
cb 0,016 0.142 0.173 J?  0.037 0.067 0.098 

From the same simulations, we obtain. in decreasing order of probability, 

I'r ( i ( u )  = 11Y .0' = 1 )  = 0.h74, 
Pr ( i ( i i )  = 1 3 I Y.0' = 1) = 0 . 0 7 8 ,  

Pr(i(r1) = 4 1 Y . o '  = 1) = 0.050,  

Pr ( i ( n )  = 6 I Y ,o2= 1 = 0.044. 

I t  may seem curious that district 13 (Nairn) has only the thirteenth largest value of 
{ 01 / / :1}yet has the second largest probability of being the district with maximum 
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( a )  (b )  
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0 5 10 15 0 5 10 15 

1c) ( d )  

Figure 5.2 Posterior distributions of relative risk parameters, X ,, for four districts estimated 
using 2000 realisations simulated from p(81Y ,a-' = 1) and then transforming to the i, scale. 
Observed \ d u e s  of the standardised mortality rate, O , / E , ,  are indicated by a solid lw-tical line 
on each plot. ( a )Ilistrict 1,Skye-Lochalsh, has the largest Y , . (b)District 55, Annandalc.has the 
smallest, (c)District 49, Glasgow, has thelargest E , ,  (d) District 17,Radenoch, has the smallest E l .  
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Figure 6.6 Bayes estimates: edge-weighted (methodW) 

estimates shown in Figures 6.5 and 6.6 display the w m r r e c t d  and edge-weighted 
approaches respectively (methods I and W). For the e i ~ ~ e - n u ~ i i i e i i t i i t i o i imethod (method 
R) (Figure 6.7) with the observed number of cases as missing data, as initial value for 
{ i z o }  we have used the expected numbers of deaths for each area. The relative risks 
obtained using the known gastric cancer mortality data for the external adjacent areas 
are shown in Figure 6.8 (method C). 

Reported in Table 6.1 are the different estimators for the areas along the North-East- 
ern border of Tuscany (sorted from North to South). Three subregions are of particular 
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{A j } .  There are several factors that help to explain this result. First, the Freeman-Tukey 
transformation used in modelling is not a monotonic function of O , / E , and districts like 
Nairn with low expected counts move up in the ranking as a result of the transforma- 
tion. Secondly, the Bayesian approach filters the noisy {U,}in order to obtain the pre- 
sumably smoother underlying values {A,}. The relative degree of filtering depends on 
the value of the covariate in the district, the observed rates and covariate values for 
neighbouring districts, and the expected count in the district. Here, many of the 
higher-ranking districts based on O , / E ,  are estimated to have lower probability of 
being the extreme value because of their value of AFE’and the information provided by 
neighbouring districts. Finally, the probability of an individual district having the 
extreme rate depends critically on the uncertainty concerning that district’s underlying 
rate. Table 5.2 indicates that there is substantial uncertainty about X 1 3  with the poster- 
ior 95% interval including some extremely high values and some extremely low values. 
This is not surprising given the extremely low expected count in that district (second 
lowest out of the 56 districts). 

5.4 BAYES AND CONSTRAINED BAYES ESTIMATES 

The joint posterior distribution of all model parameters can, with the aid of simulation, 
address any scientific question of interest. Conceptually, each draw from the posterior 
distribution provides a ‘plausible’ map of disease-incidence rates. Our 2000 posterior 
simulations provide a reference set of 2000 plausible maps. Scientific questions, such 
as which district has the highest rate, can be addressed by reviewing the reference set 
of plausible maps as was done in the previous section. The flexibility provided by having 
this reference set (i.e. the posterior distribution) is a strength of the Bayesian approach. 
Despite, this, a single map or point estimate is often desirable for public policy reasons. 
However, it seems quite clear that there is not a single best set of small-area estimates 
for all purposes. A single map or point estimate can only be obtained by explicitly iden- 
tifying a loss function that describes the scientific goal and the consequences of poor 
estimates. In this section and the next we consider a number of possible loss functions. 
We obtain optimal point estimates on the 0 scale, and then transform these estimates to 
the A scale. An alternative would be to define loss functions directly on the A scale and 
optimise on that scale. The various computational approaches used to derive the point 
estimates can be easily modified to accommodate such a change. We have not done so 
here because the transformation (5.2) defining 3, is only an approximation, and more- 
over the approximation requires large expected counts for each district (a condition that 
is not satisfied in our illustrative example). 

5.4.1 Bayes point estimates 

In this section we consider the quadratic loss functions that have dominated statistical 
practice in many areas. A popular choice is the sum of squared errors, L(0 . t )= 
(0 - t ) ’ ( 0- t ) ,but this ignores the spatial association that is built into our model. In 
this chapter we consider the quadratic loss function L(0,t ) = (0  - t ) ’ @ - ’(0  - t ) so that 
the spatial association is taken into account when assessing the fit of an estimate. Note 
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Figure 6.8 Bayes estimates (method C) 

S. Godenzo municipality has been consistently estimated closer to the Casentino values 
while, at the southern border, the Chiusi Verna area has been underestimated due to 
its proximity to the lower risk areas of the River Tiber valley It could be argued, 
with good reason, that a more accurate distance matrix would have provided more 
appropriate analyses, especially if geographical barriers like mountains are to be 
modelled. However, this is not a concern of the edge correction methods examined. 

While this small example gives only a n  empirical snapshot of the edge effect problem 
displayed in a small data example, it does serve to highlight the importance of consider-
ing such effects in any mapping exercise. 
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posterior means creates an unanticipated difficulty because the resulting estimates for 
low population areas tend to be bvershrunk’ toward the overall mean. Louis (1984) 
shows that the variability of posterior means is an underestimates of the population 
variability o f  the parameters. Gelman and Price (1999)show that when posterior means 
are used, lowpopulation areas are less likely to show up a s  extreme values than high- 
population areas. 

One approach to improved inference for extremes is to adjust the estimates derived 
under quadratic loss so that these estimates no longer underestimate the variability of 
the ensemble of risk parameters. Louis (1984)constructs cvristrnined Bayes estimates 
that are constrained to match the posterior expected values of  the sample mean and 
sample variance of the parameters in a simple form of the (:aussian-(:aussian hierarch-
ical model. Ghosh (1992)extends 1,ouis’s result by dropping the Gausian assumption for 
the data model. We provide a further extension to accommodate the covariates X and 
a general covariance structure. The constraints in this setting are that the regression 
function of the estimates on X match the expected posterior regression function of 0 
on X,and that the residual viiriance o f  the estimates about the regression surface match 
the expected residual variance of the transformed rates 0 about the regression surface.. 
Note that. a s  in the previous section, the variance matrix of 0 is r = r2@,wherciis thc 
loss function depends only on @. 

Theorem 1. Suppose that Y 10 y(Y 10) and 0 - Gau(Xb,r) ,with = r 2 9positiLfe 
definite, and t j . r-?,and @ known. Let Y,, = { Y : H , ( Y )  > 0} with H , ( Y )defined below 
and let I’d) = X ( X ’ W ’ X )  -‘X’@-’ denote the projection matrix that yields the predicted 
values for the generalised least squares regression on X with error vector that has viir- 
iance matrix 9.Then for Y E Y,,,the estimator t ( Y )  that minimises the posterior 
expected weighted squared error E:[ (0 - t ( Y ) ) ’ P 1 ( O- t ( Y ) )I Y ]subject to 

Z’@E[O(Y]= P @ t  (5.14) 

and 

(5 .15 )  

is given by 

( 5 . 1 6 )  

with 

( 5 . 1  7 )  

and 

(5.18) 
H?(Y)= E (01Y)‘(Z- P@)‘@+ ( 1 - 1’@p(01y > .  ( 5 . 19 )  

The proof follows the same line of reasoning as Ghosh (1992);i t  is provided in  an 
appendix. In the appendix we also show that it is possible to prove that the same 
estimator (5.16)is optimal i f  we require only the second constraint (5.15).Note that the 
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optimal estimate (5.16) is a linear combination of E ( 8 (Y ) and PsE(8lY)with weights 
that depend on E (81 Y) and var (8I Y) through (5.18)and ( 5.19).The optimal constrained 
estimates can be rewritten as E(Y981Y)f n(E(81Y) - E(PaB(Y))with the weight ( 1  

greater than one. Thus, the optimal constrained estimates are ‘un’ -shrunk to some 
degree; that is, they are on the same side of the regression surface (when the posterior 
means are regressed on X) but moved away from it in the direction o f  the vector of pos- 
t er io r me an s. 

As with the traditional Bayes point estimates of Section 5.4.1we consider o to be fixed 
in the spatial model and the loss function, with the constrained analysis perhaps 
repeated at several different values. The constrained hierarchical Bayes estimates 
(C‘HH) require E(8l Y) and var(81 Y ) :in our case with Gaussian data Yand known cr’ 
and 0,we should actually write E(OIY,(r’ = 1 , ~ )and ~ a r ( 8 p k ’  = 1 . 6 7 ) .  These 
quantities can be obtained by numerical integration over the single parameter T?.  The 
computation of E(8l Y ,U’ = I ,  47) is described in Section 5.4.1. ‘The var(81 Y .CT‘= 1.c>) 
is formally defined as 

The tirst expression on the right-hand side can be evaluated by numerical integration 
after noting that 

where the outer expectations in the last equality are expectations over 
p ( ~ ‘1 Y ,cr2 = 1.0 )  which is defined in (5.13). The quantities in the integrands. the 
mean and variance of 8 conditional on Y .r ’, CT’= 1 , and O,are obtained from (5.9) 
in Section 5.3.1. 

5.5 LOSS FUNCTIONS FOR EXTREME VALUES 

The most common use of epidemiological maps is to locate areas with unusually high 
incidence or mortality rates. Given this interest in extremes. reliance on quadratic loss 
functions that involve the parameters for all 11 geographical regions seems inappropri- 
ate. Mi‘e consider in this section alternative loss functions that eniphasise 6’ the max- 
imum order statistic from 8, and i ( ? ) ) ,its antirank (the index of the region attaining the 
maximum).A s  in the previous section, to obtain estimates on the 1, scale we just trans- 
lorm the optimal 8estimates. The two loss functions considered here are easily modified 
to accommodate a change to the 3, scale if we wish. 

One obvious alternative to quadratic loss functions is the 0-1 loss function applied to 
these two quantities. Define L o ( { O ( r , l ,j ( n ) } :{ 8 ( r l i ,; ( I ) ) } )  as follows: Lo = I unless 
i,,,, 0 ( , 1 )= and ;(If) = i(n),in which case I,,, = 0;that is, the loss is one unless both quan- 
tities are estimated correctly. The resulting Hayes estimate of Oo,) and i(n) is the mode 
of their joint posterior distribution. We estimate this inode by combining the empirical 
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posterior distribution for i(n), which indicates the likelihood of each district being the 
maximum, and a n  empirical estimate of the posterior density of O , , , ,  conditional on each 
district being the maximum. We multiply these two density estimates (one portion dis- 
crete and the other continuous) and find the mode by inspection. The density estimation 
for the continuous portion was carried out using the S-FLITS computing environment 
with Gaussian kernels of width 0.5 to provide sufficiently smooth densities. 

The 0-1 loss seems somewhat difficult to apply because of the nature of the required 
calculations (including density estimation with the inherent uncertainty about kernel 
width). As a next approach, we proceed sequentially in building ii loss function that is 
more appropriate to the two estimands, starting with the antirank. Define 

L a  = k ( n  - j ) /n ,  i f  $ 1 1 )  = i(j). ( 5 .20 )  

where k is a constant to be determined. Thus, the loss associated with incorrectly select- 
ing as our estimate the region that turns out to correspond to the jth order statistic, O , , , ,  
depends on the ordinal distance between j and 1 2 .  For the maximum value itself, define ii 
loss function based on the ratio of the estimated and true maxima: 

(5 .21 )  

We can use expert opinion concerning the relative importance of the two types of errors 
to determine a value of k that calibrates the two loss functions. For example, i f  the 8,sare 
disease-incidence rates, then a ratio of 2 or more, corresponding to 6 i i r l i> 28,,, ,or 
8 ( , I )  < 0.58 might be considered cause for concern. An antirank estimate below t hc 
upper tenth percentile might cause a similar level of concern. Therefore, we can choose 
k to equate I,, and I,;, at these values and thereby create a similar scale for the two loss 
functions. In our case the 8,s correspond approximately to twice the square root of ii 

rate (see (5.2))and thus a ratio of 2 f i  or more would be a cause for concern. This sug-
gests ZJi1(j= 0.911)= L,,(max/min = 2a),which gives k = l O ( 2 6  - 1 ) '  z 3 3 .  
Finally, we argue that simply adding together the two loss functions is inappropriate 
because it  treats overestimates of the extreme and underestimates of the extreme sym-
metrically. Given our interest in obtaining accurate estimates of the extreme values i t  
seems that an underestimate should be more heavily penalised, and the larger the anti- 
rank loss La ,  the higher the penalty. Thus, the extreme-value loss function we propose is 

(5 .22 )  

where /I > 0 is a constant chosen to control the underestimation penalty. In the analy- 
sis, we consider a range of values for h. 

Naturally, it is not possible to derive in closed form the estimates (6 i , , l li(n)) that mini- 
mise the expected loss. We propose instead to minimise the expected loss numerically. 
Given a set of realisations from the posterior distribution of 8, we search over the tu70- 
dimensional space (-x1x)x { 1 , . . . ,n }  for the values that minimise the (sample) 
expected loss. In practice, for each possible value of ; ( / I )  we search for the value of i,,,, 
that minimises the loss function. Then we compare the resulting pairs { i ( , I l . i ( u ) }t o  
determine the single best estimate. Notice that neither the 0-1 loss function nor the 
extreme-value loss function involves the spatial dependence parameter 0 in its defini- 
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tion and so o can and should be integrated our  of the posterior distribution. Also. i t  
should be noted that both the 0 - 1  and extreme-value loss functions could easily be 
modilied to foc-us on the extreme low value rather than the extreme high value. 

5.6 RESULTS FOR THE SCOTLAND LIP CANCER DATA 

In this section we return to the Scotland lip cancer data t o  demonstrate the ideas o f  
Sections 5.4 and 5.5. Recall that the data are shown in Table 5.1. We have tixed CT'= 1 
in all calculations, a s  described in preceding sections. All results for this section repre- 
sent optimal estimates of the parameter vector 8 ,  the expected value of the vector of 
Freenian -'hkey t ran sfor med c-oii n t s Y , c vh ic h ii re t he ri t rii nsf or rned to obt ii in esIi niiit es 
of the relative risk parameter \ w t o r  I 

Table 5.3 f lierarchical f3aycs ( H R I  and constrained hierarchical f3ayes (C'HH) cstiniates 

kit3 CHB 11B CHH 

dJ dJ 4 dJ 
0.00 0 . 1  4 0.00 0.14 0.00 0.14 0.00 0 . 1  4 

5.42 5 . 7  f3.11 h i 7  A?', 1.17 1.24 1.16 1.25 
3.82 3.76 4.17 4.22 A $ ( ,  1.15 1.( 16 1.14 1s 14 
3.( 16 3.01 3.41 3.42 x $ 1  1.11 1.( 15 1.1 3 1.( 17 
3.52 3.44 3.63 3.64 A $ 2  1.52 1.50 1.30 1 . 3 h  
2.9i  3.1 3 3.29 3.58 x $ 5  1.10 1.0i 1.(19 1.05 
3 . 3 3  3.39 3.45 3.58 x $ 4  0.99 (1.89 (1.99 (1.88 
2.71 2.80 2.97 3.15 x $5 0.94 (1.91 (1.94 0.90 
2.hl 2.54 2.92 2.90 x {(, 0.83 0.81 0.88 (1.85 
2.62 2.88 2.') 3 3.32 x {; 0.98 ( 1.97 (1.94 (1,') 3 
2.77 
2.48 
2 . 3  

2.8 3 
2.h 3 
3 . 0 1  

2.92 
2.i6 
2.90 

3.08 
3 . 0 1  
3.2') 

x { S  

A,(, 
xi lJ  

0.82 

0 , i h  
1.0') 

0.73 
1.10 
(1.W 

(1.86 
1.00 
0.81 

(1.74 
1.01 
().71 

2.68 3.10 2.94 3.5  3 A,[ 0.56 0.54 ( 1.56 ( 1.52 
2.h2 2.48 2.59 2.50 ,442 0.Z (I.% ( 1.65 ( 1.65 
1.W) 1.86 2,Oh 2.04 A,{ 0.80 0.78 (1.69 (1hh 
2.03 2.15 2.00 2.24 A,, 0.4h (1.45 (1.45 0.4 3 
2.03 2.47 L l i  2.74 x,5 0.42 0.44 ( ).4(1 (1,41 
1.58 1.48 1.08 1.58 A,(, 0 . 5 3  0.52 (1.48 ( 1.45 
1.53 1 .21 1.02 1.84 A 4 7  0.47 0.42 0.4h ( 1. 3') 
1.58 
1.43 

1.52 
1.40 

1.h 3 
1.50 

1.58 
1.48 

A,% 
x ,', 

0.41 
0.3 0  

0.41 
0.3i 

0.39 
0.34 

0.37 
0.34 

1.49 1.49 1.44 1.4h x j ( )  0.38 0.42 (). 3 6  0.39 
1.2') 1.29 1.30 1.30 X i 1  0.45 (1.41 0.44 0 . 3 %  
1.25 1.11 1.29 1.14 x j' 0.43 0,39 ( 1.4 I ( 1.36 
1.( 1 i  1.11 1.16 1.20 x j $  0.31 0.29 0.28 (1.24 
1 .( 16 1.02 1.15 1.10 x j, 0.27 0.27 (1.24 (1.22 
1.18 1.11 1.21 1.13 x 5 j  0.25 0.29 0.14 0.16 
1.13 1.11 1.15 1.14 x j(, 0 . 3 0  0.26 0.22 0.16 
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Table 5.4 Estimates of maximum of A and antirank, with estimated posterior expected cxtreme-
value loss. Point estimates are derived on 8 scale and then transformed: expected loss is reported on 
the 8 scale 

Estimated posterior expected 
Estimates extreme-value loss 

Estimation method ; (n)  i(",h = O  h =  1 h =  10 h =  100 

Hierarchical Hayes, o = 0.00 1 5.42 0.640 
Hierarchical Hayes, o = 0.14 1 5.77 0.h3h 
Constrained hierarchical Hayes, 1 6.11 0 . 6 3 5  

c3 = 0.00 
Constrianed hierarchical Hayes, 1 0.77 0.638 Oh38 

c3 = 0.14 
Posterior median 1 5.78 0.636 0.646 0.735 
Posterior mode (0-1loss) 1 6.44 0.636 Oh39 0.670 
Hayes (extreme-value loss 11 = 0 )  
Hayes (extreme-valueloss I I  = 1 ) 

Rayes (extreme-valueloss \I = 10)  
Hayes (extreme-value loss 11 = 1 0 0 )  

1 
1 
1 
1 

6.15 
6.19 
6.47 
7.26 

0 . 6 3 5  
-

-
-

In Section 5.3 we introduced Table 5.2 which provides posterior medians and postcr- 
ior intervals based on 2000 simulations for all of the districts'rates and the model para- 
meters (except 0')).Table 5 .3  provides a variety of 'point estimates' or maps (although 
they are provided in tabular rather than graphical form). All are Hayes cstimatcs for 
the quadratic loss function of Section 5.4, computed from a 13ayesian analysis with fixed 
spatial-dependence parameter. There are two columns of hierarchical 13ayes estimates 
((5.12)in Section 5.4.1) and two columns of constrained hierarchical 13aycs estimates 
((5.16)in Section 5.4.2);the estimates are evaluated at two different values of the spatial 
dependence parameter @, namely @ = 0.00 (which corresponds to no spatial depen- 
dence), and 0= 0.14 (the posterior median of 0 in the full Hayesian analysis that 
includes 0 as an unknown parameter). As we would expect, the medians of the mar- 
ginal posterior distributions of the rates from the full Hayesian analysis (see 'I'able 5.3) 
appear to be centred close to the hierarchical Bayes estimate with Q = 0.14 because the 
data support large values of 0.The constrained Bayes estimates exhibit more variation 
than the hierarchical Bayes estimates, as they were designed to do. 

Suppose we now consider estimating the 'hot spot' (i.e. the region with the highest 
rate) and the rate itself. Table 5.4 provides a number of estimates of these quantities: 
the elementwise posterior medians for the full (that is, including 0)Bayesian analysis 
(the column labelled median in Table 5.2), the hierarchical Hayes estimates (the columns 
labelled HH in Table 5.3) ,  the constrained hierarchical Hayes estimates (the columns 
labelled CHH in Table 5 .3 ) ,  the posterior mode of the estimands' joint distribution (the 
estimate which is appropriate for 0-1 loss), and the Hayes estimate for the extrerne- 
value loss function (5.22). For each estimate, we report the (sample) expected value of 
the extreme-value loss function (on the 8 scale) based on 2000 draws from the posterior 
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distribution of the model parameters. These estimates of the posterior expected loss are 
provided for several different values of the underestimation penalty / I .  Naturally, the 
Bayes estimate for the extreme-value loss function of Section 5.5 has the smallest 
expected loss in each column. The HR estimate with Q = 0, which ignores the spatial 
nature of the data and does not address the variability in the underlying distribution of 
rates. seems to perform poorly. Interestingly, the CHH estimate with 0 = 0 does quite 
well (better even than the CHB estimate with the more reasonable Q = 0.14) as long as 
the underestimation penalty Ii is small, even though @ = 0 implies no spatial associa- 
tion. Its performance deteriorates as 11 increases. The estimates derived with 0= 0.14 
appear to do better for larger 11. The CHB estimate with o = 0.14 is nearly equal to the 
optimal point estimate for large values of the underestimation penalty. The posterior 
mode does reasonably well for all values of 11. It should be emphasised that these esti- 
mates have been evaluated on only a single data set. Additional study is required to 
determine if results like these are typical. For example. there is a suggestion in Table 
5.4 that C’HH might be calibrated by a n  appropriate choice of Q to yield an approximately 
Hayes estimate with respect to the extreme-value loss function. 
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APPENDIX: PROOF OF THEOREM 1 

Idett ( Y )  denote a n  estimator of 8.We show that the expected posterior loss is minimised 
by taking t ( Y )  as (5.16) in Section 5.4.2. Recall that we assume that the hyperpara- 
meters, 1,r2 ,and Q are known (and that a’ = I).The proof begins by expanding the 
expected posterior loss as follows: 

E[(8- t ( Y ) ) ’ @  ] ( 8 - t ( Y ) ) ( Y ]  

= E [ ( o - E ( ~ ~ Y ) + E ( ~ ~ Y )  - t ( y ) p j- t ( y ) ) ’ @1 ( 8 - ~ ( 8 ( ~ ) + ~ ( 8 / ~ )  

= E[(8- E(8l Y))’@ ’ ( 8- E(8(Y))  [ Y] 

+ E [ ( E ( B I Y )  - t ( Y ) ) ’ @  *(E(OlY)  - t ( Y ) ) I Y ]  

+ 2 E [ ( 8 - E ( 8 ) Y ) ) ’ @  ‘ ( E ( 8 l Y )  - t ( Y ) ) I Y ] .  

The final term is zero because only the first factor is random when conditioning onYand 
it has mean zero. The first term does not involve t so that we need only minimise 
E [  ( t ( Y )- E(8l Y ) ) ’ @  ( t ( Y )  - E(0l Y))  I Y ]  subject to the constraints. The outer expec- 
tation is not needed because each of the  factors in the product is known or a function 
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only of Y. We can expand this remaining quadratic form as follows: 

-( t ( Y >- E(0l ( y ) ) ’ @ - l ( t ( y )  E(0 lY))  
= ( t ( Y )- I’@f(Y)+ P@E(81Y )- E(&Y ) ) ’ @ - ’  

x ( t ( Y )- P@t ( Y )+ P@E(0(Y )- E ( @ (Y ) )  

-= ( t ( Y )- P @ t ( Y ) ) ’ @ - l ( t ( Y )P @ f ( Y ) )  

+ (E(0lY)- P@E(BIY))’@-’(E(O\Y)- P,E(@lY))  

- 2 ( t ( Y )- P @ f ( Y ) ) ’ @ - ’(E(0lY)- Z’,E(O)Y)) 

where the first expression is a result of applying the first constraint, I’@r(Y)= 
PGE(0lY ) .The first term in the last expression is fixed (i.e. does not depend on t ( Y ) )by 
the second constraint and the second term does not depend on t ( Y )at all. The final term 
is a n  inner product of ( f ( Y )- P@t ( Y ) )and (E(0l Y ) -  P & ( O )  Y ) )which, by the Cau-
chy-Schwarz inequality, is maximised (and the quadratic form minimised) i f  

( t ( Y )- P @ f ( Y ) )= a(E(0lY)- PeE(0IY)) w . P . ~ ,  a > 0. (5 .23 )  

Then, by taking the vector norms of both sides and applying the second constraint, we 
obtain 

Thus, 

Now by (5 .23 ) ,  

t ( Y )= P@t(Y)+ ( t ( Y )- P @ t ( Y ) )  
= P@E(8)Y )+ a(E(0l Y )- P@E(01Y ) )  

= aE (01Y )+ (1- n)P@E(01Y ) ,  

where a is given in (5.24).We evaluate a by noting that 

Notice that H 1 ( Y )can be simplified further: 
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‘I’his completes the proof; however, we now address the remark made after the state- 
ment of Theorem 1. Consider using ii 1,agrange multiplier to perform the minimisation 
assuming only the second constraint. Then we find the constrained estimator by mini-
mising the Lagrangian. 

Ilpon setting (OI,/ilt) = 0. we obtain 

0 = 19 ‘ ( t ( Y )- E ( 0 j Y )  + 2 K ( I  - P+)’@ ‘(I - I’@)t(Y)  

= 2 9  ’ ( t ( Y )- E ( 8 ( Y )+ 2 ~ 9‘(I - I ’ s ) t (Y) .  

hlultiplying both sides by X(X’@ ’ X )  ‘X’  gives P J , ( t ( Y )- K(8l Y ) )= 0, so that f ( Y )  
from (5.16)automatically satisfies the constraint (5.14)whether it is stated as  ii condition 
of t tic. theorem or not. 
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6.1 INTRODUCTION 

In mapping geographical variation of risk or occurrence of disease in  tr’c1r.t r ’ o i r r i t  data, 
information about the neighbouring areas is often incomplete. This is a problem found 
particularly in boundary areas. This lack of information could distort the estimatcs of 
their relative risks within the study region. Likewise, for ( ~ 1 s ~wmf data, the analysis of 
maps of disease incidence can be severely affected by the proximity of evcnts t o  cdges o f  
the region. 

The analysis of edge effects is a neglected area within spatial epidemiology. 
While there has been a considerable increase in research in the general area of spatial 
epidemiology within recent years, there has been little attention paid to edge effects. 
This is regrettable, since many analyses can be fundamentally altered by the inclusion 
of edge information in different forms. In this chapter we examine a number of basic 
edge effect problems within case event and tract count data. In addition we discuss 
possible schemes which make some allowance for, or compensate for, edge effects. 1Z‘e 
apply two such schemes to the example of mortality from gastric cancer in  the 
municipalities of the Tuscany region of Italy, within a fixed time period. The results 
of this study suggest that the edge augmentation and weighting procedures used 
better reflect the underlying structure portrayed by the use of external guard munici- 
pality data. 
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6.2 EDGE EFFECT PROBLEMS 

6.2.1 Edge effects in case events 

Define a study region W within which we observe m case event locations of a disease of 
interest. The locations usually are case address locations. We denote the locations as 
{xl}, i = 1,.. . .m. Also define an arbitrary region T which completely encloses W. For 
simplicity, we assume that the area of Toutside W lies completely external to the study 
region (Figure 6.1).It is possible that for some study regions there may be areas internal 
to the main study region where no observations are possible, These external and inter- 
nal areas can be regarded as areas where censoring of observations has occurred and 
we can apply appropriate methods to either type of area. 

Avariety of effects can arise due to the proximity of the external boundary of the 
region M7 to the observed data. First, if the case locations arc spatially interdependent, 
then any measure that depends on this interdependence will be affected by the fact 
that observations are unavailable external to the study region. For example, if a measure 
of autocorrelation is to be applied over the study region, then the censoring of 
information at boundaries will affect this estimation process. Secondly, even when 
observations are independent, the estimation method used can induce edge effects in 
estimators. For example, a bias will be induced when a smoothing operation is 
applied to the event distribution. This is due to the unavailability (censoring) of 
information beyond the edge regions. A larger variance will also be found in edge areas 
due to the low proportion of small interevent distances found in that area. While edge 
effects may be minor when estimation of global parameters is considered, they may 
become severe when local estimates in regions close to the study boundary are to be 
made. Ripley (1981, 1988) discusses some aspects of the edge effect problem for point 
processes on the plain, and also notes the edge distortion with trend surface fitting 
to continuous data. 

Figure 6.1 Idealised study region and associated areas. + = case event location 
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Figure 6.2 Idealised tract map. Tracts 1-4 (shaded area) are external to the study region and 
have counts ( n , } .Unshaded tracts are internal, and tracts (1,2,4,5,6)are in the set ( 1 2 ; )  

6.2.2 Edge effects in counts 

In the case of counts within arbitrary tracts, similar considerations apply. Define the 
count of a disease within the ith tract as n,. We assume there are m tracts within the 
study region. The inclusion criteria for tracts (i.e. which boundary tracts should be 
included or excluded from the study region) is an important issue and is discussed more 
fully by Lawson and Waller (1996). 

We denote tracts within W which have a common boundary with the external region 
as {n : } ,whereas if we also can observe or otherwise estimate counts in external tracts, 
then we denote these counts as {n,}  (Figure 6.2). Here the external region is defined to 
be any area not included within the study window. Usually this area lies adjacent to the 
window, but this is not a fundamental requirement. In addition, the external region 
may lie within the tracts where counts are observed. In that sense the external region 
may be regarded as having a missing observation. The comments above concerning 
global and local estimation apply here. The estimate of tract-relative risks at or near 
boundaries can be affected by the edge position, and by the requirement to use counts 
from neighbouring tracts in the estimation process, i.e. { n , }are censored. Even without 
the assumption of interdependence between events, any conventional smoothing 
operation applied, for example to the Standardised Mortality Ratio (SMR) (ni /e , )  with 
e ,  the expected number of cases in the ith tract, will also induce edge effects due to the 
use of neighbourhoods in such smoothing operations. Cressie (1993) has discussed this 
problem for lattice data, and an early reference to the problem was made by Griffith 
(1983). 

6.3 EDGE EFFECT COMPENSATION METHODS 

The two basic methods of dealing with edge effects are (i) the use of weighting/correc-
tion systems, which usually apply different weights to observations depending on their 
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proximity t o  the study boundary, and ( i i )  the use ofguard areas, which are areas outside 
the region ivhich we analyse as our study region. The original study region could ha\.e 
iis its guard area all the { I ! : }  and so these areas are not reported, although they are used 
in the estimation of parameters relating to the internal tracts. 

6.3.1 Weighting systems 

~ ~ s ~ i a l l yi t  is appropriate to set up weights which relate the position of the event or tract 
to the external boundary. These weights. { w,}say, can be included in subsequent 
estimation and inference. The weight for a n  observation is usually intended to act as ii 
surrogate for the degree of missing information at that location and so may differ 
depending on the nature and purpose of the analysis. Some sensitivity to the specifica- 
tion of these nreights will inevitably occur and should be assessed in any ciisch study. 
Some basic weights are: 

for case events: \ i ’ j  = c 1 .  i f  s,6 {s,*}. 

r t i ( d , ) ,  if  s,E {s;}; 
i f  1 1 ,  f {U;},

for tract counts: w I  = { m ( d I ) ,  i f  1 1 ,  E { r I l * } .1 ,  

Lvhere r t i ( r l , )  is a function of the distance ( d , )of the observation to the external bound- 
ary, and { x:} is the set of all events closer to the boundary than to any other event in the 
study region. The distance ( d , )could be the event-boundary distance for case events or 
the tract centroid-boundary distance for tract counts. Another possible surrogate for 
( d , ) in the case of tract counts is to use i t I ( l , , , / l , ) ,  where 1 ,  is the length of the tract peri- 
meter and I!,, is the length of the perimeter of the tract which is in common with the 
external boundary. A simple choice would be w ,  = 1 - ( l , J l / l l ) , ’ d l ,which can be used 
for all tracts since non-boundary tracts will have wi 1.  

Since the events are generated by a modulated heterogeneous Poisson process, 
weights could also be specified as functions not only of the distance from the boundary 
but also of the modulating population density. For example, defining an indicator for 
closeness to the boundary for each area. when in the tract count case some external 
standardised rates are available, it is possible to structure an expectation-dependent 
weight for ii particular tract. e.g. based on the ratio of the sum of all adjacent area expec- 
tations t o  the sum of all such expectations within the study window. Other suitable 
iveighting schemes could be based on the proportion o f  the number of observed 
neighbours. 

6.3.2 Guard areas 

1\11 alternative approach is to employ guard areas. These areas are external to  the main 
study window o f  interest and could be boundary tracts of the study window itself or 
could be added to the window to provide a guard area. in the case of tract counts. In 
the case event situation, the guard area could be some fixed distance from the external 
boundary (see, for example. Kipley. 1988).The areas are used in the estimation process 
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but they are excluded from the reporting stage because they will be prone to edge effects 
themselves. I f  boundary tracts are used for this, then some loss of information must 
result. External guard areas have many advantages. First, they can be used \vith or \vith-
o i c t  their related data to provide a guard area. Secondly, they can be used within data 
augmentation schemes in a Bayesian setting. These tnethods regard the relative risks 
or counts in external areas as a missing data problem (‘Panner, 1996). 

6.4 A HIERARCHICAL BAYESIAN MODEL FOR DISEASE 
MAPPING OF TRACT COUNT DATA 

Data are usually represented by the observed r r ,  and expected nutnbers of events in 
the ith area (i  = 1 , .  . . , I H )of the region of interest. ‘I’he expected number of cascs is 
usually obtained by applying a standard reference set of sex-age-specific rates on t he 
area population. 

A simple estimate of the relative risk for a generic ith area is the SMR. I t  is obtained a s  

which is the maximum likelihood estimate of the relative risk (0 , )  under a l’oisson 
model with E(rlj)  = v;e,. This approach ignores the presence of unstructured extra- 
Poisson variation as well as the underlying ‘spatial structurc’of the relative risks. Hesag 
ct  trl. (1991)suggested a hierarchical Hayesian model where a Poisson model is defined 
for the observed nuniber of events 

where the ith local estimate of the relative risk can be modclled in the Generalised 
Linear Mixed Model frameazrork as 

where the logarithm of the relative risk is a linear function of i i ,  and \’, representing two 
random terms for unstructured and structured spatial components, usually referred to 
as ~~~tc.ro(ir~nc~it!i and diistc~rimg, respectively (Breslow and Clayton, 1993).The heterogc- 
neity random terms can be assumed to have prior distributions defined as 

where X ,, is a constant precision parameter. The clustering components are modelled in 
a similar way except that the means and variances are dependent on the adjacencies 
P I  = xltrkl’,l\’l/MTf,. and var(vl)  = (W,  + A,,)-’. The matrix M7 is a 0-1 adjacency 
matrix and the symbol + denotes summation over the appropriate subindex. An 
improper inverse exponential prior distribution for each parameter A,, and X ,, is 
assumed, with default parameters df = 2 and scale parameter = 0. ‘l’he posterior 
distribution, being intractable. is obtained via a Gibbs sampling approach (Hesag 
rt (11. .  1991). 
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6.4.1 Corrections for the hierarchical Bayesian model 

I t  is usually straightforward to adapt the hierarchical Hayesian model to accommodate 
edge-weighted data. Weighting each area can be done by introducing an offset term in 
the linear predictor of the regression model for the relative risks, in the same way as the 
expected cases. In the graphical representation of the Hayesian model this corresponds 
to adding a non-stochastic node directly to the node for the 8,.When in the tract count 
case expected cases {et.} on external tracts are available, it is possible to structure 
an expectation-dependent weight for a particular tract, e.g. based on the ratio of the 
sum of all adjacent area expectations within the study window to the sum of all such 
expectations: 

with L2'* the expanded adjacent matrix for the study region (IH areas) and guard area (11 
areas) and Y' the expected cases for the 11 + III areas. In practice this can be used as the 
weight for observed and expected cases before the use of the Hayesian model. This 
weighting system yields w ,  = 1 for completely internal areas (i.e. with no censored 
neighbours) while it gives w ,  = 0 for islands. This weighting also accounts for the 
number of uncensored neighbours that are adjacent to the area in question. 

If guard areas are selected and observations are available within the guard area, then 
it is possible to proceed with inference by using the whole data but selectively reporting 
those areas not within the guard area. Note that this is not the same as setting w, = 0 
for all guard area observations in a weighting system. When external guard areas are 
available but no data is observed. then resort must usually be made to missing data 
methods. With limited external information for tract count data it is possible to proceed 
via the use of a data augmentation algorithm. In this approach it is possible to draw 
missing counts iteratively from the distribution of the counts given current relative risk 
estimates (imputation step) and to sample the full conditional distribution of relative 
risks (posterior step). 

When the expected cases { c ( . }  are unknown in the external regions it is simpler to 
regard the relative risks a s  the target parameters (without further evaluating the asso- 
ciated missing counts), and to employ the above algorithms as before on this smaller 
parameter hierarchy. 

Let us start with a case where we know the population or the expected number 
of events for the out-of-the-border areas. The out-of-the-border areas are regarded as 
having missing values in the number of events. The Chained Data Augmentation 
Algorithm steps are: 

( i )  draw a sample {n,} from p ( n , 1 8 , ) ;  
(ii) draw a sample { 8} from p(8 I n ,  A). 

( i i i )  draw a sample { A }  from p(A 18). 

where X denotes the hyperparameters of the hierarchical Bayesian model, 0 = ( O , ,  0,) 
and II  = ( H , . I I ~ ~ ) ,and p(.)  denotes the appropriate distribution. In step (i) we can take 
for ! I ( ,  the corresponding expected number of cases (which implies equating the starting 
\ d u e  for 8,. to 1.0).Step ( i i )  consists in sampling from the full conditionals used by the 
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Figure 6.3 SMK map for theTuscany region 

Gibbs sampler (used also for the uncorrected method: see Besag and Green, 1993). 
Iterating steps until convergence, we obtain the final estimates of the relative risks. This 
approach is derived from the Data Augmentation Algorithm (Tanner, 1996). 

If we do not know the expected number of events or the population for each out-of- 
border area, then we should consider as missing the parameters 8, and not the number 
of events. Using the conditionals integrated over the distributions of the 8 ,the sampling 
scheme becomes the following: 

(i) draw a sample { Q , } from Jp(8,  I n , ,8(.,A)p(Q,)d8,, 
(ii) draw a sample { A }  from J’p(AI8,.O,)p(O,)dO,. 

The integraIs are obtained using Monte Carlo simulations with 

This approach can be viewed as a n  extension of Monte Carlo maximum 
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likelihood methods to cope with missing data problems when the conditional distribu- 
tions required by the algorithm are not available (Gilks et d,,1996a)-here p( 1 1 ~ ~ 1 . )is 
undefi tied because we do not k n o w  the population or the expected number of events. 

6.5 THE TUSCANY EXAMPLE 

selection of the above methods have been applied to a simple example. hlunicipality 
tract counts of gastric cancer mortality data in Tuscany (Italy) for niales over 35 years 
uw-e routinely collected at municipality levels (287 units) from 1980 to 19x9.This choice 
ivas ~iiadebecause gastric cancer displays a high relative risk along the Nort h-Eastern 
border of the region, so there may be great interest in the potential distortion due to edge 
effects Lvhen such a raised incidence is displayed. This distortion could appear in the 
estimation of ‘true’ relative risks within the study area. We haw employed the weighting 
ii  nd iiU gment ii t ion c*or rec t ions desc r ibed above to the H ayesia n h ierii r c h ica 1 ni ()dcI o f 
l k w g  r’t t r l .  (1991)a s  implemented in BEAM (Clayton, 1994). 

111what t’olloivs we examine four different scenarios for the data set: 

( i )  f u l l  t3ayesian analysis of relative risk with structured and unstructured hetcrogcne- 
ity for the augmented region set using { n o ) ,{c, ,}  and ( 1 1 , ) .  { o , }  (method Cl: 

( i i )  the swnie analysis applied to { r ~ , } ,(4 , )  alone (method I ) ;  
( i i i )  edge weighting based on the data-dependent ratio of adjacent expected rates speci- 

lied iiboire (equation (6.1))where ii diagonal matrix of weights w a s  introduc*ed into 
the analysis and the weight is the proportion o f  observed adjacent area expcc*tations 
o \ w  the suiii ot’the total adjucent iirea expectations (method it‘)and 

(iv) thc edge-augmentation nicthod discussed above (method K). 

Figure 6.4 C’ut points from thc marginal empirical cdf function of the t3aycs cstiniatcs for the 
:I Ugm e nt cd dat k1 
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Figure 6.5 Rayes estimates (method I)  

All sampling of conditional distributions were carried out by the BEAM program. The 
relative risks reported here are averages of 3500 samples after convergence of the Gibbs 
sampler, the convergence of the sampler being checked for heterogeneity and clustering 
parameters using CODA (Gillcs c>td,1996). 

The map representing the SMKs ( r z , / ( ~ [ )  for the study region is shown in Figure 6.3. 
The maps of the different estimators are presented using absolute levels. These levels 
were chosen by inspection of the distribution of the full Bayesian estimates obtained 
from the observed augmented data and using them for each map (Figure 6.4).The Kayes 
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Figure 6.6 Bayes estimates: edge-weighted (methodW) 

estimates shown in Figures 6.5 and 6.6 display the w m r r e c t d  and edge-weighted 
approaches respectively (methods I and W). For the e i ~ ~ e - n u ~ i i i e i i t i i t i o i imethod (method 
R) (Figure 6.7) with the observed number of cases as missing data, as initial value for 
{ i z o }  we have used the expected numbers of deaths for each area. The relative risks 
obtained using the known gastric cancer mortality data for the external adjacent areas 
are shown in Figure 6.8 (method C). 

Reported in Table 6.1are the different estimators for the areas along the North-East- 
ern border of Tuscany (sorted from North to South). Three subregions are of particular 
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Figure 6.7 Bayes estimates (method R) 

interest: theTuscan Romagna (Rtj, the Casentino valley (Caj and the River Tiber valley 
(Ti). Gastric cancer mortality is particularly high in the Casentino valley. The Bayesian 
estimates based on the complete data (C) showed that the areas in the Casentino valley 
ranked higher together with the far north-east area of the Tuscan Romagna. The esti- 
mates based on the incomplete data (I)failed to highlight this pattern. The weighted (W) 
and the data-augmented (R) Bayesian estimates more closely approximated the full 
Bayesian analysis. The properties of the augmentation algorithm are evident in the 
spatial smoothing which affected the areas at the edges of the Casentino valley: the 
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Figure 6.8 Bayes estimates (method C) 

S. Godenzo municipality has been consistently estimated closer to the Casentino values 
while, at the southern border, the Chiusi Verna area has been underestimated due to 
its proximity to the lower risk areas of the River Tiber valley It could be argued, 
with good reason, that a more accurate distance matrix would have provided more 
appropriate analyses, especially if geographical barriers like mountains are to be 
modelled. However, this is not a concern of the edge correction methods examined. 

While this small example gives only a n  empirical snapshot of the edge effect problem 
displayed in a small data example, it does serve to highlight the importance of consider-
ing such effects in any mapping exercise. 



97 Conclusions 

Table 6.1 Comparison of different estimator for the area along the Nort h-Eastern border 
of the Tuscany region (Italy). Gastric cancer, dealth certificate relati\ie risk, 1980-89 
males 

Area name SMR I-Bayes W-Bayes R-Bayes C-Bayes 

Firenzuola (Kt) 
t’alazzuolo ( K t )  

2. i3  
1.69 

2.26 
2.00 

2.11 
1.98 

2.09 
1.98 

1.97 
1.72 

hlarradi ( f x t )  2.42 2.1 2 2.06 2.07 1.92 
S.Godenzo ( fx t )  2.01 2.11 2.07 2.(17 1.83 
Stia ((’a) 2.49 2.27 2.19 2.21 2.07 
Prat ovecch io ( C’a ) 

Poppi (C’a) 
1.99 
3.( 18 

2.17 
2.62 

2.15 
2.55 

2.14 
2.48 

2.(14 
I.59 

Chiusi i’erna ( C ’ a )  1.60 2.01 2.04 2.01 1.‘I7 
Pi eve S. Ste h  no (77) 1.71 1.79 1 . 3  1.83 1.75 
Badia ‘I’edalda (l‘i) 1.Z) 1.82 1.80 1.83 1.h4 
Sestino (Ti) 2.14 1.99 1.91 1.85 1.58 

6.6 CONCLUSIONS 

We have presented a variety of possible edge effect problems that arise in disease map- 
ping and also some possible solutions to these problems. In general, there is no one 
panacea for the incorporation of edge effects in models. and i t  is n7ise to evaluate the 
characteristics of the problem clearly before adopting a specific scheme. 

In the situation where case events are studied, if censoring is present and could h e  
important (i.e. when there is clustering or other c*orrelated hetcrogencity), then i t  is 
advisable to use a n  internal guard area, or a n  external guard iircii with augmentation 
via MCMC. In cases where only a small proportion of the study window is close to the 
boundaries and only general (overall) parameter estimation is concerned, then it may 
suffice to use edge-weighting schemes. If residuals are to be weighted, then i t  may 
suffice to label the residuals only for exploratory purposes. 

In the situation where counts are examined, it is a l so  advisable to use an  internal 
guard area or external area with augmentation via MCMC. In some cases. a n  external 
guard area of r d  data may also be available. This may often be the case when routinely 
collected data are being examined. In this case, analysis can proceed using the external 
area mhj to correct interrid cJstirnntes.Edge weighting can be used also,  and thc simplest 
approach would be to use the proportion of the region riot on the external boundary. 
Kesiduals can be labelled for exploratory purposes. 

The underlying assumptions in any correction method are that the modcl b e  cor-
rectly specified and that it could be extended to the not observed areas. In particular. i t  
is questionable if  a n  adjustment can really be obtained when ignoring t tic information 
on the outer areas. Edge-effect bias should be less prominent when a n  unstructured 
exchangeable model is chosen. Since the relative risk for each area would b e  regressed 
toward a grand mean, the information lacking for the unobserved external areas is \‘cry 
small compared with those from the observed areas. Of course such ii simple model 
where common expectation is found is highly unlikely to be ii good modcl in  this iircii. 
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Extending the edge effect problem to the consideration of space-time data. the situa- 
tion is more complex since spatial edge effects can interact with temporal edge effects. 
The use of' sequential weighting. based on distance from time and space boundaries. 
inay be appropriate (Lawson and Viel, 1995).For tract counts observed in distinct time 
periods only. the most appropriate method is likely to be based on distance from time 
and space boundaries, although it may be possible to provide an external spatial and/ 
or temporal guard area either with real data or via augmentation and MCMC methods. 
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7.1 INTRODUCTION 

The analysis of disease clustering has generated considerable interest in the area of 
public health surveillance. Since the 1980s there has been increased interest in, and 
concerns about, adverse environmental effects on the health status of populations. For 
example, concerns about the influence of nuclear po~7er installations on the health 
of surrounding populations has given rise to the development of methods that seek to 
evaluate clusters of disease. These clusters are regarded as representing local adverse 
health risk conditions, possibly ascribable to environmental causes. However, many 
diseases will display geographical clustering for other reasons, and possibly on ii more 
global scale. The reasons for such clustering are various. First. it is possible that for some 
npp(irentI!j non-infectious diseases there may be a viral agent, which could induce 
clustering. This has been hypothesised for childhood leukaemia (see, for example. 
Kinlen, 1995).Secondly, other common but unobserved fdctors/variables could lead to 
observed clustering in maps. For example, localised pollution sources could produce 
elevated incidence of disease (e.g. road junctions could yield high carbon monoxide 
levels and hence elevated respiratory disease incidence), or a common treatment of 
disease can lead to clustering of disease side-effects. The prescription of a drug by it  

particular medical practice could lead to elevated incidence of side-effects mTithin that 
practice area. 

Hence. there are many situations where diseases may be found to cluster, even when 
the aetiologydoes not suggest it should be observed. Because of this, it is important to be 
aware of the role of clustering methods, even when clustering y c ~sc is not the main 
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f’ocus of’ interest. In this case. it may be important to consider clustering as ii back-
ground effect and t o  employ appropriate methods to detect such effects. 

Here, we consider ii nuniber of aspects of the analysis of clustering. First, we review 
reasons for examining clusters. Basic delinitions of clustering and their use in different 
studies are then considered. Secondly, we consider appropriate models based on these 
definitions, ‘I’hirdly, we examine the estimation of clustering a s  ii background effect in 
studies where the prime focus is riot clustering. Finally, we consider the use of testing for 
c-lusters and its application in different studies. A comparison of a restricted range of’ 
clustering methods has been made by Alexander and Hoyle (1996)and a special issue 
of Sttrtisticxof Aledir*iire(1996,Volume 15, 7-9) has focused on issues related to cluster 
studies. 

‘I’able 7.1 proLides eleven examples of disease clusters with a known local c-ause. 
Except for leukaemia in Japan, the local excess of ciises wiis first observed. then followed 
by a n  epidemiologic*al investigation determining the cause o f  the cluster. In Japan, the 
suspected risk factor led to the detection of the local excess. The sizes o f  clusters range 
from ii few city blocks, in the case of cholera, t o  several states with millions o f  inhabi-
tants in t he case of oral cancer  a m o n g  women. Both infectious and chronic diseases are 
on the list, and there is ii wide range o f  different types of aetiology. In several ciises, the 
cktcctioti of ii cluster w;is t i n  important step in establishing ii previously unknown 
aet iologg’. It‘it h most. there were important public health benefits. 

Table 7.1 Ksiimples of disease clusters with known aetiology 

1) i sease Location Aetiology Reference 

C‘holeru 13road Street, C‘ibrio cholerae in 
I,ondon drinking water 

Yiisiil sinus High Wycombe. Occupational exposure 
adcnocarcinoma England. I iK in furniture industry 

I ,e11kaeniia Hiroshima Kadiation from 
and Nagasaki nuclear explosions 

Karain.‘I’urkey Erionite fibre 
exposure 

( ’ o a s t  ii1 (;eorg ia, 
I fS A  

Shipyard asbestos 

I’neumocystis Los 12ngeles Hu ni iin i111 mU no-
pneumonia deficiency virus 

Oral cancer Southern I JSA Snuff dipping 
among wonien 

I \ S t  hn1a Barcelona harbour, Inhalation of 
Catii 10 n ia soybean dust 

I )ou.n‘ssyndrome Kin ya sze nt k i rii1y. ‘I’richlorfon in fish 
HU nga r y 

k;id 11 ey fai I U re Port-au-Prince. 1’ rescript io n d rug 
in children Haiti with diethylene glycol 

Kespiratory 1-2rmad ii le. Air Pollut ion 
c-ii n cer Scotland. IIK 
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Figure 7.1 1,arynx cancer case locations in 1,ancashire. Ilk: (1974- S 3 )  (coordinates:nlap 
references ) 

Figure 7.2 Counts of respiratory cancer cases in Palkirk. IIK (197S-S3I 

Figures 7.1 and 7.2 display two examples of mapped small-area health data where 
clusters of disease are of interest. The two examples represent the two data formats c-om-
monly encountered in clustering studies: residential address locations (s,,I/ coordinates), 
and the count of disease cases within arbitrary geographical regions, such as census 
tracts or postal districts. The first display shows the distribution of case residential 
addresses of cancer of the larynx in an area of Lancashire, IJK. for a fixed time period 
(1974-1983). In this example, the spatial distribution of disease incidence can be exani- 
ined to assess whether there is evidence of excess risk concentrated in areas of the map. 
Usually, the assessment of such risk must be made with reference to the spatial distribu- 
tion of population that is 'at risk'of contracting the disease. and this requires the exam- 
ination of the case map in relation to the map of 'at risk population. 
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In the second example, a map of census tracts in the town of Falkirk, Scotland, lJK is 
displayed (Figure 7.2). In the tracts are displayed the counts of respiratory cancer cases 
for the period 1978-83. Any areas of excess risk or clustering would appear a s  concen-
trations within small collections of tracts. I t  is also important in this case t o  assess such 
exc*ess patterns in relation to the underlying distribution of ‘at risk’ population, and this 
is often achieved by comparing the count map with the distribution of the rates of 
disease incidence ‘expected’ in the tracts concerned. 

I n  both these examples, no definition of clustering is discussed, because this aspect of 
the analysis is discussed in a later section. The purpose of these examples is to provide 
an introduction to the type of data found typically in such small-area studies. The deti- 
nition of what constitutes ii cluster or clustered pattern is of fundamental importance in 
any such study 

7.2 REASONS FOR STUDYING DISEASE CLUSTERING 

There are three main situations in which the statistical analysis of disease clustering is 
import ant : 

( i )  in epidemiological research when trying to study the aetiology of a disease 
( i i )  i n  public health as part of geographical disease surveillance: and 

( i i i )  i n  response to disease cluster alarms to evaluate whether thorough epidemiological 
i nvest igat ions are w a r ra n ted. 

7.2.1 Finding the aetiology of a disease 

There are many ways in which hypotheses about disease aetiology are generated. Differ- 
ential disease rates observed in disease atlases have long been used for that purpose. A 
complementary approach is systematically to scan large areas for localised clusters 
nrithout any prior idea of where they may be, hoping that detected clusters will give 
clues to previously unknown aetiologies. Different statistical methods for doing this 
itre described in Chapters 8-12. 

I t  is also of interest to search for local geographic clusters that are also localised in 
time. The kit-celona asthma cluster in ‘I’able 7.1 is such an example, where the excess 
\z’iis localised to the harbour area during those days when soybeans were unloaded 
from some ship (see Chapter 17). 

Methods used to detect areas with high rates of a disease can also be used to find good 
places to  conduct case-control or cohort studies. For cohort studies especially, i t  is 
important to enrol people with a reasonably high risk of getting the disease because it 
will either increase the power of the study, reduce the cost as fewer participants are 
needed, or both. 

M‘hether purely spatial or space-time, a key factor in these methods is their ability to 
pinpoint the Iocation of clusters. Sometimes, though, we are interested in the general 
nature of the spatial or space-time disease distribution without a n  interest in detecting 
the location of specific clusters. For example, we may simply want to know whether or 
not a disease is likely to be infectious. Or. we might want to know i f  the disease has 
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related risk factors that vary geographically. Such information is unlikely to give us 
clues about any specific aetiology, but it can give us clues about directions in which to 
search. If a disease is infectious, then we would expect it to exhibit both space-time 
interaction and global spatial clustering. If a disease is related to risk factors that vary 
geographically but not over time, then it should exhibit global spatial clustering but no 
space-time interaction. 

When involved in assessment of the relation of specific geographical variables with 
disease risk in a n  ecological analysis, it is important to adjust for any existing spatial 
autocorrelation/clustering not explained by the variables. General clustering met hods 
could be used to test for the existence of clusters as well as for the estimation of the scale 
of such clustering. 

In Chapter 8, Tango compares different tests for global spatial clustering, while Jac- 
quez and Jacquez compare three different space-time interaction tests in Chapter 11. 

Whether or not generated by geographical data, many aetiological hypotheses relate 
to risk factors that are of a local geographical nature. Examples include exposure to 
electromagnetic fields from power lines, exposure to radiation from nuclear power 
plants, contamination from toxic dump sites, occupational exposure in certain indus- 
tries, and pollution from airports, roads or factories. 

When individual exposure is unavailable (or too costly to obtain) for a preliminary 
study, we can use a focused cluster test in a n  ecological analysis as exemplified by Big- 
geri and Lagazio in Chapter 20 and by Dolk et al. in Chapter 29. The distance to the 
source is then used as a surrogate for exposure and a test is made to see whether indivi- 
duals close to the source are more likely to have the disease than those farther away. 
Note that distance-from-source may not be a good surrogate for exposure in some cases, 
because exposure may not be monotonically decreasing with distance and may be 
highly dependent upon directional effects related to the prevailing wind regime, parti- 
cularly when airborne pollution is thought to be important (Lawson, 1993). Other pat- 
terns of  exposure can be related to, for example, the flow of ground water or percolation 
of hazards in the ground (Lawson and Cressie, 1999). 

Focused cluster studies will not provide definite answers about aetiology, but as with 
other ecological studies, they provide a n  important link in the process from pure 
hypotheses to well-established risk factors. If a disease relationship is determined using 
a focused cluster test, the next step is to conduct a more ambitious case-control or 
cohort study using exposure measurements on individuals. For various papers on 
focused cluster tests, see Part IVof this book. 

7.2.2 Evaluating disease cluster alarms 

Disease cluster alarms are very common. In a survey of state health departments in the 
United States, Wartenberg and Greenberg (1997) found that altogether they received 
about 1500 requests for cancer cluster investigations in 1989 alone. Many cluster alarms 
are easily dealt with by providing information over the phone, but others require exten- 
sive investigations. It is not uncommon for media and politicians to take a n  interest in 
addition to the communities involved. Since the 1980s, a range of alarms have been 
investigated in different countries, from leukaemia incidence around Sellafield (Hills 
and Alexander, 1989) and Kriimmel nuclear power stations (see Chapter 31 in this 
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volume), to respiratory cancers around incinerators and dump sites (see, for example. 
Diggle 1990;1,iiwson. 1989, 1993b), to breast cancer on Long Island, New York (Kulldorff 
('t (11.. 1YY7). 

In ('hapter 1 0 .  Kulldorff reviews a number of statistical methods that are helpful when 
evaluating disease cluster alarms. Such methods can be used to confirm or reject 
alarms, a s  part ofa  decision on whether further resources should be spent on i i n  inves-
tigation. to  give ii more solid scientific base when responding to public concerns. and t o  
priorit ise resources between competing needs. I n  Chapter 17, ii review of the analysis of 
single clusters around putative health hazards is provided. 

7.2.3 Public health surveillance 

For many diseases there are well-established risk factors. I f  we detect ii local disease 
cluster i t  is natural t o  look first for the presence of known risk factors. I f  found, we will 
learn nothing new about the aetiology of the disease, but public health surveillance can 
be informed of its presence and the risks can then either be removed or reduced in  their 
efftx-t on the population by appropriate public health intervention. Examples include 
envi ronniental pollution and occ-upa tional exposures. 

The opposite approach may also work: identify some known risk factor; search for 
clusters of the disease; and target those iireas with preventive measures. For example, 
special anti-smoking campaigns could be launched in areas with exceptionally high 
lung cancer rates. 

I t  is also possible to search for clusters with a high mortality rate. adjusting not for 
the total population at risk, but for the distribution of incidence. A cluster ivith high 
mortality compared with incidence niay indicate substandard treatment o f  the disease, 
or lack of screening. I f  the latter is found for breast cancer, an improved manimography 
program me \vou Id be wii rranted. 

N o t  only clusters of excess risk may be of interest. Areas of lower risk c m  
indicate exceptional treatment or an exceptional screening programme that others 
should study to learn from. I t  could also be due to different drugs being popular in 
different areas. and cluster investigations could give an early hint of beneticial or 
detrimental effects from new drugs. both in terms o f  their intended purpose and their 
side-effects. 

I,oc.al disease clusters may also be due to differential classification or reporting of dis- 
ease incidence or mortality. As such, they may bring to attention problems that need to 
be resolved in  order to maintain high-quality health statistics. 

For these public health applications, we are interested in detecting the location of 
c*lusters. Several such methods are described in chapters in  this Part of the Lwlume. 

7.3 DEFINITION OF CLUSTERS A N D  CLUSTERING 

A wide variety of delinitions can be put forward for clusters and clustering. Howetw it  
is convenient here to consider two extreme forms of clustering within which most defi-
nitions can be subsumed. These two extremes represent the spectrum o f  modelling from 
noti-parametric to parametric forms and associated with these forms are appropriate 
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statistical models and estimation procedures. First. because many epidemiologists 
may not wish to specify a priori the exact form/extent of clusters to be studied, a non-
parametric definition is often the basis adopted. An example of such a definition is given 
by Knox (1989):'a geographically bounded group of occurrences of sufficient size and 
concentration to be unlikely to have occurred by chance'. M'ithout any assumptions 
about shape or form of the cluster, the most basic definition would be as follows: 

0 any area within the study region of Sigllifilm elevated risk. 

This definition is often referred to as hot spot clustering (see, for example, 
Marshall, 1991a). This is a simpler form of Knox's definition but summaries the essential 
ingredients. In essence, any area of elevated risk, regardless of shape or extent, could 
qualify as a cluster, provided the area meets some statistical criteria. Note that i t  is not 
usual to regard areas of significantly low risk to be of interest, although these may have 
some importance in further studies o f  the aetiology of a particular disease. 

Secondly. at the other extreme, we can define a parametric cluster form as :  

0 The study region displays a prespecified (parameterised) cluster struct ure. 

This definition describes a parameterised cluster form that would be thought to apply 
across the study region. IJsually. this implies some stronger restriction on the cluster 
form and also some region-wide parameters that control the shapes and sizes of clus-
ters. Both of these extremes can be modified by using modelling approaches that borrow 
from either extreme form. For example, it is possible to model cluster form parametri- 
cally, but also to include a non-parametric component in the cluster estimation part that 
allows a variety o f  cluster shapes across the study region (Lawson, 1995). 

k S a g  and Newcll(1991) first classified types of clustering studies and associated clus- 
ter definitions. We will extend their definitions here to include some extra classcs. First 
of all, they defined gmord clustering a s  the analysis of the overall clustering tendency o f  
the disease incidence in a study region. As such, the assessment of gcneral clustering is 
closely akin to the assessment of autocorrelation. Hence, any model or test relating t o  
general clustering will assess some overall/global aspect o f  the clustering tendency of 
the disease of interest. This could be summarised by a model parameter (e.g. an auto- 
correlation parameter in a n  appropriate model) or by a test that assesses the aggregation 
of cases o f  disease. For example, the correlated prior distributions used by Hesag, Clay- 
ton. and 1,awson and coworkers (Besag et OZ., 1991: Clayton and 13ernardinelli. 1992: 
Lawson r ~ td . ,1996) incorporate a single parameter that describes the correlation of 
neighbouring locations on a map, whereas the methods of C'uzick, IXggle. and Anderson 
and coworkers (Anderson and Titterington, 1997; Cuzick and Edwards, 1990: Diggle and 
Chetwynd, 1991) for case events, and of Whittemore, Tango. Kaubertas and Oden and 
conTorkers (m7hittemore rt al . ,  1987:Tango, 1995; Raubertas, 1988:Oden, 1995)for counts, 
consider testing for a clustered pattern within the study region, rather than model- 
p a ra meter est imat ion. 

It should be noted at this point that the general clustering methods discussed above 
can be regarded as non-spec,i-fic.in that they do not seek to estimate the spatial locations 
of clusters but simply to assess whether clustering is apparent in the study region. Any 
method that seeks to assess the locational structure of clusters is defined a s spc~c,i$c,. 

An alternative noir-spec~ific,effect has also been proposed in models for tract-count or 
case-event data. This effect is conventionally knowTn as [ r i i c v r - r - o l n t e J d  heterogeneity (or 
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overdispersion/extra-~oissonvariation in the Poisson likelihood case). This effect gives 
rise to extra variation in incidence and, for Poisson likelihoods, displays variability of 
observed counts that exceeds the mean of the observed counts. This marginal heteroge- 
neity has traditionally been linked totlustering', as is evidenced by the use of the nega- 
tive binomial distribution a s  a 'cluster' distribution (see, for example, Douglas, 1979). 
Often such effects can be considered to be modelled by the inclusion of uricvrrc~lntc~tl 
heterogeneity within a parametric model. Hence, lognormal or gamma distributions 
are often used to model this component of the expected incidence. The result of using 
such a s  a rion-sye~~i~iceffect is to mimic cluster intensity variation as a realisation of 
these distributions over the study region. This corresponds to a greater peakedness in 
intensity variation than that induced by correlated heterogeneity, and the earlier 
coiiiments concerning the appropriateness of this approach for cluster structure also 
apply here. 

Hesag and Newell's second class of clustering methods is that of specific methods and 
t hest1 are divided into /'oc,ztsed and 1iori7f0cim~dmethods. These methods are designed to 
examine one or more clusters and the locational structure of the clusters are t o  be 
:issessed. Focused clustering is defined as the study of clusters where the location and 
number of the clusters is predefined. In this case, only the extent of clustering around 
the predefined locations is to be modelled. Examples of this approach mainly come from 
studies of putative sources of health hazard; for example, the analysis of disease inci- 
dence around prespecified foci that are thought to be possible sources of health hazard. 
such a s  nuclear pon7er installations, waste dumps, incinerators, harbours, road inter- 
sections or steel foundries. In this chapter, we consider only the rion-focwed form of 
clustering, because focused clustering is discussed in Chapter li,which is concerned 
with putative sources of hazard. 

It  is very important to consider. within any analysis of geographically distributed 
health data, the structure of hypotheses that could include cluster components. For 
example, many examples of published analyses within the areas of disease mapping 
and focused clustering consider the null hypothesis that the observed disease incidence 
arises as ii realisation of events from the underlying at risk population distribution. The 
assumption is made that, once this nt risk population is accurately estimated, i t  is possi- 
ble to assess any differences between the observed disease incidence and that expected 
to have arisen from the ( i t  risk background population. However. i f  the disease of interest 
naturally clusters (beyond that explained by the estimated n t  risk background), then this 
form of clustering should be included also within the null hypothesis. Because this form 
of clustering often represents unobserved covariates or confounding variables. it is 
appropriate to include this as heterogeneity. This can be achieved in many cases via 
the inclusion of random effects in the analysis. Note that such random effects often do 
not attempt to model the exact form or location of clusters but seek to mimic the effect of 
clustering in the expected incidence of the disease, The correlated and uncorrelated het- 
erogeneity first described by C'layton and Kaldor (1987).and Hesag et d. (1991)come 
under this category. Note also that if  clustering of disease incidence is to he studied 
under the alternative H 1 ,  then not only would heterogeneity be needed under Ho but 
some form of cluster structure must be estimable under H 1 as well. In Besag r't (11. (1991), 
an example is provided, in a disease mapping context, where a residual can be computed 
after fitting a model with different types of heterogeneity. This residual could contain 
uncorrelated error, trend. or cluster structure depending upon the application. Hence. 
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such a residual could, in some cases, provide a simple non-parametric approach for the 
exploration of cluster form. 

One disadvantage of the use of the non-specific random effects for background cluster- 
ing so far advocated in the literature is that they do not exactly match the usual form of 
cluster variation in geographical studies. At least in rare diseases, clusters usually 
occur as isolated areas of elevated intensity separated bj7 relatively large areas of low 
intensity. In this case, the use of a log Gaussian random effect model fitted to the hole 
region (as advocated by Hesag et d,1991; Lawson et al., 1996,and many others) will not 
closely mimic the disease clustering tendency, because the global extra variation 
described by such a n  effect will force a global cluster structure on a pattern that cannot 
be described by such a global form. 

7.4 MODELLING ISSUES 

The development of models for clusters and clustering has seen greater development in 
some areas than in others. For example, it is straightforward to formulate a non-specific 
Bayesian model for case events or tract counts that includes heterogeneity (Besag ct ( 7 1 . .  

1991; Clayton and Bernardinelli, 1992; Lawson, 1997; 1,awson [Jtd.,19961. Howeiw-, 
specific models are less often reported. Nevertheless, i t  is possible to formulate specific 
clustering models for the case-event and tract-count situation. If i t  is assumed that the 
intensity of case events, at location x, as A(%), then by specifying a dependence in this 
intensity on the locations of cluster centres, it is possible to proceed. For example, 

(7 .1)  

describes the intensity of events around k centres located at (9 , : j = 1,. . . , k } ,  where p 
is the overall rate, ;J(.) is a background modulating function describing thc'at risk' popu- 
lation distribution, and m ( . )is a suitable link function. The distribution of events around 
a centre is defined bya cluster distribution function h( . ) .Conditional on the cluster cen- 
tres, the events can be assumed to be governed by a heterogeneous Poisson process 
(HEPI?),and hence a likelihood can be specified. As the number ( k )  and the locations of 
centres are unknown, then with a suitable prior distribution specified for these compo- 
nents it is possible to formulate this problem as a Bayesian posterior sampling problem, 
with a mixture of components of unknown number. This type of problem is well suited 
to reversible jump Markov chain Monte Carlo (MCMC) sampling (Green, 1995).The 
approach can be extended to count data straightforwardly, as 

where the Poisson distributional model is assumed, U', is the ith tract. and I I i  is the 
count in the ith tract. Examples of the use of these models in case-event and tract-count 
data are provided in LaMrSon (1995,1997) and Lawson and Clark (199%. Variants of this 
specification can be derived for specific purposes or under simplifying assumptions. The 
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wide applicability of this  formulation can be appreciated by the fact that I t ( . )  could be 
non-pa ra me tr ic ii11y estimated, in wh ic h ciise ii dat i i - de pe nde nt cluster form w i 11 preva i 1, 
This provides ii modelling framework that can allow both vague prior beliefs about clus-
ter form and also highly parametric forms. 

7.5 HYPOTHESIS TESTS FOR CLUSTERING 

The literature of spatial epidemiology has developed considerably in the area of hypoth- 
esis testing and. more specifically, in the sphere of hypothesis testing for clusters. Very 
early developments in the area iirose from the application of statistical tests to spatio- 
teniporul clustering. ii particularly strong indicator of the importance of a sptrtirrl clus-
tcring phenomenon. The early seminal work of Mantel (19h7) tind Knos (19h-1)in the 
lield of space-time cluster testing predates most of the development of sprrtirrl cluster 
tcsting. A s noted above. distinction should be made between tests for general (non-spc-
citic) clustering, which assess the overall clustering pattern of the disease, and the spe-
citic clustering tests ivhere cluster locations are estimated. 

For case events. a few tests have been developed for non-specific clustering. Cuzick 
and l<dnw-ds(1990)developed ii test that is based on ti realisation of cases mid ii sriittplc 

of ii control realisation. Func,tions of the distance between case location and k ‘nearest’ 
ciises ( a s  opposed to controls) carere proposed a s  test statistics. The null hypothesis of 
riiridoni la be 11ing is tested iiga i nst cI uste red ii 1te r na t ives, ii1t hough not specific ii I I y of 
t htb form (i.1).1)iggle and Chetwynd ( 1991)extended stationary-point-process descrip- 
ti\re measures (K-functions) to the case where a modulated population background is 
present. Their met hod uses ii complete control disease reulisat ion and provides ii mea-
sure of scale of clustering also. Neither of these met hods allows for first-order non-sta- 
t ionarity that may be present in many examples. Anderson and ‘I’itterington ( 199i)haire 
proposed the use of U simple integrated squared distance (ISl)) statistic for cluster 
assessment. This is closely related to the analysis of density ratios in exploratory analy- 
sis, and could be regarded iis ii type of non-parametric assessment of clustering. The 
advantage of this approach is that the assessment is not tied to ii specific cluster model 
but detects departures from background. The major disadvantage, shared with all such 
statistics, is its low power against specitic forms of clustering. Other simple forms of a 
global test can be proposed, where density estimates of cases are compared with inten- 
sity estimates of case events simulated from the control background. These could pro- 
vide pointavise conlidence intervals a s  well as global tests. There appears to have been 
little development of tests that detect uncorrelated heterogeneity in the intensity of the 
case-event process iis ii form of spatial clustering. It is unclear what aetoiological 
difference would be inferred when uncorrelated rat her than correlated forms of 
heterogeneity were found. 

(kneral  clustering tests based on tract counts can be classified into tests tor corre- 
lated heterogeneity and tests for uncorrelated heterogeneity. Tests of the latter are not 
sptrtitrl in origin but are included here for completeness. We also consider the possibility 
of general cluster tests based on cluster sums. In the case of correlated heterogeneity 
N‘hitteniore et r r l .  (1987) developed :I quadratic form test statistic that cwmpared 
observed counts and expected counts for all tracts weighted by ii covariance matrix. 
This test w a s  found to halt. reduced power i n  some situations by ‘I’urnbull o f  i i l .  (1990). 
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Subsequently, Tango (1995)developed a modified general class of tests for general and 
focused clustering. An alternative procedure based on Moran's I statistic. modified to 
allow tract-specific expected rates, has been proposed by Cliff and Ord (1981)and Oden 
(1995).All these tests look for a divergence between count and expectation over the 
whole study region, and they are unlikely to perform well against specific localised 
clusters. 

As mentioned above, some use has been made of tests for uncorrelated heterogeneity 
to assess clustering of tract counts. For example, the Euroclus project (Alcxandcr ot ill., 
1996) tests for such heterogeneity across European states using the ~'ottohoff-12.'hit- 
tinghill (19hha,b) test and score tests for Poisson versus negative binomial distributions 
for the marginal count distribution (Collings and Margolin, 1985).The evidence of Euro- 
clus suggests that for certain important forms of non-Poisson alternatives czTithin t he 
negative binomial family, these tests perform poorly (see Alexander c p t  111.. 1996).I:inally 
as noted in Section 7.3,at least for rare diseases, it is easily possible that the marginal 
count distribution would not follow a negative binomial distribution and could e l m  
disp1ay mu 1t imod a 1ity. 

Specific cluster tests address the issue of the location of putative clusters. These tests 
produce results in the form of locational probabilities of significances associated with 
specific groups of tract counts or cases. Openshaw ~t (11. (1987)first d e ~ ~ l o p e d  a genernl 
method that allowed the assessment of the location of clusters of cases within large dis- 
ease maps. The method w i s  based on repeated testing of counts of disease within circu- 
lar regions of different sizes.M~henever a circle contains a significant excess of ciises, it is 
drawn on the map. After a large number of iterations. the resulting map can contain 
areas where a concentration of overlapping circles suggests localised excesses of ii dis-
ease. It has been pointed out that a large number of 'significant'clusters will al~vays be 
found due to the multiple testing involved. A similar method ivas proposed by Besag and 
Newell (1991),which includes a test for the number of clusters found. Their method 
involves accumulating events (either cases or counts) around individual ei'ent locations. 
Accumulation proceeds up to a fixed number of events of tracts ( k ) .The number of k is 
fixed in advance. The method can be carried out for a range of k ~alues.\ l .~hilcthe local 
alternative for this test is increased intensity, there appears to be no specific clustering 
process under the alternative and, in that sense. the test procedure is non-piiriimet ric. 
except that ii monotone cluster distance distribution is implicit. One advantage of the 
test is that it can be applied to focused clusters also, while a disad\witagc is that an 
arbitrary choice of k must be made and the results of the test must depend on this 
choice. Recently, Le et (11. (1996)have proposed a modification t o  the Hesag and  N c c z ~ l l  
met hod that overcomes the arbitrary choice of k .  

An alternative, a spatial scan statistic, has been proposed by Kulldorff and Nagarwalla 
(1995)and Kulldorff (1997),who employ a likelihood ratio test for the comparison of the 
number of cases found in the study region population (the null hypothesis). to ii model 
that has different disease risk depending on being inside or outside a circular zone. The 
test can be applied to both case events and tract counts. The ad\untage of the test is that 
i t  examines a potentially infinite range of zone sizes and that i t  accounts for the multiplc~ 
testing inherent in such a procedure. It relies on a formal model of null and alternative 
hypotheses. and it is possible to  adjust for any number of known co\wiates. A limitation 
of the method relates to the use of circular regions, which tends to emphasise compact 
clusters, and the method has low power against other alternatives such iis a long and 
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narrow cluster along a river, or against an alternative with a large number of very small 
clusters at very different locations. Note that tests for clusters around k r w w r ~locations 
are discussed in Part IVof this volume (see, for example, Chapters 17 and 19). 

I t  is also possible to apply two extreme forms of test of eitlrcv- a non-parametric (hot 
spot) cluster-specific test or a fully parametric form. First, i f  we assume 1 1 ,  is the tract 
count ofdisease, and c l  is the expected rate in the ith tract, then we can compare 

( r l ,  - P , )  with (U:, - o l ) ,  

for each tract, where U:, j = 1 , .  . . 9 9  are simulated counts for each tract based on the 
given expectation for the tract. I f  any tract count exceeds the critical level within the 
rankings of the simulated residuals, then we accept the tract a s ‘significant’. The result- 
ing map of ‘significant’ tracts displays clusters of different forms. This does not use con- 
tiguity information. In the case-event situation, pointwise comparison of i)+- A ,  where 

is a density estimate based on the case events only and x, is a density estimate based 
on the  controls only (assuming a control realisation is available), can be made. This 
could be compared with density estimates of sets of events simulated from the density 
estimate oft he controls. Note that a variant of this procedure, where simulation is based 
on random allocation of cases and controls, has been suggested by Kelsall and 
Iliggle (1995). 

At the other extreme i t  is possible to test for specific cluster locations via the assump- 
tion of the cluster sum term of the form ( i . 1 )  in either the intensity of case events or, in 
the case of tract counts. the specification of the expected rate in each tract, as in ( i .2 ) .A s  
the cluster locations ancl number of locations are random quantities, it ~ w u l dbe neces-
sary either to employ approximations that involve fixed cluster numbers, or to include 
testing within I1IC’RIIC algorithms (Hesag and Clifford, 1989) that sample the joint poster- 
ior distribution of number and locations of centres. 
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Comparisonof General Tests 

for Spatial Clustering 

8.1 INTRODUCTION 

The question of whether incident cases are clustered in space has rccieved considcrablc 
attention in the statistical and epidemiological literature. n/larshall (1991a) provides a 
thorough review and an issue of the Joitrrial of the Ro!jcil Stritisticwl Society, Scries A 
(1989),an issue of the Ar? i~~r i~ ( i~ i~o i i r~ iaZofEpideriiioloig,zj(1990)and three issues of Stritis-
tics in Alediciw (1993, 1995, 1996) have been devoted to the topic. 

According to Besag and Newell’s (1991) classification, tests for disease clustering are 
classified into two families. The first family consists of foc-itsed tests which assess the 
clustering around a prefixed point like a nuclear installation. The second family con- 
sists of geiicrtil tests which are aimed at investigating the question of whether clustering 
occurs over the study region. The second family can be subdivided into two groups; the 
first group provides methods for examining fi t d c J r i c . ! j  to cllister, i.e. cases are located 
close to each other no matter where they occur, and the second group contains techni- 
ques for exclusively searching for the location of d m J r s .Furthermore, with regard to 
the data to be used, there is a division between methods that utilise population counts 
of small administrative subregions and those that employ a sample of controls. 

This chapter is concerned with general tests and is organised as folloivs. Section 8.2 
points out several problems associated with methods published recently. Section 8.3 
describes several general tests which are free from statistical inappropriateness. Section 
8.4 compares some of these methods. 

8.2 INAPPROPRIATE TESTS 

Although many tests have been proposed and used in the literature, most of them are 
not recommendable in the sense that they may produce spurious results in practice, 
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priniarily because th!y r'rrititot propiJr1,yr r r l j i r s t  Jbr I t t~ fPrr~Ig t~I t t lO l ISp o p i i l f i t i m  h i i s i t g  (see, 
for example. 13esag and Newell. 1991; Marshall, 199la). Tests due to Moran's ( 1948) 
spatial autocorrelation 1 or some variation thereof and Whitternore (it ri/.'s ( 1987)mean-
distance met hod are typical examples of inappropriate tests based on population 
counts. The former group of tests avert' originally devised for biologicxl problems which 
need not take heterogeneous populations into account. Recently, Oden (1995) proposed 
two tests, IpOp and adjusting Moran's 1 for heterogeneous populations. l hveve r .  
Oden assumed, incorrectly, normal asymptotic distributions for these two test statistics 
and thus Oden ot tr l .  (1996)have shown erroneous results that I i o p  has the highest 
power in their simulation studies. l'ango (1998) indicated that 1,,,)[, is essentially 
identical to 'I'ango's (1995)test statistic and that the comparison of powers depcnds on 
the alternative hypothesis of clustering. 

On the other hand, the inappropriatetiess o f  lil'hitteniore c ~ td.'s test. 

seems not to be widely known (Tango. 1995, 1997). in which r"'= (r i  1 ,  . . . . 1 1 1  ) /  I t  , 

denotes ii vector of observed relative frequencies and D denotes a distance matrix. A s  it 
matter of fact. l4'hittemore (Jtd . ' s  test statistic itself is a spatial version of Tango's (1984) 
c1U st er ing i ndex in t ime, w h ic h ('ri i t  01I Ity bc i r sct l j0r- hor 1t ogcw~o11sjmp I (  / ( I  t io I ts. 

'11) see its inappropriateness, the example used in Ringo (1995) is shown here. Let us 
consider the study area comprising three regions with i l l ?  = i l l  5 = d-, 3 ,  where (I,,  (an 
element of the matrix D )denotes the spatial distance between the ith region and jth 
regions, and p = R,,(,(r)= (0.2.0 .3 ,  0 . 5 ) .  Then consider the two observed cases: ( i  1 
r = (0 .2 ,O.3 , 0 . 5 )  und ( i i )  r = ( 0 . 5 . 0 . 3 , 0 . 2 ) .In case ( i ) ,  r = p, so we can judge that 
there is no clustering. In case ( i i ) ,  on the other hand, we can clearly observe that the first 
region has higher inc*idence compared with other regions. However, the statistic. \\' pro-
duc*esthe same value in both cases. This example shows that this test cannot properly 
adjust for confounders, although it is the primary purpose of the test. I t  is surprising 
that many biostatisticians apply Whittemore ct  i d ' s  test to real investigations or compare 
it with their newly proposed tests without knowing or examining its inappropriateness. 
Recently, Kanta (1996)generalised Whittemore r't (11,'stest to a test for space-time inter- 
action without knowing its inappropriateness (Tango, 1997). ?'ango (1995) proposed a 
more ii  pp ro p r iiite spat ia1 version. 

hlet hods utilising ii sample of controls assume, a s  a starting point. two independent 
inhotnogeneous Poisson processes with spatially varying density: p ( x )  for cases and 
X(x) tor controls. The null hypothesis then can be reduced to the r - m r l o r i t  I t r b e l l i r i ~ g  
h y p i f h s i s that the observed case series is ci random sample from the entire sample com- 
bining c'iises and controls. Diggle and C'hetwynd (1991) proposed ii test statistic 
I l ( s )= k'l 1 (s)- k ~ J ( s ) ,where 1 (s) is the estimate of K11 (s)=(expected nurnber of 
further cases within distance s of a n  arbitrary case)/(expected number of cases per unit 
artsa) and kJ-,(s )  is detined analogously in terms of the control realisation. linder the 
null hypothesis, E{D(s)} = 0 and ii positive due might suggest ii departure from the 
null. However, this test statistic also becomes ii member of inappropriate tests since we 
can easily tind i i  pattern of clustered cases satisfying &s) = 0 for all s. One such typical 
example is the situation where p(r)= X(r- x o )  for some x(]. A special case of this 
esiiniplt~ has been given by Kulldorff (1998). 
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8.3 AVAILABLE TESTS 

Although some methods were originally designed for population counts data within 
small administrative subregions and others were devised for ii sample of case-control 
location data, all these methods can be used for both types of data, at least in  a Monte 
Carlo setting. 

8.3.1 Tests originally designed for population counts 

These tests assume that ( i )  the study region is partitioned into administrative subre- 
gions called ct~llsand (i i )  for each of a set of 111 cells i = 1 , 2 ,. . . , 1. we have the number 
of cases t ~ ,of the disease under study, the corresponding number of individuals at risk 
(population)t I ,and the coordinates of its administrative population centroid, n,.As far 
as is known, there are only four general tests that are free from statistically inappropri- 
ateness among tests published so far: Turnbull et d ' s  (1990)and Kulldorff and Nagar- 
walla's (1995)tests for detecting locations of clusters, and Hesag and Newell's (1991) and 
Tango's (1995)for detecting a tendency to cluster. Tango's test can be used for detecting 
locations of clusters. 

Turnbull et al. (1990): searching for the location of clusters 

For each cell, a 'ball' is constructed by absorbing the nearest neighbouring cells such 
that each ball contains just a pre-fixed number of individuals at risk, K. I f  c l  < K , thcn 
cell i is included in the ith ball and the cell whose centroid is nearest to that of cell i, say 
cell j, is included in the ith ball if 1 1 ,  + I I ,  < R.If 1 1 ,  + 1 1 ,  > K. then a fraction of the popu-
lation of cell j is added so that the total population at risk is exactly K. I f  1 1 ,  > K. then the 
ith ball contains only a fraction of cell i. As for the fractional cell included in a ball, the 
cases are also allocated in the same proportion to the ball as that o f  the population of the 
cell. In total, I overlapping balls are created with a constant population size at risk K. 
Test statistic, as a function of R ,  is given by 

Trrll = maximum number of cases in the ball. (8 .1)  

Monte Carlo simulation is needed to evaluate the significance o f  the observed ~ ~ a l u c  of 
test statistic. 

Kulldorfland Nagarwalla (1995): searching for cluster locations 

This procedure is a spatial version of the scan statistic with a variable window size and 
is a generalisation of a method of Turnbull et d.For each cell. a 'circle' Z is constructed 
by absorbing the nearest neighbouring cells whose centroids lie inside the circle and thc 
radius varies continuously from zero upwards until some fixed percentage (say 10%)o f  
the total population is covered. Thus, for cell i, we can make, a s ii rough average. I/ 1 0  
circles. Z,,,j = 1 , 2 . . . . . Of course, Z,, might be equal to % k l  even if  i # k and j # I. I n  
total, K different but correlated circles are created. Kulldorff and Nagarwalla iissumc 
that there exists a c l i ~ w dr$de such that for all individuals within the circle, thc 
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probability of being a case is p ,  whereas for all individuals outside the circle this prob- 
ability is y(< p ) .  Therefore, the test statistic can be constructed via the likelihood ratio 
test which is given by the simple form (Kulldorff, 1997): 

where %" indicates all the circles except for Z, ! I ( - )  and (( .) denote the observed number 
o f  cases and the population, respectively, and I(.) is the indicator function. To find the 
distribution of the test statistic, Monte Carlo simulation is required since the ordinary 
\ ' approximation cannot apply. 

Besag and Newell (1991):detecting a tendency to cluster 

First, the size of cluster must be fixed, say k cases. The computational property of this 
method clearly indicates that it  is applicable only for quite rare diseases and thus a typi- 
cal value of k might be 2 ,4 ,6 ,8or 10.Each cell with non-zero cases is considered in turn 
as the centre of a possible cluster. When considering a particular cell, we label it as 
cell 0 and order the remaining cells by their distance to cell 0. We label these cells 
l , , , .  . . , I - 1 and detine 11, = E;=()I Z ,  so that 110 5 111 5 . . . are the accumulated 
numbers of cases in cells 0,1 ,  . . . and ZI() 5 i i  1 5 . . . are the corresponding accumulated 
numbers of individuals at risk. Now let A4 = min{i : 11, 2 k }  so that the nearest A1 cells 
contain the closest k cases. A small observed value of &I indicates a cluster centred at 
cell 0. If 111  is the observed value of hI, then the significance level of each potential cluster 

k 1is Pr{ A I  5 I I I }  = 1 - ,=() e x p ( - z I , ? l ~ ) ~ z ~ , , I ~ ) ' / s ! ,where 0 = I I  + /( i .  Then. the test 
statistic of overall clustering within the entire region is 

TI<x= the total number of individually significant ( p  < 0.05 .  say) clusters. ( 8 . 3 )  

'I'he significance of the observed TBN may be determined by Monte Carlo simulation. 

Tango (1995): detecting a tendency to cluster and searching for cluster locations 

Tango (1995)proposed the test statistic C: 

where r" = ( r I  1. . . . , t I , ) / r ,  denotes a vector of observe relative frequencies in 1 cells, 
p = Ek,,,(r),and A = (a,,) is a matrix of the measure of dosmess with a l l= 1 and 
( I , ,  = ( I , ,  5 1, not of a distance measure. Asymptotically under Ho: 

C - E(C) x ;?, distribution, 

where 
E ( t f )  = tr (At",), var ( n C )  = 2tr (AV[ , )'. v = 8/{,/m>', 

v/3lcc.,= 2 A t r  (AV,,) '/{tr(AVP) '} ' ', 17,) = diag(p) -pp'. 
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This x 2  approximation is generally quite accurate even for small 11. In practice. the 
selection of ail is important and needs careful consideration of the disease under study. 
However, a simple exponentially decreasing function, a,, = exp(-d,,/A), may be a nat- 
ural one in many cases, where d,, denote a distance measure and a n  appropriate con- 
stant X should be fixed in advance. If we are interested in ‘hot spot’ clusters with 
maximum distance 2X between clustered cases, then set f l i ,  = 1 for d,, 5 X and ( I , ,  = 0 
otherwise. If we are interested in ‘clinal’ clusters, then such a simple model may be 
a,, = exp(-4(d,,/A) ’). Needless to say, there are a plenty of other choices for ( i t ,  depend-
ing on the situation. If the test result is significant, then the possible centres of such 
clusters may be indicated by the cell with large U , ,  although this is of a descriptive 
nature and has no tests associated with individual U,s.  

8.3.2 Tests originally designed for a sample of cases and controls 

These tests assume that (i) 1 1 0  cases are observed in the study region and denote their 
location by (x 1 . .  . . .xr,,,): ( i i )  from all individuals at risk in the study region select at 
random a set of n 1 controls and denote their location by (x,,,, 1 , .  . . .x r l ( ,.n, ) ;  and (i i i )  
case series and control series constitute two independent inhomogeneous Poison pro- 
cesses with spatially varying densities: p ( ~ )for cases and X(x) for controls. As general 
tests applicable to these settings, in addition to the previous four methods, there are two 
further methods: Cuzick and Edwards’ (1990) test for detecting a tendency to cluster, 
and Anderson and Titterington’s (1997) test for detecting a tendency to cluster, 
although the latter requires further improvement on reliable computations. 

