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Preface

In the control of complex networked systems, a central role is played by informa-
tion. System dynamics and information flows evolve in an intertwined way. While
Control Theory and Information Theory have traditionally developed independently
from each other, the need for a convergence of the two has strongly emerged in the
last 15 years, and is now a very active research field. In addition to efforts in Con-
trol and Information Theory, strong research is witnessed in such diverse fields as
Computer Science, Mathematics, and Statistics. Potential applications of the theory
include remote robot control, automated highway navigation using wireless sensor
systems, automatic control for unmanned aerial vehicles, and design of critical en-
ergy, transportation, and health care systems, and more.

This book collects contributions from some of the world-leading researchers
in the area who have gathered in Lund on October 17–19, 2012 for the LCCC
Workshop in Information and Control in Networks. The workshop was held in
the middle of a five-weeks-long focus period on the same theme which has
created exciting cross-fertilization and new ideas. (Please, refer to the webpage
http://www.lccc.lth.se/index.php?page=workshop2012-10 for more detailed infor-
mation.)

The book is organized in three parts, consisting of three chapters each. The first
part collects contributions dealing with the problem of stabilizability of dynam-
ical systems with communication constraints in the feedback loop. In particular,
Franceschetti and Minero provide a survey of several results that have appeared
in the last 15 years on this topic; Zaidi et al. study the stabilization problem of a
linear system driven by Gaussian noise with a Gaussian relay channel in the feed-
back loop; Cardoso de Castro et al. design energy-efficient radio-mode switching
controllers for stabilization over noisy channels.

The second part includes chapters exploring the fundamental relationships be-
tween Control and Information from three different angles: Nayyar et al. discuss
a novel ‘common information approach’ solving decentralized stochastic control
problems; Asnani et al. present a unified framework for deriving the relations be-
tween information and estimation in the presence of feedback; Yüksel studies the
design problem of information channels for stabilization and optimization in net-
worked control.

v

http://www.lccc.lth.se/index.php?page=workshop2012-10


vi Preface

The third and final part of the book includes contributions dealing with differ-
ent information dynamics over networks: Nair investigates the problem of char-
acterizing those noiseless network topologies for which the information transmis-
sion problem is equivalent to the existence of an admissible multi-commodity flow;
Elia et al. adopt a dynamical system viewpoint in order to tackle the problem of
distributed computation over unreliable networks whereby transmission links are
subject to both additive noise and packet drops; Sedghi and Jonckheere apply tech-
niques from Markov Random Fields to deal with the problem of detection of faults
or malicious attacks in the smart power grid.

Any attempt to sketch a brief summary of the historical development of the sub-
ject here would necessary fail to do justice to its breadth and complexity. We rather
address the reader to the reference lists of the different chapters, and in particular
in the ones by Franceschetti and Minero, Nayyar et al., for an overview of the rel-
evant literature. A complete list of the titles of the LCCC workshop’s seminars is
also included in the next two pages, with the aim of giving the reader an idea of
the full range of themes discussed there, including those who have not resulted in a
contribution to this book.

Giacomo Como
Bo Bernhardsson

Anders Rantzer

Lund, Sweden
June 2013



Preface vii

LCCC Workshop on Information and Control in Networks

Lund, October 17–19, 2012

Program

(Slides available at http://www.lccc.lth.se/index.php?page=workshop1210program)

Massimo Franceschetti, UC San Diego, USA
The Complex Braid of Communication and Control

Girish Nair, University of Melbourne, Australia
Elements of a Nonstochastic Information Theory

Anant Sahai, UC Berkeley, USA
Implicit Communication in Decentralized Control Systems

Lars Rasmussen, KTH Royal Institute of Technology, Sweden
Asymptotic Anytime Reliability of LDPC Convolutional Codes

Tsachy Weissman, Stanford University, USA
Relations Between Information and Estimation in the Presence of Feedback

Edmond Jonckheere, USC, USA
On the Conditional Mutual Information in Gauss–Markov Structured Grids

Sandro Zampieri, Università di Padova, Italy
An Algorithm for Cameras’ Network’s Calibration

Carlos Canudas-de-Wit, CNRS Grenoble, France
Optimal Radio Mode Control for Intelligent Sensor Nodes in NCS

Gerhard Kramer, Technische Universität München, Germany
Feedback for Channels with In-Block Memory

Amos Lapidoth, ETH Zurich
Some Problems Are Easier with Feedback

Demosthenis Teneketzis, University of Michigan, USA
A Survey of the Common-Information Approach to Decentralized Stochastic Control

Nuno Martins, University of Maryland, USA
Necessary and Sufficient Conditions for Stabilizability in Decentralized Control and
Estimation

http://www.lccc.lth.se/index.php?page=workshop1210program


viii Preface

Mikael Skoglund, KTH Royal Institute of Technology, Sweden
Stabilization and Control over Gaussian Networks

Serdar Yüksel, Queen’s University, Canada
Optimal Design of Information Channels in Networked Control

Michelle Effros, CalTech, USA
On Networks, Capacities, and Controls

Sekhar Tatikonda, Yale University, USA
Sparse Regression Codes

Nicola Elia, Iowa State University, USA
Computing over Unreliable Communication Networks

Dragan Obradovic, Siemens AG, Munich, Germany
Precise Clock Synchronization for Industrial Automation and Other Networked Ap-
plications

Murat Arcak, UC Berkeley, USA
Pattern Formation by Lateral Inhibition: A Case Study in Networked Dynamical
Systems

Fabio Fagnani, Politecnico di Torino, Italy
Democracy and the Role of Minorities in Markov Chain Models

Peter Caines, Mc Gill University, Canada
A Mean-Field Games’ Formulation of Network-Based Auction Dynamics

Laurent Lessard, Lund University, Sweden
Optimal Collaborative Control in the Absence of Communication

Giacomo Como, Lund University, Sweden
Resilient Distributed Routing in Dynamical Flow Networks

Sanjoy Mitter (chair), Massachusetts Institute of Technology, USA
Panel Discussion: Open Problems and Future Challenges in Information and Con-
trol in Networks



Acknowledgements

The contributions were presented at the LCCC Workshop on Information and Con-
trol held in Lund on October 17–19, 2012. LCCC is a Linnaeus center at Lund
University funded by the Swedish Research Council: Ref. VR 2007-8646. The ten
principal investigators of LCCC are from the Department of Automatic Control and
the Department of Electrical and Information Technology.

The research vision of LCCC is to make fundamental contributions to a general
theory and methodology for control of complex engineering systems. This includes
scalable methods and tools for modeling, analysis and control synthesis, as well
as reliable implementations using networked embedded systems. LCCC strives to
maintain a leading role in a worldwide effort involving partners of many kinds.

The editors would like to thank the participants of the LCCC workshop and fo-
cus period for rewarding contributions to the workshop and to this book. Special
thanks go to Prof. Sanjoy Mitter for his continuous and enthusiastic encourage-
ment throughout the project, and to the other members of the scientific committee,
Prof. Michelle Effros, Prof. Gerhard Kramer, and Prof. Nuno Martins, for helping
organize the event and choosing the invited speakers. Finally, thanks are extended
to Dr. Eva Westin and Mr. Leif Andersson and the Springer editors for valuable
editorial help and advice.

ix



Contents

Part I Control with Information Constraints

1 Elements of Information Theory for Networked Control Systems . 3
Massimo Franceschetti and Paolo Minero

2 Stabilization and Control over Gaussian Networks . . . . . . . . . 39
Ali A. Zaidi, Tobias J. Oechtering, Serdar Yüksel, and Mikael Skoglund

3 Optimal Radio-Mode Switching for Wireless Networked Control . 87
Nicolas Cardoso de Castro, Federica Garin, and Carlos Canudas de Wit

Part II Stochastic Networked Control and Estimation

4 The Common-Information Approach to Decentralized Stochastic
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Ashutosh Nayyar, Aditya Mahajan, and Demosthenis Teneketzis

5 Relations Between Information and Estimation in the Presence
of Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Himanshu Asnani, Kartik Venkat, and Tsachy Weissman

6 Design of Information Channels for Optimization and Stabilization
in Networked Control . . . . . . . . . . . . . . . . . . . . . . . . . 177
Serdar Yüksel

Part III Information in Networks

7 Structural Routability of n-Pairs Information Networks . . . . . . 215
Girish N. Nair

8 Computing over Unreliable Communication Networks . . . . . . . 241
Nicola Elia, Jing Wang, and Andalam Satya Mohan Vamsi

9 On the Conditional Mutual Information in the Gaussian–Markov
Structured Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Hanie Sedghi and Edmond Jonckheere

xi



xii Contents

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305



Contributors

Himanshu Asnani Electrical Engineering Department, Stanford University, Stan-
ford, CA, USA

Carlos Canudas de Wit Department of Automatic Control, GIPSA-Lab, CNRS,
NeCS Team, Grenoble, France

Nicolas Cardoso de Castro INRIA Rhône-Alpes, NeCS Team, Grenoble, France

Nicola Elia Dept. of Electrical and Computer Engineering, Iowa State University,
Ames, IA, USA

Massimo Franceschetti Department of Electrical and Computer Engineering, Uni-
versity of California, San Diego, CA, USA

Federica Garin INRIA Rhône-Alpes, NeCS Team, Grenoble, France

Edmond Jonckheere Department of Electrical Engineering, University of South-
ern California, Los Angeles, CA, USA

Aditya Mahajan Department of Electrical and Computer Engineering, McGill
University, Montreal, QC, Canada

Paolo Minero Department of Electrical Engineering, University of Notre Dame,
Notre Dame, IN, USA

Girish N. Nair Dept. Electrical and Electronic Engineering, University of Mel-
bourne, Parkville, VIC, Australia

Ashutosh Nayyar Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA, USA

Tobias J. Oechtering KTH Royal Institute of Technology, Stockholm, Sweden

Hanie Sedghi Department of Electrical Engineering, University of Southern Cali-
fornia, Los Angeles, CA, USA

Mikael Skoglund KTH Royal Institute of Technology, Stockholm, Sweden

xiii



xiv Contributors

Demosthenis Teneketzis Department of Electrical Engineering and Computer Sci-
ence, University of Michigan, Ann Arbor, MI, USA

Andalam Satya Mohan Vamsi Dept. of Electrical and Computer Engineering,
Iowa State University, Ames, IA, USA

Kartik Venkat Electrical Engineering Department, Stanford University, Stanford,
CA, USA

Jing Wang Cummins Inc., Columbus, IN, USA

Tsachy Weissman Electrical Engineering Department, Stanford University, Stan-
ford, CA, USA

Serdar Yüksel Department of Mathematics and Statistics, Queen’s University,
Kingston, Ontario, Canada; Queen’s University, Kingston, Canada

Ali A. Zaidi KTH Royal Institute of Technology, Stockholm, Sweden



Part I
Control with Information Constraints

Next generation cyber-physical systems challenge the standard assumption of clas-
sical control theory that communication can be performed instantaneously, reliably,
and with infinite precision. This has motivated the birth of a new chapter of con-
trol theory relating the controllability dynamical systems to the characteristics of
the communication channels used in the feedback loop. The first part of the book
collects three contributions in this field.

In Chap. 1, Franceschetti and Minero review a series of contributions at the inter-
section of information and control theories, briefly describing applications, sketch-
ing mathematical arguments, and illustrating in a tutorial style the main information-
theoretic and control-theoretic tools used to derive these results. The authors also
draw a connection between control over networks and some recent advancements
in feedback communication, and mention some open problems related to error cor-
recting codes for interactive communications.

In Chap. 2, Zaidi et al. provide an overview and some recent results on real-time
communication and control over Gaussian channels. Their contribution is focused
on the problem of remote stabilization of linear systems driven by Gaussian noise
over Gaussian relay channels, and necessary and sufficient conditions are presented
for mean-square stabilization which are tight in a certain class of settings. The au-
thors construct optimal linear policies and investigate global optimality and sub-
optimality of such policies in a variety of settings. They also consider the design of
low-delay sensing and transmit schemes for real-time communication.