Cuzick and Edwards (1990): detecting a tendency to cluster 

This test statistic is a k nearest neighbours type which can be written a more in general 
form as 

where 6, = 1if x, is a case and Sj  = 0 otherwise, and g , ,  = 1if x, is in the set of k nearest 
neighbours to x,  and a,, = 0 otherwise. It should be noted that Cuzick and Edwards’ test 
is the same test as proposed by Alt and Vack (1991) and a special case of a test proposed 
by Cliff and Ord (1981). Furthermore, if we set ai, = di, if xj  is in the set of k nearest neigh- 
bours to x, and a,, = 0 otherwise, then this statistic becomes a generalised version o f  
Ross and Davis’s (1990) test. Several other measures of closeness can be used. Since 
the null hypothesis of no clustering can be reduced to the ranrloru Idwl l ing  hypothesis, 
a permutational approach can be used. Cuzick and Edwards calculate the moments of 
permutational distribution of Tk but a Monte Carlo simulation is also carried out easily. 

Anderson and Titterington (7997): detecting a tendency to cluster 

This test statistic, called ISD (integrated squared difference), is defined as 

1ISD = (fi(x) - l(x))’dx, 
X € f 2  
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where / i ( x )and x(x) are kernel density estimates in the study region f2. This statistic 
incidentally becomes a continuous version of 'I'ango's C' with special case of ( I , ,  = 1 
and ( I , ,  = 0 for i # j .  indicating that IS11 is a location-invariant statistic and is expected 
to have low power. 'I'herefore,the following extended version would be more powerful: 

where (1  (x,U) denotes a continuous version of the measure of closeness between two 
locations x and y. Statistical significance o f  these statistics requires ii sophisticated 
hlonte C'iirlo integration and simulation with the smoothed Hootstrap. One of the merits 
ot'this type of approach is that i t  iillows for graphical comparison of the two surfaces. 

8.4 DISCUSSION 

'I'ablt. 8.I summarises the characteristics of tests available. It is impossible t o  compare 
their powers precisely since most of them are totally different and each test has its own 
unknown parameter except for the K&N method. However, estimating their powers 
under several realistic patterns of clusters is indispensable for understanding their 
strengths and weaknesses. 

Table 8.1 is ii trial example of simple comparative power study which is ti reproduc-
tion of 'I'able I 1 1  of Kulldorff and Nagarwalla (1995),to  which estimated powers of Tan- 
go's test are added. A s  expected, Kulldorff and Nagarwalla's approach is shown to be 
buperior i n  this simulation where only one cluster is assumed. Although Kulldorff and 
Nagiir~~alla'sapproach has no pre-fixed parameters except for the shape of the 'circle' 
and se'cnis t o  be very flexible, it is based on the maximum likelihood ratio test which 
tests the null hypothesis against the alternative hypothesis that there is one cluster in 
t hc whole study area. Therefore, the effect of ii misspecified a1ternatit.e on the perfor- 
inancc s hot1Id be investigated. 

Table 8.1 ('omparison of tests. All six methods can, in principle. be used for both kinds of data 
t!'pcs: population counts and case-control data 

Unknown Test Null 
Purpose" Method parameter statistic distribution 

I .  'l'ur nbu 1I K = population maximum number of hhnte  Carlo 
cases in ball 

1, K&!v 1,Kr hlontc ('arlo 
'1' 13& N k =cluster size number of significant hlon t e ('a rlc ) 

l,,'I. 'l'ango X = radius quadratic form 
clusters 

\ ' approx. 
'1' C'&E k = size of nearest 

neighbou r s 
number of cases in 

k nearest neighbours 
Normal approx. 

'1' f\&'l' snioo t h ing IS11 111oiitc'('ado 
parameters 
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Table 8.2 Estimated power of three tests in the same hlonte Carlo power study as Kulldorff and 
Nagarwalla’s: On B square, we selected randomly the locations of 1 0 0  cells. A constant population 
of 1 0 0  is assigned t o  each cell and ~ 7 eplaced another S ~ I M J - ( ’with variable population size, iicl,in 
the centre to constitute the true cluster. We then randomly assigned 1 0 0 0  cases among thc 
population in such a way that individuals within the true cluster had ;i relative risk that wis r r  
times higher than those outside. Kesults of K&N’s and of ‘I’urnbull ct 111.’~ test are reproduc*ed tvi th  
permission from Table 111 of K & N  (1995).A measure of closeness avith ‘clinal cluster’ tgpc, 
( I , ,  = exp{-4(d,,/X) ’1 is used for rpango‘s test 

Cluster pop.n,l: 100 200 400 700 1000 1400 2000 4000 
Test Relative risk rr: 3.0 2.5 2.0 1.7 1.6 1.5 1.4 1.35 

I’urnbull c p t  r r l .  H = 1000 0.40 0.6h 0.83 0.92 0.98 0.91 0.76 0.62 

K& N 0.91 0.96 0.93 0.94 0.9h 0.93 0.90 0.88 
‘I’an go X = (max d J , ) / 8  0.46 0.71 0.77 0.89 0.85 0.81 0.77 0.74 

X = (max r/,,)/4 0 . 3 6  0.64 0.73 0.85 0.88 O M  0.81 0.77 

To do further comparison we need reliable computer programs that can run on a 1’C’ 
or on a workstation since these tests are all computer-intensi~re. Kecently Jacqucz 
(1994a)developed STAT!, a statistical software for the clustering of hcalth events, \vhic.h 
includes many classical test statistics and also Cuzick and Edwards test. I n  terms of 
comparison of methods and also availability of these clustering methods to epidemiolo- 
gists and statisticians, such software is very useful. Therefore, thcre is a great nccd for 
including the several recent important methods discussed in  this chapter. Kulldorff ot  r r l .  
(1996)developed SaTScan for their spatial scan statistic, which is available \%i the 1ntc.r-
net ( h t  t p  :/ / d c p .  n c i .  n i h .  gov/BB/SATScan. h t m l ) .  ‘I’ango‘s computer c*odei n  
S-PIJJS is ai7ailable from the author upon request via e-mail ( ta n g o @ i p h.go .j p  ). 
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Markov Chain Monte Carlo 

Methods for Putative 

Sources of Hazard and 
General Clustering 

Andrew B. Lawson and A. Clark 

Uti i V Pt-sity of A bo t-dw11 

9.1 INTRODUCTION 

Markov chain Monte Carlo (MCMC) methods have now become accepted as a general 
method for the exploration of posterior distribution or likelihood surfaces (see, for 
example, Gelman et d.,1995). Within spatial epidemiology, only limited development of 
the use of these methods has been witnessed, mainly within disease mapping via Gibbs 
Sampling (e.g. the BUGS package). However, a wide range of models can be sampled via 
MCMC methods and a considerable degree of freedom exists with respect to areas of 
application. The earliest work on MCMC within statistical applications appeared in spa- 
tial statistics, particularly image processing, where the large numbers of parameters 
found encouraged the use of iterative simulation methods. In those applications, use is 
made of two main algorithms for posterior sampling: Metropolis-Hastings (MH) and 
Gibbs Sampling. The most general of these methods is the MH algorithm, while the 
Gibbs Sampler is a special case that requires the use of conditional distributions. The 
latter has been much favoured within the Bayesian community, partly because many 
basic non-spatial statistical models have tractable conditional parameter distributions. 
A statistical package designed for Gibbs Sampling such models has been developed 
(BUGS).As yet, no general purpose package for MH algorithms has been made available. 
In what follows, the use of MH algorithms for putative hazard assessment and general 
clustering will be discussed. The issues discussed here are found in greater detail in 
Lawson (l995,1998a, 1999) and Lawson et al. (1996). 

Distiase Alaypitig and  Risk A s s ~ x v n a i i t ~ o rPublic. Health. Edited byA.R. 1,awson ot (11. 
(. 1999 Johnb'iley & Sons Ltd. 



1.3)  Putative sources of hazard and general clustering 

9.2 DEFINITIONS 

LYithin ii study region, denoted iis H! ii number ( i n )of case addresses of the disease of 
interest iire found. Denote these locations as {x , } ,  i = 1, . . . , i r i .  Often, the case-event 
addresses are not available and only the total count of cases within some small area 
i i w  giiven. These small areas or t r w t s  can be census enumeration districts. postal 
regions (sectors/tireas) or other administrative areas. For this case, define the count of 
c'iises of disease within the ith tract in the study region iis n,,i = 1. . . . .p. 

9.2.1 Case-event data 

I'sually the basic model for case-event data is derived from the following assumptions: 

( i )  individuals within the study populations behave independently with respect to dis- 
ease propensity, after allowmce is made for observed or unobserved confounding 
ariables; 

( i i )  the underlying 'at risk' population, from which the cases arise, has ii continuous 
spat iii 1 dist ribut ion : 

( i i i )  the case events are unique. in that they occur as single spatially separate eirents. 

Assumption ( i ) allows the events t o  be modelled via a likelihood approach, which is ralid 
cwnditional on the outcomes of confounder variables. Furthermore, assumption ( i i ) ,  i f  
L r w l i d ,  allows the likelihood to be constructed with a background continuous modulat- 
ing function. { { ~ ( x ) } .representing the population 'at risk' from the disease. The overall 
intensity o f  the case events is defined as: 

nrhere is a constant overall rate for the disease, 8 is a set of parameters, and f(.) 
represents a function of confounder variables as well as location. I f  these 
con founders iire not included in the background g(x) function specification. then 
they can be included in f ( . )a s  regression design variables. The confounder \variables 
can be widely defined, however. For example, a number of random effects could be 
included a s  well its observed covariates, as could functions of other locations. I t  
c x n  usually be assumed that the cases are governed by a heterogeneous Poisson process 
(see, for example. ]jiggle, 1993) with first-order intensity (9.1).Then, the likelihood 
associated with this is given by: 

(9 .2)  

By detining the parametric form off( . ) ,  a variety of models can be derived. In the case 
of disease mapping, where only the background is to be removed without further 
model assumptions, ii reasonable approach to intensity parameterisation is A( x)  = 

g(x) . f (x) .  In this case, thef (x)  function acts a s  ii relative risk function. I t  turns out 
that this formulation can also be extended to include the modelling of clusters of 
disease, iis will be noted in ii later section. 
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9.2.2 Count-eventdata 

In the case of observed counts of disease within tracts, given the above Poisson process 
assumptions, it can be assumed that the counts are Poisson distributed with. for each 
tract, a different expectation: J,,.l X(ulO)du, where \Ir,denotes the area of the ith tract. 
The log likelihood based on a Poisson distribution. bar a constant only depending on the 
data, is given by: 

Often. a parameterisation in (9.3) is assumed where, a s  in the case-event example. the 
intensity is defined as a simple multiplicative function of the background g(x). An 
assumption is often made at this point that the integration over the ith tract area leads 
to a constant term (X(x 10) = A ,  for all x within M’,),which is not spatially dependent, i.e. 
any conditioning on ,rl, X ( u  I 0)du, the total integral over the study region. is disregarded. 
This assumption leads to considerable simplifications, but at a cost. Often, neither the 
spatial nature of the integral, nor the fact that any assumption of constancy must 
include the tract area within the integral approximation, is considered. The effect of 
such an approximation sliould be considered in any application example, but is seldom 
found in the existing literature (Iliggle, 1993). 

9.3 THE ANALYSIS OF HEALTH RISK RELATED TO 
POLLUTION SOURCES 

The assessment of the impact of sources of pollution on the health status of commu- 
nities is of considerable academic and public concern. The incidence of many respira- 
tory, skin and genetic diseases is thought to be related to environmental pollution. and 
hence any localised source of such pollution could give rise to changes in the incidence 
of such diseases in the adjoining community. 

In recent years, there has been growing interest in the development of statistical 
methods useful in the detection of patterns of health events associated with pollution 
sources. In this review, we consider the statistical methodology for the assessment of 
putative health effects of sources of air pollution or ionising radiation. Here, we considcr 
the role of MCMC in modelling such problems and concentrate primarily on the analysis 
of observed point patterns of events rather than specific features of a particular disease 
or outcome. 

There are two basic components in the model described by (9.1):g(x) andf(x:0).The 
first of these represents the background ‘at risk’ population and some consideration 
must be given to how this is accommodated or estimated within the analysis. IJsually, 
an external reference distribution is used for the purpose of estimation of g(x). This can 
take the form of a set standardised disease rates for the study area (which may be avail-
able ord!y at an aggregate scale above the case-event scale, e.g. in census tracts). or the 
event locations of a ‘control’disease. This disease should be little affected by the phenom- 
enon of interest. For example. the incidence of respiratory disease around a putative air 
pollution source may require the use of control diseases such as cardiowscmlar disease 
or lower body cancers. 
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‘I’he function .f (x: H )  can be specified to include dependence on observed explanatory 
cwvariates. These can include measures relating to the source itself, such as functions of 
distance and direction, and also other measured covariates thought to provide explana- 
tion of the disease distribution. Pollution measurements made at fixed sample sties can 
be interpolated (with associated error) to the case-event locations as covariates. 

I t  is also possible that population or environmental heterogeneity may be unobserved 
in  the data set. This could be either because the population background hazard is not 
directly available or because the disease displays a tendency to cluster (perhaps due to 
i i r irwits i ird  covariates). The heterogeneity could be spatially correlated or lack correla- 
tion, in  which case it could be regarded a s  a type of ‘overdispersion‘. One can include 
such unobserved heterogeneity within the framework of conventional models iis ii ran-
dom effect. In Part 11’ of this volume, a review of modelling approaches for putative 
sources of‘ hazard is given. 

9.4 THE ANALYSIS OF NON-FOCUSED DISEASE CLUSTERING 

The analysis of disease clustering has generated considerable interest in the area of 
public health surveillance. Since the 1980s there has been increased interest in, and 
concerns about ,  adverse environmental effects on the health status of populations. For 
t.xaniple, concerns about the influence of nuclear power installations on the health of 
surrounding populations have given rise to the development of methods that seek to 
evaluate clusters of disease. These clusters are regarded as representing local adverse 
health risk conditions, possibly ascribable to environmental causes. However. i t  is also 
true that for many diseases the geographical incidence of disease will naturally display 
clustering at some spatial scale, even after the ‘at risk’ population effects are taken into 
account. ‘I‘he reasons for such clustering of disease are various. First, it is possible that 
for some iippiiruitl!g non-infectious diseases there may be a viral agent, which could 
induce clustering. This has been hypothesised for childhood leukaemia (see, for exani- 
ple, Kinlen, 1995). Secondly, other common but unobserved factors/variables could lead 
to observed clustering in maps. For example, localised pollution sources could produce 
elevated incidence of disease (e.g. road junctions could yield high carbon monoxide 
levels and hence elevated respiratory disease incidence). Alternatively, the common 
treatment of diseases can lead to clustering of disease side effects. The prescription 
of a drug by a medical practice could lead to elevated incidence of disease avithin that 
practice area. 

9.4.1 Definition of clusters and clustering 

A wide trariety of definitions can be put forward for clusters and clustering. Non- 
parametric definitions exist, e.g. Knox (1989):‘a geographically bounded group of 
occurrences of sufficient size and concentration to be unlikely to have occurred by 
chance’. This definition is often referred to as hot spot clustering. Here, we adopt a 
paranlet ric defiri i t  ion: 

0 the study region has a prespecified cluster structure. 
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This assumption allows the formulations of likelihood models for the observed events, 
which is not available in a non-parametric formulation. 

9.4.2 Parametric modelling issues 

It is possible to formulate specific clustering models for the case-event and tract-count 
situation. If it is assumed that the intensity of case events, at location x, is X(x 1 0),then 
by specifying a dependence in this intensity on the locations of cluster centres, it is 
possible to proceed. For example: 

f k 

(9.4) 

describes the intensity of events around k centres located at {y,}.Here, the functionI( .) 
is replaced by a link function m{.} and sum of cluster functions. The distribution of 
events around a centre is defined by a cluster distribution function I I  1 (.). Note that it is 
possible to define different cluster distribution functions for each cluster (e.g. 11 1 / ( . ) I ,  
where different cluster variance parameters could describe each cluster separately. 
In some applications it may be advantageous to allow such variation in cluster form. 
In addition, variation in cluster form can be described by a cluster variance that has 
a spatial prior distribution (see, for example, Lawson, 1995).For simplicity, this has not 
been pursued in this example. 

Conditional on the cluster centres, the events can be assumed to be governed by a 
heterogeneous Poisson process, and hence a likelihood can be specified. Because the 
number ( k )and the locations of centres are unknown, then, with a suitable prior distri- 
bution specified for these components, it is possible to formulate this problem as ii Haye-
sian posterior sampling problem with a mixture of components of unknown number. 
This type of problem is well suited to reversible jump MCMC sampling (Green, 1995). 
The approach can be extended to count data straightforwardly, as 

(9.5) 

under the equivalent Poisson distribution model, where W, here signifies the integra- 
tion is over the ith tract area, and n ,  is the count in the ith tract. 

9.5 A GENERAL MODEL FORMULATION FOR SPECIFIC 
CLUSTERING 

Both in the analysis of putative health hazards (focused clustering) and in the analysis 
of non-focused clustering there is a common model framework that can be specified. 
Define a general intensity for events as: 
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where y denotes the vector o f  cluster centres. and -

(9 .7)  

This intensity encompasses trend or observed covariate ell'ects (111 1 1, unobserved 
heterogeneity ( I t 1 ? ) ,  and clustering effects ( 1 1 1  <),  respectively. Note that rri 1 c-ould include 
variables measured to fixed focii such as putative sources of hazard, because the 
locations of these focii are fixed. Here, f;(x)ois a linear predictor with a covariatc design 
matrix F(x) and a parameter vector ( 1 ,  <(x) is a spatially dependent random hetero- 
geneity effect. Note that if  I t1  1 = t t i ,  = 1 ,  then a simple clustering model is derived. 
whereas i f  1ti 5 = 1, then, if  our focus is some subset of putative source explanatory 
variables defined in the matrix 1:. we deriLre a model with unobserved background 
clustering suitable for use with, for example, childhood leukaemia around putatiLre 
sources. 

MARKOV CHAIN MONTE CARLO METHODS 

'l'he general approach to modelling putative hazards and to general clustering specitied 
above. leads straightforurardly to ii general approach to the use of Markov chain Monte 
Carlo (MCMC)methods in these applications. MC'MC methods consist o f  a range of algo- 
rithnis desigried for the iterative siriiulation of joint posterior distributions found in 
Kayesian models (c3lks ot i l l . ,  199ha).As ii general sct of methods, they can be applied 
widely and are often the only met hods available for posterior sampling in complex mod- 
elling found in spatial applications. The basic. feature of the methods is that, from a cur-
rent set o f  parameter values, new values are proposed and a comparison of the posterior 
probability for the new, a s  opposed to the current, viilues is made. The proposcd values 
are generated from distributions and the new values are accepted based on a giiren prob- 
ability criterion. I f  new ~ ~ a l u e sare accepted, then these beconic the current viilucx ' h o  
basic algorithms tire now widely used: Gibbs sampling and the MH algorit hni. ('libbs 
Sampling is based on conditional distributions and is ii special case of the I1111 
algorithm. \$'hen t he number of parameters is unknown and must be sampled special 
met hods can be employed, such a s  reversible jump sampling ( KJhlChK'l (sec, for 
example, Green, 19951. 

Assutiie a general intensity for events as above in (9.6)and (9.7).For models where 
only t h e  r t i  I and r t i  2 components iire present, conventional MCMC samplers can be 
employed. For example, with 111 1 only, we have regression components t t i t i t  can be 
siim pled froi n  U j oi nt post er io r d ist ribU t ic) t i  (given su itable prior d is t r ibu t ions spec-i lied 
for the components o f  o).In general, ii MH algorithm can be employed a s  in 1,awson 
(1995).b'here random effects such a s  unobserved heterogeneity are felt to be present. 
H I2 must also be included. 'I'he inclusion of such effects can be sampled also via general 
iL1H algorithms akin to the formulations of Besag e t  1 1 1 .  (19911,who used special (hbbs 
sampling methods (see also 1,awson e t  (il., 1996).I f  i t  is desired to estimate the locations 
ofclusters by inclusion ofm ). then it is further required that thevector {y,}be sampled 
from the joint posterior distribution with all other sampled parameters. Prior 
distributions for the cluster centre \rector are available from the class of inhibition pro- 
ccsses or, more simply, from U uniform distribution on the study region. The sampling 
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algorithm required for this purpose is somewhat more complex than in other forniula- 
tions. This is due to the inclusion of a mixture sum component in the intensity, where 
the number of components in the mixture is unknown. Keversible jump sampling 
(Green,1995)can be employed for this case, using spatial birth-death diffusion transi- 
tions in a general sampler algorithm. In essence, this sampler explores the joint distri- 
bution of the k component centres and their locations {y,},within a more conventional 
sampling algorithm for other parameters. Details of this approach are given in Lawson 
(1995, 1997).In the following section we have given an example of the use of  such 
algorithms in a general clustering context. 

9.7 PUTATIVE HAZARD EXAMPLE 

0In previous work in this area, t ~ 7 basic approaches have been adopted for this problem 
(for a recent comprehensive review, see Lawson and Waller, 1996).First. the bac-kground 
‘at risk’ population has been estimated, and subsequent inference has been made condi- 
tional on this estimate. Secondly. for case-event data, where exact addresses of cases are 
known, and a tontrol’disease is also employed, it is possible to ‘condition out’the back- 
ground from the analysis. 

In the Bayesian method proposed here, we estimate the ‘at risk’ background. but 
incorporate the estimation in an iterative algorithm, and hence both provide an esti- 
mate of the background and an exploration of the posterior distribution surfaces for 
both the background estimation and putative source-related parameters. 

In what follows, we examine case-event data only, but the methods can be extended 
to  deal with other data formats.Mk consider a set of death certificate addresses. which 
are thought to be related to a single putative pollution source. 1)cfine a study region (\\‘I 
within which the case disease locations, { x , }  : i = I , .  . . .U!,arc observed. The intensity 
of cases within underlying population is considered to  bc described by H two-
component model such that 

X ( X I 0 )  = p * g(x) *f ( I lx- xoll: H ) ,  ( 9 . 8 )  

where x o  is a pollution source location, g( . )  is a background ‘at-risk’ function. and+f(  .) is 
a parametrised function of x and xO, 

Furthermore. we regard the cases as being independently distributed a s  a hetero-
geneous I’oisson process with intensity given by (9.8).These are the standard model 
assumptions made in previous studies (see, for example, Digglc. 1990; Digglc and 
Rowlingson. 1994;Lawson and Williams, 1994). 

Given (9.8),the likelihood for the data, conditional on 171 events in W is derived from 
the conditional probability of an event at x: 

and the resulting likelihood is: 
f ? I  

I =  1 

where X(x(0)represents the dependence of intensity on a parameter vector 0. 
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The dependence of X(x 10) on y(x) has led to a variety of proposals for the estimation of 
g(x), and also the 'conditioning-out' of g(x) from the analysis. The original proposals 
suggested that g(x) should be estimated non-parametrically from a 'control disease' 
(Iliggle, 1989,1990; Lawson, 1989; Lawson and Williams, 1994). The 'control'disease was 
to be chosen to be matched closely to the 'at-risk' structure of the case disease, but 
should be unaffected by the pollution hazard of interest. A more conventional alterna- 
tive to the use of a control disease is the use of standardisation (Inskip et d,1983)to 
provide small-area 'expected' rates for the case disease (Lawson and Williams, 1994). 
lisually. these 'expected rates'are only available in large spatial units (e.g. census tracts), 
and hence there is a n  aggregation difference between the case and expected rates. In the 
original approach to incorporation of g(x), a two-dimensional kernel-smoothed esti- 
mate $(x), was substituted directly into (9.8),and all subsequent inference concerning 
f ( . ) was made conditional on i ( x ) .  This special form of profile likelihood ignored the 
variation inherent in the estimation of ij(x). 

In response to this problem, Diggle and Kowlingson (1994) proposed a conditional 
logistic model, which directly modelled the case locations and locations of a control dis- 
ease as a bivariate point process where the probability of an event, within the joint 
realisation, being a case was taken conditionally on the observed locations. In this 
approach, g(x) is 'conditioned out'of the model and need not be estimated. The attraction 
of this approach lies also in its lack of dependence on the definition of study window 
boundaries. However, there are a number of disadvantages to this conditioning method. 
First of all, the method relies on the availability of a point event map of a control disease, 
which may not be radially available. Secondly, matching of a control disease to a case 
disease can be very difficult. For example, some control diseases can be case diseases 
when targeted at specitic air pollutants. A particular case of this is lower body cancers 
that can control for respiratory cancer, but not for the example of nickel pollution, 
which is known to  target the kidney. €<qually,respiratory cancer is often a case disease, 
but has been used as a control disease for larynx cancer (see 1,awson ct d.,199h). In 
addition. it may be required that g(x) be estimated so that the underlying risk surface 
is available. 

I n  the approach advocated here. we do not restrict the possible data sources for the 
estimation of g(x), while we incorporate g(x) estimation in a Bayesian iterative algo- 
rithm. Both standardised rates or control diseases could be used to estimate j ( x ) ,and 
the algorithm provides a n  exploration of the posterior marginal distribution of possible 
j ( x )  surfaces. 

9.7.1 Model development and the MCMC algorithm 

In the original approach to this problem where $(x) was directly substituted in  (9.8).the 
conditional likelihood can be written: 

(9.10) 

This likelihood arises from the conditional distribution of the 111 events within I\' 
under the Poisson process assumption. In this likelihood, p does not appear and hence 
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does not require estimation. With g(x) substituted into the intensity, the only require- 
ment is to provide estimates of the 8 vector. In what follows, we employ this conditional 
likelihood, because it gives a parsimonious parameterisation: a constant rate paranieter 
is of little interest here as w e  focus on the spatial structure witliiii the study region. 

To include the estimation of g(x) within this likelihood formulation, we first assume 
that a(x) can be estimated by a two-dimensional kernel smoother representation and 
that this kernel smoother depends on smoothing constants / I ,and / I ! ,  in the two direc- 
tions. In what follows, we assume a common parameter /I for both directions 
(11 = 11, = \7!,), because we assume there is no prior evidence of differences in density 
related to direction. We denote this dependence as g , l ( x ) .U‘e also assume that 11 can be 
regarded as the focus of estimation and not the function ill(.). 

A Metropolis-Hastings (MH) MCMC algorithm 

If we regard 17 as well as parameters inf( . )  as conventional parameters, then within a 
Bayesian model we can ascribe prior distributions for the parameters, and proceed with 
exploration of the joint posterior distribution of these parameters. The novel feature of 
this approach is that we will include a prior structure for the smoothing constant / I ,  and 
thereby avoid the singularity problems that arise when estimating the parameters of 
kernel smoothers (see, for example, Hardle, 1991 for a discussion of this problem). A n  
alternative approach to the problem of estimation of the smoothing constant could be 
to employ separate likelihood ratios for smoothing constants and other parameters, 
where the smoothing ratios depend on ‘leave one out’ likelihoods as used in likelihood 
cross-validation. However, this alternation between different likelihood ratios could 
lead to poor mixing in iterative simulation. 

The above formulation suggests the use of a n  iterative simulation method for the pos- 
terior exploration of parameter vectors h and 8. A method that can be used to explore 
posterior distributions for a wide a range of models is provided by the MH method (see, 
for example, Gilks cf d.,1996a;Tanner,1996;or Gelman et d.,1995, for an introduction 
to this method). One advantage of this method over the Gibbs Sampler is that i t  does not 
require the derivation of conditional distributions for parameters. In essence. the hlH 
method directly evaluates the ratios of posterior distributions for different parameter 
combinations. These combinations are generated from a proposal distribution. Denote 
the proposal vector as v’ , and the current vector as v,. Define the posterior ratio criteria 
for parameters v : ( h . 0 ) as: 

where y(v) is the joint prior structure for v. An arbitrary transition proposal function. 
q(vr. v’) is also evaluated via an acceptance criterion: 

Here, the proposal v’ is accepted with probability ck(v,, v’) Otherwise, v, is kept as 
the current parameter vector. 
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Specification of j(*)and prior distributions 

‘I’odefine the appropriate prior distributions for the parameters used, i t  is important to 
specify ~i parametric form for thef (  .). To model the distance-related effects of proximity 
t o  ii putative source, we define first the distance from source: c l ,  = llxl - xOl/.\4‘eregard 
d ,  iis the main explanatory variable in our specification on f ( - ) .Additional evidence of 
links with putative sources can be examined by the use of functions of the full polar 
coordinates of cases from the sotirce location (see. for example, Lawson, 1993b; Ilawson 
and \$‘illiarns, 1994). For demonstration purposes here we confine our analysis to ii 

simple function of distance. We define: 

f ( d , )  = 1 + Blexp{ -f12d,} (9.1I )  

a s a suitable function for modelling the relation to a source. Following Hesag ot r r l .  (1991), 
we do not ivish to make strong assumptions concerning the prior structure of the {O,}. 
Hence, ~ v e  assume the following improper exponential joint prior ciist ribution for these 
piirii mete r s: 

LVe have set the value of f equal to 0.01, after investigation of a variety of potential 
values. The value chosen protrides a ‘close-to’ uniform distribution above F ,  but penalises 
culues close t o  zero, zero being a n  absorbing state of the chain used in the MCMC 
algorithm, i.e. close to  zero the distribution has an asymptote, while across ii range of 
positiLie dues the distribution is relatively uniform. The alternative choice of using 
inverse Gamma distributions involves the specification of extra hyperparameters and 
is less parsimoneous. 

In the case of the smoothing parameter 11, the estimate of { I ( . )  is provided by a 
standard kernel smoothing method 

where { x , ~ }are the locations of a control disease realisation within the study region. 
and K ( r r )  is a two-dimensional kernel function. We have assumed a Gaussian kernel in 
our example. denoted by 

1 
= -exp{ -O.sx’x}.~ ( x )  

2.ir 

The exact specification of the kernel form is not as important a s  the estimation of the 
smoothing parameter h. For the prior distribution of 11, we specify an inverse Gamma 
prior with parameters ( ( 1 ,  Lj}, and its these parameters are also strictly positilv, these 
have an improper exponential hyperprior, i.e. 

p ( ( t .  x exp{ - 0 . 5 ~(a-+ -#t)}. 
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It is important here to assume a prior for 11 that can penalise against extreme values of 11 .  
because these could be favoured in a smoothing operation, and hence the assumption of 
a uniform or ‘close-to’ uniform distribution for 112 (.)  would not be appropriate. 

Proposal distributions 

Avariety of possible proposal distributions could be used for I I  and 0. In our application, 
we do not have strong prior beliefs about the structure of q(v’ .v , . )for the strictly 
positive parameters ( h . 0 1 ,  0 2 } ,  and we employ uniform proposals on the range 
(0 .5  * v,..1 .5  * v,) for these in the MH algorithm. 

9.7.2 Data example 

The incidence of respiratory cancer (International Classification of Disease (IC’I)) list A, 
162) in Armadale, Scotland has been the subject of study since the retrospective analy- 
sis of the Armadale epidemic’ (Lloyd, 1982: Williams and Lloyd, 1988).Armadale. ii small 
industrial town in central Scotland (see Figure 9.1 for location), during the period 1968-
1974. experienced a large increase in respiratory cancer deat hs. Forty-nine cases iz’ere 
observed within a six-year period. 

As a result of this apparent ‘epidemic’, a range of studies have been undertaken. I t  has 
been hypothesised that a centrally located steel foundry in the town may haire been 
responsible for the adverse health effects experienced in the town. The foundry was 
regarded as a putative health hazard and a number of studies were executed to assess 
the effect of the foundry on the surrounding population. Most recently. an analysis of 
the spatial distribution of death certificate addresses has been made (1,aivson and 
Williams 1994: Knox, 1989). In that study, the model considered in Section 9.7.1 w i s  
applied, with (~ (x )estimated from the spatial distribution of a control disease (coronary 
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Figure 9.2 (a)  Case-event realisation: Armadale. (b)Control disease realisation: Armadale 

heart disease (C'HL)):ICD list A, 410-414) and also from standardised rates for respira- 
tory cancer in enumeration districts. In addition, a hybrid model requiring no interpola- 
tion of population background was also proposed. the reader is referred to Lawson and 
Mhlliams (1994) for further background and discussion of the dataset. Here, we propose 
to analyse the 49 respiratory cancer cases (Figure 9.2(a))with it control disease of 153 



Putative hazard example 131 

CHD death certificates (Figure 9.2(b))for the same period. The foundry is the centre of 
the circular study area in Figure 9.2(a)and 9.2(b) 

Thefitted model and results 

For this example, we assume a simple distance-based model forf(.).The model specified 
in (9.11)has been used. Here, we have applied the above algorithm with the specified 
prior distributions of / I  and 8. Convergence of the sampler has been assessed by a variety 
of diagnostics, including summary measures on individual chains with multiple start 
values and by inspection of the joint log posterior surface (see, for example, Gelman 
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Figure 9.3 Plots of the marginal densities ofparametersand the log posterior distribution versus 
iteration number 
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Table 9.1 Posterior analysis of model parameters 

Parameter mode Central 95% interval Marginal density smoother 

of d.,
1995). Figure 9.3 represents the marginal distributions of these parameters. kernel- 
smoothed using the variance rule-of-t humb (Silverman, 1986). 

‘I’he modal value of Iz is 3.287 and is associated with ii marked peak in the marginal 
posterior distribution. This modal value is higher than the ~ralue sqmxtchy estimated 
from C ’ H D  only (2.712)(1,iiwson and Cli’illiams, 1994).The main reason for this phenom- 
enon. that of greater smoothing, is related to the incorporation of the conditioning on H 
estimation a n c l  hence the use ofcase data. indirectly, in the estimation ofg(x) .  The para- 
meters H 1 and H- ,  appear to  be reasonably well estimated. All the H parameters display 
single well-defined density peaks and the joint posterior marginal distributions of scale 
and distance parameters versus smoothing ( 1 1 )  also show clear single peaks, although, 
for brevity, they are not displayed here. The application of this approach has produced 
some ei7idence for ii slight radial decline in the incidence with distance from the source 
(mode off), = 0 . 0 0 5 ) (‘l’able9.1). Of course. a fuller study o fa  1i;iriety of exposure models 
would be required to assess oilera11 whet her the source displays ii relation with the sur- 
rounding iireii health status. A s noted earlier and in Chapter 17 in this i d u m e ,  models 
with only distance decline effects should be augmented by inclusion of directional 
effects to model exposure fully. In ii previous analysis of this data, it marked directional 
effect iviis noted but ii distance decline w a s  not found. This disparity could be related to 
the use of ii simple exposure model or to the greater smoothing. Here, we use ii simple 
niodel for the purposes of illustration only. Formal tests for the parameters could also be 
employed. but have not been pursued here iis our focus is on  the posterior marginal 
distribution of the smoothing parameter. 

1n c*onc*lusion, the Bayesian method here proposed has ii [vide iireii of application in 
the analysis of non-parametric estimation of ii background effect and can be applied 
when different data sources tire available. The met hod provides ii straightforward esti- 
mate of background risk in addition to the posterior marginal distribution of the kernel 
m o o t  hing constant. The possibility of extending this approach to the smoothing of 
co\ariate fields (such iis pollution fields), is also straightfor~zrard,Where ii  structured 
randoin effect field is to  be included. similar approaches can be adopted. 

9.8 NON-FOCUSED CLUSTERING EXAMPLE 

Here, we briefly give a n  example of the application of the general model, including 111 2 ,  B 

random eflect term, and 111 5 ,  a non-focused cluster term. We ill consider the clustering 
tendency of a realisation of lymphoma and leukaemia in children from Humberside, 1JK, 
previously analysed by Cuzick and Edwards (1990)and Diggle and Chetwynd (1991). 
The data consist of t  he address locations of cases of lymphorna and leukaemia for a fixed 
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period (1974-86) for the Humberside region of England. In addition, Cuzick and 
Edwards (1990)provide a control sample of birth locations from the birth register. l h e  
distribution of these data is given in Figures 9.4(a)and 9.4(b) 

In the following analysis, we assume, as in previous analyses, that there are no trend 
effects and that: 

where g(x) is estimated from the control realisation (birth register sample) using non- 
paranieteric density estimation. The smoothing parameter for this estimation (11)  is 
incorporated in the MCMC algorithm and the prior distribution of this parameter is 
assumed to be inverse exponential. In addition, a random effect parameter (<,)  is 
assumed to describe any unobserved heterogeneity, and is defined a s  in Hesag et (11. 
(1991) 

The prior distribution for { \ ? , }  is standard normal with parameter 0. This can be 
regarded iis ii frailty effect that captures individual extra variation. The prior distribu- 
tion ior the correlated heterogeneity { 1 1 , )  is an intrinsic autorcgression with ii distance 
Lveight i ng: 

p , ( u , I . . .) x exp{- \1’,,(11, - U , ) -)I, (9 .12)  
k t 0, 

where \vII  is a distance weight function, and 3,is a defined neighbourhood of the ith 
point. In the following, we assume w,,= exp(-d,,)/{ 2r}, where r is a range parameter. 
The neighbourhood L), is assumed to be a fixed distance and in the example used here it 
is taken as half the maximum dimension of the window T. Note that the weights used 
here mimic the weights used in fully specified covariance priors. The two parameters of 
these distributions are r and a. Both are assumed to have inverse exponential hyper- 
priors with t = 0.01, because we wish to provide a relatively uniform distribution with 
penalisation at zero. In addition, the prior distribution for the cluster centres and num- 
ber of centres is Strauss inhibited, with fixed inhibition parameters (7 ,  = 0.95. K = 0.5 
*m)and rate pc. which has uniform prior distribution. The Strauss distribution 
describes the spatial distribution of a point process where the locations are inhibited. 
The amount of inhibition is controlled by the parameters (?. E ) ,  while the number of 
centres is controlled by p c . .An inhibition prior is used to prohibit multiple response 
when recovering cluster centres within MCMC algorithms (see. for example, Haddeley 
and Lieshout, 1993; Lawson, 1996a). The cluster distribution function is assumed to be 
rad ia 1 ( 7  a u s siii n : 

(9 .13 )  

A MH sampler has been used for the conventional parameters (r,a, 11,  K )  with uniform 
proposal distributions as described above. The joint sampling of [ k ,  {y,}]~ 7 ~ 1 sachieved 
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via a reversible jump MH sampler using spatial birth-death shifting (SBIIS)transitions 
as described in Lawson (1995,1996a, 1997 and Lawson and Clark (1999)).These transi- 
tions consist of randomly choosing a birth-death shift based on the current configura- 
tion of centres. A birth leads to the addition of a new centre, a death leads to the deletion 
of a centre, while a shift is a combination of both transitions. Proposal distributions 
for the centres are a function of 11 1 (.) and the current centre configuration, while k 
has a uniform proposal distribution. Convergence was assessed by the use of a variety 
of methods. Multiple start points have been used for both centres and conventional 
parameters and these confirmed the convergence reported here. Further summary 
measures were employed ( Gelman et al.,  1995). 

Using predictive inference methods, based on Bayesian information criterion (BIC) 
values, a variety of models were compared. These models formed a restrictive combina- 
tion of correlated, uncorrelated, and cluster terms. It was found that the best BIC model 
was that which included only the heterogeneity term CI. The full model results, i.e. for a 
model with all components included, are shown in Figure 9.5 and 9.6. The posterior 
sample spatial distributions for the best BIC model for I I  and vare displayed in Figure 9.7. 

These results confirm that there is little support for a positive number of cluster cen-
tres (modal posterior marginal number of centres = 0).This result is similar to that 
found in the earlier studies of Cuzick and Edwards and Diggle and Chetwynd. Finally, 
for the best BIC model, the posterior marginal distributions of U and v are displayed in 
Figure 9.7. These show relatively small values and also spatial differentiation. Similar 
behaviour was noted by Besag t>f d.(1991). 

Sensitivity to the specification of prior distributions and other model components can 
be an issue in complex Bayesian modelling such as demonstrated in the above example. 
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Figure 9.5 Posterior marginal distributions for a selection of parameters: h,  k .  r, (T. p 
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and in most cases the use of distributions that are non-informative has been pursued to 
avoid the possible domination of the 1ikelihood.W ha1.e not examined the effects of var- 
iation in the prior specification on the posterior samples, and this is an issue that will be 
addressed in the future. Variation in the likelihood model can also affect the posterior 
sampling in this analysis, The use of the Diggle and Kowlingson logistic likelihood 
formulation in this example has produced a modal number of the cluster centres of 1 
(lJawson and Clark, 1999).Hence, there is a great need to examine the appropriateness 
of the model components as well as the prior distributional specification. 

9.8.1 Extensions to count cluster modelling 

It is possible to extend the basic point event methods to the case where onl~7counts of 
the case disease arc observed within tracts. This application is of c-onsiderable impor- 
tance given the ready availability of such data and level of interest in its analysis. 

N7eassume that the process is a heterogeneous Poisson process govcrncd by A ( x 10) 
and that within the ith tract: 

where I I ' ,  denotes that ith tract. and 1 1 ,  the disease count in the tract. Because disjoint 
regions are independent under the resulting Poisson count model, the { I ! , }  tire Poisson 
distributed with rates .I( Conditional on N, where N = C f l ,I I , ,  the likelihood for p 
regions is 

(9.15 )  

Now, in this case, we do not observe the point case events but only know their tract 
totals. At this point. it is possible to use conventional likelihood-based inference con- 
cerning parameters relating to fisd foci (such as putative source locations) or covari- 
ates, or to include conventional Hayesian methods incorporating prior distributions for 
random effects. However, for unknown foci locations {y} we can use directly the basic 
point process algorithms and replace the likelihood ratios with those based on (9.15 ) .  
Note that if  expected death variation is known for the ith tract. then the likelihood 
(9.15)can be written 

Often this can be reduced to 

assuming that the background function g(x) is constant o\w- each tract. A further 
reduction to constant tract rate ( A I )  would allow the use of standard GIJh!software for 



138 Putative sources of hazard and general clustering 

tixed foci or covariate models. Note that the use of (9.16) requires integration over 
arbitrary tract regions. Hence, this approach utilises the counts directly in the 
algorithm. 

Another approach extends this count algorithm by exploiting ideas based on data 
augmentation. ‘I‘anner (1996) discusses the different algorithmic approaches to data 
augmentation. The basic idea behind data augmentation arises from the need to deal 
with missing data. Augmentation refers to the idea that additional data can be provided 
within the analysis, which will improve the estimation of relevant parameters. In 
essence, the additional data required by the augmentation method is generated tvithin 
an iterative algorithm. The algorithm generates the additional (missing) data at one 
iteration on the basis of current parameter estimates, and then conditioning on the 
augmented data set (i.e. the original data plus the additional data). the parameters are 
re-est imated. This alternation continues until a convergence is reached. One approach 
to augmentation is simply to  consider any missing data as extra parameters within 
itn 21K’hlC algorithm. Hence, the above stages can be added to a conventional hK3AC 
sa m pl e r. 

In our approach, we use the ideas of data augmentation but implement them within 
conventional Gibbs or MH steps. In particular, we exploit the idea that censoring of 
observations leads to missing data and hence can be modelled by iterative augmentation 
of the missing portion. This can be applied in a variety of ways in point process model- 
ling. For example, the use of tin external border ( U ) ,which encloses the study region IZI 
allows the iterative simulation of cluster centres outside the observation window. In 
addition, i t  could be possible to also simulate h t n m w t s  within U or, indeed, to simulate 
into internal areas of the window where events are censored (holes). In application to 
count modelling i t  is possible to regard the point process underlying the counts a s  a 
censored event set. In this way, we could conditionally simulate the point events within 
our count event model. This could lead to many realisations that were of comparable 
likelihood. to the inherent smoothness of the aggregated data. However, this does i~ l low 
the reconstruction of the appropriate underlying point process intensity, which is not 
available when constant region rate models are fitted. In addition, one advantage of this 
approach is that spatially continuous covariates can be correctly incorporated in the 
model. In the following example we give a brief description of a n  algorithm that can be 
applied quite generally for count event modelling, which uses augmentation of the 
underlying point process. The approach is described here in the particular context of 
cluster modelling, but has wide applicability. 

1)efine {z,,}. j = 1. .  . . , I I , ,  the point locations of case events within the ith tract. In 
each tract, the conditional distribution of any z given {n,8) is given by: 

(9.17) 

Hence. within the ith tract, the joint distribution of {Zlj}  is 

( 9 . 1 8 )  
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Within an augmentation framework, this suggests the following iterative algorithm: 

0 initialise with 0’, z’,  1=0 
0 generate 2:;’ from [ A ( z ’ / Q ) / A ~ ~ ~ ( z ~ / O ) ]for each tract up to 1 1 , .  where max niaxl\ 
0 either generate 0‘’ * from the ( 8 1 { r 1 , } ~{z::’}) distribution or use a MH update, or max- 

imise the likelihood 

(9.19) 

After initialisation, the steps are repeated to convergence. Note that the method 
described is defined only for a likelihood-based model. This can be straightforizrardl~ 
extended to accommodate prior distributions for components of the parameter vectors. 

The important result of this algorithm is that the likelihood (or full posterior distribu- 
tion) is now a function of the ‘pseudo-data’ and hence point process modelling can be 
used via augmentation to model count data. The extension of this algorithm to the clus-
ter models described earlier is relatively straightforward. Assuming that i t  is required to 
estimate cluster centres {y,} from the count data, as in the point process case, then sui- 
table parameterisation of A(z l0)  with cluster terms and the inclusion of an inner hlH 
iteration for [ k ,  {y,}],prior to the Q l t l  step, provides a cluster riersioti of the algorithm. 

Implementation of regional integration 

The extension of the point process algorithms to count data requires the evaluation of 
integrals over irregular regions or tracts. It is possible t o  use finite element mesh gen- 
erators to subdivide the tract into regular geometric areas: e.g. triangles. This shape is 
easy to generate (see, for example. George, 1991)particularly with straight line segment 
boundaries. In our method, we use the numerical approximation: 

(9 .20)  

where j denotes the jth mesh triangle for the ith tract, and M’, is the triangle area. The 
intensity, A,, is evaluated at the triangle incentre. The index I can be set initially to 
1 = 17 - 2. where v is the number of region vertices. Once the initial triangular mesh is 
computed, it is straightforward to compute denser meshes on the basis of the addition of 
incentre points to the vertex set. The accuracy of the approximation in (9.20)depends on 
the mesh level chosen. 

9.8.2 Data example: respiratory cancer in central Scotland 

A study of respiratory cancer incidence in central Scotland has been initiated. The pur-
pose of the study is to examine the clustering tendency of a variety of diseases in Falkirk. 
a town formerly associated with a variety of heavy industries during the earl^ to mid 
twentieth century. 

For the purposes of this example, respiratory cancer ( X I >  code: 162) incidence in a 
subset of 26 contiguous Falkirk census enumeration districts (eds) has been recorded 
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Figure 9.8 ('outits of rcspiratory cancer in cds within central I+ilkirk 

for ii five-years period, 1978-83. The total cancer count, expected count based on 16 
age x sex strata mid external (Scottish) rates for the period, and digitised ed boundaries 
iire a c w i lable for this example. These bou ndar ie s we re obta i ned from 1J K €30K I 1I.: K S out -
put iireas using hMPINF0.  Figure 9.8 displays the outline ed map. Figure 9.1 shows the 
general location of the area (same a s  Armadale at this scale). 

A s  part of ii larger study, the clustering tendency of respiratory cancer is to be 
assessed. \Vhile such cancer is closely related to entrironmental health hazards such a s  
air pollution. i t  is a l so  related to lifestyle (e.g. smoking behaviours) (I,iiwson and \$'il-
liams, 1994).At the large scale of this study i t  w a s  not possible to obtain ~neiisiirements 
of smoking behai4our. Deprivation indices (C'arstairs, 1981) do not provide a perfect 
match of smoking lifestyle to deprivation status ancl in this case were not available. 
The intention in the following analysis is to  demonstrate the application of the count 
data algorithm to the estimation of the cluster structure in this example. 

We have applied the above augmentation algorithm of point events. with the follow- 
ing conditions.CVe initialise z with completely spatially random (C'SR)events in the com-
plete study region : I\',= , M',. New values of z were rejection sampled from 
A (  ~ ' 1 0 ) .These steps are based on the likelihood (9.191,with ,rl, assumed constant across 
regions and provided by the standardised rates mentioned above. The intensity for the 
ciist' cvents ~ ' i i sassumed to be X(z , , IH )  = $1, . C'(Z,,), m7here 

( ' ( z , , )  represents the cluster model terms. We have only included a cluster sum term for 
this example. The prior distributions used were a s  for the Humberside example, but no 
heterogeneity term w a s  included. M H  updates were used for the parameters 6 and p c .A 
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Figure 9.9 (a)Posterior marginal distribution of cluster centres. ( b )Posterior sample distribution 
of 2 

Markov (Strauss) prior has been included with parameters ( 7 ,K )  defined as for the Hum- 
berside example. Figure 9.9 displays the results of augmentation applied to this dataset. 

Convergence occurred relatively quickly ( < 8 0  000 iterations of the algorithm). 
Figure 9.9(a) displays the posterior marginal distribution o f  the cluster centres over the 
last 100 iterations. Figure 9,9(b) displays the augmented z realisation for the last 
iteration. There is some evidence that the number of centres lies in the range o f  one to 
three, although the parent rate mode is 1.12. The posterior marginal distribution of 
centres is relatively uniform. 

9.9 CONCLUSIONS 

The analysis above demonstrates a general approach to the modelling of putative source 
and non-focused clustering problems. The approach is paramct ric and relies heavily on 
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iterative simulation methods in a Bayesian context. It also includes the use of t-ntiriotii 

object effects (clusters), which are the spatial equivalent of conventional random effects. 
The results for the leukaemia/lymphoma data support the results of Iliggle and 
C'hetwynd (1991)who found little evidence of clustering in this data. The results of the 
Falkirk analysis support the conclusion of there being one centre, although its location 
has a number of site possibilities. 

The advantage of our approach to parametric cluster modelling over previous 
approaches is that is allows the general modelling of a variety a spatial effects, this facil- 
ity not being available in the descriptive methods used in previous cluster analyses, and 
avoids many ofthe restrictions apparent in the use of hypothesis testing, such a s tiiulti-
ple comparisons, non-clustered background. etc. In addition, i t  extends the possibilities 
of prirrutwtric  modelling in disease mapping to the area of cluster detection and so 
provides a unified approach to this area. 
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Statistical Evaluation of 
Disease ClusterAlarms 

10.1 INTRODUCTION 

During recent decades there have been frequent occurrences of disease cluster alarms, 
especially in Europe and North America but also in other areas of the world. Such 
alarms might be triggered by the observations of a local doctor or health official, by con- 
cerned citizens, or by members of the media. They are often accompanied by consider- 
able worries in the communities affected. Some famous examples of cluster alarms 
include childhood leukaemia in Seascale, England (Gardner " t  d.,199Oa,b): leukaemia 
in Krummel, Germany (see Chapter 31 in this volume): brain cancer in Los Alamos, New 
Mexico (Athas and Key, 1993); breast cancer on Long Island. New York (Jenks. 1994: 
Kulldorff et aZ. (1997));and kidney failure in children in Port-au-Prince, Haiti (Public 
Citizen Health Research Group, 1997). 

With most cluster alarms, a cause has not been found. A possible reason is that most 
clusters are simply reflections of random geographical variation in the disease rates. as 
just by chance, some areas are bound to have more cases than expected. There are also 
examples of cluster alarms where a cause has been found, leading to new aetiological 
knowledge or important public health benefits. Some such examples are listed in Table 
7.1 of Chapter 7 in this volume. The aetiologies behind those cluster alarms range from 
viruses and bacteria, to occupational exposures and environmental pollution, to 
prescription drugs and personal tobacco consumption. 

When there is a cluster alarm, the first thing to do is to establish the case definition. 
Then we need to check if the cluster area indeed has a rate higher than expected as 
compared with some larger region. If an excess rate does indeed exist, the next question 
is: Has the cluster occurred by chance alone or is the excess so great that it  is probably 
due to some elevated risk factor of limited geographical extension.? Only in the latter 
case would a more thorough epidemiological investigation be warranted, trying to 
identify that risk factor. Proper statistical evaluation of disease cluster alarms is 

Disei~sril/lnppirig and Risk  Assessnimt for Public Hmlth. Edited byA.H. 1,iiwson c't (11. 
( 1 1999 John IYiley & Sons Ltd. 
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important in order to minimise the time spent investigating random geographicul 
noise. 

To carry out a significance test by simply comparing the standardised incidence or 
mortality rate within the cluster area with what is observed in the larger geographic 
region is not a suitable statistical procedure. The spatial boundaries of the cluster are 
then defined from an observed set of cases, leading to pre-selection bias in the statistical 
analysis. This is the so-called Texas sharpshooter effect, so named after the ‘l’exan who 
first shot the gun and then painted the target around the bullet hole. I f  every cluster of 
cases that is ‘statistically significant‘ using such a procedure was to be thoroughly 
investigated. then health officials would investigate a lot of random noise. 

Although more seldom used, there are proper methods for how to statistically evalu- 
ate cluster alarms. eliminating the pre-selection bias. In this chapter we identify and 
describe three different approaches, discussing some of their pros and cons. ‘I’he three 
itre not mutually exclusive but complementary to each other. They will not lead directly 
to the aetiologycausing a cluster. but they are important in determining whether or not 
to launch a thorough epidemiological investigation. 

10.2 FOCUSED CLUSTER TESTS APPLIED AT OTHER SIMILAR 
LOCATIONS 

I f  there is a localised source suspected of causing a n  excess number of disease cases. 
such as a harbour or a toxic dump site, then one can carry out a focused cluster analysis 
on a different area containing the same type of source. For example, after the leukaemia 
cluster alarm around the Sellafield nuclear power plant in England, Waller et  d.(1995) 
looked at leukaemia around the nuclear power plants in Sweden, without finding any 
excess there. Sellafield is not only a nuclear power plant but also a nuclear waste repro- 
cessing plant. So, Vie1 et id. (1995) looked at leukaemia around La Hague, it nuclear 
reprocessing plant in France, while lirquhart et  d. (1991) studied leukaemia around 
Dounreay, a nuclear reprocessing plant in Scotland. Kinlen (1995), on the other hand. 
proposed the theory that the Sellafield cluster was caused bya virus that manifests itself 
more strongly in rural areas with recent immigration. He then looked at leukaemia in 
other areas with substantial immigration, but without a nuclear facility. 

There are many proposed focused cluster tests, such its the Lawson-Waller score test 
(Iitwson, 1993b: Waller r j t  d.,1992),Bithell’s (1995)linear risk score test. Stone’s (1988) 
test, and the focused version of Besag and Newell’s (1991) test. They are discussed in 
detail in Part lVof this volume. 

A drawback with this approach is that a negative result will not refute the idarm p’r 
so, The cluster could be real and due to something completely different than the sus-
pected source. to some aspect of it  that is not universal among such sources. or i t  could 
be 21 purely chance occurrence, and a negative result will not help to distinguish 
between the three. Also, there may not exist any other known places having the same 
type of suspected source. 

I t  is important to point out that using a focused test on the cluster alarm area itself 
will not eliminate the preselection bias. I t  can be used in a preliminary stage to see i f  
there indeed is an excess number ofcases, and it negative result would indicate a chance 
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occurrence. No conclusions can be drawn from a positive (significant) result though, as 
that could be due to the preselection bias, leading to theTexas sharpshooter effect. 

10.3 POST-ALARM MONITORING 

A second approach for evaluating disease cluster alarms is to forget about past and pre- 
sent data, and instead monitor future cases as  they occur in the area of the alarm. This 
is a confirmatory type of analysis, and it avoids the preselection bias since the analysis is 
based only on cases diagnosed after the alarm occurred. 

Chen et al. (1993) have proposed two different procedures based on the time interval 
preceding each of the first five cases subsequent to the alarm. A different number of 
cases can also be chosen. If these intervals are short, then the alarm is confirmed, while 
if they are long, then the alarm is rejected, and if they are somewhere in between, then 
the test is inconclusive. Parameters of the method can be chosen to obtain specific prob- 
abilities of falsely accepting the alarm under the null hypothesis of no excess risk, as 
well as the probability of falsely rejecting a true alarm under the alternative hypothesis 
of some specified excess risk. 

One of the two methods, namely the median-based technique, uses the median of the 
five time intervals and accepts or rejects the alarm if this median is lower than some 
specified value or higher than some other specified value. The other is a mean-based 
technique that uses the mean instead of the median. If their is nothing in between the 
rejection and acceptance levels, then we have a traditional hypothesis test, although we 
may not necessarily want to use the traditional 0.05 or 0.01 rejection levels. 

Of the two methods, the mean-based technique is preferable. The median-based tech- 
nique only uses the information of whether a specific time interval is smaller or largcr 
than the critical length, ignoring information on how much smaller or how much lar- 
ger it is. With the mean-based technique, no information is lost. The advantage is con- 
firmed by Chen et al. (1993) for one particular example, where the rejection level under 
the null hypothesis is higher for the mean-based technique, for a given confirmation 
level, and where the confirmation is higher under the alternative hypothesis, for a given 
rejection level. 

It is not only the power of the test that is important, but also the time it takes until a 
conclusion is reached. Chen et al. (1993) pointed out that with the median technique i t  is 
sometimes possible to confirm the alarm immediately after the third or fourth case has 
occurred, while we always have to wait for all five cases with the mean-based technique. 
An opposite phenomenon is also true, and with the mean-based technique we can 
sometimes reject the alarm even before the first case occurs, while we always need at 
least two cases for rejection using the median-based technique, even if i t  takes several 
decades for the first two cases to occur. The key issue though is not hon7 many cases 
we have to wait for, but how long we need to wait. For the mean-based technique, i t  is 
either at the time of the fifth case or at five times the critical mean value, whichever is 
smaller, and hence there is a n  upper limit. For the median-based technique, there is no 
upper limit on the time we need to wait, and hence the mean-based technique is prefer- 
able by this criterion as well. 

A drawback of the post-alarm monitoring approach is that the cluster alarm cannot 
be evaluated immediately because we have to wait for new cases to occur. This is a 
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problem especially if  the disease is very rare. Also, if the cluster is limited not only in 
space but also in time, then we would not expect a n  excess of cases after the alarm has 
occurred. 

10.4 THE SPATIAL SCAN STATISTIC 

A third approach is to expand the study in space rather than in time. If we collect data 
for a larger region in which the cluster alarm is located, such as the whole country, then 
the spatial scan statistic (Kulldorff and Nagarwalla, 1995;Kulldorff, 1997)can be applied 
to the whole region to see if there is a significant cluster where we would expect it to be 
based on the alarm. The scan statistic gives us a measure of how unlikely it is to encoun- 
ter the observed excess in the cluster alarm area in the larger region of our choice. Many 
cluster alarms could be quickly dismissed as  a random occurrence were this technique 
to be used. The pre-selection bias is dealt with both in terms of the location and the size 
of the cluster. 

The spatial scan statistic imposes a circular window on a map and lets its centre move 
across the study region. For any given position of the centre, the radius of the window is 
changed continuously to take any value between zero and some upper limit. In total the 
method uses a set 2 containing a very large number of distinct circles, each with a 
different location and size, and each being a potential cluster. For each circle, the method 
calculates the likelihood of observing the observed number of cases inside and outside the 
circle, assuming either a Poisson or Bernoulli model for how the cases are generated. 

Conditioning on the observed total number of cases, N,the definition of the scan 
statistic is the maximum likelihood ratio over all possible circles Z E 3: 

( 10.1) 

where L(Z) is the maximum likelihood for circle 2, expressing how likely the observed 
data are given a differential rate of events within and outside the zone, and where L o  is 
the likelihood function under the null hypothesis. 

Let 1 1 %  be the number of cases in circle Z. For the Hernoulli model, let M be the total 
number of cases and controls, and let 1 ~ 1 %be the combined number of cases and controls 
in circle %. Then 

( 10.2) 

where p is the probability that an individual within zone Z is a case and where q is the 
same probability for a n  individual outside the zone. Maximising the likelihood over p 
and cl gives 

if r i % / n i x  > ( N  - n % ) / ( M- t r I Z ) ,  and one otherwise. 
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For the Poisson model, let p(Z)be the expected number under the null hypothesis, so 
that p ( A )  = N for A,  the total region under study. It can then be shown that 

( 10.4) 

if 1 2 %  > p ( Z ) , and one otherwise. For details and derivations as likelihood ratio tests, see 
Kulldorff (1997), who also proves some optimal properties for these test statistics. 

Since this likelihood ratio is maximised over all the circles, it identifies the one that 
constitutes the most likely disease cluster. Its p-value is obtained through Monte Carlo 
hypothesis testing, adjusting for the multiplicity of circles used. Calculations can be 
done using the SaTScan software developed by Kulldorff et nl. (1998b). 

The spatial scan statistic has the following features, making it suitable as a screening 
tool for evaluating reported disease clusters: 

(i)  it adjusts for the inhomogeneous population density and for any number of 
confounding variables: 

(i i)  by searching for clusters without specifying their size or location the method 
resolves the problem of pre-selection bias; 

(iii) the likelihood ratio based test statistic takes multiple testing into account. and 
delivers a single p-value: and 

(iv) if the null hypothesis is rejected, then it  specifies the location of the cluster that 
caused the rejection. 

In some cases a cluster alarm is not only related to a specific area, but is also claimed to 
be present during a limited time period. We can then use a space-time scan statistic 
(Kulldorff, 1997; Kulldorff et al., 1998a). Instead of a two-dimensional circle it uses a 
three-dimensional cylinder of variable size, where the circular base represents a part i- 
cular geographical area and where the height represents a number of consecutive years 
or months. The cylinder is then moved through space and time in order to detect the 
most likely cluster, and a p-value is calculated, taking the multitude of cylinders into 
account. The size of the circular base and the length of the time interval vary indepen- 
dently of each other. 

A drawback with the spatial and space-time scan statistics is that we need geocoded 
data for a large region, which is not always available. Another drawback is that we can 
only evaluate cluster alarms that are reasonably compact in shape, because the test has 
low power for other types of clusters such as along a long and narrow stretch of river. 

10.5 A PROACTIVE APPROACH 

An alternative to post-alarm analysis is a proactive approach, systematically screening 
a region for geographical clusters of a large number of different diseases, in a surveil-
lance setting. The spatial and space-time scan statistics can be used for this as well. 
detecting significant clusters in the data. Multiple clusters can be detected by looking 
at the local maxima of equation (10.3) or (10.4),where the different zones are non- 
overlapping. Such a proactive approach is of course contingent on the existence of some 
type of disease registry with geocoded data. 
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I f  a cluster alarm does occur, then it can be quickly evaluated by looking up the result 
for that particular disease. If there is not a significant cluster at the location in question, 
then the alarm can be quickly dismissed as a probable chance occurrence, although 
some further investigation may still be warranted depending on the exact nature of 
the alarm. I f  there is a significant cluster at the location of the alarm, then at least the 
public health officials are not taken by surprise, and they may even have had ii head 
start on the cluster investigation. 

In a surveillance system with many diseases, the expected number of false positives 
may be too high unless we also adjust for the multiplicity of disease. This can easily be 
done by adjusting each individual significance level through a Honferroni-type argu- 
ment. 

10.6 DISCUSSION 

Assuming that the proactive approach is not in place. which of the three different meth- 
ods do we choose? Considering the strengths and weaknesses of each approach, they 
are complementary to  each other and in many situations it is recommended that all 
three be used. First use a spatial scan statistic to check i f  the observed excess is signiti-
cant. Even if it is not. but if there is a highly suspected source, use a focused test to  see if 
there is an excess of cases around other similar sources. Finally, and regardless of  pre-
vious results, monitor the disease in the cluster area to see if  the excess persists through 
time or not. I f  either or all methods indicate that the cluster is not a chance occurrence. 
then ii thorough epidemiological or public health investigation may be warranted to try 
to find the risk factor responsible. 

There is another class of cluster tests that is worth mentioning, namely general tests 
for global spatial clustering. They are designed to answer questions about whet her there 
is clustering throughout the study region. and examples include Tango's (1995) test, 
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Figure 10.1 Keeping the population constant, but changing one case from one individual to an- 
other, a s  illustrated, will and should affect a general test for global clustering, but it should have no 
effect when determining whether or not there is a local cluster in the upper right hand corner 
( 0=case. 0=control) 
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Besag and Newell’s (1991) test for the number of clusters,Walter’s (1994) test, Grimson’s 
(1991)test and Cuzick and Edward’s (1990) special case of Cliff and Ord’s (1981)test. 

These are excellent for testing whether there is clustering globally throughout the 
study region, such as if a disease is infectious, but since they cannot pinpoint the loca- 
tion of clusters, they are not useful for evaluating disease cluster alarms. The same is 
true for the space-time interaction tests proposed by Knox (1964), Mantel (1967). 
Jacquez (19964 and Baker (1996). 

There is a n  important difference between a general test for global clustering on the 
one hand and the spatial scan statistic and focused cluster tests on the other.MJith a test 
of global clustering, the specific location of any case is important. no matter where i t  
occurs, since moving it  closer or farther away from other cases will determine the 
amount of evidence for global clustering. So, if one case is moved closer to another case. 
as in Figure 10.1,that would imply a stronger indication of global clustering. With local 
clusters, on the other hand. i t  is different. If two particular cases happen to be in Halti- 
more rather than one in Baltimore and the other inwashington, that should not be used 
as evidence for a local cluster in California at the other end of the country. Likewise, 
moving one case as indicated in Figure 10.1does not give additional evidence concern- 
ing a potential local cluster in the upper right-hand corner of the map. 

While the different types of tests will tend to have different power for different types of 
alternative hypotheses, that is not their main distinction. Rather, the main difference is 
in the type of analysis they perform, where the tests for global clustering makes no 
inference on the location of clusters while the spatial scan statistic does. For ii formal 
mathematical theory on this, see Kulldorff (1997). 
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11.1 INTRODUCTION 

In general, disease cluster investigations are used in two contexts (Smith and Neutra, 
1993):(i) to respond to alleged clusters brought forward by concerned citizens (a reactive 
investigation) and (ii) to survey health event data for significant excess in space, time 
and space-time (a proactive investigation). Many countries have in place procedures 
for reactive cluster investigation (see, for example, Centres for Disease Control, 1990), 
and the call for proactive surveillance programs is growing (Thacker et al., 1996; Hertz- 
Picciotto, 1996). This has sparked research on innovative techniques for disease cluster- 
ing, which typically use two kinds of data: rates within areas (such as postal code zones 
and census tracts) and points, such as the geographic coordinates of a place-of-resi- 
dence where a case occurred. For rates, the spatial support is usually well-defined and 
knowledge of health event location is not required beyond 'the event occurred within 
this area'. Point data implicitly assume the locations of health events are known 
precisely, and the statistical machinery for analysing spatial point distributions is well- 
developed (consult reviews such as Marshall, 1991a; Jacquez et d. ,1996a,1996b:1,awson 
and Waller 1996). Point-based methods include Knox (1964), Mantel (1967), and Cuzick 
and Edwards (1990), to name a few, and are often used when health events are rare and 
the number of observations is small. They are coming into increasing use as spatially 
referenced health data become commonly available (Openshaw, 1991), and models of 
spatial point processes (e.g. Diggle, 1993;Lawson and Waller, 1996),become increasingly 
sophisticated. 

lliserrse Mapping arid Risk Assessment.for Public Health. Edited by A.R. Lawson ot (11. 
( ' 1  1999 JohnW'iley & Sons Ltd. 
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Hecause o f  confidentiality issues, and lack of knowledge, exact health event locations 
may be unknown or unavailable. In these instances, one approach is to use centroid 
locations (e.g. centres of postal code zones, enumeration districts, census tracts). instead 
of the actual coordinates. The unit of clustering is then centroid rather than health 
event locations, and the question arises whether inferences based on centroids corre- 
spond to the inferences that would have been obtained using the actual locations. 

Recently. Jacquez and Waller (1998)demonstrated that p-values calculated from cen- 
troids can differ markedly from those that would have been calculated from the actual 
locations. and that cluster detection capability decreased. That is not surprising since 
centroids are necessarily hyperdispersed (their spatial distribution is more uniform 
than expected under a spatial Poisson process) and thus can violate Poisson null models 
of many point-based cluster tests. The implications for public health policy are first. 
that statistical analyses using centroid locations should not be used as a quantitative 
basis for determining the future course of cluster investigations without first assessing 
the impact of centroids on the statistical results, and second, that the use of centroid 
locations can decrease the statistical power of cluster tests. 

These observations prompted us to develop approaches to disease clustering that pro- 
pagate location uncertainty through the statistical analysis. The first author's prior 
work presented a fuzzy algebraic approach (Jacquez, 1996a).This chapter deals with a 
new approach based on probabilistic location models of the geographic distribution of 
the at-risk population. Spatial randomisation methods assess the statistical outcomes 
(such as the value of the test statistic) possible given the uncertain locations and pre- 
mised upon the location model. A new quantity, crrdibility, is defined which is based 
on the distribution of possible values for a test statistic that reflects uncertainty about 
the true locations of cases. In our simulations, credibility draws the correct inferences 
regarding the presence or absence of clustering more frequently than conventional tests 
based on centroid locations. In addition, because this approach models the possible loca- 
tions from which samples are drawn, it provides a n  improved mechanism for evaluating 
statistical significance when actual locations are available. The approach is general, and 
applies to point-based methods that use randomisation distributions. I t  is best under- 
stood in the context of classical statistics and spatial randomisation tests. 

11.2 CLASSICAL STATISTICS AND RANDOMISATION TESTS 

Spatial data analysis and classical statistical inference have different theoretical back- 
grounds. Haining (1990)observed that classical statistics assume data from designed 
experiments that can be replicated, and samples that are drawn from a hypothetical 
universe defined by the sampling space. The inference framework is based on the com- 
parison of a test statistic with its distribution under the null hypothesis (the reference 
distribution) for this sample space. A distribution of the test statistic can be obtained by 
replicating the experiment. Within this framework type I error (0)is the probability of 
rejecting the null hypothesis when it actually is true, and type I1 error ([I) is the prob- 
ability of accepting the null hypothesis when it actually is false. Statistical power-the 
probability of correctly rejecting the null hypothesis-is 1 - d. Spatial data often vio- 
late the assumptions (e.g. iid random variables) of classical tests upon which their dis- 
t ribution theory is based. In addition, the asymptotic behaviour of classical statistics 
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often cannot be used because sample sizes are small. Spatial randomisation methods 
generate reference distributions from the data, and are coming into increased use with 
the advent of desktop computing. The remainder of this chapter is concerned with dis- 
ease cluster statistics as randomisation tests. 

Manly (1991)provides a succinct description of randomisation tests and their rela- 
tionship to classical statistical theory. The data often are from only one sample; the con- 
cept of a 'designed experiment that can be replicated' does not apply, and classical 
statistical inference therefore is inappropriate. A commonly-used alternative is rando- 
misation tests. which determine whether a pattern exists in ii strrnylu. The null hypoth- 
esis is that any pattern is a chance occurrence, and the alternative hypothesis is that ii 
'true' pattern exists. Some statistic, f,is selected that quantifies the pattern of interest. 
The value, f ,,I,from the observed data is then compared with ii reference distribution 
obtained by repeatedly reordering the data at random, and by recalculating I' for each 
repetition. The significance level is the proportion of the reference distribution which is 
iis large or larger than I'i,. Interpretation of this significance level is similar to conven-
tional tests based on the classical model: i f  less than or equal to the ( I  level (usually 5 % )  
the null hypothesis of 'no pattern' is rejected. Manly further observed that randomisa- 
tion tests have two principal strengths: they are valid even without random samples, 
and non-standard test statistics may be used. These advantages led to the wide use of 
randomisation tests for the analysis o f  spatial data. However, results pertain only to  
the sample, and this l o i i r ~stuiiylc is t h  smtp1iri;j s p i w  uyoti whidt t l w  rc$>r.etiw distrihiitioit 
is btisud. 

11.3 CLUSTER STATISTICS AS RANDOMISATION TESTS 

The gamma product of two 1Y x N matrices, A and B is 

(11.1)  

For spatial disease data we rewrite the gamma product as I' = CiL, 6,+,,,.Here II 

is the number of locations, b is a proximity measure and c is calculated from the obser- 
vations. The proximity metric may be geographic distances, spatial weights, adjacencies 
or nearest neighbour relationships. The observations may be on real, integer, or catego- 
rical data, and include case-control identity (e.g. Cuzick and Edward's test), time of diag- 
nosis or death (e.g. Mantel's test), disease rates (e.g. Moran's I) and, for the multivariate 
Lrersion. exposure and confounder data (e.g. Mantel's multivariate extension). Several 
authors have shown that disease cluster tests are special cases of the r product (Hain- 
ing, 1990,p. 2 3 0 : Wartenberg and Greenberg, 1990; Marshall, 1991a; Getis, 1992; Jacquez. 
1996a). In fact, most of the disease cluster tests in common use can be expressed iis 

gamma products (Table 11.1). 
Mantel's (1967) test for space-time interaction results when 6,,= s,, and c~~ = r,,. 