Chapter 3 by Cardoso de Castro et al. deals with energy efficiency of the radio
chip of sensor nodes. The authors exploit the use of different radio-modes: various
transmitting modes having a different transmission power, where increased power
results in better transmission quality (fewer errors) but higher energy cost; and var-
ious non-transmitting modes which correspond to switching off only some compo-
nents of the chip, and result in having higher energy cost than Sleep but faster/less
costly transition to transmission. An event-based radio-mode switching policy is
proposed to perform a trade-off between energy saving and performance of the con-
trol application.



Chapter 1
Elements of Information Theory for Networked
Control Systems

Massimo Franceschetti and Paolo Minero

1.1 Introduction

Next generation cyber-physical systems [35] will integrate computing, communi-
cation, and control technologies, to respond to the increased societal need to build
large-scale systems using digital technology and interacting with the physical world.
These include energy systems where the generation, transmission, and distribution
of energy is made more efficient through the integration of information technolo-
gies; transportation systems that integrate intelligent vehicles and intelligent infras-
tructures; and health care systems where medical devices have high degree of intelli-
gence and interoperability, integrating wireless networking and sensing capabilities.

One of the fundamental characteristics of cyber-physical systems is that commu-
nication among computing and physical entities occurs over communication chan-
nels of limited bandwidth and is subject to interference and noise. This challenges
the standard assumption of classical control theory that communication can be per-
formed instantaneously, reliably, and with infinite precision, and leads to the devel-
opment of a new theory of networked control systems (NCS) [7, 8, 24, 30].

This chapter complements the surveys [2, 50] that focus on the communication
constraints imposed by the network on the ability to estimate and control dynamical
systems. We describe in a tutorial style the main ideas and techniques that con-
tributed shaping the field, with particular attention to the connections with Shan-
non’s information theory. A compendium of additional related results can be found
in the recent monograph [44], relating results to Kolmogorov’s approach to infor-
mation theory via the concept of topological entropy [1].

M. Franceschetti (B)
Department of Electrical and Computer Engineering, University of California, San Diego,
CA 92093, USA
e-mail: massimo@ece.ucsd.edu

P. Minero
Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
e-mail: pminero@nd.edu
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4 M. Franceschetti and P. Minero

We shall not repeat proofs here that are readily available in the literature, but
rather concentrate on providing specific illustrative examples and on bridging be-
tween different results, with the objective of outlining the leitmotiv and the central
theoretical issues underlying this research area. We also present some new results
that were not mentioned in the above works, and draw attention to a recent approach,
based on the theory of Markov jump linear systems (MJLS) [15], that can be used
to derive in a unified way many earlier results obtained using different techniques.
Finally, we give a perspective on the open problems that are the natural candidates
for future research in the field.

The rest of the chapter is organized as follows. In the next section, we describe
a standard model of NCS. In Sect. 1.3, we present a basic result on the data-rate re-
quired in the feedback loop to guarantee system’s stabilization. This is an important
point of contact between communication and control theories and can be written in
various forms. These are illustrated in Sect. 1.4, along with their connections with
different notions of information capacity and their associated reliability constraints.
Section 1.5 focuses on challenges in the design of suitable error correcting codes to
satisfy these constraints. Section 1.6 looks more closely at a specific communication
channel, illustrating how the theory of MJLS can be used to recover in a unified way
many of the results on system stabilization that appeared in the literature. Finally,
Sect. 1.7 discusses some of the problems and challenges that lay ahead.

1.2 Networked Control Systems

The block diagram of a typical NCS is depicted in Fig. 1.1. The state of a dynam-
ical system evolves over time according to deterministic plant dynamics, possibly
affected by stochastic disturbances. Sensors feed back the plant’s output to a con-
troller over a digital communication channel. The control action is then sent back
to the plant over another digital communication channel for actuation. Communica-
tion is affected by noise, and the channel has limited bandwidth as it may be shared
among different components in a network setting. This limits the amount of infor-
mation that can be transferred in the feedback loop at each time step of the evolution
of the system.

A natural mathematical abstraction of the above scenario considers the plant to
be a discrete-time, linear, dynamical system, affected by additive disturbances

{
xk+1 =Axk +Buk + vk,
yk = Cxk +wk,

(1.1a)

(1.1b)

where k = 0,1, . . . is time, xk ∈ R
d represents the state variable of the system,

uk ∈ R
m is the control input, vk ∈ R

d is an additive disturbance, yk ∈ R
p is the

sensor measurement, wk ∈ R
p is the measurement disturbance, and A, B , C are

constant real matrices of matching dimensions. Standard conditions on (A,B) to
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Fig. 1.1 Feedback loop model of a networked control system

be reachable, (C,A) observable, are added to make the problems considered well-
posed.

In a first approximation, noise and bandwidth limitations in the communication
channels can be captured by modeling the channels as “bit pipes” capable of trans-
mitting only a fixed number r of bits in each time slot of the system’s evolution.
In this way, each channel can represent a network connection with a limited avail-
able bit-rate. This approach was originally proposed in [10] in the context of linear
quadratic Gaussian (LQG) control of stable dynamical systems. In this case, by
sending to the controller a quantized version of the innovation step of the minimum
variance estimator, it was shown that the separation principle between estimation
and control holds, and the optimal controller is a linear function of the state. Hence,
the estimation problem is formally equivalent to the control one. Extensions of this
result to LQG control of unstable systems and to other kind of channel models are
highly dependent on the information pattern available to the sender and receiver and
are explored in [26, 27, 56, 66]. In particular, when channel errors make the en-
decoder uncertain of what the decoder received, the optimal controller is in general
nonlinear [56], a result reminiscent of Witsenhausen’s famous counter example [67].

1.3 The Data-Rate Theorem

For unstable systems under the bit-pipe communication model, when the control
objective is to keep the state of the system bounded, or asymptotically drive it to
zero, the control law is always a linear function of the state, and the central issue is
to characterize the ability to perform a reliable estimate of the state at the receiving
end of the communication channel. The central result in this case is the data-rate
theorem. Loosely speaking, this states that the information rate r supported by the
channel to keep the system stable must be large enough compared to the unstable
modes of the system, so that it can compensate for the expansion of the state during
the communication process. Namely,

r >
∑
i∈U

log |λi |, (1.2)
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where the U is the set of indexes of the unstable eigenvalues of the open loop
system and the logarithm is base 2. In the simple setting considered, the result is
oblivious to the presence of two communication channels between the sensor and
the controller and between the controller and the actuator. From the perspective of
the system, the location of the controller is purely nominal. Since the key issue is
communication of a reliable state estimate, the “bottleneck” link determines the ef-
fective data rate of the feedback loop. This intuitive reasoning can easily be made
rigorous [49, Proposition 2.2]. The situation is, of course, different in the presence
of channel uncertainties that, as already mentioned, make the problem highly depen-
dent on the available information pattern at different points in the feedback loop. In
this case, (1.2) should be modified using an appropriate notion of information ca-
pacity available in the feedback loop that depends, as we shall see, on the particular
notion of stability employed, and on the characteristics of the disturbance.

The intuition behind the data-rate theorem is evident by considering the scalar
case of (1.2)

2r > |λ|, (1.3)

and noticing that while the squared volume of the state of the open loop system
increases by |λ|2 at each time step, in closed loop this expansion is compensated
by a factor 2−2r due to the partitioning induced by the coder providing r bits of in-
formation through the communication channel. By imposing the product to be less
than one, the result follows. Another interpretation arises if one identifies the loga-
rithm of the right-hand side of (1.2) as a measure of the rate at which information is
generated by the unstable plant, then the theorem essentially states that to achieve
stability the channel must transport information as fast as it is produced.

Early incarnations of this fundamental result appeared in [5, 6, 68, 69] where it
was shown that the state of an undisturbed, scalar, unstable plant with mode λ can
be kept bounded if and only if the data rate in the feedback loop is at least log |λ|
bits per unit time. While an improvement of the result from maintaining a bounded
state to obtaining a state that asymptotically approaches zero cannot be achieved
using a fixed quantizer [18], the works [12, 22, 37] showed that this can be obtained
letting the encoder to have memory and using of an adaptive “zoom-in, zoom-out”
strategy that adjusts the range of the quantizer so that it increases as the plant’s state
approaches the target and decreases if the state diverges from the target. This follows
the intuition that in order to drive the state to zero, the quantizer’s resolution should
become higher close to the target.

In the presence of system disturbances, asymptotic stability can only be guar-
anteed within the range of the disturbances. Disturbances of unbounded support
can drive the state arbitrarily far from zero. In this case, it is possible to guarantee
stability only in a weaker, probabilistic sense. The work [65] proved the data-rate
theorem for vector systems affected by unknown, but bounded disturbances, while
the work [49] proved the data-rate theorem under the weaker condition of stochastic
disturbances having unbounded support but a uniformly bounded higher moment,
and using the probabilistic notion of mean-square stability. The work in [72] pro-
vides a related result by characterizing the limit for the second moment of the state
in the infinite time horizon.
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Since η-moment stability requires

sup
k∈N

E
(‖Xk‖η)<∞, (1.4)

the index η gives an estimate of the quality of the stability attainable: large stabi-
lization errors occur more rarely as η increases and in this sense the system is better
stabilized. One interpretation of the results in [49, 65] is that in order to achieve
stability in a strong, almost deterministic sense (η→∞), one needs to assume al-
most surely bounded disturbances and bounded initial condition; on the other hand,
relaxing the condition on stability to the weaker mean-square sense (η= 2), one can
use the weaker assumption of bounded higher moments

∃ε > 0: E
(‖X0‖2+ε)<∞, sup

k∈N
E
(‖Vk‖2+ε)<∞, sup

k∈N
E
(‖Wk‖2+ε)<∞.

(1.5)
In short, better stability is guaranteed with better behaved disturbances, while “wild
disturbances” can only guarantee second moment stability.

The strict necessity of the data-rate theorem is proven in the deterministic set-
ting of bounded disturbances by a recursive argument using the Brunn–Minkowski
inequality, which states that the effective radius of the union of two sets is greater
than the sum of their effective radii. In the stochastic setting, it is proven using the
stochastic counterpart of the inequality, namely the entropy power inequality of in-
formation theory which states that the effective variance (entropy power) of the sum
of two independent random variables is greater than the sum of their effective vari-
ances. The similarity between these two tools is well documented in [14]. In the
stochastic case, it is required that the disturbances and the initial state have finite
differential entropy.

The difficulty in proving the sufficiency of the data-rate theorem in the un-
bounded support case is due to the uncertainty about the state that cannot be confined
in any bounded interval. This is overcome by using an adaptive quantizer depicted
in Fig. 1.2 whose number of levels N depends on the rate process and whose reso-
lution exponentially increases near the origin and diverges far from it, so that it can
avoid saturation. The constant ξ depends on the statistics of the disturbance and it
is used to recursively split the open semi-infinite intervals on the real axis into two,
while every other finite interval is recursively divided in half. The main idea is then
to divide time into cycles of length τ and at the beginning of each cycle quantize the
estimated state using N = 2Rτ levels. Using this strategy, it can be shown that the
estimated state satisfies a recurrence of the type

E
(‖Xkτ‖2)≤ c1

( |λ|2
22R

)τ
E
(‖X(k−1)τ‖2)+ c2, (1.6)

where c1 and c2 are constants. This converges in virtue of (1.2) and by choosing τ
large enough. In practice, the strategy allows the system to evolve in open loop for
τ time steps and then applies a sufficiently refined control input that makes the state
decrease at an exponential rate higher than the exponential divergence rate of the
system.
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Fig. 1.2 Adaptive quantizer used to avoid saturation due to unbounded disturbances

Fig. 1.3 Example of a realization of a stochastic rate channel Rk

1.4 Stochastic Time-Varying Channels

1.4.1 Stochastic Rate Channel

A different set of extensions concern the stochastic variability of the channel de-
picted in Fig. 1.3. This can be a first-order approximation of a wireless communi-
cation channel where the rate varies randomly in a slotted fashion. When the chan-
nel rate varies randomly with time in an independent, identically distributed (i.i.d.)
fashion Rk ∼R and there is causal knowledge of the rate process at both ends of the
communication channel, the data-rate theorem for second moment stability in the
scalar case becomes

|λ|2E(2−2R)< 1. (1.7)

The work [39] proves the result for scalar systems with bounded disturbances and
also provides the extension to η-moment stability

|λ|ηE(2−ηR)< 1. (1.8)

The intuition that to keep the state bounded it is required to balance the expansion
of the state variable of the unstable system with the contraction provided by the
received information bits still holds. The contraction rate is now a random variable,
whose η-moment trades off the η-power of the unstable mode.

The work [46] proves the result for unbounded disturbances and second moment
stability, and also provides necessary and sufficient conditions for vector systems
that are tight in some special cases. The tools required to prove these results are the
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Fig. 1.4 The binary erasure
channel

same as the ones described in the previous section. The additional complication due
to the time-varying nature of the channel in the unbounded support case is solved
using the idea of successive refinements. Namely, at the beginning of each cycle of
duration τ the quantizer sends an initial estimate of the state using the quantizer
depicted in Fig. 1.2, with a resolution dictated by the current value of the rate. In
the remaining part of the cycle, the initial estimate is refined using the appropriate
quantizer resolution allowed by the channel at each step. The refined state is then
used for control at the end of the cycle. Notice that in this case the number of bits
per cycle is a random variable dependent on the rate process and the mean square of
the state is with respect to both the channel variations and the system disturbances.

The difficulties associated with the vector extension amount to the design of a
bit allocation algorithm that dynamically allocates the available rate to the different
unstable modes of the plant. The work [46] solves the problem using time-sharing
techniques reminiscent of the ones developed in the context of network information
theory for the multiple access channel [19]. Some extensions showing the tightness
of the construction for some specific class of vector systems are provided in [70].

The stochastic rate channel includes the erasure channel as a special case that
corresponds to the rate distribution{

P(R = r) = p,
P(R = 0) = 1− p. (1.9)

This reduces, for r = 1, to the binary erasure channel depicted in Fig. 1.4 and, for
r→∞, to the continuous intermittent channel. We explore these reductions in more
detail in the next section.

In real networks, many channels exhibit correlations over time. When the rate
process follows a two-state Markov chain that corresponds to an erasure channel
with two-state memory called the Gilbert–Elliott channel and depicted in Fig. 1.5,
the data-rate theorem for mean-square stability in the scalar case with unbounded
disturbances becomes [71]

r >
1

2
logE

(|λ|2T ), (1.10)

where T is the excursion time of state r . A more general result is provided in [17]
that models the time-varying rate of the channel as an arbitrary time-invariant,
positive-recurrent Markov chain of n states. This allows arbitrary temporal corre-
lations of the channel variations and includes all previous models mentioned above,
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Fig. 1.5 The r-bit erasure
channel with two-state
memory (Gilbert–Elliott
channel)

including extensions to the vector case. The technique used to provide this extension
is based on the theory of MJLS.

In the scalar case, it is shown that stabilizing the system is equivalent to stabiliz-
ing

zk+1 = λ

2rk
zk + c, (1.11)

where zk ∈ R with z0 <∞, c > 0, {Rk}k≥0 is the Markov rate process whose evo-
lution through one time step is described by the transition probabilities

pij = P{Rk+1 = rj |Rk = ri}, (1.12)

for all k ∈ N and i, j ∈ {1, . . . , n}. This equivalent MJLS describes the stochastic
evolution of the estimation error ‖xk − x̂k‖ at the decoder, which at every time step
k increases by λ because of the system dynamics, and is reduced by 2Rk because
of the information sent across the channel. A tight condition for second-moment
stability is then expressed in terms of the spectral radius of an augmented matrix
describing the dynamics of the second moment of this MJLS.

Letting H be the n× n matrix with elements

hij = pij

22rj
, (1.13)

with spectral radius ρ(H), the data-rate theorem becomes

|λ|2 < 1

ρ(H)
. (1.14)

A similar approach provides stability conditions for the case of vector systems.
Necessary conditions use the idea of a “genie”-aided proof. First, it is assumed that a
genie helps the channel decoder by stabilizing a subset of the unstable states. Then,
the stability of the reduced vector system is related to the one of a scalar MJLS
whose evolution depends on the remaining unstable modes. By considering all pos-
sible subsets of unstable modes, a family of conditions is obtained that relate the
degree of instability of the system to the parameters governing the rate process. On
the other hand, a sufficient condition for mean-square stability is given using a con-
trol scheme in which each unstable component of the system is quantized using a
separate scalar quantizer. A bit allocation function determines how the bits avail-
able for communication over the Markov feedback channel are distributed among
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the various unstable sub-systems. Given a bit allocation function, the sufficient con-
dition is then given as the intersection of the stability conditions for the scalar jump
linear systems that describe the evolution of the estimation error for each unstable
mode.

The data-rate theorem for general Markovian rates presented in [17] recovers all
results in [39, 46, 49, 65, 71] for constant, i.i.d., or two-state Markov data rates, with
bounded or unbounded disturbances, in the scalar or vector cases. In addition, it also
recovers results for the intermittent continuous channel and for the erasure channel,
as discussed next. We discuss the techniques used to derive the results using the
theory of MJLS in more detail in Sect. 1.6.

1.4.2 Intermittent Channel

The study of the intermittent continuous channel for estimation of the state of a dy-
namical system first initiated in [48]. The study of this channel was boosted in more
recent times by the paper [61] in the context of Kalman filtering with intermittent
observations. This work was inspired by computer networks in which packets can
be dropped randomly and are sufficiently long that can be thought as representing
real, continuous values. The analysis does not involve quantization, but only era-
sures occurring at each time step of the evolution of the system. Hence, the system
in Fig. 1.1 is observed “intermittently”, through an analog, rather than digital chan-
nel, and yk in (1.1a), (1.1b) can be lost, with some probability, at each time step k.
Similar to the data-rate theorem, it is of interest to characterize the critical packet
loss probability, defined in [61], above which the mean-square estimation error re-
mains bounded and below which it grows unbounded. This threshold value depends,
once again, on the unstable modes of the system. Extensions providing large devi-
ation bounds on the error covariance and conditions on its weak convergence to a
stationary distribution are given in [47, 59, 62].

The model is easily extended to stabilization and control by considering an in-
termittent continuous channel also between the controller and the actuator. The
work [56] considers LQG control over i.i.d. packet dropping links and shows that in
the presence of acknowledgement of received packets the separation between esti-
mation and control holds and the optimal controller is a linear function of the state.
On the other hand, when there is uncertainty regarding the delivery of the packet,
the optimal control is in general nonlinear. Similar results in the slightly more re-
strictive setting of the system being fully observable and the disturbance affecting
only the system and not the observation, also appear in [32]. The critical role of
the available information pattern on the optimal control is well known [67] and is
further explored for stochastic rate channel models in [66].

The critical packet loss probability for mean-square stabilization is characterized
in [26], under the assumption of i.i.d. erasures, and in [28] in the case of Markov
erasures. The work [21] shows that such critical packet loss probabilities can be
obtained as a solution of a robust control synthesis problem. These results can also
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Fig. 1.6 The discrete
memoryless channel

be obtained from the stochastic rate channel model, considering the erasure channel
in (1.9) and letting r→∞. An easy derivation of the critical packet loss probability
for stabilization is obtained in the scalar case by evaluating the expectation in (1.7),
immediately yielding the result in [26]

p <
1

λ2
. (1.15)

Similarly, evaluating the condition in [71] for the Gilbert–Elliott channel as r→∞,
one recovers the critical probability for the two-state Markov model of [28]. The
works [17, 46] give matching reductions for the vector case as well. The latter of
these works considers the most general channel model described so far, being an
arbitrary Markov chain of n states, where r can be as low as zero (erasure) and as
high as ∞ (continuous channel).

1.4.3 Discrete Memoryless Channels

Information theory treats the communication channel as a stochastic system de-
scribed by the conditional probability distribution of the channel output under the
given input. Figure 1.6 gives a visual representation of this information-theoretic
model for the discrete memoryless channel (DMC).

In this context, the Shannon capacity of the channel is the supremum of the
achievable rates of transmissions with an arbitrarily small error probability. It fol-
lows that the erasure channel of bit-rate r described previously is a special case of
the DMC and has Shannon capacity [16]

C = (1− p)r. (1.16)

In the presence of system disturbances, for the erasure channel it follows from (1.7)
that to ensure second moment stability a necessary and sufficient condition is

|λ|2(2−2r (1− p)+ p)< 1. (1.17)

Comparing (1.16) with (1.17), it is evident that the Shannon capacity does not cap-
ture the ability to stabilize the system: not only the left-hand side of (1.17) is differ-
ent from (1.16), but as r→∞ the Shannon capacity of the channel grows unbound-
edly, while the data-rate condition for stabilization reduces to (1.15) and critically
depends on the erasure probability. Despite the infinite channel capacity, the system
may be unstable when the erasure probability is high.

The reason for the insufficiency of the of Shannon capacity to characterize the
trade-off between communication and information rate production of a dynamical
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system lies in its operational definition. Roughly speaking, the notion of Shannon
capacity implies that the message is encoded into a finite length codeword that
is then transmitted over the channel. The message is communicated reliably only
asymptotically, as the length of the codeword transmitted over the channel increases.
The probability of decoding the wrong codeword is never zero, but it approaches
zero as the length of the code increases. This asymptotic notion clashes with the
dynamic nature of the system. A very large Shannon capacity can be useless from
the system’s perspective if it cannot be used in time for control. As argued at the
end of Sect. 1.3, the system requires to receive without error a sufficiently refined
control signal every time τ that makes the state decrease by a factor exponential
in τ . The ability to receive a control input without error in a given time interval can
be characterized in a classical information-theoretic setting using the notion of error
exponent. However, for the control signal to be effective it must also be appropriate
to the current state of the system. The state depends on the history of whether previ-
ous codewords were decoded correctly or not, since decoding the wrong codeword
implies applying a wrong signal and driving the system away from the stability. In
essence, this problem is an example of interactive communication, where two-way
communication occurs through the feedback loop between the plant and the con-
troller to stabilize the system. Error correcting codes developed in this context have
a natural tree structure representing past history [51, 57] and are natural candidates
to be used for control over channels with errors. They satisfy more stringent reli-
ability constraints than the ones required to achieve Shannon capacity and can be
used, as we shall see in Sect. 1.5, to obtain moment stabilization over the DMC.

Alternative notions of capacity have been proposed to capture the hard reliability
constraints dictated by the control problem. The zero-error capacity C0 was also in-
troduced by Shannon [58] and considers the maximum data rate that can be commu-
nicated over the channel with no error. Assuming that the encoder knows the channel
output perfectly, this notion of capacity can be used to obtain a data-rate theorem
for systems with bounded disturbances with probability one in the form [43]

C0 �
∑
i∈U

log |λi |, (1.18)

where we have used the symbol � to indicate that the inequality is strict for the suffi-
cient but not for the necessary condition. It was noted in [43] that even if a feedback
channel from decoder to encoder is not available, in the absence of bounded external
disturbances “virtual feedback” from decoder to encoder can always be established
because the controller affects the plant’s motion in a deterministic way and the sen-
sor observes such motion. The controller can then encode its message depending on
the observed state motion. For this reason, it is customary in the literature to assume
the presence of communication feedback. This assumption is particularly important
in the case of (1.18) because, unlike in the classical Shannon capacity, the zero-error
capacity of the DMC increases in the presence of feedback.

The insufficiency of classical Shannon capacity to describe stabilization with
probability one in the presence of disturbances over erasure channels was first
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pointed out in [41], which led to the zero-error capacity framework of [43]. Unfortu-
nately, the zero-error capacity (with or without feedback) of most practical channels
(including the erasure channel) is zero [36], which implies that unstable systems
cannot keep a bounded state with probability one when controlled over such chan-
nels. In practice, a long sequence of decoding errors always arises with probability
one, and the small unknown disturbances that accumulate in this long time interval
can always drive the system state without bound.