C'uzick and Edwards' (1990)test results when b, ,  = I I , , ~and c I J= d , d j . Moran's I (1950) 
results when c,, = ( 2 ,  - z ) ( z J  - 2) and b , ,  corresponds to elements of distance or adja-
cency matrices, as appropriate. The join-count statistic (Cliff and Ord, 1981) obtains 
when c I I= ( .Y,s,)and h,, is the adjacency i i , / .  The Pearson product-moment correlation 
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Table 11.1 Specification of seven cluster tests in gamma form (modified, with permission from 
BioMedware Press, from Jacquez, 1999) 

~~~~ 

Statistic Data s C Referencehote 

Mantel (x,ZJ, t )  health distance between waiting times (Mantel,1967)space-time 
event locations case pairs between cases interaction test 

Mantel (s.g, distance between multivariate (Smouse 1986)test for 
extension 2 1 ,  . . . .z , , )  sample 10 cat ion s distance spatial structure in 

calculated from multivarite data 
21 . .  . . , z p  

K nox is, y. t )  spatial adjacency temporal (Knox,1964)space-time 
adjacency interaction test 

Jacquez (x.g, t )  spatial nearest time nearest (Jacquez,1996bl space-time 
neighbour neighbour interaction test 

Cuzick and (x,y, c): c is spatial nearest c,, = 1 if i and j (Cuzick and Eduwrds, 1990) 
Edwards case idenfier neighbour are cases, 0 spatial cluster test 

ot her w ise 
Moran's I (x,y. z )  i: is spatial weight ( : I- ;)(=, - Z) (Moran,1950)spatial 

an  attribute connecting autocorrelation test 
locations i and j 

Join-count ix, y, z ) ,  z =1 spatial adjacency 1if both i and j Cliff and Ord (1981),test 
ifs,y is labelled are labelled spatial clustering of 

labelled locations 

and multiple regression may be written in r form (Smouse e t  d.,1986),as can the local 
autocorrelation statistics recently proposed by Anselin (1995)and Getis and Ord (1996). 

One can use a normal approximation for the randomisation distribution of gamma 
(see Mantel, 1967,and Haining, 1990,for moments of this distribution) to assess the sta- 
tistical significance of an observed value. This approach has been criticised (Mielke. 
1978,k u s t  and Romney, 1985)and it is better to calculate the distribution under rando- 
misation, and then compare the observed value with this distribution (hkinly, 1991). 
This is accomplished under a statistical null hypothesis of independence (Cressie, 
1993,terms this Complete Spatial Randomness or CSR) between the h,, and the c l ,using 
a randomisation approach equivalent to a relabelling of the locations so the observa- 
tions are sprinkled at random across the locations. Note, however, that the limitations 
of randomisation tests apply: (i) inference applies only to the sample, and ( i i )  the spatial 
sampling space is assumed to consist solely and entirely of the sample locations. 

11.4 SAMPLE-BASED RANDOMISATION TESTS ARE 
EPIDEMIOLOGICALLY UNREASONABLE 

Spatial data usually are non-experimental and inference is undertaken within the fra-
mework of a n  exploratory data analysis whose purpose is to detect structure and pat- 
tern. Randomisation tests are widely used with spatial data because of difficulties in 
obtaining samples. These difficulties often preclude designed experiments. and rando- 
misation tests, at first blush, seem particularly attractive. Given z = (21, . . . , z , , )  values 
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on a map, spatial randomisation tests permute the z-values over the sample locations. 
While randomisation tests may be appropriate when the experimental design justifies 
randomisation testing, they can be problematic for spatial data because they take the 
sampling space to be the locations at which the observations were made. That is, spnticrl 
randomisation tests erroneouslg assimie the universe of loc(itions to consist entirdy nnct 
solelg of the satnple locations. In most situations we could have sampled other locations 
in the study area, but spatial randomisation tests, as currently implemented, ignore this 
fact. This means that the sariipling space is incorrectly specified. nnd t h  riformci>distribiction 
pertains onlg to the s n m y l ~ ,mid not to the population at risk within the  stud!y urm. Epidemio-
logically, reference distributions from randomisation tests as currently implemented 
make little sense because they assume the at-risk population consists only of the sample. 

Until now this issue has largely been ignored because data describing the geographic 
distribution of human populations have not been available, precluding specification of 
the universe of possible sample locations. This is no longer the case. Spatially referenced 
data are now available describing the global population density distribution within 5' 
quadrilaterals (Tobler Pt al., 1995), and address matching software can locate street 
addresses within a n  accuracy of 100m (Rushton and Lolonis, 1996).Our approach uses 
location models and such spatial population data to correctly specify the spatial sam- 
pling space. We view this as a step towards the stronger inference model of classical sta- 
tistics because it recognises that samples could have been taken at other locations in  the 
study area (a sampling experiment). Our approach effectively increases the study's 
spatial sampling space and this, not surprisingly and as demonstrated in  our research 
and as expected from theory, improves our ability to correctly detect disease clusters. 

11.5 STATISTICAL INFERENCE 

When exact locations are known, y-values are calculated as the probability of observing 
an outcome as or more extreme than that calculated using the actual locations under a 
hypothesis of no clustering (Figure 11.1 (a)). The reference distribution based on exact 
locations is denoted gil and the test statistic based on exact locations is riz.lVhcn loca- 
tions arc uncertain, centroid locations often are used instead, resulting in a reference 
distribution ( g c ) and test statistic, rc,calculated using the centroid locations (Figure 
11.1 (b)).A centroid y-value is calculated using the same approach-by comparing the 
test statistic with the reference distribution-as for actual locations. However, p - ~ a l ~ e ~  
based on centroid data may differ considerably from y-values based on actual locations, 
and statistical power can be compromised (Jacquez and Waller, 1998).Instead. wc use a 
new and entirely different approach; we model uncertain locations to obtain a reference 
distribution (gtl) of some statistic, I', and then obtain a distribution (g.I.1of the test 
statistic given the uncertain locations (Figure 11.1(c)). 

One then determines the proportion of the gT distribution which is as or more 
extreme than the 1 - Q critical value of the gll reference distribution. This proportion 
is called i,redibilit!g.M7hen n = 0 .05  it is the proportion ofgT equal to or beyond the 95% 
critical value of 91,. We call this quantity credibility to distinguish it from statistical 
power, which is strictly appropriate only in the context of classical statistics where 
designed experiments can be replicated. The distribution of the test statistics ( 1 7 ,  is not 
obtained by repeating a designd experiment, but rather from spatial randomisation 
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Figure 11.1 Probabilityof the cluster statistic using (a)actual locations, (b) centroid locations, and (c) modelled locations (a) Pr(l’  2 T A ) :Probability 
under the actual distribution of observing an outcome as larger than I ’A.  (b) Pr( l ’  2 re):Probability under the centroid reference distribution of 
observing an  outcome as large or larger than T c .(c)I+(]’ 2 (I’(:g[,,0.9 5)): Credibility of statistically significant clustering given uncertain locations 
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analogous to a strrnpling experiment. Thus credibility and power. while constructed in a 
similar fashion, have different theoretical underpinnings. 

Now compare the three approaches to statistical inference - based on actual loca- 
tions, centroid locations, and location models. The first two approaches (actual and cen- 
troid locations) assume that the locations in the sample rrw t lw  imi \~~rscof possible 
locations over which the z ,  are distributed, while the approach using location models 
assumes that the universe is the locations of the at-risk population within the study 
area. Both t lw rrr' tual  iind mztroid npprorrches ~ T I I ~ S ~bri poor h c m w  thy I I S O  the  \woq i i i i i -

wrsc. From an epidemiological perspective, they incorrectly assume the at-risk popula- 
tion consists solely and entirely of the sample. Location models using g[l and g.1, allo~v 
specification of a sampling space that correctly corresponds to the study area's at-risk 
popu la t ion. 

11.6 LOCATION MODELS 

As noted earlier, there are sound statistical reasons why centroids are expected to be 
inadequate, and we present four alternatives that correspond to different levels of 
knowledge regarding spatial locations. The location models we have chosen are particu- 
larly appropriate in the health and environmental sciences, and their theoretical basis is 
now briefly described. Examples emphasise applications in epidemiology, but the models 
are general and broadly apply to all scientific fields working with spatial data. Our 
approach is to model location uncertainty as a probability density function whose spe- 
cification depends on the amount of available knowledge (Jacquez. 1997). 

Genorrrl forms: Location models are based on discrete or continuous probability 
functions. Discwtc locntion nioilcls are discrete probability functions for which the 
sample space, s (A),  is the discrete set denoting all possible sample locations, s,, in 
region A: 

s ( A )  = { S j  : j = 1, .. . , L ( s ( A ) ) : V s j  E A } .  (11.2)  

Here L(s(A))is the number of locations in s ( A ) .The set of point probabilities for this 
sample space, p(s( A )), is 

p ( s ( A ) )= {pi  i = 1 , .. . , L ( S ( A ) ) ;Vsj E s ( A ) } ,  where I J j  = / J ( s , ) .  ( 1  1 . 3 )  

The point probabilities are defined such that 

(11.4) 
j =  1 

The sample space and point probabilities define a discrm lotutiorz model, represented 
graphically in Figure 11.2. 

Continuous locirtion inodds are probability density functions for which the sample 
space, s (A) ,is the infinite set denoting all possible locations in region A: 

s ( A )  = {S : s E A}. (11.5)  
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Figure 11.2 Discrete location model 

The probability density functionf(s) is defined such that 

s f(s)ds= 1. ( 1  1 .6)  
14 

Integration occurs over the entire area of region A,  denoted [Al.The sample space and 
pdf define a c~ontiriuouslocwtiori rnodul, represented graphically in Figure 11.3. 

\-i’ariants of this model (epsilon, polygon, population) differ in pdf specification. Several 
components are needed to specify a location model for a particular application: the s m i -
ylu s y n w ,  s ( A ) ;the point yrokabilitir>s,y ( s ( A ) ) ,or pdf, f(s);and the set ofstrrriyled poirits, 
x ’ ( A ) ,which represent a single replicate of a sampling experiment based on that loca- 
tion model. We now specify four location models (point, polygon, population. and 
epsilon) useful for spatial studies in general and for epidemiology in particular. 

A poirit locwtiori r11odo1is a discrete location model with sampling space defined in 
(11.3).Variants on the point model differ in specification of the point probabilities. In 
the general case (11.3) the point probabilities may or may not be equal to one another, 
and substantial knowledge is required to estimate them. In practice, knowledge may be 
limited, such that 

(11.7) 

represents our best estimate o f  the point probabilities. Here I.(s(A))is the size of sample 
space s ( A ) ;L(s (A) )= card(s(A)). Here ‘card is the cardinality of s and returns the num- 
ber of locations in s,Por example, we may only know that a disease case occurred at one 
of the places of residence within region A, and we may reasonably assume, in the 
absence of more detailed information, that all locations in the sample space are 
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Figure 11.3 Continuous location model 

equiprobable. In other situations we may know the number of residents at each place of 
residence in the sample space, N(sj) ,  and the estimated probabilities may be pro- 
portional to household size. The set of n (A) points sampled from the sample space s (A)  is 

{xy: i = 1 , .  . . .n(A);x '  E s ( A ) } .  where s ( A )= {s, :  j = 1 , . . . .Z,(A):Vs, E A } .  

(11.8)  

Here x = {x,y} is a location and xi is the location of the ith point. This model is appro- 
priate when the sample space can be enumerated as a finite set. Applications in epide- 
miology arise when locations of places of residence within areas (e.g. census tracts, 
enumeration districts, etc.) are known. Enumeration may be accomplished using tech- 
nology such as address-matching software, digitising from maps that display places of 
residence, and through the use of Global Positioning Systems. This model is used when 
location uncertainty is such that an observation can occur at one of several locations, 
and we are uncertain which of those locations is the one. 

A polggon loclrtiori model is a continuous location model with sampling space defined 
in (11.5).The pdff(s) is uniform overA such that the probability of a health event occur- 
ring in the small area /As/is 

(11.9) 

and all points within region A are equiprobable. The set of points sampled under this 
model is 

{ x r  = 1 , .. . , n ( A ) ; x :E s(A)} ,  where s ( A )  = {s : s E A}. (11.10) 
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Figure 11.4 Polygon location model 

This set is comprised of n ( A ) locations sampled independently and with uniform 
probability from area A. Note that (11.10)and (11.8)differ in that the sample space is 
infinite in (11.10) and is finite in (11.8).This model is used when we know an observation 
occurred within a n  area, and our knowledge is limited such that the occurrence of the 
observation is deemed equiprobable within the area (Figure 11.4). 

A yoyiilrifiori locntiori rno tk l  is a continuous location model with sampling space 
defined in (1 1.5).The pdff’(s) is heterogeneous over A such that the probability of obser- 
ving the uncertain location of the health event within the small area /As[is 

AS) = f ’ (s )ds .  ( 11.1 1)  1 

As 1 

‘The function fis)depends on population density so the probability p(&) is propor- 
tionate to  the population density in area /As / .A technique for estimatingJ(s) from cur- 
rently available population density data is described below. The sample space and pdf 
defining the population location model are represented graphically in Figure 11.3, with 
the distinction that y(As) is iis defined in (11.11).The set of r i ( A )  points sampled from the 
sample space s ( A )  is given in (11.10). This set is comprised of n ( A )  locations sampled 
independently and with probabilities proportional to the local population densities in 
lAs,\of region A. The population model estimates the pdf proportional to population 
density, and is appropriate when the pdf can be estimated. For example, population den- 
sity data are non‘ available for any location on earth at the 1krn grid scale (Atrailable on 
the C’IESEN web site.) The problem then is to express probabilities in ternis of the under- 
lying population density grid. Let 0, denote ii population grid quadrat, tvith an i isso-
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ciated population size N ( Q j ) .The population size in area A based on the population grid 
data is 

(11.12)  

This is an allocation of the population equivalent to the proportion of the area of Q, 
contained in A. Here v is the number of quadrats that intersect (overlap) region A .  and 
the indexing is assumed to be over these v quadrats. IQ, n AI is the area of the intersec- 
tion of the jth quadrat and region A.  This model assumes a homogeneous population 
density within quadrats. Alternatively, one could smooth the population grid and 
integrate over the area of intersection. 

The probability of sampling a point in quadrat Q, is 

(1  1.13 )  

Samples may be allocated under this model by constructing a number line between 0 
and 1 divided into v intervals whose widths are proportionate to the corresponding 
p(Qj). Observations on a uniform random variable r - IJ(0. 1) are then allocated to a 
quadrat, Qj. when 

(11.14) 

The population model is used when we know only that a n  observation occurred 
within a n  area, and we can specify the corresponding pdf from population density data. 

Epsilon location niodels are well described in the GIS literature (e.g. Mowerer c p t  d., 
1997)and apply when the precision of the instrument used for measuring location is 
known and its error can be modelled as a bivariate distribution. The epsilon model is 
the special case of a continuous location model where the pdf is specified by the bivari- 
ate normal distribution, is useful for error modelling in GIS, and has been used in epide- 
miology as a'mask for protecting patient confidentiality (Rushton and Lolonis, 1996).Its 
theoretical basis is well known (see the above references) and will not be repeated here, 

11.7 LOCATION MODEL APPLICATIONS 

Point riiodels occur when possible exact locations are available as a finite list. This situa- 
tion arises when we know a case occurred within a n  area, but the exact place of resi- 
dence is unknown. A list of possible locations is constructed as  the coordinates of all 
places of residence within the area, and may be obtained from address-matching soft- 
ware which output latitude and longitude of street addresses. This model is preferred 
because it  offers the greatest spatial resolution. Its greatest weakness is that a list of 
alternative locations may be difficult to construct or may not be available. 

Populntion nzodels are used when the underlying population density distribution is 
known. This distribution is then used to allocate possible case locations within each 
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area. For example, locations with high population density are sampled most frequently. 
The resolution of this model depends on the available population density surface. We use 
1km population density rasters from CIESIN. The Nyquist sampling theorem states that 
a pattern can be detected only if  it  is greater than twice the resolution, and detectable 
spatial patterns therefore are >2 km. High resolution data are increasingly available, 
and include British Census data reported by square kilometer (Rhind et nl.,  1980), and 
Chinese population density in 1' 15" by 1' 52.5" quadrilaterals (Chenguri, 1987). The 
population model is appropriate for all of these. 

Polygori rtioilvls arise when the probability of sampling is assumed uniform within 
subareas. This model applies when possible places of residence (as for point models) are 
unknown and information on population density is lacking. Although the polygon 
model arises frequently due to data insufficiencies, it offers the least resolution because 
i t  assumes a homogeneous population density within subareas. Spatial uncertainty is 
modelled by sampling locations with uniform probability in each subarea. 

Epsilon ttiodds appear to have few applications for modelling the locations of human 
health events. However, they are applicable to remotely sensed data, and undoubtedly 
will be used increasingly with the growth of Global Positioning Systems and remote 
sensing in public health. 

To summarise, these models are appropriate for different levels and types of 
knowledge regarding the locations. Given a n  uncertain location, they allow us to 
specify a spatial sampling space containing the uncertain location, and the corres- 
ponding probabilities of having the health event occur at specific locations in that 
sample space. 

11.8 SPATIAL RANDOMISATION 

Once quantified as a model, uncertainty can be propagated through the gamma product 
using spatial randomisat ion procedures. We use a spatial randomisat ion approach to 
generate g (I and g r r  from location models describing possible sample locations. Assume 
point data (x, z ) ,  where s, y is a geographic coordinate and z is a n  observation on a 
variable at s, y. Further suppose there are five observations ( z 1 . z ~ , z ~ . z 4 , z j )in two 
areas (Figure 11.5 (a)). Our knowledge of exact locations is limited: we know z1.z? 
occurred somewhere in area A and z 3 ,  z4,zj are in area t3. 

A location model in Step 1 (Figure 11.5(b)) generates possible sample locations con- 
strained to the number of observations in each area. Thus two locations are generated 
for area A ad three for area H. Sample locations for one realisation of a location model are 
shown as X's in Figure 11.5 (a). In Step 2 the ; j  are assigned to the sample locations 
generated in Step 1. For g[l the z ,  are assigned at random over rill sample locations (one 
z ,  to each sample location). For example, z 3 is assigned with equal probability to any of 
the locations (X's), including those in area A. This corresponds to a statistical null 
hypothesis of no association between the z ,  and their sampling locations. Under g-r the 
randomisation is spatially restricted within arms. Thus z 3 can be allotted only among 
the three sample locations (X's) in area B. This maintains any association between the 
z ,  arid their sampling areas (but not between the z ,  and precise locations within the 
areas: within-area pattern is lost just as it is for centroid locations). In Step 3 the test 
statistic is calculated, and can be any statistic based on spatially referenced data. Steps 
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Generate locations Generate locations Step 1
(location model) 

CalculateUtest statistic 

IOCate z, restricted Step 2F randomisation I 
Calculate Step 3 

Repeat Repeat Step 4-I 

Generate Step 5Udistribution gu 

Figure 11.5 Generation of gr~and gT distributions. ( 2  1 ,  z 2 .  i 3 ,  i4. z 5) occur in two areas, and the 
Xs are possible sample locations. Modified from Jacquez (1997)with permission from Biokledware 
Inc., lJSA 

1 through 3 are repeated to generate gu and gT. 911 is the distribution of the statistic 
under the null hypothesis of no association between sample location and the variable 
z . grr is the distribution of the test statistic under possible realisations of the uncertain 
locations. When the null hypothesis is true, 91’and (I(] are similar. When the null 
hypothesis is false, the mean of gT shifts right (assuming, for example, that nearby 
cases are clustered and have similar z j) and credibility increases. 
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11.9 STATISTICAL INFERENCE FOR UNCERTAIN LOCATIONS 

l4'hen locations are known exactly, p-values are calculated as shown in Figure 11.1 (a)  
and the arrangement of cases is deemed 'unusual'when the p-value is less than (1.  When 
locations are uncertain, the actual locations cannot be observed, and we instead cdcu-  
late credibility as described in the previous section. Premised on the location model. 
credibility describes how likely an observation of statistically significant clustering is, 
given the uncertain locations. I f  credibility is greater than some r,riticd crr~dibilit~j,then 
a putative cluster may warrant further study. The value used for critical credibility 
represents a trade-off between false positives and false negatives, and its selection there- 
fore sets the context of the cluster investigation. For example. if  the disease under scru- 
tiny is highly contagious and fatal, then we might set the critical credibility low so that 
any suggestion of clustering leads to further investigation. A higher critical credibility is 
chosen when fklse positives have severe consequences. 

11.10 AN APPLICATION 

Our research to date evaluated the credibility approach using simulated data for which 
the amount of clustering is known. We simulated clusters arising from a n  infectious dis- 
ease in Michigan (refer to Jacquez and Waller, 1998, and Jacquez, 1996b, for simulation 
protocol) and compared the statistical power of the Knox, Mantel and I<-" (Jacquez, 
199hb) tests. Health event location was assumed known only to the county level, and 
statistical power was compared for the actual locations, centroid locations, and credibil- 
ity using the population model with pdf based on the 5 ft quadrilaterals of the Global 
lkmography Project (Tobler et al., 1995). Results are given in Table 11.2. 

First, we found a substantial improvement in the proportion of correct inferences 
drawn using credibility relative to both centroid and actual locations. This improvement 
arises because location models include information on the underlying geographical 
population distribution that is not available from the sample. Because the asymptotic 
behaviour for the Knox and Mantel tests is questionable, it is common practice to calcu- 
late reference distributions using sample-based randomisation, as was accomplished for 
comparison purposes in this simulation study. Thus, the statistical power inTable 11.2 of 
both centroid ( i n d  actual locations uses the sample to specify the sampling space. Loca- 
tion models allow us to correctly specify the study's sampling space, substantially 
increasing the proportion of correct statistical inferences. We thus have good reason to 

Table 11.2 Proportion of correct inference drawn using sample locations, centroids and 
credibility. Cluster test (column 1):proportion of correct inferences using actual locations 
(column 2); centroid locations (column 3) ;  and modelled locations (column 4) at critical 
credibility =0.05 (column 4).k = 3 was used for evaluating the k-NN test 

Test Sample power Centroid power Credibility power 

Mantel 0.59 0.46 0.57 
Knox 0.40 0 . 3 2  0.68 
k-NN 0.49 0 . 3 5  0.79 



Discussion 165 

expect statistical power using credibility to be greater than that obtained using sample- 
based randomisation tests based on centroid or even actual sample locations. 

Secondly, we found a favourable trade-off between type I and type I1 error rates so 
that, using credibility, a substantial decrease in type I1 error is obtained at a small 
increase in type I error. In contrast, tests using centroid locations have unacceptably 
high type I1 error rates resulting in low statistical power. 

Thirdly, we found the spatial randomisation approach to be robust and to not depend 
critically on specification of the location model. Even the polygon model, which assumes 
uniform population density in subareas, is a substantial improvement over centroid 
locations. 

11.11 DISCUSSION 

It is convenient to classify location uncertainty into four sources: vimsiir(wiu1t  crrcw; 
(YT 
 1 1  t roid t w i g  11II t 4 11 t , s11rrogcr t P ti ssigtiIN IT 11 t , n nd m obi li t g  t tssiig11 11 t P 11 t . 

Il lensrlt-(~tt lw(Jrroris a simple lack of sureness regarding a precise value. and occurs 
when precise locations are measured with a n  imprecise instrument, are transcribed 
incorrectly, and/or are represented in a fashion that introduces error. Examples includc 
errors in digitising, Global Positioning Systems, and surveying instruments. lincer- 
tainty also arises when data are gridded (as, for example, in raster-based GIS) and the 
coordinates of the nearest grid node are used instead of exact locations. All spatial data 
sets contain location uncertainty due to measurement error. 

Location uncertainty due to cerztroid assignment occurs when a precise location is 
represented by the centroid location of the area that contains the precise location. I t  
thus is due to a simple lack of sureness regarding the precise location. Uncertainty due 
to centroid assignment occurs frequently when analysing human data. An example is 
the centroid of a zipcode zone which contains a place of residence. Geographic Informa- 
tion Systems ((;IS) assign centroids to areas with ease, and some authors advocate the 
use of centroid assignment (Croner et nZ., 1996).Because of this case of centroid assign- 
ment, many statistical analyses of GIS data use centroids, although the impact of the 
resulting location uncertainty on the statistical results is only rarely addressed. 

Sllrt-ogate assipintent occurs when location is used as a proxy for the action of an 
unobserved, and, in some instances, even unknown variable. In disease cluster investi- 
gations places of residence are inherently uncertain whenever they are used as proxy 
measures of exposure. Increased knowledge of spatial location will not reduce this 
uncertainty, and surrogate assignment is thus inherently vague. An example is the 
use of proximity to a pollution source as a proxy measure of an individual’s exposure. 
If more information were available, then we could explore dose-response relationships 
using controlled studies. When such detailed knowledge is lacking, cluster investiga- 
tions often use the spatial relationships among cases, and their proximity to putative 
sources, as an uncertain measure of exposure. 

Many of the events we represent by point locations are associated with objects (e.g. 
people) that actually are mobile, their representation as a point gives rise to location 
uncertainty, and this is termed riiohility assignment. Tobler et d. (1995)observed that in 
modern society a person’s daily activity space is approximately 15 km and varies widely. 
Health events and their causative exposures may occur anywhere within this activity 
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space, arid the use, for example, of place of residence, introduces uncertainty due to 
mobility assignment. Exact locations do not represent this kind of  location uncertainty. 

The problem of accounting for uncertainty in statistical inference dates back at least 
to Fisher (1949,p. 4) who observed 

We may at once admit that any inference from the particular to the general must 
be attended with some degree of uncertainty. but this is not the same as to admit 
that such inference cannot be absolutely rigorous, for the nature and degree of the 
uncertainty may itself be capable of rigorous expression. In the theory of probabil- 
ity, as developed in its application to games of chance, we have the classic example 
proving this possibility. I f  the gambler’s apparatus are really triiv or unbiased, the 
probabilities of the different possible events, or combinations of events, can be 
inferred by a rigorous deductive argument. although the outcome of any particu- 
lar game is recognised to be uncertain. The mere fact that inductive inferences are 
uncertain cannot, therefore, be accepted as precluding perfectly rigorous and 
u n equ ivoca1 in fe re nce. 

While concerned primarily with uncertainty associated with specific events under a 
stochastic process. Fisher’s comments are germane to other sources of uncertainty as 
well, including location uncertainty. Rigorous inference is possible provided one is able 
to quantify the probabilities of the different possible events. We accomplish this using 
location models and spatial randomisation. 

Risk assessment and analysis has a rich tradition of accounting for uncertainty (Vose. 
199h),and uses terms such as ’credibility interval’as opposed to ‘confidence interval’ to 
distinguish variability attributable to uncertainty from variability due to sampling error. 
In risk assessment the emphasis usually is not on statistical inference. but rather on the 
impact of sampling error and uncertainty on Monte Carlo model estimates of exposure 
and risk. ‘l’o our knowledge, the propagation of location uncertainty through spatial 
statistics for purposes of statistical inference is a new development. 

Whether or not centroid locations may safely be used depends on many Factors. 
including the statistical method, spatial resolution of the data, and size of the spatial 
support of the centroids. 1Jntil now techniques have not been available for assessing 
whether the use of centroids yields misleading results. The methods presented here 
provide a quantitative basis for answering this question. 

While much work remains to be done, this initial research demonstrates the feasibil- 
ity of incorporating knowledge of the spatial locations of the at-risk population into dis- 
ease cluster statistics. Because of confidentiality and related issues our knowledge of the 
locations of health events will always be more or less uncertain. Technological advances 
in GPS, GIS and geocoding now support quantification of detailed location models 
describing the spatial locations of the at-risk population. In statistical terms this knowl- 
edge now allows us to specify more fully and correctly the spatial sampling space, 
resulting in increased statistical power. 

The location models offer two advantages. First, they provide a ready mechanism for 
modelling the spatial distribution of the at-risk population. This effectively specifies the 
sample space and increases statistical power relative to sample-based randomisation 
tests. Secondly, they provide models of location uncertainty premised on readily avail- 
able information. These models can be used to propagate location uncertainty within 
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the context of disease cluster tests, as demonstrated in this chapter. They also have 
obvious utility for masking health event locations to project patient confidentiality. 

Credibility offers greater statistical power and supports statistical inference when 
locations are uncertain. Note that the credibility approach is general and randomisation 
tests using only sample locations to define the sampling space are a special case of our 
new approach. This special case arises when we use the point model with the list of 
alternative locations set to be the actual locations in the sample. The distribution of the 
test statistic, g T ,  condenses to a point mass at TA,and the reference distribution gu is the 
same as that calculated using just the sample locations (gl- = gA). 

The location models, proximity rnetrics, gamma product, and spatial randomisation 
methods are available in the Gamma software (contact the first author for availability). 
Developed with funding from the National Cancer Institute, Gamma is GIS-compatible 
and provides a n  intuitive environment for the visualisation and statistical analysis of 
spatially referenced human health event data (Figure 11.6).Its embedded spatial data 
structure integrates the location models, spatial queries, and statistical calculations to 
optimise performance. An  Object Request Broker (ORB) mediates client/server inter- 
actions and provides unprecedented performance in distributed environments such 
as inter-and intranets. 

Until very recently, population data for correctly specifying the spatial sampling 
space of disease cluster and other statistics simply have not been available. As a result, 

Figure 11.6 Gamma software design 
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cluster tests using randomisation distributions restricted the sampling space to consist 
solely of the locations in the sample. Clearly. the correct sampling space is the at-risk 
population in the study area. The theory, methods and software we are developing 
recognise this, and provide a ready means for calculating statistics using a properly 
defined sampling space. We recommend that research on means for incorporating 
detailed location knowledge from GPS, GIS, geocoding, etc. into statistical methods be 
fostered in order to improve the statistical power of disease cluster tests, and to better 
support public health decision making. 
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12.1 INTRODUCTION 

Cancer mapping may provide clues to the underlying aetiological process. In many 
countries, the publication of a national cancer atlas has intensified the search for possi- 
ble causes of spatial variations in the mortality rates of certain cancers. Disease cluster 
investigations have become a n  issue of public health policy. 

One of the questions arising when incidence or mortality data-either as maps or 
simple lists-are screened concerns spatial correlation. Does an observed map display 
a non-random geographical pattern? Do adjacent regions show more similar rates than 
non-adjacent regions; To find data sets that deserve further investigation in ii public 
health setting, objective tests may be helpful to distinguish non-random from random 
maps. 

The purpose of the study was to investigate the application of a small selection of 
measures of spatial autocorrelation, including Moran's I (Moran, 1948,1950) and Geary's 
C (Ceary, 1954), to maps of the West German Cancer Atlas (seeTable 12.1).The maps show 
age-standardised mortality rates of different cancer sites for 328 regions ( 'Kreise' ) as 
quintile maps. The four test statistics were chosen since they only made use of the infor- 
mation available in the maps. In other chapters of this volume reviews of some alterna-
tive cluster testing methods are given (see Chapters 7,8,10 and 12 in this volume). 
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Table 12.1 C'harac.terisation of the data included in the German Cancer Atlas 

Area West Germany 
~~ 

Number of regions 328 
hledian number of adjacencies per region 
Range of person-years per region 170000 to 9 585 000 
Number of maps 44 
Cancer site with highest mortality rate 50.19" (lung cancer in men) 
('ancer site with lowest mortality rate 0.lh" (laryngeal cancer i n  women) 
Cancer mortality in men 183.3 ( I  

Cancer mortality in women 117.4( I  

Since the distributions of Moran's f. Ceary's C' and the other spatial autocorrelation 
measures depend on the number of regions in the area, on the adjacencies between 
regions. and on the number of categories used for mapping, a simulation approach was 
chosen to obtain distributional information on these autocorrelation measures. In a lirst 
step, the different statistics were considered for random maps and for the 44 cancer 
maps. Relationships between the results of the four statistics are discussed. In a second 
step. a n  algorithm for the identification of 'extreme' clusters was applied to the maps. 
which combined spatial smoothing techniques with 21 method proposed by (h-imson "r 
d.( 1981). 

12.2 METHODS 

In the German cancer atlas (Hecker rJt al., 1984)mortality rates are published for the 
area A of West Germany partitioned into N =  328 non-overlapping regions K ,  ('Land-
kreise' ). Two regions are considered adjacent if they share a common border of non-zero 
length. We define a n  adjacency matrix 14' = [ w , , ] , = ~  ,,for the area A = U,!,R,

l,,zl 

with 

1. if Ki and K ,  are adjacent and i # j ,
\ I ? , ,  = 0, otherwise, 

and 

Suppose the value of a random variate X has been observed in each of the regions. A set 
of Nobservations {s , ,  i = 1, .  . . , N } and a corresponding adjacency matrix represent a 
map. 

12.2.1 Measures of spatial correlation 

The following four cluster indices were considered as tests for spatial autocorrelation 
and applied to cancer maps of the atlas: 
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1. Moran’sl; 
2. Geary’s contiguity ratio C; 
3.  cluster index T of Abel and Becker (1987); 
4. test statistic xi of Ohno and Aoki (1979,1981). 

Moran’s 1 measures the covariation between rates in adjacent regions in relation to the 
total variance over all regions in the map and can be formulated as 

The contiguity ratio C of Geary is formulated as the sum of squared differences between 
values in adjacent regions standardised by the total variance over all regions: 

Abel and Becker proposed a cluster index T which is defined as the weighted sum of 
absolute differences between an observed value and its adjacent values: 

When the XI are taken as ranks and Wis symmetric.Tis the same as the cluster index I1 
suggested by Smans (1989)apart from weighting. 

The approach described by Ohno and Aoki applies to categorised data which are nor- 
mally displayed by different colours in choropleth maps. This test compares the observed 
number of adjacencies between regions of equal colour with the expected number of 
adjacencies of the same colour in random maps. If K denotes the number o f  categories 
and i l k ,  k = 1, .. . .K, the number of regions in category k, then let 

The test statistic of Ohno and Aoki is defined by 

To use the cluster indices in testing for spatial correlation, their null distribution was 
obtained by Monte Carlo simulation of 10000 random quintile maps under the assump- 
tion of no clustering. The first part of the simulation results was obtained under the null 
hypothesis that any permutation of the observed {Xi}  is equally likely (permutation 
model) as described by Cliff and Ord (1981). 

This null model ignores population heterogeneity. As shown by Alexander et d.(1988) 
and Besag and Newel1 (19911, regions with small population tend to exhibit extreme 
rates with higher probability than regions with larger population. Therefore Moran’s 1 
is considered to be biased. 
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For this reason we a l so  used ii multinomial model for distribution of cases under the 
null hypothesis.\ll'e kept the number ofcases--and thereby the global rate y-fixed and 
allocated the set ofcases { 1 1 ,  i = 1, . . . .N}, according to a multinomial distribution with 
parameter E,1 1 ,  and { p , ,i = 1.. . . ,N},where p,  = yy,/ E,y,, where is the person- 
years in region K,.This model reflects equal risks for all individuals in the study area. 
'The second assumption is more reasonable than the permutation model. but i t  requires 
far more computing time. especially when many maps are examined as there has to  be a 
separate simulation for each disease under investigation. So we chose to implement the 
uniform risk model for the maps of the most frequent cancer (lung cancer in men), of 
the least common site (laryngeal cancer in women) and of leukaemia in women a s  a 
disease of interest with ii moderate mortality rate of 4.3 per 100 000. The intention of 
this step was to compare the distributions of the four test statistics under the different 
null models. 

12.2.2 Identificationof clusters of extreme rates 

l4'hen global testing for spatial autocorrelation leads to the conclusion that ii map dis- 
plays ii non-random pattern, ii possible next step may be directed at detecting clusters of 
high rates. I n  our study we tested B combination of spatial smoothing procedures a s  
suggested by Zoellner (1991)and a n  algorithm suggested by Grimson c 7 t  ril. (1981): 

1. For each region compute a weighted average of the observed rate and its adjacent 
values (spatial smoothing). 

2. Label those k = 2. 3 . .  . . . [N/101regions exhibiting the highest values. 
3. Compare the number of observed neighbourhoods (i.e. hloran's HH count) among 

labelled regions with the number expected given the random allocation of labels. 
C'o m p u te correspond ing y-va1ues. 

4. Decide for the existence of a cluster if  a sufficiently small local or global minimum of 
p-va1ue is obt ii i ried. 

The same procedure may be applied for the identification of clusters of low rates by 
labelling k regions with lowest rates. respectively (Schmidtmann and Zoellner. 1993). 

12.3 RESULTS OF APPLICATION TO GERMAN CANCER 
MORTALITY DATA 

In 'I'able 12.2 descriptive parameters of sample distributions obtained by simulation of 
10000 randomised quintile maps are given. For Moran's I and Geary's C' standardised 
values for I, and C', are tabulated. 

In Figure 12.1 the distribution of Moran's I under different assumptions for random 
maps is shown: for the permutation model and uniform risk models based on the popu- 
lation figures per region and on the mean mortality rates of lung cancer, leukaemia, and 
laryngeal cancer. respectively. While the distribution of Moran's I tended to  be robust 
under the different model assumptions. the moments and critical values of c', Tand $ 
differed substantially between the permutation model and the uniform risk models. 
Concerning robustness, M'alter (1993b)and Oden c)t t r l .  (1996) also found hloran's I to 



Results of application to German cancer mortality data 173 

Table 12.2 Moments. critical values, and extreme values of I,, C,, T T ,  and 1 f), for the area of 
Western Germnay with 328 districts, Monte Carlo simulation ( r t  =10 000 maps, permutation model) 

Mean s.d. a = 0.01 a = 0.05 Minimum Maximum 
~~~~~~~~~~~~~~ 

1 ,  - 0.005 1.003 2.426 1.676 - 3.920 3.9% 
c, 0.004 1.005 - 2.35 - 1.645 - 3.546 3.78 3 
'I' 523.1 14.0 489.13 500.07 465.7i3 580.007 
1; 4.785 3.099 14.918 1().64(15 0.025 1i.961 

Figure 12.1 Monte Carlo simulation results on Mordn's I under different model assumptions, ( 1 )  
randomization model, (2)uniform risk model for lung cancer in men, ( 3 )  uniform risk model for 
leukaemia in women, (4)uniform risk model for laryngeal cancer in women: I 0  000 random maps 
per model 

behave well in the situation of no clustering. In the simulation by Oden 4r d.null models 
were based on permutations at the individual level similar to the uniform risk approach. 
Apart from the Lyme disease example, both Morans I and IpOproughly keep the nominal 
level for moderate 0.The results for the extreme tails look worse, but are difficult to 
judge since they are based on only 1000replicates. For the alternatives considered there 
ipOptends to be more powerful than 7. 

Tables 12.3 and 12.4 give the correlation coefficients of the four test statistics observed 
under the assumption of uniform risk and for the 44 cancer maps. While the values of 
Moran's I. Geary's C and the test of Abel and Becker show correlations between - 0.81 
and - 0.88 even for random maps. the test of Ohno and Aoki seems to be of different 
type. The correlations of the test statistics depend very little on the frequency of the 
disease. 

However, for the 4 4  cancer maps the correlation coefficients of 1 and 1. C, and 7' took 
values of 0.88, -0.85, and - 0.88,respectively. 

The values of the test statistics I,, C, T, and xi for the 44 cancer maps are given in 
Table 12.5. Values in bold type relate to p-values less than 0.05 No spatial aggregation 
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Table 12.3 Correlation coefficients of the test statistics under the assumption of uni- 
form risk: (1)lung cancer model, (2)leukaemia model, ( 3 )  laryngeal cancer model 

Test statistic Geary’s C Abel and Becker Ohno and Aoki 

- 0.8hO (1) - 0.836 (1) - 0.001 ( I )  
hloran’s I - 0.868 (2)  - 0.819 ( 2 )  - 0.024 (2 )  

- 0.877 ( 3 )  - 0.841 ( 3 )  - 0 . 0 0 3  ( 3 )  
0.816 (1)  - 0.151 ( 1 )  

Geary’s C’ 1 0.822 (2 )  - 0.162 ( 2 )  
0.815 ( 3 )  - 0.114 ( 3 )  

- 0.138( 1 )  
Abel and Hecker I - 0,172 (2 )  

- 0.155 ( 3 1  

Table 12.4 Correlation coefficients of the test statistics for the 44 cancer maps 

Test statistic Geary’sC Abel and Becker Ohno and Aoki 

hloran‘s I - (1.99(1 - 0.991 0.883 
(kary‘s C’ 1 0.989 0.854 
Abel and Hecker 1 - 0.880 0.880 

was found by any of the test criteria for bone cancer and non-Hodgkin’s Iymphoma in 
woman. For Hodgkin’s disease and ovarian cancer in women, melanoma in men, and 
leukaemia for either sex, only one of the four tests found spatial autocorrelation. Geary’s 
C’ and Tof Abel and Becker indicated spatial clustering for female kidney cancer and 
Hodgkin’s disease in men, while the other tests did not reject the nu!! hypothesis of a 
random spatial distribution of rates for these sites. The remaining sites did exhibit spa- 
tial aggregation according to at least three tests. For 1 3  maps i.e. stomach. bladder, and 
all sites for either sex, lung and larynx in men, female gall-bladder, colon, liver. thyroid 
and breast cancer, all four cluster indices had values that were not covered by the range 
of simulation data. The most distinct patterns were found in maps of stomach and lung 
cancer. 

Comparing the results for all cancer maps, the test of Ohno and Aoki tended to be less 
sensitive than Moran’s I. Geary’s C’, and Tof Abel and Hecker. I s , Ch,and T tend to detect 
any deviation from spatial independence. When testing for more specific alternatives 
(‘uni-coloured clusters’) the test of Ohno and Aoki may be more appropriate. In consid- 
eration of the differences between the results of the permutation and the uniform risk 
approach we suggest using the uniform risk model in simulations when the correspond- 
ing parameters are available. In our study, Moran’s I ,  tended to be more robust against 
model changes than the other cluster indices considered. since moments and critical 
values of Moran’s I, changed only marginally under the different model assumptions. 
This corresponds to the results of Oden et d. 

Clusters of high mortality rates were identified for stomach and liver cancer for both 
sexes. For stomach cancer a cluster of high rates was found in Bavaria in the south-east 
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Table 12.5 Test values for 44 German cancer maps (mortality data 1976-80) 

Site Sex I s  CS T x 6  
Lung M 22.35 - 17.96 242.5 430.3 
Lung F 8.81 -8.95 408.7 26.0 
Stomach M 16.15 - 14.63 309.4 244.0 
Stomach F 17.16 - 14.86 295.4 296.7 
Gall-bladder M 5.11 - 5.71 450.4 20.0 
Gal 1-bladder F 12.75 - 10.96 358.9 101.4 
Bladder M 12.12 - 10.72 367.3 79.9 
Bladder F 8.82 - 8.65 415.5 41.6 
Thyroid M 5.90 - 5.48 439.9 30.0 
Thyroid F 9.64 -9.31 390.6 30.7 
Colon M 3.26 -4.54 463.6 21.5 
Colon F 9.10 -9.53 381.9 77.5 
Larynx M 8.98 -8.50 405.3 43.4 
Larynx F 1.80 -2.44 491.2 13.4 
Brain M 7.26 -6.66 422.9 15.0 
Brain F 4.57 -4.91 453.3 17.1 
Oesophagus M 6.84 -6.98 431.7 20.9 
Oesophagus F 6.07 - 5.69 449.0 17.9 
Rectum M 6.75 - 6.82 418.4 29.4 
Kectum F 3.02 - 3.59 476.2 6.5 
Liver M 6.19 -4.70 456.0 20.0 
Liver F 7.73 -6.57 431.1 53.8 
Bone M 1.80 - 2.29 499.2 7.3 
Bone F 1.10 - 1.28 509.7 i.6 
Pancreas M 4.03 -4.40 466.2 10.3 
Pa n c re a s F 3.21 - 3.08 468.5 18.8 
Leukaemia M 1.47 - 1.51 495.0 7.6 
Leukaemia F 1.64 - 1.98 506.4 2.8 
Melanoma M 1.43 -2.10 503.6 5.3 
Melanoma F 3.51 -4.29 474.9 14.6 
Kidney M 2.88 - 3.88 494.2 9.5 
Kidney F 1.66 -2.14 498.1 2.7 
M Hodgkin M 1.15 - 2.48 494.8 2.9 
M Hodgkin F 0.96 -2.51 506.1 6.7 
NH Lymphoma M 1.99 - 2.40 491.7 5.0 
NH Lymphoma F 0.21 - 0.88 524.8 3.8 
IJterus F 5.91 -6.28 440.6 8.3 
Cervix uteri F 6.04 -6.37 448.6 13.8 
Breast F 7.83 -7.01 440.0 38.9 
Ovary F 1.38 - 1.14 494.2 3.4 
Prostate M 3.42 -4.15 477.1 4.2 
Testis M 2.78 - 3.98 468.5 14.7 
All sites M 15.05 - 13.92 332.8 160.5 
All sites F 8.81 - 8.47 408.1 80.0 
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Figure 12.2 (a) Stomach cancer mortality in men 197h-80, West Germany (age standardised 
rates per 100000 person-years); (b)laryngeal cancer mortality in women 1976-80, West Germany 
(age standardised rates per 100000 person-years) 

of Germany, while the highest liver cancer rates were concentrated in Rhineland- 
Palatinate. Spatial smoothing supported the identification. 

Figure 12.2(a) displays stomach cancer mortality in men which exhibits the most 
prominent clustering, while Figure 12.2(b) displays laryngeal cancer in women which 
is the rarest disease in the atlas. 

12.4 DISCUSSION 

Alexander and Boyle (1996) have assembled a n  overview of applications of various 
methods for investigating localised clustering of disease to random data sets and to data 
sets generated by prespecified processes. This exercise did not yield a single most useful 
method. Instead, Alexander and Boyle suggest combining methods, e.g. start with a 
quadrat count method that could be followed by more complex analyses if appropriate. 
Oden's Ipop(Oden,1995)was not considered in our comparison because the study was 
begun before the publication of his paper. Furthermore, the strong age dependency of 
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cancer would require adjusting any measure for age-specific population distribution. 
This has also been pointed out by Gbary et d.(1995). However, such data were not 
readily available, so we took age dependency into account by basing our study on age- 
standardised rates. 

If age dependency is not a problem, we suggest using IpOpwhich is also sensitive 
against alternatives of within-area clustering. Otherwise, if all necessary information 
is available, Ipopcould be modified to take age-specific population distribution into 
account, or Tango’s test (Tango, 1995) could be used. 

The aggregation level of the data did not allow the application of point-based meth- 
ods, e.g. the Cuzick-Edwards test (Cuzick and Edwards, 1990). The results of Oden et aZ. 
do not support the expectation that point-based methods necessarily perform better 
than area-based methods like I or Ipop.They stated that ‘there are situations where 
Grimson’s test or Moran’s I are preferable. . . . their usefulness arises when the data at 
hand are less complete than our simulation provides’. 

When we sorted all 44 maps by the value of Moran’s I and screened them visually in 
this sequence we found that the visual impression of clustering and the values of I cor-
responded well. This would support the application of I or Ipopin a public health setting 
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when many items could be mapped but one has to restrict attention to non-random pat- 
terns. Walter (1993a), in a more formal experiment, also found a correspondence 
between cluster index I1 and visual assessment. We agree with him that visual assess- 
ment may depend on shape. structure, and shading o f  the map and on the experience of 
the rater. 

The Grimson method for cluster detection is a fairly coarse one: however, it is in line 
with the intention to use only the information displayed in the maps. If more informa- 
tion is available, then more subtle methods for cluster detection can be applied, e.g. local 
indicators of spatial autocorrelation (LISA) as defined by Anselin (1995)and Getis and 
Ord (1996).Similar indicators were suggested by Munasinghe and Morris (19%). Tango 
suggested using a focused test when a general test yielded a significant result (Tango, 
1995). However, so far not much is known about the distribution of local statistics. 
Tango gives a normal approximation for the focused test, and Tiefelsdorf (1998)tackled 
the distribution of local Moran's I for the case of normally distributed random variables. 

The cluster index and a method for identifying clusters should be chosen depending 
on the type and quality of available data, the disease rate, and the character of the clus- 
tering process and its regional variation. For rare diseases and large differences in the 
regional population.'rango' test, Oden's Zpop or  point-based methods will be more appro- 
priate. while for common diseases and regional populations of comparable size. Moran's 
I or Grimson's method will be applicable. On the basis of our simulation results we would 
not recommend the use of C,, T, or x(",since their distributions differed substantially 
between the permutation model and the more reasonable uniform risk approach. 
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13.1 INTRODUCTION 

Ecological analyses are epidemiological investigations examining associations between 
disease incidence and potential risk factors as measured on groups rather than indivi- 
duals. Typically the groups involved are defined by geographical area such as country, 
region or smaller administrative area. In recent years there has been great effort on this 
kind of analysis, mainly because of the possibility of studying many variables and popu- 
lations at low cost. Indeed, data from different sources can be linkcd more easily at the 
ecological level than at the individual one. On the other hand, thcre are some methodo- 
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logical limitations. Ecological analyses could provide spurious results when there are 
individual-level predictors of the response which are associated with the aggregate vari- 
ables of interest. This is due to the fact an ecological study might be subject to biases not 
present in corresponding individual-level study (for details about the problems arising 
when the level of analysis is different from the level of associations inference we refer to  
hlorgenstern, 1998).Anyway a n  ecological analysis is valid when the ecologic effect is of 
primary interest or variables representing population features or environmental char- 
acteristics not available at t he individual level (e.g. demographic density, type of welfare 
system, etc.) are involved. The aim of this chapter is to provide an introduction to ecolo-
gical analysis problems and to review the statistical methods used to analyse 
geographical aggregate data. We want also to point out the importance of correctly 
specifng models in order to have valid inference on the association between disease 
and risk factor. 

13.2 ECOLOGICAL FALLACY IN SPATIAL DATA 

The regression analyses based on geographically collected data are subject to bias due to 
their aggregate nature and to the potential presence of spatial autocorrelation among 
the responses: these two aspects are related to each other, due to the fact that aggrega- 
tion and scale change can lead to autocorrelation. Autocorrelation is also found due to  
unobserved confounder variables. In this way, making inference on the basis of ecologic 
associations to individual-level behaviour could have serious pitfalls. The problem, 
known as the u c d o g i r d  filllncy (also named rwdogictrl bins), was first pointed out by 
Kobinson (1950),who demonstrated that the total correlation between two variables a s  
measured at a n  ecologic level can be expressed as the sum of ii within-group and a 
between-group component. Later Duncan ~t r i l .  (1961) extended this result deriving 
the relationship between the regression coefficients in a linear model. The sources of 
ecological bias have been investigated by many authors (see, for example, Morgenstern, 
1998; Kichardson rt  d., al., 1988; Greenland and hiorgenstern. 1989; 1987; Piantadosi ( ~ t  
Greenland. 1992: Greenland and Robins, 1994; Steel and Holt. 1996). In addition to the 
indiv id u a 1-level sources (miss p e c i f icat io n , w it h in-g ro u p c on fou nd ing, no addit ive 
effects. misclassification) special attention has been given to the bias due to grouping 
individuals (Brenner et (11.. 1992: Greenland and Brenner, 1993).In particular, (;reenland 
and hlorgenstern (1989)analysed how grouping influences associations of exposure 
factors to disease, and they pointed out  that ecological bias may also arise from 
confounding by group and effect modification by group. Now consider some ecological 
groups indexed by i and let p r  be the proportion of exposed subjects (a dichotomous 
variable), roI the individual rate in unexposed, and r l I  the individual rate in exposed at 
the site i. The crude rate in group i is given by 

T t l  = r o , ( l  - P l ) + ~ l I P l  

= Tor  + ml? 

where I), = r 1, - rol is the individual rate difference. Consider a population linear 
regression model of average disease level on the average exposure level in groups: 

T t l  = a + J p , .  
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then 1 + J/Qis the ecological rate ratio. Greenland and Morgenstern demonstrated that 
the ecological regression coefficient 3can be viewed as the expected rate difference at 
the individual level plus two bias terms. The mathematical relationship is given by 

The first bias component. 

is present when the unexposed rate is associated with the level of exposure in the group, 
and it may be viewed as a bias term due to confounding by group. I t  is plausible that 
such confounding acts because some external factor causing the disease is associated 
with groups having a higher level of exposure factor. The second bias component, 

is present when the risk difference in a group is associated with the level of exposure and 
it may be viewed as a bias term due to effect modification by the group. Such a remark 
commits ecological fallacy if we assume that the ecological rate ratio 1 + J/o is only 
determined by the individual rate difference effect when, in fact, it may be also caused 
by the two bias components effect. Several strategies can be adopted to tackle the poten- 
tial flaws in ecological modelling. First, we could try to estimate the joint distribution of 
outcome and explanatory variables within areas using a sample drawn from the popu- 
lations investigated, and use the information collected to adjust the ecological regres- 
sion coefficient and standard errors. This approach has been proposed by Hummer and 
Clayton (1996)and Prentice and Sheppard (1995).The reader should note that this deri- 
vation does not include spatial effects and it can also be viewed as an example of a mixed 
design with individual and ecological variables (see Chapters 14 and 16 in this volume: 
see also Lawson and Williams (1994),for a n  example of multiple level exposure risk 
modelling). When sampling within areas is not feasible, a second strategy could be to 
adjust for the correlation between area prevalence of the exposure variable and the 
baseline rate of disease, provided no effect modification occurs. If the level of aggrega- 
tion is sufficiently thin, then a regression model for autocorrelated data would result in a 
sort of stratification by spatial closeness, where the baseline rates would be expected not 
to vary. Clayton ct  d.(1993)gave a justification of this approach in terms of a hidden 
spatially structured confounder. Indeed, where the spatial variation of the risk factor is 
similar to that of the disease, geographical location may act as a confounder. 

For example, in Figure 13.1hypothetical data on male suicide rates (externally stan- 
dardised mortality ratio) and prevalence of unemployment in 30 areas are plotted. No 
relationship is apparent while a strong North-South gradient in suicide rates and 
unemployment is observed. The confounding by location is evident when reporting the 
predicted values from separate Poisson regressions for northern, central and southern 
areas. Finally, it should highlighted that spatially unstructured confounders are likely 
to be present in ecological data; these confounders are usually unknown due to the fact 
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that factors which are not confounders at the individual level can be confounders at the 
aggregate level (Greenland, 1992). In the data such hidden confounding will result in a 
certain degree of extra-variability (Clayton et al., 1993). 

In the remainder of this chapter statistical models that are able to cope with this sort 
of confounding will be reviewed. The control of small level spatial variation has many 
similarities to that developed in time series analysis, the main difference in geographical 
epidemiology is that the focus of the research is on the regression coefficient and not 
primarly in the interaction component, which in most applications is regarded as a nui- 
sance. 

13.3 STATISTICAL MODELS 

Statistical methods proposed in the context of ecological regression. emphasising the 
role of autocorrelated models to ensure validity to this kind of analysis, are discussed 
below. These approaches do not cover all the points about ecological designs. leaving 
aside the problem of error-in-variables (for which see Chapter 14 in this volume and 
Bernardinelli et al., 1997) and the strategies involving the use of individual data 
(Plummer and Clayton, 1996). 

13.3.1 Poisson regression models 

Before introducing spatial models we first consider the Poisson regression model that 
represents the starting point of statistical methods in ecological analysis. Let 
{ Yj . i = 1, .. . , n }  be the set of the observed number of events of a certain disease and 
{ E , ,  i = 1 , .  . . , n }  be the set of the expected number of events under a reference set 
of age-specific rates for II areas of the region of interest. Assume Y ,  follows a Poisson 
distribution with expectation: 

where 8, is the relative risk for site i. The maximum likelihood estimates of O j ,  under a 
saturated model, are given by the standardised mortality ratios: 

This model can be extended to a set of explanatory variables X I ,  X 2 , .  . . , X H  in a log-
linear for mu la t ion: 

H 

Maximum likelihood estimates of the coefficients PI, can be obtained in a generalised 
linear models framework. A Poisson regression model can include the influences of 
many ecologic factors on a disease (the covariates XI,) but it does not control for the 
autocorrelation and for the extra-Poisson variability, which may arise due to, for exam- 
ple, unobserved confounding variables. Some authors argue that non-linear ecological 
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models give biased estimates of the individual-level coefficients. Since this bias is negli- 
gible for moderately large risk ratios, we do not discuss this point any further (see, for 
example, Richardson er d. ,1987, and Greenland, 1992). Last, but not least, the reader 
should be aware of the potential bias introduced by regressing age-standardised effect 
measures (e.g. SMR) on non-standardised explanatory variables (Rosenbauni and 
Rubin, 1984). 

13.3.2 Bayesian mixed models 

linstructured and structured extra-I'oisson sources of variability can be taken into 
account by the following generalised linear mixed model: 

where 

denote the fixed regression component, I I ,  are the random unstructured terms (termed 
hct tro{goI1 t>i t y) and , the ra ndom spat ia1 s tr uc t u red terms (termed cl I I S  t 4 r i r ug). I n t rodu -
cing the heterogeneity and clustering terms represents a way of controlling for unmea- 
sured covariates. Defining appropriate prior distributions on the hyperparameters 
involved in the random part of the model, a Bayesian inference can be made using the 
posterior distribution of 8,. In particular, estimates of the relative risks can be computed 
by running Markov chain Monte Carlo (MCMC)algorithms. This model was introduced 
by Clayton and Kaldor (1987) in disease mapping framework and then it was developed 
by Hesag or ril. (1991) and Clayton e t  d .  (1993) in ecological analysis. (For details about 
ecological analysis in a Hayesian setting see Chapters 14 and 11 in this volume for an 
application of this model in specific clustering.) 

13.3.3 Approximate hierarchical random effect models 

'I'wo approximate solutions have been proposed to fit the generalised linear mixed mod- 
els for disease counts: the penalised quasi-likelihood approach (YQl,) and the marginal 
quasi-likelihood approach (MQL) (Hreslow and Clayton, 1993; Goldstein. 1995; see also 
Chapter 16 in this volume). These approaches are based on integrating the likelihood 
over the random effect terms to estimate the regression coemcients. The penalised 
quasi-li keli hood approach conies from applying 1,aplace's met hod to a n  integral approx- 
imation: 

11, = I (  &j,e)dtj.I 
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where {S is the usual vector of fixed effects, 4 is the vector of random effects o I  = 

1 1 ,  + v , , D ( a )is the covariance matrix of such random effects depending on an unknown 
variance vector a, and K ” (  J. P )  denotes the matrix of second-order partial derivatives 
with respect to 3 of a function K(J,e) ,  including the link function and other specific 
components (see Breslow and Clayton, 1993, for details). Note that increasing domain 
asymptotics are assumed in the case, as opposed to infill asymptotics. The relevance of 
this assumption should be checked in any application. The above integral approxima- 
tion gives on the log scale the following penalised quasi-likelihood function: 

The marginal quasi-likelihood approach approximates the populations mean by dis- 
carding the random terms in the linear predictor, i.e. given that the expected value of 
the relative risk 8 is 

8 = h ( X P  + Ze), 

under the PQL approach, it becomes: 

8 = h ( X B )  

using the MQL approximation to the population mean. In the above equations X and Z 
denote the design matrices of the fixed and random effects, respectively, and 11 is the 
inverse link function. Computationally, the method iterates between the estimation of 
the fixed terms in the model by generalised least squares, and of the random terms. 
using the residuals and an appropriate design matrix. There are several proposals in 
the literature concerning how to introduce the spatially structured component v I .Bre-
slow and Clayton considered only one random term at a time, either the unstructured or 
the structered but not both. Langford et d.(see Chapter 16 in this volume) showed how 
to specify and estimate both random terms in a multilevel model using the generalised 
least squares algorithm (Goldstein, 1995). The MQL approach has been claimed to be 
more robust in practice but it may lead to biased estimates (Breslow and Clayton. 1993; 
Langford et al., Chapter 16 in this volume). A generalised estimating equation approach 
(Liang and Zeger, 1986) to the inference on disease risk for mapping purposes has been 
proposed by Yasui and Lele (1997). This kind of solution treats the random structured 
terms as nuisance terms while providing correct covariances for the fixed part and 
can be described as a marginal approximation. All the approximate solutions are suita- 
ble for non-sparse data. IJsing the MQL approach one should be particularly cautious 
and MCMC or parametric bootstrap is recommended to check for biases (Goldstein. 
1996b3. 

13.3.4 Truncated auto-Poissonmodels 

A different way to address spatial interaction among areas is to introduce an autoregres- 
sive term into the systematic component of the Ibisson regression model (Fcrrrindiz 
r ~ td.,1995). This equates to assuming that Y,IY,,, is Poisson distributed with expecta- 
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tion (on the log scale) 

where S is the set of sites, and 3j l  is the spatial interaction term for the pair ( i. j ) .  This is 
the auto-Poisson model introduced by Besag (1974).It is shown that if  ?,, < 0, then the 
counts process Y = ( Y 1 ,  Y, ,  . . . , Y , , )admits a joint probability distribution. Negativity 
on -, can be avoided if the Poisson distribution is truncated. To estimate the parameters 
,j,,and 3 1 ,by maximum likelihood, we need to compute the normalising constant of the 
joint distribution of the process\', which is impossible to express analytically and cannot 
be computed numerically. Hence any appropriate algorithm must include some approx- 
imation of the integrals involved, for example using MCMC' methods. E'errhndiz "r. (11 

(1995) were aware of this difficulty and proposed a maximum pseudo-likelihood 
approach. The pseudo-likelihood function, introduced by Hesag (1974, is the product 
over all sites of the conditional probability distributions. As an approximation of 
the likelihood, the pesudo-likelihood approach allows for efficient parameter estima- 
tion at lower computational cost, because no untractable normalising constant is 
present. After having specified a threshold for the definition of a neighbourhood (for 
instance the set of nearest neighbours of each site), this model is usually parame- 
terised in order to reduce the number of interaction parameters q, ,  to be estimated. I f  
we denote by 8, the set o f  nearest neighbours of the site i, some popular choices are 
reported below: 

( i )  CIc-c),3 , lYl ,one for each pair of neighbours; 
( i i )  3 ~ l t L o ,  Y,, one for all pairs of neighbours; 

( i i i )  1 ClCO, where ( I , ,  are known proximity indexes. ~ i I I Y I .  

For example, E'erriindiz et a l .  (1995) used the third choice and proposed the following 
proximity index between pairs of sites: 

where N,  and N,stand for the population of areas i and j ,  and d , ,  is the geographical 
distance between the pair (it j ) .  

13.3.5 Parametric interaction models 

When appropriate, the degree of interaction between areas can be modelled explicitly as 
a function of covariates, e.g. the distance tl.  Several functions have been proposed in the 
literature, for example; denoting by p the auto correlation parameter, we can use: 

( i )  1 - pd, linear at the origin (triangular correlation); 
( i i )  cxp(- ( i t /  '1, non-linear (exponential decay); 

{ pt(;l,:: ;,( i i i )  for a given 7': threshold discrete. 
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The form of the interaction function had been selected for mathematical convenience 
and simplicity. Indeed, this is a crucial point in the analyses and deserves special con-
siderations: for example Cook and Pocock (1983), and Pocock ct crZ. (1982)described a 
thoughtful residual analysis to justify their choice of an exponential function ( i i )  with 
, 3  = 1.Lawson (1997) and Lawson et d.(1996) utilised an exponential covariance model 
( ( i i )above) within a n  autocorrelated Gaussian prior in a G1,M framework with ecological 
applications. Their model can be applied to a range of likelihoods, and approximate max- 
imum n yostrriori estimates were derived and compared with Metropolis-Hasting 
MCMC sampling algorithms. (See also Chapter 16 in this volume.) 

13.3.6 Non-parametric Poisson interaction models 

Consider again the auto-Poisson model. If we substitute the parameter with a func- 
tion of covariates for the spatial interaction between sites, such as the geographical 
distance d I ibetween pairs of area, then that model becomes: 

where p could be any function to be estimated. In many applications i t  is important to 
suppose certain regularities for the functions involved in the model.\Ve assume that p is 
differentiable on a closed set L) with an absolutely continuous first derivatii7e and we 
denote the space of such functions by S I l .Following the roirglirwss perwlisiry approach 
(Green and Silverman, 1994),it is possible to define a penalised log likelihood and com- 
putationally simpler penalised log pseudo-likelihood (Ilivino of d. ,1998).IZ’e denote 
these functions by PLI,()j.y.) and PI,Pt,( J,p),respectively. A classical roughness penalty 
is 

Then PLL( 3,p)and PLPL(,j,p) are given by 

‘dwPLL(cJ, 3)= Z(J,  p)- X J,[p”(\v)] 

and 

where Z ( J ,  p) and PZ(J,y.) are the logarithms of Poisson likelihood and pseudo-likeli- 
hood, respectively, and X is a parameter governing the degree of smoothing that can be 
estimated by cross validation techniques. Under these assumptions, the estimators of 3 
and p maximising PLI,(J. 9)or PLPL(,j,y.) can be derived by applying standard results 
of classical cubic spline theory (Green and Silverman, 1994). Indeed, it can be shown 
(Divino et d.,1998) that the optimal estimate of p over the functional space Sll is the 
cubic spline with knots given by the ordered sequence (without repetitions) of spatial 
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covariate values, e.g. the geographical distances d,, between pairs of sites. We denote 
such a sequence by ( w  1 ,  i t?? ,. . . , w K r ,1, where the number of different elements K,,  
depends on the number of sites. To compute such an optimal spline we have to estimate 
the corresponding values ~ ( i v k ) ,k = I ,  . . . , K , r .We can do this by applying the stochas- 
tic gradient algorithm to the penalised log likelihood (using MCMC methods to approx- 
imate the normalising constant) or by applying Newton's algorithm to the penalised log 
pseudo-likelihood, which avoids the use of any MCMC iterations. As for the parametric 
auto-Poisson model, in this case also the pseudo-likelihood approach allows for efficient 
joint estimates of t jand p at lower computational cost (for further details see the refer- 
ences in  Divino o r  i d . ,  1998). 

Table 13.1 Hypothetical data on suicide and unemployment 

Latitude 
1-northest Unemployment Neighbours 

Area 111 Observed Expected 30-southest (%) 

1 11A3 3 3 7 
- 1 3,4,20 

7 116.333 / 3 5, 3.4 
3 1 1 . 6 3 3  9 4 1,2.4,5 2 0  
4 11.63 3 h 5 I.  2, 3.20  
7 11.633 1 > 2, 3 . 6  
h - 1lh. 3 3 3  5 9 5,r.8 
/ 1 1 . 0 3 3  1 0  12 6,s.9. 1 0  
x 11.633 4 1 3  h.7.9, 1 0  
9 l l . h 3 3  3 14 78, 10 
I( 1 1 1 , 6 3 3  8 15 7,x, 9 
11 11.633 20  4- 12,13.17,19 
12 1 1 . 0 3 3  14 1- 11. 13,  15. 17. 19 
13 116.3 3 3 12 I 11,12 
14 11.633 18 x 15,16,17,27 
15 1 1 . 6 3 3  1(7 9 12, 14, 16.17.27.2X 
1h llh.333 '11 1 0  14, 15.17,19. 19 
17 11.633 11 I 0  11. 12,14,15. l h 1 X .  19 
18 11.h3 3 15 1 0  Ih ,  li,19.20 
19 1 1 . 6 3 3  l i  12 11,l.LIh .  17. 1x.20 
2(1 11.03 3 1 3  14 1. 3,4.18.19 
21 1l h 3 3  31 15 23.25 
7 7  11.633 25 15 2 3 , 24.25 
23 116.333 22 1h 21.22,24,25 
24 11.633 28 16 22,2 3, 25, 26, 29, 3 0  
25 11.(3 3 3 27 17 21,22,23,24,2h, 3 0  
2(7 116. 3 3 3 24 2(1 24,25,2x, 3 0  
2i 11 .033  23 24 14. 15.28,29,3 0  
28 11.033 2h 24 15.2h,27.29*3 0  
' 9  1 1 , 0 3 3  29 2(7 24,27,28, 3 0  
3( 1 11.633 21 34 24.25. 2h, 2Z28.29 
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13.4 EXAMPLE 

Consider the hypothetical data on suicide and unemployment (sec Figure 13.1 and Table 
13.1).The estimated regression coefficients of suicide rates on the prevalence of unem- 
ployment under simple Poisson and Hayesian ecological regression models are reported 
in Table 13.2. 

The simple Poisson regression analysis estimates a negative coefficient for unemploy- 
ment. Including heterogeneity and clustering terms in the Bayesian model of Section of 
Table 13.2 results in a positive significant coefficient, since the confounding by location 
has been controlled for. 

A second example is reported in Table 13.3.Here only unstructured extra-variability 
that is present in the data has been generated and again the statistical model which is 
designed for heterogeneity (a simple negative binomial regression, Clayton and Kaldor, 
1987)is able to obtain the unbiased estimates (Section 13.3).Moreover, not taking into 
account the random terms in any models will produce incorrect standard errors. 

13.5 CONCLUSIONS 

The value of proof for a potentially causal relationship provided by an ecological rcgrcs- 
sion has been considered very low, and these kinds of investigations have been labclled 
hypothesis generating, heuristic, explorative, descriptive and so forth. Here we have 

Table 13.2 Coefficients and standard errors from 
Poisson regression and Bayesian ecologic regres- 
sion 

Variable Poi sson Bayes 

Unempoly ment - 0.0248 0.0302 
SE 0.0056 0.0130 
y -va1u e <0.0001 0.0138 
Heterogeneity - 0.042i 
SE - 0.0153 
Clustering - 0 . 5  5 56 
SE - 0.758 

Table 13.3 Coefficients and standard errors from I'ois- 
son regression and Random effects Poisson regression 

Variable Poisson Random effects 

Unemployment - 0.0234 0 . 0 4 5 3  
SE 0.0049 0s)2(11 
p-Value <0.0001 0.0240 
log( Heterogeneity) - - 1.0395 
SE - 0.3502 
p-Va1ue - O.( )3() 
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shoum that new appropriate statistical models are available to take into account the bias 
induced by varying baseline rates among areas. 'I'hese models can all be grouped under 
the common feature of being models for autocorrelated data. Epidemiologists should 
realise that the potential of ecological analyses has been greatly improved in terms of 
its validity by such new tools. Different models have been proposed and reviewed. The 
key point is the choice about the inclusion of a term(s) for spatial autocorrelation: while 
i t  is important to achieve validity this term(s) could mask the exposure-disease rela- 
tionship when unnecessary (Breslow and Clayton, 1993). The Bayesian model is compu- 
tationally intensive but it allows parameters for heterogeneity and spatially structured 
variability. leaving to the data a n  appropriate weighting of the two components. The 
truncated auto-Poisson models are interesting alternatives, especially when the simple 
pseudo-likeli hood is used. However, these models could be more sensitive to the specifi- 
cation of the auto-correlation terms, which are fixed a priori. This argument applies also 
to the penalised and marginal approaches. which could also account for the heteroge- 
neity among areas. Finally, some interesting developments are represented by non-para- 
metric modelling of the spatial interaction, since it addresses directly the point of the 
possible overcorrection of the relationship under study. In addition to the purely ecolo- 
gical studies, mixed designs have now been proposed: among them sampling within 
areas can provide information to check and to control for ecological biases. \$'e have 
recalled these studies just to mention the potential of multilevel or hierarchical models. 
which utilise both aggregate and individual data, As a final remark, some authors (see, 
for example. Cohen, 1990; Koopman and Longini, 1994; Schwartz. 1994; Susser, 1994 a. 
b) point out  the different role of ecological analyses with regard to individual-level ana- 
lyses. An ecologic study is not the mathematical equivalent of a n  individual-leid one. 
Indeed. when the researcher ranges from individual level to ecological level, intliikhals 
are joined into groups, but the group - like a new study unit - acquires collective 
properties that are more than the simple sum of the individual properties of its mem- 
bers. In this way a n  ecologic variable is often referred to a different construct than its 
namesake at the individual level. Thus the difference between individual and ecological 
inferences may also be due to this different context measure and not only to an inherent 
fallacy of the ecological approach (Schwartz, 1994). 



Bayesian Ecological 

Modelling 

14.1 INTRODUCTION 

The term ‘ecological study’ is often used to describe epidemiological investigations in 
which associations between disease occurrence and potential risk factors (e.g. environ- 
mental agents or lifestyle-related characteristics) are studied over aggregated groups 
rather than at the individual level. Typically, the groups are defined by geographical 
regions, such as countries, states, counties, or smaller administrative districts like 
departments (France), electoral wards (UK) or census tracts (USA). Ecological studies 
are particularly useful when individual-level measurements of exposure are either dif- 
ficult or impossible to obtain (for example, air pollution) or are measured imprecisely 
(for example, diet, sunlight exposure). (See English, 1992, for further discussion.) 

Increasing media and public awareness of the health implications of environmental 
hazards has led to a growing number of ecological regression studies in the epidemiolo- 
gical literature, particularly in the context of hypothesised links between certain indus- 
trial pollutants and cancer. Ecological regression studies also provide a tool by which to 
address concerns in health services research, such as the extent to which socio- 
economic variations and lifestyle factors like smoking, alcohol and poor housing in- 
fluence geographic variations in health needs: greater understanding of such interrela- 
tionships should better inform health services provision and resource allocation. When 
considering the results of such studies, however, it is crucial to recognise that their 
analysis and interpretation may be severely complicated by several inherent features 
of the data and study design (e.g. the spatial structure of the data, data quality, bias, 
confounding, presentation). This chapter describes some of these problems and 
discusses how Bayesian approaches to ecological regression modelling can attempt to 
address some of the issues raised. 

Disease Mapping arid Risk Ass ixsn i i~n tfor Pithlii*Health. Edited by A.R. Lawson ot d. 
( % 1999 JohnWiley c(r Sons Ltd. 
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Figure 15.2 Estimated predictive posterior cumulative probabilities k(g, 1 y -,. model). (a) Auto- 
Poisson; (b)random effects Poisson regression 

cautious when interpreting this figure, given its stochastic nature. What it means to us 
is that both models are quite similar in capturing the spatial nature of our data. It seems 
that the more flexible structure of the GLMM, due to the Poisson extra-variance induced 
by its random effects, has been compensated for by a better proximity index (15.9)in the 
autoregressive model. In fact, we have tried the truncated auto-Poisson model using the 
weights wIlof the precision matrix W i n  (15.13) instead of the proximity indexes (15.9) 
and we have obtained a much poorer fit. Compared with the previous models it gives a 
pseudo-Rayes factor of 527.03 in favour of the proximity index (15.9),and pseudo-Bayes 
factor of 224.80 in favour of the random effect model. 

To detect locations that deviate from the model, the estimated values E(yl J Y - ~ ,  
model), of the predictive posterior cumulative probabilities, are very useful. They show 
how the fitted model predicts the observed mortality count of every location. In Figure 
15.2 we can see the quantile maps of these posterior predictive distributions for both 
models. They are quite similar. 

15.5 DISCUSSION 

In the prostate cancer study developed in the previous section our main interest focused 
on the influence of a risk factor. Point estimation of its regression coefficient has proved 
to be quite stable with regard to modelling spatial interactions as autoregreesive or ran- 
dom effect terms. But confidence intervals differ substantially. Therefore we should con- 
sider the model to fit carefully in every case, and methods of comparing non-nested 
competing models deserve more attention. To this end, estimation of the pseudo-Bayes 
factor is a suggestive tool in the Bayesian context, although its properties have not yet 
been fully studied. In our case, both models have shown similar results. The truncated 
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14.2.2 Inclusion of covariate information 

The model above extends naturally to include area-specific covariates, s,, as follows: 

( 14.2) 
(14.3)  

‘Non-informative’ prior distributions (e.g. a normal density with large variance) are 
usually assumed for the intercept a and regression coefficients ,I. This formulation 
represents a standard log-linear mixed-effects model, whereby the covariate effects act 
multiplicatively on the overall relative risk e”; eeI represents the residual relative risk in 
area i after adjustment for covariates. It is often convenient to interpret P ” *  as reflecting 
residual between-area variability due to unknown or unmeasurable risk factors such as 
the socio-economic characteristics of the study region, nutritional habits and genetic 
attributes of the population at risk, or a n  unmeasured environmental exposure. Such 
factors typically vary smoothly in space, which in turn induces spatial correlation 
between the observed disease counts in nearby areas. Spatial dependence between the 
0,may also arise due to purely statistical features of the data, such as lesser variability 
of rates in neighbouring densely populated urban areas compared with more sparsely 
populated rural areas, or because the disease has an infectious aetiology. Failure to 
adjust for such spatial autocorrelation can lead to mis-specification of t hc variance 
structure of the model and misleading or false conclusions about the estcnt of geogra- 
phical variation in health outcomes. 

In ecological regression studies, the measured covariates themselves often exhibit 
positive spatial autocorrelation (i.e. nearby areas tend to have similar values). Ignoring 
these correlations during a regression analysis of such data tends to over-estimate the 
strength of any association, because the positive spatial dependence between the dis- 
ease counts and between the covariate values across areas reduces the ‘effective sample 
size’and the usual assumption of independent errors is violated. 

14.2.3 Adjusting for spatial correlation 

Recall that the residual random effects, o ’ ~ ,in (14.2) and (14.3) at least partially account 
for unmeasured covariates that may induce spatial correlation between the observed 
counts 0,. It follows that such dependence may be modelled by assuming a spatially 
structured prior distribution for these random effects. Various choices exist, the most 
popular of which is a special case of the conditional intrinsic Gaussian autoregressive 
(CIGAR) model (Besag et aZ., 1991;Besag and Kooperberg, 1995): 

(14.4) 

(14.5) 

(14 .6)  
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This models the log relative risk in area i, conditional on the risks in all other areas j # i. 
a s  being normally distributed about the weighted mean of the log relative risks in the 
remaining areas. with variance inversely proportional to the sum of the weights. The 
simplest choice for the weights w,, is to regard any area sharing a boundary with area 
i to be its neighbour with weight 1; all other areas have weight 0. In this case, the con- 
ditional tnean (14.5) reduces to ( I / r i , )  8, and the conditional variance (14.6) 
reduces to ( l/rl,)fift~,where 1 1 ,  is the cardinality (number of neighbours) of area i. Note 
that the C’IGAK prior as defined above has a n  arbitrary level, and is therefore improper. 
The data 0,contain information on the location of each O , ,  leading to a proper posterior. 
However. i f  the model includes a separate intercept parameter, (1, as in (14.2),then i t  
becomes necessary to impose a constraint such as 0,  = 0 to ensure identifiability. 

In practice, it is common to include both unstructured and spatially correlated 
heterogeneity in the same model by specifying two independent random effects accor- 
ding to a convolution Gaussian prior (Hesag, 1989: Hesag and Mollie, 1989). Equation 
(14.2)thus becomes: 

log A, = 0 + d‘s, + B,,, + B ,’,, (14.7) 

where B, , ,  are modelled according to (14.3)and represent unstructured heterogeneity of 
the area-specific relative risks, whilst B, , ,  are modelled according to (14.4)-(14.6~with 
sum-to-zero constraint imposed, and represent spatially structured variation. 

Examples of ecological regression studies that have implemented models of this form 
include Clayton and Bernardinelli (1992),who analyse the effects of urbanisation on 
breast cancer mortality in Sardinian communes. and Richardson et tr l .  (1995), who ana- 
lyse geographical variation of childhood leukaemia in UK districts in relation to natural 
radiation (gamma and radon). See also Best et d.(1998b). Knorr-Held and Besag (1998) 
and Chapters 2, 3 ,  5 1 5  and 26 of this volume for further discussion and application of 
CIGAK and related Bayesian autoregressive models for spatially correlated disease data. 

Spatially dependent covariates may be modelled in a similar manner. The observed 
area-specific covariate is assumed to be a n  imprecise measurement of the true value in 
each area; a CIGAR prior is then specified to model the exposure distribution for the 
unknown true covariate values. This approach is discussed in more detail in Section 
14.3.2, and has been implemented by Hernardinelli r t  d.(1997)and Hernardinelli et d. 
in Chapter 26 of this volume in ecological regression analyses of the association 
between genetic susceptibility to malaria and the incidence of insulin-dependent 
diabetes mellitus in Sardinia. 

14.3 DATA ISSUES 

Inaccuracy and incompleteness of the measurements are major problems in herent in 
most routine sources of health and exposure data available for epidemiological study, 
and may cause severe bias if  ignored during analysis. Bayesian hierarchical models pro- 
vide the necessary general framework for handling missing data and measurement 
error problems. The unobserved data are treated in the same way as the other unknown 
model parameters by first assigning a prior distribution (in the case of missing response 
data, this is simply the likelihood function for the complete data; covariate measure- 
ment error models are described in Section 14.3.2). All unknown quantities (i.e. both 
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the unobserved data and the parameters of interest, such as the regression coefficients) 
are then estimated siiiiziltnrzeoiisly by conditioning on the observed data and applying 
Bayes theorem. This leads to posterior distributions for the regression coefficients that 
fully reflect the additional uncertainty associated with missing or inaccurate data. 
Recent work by Richardson and Gilks (1993a,b), Ilellaportas and Stephens (1995)and 
Best et nl. (1996)illustrate this approach for a variety of applications. 

14.3.1 Numerator and denominator errors 

A specific data quality issue arising in disease mapping and ecological regression 
studies relates to the completeness of the observed number of cases per area (the 
numerator) and to the accuracy of the small-area population estimates used to calculate 
expected counts (the denominator). Problems with the numerator data may arise due to, 
for example. diagnostic coding errors on death certificates or hospital notes, or failure 
of doctors/hospitals/health workers to notify the relevant national or regional disease 
registry of all incident cases of a disease. Often, the resulting pattern of missing data is 
not random, but is systematically concentrated in certain sub-areas of the study region. 

Most published disease mapping and ecological regression studics regard thc 
expected counts in each area as known quantities. Usually, these are calculated from 
census population counts. However, under-enumeration of census populations is a 
recognised problem, whilst migration during the inter-censual years can markedly 
alter the size and composition of small-area populations. Such problems, in turn, lead 
to inaccuracies in the expected number of cases. A further potential source of error 
involves the reference disease rate used in combination with the population data to cal- 
culate the expected counts: again, this is a n  unknown quantity that must be estimated 
from available data. 

The danger of ignoring data quality issues such as the above is that high or low esti- 
mated risks may arise simply as artefacts due to missing cases or inaccurate baseline 
population data. Given suitable prior information, such as annual migration rates or a 
diagnostic coding calibration study, Bayesian missing data/measurement error models 
offer a promising approach by which to adjust for many of these problems. As yet, how- 
ever, little has been published in the context of adjusting for numerator and denomina- 
tor errors in ecological regression studies. 

14.3.2 Covariate measurement error 

Ecological regression studies are traditionally suited to situations where withii~-area 
measurement errors of the exposure of interest are small in comparison with between-
area differences in mean exposure. Nonetheless, accurate measurement of many of the 
environmental and lifestyle-related covariates of interest in geographical epidemiology 
remains a major problem: ignoring such errors may result in biased estimates of the true 
ecological regression slope. Adjustment for such errors may be achieved via the follow- 
ing Bayesian 'errors-in-variables' model. Let zj  and x i  denote the observed and true CO-

variate values in area i. respectively. For continuous variables, the classical measure- 
ment error model assumes that the observed value depends on the true value plus a 
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normally distributed iid random error term with variance o:rror.That is, 

( 14.8) 

Since the data contain no information by which to estimate the error variance, either 
this must be specified a priori by setting o:rror to a constant value or assuming an 
informative prior distribution, or (preferably) ozrrorshould be estimated using a relevant 
calibration sample in which measurements of both z and sare available for some units. 
In addition, a prior distribution must be specified for x,,representing the sampling 
distribution of the true exposure variable in the population. The dependent variable of 
interest is then regressed on the estimated true covariate value x, ,  rather than on the 
observed value t,. 

Bernardinelli ut  al. (1997) describe a Bayesian ecological regression analysis with 
errors in covariates. Their application involves a regression of malaria prevalence on 
the incidence of insulin-dependent diabetes mellitus (IDIIM)for 366 communes in Sar- 
dinia. Recent evidence supports a genetic link between resistance to malaria and the 
Human IJeLlkocyte Antigen (HLA) system, whilst family studies suggest that genes in 
or near the HLA region are involved in susceptibility to IDDM. The observed covariate 
( z / m  =malaria prevalence during the 1938-1940 epidemic) was thus used as an irnpre- 
cisely measured surrogate for the true covariate of interest: namely, genetic adaptation 
of the H L r Z  system to provide greater resistance to malaria. Rernardinelli u t  al. ( 1997)use 
a form of the classical measurement error model (14.8). specifically 

( 14.9)  
( 14.10) 

where log(.ir,/(1 - n,))is the true log odds of malaria in area i between 1938-1940, and 
sI(the true covariate of interest) may be interpreted as a latent variable reflecting the 
average long-term Pndemicity’of malaria in commune i. The log odds of malaria at any 
given time thus fluctuate about the average endemicity with variance k.Bernardinelli r ~ t  
d .  (1997) specify a n  informative prior value for w based on exploratory analysis, and, in 
addition, assume CIGAR prior distributions for both the residual area-specific relative 
risk parameters (see (14.4)-(14.6)) and the prior exposure distribution of the true 
cova riate: 

x,/.Y,+,w N(fi.\.,.of,) .  

( 14.11) 

As noted in Section 14.2.3, this prior distribution is improper, but yields a proper poster- 
ior in the presence of any informative data zj. An alternative formulation is to specify 
s,= p x + E i  ,where p x represents overall mean exposure and is assigned a diffuse con- 
stant prior, whilst Ei is a zero-mean, spatially correlated error term for area i and is 
assigned a CIGAR prior with a sum-to-zero constraint imposed. Bernardinelli Pt al.’s full 
model thus allows for spatial correlation in both the response and explanatory variables. 
Such adjustments were found to increase considerably the magnitude of the estimated 
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regression slope in comparison with a naive analysis using only the observed covariate 
values. A related model is described in Chapter 26. 

14.4 PROBLEMS WITH THE INTERPRETATION OF 
ECOLOGICAL REGRESSION STUDIES 

Even after adjusting for the statistical and data quality issues raised above. great care is 
required when interpreting the results of a n  ecological regression study. Of particular 
concern are the problems of socio-economic confounding and ecological bias. 

14.4.1 Socio-economic confounding 

Measures of social deprivation have been shown to be powerful predictors of the occur- 
rence of many diseases (Jolley et al. 1992). Deprived areas do not occur randomly 
throughout a region, but tend to coincide with industrial sites and busy roads, and cor- 
relate with higher smoking rates. Failure to account for socio-economic deprivation 
could thus seriously bias ecological investigation of the impact of other lifestyle or 
environmental risk factors on ill health. Adjustment may be made by including, say, an 
area-specific deprivation score such as the Carstairs (Carstairs and Morris. 1991) index 
(based on small-area census statistics for the United Kingdom) as a covariate in the eco- 
logical regression analysis. Alternatively, indirect standardisation of the expected small- 
area disease counts can be done by stratifying on the socio-economic status of the areas 
as well as on age and sex. Modelling of spatial autocorrelation between small areas in an 
ecological regression study also provides some control for the effect of confounding due 
to location (recall that the autocorrelated random effects may be interpreted as account- 
ing, at least partially, for residual variation due to unmeasured spatially dependent 
explanatory variables -see Section 14.2.3). 

14.4.2 Ecological bias 

The ecological regression slope estimates the relationship between area-level average 
response (e.g. prevalence of disease) and average exposure to the risk factor of interest. 
However, the quantity of real interest is the average of the within-area regressions of 
individual-level response on individual exposure. The discrepancy between these two 
quantities-namely, the group- and individual-level estimates of risk-is termed the 
ecological bias or fallacy and has been the subject of numerous publications in the 
epidemiological and statistical literature (e.g. Piantadosi et nl. 1988; Greenland and Mor- 
genstern, 1989; Cohen, 1990; Richardson and Hemon, 1990; Plummer and Clayton. 
1996). Richardson (1992) identifies a number of situations in which ecological bias 
may arise, including when the individual-level exposure-response relationship is non- 
linear, or when the individual-level relationship is linear, but area-level con founders or 
effect modifiers lead to different intercepts (i.e. different baseline disease rates for the 
non-exposed) or different slopes (i.e. different exposure-response effects) in different 
areas. 
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Ekological bias may be reduced by improving the assessment of group-level exposure 
to the risk factor within each area. This is particularly important if  the degree of hetero- 
geneity of exposure is large, and/or the individual exposure-response relationship is 
non-linear. One approach is to combine routine area-level exposure data with more 
detailed individual-level survey data (where available) on a sub-sample of the popula- 
tion at risk in order to derive estimates of the full rrinrgirial exposure distribution within 
each area. In situations where an area-level confounder or effect-modifier is known to 
exist, Kichardson (1992)suggests formulating hypotheses on the joirit exposure distri- 
bution of the confounder and risk factor of interest. The modelling of such situations 
requires further investigation. but could be handled within the general framework of 
Bayesian hierarchical and measurement error models. 

On ii similar topic, Best r t  r i l .  ( 1998a)have developed a Bayesian ecological regression 
model that allows response and covariate data to be modelled at different levels of spatial 
aggregation. This is achieved by relating all observable quantities to  a n  underlying con- 
tinuous random lield model, and obviates the need to average covariate data such as 
point source exposures or modelled pollution surfaces to the same geographical scale 
a s  the response. This is particularly relevant for highly heterogeneous exposures, such 
as air pollution or water quality, where fine-scale patterns and local variations in the 
exposure gradient may be important in determining risk. These authors apply their 
model to a n  epidemiological study of the effects of nitrogen dioxide ( N O 2 )  pollution on 
the prevalence of respiratory disorders in children. Here, the response data (cases of 
severe wheezing illness) are located by the grid reference of the child's home postcode, 
whilst population denominator data are only recorded at census enumeration district 
level (c-overing approximately 400- 1000 households) and the exposure data are avail- 
able a s  ii regular grid of modelled N O ?  concentrations t o  a resolution of 250 ni?. 

14.5 TECHNICAL IMPLEMENTATION 

Implementation of Bayesian hierarchical models is technically demanding due to the 
h ig h-d imen siona 1 i n teg ra tions involved i11co nip u t i n g t he req Ui red poste r ior ci i st r ibu-
tions. However, recent developments in computer-intensive Markov chain Monte Carlo 
( MChlC') methods (Smith and Roberts, 1993; Gilks et r r l .  1996a) and Hayesian graphical 
modelling (Spiegelhalter u t  d.1996) have revolutionised the approach and opened the 
way for realistic modelling of complex data structures, such as those that arise in ecolo- 
gical regression studies. These computational methods are implemented in the B1JGS 
software (Spiegelhalter ot  r i l .  1995).which offers a n  appropriate platform for real-time 
analysis of many of the models described in this chapter. 

14.6 CONCLUSIONS 

Ecological regression studies play a n  important role in epidemiology, and have led to 
some notable aetiological insights. In general, however, such studies have been con- 
cerned with hypothesis generation (i.e. qualitative identification of an association) 
rather than quantitative estimation of the strength of a n  exposure-response relation- 
ship. Such caution has rightly arisen due to major problems of bias and misinterpreta- 



Conclirsions 201 

tion inherent in ecological studies. Nonetheless, there are many situations in which an 
ecological model offers the most suitable design for studying the impact of an environ- 
mental or lifestyle-related risk factor on i l l  health; in particular. when assessment of 
individual-level exposure is precluded due to the overwhelming imprecision of available 
measurements. Methodological developments should thus focus on extending and 
improving ecological study designs to handle appropriately such problems. The 13aye- 
sian modelling approach offers a natural framework within which to address this issue. 
In particular, it allows for the modelling of spatial correlation in the response and cov- 
ariate data, and facilitates improved estimation of area-specific exposure distributions 
by adjusting for random measurement errors and enabling routine area-level data to be 
combined with individual-level survey data on exposures of interest. Ho\~e\~er ,  the Haye- 
sian approach is not a panacea; considerable care is required concerning issues such a s  
the sensitivity of the results to the assumed prior distributions. and the assessment of 
the concrergence of the computer simulation algorithms used to estimate the posterior 
distributions of interest. Furthermore, methods for Hayesian model selection and model 
criticism are not well-established, although research on this topic is developing rapidly, 

No statistical model, however sophisticated, can overcome basic deficiencies in the 
data. Where possible, efforts should be made to improve the quality and completeness 
of routine data sources used for epidemiological studies, and/or to collcct additional 
individual-level calibration data to assess the scale of missing data, quantify measure- 
ment errors and assess exposure heterogeneity at the ecological level. Careful choice of 
the outcome and exposure variables; namely, well-defined disease groups ivith short 
time-lags between exposure and onset, should enhance the reliability and [didity of 
the resulting ecological regression. In this context, recently available routine datasets 
such as the IJK Hospital Episode Statistics offer a valuable source of information on 
acute as well as chronic health events. These should be exploited for ecological modcl- 
ling of the short-term effects of environmental exposures on i l l  health, and for the 
purposes of health services research. 

In summary. methodological advances, particularly in the field of Hayesian statistics. 
combined with efforts to improve the accuracy and specificity of epidemiological healt h 
and exposure data, should enhance the ability of ecological analyses to estimate the size 
of disease-exposure relationships, not merely to identify the possible existence of such 
associations. Nonet heless, problems of interpretation and bias remain, and wherever 
possible replication of the ecological studies in different areas or different time periods 
is recommended, 
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15.1 INTRODUCTION 

Modelling disease risk in epidemiological studies often entails the regression analysis of 
mortality data on risk factors. In geographical studies, in order to avoid possible biases 
in the estimation of regression coefficients, the autocorrelation structure of data in 
neighbouring sites has to be considered. 

Disease mapping has developed very quickly in recent ycars, offering a wide range of 
models, most of them based on different extensions of generalised linear models. 
Smoothing techniques have also been applied, but we are assuming here that our final 
goal is to understand the influence of risk factors on disease prevalence and, therefore, 
we will concentrate on regression models. 

The geographical association of data from neighbouring sites may appear as a conse- 
quence of the direct influence of morbidity in contiguous locations (the case of infec-
tious diseases), or because risk factors have a geographical structure, and contiguous 
areas will be exposed to similar levels of risk. 

According to the first of these assumptions, we can model spatial dependence 
between observations directly. It is also a sensible procedure in the second possibility 
as well, because we can consider neighbouring mortality counts to be a surrogate for 
hidden risk factors with a geographical structure. 

Besag’s auto models are well suited to this end but, in spite of their elegant definition, 
the statistical analysis remains difficult. There is still much room for improvement. Only 
auto-Gaussian models have been considered with some extension in disease mapping s o  
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far (Kichardson, 1992; Kichardson rt  i l l . ,  1992), although Ferr6ndiz ut ((1. (1995) use ii 

modified version of the auto-Poisson model. 
The second assumption, that of contiguous areas sharing similar levels of risk factors. 

suggests a hierarchical model where hidden covariates are incorporated through latent 
variables in the second stage of the hierarchy. The spatial autocorrelation is considered 
in the ~riiriance-cocrariance matrix of these latent variables, usually modelled bjr means 
of a multivariate Gaussian distribution. 

Clayton and Kaldor (1987)proposed the empirical Hayes approach of such models, 
while Hesag ut d.(1991)and Clayton and Bernardinelli (1992)developed full Hayesian 
ana1yses. 

The frequentist (empirical-Hayes) approach just mentioned places disease mapping 
into the general framework of the Generalised 1,inear Mixed hlodels (G1,bIhl)(Hreslow 
and Clayton, 1993), and proposes the use of penalised and marginal quasi-likelihood 
functions t o  overcome its difficult statistical analysis. In the same vein, more recent 
works propose different generalised estimating equations (lLlcShane ot id. ,  1997) or 
estimationg functions (Misui and Ixle. 1997). 

Lee and Nelder (1996)extend the concept of GLhfM to that o f  Hierarchical General- 
ised 1,inear blodels, enlarging the use of non-Gaussian distributions for the latent vari- 
ables. The tendency to use non-Gaussian distributions for latent variables is most likely 
to be reinforced in the future (a notable example is lckstadt and Wolpert, 199hL improv-
ing G1,fvlM releviince on disease mapping. This tendency will produce the need for more 
genera 1 1ikeli hood-based nie thods of analysis. 

The Hayesian analysis of GI,R/IMs circumvents the difficulties of deriving exact 
posterior distributions by resorting to Markov chain Monte Carlo (MCMC’) methods. 
This fruitful approach has led in different ways, to ii spatio-temporal analysis of 
disease risk (Hernardinelli vt ( t l . ,  1995b: Waller r’t d.,199%) and to ii regression 
analysis with errors in covariates (Hernardinelli r t  i l l . ,  1997. and Chapter 26 in this 
Lrolume). 

In either case, with Hesag’s spatial auto models or GI,MMs, we face difficulties derived 
from a n  incomplete knowledge of the likelihood function or the posterior density. 

The analysis of these complex models can benefit from MCMC optimisation techni- 
ques that have been receiving increasing attention in the literature. Geyer and ‘I’hornp-
son ( 1992) achieve the maximum likelihood estimation of Gibbs distributions by 
optimising hICMC approximations of the likelihood function (seealso Geyer. 1996).This 
is particularly useful with models defined via full conditional distributions, iis in the 
case of Hesag’s spatial auto models. Cibbs sampling is well suited to perform the required 
s i mu 1ii t ion steps. 

In ii resembling line, Ferriindiz ut tr l .  (1995)use hWMC estimation of the derivatives of 
the likelihood function to perform Fisher’s scoring maximum likelihood estimation for 
i i n  auto-Poisson model. Their approach is based on some guidelines developed in Pentti- 
nen (1984)for point processes. 

hlore recently. McCullogh (1997)has proposed a Monte Carlo Newton Kaphson proce- 
dure to achieve the maximum likelihood estimation in GLMhls. 

ILICMC optimisation techniques can be applied in ii very wide range of situations. Pro- 
vided the likelihood function is smooth. the only requisite is a simulation procedure 
for the niodel. hlarkov chain simulation techniques have dramatically enlarged the 
scope of models susceptible to such treatment. 
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In this chapter we further explore the use of MCMC optimisation techniques 
proposed in Ferrhndiz et d.(1995),and extend its use to the Bayesian framework, follow- 
ing a scheme close to that developed in Heikkinen and Penttinen (1995) for point 
processes. 

In particular, we consider the truncated auto-Poisson model in the analysis of 
prostate cancer mortality inValencia (Spain). We have performed the regression analysis 
of mortality data by considering age and nitrate contamination of drinking water as 
covariates. The main goal is to determine the possible influence of this contamination. 

In Section 15.2 we present the truncated auto-Poisson distribution jointly with alter- 
native models to be used in a subsequent comparative study. In Section 15.3 w e  describe 
the proposed MCMC optimisation procedure in general terms. 

In Section 15.4 we describe the results obtained in the analysis of prostate cancer 
mortality in Valencia from a frequentist viewpoint. We compare maxinium pseudo- 
likelihood with MCMC maximum likelihood, and discuss how the inclusion of spatial 
dependence in the model makes contamination of drinking water non-significant at 
the usual levels. Similar results are attained when we perform a Bayesian analysis of 
the same model. 

To compare this last result with a widely accepted standard, we have adjusted GLMM 
to the same data from a Bayesian perspective along the lines of Mollie (1996).Uk then 
discuss the results obtained under both models. 

15.2 TRUNCATED AUTO-POISSON VERSUS RANDOM 
EFFECTS POISSON REGRESSION 

The Poisson distribution is widely accepted for modelling mortality counts in small 
regions. Thanks to the Generalised Linear Models (GLM)framework, Poisson regression 
is the first candidate to be considered in the analysis of mortality risk factors. 

If we denote by y the random vector of mortality counts defined on a spatial irregular 
grid Sof s fixed location, and X j  stands for the vector of values of covariates in location i. 
Yoisson regression can be described as 

[uiIx,]  - Po(X,). i = 1, .. . ,s independent, (1 5 .1)  
jlog^ = P’x j .  ( 1 5.2) 

In cases where spatial interdependence of mortality counts is suspected. two main 
generalisations of Poisson regression can be stated, depending on the way this inter- 
dependence is established. 

15.2.1 Truncated auto-Poisson model 

It we model spatial interdependence as a direct influence between neighbouring loca- 
tions. then the full conditional distributions of the mortality count in each location 
given those in the remaining sites, 
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constitute tin intuitive tool in order to build the joint distribution, 

( 1  5.4) 

Here 8 denotes all unknown parameters as well as covariates, while y I stands for the 
subvector {!g, : j E S, j # i} of all observed counts but that of location i. This subvector 
can be reduced to the smaller set of locations that are suspected to influence location i. 
Equation (15.4) expresses the joint density y(y 18) in terms of h(y IO ) , the logarithm of its 
kernel, and c(O), the corresponding normalising constant. 

Hesag’s (1974)auto models take p(ylIy ,.0) in the exponential family and limit the 
complexity of h(y18). In particular, choosing the full conditionals a s  Poisson, we get 
the auto-Poisson model described as: 

( 1  5 .5)  

( 1  5.6)  

The autoregressive coefficient is null whenever gJdoes not contribute to the full con- 
ditional of !/,. 

Equation (15.6) is the same as (15.2) but with autoregressive terms added. This char- 
acteristic makes the auto-Poisson distribution a natural autoregressive extension of t he 
f’oisson regression model. The condition of iiidcpe,irlc)ic,e in (15.1) disappears i n  ( 15.5), 
making the statistical analysis much more difficult. 

Full cwnditionals (15 . 3 ) arc helpful when modelling the spatial dependence between 
neighbouring sites. The main caution is to verify the existence of the normalising con- 
stant (*(e),needed to make ( 15.4) a probability density function. For the auto-f’oisson 
distribution, (~ (0 )is defined only if  q l ,  < 0, thus limiting its use to model inhibition (see 
Hesag, 1975). 

lVe can recover the possibility of positive interactions i f  we truncate the Poisson dis- 
tributions to a limited range. If we are working with mortality data, then we can restrict 
l’oisson counts !jI to be smaller than the living populations r i l .  Thus (15.5)would become 
a n approximate binomial model with ii large number of trials and a very small probabil- 
ity of success. 

‘I’herefore,we propose the truncated auto-I’oisson model, substituting ( 15.5) \iTith 

P ( ! j l  IM 1’8) = PO(!/, lAl)I{!,, 5 , l , } ( ! h ) >  i E s, ( 15.7) 

where PO(.I A )  stands for the corresponding Poisson density and I.\(:) denotes the indi- 
cator function of the set 2 E A. 

In so far 21s our statistical procedures rely on simulation techniques. they remain 
unchanged when this truncation rule applies. All we have to do is to reject simulated 
values exceeding the established threshold. I t  is a pleasant characteristic o f  these 
methods. They are applied with the same ease a s  soon a s  we are able to simulate the 
mode1. 

On the other hand, i f  we kept all autoregressive coefficients q , , distinct in (15 .6) .  ~ ~ 7 e  
would face a n  overparameterised model. To avoid this identification problem, we pro- 
pose the following simplilicat ion: 

31, = 341,. ( 15.8) 
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Here q l ,  is a known value depending on the characteristics of proximity between the 
pair of locations i and j. In our case study, to be presented later in the chapter, we 
have taken 

as a function of populations II i  and 12j and geographical distance di,.We have reduced the 
number of neighbours in each location by setting llij to zero if i t  is smaller than a 
previously specified threshold. 

15.2.2 Random effects Poisson regression 

If we model spatial interdependence through latent variables, then we are in the 
domain of hierarchical GLMs. Among the many possibilities available, we have 
followed the guidelines of Mollie (1996). After Besag et d. (1991) and Clayton and 
Bernardinelli. (1992),it has become a well accepted model. I4’e can use i t  a s  a compara-
tive reference to judge the performance of the previously described truncated auto- 
Poisson model. 

We have chosen the model 

[,lrlIy-,.8]- Po(X,). i E S,  (15 .10)  
logX, = p ’ x ,  + l i I  + \’,, 

U - N ( 0 . 0 ~ 1 ) .  

v - N ( 0 , r 2 W - I ) .  

( 1  5.1 1 )  

( 1  5.12 )  

( 15.1 3 )  

Equations (15.12) and (15.13) state the distributions of the latent variables in the sec- 
ond stage of the hierarchy. The ziIsare location-specific random effects allowing for Pois-
son extra-variance, while the v,s carry out the spatial interdependence through their 
variance-covariance matrix r 2W -’.We have based the off-diagonal elements w,/,of 
the precision matrix W; on criteria similar to those in (15.8),to facilitate the comparison 
with the auto-Poisson model. Instead of choosing w l ,as the usual indicator function of 
the geographical contiguity of locations i and j ,  we have taken i t  to be one whenetw the 
proximity index qll in (15.9) exceeds a predetermined threshold, and zero in the other 
case. The choice iv11 = -C,,,+I\ V j /  will make (15.13) an intrinsic autoregressive prior 
distribution (Besag and Kooperberg, 1995). 

To perform a full Bayesian analysis of this model, we have specified prior distributions 
for all the unknown parameters p, o2and T ~ .We have followed the usual conjugate 
normal-gamma scheme, 

p -N(b.B ) ,  o-2 - Ga(ri,d ) ,  V 2- Ga(o.f). ( 1  5.14) 

which will allow Gibbs sampling of the posterior distribution later in the chapter. 
The hyperparameters b, B,  0, (1, r and f of these priors are fixed, and have to be 

assessed in the initial steps of the analysis. They are chosen to barely affect the 
likelihood function, but are needed to allow the implementation of the Bayesian 
learning process. 
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15.3 MODEL FITTING USING MONTE CARLO 
NEWTON-RAPHSON 

The main problem in the statistical analysis of Besag's auto models relies on the inacces-
sibility of the normalising constant 4 8 ) of (15.4).It involves the parameters of the model 
p(y  18).Without c(0) we cannot perform direct likelihood-based inference, or compute 
the Bayesian posterior distribution of these parameters. 

Nevertheless, Monte Carlo techniques enable the possibility of circumventing this 
difficulty by estimating the likelihood function (or its main characteristics such as 
gradient and Hessian). 

15.3.1 Monte Carlo Newton-Raphson 

To simplify the notation, let the log likelihood and log posterior be expressed as 

where y(8) stands for the prior density of the parameter vector 8,and p(y)denotes the 
predictive density J'p(yI8)y(8)dB 

To find the maximum likelihood estimation 6 ,  Newton-Kaphson is a widely used 
optimisation algorithm. Starting from a first guess 8("), it  proceeds in updating steps 

0(rrlt11 -- o(rrl)- [1:(8'rr1))]' l L ( O ( r r l ' ) ,  111 = 0, 1 , . . . , ( 1  5.1 7 )  

where, lb(8'"l')and 1z(8irr")are the gradient and Hessian of the log likelihood function 
evaluated at 0'"'). 

Provided the (quite general) conditions are met for exchanging the deriirative and 
integral operations, it can be shown that 

log C(8) = E [h;(U I 8) I 81, ( 15.1 8) 
D ~ l o g c ( 8 )= var[IrL(y(8)/8]+ E[h:(yl8)(8]. ( 1  5.19) 

where Zlo and Zli denote the gradient and Hessian of the function just to their right. as 
does the prime and double prime notation on lr(y18).The operators E [ .  181and var [ .  181 
denote the expectation and dispersion matrix of their arguments, given the value 8 of 
the parameter vector. 