The situation drastically changes for undisturbed systems. In this case, the clas-
sical Shannon capacity C can be used to derive a data-rate theorem with probability
one in the form [42]

C �
∑
i∈U

log |λi |. (1.19)

This result was proven for the special case of the erasure channel in [64] and in the
more general form for the DMC in [42].

Zero-error capacity and Shannon capacity provide data-rate theorems for plants
with and without disturbances, respectively, over the DMC. They both require the
strong notion of keeping the state bounded with probability one. Another notion of
capacity arises by relaxing the constraint on stabilization with probability one to the
weaker constraint of moment stability (1.4) that we used to describe stabilization
over stochastic rate channels with unbounded system disturbances. In this case, the
data-rate theorem can be written in terms of a parametric notion of channel capacity
called anytime capacity [52]. Consider a system for information transmission that
allows the time for processing the received codeword at the decoder to be infinite,
and improves the reliability as time progresses. More precisely, at each step k in the
evolution of the plant a new message mk of r bits is generated that must be sent
over the channel. The coder sends a bit over the channel at each k and the decoder
upon reception of the new bit updates the estimates for all messages up to time k. It
follows that at time k messages

m0,m1, . . . ,mk

are considered for estimation, while estimates

m̂0|k, m̂1|k, . . . , m̂k|k

are constructed, given all the bits received up to time k. Hence, the processing op-
eration for any message mi continues indefinitely for all k ≥ i. A reliability level
α is achieved in the given transmission system if for all k the probability that there
exists at least one message in the past whose estimate is incorrect decreases α-
exponentially with the number of bits received, namely

P
(
(M̂0|k, . . . , M̂d|k) 
= (M0, . . . ,Md)

)=O(2−αd) for all d ≤ k. (1.20)

The described communication system is then characterized by a rate–reliability pair
(r,α). It turns out that the ability to stabilize a dynamical system depends on the
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ability to construct such a communication system, in terms of achievable coding
and decoding schemes, with a given rate–reliability constraints.

Let the supremum of the rate r that can be achieved with reliability α be the
α-anytime capacity CA(α) of a given DMC with channel feedback. The neces-
sary and sufficient condition of the data-rate theorem for η-moment stabilization
of a scalar system with bounded disturbances and in the presence of channel output
feedback is [53]

CA
(
η log |λ| + ε)� log |λ|. (1.21)

Extensions to vector systems appear in preprint form in [54].
The anytime capacity has been introduced as an intermediate quantity between

the hard notion of zero-error capacity and the soft notion of Shannon capacity. Not
surprisingly, we have

C0 ≤ CA(α)≤ C, (1.22)

and in the limiting cases

CA
(
0+

)= C, CA(∞)= C0. (1.23)

Zero-error capacity requires transmission without error. Shannon capacity requires
the decoding error go to zero with the length of the code. In the presence of dis-
turbances, only the zero-error capacity can guarantee the almost sure stability of
the system. The anytime capacity requires transmission with codeword reliability
increasing exponentially in the delay of the single received bit. For scalar systems
in presence of bounded disturbances, it is able to characterize the ability to stabilize
the system in the weaker η-moment sense [53].

Unfortunately, the anytime capacity can be computed only for the special cases
of the erasure channel and the additive white Gaussian noise channel with input
power constraint, and in both of these cases it provides data-rate theorems that can
also be derived directly in a more classical setting. For the r-bit erasure channel with
feedback, we have

CA(α)= rα

α + log[(1− p)(1− 2αp)−1] . (1.24)

Substituting (1.24) into (1.21), we obtain after some algebra

|λ|η(2−ηr (1− p)+ p)� 1. (1.25)

Comparing (1.25) with (1.17), it follows that (1.25) is consistent with the result for
the stochastic rate channel in [17], which, in fact, gives a stronger version of the any-
time capacity data-rate theorem for the case of the erasure channel with feedback,
providing a single (necessary and sufficient) strict inequality condition for second
moment stability. Furthermore, it also extends the result for this particular channel
to disturbances with unbounded support.

For the additive white Gaussian noise channel with input power constraint, the
anytime capacity is independent of the reliability level α and it coincides with the
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Shannon capacity. In this case, the data-rate theorem can be given in terms of signal-
to-noise ratio and available bandwidth [11, 25, 66].

The anytime capacity of more general channel models remains unknown. In ad-
dition, there may be cases in which the output of the noisy channel may not be
available at the encoder and is impracticable to use the plant to signal from the de-
coder to the encoder. In this case, it is only known that the anytime capacity of a
DMC without feedback is lower bounded by the exponent β of the error probability
of block codes; namely, for any rate r < C we have

CA
(
β(r) log2 e

)
≥r log2 e. (1.26)

The work [53] proposes an ingenious control scheme to achieve (1.26) based on the
idea of random binning: the observer maps to state using a time-varying randomly
labeled lattice quantizer and outputs a random label for the bin index; the controller,
on the other hand, makes use of the common randomness used to select the random
bin labels to decode the quantized state value. This proof technique, however, only
applies to plants with bounded disturbances.

Despite these shortcomings, the anytime capacity has been influential in the defi-
nition of the reliability constraints for the coding–decoding schemes that can achieve
moment stabilization of linear systems in the presence of bounded disturbances, thus
providing inspiration for further research in coding [13, 51, 60, 63].

1.4.4 Additive Gaussian channels

The additive white Gaussian noise communication channel with power constraint P
is defined as the system

yk = xk + zk, (1.27)

where zk is the realization of an i.i.d. Gaussian process with zero mean and vari-
ance σ 2, and the input is constrained by

E
(
X2
k

)≤ P, ∀k. (1.28)

The Shannon capacity of this channel is perhaps the most notorious formula in in-
formation theory

C = 1

2
log

(
1+ P/σ 2). (1.29)

In this case, the data-rate theorem for second moment stabilization becomes [11, 25]

P

σ 2
>

∏
i∈U

|λi |2 − 1, (1.30)
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that is equivalent to

C >
∑
i∈U

log |λi |. (1.31)

The work in [11] also shows that stabilization can be achieved, provided (1.31)
holds, using a linear controller with constant gain, if the system’s output sent to the
controller consists of the entire state vector. If the output consists only of a linear
combination of state elements, then the required signal-to-noise ratio for stabiliza-
tion using linear constant feedback exceeds the bound in (1.30), unless the plant is
minimum phase. The work in [25] also shows that (1.31) is also required for sec-
ond moment stability using nonlinear, time-varying control and provides an explicit
lower bound on the second moment of the state that diverges as one approaches
the data-rate capacity threshold. Earlier incarnation of these results go back to [66],
with slightly stronger assumptions on the available information pattern, and to [20]
that connected the recursive capacity-achieving scheme in [55] for the AWGN with
feedback to the stabilization problem of scalar systems over AWGN channels.

Extensions to additive colored Gaussian channels (ACGC) provide additional
connections between the ability to stabilize dynamical systems and the feedback
capacity CF of the channel. This is defined as the capacity, in Shannon’s sense,
in the presence of an additional noiseless feedback link between the output and
the input of the channel. While for the AWGN channel feedback does not improve
capacity, for ACGC it does improve it. The feedback capacity of the first order
moving average (MA1) additive Gaussian channel has been determined in [33] and
for the general case of stationary ACGC in [34]. The work in [45] exploits the result
in [33] to show that mean-square stabilization of an undisturbed minimum phase
plant with a single unstable pole over a MA1 additive Gaussian channel is possible
if and only if

CF > log |λ|. (1.32)

The work in [3] exploits the result in [34] to show that the feedback capacity of the
general stationary ACGC with power constraint P is

CF = sup
L
U, (1.33)

where

U =
∑
i∈U

log |λi | (1.34)

and L is the set of all undisturbed (vector) linear systems that can be stabilized using
a linear controller over the same additive Gaussian channel, with power constraint

1

2π

∫ π

−π
∣∣T (ejω)∣∣2SZ(ω)dω ≤ P, (1.35)
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Table 1.1 Summary of data-rate theorems for stabilization over noisy channels

Condition Channel Stabilization Disturbance

C �U DMC a.s. 0

C0 �U DMC a.s. bounded

CA(η log |λ|)� η log |λ| DMC η-moment bounded

|λ|2(2−2r (1− p)+ p) < 1 Erasure 2nd moment unbounded

C >U AWGN η-moment unbounded

CF = supU ACGN 2nd moment 0

where Sz(ω) is the power spectral density of the noise, and T is the complementary
sensitivity function of the system. This result shows that the maximum “tolerable in-
stability” U of an LTI system with a given power constraint P , controlled by a linear
controller over a general stationary Gaussian channel, corresponds to the feedback
capacity of that channel subject to the same power constraint P . Hence, there is a
natural duality between feedback stabilization and communication over the Gaus-
sian channel. This duality can also be exploited to construct efficient communication
schemes over the Gaussian channel with feedback in the context of network infor-
mation theory, using control tools. This theme was first explored in [20] and later
expanded in [4].

We provide a summary of the results for different noisy channels Table 1.1.

1.5 Error Correcting Codes for Control

Independent of research in stabilization and control, error correcting codes with
exponential reliability constraints in the form of (1.20) were introduced in the con-
text of interactive communication [57]. These codes possess a natural tree structure
that can be used to maintain synchronization between the controller and system
when communication occurs over noisy channels. Although it is not known whether
tree codes are anytime capacity achieving, they can be used for stabilization of net-
worked control systems when their rate-reliability parameters fall within a region
needed for stabilization of the given system. We motivate them with the following
example.

Consider the problem of tracking a scalar unstable process with dynamics

xk+1 = λxk + vk, (1.36)

with λ > 1. The initial condition and the additive disturbance are supposed to be
random but bounded, i.e., |X0| ≤ α and |Vk| ≤ β for some α,β <∞. We consider
the setup where a coder having access to the state communicates over a binary noisy
channel to a decoder that wishes to track the state of the system. The objective is to
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design a coder–decoder pair such that

sup
k

E
(|Xk − X̂k|2)<∞. (1.37)

If the communication channel is noiseless and allows transmission without errors
of r bits per unit of time, then we obtain the usual data-rate theorem in the form
(1.3). The strategy used for estimation follows the one described in [65]. Let U0 =
[−α,+α] denote the set containing the initial condition x0. At time k = 0, the coder
and the decoder partition U0 into 2r intervals U0(1), . . . ,U0(2r ) of equal size. The
coder communicates to the decoder the index m0 of the interval U0(m0) containing
the state, so the decoder can form a state estimate x̄0 as the midpoint of U0(m0).
This construction implies

|x0 − x̄0| ≤ α2−r

for any x0 ∈ U0. Also, notice that x1 is contained inside the set U1 := λU0(m0)+
[−β,+β], where the sum denotes the Minkowski sum of sets. This means that the
same scheme can be used at time k = 1 to estimate the state x1. Specifically, the
coder and the decoder partition the set U1 into 2r intervals U1(1), . . . ,U1(2r ) of
equal size, the coder transmits the index m1 of the subinterval containing the state,
and the decoder sets x̄1 equal to the midpoint of U1(m1), so that

|x1 − x̄1| ≤ αλ2−2r + β2−r .

By iterating the same procedure k times, at time k the coder and the decoder agree
that xk belongs to a set Uk := λUk−1(mk−1) + [−β,+β]. Then, the coder sends
over the channel the indexmk of the subinterval Uk(mk)⊆ Uk containing xk and the
decoder forms an estimate x̄k as the midpoint of the uncertainty interval Uk(mk). It
can be shown by induction that

|xk − x̄k| ≤
(
λ2−r

)k
α2−r + β2−r

k−1∑
j=0

(
λ2−r

)k−1−j
.

It follows that a sufficient condition for the estimation error at the decoder to remain
bounded for all k coincides with (1.3).