These last equations relate the derivatives of the log constant to the sampling 
moments of / I ;  and h:(yl8). Thus, although we could not derive them from the full 
conditionals specification (153) ,  they can be estimated from any simulated sample 
{y") : i = 1 , .  . . , r }  of our model. 

These estimates can then replace their unknown theoretical values to provide the 
corresponding estimates, 
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of the gradient and Hessian of the log likelihood function. These can be used in (15.17), 
in turn, to give a n  approximate updating step. 

The same reasoning applies to the posterior mode 8, if we consider the log posterior 
function L(0) instead of the log likelihood l(0).They differ essentially in the log prior 
term only, which we presume to be totally known. Then, 

and we can proceed with the Newton-Raphson algorithm as before. 
In the truncated auto-Poisson model of Section 15.2, it can be shown, following the 

steps in Cressie (1993,Section hS),  that 

~ ~ ( B I ~=) P’X’B + ~ / ~ T Y ’ Q Y- log(^^^!)- (1  5.24) 
i 


where X stands for the design matrix of covariates, the off-diagonal elements ql ,  in Q are 
those of (15.8),and q j j  = 0. 

Therefore, taking 8 = (B. 7 ) ’  and t = (X‘g,y’Qy)’,(15.20)and (15.21)become 

(15.2 5 )  

(15.26) 

to be incorporated in the updating step (15.17). 

15.3.2 Monitoring convergence 

Given the specification (15.3)of our model via full conditionals, Gibbs sampling is espe- 
cially well suited to produce simulated samples. Then, we have to supervise the conver- 
gence of each run to the stationary distribution to ensure that the generated sample is 
representative of our model.We have followed the proposal of Gelman and Rubin (1992b) 
of simultaneous multiple sequences. 

In our case these Gibbs sampling runs are embedded in the sequence of updating 
steps of the Newton-Raphson algorithm, which has to be supervised for convergence 
as well. To this end, imitating the previous approach, we make simultaneous sequences 
of the optimisation process. Comparing their evolution, we can control the speed of the 
convergence, and verify when the random variability of the simulation mechanism 
impedes any further improvement in the precision of the estimates. Then we can 
either increase the sample size of the simulated sequences, or stop the process i f  we 
agree with the precision reached. For a more detailed discussion, see FerrAndiz and 
Lopez (1996). 

15.3.3 Approximate log likelihood and log posterior 

It the maximum likelihood estimator is unique, then we can take advantage of the by- 
products of the optimisation process. Using Taylor expansion around this optimum, up 
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to terms of second order, we obtain a quick approximation of the likelihood function (up 
to a multiplicative constant), 

I(8) = p(&l) a Kexp{-1/2(8 - 6)’[l;i(8)](6- 6)) .  ( I  5.27) 

Then we can obtain support regions, (0  : l ‘ (8 )> 01, containing a prescribed amount 
of the total volume under l ( O ) ,  etc. 

Although, under mild spatial interdependence of the observations. we can expect 
these support regions to be close to the corresponding confidence sets, this is not guar- 
anteed. To estimate the sampling variance of 6 we have to resort to bootstrap methods, 
simulating the estimation process for a sample of realisations y(r)generated from 
P(Y16).

In the Bayesian framework, a similar Taylor expansion around the mode 8 leads to 

[Oly]M N(6,  [Z.:(8)] ’). ( 1  5.28)  

Then we can build joint or marginal credible regions, etc. 

15.3.4 Alternative fitting methods 

To perform the statistical analysis of spatial auto models, avoiding their unattainable 
likelihood, Besag (1975)proposed the use of the pseudo-likelihood function obtained 
a s  the product of all full conditionals in (15.3). When the spatial interdependences 
between the observations are small, the situation approaches that of a random sample 
whose likelihood is the product of the likelihood of individual observations, and we can 
expec-t pseudo-likelihood methods to behave well. 

The pseudo-likelihood function has a clear advantage in practice: the full condi-
tionals in (15.3) are in the exponential family, and the pseudo-likelihood analysis can 
be performed using the common routines of GLMs. They are implemented in most of 
the modern statistical packages, and all we have to do is to let the program think that 
the autoregressive terms in (15.6)are new covariates. The GLM routines will perform 
max imu m pseudo -Iike1ihood , wi11 compute pseudo -d e v i a nc e s for com p e t i ng nested 
models. etc. 

In the Hayesian context we are not aware of any general alternative to the proposed 
procedure for the auto-Poisson model. Methods based on Gibbs sampling from the pos- 
terior p(8 1 y) need the specification of the full conditionalsy(O,l8 ,. y) and it is not clear 
how to get them when the normalising constant c(O) remains unknown. 

In the random effects Yoisson regression model, we can perform Gibbs sampling from 
the posterior because of the normal-gamma conjugation property between the second 
and third stages of the hierarchy. However, this possibility is heavily dependent on this 
condition. 

15.4 PROSTATE CANCER IN VALENCIA, 1975-1980 

The Public and Environmental Health unit at the IJniversity of Valencia detected a dif- 
ference in mortality trend betweenValencia and the other provinces in Spain for some 
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types of cancer (see, for example, Morales et aZ., 1993). They presumed that the high con- 
centration of nitrate in drinking water, caused by the intensive agricultural activity of 
Valencia, could be a possible risk factor. 

Here we apply the methods outlined in the preceding sections to the prostate cancer 
mortality in Valencia, in its 263 municipalities, for the period 1973 -1980. The data were 
partially analysed in Ferriindiz et al. (1995). The data of nitrate concentration were taken 
from Llopis (1985). 

We have stipulated mortality counts following (15.7) and (15.8) as a truncated auto- 
Poisson model, to allow for positive interactions. The proportion of the population older 
than 40, and the nitrate concentration in drinking water (mg/l) have been added as pos- 
sible covariates to the logarithm of the population, which is always included as an offset. 
Then, the most complete model will be 

The pseudo-likelihood approach via GLM produces the analysis of deviance results 
shown in Table 15.1. The row labelled Deviance shows this quantity for the model corre- 
sponding to each column (when the model includes the autoregressive term, the 
deviance becomes pseudo-deviance). The remaining rows show how this deviance 
decreases when the term corresponding to this row is incorporated into the modcl 
labelling the column. 

We can appreciate how nitrate concentration is significant in the presence of age, 
although not as much as the autoregressive term. Once this last term has been incorpo- 
rated, the nitrate concentration becomes non-significant. 

Table 15.2 shows the estimates and 99%) confidence intervals of the regression 
coefficient of the nitrate contamination. The first row corresponds to the maximum 
likelihood estimate in the Poisson regression model, with age and nitrate as covariates. 

Table 15.1 Pseudo-likelihood analysis 

Analysis 
Of 
deviance Age 

Age
+ autoregression 

Age
+ autoregression 

+ nitrate 

Deviance 361.8 347.1 343.9 
+ autoregression
+ nitrate 

14.7* 
7.9 * 3.2 

* Significant at the 0.01 level. 

Table 15.2 Estimates of the Nitrate regression coefficient 

Method Estimates ( x  10-3 )  99%C.I.( x 1 0 - 3 )  

Poisson regression 2.09 [0.25, 3.901 
auto-Poisson (MYL) 1.41 [ -0.56, 3.391 
auto-Poisson (MCML) 1.50 [ -0.42, 3.421 (sup. reg.) 
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Maximum pseudo-likelihood (MPL) and Monte Carlo maximum likelihood (MCMI,) esti-
mates for the auto-Poisson full model are shown in the two remaining rows. In the last 
case. the confidence interval is a support region. 

We see how the inclusion of the autoregression term decreases the influence of the 
nitrate factor, making its relevance less plausible, although it still remains near the 
usual significance thresholds (chi-square p-value = 0.074). Being a case of regression 
variable selection, a possible confounding effect between the nit rate and the autoregres- 
sive terms could be partially responsible for this. 

The disagreement between the maximum pseudo-likelihood and the MCML estimates 
is small for practical purposes, and we consider that, in this case, pseudo-likelihood 
analysis is reliable. 

From a frequentist viewpoint, we could not compute the confidence intervals of the 
regression coeflkients directly from the log likelihood approximation (( 0). M’e face ii 
finite grid of locations and its is not clear how we can benefit from asymptotics in these 
kinds of situations. The estimation of standard errors by parametric bootstrap is still too 
demanding given the current technology. 

‘11)this end, things are much easier if we adopt the Hayesian paradigm. All relevant 
information is contained in the posterior density, and we have the approximate poster- 
ior distribution (15.27)at our disposal. 

In fact, Hayesian analysis following (15.27)leads to a posterior mode of 2.50  x 1 0  ’ of 
the nitrate coefficient. and -0.38 x 10 ’, 3.38 x 10 $1 as its posterior 99% credible 
interval. The use of a very flat prior has produced this agreement with the maximum 
1ikeli hood res u 1ts. 

‘I’o judge the performance of the auto-Poisson model, we compare its results with 
those obtained with the random effects Poisson regression model of Section 16.2.2. The 
random effects Poisson regression have been analysed via Gibbs sampling from the pos- 
terior. We have used the same prior distributions for the regression coefficients of age 
and nitrate contamination as in the Bayesian analysis of the truncated auto-hisson 
model in order to make them more comparable. 

Figure 15.1 shows the posterior density of the regression coefficient of nitrate concen- 
tration (in the presence of age and spatial interaction) for both models. The histogram 
reports the sample obtained from the posterior of the random effects model, and the 
superimposed density (continuous line) corresponds to the auto-Ibisson model. 

We can see a good agreement in location between both distributions. The estimated 
mean is 1.50 x 10 ’ for the auto-Poisson model and 1.69 x 10 ’ for the random effects 
model. Nevertheless, the hierarchical model produces wider confidence intervals 
(variance= 8.56 x 10 ‘1 than the auto-Poisson (variance = 5.37 x 10 :). 

This fact could be partially explained by the local quality of the approximation based 
on ‘Iaylor expansion in the posterior of the auto-Poisson model. I t  can capture the cen- 
tral region of the posterior density better than their tails. Nevertheless, this behaviour 
was also to be expected because of the inclusion of extra-Poisson variability terms in the 
random effects model. 

In particular. the interesting value ; j 2  = 0 lies outside the 95% credible interval fol- 
lowing the auto-Poisson model (P{b j 2  < 0 1 ~auto-Poisson} = 0.020), and the opposite 
is true if we consider the random effects Poisson regression model (P{L‘31< 
0 Ig GLMM} = 0.036). Nevertheless, both posterior distributions lead to 99‘X credible 
intervals containing the value d 2  = 0. 
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Figure 15.1 Posterior densities of the nitrate regression coefficient 

Despite the quantitative differences in results reached for both models, they agree in 
essence with respect to the nitrate coefficient. They are saying that although there is no 
clear evidence of its influence, we cannot discard the revelation of a possible relation- 
ship through an improved model or a longer temporal series of new data. 

To judge the whole relative merits of both models we have to compare them in a global 
sense. A usual Bayesian tool to compare non-nested competing models is the Bayes fac- 
tor, Considered as the ratio of posterior to prior odds in favour of one model over the 
other, it reduces to the ratio of predictive distributions for the observed data, 
p(y 1 rno&Zl)/p(y I rnode12). 

How to estimate Bayes factors with MCMC techniques is still a n  open problem, and 
constitutes a very active area of research. Here we adhere to Gelfand's (1996) proposal 
of estimating the pseudo-Bayes (PBF) factor instead: 

(15.30) 

Each factor p(y, Iy-,,model) = Jw(uj Iy-,. 8, model)p(81yp,, mode1)dO in the 
numerator or denominator of (15.29) has to be estimated by Monte Carlo. For each loca- 
tion i we need a sequence 8 ( r )of simulated values of the parameters, taken from the 
distribution p (  8 I y model). Gelfand (1996) proposes a n  importance sampling techni- 
que in order to use only one sequence for each model, generated from the posterior 
distribution given all data p ( 8  I y,model). 

The Pseudo-Bayes factor modifies the Bayes factor in much the same way as pseudo- 
likelihood does with the likelihood function. It is easier to compute when the model has 
been specified via full conditionals, and its estimates, based on MCMC sampling of the 
posterior, are more stable than those for the Bayes factor. 

In our case, RIICMC sampling from the posteriors produces a n  estimate for the pseudo- 
Bayes factor (15.29) of 2.34 in favour of the truncated auto-Poisson model. We have to be 
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Figure 15.2 Estimated predictive posterior cumulative probabilities k(g, 1 y -,. model). (a) Auto- 
Poisson; (b)random effects Poisson regression 

cautious when interpreting this figure, given its stochastic nature. What it means to us 
is that both models are quite similar in capturing the spatial nature of our data. It seems 
that the more flexible structure of the GLMM, due to the Poisson extra-variance induced 
by its random effects, has been compensated for by a better proximity index (15.9)in the 
autoregressive model. In fact, we have tried the truncated auto-Poisson model using the 
weights wIlof the precision matrix W i n  (15.13) instead of the proximity indexes (15.9) 
and we have obtained a much poorer fit. Compared with the previous models it gives a 
pseudo-Rayes factor of 527.03 in favour of the proximity index (15.9),and pseudo-Bayes 
factor of 224.80 in favour of the random effect model. 

To detect locations that deviate from the model, the estimated values E(yl J Y - ~ ,  
model), of the predictive posterior cumulative probabilities, are very useful. They show 
how the fitted model predicts the observed mortality count of every location. In Figure 
15.2 we can see the quantile maps of these posterior predictive distributions for both 
models. They are quite similar. 

15.5 DISCUSSION 

In the prostate cancer study developed in the previous section our main interest focused 
on the influence of a risk factor. Point estimation of its regression coefficient has proved 
to be quite stable with regard to modelling spatial interactions as autoregreesive or ran- 
dom effect terms. But confidence intervals differ substantially. Therefore we should con- 
sider the model to fit carefully in every case, and methods of comparing non-nested 
competing models deserve more attention. To this end, estimation of the pseudo-Bayes 
factor is a suggestive tool in the Bayesian context, although its properties have not yet 
been fully studied. In our case, both models have shown similar results. The truncated 
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auto-Poisson model can be improved by including random effects allowing for extra- 
Poisson variability and the GLMM proposed in this chapter can be improved by trying 
a better precision matrix of the spatial random effects. 

Autoregressive models can capture the effect of hidden risk factors with spatial struc- 
ture through neighbouring mortality counts. Its use can be better justified when these 
spatial interactions between neighbouring sites obey a natural process, as in the case of 
infectious diseases. They are quite sensitive to the specification of the spatial autocorre- 
lat ion structure. 

If the spatial autocorrelation is not very strong, pseudo-likelihood analysis seems reli- 
able, quick and easy. In other cases we have to resort to simulation methods like Monte 
Carlo Newton-Raphson, as proposed in this chapter. 

Markov chain simulation techniques have revived Monte Carlo optimisation proce- 
dures, which have proven to be reliable and cover a wide range of practical situations. 
They produce approximate likelihood functions and posterior densities. It  we adopt the 
frequentist paradigm of statistics, they need to be complemented with standard error 
estimators, which could be attained via the parametric bootstrap of the fitted models, a 
lengthy computing task. In the Bayesian framework, they are still useful when a un- 
attainable normalising constant impedes the implementation of MCMC sampling from 
the posterior, as in the case of the truncated auto-Poisson model. 
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16.1 INTRODUCTION 

Multilevel modelling is a form of random coefficient modelling which was first used in 
an  educational setting (Goldstein, 1995). It is appropriate for data that have a natural 
hierarchy, such as educational data, where pupils are nested within classes within 
schools. However, it is also appropriate for geographically distributed data, where we 
may have individual cases of diseases nested within households, within postcode sec-
tors, and so on. At larger scale, we may have ecological models where data are collected 
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in larger administrative units, such a s  local authority districts. which are in turn nested 
within regions and nations. There are several examples of multileivl modelling being 
used in environmental and geographical epidemiology now appearing in the literature 
(see Langford et t r l . ,  1998).Epidemiologists are increasingly using more complex tneth- 
ods of statistical analysis to investigate the distribution of diseases (Elliott ot nl.. 1992b. 
1995).and the motivation behind this chapter is to introduce a multileid modelling 
framework which also allows for the analysis of complex spatial processes such :is: 

( i )  spatial autocorrelation in a Poisson generalised least squares model, and 
(ii)  simultaneous modelling of spatial effects that occur at different scales in ii geogra-

p h ic a 1 h iera rc h y. 

In the example given in this chapter we concentrate on investigating data that consist of 
observed and expected counts of disease occurring in discrete spatial units. Hence, for a 
sample of geographical areas we have a number of cases occurring within a distinct 
population at risk in each area. Whether we are embarking on a n  exploratory analysis. 
where we are simply interested in producing a map of the relative risks of disease. or an 
inferential analysis, where we are interested in investigating potential causal factors, i t  
is useful to break down the likely effects on the distribution of a disease into three 
separate categories: 

( i )  Within-area effects, such as social characteristics of the population at risk. Since we 
are modelling aggregated data, we do not have information on individual cases, 
although we may have aggregate information on the mean and variance of social 
indicators such as income, employment and so on for each area. However, we can 
at least model these unmeasured variables by allowing for extra-Poisson variation 
in our model. 

( i i )  Hierarchical effects. These are due to the fact that small areas are grouped into lar- 
ger areas, for administrative purposes. or for cultural and geographical reasons. For 
instance, in the example we present on mortality from prostate cancer in Scotland, 
local authority districts are grouped into Health Boards, which have different meth- 
ods of treatment or classification of a disease, or different ascertainment rates. 
Again, if  we have accurate information on these factors, then we could include them 
directly in the model, but we can allow for random iwiation between € k i l th Hoards 
even if we do not know the direct causes of this variation. 

( i i i )  Neighbourhood effects. Areas that are close to each other in geographical space 
may share common environmental or demographic factors which influence the 
incidence or outcome of disease, but have a smoother distribution than that of the 
disease. For example, climatic factors such as temperature may vary between differ- 
ent part of a nation, but not at the smaller scale of ii local authority district. In addi- 
tion, as areas are usually formed from geopolitical boundaries that have nothing to 
do with the disease we are interested in, we may wish to spatially smooth the dis- 
tribution or relative risks to remove any artifactual variation brought into the data 
by the method of aggregating the data. 

The use of empirical Bayes and fully Hayesian techniques has allowed for alternative 
models of spatial and environmental processes affecting the distribution of a disease 
which rely on different underlying beliefs or assumptions about aetiology (Bernardinelli 
ct u l . ,  1995~1;Hernardinelli and Montomoli, 1992; Cisaghli ct nl.,  1995: Clayton and 
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Kaldor, 1987: Langford ct al., 1998; Langford, 1994; 1995: Lawson, 1994: Lawson and 
M'illiams, 1994; Mollie and Richardson, 1991; Schlattmann and Bohning, 1993). Two 
main statistical techniques have been used to model geographically distributed health 
data in this way. The first is Markov chain Monte Carlo (h4CMC) methods. using Gibbs 
sampling (Gilks ('r d , ,1993) often fitted using the BITGS software (Spiegelhalter or ( I ! . ,  

1995), which can be used to fit fully Hayesian or emprical Haycsian models. The second 
set of methods is multilevel modelling techniques based on iterative generalised least 
squares procedures ( I G I S )  and are the focus of this chapter. 

In the following section we discuss the basic multilevel Poisson model. and develop a 
computational method for modelling spatial processes within the software package 
MLn. hl1,n (for MS-DOS and Windows 3.1) and its successor MLwiN (for \Yindows 97 
and NT) are widely used tools for multilevel modelling. and information about them 
can be found from a number of websites worldwide; for information, see h t  t p  :// 
www.i o e .  a c  .uk/mult ilevel/.We then present an exaniple of how our model can 
be used using morbidity data for prostate cancer in Scottish local authority districts. 
and comment on how the results may be interpreted. The discussion section then 
focuses on methodological and substantive issues in ii more general setting. and 
discusses work in progress to generalise the procedures we have dcidoped. 

16.2 DEVELOPING A POISSON SPATIAL MULTILEVEL MODEL 

The basic model of fixed and random effects described by Goldstein (1995)and lJrcsIo\t~ 
and Clayton (1993) is 

Y = XJ + ZO. ( 1 h . l )  

with a vector of observations I' being modelled by explanatory variables S and iisso- 
ciated fixed parameters 3, and explanatory variables Z with random coefficients 0. The 
fixed and random part design matrices X and Z need not be the same. 8 is assumed to 
contain a set of random error terms in addition to other random effects. Goldstein (1995) 
describes a two-stage process for estimating the fixed and random parameters (the var- 
iances and covariances of the random coefficients) in successive iterations using IGLS. A 
summary of this process follows. 

First, we estimate the fixed parameters in a n  initial ordinary least squares regression, 
assuming the variance at higher levels on the model to be zero. From the vector of resi-
duals from this model we can construct initial values for the dispersion matrix 1: Then, 
we iterate the following procedure, first estimating fixed parameters in a generalised 
least squares regression as 

(xTv- 'x)- ' Y  ( 16 .2 )  

and again calculating residuals Y = Y - X6. By forming the matrix product of these 
residuals, and stacking them into a vector, i.e. Y* = vec (Y Y r r ) ,we can estimate the var- 
iance of the random coefficients 8 , ~= cov (0) as, 

(16.3)  

where V * is the Kronecker product of\! namely V "  = V V,noting that I'  = Ii(?i'''),% *  
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is the appropriate design matrix for the random parameters. Assuming mult ivariate 
Normality. the estimated covariance matrix for the fixed parameters is 

cov (J) = (X'"V ' X )  I .  ( 1h .4 )  

and for the random parameters, Goldstein and Kasbash (1992) show that 

cov (5 )  = 2(2*"V* I,*) l .  (10 .5)  

We can therefore estimate random parameters, and their variances, in the same way as 
we estimate fixed parameters and their variances from the model. To compare what we 
are doing with ordinary least squares resgression, we are extend the process by model- 
ling the random part of the model with respect to the structure of our data. estimating a 
set of parameters rather than simply having a residual error term. 

However, we now need to develop a model for the relative risks of a disease. I f  we con-
sider a population of areas with 0, observed cases and !:, expected cases and relative 
risk 0, = O,/L' , ,where E ,  may be calculated from the incidence in the population N ,  
for each area as 

and may be additionally divided into different age and sex bands, then we can write the 
basic Poisson model as 

0, - Poisson(p,), 
log(p,) = log(!{,) + (1  + X I J  + [ I ,  + \.'I. ( 16.7)  

where log(E,)is treated as an offset, IL is a constant and s ,  is an explanatory variable 
with coefficient J (this may be generalised to a number of explanatory variables). We 
take account of the distribution of cases within each area by assuming that the cases 
have a Poisson distribution. In contrast, the p ,  represent heterogeneity effects between 
areas (Clayton and Kaldor, 1987;Langford, 1994), which may be viewed as constituting 
extra-Poisson variation caused by the variation among underlying populations at risk in 
the areas considered. The v ,  are spatially dependent random effects, and may have any 
one of a number of structures describing adjacency or nearness in space (Hcsag ut d., 
1991). Hence, we have a hierarchical model where within-area effects are modelled with 
a Poisson distribution (the first line of (16.7))and relative risks between areas are con- 
sidered as having a lognormal distribution (the second line of (16.7)).Other formulations 
for spatial effects are possible using normal approximations with covariancc priors 
(see,for example, Besag et d.,1991; Bailey and Gatrell, 1995;Lawson et al., 1996). 

Before discussing the structure of these spatial effects, we must first account for the 
fact that we have a non-linear (logarithmic) relationship between the outcome variable 

d the predictor part of the model. There are two options: 

I f  the cases in each area are sufficiently large, say 0, > 10,then it may be reasonable 
to model the logarithm of the relative risks directly (Clayton and Hills, 1993),assum-
ing these follow a Normal distribution. In this case, heterogeneity effects can be 
accommodated by weighting the random part of the model by some function of the 
population at risk in each area. 
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( i i )  When the Normal approximation is inappropriate, we can make a linearising 
approximation to estimate the random parameters. If we take the case of having het- 
erogeneity effects only for the sake of simplicity, we can estimate the residuals ii, 
from the model using penalised quasi-likelihood (PQI,) estimation with a second- 
order Taylor series approximation (Breslow and Clayton, 1993;Goldstein, 1995:Gold-
stein and Rasbash, 1992). After each iteration t we make predictions H ,  from the 
model, where H t  = X l < j l+ ill,and hence use these to calculate new predictions for 
iteration t + 1,so that 

( 16 . 8 )  

where the first two terms on the right-hand side of (16.8)provide the updating func- 
tion for the fixed part of the model, andf ( . )  is a link function. The third term com- 
prises a linear random component created by multiplying the first differential of the 
predictions by the random part of the model, and the fourth term is the next term in 
the Taylor expansion about H t .  For the Poisson distribution: 

Hence, at each iteration we estimate about the fixed part of the model plus the residuals. 
A full description of this procedure can be found in Goldstein (1995)and Goldstein and 
Rasbash (1992). This can lead to problems with convergence, or with the model ‘blowing 
up’ if some of the residuals are particularly large. In these cases, the second-order term 
in (16.8)can be omitted, or, in extreme cases, estimates can be based on the fixed part of 
the model only. This latter case is called marginal quasi-likelihood (bKJIJ:Breslow and 
Clayton, 1993; Goldstein, 1995), but may lead to biased parameter estimates. Howeiw. 
bootstrap procedures can potentially be used to correct for these biases ((:oldstein. 
1996a,b; Kuk, 1995). For (16.7)we substitute ill + C p j  for iil,in (16.8)and (16.9) 

There are several possibilities for specifying the structure of the random effects in the 
model (see, for example, Besag et al., 1991, and Bailey and Gatrell, 1995). These models 
assume two components, namely a random effects or ‘heterogeneity‘ term and a term 
representing the spatial contribution of neighbouring areas as in (16.7). 

We adopt a somewhat different approach, which allows a more direct interpretation of 
the model parameters and can be fitted in a computationally efficient manner within a 
multilevel model. For the heterogeneity effects, this is not a problem, because we simply 
have a variance-covariance matrix with 1or other specified values on the diagonal, and 
the model is analogous to fitting a n  iteratively weighted least squares model (McCullagh 
and Nelder, 1989). However, the case of the spatial effects is more complex, because we 
require off-diagonal terms in the variance-covariance matrix. This can be achieved 
through careful consideration of the structure of the spatial part. Our formulation of 
the spatial model is to consider the spatial effects ~j to be the weighted sum of a set of 
independent random effects 17: such that 

The v: can be considered to be the effect of area upon other areas, moderated by a 
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measure of proximity of each pair of areas zf , .  The 17; can be estimated directly from the 
model-these are the residuals-due to their independence. Keturning to the matrix 
notation used in (16.1).we can rewrite (16.7)as 

(l(1.11 )  

where %[, is the identity matrix and Zr,= {zf,}.L4'itha Lrariance structure such a s  

( 1 6 . 1 2 )  

which is equivalent to 

t hc overall variance from (10.1), cwnditional on the fixed parameters, is given by 

where Et ,is the variance of the random terms in 0. The structure of E Hwill often lead 
to simplifications; for example. in a random effects model when H = (ill} and var(i l l)  = 

U : ,  C O V ( I I ~ .U / )  = 0 then E H= oil and so viir ( Y I X , j )  = o:ZZ". Similarly, in the spatial 
model defined by the partitions in fl and Z given by (16.11) and the variance structure of 
(16.12). we can see that 

There arc many wiiys in which the z r ,  c a n  be formulated; in general we can cvrite 

'['he w,, can either 1's and 0 ' s  representing a n  adjancencp matrix, or be functions of the 
distance between a r e a  (seeSection 16.3).Common choices for the \ \ ' I ,  would bc) \vl I = 

(E,,,\ v ~ , ) ~ )',which ensures that the variance contribution is the same for all areas, or 
\vl = Cj t r\v fI, in which case the variance of a n  area decreases a s  the information 
about that area (in tcrnis of, for example, thc number of neighbours in a n  adjaccncy 
IIIodc1) increiises, 

Finally. there is the problem of specifying the random effects for heterogeneity and 
spatial effects within a generalised linear modelling framework, in this case using IGLS 
estimation within the MI,n soft~rare.lVe do this by constructing weights matrices iisso-
ciated with the random effects and fit these directly into the model. The tiariance of the 
data conditional on the fixed part of the model, a s  given in (16.14),is exprcsscd in terms 
of three matrices: Z&','(Z[, Z:," + Zr,Ziy), and Z;Z:,'''. Expressing the model is terms of 
t h t w  design matrices overcomes the need to place multiplc~ equality constraints upon 
t hc random parametcrs. This is generalis&le to the non-lincar modcl csprcssed in 
( 16.7)-( lh.9 1. 
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16.3 INCIDENCE OF PROSTATE CANCER IN SCOTTISH LOCAL 
AUTHORITY DISTRICTS 

In this example we wish to investigate the hypothesis that the relative risk of prostate 
cancer is higher in rural than urban areas, as  previous research has indicated an asso- 
ciation between agricultural employment and the incidence of prostate cancer (Key, 
1995). The data cover six years, from 1975 to 1980, of the incidence of prostate cancer 
in 56 districts in Scotland (Kemp et al., 1985). Table 16.1 shows the observed and 
expected cases, plus the relative risks for incidence of prostate cancer. 

To examine the effect of rural location, we use a variable measuring the percentage of 
the male workforce employed in agriculture, fishing and forestry industries as a surro- 
gate measure of the rurality of an area. However, we have to look not only at the inci- 
dence of prostate cancer within districts, but account for a potential artifactual effect 
caused by differential diagnosis rates between Health Hoard areas in Scotland. Hence, 
we are modelling spatial effects caused by different processes at two different scales, 
namely: 

(i) a spatial autocorrelation model at district scale, where we are accounting for the 
possibility that areas closer in geographical space have similar incidence of prostate 
cancer; and 

(ii)  a variance components model at Health Board scale, where we investigate the possi- 
bility that different Health Boards have different relative risks of prostate cancer, 
potentially because diagnostic criteria are variable. 

Hence, we can extend (16.1)and (16.11) so that 

(16.16)  

In this case the expected cases, E, have been calculated from national incidence rates for 
Scotland for discrete age bands. We use three explanatory variables in the fixed part of 
the model ( X , ? )  in addition to the intercept term (CONS),namely the proportion of the 
population in higher social classes (SC22);the estimated incidence to ultraviolet light at 
the earths surface (UVBZ); and the percentage of the male employment in agriculture, 
fishing and forestry (AGRZ). Social class and ultraviolet light exposure have been 
included as these have previously been postulated as risk factors for prostate cancer. 

The Z: are calculated using distances between district centroids. The choice of dis- 
tance decay function is largely user-dependent, and should ideally be based on some 
prior hypothesis about the data (Bailey and Gatrell, 1995). Here we have used a simple 
exponential decay model where we define the \vl,as 

Wij exp( -Ad i i ) ,  ( 16.17 )  

where di, are the Euclidian distances between the centroids of areas i and j .  and X is a 
constant to be estimated from the data. The estimation of X is problematical because it is 
non-linear in the random part of the model. Goldstein et al. (1994)show that maximum 
likelihood estimates can be obtained using a Taylor series expansion for the Normal 
model. However, things become more complicated for a Poisson model, and in general 
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Table 16.1 Observed and expected cases, and relative risks for the incidence of prostate cancer in 
Scottish districts. 1975-1980 

District Health Board Observed Expected SMR 

Caithness Highland 15 25.587 (1.58625 
Sutherland Highland 18 12.319 1.46110 
Koss-C’romarty Highland 42 42.644 0.98489 
Skye-1,oc hals h Highland 1(1 9.477 1.05520 
Lochaber Highland 22 18.005 1.22190 
Inverness Highland 51 51.173 (1.99662 
Badenoc h Highland 15 8.529 1.75870 
Nairn Highland 10 9.477 1.05520 
Moray Gram pian 107 75.812 1.41140 
Hanff-Buchan Gram pi an  95 74.920 1.25310 
Gordon Grampian 7(1 58.754 1.1914(1 
Aberdeen Grampian 249 189.530 1.31380 
K i ncardine G ra mp ian 52 38.854 1.33840 
Angus ‘Pay side 104 86.236 1.20600 
Dundee ‘ldy si de 176 168.680 1.04340 
Perth-Kinross Tayside 148 108.030 1.370(1( 1 
K i r kc aIdy Fife 145 135.510 1.07000 
NE-Fife Fife 91 56.859 1.6005(1 
Ihnfermline Fife 11i 11 5.610 1.01200 
lVest-Lothian 1,o t h ia n 106 129.830 0.81646 
Edinburgh 
Mid loth ian 

Lot hian 
I , ot h ia n 

538 
87 

402.750 
i / J 0 7-_- 1.33580 

1.11960 
East-Lot hian Lothian C” 

/ i  74.864 1.( 1285(1 
‘I’weedda le Horders 27 13.26i 2 S 13510 
Ettrick Borders 38 29.377 1.293 5(1 
Koxburgh Borders 44 3 3.168 1.32660 
Berwickshire Borders 2 3  1iS 158 1.34840 
Clackmannan Forth Valley 37 44.54(1 ().83072 
Stirling Fort h Vd1le y 100 72.969 1.37040 
Fa I kirk Forthvalley 149 136.460 1.09190 
A rgy1I -Hu te Argyll & Clyde 56 60.650 (l923 34 
Ilu m bar t on Argyll & Clyde 8(1 72.969 1.()9640 
Ken frew Argyll & Clyde 118 194.270 (MO741 
lncrerclyde Argyll & Clyde 84 94.765 (1.88640 
Glasgour 
C’lydeban k 

Greater Glasgow 
Greater Clasgow 

627 
31 

721.160 
49.278 

().86943 
0.62909 

Hersden Greater Glasgow 31 36.958 (1.83878 
St rat hkelvin Greater Glasgow 57 82.446 0.69137 
Eastwood Greater (;lasgow 43 50.225 (1.85614 
C’umbernauld 1,anarkshiro 24 58.754 0.40848 
Mon k Ia n d s Lanarkshire 58 104.240 0.55640 
hlot herwell La na r ksh ire 100 141.200 ( 1 . 2  1822 
Ham i It on Lanarkshire 58 1(12.350 0.56670 
East-Kilbride Lanarkshire 40 78.655 (1.50855 
Clydesdale 1,anarkshire 47 54.0.16 0.87011 
Cunninghame Ayrshire & Arran 103 128.880 0.79919 
K i 1nia rnock Ayrshire 8r Arran 66 / i ./07-33 0.84934 
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Table 16.1 (c'ontinird ) 

District Health Board Observed Expected SMR 

Kyle-Carrick Ayrshire & Arran 108 1017.140 1.01750 
Cumnock-Doon Ayrshire & Arran 29 42.644 0.68(104 
Wigtown Dumfries & Galloway 28 28.430 0.98489 
Stewartry Dumfries & Galloway 40 20.848 1.918170 
Nit hsdale Dumfries & Galloway 56 52.121 1.( 17441 
Annandale Dumfries & Galloway 48 33.168 1 A4720 
Orkney Orkney 22 1i S)58 1.28970 
Shetland Shetland 17 2 1.796 0.77996 
Western Isles Western Isles 45 29.377 1.53180 

a n  alternative is to fit a series of models with different values of X k  and determine the 
residual deviance from each model, Dk. We can then regress the deviance against the 
distance decay parameter so that 

(16.18 )  

Differentiating, the approximate solution will be where X = -b/2c. Successive approxi- 
mations then converge towards the estimated value. However, care must be taken when 
estimating A, as the likelihood function may be multimodal (Ripley, 1988). 

Z h b  is a vector of 1 which allows for a variance component for each Health Board to be 
estimated, and hence a measure of the variance at  this scale, oib.Table 16.2 presents the 
results for four different models, representing: 

model A: a simple, single-level model with no spatial effects. 
model B: a model with district scale spatial effects, but no Health Board effects. 
model C: a model with only Health Board effects. 
model D: a model with both district and Health Board effects as given in (16.16). 

The simple model (model A) presented in Table 16.2 seems to indicate a strong and sig- 
nificant effect of rurality, as measured by percentage male agricultural employment 
(AGHZ). However, this is weakened by fitting a spatial autocorrelation parameter in 
model B, which suggests that the effect of AGRZ may be due to adjacent areas having 
similar mortality. The change in deviance between the two models is 14.89 on two 
degrees of freedom ( p  < 0.001: we have fitted a covariance parameter as well as a var- 
iance term). The third model (model C), using Health Boards as a level with no spatial 
autocorrelation between districts, shows how ignoring autocorrelation between resi- 
duals at a lower level of a multilevel model (in this case districts) could lead to mislead- 
ing results at higher levels (in this case, Health Boards), as the parameter for the 
variance between Health Boards is statistically significant at y < 0.05, but the deviance 
statistic suggests that the model is not as good a fit to the data as model B. 

Unexplained random variation at the district level can appear spuriously at the 
Health Board level, and the final model, with both Health Board effects and spatial 
effects between districts, suggests that this may be the case. The parameter estimate 
for AGRI becomes smaller in models B, C and D, although it is still significant at the 
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Table 16.2 f’arameter cstirnatchs and standard errors for the prostate cancer models 

(A) Simple model (B) Spatial effects (C) Health Board effects (D) Both effects 

Estimate SE Estimate SE Estimate SE Estimate SE 

I-‘ixcdpirrt 
Intercept - 0.0257 (1.584 0 .51  3 (1.MI5 - 0.01ox (1.036 
SC12 - O.OOOh45 0.00524 (1.00145 0.00389 - 0.00339 0.0047i 
I:VHI - 0.0141 0.Oh 35 0.05hS ( IS 1 2  14 - 0.00112 ( I S  I 7  I5 
AGKI (I.( I272 O.OOhO3 0.Olh 3 O.OOh36 (11I1X( I ( I.( I( Ih 34 

/T i b  ( I S  105.30 
*; (111822 OS 1155 ( I.01 26 
* U\’ 0.00013 0  

> 
‘T; (I.OO( I 
x 
Kcsidual 18.98 

dcviancc 
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0.05 level. Hence, misspecification of the random part of a model can noticeably affect 
the fixed as ell as the random parameters. Further work needs to be done on the 
analysis of residuals in these complex models: Langford and 1,ewis (1998)details some 
procedures for the general analysis of outliers in multilevel models. 

However, we must be careful in drawing conclusions about the size of the parameter 
estimate for AGRZ, because we are not postulating that there is some genuine spatial 
correlation between cases of prostate cancer, for example if the disease had an infec- 
tious aetiology and was transmitted between individuals by contact. The spatial effects 
are not, therefore, in this case an alternative causal factor. but merely a statistical 
manipulation to account for correlation amongst the residuals in our model. One pro- 
blem is that the values of the variable ACKl  are also spatially correlated, because rural 
districts tend to be adjacent to each other, as do urban ones. Hence, we must be cautious 
in making inferences from our models without corroborative evidence from elsewhere, 
although i t  is interesting to note that the parameter estimate for AGKI remains signifi- 
cant in all four model formulations. 

16.4 DISCUSSION 

We have attempted to demonstrate a general method for modelling geographical data 
which is distributed in hierarchical administrative units, but which also displays spatial 
autocorrelation. The models can be implemented within a widely available softivare 
package called MLn/Ml,wiN. However, there are several issues that still need to be 
addressed, both methodologically and substantively: 

( i )  We are extending the basic method to model multiple cciuses of disease simulta- 
neously. Hence, we could model the joint distribution of prostate cancer and 
another cancer simultaneously. This is the equivalent of adding in another level to 
the model, so that we have diseases nested within districts within Health Hoard 
areas. A further extension to the model can be where areas, such a s  districts, are 
not discretely nested within higher level units, such a s  Health Hoards. I n  this case, 
a multiple membership model (Goldstein, 1995) may be used, where iveights are 
attached to allocate portions of districts to different Health Boards. 

(i i)  Space-time models are also possible, as  time is simply an extra dimension that 
requires a variance parameter in the random part of the model, and coi7ariance 
terms with any spatial parameters 

( i i i )  The main problem in fitting the models is poor convergence properties. usually 
caused by a high correlation between the heterogeneity and spatial components of 
the model. One of the authors (AHL) is developing an orthogonalisation procedure 
to overcome this problem 

(iv) The residuals from the model are measured with error, but the IGLSprocedure used 
will tend to underestimate the variance of the residuals. To overcome this, h I I m i N  
has the capability of using the IGLS convergence of the model as the starting point 
for either a Gibbs sampling or Metropolis-Hastings run of simulations which will 
provide for better estimates of, for example, the confidence intervals around the 
posterior relative risks of disease for each district or Health Hoard. These techniques 
could also be used to provide better estimates of the standard errors for fixed para- 
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meters in the model, rather than relying on those estimated from the model to judge 
statistical significance. 

Substantitrely, multilevel spatial models suffer from similar problems of interpretation 
a s  single-level spatial models. I t  is often dificult to know whether one has modelled a 
genuine spatial pattern or merely accounted for unmeasured explanatory variables, and 
fitting a spatial smoothing parameter masks a genuine relationships with a n  explana- 
tory variable which has its own distinct spatial distribution. However, we believe that 
the use of a multilevel model can shed light on different processes which may be operat- 
ing at different spatial scales, and hence provide a valuable tool for the analysis of 
geographically distributed health data. 
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17.1 INTRODUCTION 

The assessment of the impact of sources of pollution on the health status of commu-
nities is of considerable academic and public concern. The incidence of many respira- 
tory, skin, and genetic diseases is thought to be related to environmental pollution 
(Hills and Alexander, 1989),and hence any localised source of such pollution could give 
rise to changes in the incidence of such diseases in the adjoining community. 

In recent years there has been growing interest in the development of statistical 
methods useful in the detection of patterns of health events associated with pollution 
sources. Here, we consider the statistical methodology for the assessment of putative 
health effects of sources of air pollution or ionising radiation. We consider inference 
and modelling problems and concentrate primarily on the generic problem of the statis- 
tical analysis of observed point patterns of case events or tract counts, rather than 
specific features of a particular disease or outcome. 

~~ 

IJistwse h4appingarid R i s k  Assrssriierit for Public. Health. Edited by A.R. 1,awson c p t  nl. 
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A number of studies utilise data based on the spatial distribution of such diseases to 
assess the strength of association with exposure to a pollution source. Raised incidence 
near the source, or directional preference related to a dominant wind direction may 
provide evidence of such a link. Hence, the aim of the analysis of such data is usually 
to assess the effect of specific spatial variables rather than general spatial statistical 
modelling. That is, the analyst is interested in detecting patterns of events near (or 
exposed to) the focus and less concerned about aggregation of events in other locations. 
The former type of analysis has been named ‘focused clustering’ by Besag and Newell 
(1991).The latter is often termed ‘non-focused’clustering and is the subject of Part 11 of 
this volume, where a review of appropriate methods appears (Chapter 7) .To date, most 
pollution-source studies concentrate on the incidence of a single disease (e.g. childhood 
leukaemia around nuclear power stations or respiratory cancers around waste-product 
incinerators). 

The types of data observed can vary from disease-event locations (usually residence 
addresses of cases) to counts of disease (mortality or morbidity) within census tracts or 
other arbitrary spatial regions. An example of a data set consisting of residential loca- 
tions is provided in Figure 17.1. Figure 17.1displays the locations of respiratory cancer 
cases around a steel foundry (0,O)in Armadale, central Scotland for the period 1968-
74. In this example, the distribution of cases around the central foundry is to be exam- 
ined to assess whether there is evidence for a relation between the locations and the 
putative source (the foundry). In Figure 17.2 the counts of respiratory cancer for the 
period 1978-83 in kilkirk. central Scotland are displayed. A number of putative sources 
of health hazard are located in this area, most notably a metal processing plant ( *).  

The two different data types lead to different modelling approaches. Spatial point 
process models are appropriate for event-location data. In the case of count data, one 
may use properties of regionalised point processes. That is. an independent I’oisson 
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Figure 17.1 Armadale. central Scotland: residential address locations of‘respiratory cancer cases, 
19hX -74 
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Figure 17.2 Counts of respiratory cancer for 1978-83 in Fakirk, central Scotland 

model for regional counts is often assumed and one typically uses loglinear models and 
related tests (see, for example, Lawson, 1993b: Lawson and Waller, 1996). 

The effects of pollution sources are often measured over large geographic areas con- 
taining heterogeneous population densities (usually both urban and rural areas). As a 
result, the intensity of the underlying point process of cases is heterogeneous. For an 
introduction to heterogeneous spatial point processes, and spatial point processes in 
general, see Iliggle (1983). A review of spatial point process theory appears in Chapter 
8 of Cressie (1993). The discussion below assumes some familiarity with terms and 
concepts related to spatial point processes. 

A recent review of statistical methods for detecting spatial patterns of disease around 
putative sources of hazard appears in Lawson and Waller (1996). That review provides 
greater details of methods of analysis in such studies. A more general review appears in 
Lawson and Cressie (1999). In subsequent chapters in Part IV a number of different 
approaches to specific problems are discussed. In Chapter 18, exploratory methods for 
count data are discussed, while in Chapters 19 and 20 testing for effects and case- 
control methods are considered. In Chapter 21. a general discussion of the analysis 
of respiratory cancer around putative sources is provided. 

Examples of analyses of data relating to putative source problems appear in Chapters 
9, 20, 21, 29, and 3 0  of this volume. 

17.2 PROBLEMS OF INFERENCE 

The primary inferential problems arising in putative-source studies are ( i )  p S f  hot, ana-
lyses, and (i i )  multiple comparisons. The well-known problem of post Iioc analysis arises 
when prior knowledge of reported disease incidence near a putative source leads an 
investigator to carry out statistical tests or to fit models to data to ‘confirm’ the evidence 
(Neutra, 1990; Rothman, 1990). Essentially, this problem concerns bias in data collection 
and prior knowledge of a n  apparent effect. In Hills and Alexander (1989) and Gardner 
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(1989)it  is noted that both hypothesis tests and study-region definition can be biased by 
this problem. However, Lawson (1993b) noted that if  a study ro!jion is thought a priori to 
be of interest because it includes a putative pollution source, one does not suffer from 
post Iioc analysis problems if  the internal spatial structure of disease incidence did not 
influence the choice of region. 

The multiple-comparison problem has been addressed in several ways. Bonferonni's 
inequality may be used to adjust critical regions for multiple comparisons but the con- 
servative nature of such an adjustment is well known. Thomas (1985) has discussed 
multiple-comparison problems and proposed the use of cumulative p-value plotting to 
assess the number of diseases yielding evidence of association with a particular source 
(see also Haybrittle ot (11.. 1995).An alternative approach is to specify a general model for 
the incidence of disease or diseases. Such an approach can often avoid multiple c'ompar- 
ison problems. hilodelling is discussed in Sections 17.4 and 17.5. 

17.3 EXPLORATORY TECHNIQUES 

The use of exploratory techniques is widespread in conventional statistical analysis. 
However, in point-source analysis one must exercise care about how the subsequent 
analysis is influenced by exploratory or diagnostic findings. For example, if an explora- 
tory analysis isolates a cluster of events located near a pollution source, then this k n o ~ l -  
edge could lead to a post I i o c  analysis problem, namely inference based on a model 
specifically including such ii cluster is suspect. 

For case-event data, one can employ standard point process methods to explore data 
structure. For example. the intensity (i.e. points per unit area) of events can be mapped 
and iiiewed as a contoured surface, usually using non-parametric density estimation 
(Diggle, 1985). A natural model of spatial randomness is ii heterogeneous Poisson pro- 
cess (HEW) where the mapped surface represents the first-order intensity of the process 
(Diggle. 1983). Additionally, the Dirichlet tessellation or llelaunay triangulation of the 
points can demonstrate overall structure (Sibson, 1980). 

I f  the intensity of controls is also mapped, then it is useful to assess whether the cases 
demonstrate a n  excess of events beyond that demonstrated by the controls (e.g. in areas 
of increased risk). Controls could consist of randomly selected individuals from the 
population at risk (perhaps matched on confounding factors), or a 'control disease' as 
mentioned above. A higher relative intensity of 'cases' to 'controls' near a pollution 
source, a s  compared with far away, may support a hypothesis of association. 

Hithell (1990) has suggested that the ratio of density estimates of cases and controls 
be used to define a map displaying areas of increased risk, 1,iiwson and Williams (1993) 
relined this method by using kernel smoothing and also provided crude standard-error 
surfaces for the resulting map. This type of 'extraction'of a control intensity is akin to 
the mapping of standardised mortality ratios for count data. Kelsall and Diggle (19951 
further refined the original ratio estimator and described improved conditions for 
estimation of the ratio-surface smoothness. A case study of the application of a variety 
of such methods is given by Vie1 ct al. (1995). 

In the case of tract-count data, a variety of exploratory methods exist. One can use 
representation of counts a s  surfaces and incorporate expected count standardisation 
(e.g. through a standardised niortality/morbidity ratio (SMK)).While mapping regional 
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SMRs can help isolate excess incidence, estimates of SMKs from counts in small areas 
are notoriously variable, especially for areas with few persons at risk. Various met hods 
have been proposed to stabilise these small area estimates. Two different approaches are 
based on non-parametric smoothing and empirical Bayes 'shrinkage'estimat ion. 

Smoothing approaches include Breslow and Ilay's (1987)analysis of ShlRs over time. 
I,awson (1993b) proposes a kernel smoothing approach using a single parameter to 
describe the surface smoothness. In Chapter 18 of this volume, Hithell discusses various 
issues relating to relative risk smoothing and exploratory analysis of tract count data. 
Some implementations of geostatistical prediction (Kriging) to obtain a risk surface 
have been proposed (e.g. Carrat and Valleron, 1992; Webster ot nl., 1994), although some 
key characteristics of disease incidence may be violated by Kriging interpolation, such 
as an implicit assumption in variogram analysis of homogeneity of variances. Standard 
Kriging estimators can produce ncynt ive interpolant values, which are invalid for rela- 
tive risk surfaces; this might be handled by Kriging the logarithm of relative risk and 
then back transforming. However, this may also fail  due to singularities at zero relative 
risk. More complex smoothing approaches can be adopted (Diggle ot (Il . .  1998: 1,awson 
" t  nl., 1996). 

In general, the use of non-parametric relative risk estimation, particularly combined 
with Monte Carlo evaluation of excess risk, is a powerful tool for thc initial assessment 
of risk elevation. Care must be taken, however, not to prejudice further inference by the 
a posteriori focusing of analysis. 

17.4 MODELS FOR POINT DATA 

In this section we consider a variety of modelling approaches available when data are 
recorded as a point map of disease case events. DefineA to be any planar region and ( A /  
as the area of A. 

In analysing events around a pollution source, one usually defines a fixed window or 
geographical region AI with area IA1J  and all events that occur within this region 
within a particular time period are recorded (mapped). Thus, the complete realisation 
of the point process (within A 1 )  is to be modelled. In the analysis of point events around 
pollution sources, the long-range or trend components of variation are often of primary 
concern. This leads one to consider heterogeneous (non-stationary) Poisson process 
(HEPP) models and to use the HEPP's first-order intensity to model the trend. 

Event locations often represent residential addresses of cases and take place in a het- 
erogeneous population that varies both in spatial density and in susceptibility to dis- 
ease. Both Diggle (1989) and Lawson (1989) independently, suggested a method to 
accommodate such a population effect within a HEPP model. 

Define the first-order intensity function of the process as A(%), which represents the 
mean number of events per unit area in the neighbourhood of location x. This intensity 
may be parameterised as 

X(x) = p .g(x) .f(x:0). 

where g(x) is the 'background' intensity of the population at risk at x, and f(x:0) is a 
parameterised function of risk relative to the location of the pollution source. The focus 
of interest for assessing associations between events and the source is inference regard- 
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ing parameters in J(x; O),treating g(x) as a nuisance function. ?'he log likelihood of 111 

events in A, conditional on m,is (bar a constant) 

logf'(x,;0) - tri log ( I  i . 1 )  
i= 1 

Here. parameters in f(x:0) must be estimated a s  well a s  g(x). Diggle and Lawson pro- 
posed estimating g(x) non-parametrically from the 'at risk' population. Diggle (1990) 
suggested using the locations of a 'control'disease to provide a kernel estimate, ij(x), of 
the background at arbitrary location x. Lawson and Williams (1994) illustrated an appli- 
cation where g(x) is estimated from the expected death surface using the population's 
expected rates instead of a control disease. 

Inferential problems arise when g(x) is estimated as a function and then apparently 
regarded as constant in subsequent inference concerning X(x). One solution to this pro- 
blem is to incorporate the estimation of the background smoothing constant in  ,cl(x)by 
the use of prior information in a Bayesian setting. 1,awson and Clark (Chapter 9 in this 
volume) (also I,arvson, 1998a) propose the inclusion of the smoothing constant within 
a n  IzIC'R/IC' algorithm. A s  an alternative, Diggle and Kowlingson (1994)proposed avoid- 
ing estimating g(x) by regarding the control locations and case locations a s  ii set of 
labels whose binary value is determined by a position-dependent probability: 

This model avoids the use ofg(x) and hence avoids the inferential problems noted above. 
However. this model can orihy be applied when a point map of a control disease is avail- 
able and when multiplicative relative risk is assumed. 

An alternative model similar to the binary model above may be proposed. One condi- 
tions on the set of locations (cases and controls) and randomly assigns a binary label to 
each location indicating whether a particular location is a case or a control. Haddeley 
and Van Lieshout (1993) consider such a marked point process model. For example, i f  the 
points are a realisation of ii Markov point process, then, conditional on the points. the 
marks form a binary Markov Kandom Field (MKF) (Haddeley and Moller, 1989). Note that 
a HEPP can be considered as a special case of a Markov point process. Variants to the 
above models are proposed where the case data and the data for estimation of g(x) are 
at different resolution levels (see, for example, Lawson and Williams, 1994). 

A further alternative is to incorporate the estimation ofg(x) into the procedure for the 
estimation of other parameters. Since g(x) can be regarded as a stochastic process, we 
can ascribe prior distributions for its structure. One simple approach is to estimate g(x) 
from a kernel density estimator where the smoothing parameter has a prior distribu- 
tion, This smoothing parameter is estimated jointly with the other parameters, for 
example in a stochastic sampling algorithm such as Markov chain Monte Carlo IMCMC). 
In Chapter 9 of this volume Lawson and Clark provide a n  example of this approach. This 
approach has great generality, and can be the basis of a general approach to  the incor- 
poration of a stochastic process within a point process intensity. There are similarities 
between this approach and those discussed below, dealing with u r d i w r w d heterogene-
ity. The main difference is that a n  external data source (e.g. control disease or expected 
rate) is also available to focus the estimation. Since this type of approach to g(x) estima-
tion can be applied quite generally (e.g. to control diseases and expected rates), and 
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avoids conditioning of the prior g(x) estimate, it is likely to have wide adoption and 
application. 

It is possible that population or environmental heterogeneity may be unobserved in 
the data set. This could be because either the population background hazard is not 
directly available or the disease displays a tendency to cluster (perhaps due to unmea- 
sured covariates). The heterogeneity could be spatially correlated, or it could lack corre- 
lation, in which case it could be regarded as a type of hverdispersion’. 

One can include such unobserved heterogeneity within the framework of conven- 
tional models as a random effect. For example, a general definition of the first-order 
intensity could be 

X(x) = n(x)exp(E.(x>.. +W). 
where E‘(%)  is a design matrix that could include spatially-dependent covariates, a is a 
parameter vector, and ((x) is a random effect at location x. 

In this specification, ((x) represents a spatial process. If ((x) is a spatial Gaussian pro- 
cess, then conditional on the realisation of the process, any finite values of {((x,)} will 
have a multivariate normal distribution. This distribution can include variance and cov- 
a r ia n c e pa ra me ters rep re se n t in g u n c o r rela t ed a nd correlated het e r oge n e i t y, re spe c -
tively. An alternative specification is to assume that the log intensity (h(x), say) has ii 

multivariate normal prior distribution, MVN(E’(x)a,E), where C is the covariance 
matrix. Here, X(x) exp(h(x)), possibly with a modulating function g(x) included. This 
is closer in spirit to the specification of a Cox process where the intensity itself is realised 
from a random process. This approach can lead to maximum aposteriori (MAP)estima-
tors for (L given E, similar to those found for universal Kriging in geostatistics. provided 
a likelihood approximation is made (Lawson, 1994). This approach can also be imple- 
mented in a fully Bayesian setting (see, for example, Lawson ct ( [ I . .  1996). 

17.4.1 The specification off@;0) 

It is important to consider the appropriate form for the function J ( x ;O ) ,  which usually 
describes the exposure model used in the analysis of the association of events to a 
source. Define the location of the source as % ( I .  Usually the spatial relationship between 
the source and disease events is based on the polar coordinates of events from the 
source: { r, Q},where r = 1 1 %  - ~ ( 1 1 1 ,and 4 is the angle measured from the source. I t  is 
important to consider how these polar coordinates can be used in models describing 
pollution effects on surrounding populations. In many studies, only the distance mea- 
sure, r, has been used as evidence for association between a source and surrounding 
populations (e.g. Diggle, 1989: Diggle et al., 1997; Elliott, 1995: Elliott et al., 1992a). How- 
ever, it is dangerous to pursue distance-only analyses when considerable directional 
effects are present. The reason for this is based on elementary exposure modelling ideas, 
which are confirmed by more formal theoretical and empirical exposure studies (Esman 
and Marsh, 1996; Pdnopsky and Dutton, 1984). It is clear that differential exposure may 
occur with a change in distance find direction, particularly around air pollution sources 
(such as incinerator stacks or foundry chimneys). Indeed, the wind regime, that is pre- 
valent in the vicinity of a source can easily produce considerable differences in exposurc 
in different directions. Such directional preference or anisotropy can lead to marked 
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differences in exposure in different directions and hence to different distance exposure 
profiles. Hence the collapsing of exposure over the directional marginal of the distribu- 
tion could lead to considerable misinterpretation, and in the extreme to Sirnpson’spara-
dox. In the extreme case, a strong distance relationship with a source may be masked by 
the collapsing over directions, and this can lead to erroneous conclusions. Many pub- 
lished studies by, for example, the SAHSU (Small Area Health Statistics Unit) in the 1Jni- 
ted Kingdom (Diggle et al., 1997; Elliott, 1995; Elliott et al., 1992a, 1996; Sans et ill., 1995) 
have, apparently, ignored directional components in the distribution, and therefore the 
conclusions of these studies should be viewed with caution. Furthermore, if the analysis 
of a large number of putative source sites is carried out by pooling between sites and 
ignoring local directional effects at each site, then these studies should also be regarded 
with caution. 

The importance of the examination of a range of possible indicators of association 
between sources and health risk in their vicinity is clear. The first criterion for associa- 
tion is usually assumed to be evidence of a decline in disease incidence with increased 
distance from the source. Without this distance-decline effect, there is likely to be only 
weak support for a n  association. However, this does not imply that this effect should be 
examined in isolation. As noted above, other effects can provide evidence for associa- 
tion, or could be nuisance effects which should be taken into consideration so that cor- 
rect inferences be made. In the former category are directional and directional-distance 
correlation effects, which can be marked with particular wind regimes. In the latter 
category are peaked incidence effects, which relate to iricretises in incidence with dis- 
tance from the source. While a peak at some distance from a source can occur, it is also 
possible for this to be combined with an overall underlying decline in incidence, and 
hence is of importance in any modelling approach. This peaked effect is a nuisance 
effect, in terms o f  association, but it is clearly important to include such effects. If they 
were not included. then inference may be erroneously made that no distance-decline 
effect is present, when in fact a combination of distance-decline and peaked incidence 
is found. [jiggle ut i d .  (1997) display data on stomach cancer incidence around ii putative 
source, where peaking of incidence occurs at some distance from the source. Peaks of 
incidence compounded with distance-decline are clearly found in the Lancashire lar- 
ynx cancer data also (see, for example, Elliott et i d ,  1992). Further nuisance effects 
which may be of concern are random effects related to individual frailty, where indivi- 
dual variation in susceptibility is directly modelled or where general heterogeneity is 
admitted (Lawson r’t d .1996).A recent review of these critical issues appears in Lawson 
(199hc). 

A general approach to modelling exposure risk is to include a n  appropriate selection 
of the above measures in the specification off’(x;.). First, it is appropriate to consider 
how exposure variables can be linked to the background intensity g(x) We define 
J(s :0) = m { J * ( x ) ’ c t } ,  where i n { . }  is a n  appropriate link function, andf’*(x) represents 
the design matrix of exposure variables which is evaluated at x. The link function is 
usually defined as rn{ .}  = 1 + exp{ .}, although a direct multiplicative link can also be 
used. llsually each row ofJ*(x) will consist of a selection of the variables 

The first four variables represent distance-decline, peakedness, and directional effects, 



Models for point data 239 

Figure 17.3 Possible distance-disease incidence relations: (a) monotonically decreasing; (b) 
peak-decline: (c) clustered decline 

while the latter variables are directional-distance correlation effects (Lawson, 1993b). 
The directional components can be fitted separately and transformations of parameters 
can be made to yield corresponding directional concentration and mean angle (see, for 
example, Lawson, 1992a). Figure 17.3displays different distance-related exposure models 
which could be used to specifyf(x: 0). Note that in the figure nuisance effects of peaked- 
ness and heterogeneity appear in (b) and (c). 

Figure 17.4 Simulation of a five-parameter dispersal model for a putative source, using a Weibull 
density for the distance marginal with scale and shape parameters and a von Mises with directional 
linear correlation for the directional marginal distribution. Source location: 2.5,2.5 
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Further examination of dispersal models for air pollution suggest that the spatial 
distribution of outfall around a source is likely to follow a convolution of Gaussian 
distributions, where in any particular direction there could be a separate mean level 
and lateral variance of concentration (dependent on r )  (Esman and Marsh, 1996: 
Panopsky and Dutton, 1984). As a parsimonious representation of these effects it is 
possible to use a subset of the exposure variables listed above to describe this behaviour. 
Figure 17.4 displays the result of a simulation for a model which involves both peaked 
and distance -decline components and directional preference. Time-averaged exposure 
can be thought to lead to patterns similar to those depicted. Here a NW direction of 
concentration is apparent and the simulated exposure intensity surface was obtained 
from a five-parameter model for the distance and directional components. Note that 
averaging over the directional marginal of this distribution will lead to considerable 
attenuation of increased risk at distance from the source due to the anisotropic distance 
relations found. 

17.4.2 Estimation 

The parameters of the HEPP and modulated HEPP models discussed above can be 
estimated by maximum likelihood, conditional on i j ( x ) .  In fact. it is possible to use 
G I J M  or S-PLIJS for such model fitting, i f  special integration weighting schemes are used 
(Herman and Turner, 1992; Lawson, 1992a). These schemes replace the normalising 
integral in (17.1)with ClW,X,: the dirichlet tile area and intensity at each location. 

For the hybrid model of Lawson and Williams (1994). and the binary labelling model 
discussed above, direct maximurn likelihood methods can be used. For the MKF model, 
pseudolikelihood can be used directly. In the case of spatially correlated heterogeneity, 
one may estimate the covariance components via restricted maximum likelihood 
(REMI,. cf. Searle r t  nl., 1992) and use a n  iterative algorithm for trend-parameter estima- 
tion (e.g. the expectation-maximization, or EM algorithm). 

In the examples above, many estimation problems can be overcome by the use of Mar- 
kov chain Monte Carlo (MCMC) methods such as Metropolis-Hastings or Ciibbs sam- 
pling (see, for example, Celman et id., 1995; Gilks et al., 1996a). The mathematical 
underpinnings of MCMC methods and their relationship to spatial statistics are found 
in Hesag and Green (1993). The generalised Monte Carlo tests of Besag and Clifford 
(1989) show how MCMC methods can be used in hypothesis testing. Convergence of 
MC’MC algorithms can be difficult to assess and there is still dispute on the best way to 
implement MCMC methods (Cowles and Carlin, 1996).Examples of some applications of 
MCMC methods in the analysis of putative hazard problems are found in IAawon(1995) 
and Lawson et (11. (1996) and Chapter 9 of this volume. 

17.4.3 Hypothesis tests 

For standard HEPP models, Laplace’s test can assess simple trend effects (Cox and Lewis. 
1976). This is the score test for exponential trend and is uniformly most powerful (UMP) 
for monotone alternatives (provided a lJMP test exists). In Lawson (1992b3,tests for spa- 
tial effects in modulated HEPP models were presented. These include a variety of score 



Modelsfor point data 241 

tests for radial, directional, and directional-radial correlation. Note that both likeli- 
hood-ratio (LR) and score tests are available in statistical software package (such as 
GLIM, GENSTAT or S-PLUS) if one uses the special weighting schemes mentioned in 
Section 17.4.2. 

Tests of monotonic radial decline assume that distance acts as a surrogate for expo- 
sure. Many proposed tests are based on radial decline models in point data and tract- 
count data. However, a wide variety of spatial effects could arise due to pollution from 
a fixed source, and overemphasis on radial decline can yield erroneous conclusions. For 
example, outfall from stack plumes tends to peak at some distance from the source. 
Hence, one would expect a peak-and-decline intensity to be present (Panopsky and 
Dutton, 1984). Simple radial decline tests can have low power when non-monotone 
effects, such as these, are present (Lawson, 1993 b) 

Figure 17.3 displays a variety of possible exposure types. I f  type (b) or (c) were realised, 
then simple radial decline tests (or model parameters) will have low power or unneces- 
sarily high variance. Other exposure models have been proposed (Diggle and Elliott. 
1995; Diggle et al., 1997), which involve constant risk in a disc around the source. How-
ever, the justification for constant risk or exposure-path on epidemiological grounds 
seems scant (see also the comments in Lawson, 1996~).  

The collection of data and spatial modelling of exposure levels should lead to 
increased power to detect pollution effects. Unobserved heterogeneity may be included 
as random effects following the generalised linear mixed models described by BresIow 
and Clayton (1993). Alternatively, the heterogeneity may be formulated in terms of nui-
sance parameters. Lawson and Harrington (1996) examined Monte Carlo tests, in 
a putative source setting, when spatial correlation is present and can be estimated as 
a nuisance effect under the null hypothesis. 

Some recent examples of the application of tests to putative source problems have 
appeared (Leet d.,1996; Vie1 et al., 1995). In Chapter 30 of this volume a case study of 
the analysis of leukaemia incidence around a nuclear facility is presented. 

17.4.4 Diagnostic techniques 

The analysis of residual diagnostics for the assessment of goodness-of-fit of a model is 
common practice in statistical modelling. Usually such diagnostics are used to assess 
overall model goodness-of-fits as well as specific features in the data. If a spatial point 
process model fits well and all relevant covariates are included, then we expect spatially 
independent residuals. 

Diagnostic techniques display ‘outliers’ or unusual features not accounted for by a 
model. If the underlying model assumes no clustering of events, then unusually strong 
clustering can be highlighted by clusters of positive residuals. Clustering may be 
reflected in positive spatial autocorrelation among residuals, or in isolated areas of posi- 
tive residual clusters. 

For case-event data, it is possible to use a ‘transformation’ residual (Diggle, 1990) to 
detect the effects described above. This residual relies on the transformation of distance 
from source and is often used in time-domain analysis (Ogata, 1988). Lawson (1993a) 
proposed a general deviance residual for heterogeneous Poisson process (HEPP) models 
and applied the method to putative pollution hazard data (Lawson and Williams, 1994). 
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17.5 MODELS FOR COUNT DATA 

For a variety of reasons, outcome data may be available only as counts for small census 
regions rather than as precise event locations. As a result, a considerable literature has 
developed concerning the analysis of such data (e.g. Bithell, 1990; Clayton and Kaldor, 
1987; Cressie and Chan, 1989; Devine and Louis, 1994; Hills and Alexander, 1989: Law- 
son, 1993b: Lawson and Harrington, 1996; Marshall, 1991a; Tango, 1984, 1995; Waller 
et d.,1992; Whittemore et al., 1987). 

The usual model adopted for the analysis of region counts around putative pollution 
hazards assumes {nI, i = 1, .. . ,p} to be independent Poisson random variables with 
parameters {A,, i = 1 . . . ,p}. This model follows from a n  assumption that the location 
of individual events follows a HEPP Any non-overlapping regionalisation of a HEPP 
leads to independently Poisson distributed regional event counts with means 

A, = 1 A(x)dx i = 1, .. . ,p,  
H', 


where X(x) is the first-order intensity of the HEPP and W, is the ith subregion. 
The analysis and interpretation of models based on these assumptions is not without 

problems. First, many studies of count data assume that A, is constant within region 147, 
so that spatial variation across regions follows a step function (Diggle, 1993). When A, is 
parameterised as a loglinear function, one often treats explanatory variables (in parti- 
cular exposure or radial distance or direction from a pollution source ) as constants for 
the subregions or as occurring at region centres only. While such loglinear models can 
be useful in describing the global characteristics of a pattern, the differences between 
the W,s and any continuous variation in A(%) between and within regions is largely 
ignored. Secondly, the underlying process of events may not be a HEPP, in which case 
the independence assumption may not hold or the Poisson distributional assumption 
may be violated (Diggle and Milne, 1983). Assessments of model assumptions usually 
do not appear in studies of pollution sources (Elliott et al., 1992a; Waller et  d.,1992), 
while they are often ignored in recommended epidemiological methodology (see, for 
example, Elliott, 1995: Elliott et al., 1995). Analysis based on regional counts is ecological 
in nature and inference can suffer from the well-known 'ecologic fallacy' of attributing 
effects observed in aggregate to individuals. Finally, extreme sparseness in the data (i.e. 
large numbers of zero counts) can lead to a bimodal marginal distribution of counts or 
invalidate asymptotic sampling distributions (Zelterman, 1987). 

While the above factors should be taken into consideration, the independent Poisson 
model may be a useful starting point from which to examine the effects of pollution 
sources (Bithell and Stone, 1989). Often, a loglinear model parameterisation is used, 
with a modulating value P , ,  say, which acts as the contribution of the population of 
subregion i to the expected deaths in subregion i, i = 1,.. . ,p. Usually the expected 
count is modelled as 

E(n;) = X i  = e i * mCf/a), i = 1, .. . .p.  

Here, the e , ,acts as a background rate for the ith subregion. The function m(-)represents 
a link to spatial and other covariates in the p x q design matrix E whose rows are 
J ; ,  . . . ,JL. The parameter vector o has dimension q x 1.Define the polar coordinates of 
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the subregion centre as  (rj, @ j ) ,  relative to the pollution source. Often, the only variable 
to be included in F is r, the radial distance from the source. When this is used alone. an 
additive link such as m(.>= 1+ exp(.), is appropriate since (for radial distance decline) 
the background rate (e j )  is unaltered at great distances. However, directional variables 
(e.g. cos@, sine, r cose, log(r) cos8, etc.) representing preferred direction and 
angular linear correlation can also be useful in detecting directional preference result- 
ing from preferred directions of pollution outfall. 

This model may be extended to include unobserved heterogeneity between regions by 
introducing a prior distribution for the log relative risks (logxi, i = 1,. . . ,p ) .This could 
be defined to include spatially uncorrelated or correlated heterogeneity. The empirical 
and full Bayes methods described above often take this approach. 

17.5.1 Estimation 

One may estimate the parameters of the loglinear model above via maximum likelihood 
through standard GLM packages, such as  GLIM or S-PLUS. Using GLTM or the GLM 
option on S-PLUS, the known log of the background hazard for each subregion, 
{log(ei). i = 1,.. . , p } ,  is treated as a n  'offset'. A multiplicative (log)link can be directly 
modelled in this way, while a n  additive link can be programmed via user-defined macros 
(see, for example, Breslow and Day, 1987). 

Loglinear models are appropriate if due care is taken to examine whether model 
assumptions are met. For example, Lawson (1993b) suggests avoiding the violation of 
asymptotic sampling distributions by the use of Monte Carlo tests for change of 
deviance. If a model fits well, then the standardised model residuals should be approxi-
mately independently and identically distributed (i.i.d.). One may use autocorrelation 
tests, again via Monte Carlo, and make any required model adjustments. If such 
residuals are not available directly, then it is always possible to compare crude model 
residuals with a simulation envelope of rn sets of residuals generated from the fitted 
model in a parametric bootstrap setting. 

Bayesian models for count data can be posterior-sampled via MCMC methods, and a 
variety of approximations are also available to provide empirical Bayes estimates. Law- 
son (1994) gives examples of a likelihood approximation, while Lawson et al. (1996) com- 
pared approximate MAP estimates with Metropolis-Hastings modal estimates for a 
putative-source example. 

17.5.2 Hypothesis tests 

Most of the existing literature on regional counts of health effects of pollution sources is 
based on hypothesis testing. Lawson and Waller (1996) provide a discussion of the 
extensive literature in this area. Stone (1988) first outlined tests specifically designed 
for count data of events around a pollution source. These tests are based on the ratio of 
observed to expected counts cumulated over distance from a pollution source. The tests 
are based on the assumption of independent Poisson counts with monotonic distance 
ordering. A number of case studies have been based on these tests (Bithell, 1990: Bithell 
and Stone, 1989; Elliott et al., 1992a; Turnbull et al., 1990; Waller ff al., 1992 amongst 
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others). Lumley (1995) has developed improved sampling distribution approximations 
for Stone's tests. 

While Stone's test is based on traditional epidemiological estimates (i.e. SMRs), the 
test is not uniformly most powerful (UMP) for a monotonic trend. If a UMY test exists, 
then it is a score test for particular clustering alternative hypotheses (Bithell, 1995: Law-
son, 1993b: Stone, 1988:Waller ~t al. ,  1992).Waller (1996)and Waller and Lawson (1995) 
assessed the power of a range of such tests and found that all tests had low power 
against non-monotone or clustered alternatives. Unfortunately, these forms of alterna- 
tive commonly arise in small-area epidemiological studies. Lawson (1993b) developed a 
distance-effect score test versus a non-monotone, peaked alternative, and also sug- 
gested tests for directional and directional-distance effects within a loglinear model 
framework. A procedure has been proposed by Besag and Newell (1991),which, though 
originally defined a s  a test for non-focused clustering, can be applied in a putative 
hazard application. The procedure involves the accumulation of observed counts for 
k tracts around the source and a comparison with the expected count. The choice 
o f  k is arbitrary, however. The procedure can also be adapted to case-event data 
app1icat ions. 

A cautionary note should be sounded in relation to the use of tests for putative source 
locations. The results of recent power studies carried out on a range of distance-decline 
tests have shown that: ' . . . many current tests of focussed clustering often have poor 
power for detecting the small increases in risk often associated with environmental 
exposures' (Waller. 199h).This supports the fundamental need to examine a range o f  
approaches to putative sources analysis within one study as well as a range of associa-
tion variables. 

17.6 MODELLING VERSUS HYPOTHESIS TESTING 

There are many examples of the application to putative health hazards of hypothesis 
tests as opposed to constructing general exposure models for the effects of the source 
(see, for example. Elliott et d..1992a, 1996: Gardner, 1989;Sans et al., 1995).As for case- 
event data, the use of hypothesis testing as a general tool for the analysis of health 
hazards has a number of pitfalls. First, tests are often designed and used to assess single 
effects (e.g. distance decline (Stone's test or the Lawson-Waller score test) or directions 
(t,awson,l993b) and hence can constrain the analysis by this focus. Often simple effects 
can yield misleading conclusions. As noted above, the distance eflects could vary with 
direction and so collapsing over the directional marginal o f  the exposure path could 
lead to quite erroneous conclusions (i.e. Simpson's paradox). In addition, simple tests 
often cannot be modified easily to deal with more complex exposure scenarios (e.g. clus- 
tered background). If multiple testing is pursued, then that also has problems associated 
with, for example. multiple comparisons and the independence assumptions of tests 
(see, for example, Thomas, 1985).Many of the inadequacies of this approach arise from 
an overly simplistic view of what characterises exposure around sources. The main 
advantages of modelling exposure (rather than hypothesis testing) is that a variety of 
effects can be joirrtly assessed within a single model. In general, that model should 
include distance and directional effects as well as functions of distance (e.g. peaked 
effects at distances from the source) and should also include the possibility of including 
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clustering in the background (i.e. if a disease naturally clusters, then this should be 
modelled under the background effect: Lawson et al., 1996). 

17.7 CONCLUSIONS 

The analysis of small area health data around putative hazard sources has developed 
now to a stage where some basic issues are resolved and basic methods are in place. 
However, there is still considerable lack of agreement on a number of key issues relating 
to basic methods and also a number of underdeveloped areas worthy of further consid- 
eration. Perhaps the most contentious area of basic methodology is that of exposure 
modelling and how this should be carried out in the small area context. It is the tirm 
belief of the authors that some degree of sophistication in exposure modelling should 
be attempted, since naive use of simple exposure models (e.g. distance-only models) 
can lead to erroneous conclusions. Both directional and distance-related effects should 
be included in any analysis, unless there are good reasons riot to do so. The areas that 
remain underdeveloped lie mainly where space-time modelling is appropriate. As yet 
few attempts have been made to model the different types of space-time data that can 
arise naturally in this context. 
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Disease Mapping Using the 

Relative Risk Function 

Estimated from Area1 Data 
J. E Bithell 

University of Oxjor-d 

18.1 INTRODUCTION 

An earlier paper (Bithell, 1990) introduced the Relative Risk Function (RRF), defined at 
each point of a geographical region 9,to provide a n  estimate of the risk of disease from 
samples of cases and controls. This chapter extends this methodology to data in the 
more conventional form of counts and expectations in small areas and illustrates how 
the RRF may be used to provide tests of the homogeneity of risk against various kinds of 
departure from it. Many methods have been used for the geographical mapping of dis-
ease (Bithell, 1998),though rather few of these are designed for case-control data. It is 
hard to overestimate the non-uniformity of population density even within towns. We 
argue that this non-uniformity is essential to the problem and should appear as a funda- 
mental feature of any reliable method, rather than as entailing a 'correction' to methods 
appropriate to uniformity assumptions. Many analyses are model-based: recently the 
Bayesian approach has become particularly popular (Clayton and Kaldor, 1987; Lawson, 
1994; Cressie, 1996). The methods are hard to evaluate, by the nature of Bayesian infer- 
ence, which entails assumptions that are inherently unverifiable. Their value has con- 
sequently yet to be confirmed and they are often complicated to execute. Furthermore, 
there is a temptation to overparameterise Bayesian spatial models relative to the amount 
of information likely to be available in modest data sets, for example with regard to the 
structure of the auto-correlation: the effect of this on the reliability of the conclusions is 
hard to determine. Non-parametric methods, on the other hand, make fewer assump- 
tions and may therefore give a n  estimate of a n  underlying risk surface which is rela-
tively free of their influence. It is of course important to distinguish between 
exploratory analyses, in which one is merely observing an estimate of a risk function 
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without prior conceptions of non-uniform risk, and analyses designed to test hypoth- 
eses formulated in advance. In practice, the epidemiological investigator often works 
between the two situations. It is therefore desirable to be able to test formally whether 
a'cluster'of cases that appears to be close to some previously unidentified focus of risk is 
in fact more clustered than would be expected by chance. Methods based on testing the 
uniformity of a risk surface over a given region provide a partial answer to this problem, 
as we illustrate below. 

18.2 DEFINITION OF THE RELATIVE RISK FUNCTION 

The underlying idea of the RRF is based on that of the population density function. 
Instead of determining the incidence rate in a given geographical region 9,we assume 
that we can specify the (bivariate) probability density $(x. y) of the location of residence 
of 'cases', i.e. persons affected by the disease: here (x, y) represent the geographical coor- 
dinates of the location of a n  individual, which may be the place of residence or of death, 
as appropriate. We then compare this distribution with that for the whole of the relevant 
population at risk, 7 ~ (x, y), and define the (conditional) RRF as their ratio: 

I t  is easy to see that O(x,g) averages to one over 8 provided we use the underlying 
population density as a weight function, i.e. 

and that the Relative Risk so defined at any given point represents the risk relative to a 
population weighted average for the region as a whole. If we know the overall incidence 
for the region, then we can of course use it to scale the RRF to obtain the absolute risk 
function; or, for convenience, we may retain the concept of Relative Risk, but scale it so 
that national global rates form the basis of comparison. In other cases, for example 
where $( x, y) and T (x, y) are estimated from case and control data, the RRF itself can 
still be estimated. To the extent that different scalings produce essentially the same pic- 
ture of variation of risk, they are relatively unimportant. For testing purposes, however, 
different sampling schemes may have to be distinguished, according to the underlying 
alternative hypotheses: we discuss this issue below. The use of case-control data 
involves a n  inversion in which the random variation is attributed to the place of resi- 
dence of diseased and control individuals, rather than to the occurrence of disease at 
pre-defined locations. This operation may seem unnatural to those unfamiliar with the 
equivalent duality in classical epidemiology: it is precisely the inversion we make when 
we carry out a case-control (or retrospective) study rather than a cohort (or prospec- 
tive) one. It would be normal in epidemiology to define a control as a n  individual known 
not to be affected by the disease. A sample of such controls is not of course quite the 
same as a random sample of members of the population. Using the different bases of 
comparison leads respectively to the odds ratio and the Relative Risk: the same distinc- 
tion applies to the risk surface. The function O(x, y) gives either the odds or the Relative 
Risk of getting the disease for a n  individual located at the point (x, y) relative to that for 
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the region as a whole. The distinction hardly matters for rare diseases and, as is quite 
usual in epidemiology, we shall gloss over it when it is convenient to do so. 

18.3 ESTIMATION OF THE RELATIVE RISK FUNCTION 

There are numerous methods available for constructing estimates of population densi- 
ties from areal data. Much the simplest is to adapt the idea of density estimation. which 
we can do by imagining that all the population in a given small area is located at its 
centroid. This approximation is not likely to matter provided we smooth sufficiently 
and, although this might not be a very good way of providing a n  accurate population 
density estimate, it will probably serve quite well at the degree of smoothing necessary 
for small samples of cases. The original paper (Bithell, 1990) used a n  adaptive kernel 
method for the density estimation of both cases and controls, following the method 
described in Silverman (1986). This methodology is comparatively computer intensive, 
however, requiring the construction of a pilot estimate in order to determine the degree 
of local smoothing through control of the bandwidth. This adaptivity is less important 
when the denominator of the RRF is derived from population data; moreover, there are 
more efficient methods of estimation now available. In particular, we have found that 
the average shifted histogram (ASH) method proposed by Scott (1992) is efficient and 
robust, giving very few problems in its implementation. We need the two-dimensional 
version and have modified the published routines so that they aggregate counts of cases 
occurring multiply at areal centroids for the numerator and corresponding population 
sizes or expectations for the denominator. The basis of this method is as fo11ows.W sup- 
pose that the data consist of k small areas, for example electoral wards in IJK analyses, in 
which Y ,cases are observed and may be compared with expectations e,. computed, per- 
haps, using national rates, i = 1 , 2 , .. . ,k.  We assume that we have a rectangular study 
region divided into n z  x IZ squares of side d. (If our geographical region of interest is 
non-rectangular, then we can simply enclose it in a rectangle and disregard the contri- 
butions from outside the geographical boundary.) This defines a n  111 x IZ histogram into 
which we aggregate the observed and expected numbers of cases according to the posi- 
tions of the centroids of their respective small areas. In effect we then reposition the grid 
by displacing the origin jh units East and kh units North, for j. k = 0 , 1 , 2 ,. . . ,s - 1,with 
sh = d ,  and reallocate the observed and expected numbers according to the positions of 
the area centroids in relation to each new grid. The resulting s-) histograms are then 
simply averaged at each point to provide a n  overall estimate of density which, although 
strictly speaking discontinuous, will appear smooth for moderate or large s. 

18.4 APPLICATION TO CHILDHOOD CANCER DATA 

We illustrate the method by applying it to data on childhood cancer in parts of the IJK 
counties of Oxfordshire and Berkshire. The dataset was originally constructed in con- 
nection with a collaborative study of the distribution of such cases in the vicinity of 
nuclear installations reported in the British MedicdJournnl  (Bithell et d.,1994). It con- 
sisted of the numbers of cases of malignant disease in electoral wards compared with 
expectations computed adjusting for various demographic factors related to socio- 
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economic status (Bithell et al.,  1994). The data were divided into two sets: the first con- 
sisted of all children diagnosed as having leukaemia or non-Hodgkin lymphoma under 
the age of 15 in the years 1966-87. The results of the analyses of nuclear installations in 
England and Wales were published and were, broadly speaking, negative, with the clear 
exception of the well-known excess near Selhfield in Cumbria. The second, comple- 
mentary, set consisted of all other childhood tumours. In the course of the analysis of 
the second set, it was observed that there is a slight excess in the general vicinity of 
various installations in Oxfordshire and Berkshire, notably the Atomic Energy Research 
Establishment at Harwell, though formal tests of the risk in relation to the sites them- 
selves were inconclusive. The area is interesting for the presence of certain other sites 
with nuclear connections, namely Aldermaston, Burghfield, Culham and the American 
nuclear bomber base at Greenham Common, which has recently been the subject of 
newspaper and television publicity (Hithell and Draper, 1996). 7’0 examine the risk in 
the area as a whole we selected a rectangle approximately 5 0  km square in which there 
occurred 279 cases compared with 260.2 expected, an excess that is not statistically 
significant. They are depicted in Figure 18.1, in which the centres of the squares and 
circles indicate the population centroids of the 150 wards in which the cases are located. 
The sizes of the circles indicate the respective expectations, while the squares indicate 
the numbers of cases observed on the same areal scale. 
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Figure 18.1 Observed and expected numbers ofcases (ofchildhood cancer other than leukaemia 
or non-Hiodgkin lymphoma under 15 years of age) in certain parts of Oxfordshire and Berkshire. 
The numbers are represented by the squares and circles, respectively, on the same areal scale and 
centred on the population centroids of the electoral wards. The axes in Figures 18.1and 18.2 have 
been anonymised to meet ethical requirements 
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Figure 18.2 The KKF constructed as the ratio of density estimates calculated using ASH, with 
smoothing parameters s = 5 , 8 , 1 2  in (a). (b),and (c), respectively 
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Figure 18.2(a) shows the K K F  constructed using the methods described above with 
the ASH default grid parameters of 111 = ri = 3 0 and s = 5. Figures 18.2(b) and 18.d(c) 
show the result of changing the parameters to s = 8 and s = 12, respectively. The effect 
of these parameter changes is to increase the degree of smoothing progressively: how 
much smoothing is appropriate or in any sense optimal is discussed below. It will be 
seen at least from Figure 18.2(a) that there is a peak in the estimated Relative Kisk and 
inspection of Figure 18.1shows that this is due to the two isolated wards marked A and H 
in Figure 18.1.These are in areas of low population density and each contains two cases, 
with expectations of 0.63. It is clear therefore that the method is capable of at least point- 
ing to an increase in risk resulting from conjunctions of excesses that are quite small 
and that would otherwise be undetectable. In fact the four cases concerned exhibit no 
particular similarity of tumour type or date of occurrence and it is likely that their 
proximity is due to chance. We should, however, aim to test formally whether the K K F  
with ii given degree of smoothing departs significantly from what would be expected 
under the null hypothesis and we address this issue below. 

18.5 GENERAL HETEROGENEITY OF RISK 

Although a visual map of the risk is a useful epidemiological objective in itself, many 
investigations have a rather more specific purpose, namely to determine whether there 
is evidence of some variation of risk, particularly of a kind that can be associated with 
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geographical features. Given areal data, a useful first step in this process is to see 
whether there is over-dispersion of the counts relative to their expectations. Many 
statistics have been proposed for this, but we suggest the following deviance statistic: 

where 3,  is the observed count in the ith area. This could be referred to a chi-square 
distribution if the expectations were believed to be correct a priori and were of moderate 
size. In our case, the latter requirement is certainly not fulfilled, so we resorted to pcr- 
forming a Monte Carlo test, unconditional in the sense discussed below, i.e. by simulat- 
ing sample datasets from independent Poisson distributions. The observed value of 
l ) o h \  = 15 5.4 was exceeded in 66 out of 100 sample datasets, from which w e  conclude 
that there is no prirrinfkirJ evidence of heterogeneity in the data. However, heterogene- 
ity tests based on areal units are at best only able to detect spatial clustering at a scale 
comparable to the typical unit size, and do so only imperfectly; for example, an aggrega- 
tion giving slightly increased expectations in several adjoining areas may not be 
detected. This is the rationale for constructing and testing a risk surface with different 
levels of smoothing. The K K F  makes it simple to construct tests appropriate to a range of 
different alternative hypotheses. Two obvious possible hypotheses are that ( i )  there is a 
generalised and non-specific spatial variation of the true underlying R R F  induced, for 
example, by unknown geographical factors, and (i i )  there is an isolated peak due to 
some unsuspected focus of risk. A suitable statistic for alternatives of type ( i )  which 
measures the discrepancy in the R R E  with a weighting reflecting the population 
density, is given by 

?(x,y){d(~,!j) - l}ldxd!j. 

An alternative, proposed by Anderson and Titterington (1997, measures the squared 
difference on the density scale, which has the effect of increasing the extent to which 
differences in Relative Risk are weighted according to population density: 

For an alternative of type (ii) it would seem more appropriate to consider a functional 
of the form A4 = max 8(x,g ) and this is the statistic we employed for the childhood can- 
cer data, again using a Monte Carlo test. It is important to appreciate that, as indeed 
with the Monte Carlo computation of the distribution of the deviance statistic, U,  there 
are two ways of carrying out the necessary sampling, which we may conveniently term 
conditional and unconditional. In the former, the number of cases in the sample data- 
sets is fixed to be equal to that in the observed sample and the observations are distrib- 
uted among the k wards using the multinomial distribution with probabilities 
proportional to the expected values. In the unconditional case we sample from indepen- 
dent Poisson distributions with means equal to the e l .The former approach is appropri- 
ate if we are doubtful about whether the expectations are really reliable for the study 
region, or if we are concerned exclusively with the spatial distribution of the cases 
observed. No contribution to the significance of the test would come from a n  o ~ ~ r a l l  
excess in ./A in this case. If, on the other hand, we are confident that the expectations 
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are correct and we wish to detect a n  increase in risk relative to the reference rates loca- 
lised within 3,then it will be more appropriate to use the unconditional approach. 
These issues exactly parallel those arising in the context of tests for a n  excess risk near 
a putative source of risk (Bithell, 1995).We chose to carry out a n  unconditional test of the 
Oxfordshire data, since the expectations were felt to be trustworthy and the small over- 
all excess incidence will contribute to the height of the peak in the RRF. The data value 
observed was M o b s  = 2.71,which was exceeded by 62 out of 100simulated values, from 
which we conclude that there is no evidence of clustering at this geographical scale. 