Consider now the case of a noisy channel in which synchronism between coder
and decoder can be lost in the event that the sequence m0, . . . ,mk is not correctly
decoded at the estimator. To prevent this, at every time k a channel encoder maps
the sequence m0, . . . ,mk into an r-bit channel input sequence fk(m0, . . . ,mk) that
is transmitted over the channel. A channel decoder maps the received channel bits
up to time k into an estimate m̂0|k, . . . , m̂k|k for the input sequence, which, in turn,
is used to form the state estimate x̂k as the midpoint of the interval Uk(m̂k|k) which
is formed by recursively partitioning λUj (m̂j |k)+ [−β,β], j = 0, . . . , k − 1, into
2r intervals.

If the index of the first wrong estimate at the decoder is k − d , that is, if
m̂0|k = m0, . . . , m̂k−d−1|k = mk−d−1 and m̂m−d|k 
= mm−d , then the error between
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the estimators at coder and decoder is

|x̄k − x̂k| =O
(
λd
)
, (1.38)

because the difference between the two estimates at time k − d is amplified by λ
at each iteration due to the expansion of the state process. It follows that the mean-
square estimation error can be upper bounded as

E
(|Xk − X̂k|2)≤ 2E

(|Xk − X̄k|2)+ 2E
(|X̄k − X̂k|2)

=O
(
λ2k

22kr
+
k−1∑
d=0

Pd,kλ
2d

)
, (1.39)

where

Pd,k = P {M̂0|k =M0, . . . , M̂k−d−1|k =Mk−d−1, M̂k−d|k 
=Mk−d},
denotes the probability that the index of the first wrong estimate at time k is k − d ,
d = 0,1, . . . , k. Observe that (1.39) is obtained by separately bounding two terms,
the first of which represents the mean-square estimation error under the assumption
that the channel is noise free, that goes to zero if (1.3) is satisfied, while the second
denotes the mean-square error between the estimator x̄k available at the encoder
and the estimator x̂k available at the decoder, and is bounded provided Pd,k decays
fast enough as d grows. It follows that a sufficient condition for second moment
stabilization is given by

{
r ≥ log |λ|,
Pd,k =O(2−2(log |λ|+ε)d ) for all d ≤ k,

(1.40a)

(1.40b)

that corresponds to the sufficient condition given in (1.21) in terms of anytime ca-
pacity.

1.5.1 Tree Codes

The reliability condition imposed by (1.40a), (1.40b) is amenable to the following
visual interpretation. First, notice that the coding–decoding scheme can be visual-
ized on a tree of depth k, as depicted in Fig. 1.7, where the nodes at level i denote the
uncertainty intervals Uj (1), . . . ,Uj (2r ), while the label on each branch denotes the
r-bit sequence transmitted over the channel at each time instant. The codeword asso-
ciated to a given path in the tree is given by the concatenation of the branch symbols
along that path. The sequence m0, . . . ,mk determines the path in the tree followed
up to time k by the encoder, while m̂0, . . . , m̂k determines the path followed by the
decoder. Then, (1.40a), (1.40b) implies that the uncertainty at the controller about
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Fig. 1.7 Binary tree visualizing the evolution of the uncertainty set containing the initial condition.
The coding–decoding scheme described in Sect. 1.5 can be visualized on this tree by labeling each
branch with the symbols sent over the channel. The codeword associated to a given path is given
by the concatenation of the branch symbols along that path

the path followed in the binary tree must decrease exponentially at rate 2(log |λ|+ε)
with the distance d from the bottom of the tree.

Tree codes and their maximum likelihood analysis were first introduced in [23],
but finding explicit deterministic constructions of codes achieving a given rate-
reliability pair (r,α) is still an important open problem. The work [57] applied the
random coding argument in [23] to prove the existence of codes within a specific
(r,α) region. The codes introduced in [57] are defined by the property that the Ham-
ming distance between any two codewords associated with distinct paths of equal
depth in the binary tree is proportional to the height from the bottom of the tree of the
least common ancestor between the two paths. For example, the Hamming distance
between the codewords C and C′ illustrated in Fig. 1.7 should be proportional to h.
This property on the minimum distance translates into different guarantees on the
reliability of the code depending on the communication channel. The preprint [63]
proves the existence with high probability of linear (r,α) tree codes, i.e., codes
where the channel input sequence fk(m0, . . . ,mk) transmitted over the channel at
time k is a linear function of m0, . . . ,mk . The (r,α) region of existence obtained
in [63] is currently the largest known region of existence. An important open prob-
lem is to show the existence of (possibly nonlinear) (2 log |λ|)-reliable codes for
any rate r greater than log |λ|. This result would show that tree codes are anytime-
capacity achieving and therefore they are both necessary and sufficient for moment
stabilization of unstable scalar systems over noisy channels.

The argument in [57] relies on the probabilistic method and only ensures the
existence of tree codes, not their explicit construction. A new class of codes with
explicit constructions that are computationally efficient have been presented in [51],
but they exhibit weaker reliability constraints that are only useful for stabilization
of plants whose state space grows polynomially with time. The preprint [63] offers
an explicit construction for the binary erasure channel that does not require causal
knowledge of the erasure process, as it was assumed to derive the data-rate theorem
in [17].

It is important to emphasize that explicit constructions require coding and de-
coding operations to be computationally efficient. One could, in principle, consider
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using traditional convolutional codes developed in the context of wireless communi-
cation to stabilize dynamical systems [38]. These codes perform “on-line” encoding
and decoding in which the estimate of the received message is refined as more bits
are received within the constraint length window of the code. The constraint length
is analogous to the block length of traditional block codes, but it allows incremen-
tal, on-line refinement of the received message estimate at the decoder. The error
probability decreases exponentially with the constraint length of the code, thus pro-
viding the required reliability constraint. Unfortunately, the complexity of the con-
struction increases with the constraint length and computationally efficient convolu-
tional codes only exist for small constraint lengths. Convolutional codes are heavily
used in mobile phones, where occasional errors translate in call drops or audio dis-
turbances. In control applications, however, the accumulation of errors over long
time periods resulting from finite constraint lengths would make them unsuitable
for practical implementations as they would drive the system to instability.

1.6 Stochastic Time-Varying Rate: An In-Depth Look

We now provide a more rigorous treatment of the data-rate theorem for stochas-
tic time-varying rate channels, with the objective of illustrating recently developed
techniques based on the theory of MJLS that can be used to derive many of the
results available in the literature. We follow the approach developed in [17]; how-
ever, we consider here the special case of a scalar system in which there are only
system disturbances and no observation disturbances. This allows presenting sim-
plified proofs that are considerably shorter, more easily accessible, and better suited
to grasp the main ideas behind them.

Consider the special case of a scalar system with state feedback

{
xk+1 = λxk + uk + vk,
yk = xk,

(1.41a)

(1.41b)

where k = 0,1, . . . and |λ| ≥ 1, and suppose that the following assumptions hold:

Assumption 1.1 The initial condition X0 and the plant disturbance Vk , k ≥ 0, are
zero mean and have continuous probability density functions of finite differential
entropy, so there exists a constant β > 0 such that e2h(Vk) ≥ β for all k.

Assumption 1.2 The initial conditionX0 and the plant disturbance Vk , k ≥ 0, have
uniformly bounded (2+ ε)th moments so there exists a constant α <∞ such that
E(|Vk|2+ε)≤ α for all k.

We also assume that the sensor measurements yk are transmitted from the state
observer to the actuator over a noiseless digital communication link that at each time
k allows transmission without errors of rk bits. The rate sequence r0, r1, . . . is the
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realization of a stochastic process R1,R2, . . . , that is modeled as a homogeneous
positive-recurrent Markov chain taking values in a finite subset of the nonnegative
integers

R= {r̄1, . . . , r̄n},
and whose evolution through one time step is described by the transition probabili-
ties (1.12), i.e.,

pij = P{Rk+1 = r̄j |Rk = r̄i}
for all k ∈ N and i, j ∈ {1, . . . , n}. The rate process is independent of the other
quantities describing the system and is causally known at observer and controller.

At each time k, a coding function (coder) sk = sk(y0, . . . , yk) maps all past and
present measurements into the set {1, . . . ,2rk }. The digital link is mathematically
modeled as the identity function on the set {1, . . . ,2rk }, so the symbols sk are reli-
ably transmitted without distortion. The received channel outputs are transformed
by a decoding function (decoder) uk = x̂k(s0, . . . , sk) that maps all past and present
symbols sent over the digital link into a control input uk that is sent to the plant.

The problem is to find conditions on the rate process and the system parameters
to ensure stability of the closed loop system. We adopt the probabilistic notion of
mean-square stability and require that

sup
k

E
[|Xk|2]<∞, (1.42)

where the expectation is taken with respect to the rate process, the initial condition,
and the plant disturbance.

We now proceed to establish necessary and sufficient conditions for mean-square
stability of the scalar linear system (1.41a), (1.41a).

Theorem 1.1 Let H be the n× n matrix with nonnegative real elements

hij = 1

22r̄j
pji (1.43)

for all 1 ≤ i, j ≤ n. If Assumption 1.1 holds, then (1.41a), (1.41b) is mean-square
stable only if

|λ|2 < 1

ρ(H)
. (1.44)

Conversely, if Assumption 1.2 holds, then there exists a coder–decoder pair that
stabilizes (1.41a), (1.41b) is mean-square sense if (1.44) is satisfied.

If both Assumptions 1.1 and 1.2 hold, then Theorem (1.1) asserts that condi-
tion (1.44) is both necessary and sufficient to ensure mean-square stability. Appli-
cation of Theorem 1.1 yields the following results as special cases.
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(a) Constant rate. When the channel supports a constant rate, i.e., the rate process is
identically equal to r̄ at all times, the matrix H is equal to 1/22r̄ and thus (1.44)
reduces to

r̄ > log|λ|, (1.45)

which is the condition given by the data-rate theorem in its basic formulation. It
should be remarked that here r̄ is restricted to be an integer, but this assumption
can be relaxed by taking the approach followed in [49, 65], where the rate pro-
cess is allowed to vary deterministically and r̄ is defined as the infinite horizon
time-average of the process.

(b) Independent rate process. Consider the special case of an independent rate pro-
cess where each random variable Rk in the rate process is identically distributed
as a random variable R with probability mass function pi = P{R = r̄i}, r̄i ∈R.
It can be easily seen that in this case H reduces to a rank-one matrix with only
one nonzero eigenvalue equal to

∑n
i=1 pi |λ|22−2r̄i . Therefore, (1.44) special-

izes to

|λ|2ρ(H)=
n∑
i=1

pi |λ|22−2r̄i

= E
(|λ|22−2R)< 1. (1.46)

The necessity and sufficiency of (1.46) for mean-square stability in this setting
was established in [46]. This condition is also a special case of a result in [39],
where it is established under the assumption of bounded disturbances that nec-
essary and sufficient condition for ηth moment stability, i.e., boundedness of the
ηth moment of the plant, is E(|λ|η2−ηR) < 1.

(c) Two-state Markov process. Consider the special case of a rate process that ran-
domly switches between two different states, state r̄1 and r̄2, and where the
transition probabilities from r̄1 to r̄2 and from r̄2 to r̄1 are denoted by p and q ,
respectively. In this case, it is possible to relate the spectral radius ofH to its de-
terminant det(H) and its trace tr(H). Specifically, the condition in Theorem 1.1
reduces to

|λ|2
2

(
tr(H)+

√
tr(H)2 − 4 det(H)

)
< 1. (1.47)

(d) Erasure Channel. Another special case that has been studied in the literature is
the case of an erasure channel, which is further specialization of the two-state
Markov process described above in the case where r̄1 = 0, r̄2 = r̄ . Necessary
and sufficient conditions for mean-square stability under this channel model
were established in [71], for the Markovian case, and in [46, 52] in the special
case of independent rate process. If we further specialize to the case where
r̄ → ∞, then (1.47) recovers a result that was first established in [26].
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1.6.1 Necessity

The following lemma states that if Assumption 1.1 is satisfied, then the second mo-
ment of the state in (1.41a), (1.41b) is lower bounded by the first moment of a MJLS
whose dynamics depends on the Markov rate process {Rk} and on the constant β
defined in Assumption 1.1.

Lemma 1.1 Let Assumption 1.1 hold. Then, for every k = 0,1, . . . the second mo-
ment of Xk satisfies

E
(|Xk|2)> 1

2πe
E(Zk),

where {Zk} is a non-homogeneous MJLS with dynamics z0 = e2h(X0) and

zk+1 = |λ|2
22Rk

zk + β, k = 0,1, . . . . (1.48)

Proof Let Sk = {S0, . . . , Sk} denote the symbols transmitted over the digital link up
to time k. By the law of total expectation and the maximum entropy theorem [19],
we have

E
(|Xk+1|2

)=∑
sk

P
{
Sk = sk}E(|Xk+1|2|Sk = sk

)

= 1

2πe

∑
sk

P
{
Sk = sk}eln 2πeE(|Xk+1|2|Sk=sk)

≥ 1

2πe

∑
sk

P
{
Sk = sk}eln 2πeh(Xk+1|Sk=sk)

=: 1

2πe
ESk

(
e2h(Xk+1|Sk=sk)), (1.49)

where the summation is over si ∈ S := ∪r∈R{1, . . . ,22r}, 0≤ i ≤ k. It follows that
the second moment of the state is lower bounded by the average entropy power of
Xk conditional on Sk . From the translation invariance property of the differential en-
tropy, the conditional version of entropy power inequality [19], and Assumption 1.1,
it follows that

ESk
(
e2h(Xk+1|Sk=sk))= ESk

(
e2h(λXk+x̂(sk)+Vk |Sk=sk))

≥ ESk
(
e2h(λXk |Sk=sk))+ e2h(vk)

≥ |λ|2ESk
(
e2h(Xk |Sk=sk))+ β. (1.50)
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We can further lower bound (1.50) making use of a result proved in [46, 49], which
states that for every time k ≥ 0, sk−1 ∈ Sk−1, and r ∈R

∑
sk

P
{
Sk = sk

∣∣ Sk−1 = sk−1,Rk = r
}
e2h(Xk |Sk=sk) ≥ 1

22r
e2h(Xk |Sk−1=sk−1),

(1.51)
where S−1 := ∅. By the tower rule of conditional expectation, it then follows that

ESk
(
e2h(Xk |Sk=sk))≥ ESk−1,Rk

(
1

22Rk
e2h(Xk |Sk−1=sk−1)

)
. (1.52)

Combining (1.52) and (1.50) gives

ESk
(
e2h(Xk+1|Sk=sk))
≥ ERk

( |λ|2
22Rk

ESk−1|Rk
(
e2h(Xk |Sk−1=sk−1)

))+ β. (1.53)

Following similar steps and using the Markov chain Sk−1 → (Sk−2,Rk−1)→ Rk ,
we obtain

ESk−1|Rk
(
e2h(Xk |Sk−1=sk−1)

)
≥ |λ|2ESk−1|Rk

(
e2h(Xk−1|Sk−1=sk−1)

)+ β
≥ ESk−2,Rk−1|Rk

( |λ|2
22Rk−1

e2h(Xk−1|Sk−2=sk−2)

)
+ β

= ERk−1|Rk
( |λ|2

22Rk−1
ESk−2|Rk−1,Rk

(
e2h(Xk−1|Sk−2=sk−2)

))+ β. (1.54)

Substituting (1.54) into (1.53) and re-iterating k times, it follows that

ESk
(
e2h(Xk+1|Sk=sk))
≥ ERk−1,Rk

( |λ|4
22(Rk−1+Rk)ESk−2|Rk−1,Rk

(
e2h(Xk−1|Sk−2=sk−2)

))

+ β
(

1+ERk

( |λ|4
22Rk

))

≥ ER1,...,Rk

( |λ|2k
22(R1+···+Rk)ES1|R1,...,Rk

(
e2h(X1|S0=s0)))

+ β
(

1+
k∑
j=2

ER1,...,Rk

( |λ|2(k−j+1)

22(Rj+···+Rk)

))
(1.55)
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= E

( |λ|2(k+1)

22(R1+···+Rk)

)
e2h(X0) + β

(
1+

k∑
j=1

E

( |λ|2(k−j+1)

22(Rj+···+Rk)

))
, (1.56)

where (1.55) uses the fact that the initial condition of the state X0 is independent of
the rate process Rk . By taking the expectation on both sides of (1.48) and iterating k
times, it is easy to see that the right hand side of (1.56) is the first moment of the non-
homogeneous MJLS zk+1 with dynamics given in (1.48). Hence, combining (1.53)–
(1.56), we conclude that E(|Xk|2) > 1

2πeE(Zk), which is the claim. �

Lemma 1.1 shows that the state cannot be mean-square stable if the average of the
{Zk} process is unbounded. Next, we establish that (1.44) is a necessary condition
for the first-moment stability of {Zk}. For every k ≥ 0, let μk,i = E[Zk1{Rk=r̄i }]
denote the expectation of Zk in the event that the rate at time k is r̄i . Since Zk+1 →
Rk → Rk+1 form a Markov chain, the following recursion holds for every 1 ≤ i,
j ≤ n:

μk+1,j =
n∑
i=1

|λ|2
22r̄i

pijμk,i + β
n∑
i=1

pijP {Rk = r̄i}, k = 0,1, . . . .

It follows that the vector μk = (μk,1, . . . ,μk,n)T ∈R
n evolves over time according

to the linear system

μk+1 = |λ|2H μk + bk, k = 0,1, . . . , (1.57)

whereH is the transition probability matrix defined in (1.43) and bk ∈R
n is a vector

with j th element equal to β
∑n
i=1 pijP {Rk = r̄i}. Notice that ρ(|λ|2H) < 1 is a nec-

essary condition to ensure that the linear system (1.57) is stable, i.e., supk ‖μk‖1 <

∞. On the other hand, by the law of total probability, E(Zk)=∑n
i=1μk,i = ‖μk‖1

and so the plant is mean-square stable only if supk ‖μk‖1 <∞. This establishes
that (1.44) is a necessary condition for the second moment stability of the plant.

1.6.2 Sufficiency

Consider now the system (1.41a), (1.41b) and suppose that Assumption 1.2 is satis-
fied. In this section, we build a coder–decoder pair that stabilizes the system under
the assumption that (1.44) holds. We first describe the adaptive quantizer that is at
the base of the constructive scheme. This is based on the construction given in [49].

Adaptive Quantizer For any r ≥ 2, the quantizer qr proposed in [49] induces the
following partition of the real line:

• The set [−1,1] is divided into 2r−1 intervals of the same length;
• The sets (ξ i−2, ξ i−1] and (−ξ i−1,−ξ i−2] are divided into 2r−1−i intervals of the

same length, for each i ∈ {2, . . . , r − 1};
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• The leftmost and rightmost intervals are the semi-open sets (−∞,−ξ r−2] and
(ξ r−2,∞).

A sketch of the quantizer for r = 4 is depicted in Fig. 1.2. Here ξ > 1 is a parameter
that determines the concentration of intervals around the origin. We can see that the
width of the quantization regions increases with ξ , so the partition becomes more
spread out as ξ increases. Given a real number x, the output value of the quantizer
qr(x) is the midpoint of the interval in the partition containing x. In the sequel,
we will also make use of the function κr(x), which instead returns the half-length
of such interval, such that the quantization error is bounded by κr(x). If x is in
one of the two semi-open sets at the two extremes of the partition, then we set
qr(x)= sign(x)ξ r and κr(x)= ξ r − ξ r−1.

A fundamental property of this construction is that, loosely speaking, the esti-
mation error produced by the mapping qr decays exponentially fast r . The precise
statement of this property involves a functional that was first introduced in [49]. For
any pair of random variables (X,L), where L≥ 0, let

‖X,L‖ :=
√
E
[
L2 + |X|2+εL−ε]. (1.58)

In [29], it is shown that the non-negative functional ‖X,L‖ is a pseudo-norm in the
space of random vectors (X,L) ∈R×R+ and satisfies the following properties:

(i) Second moment bound:

E
(|X|2)≤ ‖dX,dL‖2. (1.59)

(ii) Positive homogeneity: For any d ≥ 0

‖dX,dL‖ = d‖X,L‖. (1.60)

(iii) Triangle inequality: For any X1,X2 ∈R and L1,L2 ≥ 0,

‖X1 +X2,L1 +L2‖ ≤ ‖X1,L1‖ + ‖X2,L2‖. (1.61)

Lemma 5.2 in [49] proves that if ξ > 22/ε , then the average quantization error pro-
duced by qr satisfies

∥∥∥∥X−Lqr
(
X

L

)
,Lκr

(
X

L

)∥∥∥∥
2

≤ ζ

22r
‖X,L‖2, (1.62)

for some constant ζ > 0 only determined by ε and ξ .
Another important property of this quantizer is that it is successively refinable.

Observe in fact that the partition of the r-bit quantizer can be obtained recursively
from the one of the (r − 1)-bit quantizer by dividing each bounded interval into
two intervals of the same length and the two semi-open intervals into two inter-
vals each. In particular, the interval (ξ r−2,∞) is divided into the bounded interval
(ξ r−2, ξ r−1] and the semi-open interval (ξ r−1,∞), and similarly for the interval
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(−∞,−ξ r−2]. Thus, qr+r ′(x) can be computed recursively starting from qr(x) by
repeating the above procedure r ′ times. We will make use of this property in our
control scheme, where we use the fact that if coder and decoder know qrk (x) at time
k, then the coder can communicate to the decoder qrk+rk+1(x) by sending rk+1 bits
at time k+ 1.

The stabilizing scheme can be described as follows. Coder and decoder share at
each time k a state estimator x̂k that is recursively updated using the symbols sent
over the digital link. Time is divided into cycles of fixed duration τ . At the beginning
of each cycle, the coder sends a scaled version of the estimation error that is quan-
tized at a resolution dictated by the current value of the rate. In the remaining part
of the cycle, the coder sends refinements of the original transmission at a resolution
determined by the rate process at each step. At the end of each cycle, the decoder
updates the state estimator and sends a control signal to the plant. The scaling factor
that is applied to the error prior to quantization is updated at the end of each cycle.
The basic idea is to adjust the range of the quantizer as in the zoom-in zoom-out
strategy proposed in [37, 69]: the range is increased (zoom-out phase) when atypi-
cally large disturbances affect the system, and decreased as the state reduces its size
(zoom-in phase). Next, the coder and decoder are described in detail.

Coder At the beginning of the j th cycle, i.e., at time jτ , the coder computes

qrjτ
(
(xjτ − x̂jτ )/ lj

)
, (1.63)

where lj is the scaling factor updated at the beginning of each cycle, and com-
municates to the decoder the index sjτ ∈ {1, . . . ,2rjτ } of the quantization interval
containing the scaled estimation error. At time jτ + 1, coder and decoder divide
the quantization interval into 2rjτ+1 subintervals according to the recursive proce-
dure described above. The coder sets sjτ+1 ∈ {1, . . . ,2rjτ+1} equal to the subinterval
containing (xjτ − x̂jτ )/ lj , so the decoder can compute

qrjτ+rjτ+1

(
(xjτ − x̂jτ )/ lj

)
.

By repeating the same procedure for the rest of the cycle, at time (j + 1)τ − 1 the
decoder knows (xjτ − x̂jτ )/ lj at the resolution provided by a quantizer with

r(j)= rjτ + · · · + r(j+1)τ−1

bits. Before the beginning of the next cycle, coder and decoder compute

x̂(j+1)τ = λτ
(
x̂jτ + lj qr(j)

(
xjτ − x̂jτ

lj

))
, (1.64)

and

lj+1 =max

{
ϕ, |λ|τ lj κr(j)

(
xjτ − x̂jτ

lj

)}
, (1.65)

with x̂0 = 0, l0 = ϕ, where ϕ is any constant that only depends on ε.
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Decoder At every time k the decoder sends to the plant the control signal

uk =
{
−λx̂k if k = τ,2τ, . . . ,
0 otherwise,

(1.66)

where x̂jτ is updated as in (1.64) at the beginning of each cycle.