18.6 SELECTING THE DEGREE OF SMOOTHING 

The major difficulty with density estimation is that of choosing the degree of smoothing 
to use, though the same problem arises implicitly in most graphical methods, including 
the ordinary use of the histogram. For exploratory purposes it seems reasonable to use a 
subjective method. Too little smoothing will probably give a degree of variation which is 
quite implausible; too much will suppress potentially interesting features of the data. In 
our case it could be argued that, since there is no significant heterogeneity in the data, 
one should report the risk as being constant; however, it might still be worth investigat- 
ing the excess in a small area such as that described above and to smooth too far will 
render this impossible. More objective, data-driven methods present some difficulties. 
For example, as pointed out by Kelsall and Diggle (1995), choosing the best bandwidth 
for one or both densities should not be expected to give the optimal result for their ratio, 
even if it can be agreed what are the most appropriate criteria. It is therefore not surpris- 
ing that. with the highly multi-modal densities involved in population data, standard 
met hods such as Least Squares Cross-Validation applied to thc individual densities can 
lead to ii very spiky RRE’estirnate (Rossiter, 1991). For the purpose of testing the degree of 
non-uniformity, this may not matter very much, though clearly the power of the test is 
likely to be greatest when the degree of smoothing is in some sense appropriate to the 
scale of the clustering implied by the alternative hypothesis. In the absence of an exter- 
nally specified alternative, therefore, it would be reasonable to fix the smoothing para- 
meter on the basis of previous analyses of similar data, though one should be careful to 
make the choice independent of the actual data in case one biases the analysis towards 
the degree of clustering observed. The first use of M for area1 data was carried out by 
Hutchinson (1995), who also explored a number of methods of bandwidth selection. In 
our case. the default values in the ASH routines, producing the results shown in Figure 
18.2(a).were used. There may be a n  element of data influence in this choice, since we 
might have been tempted to use other values if the resulting contours had been very 
erratic; this is a problem we would take more seriously if  the result had been positive. 

18.7 DISCUSSION 

There are numerous methods for presenting maps of disease risk, most of which recog- 
nise the value of some kind of smoothing. Most such methods operate on estimates that 
are effectively population rates, quite frequently SMKs. The idea of smoothing case and 
population densities separately is distinctive and occurs less frequently in the literature, 
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though the use of density estimation, as proposed by Bithell (1990), is gaining ground 
(Kelsall and Diggle, 1995). The original analysis used a deliberately small dataset with 
the intention of testing the methodology The extension of this method to the use of 
area1 data, in conjunction with a robust, efficient algorithm for density estimation, has 
led to much more stable estimates of the RRF. The method seems to have worked well for 
highlighting areas with a n  apparently elevated value of the RRFand lends itself to test- 
ing formally the extent to which any non-uniformity may not be ascribable to chance. It 
would be highly desirable to report the results of power comparisons, but we defer this 
to another paper. Rossiter (1991) studied the power of her test by comparison with the 
case-control clustering method of Cuzick and Edwards (1990)based on nearest neigh- 
bours and found it to be somewhat better. There are a number of reasons why one might 
expect this. In the first place, the RRF, with its extreme simplicity, is effectively interpo- 
lating counts of cases in a given area: in the limit, as the amount of data increases inde- 
finitely, this would lead to a procedure based on a sufficient statistic for the expectation, 
whereas the nearest neighbour approach, attractive though it is, seems unlikely to be 
fully efficient. Secondly, the Cuzick-Edwards test is a n  aggregative test rather than an 
extremum test and would be expected to be better than A2 at detecting a generalised 
tendency to case aggregation as opposed to a single cluster. These arguments are admit- 
tedly rather speculative and a comparative analysis would be highly desirable. The num-
ber of disease mapping methods now available is quite large and each has, in principle, 
a n  associated possibility for testing. A comprehensive comparative analysis is therefore 
a formidable task. 
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19.1 INTRODUCTION 

In recent years there has been considerable interest in the spatial distribution of disease 
cases and possible relationships to environmental exposures. Of particular interest are 
possible temporal or spatial aggregations of incident cases, i.e. ‘disease clusters’. Knox 
(1989) defines a cluster as ‘a bounded group of occurrences related to each other 
through some social or biological mechanism, or having a common relationship with 
some other event or circumstance’. 

Hypothesis testing based on a n  underlying spatial point process of incident cases is a 
common tool used to assess disease clustering. Mathematical models of clustering differ 
between proposed tests, and often different models induce different underlying assump- 
tions regarding mechanisms of disease incidence (Waller and Jacquez (1995)). A review 
of cluster tests is given in Chapter 7 of this volume, and of focused cluster methods in 
Chapter 17. 

Besag and Newel1 (1991) categorise cluster tests as either ‘general’or ‘focused’. General 
tests determine whether or not cases are clustered anywhere in a study area, while 
focused tests assess whether cases are clustered around prespecified putative sources 
(‘foci’)of hazard. Foci may be point locations such as waste sites releasing carcinogens 
into the environment, or non-point locations such as agricultural fields and highways as 
(geographic) sources of exposure to pesticides and automobile emissions, respectively. 

lliscasc Mopping nrid Risk Asscwmcntjor Public Hcwlth. Edited by A.H. Lawson c>t (11. 
(. 1999 JohnWiley & Sons Ltd. 
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Score tests of focused clustering seek to maximise statistical power versus local alter- 
natives. A specified local alternative, corresponding to a n  a priori model of focused dis- 
ease clustering, defines the particular form of the test. In this Chapter we explore the 
power of misspecified score tests, i.e. tests defined for one type of cluster model applied 
to clustering generated from a different model. 

19.2 MODELS OF CLUSTERING AND SCORE TESTS 

Typically, due to confidentiality requirements, disease incidence data arise as counts 
from small subregions of a larger study area. For each subregion we calculate expected 
counts, often standardised based on demographic factors. For this study we concentrate 
on chronic rather than infectious disease, and assume disease cases arise indepen- 
dently of one another. Suppose that the study area is partitioned into I subregions or 
cells, e.g. enumeration districts. Denote the population size of each cell as I I , . ~= 
1, . . . , I ,  and the total population size r1 = I 

1 1 , .  The number of disease cases in cell I = 1  

i is a random variable C,  with observed value r l .The total number of observed disease 
cases is 1’ = I For a rare disease under a null hypothesis of no clustering (Ho) ,cl,. 

we assume the C, are independent Poisson random variables with E(C,) = h i I ,  where X 
denotes the risk of an individual contracting the disease, i.e. the baseline incidence rate. 
In the development below, we assume X to be known. I f  X is unknown, u7e use the max- 

(2imum likelihood estimate (MLX) i\ = , / n  + ,  conditioning on c i and adjusting standard 
errors according 1y. 

Focused tests utilise alternative hypotheses defining increased risk in areas exposed 
to a focus. Wartenberg and Greenberg (1990a) described two broad types of clustering 
models, ‘clinal’ and ‘hot spot’clusters. In clinal clusters, disease incidence rates are ele- 
vated near a focus and decrease with increasing distance (decreasing exposure). In hot 
spot clusters, disease incidence rates are increased only in a small area near a focus but 
are lower and constant outside this area. 

IVdler and Lawson (1995) use a multiplicative model to address both hot spot and 
clinal clusters. Let g ,  denote some measure of the exposure to the focus for each indivi- 
dual residing in cell i. Consider the alternative hypothesis 

where the parameter E > 0 controls the multiplicative increase in risk. A hot spot clus- 
ter assumes a dichotomous exposure, and divides the population into two groups: 
‘exposed’and ‘unexposed’. We model hot spot clusters using equation (19.1) with 

1, if cell i is in the hot spot, 
0, otherwise, 

for i = 1 , .  . . ,1. For hot spot clusters, the relative risk of disease for individuals residing 
in the cluster compared with those residing outside the cluster is (1+ E ) .  For clinal clus- 
ters the relative risk for cell i, compared with the background disease risk. is (1+ g,E). 
Note that we maintain independent Poisson cell counts. 

For clinal clusters. we often use distance-based exposure surrogates in the absence of 
direct exposure data. Let d ,  denote the distance from cell i to the focus.We consider three 
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parametric distance exposure relationships, namely a n  inverse distance model, 

(19.2) 

where dr  = dj/min(di) is the rescaled distance from the focus, and two exponential 
functions of distance (Tango, 1995), namely a n  exponentid model 

gi = exp(-dj/T), i = 1, .. .  , I ,  > 0,  (19.3) 

and a n  exponentinl-thresholn model 

Figure 19.1 compares inverse distance, exponential, and exponential-threshold expo- 
sures as a function of distance for 2 = 2,  r = 5, and L = 10.For comparative purposes, 
we rescale distance in (19.2) to remove the effects of the measurement scale of d ,  (e.g. 
excess influence from areas less than one unit from a focus). The parameters 3 and r 
control the shape of the distance-exposure relationship, and the parameter I, denotes 
a distance beyond which (essentially) baseline risk occurs. Note that the extent (or spa- 
tial range) of a cluster increases as the parameters ?, r, and L increase. A Geographical 
Information System (GIS) easily calculates such functions of distance, but one must 
recall that proximity is often a poor surrogate for true exposures (Elliott et d.,1995). 

We explore the effects of these three distance-based exposure values on the power of 
two classes of focused clustering tests, namely those proposed by Lawson (1993b) and 
Waller et al. (1992,1994), and those proposed by Bithell (1995). We outline each class of 
tests below. 

1/(distancep( 112) 
............ exp(-dist/5) 


exp(-C(dist/l Op2) 

I I I I I I 

2 4 6 8 10 12 

Distancefrom focus 

Figure 19.1 Distance-based surrogates for exposure 
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1,iiwson (199Sb) and Waller et r r l .  (1992, 1994) propose the score test statistic U = 

a n  asymptotic standard normal distribution. The test is equivalent to tests of trend in 
Poisson random variables (Breslow and Day, 1987). Waller and Lawson (1995) note that 
the normal approximation is generally accurate for situations encountered in disease 
surveillance efforts. In cases where the normal approximation is questionable, exact tail 
probabilities may be obtained through numerical methods (\Waller and Lawson, 1995). 

Willer and 1,awson (1995) derive the power of the score tests against the clustering 
alternative (19.1) using the normal approximation. Let I ( *  denote the ci-level critical 
t d u e  of the standard normal distribution, and p 1 and cr: denote the mean and var- I 

Iiance of U under H 1. Here, p 1 = xlllI I , X ~ ; E  and a; ,  = E:=,g:n,X( 1 + { j i 5 ) .  For a 
one-sided test, the power of the score test with level (I is 

(19 .5 )  

where @( .) denotes the cumulative distribution function of the standard normal distri- 
bution. 

Bithell (1995) introduces a family of score test statistics including H = C:=, 
C’,log(1 + g l c )  for cluster alternative (19.1).Bithell notes that this test is equivalent to 
the 1,awson and Waller score test as E - 0. The expectation of H under H(I is p ( ) , ,= 

1Jnder H 1, the expectation becomes 11 1 ,, = cf-,n,X[log(1 + g I ~ ) ] .  [ r i , X (  1 + : ! ,E) ]  
log( 1 + g i s ) .The associated variances are 

under Ho,  and 

under H 1 .  We denote the standardised statistic by H *  = ( H  - / i ( j l l ) / O ( j , i .The power to 
detect alternative (19.2) is 

In Section 19.3, we explore the effect on statistical power when the disease mechanism 
generating the data differs from the alternative hypothesis defining the test statistic. For 
this chapter we restrict attention to the misspecitication of exposure (o f )within the 
parametric cluster model defined by (19.1). In particular, we suppose a score test is 
detined with exposure gi. when the true cluster is based on exposure g, ,  i = 1.. . . , I. 
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We obtain the power of the misspecified test using the results above with 

j - ]  

I 

i= 1 

and 

19.3 HOMOGENEOUS POPULATION RESULTS 

For illustration, we arrange 400 cells into a 2 0  x 2 0  square grid, and assume all cells 
contain 3 0 0 0  individuals at risk. We consider each cell to be a square with sides one 
distance unit in length. Our distance units are arbitrarily defined as 1/20 of the east- 
west and north-south dimensions of the study area. We assume the focus to be the cen- 
tre of the grid, and assume the baseline incidence rate, A, is known. We use three values 
of A: 0.00017,0.0005,and 0 . 0 0 1 .  The value X = 0.0005 roughly corresponds to the ten- 
year childhood leukaemia rate in ages 0-15 (Doll, 1989). Population size ri, = 3000 
roughly corresponds to the average for a US census tract. 

We begin with a ‘true’ hot spot cluster in the 64 centre cells of the 400 (cells in the 
seventh through fourteenth rows and columns of the grid). We utilise cluster tests based 
on circular hot spots smaller and larger than the actual cluster. We choose E in (19.1) so 
that a test based on the correct alternative has 99% power. 

The power results based on (19.5) appear in Figure 19.2. The power of Hithell’s score 
test is equivalent to four decimal places and is not shown. Figure 19.2 illustrates that the 
power of the test falls off more quickly when we underspecify rather than overspecify 
the extent of the hot spot. The power curve contains several ‘plateaus’ when a n  increase 
in the hot spot radius does not add any additional cells to the hot spot defining the test 
statistic. This effect particularly impacts underspecification of the cluster extent, and is 
exaggerated in our grid-based illustration due to many tied distances. Figure 19.2 also 
indicates higher power for rarer diseases (smaller A), for any given hot spot size. 

Next, we assume the true underlying cluster model is a clinal cluster with exposure 
measurements defined by (19.2)-(19.4). We begin by considering misspecifications only of 
the parameters ?,r ,and L ,  assuming that ‘true’clusters are defined by (19.2)-( 19.4)with 
7 = 2 . 7  = 5, and L = 1 0 ,  respectively. We calculate power functions for 40 parameter 
values, namely inverse distance clusters based on 3 = 0.2,0.4,. . . , 8 ,exponential clus- 
ters based on r = 0 . 5 , l . .  . . , 2 0 ,  and exponential-threshold clusters based on I, = 1. 
2 , .  . . ,40.The specified parameter ranges define similar exposure-distance functions 
across models as illustrated in Figure 19.3. 
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Figure 19.2 Plot of the power of the score test for circular hot spot clusters to detect a true 64-cell 
(square) hot spot. Correct specification of the hot spot results in 99%power 

Figure 19.4displays power curves for X = 0.001.The three lines represent the choice 
of E corresponding to 80%,90%, and 99% power for the correctly specified test. Since 
all cells contain some excess risk, overspecification of the cluster extent results in 
increased power for all three definitions of gi,contrary to the hot spot results. We see 
very similar behaviour for the three distance-exposure functions. The results suggest 
poor performance if  the extent of the cluster is underspecified, even if the correct para- 
metric family is used. In contrast, when all people have some causative exposure, the 
performance of the test does not decline under overspecification of the cluster extent. 

Since the precise functional form of the distance-exposure relationship is likely 
unknown, we next consider the power of hot spot tests to detect clinal clusters. Figure 
19.5 illustrates the power of score tests for circular hot spots of varying radii applied to 
data generated under clinal cluster models where the relative risk of disease is increased 
20 'k  in the cells nearest the focus. The top three panels illustrate power curves for the 
cluster models defined in (19.2)-(19.4). Each line represents power as a function of hot 
spot radius, for a true clinal cluster with a fixed value of 7 ,T , or I, in the left, middle, and 
right panels, respectively. The range of parameter values reflects those considered in 
Figure 19.3. The surfaces in Figure 19.5 present the same information in three dimen- 
sions. 

Qualitatively, we see similar performance by the circular hot spot test versus each of 
the three clinal clustering models. Clinal models where disease risk declines more 
rapidly from peak exposures allow better approximation by hot spot tests. In fact, for 
the exponential-threshold model, we see a n  optimal hot spot radius indicated by a peak 
in each power curve in the top-right panel of Figure 19.5 and a'ridge' in the correspond- 
ing three-dimensional representation. 
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g = (scaled dist)A(-llgamma): gamma = l/(i/5), i=1, ...40 

10 15 

scaleddisl 

g = exp(-didtau); tau = 0.5, 1, ..., 20 

0 ,  
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g = exp(-4'(dist/L)~2), L = 1,2,...,40 

-
U 
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Figure 19.3 Clinal cluster models considered. The solid line represents the 'true' model generating data, and the dashed lines represent cluster models 
defining the tests under consideration. The cluster range increases with increasing parameter values (see text) 
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RR = 1.2 in nearest cell 
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Figure 19.5 The statistical power of hot spot score tests to detect various clinal clusters (see text) 
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The examples above illustrate the performance of misspecified tests in a n  idealised 
environment, i.e. a regular grid with a homogeneous population density. Such data are 
rarely ( i f  ever) observed in disease surveillance applications. More often, analysts 
encounter data in regions that vary widely in both population density and geographic 
area. As a result. power calculations rarely provide omnibus recommendations on test 
selection and study design for statistical focused cluster investigations. However. the 
power formulae above do provide helpful data-specific informat ion regarding the ability 
of the chosen test to detect particular types of clustering as illustrated below. 

19.4 POST HOC POWER ANALYSIS: NEW YORK 
LEUKAEMIA DATA 

Since local vagaries in population density play a critical role in the performance of test 
statistics. we consider an alternative role for theoretical power calculations, namely post 
Iioc power ririnl,1jst7s,i.e. a n  assessment of the power available in a given dataset to detect 
clustering of predetermined type, strength. and extent. The 'true'cluster mechanism is 
never known, yet any particular score test presupposes a specific cluster model. B y  com-
paring the theoretical power of a particular score test (e.g. based on inverse distance) to 
detect a variety of possible 'true'cluster types (e.g. hot spot, exponential, or exponential- 
threshold clusters), we obtain a realistic assessment of the ability of the chosen test to 
detect any of a variety of clustering patterns. We use the term 'post hoc power analysis' to 
stress that the approach provides comparative results only in the context of the cells 
defining the particular study area in question. Such post iioc analyses quantify the 
degree to which a lack of statistical significance suggests a lack of different types of 
focused clustering in the data. 

Mk illustrate the idea through an application to the leukaemia data reported and ana- 
lysed by Waller ut trl. (1994).The data include incident leukaemia cases from 1978 to 1982 
in a n  eight-country region of upstate New York. Foci include inactive hazardous waste 
sites documented as containing trichloroethylene (TCE). We illustrate post I ioc  power 
malysis for two foci. Site 1 is located near the town of Auburn, NewYork, and site 2 is 
in a rural area. The locations of the waste sites and the centroids of census regions are 
shown in Figure 19.6. 

For illustration. consider the power of a clinal score test based on a n  inverse distance 
model with 7 = 1.In the original analysis, Waller et nl. (1994)report no significant clus- 
tering around either site based on the score test defined by such a model. Since the cor- 
rectly specified score test is locally most powerful, we may feel confident that no 
inverse-distance clustering exists. However, can we assess our confidence that cases 
do not follow a'true' (but unknown) hot spot cluster, given the results of the (now mis- 
specified) inverse distance score test; Using post hoc analysis based on (19.5),we deter- 
mine the power of the inverse-distance score test versus a hot spot cluster alternative 
for the New York leukaemia data. 

We calculate the power of the inverse distance test based on two different 'true' clus- 
tering models. First, we find the power assuming the test was correctly specified, i.e. risk 
multiplicatively increases with exposure according to (19.1)with g ,  = l / d , .  To be con- 
sistent with the original analysis, we do not rescale exposure as in the preceding sec- 
tions. Next, we consider the power of the inverse distance score test to detect circular 
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Figure 19.6 Census tract and block group centroids (1980 ITS, Census), and two hazardous wastc 
sites in an eight-country region of upstate New York. Rings indicate distances of 5 km, 1 0  kin,  and 
20 km, respectively 

hot spot clusters with radii 5 km, 10km, and 20 km, respectively. The definition of the 
test statistic provides a ( ) ( ,and the ‘true’ clustering model provides 11 1 , and CT 1 ,  . We 
define E consistent with a doubling of the relative risk in the nearest census region. 
Finally, we assume a background disease rate of X = 0 .0005  (very near the observed 
disease rate for the entire study area). 

Not surprisingly, if correctly specified (i.e. versus an inverse distance clustering alter- 
native), the inverse distance score test has power near 1.0 for both sites. However, if  the 
‘true’cluster is a hot spot cluster, then the inverse distance test is misspecified, and the 
power results change considerably. Table 19.1shows power results and the size of the 
population at risk for hot spot cluster alternatives. The power of the misspecified inverse 
distance test versus hot spot clusters remains high for site 1, due to the relatively high 
population density in surrounding regions, but is reduced considerably for site 2. 
located in a rural area with much smaller population sizes. 

Post hoc power analyses provide an assessment of the strength of evidence against 
clustering provided by a non-significant hypothesis test result. Non-significant results 
for a test with high power indicate a small probability of failing to reject the null hypoth- 
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Table 19.1 Power results for a misspecitied inverse distance 
score test assuming true hot spot clusters for two foci in a n  
eight-country region in upstate New York 

Power of inverse 
Distance score Population 

Radius of true test vs. hot at risk in 
hot spot cluster spot alternative hot spot 

Site 1 (smalltown) 
Ilistance < 5 k i n  0.994 3 34,40i 
Ilistance < 10 k m  0.9999 39,103 
Ilistance < 20  km 0.9999 79,910 

Site 2 (rural)  
llistance < 5 km 0.126 3 8 i9  
llistance < 10 km 0.1419 1.649 
Ilistance < 20 km 0.3406 14,845 

esis when the specified alternative is true. In contrast. non-significant results for a test 
with low power allow a relatively large probability of failure to reject the null hypothesis 
(no clustering) when the specified alternative is true. 

For the New York leukaemia data, the non-significant result for the inverse distance 
score test provides relatively strong evidence against an inverse distance clinal cluster 
centred at site 2, but much weaker evidence against a local hot spot increase in risk. As 
ii result, we have confidently ruled out two types of clustering (inverse distance and hot 
spot) for site 1, but only one type (inverse distance) for site 2. Equation (19.5)a l l o ~ ~ sus to 
consider ii variety of clustering models, even those unrelated to the test under con- 
side rii t ion. 

19.5 DISCUSSION 

In addition to the connection between the statistical power of a focused score test and 
the particular form of clustering assumed in the definition of the test, the results above 
reveal ii dependence between the power properties of focused score tests and the struc- 
ture of the population at risk. Other relevant issues include differential risk among indi- 
viduals because of age, gender, and other confounding variables; differential exposure 
among individuals in the same cell; size and shape of the study region; and migration. 
The impact of such covariates works against strong performance by a particular test 
over a wide variety of possible situations. 

In the homogeneous population density results, we find that, for the situations con- 
sidered, it is often better to overspecify than underspecify the extent of clustering when 
defining a test. We also find no large differences in performance between the inverse 
(rescaled) distance, exponential, and exponential-threshold clinal models. Finally, we 
find that the adequacy of the hot spot approximation of clinal clusters largely depends 
on the ‘tail’ behaviour of the cluster, i.e. how quickly the relative risk drops off from the 
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peak values. However, more complex relationships are likely to occur with more compli- 
cat ed cluster in g models. 

It is difficult to extend the guidelines suggested from homogeneous grid-based data to 
the heterogeneous, enumeration-district-based data often encountered in disease sur- 
veillance. As we illustrate above, population density can impact the power of niisspeci- 
fied score tests, sometimes dramatically. Apart from the usual role of power in study 
design, we show how post hoc. analysis provides a mechanism for interpreting and eval- 
uating results, even allowing the assessment of clustering patterns not considered in 
the original analysis. 

The sensitivity of hypothesis tests of clustering to features common in disease sur- 
veillance data (e.g. variable population density, misspecification of disease incidence 
models) encourages more comprehensive modelling of disease rates. accounting for 
con fou nd e r s either t h rough stand a r d is a t ion, c om pa riso11wit h 'cont rol' ( non -d iseased ) 

groups, or direct inclusion as covariates. The generalised linear mixed models addressed 
by Besag et nl.,  (1991)and Ereslow and Clayton (1993)may provide an opportunity for a 
more accurate assessment of multiple covariate effects, adjustment for heterogeneous 
exposures, and quantification of residual spatial effects. Such models provide valuable 
opportunities for future work in disease surveillance. 
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Case-Control Analysis of 
Risk around Putative Sources 


Annibale Biggeri and Corrado Lagazio 

U I Iivcrsif!y of Flor e r m  

20.1 INTRODUCTION 

Many epidemiological investigations on environmental hazards focus on a priori 
putative sources (see, for example, the studies on childhood leukaemia and nuclear 
reprocessing plant sites). The pattern of risk as a function of distance from the source is 
used as an approximation for the true distribution of risk by exposure levels and 
therefore such study design has a poor value as a proof of a direct causal relationship. 
This kind of geographical analysis may be used either to describe and evaluate the 
magnitude of the problem, or to surrogate the unknown exposures by distance 
measures. 

To estimate this risk pattern aggregate data can be used, but the results could be 
affected by the ecological bias since individual risk factors are not taken into account 
(Diggle and Elliott, 1995).Theoretically the successful modelling of the risk pattern as a 
function of distance from putative sources depends on the availability of individual data 
and on information on major risk factors and predictors of the disease under study. 

Individual information is usually of high quality but at greater cost than routinely 
collected aggregate data, and in epidemiological research special sampling designs are 
used to ensure a n  acceptable cost-effectiveness balance: case-control studies are one 
example of a highly efficient sampling strategy. In geographical analyses, the sample of 
controls is used in any situation where the distribution of the population by small areas 
is unknown or when it is too difficult or expensive to gather. 

The present chapter focuses on the analysis of individual data generated by a case- 
control sampling design aimed to assess the risk gradient as a function of the distance 
from a putative source. The data are a n  example of a heterogeneous Poisson point 
process in the plane, in which the intensity of cases in a given location depends on the 
number of people at risk, on the distance from source and on individual covariates. 

Disunse Mapping (itid Risk Assussmeritfor Piiblic Hualth. Edited byA.B. Lawson c’t al. 
c 1999JohnWley & Sons 1,td. 
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20.1.1 Example 

To investigate the relationship between four sources of air pollution ( a  shipyard, an iron 
foundry. iin incinerator and car traffic in the city centre) and lung cancer. it case-
control study has been conducted in ‘I’rieste (Italy) (Higgeri c t  “1.. 1996).Seven hundred 
and fifty-five male cases of histologically verified lung cancer and 755 age-matched 
male controls were identitied through the local autopsy register for the period 1979-
86. Each subject next-of-kin was interviewed and information on demographic charac- 
terist ics. smoking habits, occupational history and place of residence were cwllected 
using a structured questionnaire. Changes of residence in the last 10 years were 
rec.orded. The boundaries of the Province of ‘I’rieste were coded using geographical 
coordinates (Italian Army Geographical Institute, map 1:10000)and the subject rele- 
vant residence w a s  identified on the same map. The location of the four putative sources 
w w identified similarly. For the analysis the distance and the angle from each subject 
residence location to each pollution source w a s  calculated (north orientation). Histori- 
cal data on air particulate deposition (g/m’ per day) for the early 1970s were obtained 
troni 28 stations that covered the city. Each subject residence wits assigned the itveriige 
\ulue measured by the nearest station. 

Alternatively one might have obtained the distribution of the male population by age 
class for each census tract during the study period 1979-80. In Italy this is almost 
impossible, since only for the census year (1981)is such information available. Further- 
more, no information on smoking habits, and information on current job can only be 
derived from census data. Generally speaking a case-control study would be more 
effic-ient in term of costs even if census data had been available and in sufficient detail. 

20.2 GENERAL DEFINITIONS 

Idet denote A the study area, K a region within A, and x a vector of generic coordinates 
(e.g.latitude and longitude) of it location in A. The spatial distribution of a set of points at 
locations {x,: i = 1,. . . . I ! }  in A is the realisation of it two-dimensional point process, 
which can be described using a counting measure 0on A; @(K) denotes the number of 
events in K (Cox ancl Isham, 1980).The first- and second-order intensity functions are 
def in e d, respec*t ive1y, as 

in given infinitesimal regions d x  and d y  in A ( [ R I being the area of K). Stationarity 
implies invariance under translation (the first- and second-order intensity functions 
are, respectively, X(x) = X and X,(x. y)  = Xl(x - y)):isotropy implies invariance under 
rotation (the second-order intensity function depends only on the distance between the 
two locations, i.e. X,(x,y) = A,( Ilx - yll)) (Diggle, 1983).The simple homogeneous 
Yoisson point process assumes the probability of two points occurring on the same 
location x be negligible and the counts of points on two disjoint regions K 1 and K 2 be 
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independent. Then 

and the number of points in a generic region K follows a Poisson law with expected 
value J R  X(u)dw, which is equal to XlKl under stationarity. Given ( > ( A )= ri. the set of 
points locations {x I x2. . . . ,x I I }is distributed as a sample of independent identically 
distributed random variables with probability density (Cressie, 1993) 

A 


The intensity of the population at location x under the Poisson assumptions is given by 
the probability of observing a subject resident at x divided by the unit area: 

An incident case of disease can be observed, at a given time at location x, only i f  she/he 
was healthy and present at the same location a n  instant before she/he got il l .  Define 
p ( x )  as the probability of being a case for a subject resident at x, and recall that Xp(x) 
is the intensity of the process for a subject at risk at x. Then, the spatial point process that 
generates cases of disease is again a Poisson process with intensity function Xc.s(x) 
equal to p(x)Xp(x) (Diggle,1983; Cressie. 1993, p. 690).The expected number of cases i n  
region K is 

~ [ O C S ( ~ ) ]  J l i o A l w u= 

R 

and the probability density for a case, given the total number of cases in region A. is 

It should be noted that the intensity of the case disease process factorises into two 
terms: the first is the probability function of having the disease being at x and the sec- 
ond is the number at risk at x. This resembles the factorisation used in survival analysis 
where the intensity process A ( t )  = p ( f ) Y ( t )is defined as the product of the conditional 
probability (or hazard rate) p ( t ) of failure at time t having survived at t - 1 and the pro- 
cess Y ( t )is the number at risk of failing at time t (Andersen et d.,1992). 

By the same arguments the intensity for a healthy subject (a non-case) is defined as 
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The spatial intensity for the case process may then be expressed in terms of the o d d s  of 
being a case of disease and of XH(x): 

20.3 ESTIMATION 

In practice we have problems in estimating the spatial intensity of the cases when a n  
accurate and precise estimate of XI>(#) is difficult to obtain. Indeed, the census of the 
population is used to estimate the population intensities for aggregate data at the 
small-area level (e.g. post-code sectors or census tracts) but it is infeasible to determine 
the coordinates of the residence of each individual of the population. 

Two alternative sampling strategies can be adopted. 

1. Draw a sample from the population of healthy subjects with sampling fraction 

where ~ ~ , ' l h j ( A )denotes the number of sampled subjects (controls) and O H (  A)  denotes 
the total number of healthy subjects in region A. 

2. Select a sample of healthy subjects (controls) proportional to the number of cases 
enrolled and in case matched to them for some characterics of interest (e.g. age; Koth- 
man and Greenland, 1998).A consequence of this second strategy is that, being the 
total number of controls in region A chosen proportional to the number of cases in 
the study @'"(A) = k @ c s ( A ) ,the actual sampling fraction 1 /c  is not specified. This 
design is exemplified in Section 20.3.1 below. 

In both cases the ratio of the number of cases, #CS(x), to the number of controls, 
#CN(x), at x estimates the ratio of the probability density of the cases and the healthy 
people at x: 

Thus, knowing the two sampling constants k and c, the o d d s  of the probability o f  being a 
case for a subject resident at x is estimable. 

Since under the second sampling strategy the proportionality constant c is not speci- 
fied, the probability o d d s  of being a case for a subject resident at x is not estimable. How- 
ever, the probability odds at x relative to the o d d s  at a reference area with coordinates x *  
within A (i.e. the o d d s  rntio)can be estimated: 

This approach can be viewed as equivalent to conditioning on the total observed loca- 
tions of cases and controls (see Diggle and Rowlingson, 1994). 
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The data consist of a n  indicator for each location x of a n  observed subject if she/he is a 
case or a control, and estimates of the odds of disease at x can be obtained by para- 
meterising appropriately the function p ( x ) or by estimating the intensities of the case 
and control processes non-parametrically (e.g. by density estimation techniques: see 
Bithell, 1990, and Lawson and Williams, 1994). This second choice is used to obtain a 
descriptive representation of the observed crude risk surface, independently of the point 
source location. The intensity of controls can be expressed as 

and the case intensity becomes 

i.e. a function of the odds of disease (the odds being the probability of being a case over 
the probability of not being a case for a subject resident at x) (Biggeri et al., 1996; for a 
similar approach contrasting two point processes, see Diggle and Rowlingson, 1994). 

Figure 20.1 Location of pollution sources and contour plot of the probability of being a case 
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Both spatial intensities, for the case and the control series, can be estimated by 

where the kernel function G(.) has the Epanechnikov functional form. The terms I I ,  are 
smoothing parameters that allow for local variation in the degree of smoothing. They 
are obtained as h ,  = q , h ,  where / I  is fixed in advance and r l ,  is a previous estimate 
obtained, for example, using the simple nearest neighbour technique (see Silverman. 
1986,for a complete discussion of different choices of initial estimates). Apart from the 
proportionality constants kc, the ratio of the kernel estimates for cases and non-cases is 
the odds of being a case. To obtain easily interpretable contour plots we back-transform 
i t :  probability =odds/(l +odds). However, since we do not know the sampling fraction 
1/ c  this probability is not immediately interpretable as a disease probability and u7e can 
only interpret relative changes. 

Figure 20.2 ( rontirizrcd) 
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Figure 20.2 Location of pollution sources and of the cases and of the controls 

20.3.1 Example 

Figure 20.1 reports the location of the four pollution sources in the city of Trieste and the 
contour plot of the probability of being a case obtained using adaptive kernel estimators 
with a 500 m bandwidth and nearest neighbour initial estimates. 

There appears to be a wide risk area with a spot near the city centre and two peaks 
east of the incinerator. The overall pattern suggests some directionality of sources 
effects due to the prevailing wind direction (west to east). 

The reader should note that the spatial distribution of cases of disease cannot be used 
pc'r se to test alternative hypotheses on higher risk in the neighbourhood of a putatiir 
source because of the spatially inhomogeneous distribution of the population. The sam- 
ple of controls drawn from the population at risk is useful when that spatial distribution 
of the population is unknown. The locations of the cases and controls are then identified 
and geocoded. In Figure 20.2 the locations of the 755 cases and 755 controls enrolled in 
the Trieste study are reported. The concentration of the population and the sparseness 
or even absence in the proximities of the foundry and the shipyard are evident. 
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20.4 CRUDE TREND TESTS ON DISTANCE FROM SOURCE 

In the remainder of the chapter we focus on the analysis of the risk of disease, parame- 
terising appropriately p ( x )as a function of distance from a putative source of exposure. 
Using the case-control design we are interested in estimating the odds ratio of disease, 
taking as reference the odds at a location so far from the source that a n  effect of it would 
be implausible. First, we present the simpler trend tests of the odds riitio by distance from 
source. Since the existing methods (Stone and Cuzick-Edward tests) have low power, 
also two alternative possibilities are outlined here: the cumulative chi-squared test and 
the maximum chi-squared test (Hirotsu, 1983; Nair, 1987). Secondly, adjusted trend tests 
are discussed. either in the form of Mantel-Haenszel type or in a logistic regression 
model. These methods are useful to model the excess risk due to the source having taken 
into account all the important covariates. 

In the presence of a putative point source of pollution the locations of cases are 
usually assumed to be generated by a heterogeneous Poisson process since the popula- 
tion is spatially inhomogeneously distributed with intensity XC,s(x)equal to p(x)A I ) ( % ) .  

The effect of the distance from the source can be modelled as follows: 

where p ( x  - xo; 0) is the risk, in its simplest formulation, as a function only of the dis- 
tance from the location of the putative source ( x ~ ) ,modelled by the parameter vector 8 
(Diggle, 1990). The interest here is in making inference on the risk gradient. These kinds 
of tests are also called ‘focused clustering tests’. Only two proposals exist in the litera- 
ture that use case-control data for the statistical evaluation of the association between 
risk of disease and environmental pollution coming from a prespecified source (Stone, 
1988;Cuzick and Edwards, 1990). Both of them can be considered non-parametric tests 
in the sense that no mathematical functional relationship between distance from the 
source and disease risk is specified and the alternative hypothesis states simply that 
the risk does not increase on increasing distance from the source. 

Stone adapted the test he proposed to the case-control data. To apply the test, a com-
plete ranking for the set of cases and controls on the basis of the distance of each from 
the point source (without ties) is needed. Given N as the total sample size (11 cases and 
N - 11 controls), let Y ,  = 1(i = 1 , .. . .N) if’ the individual who is in the ith position, 
according to the distance ranking, is ii case and l’, = 0 i f  the individual is ii control. 
The proposed test statistic is 

i 


lJnder the null hypothesis of absence of association between risk of disease and distance 
from the source, the distribution of the statistic could be analytically approximated, 
considering that, depending on the total number of cases (n)and on the total number 
of controls ( N  - n) , the distribution of the { Yi}coincides with that of a random permu- 
tation of n successes and N - n failures, The test turns out to have low power, unless the 
number of controls is particularly high and superior to that of the cases. In addition, the 
maximum value of the test statistics is often obtained for very lour values of i ( i f  Y = 1 
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the maximum value of T ,  is obtained for i = 1)and, therefore, all the further informa- 
tion gathered on the set of cases and controls becomes dofcrr'to unusable. 

The second test is that proposed by Cuzick and Edwards (1990) and is based on the 
extension of their generalised clustering test. After having ordered the cases and the 
controls on the basis of their distance from the source, we calculate 

K 


where K is a sufficiently high fixed number (for example, equal to 5% or 10'%of the sam- 
ple size) and Yj is defined as previously described. Under the null hypothesis of absence 
of association between source of pollution and disease, the test statistic has a hypergeo- 
metric distribution with parameters K,  n and N,and, therefore, it is simple to determine 
its expected value and the level of significance. This test, like the previous one, presents 
problems of power. In addition, it must be emphasised that the determination of the 
value of K is arbitrary and that only the information regarding ordering by distance is 
used for the construction of the test statistic. 

20.4.1 Cumulative chi-squared tests and their application to 
spatial analysis 

We introduce here two alternative tests: the cumulative chi-squared test and the max- 
imum chi-squared test (Hirotsu, 1983; Nair, 1987). Both tests have been proposed for the 
analysis of association in contingency tables in which a variable is naturally ordered. 
These tests are usually applied in controlled clinical trials and for statistical quality 
control (Nair, 1986). 

It is assumed that it is possible both to subdivide the study area A into K circular 
bands, by means of concentric circles having as their centre the source of pollution, 
indicated by k(k = 1, .. . ,K ) ,  and to be able to determine exactly the number of cases 
and controls in each circle, which we will indicate, respectively, by Ylk and I'Lk.  It is 
possible, therefore, to construct a 2 x K contingency table in which the rows indicate, 
respectively, the cases and the controls and the columns indicate the circular bands. It is 
evident that the table presents a ranking in the columns, due to the distance from the 
source of pollution. The frequency observed in the (i,k)th cell is indicated by Ylk.In what 
follows we indicate the marginal totals of the rows (the total of cases and controls, 
respectively) by R I  = Yl l  + Y12+ . . . + Y I ~ ,i = 1,2  and the marginal totals of the 
columns, i.e. the total number of individuals observed in each circular band, by 
Ck = Ylk + Y L ~ ,= 1 , .  . . ,K .  Finally, Z i k  = Y1j indicates the cumulative frequen- k 
cies of the rows (the number of cases and controls observed in the first k circular bands, 
respectively), I)k = E,"=,ck the cumulative frequencies of the columns totals, 
rI  = R , / N  the marginal proportions of the rows, c k  = Ck/N the marginal proportions 
of the columns and dk = D k / N  the cumulative proportions of the columns. 

Assuming that the cases of disease are distributed according to a heterogeneous 
Poisson process of intensity XCS(X>, the number of events Ylk within the kth circular 
band is Poisson distributed with expected value equal to Js, Xo(u)du,  where Sk indi-
cates the domain of the kth circular band. Since a n-tuple of random Poisson variables, 
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conditional on their sum, is distributed according to a multinomial law (Johnson and 
Kotz,  1969L the K - tuple { Y l k :  k = 1 l .  . . , K} is distributed according to  a multinomial 
distribution with probabilities 

Analogous reasoning on the distribution of controls brings to the conclusion 
that { Y J k : k = 1. . . . , K) is also distributed according to a multinomial liiw with 
probabi 1i ties 

and, thus, the K circular bands represent the categories of two multinomial popula- 
lions, namely that of the cases and that of the controls, having sizes HI and HL, 
respectively. 

The cumulative probabilities of cases and controls are indicated, respectively, by 
= p l , , i = 1 . 2 .  The null hypothesis of absence of association between risk of ~ , k  

disease and source of pollution is tested against the alternative hypothesis: 

in which, for at least one value of k,  a strict inequality is valid. The first of the two posi- 
tions corresponds to the hypothesis of a n  excess of cases of disease close to the source of 
pollution, the second to an excess of controls. The proposed test statistic is 

ti- 1 

T , , = xi, 
k= 1 

where xi indicates the Pearson chi-squared statistic for the 2 x 2 contingency table 
obtained by grouping the circular bands from the first to the kth and from the 
( k  + 1)thto the Kth. that is: 

See also Taguchi (1974)for a discussion of this test as part of a class of cumulative chi- 
squared tests. The p-value of the statistic Tl, can be approximately determined by means 
of simulations or using the Satterthwaite (1946)approximation (Hirotsu. 1993).which 
in our experience tends to give probabilities of type I error larger than aimed at (Lagazio 
r’t al., 1996). 
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20.4.2 The maximum chi-squared test 

A possible alternative to testing the null hypothesis against the alternative hypothesis 
H 1 is the maximum chi-squared test, proposed by Hirotsu (1983).The test statistic is 

The derivation of the asymptotic distribution of 7’%,is somewhat complex. inasmuch as 
it is necessary to determine the distribution ofK - 1random correlated chi-square vari- 
ables. For K > 9, as frequently happens in geographical epidemiology, it is necessary to 
use simulation methods in order to determine the level of significance of the test. 

The maximum chi-squared test is interesting because i t  offers the possibility of deter- 
mining, albeit approximately, the range of action of the source of pollution, identifying 
i t  by means of the distance at which Xi reaches its maximum (see Lagazio c ~ t(11.. 1990). 
In a sense it is similar to the Stone test. 

20.4.3 Example 

The cumulative and maximum chi-squared tests were applied separately for each 
source of pollution on theTrieste data. The area under study was subdivided into circu- 
lar bands with a span of 100 rn, having as their centre. in turn, the examined source of 
pollution. The choice of the radius of the concentric circles w i i s  subjective and influ- 
enced the power of the two tests, but in this case it does not seem to have had any notice- 
able effects. The significance of the statistics 7‘1,and TA, was determined on the basis of 
10000 Monte Carlo simulations. In Table 20.1 the results of the cumulative and maxi- 
mum chi-squared tests are reported. The p-values obtained for the cumulative and maxi- 
mum chi-squared tests suggest the existence of a significant association between 
sourccs of pollution and risk of disease. The two tests give discordant results as regards 
the possible effects of the incinerator and that the p-value of the statistic TkI relative to 
the foundry is at the limits of the rejection region. Such results therefore seem to indi-
cate the existence of a significant excess of risk due, above all,to the polluting emissions 
of the shipyard and the city centre, while the relationship with the other two sources of 
pollution is more uncertain. However, relevant confounding is not taken into account: 
first, people working at the shipyard, foundry or incinerator could reside closer to those 
sources than people not working there: secondly, lower social class people with a higher 

Table 20.1 i’tilues of the statistics T I ,and Tbl for the four sources of pollution 

Cumulative chi-squared T L  Maximum chi-squared T h ,  

Source Obs. values MC p-values Obs. values MC p-values Range (km) 

City centre 494.02 0.001 19.4 3 O.OO(1 3.7 
Shipyard 5(13.27 0.000 17.19 (1.0( 10 2 .h 
Fou n dry 360.71 O.O(13 9.11 (I.(1 3  1 4.1 
I nc i nerat or 328s1( 1 0.012 7.36 0.149 3.h  
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prevalence of smokers could be resident in more traffic-polluted areas; finally. the effect 
of one source could be confounded by other neighbouring sources, and this is the case 
for the shipyard and foundry with regard to each other and the city centre. 

20.5 STRATIFIED ANALYSIS 

A generalisation of the Cochran-Mantel-Haenszel test can be used to test the null 
hypothesis against the alternative hypothesis H 1 conditional on a confounder with M 
levels by the cumulative chi-square or the maximum chi-square tests. With aggregate 
data. a typical confounder in geographical analysis is the deprivation score which is a 
derived variable obtained by a combination of attained educational level, social class of 
appartenance and job. In general, using individual questionnaires, smoking behaviour 
should also be used as a major confounder for many environmental exposures. 

The test statistic is derived simply by rewriting each Pearson chi-squared statistic for 
the 2 x 2 contingency table obtained by grouping the circular bands from the first to the 
kth and from the ( k  + 1)th to the Kth, like the following chi-square from an A1 x 2 x 2 
table: 

ttt 

where ri 1 Imk = Z I n k ,  ri; lmk = R II,lkdmk and var(n 1 Imk) is the variance of ti 1 1  n& condi-
tional on the group totals (Cochran, 1954)or on the group and the response totals in 
the mth table (Mantel and Haenszel, 1959). 

The stratified cumulative chi-square and the stratified maximum chi-square become, 
respectively: 

K - 1 

MHTI, = h*HXkLt 
k 

No adjusted test statistics have been proposed for the Stone or the Cuzick-Edivards 
tests. 

20.6 LOGISTIC REGRESSION ANALYSIS 

A different approach to evaluating the risk gradient from source consists in specifying a 
parametric function for p ( x  - x():0). Given that using a case-control sampling design 
the odds rntio is estimable and that the case intensity is expressed by 

a logistic regression model can be defined in terms of the odds of having the disease 
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being resident at distance d = (x - xo) from the source: 

odds[Pr(Y,= l)]= dx- xO; = W [ l  +f(x - x():Q)].
1 - p(x  - xo; 0) 

where an additive scale for the relative risk is assumed ( M J  is a proportionality factor and 
f (.)  is a function that specifies the risk decay by distance). The additive scale is plausible 
because it provides that at infinite distance from the source the risk is unchanged, with 
choices off(  . )  such that lim,{+x f(d) = 0 (Diggle, 1990; Lawson, 1993b). 

Individual risk factors can be introduced as  multiplicative terms in the model 

and multiple sources could be accommodated in the following way: 

where s denotes the sth source and yj the log odds ratio for the jth risk factor 2 , .  These 
models are known as mixed additive-multiplicative models for excess relative risk (Mool-
gavkar and Venzon, 1987). 

Several parameterisations have been proposed for the function I((see Diggle. 1990:3 )  


Diggle et d.,1997; I J a ~ ~ 7 ~ o n ,  1993b). The simplest choice is the exponential decay: 

where the parameter C L ,  models the excess relative risk at the source location, is the 
distance (in meters) from the sth source and the parameter J, (being negative in sign) 
models the exponential decay of the excess relative risk for longer distances. For a given 
source, specific terms are added to the model to allow for directional effects: 

where d is the distance and 8 is the angle between the case or control location and the 
source location (Lawson, 1993 b). 

More sensible patterns of risk decay than the exponential decrease from the source 
have been suggested in the literature: Diggle and Rowlingson (1994) used d: and Law- 
son (1993b) proposed adding log(d,) to the regressors. Moreover, a plateau of maximal 
risk at the source location and its proximity can be modelled introducing an additional 
parameter in the exponential function (Diggle et al., 1997). 

The logistic model described can be considered a semi-parametric model: the popula- 
tion intensity has not been estimated and only the locations of the controls are used to 
compute conditional probabilities to be a case of disease given a subject residence, while 
the risk gradient by location has been completely parameterised. The existence of an 
excess risk close to the source is assessed by means of score tests or likelihood ratio tests 
on the parameters of the risk gradient function. However, the parametric (on distance) 
additi~re-niultiplicati~remodels could present serious problems of convergence tvith 
some datasets and, moreover, the estimated standard errors can be unreliable (Iliggle 
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Table 20.2 Excess risk of lung cancer as a function of distance from the city centre and from the shipyard, iron foundry and incinerator 
~ ~~ -

Models  with one source at a time Models  with centre and one other source 

Likelihood Likelihood 
Source r B Ratio p-value Q B Ratio p-value 

~ ~~ 

I.-
('ity centre 7 7  - 0.015 7.4 0.02 
Shipyard 2.0 - 0.019 7.9 (1.02 1.2 - 0.022 1.1 0.58 
Foundry 1.i -0.Oli 5.3 0.Oi 5.9 - 0.161 4.9 0.09 
I ticinerator 1.5 - 0.01 5 4.7 0.09 b.7 - 0.176 9.2 0.01 
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c p t  al., 1997,suggested using Monte Carlo standard errors). Therefore the analyst should 
be careful and should try to maintain the model as simple as possible. balancing over- 
parameterisation with sensibility. 

Non-parametric modelling via generalised additive models (Hastie and Tibshirani, 
1990)can be a useful alternative to describe the pattern of disease risk as a function of 
the distance from the source. The main problem here consists in the lack of the con- 
straint that the excess risk be zero at infinite distance from the source, so that it could 
be estimated negative. A second problem could arise when analysing multiple corre- 
lated sources since the estimated non-parametric function for one source could absorb 
the effect of another, resulting in a very fuzzy picture. Currently no application of such 
methods to this context have appeared in the literature. 

20.6.1 Example 

Smoking habits, occupational exposure and air particulate deposition levels have been 
considered in a multiple logistic regression model on the Trieste data. The results are 
presented in Table 20.2. Among the confounders considered, the odds ratio estimates 
for particulate deposition levels are close to the null ~7aluc and not statistically significa- 
tive. since the distance from the sources captures all the information on the risk gradi- 
ents by sources. Smoking and occupational exposures, howe\w, are highly statistically 
significant. Among the sources, the most important contribution comes from the city 
centre, followed by the incinerator. The other sources are not statistically significant. 
The crude analysis has been only partially confirnied after adjustment for con founders 
and the inclusion of other sources. The sources appeared to be highly correlated and the 
geography of the city is heavily affected by its proximity to the coast and the unc\’en 
distribution of the population. For these reasons models with multiple sources are diffi- 
cult to fit and we adopted a forward selection strategy. The selected model included 
terms for the city centre and the incinerator only. It is noteikwrthy that the effect of the 
incinerator emerged only after the city centre had been taken into account. 

This geographical analysis supported and validated the results obtained using the 
historical measurement of air pollution and provided a more sensitive approach to risk 
modelling around putative sources. The case-control design allowed the adjustment for 
relevant individual risk factors (smoking habits and occupational exposures) a s  well as 
ecological variables (air particulate deposition) and provided efficient estimates o f  the 
excess risk gradients around putative sources. Finally, when interpreting t he results 
from this kind o f  analysis, it is important not to forget the spatial definition o f  the detcr- 
minant under study, which means that we have only a proxy of individual exposure, and 
the uncertainties and weaknesses in using multiple sources, which being close each 
other in a peculiar pattern could result in highly unstable estimated coefficients. 
The interested reader is referred to Biggeri cf d.(1996)for a detailed discussion of this 
example. 

20.7 CONCLUSIONS 

We have reviewed the analysis o f  risk gradients as a function of distance from point 
sources by an individual case-control study. This kind of study can be viewed as a sort 
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of mixed design, part based on individual information and part based on ecological 
measurement, distance of the residence from sources. In this sense it is superior to 
purely ecological studies based on aggregate data. On the other hand, this design is sub- 
ject to all the biases which could affect the standard case-control study (Rothman and 
Greenland, 1998) plus those affecting the correctness of the location definition and 
assessment. Theoretically the relevant location should be that at which the exposure 
could be experienced by the subject. Examples of incorrect location definition are, for 
the cases, the residence at death (see the location of houses for old people in Gardner 
and Winter, 1984a); and for the controls, the more recent residence (since people could 
have moved away from a suspected source of pollution; see also Ross and Davis, 1990). 
Examples of imperfect assessment of location are the use of low definition geographical 
niaps or incomplete recovery of residential histories (niggle and Elliott, 19%1. 

The definite merit of this sort of investigation stands on the ability to model the risk 
gradients while adjusting for relevant individual risk factors i n  a11 the instances where 
historical data on exposure are difficult to obtain or unreliable or wc want to  dc\~elopan 
adequate va1id e nv iro n men t a1 samp1ing st rategy. 
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Lung Cancer Near Point 
Emission Sources 

Goran Pershagen 
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21.1 INTRODUCTION 

Emissions from certain industries and power stations as well as from motor 
vehicles contain carcinogenic substances and other agents which may affect the cancer 
induction process, such as airway irritants (Pershagen, 1990). Heavy exposure to the 
same factors in the workplace have often resulted in increased risks of lung cancer. 
Although exposure levels are normally much lower in ambient air and extrapolation of 
risks from high to low doses is uncertain there has been considerable concern regarding 
cancer risks for the general population. Even low excess risks may be of importance 
from a public health point of view if large population groups are exposed. 

Several descriptive studies have shown increased lung cancer rates in urban and 
industrialised areas (Katsouyanni and Pershagen, 1997).The design has often been eco- 
logical without detailed information on air pollution exposure and important risk fac- 
tors. A number of epidemiological investigations have also been performed based on 
cohort and case-control methodology to assess lung cancer risks related to ambient 
air pollution. Information was generally included on tobacco smoking for each study 
subject as well as data on some other risk factors, such as occupational exposure. Unfor- 
tunately, the information on air pollution exposure was often poor, and based primarily 
on recent measurements, although earlier exposures may have had great relevance for 
lung cancer risk. 

The purpose of this chapter is to assess the evidence regarding ambient air pollution 
and lung cancer, with particular emphasis on the methodology for estimating exposure 
and data analysis. Primarily case-control studies will be discussed which have often 
provided the most extensive and detailed schemes for assessing exposure. Lung cancer 
near point emission sources in focused, for example, near industries with high emis- 
sions of carcinogens, but studies on risks related to urban air pollution are also taken 
up since the methodological implications are similar. Finally, some recommendations 
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tire given for improLiing the quality of future cpideiiiiological studies on ambient air pol-
l U t ion ii  nd lu np c-iincer. 

21.2 INDUSTRIAL AREAS 

Ecologic studies on lung cancer have been performed in areas with industries ofdiffer- 
ent types, including chemical, pesticide, petroleum, shipbuilding, steel, and transporta- 
tion industries (Pershagen and Simonato, 1993).Most of the studies showed increased 
lung cancer risks, which did not seem to be fully explained by socio-economic. kictors. 
CloLvever, smoking habits were not controlled and neither was employment at the indus- 
tries under study. For example, some investigations focused on lung cancer neiir iron 
and steel foundries and Scotland (Lloyd. 1978; 1,loyd et rd 1985; Smith ot r i l ,  1987).The 
highest lung cancer mortality was seen in areas estimated to be most heavily exposed 
to emissions from the foundries. A decreasing pattern of lung cancer risk wiis obser1wi 
with decreasing soil contamination of metals. This pattern become weakcv- when adjust-
ment w a s  made for socio-economic factors. 

Severul studies have been carried out in areas neiir copper, lead, or zinc smelters 
(l’ershagen and Simonato. 1993).‘I’he emissions from the smelters are quite complex, 
but inorganic arsenic is often it major component. The studies come from four countries 
(C’anada. China. Sweden and the lJnited States) and are of ecologic or case-control 
design. Five ecological studies showed increased lung cancer rates among men living 
in iireiis near non-ferrous smelters with relative risks ranging from about 1.2 to over 2. 
, 7I wo case-control studies showed relative risks of 1.6 and 2.0 for men living near the 
smelters after adjustment for occupation and smoking (Brown e t  d , 1984, l’ershagen: 
1985).A subsequent study in one of these areas revealed that the excess risk wiis no 
longer present following ii more than 98% reduction in the emissions of inorganic 
arsenic- and other agents (Pershagen and Nyberg. 1995).This adds credibility to the 
hypothesis that the increased lung cancer risk observed during the early followup 
period was related t o  ambient air pollution. 

il descriptive study i n  Lithuania showed ii high lung cancer rate in ;i county with a 
mineral fertiliser plant where emissions of airway irritants had been substantial o i w  
seiveral years. particularly of sulphuric acid (Gurevicius, 1987).A subsequent case-con- 
trol study reveilled that the excess risk was not related to residence in the vicinity of the 
plant or t o  occupational exposure at the plant ( K .  l’etrauskaite, personal c-oinniunicii- 
tion). Instead, the data indicated that the relationship between smoking and lung 
cancer wiis unexpectedly strong and that smoking w i s  pxticularly preiwlmt in the 
c o u n t y  under study. 

The assessment of exposure in the studies of lung cancer in industrial areas wiis 
often based on information regarding the last residence. Since emissions generally 
occurred from a point source, exposure estimation mostly used distance from this 
source. linfortunately, this procedure was rarely validated against measured air con- 
centrations. The paucity of data on levels of relevant air pollutants makes it difficult to 
estimate exposure-response relationships and to compare the results of different 
studies. Occupational exposure in the industries under study was often associated 
with a n  increased lung cancer risk and these subjects should be excluded or analysed 
separately i f  risks related to atnbient air pollution are focused. 
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Overall, the studies suggest that emissions from some types of industries may 
increase lung cancer risk in the surrounding population. The evidence is strongest for 
non-ferrous smelters, where arsenic emissions may be of importance. In addition, 
increased lung cancer risks have generally been observed among persons employed in 
these industries, who are more heavily exposed to the same agents. 

21.3 URBAN AREAS 

The composition of ambient air in urban areas in quite variable and complex. Some 
examples of the environments under investigation in epidemiological studies include 
British towns and cities during the 1950s; and urban areas in Japan, China. Europe. 
and the United States from the 1960s to the 1980s. Emissions resulting from the use of 
coal and other fossil fuels for residential heating were dominating sources of pollution 
in some areas, while in others motor vehicles or industries were more important. The 
term ‘urban’ thus denotes a mixture of environments, which may show substantial dif- 
ferences, both in terms of actual exposures to various environmental pollutants and the 
influence of interacting or confounding factors. 

The epidemiological evidence on air pollution and lung cancer has recently been 
reviewed by Katsouyanni and Pershagen (1997).Nine cohort studies on urban air pollu- 
tion and lung cancer are available. All but one of the investigations contained informa- 
tion on smoking for all study subjects. The studies came from the United States (5), 
Sweden (2),Finland ( I ) ,  and the United Kingdom (1).Smoking-adjusted relative risks 
for lung cancer in urban areas were generally of the order of 1.5 or lower in those cohort 
studies reporting increased risks. The findings pertain mainly to smokers. For non- 
smokers the number of cases was generally too small for a meaningful interpretation 
on urban-rural differences. 

In general, the exposure to air pollution for the study subject was based on place of 
residence at the time of entry to the cohort. Detailed air pollution measurements were 
provided only in the more recent studies (Mills et d., 1993: Pope1991: Dockery et d., 
et trl . ,  1995).However, the measurements mostly included criteria air pollutants only, 
such as 0 3 ,  S O 1  and suspended particulates. As a rule, data on carcinogens related to 
fossil fuel combustion were not provided. 

In 13 case-control studies reviewed by Katsouyanni and Pershagen (1997).residen-
tial and smoking histories were obtained for the study subjects and sometimes also 
information on potential confounding factors, such as occupation. Increased relative 
risks for lung cancer were observed among men in urban areas in three British 
studies as well as in studies from Germany, Italy, Poland, China. and Japan. Two US 
studies found raised lung cancer risks in urban males, while another two failed to 
show a n  effect. One study including detailed information on histological types of 
lung cancer noted that the excess risk related to city centre residence seemed to be 
confined primarily to small cell and large cell carcinomas (Barbone ct d.,1995).The 
results for women are difficult to interpret because of small numbers, but at least 
three studies indicate a raised lung cancer risk for females in urban areas. also 
among non-smokers. The magnitude of the excess relative risks for lung cancer in 
urban areas reported in the case-control studies was similar to  that in the cohort 
studies. 
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Most of the case-control studies included some information on air pollution levels in 
the areas under investigation. However, this was primarily based on recent measure- 
ments of criteria air pollutants at few stations and the relevance for cancer risk is uncer- 
tain. Exposure assessment was often based on the last residence, but some studies 
considered residential history extending over several decades (e.g. Xu et al., 1989; 
Katsouyanni et al., 1991; Barbone of al., 1995). Then, the areas of  residence were ordered 
according to air pollution levels and a weighted average was usually taken depending 
on the length of stay in each area. 

In conclusion, the epidemiological evidence is consistent with a modestly increased 
lung cancer risk caused by ambient air pollution in urban area. However, the data are 
difficult to interpret. Many studies were not designed to study this relationship, which 
has implications for the detail and quality of the exposure information. It is clear that 
the environments under study show great differences in the types of exposures. Emis- 
sions resulting from the use of coal and other fossil fuels for residential heating were 
dominant sources of pollution in some areas, while in others, motor vehicles or indus-
tries were more important. It is not possible, from the data available, to separate effects 
o f  specific air pollution components. 

21.4 METHODOLOGICAL IMPLICATIONS 

Lung cancer has a long induction-latency period which may extend over several dec- 
ades. This creates special problems for the acquisition of high quality information on 
exposure to ambient air pollution and potential confounders. Ideally, longitudinal expo- 
sure data should be available covering a relevant time period for disease induction. 
Some studies tried to estimate concentrations of indicator pollutants in various parts 
of the areas under investigation, mainly based on recent measurements. The agreement 
between these measurements and earlier, probably more relevant, concentrations is 
uncertain as is the representativeness of the indicator pollutants for cancer risk. Mod-
ern methodology for estimating ambient air concentrations based on emission data and 
dispersion modelling was rarely used. 

Few studies provided detailed information on personal exposures, intra- and inter- 
person variability in exposure, and the correlation of personal exposures with levels 
measured at fixed-site monitors. Most people in industrialised countries spend about 
80%-90'k of their time indoors, and the major part at home (Nitta and klaeda, 1982; 
Ott, 1988).The time activity pattern is mainly determined by age, gender and work 
status (Schwab ~t al., 1990). For example, time spent at work contributes significantly 
to the activity pattern for a major part of the population. It may be necessary to consider 
changes in individual time activity patterns over time if long-term exposure is to be 
estimated. Furthermore, it should be emphasised that microenvironments contributing 
little to the overall pattern might still be of great importance if exposures are high. 

Ketrospective assessment of exposure to air pollution generally involves identification 
of residential addresses during several decades. Validation studies show that such infor- 
mation may be obtained accurately via mailed questionnaires or interviews, also from 
next-of-kin (Yershagen, 1985; Schoenberg et d.,1990).A high mobility reduces the pos- 
sibility of achieving exposure contrasts between individuals, which has implications for 
the study power. Swedish studies indicate a n  average of about six residential addresses 
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during a lifetime (Svensson et al., 1989), but the number seems to be higher in North 
America (Letourneau c’t al., 1994). It has not been investigated to what extent air pollu- 
tion levels correlate between the places of residence in the same individual. 

Confounding factors are of great concern in evaluating relative risks of the magni- 
tude encountered in the studies of air pollution and lung cancer, i.e. of the order of 1.5 
or lower. Validation studies indicate that high quality information on smoking habits 
and occupations can be obtained retrospectively, even from next-of-kin (Pershagen, 
1985; Damber, 1986).Data on smoking habits were available in most of the cohort and 
case-control studies on air pollution and lung cancer, but there may still be residual 
confounding from smoking when different areas are compared. Occupational exposures 
may also be important confounders and this was often not controlled for in earlier stu- 
dies. Other potential con founders include dietary habits and domestic radon exposure. 
For example, negative confounding may occur because residential radon levels tend to 
be higher in rural than in urban areas. 

The available evidence on ambient air pollution and lung cancer suggests that there 
may be a n  interaction with smoking in excess of an additive effect, although the find- 
ings are not entirely consistent (Katsouyanni and Pershagen, 1997). The results have to 
be interpreted with caution, and there may be bias due to both crude exposure measures 
and uncontrolled confounding. However, the findings are consistent with data on occu- 
pational exposures to high doses of some of the agents present in ambient air pollution. 
In addition, it may be expected that there are interactions between various components 
of the pollutant mixture in urban and industrial areas, both of a synergistic and a n  
antagonistic nature. It is not possible to assess the effects of such interactions in detail, 
but they may help to explain some of the variation in results between the epidemiologi- 
cal studies. 

To obtain sufficient contrasts in exposure it may sometimes be useful to combine data 
on ambient air pollution and lung cancer from different locations. Such studies have 
been performed, and methods are available that combine ecologic-level contrasts of air 
pollution effects between areas with individual-level data on covariates (Prentice and 
Sheppard, 1995).Such studies can assess the effect of exposure to air pollution among 
different types of areas while controlling confounding by smoking, diet and other 
factors. This type of methodology should receive greater attention in air pollution 
epidemiology, although further development and testing of the designs and statistical 
methods is desirable. In particular, many potential confounders show spatial trends 
and thus covary with group-level exposure when this is related to geographical 
location. 

Epidemiological studies near point emission sources are sometimes motivated by 
anxiety among the population and/or to assess clusters of disease. For example, studies 
were initiated in the [Jnited Kingdom because of a n  apparent cluster of respiratory tract 
cancers near a waste incinerator (Elliot et d.,1992). Using cancer registration data 
near other similar facilities it was concluded that the incidence of cancer of thc 
larynx or lung was not related to distance from incinerators for waste solImts and 
oils. Confounding may be of importance in these types of analyses as information is 
generally lacking at an individual, and even area, level regarding important risk 
factors for lung cancer. Consequently, this methodology has limited usefulness for 
the assessment of causal effects by air pollution but may well be justified for other 
reasons. 
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21.5 CONCLUSIONS 

The occurrence of lung cancer shows substantial geographical variation, and ecologi- 
cal analyses have provided useful hints to explain these findings. However, detailed eva- 
luation of the role of ambient air pollution requires individual data on important risk 
t'actors for lung cancer, particularly regarding smoking, to adequately assess confound- 
ing and interactions. A major drawback in the studies has been the poor characterisa- 
tion of air pollution exposure. Ideally, measurements of air pollution in the study areas 
should span the time period relevant for disease aetiology and preferably include con- 
centrations of suspected carcinogens. Exposure studies are needed to provide data on 
how individual exposure is related to the levels measured at fixed monitors, considering 
different activities and mobility. Furthermore, methods for retrospective exposure 
assessment covering periods of several decades should be developed. This could include 
the use of modern methodology for estimating ambient air concentration based on 
emission data and dispersion modelling. Epidemiological studies should also address 
the consequences of quality deticiencies in exposure assessment and implications for 
risk estimation. 

Studies of lung cancer near point emission sources may sometimes be feasible for the 
assessment of risks related to ambient air pollution. However, small populations with 
excessive exposure resulting in limited statistical power argue in favour of combining 
data from several sites. International collaboration may be particularly useful and such 
initiatives should be encouraged. For example, the World Health Organisation has an 
important role in promoting international contacts and collaboration in environmental 
e p idemiolo g y. 
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22.1 INTRODUCTION 

The health consequences of industrial development and its attendant pollution are 
often of great interest to the public. Therefore environmental epidemiology is frequently 
interpreted in a political context of debate over the desirability of specific industries, 
products and processes (Wing, 1998). Threatened by a challenge to their appearance 
of neutrality, some epidemiologists have attempted to draw a careful distinction 
between research and policy or advocacy, and have been very cautious about the 
causal interpretation of epidemiological evidence (Lanes, 1985; Last, 1996: U’ynder, 
1996). 

Other epidemiologists, in the company of many scientists outside the biomedical 
arena, doubt the possibility of a scientific practice that is free of social and 
cultural influences (Aronowitz, 1987; Brown, 1992; Dickson, 1984; Hardings 1991; 
Hubbard, 1990; Latour, 1987; Levins and Lewontin, 1985). While recognising the 
special character of science, they view epidemiology and science in general as 
inherently socially grounded, and believe that epidemiologists should behave as 

Disease Mapping arid Risk Assessmerit.for Public Health. Edited byA.B. Lawson rt (11. 
( 1999JohnM’iley & Sons Ltd. 
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citizens by recognising more fully their participation in and responsibility to their 
society. 

At the same time. public awareness about potential environmental hazards is grow- 
ing. This leads to a n  increased demand for public health authorities to investigate 
adverse effects of’environmental pollutants on human health. hdoreover, in  the mass 
society of the late twentieth century, the putative hazards of modern life often match 
the key criteria of newsworthiness, and the lay press is eager to publicise epidemiologi- 
c-al findings. Industry and environmental groups are also interested in  alerting the 
public to tindings that support their political agendas. 

These are new challenges to environmental epidemiologists whose training and 
experience tire in design. measurement and analysis. Despite their caution, shyness or 
even conservativeness, they are now being asked to bring compelling evidence to the 
policy-makers, educate the public whenever data are informative, and behave u s  public 
health iidiwates, all o f  this with ‘objectivity’, in the sense o f  fairness, justice and intel- 
lectual honesty. Are we. iis epidemiologists prepared to adopt such an approach; How 
can n7e broaden our scope to cope with this situation. What roles will we play in con- 
flicts over the health consequences of industrial policy.; Some new frontiers o f  eniyiron-
ment ii I epidemiology ii re sketched below. 

22.2 ‘WASHING WHITER’: A PITFALL TO AVOID 

22.2.1 Sources of funding 

lleclines in government research funds have increased dependence on private, and 
especially industrial funding. This does not (1  priori challenge the personal integrity 
and ability of’epidemiologists working directly or under contract to industry. However. 
i t  represents three potential drawbacks. First, when working on a controversial 
topic there is a danger that researchers may overinterpret results. consciously or 
unconsciously taking sides in social or institutional struggles. Although theory and 
prior research are recognised positive influences on science, social and political aspects 
of assumptions and beliefs that influence the framing of questions, conduct of 
analyses and interpretation of evidence have not been widely recognised a s  they may 
affect the judgement of investigators in the process of causul inference (Wing ot (11.. 

1997a,b;H’ynder, 1996).The second concern is that industrial research funding is ii 

tinancial investment, and is decided upon in terms of corporate goals and strategies. 
In this respect, positive (or incriminating) epidemiological results are rarely 
~ z d c o m e  by the industries under scrutiny or even. sometimes, by trade unions 
(when jobs and income are threatened), and can yield publishing constraints on 
investigators on the basis o f  legal or proprietary concerns (Wynder, 1997). Positive 
results are then more likely to be dismissed. Third, rightly or wrongly, public opinion 
considers tinancial independence to be a token of credibility for scientists. However. 
government funding may not be viewed as  independent, especidly when there is a 
revolving door between jobs in government and industry. Although government 
f’unding has been viewed at times as critical of industry (Proctor. 1995),in some cases 
i t  has been considered to be indistinguishable from industry funding (Geiger ot d., 
1991)). 
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22.2.2 Causal inference 

The determination of whether or not an association is causal is a major policy issue in 
observational epidemiological studies. To ascertain causality in this non-experimental 
context, some general criteria (among which the Bradford Hill postulates are the 
most well-known) (Hill, 1965) have been proposed. It is commonly accepted that no 
single epidemiological study is persuasive by itself and that evidence (coming from 
different architectures, methodologies and subject groups) must accumulate before 
reaching a conclusion as to causation. However, this process may require decades 
before consistency starts to emerge, and cannot satisfy the expectation of' politicians 
facing citizens concerned about new environmental hazards. \17orse, more evidence 
may be accompanied by divergence in the scientific community. as in the C B S ~of 
radiation epidemiology, a field in which some investigators present evidence of 
health effects at ambient environmental or occupational levels, while others dismiss 
these findings claiming a no-effect threshold in the dose-response relationship or 
hypothesising even beneficial effects at low-level radiation (Bond ot (11.. 199h: 
Cronkite and Musolino, 1996: Joiner, 1994; Luckey, 1980). Meanwhile. new agents are 
introduced much faster than they could ever be evaluated scientifically, while many 
questions raised by previous research remain of interest. 

Strict postulates such as the 13radford Hill criteria have already been partly relaxed. 
For example, specificity seems less relevant in environmental epidemiology due t o  
recognition of multifactorial aetiologies and associations of many diseases with envir- 
onmental agents ("raven c't d,1995). Although the most important criteria arc U very 
strong association and a highly plausible biological mechanism, some epidemiologists 
are satisfied with a relative risk of three or more, when some biological backup is lacking 
(Tdubes, 1995). Often. the causal question is not about whether a n  agent is toxic. but 

7about effects at 1 0 ~ levels, an area of notorious difficulty for epidemiology. In this case, 
the null hypothesis must be able to be rejected even if the alternative hypothesis does 
not deal with commonly accepted theory. It is time for environmental epidemiologists to 
enter the field of risk assessment, which lies at the interface between science and policy. 
Bearing in mind that the appropriate criteria for regulating do not necessarily match 
the criteria for scientific consensus on causality, new guidelines need to be found to 
provide recommendations for public interventions that stress wider application of 
principles of precaution. 

22.2.3 Absence of evidence is not evidence of absence 

Several factors contribute to a lack of sensitivity of studies in environmental epidemiol- 
ogy. Health endpoints of interest to epidemiologists are sometimes either rare, asso- 
ciated with long latency periods, or both. Actual population exposures are generally 
difficult to quantify with precision. The magnitude of the expected association between 
low-level exposure and outcome is usually low and one can seldom demonstrably elim- 
inate all potential sources of bias. Some models lack power when the genuine shape of 
the relationship is unknown (as in point source analyses looking for an effect declining 
with distance). Moreover, in many countries, either an underdeveloped public health 
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surveillance system or tough legal constraints on data linkage preclude optimal epide- 
miological survey design. 

Hence it is easy for studies to yield inconclusive, non-statistically significant results. 
Many people, still unfamiliar with the non-equivalence of statistical significance, con- 
clude in this context that 'there is no risk' whereas the right conclusion is 'no risk has 
been found'. Epidemiologists must question whether the absence of evidence is a valid 
enough justification for inaction (Altman and Bland, 1995). Otherwise they could be 
accused of protecting the economic health of industry at the expense of the health of 
the population and of the ecosystem. 

22.3 A SOCIETAL CONTEXT TO TAKE INTO ACCOUNT 

22.3.1 Media coverage 

The news industry is vital in mediating between researchers, policy-makers and the 
wider public. On the one hand, media are often regarded by scientists as heralding 
new results while leaving out the big picture, but on the other, they are inclined to pub- 
licise their own research since it represents one of the most efficient ways to get further 
support. In other words, media are asked by scientists to curb their appetite for such 
news, whereas scientists are asked by media to curb their craving for praise. Another 
institution which comes into play is the scientific journal that initially reports the study 
under consideration. Major medical journals issue press releases prior to publication, 
which brings publicity to the journal, sometimes overemphasizing (according to indus- 
try or environmentalists) the forthcoming studies. This leads to the so-called 'unholy 
alliance' between epidemiology, the journals and the lay press (Taubes, 1995). While 
epidemiological results deserve a subtle and cautious interpretation (taking the scienti- 
tic and social context into account), at the end of the day, when the information reaches 
the public mind, a n  isolated finding can be interpreted as a universal truth. Some epide- 
miologists, more cautious than others, think that the pendulum of research, swinging 
back and forth as successive and apparently contradictory results come out, subjects 
the public to undue anxieties and fears (Gori. 1995; Janerich, 1991). Purposefully holding 
backevidence from the public, however, is a paternalistic attitude that can coincide with 
the'evidence of absence'problem noted above, and in any case denies the fact that scien- 
tific research often follows a circuitous path while being transformed into knowledge, 
one that is profoundly influenced by the social and political context. 

22.3.2 Judicial is sues 

Citizen may feel excluded from participation in decisions affecting health and the envir- 
onment, which are monopolised by groups that are supposedly uniquely qualified to 
make decisions. Civil actions represent one of the ways that health issues come to the 
attention of the public and policy-makers (Wing et al., 1997).Environmental epidemiol- 
ogists will unavoidably be involved in the lawsuits on both sides. Are they prepared to be 
hired as consultants (sometimes with high fees) and to tear each other to pieces in a 
court.? Self-awareness and careful reflection about the private and public interests that 
are represented in these conflicts can help epidemiologists avoid professional activities, 
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including conducting studies that are insensitive or that side-step important policy 
questions, that are ultimately detrimental to public health interests. 

Conversely, results regarded as 'unpleasant' by industrial owners can make them (or 
the government authorities) take legal action to obtain compensation for alleged 
damages to their public image or profits. In their opinion, researchers should be held 
accountable for these side-effects. The goal is obviously to put pressure on researchers 
to be even more cautious about the interpretation of results and to avoid publicity. 

22.3.3 Policy decisions 

Governments may be motivated to do little about public health issues, especially when 
coping with chronic diseases, which (almost by definition) can be put off until another 
day. But they tend to adopt new policies when a climate of public readiness is reached, 
using the principle that governments should not move far from what is perceived to be 
public opinion (Chapman, 1994). At this stage politicians need urgent answers to com- 
plex issues and turn towards scientists. They can afford neither delay nor uncertainty, 
whereas epidemiologists require time and funds to address issues, and then may offer 
only probabilistic conclusions. It is easier for politicians to call for short-term measures 
that do not threaten powerful constituencies, whereas the social responsibility of the 
professional is to recommend longer-term preventive interventions that benefit the 
general public and result in positive side-effects. Politicians and scientists run the great 
risk of an increasing mutual incomprehension. They should at least try to acknowledge, 
if not understand, their respective margins of action and frames of thoughts. 

22.4 CONCLUSION 

Academic epidemiology is said to have failed since the ecology of human health has not 
been addressed and the societal context in which disease occurs has been either disre- 
garded or deliberately abstracted (Shy, 1997). Some public health workers feel that the 
s t a m  quo is no longer acceptable and that environmental epidemiologists should take 
lesson from the past. On the razor's edge between industry and community activists, 
they are operating in a rapidly evolving society They should demonstrate a humility 
about the scientific research process and unrelenting commitment to playing a suppor- 
tive role in larger efforts to improve public health. Citizenship and environmental equity 
are of primary concern (Wing, 1998). However, epidemiologists should not be left carry- 
ing alone this heavy burden at the expense of their professional and personal life. Public 
support is warranted by epidemiology's vital role in shaping public health policy and 
practice. It is now time to enter a new societal contract between citizens, politicians, 
and scientists, one that is based on principles of innovative science and social justice. 
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23 


The Character and the Public 

Health Implications of 

Ecological Analyses 

23.1 INTRODUCTION 

Many disorders and their determinants have been considered in a large number of 
epidemiological studies, especially during the past two decades, The character of the 
outcome is often used for classifying the studies as belonging to different fields of 
epidemiology. such as cancer-, cardiovascular- or neuro-epidemiology. A n  alternat ive 
view may be based on the kind of exposures or risk factors studied. for example life-style 
characteristics like smoking and drinking or dietary factors or long-term medication; 
other studies are concerned with occupational exposures. The health effects of wide- 
spread exposures to chemical or physical agents in the general environment hacie 
become a n  increasingly important sector of epidemiological research, providing results 
which, in principle at least, have far-reaching consequences for society. 

Studies involving environmental exposures may be thought of as truly ecological in 
character as opposed to other fields of epidemiology. Commonly, however, an ecological 
study is taken as an epidemiological study design correlating environmental or other 
exposure data with disease rates on an aggregated level, that is, without information 
on the individuals. With such a view, ‘ecological studies’ or analyses may cover almost 
any determinants of occurrence of disease or mortality; some arbitrary examples of 
such designs can be drawn both from life-style and nutritional epidemiology (Colhoun 
et nI. 1997, Sasaki, 1993; Norstrom, 1989). Other ‘ecological studies’are merely descriptive 
as providing disease or mortality rates for circumscribed geographical areas, usually 
defined for administrative purposes. Some other term for this kind of study design 
would be preferable, however, since the word ‘ecological’ inherently and naturally 
relates to the character of human exposures rather than to a specific epidemiological 
study design. 

Iliscust Afq@n{g urid Risk ~lssc~ssrtitvrtfor Public. H t v l t h .  Edited byA.13. 1,anrson c’t (11. 
( 1999 John\tTiley& Sons Ltd. 
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Ecological analyses or studies should perhaps also be thought of as a broader term 
than just corresponding to environmental epidemiology, and encompassing not only 
investigations of health outcomes in terms of registered disease or mortality rates but 
also to sometimes include only exposure aspects, that is, the occurrence and spreading 
of agents that are deleterious to human health. To the extent that the health conse- 
quences of a certain exposure are known, its distribution and spreading characteristics 
might be of greater interest to study than any final and often late-coming health effects. 
Nevertheless, in what follows the emphasis will be on the implications of studies directly 
concerned with the assessment of the occurrence of disease or deaths, essentially in 
relation to physical and chemical exposures in the general environment. 

23.2 SOME REMARKS ON THE ASSESSMENT OF 
ECOLOGICAL EXPOSURES 

As a background for considering the implications of ecologically oriented studies to 
public health, there may first be reason to consider some general characteristics of such 
investigations. A key issue in this context is whether or not any specific kind of exposure 
can be identified a s  likely affecting the disease or mortality rates of any studied area. To 
the extent that some disease mapping or cluster identification precedes the perception 
of any causative exposure. the value of such epidemiological efforts tends to be low from 
a public health point of view, especially when it comes to prevention. To the contrary, 
and a s  in epidemiology at large, a study leading to confirmation of a preformed hypoth- 
esis of a health risk from some particular exposure would attract the greater attention 
and possibly result in some preventive measures. 

However, since the exposures usually involved in ecological analyses are more or less 
widespread. it is important to note the difficulties in achieving proper contrasts of expo- 
sure: most people, if  not everybody, may have some degree of exposure. This is rather 
much in contrast to the study situation in, for example. occupational health risk studies 
or in pharmacoepidemiology, where totally unexposed comparison groups are avail- 
able. Similar difficulties obtain in creating exposure contrasts in studies regarding 
nutritional factors. The geographical aspect involved in most, if not all, ecological stu- 
dies implies some limitations regarding the specific issues that can be considered. I t  may 
be possible to study the health effects of air pollution and possibly also of water pollution 
by means of aggregated population data, whereas food items are widely transported and 
the possible effects of contaminated food can hardly be assessed without details on indi- 
vidual exposures. Furthermore, the mobility of population groups in modern Western 
societies tends to effectively attenuate any differences in disease rates that could be due 
to widespread e xposu re s. 

As a consequence of the difficulties in creating definite and strong exposure contrasts 
in most ecological studies, the effects tend to be relatively weak and difficult to 
distinguish clearly. This problem is reinforced by the fact that many, if not all, ecological 
exposures are of low grade in comparison with, for example, occupational exposures or 
life-style-related heavy exposures like smoking. However, quite large populations are 
often exposed to environmental risk factors, so the number of attributable cases may 
be considerable in spite of relatively low exposure levels and the correspondingly low 
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risk estimates in epidemiological evaluations. Typically, the relative risks found in 
ecological epidemiology are of the order of 1.5 or lower. 

A somewhat different situation, providing for sharper contrasts in exposure, may 
sometimes be at hand, however, for example when some exposure of the general popu- 
lation takes place around a polluting factory or a waste dump site. The risks may then be 
more pronounced and clearly distinguishable, but for a limited group of exposed people. 

23.3 COMMENT ON STUDY DESIGNS 

As implicitly indicated already, ecological analyses in a broader sense may involve not 
only studies based on aggregated data but rather the whole range of aetiologically 
oriented study designs that are available in epidemiology. Although not analytical in 
character the results of merely descriptive studies may sometimes be taken into account 
from the public health point of view, for example reports of changes in the annual inci- 
dence of some disease over a period of time or comparisons of disease rates between 
some administrative areas with certain characteristics. Many cancer registries in the 
world provide such descriptive information, but no specific guidance is obtained regard- 
ing what factors may determine any observed changes in incidence. Nevertheless, com-
parisons of disease rates between countries or regions and between native and emigrant 
groups suggest that environmental and also life-style factors are likely to play an impor- 
tant role for human health. The exposure patterns involved in such comparisons are too 
complex and diffuse, however, to provide any basis for preventive measures, but the 
reports may suggest a need for more detailed studies. 

The effects of preventive measures taken against widespread risk factors, such as 
smoking and the risk of lung cancer, might be reflected in descriptive studies, but any 
findings of changing disease rates would nevertheless be too unspecific to permit any 
pertinent conclusions from the public health point of view. For example, since occupa- 
tional exposures may play a great role in lung cancer, although in combination with 
smoking (Kjuus et al., 1986; KvAle et al.,  1986),any regional or national changes in lung 
cancer rates, both among men and women, may reflect not only shifting smoking habits 
but also disappearing (or sometimes perhaps even new) occupational exposures as well 
since women are now tending to take on work tasks that traditionally belonged to men. 

The more explicit and useful information is obtained from specific and exposure- 
oriented studies. It is not uncommon that the starting point for ecologically oriented 
epidemiology is a report or some other indication that a more or less widespread expo- 
sure has taken place to a n  agent already identified as a health hazard, usually in an 
industrial context, or by animal experiments. A well conducted study based on indivi- 
dually assessed exposure would then be the preferred choice. A good example in this 
respect can be found in a study of the lung cancer risk in the general population due to 
arsenic emission from a copper smelter (Pershagen, 1985). In this study, it could be taken 
into account that highly exposed workers lived in the vicinity of the copper smelter, and 
also that there were miners in the area who had a n  increased risk of lung cancer due to 
radon exposure in the mines: that is, these occupational groups were separated into 
their own categories. Obviously, circumstances of this kind can hardly be properly 
handled in a study based on aggregated data. However, there may also be suspicions 
or observations regarding human health effects that are primarily of a n  ecological 
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character. for example regarding the adverse impact of air pollution (IJS Environmental 
Protection Agency, 1996). 

Predominantly, ecological epidemiology deals with open populations, i.e. populat ions 
with a n  turnover of individuals through migration, births and deaths (Miettinen. 1985). 
Consequently the study designs tend to be either of a correlation type, based on aggre- 
gated data (or ‘ecological studies’-cf. above) considering incidence or prevalence rates 
in relation to (some degrees o f )  exposure, or a case-control (case-referent) approach is 
applied. There are many examples of the use of aggregated data in correlation studies 
regarding some truly ecological exposures, but confidence in the results from such 
studies has been limited through the years (cf.Hogan ef al . ,  1979). 

Cohort studies have also been conducted to elucidate the role of exposures that may 
be seen as ecological in character. Such studies tend to be very expensive, however, 
since they require follow up of a large number of individuals over a long period of time, 
usually prospectively. The follow-up of Japanese A-bomb survivors with regard to the 
effects of ionising radiation (BEIK V, 1990) and the Seveso population accidentally 
exposed to polychlorinated dibenzodioxins (Bertazzi r p t  a l . ,  1993) might be mentioned 
a s  well-known examples of such long-term prospective cohort studies of an ecological 
character. A cross-sectional approach with a comparison of the prevalence of some dis- 
order among exposed and unexposed may sometimes be applicable. A study indicating a 
diabetogenic effect from arsenic in drinking water could be mentioned as an arbitrarily 
chosen example in this respect (Lai c t  d.,1994). 

Considering ecological analyses in a broader sense, the spectrum of outcome para- 
meters. which deserves consideration from a public health point of view, is clearly more 
encompassing than usually included in classical epidemiology. Hence, studies that con- 
sider only exposure and not disease outcome, as well as surveys of the body burden of 
various agents, represent a n  important type of such ecological studies. Efforts to study 
and follow trends for lead (Anonymous, 199i; Baser, 1992)or cadmium in blood (l’ocock 
~t nl., 1998; Chia ot al., 1994) or organochlorine compounds in human breast milk 
(Albers et  id., 1996: Chikuni ot (11.. 199i; Schlaud et (il., 1995)may serve as examples in 
this respect, but also health concerns about ozone depletion and the greenhouse warm- 
ing effect (Last, 1993) may be taken as stemming from exposure-related ecological ana- 
lyses with public health implications. 

In a more narrow perspective, however, there are also ecological analyses that 
include some subclinical effects as a n  outcome parameter. This aspect may be illustrated 
by mentioning studies of early effects on kidney function due to environmental expo- 
sure to cadmium (Staessen and Lauwerys, 1993: Jgrup of al., 1995) or 1)NA-adducts of 
polyaromatic hydrocarbons due to heavy air pollution (Motykiewicz et (r l . .  199hl. 

23.4 CREDIBILITY OF ECOLOGICAL ANALYSES 

The results obtained in ecologically oriented epidemiology as well as in other epidemio- 
logical studies are subject to consideration on several levels and in different contexts. 
First, there is the scientific level, including the possibility of getting results published, 
and involving essentially methodological scrutiny, but also critiques based on the scien- 
tilic perceptions at the time when the study is presented. Then there are the reactions 
that may or may not follow from the regulating agencies in a country. Still other con- 
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texts are represented by discussions in the mass media and by the attitudes of the gen- 
eral public, which often strongly influence the health policy decisions finally taken by 
the authorities. 

Whereas some of the scientific critique of a study may obtain in published form, there 
are also many rumours that stem from oral statements by scientifically involved per- 
sons. The latter kind of critique is not documented and therefore is difficult to describe 
in a proper way with pertinent references, buy may nevertheless strongly influence the 
final public health implications of a study. Similarly, the more or less political considera- 
tions by various agencies are usually even more difficult to account for because of the 
lack of any published material regarding why and how decisions were taken, as are the 
notions of the general public regarding health problems of an ecological character. 
Nevertheless, a variety of such poorly documented viewpoints might have a profound 
impact on the implications for public health of results from ecological analyses of differ- 
ent kinds. As a consequence, the comments given here can in essence only reflect the 
author’s perception of how the results of ecological studies have been met in the past 
and are likely to be received in the future, coloured also by experiences of how some 
discussions have developed regarding other findings of an epidemiological character 
(Axelson, 1994). 