Analysis First, we prove that if (1.44) holds, then the second moment of the mean-
squared estimation error at the beginning of each cycle is bounded. The following
lemma shows that E(|Xjτ − X̂jτ |2) is lower bounded by the second moment of a
MJLS whose dynamics depends on the Markov rate process {Rk} and on the con-
stants α and ε defined in Assumption 1.2.

Lemma 1.2 Let Assumption 1.2 hold. Then, for every k = 0,1, . . ., the estimation
error Xjτ − X̂jτ satisfies

E
(|Xjτ − X̂jτ |2)≤ E

(
Z2
jτ

)
,

where {Zjτ } is a non-homogeneous MJLS with dynamics

z(j+1)τ = φ |λ|τ
2Rjτ+···+R(j+1)τ−1

zjτ + ς, j = 0,1, . . . , (1.67)

for some constants z0 > 0, φ > 1, and ς > 0 that are only determined by ε, τ , and α.

Proof Let ejτ = xjτ − x̂jτ denote the estimation error at the beginning each cycle.
By (1.59) and the fact that scaling factor Lj updated by coder and controller at the
end of each cycle is nonnegative,

E
(|E(j+1)τ |2

)≤ ‖E(j+1)τ ,Lj+1‖2. (1.68)

Notice from (1.65) that

lj+1 ≤ |λ|τ lj κR(j)
(
xjτ − x̂jτ

lj

)
+ ϕ,

and that by iteration of (1.41a), (1.41b) and (1.64) for τ time steps

e(j+1)τ = |λ|τ
(
ejτ − lj qR(j)

(
ejτ

lj

))
+ ηj ,

where ηj :=∑τ−1
i=0 λ

τ−1−ivjτ+i . Thus, properties (1.60) and (1.61) yield

‖E(j+1)τ ,Lj+1‖2 ≤ 2|λ|2τ
∥∥∥∥Ejτ −LjqR(j)

(
Ejτ

Lj

)
,LjκR(j)

(
Xjτ − X̂jτ

Lj

)∥∥∥∥
2

+ 2‖Hj,ϕ‖2. (1.69)
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Notice that ‖Hj,ϕ‖2 is upper bounded by a constant ς2 that only depends on ε, τ ,
and α.

Let

θj,i = E
((
L2
j + |Ejτ |2+εL−εj

)
1{Rjτ=ri }

)
, i ∈R.

Combining (1.62) and (1.69) and making use of the law of total probability,

θj+1,iτ ≤ 2ζ
∑
i0

( ∑
i1,...,iτ−1

|λ|2τ
22(ri0+···+riτ−1 )

pi0,i1 · · ·piτ−1,iτ

)
θj,i0

+ ς2P {R(j+1)τ = riτ }, (1.70)

which provides a recursive formula for the θj,i subsequences.
Next, we claim that, for every j ≥ 0,

θj+1,i ≤ E
[
Z2
(j+1)τ1{R(j+1)τ=ri }

]
, ri ∈R, (1.71)

where the process {Zjτ } is formed recursively from z0 = θ0 as

z(j+1)τ = φ |λ|τ
2rjτ+···+r(j+1)τ−1

zjτ + ς, j ≥ 1, (1.72)

where φ = √2ζ > 1. To see this, consider the following inductive argument. By
construction z0 = θ0, hence the claim holds for k = 0. Now, suppose that the claim
is true up to time j . Then, for any riτ ∈R,

E
[
Z2
(j+1)τ1{R(j+1)τ=riτ }

]
= E

((√
2ζ

|λ|τ
2Rjτ+···+R(j+1)τ−1

Zjτ + ς
)2

1{R(j+1)τ=riτ }
)

≥ E

((√
2ζ

|λ|τ
2Rjτ+···+R(j+1)τ−1

Zjτ

)2

1{R(j+1)τ=riτ }
)
+ ς2P {R(j+1)τ = riτ }

= 2ζ
∑

i0,...,iτ−1

|λ|2τ pi0,i1 · · ·piτ−1,iτ

22(ri0+···+riτ−1 )
E
[
Z2
jτ1{Rjτ=ri0 }

]+ ς2P {R(j+1)τ = riτ }

≥ 2ζ
∑

i0,...,iτ−1

|λ|2τ
22(ri0+···+riτ−1 )

pi0,i1 · · ·piτ−1,iτ θj,i0 + ς2P {R(j+1)τ = riτ }

≥ θj+1,iτ

where the first inequality follows from the fact that (a + b)2 ≥ a2 + b2 for all
nonnegative numbers a and b, the second inequality uses the induction hypothe-
sis, while the last inequality uses (1.70). Hence, the claim holds at time k + 1 as
well.
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Summing both sides of (1.71) over ri ∈R and making use of (1.68), it follows
that E(E2

jτ )≤ E(Z2
jτ ), as claimed. �

Lemma 1.2 shows that the mean-squared estimation error at the beginning of
each cycle if finite if the process {Zk} is mean-square stable. Next, we establish
that (1.44) is a sufficient condition for the second-moment stability {Zk}. Let σ 2

k,i =
E[Z2

k1{Rk=r̄i }] denote the second moment of Zk in the event that the rate at time k
takes value r̄i . Making use of the fact that (a + b)2 ≤ 2(a2 + b2), it can be verified
that the vector σ 2

k = (σ 2
k,1, . . . , σ

2
k,n)

T ∈R
n satisfies

σ 2
k+1 ≤ 2φ2|λ|2τHτ σ 2

k + 2ς2
k , k = 0,1, . . . , (1.73)

where H is the transition probability matrix defined in (1.43) and ςk ∈ R
n is a

vector with the ith component equal to ςP {Rk = r̄i}. A sufficient condition for the
recursion in (1.73) to be bounded is

2φ2(|λ|2ρ(H))τ < 1. (1.74)

Since by the law of total probability E(|Z|2k) ≤
∑n
i=1 σ

2
k,i = ‖σ 2

k ‖1, it follows
that (1.74) is a sufficient condition for Zk to be mean-square stable. On the other
hand, if the condition of Theorem 1.1 is satisfied, that is, if |λ|2ρ(H) < 1, then we
can choose the duration of a cycle τ large enough to ensure that (1.74) holds and, as
a consequence, the second moment of the estimation error at the beginning of each
cycle is bounded. Notice that the choice of a larger τ translates into larger oscilla-
tions of the system state because, according to our quantization scheme, the system
evolves in open loop during a cycle.

Finally, for any i = 1, . . . , τ − 1, the triangle inequality implies that |xjτ+i | ≤
|λ|i ||xjτ − x̂jτ | +∑i−1

k=0 |λi−1−k||vjτ+i |, so the state remain bounded at all times.
This establishes that (1.44) is a sufficient condition for the second moment stability
of the plant.

1.7 Conclusion

Understanding the operational mechanism of feedback loops over limited data-rate
communication channels will be of outmost importance in the near future, as cyber-
physical systems (CPS) continue to impact our society more broadly. This requires
the development of a rigorous theory of information transmission for control sys-
tems. This theory must identify the trade-offs between the amount of information
that can be communicated through the control loop and the ability of achieving the
required control objectives.

In the past decade, a number of results appeared in the literature, but much re-
mains to be done. Obtained results show that the control objective is fundamentally
limited by both the channel noise and the intrinsic system noise that affects the plant
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in the form of external disturbances. For channels that allow transmission of a given
number of bits without error, the “quality” of the achievable stabilization in terms of
moment constraints depends on the corresponding constraints on the noise process
disturbances. Loosely speaking, better stability can only be guaranteed with better
behaved disturbances, while “wild disturbances” can only guarantee lower moment
stability. In all cases, the region where the system can be stabilized is clearly demar-
cated by a data-rate theorem relating the amount of instability of the system to the
available communication rate.

For noisy channels, the quality of the stabilization depends on the notion of chan-
nel capacity employed. Zero-error capacity, guaranteeing reliable transmission with-
out error, allows for almost sure stabilization. Shannon capacity, guaranteeing reli-
able transmission with error that decays to zero asymptotically, allows for almost
sure stabilization only for systems without disturbances. The parametric notion of
anytime capacity, with communication reliability stronger than Shannon’s capac-
ity, but weaker than zero-error capacity, can be used to characterize stabilization of
disturbed systems in a moment sense. Again, the region where the system can be
stabilized is determined by a data-rate theorem written using the appropriate notion
of capacity.

For limited rate channels, the theory of MJLS provides a general framework that
can be used to develop data-rate theorems characterizing necessary and sufficient
conditions for stabilization that hold in a variety of cases, including for the erasure
channel, and for the continuous intermittent channel, with or without memory. On
the other hand, the study of the DMC with memory in the context of control remains
an important open problem.

Beside the formulation of data-rate theorems for different channels and noise
models, a field open for further research is error correcting codes for automatic
control over noisy channels. For the Gaussian channel, uncoded transmission is suf-
ficient to achieve stabilization when the Shannon capacity is above the threshold
dictated by the data-rate theorem, but for the DMC stabilization requires develop-
ment of error correcting codes with specific rate-reliability constraints dictated by
the corresponding data-rate theorem. These constructions are, at present, largely un-
known, although recent advancements in tree codes for the erasure channel appear
promising.

We conclude this chapter by mentioning some open problems. As remarked in
Sect. 1.4, tight conditions for moment stability of a vector system over a time-
varying bit pipe link are not known, in general. Even in the simple setting where
the process on the feedback link is an i.i.d. process, only partial results are avail-
able. All existing works on stability of linear systems under stochastic disturbance
of unbounded support focus on the restrictive notion of second-moment stabil-
ity [17, 46, 49, 70, 71]. The generalization to η-moment stability, which is cur-
rently known only in the case where the disturbance is bounded [39, 53], is an
open problem. Similarly, most of the existing works assume a perfect channel from
the controller to the actuator. The case where both the sensor–controller and the
controller–actuator channels are noisy was studied in [73], which provides condi-
tions for second moment stability using Markov stability theory. In general, how-
ever, it is not known when the criteria summarized in this chapter continue to hold
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after replacing the relevant notion of capacity with the capacity of the bottleneck
channel. Our previous work [46] has revealed a connection between stabilization
over the intermittent continuous channel and the rate-limited channel. It would be
of interest to establish a similar connection in the case of optimal control over finite–
capacity channels. Previous works [26, 56] have considered the LQG problem under
the network-theoretic approach where packets can be lost, while [9, 31, 40] studied
the same problem under the assumption that the feedback channel is a bit pipe with
constant rate R. In order to create a connection between these two lines of work,
one would have to formulate an LQG problem over a time-varying bit pipe channel
whose rate oscillates independently over time between 0 and R. As a final remark,
notice that the proof techniques used in [53] only apply to plants with bounded
disturbances. A question that requires further investigation is to extend the result in
[53] to the case of noise with infinite support. A possible approach based on variable
rate coding is outlined in [52, 73].

As control systems gradually evolve towards usage of wireless platforms, the
developed theory will have a direct applicability in a practical setting. The move
towards wireless is dictated by both technological advancements and economic fac-
tors, as the cost of “wiring” large CPS can easily dominate development costs. The
theory developed so far has shown that existing error correcting codes for wireless
communication are not immediately applicable in the context of control, due to their
soft reliability constraints that are not sufficient to ensure even low-moment stabil-
ity for safety critical applications. In the next decades, we will witness a refinement
of the theory to gain additional understanding of fundamental limitations, as well
as the development of new communication schemes needed to address the growing
industrial need for control over noisy channels.
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Chapter 2
Stabilization and Control over Gaussian
Networks

Ali A. Zaidi, Tobias J. Oechtering, Serdar Yüksel, and Mikael Skoglund

2.1 Introduction

In this chapter, we consider a setup where a linear time-invariant system (plant)
with a random initial state and driven by Gaussian noise has to be remotely sta-
bilized. A group of sensor nodes monitor the plant and communicate their obser-
vations (measurements) to a remotely situated control unit over wireless links that
are modeled as additive white Gaussian channels. The common goal of the sensors
and the controller is to stabilize the plant in closed-loop. Usually, in remote control
applications, sensing and transmission under strict delay and power constraints is re-
quired. Therefore, we focus on delay-free and power efficient sensing and transmit
schemes throughout the chapter. Our objective is to provide an overview and some
recent results on real-time communication and stabilization over Gaussian chan-
nels. In order to grasp the fundamental principles, we consider setups with one or
two sensor nodes under some basic topologies, however, useful references to more
general setups are provided throughout the chapter.