23.5 SCIENTIFIC ASPECTS 

The credibility of the results from any single epidemiological study tends to be relatively 
low, but so also are the results of any scientific observation. Repeatability is therefore an 
important and integral part of establishing a scientific concept and it is also a prere- 
quisite for establishing causality, which in turn is the proper basis of preventive mea- 
sures. Even so, there are often different views declared by different researchers 
regarding the interpretation of available data. In the ecological domain an illustrative 
example may be drawn from the disagreements around the acute respiratory effect of 
particulate air pollution (Dockery and Pope, 1994; Moolgavkar and Luebeck. 1996; 
Vedal, 1997). 

Ecological studies with aggregated data often encompass large regions, or even 
nations. As a consequence there tend to be difficulties for any national repetition of the 
results from such a study. Corroborating results from several countries are therefore 
usually required before any more definite conclusions can be reached based on such 
studies. Should the results from different countries be inconsistent, the interpretation 
becomes problematic. Indications of a health risk in some of the studies may then be 
taken as a chance finding or suggested to be due to some confounding effect, for exam- 
ple from life-style and smoking, when considering particulate air pollution and niortal- 
ity (Moolgavkar and Luebeck, 1996). Furthermore, but difficult to document, it seems 
common that studies showing no adverse health effects tend to be more readily 
accepted and attract little criticism even when clearly uninformative or biased (Ahlbom 
et al., 1990). 

Since studies involving aggregated data have a n  inherently poor assessment of expo- 
sure, they should be expected to not necessarily show any effect even when i t  is present 
in some subgroup of the population. Non-positive results in such studies can therefore 
hardly rule out a n  adverse role of a n  exposure if shown in properly conducted case- 
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control or cohort studies. Nor is it usually possible to evaluate the impact of modifying 
factors in studies based on aggregated data, although such factors may well explain the 
differences in results between studies: this aspect might be difficult to comprehend, 
however, even when individual data are at hand. Unless the exposure is properly quan- 
tified, there may also be considerable but not immediately apparent differences between 
studies with regard to the actual degree of exposure, especially if assessed in such 
terms as high, intermediate and low rather than described in measurable terms. 

The complexity that can be involved in ecological analyses may be further illustrated 
by a n  example regarding residential radon exposure and lung cancer. Hence, judging 
from a large Swedish study (Pershagen et al., 1994)the risk seems to be driven by a mod- 
ifying effect from smoking, i.e. there was only a weak effect among the non-smokers over 
categories of exposure in terms of (time-weighted) radon gas concentrations, whereas 
the interaction effect from smoking was quite strong. At the same time, there was nega- 
tive confounding from smoking. These features made it necessary to have individual 
exposure data to in any way be able to reveal a lung cancer risk from indoor radon. 
Furthermore, and as also further complicating the analyses. there was virtually no 
increase in risk among people who slept with a slightly open window. 

The likely reason for this latter finding is that ventilation decreased the exposure, not 
only to radon gas in relation to what was measured at the time of the study, but espe- 
cially to radon progeny as causing irradiation of the bronchi. The dosimetry in studies of 
indoor radon exposure and lung cancer is further complicated because ventilation also 
tends to reduce the particles in the air of a room. Thus, the relative fraction of so-called 
unattached progeny will increase, and this fraction is believed to be more efficient in 
causing lung cancer than the progeny attached to particles. The net effect of these phe- 
nomena could perhaps explain the discrepancies in results from the various studies that 
are available so far (Axelson, 1995: Lubin and Boice, 1997) and which might appear in 
the future. 

The example regarding studies of indoor radon may be seen as complicated. but in 
contrast to many other study situations the assessment of exposure to indoor radon is 
fairly straight-forward, since exact measurements of current radon concent rations are 
possible. However, the current levels are not necessarily representative of those of the 
past. Most other exposures of interest in ecological analyses are much more difficult to 
characterise and assess over time than radon, however, a fact hampering the credibility 
of studies of any such exposures. The discrepant results regarding the health effects of 
exposures of this kind seem to imply that further studies, preferably in the own country, 
are awaited before preventive actions are taken and therefore the public health impact 
of any particular study tends to be low, especially when conducted in another country. 
A more rational attitude could be to only assess the exposure situation in a country or 
region and to rely on existing data on the health effects of the exposure at issue. 
Obviously the direct documentation of casualties in a country leads to more proper 
public health considerations and preventive actions. 

Another aspect regarding the reproducibility and credibility of study results has to do 
with the lapse of time between early and later studies as potentially influencing expo- 
sure levels. Hence, early studies may have created some concern leading to precautions 
and, subsequently, also to decreased exposure levels even if not always officially 
admitted or otherwise recognised. Later studies may therefore be conducted under dif- 
ferent exposure conditions than the first ones of its kind and therefore be unable to 
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reproduce any pertinent increase in risk. Circumstances of this kind may easily lead to 
the conclusion that there might not be any risk present from some particular exposure. 
Although such a development already implies a kind of prevention, a particular expo- 
sure may no longer attract interest, even if widespread, and the long-term efforts to 
reduce a risk may come to an end. 

Preventive measures can be expensive and a somewhat conservative attitude is 
clearly often justified to avoid expensive but, as it may turn out, unnecessary remedies. 
Sometimes no action is taken by responsible authorities because of the fear that infor- 
mation to the general public might lead to unnecessary anxiety. Such a concern cer- 
tainly represents a most conservative attitude and reduces the public health impact of 
any epidemiological findings, ecological or otherwise. Adequate risk communication 
and perception may not be easily achieved because some people may react too strongly, 
whereas others do not care enough (Fischhoff et al., 1993). Some measures, usually 
eliminative in character, are often quite simple and inexpensive, however, and should 
therefore be possible to implement even on a relatively vague indication of a health risk, 
especially as remedial actions often help to reduce anxiety among those people who are 
most concerned. 

23.6 SOCIETAL ATTITUDES 

The ultimate implications for public health from ecological studies depend on how the 
results are accepted by the community and the regulating or legislating authorities. 
The problem of credibility is a central issue in this respect and is strongly related to 
reproducible results. This is not specific to ecological analyses, however, although the 
results in this respect might be met with more reluctance from regulating agencies or 
industry than, for example, findings in epidemiological studies on life-style factors. The 
reason for this seems to be that society, or some industry or industrial branch, might 
have to take responsibility for environmental risk factors, whereas it might be more 
convenient to think of the individual as responsible for risk factors associated with 
1ife-style. 

There is also another related complexity involved regarding the public health implica- 
tions of epidemiological results regarding widespread exposures. Part of this is a ten- 
dency to apply a sort of comparison of risks as  a n  excuse for not taking action. Often 
the risk of smoking is taken as a ‘reference risk in such comparisons and it is suggested 
that any particular risk is limited, if not negligible, in comparison with smoking. Such 
arguments may be heard regarding widespread exposures causing a relatively low indi-
vidual risk, but rather many cases. On the other hand, there is sometimes little concern 
when it comes to high individual risks affecting small groups and therefore causing few 
cases, usually due to some occupational rather than an environmental exposure. 

There are also contradictory attitudes involved in the appreciation of risks. Hence, the 
general public, or rather, particular subpopulations, tend to show greater concern about 
environmental risk factors than about those inherent in life-style. For example, it can be 
noted how people might be quite concerned about the health effects from pesticide resi- 
dues in food but less so about their own smoking. The principle seems to be that health 
risks posed by others are seen as much more threatening than those relating to the indi- 
vidual’s own behaviour. Similarly, a health risk, the elimination of which would lead to 
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some costs to the individual, usually tends to be relatively ignored. Radiation risk is a 
good example in this respect, as there is much concern about radiation in general, e.g. 
around nuclear power plants, whereas residential radon is rather more neglected by 
home owners, perhaps with the exception of families with small children (Jansson ~t 
i l l . ,  198% Fischhoff r t  d.,1993).The situation is somewhat similar regarding exposure 
to  electromagnetic fields around power lines or at workplaces in comparison with the 
tields existing around all sorts of electrical equipment in homes. It may well be, how- 
ever. that there are fairly consistent views within various subpopulations and that the 
overall impression of the debate is false as representing a mix of all attitudes taken by 
different interest groups. Nevertheless, this multitude of viewpoints tends to influence 
the overall public health implications of any epidemiological study results a s  to what 
actions are finally taken by society. 

However, the seemingly irrational attitudes that sometimes can be seen with regard 
t o  viirious risk factors, ecological or otherwise. are not necessarily a n  undesirable phe- 
nomenon, but sometimes perhaps even the reverse, forcing prevention in some respects. 
Many health hazards of an ecological character can be reduced or eliminated through 
information, regulation or legislation, whereas hazardous life-style factors seem sur- 
prisingly dificult to eliminate. This view is certainly a counter-argument to t he above 
notion that weaker risk factors may attract little attention as long iis strong risk factors, 
like smoking. are not effectively eliminated. Some marginal preventive successes regard- 
ing rat her weak ecological factors, are clearly better than little or no preventive achieve- 
ment for some stronger, usually life-style-related, factors. 

Another aspect relating to  attitudes in society, and with some bearing on ecological 
analyses. has to  do with the maintenance of already achieved preventive progress. Some 
regulations might be relaxed in times of economic problems because the preventive 
activities are no longer recognised iis such and because the epidemiological (or other) 
foundations for the regulations tend to be forgotten. There are also problems in carrying 
out epidemiological studies when an adverse exposure has been reduced or has more or 
less disappeared. Positive study results from the latter part of this century may therefore 
kide with time, ii development that might return later as a threat to human health; for 
the time being, this is not ii major problem as the development of epidemiology and the 
provision of results is ii fairly recent phenomenon. Water distribution might perhaps be 
seen iis a n  example in this respect, because this is probably seen by many people in the 
developed countries as first and foremost a technical issue rather than a health preven- 
tive measure. The health consequences of relaxing standards may t herefore not be 
immediately and clearly perceived; there are still hygiene problems with drinking water 
from time to time. even in developed countries. 

23.7 CONCLUSIONS 

There are different viewpoints from which to consider the public health implications of 
ecological analyses. Such analyses may include a variety of investigations on the occur- 
rence of risk factors as well as clear-cut epidemiological studies associating disease with 
speciiic agents. The design issues are critical, as studies of widespread risk factors 
usually come up with fairly low risk estimates. The reason for the low risk estimates 
may be sought in both low grade exposure levels and in the problem of obtaining good 



Conclusions 319 

exposure contrasts; this latter problem may increase when a very large part o f  a popula-
tion is exposed to a widespread agent and to a fairly similar degree. As a consequence. 
also the influence of confounding could be relatively stronger when the risk estimates 
are low, causing credibility problems for the results obtained. 

These inherent problems in ecological analyses may explain why the implications for 
public health often turnout to be limited, especially perhaps when the studies have been 
based on aggregated data. Most important for the ultimate implications of ecological 
studies are probably the more or less rational attitudes taken by society, sometimes 
influenced by the mass media, but also economic interests strongly influence what 
actions are finally taken. The low risk estimates usually found imply that the health 
concerns are more at the community level than representing a threat to the individual, 
which in turn reduces interest at the political level for taking actions and often leaves 
the responsible authorities with rather difficult decisions, especially if there is some 
inconsistency in the epidemiological studies. 
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Computer Geographic 

Analysis: A Commentary on 

its Use and Misuse in 
public Health 

Raymond Richard Neutra 

California Departnient of Health Services 

24.1 INTRODUCTION 

The term ‘geographic analysis’ means different things to different people. For some the 
term denotes a statistical search for causes, which pays attention to geographic adja- 
cency or connectivity. This was the primary way this term was used during the World 
Health Organisation meeting in Rome upon which this volume is based. The main focus 
of the meeting was on statistical tools for smoothing of maps to facilitate inferences 
about geographically located causes, tools to detect clusters of disease and tools for 
improving the quality of ecological studies to disease associations. As outlined below, I 
would include as well cartographic and statistical procedures with a descriptive inten- 
tion as long as they pay attention to location, adjacency and connectivity of one place to 
another. 

In particular, I believe that Geographic Information Systems (GIS) have many power- 
ful and useful administrative and descriptive applications (Vine et al., 1997).The devel- 
opers of GIS and the developers of the statistical tools for map smoothing, cluster 
identification and enhanced ecological studies are optimistic about the utility of these 
tools for public health. Like any tools they have their appropriate and inappropriate uses 
(a hammer is good for nails, but not for screws). Below I lay out 13 generic analytical 
activities, which relate to location, adjacency or connectivity. I will argue that some will 
be common and useful in public health, while others will only rarely be helpful and 
some could be counter-productive. I group these analytical activities into the following 
categories: 

Disease Mapping and Risk Assessment for Publir. Health. Edited byA.B. 1,awson cif d. 
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1. Hypothesis generating 
2. I)escriptive/administrative uses 
3. Hypothesis testing 

I assume that analytical activities are most frequently deployed with one or the other 
of these intensions, but some of the activities could occasionally be classified into more 
than one category. I predict that the descriptive/administrative and the hypothesis test- 
ing applications of geographic analysis will have the greatest utility, while the hypoth- 
esis generating techniques. which were the main focus of the Rome meeting, are more 
problematical. 

Hypothesis generating 

1. Mapping of smoothed or model adjusted rates and relative risks. 
2. Detecting the clustering of disease rates or diseased cases at regional or neighbour- 

hood levels of geography. 
3.  ‘Ecological studies’, i.e. studies that correlate the rate of disease in a series of popula- 

tions with the prevalence of a risk factor in those populations while analytically 
controlling for the prevalence of other confounding factors and for spatial autocor- 
relation. 

I)escriptive/administrative uses of GIS 

4. A convenient way to file geographically linked information. 
5. A tool for gathering geographical facts off a map instead of in the field. 
6. Mapping and counting populations adjacent to potential exposures. -
1.  Going beyond adjacency: estimating exposures from pollution sources. 
8. Calculating optimum clinic locations and nursing routes. 
9. Automatic address mapping. 

10. Locating types of individuals or institutions requiring services. 
11. Producing maps of areas with counts of subjects or institutions requiring service. 

Hypothesis testing 

12. Case-control or cohort studies that use geographic proximity to a pollution source 
or computer model estimates of exposure as a proxy for exposure (with or without 
adjustment for spatial autocorrelation). 

13. Recognising a pattern of disease dispersal which, if  found, would implicate a particu-
lar cause of disease (a sinuous distribution of hepatitis cases suggesting the existence 
of a hit herto unsuspected contaminated swale). 

The plan of this chapter is to discuss the pros and cons of the various applications. 

24.2 HYPOTHESIS GENERATION 

In the early stages of epidemiological investigation, associations with variables of per- 
son, place and time are always examined. Place itself is powerfully associated with 
income, social class and life-style, but it may be associated with exposure to infectious 
agents. vectors of disease and chemical and physical exposures. Particularly when the 
disease has a short incubation period, when in- and out-migration is low, and relative 
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risks vary greatly geographically, the consideration of place is a powerful hypothesis 
generating strategy. 

24.2.1 Maps of smoothed and model adjusted rates and relative 
risks 

When we want to demonstrate the effect of causal factors that cluster in adjacent areas 
we are tempted to adjust for other factors that might confound the pattern. Also. small-
area variation may overemphasise differences, and smoothing procedures can increase 
the chance of seeing a true signal above the statistical noise. The eye may then see the 
effect of a geographically clustered pattern of life-style or physical or chemical agent. 

While there are many situations in which smoothing is appropriate. we need to 
remember that it is inappropriate for administrative purposes where actual counts 
relate to workload. See the discussion below with regard to regional and neighbourhood 
clustering. 

24.2.2 Cluster detection in regions, neighbourhoods or in parts of 
buildings 

Cluster detection is challenging for statisticians and has taken on a life of its own. It has 
been used primarily to search registration districts, census tracts, counties or states to 
determine if rates of disease in adjacent areas are higher than expected. The same tech- 
niques have also been used to scan the distribution of individual cases and to compare 
this distribution with that of a sample of the underlying population. Some techniques 
merely detect the fact of clustering while others identify the cluster's location and assign 
a probability value to it. The techniques can be used at a neighbourhood or a national 
level of scale. In my view it is a n  interesting set of tools in search of a problem.M7hat are 
the situations in which these tools would be helpful.? First, there needs to be some cause 
that is operating so as to increase the incidence, duration, in-migration or prevalence of 
diseased cases in a particular location. Secondly, this increase must be small enough 
that it is not detectable by more obvious means. Thirdly, the detection of clustering 
would serve as a clue to the presence of a cause which we would have otherwise not 
suspected. If we suspected the cause, then we could simply compare rates of disease 
near and far from that cause. Fourthly, having detected an area where some cause is 
operating, we have a high likelihood of pinpointing the identity of that cause. Finally, 
having identified the cause we have resources and techniques to  do something about 
it. Indeed, clustering techniques can be viewed as a kind of screening test which could 
lead to a definitive diagnosis (follow-up analytical epidemiology) and treatment (envir- 
onmental or life-style remediation). As with any screening test we should employ it only 
if the overall campaign is cost effective, not just because the screening test part of the 
campaign is inexpensive. Below we will use this framework to examine the routine use 
of clustering techniques to determine the causes of cancer. 

The techniques have been used widely with cancer, with few i f  any definitive discov- 
eries as a result. In retrospect cancer, as opposed to infectious diseases, is the least pro- 
mising of applications, because there are few general environmental exposures that 
would convey relative risks high enough to produce observable clustering and because 
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the long incubation period and mobility of the population would obscure patterns left by 
the person-to-person spread of oncogenic viruses or the malign effect of pollution 
sources, even if they had been operating. 

'There have been some partial exceptions, however, and it is instructive to look at 
these. In China, simple inspection of Standard Mortality Rate disease maps (and not ela- 
borate clustering or smoothing techniques) have identified dramatic elevated rates of 
nasopharyngeal cancer in one large region and female lung cancer in another. Note that 
the important confounders of these diseases, such as smoking, were not available for 
smoothing in any case. After follow-up case-control studies, the nasopharyngeal can- 
cer has been attributed to the consumption of a kind of smoked fish (Yu, 1986),while the 
female lung cancer has been attributed to cooking with smoky coal in unvented huts 
(Mumford et a l . ,  1987).Both these practices represent widespread life-style factors in a 
country that used to have low mobility and great heterogeneity in these traditional 
practices. Such patterns can be expected in developing countries where only local foods 
are consumed and where traditional life-styles vary. These differences tend to be erased 
by the homogenising effect of modern mass markets. So searching for large-area clus- 
tering on any chronic disease in the very developed countries happen to have disease 
data available is like searching for a key under the lamplight where it is easy to see, even 
though one lost the key elsewhere in the shadows. IJsing these techniques for common 
short incubation diseases particularly in smaller areas could, on the other hand. be 
quite productive. 

In any case, the general public tends to be more interested in neighbourhood-level 
cancer clusters and not in large regional variations. This is because the media has led 
them to believe that point sources will produce small-scale clusters of cancer or other 
dreaded chronic diseases. They assume that there are many such clusters just waiting to 
be found and, once detected, the cause will be pinpointed and dealt with. 

This would be a reasonable expectation for infectious disease with short incubation 
periods, a good understanding of pathophysiology, ways to detect traces of the causal 
agent in bodily fluids or in the general environment and when almost all the cases in 
the cluster can be attributed to the one cause as judged by a high relative risk and a high 
population attributable risk percent. 

These conditions almost never pertain to neighbourhood-level cancer clusters, so 
that even if  a cluster were truly caused by one agent, it would be extremely hard to prove 
it e w n  if the agent wew iilrendy known to prodim c m w - in  other settings. Asbestos and 
mesothelioma is a solitary and notable exception to this generalisation since it meets 
all of the above conditions (see the chapter in this book dealing with mesothelioma in 
Italy). 

If a neighbourhood cancer cluster is due to a hitherto unrc.c.ognised ccircinogrwic q r r i  t ,  
then the situation is even worse since we do not know where to start looking. I have 
argued elsewhere (Neutra, 1990)that of the hundreds of neighbourhood cancer clusters 
examined I could only find one that led to the discovery of a hitherto unknown carcino- 
gen. This was the case of erionite, an asbestos-like mineral in Turkey. Previously known 
causes, with the exception of asbestos, have never explained an environmental cluster 
to my knowledge. 

Should we use statistical tools to screen cancer registry data to discover regional 
or neighbourhood cancer clusters? To cirzswer this  question WO should ~irzsworthe itsiicrl 

qitest ior I s trsked in Ywi 1i u i  ti rig nr i!y p14blir l i dt I r  scr-wri iry yrogrnri I : 
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1. If you found a cluster, how good is your diagnostic ability to confirm that it is caused 
by a n  environmental or life-style factor? 
Answer: As we have seen above, our success rate is poor, and the few success stories 
involved decades of research. 

2. If you confirmed the cause, what public health treatment have you to offer.? 
Answer: For environmental factors there may be no practical remedy. Proving that 
the 9000-fold excess risk of mesothelioma in the small village of Kharain in Anatolia 
was due to naturally occurring erionite, simply left the villagers stigmatised, since the 
Turkish government could not afford to relocate them (Neutra, 1990). Knowledge 
without action was not helpful. This is a frequent dilema in environmental epidemiol- 
ogy and must always be considered. 

3. Are there untoward side-effects of the screening program? 
Answer:Yes. Both for true positives like Kharain and for the inevitable false positives. 
One can anticipate decades of painful uncertainty, media stigmatisation of the com- 
munity being studied and political pressure to devote scarce manpower to follow-up 
studies with a low probability of success. 

4. What is the prior probability of a single cause for neighbourhood-level cancer clusters? 
Answer: Of course this is not ascertainable with certainty, but from environmental 
sampling in areas where clusters have been reported and in control areas, we know 
that the levels of carcinogenic pollution may be high enough to produce cancer of reg- 
ulatory concern, but almost never reaches levels that would produce excess disease 
rates which would be epidemiologically detectable, particularly not in small popula- 
tions. Thus, the prior probability of an environmentally caused and epidemiologically 
detectable cancer cluster is extremely small. Clusters of short incubation infectious 
diseases could be a different matter. 

5. What is the probability of a false positive? 
Answer: That of course is determined by the alpha level chosen by the investigator. 
Since California cancer registries recognise 80 varieties of cancer which can be stu- 
died in some 5000 census tracts state wide, a probability value of 0.01would generate 
4000 false positive clusters per year. A probability value of 0.0001would generate 40 
per year. That would be nearly one per week! Each one would initiate a long painful 
wild goose chase. 

6. What is the posterior probability of a true cluster, given that a statistical tool has 
determined it to be unlikely by chance? 
Answer: Once again, using BayesTheorem, this depends on the prior probability, the 
true positive rate and the false positive rate. My best judgement is that the prior prob- 
ability of environmentally caused cancer clusters in neighbourhoods is extremely 
low, maybe one or two per century. Environmental chemicals are probably causing 
cancer above the de minimis standard of one in a million life time risk, but we epide- 
miologists will not be able to detect this with the tools currently available to us. That 
means that even with a p-value of 0.0001,the vast majority of statistically significant 
neighbourhood cancer clusters will be false positives. 

For all these reasons, and despite the fact that the statistical cluster-screening test 
itself is cheap, environmental epidemiologists have not dredged for cancer or chronic 
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disease clusters a s  a fruitful strategy. Instead they have carried out occupational studies 
where doses were higher or focused in on exposures in large populations where a priori 
evidence suggested they had a chance of observing a n  effect. 

What about applications to conditions of shorter incubation, such a s  low birth 
weight. f'oetal death or birth defects; Kharrazi c't d.(Kharrazi, 1998) of our group 
recently applied it nuniber of clustering techniques to a variety of such outcomes 
over a 5-year period around a hazardous waste site. Even though these outcwnies 
were not associated with distance from the site, it was reasoned that clustering might 
have indicated an unanticipated route of exposure (for example, landfll gas travelling 
through a particular sewage line to a manhole outlet). After examining ii nuniber 
of outcomes some clusters were 'detected' but none related to unusual routes of 
cxposu re. 

%'hat disease outcomes would we t'xyect to be caused by geographically located fac- 
tors? Automobile accidents can be influenced by street design and traffic light timing. 
Homicides and assaults can be influenced by street lighting, the location of bars, broth- 
els. automatic teller machines and gambling houses. Muggings may cluster near the 
residenccs of felons. Within schools and office buildings we might expect airborne infec- 
tious diseases to cluster. We could detect clusters and look for causes, or we could locate 
suspected causes on a map and test if  cases were closer to them than expected. At the 
neighbourhood level we could imagine detecting several index cases of a malaria epi- 
demic in a n  area where the irector was present. but the disease had been eradicatcd 
except for the occasional imported cases coming in from endemic areas. Here the tech- 
niques might help identify which secondary cases belonged to separate clusters and this 
would help cross reference to the location of travellers recently arrived from endemic 
areas of the world. Alternatively, clustering of  Lyme disease might suggest areas where 
wiirnings should be posted or pesticide applied (Zeman, 1997). A clustering of the pur- 
chase of over-t he-counter flu medications on a weekly basis might provide early warn- 
ing of the time and location of an emerging influenza epidemic. We are using clustering 
techniques to  determine if  certain subareas convey extra risk of'miscarriage in a county 
where a prospective study of miscarriage has shown that the consumption of tap water 
but not bottled water conveys excess risk (Swan et al., 1998).There are undoubtedly 
interesting applications for these techniques but I doubt that they will ever play a major 
role in cancer epidemiology or t he epidemiology of other diseases with long incubation 
periods. 

24.3 ECOLOGICAL STUDIES 

Next to techniques for detecting clusters, statisticians have focused effort on ways to 
improve the validity of ecological studies. This is probably because there is so much 
readily available health and environmental data and it is inexpensive to analyse. I f  
only we could use such data for causal inference, it would be so convenient. Statisticians 
have devised methods to correct for the theoretical possibility of substantial spatial 
autocorrelation. When some unknown confounder of the association under study is 
associated with neighbourliness it can effect both the measure of association and 
the confidence limits around it. They have also tried ways to avoid the obviously 
false assumption that everyone in a census tract is exposed to the average of the 
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individual exposures in that population. There was extensive discussion of these 
innovations in the Rome meeting which this volume documents. There is almost a 
tendency to equate the term 'Geographical analysis' with these 'improved' ecological 
study designs. Hut they are only one (and the least productive, in my opinion) of the 
study designs that have a geographical component. Epidemiologists recognise that a 
strong association at the individual level can often be reliably detected by ecological 
study designs, but the new 'improved' ecological designs will need to be validated on 
datasets where both individual and ecological analyses can be done. I f  silk purses 
can indeed be made from sows ears, then this will be an important and welcome 
deve1op m e n t . 

24.4 DESCRIPTIVE/ADMINISTRATIVEUSES OF GIS AND 
GEOGRAPHIC ANALYSIS 

24.4.1 A convenient way to file geographically linked information 

Imagine the convenience of clicking on the residence of a lead-poisoned child and 
retrieving the age of the house, whether it  was owned or rented, its assessed pro- 
perty value. the volume of traffic flowing on the adjacent street and the racial com- 
position o f  that block of houses. GIS systems offer that kind of convenience which 
can make feasible, epidemiological studies previously prohibited by cost or time 
considerations. 

24.4.2 A tool for gathering geographical facts off a map instead 
of in the field 

Suppose we wanted to know the miles of four lane streets, or polluted river front 
beaches, or the square feet of grassy parks in a city. This could be found from the 
field, done by hand on a paper map, or easily computed with a GIS system. All these 
surrogates for exposure could be applied to a n  ecological analysis of census tracts 
relating disease rates to these surrogates and could be greatly facilitated with a GIS. 

24.4.3 Mapping and counting populations adjacent to 
potential exposures 

GIS makes it possible to classify each block face in a city according to traffic density. 
These could be colour coded on a map. We could use linked census data to add up, city 
wide, the number of people in each category of traffic density. By drawing a random 
sample of births we can estimate the population of children at risk of house paint lead 
poisoning in houses of different ages. We can locate the streets wherc wiitcr pipcs and 
sewage pipes have not been replaced for 80 years and estimate the population at risk of 
hepatitis A from breakage and cross-contamination. 
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24.4.4 Going beyond adjacency: estimating exposures from 
pollution sources 

This is a very powerful use of GIS technology which is very costly or impossible to 
achieve with other means. By linking the residential history of cases and controls we 
can reconstruct past exposures if we have records of things like air pollution, past traffic 
density, past electric current on adjacent power lines or past strength and frequency 
and antenna type of nearby radio frequency transmitters. 

Note that such modelling can be related to present-day conditions which are open to 
validation or to the reconstruction of past conditions which, failing the availability of a 
time travel machine, could never be obtained by direct measurement. 

There are a number of other powerful administrative uses of GIS in public health 
which I list below without further discussion: 

0 Calculating optimum clinic locations or nursing routes 
0 Automatically mapping addresses 
0 Locating types of individuals or institutions requiring service 
0 Producing maps of areas with counts of individuals or institutions requiring service 

Note that 'smoothing'of such maps would be inappropriate and that counts, rather than 
rates. are what are wanted. 

24.5 HYPOTHESIS TESTING 

24.5.1 Case-control or cohort studies using adjacency, or 
modelled past exposures, with or without correction for 
spatial au tocor relation 

Croen rt  d.(1997)recently published a study of several types of birth defects in which 
cases from all over the state were compared with a random sample of births as to being 
within one-quarter of a mile of any one of several hundred hazardous waste sites in the 
state of California. This was arbitrarily chosen as a 'close'distance from such a site. The 
sites were further classified as to the known contaminants there. Only 0.1%of the con- 
trols, corresponding to a few thousand at-risk births in the state, lived this close to a 
waste site. A handful of extra cases in this category represented a statistically signifi- 
cant doubling of the expected rate of one of the rare defects. The airborne exposure from 
these sites must have been low but this adjacency analysis gives us no clue as to what it 
might be. 

In San Diego, California. English, Reynolds and Scalf are proposing to compare 
asthma cases with randomly selected births as to the estimated traffic pollution from 
streets surrounding their residences. We also propose to refine estimates of past radio 
frequency exposure and compare this metric in childhood leukaemia cases and controls. 

24.5.2 Pattern recognition 

The pattern recognition capability of GIS systems has applications in geology. archaeol- 
ogy, and hydrology which, to my knowledge, have not been used in epidemiology. 
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Perhaps there is no practical application to epidemiology, but it is worth describing 
nonetheless. 

When could the very shape and patterning of disease cases in space (as opposed to the 
mere existance of a cluster) suggest a cause? It would have to be a situation where the 
geographic location of a putative cause was not known, but the very existence of a pat- 
tern could suggest one. For example, the stringing out of cases of TB along a connected 
sequence of streets might point us to a heretofore Unsuspected mail man. A linear sin- 
uous distribution of hepatitis A cases might point to a hitherto unsuspected swale 
which was conducting contaminated sewage to the surface in a series of back yards 
where children played. The shape of case versus control distribution in space suggests 
a hypothesis capable of testing, or could be used as a test of, a general hypothesis (e.g. 
some delivery man is spreading TB or a n  unsuspected ale is spreading sewage). 

The above description relates to spatial pattern recognition. We could look for tem- 
poral ff uctuations in reported respiratory disease to make inferences about incubation 
periods and hence the identify of the offending virus. We have been using spectral 
pattern recognition for identifying crops in use, which is turn may be correlated with 
the use of certain pesticides. 

24.6 CONCLUSION 

There are a number of interesting uses of GIS and other geographical analyses in epide- 
miology. The use of GIS to determine adjacency or estimate exposure simply replaces 
field activities with computer map activities. Once that activity is completed, the actual 
analytical procedures are the conventional tabular or logistic regression procedures 
detecting the presence or absence of association between disease and exposure. The 
heuristic, clustering and pattern recognition techniques are inherently spatial. The first 
set of activities has many uses, the last two are, in my opinion, tools whose practical 
application is still to be proven. The use of ecological studies and the routine use of clus- 
tering techniques in cancer and chronic disease epidemiology should be carried out 
with great caution, if at all. 
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25.1 INTRODUCTION 

Given a study area subdivided into districts, one of the questions often addressed in geo- 
graphical studies in epidemiology is: Do rates of disease differ from one district to 
another? Or, in other words, is there heterogeneity.?Tables or maps of the rates by district 
and the comparison of rates with a reference rate can be useful, but it is difficult to 
assess the overall departure from a null hypothesis of constant risk ( h o r m g m e i t g )in this 
way. 

This is particularly true when studies are conducted at the small-area scale, because 
random variability can then be large, and estimated rates often reach extreme values 
that might appear significant when viewed in isolation. 

Tests to assess the evidence against the null hypothesis of constant rates across the 
study area are available, but they mostly provide only significance levels, which can be 
difficult to interpret. For example, a small p-value might result from large heterogeneity 
between few districts (or from a small number of cases), or from a small degree of het-
erogeneity between many districts (or from many cases). Similarly, when a heterogenc- 
ity test yields a non-significant result, this is sometimes erroneously interpreted as 
supporting homogeneity, and taken to suggest that no further investigation is needed, 
even though such a result only expresses lack of evidence against homogeneity. Thus, i t  
is desirable to use methods for estimating not only the presence but also the d e g r w  of 
heterogeneity. 

D i s m s ~R/lnppit7g and Risk  Ass~sstti~ritforPublic Hml th .  Edited by A.H. 1,awson c’t (11. 
( %  1999 JohnWiley & Sons Ltd. 



322 Presence and degree of heterogeneitHof disease rates 

In this chapter two such methods are described. First, the case of rates of rare events 
such as disease incidence or mortality, following Poisson distributions, is discussed. Sec- 
ondly, an equivalent method for the prevalence of non-rare conditions, where the bino- 
mial model is appropriate, is presented. The methods apply to any dataset consisting of 
mutually exclusive groups, such as geographical studies, where regions are subdivided 
in h'subareas. 

25.2 THE POISSON CASE 

To illustrate the method for estimating the degree of heterogeneity in the occurrence of 
rare events, we analyse perinatal mortality in the (former) North West Thames Health 
Region (NWTHR), England, in the period 1986-1990. The study area includes part of 
Greater London, some other urban areas north-west of London, arid some rur' cl 1 areas. 
The resident population at the 1981 census was around 3 million. All births and perina- 
tal outcomes are routinely recorded, and since the post-code of residence is available, it 
was possible to link the events to the 515 electoral wards of the region, and obtain the 
number of perinatal deaths (stillbirths plus deaths occurring during the first week of 
life) and live and stillbirths (the denominators) per ward observed during the study 
period. For the analyses, the expected number of perinatal deaths in each ward was 
calculated using the overall sex-specific rates of the region. 

There were a total of 2051 observed perinatal deaths (equal to the total number of 
expected cases because of the way expecteds were calculated), and the number of cases 
by ward ranged between 0 and 21. 

We make the usual Poisson assumption that O,, the observed number of cases in area 
i, is Poisson-distributed with mean 8 , E I , where Ei is the expected number of cases and 
19,is the rate ratio between the rate in the ith ward and the reference rate, adjusted for 
sex. The Standardised Mortality Ratio (SMR) is O , / E , and under the Poisson assumption 
this is the maximum likelihood estimate (MLE) of 8,. In our case, however, the SMR is 
a very unstable estimate of the rate ratio. Its range is from 0 to 3.7, but such a spread 
overestimates the true heterogeneity of risk because it includes large random fluctua- 
tions. In addition, a table showing SMRs and significance tests (or even confidence 
intervals) might be misleading. For example, one of the wards has 17 observed cases 
and 6.8 expected, yielding a highly significant SMR of 2.5 ( p  < 0.001),but this could be 
due to the fact that the most extreme value was selected a posteriori from the entire 
dataset. 

Following a technique used in small-area disease mapping (Clayton and Kaldor, 
1987),we assume that the 8, are drawn from a gamma distribution, with unknown 
mean ci and variance r 2  (Martuzzi and Hills, 1995). Gamma distributions are 
unimodal and skewed to the right and as the mean and variance vary take a large 
variety of regular shapes. Such a family of distributions seems therefore appropriate 
to describe the distribution of true area-specific rate ratios. In particular, the variance 
parameter r2 , is a convenient measure of heterogeneity. The null hypothesis of no 
heterogeneity becomes r 2= 0, and the larger the value of r 2 the greater the heteroge- 
neity. 

Both p and r Lcan be estimated by maximum likelihood. The marginal distribution 
of counts averaged over the gamma distribution is negative binomial, and the log 
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likelihood function for p and r 2is (Martuzzi and Hills, 1995) 

To maximise this log likelihood and find the MLE values of p and r ’,we can use negative 
binomial regression or any general-purpose maximisation algorithm. For practical pur- 
poses it is convenient to consider the simplified version of the log likelihood function 
where p is kept fixed at the value O / E ,  where 0 = 0, and E = E, .  This log likeli- 
hood involves only the r 2variance parameter. In our application the constraint p = 1 
was made and the log likelihood reached its maximum at r 2= 0.034. Thus, the distri- 
bution of the true ward-specific rate ratios is estimated to be a gamma distribution with 
mean 1and variance 0.034. 

The spread of this distribution can be assessed visually, but it is perhaps preferable to 
calculate its 5th and 95th percentiles, the limits within which 90%)of the true rate 
ratios lie. These percentiles are 0.72 and 1.32. The null hypothesis r 2= 0 can be tested 
with a likelihood ratio statistic (Clayton and Hills, 1993).Since for r 2= 0 the marginal 
distribution of 0, reduces to Poisson, the log likelihood at r 2 is 0 log p - pLE = -205 1 
(this value equals -E when p = 1).The log likelihood at r 2= 0.034 is - 2048.03, and 
referring twice the difference between the two values (5.94)to a table of x’ with one 
degree of freedom gives p = 0.015. 

Simulation methods can also be applied to evaluate the null hypothesis of homo- 
geneity. Since the above analytical method is based on a quadratic approximation to 
the log likelihood function, simulation methods may be more accurate, especially when 
we consider few areas, or uneven population distributions, but require large computing 
power. The method proceeds by repeatedly re-allocating the 2051 cases at random to the 
515 wards, each case having a probability of falling in a given ward proportional to the 
expected cases in that ward. The empirical p-values equal the proportion of times when 
the simulations exceed the observed value, 0.011 in our case, which is close to the 
analytical p-value. 

Confidence intervals for r 2can also be calculated using the log likelihood function 
(Clayton and Hills, 1993). If a horizontal line is drawn 1.92 units below the maximum, 
then the two intersection points with the log likelihood curve define the 95%) limits. 
(Note that 1.92 is half of 3.84, the 5th percentile of a x 2  distribution with one degree of 
freedom, and must be changed accordingly if different confidence levels are required.) 
The 95% confidence limits for r 2are 0.006 and 0.070, which are in agreement with 
the significance test. 

252.1 Profile Log Likelihood 

A more precise analysis is based on the two-parameter log likelihood in which the mean 
p is not held fixed to a constant value. Since p is nuisance parameter, the profile log like- 
lihood should be used to obtain the confidence interval for r (Clayton and Hills, 1993). 
This is defined as 
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where 

k = l . r , # O  

r i , - r ,  

k= 1 

lJsing the estimates of /[ and q obtained from maximising this likelihood the variance 
r 2= p( 1 - p ) / ( ~+ 1) can be calculated. As before we begin by setting / I  to the fixed 
value r l /  I Z , ,  i.e. the overall prevalence. In the example considered here, the hlLE 
of n, was 95.86, giving r 2= 0 .002  1.To workout percentiles for the prevalences distribu- 
tion using a computer package, however, it is necessary to use the ordinary parameter- 
isation in (1 = 311 and a j= ? (  1 - p ) . equal to 28.5 and 67.4, respectively. The 5 t h  to 95th 
percentile range of the prevalence across the study area is from 22.3% to 37.0%. 

To test the null hypothesis of constant prevalence across the study area, the log like- 
lihood ratio test can be applied as above. The value of the log likelihood 211 its maximum 
is - 2667.3, and the value at T~ = 0,-2674.1,  is given by the binomial log likelihood 
function 

where p is set to the overall prevalence value. Thus, referring twice the difference of the 
two log likelihood values (13.6)to a x table with one degree of freedom, gives a highly 
significant result (p< O.OOl), providing strong evidence against homogeneity. Simula- 
tion methods can also be used in the binomial case to calculate an empirical p-value 
based on repeated random sampling. 

The 95% confidence interval for the estimated 3,calculated using the likelihood 
based method described above, was 45.0 to 277.0, or, in terms of 7 ? ,0.0045 to 0.00075. 
InTable 25.1 the resulting 5th and 95th percentile ranges for the prevalence distribution 
are given. It can be seen that, even at the extremes of the 95% confidence intervals for 
r 2 ,the estimated range of risk, where random variability has been removed, is narrower 
than the spread of the observed prevalences. 

Table 25.1 Percentiles of the beta distribution of the prevalence of respiratory symp-
toms for different values of 7 (or, equivalently, of the variance T ? ) ,  Percentiles of the 
observed prevalence are shown at the bottom 

Prevalence (%) 

MLE 95.8fI 0.0021 22.3 37.6 
%‘%I lower limit 45.0 0.0045 19.1 41.3 
95% upper limit 277.0 0.00075 25.3 34.3 

0bser ved preva Ience 16.1 46.9 
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Although a parameterisation of the log likelihood as a function of r 2would allow us 
to derive the profile log likelihood for r 2 as was done in the Poisson case, such re- 
parameterisation is complicated, and little accuracy is lost using the one-parameter 
log likelihood function above. 

25.4 DISCUSSION 

The methods described here are a simple way to test for the presence of heterogeneity, 
and to estimate its extent. Other available methods, such as the chi-squared dispersion 
test, or the tests proposed by Potthoff and Whittinghill(1966a, b), only provide y-values, 
which are less informative for descriptive studies. As mentioned in the introduction, 
large heterogeneity between few areas or based on few cases may produce the same y-
value as heterogeneity of small magnitude based on many cases. While the two situa- 
tions are equivalent in terms of statistical significance, the implications for public 
health might be different. 

When using the gamma or the beta distributions for calculating y-values for the null 
hypothesis of constant risk, the hypothesis that the variance is equal to zero is tested. 
Thus, the test is carried out on the boundary of the parameter space and the approxima- 
tion given by the chi-squared distribution with one degree of freedom might not be 
entirely correct (Self and hang,  1987).This potential inaccuracy might be overcome 
using computer simulations to obtain empirical y-values. However, analytical and 
empirical p-values are generally close in practice, as is illustrated by the example of peri- 
natal mortality in England. ‘The use of non-parametric distributions is described in 
Chapter 31 in this volume. 

Both in the Poisson and binomial cases the models underlying these methods can be 
used to obtain empirical Bayes estimates of small-area rate ratios or prevalences. 
Although such an outcome might be necessary, for example, to prepare geographical 
maps, often the overall information concerning evidence and degree of heterogeneity 
is of value. In addition, the set of empirical Bayes estimates is known to be less dispersed 
than the true rate ratio or prevalence distribution (Louis, 1984),so that ‘eyeball’ esti- 
mates done when looking at a map might underestimate the degree of heterogeneity of 
the data. In general, results from analyses based on the methods proposed in the chap- 
ter, for example a 5th to 95th percentile range, provide useful, synthetic information 
describing the extent to which risks of disease are likely to differ across a given geogra- 
phical region. Such information might be of relevance for evaluating the need for public 
health intervention or for further investigation. 

Finally, as a note of caution, we point out that the use of the gamma and beta families 
as mixing distributions is based on the plausibility of shape and mathematical conveni- 
ence. There is nothing in the methods that provides any way of criticising the assump- 
tion that the true rates follow these distributions. 
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APPENDIX 

Table A.1 gives the prevalence of mild respiratory symptoms among children living in 
the Huddersfield Health Authority, Northern England, by school catchment area. Data 
were collected in the framework of the Small-AreaVariations in Air Quality and Health 
(SAVIAH)study. 

Table A.1 

47 160 24 78 31 90  12 45 
70 2 58 25 77 43 136 66 200 

-c
4 0  175 39 113 26 / /  6 18 
41 123 14 50 26 86 10 63 
33 79 51 111 4 10 24 70 

r)17 62 1 18 30 110 22 08 
11 83 26 75 48 198 23 82-6 19 4 12 28 103 / 11 
32 95 6 28 18 92 14 58 
11 25 19 73 49 104 6 31 
33 104 19 58 21 76 8 42 

5 29 3 15 32 97 5 I(1 
I6 43 18 53 6 17 29 114 
19 72 13 4 4  16 81 4 8 
8 36 8 36 5 12 5 16 
0 1 5 17 0 1 12 47 
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26.1 INTRODUCTION 

Ecological analysis studies the geographical variation in disease risk and investigates its 
association with ecological covariates. i.e. explanatory variables measured at an area1 
unit level (Walter, 1991a,b; Morgenstein, 1982). 

For example, many disease atlases have been produced, mainly cancer atlases (Ber- 
nardinelli, et nl., 1994)and some of them include information on ecological covariates 
(Kemp et nl., 1985).Further examples include studies relating cardiovascular mortality 
in different areas to a variety of environmental and socio-economic factors (Cook and 
Pocock, 1983; Gardner, 1973) and studies relating cancer to dietary intakes (Prentice and 
Sheppard, 1990). 

The simplest approach to ecological analysis uses a multiple regression model for 
disease risk which only allows for Poisson variation (Clayton and Hills, 1993). More 
recently it has been observed that the variation not explained by the ecological variables 
(residual variation) might be substantially in excess of that expected from Poisson 
sampling theory. Extra-Poisson regression models have been proposed to separate the 
Poisson sampling variation from the extra-Poisson variability (Pocock ot nl., 1981; 
Breslow, 1984). 

The current state-of-the-art is to adopt a fully Bayesian approach and Markov chain 
Monte Carlo (MCMC) methods for model fitting (Hernardinelli and Montomoli, 1992: 
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Besag c)t al., 1991; Clayton, 1989; Clayton and Bernardinelli, 1992; Bernardinelli et al., 
1995a,b). This approach splits the extra-Poisson variation into two components. The first 
component of variation is simply spatially unstructured extra-Poisson variation. called 
Iieterogeiieitg. Modelling the IiiJterogelieity variation allows for unmeasured variables 
that vary between areas in an unstructured way. The second component of variation, 
called clirsteririg, varies smoothly across areas. Adodelling the clitsteririg variation allows 
for those unmeasured risk factors that vary smoothly with location. The choice 
between the heterogeneity and the clustering model depends upon our prior belief about 
the size of high/low risk clusters. A cluster size bigger than the area size would lead to a 
rhstering model, while a cluster size smaller than the area size would lead to a Iietcro-
gmJ i tymodel. Although it is possible to include both terms in the model, this may not be 
necessary (Bernardinelli et al., 1995a; Clayton and Bernardinelli, 1992). Indeed, for high 
resolution maps like those in our application the heterogeneity component will often be 
unnecessary, and, i f  the number o f  events per area never exceeds one, then is not even 
identifiable. 

By fitting an extra-Poisson Bayesian model, the point estimate of the regression CO-

efficient does not change substantially, but its standard deviation tends to increase 
with respect to that obtainable via a classical Poisson model (Clayton et d. ,1993). 

Furthermore, modelling the clustering variation may be thought of as a way of mod- 
elling the effect of location. Where the pattern of variation of the covariate has a spatial 
structure similar to that of disease risk, location acts as a confounder. Modelling the 
effect of location through the clustering variation causes the estimate of  the regression 
coefficient to be controlled by the effect of location. As a consequence, both the standard 
error and the point estimate of the regression coefficient change with respect to the 
classical Poisson model. In particular, the point estimate decreases (Pocock et d.,1981). 

The extra-Poisson Hayesian model can be further complicated to allow for measure- 
ment error in the ecological covariates. In practice, ecological covariates can rarely be 
observed directly. Available data may be either imperfect meiisurements of, or proxies 
for, the true covariate. Sometimes epidemiological data concerning another disease 
may be used as a proxy variable. For example, to study the geographical variation of 
heart disease mortality, a n  important covariate would be the proportion of smokers liv-
ing in each area. Such data on smoking would generally not be available, so the preva- 
lence of lung cancer recorded by the cancer registry for each area might be a useful 
proxy. The simplest approach to this problem would be to estimate the true covariate 
from the proxy for each area independently, using the proxy estimate in the ecological 
regression. When the proxy variable is a n  accurate measure of the true covariate. this 
approach would be reasonable. However, when the correspondence between the two is 
not so close, this approach has several disadvantages: not accounting for measurement 
error causes the point estimate of the regression coefficient to be underestimated and its 
precision overestimated (Richardson and Gilks, 1993; Bernardinelli et al., 1997).More-
over, when it is reasonable a priori to expect spatial correlation in the true covariate, 
the Bayesian approach allows us to obtain improved estimates by specifying a spatial 
smoothing prior on the true covariate (Bernardinelli ~t al . ,  1997). 

We describe a Bayesian hierarchical-spatial model for ecological regression aimed at 
investigating the relationship between insulin dependent diabetes mellitus (IIIlIM) 
incidence, the proportion of glucose-6-phosphate-dehydrogenase (G6PD)  deficient 
individuals and past prevalence of malaria in Sardinia. Our model is composed of two 
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regression submodels. The first model allows us to estimate the effect of malaria on 
IDDM risk, while the second model allows us to estimate the effect of malaria on G6PD 
deficiency. Both models allow also for a common unknown underlying non-malaria 
factor which we suppose to be responsible for the association between IDDM and 
G6YD deficiency. Smoothing spatial priors are posited to reduce random geographical 
variability in the estimates. Measurement error in the ecological covariates is also 
accounted for. 

26.2 BACKGROUND AND DATA 

26.2.1 Malaria and IDDM 

There is scientific interest in studying the association between IDDM and malaria, since 
they are both associated with the HLA (Human Leukocyte Antigens) system. 

The association between IDDM and the HLA system, known to be involved in control- 
ling immunological responses, has long been established (Todd et d.,1988; Thomson, 
1988; Green, 1990). In particular, many studies (Jacob, 1992; Tracey, 1995) have demon- 
strated an association between IDDM and the HLA loci A, B (class I), DR (class 11) (Lan-
gholz et d.,1995; Thomas et d. ,1995) and the tumor necrosis factor-ci gene (TNF-(1) 
localised in the HLA region (class 111) (Davies et al., 1994; Tracey et  al., 1989). In Sardinia 
a particular HLA haplotype is associated with IDDM (Cucca et al., 1993). 

Malaria is the most important natural selective factor on human populations that has 
been discovered to date (Jacob, 1992). A West African study showed that an allele of HLA 
class I and an unusual haplotype of HLA class I1 are associated with protection from 
malaria (Hill et al., 1991; Ebert and Lorenzi, 1994). The association between susceptibil- 
ity to cerebral malaria and theTNF2 allele, a variant located in the promoter region of 
the TNF-(1 associated with higher levels of TNF transcription, has also recently been 
established (McGuire et al., 1994). These elements support the hypothesis that in areas 
of high endemicity, malaria operates the genetic selection responsible for t he influence 
on the susceptibility to autoimmune diseases (Greenwood, 1968; WiIson and Duff, 1995 1. 

In Sardinia malaria is known to have selected for some serious hereditary diseases 
such as ,?-thalassemia, Cooley’s disease and favism, the latter caused by glucose-6-phos- 
phate dehydrogenase (GhPD) enzyme deficiency (Bernardinelli r ~ td.,1994). Sardinia is 
therefore a particularly suitable place for investigating the association between II>I>hI 
and malaria. 

IDDM incidence in Sardinia is quite atypical of other Mediterranean countries (Mun- 
toni and Songini, 1992). Sardinia has the second highest incidence in Europe (33.2 per 
100000 person years; Songini et al., 1998) after Finland (40 per 100000;Tuomilehto 
et al., 1995). A study carried out on the cumulative prevalence of IDDM in 18 year-old 
military conscripts born in the period 1936-71 showed that the risk for IDIIM began 
increasing with the male birth cohort of 1950 and that the increasing trend is much 
higher than the one observed in Europe (Songini et al., 1993). 

As to malaria, the Sardinian population has a long history of endemicity. Malaria 
spread gradually all over Sardinia after the Carthaginian conquest, became established 
after Roman occupation and was a major cause of death in the island until the mid- 
twentieth century, when it was completely eradicated (Fantini, 1991). Population genetic 
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studies carried out by Piazza ut d. (1985)suggest that, in the plains of Sardinia where 
malaria had been endemic, some genetic traits were selected to provide greater resis- 
tance to the haemolysing action of Plrrsniodiiini. In the hilly and mountainous areas, 
where malaria u7as almost absent, this adaptation did not occur. 

26.2.2 Malaria and G6PD-mutation 

(Ilucose-h-phospate dehycirogenase (c;hPIl) is the enzyme that catalyses the first reac- 
tion of the pentose phosphate pathway, also known a s  the hexose monophosphate 
shunt. c i6Pl )  deficiency ( GhPD-) is responsible for episodes of acute haemolysis pro- 
voked by ingestion of oxidising agents such a s  primaquine. sulphanilamide, chloram- 
phenicol, aspirin, chemical compounds and certain vegetables such as fiivii beans and 
can a l so  cause neonatal haeniolitic anaemia. G6YI)  deticiency is therefore a serious 
hazard to health and can be characterised by high lethality unless promptly and cor- 
rectly treated. In spite of the natural selection against carriers of G6P1)deficiency, this 
trait is estimated to affect 400 million people worldwide, with particularly high preva- 
lence rates in iireiis of the world where malaria is or has been endemic ((hnczakowski 
c l t  f i l , ,  1995). Previous studies indicated that carriers of G h H >  deficiency and thalas- 
saemic traits have ii selective advantage against malaria caused by P l r i s r t i o t l i i r r t i  

f i l l r i p t-U rti  infect ions (Si niscalco c’t nl. ,  19b1). 
The strongest evidence to  support this hypothesis has been the geographical distribu- 

tion of malaria and the high gene frequencies for these traits. However. since the inves- 
tigation of ii statistically significant correlation between a n  abnormal haemoglobin 
trait, enzyme deficiency and malaria show inconsistencies, i t  is legitimate to  question 
whether the hypothesis that the natural selection by malaria is the sole explanation of 
these abnormal traits. 

The history of external and internal migration in Sardinia during the Carthaginian 
and Roman epocus points towards the hypothesis that gene flow may have pliiyed a role 
in the distribution of abnormal gene traits (Brown, 1981). 

This hypothesis, of course, does not deny the role of malaria in maintaining high 
gene frequencies in the zones where malaria was widespread. Therefore G61’1) 
deficiency can be considered a genetic adaptation to malaria. 

26.2.3 G6PD-mutation and IDDM 

A positive association between IDDM and G6YD deficiency has been demonstrated 
in Iraqi, Indian and Chinese patients raising the interesting question of whether 
G6Pl)- is a result or a consequence of diabetes (Saeed et al., 1985).It has been argued 
that the hexose monophosphate shunt is stimulated by insulin and therefore is 
depressed in patients affected by IIIIIM. Although i t  seems more probable that the 
enzyme deficiency is a result of IDDM rather than a predisposing cause. the full 
explanation of the association IDL)M--G6PD deficiency is still insufficient (Saha. 
1979).A recent study carried out in Sardinia did not demonstrate the above-mentioned 
association (Meloni et d.,1992). 
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26.2.4 Graph of conditional independencies 

On the basis of the background scientific knowledge summarised above. it  seems 
reasonable to suppose that endemic malaria in Sardinia may have operated a genetic 
selection on both IDDM and G6PD deficiency. Although the mechanism underlying 
the relationship between IIJIIM and G6PD- has not been fully highlighted yet, we think 
that it is plausible to hypothesise the existence of an association bctwecn the two 
diseases. 

Our aim is to study the geographical variation of IDDM in Sardinia, accounting for: 

0 the spatial correlation in the estimates due to unknown causal factors varying 
smoothly across areas: 

0 the effect of malaria selection: 
0 the hypothesised association with G6PD deficiency. 

We also wish to verify the existence of a relationship between malaria selec*tion and 
G6PII deficiency as reported in the literature. 

We can represent our view of the complex relationships between malaria, IlIIIR/Iand  
G6PII- using ii high-level partially directed conditional independence graph (see Figure 
26.l(a)). In this graph, the parent nodes represent causal factors. Since we are interested 
in modelling the effect of malaria selection on IDDM and on GOPD deficiency, the node 
representing malaria is linked to both IDDM and G6PII- with a directed edge. Thc lack of 
conditional independence between C6PD- and IDDM given malaria is representcd by an 
undirected edge. 

The graph in Figure 26.1 (a) can be transformed into a directed acyclical graph (IIAG) 
by adding a parent node common to IDDM and GOPI>- (see Figure 2 6 . l ( b ) )(Cox and 
Wermuth. 1996).This node represents a hidden variable, i.e. unknown non-malaria 
causal factors common to both IIIDM and G6P1)-. We wish to stress that this new 
variable is o f  little epidemiological interest, being only a way to model the relationship 
between IIIIIM and ChPII- which has been empirically observed in other studies. 

26.3 THE STATISTICAL MODEL 

To model the relationships between the quantities represented by the nodes of the 1IAG 
in Figure 26.1(b).we set up an ecological regression model composed of two submodels. 

factor 

Figure 26.1 High-level of the relationships between malaria, Il)I)h,l and (;h€’I) deficicncy.v i m 7  

( a )I’artiallp directed conditional independence graph; (b)directed acyclical graph 
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The dependent variables are IDDM risk in the first submodel and the proportion of 
GhPD- individuals in the second submodel. In both submodels the ecological covariates 
are the observed malaria prevalence and a common unobserved non-malaria factor H S  

explained in Section 26.2.4. 
Smoothing priors are posited for both the disease risk and the ecological covariates. 

Measurement error in the covariates is also modelled. 

26.3.1 A model for IDDM risk 

Suppose we observe t l , events (IDDM cases in our application) in area i as compared with 
I:, expected from suitable reference rates. 

I2.k 8SSUrlle 

lli - Poisson(piEi), (26 .1)  

where { p , }  tire the area-specific rate ratios (KK)controlled for age (Clayton and Hills, 
1993) and { E , }  are expected events. If the { p , } are not all equal. then the data {d,}will 
dis pl ay cx tru-hissm w i  riri tim. 
1’0 investigate whether extra-Poisson variation is geographically related, we would 

ideally like to map the true relative risks { p l } .Since these are unobserved, the tnost 
obvious strategy is to estimate p l  by the empirical relative risk: 

( 2 6 . 2 )  

which is the maximum likelihood estimate of p i .  Mapping the {jl},however. can be 
misleading because sanipling variability can dominate the map and obscure genuine 
trends. In particular, areas having exceptionally high or low $I  will tend to be those 
with smaller E , ,  where sampling variability is most pronounced (var @, = p,/’h’,j. 

Several strategies for dealing with sampling variability in maps have been proposed. 
The current state-of-the-art is to adopt a fully Hayesian hierarchical-spatial model 
(Hernardinelli and hlontomoli, 1992; Hesag et al., 1991; Clayton, 1989;Clayton and Her- 
nardinelli, 1993). An important feature of this type of model is that the prior distribution 
for the { & i f }incorporates spatial correlation, allowing the estimate of p l  to formally ‘bor- 
row strength from neighbouring areas. In this way the empirical map is smoothed, and 
geographical trends and  inferences are made more reliable. 

Mapping Hayesian estimates of relative risk may reveal geographical trends iic-ross the 
map. or may suggest links with area-specific covariates x,. To incorporate t hcsc c*o\wi- 
cites into the model, a natural assumption, in conjunction with the Poisson assumption 
(26.1).would be 

( 2 6 . 3 )  

where ( I  , represents the covariate-adjusted area-specilic log relative risk. = 
( x , ’ .s f ,  . . . ,x f )  the vector of ecological covariates and d = ( , j l ,J’, . . . . , j k )the vector 
of unknown regression coefficients. Such a model is called an wologicul rrgressior1 
1 r t o t 1 ~ I .Spatial smoothing of the { p I } can then be effected via a smoothing prior on 
the { ( I , } .  
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26.3.2 A Markov random field prior 

In this section we describe a Mnrkov rrrndo1~7Jidd prior distribution for the { (1 I }  para-
meters in (26.3). The development follows that in Bernardinelli c~td.(19954. This 
prior will tend to produce similar estimates for Q )  and if areas i and j are geographi- 
cally close. 

The Gaussian Markov random field prior we employ assumes. for each area i, that ( 2  isI 

normally distributed with mean and variance depending on its neighbours. We consider 
two areas to be 'neighbours' if they share a portion of a boundary. 

The conditional prior distribution of a i given values for { (1 ,, j # i} is 

(26.4) 

where 

(26 .5 )  

(26.6)  

The n d j m w q \wights { w I , }are fixed constants. Although other choices are possible, we 
set w I I= 0 unless areas i and j are neighbours, in which case \ I T , /  = 1. 

To ensure that the Gaussian Markov random field model ((2h.-2),(26.6))is internally 
consistent, o i ,  must depend upon the number of adjacent areas and their adjacency 
weights, Jointly, the {(I. I }  have an intrinsic multivariate normal prior distribution with 
iii\w-sr variance-covariance matrix .1 given by 

The matrix ,1is not of full rank. Thus the prior on the {cl ,} is improper: adding a n  arbi- 
trary constant to each a will not change the probability (26.4).This need not concern usI 

since the data d l  contain information on the location of the { ( 1  I } .  

The amount of smoothing in the random effects { a I }is controlled by the precision 
parameter ?(, in (26.6).A small value of ?cl will induce little smoothing, whilst an infinite 
value would force all the { a I }to be equal. Since we do not wish to impose any fixed 
amount of smoothing on these parameters, but rather we wish to let the data thcmselves 
determine how much smoothing should be induced, we treat 7p(tas a model parameter. 
We chose a \ prior distribution for ?(,, where sf is a scale factor and 11is the degrees- 
of-freedom parameter. 

We then chose a suitable combination of scale factor and degrees of freedom accord- 
ing to our prior belief about the amount of geographical variation across the map. 

As discussed by Bernardinelli et al. (1995a), given the connection between the preci- 
sion hyperparameter 3(t and the marginal variability of the area-specific relative risks, it 
can be shown that the 90% range of variation of the relative risks is approximately 
e 4  ''',I. By expressing the mean and variance of the prior distribution of q( , in terms of 
s fand  v (mean= v / s f ;var = 2 v / s f 2 ) ,it is possible to choose a cornbination of sfand 11 
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leading to ii distribution in  agreement with the prior belief about the range of the geo- 
gra p h ic ii 1 var iat ion. 

26.3.3 Measurement error in the prevalence of malaria 

When dealing with ecological covariates, available data z ,  may be either imperfect mea- 
surements of, or proxies for, x i .The simplest approach to  this problem would be to esti- 
mate S ,  from 2 ,  for each area independently, using this estimate iiin place of s,in the 
ecological regression (26 .3 ) .When z,is a n  accurate measure of s,, this approach would 
be reasonable. However, when the correspondence between s,and c ,  is not so close, this 
approach would have several disadvantages. First, the estimate of the regression coeffi- 
cient 6 jwould probably be underestimated (see, for example, Kichardson and (:ilks, 
1993 ) .  Secondly, the precision in parameter estimates or in projections would be over- 
estimated, through failure to take account of uncertainty in the { .$,}. ‘I’hirdly. when i t  
is reasonable ii priori to expect spatial correlation in the s,.improved estimates of the 
{ s,} and other unknowns would be obtained through B Hayesian procedure incorporat- 
ing ii spatial smoothing prior on the { x i } .  

In our  application, s, is related to underlying malaria prevalence, and r ,  is the 
observed number of malaria cases in area i at one point in time.We will iissumc‘ that 

- Hinomial(ri,,O , ) ,  (26 .7 )  

where is the population size of area i, and 

( 2 6 . 8 )  

Thus the covariate s,in (26 .3 )is taken to be the logistic-transformed expectation of:,. 
Since the area1 units in our analysis are small, it is reasonable a priori to expect 

spatial correlation also in the ecological covariates. We used the Markov random tield 
prior described in Section 26.3.2 also for the {x i} .  

This part of the model accounts for sampling error in the covariate s,,but there is 
another source of measurement error we wish to account for in this application. 

The hypothesis of interest concerns how genetic adaptation in areas of endemic 
malaria effects susceptibility to IIIIIM. Thus the true covariate is the long-term malaria 
endemicity averaged over many centuries in each commune. 

‘1‘0 model the long-term malaria endemicity. we replaced the deterministic relation- 
ship in (Lh.8)by the following stochastic relationship: 

Iog(-f!---)1 - 8 ,  - N(x,.G1). (26.9)  

We thus introduced a n  extra layer of uncertainty into the model. This may be 
interpreted a s  follows: the true log odds of malaria in commune i (i.e. log O , / (  1 - 0 , ) )  
represents a single realisation from a latent Normal distribution with mean s,(i.e. the 
long-term average endemicity o f  malaria in commune i) and unknown long-term 
variance. w’. Since the data contain no information by which to estimate d,we decided 
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to fix its value a priori. We carried out exploratory analyses to select a suitable value for 
J as described in Hernardinelli et d.(1997) and we chose cc! = 2.2 5. 

Having subjectively fixed a value for w’ is a potentially controversial aspect of our ana- 
lysis. However, we examined the sensitivity of the regression coefficient estimate t o  
diferent values of cc! in a previous analysis (Bernardinelli ct d.,1997). The results did 
not change qualitatively, but for smaller values of U: the estimates were more similar to 
those obtained not accounting for long-term measurement error. For larger values of 
the coefficient estimates tended to be larger in absolute value. with wider credible inter- 
vals. 

26.3.4 A model for the proportion of G6PD- individuals 

We assume that the number of G6PI)- individuals ! j j  in area i follows a binomial distri- 
but ion: 

where m, is the number of screened individuals in area i and T ,  is the area-specific 
prevalence of ChPI) deficiency. 

We used the logistic transformed expectation of ! j , ,  

as a second ecological covariate in model (26.3). We specified the same Markov random 
field prior as described above also on the [ i .  

26.3.5 Building the full model 

Setting up a realistic model to reflect complex aetiological hypotheses and relationships 
between variables such as those described in Section 26.2 may be quite a difficult task. 

To get to the final model. we proceeded in a stepwise way, starting from the fitting of 
more simple models. 

Model1 (Ml )  

In a previous analysis fully described in Bernardinelli ut d,(1997) we implemented 
model (26.3) with malaria prevalence as ecological covariate and discussed the mea- 
surement error model ((26.7)-(26.9)): 

Model 2 (M2) 

We then investigated the association between IIIDM and GhPII- by fitting model 
(26.3) with the G6PI)- proportion as the ecological covariate, as described in 
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((26.10),(26.11)): 
(26 .13 )  

Model 3 (M3) 

As a further step, we fitted model (26.3) with both the ecological covariates defined in 
Sections 26.3.3 and 26.3.4: 

logp, = 0 ,  + 1111 X I  + J’&. (26.14) 

We put flat normal prior distributions on all the regression coefficients in models hl l ,  M 2  
and M3. 

Fina1 model 

Finally, we set up the full model as follows: 

(26.16)  

where s, represents the selective action of endemic malaria and 4 - 1  represents the 
underlying unknown causal factor as introduced in Section 2h.2.4. 

The IDDM and G6Pl)- models, (26.15) and (26.16), show a symmetry reflecting the 
structural relationships shown in the DAG in Figure 26.l(b). 

We put non-informative normal priors on the regression coefficients J,h and rl and 
spatial smoothing Markov random field priors on the { a , } ,{s,}and { q l , } .  

We overcame the identification problem concerning h ,  X and the { q ! , }  by specifying a 
proper N(1, 10)prior on X and a strong prior on the precision parameter of the { t t l } .  The 
prior on the { ~ ~ , }reflects our prior belief on their geographical variation. Our prior 
assumption was that the highest value of ec’l in the map is likely to be around twice 
the lowest value. Following the method described in Section 26.3.2, we chose 11 = 2 0  
and sf’= 2.5 as degrees uf’f’redurn and s d t ~ j a c t u rparameters of the prior distribution 
for the hyperparameter T ~ . .  

In principle, a Bayesian analysis of non-identifiable models is always possible by 
assigning proper priors for the model unknowns. In practice, a too precise prior may 
limit Hayesian learning from the data, while a flat or even improper prior may lead to 
improper posterior or to convergence problems if using Markov chain Monte Carlo 
methods. In this application. however, we are interested in quantifying the effect of 
malaria (i.e. the ,-I and coefficients). for which there are enough data to preivent iden- 
tifiability problems, rather than the effect ofother unknown factors. So the choice of the 
parameters for the proper prior on X and on the { is not a major issue. r l }  

‘l’o give a global view o f  the final model, the relevant model equations arc reported 
be1ow : 

Poisson model for IDDM relative risk: 
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Ecological regression for Il>l>Mrelative risk with two ecological covariates: 

Binomial model for the proportion of G6PD deficiency: 

y j  - Binomial(mj,7ri). 

Logistic ecological regression for G6PD- proportion with the same two ecological 
covariates: 

logit(7rl) = qx; + X L ~ , .  

Model for the first ecological covariate (malaria prevalence): 

1. Binomial model for the observed number of malaria cases 

z;N Binomial(nj,0;).  

2. Second layer of uncertainty 

where U? = 2.2 5 .  

Normal priors for regression coefficients: 

8.6,
q N N(O, 1.OE + 5), 
X - N(O, 10). 

Markov random field priors for the parameters { o I } ,{s,}and { L I ~ } :  

where 

Hyperpriors for the precision parameters: 
2 

,In X S J - ( , J / , ,  ’ 
2 

Y X  Xsf , . v , -

2
r 1 Z 3  XSf I  > I / \  * 
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26 .4  THEDATA 

1l)l)h.I incidence w a s calculated from a case registry that has operated in Sardinia since 
1989. ‘[’he incidence data refer t o  the period 1989-92 and cover the population aged 
0-29 years. We let d l  in (26.1) denote the number of II>I>M cases in commune 
i ( i  = 1 .  2 ,  . . . , N = 366), and I : ,  denote the expected number of II)l>M ciises based on 
S ard i n iiin nat iona1 rates. 

The number o f  individuals affected by malaria, z ,  in (26.7). was recorded for each 
c~ommuneduring the period 1938-40 by Fermi (1938, 1940). The population r i I  for each 
commune w a s  taken from the 1936 census. 

In the period 1981-82 the Regional Health Service in Sardinia promoted ii screening 
through which about 2000 males affected by G6YD deficiency were identified (15% of 
participants) (13ernardinelli e t  f i l . ,  1994). We obtained the number of individuals 
scretwed for the (;hP1) mutation in each area ( n i l in (26.10)) and the number y, of 
G6lW- individuals from this data. 

26.5 ESTIMATION 

We have specified three arms to the model: a regression submodel for Il>i)M ((26.1). 
( l h . 3 ) - ( 2 h . h )  an analogous regression submodel for G6PL) deficiency ((26.101,(26.16))1, 
and ii model for long-term malaria endemicity ((26.7)-(26.9)). 

The best approach to estimating such a complex model is via Markov chain hlonte 
C’arlo methods like Gibbs sampling (Gilks et (11.. 1996a.b), which allows us to treat the 
equations representing the three arms of the model as a single large model and hence 
t o  estimate all the parameters simultaneously. This can be done using the H I K S  
software (Spiegelhalter c ~ t((I., 1995). 

26.6  RESULTS 

All our niodels were estimated using HIJGS. In each case we ran the Gibbs sampler for 
70 000 iterations, discarded the first h0 000 ‘burn-in’ samples and saved one in five 
sampled values. in order to reduce correlation within each chain. Convergence of the 
model parameters was checked by looking at the sample traces and using ii [w-iety o f  
diagnostics implemented in the CODA (Best et nl . ,  1995) software. Computation took 
about 1 3  hours on a Sun IJltra workstation. 
‘[’able26.1 shows the posterior means and 95% Hayesian credible intervals (95‘%,(’1) o f  
the regression coefficients in the intermediate models M1, M2 and M 3. 

The posterior mean of the regression coefficient in model M1 indicates ii significant 
negative association between I1>1>M and malaria. while the posterior mean of the 
regression coefficient in model M2 shows no evidence of association between II>I>M 
and GhtW-. The posterior means for the regression coefficients in model M2 did not 
differ qualitatiirely from those obtained in the previous two models. 

A s  t o  the tinal model ((26.1)-(2h.lI) ,  (26.15)-(26.16)), the posterior mean estimates 
of the { p l } , i.e. the area-specific IDDM relative risks, ranged from 0.512 to 1.ih across 
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Table 26.1 Posterior mean and 95% credible interval (95%('1) of the regression c*oc4icicXntsin 
models M l ,  hi12 and hi 3 

Coefficient 

B1 

Model Posterior mean (95%CI) Posterior mean (95%CI) 
~~~ ~ 

hl1 - 0.060 ( -0.112, -0.012) 
h42 -0.410 ( -0.920,0.1201 
h13 - 0.058 ( -0.111,0*011) - 0.086 ( - 0.344,0.165) 

Table 26.2 Posterior mean, posterior standard deviation (s.d.), numerical standard error of t hc 
mean (NSE)  and 95% credible interval (95%CI) of the regression coefficients in the final model 
( (26.1)-(26.16)) 

~~ ~ ~ 

Coefficient Posterior mean s.d. NSE (95% CI) 
~ ~~ ~ 

- 0.062 0.028 0.001 ( -0.121, -0.010) 
- 0.006 0.288 0.022 ( - 0.591,0.55i) 

(I.( 144 0.024 0.001 ( -0.002, 0.088) 
2.330 0.377 0.028 (1.i30,3.1 3 0 )  

Sardinia, with 5th and 95th percentiles 0.665 and 1.348,respectively. The mean relathre 
risk across areas was 0.995. 

The posterior means and standard deviations (s.d.) of the regression cofficicnts i n  t he 
final model obtained from the BUGS output are reported in Table 26.2. The numerical 
standard error of the mean (NSE) were calculated using time series methods to account 
for correlations within each sample (Best et d.,1995),and the 95% credible intervals (('1) 
are also reported. The NSEs are a measure of the accuracy of the parameter estimates, 
which are obtained as means of the sampled values. The NSEs are rather small because 
we drew a large number of samples. 

The regression coefficient /3 is significantly lower than zero, thus indicating the exis-
tence of a negative association between malaria endemicity and IDDM relat ivc risk. The 
regression coefficient rl is not significantly greater than zero, but its credible interval is 
shifted towards positive values, thus suggesting the existence of a positive association 
between malaria endemicity and proportion of G6PD-. However, the significantly 
positive value of the regression coefficient X indicates that most of the geographical 
variation in G hP1)-proportion is due to non-malaria factors. Finally, t he regression 
coefficient (3 indicates that the non-malaria causal factor common to Il)l>hl and (;61'1), 
as defined in Section 26.2.4, has no effect on IDIIM. 

The Markov random field priors on IIII>M risk and on the ecological coixriatcs 
allowed us to obtain smoothed maps showing a spatially structured variation. 

The map in Figure 2h.2(a) shows the estimated long-term prevalence of malaria 8, 
obtained by fitting the reduced model in 26.3.3; the map in Figure 2h.2(b) s h o w s  the 
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Figure 26.2 (a) Bayesian estimates of long-term malaria prevalence in Sardinia: proportion of 
the population affected 8, 
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Figure 26.2 (b)Bayesian estimates of relative risk of IDDM pi 
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estimated relative risk of IIIDM p I  obtained by fitting the reduced model (26.11,(26.31-
(26.6);and the map in Figure 2h.2(c) shows the estimated proportion of GhP1)- indivi-
duals 7rl obtained by fitting 26.3.4. 

By comparing the maps of IIII>M relative risk and of G6P1)- proportion with the map 
of malaria endemicity it is possible to see the direction of the associations of both dis- 
eases with malaria that emerges from the estimated regression coefficients. Areas with 
a low estimated long-term malaria endemicity tend to show higher relative risk for 
II>I>M, while areas with a high estimated long-term malaria endemicity tend to shoiv 
lower IDDM relative risk. 

Considering GhPII deficiency, a positive association with malaria endemicity can be 
seen in Southern and North-Eastern Sardinia, where low-malaria areas tend to show ii 
lower proportion of G6P1)- individuals and vice versa. 

Table 26.3 shows the mean over all areas and the corresponding standard deviation of 
the three components of IIIDM log relative risk, i.e. log/), in model (26.15). A j x ,is the 
component of IIIIIM log relative risk due to malaria, h411 is the component due to ii  

non-malaria factor in common with G6PD deficiency, and ( k ,  represents t he area-speci- 
fic residual component of risk after accounting for the ecological coi~ariates. 

The area effects { ( I , } ,  i.e. the component of IDDM log relative risk not due to  malaria 
or to the non-malaria unknown causal factor in common with (;6l'lI-, show a consider-
able geographical variation, thus indicating that risk factors other than the ones 
considered in our model are also responsible for the geographical variation of 1l)l)hl. 

A perhaps more effective ~7ay  to show the negative association between 1lIl)hl and 
malaria is to plot e " 1 ,  the K R  associated with malaria. i.e. the component of the overiill 
R R  attributable specifically to the covariate. To do so, we created two groups of iirccis. 
according to the estimated endemicity of malaria. We classified the iireiis belonging to 
the 25th percentile of estimated endemicity as 'low malaria'and areas belonging to the 
75th percentile as 'high malaria'. Figure 26.3(a) shows the plot of e ' ' 1  in the two groups 
of areas. 

All low-malaria areas have a relative risk attributable to malaria higher than 1, thus 
indicating that a low malaria endemicity has the effect of increasing the overall relative 
risk. On the contrary, all high-malaria areas have a relative risk attributable to  maluia  
lower than 1, thus indicating that a high malaria endemicity has the effect of reducing 
the overall relative risk. 

Similarly, we visualised the association between G6PI) deficiency and malaria by plot- 
ting the odds of G6PD- associated with malaria (eC"I) in the 'high malaria' and 'low 
malaria'areas (see Figure 26.3(b)). 

The positive association between malaria and GhPD deficiency is evident if  we 
observe that all low-malaria areas have an odds of GhPD- attributable to malaria lower 

Table 26.3 Mean over all areas and standard devia- 
tion (s.d.) of the components of logp, in model (26.15) 

Component of logi Mean s.d. 

().Oh5 0.175 
- 0.068 0.130 
- 0.056 0.013 
- 0.059 0.12 3 
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Figure 26.3 (a) Hayesian estimates of the plot ofe in (26.15),i.e. the relative risk of1l)l)hl asso-’‘I 

ciated with malaria in low- and high-malaria areas. (b)  Hayesian estimates of the plot of e in‘ 1  

(26.16).i.e. the odds of being GhPII deticient associated with malaria in low- and high-malaria areas 

than 1, while all high-malaria areas have a n  odds of G6P1)- attributable to malaria 
higher than 1. 

26.7 DISCUSSION 

26.7.1 Substantive conclusions 

Sardinians are known to be susceptible to autoimmune diseases. The significant nega- 
tive association that emerged between long-term malaria endemicity and diabetes rela- 
tive risk indicates that people living in areas where malaria has been particularly 
frequent are at less risk of II>I>M than those living in areas with a low estimated long-
term prevalence of malaria. This is illustrated by the estimated regression coefficient 
a j= -0.Oh2, which is significantly below zero (Table 26.2). 

A n  alternative way of expressing the negative association between the K K  of I111)M 
and possible genetic selection due to past prevalence of malaria is the relative risk a s s o -
ciated with malaria. plotted in Figure 26.3(a), which is consistently lower than 1 in high- 
malaria areas and vice versa. 

A possible interpretation ofthis finding is that. since malaria has been endemic in the 
plains of Sardinia for centuries, places with high prevalence of malaria in 1938 are those 
in which ii stronger selection process took place. providing resistance to malaria and 
a l s o  preventing the onset of autoimmune conditions (Jacob, 1992). 
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The estimated regression coefficient b, which is almost zero, indicates that there is no 
evidence of association between IDDM and the component of G6I’D- not due to malaria; 
in other words, IDDM and G6PD deficiency could be considered as conditionally 
independent given malaria (see Figure 26.1). 

The considerable geographical variation of the area effects { (1 ,} indicates that other 
non-malaria causal factors play a role in determining the geographical variation of 
IDDM relative risk. This must be taken into account u7hen interpreting the effect of 
malaria endemicity on IDUM. 

Finally, the 95% credible interval of the estimated regression coefficient ’1 = -0.044 
includes zero, but is considerably shifted towards posit ive values; this indicates 
that there is a positive though weak association between malaria and Ghl’l) deficiency. 
This agrees with the results previously reported in the literature and  hem-c supports 
the hypothesis that the selective action operated by malaria contributed to maintain 
a higher proportion of GhPIl- individuals than expected i n  normal conditions. 

The weakness of the association between G6PD deficiency and malaria, hoivever. 
might be due to the scarcity of data on the proportion of GbPD-, hcncc interpretation 
of this result requires care. 

26.7.2 Methodological issues 

We have shown that disease maps accounting for covariates measured with error can be 
constructed using Bayesia n hi era rc h ical -spat ia 1 modcl s, 147here spat ia I smoot h i ng 
priors are posited for both disease relative risks and underlying covariates.lZ’e anticipate 
that such models will be of particular value when the coiwiates arc’ themselves 
incidence or prevalence data for other diseases. 

Our choice of prior for malaria prevalence is particularly suitable since i t  \.aries 
between areas in a spatially structured way. Malaria previilcnce tends to be higher in 
low lying and humid regions and lower in the mountains and hills. The spatial prior 
enables us to obtain a map of the geographical variation of malaria preiralence in  which 
the random variation has been filtered out. 

Specifying a spatial smoothing prior for the disease risks (1Dl)M and GhP1) deficiencj7 
in our application) represents a way of allowing for unmeasurcd risk factors (other than 
malaria) that vary smoothly with location. If the pattern of variation i n  the coviiriates is 
similar to that of disease risk, location may act as a confounder, although i t  is only ii 

surrogate for other confounding factors. Introducing a spatial prior to model the cffect 
of location thus causes the estimates of the regression coefficients t o  bc controlled for 
these factors. 

By fully acknowledging all potential sources of error and all ii priori causal relation- 
ships between the variables of interest in our final model, could immtigatc 
different ecological associations simultaneously. We were able to confirm t he relat ion- 
ship between malaria prevalence and incidence of ID1)hI previously found by fitting 
a less complex model (Bernardinelli et d.,1997). At the sanie time, our model 
allowed investigation of the association between malaria endemicity and (;61’1) 
deficiency. 

Our results show how i t  is possible to carry out an ecological regression analysis 
accounting for unprecisely measured covariates and L w y  complex and not fully 
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clarified relationships between the variables o f  interest. We could achieve this by means 
of a Hayesian hierarchical-spatial model fitted using Markov chain Monte Carlo. 

We wish to emphasise that the results we obtained rely on the assumptions of our 
model. Indeed. we made the best use of the available data on II)I)M malaria and G6P1) 
deticiency to investigate our hypotheses. New data and/or different model assumptions 
could lead to different results. With models a s  complex as those considered here i t  is 
important to investigate the sensitivity of any conclusions to changes in model speci- 
fication. In this regard our analysis on IDDM and malaria is continuing. 
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Case Studies in Bagesian 
Disease Mapping for 

Health and Health Service 
Research in Ireland 

27.1 INTRODUCTION 

Many of the contributions to this volume are essentially methodological in tone; in this 
chapter the emphasis is firmly on application. Because the author has a direct consulta- 
tive role with the regional public health bodies in Ireland, such an emphasis is natural. 
This demands that a prime consideration is to demonstrate the need for, and then 
ensure the acceptability of, the recent methodological developments for the analysis 
and presentation of disease and other health outcome measures. In the context of 
research conducted with a view to public health implementation, i t  is vital that the rclc- 
vant professionals be acquainted with the limitations of the heretoforc standard 
approach to disease mapping (using the standardised mortality ratio (ShIR))such as 
they will  have been exposed to through the allied fields of epidemiology and medical 
geography-see Esteve i't d.,1994)and the advantages of adopting recent techniques 
now being advocated by the statistical community. It must be recalled that these tech- 
niques (namely, Hayesian smoothing) are outside the experience of the generality of 
public health officials, and perceived as highly technical and non-intuitive-features 
unlikely to encourage easy acceptance. 

This chapter illustrates, by way of two case studies (distribution of low birth weight in  
Dublin and its environs and 'atwidable'deaths from asthma nationally), the adiTantages 
of small-area analysis and the consequent requirement for a Hayesian approach to dis-
ease mapping. The style of the report is discursive, reflecting the approach adopted by 
the author in presentations to public health colleagues (Small Area Health Research 
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IJnit (SAHKIJ ), 1997a) and t herefore aivids a detailed descript ion of the undcdying 
methodology. This has been more than adequately covered by several authors else- 
where. t\ particularly clear exposition is to be found in Clayton r>t(11. (1993),in (’islaphi 
r ~ tnl. (1995)and again in hlollii. (19%) and Chapter 2 in this volume. 

27.2 BACKGROUND 

The Lrish Ikpartment of Health‘s 1995 strategy document-SSlirit.’irin ri ticwltliirr 
b’utiirt~-in setting out  the basis for the proposed developments in health care provision 
in t he near future, repeatedly emphasises the need for relevant and timely information 
on all aspects of’the health care system (Department of Health, 2995).Specific attention 
is directed to the evaluation of the health care needs of the population, monitoring of 
the process o f  care delivery and uptake, and impact in terms of sliiLf’fitigpi t t t1ri i .s  o f r w r -
tcilitij m r l  riiorhirlitjj. The health strategy document acknowledges the existence of mor- 
tality ’black spots’and the need to  ’examine variations in the health status of‘different 
groups in  society’as ii basis for the attainment of equity within the system. 

I t  is widely recognised that ii potentially fruitful way to represent data on morbidity, 
mortality, and patterns of health seririce delikw-y and uptake is by mapping suitably 
standardised rates at relevant geographical levels. t:or example, for state and related 
adtn i n ist rat icrc purposes, dat ii itre rout i nely generated -or can be identified -1721 riously 
by small area (1)istric.t Electoral 1)ivision or UEl)  in Ireland), by urban/rural district. by 
county, or other. larger, geographical unit. Yet, a s  we illustrate below, real variation in 
disease and other related measures of health outcome is evident over relati\dy small 
geographictil distances. This arises because of structural (primarily socio-demographic) 
differences between areas (with areas comprised of individuals with different risk pro- 
files) leading to Iicterr,ncr~eitj~-and similarities between neighbouring areas sharing 
s i m i 1R r de ni og 1-21p h i c a n d ci nv i ro n men t ii 1 profi1es 1eadin g to a rca r .1  I Istrr i t 19.Th i s ii rgu es 
tor iin analysis directed a t  a sufficiently disaggregated level to capture adequately sub-
stantive differences in underlying risk, whilst of sufficient size to offer realistic opportu- 
nities for planners to target intcrvention. 

27.2.1 The traditional approach: consequences for public health 

(Juestions concerning health status. population needs, health care delivery and uptake, 
are sensitive to both sc-ale and location. Historically. these questions h a w  been 
addressed at  it relatively high level of aggregation: for example, by region or county. with 
the result that significant variation between smaller areas will have been masked (Kelly 
and Sinclair, 1997).Yet, while there has been broad recognition of the need for infornia- 
tion at a more disaggregated level, two practices have evolved. The first of these, noted 
alretidy, is to restrict the focus to county-level analysis. This kills within the traditional 
ep idem iolog ic a 1 ap proac h and releva n t ou t CO mes ii re typica 11y a n d adequ ii t ely 
expressed in terms of the Standardised Ivlortality Ratio (SMR) (see Holland, 1991, 

’ I l t  tic obscar\wi iiciiiibcr o levents  in area i is designated O l  and thc cspecttd iiumber (based on regional age and 
sc’s spcc.ilic riitcs) is I : , ,  then t l i c  S\IK is O l  / I s . ’ , ;  this ratio is usually prcwnted its thc ShIK x 100. 
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1993).Of interest will be inter-county comparisons with potential policy and resource 
implications. The second approach, of recent origin, has been to report SMRs by small 
area. However, as shown by Clayton and Kaldor (1987) and Clayton et al. (1993),reliance 
on the SMR in the analysis of counts of events in small areas is technically incorrect and 
maps displaying such SMRs are potentially very misleading. The problem lies with the 
assumption that the observed number of events in a given small area and in a given time 
period is Poisson distributed. However, when the true underlying risks are not all equal 
across areas (an entirely reasonable assumption for most diseases) the observed counts 
are no longer Poisson distributed-they are said to display cxtrn-Poissori \wr ia t km2  In 
effect, a map of SMRs only partly reflects real differences in risk, because the sampling 
variability of the risk estimator (which is proportional to population size) may result in 
the most extreme rates arising in areas having small populations (but often large in 
physical size and highly visible on the map), producing a disproportionate visual impact 
based on the least reliable data. The problem is exacerbated when considering rare out- 
comes, such as death from cervical cancer or asthma, that are of considerable public 
health interest, and the method of presentation is by choropleth map. Mollik (Section 
2.2 of Chapter 2 in this volume) discusses and illustrates the problems with mortality 
data from French ‘departments’. 

During the last decade, the’map problem’ has been considered afresh from a Hayesian 
perspective-initially, as the so-called empirical BaUes approach discussed in a seminal 
paper by Clayton and Kaldor (1987) and more recently in terms of a full Hayesian (FH) 
model offering a more flexible modelling environment (Clayton et al.. 1993; Cislaghi 
or al., 1995; Clayton and Hernardinelli, 1992; Olsen et c r l . ,  1996). 

27.2.2 The Bayesian approach in brief 

In essence, when derived from a reasonable number events (relatively large population 
size), the Hayesian estimate of the relative risk will be closc to the SMK. For less reliable 
estimates (small population size), the Bayesian estimate is ‘shrunk’ towards the overall 
average SMR for the whole area; a plausible a priori solution. However, a better solution 
involves shrinking the estimate towards the mean of the surrounding areas. because 
neighbouring areas are likely to share a common aetiological exposure and geographi- 
cally close areas are, in fact, found to have similar disease rates. ‘Borrowing strength’ 
from neighbouring areas in this manner results in smoother and more stable estimates. 
In practice, ‘neighbourhood’ is typically defined as areas sharing a common boundary, 
although alternative definitions are sometimes more appropriate. 

Modelling area counts is by means of a random effects Poisson model that decom- 
poses the extra-Poisson variation into two terms: (i) an  unstructured componen-r~-(~ln- 
five risk is allowed to wtr!j independently by area, and ( i i )  a local spatially structured 
component-rvla t ive risk is (1 llowed to \Ury sinoothly au-oss I I  ei[gh 1x1U r i rig (1 r e m  CI ay t on 

’Assume all areas share the same underlying risk for a specific non-contagious disease. then the obscrvcd num- 
ber of deaths in a given area will have a Poisson distribution. However, in reality, individuals’ risks ivitliin any 
small area (e.g. a 1)EI)) will vary substantially (individual risks are heterogtmcous) n i th  thc result that thc. resi- 
dual variation nil1 exceed that expected from a Poisson model-this is referred to a s  c>,strci-l’oissori\wri[lliori. 
Catering for this by allowing relative risks to vary by area is a feature of the t3aycsian approach to small-area 
analysis. 
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spatial niodel with p = 0.4.There is a slight reduction in the smoking effect, but other-
wise only small changes are seen. There is a small increase in K 2 .  

Figures 28.1 and 28.2 map the log incidence rates for males and females. Both show 
relatively strong regional effects, with elevated risks in the central and northern areas 
and lower rates in the south-west. In males, the residual pattern was somewhat random, 
while in females there was a modest suggestion of a remaining regional effect, with 
higher risk in the east and central parts of the province. Both distributions were 
approximately normal. For males there were no extreme outliers: all points except one 
had studentised residuals between + 2 and - 2. The pattern of residuals in females was 
even less remarkable: the only outlier had a studentised residual of - 2.2, suggesting a 
modest deficit of cases compared with expectation. 

Figure 28.2 Log age-adjusted incidence rates, lung cancer, females, Ontario, 1980-1991 
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Figure 27.1 Maps of LBW incidence in Dublin County: (a) raw SIR : (b) Bayesian smoothed SIR by 
Model 1:and (c) Bayesian smoothed SIR by Model 2 
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Table 27.1 Summary results of Hayesian models of LHM! 

SIR(min/med/max) 62/95/146 69/92/159 
~~~~~~~~~~ 

Heterogeneity component: 
posterior median (95%CI) 0.001(0.001-0.002) 0.002 (O.O(11 -( I.(112 ) 

Clustering component: 
posterior median (95%CI) ( 1.153 ( (I.(187-(1.291 ) 0.025( ().O(14-0.0941 

Deprivation coefficient: 
postcrior median (95%CI) - 0.078(0.031-0.100) 

27.3.2 Bayesian models for LBW 

Two models have been fitted to the area counts of I,BW using Rayesian Ecological 
Analysis klodels (BEAM)-the first (model 1) includes terms for heterogeneity and 
clustering but without the covariate (the deprivation score), and the second (Model 2 )  
includes the covariate. A summary of both models is presented in Table 27.1 in terms 
of the estimated minimum SIR, median SIR.and maximum SIR. Also shown are the 
posterior medians (plus the 95% Bayesian credible interval) for the heterogeneity 
component (A’) and clustering component ( K ’ )  (in the notation of Molli6 in this 
volume). 

Note that for Model 1the posterior median for the clustering component is two orders 
of magnitude greater than that for the heterogeneity component, implying strong spa- 
tial clustering (as is evident in Figure 27.1(b)). In Model 2, it is still a n  order of magnitude 
larger, even in the presence of the significant covariate, indicating that spatial cluster- 
ing remains important (see Figure 27.1 (c)). While the heterogeneity component remains 
small in both models, the decrease in the contribution of the clustering term following 
the inclusion of the covariate reflects the fact that deprivation shows a strong tendency 
to spatial clustering (SAHRU,1997b).As the sign of the covariate’s coefficient is positive, 
relat ive risk increases with increasing levels of deprivation as anticipated. 

27.3.3 Smoothed SIRS for LBW 

Figure 2i.2 illustrates the extent of smoothing of the raw SIRS on the basis of estimates 
from hlodel 1 above (i.e. with no covariate). (NH: the graph is truncated at 400 to facil- 
itate ~i ie~ving of detail; Bayesian smoothed relative risks are labelled ‘FH-SIK’.) The med- 
ian of the raw SIKs is 96.5, range: 0 - 1000. The FH-SIKs have a similar median (95),but 
the range is now 62-1%. The latter result is far more credible in public health terms 

‘I’he scale of shrinkage associated with Model 1 is indirectly a function of population 
size (or equitulently, the expected counts E , )  and hence uncertainty in the Poisson 
model. This is made evident in Figure 27.3. Substantial shrinkage (large i d u e s  of 
(SIKniinus FH-SIK)) occurs for l>E:lIswith small populations (or equivalently, small E , )  
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Figure 27.2 Plot of raw SIKs for LBWand Bayesian smoothed SlKs (FH-SIK, according to hfodc.11)
(y-axis truncated at 400; x-axis ordered by increasing FB-SIR) 
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Figure 27.3 Plot of difference between raw SIRS and the Bayesian smoothed SIK (FR-SIR from 
Model 1)for LRWagainst the expected counts E (g-axis truncated at 400) 
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Table 27.2 LHIZ': raw a n d  13ayesian s m o o t h e d  SIKs a n d  95% CIs  for selected 1)III)s 
ordered according t o  I3ayesinn Model 1 I' 

Model Model SIR Model1 Model2 
DED name SIR 1 2 Sig." ~ c " A ,CI" 95%)CI' 9 5 ' ~ )CI'  

Arran Quay E 201 149 119 87- 396 101-214 92-103 
-&1lshers C' 7 77 14i 144 117- 397 106-205 115-185 

C"abra East C 268 143 115 122-509 106-191 92- 147 
Arran Quay H 2 h i  142 117 86 -624 98-207 92 -157 
1ishcrs I1 1 x 3  142 121 (34- 38 3 92-205 94 -16'2 
13allymunB 174 140 149 100-28 3 101-189 120-1x7 
Ky Iemore 2 38 134 131 123-416 98-182 105- I64 
l'r iorswood c' 1hh 129 156 104-251 91 -174 122-196 
Swords-l+)rrest 152 119 99 102-2 19 91-151 80-123 
I )U n l,tioghaire-W'C' E h  1 0 0  96 110- 568 (31 -1% 72-1 34 

t'ortiiiarnock North 0 h4 75 O - f 3 0  3 3 - 103 50 -101 
1h n d r u in-Sandyford 0 h S  74 0 - h 6  45 -97 5h -92 

"CI~3lac.krock-'li.mplehil l  0 69 / /  0-139 41-104 5 h-97 
I3a 1br igga 11 I Trhan 48 7(1 89 13-123 36-115 54-123 
I )  11r i d  r11m-13ala 11y 28 71 78 1.2 3-102 46 -96 58-96 

' I  hlodc*l 1: inclutlc-s terms f(ir hctc.rogcncity a n c l  clustcring. h lock l  2: inc.ludes t e r m  fur hetcrogcncitj: c*lustcr- 
ing atid deprivation (scc.'lhble 27.1 and associated text). 

I' cj5"11C'on1idcnc.c intcv-val based on t tic Poisson model. 
' %'I,, I3ayesian crcclible intcw;il. 
J l'onlielc~nc-cc.rcdiblc. ititeri~al docs not cmbrac-c 1 0 0  for modcl:0 (SIK):1 ILlodel 1): d(h1odel 2). 

arid proportionally less shrinkage for I>E:I>sa s  the population size increases (i.e. for 
larger !I ,). 

'I'able 27.2 lists selected 1)E:l)s (ranked according to estimates-posterior niedians-
based on Model 1 )  and the estimated SIRs for irarious models. The 9 5 %  confidence inter- 
vals tor SIRS and the equivalent empirical Hayesian credible intervals for hlodels 1 and 2 
are given. I t  will be noted that these latter intervals are considerably narrower than 
those for SIR and that the interval width for klodel 2 is less than that for Illodel 1. Model 
2 confirms the association between area depritiation and I,HW incidence atid also pro- 
vides ii more precise estimate of the relative risk of LHN' for individual areas.M'hether or 
not the respective contidence intervals embrace 100 is indicated in column 5 (Sig.). Of 
312 l)El)s, 9 had 95% C'ls for SIR excluding 100 (Sig. = O ) ;  only six of these remain 'sig- 
niticantly different ft-on1 100'on the basis of either Model 1 (Sig. = I )  or hfodel 2 (Sig.= 2)  
or both. The majority of l>El>slisted in the table with SIRs above 1 0 0  are inner-city areas 
(highly deprived). Those with SIRS below I 0 0  are less deprived suburban areas. 

Figure 27.4 gives a n  oLrerall impression of the contrast between Model 1 and Model 2. 
This shows ii scatterplot of the difference in the point estimates for Model 2 i id Model 1 
iw-sus the deprivation score. The mean difference is indicated by the horizontal line 
(this is seen to be about - 1.6 units). However, the difference increases with increasing 
level o f  deprivation (a splirie smoother shows the general trend). The pairwise correla- 
tions between point estimates for Model 2 with Model 1,Ikpri~ration score and the raw 
SIRS are: 0.80.0.92,0.34, respectively. Owing t o  the significant positive association with 
deprivation. MY observe that the point estimates based on hilode1 2 tend to be loi47er than 
%lode11 estimates for lower levels of deprivation and the converse is seen tor higher 
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Figure 27.4 Plot of the difference between point estimates of relative risk for hlodcl 2 (with 
cmrariate) and Model 1 versus deprivation score. Superimposed arc t he mean !it (horizontal linc) 
and splinc fit 

levels of deprivation. The covariate is very influential owing to its tendency to cluster 
strongly and the association between LBW incidence (noise-free. as in Model 1)  and 
deprivation ( Y = 0 . 6 ) .  

In Summary: I,BW incidence is positively associated with deprivation. Higher rates 
are found in inner-city areas and certain suburban areas immediately to the north 
and south of the city. This is not an issue of physical access p ~ rs r  to maternity serviccs 
in this instance (three major maternity hospitals are located in the city), but rather i t  is 
likely to reflect a lack of 'social access'-in the sense that many of the mothers of LH\V 
infants are late in booking into hospital, they are typically non-attenders at ante-natal 
clinics, more likely to smoke 'to control weight during pregnancy', and in poorer general 
health. Areas with relatively high SIRS need to be identified to facilitate targeting of 
public health measures and improved outreach by hospital maternity services. 

27.3.4 Model fitting 

Models 1and 2 were fitted using BEAM and Model 2 was also fitted using 131JGS (with 
negligible differences overall). A'burn-in' of 5000 iterations was followed by a monitor- 
ing run of 10000,with 1/10 runs saved to file. In view of the large number of parameters 
to be estimated (all 322 relative risks plus the regression coefficient, plus the random 
effect variances). a 'burn-in'of 5000 is appropriate. Following the 'burn-in'. the number 
of required iterations was determined by an  initial monitoring run of 5000, which was 
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then submitted to the Raftery-Ixwis (1992) diagnostic test implemented in COIIA. This 
diagnostic returns the minimum number of runs needed to estimate the model summa- 
ries of interest with a given precision. ‘I’he Heidelberger and Welch (1983) test (also 
implemented in COUA) w a s  additionally employed following the final run  to determine 
whet her convergence had been achieved for each parameter. All parameters passed this 
test. Typical model run times were 3-4 min on a 250 hlHz Pentium I1 FC. 

27.4 AVOIDABLE MORTALITY FOR ASTHMA 

27.4.1 Introduction 

There is considerable interest within Europe at present in measuring health outcomes 
that are considered ‘avoidable’: for example, mortality for selected conditions in specific 
iige,sex subgroups (Holland, 1991,1993). Put simply, with proper treatment and iiccess t o  
adequate medical facilities (primary and secondary care), such fatalities should not 
occur. It’here these do occur, health boards and the national Department of Health will 
need to plan for remedial action. A s  noted by h1cColl and Gulliford (1993) managers and 
health care professionals responsible for distributing resources within the health ser- 
trice need information on health outcomes to  ensure that the services provided are effec-
tive and located where they are needed. 

A series of 15 to 18 indicators has been defined a s  ‘avoidable’-asthma in the 5-44 
year age range is one such. Sinclair r’t d.(1995) have shown a general rise in asthma 
mortality for young adults in Ireland and so i t  is of interest to investigate the spatial 
distribution of asthma deaths on a national basis to determine whether thcrc is evi- 
dence for u rban/rural and regiona 1 differences. 

Mortality tigures for this indicator were compiled between 1986 and 1994 for 65 
urban centres (spatially compact) and 2 3 rural districts (large regions equated with 
county areas excluding urban centres). Expected numbers of deaths, internally age 
standardised to 1991 census figures, were computed for each area. 

‘I’he total number of avoidable asthma deaths during this nine-year period n7as 163-
a very small number overall. The urban/rural breakdown for SMRs is signiticantly dif- 
ferent (Table 27.3). The number of observed deaths per area ranged from 0 to 22. Fully 
half of the 88 areas had no deaths. The expected number of deaths ranged from 0.06 to 
2 l . h  ShlKs ranged from 0 to 1000; the latter refers to Clones urban district with one 
death obserired and 0.1 expected. As noted above with respect to LAW risk, the observed 
range is not credible. 

Table 27.3 Kaw SMKs by urban and rural areas 

Level M i n  25.0%, M e d i a n  75.0% M a x  
-3
Kural ( r i  = 2 3 ) 0 26 / /  150 31  3 

I’rban ( r i  = h 5 )  0 0 0 1 0 3  1000 
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Figure 27.5 Identifying urban and rural neighbours in area i 

27.4.2 The ‘neighbourhood’ problem 

‘Neighbourhood’-normally defined in terms of polygons with intersecting bound- 
aries-is not feasibly defined in this manner on this occasion. It was found that a mix- 
ture of distance and simple contiguity was required. The need for this complication 
would have been avoided if the focus of analysis had been fixed at county level; however, 
rates of ‘avoidable’ mortality were believed a priori to differ between rural and urban 
areas. All urban centres reside within rural districts. Thus, urban centres within a rural 
district are considered as neighbours of that district and vice versa. Ho~vever,not all 
urban centres within a large district need be neighbours (see Figure 27.5). The district 
represented by area i in the figure is a neighbour to the shaded districts because it bor-
ders on these-this is a standard assumption. There are three urban centres (labelled 1 
to 3 )  in this area. Centres 1 and 2 are neighbours, but neither may be considered a 
neighbour of Center 3 because the latter exceeds a given threshold distance. Note that 
Centre 3 would be considered a neighbour of Centre 4. On the basis of considerations of 
the national grid and demographic factors, only urban centres separated by a maximum 
distance of 20 km were considered as neighbours. (The robustness of the results to this 
assumption was tested with the maximum distance set at 15 km and then at 25 km. Dif- 
ferences in SMK point estimates (posterior medians) were negligible.) Due care to ensure 
symmetry in the neighbourhood relationships is vital before analysis. 

27.4.3 Smoothed SMRs 

Modelling was undertaken using BUGS (version 0.6). Five thousand iterations were 
allowed for ‘burn-in’ before sampling the posterior distribution, followed by a monitor- 
ing run of 10000 iterations. As with the modelling of LBW, the minimum number of 
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Table 27.4 Summary of 13aycisian Smoothed ShifKs (1;tMhlK) for urban and rural areas 

Level Min 25.0% Median 75.0%) Max 

Kural 64 X I  9h 111 189 
I lrhan 58 73 94 I06 286 

Table 27.5 klortality for asthma (5-44 years) during 19Hh-1994 for selected urbiin (11)centcrs 
and rural (K)districts. Ranked by Hayesian Model 1"SMK value 

Model I 
Name 0 E SMR 95% CI" FB-SMR 95%CI' Sig." 

~~~~ 

I h n d a l k  ((I)  1.2 41 3 132-959 L X h  120-6?X " 

'Louth ( K I  1.9 313 115-683 189 105-324 ' I  

Ilrogheda ( I J )  1 .I 265 53-776 171 / 3 - 370 
Kilkenny (1') 
1,aois(K) 

0 . 3  
2.3 

556 
3 35 

61-1952 
144-660 

160 
137 

51-528 
X8-2iI " 

'I'hurles ([I) 0 . 3  h9(1 76 -24 3 0  134 60- 361  
C'lones ( 11) 0.1 1000 1 3- 5649 1 3 $  42- 394 

Kerry (K) 1 4,(1 25 0-136 33-126 
C'obh ( ( 1 )  0 ( l . 2  0 0 - 1259 24-15? 
C'ork ( K )  5 11.5 43 14-99 37-99 0 I 

Killarney (IT) 0 0 . 3  0 0-1208 15-218 
Macroom ([I) 0 0.1 0 0-3510 15-20 3 
hlallow (1;) 0 (1.2 0 0 -1221 14-194 
Galway ( L J )  0 2.5 0 0-145 17- I4 3 

I' hlodel 1: t e r m  for heterogeneity and clustering. 
I' 95% Contidencc interval based on the l'oisson model. 
t 95",, Hayesian credible interval. 
" C'on1idcnc.e crcdiblc interval does not cmbrucc 1 0 0  for model:0 (SIK);1 (\loJel 1). 

iterations of the Gibbs Sampler required was determined by the Raftery-Lewis diagnos- 
tic test and a check on the adequacyof the final model output was determined by means 
of the Heidelberger and Welch test. 

Two Bayesian models were titted: a simple exchangeable risks model (this is incorpor- 
ating only a n  unstructured random effect allowing for extra-Poison variation and 
ignoring spatial context) and the random effects Poisson model allowing for both 
extra-Poisson variation and spatial correlation (see Spiegelhalter ('t id., 1996, Section 
11.2). Examination of the results for the exchangeable risks model suggests that it is 
inadequate and that spatial effects are clearly evident (not reproduced here). Addition- 
ally. the width ofthe Bayesian credible interval for ShIRs was consistently narrower for 
the fu11 Hayesian model a s  compared with the exchangeable risks model. 

'I'he distribution of the Hayesian smoothed SMKs (FB-SblK)by urban and rural loca- 
tion is summarised in'I'able 27.4. A Wilcoxon rank sums test indicates that, globally, the 
difference is no longer statistically significant (p  = 0.47). Selected results from this 
model are provided in Table 27.5 and the smoothed SMRs are mapped for urban centres 
(Figure27.h(a))and rural districts (Figure 27.6(b)).Table 27.5 lists only those iireas with 
estimated posterior median SMK above 1 3 0  or below 70. A s  expected. the contrast with 
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the original SMRs is very pronounced at the extremes of the latter with the smoothed 
values again offering more credible results. The maximum estimated ShlK is 286 (Dun-
dalk (I!)) followed by Louth (R) and the minimum is 58 ((Mway (IT)). I t  is noteworthy 
that the town of  Ilundalk is in Country Louth. There is some evidence for a n  excess of 
deaths in the urban centres and rural districts in the north-east of the country (labelled 

2 

0 

”;Dublin 

0 

I 200-299 

Figure 27.6 (a) Map of Hayesian smoothed SMRs for asthma mortality (5-44 years) (urban 
centres). (b)hIap o f  I3ayesian smoothed SMRs for asthma mortality (5-44 years) (ruraldistricts) 
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Figure 27.6 (continurd) 

1in Figure 27.6(a))and the midlands (labelled 2 in Figure 27.6(a))and a deficit along the 
southern, western and northern seaboards, although the 95% CIs generally include 100 
with the notable exception of llundalk (U) and Louth (R) in the north-east. Comparing 
both maps suggests that urban centres with higher than average SMRs are mostly 
located within rural districts also with higher than average SMRs. 
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These results must be related to the quantity and quality of service pro\Tision nation- 
ally, but firm conclusions from this study must await the results of the analyses of the 
remaining indicators of ‘avoidable’ mortality. At that stage, the possible reasons will be 
considered with the assistance of the departments of public health in  each health board. 

27.5 CONCLUSION 

Analysis and mapping of geographical variation in disease rates is a natural nieans of 
enabling spatial patterns and neighbouring clusters or gradients in rates to be discerned 
readily. Thus, inequalities between districts and regions may be identified and targeted 
to receive improved health care delivery. Epidemiologists haire long found maps useful 
in generating hypotheses in respect of possible environniental and social or material 
correlates of disease. Evidence of an unusually high incidence or clustering in space 
or time of a disease can dran7 attention to an environmental hazard, or proiride an 
early warning of an outbreak of infectious disease. With the rapid expansion of health 
service/healt h outcomes research. decision-makers, health care providers and public 
health researchers can benefit from ready access to key information suitably analysed 
by small area and presented in an accessible format, i.e. by map. 

The term ‘Rayesian 1)isease Mapping’ is generic, and although the majority of pub- 
lished applications to date have been concerned with disease rates, there is no reason 
that these tools need be confined to analysing disease. Indeed, the potential is consider- 
able for application to other health-related outcomes (e.g. in  SAHRIl the folloiving areas 
are being investigated: geographical distribution of attcndees at  drug clinics, court 
appearances and sentencing patterns for crime, and health service uptake by house-
holds). Recent papers by Spiegelhalter (1998)and Congdon ( 1998)give addit ional ideas 
on other possible applications in the area of health service research. 

In conclusion, the demand for information at small-area Ieid for public health 
research and service planning is increasing rapidly and the advantages of the Bayesian 
approach will be most evident in such circumstances where data are scarce and raw 
SMKs (as a measure of relative risk) are liable to be particularly unstable. Ho~7ever. in  
spite of the obvious (to statisticians!) benefits of modern small-area disease mapping 
methods, their introduction to, and acceptance by, public health epidemiologists and 
health planners requires careful preparation and consultation. In SAHKIJ. we have 
taken every opportunity to present at special seminars and national conferences and 
have undertaken to produce a series of reports targeted to public health specialists 
and the Department of Health. This programme is essential to ensure rapid and broad 
acceptance of the still novel Bayesian approach. 
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28.1 INTRODUCTION 

This chapter describes an analysis of cancer incidence in Ontario. Our objective was to 
identify possible determinants of the regional variation in risk that we had observed 
previously and to identify if any locations or regions had significantly deviant incidence, 
after taking known risk factors into account. Risk factor information was derived from 
the Ontario Health Survey, the census, and other sources. Twenty-four types of cancer 
were investigated. Weighted least squares regressions were fit, with an analysis of the 
spatial autocorrelation of the residuals. Spatial regressions were also fit, directly incor- 
porating a spatially correlated error structure. 

A variety of significant risk factors was identified for the various cancer sites; effects 
were usually consistent with other results in the aetiological literature. Slightly better 
fits to the data were usually obtained with the spatial regressions, but there was typically 
no meaningful change in the risk coefficients. The number o f  outlier incidence values 
was close to expectation. They were dispersed geographically, and occurred in a iwiety 
of cancer types. The findings provide reassurance that there are no areas with system- 
atically different risk, once known risk factors are accounted for. A few cancers provide 
limited evidence of residual regional effects that may warrant further investigation. 



3hh Regional variation in cancer incidence 

28.2 BACKGROUND AND OBJECTIVES 

The purpose of this study was to investigate the determinants of geographical variation 
in cancer incidence in Ontario. Previous analyses had demonstrated significant spatial 
patterning of incidence for various cancers in Ontario (Walter et d , ,1994).This w a s a 
starting point for examining the effects of plausible determinants of geographical varia- 
tion in incidence, using regression models that incorporated socioeconomic. lifestyle 
and environmental factors. 

Geographical analysis is often used by epidemiologists to maintain surveillance oft he 
regional variation in health, or to identify local anomalies. The many national and 
regional atlases of mortality and morbidity and associated analyses are good examples 
of this approach (e.g. Walter and Birnie, 1991; Pukkala, 1989; Pickle ct (il. ,  1989, 1996: 
WHO, 1997: Cislaghi e t  nl.,  1990). Some analyses attempting to explain the geographical 
variation in health have focused on socio-economic indicators and environmental vari- 
ables such as population density, urbanicity, or latitude (Aase and Hentham, 1996: 
C'harlton. 1996; Kafadar c't a l . ,  1996: Sinha and Henedict, 1996;Jones et (il., 1992; Nasca 
c t  id,, 1992; Howe r t  ill.,1993).A smaller number of analyses have examined geographi- 
cal information on disease-specific risk factors, for example late age at first birth and 
breast cancer (Sturgeon ut d,,1995) and occupational hazards for bladder cancer 
(Yamaguchi " t  t r l . ,  1991). 

Similar techniques have been applied to examine the effect of cancer screening pro- 
grams (e.g. 1,azcano-Ponce et d. ,1996) and variation in the utilisation of health care 
services (Whittle et (d, ,  1991; Koos and Koos, 1982; Paul-Shaheen et ( 1 1 , .  1987: Coulter 
r't id.,1988). 

Overviews of the use of aggregated health data, using the so-called ecological design, 
to assess environmental effects are available elsewhere (Walter, 1991a,b; Greenland and 
Kobins. 1994).A related issue is the statistical assessment of geographic patterning in 
the data, using measures of spatial aggregation or clustering (Walter, 1992a.h 1994). 

Ontario is an especially suitable region for this type of research for several reasons. 
inc lud in g: 

0 the interesting regional patterns in cancer risk previously observed; 
0 the good quality of the provincial registry data; 
0 the availability of data on plausible determinants; and 
0 the relatively large population. 

A s  described later in the chapter in more detail. two regression approaches were 
adopted: ( i )  conventional regression models, in which inferences about the possible 
regional effects are based primarily on a spatial autocorrelation analysis oft he residuals; 
and ( i i )  spatial regression models that directly incorporate a correlated error structure, 
based on contiguity criteria. 

Our earlier work (Walter et nl.,  1994) indicated that about one-third of the sex-site 
combinations examined showed evidence of regional patterns in incidence. We now 
build on the previous results by identifying plausible risk variables for inclusion in 
regression models. within the constraints of data availability for Ontario. Our focus 
was on socio-economic and lifestyle risk factors, but we also included selected occupa- 
tional variables. The primary purposes of the modelling were to ascertain whether the 
residuals show spatial patterning, which may indicate the effects of environmental 
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factors warranting further investigation, and to identify specific locations with signifi- 
cantly different risk from the province. 

28.3 METHODS 

The data ascertained for this project included: age and sex-specific cancer incidence 
data for various cancer sites, with the Public Health Unit (PHIJ) as the unit of analysis; 
and selected primary and derived variables in the Ontario Health Survey (OHS) and the 
census. 

28.3.1 Cancer incidence data 

The Ontario Cancer Registry provided the annual numbers of cases of 24 types of can- 
cer by age, sex and PHU, for 1980-91. The time period provides sufficient cases to give 
relatively stable estimates of the incidence rates in the majority of the PH1Js for a wide 
range of cancer sites. A small number of cases below age 15 or over age 84 were not 
included, for compatibility with the OHS: cases with unknown residence were also 
excluded. Population denominators were obtained from the census, with linear inter- 
polation for non-census years. Sex-specific, age-standardised incidence rates (SIRS) 
were computed, with Ontario as the standard population in the direct method. 

28.3.2 Ontario Health Survey (OHS) data 

The 1990 OHS is a population-based survey that provides data on social, economic, phy- 
sical, behavioural, nutritional and other health indicators. Its main instrument was 
completed by 46 228 individuals aged 15-84, stratified into 44 PHUs, with two small 
PHUs being combined. It used a complex cluster sample design, incorporating study 
weights that reflect the probability of selection and non-response at the household and 
individual levels. The individual study weights were rescaled to analytical weights, 
which were then used in the aggregation of risk variables within PHUs. 

We aggregated the data for six PHUs in Toronto, because of a known lack of specificity 
in reporting cancer incidence in this area. This resulted in 37 spatial areas for analysis. 
The selected OHS variables were also standardised (as rates or mean values) to the 
Ontario age distribution. 

28.3.3 Census data 

Variables on education, occupation, income, and population density were drawn from 
the census and used as indicators of socio-economic status and the residential environ- 
ment. The 1986 census, being approximately mid-way through the cancer incidence 
period, may represent 'typical' exposure values for the entire period. However, some 
variables were not available by sex or age, and so could not be sex-specific or age-stan- 
dardised. Pilot analyses suggested that the regression results might be substantially 
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biased by using unstandardised variables. Accordingly, the data on education arid occu- 
pation were taken instead from the 1991 census. where standardisation was possible. 
h t a  on immigration were a l s o  taken from the 1991 census and used for selected cancer 
sites. 

28.3.4 Statistical analysis 

The dependent variable in the regressions was the log (base 10)of the directly standar- 
dised rate. For each cancer site, a set of candidate independent variables was included in 
a conventional weighted least squares regression, specified as 

Y = Xi) + U ,  

where Y is an ( 1 1  x 1) vector of the values log (SIR),X is an ( 1 1  x y )  matrix of independent 
variables, with .jbeing the corresponding (11 x 1) vector of coefficients, and U is the 
( 1 1  x 1 ) vector of errors such that E ( U )  = 0 and l:(UU'r) = C.Each PHlJ was weighted 
according to its average population for the time period, but the errors were considered 
to be independent between PHlJs, so off-diagonal elements of the variance-co\..ariance 
matrix were taken a s  zero. A stepwise backwards elimination algorithm was used, 
and a significance level o f  0.10 in the partial test was required for a given term to be 
retained in the final model. Candidate variables were based on a review of the uetiologi- 
cal literature. The general socio-demographic census variables were considered as can- 
didate variables for every site. For cancers where both male and female data exist. a 
further regression, which included the significant variables from both of the sex-specific 
models, was calculated. This allowed comparisons of effects between sexes. 

The regressions were summarised through the regression parameter for each signifi- 
cant term (showing its effect in terms of the original units of measurement), its standard 
error and partial y-value and the model K'. The magnitude of each effect was also 
expressed through the associated relative risk (KR),  computed as  the expected (multi- 
plicative) change in disease incidence associated with a change of two standard devia- 
tions in the independent variable. 

Maps of the cancer rates for each site were produced, using unclassed choropleth 
shading. 'I'o examine the fit of the model, the absolute and studentised residuals were 
also mapped, and their distributions were checked for normality using a Kolmogorov- 
Smirnov test. 'I'o evaluate the spatial patterns, we lirst calculated the first-order spatial 
~tutocorrelatiori(SAC') in the residuals over al l  pairs of geographically contiguous P H I k  
Specifically, the SAC' was estimated through hioran's I-statistic, defined as 

The coefficients IY,,represent the continguity or closeness of areas i and j.We used a set 
of binary coefficients such that w,, = 1 if areas i and j share a common boundary, and 
\Y,,= 0 otherwise. The value of the SAC should suggest the magnitude of the regional 
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effects not allowed for in the regression model. Secondly, we carried out a further set o f  
regressions in which the spatial structure of the residuals was modelled directly. Thc 
model was defined by 

Y = XB + U. with U = pWU + E .  

Here E is a vector of independent errors, p is the value of the SAC. and W is the matrix of 
contiguity coefficients w,,.To do this we began with the final model identified in the first 
conventional regression: we then fit a spatial regression with a fixed value of p. This is 
most conveniently achieved by using spatial differencing and fitting the niodel 
( I  - pW)Y = ( I  - pW)XJ,as suggested by Bailey and Gatrell (1995).This was repeated 
with various values of p until the mean squared residual error was minimised (to a tol- 
erance of 0.05 in the value of p). The INFO-MAP software was used for this purpose 
(Bailey and Gatrell, 1995).The optimal value of p was then taken as a rneasurc of thc 
residual spatial structure in the data, after accounting for the effects of the included 
independent variables; thus, again the value of p should indicate the strength of the 
regional effects not directly associated with the independent variables in the modcl. M'c 
compared the coefficients and their standard errors for the independent variables in the 
conventional and spatial models, and also mapped the residuals. 

28.4 RESULTS 

Table 28.1 summarises the findings for lung cancer. The regression coefficients arc 
directly comparable between sexes, while the associated RR permits comparisons of 
effects between risk factors. The associated RR involves the distribution c i f  exposure 
across PHIJs, and may be relatively large if exposure rates vary substantially. 

Cigarette smoking (pack-years) has a significant effect in both sexes, with an asso- 
ciated R R  of approximately 1.2 in males and females. In males, there are additional 
effects of occupational exposure to fibres, coal tar and metals, and a small association 
with population density. In females, the occupational effects were not significant. except 
for a borderline negative effect of occasional exposure to coal tar. There was a negative 
association with the percentage employed in industry, The R' values were 0.84 in males 
and 0.69 in females. 

Table 28.1 also shows the combined models for each sex when the significant terms 
from both sexes were included. There was little change in the magnitude or significance 
of the effects. Because more terms were included, the significance of each Factor was 
somewhat reduced, but the qualitative conclusions did not alter substantially. 

The SAC for the log incidence rates was quite high, namely 0.516 for males and O h 6 3  
for females, indicating relatively strong regional effects. After computing the regression 
model, the residual SAC for males was reduced to the - 0.059, a value close to zero and 
suggesting that the regional effects in incidence have been taken account of by the 
regression variables. Accordingly, there is no advantage in fitting further spatial regres- 
sions for males. 

In females the residual SAC was 0.291, suggesting that some regional effect still 
remains. In further spatial regressions, the value of p needed to minimise the residual 
SAC was 0.4. Table 28.2 compares the associated RRs  in the standard model and the 
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Table 28.1 Kesults of rcgression analysis: lung cancer 

Combined model 

Males Females Males Females 

Independent 
L’ariable h 

Associated 
R K  b 

Associated 
K K  h 

Associated 
K K  b 

Associated 
K K  

Smoking (1.019i 1.22 1.21 0.0221 1.15 
pack-years 

Fibres 
(occasional+ 
(often + ) 

(1s 1061 
- 0.0157 

1.( 19 
0.88 

1.12 
(1.88 

- 0.0072 
0.0057 

Metals 
(occasional + ) 

01)Oh0 1.( 17 1.08 - 0.0096 (0.97) 

Coal tar 
(occasional t I - O.OOi3 10.93) (0.94) - 0.0387 (0.95) 
(often + 1 ( 1s 1238 1.09 1.(17 0.0129 ( (  1.99) 

Population 0.1742 1.05 1.03 0.01 32 l1.00) 
density 

I’erccnt low income 0.0026 ( 1 . 0 3 )  - 0 . 0 0 1 L  (( 1.951 ( 1.041 

I’ercent employed
in industry - - 0.OOhh 0.85 ( 1s 123 (1 .03 )  0.0059 0.86 

K ’ for model (1.W (1.8h ( 1.7 1 
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Table 28.2 Comparison of standard and spatial models 
(lung cancer, females) 

Associated RR 

Standard Spatial 
Independent variable model model 

Smoking, pack-years 1.15 1.10 
Coal-tar (occasional) 0.95 0.94 
Percent low income 1.03 1.04 
Percent employed in industry 0.85 0.89 
K' for model 0.69 0.76 

Figure 28.1 Log age-adjusted incidence rates, lung cancer, males, Ontario, 1980 
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spatial niodel with p = 0.4.There is a slight reduction in the smoking effect, but other-
wise only small changes are seen. There is a small increase in K 2 .  

Figures 28.1 and 28.2 map the log incidence rates for males and females. Both show 
relatively strong regional effects, with elevated risks in the central and northern areas 
and lower rates in the south-west. In males, the residual pattern was somewhat random, 
while in females there was a modest suggestion of a remaining regional effect, with 
higher risk in the east and central parts of the province. Both distributions were 
approximately normal. For males there were no extreme outliers: all points except one 
had studentised residuals between + 2 and - 2. The pattern of residuals in females was 
even less remarkable: the only outlier had a studentised residual of - 2.2, suggesting a 
modest deficit of cases compared with expectation. 

Figure 28.2 Log age-adjusted incidence rates, lung cancer, females, Ontario, 1980-1991 
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Table 28.3 Summary results for selected cancers: estimated relative risks for significant variables, by sex 
(a) Aero-digestive track 

Variable Site 

Oral cavity Oesophagus Stomach Pancreas Larynx Lung 
Class Specific" M F M F M F M F M F M F 

Socio-demographic Population density' 1.1 5 1.05 
Percent households with low income' 0.87 (! 0.93 1.17 1.21 1.03 
Percent with i grade 9 education 1.20 1.35 1.29 
Percent employed in industry 1.40 0.75 0.89 (' 0.85 
Percent semi-skilled/unskilled labourers 1.13 
Percent immigrants 0 .55  1.09 2.78 
Percent immigrants, ex from LTS/W. Europe 1.75 0.48 

Smoking Percent ever-smokers 1.24 1.13 1.11 
Mean pack-years 1.14 1.16 1.28 1.22 1.15 

Diet Mean fruits/vegetables (servings per day) 1.15 1.12 1.21 
Mean coffee (cups per day) 0.94 l' 

A Icohol Percent having <12 drinks pcr week l.ll(! 0.88 1.12(! 

Occupation Percent glass fibre/asbestos 2occasionally 1.42 1.17 1.U9 
3 often 0.85 0.77 0.90" 0.88 0.79 0.88 
Percent metal fumes ,occasionally 0.83 1.14" 1.07 
3 often 0.85 1.12 
percent solvents, etc >occasionally 0.70 0.75 0.66 0.9i 
3 often 1.23 
Percent coal tar/pitc*h ,occasionally 1.20 
often 

Model R ' 0.42 0.45 0.51 0.48 0.83 0.73 0.49 0 . 5 0  0.70 0.49 0.84 0.69 
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Variable Site 

Cervix Corpus 
Colorectum Gall-bladder Breast uteri uteri Ovary Prostate Testis Thyroid 

Class Specific M F M F F F F F M M M F 
~ ~~~~~~~~ 

Socio-demograhic Population density‘ 1.oh 1.14 1.13 
I’crccnt households with 1.1 I 1.( )1 0.81 

low income‘ 
Percent with i grade 9 education 0.95 1.12 0.85 0.84 
l’crccnt employed in industry 1.10 1.1; 0.17 
Pcrcent semi-ski1led;unskilled 1.31 

labourers 

Smoking I’crccnt ever-smokers 
Mca n pack-vriirs l . l f 3  

1)irt Mean fat (kg) 
Alean fat/total energy ( % )  1.OY 1.( 18 

Hody mass! Percent with HMI 2i (1.84 

physical activity Xlcan energy expcnditure 1S 15 
I hc.a 1 k g;d :I! ) 

I’vrccn t inact ivc 1.( )h 

l’cwcnt with n o  births 1.03 
I’i~rcwit taking Iimalc 1.12 

hormones 
(othcr Ihiin orill c.ontri1c‘cptivi.s) 

( ).4 I 0.44 0.30 0.14 0.40 0 . 3 Y  
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~ ~~~ 

Variable Site 

Non-
Hodgkin’s Hodgkin’s Multiple 

Bladder Kidney CNS disease lymphoma myeloma Leukaemia 
Class Specific M F M F M F M F M F M F M F 

~~~ ~~~ 

Socio-demographic Population density 0.93 0.94 
Percent households with 1.12 1.04d 1.09 1.12 

low income‘ 
Percent with < grade 9 education 0.90 0.90 
Percent employed in industry 0.88 1.19 0.92 0.86 0.93 1.18 
Percent semi-skilled/unskilled 1.17 1.08 

labourers 

Smoking Mean pack-years 1.10* 
Diet Mean coffee (cups per day) 0.93 

Occupation Percent solvents, etc: >occasionally 0.92 0.81 1.12 1.16 0.85d 
Percent pesticides: >occasionally 1.22 
Percent longest job in farming 0.85 

Model R ’ 0.1 9 0.33 0.10 0.41 0.32 0.00 0.10 0.00 0.40 0.11 0.19 0.17 0.51 0.29 
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Variable Site 

Lip Melanoma of skin 
Class Specific M F M F 

socio-dc.mographic‘ Population density 
I’ercent houscholds with 0.81 

low income 
I’ercent with < grade 9 ().63 

cducat ion 
1% rcent employed in industry 3.31 
I’cwen t semi-skiIled i 0.90 

unskilled labourcrs 
Sniok i ng [’e rcent ever-sniokc rs 1.54 
Occupation longest job in larming 1. i t3 0.58 1.11 I‘ 

Sunlight Latitude‘ 1.92 0.78 0.80 

l’ercwi t i nvolvc4 outdoor 0.w 
act ivities 

hlotlcl K ’ 0.73 0.41 0.59 ().49 

I’ Kelatiire risks associated with a 2 sad.change in the value ofeac*hiviriable. 
I’ Scs-spc.cific and age-adjusted unless otherwise specificd. 
‘ Not sex-specific or age-adjusted. 
“0.05 < 11 < 0.10: for all other varitrbles. p < 0 . 0 5 .  

C’NS C’cntrel Nervous System. 

Table 28.3 summarises the significant factors in the standard regressions for all can- 
cer sites. The associated KRs are shown: these are comparable between factors for the 
same analysis in the sense that each effect is shown in terms of its standard deviation for 
exposure between PHUs. The associated RR for a given factor is directly comparable 
between cancer sites for the same sex (when included in the model), but comparisons 
should not be made between sexes for sex-specific variables because of possible differ- 
ences in their exposure distributions. Cancers with similar sets of candidate variables 
are grouped together; for many sites, this corresponds roughly to organ systems. 

Part ( a )of Table 28.3 covers the aero-digestive tract, exclusive of colorectuni and gall 
bladder. Smoking, alcohol, consumption of coffee and of fruit arid vegetables, being born 
outside Canada. and selected occupation exposures are the candidate risk factors. Sto- 
mach and lung cancer have the highest SAC and R values in both sexes. Stomach can- 
cer risk varies greatly around the world,with Ontario ranking among the lowest. In our 
analysis, risk is associated with a high percentage of immigrants, lower mean educa- 
tional attainment and low socio-economic status in both sexes, arid with smoking and 
less industrial employment in females. Some occupational exposures are associated in 
males, although not consistently or monotonically. 

The cancers in part (b)of ‘I’able 28.3 involve a constellation of dietary, body m a s s  and 
reproductive risk factors. Corpus uteri cancer has a high I-statistic (0.42)and a substan- 
tial K’ value. Consistent with the literature, it is inversely associated with fat intake and 
positively with the use of female hormones, but the association with body mass is the 
opposite of expected. Little is known about the causes of prostate cancer, but i t  is 
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generally more common in those of higher socio-economic status. In our analysis 
industrial employment is positively associated, and lower educational attainment is 
inversely related. 

The literature suggests a somewhat different set of factors for cervical cancer, includ- 
ing smoking, low socio-economic status and sexual promiscuity. In our data there was 
evidence of spatial aggregation ( I  = 0.38) and smoking, low educational attainment 
and high population density were all positively associated with incidence. 

Although the risk factors for bladder cancer have been fairly well studied, the vari- 
ables available in our study did not give high R 2  values (0.19 in males. 0.33 in females), 
and there was no evidence of spatial aggregation (Tablc 28.3, part (c)). Smoking, the 
best-documented factor, was associated with risk, but only in males. Inverse associa- 
tions were seen with low educational attainment, coffee in males, and occupational 
exposure to solvents in females, and there was a positive association of low income in 
females. 

For leukaemia (Table 28.3, part (c)), there was some eiridence of spatial aggregation 
( I  = 0 . 3 0  in males, 0.23 in females), with moderate R’ values (0.51 and 0.29, respec- 
tively). Population density was inversely related to risk and percent low income posi- 
tively related; relative risks for these variables were similar between sexes. In males, 
exposure to solvents and industrial occupation also predicted risk, the former negatively 
and the latter positively. 

Finally, part (d) of Table 28.3 considers lip cancer and melanoma. both of which are 
related to sunlight exposure. Although lip cancer shows no eLridence of spatial cluster- 
ing, its model K’ values re 0.73 for males and 0.41 for females. The fcmale model is 
based on only 372 cases across the province, so many PH1l-level rates will be unstable. 
and the regression model may not be reliable. In fact, while the male results are consis- 
tent with the literature (e.g. increased risks with smoking and longtime farming occu- 
pations), the female results are not, with several variables entering the model with 
coefficients often not in the expected direction. Melanonia, on the other hand, s h o w  
strong regional aggregation ( I  = 0.39 in males, 0.41 in females) and high model K’ 
(0.59 in males, 0.49 in females). Incidence decreases with increasing latitude in both 
sexes and increasing percent of unskilled or semi-skilled labourers. i t  also increases 
with increasing percent of long-term employment in farming and decreases with per- 
cent low income in females. All of these results are consistent with the literature on sun 
exposure and socio-economic status, where people at higher levels are generally at 
higher risk. 

Table 28.4 summarises the findings from the standard regressions. and shows the 
case sample sizes on which the regressions are based. The next column indicates the 
model R’ in the standard regression. The SAC in the log incidence rate was highest for 
lung cancer in both males and females, indicating strong spatial aggregation of risk. 
Moderate regional effects (SAC > 0.2) were found for cervical cancer, male and female 
leukaemia. male and female melanoma, prostate cancer, male and female stomach 
cancer, female thyroid cancer, and uterine cancer. The last column shows the SAC’ for 
the residuals. As expected, these are typically smaller than the SAC for incidence. 
Only three residual SACS werc greater than 0.2, namely male leukaemia (0.24),female 
lung cancer (0.29),and female thyroid cancer (0.25);elsewhere they were small or 
even negative, suggesting that the regional effects had been eliminated through the 
regressions. 
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Table 28.4 Summary of standard and spatial regressions (Ontario cancer incidence, 1980 -1991) 

Spatial autocorrelation 

Site Number Log Regression 
(ICD 9 Code) Sex of cases Model R (incidence) residuals 

Lip M 1854 0.73 0.14 0.14 
(ICD9 140) F 372 0.41 -- 0.12 - 0.22 

Oral cancer M 3781 0.42 - 0.16 - 0.10 
(ICD9 14 1 -1491 P 2008 0.45 -- 0.09 - 0.21 

Oesophagus M 2808 0.51 0.12 0.03 
(1CD9 150) F 1163 0.48 -- 0.02 - 0.22 

Stomach M 6844 0.83 0.38 - 0.16 
(IC’119 151) F 3791 0.73 0.39 - 0.01 

Colorec tal M 28052 0.41 0.18 (1.04 
(IC’DC) 153 -154) F 25 382 0.44 0.24 0.18 

Gall-bladder M 1169 0 . 3 0  0.03 0.08 
(ICD9 156) F 1780 0.14 0.10 0.10 

Pancreas M 5141 0.49 0.19 - 0.16 
(IC’D9 157) F 4419 0.50 0.11 - 0.07 

Lary n x M 3852 0.70 0.19 0.16 
(ICD9 162) F 744 0.49 0.10 - 0.05 

Lung M 3 3086 0.84 0.52 - 0.06 
(IC’I19 162) F 15176 0.69 0.66 0.29 

Melanoma M 4863 0.59 0.39 - 0.04 
(1CI19 172) F 4791 0.49 0.41 0.09 

Breast F 50254 0.40 - 0.06 0.15 
(IC119174) 

Cervix F 5826 0.39 0.38 0.13 
(ICI19 180) 

1Jterus F 11 524 0.67 0.42 - 0.05 
(IC’D9 182) 

Ovary F 8342 0.23 - 0.12 (1.09 
(IC’D9 183) 

Prostate M 20171 0.30 0.34 ( 1s19 
(ICI19 185) 

Testis M 2556 0.19 0.17 0.08 
(ICD9 186) 

Bladder M 12808 0.19 0.11 0.05 
(ICD9 188) F 4170 0 . 3  3 - 0.04 - 0.16 

Kidney M 6296 0.10 - 0.15 -0.19 
(IC’119 189) E‘ 38 30 0.41 0.16 0.01 
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Spatial autocorrelation 

Site Number Log Regression 
(ICD 9 Code) Sex of cases Model R ' (incidence) residuals 

Central nervous M 4566 0.32 - 0.14 - 0.16 
-system F 3786 0 - 0.12 

(ICD9 191-192) 

Thyroid M 1088 0.51 0.04 - 0.09 
(ICD9 193) F 3229 0.67 0.35 0.2 5 

Non-Hodg kin's M 7708 0.40 - 0.08 - 0.12 
lymphoma F 6385 0.11 0.15 0.Oi 
(ICD9 200,202) 

Hodg kin's M 1950 0.10 - 0.12 - 0.10 
-disease F 1500 0 - 0.16 

( 1 0 9  201) 

Multiple myeloma M 2642 0.19 0.01 - 0.Oi  
( 1 0 9  203) F 2 305 0.17 - 0.20 - 0.23 

Leukaemia M 6913 0.51 0.30 0.24 
(ICD9 204 -8) F 508 5 0.29 0.2 3 0.13 

Further work showed that there were typically only very small changes in the regres- 
sion coefficients and associated RRs  when the spatial model was adopted. The effects 
were slightly less significant, presumably because of the more complex error structure 
incorporated in the spatial model. The values of p in the spatial regressions (when fitted) 
were typically similar to those of the SAC for the residuals in the corresponding stan- 
dard regression. Most of the spatial regressions had higher K 2  values, but the differences 
from the standard regression were small. 

In examining the detailed patterns of residuals, the number of combinations of PHlJs 
with cancer sites is large, so we adopted a stringent definition of an outlier: specifically, 
we defined a statistical outlier to have a studentised residual greater in absolute value 
than its 99th percentile value (2.57).Theoretically, if all the relevant determinants had 
been identified in the regression, so that additional variation was entirely due to chance, 
then we would expect 1%of the fitted data points to be defined as outliers. 

Table 28.5 lists 15 possible outliers. The total number of fitted points is 37 (PHIJs) x 42 
(cancer sites) = 1554; therefore, the number of outliers expected by chance alone is 
approximately 15.5, in close agreement with the observed number. Five points corre- 
spond to risk elevations and 10 to deficits: eight are from male data and seven from 
females. All the site-specific distributions of studentised residuals were approximately 
normal. 

Bearing in mind that the possible outlier points are the most extreme from a set of 
1554 points, the five elevated outliers have relatively modest SIR values (1.27,1.18,1.27, 
1.23 and 1.31). They have no geographic pattern; only one PHIJ has more one outlier; and 



380 Regional variation in cancer incidence 

Table 28.5 R)ssible outliers in regression analysis 
~ ~ ~ ~~ ~~ 

Student ized Number 
Cancer Sex PHll residual of cases SIR SIR (adj) 

Lip Niaga ra - 3.00 5 0.29 0.47 

Oral cancer ‘Tiniiskaniing - 3.00 6 0 . 3 3 0.38 

Oesophagus l’cterborough - 3.19 6 0.35 0.52 

Colorectal Niagara - 2.83 lOi8 (1.9(1 (1.88 

Gall-bladder York - 2.70 28 (1.59 0.70 

-II,ary n x North - 2.79 7 7  0.62 0 .h5  
I k stern 

hlelanoma Hastings 2.59 97 1.27 1.37 
Middlesex - 2.85 145 0.83 ().81 

Prostate 1) Urha m 2 . 7  766 1.31 1.26 

Testis Algonia - 3.10 18 0.50 0.54 
HaI i bu rton - 2.57 24 (1.61 0.61 

Kidney Huron - 3.43 14 0.51 0.51 

C‘NS S udbUry 2.62 124 1.27 1.22 

Multiple Waterloo 2.84 122 1.23 1.43 
myeloma 

1,eukaemia Halton 3.00 164 1.18 1.36 

many types of cancer are involved. The adjusted SIRS represent the cancer incidence for 
the PHU relative to the province, taking the regression variables into account. These are 
generally quite similar to the original S1Rs.We conclude that if there are indeed true risk 
differences in these locations, then they are unassociated with the risk factors identified 
in the regressions. 

In summary. given the close agreement of the observed number of outliers to  its 
expectation, their modest SIKs, their dispersed pattern of occurrence, and their lack of 
grouping by cancer type, the most reasonable interpretation is that most if  not all the 
extreme values are due to chance. In aggregate, the results fa i l  to suggest any particular 
PHlJs with exceptional risk relative to the entire province. There may remain some 
scopc for regionally based studies, given the findings concerning the residual SACs. 
Particular candidates where both the original incidence rates and the rcsiduals 
showed stronger SACs (>0.2) are male leukaemia, female lung cancer, and  female 
thyroid cancer. 

28.5 CONCLUSIONS 

The results presented provide reassurance to public health administrators, in that there 
do not appear to be any areas in Ontario where the incidence of’cancer is exceptionally 
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elevated, once known aetiological factors are taken into account. There are a few can- 
cers with modest regional correlation in the residuals that may be worthy of special 
study. 

Empirically, the data seemed to satisfy the assumption of normality in the residuals. 
This was probably because of the reasonably large sample sizes and long data collection 
period. We also found that the results concerning risk factors and their effect sizes were 
similar using either the standard regression assuming independent errors, or spatial 
regressions incorporating a spatially correlated error structure. The main differences 
were slightly larger standard errors for the risk coefficients and less statistical signifi- 
cance in the spatial models. 

Additional work is needed to integrate the findings from this analysis with other 
aetiological literature; this is a complex task, because of the number and diversity of 
cancer types. Our results are usually consistent but sometimes inconsistent with other 
literature, so careful interpretation is required. The limited strength of evidence from 
this study must also be recognised; only relatively weak inferences are possible from 
ecologically aggregated data to statements about risk for individuals. On the other hand. 
this study had strength in its wide geographical scope. and in the extent and quality of 
its data. 
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Congenital Anomalies 

Near Hazardous Waste 

Landfill Sites in Europe 
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London School of Hygiene and Tropical Mediciiie, Loiidoii 

29.1 INTRODUCTION 

The EUROHAZCON study is the first European epidemiological study to assess whether 
the risk of congenital malformation is higher for residents closer to hazardous waste 
landfill sites than for those farther away. 

Waste disposal, whether by landfill or incineration, is one of the foremost environmen- 
tal concerns today. Knowledge about the potential impact on health is important in 
deciding on regulation of sites, their siting and remediation.Yet there is little epidemiolo- 
gical evidence on which to base risk assessments. Most studies of pregnancy outcomes 
among residents near landfill sites have been conducted in North America, from the 
well-known contamination incident at Love Canal (Vianna and Yolan, 1984; Goldman et 
al., 1985) to more recent assessments around multiple sites (Croen et al., 1997; Geschwind 
et al., 1992; Marshal1 et al., 1997; Shaw et al., 1992; Sosniak et al., 1994). Some individual 
studies have shown raised risks of congenital malformations, but no clear pattern of risk 
can yet be said to have emerged. There is a n  extensive literature supporting the potential 
teratogenicity of many of the chemical classes found in landfill sites (such as heavy 
metals, pesticides and solvents), but the question is whether nearby residents would be 
exposed to sufficient doses for there to be any risk, particularly as a n  individual dose may 
need to build up to a threshold level for there to be any significant biological effect at all. 

Communities close to waste disposal sites are often concerned about the potential 
health impact, and may link local ‘clusters’of adverse health outcomes to exposure to 
chemicals from nearby sites. Since, even with a random pattern of disease, localised 
patches of high disease density are bound to occur, it is usually difficult to distinguish 

Disease Mapping  and Risk Assessment for Pirhlic. Health. Edited byA.R. Lawson et al. 
C I  1999John Wiley & Sons Ltd. 
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clusters derived from the random disease pattern from those where there is a common 
underlying local cause. Scientifically, and in order to respond to public concern, i t  is 
desirable to move beyond post I I O C  cluster investigations, to  investigations around waste 
disposal sites specified a priori. 

Residents may be exposed to  chemicals from IandfU sites through the air or water 
(Upton, 1989). The air route includes off-site migration of gases, a s  well as dust and che-
micals adhered to dust, especially during periods of active operation of the site. ‘I’he water 
route includes contamination of groundwater and surface water, which may contami- 
nate drinking water if  local sources are used, or contaminate water used for recreation 
or household uses. Contamination of air, water or soil may affect locally grown food pro- 
duce. 

Congenital malformations can be divided into those for which there is a pre concep- 
tional mutagenic basis, whether chromosomal or at the level of a single gene, atid 
those that arise from disturbances of in utero development, usually during the organo- 
genetic period in early pregnancy. In this chapter, we consider non-chrornosomal 
tnalformat ions. 

29.2 METHODS 

This report concerns data from seven centres in live European countries (Belgium, Den- 
mark. France. Italy, IJK) (‘I’able 29.1 ), all of which are high-quality, regional, population- 
based congenital malformation registers. Five of these centres tire part of the E l  JROCKI’ 
network o f  regional registers for the surveiIlance of congenital anomalies in Europe 
(ELJKOCKI’, 1991). Three further centres are participating in the study, but two of these 
register Down’s Syndrome only (in Slocrenia and the United Kingdom), and one had too 
little population within the study area around the landfill site to make data analysis 
meaningful ( North-East Italy). 

\Ve identified waste landtill sites. located in regions covered by the participating regis- 
ters, which contained ‘hazardous’ waste of non-domestic origin, as defined in the EC 
Directive on Hazardous Waste (ECC, 1991). The EC list includes chemicals such a s  heavy 
metals, solvents, pesticides, dioxins. There were twenty one such hazardous waste landfill 
sites in all  participating regions, of which nine closed before the start of the study period 
and 10 sites were operational for more than 20 years before the end of the study period. 

A 7 km zone around each study site was defined as the study area. Where the study 
areas of two or more study sites overlapped and the sites were within 7 km of each other, 
the two (or more) study areas were considered a s  one large study area. Where the sites 
with overlapping areas were between 7 km and 14 km from each other, the area of over-
lap was split in such a way that cases and controls were allocated to the nearest site and 
each study area was considered separately. 

‘The study period began at the start of the malformation register, or, if later, after five 
years of operation of the nearest landfill site (toallow time for off-site contamination to 
occur). I t  ended 31 December 1993 (31 December 1994 for Lyon). 

’I’he cases are registered malformed live births, stillbirths and abortions induced fol- 
lowing prenatal diagnosis, born within the study period and to ii mother resident in a 
study area, and having one of the malformations on the EUKOHAZCON list. This list 
includes all major malformations, but excludes familial syndromes. neoplasms. metabolic 
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Table 29.1 Total numbers of cases and controls in EUKOHAZCON study areas 

Study Number Study 
Centre area of sites period Cases Controls 

Funen County (Denmark) 1 1 1987-93 19 44 
2 1 1986-9 3 28 68 

NorthThames (West) ( IJK)  3 1 1990 -93 31 124 
4 1 1990-93 10 3(1 

Lyon (France) 5 1 1990-9.1 35 78 

Antwerp (Belgium) 6 1 1990-9 3 73 1(-(1 
r) 

1 3 1990-93 35 82 
8 1 1992-93 6 16 

Tuscany (Italy) 9 1 1982-93 60 6i 
I(1 1 1982-93 121 138 
11 1 1987-93 45 53 

Northern Region (UK)  12 1 1989-93 2 0  3 0 0  
13 4 1986-93 296 74(1 
14 1 1990-93 23 58 

Glasgow (IJK) 1 5  2 1990-91 168 418 

Total 1089 2 366 

diseases and minor malformations. Chromosomal anomalies are excluded from the 
current analysis. 

Controls, two per cases. were randomly selected from all non-malformed live and 
stillbirths born on the nearest day after the case in the same study area. For convenience, 
two centres chose to select their controls by taking a random sample from all live births in  
the same year of birth as the case (Glasgow and Northern Region). In one centre,Tuscany, 
only one control per case was selected. 

Cases and controls were located geographically using addresses or postcodes at birth, 
with an accuracy of 100m or less. The distance of residence at  birth from the nearest 
waste site was then used as the surrogate exposure measurement. 

29.2.1 Statistical analysis 

The association between the proximity to hazardous waste landfill sites and the risk of 
congenital malformations was investigated using logistic and related binoniial regression 
models (Breslow and Day, 1980). Since individual matching by date of birth was for 
administrative convenience rather than to control confounding. we carried out an 
unmatched (unconditional logistic regression) analysis, but included terms for study 
area and year of birth in all models. The distance from the waste site was first dichoto- 
mised into a 0 - 3  km 'proximate' zone, and a 3-7 km 'distant' zone. These zones were 
defined a priori on the advice of landfill experts. Information routinely atailablc on 
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Table 29.2 Odds ratios for maternal age and socio-economic status 

Trend test 
Cases Controls OR 95%CI p-value 

Maternal age: all centres 
<20  years 73 175 0.91 0.68-1.23 
20 -24 years 270 615 0.95 0.79-I .I 5 
25 -29 years 391 851 1.00 
3 0 -34 years 232 492 1.02 0.84 -1.24 
> 35 years 85 158 1.16 0.87-1.56 0.17 
Iink n own 38 75 

Soc.io-ec.oiiomic.status 
IJK centres: quintiles of small-area deprivation scores 

Affluent: 1 53 167 0.91 0.62- 1.34 
2 67 171 1.08 0.75-1.55 
3 100 275 1 . 0 0  
4 155 388 1.12 0.84-1.51 
Deprived: 5 
IJn know n 

290 
2 

656 
3 

1.25 0.96-1.64 0.04 

Funen County: social class from parental occupation 
High: 1 
2 

2 
2 

5 
4 

1.o1 
1.22 

0.17- 5.89 
0.20-7.57 

3 13 33 1.00 
4 18 48 0.95 0.41-2.19 
Low:5 11 20 1.39 0.52- 3.69 0.70 
IJn kno w n 1 2 

Tuscany: maternal education 
Graduate 8 15 0.58 0.23 -1.45 
High School / /  

I-.- 67 1.20 0.76 -1.90 
Medium 77 86 1.00 
Elementary 29 56 0.60 0.35-1.04 
None 1 1 1.23 0.08-20.02 0.17 
IJnknown 34 33 

Professional 
Lyon: occupational groups 

1 8 0.20 0.02 -1.78 
Intermediate 11 22 0.82 0.31-2.16 
Farmers, craftsmen 4 7 0.98 0.24-3.97 
Workmen 15 26 1.oo 
Ihemployed 0 8 0.95 
I Jnknow n 4 7 

Antwerp: quintiles of average area income 
High income: 1 25 45 1.75 0.81-3.79 
2 23  5 0  1.73 0.81-3.69 
3 15 58 1.00 
4 21 50 1.59 0.74-3.43 
Low income: 5 28 53 1.84 0.88-3.85 0.92 
lhknown 2 2 
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socio-economic status (SES) varied greatly between countries participating in the study 
(Table 29.2). When adjusting for socio-economic status in analyses in which study areas 
were pooled, SES was therefore separately modelled in each country. 

In analyses pooling information over study areas, we analysed the association of risk 
with distance from a waste site in more detail by grouping more finely and by using dis- 
tance as a continuous measure in explicit models. As well as standard logistic models in 
distance and its reciprocal, we fit a model in which excess risk (strictly odds ratio) declines 
exponentially with distance from the site: 

where 7~ is the probability of being a case, d is the distance from the waste site. and x is a 
vector of possibly confounding covariates. The parameter y defines the rate of decline in 
risk with distance, and Q defines the maximum risk (right next to the site), relative to 
being distant from it (d  --f cc). 

This model is one of a family of ‘excess relative risk’ models that may be fit using the 
EPICURE computer package (Preston et al.,1993). These take the form (slightly simplified): 

where z, and p, represent vectors ofcovariates and parameters, respectively, and T ,  repre-
sents a ‘term’ comprising in general the product of linear and loglinear ‘subterms’ 
( P ~ l , z , c l i e x p ( ~ ~ ~ 2 , z , ~ ’ ~ ) ) .R(zo, z 1 ,  . . . ,ZJ)may represent disease odds, odds ratio, hazard, 
or hazard ratio at given covariate values. Thus, for this application we have an entirely 
loglinear term To(exp(flTx)) and a single other term T1 with a linear subterm with a 
constant only (a),and a loglinear subterm in distance (exp(-$)). Since this is a case-
control study analysed as unmatched, R(d, x> represents disease odds. EPICURE imple- 
ments the maximum likelihood estimation and inference for this model for unmatched 
or matched (conditional likelihood) case-control data (as well as cohort and case- 
cohort data). 

The development of the EPICURE family of models was motivated by the need to 
analyse studies of the effects of A-bomb survivors, in order to model the effects of radia- 
tion dose with respect to cancer, together with confounders and modifiers (Peirce and 
Preston, 1985; Pierce et al., 1996). The model we have used also belongs to a family pro- 
posed independently specifically for use in case-control studies in the spatial context 
by Diggle and Rowlingson (1994). 

(slightly simplifying and changing notation to emphasise the similarities with our formu- 
lation). In our formulation, the parameter vector 0 has two components c1 and 7 ,  with 
g(d ,0) = Q exp(-$). Diggle and Rowlingson’s term p is subsumed in our formulation 
above as the constant term in (flTx),and their nearest specifically illustrated model uses 
d‘ where we have emphasised d,  although we also fit a model using d’. 

Models allowing for effects that varied randomly between study areas (Smith cf al.. 
1995) were explored using the STATA, EGRET, and BUGS packages. 
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29.3 RESULTS 

Fifteen study areas were defined around the 21 landfill sites. Table 29.1 shows the partici- 
pating centres, study sites, study areas, study periods and numbers of cases and controls 
on which the current analyses are based. The total number of non-chromosomal cases 
and controls is 1089 and 2366, respectively. In Table 29.2 the relationship between two 
potential confounders, maternal age and socio-economic status, and the risk of congeni- 
tal malformations is shown. Maternal age shows a slight gradient in risk with a higher 
odds ratio for older, compared with younger, mothers, but this trend is not statistically 
significant. There was no clear trend in the risk of congenital malformation in relation 
to socio economic status in any of the centres except in the United Kingdom, where the 
trend of increasing risk with increasing deprivation was statistically significant 
(p 0.04).There appears not to be a consistent pattern of more deprived populations liv- 
ing closer to the waste sites (Figure 29.1). 

Figure 29.1 Percentage of controls with low socio-economic status close by and farther away 
from waste sites. 
Notes: Areas 1,2,and 5:‘5,with social class 4 or 5 (from parental occupation); 

Areas 6.7: ‘%,in average area income quintiles 4 or 5 (lowest income areas); 
Areas 9,10,11:‘3,with less then high school eduction (maternal education); 
Areas 3,12-15: ‘5, in UK small-area deprivation quintiles 4 or 5 (most deprived areas): 
Study area 4 and 8 have not been included in the graph because of small numbers 
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Table 29.3 Odds ratios for living within 3 km of a hazardous waste landfill site-non-chromoso- 
mal anomalies 

Distance Cases Controls OR 95(2/0CI Adj. OR" 95% CI 

All stud!] clreus pooled 
0 - 3  km 295 511 1.37 1.14-1.63 1.33 1.11-1.59 
3-7 km 794 1855 

St t i d u  arm 
r)1 0-3km 1 23 0.49 0.15 -1.63 0.4 3 0.11 -1.65 

3-7 km 12 21 
2 0-3km 11 25 1.26 0.47- 3.40 1.23 0.41-3.6i 

3-7 km 17 43 
3 0-3km 25 59 1.16 0.60-2.26 ( 1.i 6  (1.34-1.h9 

3-7 km 25 65 
4 0-3km 6 18 1.12 0.19-6.42 0.83 0.11-6.07 

3-7km 4 12 
5 0 - 3 k m  4 14 0.58 0.17-1.91 (1.45 0.13 - 1 . 6 0  

3 - i  km 31 64 
6 0-3km 18 21 2.19 1.08-4.45 2 .( 18 0.98-4.41 

3-7 km 55 139 
7 0-3km 11 11 2.92 1.11-7.70 3.93 1.20-12.80 

3-7 km 24 71 
-8 0-3km 0 1 0.00 

3-7 km 6 15 
9 0-3km 21 15 2.09 0.92- 4.75 1.29 0.48 -3.49 

3-7 km 39 52 
10 0-3 km 17 15 1.38 0.65-2.94 1.40 0.62- 3.15 

3-7 km 104 123 
11 0 - 3  k m  28 38 0.65 0.28 -1.52 0.i2 (1.1i -2 .9i  

3-7 km 17 15 
12 0-3km 23 50 1.16 0.67-2.02 1.26 0.71-2.22 

3-7 km 97 250 
13 0-3km 6 4  113 1.52 1.08-2.1 5 1.50 1.05-2.1 3 

3-7 km 2 32 627 
14 0-3km 1 4 0.63 0.07- 6.16 0.94 0.09-9.i4 

3-7 km 22 54 
15 0-3km 59 104 1.58 1.07-2.3 3 1.63 1.09-2.44 

3-7 km 109 304 

"Adjusted for socio-economic status and maternal age. 
Note : ?'he unadjusted odds ratios are  not the  cross-product ratios from the titw-by-two tables bccausc of 
the stratification by matching variables. 

Table 29.3 presents the odds ratios for living within 3 km of a hazardous waste 
landfill site for each of the 15 study areas and for all study areas pooled, unadjusted and 
adjusted for maternal age and socio-economic status. The overall adjusted odds ratio 
was 1.33 (95%CI 1.11-1.59). Adjustment for confounders did not, either for the pooled 
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Table 29.4 Risk with distance from waste site-modelling of pooled data 
~~ ~~ ~~~~~~ 

Model Deviance d.f. p (model) 

l1(km) Cases Controls OR " 95% c1 

< = 1  41 62 1.60 1.03-2.48 
1-2 84 167 1.25 0.92-1.70 
2- 3 170 282 1.46 1.15-1.85 
3-4 236 478 1.17 0.95-1.44 
4-5 206 469 1.06 0.86-1.32 
5-7 352 908 1.00 

4199.8 5 ().025 

4202.2 1 0.001 
420h.5 1 0.012 

4201.7 7 0.004A 


4202.9 2 0.007 

4212.7 0 

' I  Atljustcd for maternal age m d  socio-economic status. 
" 95'h C'I estimated keeping -, Iixcd at its maximum likelihood t a l u c ,  and searching for ~ ~ a l u e s  o f  ( 1  giving H 

dc~i~iunc~c~3.84grcatcr than its i.alucat the iiiiixiiii~iin likclihood cstimatc. 

or individual study areas, substantially change the odds ratio estimates. Adjusted 
odds ratios for three study areas (7, 13 and 15) showed a statistically significant 
( y  < 0 . 0 5 )  increase. The odds ratio for study area 6 borders significance. There was 
little evidence for heterogeneity in the odds ratios between sites ( y = 0 . 3 1). Of several 
random effects approaches tried, only Bayes models giving high prior plausibility to 
large underlying variation suggested substantially different interpretations. A Bayes 
model with a normal distribution of underlying log odds ratios, and 'non-informative' 
gamma (0.001, 0.001) prior for the inverse variance of this normal distribution 
showed (crude) odds ratios distributed about a median of 1.35. with a 95% credible 
interval (1.07,1.68). 

Dividing subjects into six bands of distance (Table 29.4, Figure 29.2) showed a fairly 
consistent decrease in risk with distance. Several models using distance as a continuous 
variable fitted equally well, with the exponential excess model (shown in Figure 29.2) 
somewhat better than others (Table 29.4). All models showed a statistically significant 
decreasing risk with distance from the site ( y < 0 . 0 5 ) .  
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Figure 29.2 Risk with distance from waste site. 
Notes: Line shows ORs fitted by exponential excess risk model: diamonds and error bars show ORs 

and 95% CI for 6 distance bands with 5-7 km band as baseline 

29.4 DISCUSSION 

Our study has shown a small but statistically significant excess risk of non-chromosomal 
congenital malformations among residents near (within 3 km of) landfill sites. This 
excess does not appear to be limited to one or a few sites, and indeed we have no evidence 
that the risk differs between sites, although our study has limited statistical power to 
address this issue. The fundamental question is, of course, whether this association is 
causal, but this cannot be resolved within this single study. Three questions are never- 
theless relevant to the interpretation of this excess: 

29.4.1 What do we know about potential confounders and sources 
of bias? 

Socio-economic status is the most obvious potential confounder in any spatial analysis of 
health outcomes. More deprived communities may be both at greater risk of the adverse 
health outcome, and live closer to industrial sites. In the case of congenital malforma- 
tions, there is surprisingly little literature to indicate the strength of the relationship 
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between socio-economic status and congenital malformation risk (Hemminki et al., 1980: 
Knox and Lancashire, 1991: Olsen and Frische. 1993; Olshan et d.,1991). Our own internal 
analysis has supported a positive association for non-chromosomal malformations with 
deprivation within the United Kingdom, but little indication of a relationship elsewhere. 
Although we found differences in the socio-economic profile between residents near and 
farther from individual sites, no overall pattern emerged for more deprived communities 
to be living near (within 3 km of) sites. Moreover. adjusting for socio-economic status 
in our statistical analyses resulted in very little shift in the odds ratios. We therefore 
conclude that socio-economic status is unlikely to explain the excess in congenital 
malformation risk found near sites. 

A second source of confounding is the possible presence of other industrial sites or 
environmental exposures near landfill sites. We have not yet exhaustively examined this 
possibility, but it should be noted that to date there has been t7ery little study of the risk of 
congenital malformation near any type of industrial site, and our results would have as 
much potential interest if  they implicated other industrial sites as if they implicated the 
landfill sites under study. 

Ascertainment bias. whereby higher case ascertainment occurred close to sites, is ii 
theoretic possibility, but the participating registers had high case ascertainment through 
the use of multiple sources of information and active case finding, the data were routinely 
collected blind to the study hypothesis. and a n  examination of the data by hospital of 
birth shows that at least hospital-based ascertainment differences are not an explanation 
for the excess found near sites. 

The migration of women between exposure and pregnancy outcome is a further poten- 
tial source of bias, which would tend to lead to underestimation of any true raised relative 
risk. Among the chronic effects of exposure, congenital malformations and other adverse 
pregnancy outcomes are potentially some of the quickest to manifest in terms of the time 
that elapses between exposure and the detection of the adverse outcome (although for 
chemicals that bioaccumulate. the length of residence of the mother near the site may 
be important). Few estimates are available of the proportion of mothers who migrate dur- 
ing pregnancy, but recent figures from England suggest that about one quarter of women 
change address during pregnancy, of whom half move less than 1 km (Dolk. 1997).We 
estimate that this would lead to a n  approximately IO'K underestimation of any true 
excess risk (Armstrong ut id. .  1996). 

29.4.2 To what extent can we distinguish differences in risk 
according to subgroups of malformations or landfill sites? 

Congenital malformations are a very heterogenous set of conditions in terms of pat ho- 
genesis and aetiology, and it is thus of obvious interest to establish whether any parti- 
cular malformations are preferentially linked to either landfill sites in general or to 
particular chemicals dumped in them. However, we are unable to derive from the litera- 
ture any very strong a priori hypotheses about which anomalies should show a greater 
risk in general or in relation to specific chemicals. Furthermore, the landfill sites them- 
selves cannot be classified into clearly differentiated groups according to the likely che- 
mical exposures, both because each site tends to hold a range of chemicals, and because 
information on the chemicals dumped is incomplete, particularly going back in time 
when extensive record keeping was not a legal requirement. \ilk established ii number of 
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non-mutually exclusive congenital anomaly subgroups (i.e. one child could have more 
than one anomaly) according to what is known of the epidemiology of these conditions 
and current practice in surveillance, in order to ‘explore’ the data, rather than test any 
hypotheses. Inevitably, these subgroups were a compromise between lumping together 
heterogeneous conditions, and splitting into multiple subgroups with very few cases in 
each. Most subgroups exhibited raised odds ratios, with neural tube defects and malfor- 
mations of cardiac septa and great arteries and veins having odds ratios of nominal 
statistical significance, and gastroschisis, hypospadias and tracheo-oesophageal fistulas 
of borderline significance. These results should be regarded as hypotheses to inform 
further study, but no great weight can be put on any interpretation of the differences in 
risk between congenital anomalies at this stage. 

An analogous problem is distinguishing whether the overall excess risk within 3 km of 
landfill sites is a general attribute of all sites, or linked to particular sites. Formal testing of 
heterogeneity in odds ratios did not reveal any evidence of difference between sites, 
although the statistical power of such an analysis is low. Again, ~ 7 e  believe that nothing 
can essentially be said about differences between individual sites. However. we are in the 
process of ranking sites according to their general ‘hazard potential’, using characteris- 
tics of their geology, engineering or management that would affect the likelihood of 
surrounding contamination. We believe that the demonstration of a ‘dose-response’effect 
would strengthen the case for a causal association between the risk of congenital 
anorna y and residence near sites. 

29.4.3 How would interpretation differ if we knew more about 
the background spatial distribution of the disease, and 
under what circumstances is more refined spatial 
modelling of use! 

We have used spatial coordinates only to define the distance of cases and controls from 
the nearest waste site. Having done this, the statistical methods we have used have been 
standard epidemiological ones, rather than any specifically developed as ‘spatial’ (ivith 
the partial exception of the exponentially declining excess risk model). Mie believe that 
these methods have been largely adequate for this study. More explicitly spatial met hods 
would allow one important refinement -allowing for a generalised spatial clustering of 
abnormalities. If such clustering exists, the finding of an excess near landfill sites is not as 
unusual as the nominal p-value would suggest. We could apply tests for such clustering 
and, by characterising it,  perhaps in a spatial auto-correlation model, we could make a 
more appropriate inference on the importance of proximity to a site (Clayton and Hernar- 
dinelli, 1992).It may also be that spatial statistical methods ~rould have a part to play in 
developing more refined indices of exposure. 

The problems in interpretation here are not principally statistical, but related to the 
lack of evidence on exposure near the sites, and on plausible aetiological piifhivays. 

29.4.4 European environmental surveillance 

Finally, we would like to consider briefly the implications of this study for the environ- 
mental surveillance of congenital malformations at a European le~el .  Environmental 
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Note the high variability of the data, with relative risk estimates ranging from 0.196 to 
4.294.This would indicate a relative risk that is up to four times higher in high risk areas 
or six times lower in low risk areas. But in the worst case this variability reflects only 
random fluctuations due to different population size and corresponding small counts. 

Thus another frequently used approach is based on the assumption that the observed 
cases 0,of the individual region follow a Poisson distribution with 

I " 1e I ( 8 ~,>
0, - P o ( B E , ) ,  with density f ( O l .  8, E , )  = 

O,!  ' 

where again E ,  denotes the expected cases in the ith region. Computation of the 
y-value is done under the null hypothesis 19 = 1or based on the maximum-likelihood 
estimator 

Ei 

i= 1 

where the latter is called the adjusted null hypothesis (nis the number of areas). This is a 
minimal model for the relative risk, namely that a constant risk is assumed and a signif- 
icant result would indicate departure from constant risk. Figure 31.2 shows the prob- 
ability map using the adjusted null hypothesis. In terms of interpretation both maps 
reflect the above-mentioned urban/rural difference in mortality. Common to both maps 

Figure 31.2 Map based on Poisson probabilities 
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30.1 INTRODUCTION 

Between February 1990 and the end of 1995, six cases of childhood leukaemia were 
diagnosed among residents of the small rural community of Elbmarsch in Northern 
Germany. Five of these cases were diagnosed in only 16 months between February 
1990 and May 1991 (Dieckmann, 1992). All patients lived in close proximity ( 5 0 0 -
4500 m)  to Germany’s largest capacity nuclear boiling water reactor, the 1300 MM7 
(electric) ‘Kernkraftwerk Krummel’ (KKK). This plant was commissioned in 1984 and is 
situated on the northern bank of the Elbe, a major river which separates the Federal 
States of Schleswig-Holstein and Lower Saxony. 

Standardised incidence ratios (SIRS) for childhood leukaemia in a circular area with a 
radius of 5 km around the plant were 4.60 (95% confidence interval 2.10-10.30) for the 
time period 1990-1995 and 11.80 (95% CI 4.90-28.30) if the analysis is restricted to the 
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years 1990 and 1991, respectively (Hoffmann e t  al., 1997a). Since 1 January 1996 until 
the time of this writing (1998)three additional incident childhood leukaemia cases have 
been contirmed in the 5-kni area around the plant, rendering the magnitude of the 
childhood leukaemia cluster in the Elbmarsch unprecedented worldwide with respect 
to its number of cases together with its narrow spatial and brief temporal dimension. 

Soon after the cluster had been identified, the governments of Lower Saxony and 
Schleswig-Holstein established boards of experts to advise on useful investigations and 
appropriate met hods to identify possible causes for the cluster. The board's members' 
scie n t i tic biic kg ro u nd s in c 1u d ed h ae m a t ology, paediatrics, t ox ic olog y, rad iobio1ogy, 
medical physics, geology, virology, statistics, public health, and epidemiology. An 
extended array of established or suspected risk fx tors  has since been investigated. How-
ever, measurements of outdoor and indoor air, soil, drinking water, private wells, milk, 
vegetables, other garden products and mushrooms for heavy metals, organochlorine 
compounds. benzene, toluene, and aromatic amines, respectively, did not reveal any 
clue ind ic iit ive of unusual contamination ( N iede r siic h si sc he s Sozia Im in i st er iu m, 
1992).An indoor air radon concentration of 610 Hqlm ' was measured in the home of 
one case, but not in the homes of the other cases. Moreover, this activity iviis only 
slightly above the current recommendation for existing houses in Germany of 5 0 0  Hq/ 
m '(ICRP, 1984: Hundesniinister fur limwelt, 1992).A thorough review of medical and 
hospital records and extensive semi-structured personal interviews with the afflicted 
families failed to  reveal any unusual dose of medical or occupational radiation or expo- 
sure to cytostatic or other leukaeniogenic drugs. None ofthe children had a pre-existing 
medical condition known to be associated with a higher risk of leukaemia. The children 
had all been born in the local area and most of the parents had lived there for many 
years prior t o  the children's births. Despite this residential stability none of the patients' 
families w a s  found to be related to any of the others and the afflicted children had not 
had direct contact with each other prior to their diagnoses. Hiological samples (breast 
milk. urine, blood) taken from members of the afflicted families and other inhabitants of 
Elbmarsch yielded low background values of 2,3,7,#-rl'CD11,various organochlorines, 
lead. and cadmium. The prevalence of antibodies against viruses that are discussed a s  
potentially leukaemogenic MW below the German average, i f  any (Niedersiichsisches 
Soz iii Imin is t e r iu m , 19921. 

At this point both boards of experts came t o  the conclusion that further investigations 
on the basis of only the diseased children and their families would not shed much more 
light on the aetiology of the cluster. Instead, a comprehensive retrospective incidence 
study u7iis suggested which should cover all ages, a large enough study area and a 
sufficient time period to generate a study base suited for a n  analytical epidemiological 
invest igat ion . 

30.2 MATERIALS AND METHODS 

30.2.1 The retrospective incidence study Elbmarsch 

A retrospec-tive incidence study ('Retrospective Incidence Study Elbmarsch'(R1S-E)) 
was conducted between November 1992 and August 1994. The study region included 
three counties adjacent to the location of the nuclear power plant, i.e. the counties of 
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Figure 30.1 Geographical location of t he) 'Kcrnkraftivcrk 
Kriimniel' in Northern Germany (dinmc>lcr of thc c*irc*lcis approsi-
mately 3 0 km) 

Liineburg and Harburg in Lower Saxony and the county of Herzogtum 1,auenburg in 
Schleswig-Holstein. The total study population was about 470000. 

Ascertainment of cases 

Case ascertainment included all leukaemias, malignant lymphomas, and mult iple n i p  
lonias as well a s  the myelodysplastic and myeloprolifcrati~,e syndromes (ICD-9 2 0 0  -
208, 2 38.7L covering the 10-year period 1984-93. Inclusion criteria were ( i )  first diagno- 
sis of ii target disease in the study period; (i i)  place of rcsidcnc-e within the study area at 
the time of first diagnosis: and ( i i i )  German citizenship. Since no epidemiological cancer 
registry exists in the Federal States of Lower Saxony and Schles~zrig-Holstein. cases had 
to be ascertained exclusively from primary data sources. 

Data sources included all hospitals, county Departments of Health, and practising 
physicians in the study area who specialised in family medicine, internal medicine. 
oncology. or paediatrics. In all hospitals, the Departments of Haeniatolog~,'Oncolog~~, 
Internal Medicine, Paediatrics. Radiation Therapy, and Pathology were routinely 
included in the search. Other departments were included only i f  patients with target 
diseases had been treated there. In addition, complete case ascertainment was per- 
formed in relevant departments of hospitals and treatment centres (including univer- 
sity hospitals) in adjacent counties outside the study area. 1:ull searches of all single 
records were performed manually by trained study staff. A standardised set of data was 
extracted for each respective case (gender, date of birth, date of first diagnosis, full text 
diagnosis in medical terminology, date of death if  deceased. and data source),llstr x t  ion 
w a s  based exclusively on original documents (Hoffmann and Greiser, 1994, 1996). 

Original data sources in 56 departments of 13  regional hospitals. four major Icukae- 
rnia treatment centres, four university hospitals, 1 3 0 private practices, and three county 
health departments were included in the incidence study. Cases were ascertained on 
iiverage in 2.07 (range 1-7) locations and 2.89 (range 1-1 3 )  data sources (Hoffmann 
r't (11.. 199%).To warrant completeness of ascertainment, quality control and data wili- 
dation procedures were routinely implemented over the entire study period. Extended 
capture-recapture analyses within and between primary data sourccs did not reveal 
u n de ra scerta i n men t . Par t ic u 1a r1y, the re was no ind ic a tion of select ive a sce r ta i n men t 
nor any varying degree of completeness with respect to distance from the plant (Hoff- 
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Figure 31.5 Map based on the mixture model relative risk estimates 

different patterns. The similarity of Figure 31.3 and 31.5 is mainly based on the fact that 
they use the same method of classification using the greyscale of the percentile map of 
the crude SMR. The major gain of these two maps is that they remove random variability 
from the map. The map based on the mixture classification, however, now introduces a 
different pattern, since it not only provides shrinkage of the estimators, but also pro-
vides an estimate of the underlying risk structure. 

Also, the range of the estimated relative risks based on the non-parametric empirical 
Bayes approach is even lower than in the parametric empirical Bayes approach. Thus 
the mixture model approach provides a higher degree of shrinkage than the approach 
based on the gamma distribution. The lowest posterior relative risk is 0.51, and the high- 
est posterior relative risk is 1.58. Again we find an excess risk in metropolitan areas. We 
also observe a lower risk in the east and the south of the country. 

31.3.3 Full Bayesian analysis 

In this section we demonstrate the use of a fully Bayesian modelling approach to the 
analysis of the German cancer data. A form of this approach was first proposed by Besag 
et d.(1991). Using the notation of the previous sections, we define the Poisson likelihood 
for a realisation { O j } ,i = 1,. . . , rz, of counts in n small areas as 
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clustering problem. However, we feel that a n  analysis of general clustering is still neces- 
sary since the use of disease maps based on (empirical) Bayes models allows us to sepa- 
rate signal from noise in the geographical distribution of disease within small areas. 
This may be highlighted by the fact that due to small expected counts, the variability 
of the crude SIRS in this study ranges from 0 to 46! Thus the use of variance minimised 
estimates allows the assessment of extra-Poisson variation which can be seen as indica- 
tor of heterogeneity of disease risk. 

Our analysis proceeds in two steps. First, we address the presence of general cluster- 
ing or heterogeneity of disease risk by means of exploratory disease mapping. We then 
use a focused test in order to investigate the hypothesis of a relationship with the Kruni- 
me1 nuclear power plant. 

30.2.3 Disease Mapping 

Here we use mixture models to investigate the hypothesis of heterogeneity of disease 
risk within the study area. The mixture model approach fits into the frameiswk of 
empirical Hayes theory (Clayton and Kaldor, 1987).This approach is based on rrridom 
pf ,k i ts  mod& i.e. models where the distribution of relative risks 8, between areas is 
assumed to have a probability density function g(8). The 0,are assumed to be Poisson 
distributed conditional on 8,with expectation 8 ,E , .  The distribution g(0) may be either 
parametric or non-parametric: the parameters of either distribution are estimated from 
the data in a first step. In a second step, application of Bayes theorem using the prior 
distribution together with the data allows estimation of the posterior expectation of 
the relative risk for each individual area. 

In the mixture model setting we apply a non-parametric distribution for g(0). where 
we assume that the population under scrutiny consists of subpopulations with different 
levels of disease risk. Statistically we face the problem of identifying the level of risk for 
each subpopulation and its corresponding proportion of the overall population. This 
leads to a random effects model where we assume a d i s m t c .  parameter distribution P 
for g(8) with P = [01 . . .8k;p1 . . . p k ] .  P is the discrete probability distribution which 
gives mass IJ ,  to the parameter 8,.This model therefore assumes that 0,comes from a 
non-parametric mixture density of the form: 

k k 

pj 2 0,i = 1 , .. . ,n(number of areas), 

wheref(-)  denotes the Poisson-density withf(o, ,  6,E l )  = e-o"i(8E,)0'/ul! Note that the 
model consists of the following parameters: the unknown number of components k,  
the k unknown (relative) risks 8 1 ,  . . . ,8 k  and k - 1unknown mixing weights p 1 . . . . , p k .  

The term E ,  denotes the population at risk or the expected cases in case SIR's are 
used. Estimation uses maximum likelihood approaches. Suitable algorithms have been 
proposed by Biihning ~t al. (1992)and Bohning (1995). 

On the basis of this model the posterior probability of belonging to  a certain subpopu- 
lation can be computed. Application of a maximum rule provides a straightforward 
method of map construction. The a posteriori expectation of the relative risk for each 
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area inay be computed in a similar fashion. For details see Schlattinann and Hiihning 
(1993)and Chapter 31 in this volume. 

The null hypothesis of constant disease risk Ho : X 1 = X z .  . . . .= A,, for all areas 
within the study area is the special case if k = 1. The number of components k nay be 
estimated using the likelihood ratio statistic ( IAS)  by comparing models with 
Ho:ko = k versus the alternative H;,:k , ,  = k +  1. Note that the regularity conditions 
for the I,KS do not hold and that critical values must therefore be obtained by simulation 
techniques (Hiihning c’t nl., 1994).The calculations in this chapter were performed using 
Disrnap Win (Schlattmann. 1996). 

30.2.4 Focused analysis 

M’e start ou r  analysis with the classical approach dividing the study area into circles 
with different radii, merely for descriptive purposes. Here we chose the follotving dis- 
tances in relation to the Kriimmel nuclear power plant: 0 to < 5 kni, 5 to c 1 0  k m ,  10 
to < 15 kin, 15 to < 20 kin, and more than 20 km. For each of these concentric. regions 
we present the SIK,together with a 95‘X confidence interval based on Hyar’s approxima- 
tion (Hreslow and Ilay, 1987)for the l’oisson distribution. 

However, any such ‘concentric region’ approach tacitly operationalises ‘exposure’ 
through broad categories of distance which are necessarily arbitrary. Consequent Iy, 
any such analysis does not take advantage of a great deal of distance information that 
wild ac-tually be available in the data. Another disadvantage is the considerable 

impact that e \ m  slight c*hanges in the position of the borders between the cwnc-entric 
regions can have o n  the categorisation of geographic units, which span over two or 
more circles (see below). 

A more appropriate surrogate would be to investigate the effect of distance to the 
power plant independent of any predefined categories. The highest possible geographi- 
cal resolution is achieved in a test statistic that uses the distance t l ,  of each area i to the 
poiver plant. A s ii result we avoid the bias of choosing arbitrary segments. The distance 
of the 216 iireiis to the power plant ranges from 1.3 iis the shortest distance and 55.h k m  
for the m o s t  remote community. 

Here we apply the score test proposed by Lawson (1993b),Waller et r r l .  (1995), and 
\$killer and I,iiuwn (1995) (SLY also Chapter 19 in this i d u m e ) .  \4’e test the null 
hypothesis !Io : X I = A ? .  . . . . = A,, of constant disease risk within the s tudy region 
versus the alternative hypothesis H 1 : E ( 0 , )  : 1 + g I ~ ) ,i = 1 - 1 1 .E > 0. This hypoth- 
esis implies that the number of ciises increases in proportion to the c~xposiirc~ ol’ 
inriiiriduals in iireii i relatiire to the focus. where i = 1 . . . . . 11.  The test statistic is 

I t  

U = Cel(ol- E ( O I ) ) ,  
I - 1 

where E ( ( ) , )  is given by the expected cases E,.  llnder the null hypothesis the expectation 
is k’( U )  = 0 and the variance is given by 

where U ’ = U/J\ lcrr (  U )  has a n  asyinptotic standard normal distribution. 
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Distance from Kruemmel (km1 

Figure 30.2 Comparisonof three models of distance-basedsurrogatcs 

To paranieterise the distance exposure relationship ( l i t  we use the simple inverse dis- 
tance 

$1; = l / A ; ,  i = 1, .. . , ! I ,  ( 3 0 . 1  ) 

and two exponential functions of distance d; (Tango,1995): 

$1, = exp(-d,/T), i = 1, .. . .H,T  > 0 .  ( 30 .1  ) 

g i= exp(-4(d;/ZJ) 2 ). i = 1..  . . , I ] ,  I, > 0 .  ( 3 0 . 3 )  

We have chosen r = 10 to allow for large clusters: here most of the weight is put on a 
radius of 20 km. We also allow for a small cluster asuming a threshold of 1 0  km, thus we 
define I, = 10.The resulting distance-based surrogates for exposure are shown in Fig- 
ure 30.2. Clearly model (30 .3 )  gives most weight to the vicinity of the focus, followed by 
model (30.1)and (30.2) .  

All statistical tests and the calculations required to obtain confidence intervals for 
the SIRS were programmed in Fortran 77 using the GNIJ-Fortran (1997)Compiler. 

30.3 RESULTS 

30.3.1 Incidence data base 

Results of the analysis of the original dataset are presented elsewhere (Hoffmann and 
Greiser, 1994, 1996). Here we have updated the dataset with information from an 
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Table 30.1 Case population 

Males Females Total 

Acute 1eukaem ias 133 100 233 
Chronic leukaemias 197 186 38 3 

'I'otal 3 3 0  286 h lh  

ongoing extension of the previous incidence study. This extended study is presently con- 
ducted by the Bremen Institute of Prevention Research and Social Medicine to establish 
the case population for a major case-control study on risk factors for leukaemia and 
malignant lymphoma. The extended study area completely covers the area of the pre- 
vious incidence study, and all primary data sources of the previous study are being 
revisited. 

Hence all analyses presented in this Chapter are based on a n  updated and validated 
incidence data base including all incident leukaemia cases between 1984 and 1993 in 
three counties adjacent to the Kriimmel nuclear power plant. This data base presently 
contains complete information on 616 leukaemia cases (Table 30.1). 

The fact that the incidence database is updated regularly in the ongoing study, so far 
has caused few changes compared with the figures published previously. Changes are 
predominantly due to the reclassification of cases with leukaemia following myelodys- 
plastic stages as 'myelodysplasia' rather than 'leukaemia', in accordance with the defini- 
tion of the present study. In the previous study, these cases were coded according to 
what their physicians had labelled the 'main clinical diagnosis'of a patient. 

hiloreover, as expected, we occasionally obtain additional information on some of the 
cases. i.e. those who were already ascertained in the previous study. In a feFv instances 
additional evidence has now proved that, for example, a diagnosis that w a s  still only 
'rule out' in one source in the previous study (an exclusion criterion), was confirmed in 
another source. which, however, had hitherto been unknown to us. In theory, two case 
records which did not match in the record linkage of the previous study. nevertheless 
could later turn out to belong to the same patient. However, since this constellation 
requires a mistake in the date of birth, the place of residence or even the gender o f  a 
patient in the primary clinical documentation, it is encountered extremely rarelv. 

Altogether, as a result of these changes, 19 leukaemia cases (3 .1'2,)have changed their 
respective categories compared with the results presented earlier. 

A second modification refers to the geographical regions. To provide the most precise 
distance data for the various geographical methods presented herein, the distance to 
the nuclear power plant of every rural community has been recalculated. this time 
without rounding. On the basis of this recalculation 14 rural communities, all of which 
were very close to one of the borders between the concentric regions, were reassigned to 
adjacent circles. 

30.3.2 Disease mapping 

We start with the mixture model analysis of the regional distribution of acute leukae- 
mias for men and women. IJsing the package Dismap Win (Schlattmann, 1996) we 
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Table 30.2 Mixture model analysis (acute leukaemia in men) 

Components & Weight p i  Relative risk 6 ,  R k  

k = 2  0.96 0.96 - 266.39 
Men 0.44 2.15 

k = l  1 0.99 - 266.5 

Table 30.3 Mixture model analysis (chronic leukaemia) 

Men Women 

Weight j, 0.60 0.40 0.75 0.25 
Relative risk rs^ ,  0.72 1.36 0.75 1.71 

obtain a homogeneous solution with & = 1and relative risk estimate 0= 1 for wonien 
(not shown in Table 30.2). For men we obtain an initial two-component solution (Table 
30.2). However, the improvement in the log likelihood X due to inclusion of the second 
component is only marginal. Hence we conclude for acute leukaemia that there is no 
deviation from a constant risk within the study region in separate analyses for men 
a n d wo inen. 

For chronic leukaemias we obtain a two-component solution for both men and 
women. For men, we obtain a two-component solution with a log likelihood of - 165.9 
compared with a log likelihood of -168.18for the homogeneous solution. The value of 
the likelihood ratio statistic (LRS)  is 4.56, with a 95% simulated critical value of 4.01 
(Schlattmann, 1993). Hence we accept the two-component model. For women, we obtain 
a two component solution with a log likelihood of - 188.58 compared with a log like-
lihood of -191.5 for the homogeneous solution. Thus we obtain a value for the LRS of 
5.84 and accept the heterogeneous two-component solution (Table 30.3). 

The maps for chronic leukaemia in men and women are in shown in Figures 30.3 and 
30.4. Clearly, for chronic leukaemias there is heterogeneity of disease risk present. For 
chronic leukaemia in men, 60%)of the regions have a risk of 0.72 compared with the 
whole area and 40% have a higher relative risk of 1.36. In women, we find 75% of the 
areas with a relative risk of 0.77 and 25% with a risk of 1.71 (Table 30.3). Some of the 
areas with higher relative risk are located close to the power plant, but areas with 
higher risk are not constrained to the focus. 

30.3.3 Focused analysis 

For the focused analysis we start with the traditional descriptive approach of calculat- 
ing the SIR for each concentric region together with a 95% confidence interval (Tables 
30.4 and 30.5). Hence, in the analysis based on concentric regions we find an excess risk 
for chronic leukaemia for men within the first circle and an excess risk for women 
within the third circle. 
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Figure 30.3 Chronic leukaemia in men 

Figure 30.4 Chronic leukaemia in women 
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Table 30.4 Acute leukaemia for men and women 

Men Women 

Distance Oi Ej SIR 95"/0CI Oi E i  SIR 95'%,CI 

< 5 k n i  11 8.10 1.35 0.67,2.41 5 0.31 0.79 0.26, 1.85 
5- < 10km 11 6.91 1.59 0.79,2.85 5 5.10 0.98 0.32, 2.29 

10- < 15 km 20 22.52 0.763 0.54,1.37 16 lh.91 0.94 0.54, 1.53 
15- < 20 km 20 22.19 0.89 0 . 5 5 , 1.39 18 17.86 1.01 OhO,1.53 

2 2 0  km 71 73.2 0.901 0.75, 1.22 5 6  53.79 1.04 0.78.1.35 

01:observed cases; k',: expcctcd cascs: SIK:standardised incidence ratio: %",L'I: %",, c * o n f i d r n c . c ~inlcm~al: hm: 
kilometres 

Table 30.5 Chronic leukaemia for men and women 

Men Women 

Distance Oj Ei  SIR 95'X,CI Oi E i  SIR 95'YoCI 

< 5 krn 20 11.74 1.70 1.03.2.63 5 6.31 1.11 0.59, l.c10 
5- < 1Okm 9 10.23 0.88 0.40,1.67 5 5.10 1.06 0.51. 1.96 

10- < 15 km 26 32.35 0.80 0.52,1.18 16 16.93 1.39 1.01. 1.88 
15- < 20 km 24 33.25 0.72 0.46.1.07 18 17.86 0.83 0.5i.1.1'1 

2 2 0  km 118 109.41 1.07 0.89,1.29 56 53.79 0.92 0.74, 1.12 

See table 30.4 for abbreviations. 

Table 30.6 Results of U * for the different types of leukaemia in men and women 
~ ~~~~~ ~~ 

Diagnostic category U * : g i= l /d j  U':gi = exp(-d,/lO) U * : g i= exp(-J(di/lO)') 

Acute leukaemia (men) 0.83, p =0.21 0.88,p = 0.19 1.21,/'= 0.14 
Acute leukaemia (women) 0.71,p =0.24 - 0.18,y = 0.57 0.61,I? = 0.27 
Chronic leukaemia (men) 0.13, p = 0.45 0.41,p = 0.33 3.35. 11 = 0.09 
Ch ron ic le u kae rnia 0.24, p =0.40 0.85,p = 0.20 0.14, I ? =  0.44 

(women) 

In Table 30.6 we present the results of the Waller/IJawson test, based on the distances 
of each individual geographical unit to the suspected point source using different types 
of the distance -exposure relationship. 

According to Table 30.6 there is no clear-cut relationship between the distancc to thc 
nuclear power plant and the risk of leukaemia. Regardless of the assumed structure of 
the exposure, neither a simple linear decline with distance nor an exponential relation- 
ship shows a significant effect. A non-significant trend for chronic leukaemia in males is 
conceivable only with the third model, which gives the highest weight to the direct t7ic-i- 
nity. This corresponds to the result in the innermost concentric region. 



40h Geographical distribution of leukaemia incidence 

30.4 DISCUSSION 

Appropriate operationalisation of 'point-source hypotheses' and quantification of the 
respective environmental 'exposure' have been a challenge for statisticians and epide- 
miologists for many years. Suspected or real childhood leukaemia clusters in the vici- 
nity of nuclear installations were among the most typical applications. 

As of this writing (1998) the question of whether or not emissions of nuclear power 
plants could induce leukaemia and other types of cancer in the population living in the 
immediate vicinity of these plants is a matter of intense debate among epidemiologists 
and in the general public. 

30.4.1 Traditional methodological approaches 

The majority of examples published so far have used simple geographical approaches 
of dividing the neighbourhood of the respective point source into concentric regions, 
which mostly, but not always, had equidistant radii (e.g. 0- < 5 km, 5- < 10 km, 
10- < 15 km, or the respective number of miles, etc.). Subsequently, the number of cases 
and the population at risk were ascertained separately for each concentric region. 
Either incidence density ( ID)rates, standardised incidence density (SID)rates or relative 
measures such a s  the standardised incidence rate ratio (SIR) were calculated to 
compare the circular regions and to conduct statistical testing. 

Most of the applications of this simple approach have not supported the presence of 
any measurable risk. 

However, these negative studies should not be interpreted as proof of the absence of 
risk (for a critical discussion of this misconception, see Chapter 22 in this volume). In 
some instances negative findings could well have been a consequence of the inherent 
conceptional and methodological limitations of this approach (Gardner, 1989;Wakeford 
and Rinks, 1989;Shleien r t  d . ,1991; MacMahon, 1992).?'he results of simple geographi- 
cal incidence studies nevertheless have often proven helpful for local health profes- 
sionals in the context of risk communication to the public. 

Despite this crudeness, there is a number of examples of positive findings as well. 
Like most of the negative studies, these investigations have predominantly focused on 
childhood malignancies. In particular. increased risks for childhood leukaemia in the 
vicinity of nuclear power plants m7ere observed in England and Wales (Haron, 1984: 
Black, 1984; Gardner and Winter, 1984b; Ilrquhart ot  d . ,1984,1986; Harton ot r r l . ,  1985; 
Forman r ~ td.,1987: Roman rt d.,1987: Ewings et d.,1989),Scotland (Heasman et r r l . ,  
1984. 1986; Hole and Gillis, 1986),the 1Jnited States (Johnson, 1981; Clapp r ~ tnl. .  198i; 
C'rump r f  [ i l . ,  1987; Goldsmith, 1989a,b; Hatch o f  al,  1991),Canada (McLaughlin et d., 
1993).Germany (Grosche cJtd.,1987; Dieckmann, 1992; Michaelis et al., 1992; Hoffmann 
o r  a l . ,  1993; Prindull rt NI., 1993), France (Vie1 rt  ~ 1 , .1993, 1995), and recently Japan 
(Iwasaki et al.,  1995; Hoffmann et nl., 1996).Some of these examples have stimulated 
interesting hypotheses and further research, including refined exposure assessment 
(Wing et a l . ,  1997a,b; Schmitz-Feuerhake et al . ,  1997) and analytical epidemiological 
studies (Gardner ut nl . ,  199Oa, IJrqhart et ml.,  1991; Morris and Knorr. 1996; Pobel and 
i'iel, 1997). 
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30.4.2 Distance-based approaches 

One of the most important methodological problems of the traditional approach is bias 
due to the loss of geographical information. This bias results from the use of broad cate- 
gories, arbitrary choice of the radii, the problem of multiple testing for numerous circles, 
and the problem of extra-Poisson variation, which cannot be addressed using traditional 
met hods. 

Some of these problems can be avoided using the whole dataset. Some authors have 
tried to model the effect of distance in loglinear models (see, for example Cook-Mozzafari 
et aZ., 1989). 

In addition to this approach a n  increasing number of authors try to address the effect 
of distance to the point source as a surrogate exposure measure by applying either the 
score test used here or Stone’s Poisson maximum distance test. The score test has been 
applied in the context of leukaemia and waste sites (Waller and Turnbull, 1993) and in 
the context of leukaemia and nuclear power plants (Waller 4f al., 1995). The latter ana- 
lysis also tried to address ‘general’and ‘focused’clustering as in the present analysis. 

Stone’s test has been used even more frequently in order to evaluate a distance-risk of 
disease relationship with regard to nuclear power plants and leukaemia. Bithell and 
Stone (1988) did not find an association between leukaemia incidence in the Sizewell 
area, whereas Vie1 et al. (1995) report a distance-based gradient for the La Hague plant. 

In this chapter we have discussed the use of disease mapping methods and focused 
tests for risk assessment. Clearly, our database is limited to three counties (Landkreise), 
and results cannot readily be generalised to other locations. From our point of ~i ew a 7 

map of the whole country with the same spatial resolution would be desirable to reduce 
the problem of selection bias and post hoc analysis, given that a n  (empirical) Bayes 
approach is used, since in this case inference for a n  individual area is performed in the 
light of the whole dataset. 

On the other hand, the incidence dataset, which we used for the first time in Germany. 
has provided high resolution geographical data for adult leukaemias and has been most 
intensely validated for completeness of case ascertainment and data accuracy. 

The use of map-based techniques allows us to investigate the presence of extra-Pois- 
son variation, which would indicate heterogeneity of disease risk. For acute leukaemias 
in men and women, we found no indication of extra-Poisson variation or heterogeneity 
of disease risk within the study area. Clearly this is in accordance with a negative find- 
ing for the effect of distance, which otherwise would have produced extra-Poisson var- 
iation. 

Using the traditional approach we found a significant excess of leukaemia risk for 
men for chronic leukaemias in the 5 km radius and for women in the 15-20 km radius. 
Likewise, for this diagnostic category we found heterogeneity of disease risk using dis- 
ease mapping methods. No trend was observed over concentric regions for neither diag- 
nostic category and sex, respectively. Application of the Poisson maximum test by Stone 
confirms the absence of any significant trend over the concentric regions (results not 
shown). Since there is extra-Poisson variation present for the chronic leukaemia data, 
we also computed covariate adjusted mixture models (Schlattmann et nl., 1996). Here 
we included the above-defined distance functions, which act as an exposure surrogate, 
as a covariate into the model. We also followed a suggestion by Lawson (1993b) to allow 
for directional effects. Neither a homogeneous log linear model nor a covariate adjusted 
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mixture model revealed a significant effect of distance to the power plant (result not 
shown) or significant directional effects. 

Thus. on the level of individual geographical regions there is only a slight indication 
ofa trend in the SIR with respect to distance from the nuclear power plant, if  any, which 
is restricted to males and well below statistical significance. 

From it methodological point of view we should mention that there is certainly a need 
t o  address edge effects. a s  discussed in Chapter h in this volume, since our study area is 
close to the city of Hamburg and countries of the former GDR.  For both of these adjacent 
areas there are no data available. 

30.5 CONCLUSION 

At the present stage, our results do not indicate any increased risk for the diagnostic 
category of acute leukaemias for either males or females of all ages in the vicinity of 
the nuclear power plant and within the whole study region. Likewise, there is no 
increased risk for chronic lymphatic leukaemia in females. For males, however. an 
increased SIR was observed in the 5 km region around the plant. Despite considerable 
modifications in the coding of diagnoses and the assignment of rural communities to 
the concentric regions, this result is in accordance with a result published earlier (Hoff-
man and Greiser, 1996).No statistically significant trend with distance, however, w a s  
found based on individual geographical units. 

1,ooking at the maps of the study region we find heterogeneity of disease risk for 
chronic leukaemia in men and women. Some of the areas close to the power plant fa l l  
into the higher risk category with an excess risk of about 32'%,but the high risk areas 
are different for women and men and generally are not constrained to the vicinity of the 
power plant . 

No conclusive explanation of these findings is possible without additional data. 
Clearly this heterogeneity of disease risk is due to an uriohsmwI heterogeneous dis- 
tribution of risk factors. There might be a multitude of different exposure patterns 
present within the study area. One could think of a heterogeneous distribution of pre-
existing conditions, which increase leukaemia risk, such as therapeutic radiation or 
antineoplastic chemotherapy. Our findings could also be related to different life-style 
patterns such as smoking or to  environmental factors such a s  the use of herbicides 
or other pesticides on farms and greenhouses or possibly the indoor use of' insec- 
ticides ((;reiser c't ( i l , ,  1995: Hostrup et d.,1997).Along the same line of reasoning, the 
increased risk in the vicinity of the power plant could be generated by any of' the 
kictors mentioned before or by either direct radiation or by radioactive nuclides 
which are emitted close to the ground, e.g. vented directly from the reactor building. 
Another possibility would be ground contamination through locally contined 
irrigation with contaminated water or specific patterns of food production. Currently 
we do not have sufficient information on the spatial distribution of any of these 
parameters. 

In principle, inclusion of the predominant wind direction in the model would be an 
option. However. there is a serious drawback to this. According to available environ- 
mental surveillance data. emissions from the plant are highly variable over time. Hence 
the direction of the distribution of any released radionuclides is dependent o n  the wind 
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direction around the specific time of the release which might well be different from the 
main or average direction. 

The pattern of areas with increased incidence of chronic leukaemias is different in 
males and females. This difference could well be attributable to chance. However, alter- 
natiire explanations include gender-specific differences in sensitivity for t he induction of 
chronic leukaemias, possibly due to a different pattern of histological subtypes within 
this broad and heterogeneous category. In a more general sense this could explain the 
observed heterogeneity of chronic leukaemia risk for both genders in terms of regional 
differences in the proportion of more 'susceptible' histologicxi1 subtypes. HoiveIw, case 
numbers are insufficient to allow for a simultaneous analysis of gender and histological 
subgroup of leukaemia. 

Moreover, the estimation of distance to any point source uses people's residences 
rather than their actual geographical position at any given time. Hence ei'en ivhile dis- 
tance and the direction of someone's home at some specific. time of radionuclide emis- 
sion might indicate exposure, this might or might not be true for the person living there. 
The person could well have been at work or even on vacation many miles a w a y  from his! 
her home when the radioactive plumes passed by. Exposure can also be underestim~ited 
in this approach.Mbrkers in the nuclear industry are likely to live in close proximity to 
the plant where they are employed. ('lardncr r't r r l .  h a w  found that fathers of children 
with leukaemia residing in the vicinity of HNFI, Sellafield were not only more likel~7 t o  
work on the site but also on average had accumulated higher radiation doses compared 
with other fathers (Gardncr ct d.,199Oa,b). 

The problem is even worse considering the fact that residence is usually operat iona- 
lised a s  'residence at the time of the first diagnosis of ii target disease' in retrospecth7e 
incidence studies. Since initiation of any cancer occurs many years before clinical diag- 
nosis. ii person's most recent residence's distance to a point source may or may bear any 
significance with respect t o  exposure at the most relevant time period. 

In conclusion, at the present stage all these scenarios are purely speculative. (hren 
the ecological nature of the data, any inference a s  to causality is of course impossible. 
In the next step we ill analyse our  data using methods that refine the spatial resolution 
and take full advantage of the available geographical resolution of the ciises' residences. 
Thus, we will apply methods such as extraction mapping (1,iiivson and \4'illianis, 1994; 
Vie1 c>t r i l ,  1995)which are based on kernel density estimates that allow the use of indi17i-
dual case locations. An alternative method would be the usc of case-control methods 
(see, for example Chapter 20 in this volume). Clearly, owing to the need to fulfil the 
above-mentioned data protection requirements, there is the problem of tentatively 
imprecise locations, a s  discussed by Jacquez (1994b).Thus, we will also follow the sug-
gestions given in this chapter to quantify the impact of imprecise locations. 

Currently ii major analytical epidemiological case-control study is in progress in an 
extended study area in which a multitude o f  potential risk factors for Ieukaemias and 
lymphomas will be evaluated. This study will collect information on risk factors a s  well 
a s  on confounders and, hence, provide a unique opportunity for a geographical case- 
control a n ii 1ysis. 
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31.1 INTRODUCTION 

From a public health point of view the investigation of the regional distribution of lung 
cancer mortality in women may be fruitful for a numbcr of reasons. First, in contrast to 
men the incidence and mortality of lung cancer for women in Germany is on the rise 
(Schon et  d.,1995). The major risk factor for lung cancer is tobacco smoking (Tomatis 
et al., 1990); thus the mortality of lung cancer is closely related to the increasing preva- 
lence of smoking in women. Estimates of the attributable risk of lung cancer due to 
smoking range from 57% to 83% in women. Thus lung cancer is frequently addressed 
as a disease that belongs to the category of avoidable death, i.e. deaths which may be 
avoided by medical and/or preventive intervention (Holland, 1993). Since the prognosis 
of patients suffering from lung cancer is poor and until today the effectiveness of screen- 
ing measures is controversial (Chamberlain, 19961,the major preventive action available 
are smoking cessation programmes as a means of primary prevention. Thus identifica- 
tion of high risk areas in disease maps could provide targets for preventive action such 
as smoking cessation programmes. 

Besides smoking there are several other risk factors for lung cancer established or 
under discussion which are worth mentioning from a public health perspective. The 
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well-kno~zrn urban/rural difference in lung cancer incidence and the detection of 
known carcinogens in the atmosphere giive rise to the hypothesis that long-term. expo-
sure to air pollution may h a i ~a n  effect on lung cancer risk. A recent revieiv by k i t -  
souyanni and t’ershagen ( 1997)summarised t he evidence that ambient air pollution 
inay have i i i i  effect 011 lung cancer risk. The estimated relative risk o f  ambient air pollcr-
tion wiis up to 1.5. Hoivever, owing to the difficulties in exposure assessment the effect of 
air pollution on lung cancer is till  controversial. Thus identification of high risk arcus in 
disease maps may be a starting point for further analytical studies. 

Another risk factor under discussion is indoor radon. Studies of underground miners 
exposed to radioactive radon and its decay products have found that exposure increases 
t he risk of lung cancer. Consequently, when radon wiis found to accumulate in houses, 
there wiis concern about the public health impact from exposure to ii knoivn  carcino-
gen. Because of differences between working in underground mines and lii,ing in 
h o u s c ~estimates art‘ subject to major uncertainties. Numerous case-control stiidies 
were launched to assess directly the lung cancer risk from indoor radon. Some studies 
report positive or weakly positive t i d ings ,  while others report no increased risk ( I,ubin 
mid Koice. 1997).‘I’hus disease mwps combined with geological information could pro-
vide starting points for analytical studies investigating the risk of radon. 

Finally, there are several protective agents such ;is selenium or antioxidants like vita-
mins l: or .A under discussion (Hlot. 1997).‘I’hus identification of high risk areas c.ould be 
ir starting point for int erven t ion trials, introducing chen?opreiren t ion LIsirig mi n c ~ a l s  
and/or vitamins. And. of course, t he identification of’ low risk areas could provide 
hypotheses for 11n k11OM‘r i  pro t cct i \re factors. 

A s  ii result, the implications from disease maps of lung c-ii i icw mortality in women itre 
manifold. The coninion denominator of the ideas iibove is to display the hetcrogcncity of’ 
disease risk in maps. Our c;ise study will present and compare the results of se\yeraI 
1iic.t hods for discascl mapping using mortalitjr data from (’lermaiiy in 1995. 

31.2 THEDATA 

’I’he establishment of population-based cancer registries is still under development in 
Germany. Only mortality data are routinely available. Thus we use for our  analysis mor- 
tality data for lung cancer from women in the year 1995.The data were coded according 
to the 9th revision of the International Classification of Diseases ICD-9 a s  IC’I) 162. 

12’hen constructing disease maps one of the first steps is the choice of the spatial reso- 
lution. Frequently the spatial resolution is liniited by the availability of the data. I n  Ger-
riiany, utifort unately there is no central database accessible a s  a source for small-area 
healt h data. Data even on ii spatial resolution of ‘1,atidkreise’are not routinely atrailable 
(1,andkrcise refers to small iireas such iis counties). Such data can only be obtained by 
directly addressing the census bureaus (Statistische 1,andesiiinter) of the 10 states of 
(Iermany. As ii result, the collection of health data on a small-area Icvel such iis the 
1,andkreise is quite tedious and expensive. Only because of financial support by the Eur- 
opean IJnion, were we able to collect data on the spatial resolution of the 439 1,aiidkreise 
a n d  citics of Germany for the year I c ” 3 .  

Once t he spatial resolution has been defined a n  appropriate epidemiological measure 
has to be chosen. Iktine the obscr\ut  c*ount in the ith small iircii as 0,.The correspond-
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ing expected cases in that region are denoted Ej .  One frequently used measure of relative 
risk is the Standardised Mortality Ratio, SMRj = Oj/Ej ,  where the expected cases E j  are 
calculated based on a reference population. For our data we used the age-specific lung 
cancer mortality rates for women in Germany for the year 1995 (Statistisches Bunde- 
samt, 1997) as the reference population. The necessary population data of the individual 
area were taken from the database ‘Statistik regional’ (Statistische Amter, 1997) as well 
as the boundary file of Germany (DFLR, 96). 

Here we can use the SMRi of the individual region as an estimate for the relative risk 
of that area compared with the whole country. 

31.3 THE METHODS 

31.3.1 Traditional methods 

Once the spatial resolution and the epidemiological measure are defined, a suitable 
mapping method has to be chosen. A common approach for the construction of the- 
matic maps in epidemiology is the choropleth method (Howe, 1990). This method 
implies categorising each area and then shading or colouring the individual regions 
accordingly. 

One of the traditional approaches to categorisation is based on the percentiles of the 
SMR distribution. Most cancer atlases use this approach, usually based on quartiles, 
quintiles or sextiles (Walter and Birnie, 1991). Figure 31.1 shows the map of lung cancer 
mortality based on the quartiles of the SMR distribution. 

Figure 31.1 Map based on the quartiles of the SMR distribution 
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Note the high variability of the data, with relative risk estimates ranging from 0.196 to 
4.294.This would indicate a relative risk that is up to four times higher in high risk areas 
or six times lower in low risk areas. But in the worst case this variability reflects only 
random fluctuations due to different population size and corresponding small counts. 

Thus another frequently used approach is based on the assumption that the observed 
cases 0,of the individual region follow a Poisson distribution with 

I " 1e I ( 8 ~,>
0, - P o ( B E , ) ,  with density f ( O l .  8, E , )  = 

O,!  ' 

where again E ,  denotes the expected cases in the ith region. Computation of the 
y-value is done under the null hypothesis 19 = 1or based on the maximum-likelihood 
estimator 

Ei 

i= 1 

where the latter is called the adjusted null hypothesis (nis the number of areas). This is a 
minimal model for the relative risk, namely that a constant risk is assumed and a signif- 
icant result would indicate departure from constant risk. Figure 31.2 shows the prob- 
ability map using the adjusted null hypothesis. In terms of interpretation both maps 
reflect the above-mentioned urban/rural difference in mortality. Common to both maps 

Figure 31.2 Map based on Poisson probabilities 
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is a n  excess risk in large urban areas such as Berlin, Hamburg and the Ruhrgebiet, just 
to mention a few. There seems also to be a n  east-west and a north-south gradient. 

However, probability maps can suffer from the presence of artefacts that are unob- 
served in the data. Again, population size is a possible confounder; large areas tend to 
have significant results. Also, we have the problem of multiple testing, even adjusting for 
the number of comparisons does not lead to a consistent estimate of heterogeneity of 
the data (Schlattmann and Bohning, 1993). 

31.3.2 The empirical Bayes approach 

The parametric empirical Bayes approach 

To circumvent the problems associated with percentile and probability maps, frequently 
random effect models are used. These are models where the distribution of relative risks 
O 1  between areas is assumed to have a probability density function g(8). The 0, are 
assumed to be Poisson distributed conditional on 8, with expectation 8 , E i .  

Several parametric distributions like the gamma distribution or the log normal distri- 
bution have been suggested for g(8 ) ; for details see Clayton and Icaldor (1987) or Mollie 
and Richardson (1991) and Chapter 2 in this volume. Among these parametric distribu- 
tions describing the heterogeneity involved in the population values 8, the Gamma 
distribution has been used several times for epidemiological purposes (see Chapter 25 
in this volume). Note that in a Bayesian sense we can also think of g(8) as a parametric 
prior distribution on 8,.The very nature of empirical Bayesian procedures is that the 
parameters of the prior distribution are estimated from the data; in the case when the 

Figure 31.3 Map based on gamma empirical Rayes estimates 
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0, are assumed to be gamma distributed, with 8, - I'((k. v),the parameters ( 1 .  and 11 have 
to be estimated from our  data. This estimation has to be done iteratively here we have 
applied the algorithm proposed by Clayton and Kaldor (1Y87),which is also implemen- 
ted in DismapWin (Schlattmann, 1996).Applying Hayes' Theorem we obtain the poster- 
ior expectation of the relative risk of the individual area as 

Figure 31.3 shoivs the map based on this empirical Hayes approach. Note that the 
range of the posterior SMKs is now reduced. The lowest estimated risk is now 0.4 and 
the highest estimated risk is 3.12. Thus we removed from the data random variability 
due to the small counts. '1'0 ensure comparability of our maps we used the same grey 
scale :IS in our first percentile map. Thus we see immediately that we iire now dealing 
\vith ii  smoothed m a p  rvith less extremes in the relative risk estimates. Again L z ' e  obserire 
excess risk in metropolitan areas. 

The non-paramet ric empirical Bayes approach 

Noiv let us tissunie that our population under scrutiny consists of subpopulations with 
different levels of disease risk H I .  Each of these subpopulations with disease risk 0 ,  repre-
sents a certain proportion p ,  of a11 regional units. Statistically. this means that the mix- 
ing distribution reduces to a finite miss point distribution. Here we face the problem of 
identifying the level of risk for each subpopulation and the corresponding proportion of' 
the overall population. One can think of this situation R S  ii Ititltlert ( or h t w )  structure, 
since i t  remains unobsertwi to 1vhic.h subpopulation each area belongs. These subpopu- 
lations niiiy have different interpretation. For exaniple. they could indicate that a n  
important coirariate has not been taken into account. Consequently, i t  is straightfor- 
nw-d to introduce a n  unobserved or latent random vector Z of length k consisting of 
on ly  zeros besides one 1 at some position ( s a y  thej th)  which then indicates that the area 
belongs to the jth subpopulation. Taking the marginal density over the unobserved ran- 
dom i~ariableZ we are led to i~discrete semiparametric mixture model. I f '  wc iissiime i~ 

non-pa rii inct ric parameter distribution for 

for the mixing density g ( H )  (whoseM I k  can be shown to be altvays discrete). LZY' obtain 
the misture density iis the weighted sum of Poisson densities for each area i: 

k k 

The model consists of the following parameters: the number of components k ,  the k 
unknown relative risks 0 1 . . . . , 6 1 k  and k - 1 unknown mixing weights p 1 .  . . . .p k  1 .  

There are no closed-form solutions available; to find the maximum likelihood estimates 
suitable algorithms iire given by Hiihning r p t  tiI ( 1992).These algorithms are implemented 
in the package DismapM'in (Schlattmann, 199h).Estimating the unknown piirariictcrs 



The methods 417 

Figure 31.4 Map based on the mixture model 

and applying Bayes theorem enables us to construct a map based on the posterior den- 
sity. Details on this approach can be found in Chapter 4 in this volume. 

The map based on this approach is shown in Figure 31.4 
We obtain a four-component mixture model with DismapWin as a n  appropriate solu- 

tion for our data. The category with the highest risk has a weight of 0.04% with a rela-
tive risk of 1.5;the next category has a weight of 0.26'X)and a slightly elevated risk of 1.13. 
The next category has a weight of 0.42%and a relative risk of 0.85 and the category with 
the lowest relative risk of 0.6 has a weight of 28%)of all regions. It should be pointed 
out that one of the advantages of the non-parametric mixture approach is that-as a 
by-product-a number of colours or greyshading patterns to be used in the map are 
provided. 

We can compute the posterior expectation for this model as well: 

/= 1 

1Jsing the same categorisation as in the SMR percentile map we obtain the map based 
on the posterior expectation of the S M R , as shown in Figure 31.5. 

The appearance of the map looks very similar to that in Figure 31.3, the map based on 
the parametric empirical Bayes approach. Comparing Figures 31.3 and 31.5 with Figure 
31.4, i.e. the map constructed according to the mixture posterior classification, we find 
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Figure 31.5 Map based on the mixture model relative risk estimates 

different patterns. The similarity of Figure 31.3 and 31.5 is mainly based on the fact that 
they use the same method of classification using the greyscale of the percentile map of 
the crude SMR. The major gain of these two maps is that they remove random variability 
from the map. The map based on the mixture classification, however, now introduces a 
different pattern, since it not only provides shrinkage of the estimators, but also pro-
vides an estimate of the underlying risk structure. 

Also, the range of the estimated relative risks based on the non-parametric empirical 
Bayes approach is even lower than in the parametric empirical Bayes approach. Thus 
the mixture model approach provides a higher degree of shrinkage than the approach 
based on the gamma distribution. The lowest posterior relative risk is 0.51, and the high- 
est posterior relative risk is 1.58. Again we find an excess risk in metropolitan areas. We 
also observe a lower risk in the east and the south of the country. 

31.3.3 Full Bayesian analysis 

In this section we demonstrate the use of a fully Bayesian modelling approach to the 
analysis of the German cancer data. A form of this approach was first proposed by Besag 
et d.(1991). Using the notation of the previous sections, we define the Poisson likelihood 
for a realisation { O j } ,i = 1,. . . , rz, of counts in n small areas as 
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Figure 31.6 Map based on the full Bayes model 

Here 

where E i  are again the expected cases for the ith small area, and we have a log linear 
link between the Poisson expectation and the terms ti, Ui ,  and vi. These model terms 
represent different types of variation that could be considered in the model. The first 
term represents trend in the rates across the study region and can be thought of as 
long-runge variation. In our example, we do not include trend variation, although it is 
straightforward to do so in any particular application. The second and third terms 
(ui, Vi) represent types of random effect or heterogeneity, which can be included if there 
is thought to be any extra random structure in the counts which may remain unex- 
plained by the other model components. This extra structure could be due to inherent 
extra variation not captured by the Poisson likelihood model. Uncorrelated extra varia- 
tion is sometimes called uncorrelated heterogeneity (see Chapter 1in this volume). In 
addition, there could also exist autocorrelated variation, which is often termed ‘corre- 
lated heterogeneity’. In our model we represent correlated heterogeneity by Ui and 
uncorrelated heterogeneity by vi Because we wish to apply a fully Bayesian analysis to 
the dataset, we assume that all parameters in our model have prior distributions. In fact, 
the heterogeneity terms are random effects, and since we have no other external sup- 
port for their estimation (than the dataset) we need to make distributional assumptions 
to allow us to properly distinguish their form. 
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The prior distributions employed here are those specified by Hesag and con~orkers. 
The correlated random effect has an intrinsic singular Gaussian prior distribution: 

where w,/ = 1/2,j,b’ij.  The neighbourhood 8, is assumed to be the areas with a c-om-
it ion boundary with ith area. The uncorrelated heterogeneity ( vl 1 is defined to have a 
(’1 aiissiBn prior d is t ribu t ion: 

These prior distributions have parameters which must also be considered to have 
(hyper)prior distributions. Both ,3  and CJ are assumed to hiwe improper inverse esponen- 
tial hyperpriors: 

prior (Aj,a )  cx e ’e 2n.  0. r + 0 ,  

where E is taken a s  0.001, These prior distributions penalise the absorbing state at zero, 
but provide considerable indifference over a large range. ‘I’he trend parameters have 
been assumed to ht1L.e uniform prior distributions on suitable ranges, since M ~ C ‘ha .e  little 
prior preference for their v‘rl 1ues. 

Once the prior distributions are specified, we must consider the evaluation of t he f u l l  
posttlrior distribution (PO) ,which combines the Poisson likelihood and all the prior dis- 
tributions. ‘111sample parameter values from P O  we employ a Markov chain Monte C’arlo 
(hIC’R1C) method. I lk have employed ii niletropolis-Hastings algorithm to sample all 
parameters. This algorithm i i l l o ~ ~ sfor the iterative evaluation of the proposed nc\v para-
meters ilia the L I S ~of posterior ratios. C’onirergence of the algorithm wiis a s s e s s e d  by the 
(;eweke criteria. based on the log posterior surface. and chains with separate start 
values were examined. Cowles and Carlin (1996)and Hrooks (1998)discuss the variety 
of methods available for convergence checking of this algorithm. Convergence w a s  
achie\red in this example by 35 000 iterations. 

Our analysis of the lung cancer mortality data for women has led to  the production of 
ii posterior expected relative risk map (Figure 31.6).This map represents a sutiimiiry of 
the linal converged relative risks for the dataset from the sampling algorithm. 

The resulting map shows some marked features. First, the inclusion of a correlation 
term has smoothed the map arid produced many patches of similar risk level. This is 
commonly found when autocorrelation is included in such an analysis. ‘I’he main fea- 
tures displayed on the map relating to difference in lung cciticcr inck1enc.e arc: ( i )  i i  large 
concwitratiori of elevated risk in the western area of Germany and ( i i )  ii noticeable 
north-south gradient, with elevated risks in the northern region. Further analysis of 
the mapped data c.ould include the cbxplic-it modelling of ii trend surface ivhich could 
capture the north-south gradient, i f  such a n  estimated surface were required. 

However, comparing these maps with those based on the cmpirical Hayes methods, 
especially the map based on the posterior expectation of the relative risks based on the 
mixture model, we find ii similar pattern. H u t  again the mixture model approach 
induc-es the highest degree of shrinking. 
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31.3.4 Discussion and conclusion 

Our case study shows some marked features. All Hayesian methods (empirical and f u l l )  
applied produce smoothed maps, indicating that randoni variability has been ex tracted 
from the data. It  is now more commonly accepted that percentile maps should be 
accompanied by smoothed maps. From our  point of view a 13ayesian methodology 
should be applied in order to obtain smoothed maps. The major issue here is to decide 
between empirical and full 13ayesian analysis. For a detailed discussion of this topic, see 
Chapter 1 in this volume. In addition. although not pursued here. i t  is also important in 
applications to assess goodness-of-fit via the use of global measures such a s  AIL’ and 
BIC, or point-niisc via residual analysis. This can lead to the choice of models ~ ~ I i i c l i  
may not be fiivoured by prior considerations. In addition, the assessment of point-wise 
variances or standard errors for relative risks on maps should be employed hen the 
assessment o f  individual regions is a focus o f  attention. Currently, the authors are 
involved in a simulation study which investigates and compares empirical and full 
Hayesian met hods for disease mapping. 

From ii practical point o f  view, especially from the viewpoint of the public health prac- 
tioner. the empirical 13aycs approaches described here have seiw-al ad\~antagcs. First, 
they provide relatively easy computation and implementation. Secondly, with p ~ k a g e s  
such as I)ismap\2.’in, there is free software available, which directly produces maps 
based on these methods. Thirdly, empirical Bayes methods d o  not rcquirc ii  difficult con-
vergence diagnostic such a s  the full Hayesian approach. ‘I’his relat i L T e  simplicity is 
mainly due to the fact that the empirical Bayes methods described here model unstruc-
tured heterogeneity o f  disease risk and ignore structured heterogeneity. Certainly t tie 
full Hayes approach offers the most flexible approach to the data, since any aspect of 
structured and unstructured heterogeneity and trend can easily be modelled. Also. 
complete inference for any part of the model may be obtained from t he posterior dist ri- 
bution. Inference for the mixture model approach, for example, has to reljy on resani-
pling methods, which introduces some complexity, but again may be done with 
1)ismapN’in. 

All Hayesian methods determine the presence of heterogeneity of disease risk in one 
way or the other. From a n  epidemiological point of V ~ C M ’this is a n  important fcaturc. 
since only in the case of heterogeneity of disease risk is further action required. ‘I’he 
non-parametric mixture model approach offers the additional feature that it may be 
used to classify the individual region; this of particular importance when disease maps 
are used in order to investigate the potential hazardous effects of point sources. 

From a public health point of view our case study provides some interesting results. 
As might have been expected, we find a n  excess risk in urban areas of the western part 
of the country.Without additional data no further causal assumptions can be made; this 
excess could be either due to a different prevalence of smoking in the western part or 
might be related to ambient air pollution. Further ecological st udics would be ; i n  intcr-
esting task. Currently neither data on smoking habits nor on cn\~ironmcntal pollution 
are available to investigate this question further. 
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Disease Mapping and Risk 
Assessment for Public Health 

Decision Making: Report on a 

WHOIBiorned2 International 


Workshop 


ANNEX 1: PARTICIPANTS 

INTRODUCTION 

In recent years many new methods have been developed in the field of disease mapping, 
and a number of health-oriented institutions from many countries have undertaken the 
production of atlases of diseases and mortality. Despite advances in methodology and 
increasing data availability, no systematic evaluation of the available techniques. with 
regard to their use in public health and decision making, has been done so far. Besides 

~ ~~ 

‘The workshop was held at the \il‘HO European Ccntre for Environment and Health, Rome, Italy on 2-4 October 
1997 
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disease mapping and descriptive studies, a growing interest has emerged on the e idua-  
tion of putative sources of risk. Initiated by the querelle on the risk of childhood leukae- 
mia around nuclear plants to the recent claims on raised risk of asthma in areas with 
high traffic pollution, a variety of methods for the analysis of case event clustering and 
their relation to sources of noxious agents have appeared in both statistical and  epide-
miological literature. Furthermore, some countries host research centres devoted to the 
investigation of claims regarding spontaneous clusters of disease. Thus, it was felt that i t  
w a s urgently needed to clarify the conditions of use and the merit of different techniques 
to address such questions and to inform public health response in an appropriate way. 

OBJECTIVES 

The European Initiative in Disease Mapping and Kisk Assessment’ and the WHO 
European Centre for Environment and Health. Rome Ilivision organised an international 
workshop with the following aims: 

0 to review and assess the current development of met hods of data analysis to be used in 
geographical epidemiological studies; 

0 to provide an e\ialuation ofthe application of each of the available approaches for pub- 
lic health use: 

0 to reach a consensus upon a list of recommendations on the use of the techniques that 
are most appropriate to orient public health policy decisions. 

Specific iireas of interest include: disease mapping and its role in health surveillance and 
public health resource allocation; ecological analyses and their controversial use in 
aetiologic research; the role of cluster detection in epidemiology: and the analysis of risk 
around putative sources, with special emphasis on environmental causes of diseases. 

37 temporary advisers, 9 observers and 4 WHO officers from Belgium, Canada, France, 
Ge r m a n y. 1ta Iy, I re1and , Japii11,The Net he r 1ands. Nor way, Spa in , Sweden, IJnited E; in gdom 
and the llnited States were invited to attend the workshop (see Annex 1for a complete list 
of niimes and addresses). 

Professor Henedetto ‘I’erracini was elected Chairman of the meeting (unanimously), 
Professor Noel Cressie Vice-Chairman (with one dissenting vote) and l>r Marco hlartuzzi 
rapporteur (unanimously). 

A total of ?if> working papers, listed in Annex 2, were presented arid discussed in five 
sessions: 

1. 1)isease Mapping, chaired by Noel Cressie (IJSA) 
I .  Clustering, chaired by Julian Hesag (IJSA) 
3. Ecological Analyses, chaired by Arnoldo Frigessi (Italy/Norway) 

’ In 1996, a European Initiative in Disease Mapping and Risk Assessment ( DhlKA. project coordinator A.H. Law-
son. Ilniversity o f  Abertay Ihndce) was funded by the European [inion under the second Biomed I’rogramme. 
section on Risk factors of occupational and environmental diseases. Iklgium (E. I,esaffre, Ivnivcrsity of 1,euven). 
France (J.F.Viel. Irnivcrsity of 13esanCon). Ccrmany (D. Atjhning, Free I’niversity, Berlin), Italy (A. Higgeri, [Jniver- 
sity of Florence) and Ilnited Kingdom (A.H. Lawson. [Jniversity of Abertay Ilundee) are  the participating coun- 
tries. The objecti1vs of the initiative are to provide a review of current diseaw mapping method\ i n  member 
coi intrm; to review the available rnethods for assessrnerit of geographical variations in disease: to a\secs, via 
t’uropc-wide application\, the nio\t appropriate spatial met hods. 
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4. Risk assessment around putative sources, chaired by Goran Pershagen (Sweden) 
5. Health Surveillance and applications, chaired by Benedetto Terracini (Italy). 

Topics of discussion and conclusions of these sessions are summarised below. 

Following the five sessions, three parallel working groups, chaired by Annibale Biggeri 
(Italy),Tony Fletcher (TJK) and Jean-Francois Vie1 (France), addressed a series of questions 
regarding geographical analyses and their applications in public health. Each working 
group drafted a list of recommendations for disease mapping and risk assessment for pub- 
lic health decision making. Finally, in a meeting held in plenary, the conclusions reached 
separately by the three working groups were re-discussed, a consensus was sought and 
the workshop’s conclusions and recommendations were finalised. These are reported 
below, in form of answers to the questions discussed by the working groups. A draft of 
the present report was circulated for comments after the meeting with all participants 
before publication. 

The working papers presented during the workshop have been peer-reviewed both by 
participants in the workshop and by external consultants and will be collected and pub- 
lished in a book jointly edited by the DMRA initiative and the WHO European Centre for 
Environment and Health. 

SUMMARY OF FIVE PARALLEL SESSIONS 
(CONTRIBUTED PAPERS) 

Eight papers were presented: Lawson et al. (LEA): Cressie and Stern (CS); Hcsag and 
Knorr-Held (BK);Biihning and Schlattman (BS);Louis (L):Mollie (MO):Martuzzi and Hills 
(MH):and Lawson, Dreassi and Biggeri (LDB). 

Disease mapping has two common uses: smoothing awaj7 noise to draw maps and 
assessing specific hypotheses concerning incidence. The presentations and discussion 
were almost exclusively concerned with the merits of various statistical models and ana- 
lyses for disease incidence rates of small areas. However, one paper (LEA)did discuss the 
situation where case-event data (i.e., point patterns of case locations) are available. 

In discussion, there was considerable enthusiasm for the development of case-event 
models and associated data analysis. However, it was recognised that in practice exact 
locations are often ambiguous (e.g., home versus workplace). One might attempt to build 
a point-level model for this ambiguity. Or, one might aggregate the point-level, case-event 
data into small-area counts, accepting the possibility of ecological bias caused by the 
aggregation. 

For the most part, the session was devoted to modelling and analysis of small-area 
count data. It was thought that the standard Poisson assumption on count data is appro- 
priate. While some of the papers mentioned hypothesis tests on the set of area-specific 
rates or risk, all papers put some form of mixing distribution on them. For example, BS 
assumed that the risks are i.i.d. (independently and identically distributed) according to 
a discrete distribution: their interest was in classification of the small areas. Also. MH put 
a continuous gamma distribution for the risks: their interest was in the posterior distri- 
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bution of its variance and how different it was from zero (the case of constant risk). In all 
other papers BK, I,, MO and CS used multivariate log-normal distributions. One question 
of interest (largely unresolved) was whether these models are consistent at different 
levels of aggregation. 

Spatial hierarchical models are very useful for disease mapping. There was not agree- 
ment about model choice at the second level of the hierarchy, but there was agreement 
that such mixing distributions are needed. With regard to statistical analysis there were 
two dominant approaches presented, both developed in the framework of Hayesian statis- 
tics. The empirical Bayes method is where one attempts to estimate parameters of "prior" 
distributions using observed marginal distributions. The second approach is the fully 
Hayesian approach, where the prior and "posterior"distributions are obtained via Markov 
Chain Monte Carlo (MCMC) computations (after assessing appropriate convergence). h i 4 0  
mapped smoothed rates using posterior means; HK have a dynamic temporal component 
and mapped posterior medians: I, estimated the edf and associated ranks using squared 
error loss;CS estimated extrema with special loss functions and developed Rayesian diag- 
nostics; 1,I)H considered data outside the region of interest as missing and mapped the 
resu 1t in g post er ior me a n s. 

In conclusion. the Bayesian approach (empirical or full) is appealing because almost 
any question can be asked and addressed. Incorporating spatial dependence requires 
an extra one or two parameters and is worthwhile insurance against mis-specification 
of regression effects. If it is found that the spatial component is not needed, one might 
do a reanalysis without it, to obtain a more parsimonious model. Finally, we should 
realise that if  we are asked to smooth and map, there is a good chance that our 
smoothed estimates will be used later (perhaps inappropriately) to assess specific 
hypotheses. The paper by I, makes this problem clear and gives an example of this 
i m port 21 n t issue. 

SIMION2: C L ~ I S ~ I K I N G  
Chi t - :  jiilitiri Hestig 

There were six talks in the sessions, given by (in order) llrs Jacquez, Kulldorff, 1,awson. 
SchmidtmamTango and Ziillner. With the exception of a paper on MCMC methods. based 
on Hayesian statistics. all the approaches adopted a frequentist standpoint. 

The resolution of the data which the authors had in mind ranged from county level, 
where data are reasonably reliable but correspondingly the analysis is rather coarse, to 
census enumeration district (El l )  and even case level, for both of which there is ii greater 
danger of database problems caused, for example, by incompatibility between numera- 
tors (the cases) and denominators (those at risk). Potential incompatibilities include the 
fact that cases occur over a substantial period of time but that the at risk population may 
be measured on a single census day and hence be susceptible to substantial migration 
effects (e.g. new housing projects): and that location may be ambiguous (e.g., it can 
defined as place of residence, birth, work or school). 

In the talks, the purpose of a geographical analysis was to provide a p-value for evi- 
dence of overall clustering in the data, based on one or more test statistics assessed with 
respect to a particular reference distribution: or to identify apparent clusters presumably 
of'ten with the intention of follow-up analysis by case-control or other methods i f  an  iden- 
tifiable putative cause was subsequently suggested; or both o f  these. 
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Various different approaches to such investigations were suggested and some authors 
included limited comparisons but there was no consensus on what might be a"best" 
method. This is not unreasonable: a method of analysis should be appropriate to the even- 
tual purpose, to knowledge about the disease aetiology, to the form of the available data, 
and so on. Calculation of p-values depended on analytical approximations or, more com- 
monly, Monte Carlo simulation. There was some support for more extensive power studies 
against me a n  ing fu 1 a1t er na t ives. 

As regards p-values, several speakers and discussants noted that for some tests, both 
ancient and modern, the calculations recommended in the literature are generally inva- 
lid: this is a quite common fault for tests of clustering in cancer atlases. For example. in 
Moran's test and similar ones, the traditional Gaussian approximation or simple randomi- 
sation analysis, applied to incidence rates or ranks is typically incorrect: even if risk is 
constant, there should be a geographical pattern of incidence rates if high (e.g. urban) 
and low (e.g. rural) populations show a geographical pattern, as they usually do.The rea- 
son is that high and low rates predominate in the low population zones and this induces 
the pattern. Speakers noted that the incorrect methodology can be replaced by Monte 
Carlo versions based e.g. on multivariate hypergeometric distributions, though these 
become highly computationally intensive when large populations are involved. Some- 
times the incorrect results are adequate in practice but this needs careful monitoring. 
The existence of the problem requires more publicity but was not the focus of the session. 

Practical examples were shown by most speakers and also by the chairman. 

SESSION ANALYSIS3: ECOI,O(;ICAI, 
Chair: Arnoldo Frigessi 

Papers were presented by Drs Bernardinelli (Italy), Best (UK), Divino (Italy), Hraga (Italy), 
Ferrandiz (Spain), Frigessi (Italy/Norway), Kelly (Ireland) and Langford (UK) and were 
mainly concerned with hierarchical Bayesian modelling and modelling spatial interac- 
tion in the presence of informative covariates measured with or without error. 

Several case studies have been described in order to introduce and illustrate old and 
new methods, including, among others, avoidable mortality for asthma; the association 
between malaria and diabetes; mapping of prostate and lung cancer mortality rates; and 
ultraviolet light as a possible cause of skin cancer. 

The talks and the discussion focused on the following issues: 

1. Bayesian complex models allow a realistic and structured description of nature, in 
particular through incorporation of cause/effects features and measurement errors 
in covariates. However, statistical tools for model validation and criticism do not yet 
seem fully adequate, and sensitivity studies are important. Co-operation between sta- 
tisticians and other fields of expertise is needed for building reliable models. 

2. Models may seem sometimes too large and overparametrised; covariates may act as 
confounders; and there is a risk of overadjustment to watch out for. 

3 .  The introduction of spatial smoothing and interaction among estimated spatial para- 
meters are now standard in the presence of covariates. There seem to be three main 
rationales behind the introduction of terms describing spatial features into models: 

a) When we believe that measured covariates and the selected model are appropriate, 
the spatial part is introduced in order to check a posteriori that it is not significant. 
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If this is the case, the selected model explains the phenomena under study well 
enough. 

b) The spatial part is significant and reflects what is not explained by the covariates 
included in the regression model. It may capture spatial features related to covari- 
ates that cannot be measured (e.g., diet) or even defined. The presence of such spa- 
tial residual leaves something unexplained from the epidemiological viewpoint. 
However, keeping a spatial part in the model seems generally cautious. 

c) Presence of strong spatially structured effects. The spatial part is a fundamental 
feature of the data under study. For example, in the case of infectious diseases. vici- 
nity is a truly explanatory factor. Such informative spatial models can also he intro- 
duced in order to investigate certain hypotheses, for example the presence of an 
infective agent in the aetiology of childhood leukaemia. 

3. Two new modelling inferential ideas were introduced: 

a)  a new way to handle data collected on different scales/grids, avoiding the aggrega- 
tion of information to the least detailed scale; and 

b) a new way of doing non-parametric inference in spatial auto models with covari- 
ates, when covariates modulate spatial interaction. Non parametric met hods are 
computationally feasible and results can be usefully compared to those obtained 
from parametric models. 

5. There should be concern over the possible misinterpretation of disease maps. Maps 
without clear information on the underlying assumptions, models and approaches 
should not be delivered to public health authorities without careful consideration. 

6. Disease maps are often interpreted “macroscopically”, i.e., looking for overall spatial 
trends or large areas at increased risk, with no interest in the resolution at which 
detailed information is conveyed, such as the exact boundaries among areas with dif- 
ferent level of risk. When this is likely to be the case, models should try to incorporate 
higher level features like templates, in the spirit of Hayesian image analysis. 

Papers were presented by Drs Biggeri (Italy), Bithell (UK), Armstrong (in lieu of I>r Dolk, 
IJK), Maul (France), Pershagen (Sweden), and Waller (USA). 

One paper presented several methods for case-control analysis of risk around putative 
sources. An example was provided in which the area under study was divided into circu- 
lar annuli with the postulated sources of pollution in the centre. This suggested that lung 
cancer risk was related to distance of residence to city centre, as well as to an incinerator 
in a multivariate analysis including individual information on smoking, occupation and 
air particulate levels. 

Another paper described some exploratory methods for testing the uniformity of a 
risk surface over a specified region using a relative risk function. This implies that 
the relative risk at any given point represents the risk relative to a population-weighted 
average for the region as a whole. lJsing as a n  example childhood cancer data from 
England, it was discussed how far to go in analysis and presentation of results from 
such exploratory activities in situations where there is no significant heterogeneity in 
the data. 
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One presentation dealt with the power of focused score tests under mis-specified clus- 
ter models, Focused tests assess whether cases are clustered around some pre-specified 
potential sources of hazard in the study area. Mis-specified score tests imply that tests 
defined for one type of cluster model are applied to clustering generated through a differ- 
ent model. One problem, which was discussed, is that proximity is often not a good proxy 
for true exposure and the importance of accurate environmental exposure measure- 
ments was stressed. 

Sequential monitoring of low event rates was discussed in one paper. The intention is 
to consider time intervals in the appearance of cases, making it possible to perform a 
stepwise assessment of the putative source while monitoring the data in a prospective 
design. One problem is to adjust the critical threshold so as to maintain type 1 error rate 
under a pre-specified level of significance during the entire study Another concern arises 
when the phenomenon under study is rare since this may lead to a less reliable model 
fitting and invalid asymptotic distribution of standard test statistics. The methodology 
was applied to leukaemia incidence near a French nuclear reprocessing plant and 
did not indicate spatial-temporal clustering within the space-time window under 
investigation. 

A multinational European study on congenital anomalies near hazardous waste land- 
f i l l  sites was also described. This involved 21 sites in 15 areas and a total of more than 1000 
cases and 2000 controls. Overall there appeared to be a 3 0 %  increase in risk associated 
with residence within 3 km of the sites following adjustment for socio-economic status, 
maternal age and year of birth.Vdrious types of bias were discussed such as confounding 
by socio-economic status, other industrial sites, differences in hospital ascertainment 
and migration but it was considered unlikely that this explained the results. The pro- 
blems in interpretation were regarded as not principally statistical but related to the lack 
of evidence on exposure and plausible aetiologic pathways. 

Finally, one paper focussed on the methodology for assessing lung cancer risks near 
point emission sources. The occurrence of lung cancer shows substantial geographic var- 
iation and ecological analyses have provided useful hints for explaining these findings, 
but are generally not sufficient for assessing causal relationships. For example, detailed 
evaluation of the role of ambient air pollution requires data on important risk factors for 
lung cancer, particularly regarding smoking, to adequately assess confounding and 
interactions. Poor characterisation of exposure is a major problem. Ideally measurements 
of air pollutants should cover time periods relevant for disease aetiology and the role of 
individual differences in activity patterns and mobility for exposure should be assessed. 
International collaboration is desirable in studies of lung cancer near point emission 
sources, in view of the often small populations with excessive exposure near each site 
and the possibility of combining data from several sites. 

Papers were presented by Drs Axelson (SWE),Becker (GER), Fletcher (UK), Neutra (USA), 
Terracini (ITA),Viel (FRA), and Wdlter (CAN) 

Three presentations described geographical analyses of the occurrence of a number of 
cancer types in Germany and in Ontario and of pleural cancer in Italy In Ontario, the 
availability of databases on the distribution of social, economic, behavioural, nutritional 
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and other health indicators allowed to consider known risk factors in the analyses. This 
greatly reduced the regional correlation of the residuals, thus increasing the specificity of 
the identification of areas requiring further special investigation. 

The other four presentations related to the interaction of statisticians/epidemiologists 
investigating geographical patterns of disease and the rest of the society. Members of the 
group felt that one should be very cautious about using risk estimates obtained from 
aggregated data in order to estimate risk at the individual level. Possible exceptions are 
unusual circumstances of highly specific associations with high attributable risks (e.g. 
asbestos and mesothelioma). 

Emphasis was given to the following points: 

1. Maps can be understood by lay people provided they include any caveat or other con- 
sideration for their interpretation (including absolute numbers). Although scientific 
uncertainties can be shared with the lay people, scientists should not miss any oppor- 
tunity to remind that lack of evidence for an effect does not correspond to evidence of 
lack of effect. 

2. Studies aiming at assessing the effectiveness of different forms of communication of 
findings t o  the lay people are needed. 

3. The pros and cons of several categories of geographical analyses deserve attention: 

a )  Mapping of crude rates, standardised incidence ratios (SIR)or even case numbers: 
b)  Mapping of smoothed and model-adjusted rates and SIRS; 
c) Procedures for detecting or locating clusters of disease. either at the individual level 

or at the level of counties or greater; 
d )  Ecological studies, i.e. studies of rates in a series of populations as a function of the 

prevalence of risk factors in those populations, either without accounting for spa- 
tial autocorrelation or accounting for it  by several methods: 

e)  Case-control or cohort studies using procedures accounting for the effects of any 
spatial autocorrelation: 

f )  Procedures using computer mapping to calculate: 

0 the location and extent of exposure to pollution (e.g. numbers of schools near 
agricultural fields): 

0 the number of persons at risk of some exposure: 
0 exposures to  agents like traffic fumes or electro-magnetic fields: 

g) Procedures using computer mapping to recognise a pattern of disease location sug- 
gesting a particular mode of disease transmission (e.g. linearity of disease excess 
suggests a polluted water grid). 

I t  w a s  noted that the workshop provided detailed discussion of the technical issues and 
applications of the first five categories above (points a through e). However it is noted that 
in practical applications the choice of methods for addressing points f )  and g) is also 
important. 

4. Geographical analyses of pre-clinical endpoints - when feasible - have a potential for 
informing public health action. 

5. Whenever geographical data on  more t h a n  one risk factor are  available, the  
combined effects should be investigated in terms of effect modification a s  well a s  
confounding. 
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6. When prioritising interventions, mere numerical comparisons between risks are 
incorrect, in that they ignore other values, such as the difference between imposed 
vs. self-inflicted risks. 

7. Several episodes world-wide indicate that the media may encounter difficulties i n  
communicating to the public, in a balanced way, epidemiological findings and their 
interpretation in terms of reliability and risk estimates. The collection of case histories 
in this respect may help systematise and perhaps prevent misunderstandings between 
scientists and the lay press. 

8. There is a need for a better knowledge of the societal context (including politicians, 
activists, unions, etc.) in which geographical studies are carried out and for analysing 
and publishing episodes in which the epidemiologists’ work has been impaired. 

CONCLUSIONS AND RECOMMENDATIONS 

It was agreed that “geographical ana1yses”refer to studies designed to exploit information 
on the spatial location in the data. 

1. When is i t  appropriate to use geographical analyses in public health 
decision making? 

Geographical analyses are appropriate when outcomes or exposures or ii combina-
tion of both have a spatial structure. Studies of this nature can assist in public health 
decision making. 

In particular, geographical analyses of the distribution of risk factors can be useful 
in prioritising preventive measures. Disease mapping is useful for health service pro- 
vision and targeting interventions if avoidable risk factors are known. Geographical 
studies of disease and environmental exposures may in some cases be sufficient by 
themselves to justify action, for example if the exposure-disease association is speci- 
fic, the latency is short and the exposure is spatially defined. 

2. Ifappropriate, what i s  the methodology of choice? 

No methodology of choice can be recommended in general. Analytical methods 
should be selected on the basis of the structure of the data to be analysed and of the 
hypotheses to be investigated (e.g., individual or aggregated data, presence o f  puta-
tive foci of risk). In most circumstances, however, it might be helpful to envisagc a 
first level of descriptive analysis, to be followed by more specific, and problem-dcpen- 
dent, analyses involving parameter estimation and hypothesis testing. ‘I’hese will 
often be based on multivariate techniques and statistical modelling. 

3. Is a disease cluster, wi th no prior hgpothesis, a suflcient cause for public 
health action? 

The reporting of any disease cluster, even in the absence of a hypothesis defined 
rr yriori, should never be ignored but critically evaluated. The process of decision mak- 
ing following cluster detection should be informed by considerations concerning t hc 
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plausibility of any post-hoc hypothesis, its relevance in public health terms, the fea- 
sibility of possible preventive measures, and the resources needed for further investi- 
gation. While further evaluation is needed of the conditions under which public 
health action following cluster detection should be taken, it is noted that the simple 
statistical evidence of a localised excess is not sufficient to warrant intervention. Gov- 
ernments and other agencies should proceed with caution when communicating the 
occurrence of possible disease clusters. 

4. Is it possible to depict a screening device for geographical clusters, in the 
context of public health surveillance3 

Public health surveillance, for example from population registries, may be valuable 
in responding to cluster reports. It is technically possible to devise tools that system- 
at ically screen for geographical clusters, allowing for the problem of multiple testing. 
However, for aetiologic research, screening programmes are likely to be fruitful only 
in special circumstances, where highly specific exposure-disease associations and 
large attributable risks are involtwl. If surveillance is undertaken, it should be based 
on a clear protocol on the action to be taken if  notable clusters are detected. 

5. Is it possible to use geographical methods to monitor public health 
interventions? 

In some circumstances geographical analyses have been used for monitoring the 
impact and the effectiveness of public health intervention. This might be more infor- 
mative when dealing with public health measures with immediate or short-term 
effects. 

6. Are the new methods proposed of added value in generating hgpotheses? 

'I'raditional methods for investigating spatial patterns of disease/exposure can be 
valuable in several circumstances to inform public health action, provided the data 
are valid. accurate and complete. However, recently developed met hods of analysis, 
designed to deal with the spatial component of the data, have the potential to provide 
results that improve or correct those obtained using conventional methods, espe- 
cially with small area or individual case location data. The presence of underlying 
geographical patterns can be more easily detected and their properties better 
described. In addition, such new methods have a greater potential in generating 
new hypotheses from geographically referenced health data. 

z Do geographical analljses contribute to the strengthening of the evidence of 
the causal nature of an association? 

Geographic analyses with no information at the individual level are vulnerable to 
bias. However, while individually based epidemiological studies are in general 
needed to demonstrate the causal nature of a n  exposure-disease association, geogra- 
phical analyses can help strengthen the available evidence. For some spatially dis- 
t ributed exposures such as environmental pollution, geographical studies are 
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appropriate designs and can provide useful evidence in assessing causality. espe- 
cially when the appropriate time scale is accounted for. 

8. How to communicate to decision makers the results of geographical 
analyses? 

Providing public health decision makers with results of geographical analyses. with- 
out addressing the underlying assumptions and discussing the implications, should 
be avoided. Communication of results should be based first on simple tabulations of 
the data and complemented by analyses addressing clearly specified hypotheses. 

If maps are to be used, they should be accompanied by appropriate indices of 
uncertainty and variability along with some word of caution on interpretation. It is 
important that overall evaluations of the findings and conclusions be given. 

9. Is it possible to sketch a cost-utilitH evaluation of geographical 
methodologies in public health? 

Some technologies, such as geographic information systems (GIS), used for geogra- 
phical analyses require data availability and can involve substantial financial invest- 
ments. It is therefore appropriate to identify the direct benefits associated with this 
investment. These benefits include the capability of: undertaking rapid screening o f  
apparent disease clusters to address the need for a ad-hoc study: bringing together 
the available information on geographically-based factors and/or con founders 
potentially of relevance: targeting or delivering public health intervention or envir- 
onmental health controls more efficiently: focussing attention or investigations on 
the areas where intervention might be most beneficial: contributing to a surveillance 
scheme when needed. 

10. To what extent does data qualitH aflect the diflerent geographical methods? 

As in all epidemiological studies, high data quality is crucial in geographical ana- 
lyses. At the small area level, however, even relatively minor inconsistencies might 
have a large impact on the findings, especially with routinely collected data (e.g. 
population estimates derived from census data). 
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constrined point estimates 78 

lip cancer data 80 

lung cancer in German women 418-20 

model implementation 200 

point estimates 76 

relative risk (France) 19-24 

spatial dependence 204 

tract count edge effects 89-92 

S P P  d s o  multilevel model 

Hierarchical effects, disease distribution 218 

Hierarchical generalised linear models (GLM) 

204, 207. 210 

Hierarchical random effect models 

(approximate) 186-7 

Histogram 35, 36-7 


lip cancer data (Scottish) 42,113-4 
Hodgkins’disease 375, 379 

Homogeneity mixture model 54,58-9 
Hot spot cluster 105,122-3 

C test 115 

defined 258 

misspecified test power 261 

modelling 258 


Hot spot tests, for clinal clusters 262,265 
Hyperparame t er 

empirical Wayesian 21 

Poisson regression 207 

spatial similarity control 34 

spatially structured prior 23 


Hyperprior 2h,29, 33 

Hypothesis generation 312-16 

Hypothesis testing 

adjacency 318 

modelling comparison 244-5 

post iioc analysis 267-8 

putative-source studies 240-1 


count data 243-4 


I statistic (Moran) 154. (table), 171,172-3,174, 
1 7 5  


b i a s 171 
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Ontario cancer survey 368-9 

tests for focused clustering 109 

usage suggestions 177-8 


IDDM 
association with autoimmune disease 

346-7 


GhPL) 332 

malaria 331-2 

model 338-9 

regression model 334 

study results 341, m,345-6 


Incidence 
peaked 238,239 
SID, leukaemia 4oh 
SIR 352. m,406 


lndependence 296 

Individual-level study 181-2 

Infect ion, clustering c h ii riict erist ics I()2-3 

Inference 155-7 


Bayesian approach 67-75 

data quality 316-17 

putative-source studies 2 33-4 

spatial data analysis comparison 152-3 

uncertain location 164; s w trlso location 

Inference con1 pa r ison, (;aiissia n -Gaiissia n 
model 65 


Inhibition prior 134 

Integrated squared difference 115-16.176 
Intensity functions 2i2-3 
Intensity spec ificiit ion, spat io -te m por a I 


modelling 12 

Intensity surfrice 5-6 

Interpolation 7-8 

Ipop (Oden) statistic 177 

Isotropy 272 


Join-count statistic 153, 


Kernel smoothers 127,128-9 
Kidney cancer 375, 378 

Kidney failure, clustering 700 

Kriging 7, 235 


Landfill 
analysis 384-7 

results 388-91 

site classification 392-3 

see nlso con g en i t a I m ii I format ion, po 11U t ion 


Laryngeal cancer 
Canada 373, 378  

Germany 
lJK 100-1 


Least squares, iterative generalised 219, 

222 
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298-9 


Leukaemia (Canada) m,377,3/”f) 
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I ,eu kaeniia ( e r m iin y 1 395-6 discrete 157,158,158-9,161,l62 
former (;I)K 49-55 model choice 161-2 
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retrospectiive study 396-8 I,og likelihood 
s tat is tic-a1 methodology 398-401 approximate 2(19-10 
study results 401-5 beta distribution 324, 325 

Leukaemia (Japan) 100 heterogeneity estimation 323 
Ixukaemia ( I J K )  132-i penalised 189 
I,il'cstylc profile 32 3-4 

and cancer 314 hg-l inear  model 195,242, 243 
c-ovariates 197-8 Img relative risk 
l o u r  kid-factors 3 0 3  convolution Gaussian prior 24 
Ontario study 366-7 Gibbs sampling 27 

1,ikelihood 8-9 spatial modelling 195-6 
approximation 188 s t v  iilso relative risk 
clustering models 1Oi  Loss functions i5-80 
eftect on posterior sampling 1 3 i  0-1 78-9 
i'bK'LK' case event modelling 120 extreme irnlues 78-80.81-2 
penalised quasi-likeli hood 186-i lip cancer data 80-2 
pseudo 188. 210, 211 I,ow birth Lveight ( IBM' )  352-8 
ratio estimation i - 8  Hayesian models 354 
relative risks 10-21 antl tlepri \fation 57 
so(' trlso log 1.; niiixiniiim 1. SIK 352, 

Lip cancer Lung cancer 
C'anada 377, 3/"x industrial areas 288-9 
C;I)K 56-8 pollution synergy 291 

Lip cancer, Scotland protective agents 412 
data 68-9 smoking, Lithuania 288 
data arialysis 38-45 study methodology 290-1 
~;iiiissian-C;aussian model hi-75 urban area 289-90 
loss function 80-2 st'c nlso radon 
hIL estimators 39-45 Lung cancer (Canada) 
posterior means 39-45 incidence rates 371, 372 
priors 39 rcgional variation F_73 

1,ocat ion regression analysis results (Ontario) 370 
iis cwnfounder. ecological data 183-4, risk 

199 Lung cancer (Germany) 411-12 
Elbmarsch leukaemia study 398 data 412-13 
enumerable 159 empirical Hayesian analysis 415-18.421 
(;Is 311 full Hayesian analysis 418-20,421 
;is hypothesis generator 312-1 3 traditional methods 41 3-15 
inference errors 155-7 IJung cancer (Italy) 272, *,285 
migration 392 Lung cancer ( I J K )  
probabilistic 152 Armudale 129- 32,2 32 
residence, and exposure 409 1;alkirk 4-5,1()1, 102,139-41.232.233 
uncertain 164, 165-6, 286, 392 Lymphoma, putative hazard clustering 
s w  ctlso adjacency model: distance-based 132-7 

iipproac hes; tw trios s t t rr t in~jspat ia 1 Lyon, landfill 38 5, 386 



lndex 477 

Malaria 
autoimmune disease association 346-7 

covariate estimation 336-7 

full model 337-9 

G6PI) 332 

1I)I)M 331-2 

results 340-2, 345-6 


Malformation list 384; SCP ~ l s o  
congential m. 

Mantel test 154 

Mapping 3-4, 350 

Maps, irregular 23 

Marginal quasi-likelihood approach 

(MQL) 186,187 
Markov chain Monte Carlo (MCMC) 

ecological analysis 329-30 

Gaussian-Gaussian model 69 

lip cancer data analysis 38 

Metropolis-Hastings MCMC 127 

multiple response 134 

overview 124-5186 

parameter estimation 240 

prior selection 338 

putative hazard assessment 126-9 

reversible jump sampling 107,124.125 
smoothing 1 2 7 4 , 2 3 6  

Markov chain Monte Carlo optimisation 
model fitting 208-10 

spatial dependence models 204-5 

truncated auto -POisson 2(15-i 


Markov chain Newton-Kaphson 208-9 

Markov random field 23,236 
Maximum a posteriori 10,20-1 
Maximum likelihood 

lip cancer data 39-45 

mapping 35 

parameter estimation 240 

SMK 16,322 
spatial scan statistic 146 


Mean-based post alarm monitoring 145 

Measurement error 165 

Media 298 

Median-based post alarm monitoring 145 

Melanoma 376,377,378 
Mesh methods 139 

Metropolis-Hastings algorithm 26,124 

data augmentation 139 

edge effects 91 

MCMC 127 


Microenvironments 290 

Migration 197 


Miss pec ifi ciit ion 
and autocorrelation 195 

parameter effect 227 


Misspecified test 
post hoc. power analysis 266-8 

power 261-66 


Mixture model 11, 53-589.186 
ad va n t ages 58-9 

covariates 57,195.407-8 
extensions (lip cancer survey) 56-8 

leukaemia study 399-4OO.4O2-3,404 
lung cancer in German women 41(3-18 
non-paramet ric 399-400 

shrinkage 418 

validity 55-6 


Mobility 165-6, 314: s w  trlso location 

Model-based approaches 8-11 

Model1ing 

clusters 107-8 

hypothesis testing comparison 244-5 

model comparison 55-6,213-14 

Monte Carlo methods 
fully Bayesian approach 26 

edge effect correction 91-2 

see also Gibbs sampling: Markov chain ILK’ 

Mortality counts 
Poisson regression 205 

truncated auto -1’0 iss on 2(16- 7 

s w also ShIR 

Multilevel model 217-19,219 
diagnosis differences 223 

spatial Poisson model 219-22 

spe also hierarchical Bayesian model 

Multinomial distribution 280 

Multiple-comparison 2 34 

Multiple testing 244 

Myeloma 375, 379 


Nearest neighbour 
choice of 188 

test 115,154 

Neighbourhood 218, 351, 359: s ~ e 
N I S O  
adjacency: edge effect 

Newton-Raphson methods 208-9 

Nitrate concentration 210-14 

Non-focused clustering 106.111,122-3,232, 

2 5 i  
Humberside cancer clustering 132-41 

count cluster modelling 137-9 


Non-parametric tests 278,285 
Non-positive results, aggregated data 305-0 




Kon-significant result 
heterogeneity 321 

post h i ( ,analysis 267-8 


Normal distribution 220 

Kuclear power, leukaemia references 406 

Null distribution 171 

Null hypothesis 152, 153 


adjusted 51 

and credibility 163 

(;erman cancer study 171-2 

s pecilic c1u st e r ing 1(16-i 

using sample of control 112 


Numcric~al standard error o f  the mean (NSE) 
34 1 


Nutritional study. exposure contrast 302 


Objectitfity 296 

Occupational studies 316 

O d d s  ratios s m  disease odds 
Oesophageal cancer 37 3, 378 

Ohno and Aoki statistic 171,1 7 3 - 4 , m  
Ontario ( C-iinada) 

cancer spatial patterning 3hh 
rty$onal cancer [wiation 3 78-9 

sw ttlso irritler lung cancer 

Ontario Health Survey 36i 
Open populations 304 

Oral cancer 3 7 3, 3 7 8  

Outliers 241. 379-80 

OLw-ian ciinct’r 3 73, 3 78 

Overdispersion 2 3 i , 25 3: SCC (clsoextra-I’oisson 

va  r iat ion 

t’rincreat ic cancer 3 7 3, 3 78 

1%ra met er est imat ion 

K;LS 219-20 

ILIC’hlC’ 240 

pollution models 240 


l’arameter misspecitication st’c misspecitication 
1% ra met ric interact ion models 188-9 

l’aramet ric model sw under empirical Hayesian 

approach 
Passing the buck 307 

Pattern recog n it ion 3 18-1 9 

Peaked incidence 2 38,239,240 
Pearson correlation 153-4 

I’enalised quasi-likeli hood approach (1’QL) 

186-7 

1’ tie11[noni ;I. cI ust e r ing 100 

Point data 151, 235-41 


and pollution 231 


soil d s o case events: location 
Point estimate, regression coefficient 3 3 0  

Point location distribution probability 273 

Point location model 158-9, 161 

Point process models 272-3 

Pois s on distribution 

categorisation by ijo,51 

count data 242 

heterogeneity rate determination 322-4 

lung cancer (Germany) 414-15 

mixture models 11 

s w  idso extra-Poisson twiation 

l’oisson inference, drawbacks 15-16 

l’oisson interaction models, 

non-paramet ric 189 

I’oisson likelihood model 8-9, 10 

l’oisson regression model 185-6 


comparison with Hayesian model BQ.191 

Gibbs sampling 210 

mixed 57 

mor t a 1 it y counts 2(15 

prostate cancer study 211-12 

random effects 191 

truncated auto-Poisson 18i-X 
swn l so  random effects t? r. 

l’olit ical short-termism 299 

Politics, and scientific critique 305 

1’01 lut ion 

ilrmadale 129-32 

13ayesian assessment 125- 32 

body burden 303 

case-control example _7t(q, 285 

directional effect 283 

estimtition, (;IS 318 

focused tests for 257 

industrial areas 288-9 

level estimation 290 

location map (‘l’ricste) 276, 2 i i  
and lung cancer 287-8 

MC’hlC‘ modelling 121-3 

range of action determination 281 

subclinical effects 304 

synergistic effects 291 

s oo 11 Iso conge n it a1 nia I formation: e c oIogic a I 


malysis: exposure: land fill 
Pollution routes, landtill 383-4 

Polygon location model 159-60, 162 

Population, census 197 

Population location models 160-1, 1h1-2 
Population changes. and data quality 197 

Population count tests 11 3-15 
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Population density 
estimation 249 

inappropriate tests 111-12 

location model choice 161-2 


Population density function 248 

Population heterogeneity 247 

Population mapping, GIS 317 

Population modelling, HEPP 235-6 

Population size, and shrinkage 354, 356 

Post-alarm monitoring 145-6 

Post hoc7analysis 2 33-4,26h-8 
Post er ior d ist rib u t ion 

data uncertainty 197 

Gaussian-Gaussian model 69-71 

hierarchical Bayesian model 33 

measures 20-1 

risk parameters 71-5 

single-point estimates 75 

see also loss functions; maximum a posteriori 

Posterior expectation 52,54,417 
Posterior means 20 


edf 32 

loss functions 76-7 

mapping 35 

spreading characteristics 35 


Posterior means ( P M )ranking 36 

Posterior median 20 

Posterior sampling 124,137:S Y P  d s o  Gibbs 

sampling; Metropolis-Hastings algorithm 
1% we r 

case-control tests 278-9 

credibility 155,157,164-5 
misspecified test 261-6 

post Iioc analysis 266-8 


Precision parameter, smoothing control 335 

Pre-selection bias 

cluster alarms 144,144-5 
spatial scan statistic 146 


Prior 10 

conjugate 15 

convolution Caussian 24,26 
estimation 338 

Gaussian-Gaussian probability tnodel 65 

independent 21 - 3  
Markov random field 3 35-6 

non-conjugate 15 

normal 22 

putative hazard MCMC model 128 

rare disease/small areas 29 

regression models 339 

relative risks 20-21 


sensitivity 135, 137, 194 

smoother distortion 129 

spatial smoothing 334, 347 

spatially structured 23-4 


Prior knowledge, and bias 233-4 

Profile log likelihood 323-4 

Prostate cancer 

Canada 3/”-2,37h-i 
Scotland 22 3-i 
Spain 210-1.2 

Proxitnity 128,188;soc also distance-based 
approaches: nearest neighbour 

Proxy variable s w  surrogate 
Public health 

standards 308 

conservatism 307 

s u r vei I lance 104 


Publicity 298 

Putative-source studies 

data types 2 32-3 

distance -re1 at ed models 2 38 -4( 1 

exploratory techniques 2 34-5 

inference 2 3 3-4 

test power 2-14 


Quasi-likelihood approaches 186-7, 221 

spatial dependence 204 


Radon 306, 396,412 
Kandom effcct model 9-10? 5i 

auto-l’oisson comparison 207. 212-1 3 

heterogeneity modelling 106, 122, 134 

hierarchical Rayesian 33 

Poisson, asthma SMR 360 

priors 10 

unobserved heterogeneity 237,241 
see also Bayesian m.; mixture m.; 

multilevel m. 
Random parameter estimation, KXS 220 

Random parameter misspecification 227 

Random Lw-iahility, SMR percentiles 414 

Randomisation test, cluster detection 153-5 

Kanks 

estimation 3i,38 

lip cancer data 44 

risk parameters il-5 

1i
Ka t io te st s ~ ckelihood 
Regression 

congcn i ta I ma 1format io t i  study 385, {Hi 
data quality 367-8 

malaria study results 341-6 
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Ontario cancer study 366 factor clustering 103 
oU t1ie r s,0n t a r io su r ve y 379-8( 1 HEPP population models 2 35-6 
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Lveighted least squares 368 putative-source studies 2 37-8 
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Relative risk relative r. 
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lip ciincer 40-1.42, 73 Roughness penalty 189 
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malaria study 342-4 Sample space, randomisation tests 153 ,  155 
ILIC’ILIC 186 Sampling 
multilevel Poisson model 220-2 for KKF 253-4 
Ontario cancer survey 369-i6 simulated 209 
w i )  rrlso empirical r.r.: log r.r. size, and inference 152-3 

Kelativc risk function 247 uniform, location niodel choice 162 
child hood cancer application 249-52 Sanipling error 3 3 6  
detined 248-9 Sa’il’Scan software I l i  
deviance statistic 253 Scan statistic 109-10, 113, 146-7, 149 
estimation 249 Science, political framework 295-6, 299 

Repeatability 305 Score test 2~0-1,400,407:see crlsci focused 
Kesidence 4-5 clustering tests 

a s  confounder 281 Screening 14i-8,151-2 
location 409 cluster tests as 31 3 
mohilit y 29(1-1 conditions for 31 5-16 
sot’ i i l so  location Sex differences 

Kesiduals leukaemia m,404. m,409 
clustering 1()i residual SrZC 369.37(1, 372 
diagnostic 241 Shiipirig 11 Hiwlthicr 1:lrtm-r (Dept. of Health) 
Ontario cancer curvey 379 350 
spatial struc~ture modelling 369 Shrinkage 351 

Kespiratory cancer st’o lung cancer I>HM.’study 354, 356 
Kespiratory symptoms (Huddcrstield) 324- 6. mixture model 418 

31/” putative-source studies 2 35 
Ket rospect ive study squared-error loss function 76-7 

childhood leukaemia 396-8 Significance levels, heterogeneity estimates 
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Keversible jump sampling lOi, 124, 125 Simpson’s paradox 2 38.244 
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comparison 307 heterogeneity 3 5(1- 1 
conditioning out 126 l’oisson inlerence 15 
edge effect algorithm comparison 92-7 prior choice 29 
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Smoking Ontario survey 368-9 
bladder cancer 377 tract data bias 182 
as confounder 282 SPC also autocorrelation 
data 291 Spatial auto(regression) models 115 
lung cancer 288 Newton Kaphson model fitting 208-10 

Smoothing 7 4 , 1 9 4  t r u nca t e d auto -1’oi sson 2(15-7 
asthma SMK 359-613 Spatial birt h-death shifting (SHIX) 
autocorrelation 182 transitions 135 
case-control intensity estimation 2 i 6  Spatia1 cl u st ering s w  c1u st erin g 
differential 252,253,254 Spatial correlation 
edge effects 8h,8i modelling 34,195-6 
extreme value identification 172 smoothing 35 
Gaussian Markm7 random field model 335 st’p N I S O  correlation 
kernel smoothers 127,128-9 Spatial correlation measures s w  C’ ratio; I 
LHWdata 354-7 statistic; Ohno and Aoki statistic; T index 
M H  h1ChlC algorithm I29 Spatial data 
noise 313 data analysis 152-3 
posterior means 35 inference 152- 3 
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KKE’ 249,252 residual 369 

optimal selection 254 Spat ia 1 dependence 
usage 313 MCMC Bayesian model optimisation 
SPC also edge augmentation algorithm 204-5 

SMK (standardised mortality ratio) model comparison 203-4 
Bayesian shrinkage 351 Spatial dist ri hut ion ,wcredi hi I i t y; locat ion 
data reliability 17 model 
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edge effects 87.89 Spatial information 5-h,82 
heterogeneity 322 Spatial modelling 
maximum likelihood estimates 16-19 application to point data 232 
l’oisson regression 185,186 Bayesian 192 
putative-source studies 2 34-5 Guassian-Gaussian probability 64-5 
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scc N I S O  deprivation Stabilisation 31 
Space-time data, edge effects 98 Standard deviation, Hayesian inodelling 3 3 0  
Space-time interaction test 153 Standardisation 5-i, 33, 126 
Space-time scan statistic 1 4 i  Stationarity 2i2 
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matrix 65, ( 3 3  Strauss distribution 134 
Spatial association preservation, and loss Subpopulation 53,41(7-18: s ( ~ orilso mixture 
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Surrogate 
assignment of lh5 
covariate 198 
distance for exposure 1 6 5 237, 241,259-61 
rural location 223 
SO(Jd s o  distance-based approaches: location 

Surivi I lance see screening 
Susceptibility 2 38 

?‘index (Abeland Baker) 171,173-4. &?j 
‘I’eniporaI clustering 102- 3 
‘I’emporal information 

exposure level 3 0 6  
(:Is 318 
spatio-temporal modelling 11-12 

‘I’esticular cancer 17-18. 3 74, 3 i8 
Gibbs sampling example 21, 3.28 

‘I’hyroid cancer 
‘1’rac.t area, anti heterogeneity 350 
‘I’ract count 5. 6-7 

clustering 105, 107-8 
count cluster modelling 137-9 
data bias 182-5 
edge effects 87,8X,92-7 
XK’hlC data modelling 121 
mesh methods 139 
pnrametric data modelling 123 
point etrent rnct hods 137-9 
pollution studies 2 34-5 
h iewrch ical model, edge effects 89-92 

spatia 1 sc ;I nning I (19-1(1  
s w  d s o  count event data; SMK 

‘I’ransforms 44-564 
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‘Truncated auto-Poisson model 205-7 

prostate cancer study 211-1 3 
pseudo-Hayes factor assessment 2 1 3-14 
random effects I’oisson regression 

comparison 207 
Tuscany, landtill 38 5. 386 
Type 1/11 errors 152.165 

I!K, landfll 385. 386 
I1nconditional sampling 253-4 
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289-90 
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confidence intervals 32 3 
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matrix choice 65, 65-7 
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