The main focus of this chapter is on the mean-square stabilization of a linear dy-
namical system over some basic Gaussian network settings. Some real-time sensing
and transmission schemes are proposed and stabilizability of the plant under those
schemes is studied. The chapter is organized as follows. In Sect. 2.2, the problem
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Fig. 2.1 Feedback control over sensor network

of remote stabilization of a discrete-time LTI plant over Gaussian sensor network
is formulated. In Sect. 2.3, a single sensor setup is considered, i.e., stabilization
over a point-to-point Gaussian channel. Section 2.4 and Sect. 2.6 consider two sen-
sor setups where one sensor node merely acts as a relay for communicating state
information to the remote controller. Section 2.4 focuses on the mean-square stabi-
lization of an LTI plant in various relaying topologies. Section 2.5 and 2.4 addresses
the problem of real-time transmission of a Gaussian source over a Gaussian relay
channel for delay-sensitive and energy limited applications such as closed-control
over wireless sensor networks. Finally, in Sect. 2.7, we discuss distributed sensing
schemes for control over Gaussian channels. The chapter ends with an overview of
the existing literature on the problem of control over Gaussian channels, highlight-
ing the important relevant contributions.

2.2 Remote Stabilization of a Linear System

Consider the following linear time invariant system:

Xt+1 =AXt +Ut +Wt, t ∈N, (2.1)

where Xt := [x1,t , x2,t , . . . , xn,t ]T is an R
n-valued state process with an initial

Gaussian distribution, Ut := [u1,t , u2,t , . . . , un,t ]T is an R
n-valued control pro-

cess,Wt := [w1,t ,w2,t , . . . ,wn,t ]T is an R
n-valued independent and identically dis-

tributed sequence of Gaussian random variables with zero mean and covariance
KW , and A is the system matrix of appropriate dimensions. Let {λ1, λ2, . . . , λn}
denote the eigenvalues of the system matrix A. Without loss of generality, we as-
sume that all the eigenvalues of the system matrix are outside the unit disc (|λi | ≥ 1
for all i), i.e., all modes are unstable. Otherwise unstable modes can be decoupled
from the stable modes by a similarity transformation. If the system in (2.1) is one-
dimensional then A is scalar and we use the notation A = λ, where |λ| > 1. The
initial state of the system X0 is assumed to be a random variable with zero mean
and covariance Λ0.

We consider a remote control setup as shown in Fig. 2.1, where a sensor or a
group of sensor nodes observe the state process and communicate their observa-
tions directly to a remotely situated controller over a wireless channel. In a sensor
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Fig. 2.2 Control over a
point–point channel

network, some nodes can act as relays to support the communication with the re-
mote controller. Upon receiving the signals from the sensors, the remotely located
controller aims at stabilizing the system in the mean-square sense, which is defined
as follows.

Definition 2.1 A system is said to be mean-square stable if there exists a constant
M <∞ such that E[‖Xt‖2]<M for all t .

In practice, sensor nodes have limited power to spend. Therefore, we assume an
average transmit power constraint at each sensor node. The communication links
between all agents (sensors and controller) are modeled as independent Gaussian
channels. Since control applications are usually quite sensitive to delays, the sensing
and transmission schemes are restricted to be delay-free. In order to make the im-
plementation simple, we assume that the controller has a separation structure based
on the minimum mean-square estimator state estimator. This separation structure is
not optimal in general but it makes the design and implementation much simpler, by
employing Kalman filter as state estimator.

2.3 Stabilization over a Point–Point Channel

Consider the scenario shown in Fig. 2.2 where a sensor node E observes an
n-dimensional state process and transmits it to a remote controller C over an
m-dimensional parallel Gaussian channel. We assume that the initial state is zero
mean Gaussian distributed. At any time instant t , St := [s1,t , s2,t , . . . , sm,t ] and
Rt := [r1,t , r2,t , . . . , rm,t ] are the input and output of the channel, where ri,t =
si,t + zi,t and zi,t ∼ N (0,Ni) are zero mean white Gaussian noise components.
Let ft : Rn(t+1)→ R

m denote the sensing policy such that St = ft (X[0,t]), where
X[0,t] := {X0,X1, . . . ,Xt }. The sensor is assumed to have an average transmit
power constraint E[‖St‖2] =∑m

i=1Pi ≤ PS , where Pi := E[(si,t )2]. Further, let
πt :Rm(t+1)→R

n be the controller policy, then we have Ut = πt (R[0,t]). The com-
mon goal of the sensor and the controller is to stabilize the LTI system (2.1) in the
mean-square sense.

We first present a necessary condition for the mean-square stabilization over the
point–point Gaussian channel depicted in Fig. 2.2.
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Theorem 2.1 The linear system in (2.1) can be mean-square stabilized over the
given parallel Gaussian channel only if

log
(|A|)< 1

2

m∑
i=1

log

(
1+ Pi

Ni

)
, (2.2)

where Pi =max{γ −Ni,0} and γ is chosen such that
∑m
i=1Pi = PS .

Proof In order to prove Theorem 2.1, we make use of the following lemma.

Lemma 2.1 [67, Theorem 2.1] The linear system in (2.1) can be mean-square sta-
bilized over a channel only if

log
(|A|)≤ lim inf

T→∞
1

T
I (X̄[0,T−1] →R[0,T−1]), (2.3)

where {X̄t } is the control free state process given by substituting Ut = 0 in (2.1),
R[0,T−1] is the sequence of variables received by the controller over the given chan-
nel and I (X̄[0,T−1] →R[0,T−1])=∑T−1

t=0 I (X̄[0,t];Rt |R[0,t-1]) denotes the directed
information.

Proof The proof can be found in [67]. This proof essentially follows from the same
steps as in Theorem 4.1 of [54], however, with some differences due to the network
structure. Similar considerations have appeared in different contexts in [28, 41]. �

We can bound the directed information I (X̄[0,T−1] →R[0,T−1]) as

I (X̄[0,T−1] →R[0,T−1])
(a)≤ I (X̄[0,T−1];R[0,T−1])

(b)≤ I (S[0,T−1];R[0,T−1])

(c)≤
T−1∑
t=0

I (s1,t , s2,t , . . . , sm,t ; r1,t , r2,t , . . . , rm,t )

=
T−1∑
t=0

[
h(r1,t , r2,t , . . . , rm,t )− h(r1,t , r2,t , . . . , rm,t |s1,t , s2,t , . . . , sm,t )

]

=
T−1∑
t=0

[
h(r1,t , r2,t , . . . , rm,t )− h(z1,t , z2,t , . . . , zm,t |s1,t , s2,t , . . . , sm,t )

]

=
T−1∑
t=0

[
h(r1,t , r2,t , . . . , rm,t )− h(z1,t , z2,t , . . . , zm,t )

]

(d)≤
T−1∑
t=0

[
m∑
i=1

h(ri,t )−
m∑
i=1

h(zi,t )

]
(e)≤
T−1∑
t=0

[
m∑
i=1

log

(
1+ Pi

Ni

)]
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= T
2

m∑
i=1

log

(
1+ Pi

Ni

)
, (2.4)

where (a) follows from [29, Theorem 1]; (b) following data processing inequal-
ity with Markov chain X̄[0,T−1] − S[0,T−1] − R[0,T−1]; (c) follows from the fact
that the channels are memoryless and conditioning reduces entropy; (d) follows
from conditioning reduces entropy and mutual independence of the noise sequence
{z1,t , z2,t , . . . , zm,t }; and (e) follows from the fact that the Gaussian distribution
maximizes differential entropy for a fixed variance. Now using (2.4) in Lemma 2.1,
we get the necessary condition given in (2.2). The function

∑L
i=1 log(1 + Pi

Ni
) is

jointly concave in {Pi}mi=1; therefore, we can solve this optimization problem by the
Lagrangian method. The optimal power allocation using the Lagrangian method is
given by Pi =max{γ −Ni,0}, where γ is chosen such that

∑m
i=1Pi = PS , which

is the well-known water-filling solution. �
We now discuss some sensing and control schemes for stabilization over the

given point–point Gaussian channel. By employing these schemes, we obtain suf-
ficient conditions for stabilization, which are also presented in the following sec-
tions. The schemes for scalar and vector channels are discussed in Sect. 2.3.1 and
Sect. 2.3.2, respectively.

2.3.1 Schemes for Scalar Channels

In this section, we consider the mean-square stability of the system in (2.1) over a
scalar Gaussian channel, i.e., we assume that m= 1 in the system model shown in
Fig. 2.2. The state encoder E observes the n-dimensional state process and trans-
mits it over a one-dimensional Gaussian channel. We restrict our study to the class
of encoders that are linear in the observed state with an average transmit power con-
straint PS . Therefore, at any time t , the signal transmitted by the state encoder is
given by St = EtXt , where Et is an 1× n row vector. The power constraint at the
encoder is given by

E
[
S2
t

]=EtΛtETt ≤ P,
where Λt := E[XtXTt ]. The remotely located controller receives the following sig-
nal,

Rt = St +Zt ,
where Zt is an i.i.d. Gaussian variable with zero mean and varianceN . The informa-
tion set available to the controller is ICt = {R[0,t],U[0,t−1]}. The controller applies
an action which is linear in the information set, that is, Ut = mtICt . In the follow-
ing, we study the mean-square stability under the above linear sensing and control
scheme.

We have restricted ourselves to linear schemes because they are easy to design
and implement. At this point, we highlight some interesting questions that may arise
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in the reader’s mind: (i) Is there any loss in restricting sensing and control policies
to be linear? (ii) Should the policies be time-invariant or time-variant? (iii) What is
an optimal linear scheme? We try to address these questions in the Sects. 2.3.1.1–
2.3.1.3.

2.3.1.1 Linear Time Invariant Scheme

Consider the linear scheme presented above to be time invariant, i.e., at any time t ,
the encoder output is given by St = EXt . The controller receives Rt = EXt + Zt ,
then it runs a Kalman filter to estimate the state and applies the following ac-
tion Ut =−AE[Xt |ICt ], which is optimal for stabilization under the given sensing
scheme. Thus the closed loop system is given by

Xt+1 =A
(
Xt −E

[
Xt
∣∣ICt ])+Wt

(a)= A(Xt −ΛtET [EΛtET + σ 2
z

]−1
Rt
)+Wt

(b)= (
At −ΛtET

[
EΛtE

T + σ 2
z

]−1
E
)
Xt + Z̃t , (2.5)

where (a) follows from the fact that the control actions whiten the state pro-
cess and the Gaussian distribution of state process is preserved via linear ac-
tions of the encoder and the controller, which results in E[Xt |ICt ] = E[Xt |Rt ] =
E[XtRTt ]E[RtRTt ]−1Rt ; and (b) follows by substituting Rt = EXt + Zt and sum-
ming up all the white Gaussian noise terms and denoting the sum by Z̃t . The state
covariance matrix Λt satisfies the following recursion

Λt+1 =AΛtAT −AΛtET
[
EΛtE

T + σ 2
z

]−1
EΛtA

T +KW, (2.6)

which is the well-known Riccati equation. In [8], the authors studied such a scheme.
According to [8], a noiseless plant can be mean-square stabilized by any time-
invariant encoding matrix E over a Gaussian channel capacity C as long as the
following two conditions are fulfilled: (i) log{|A|} < C, (ii) the pair (A,E) is ob-
servable.

We now give a simple example where the LTI scheme fails to stabilize the system.
Consider a diagonal system matrix A= diag(λ1, λ2, λ3) with two equal eigenvalues
and let E = (e1 e2 e3 ). The observability matrix O is then given by

O �

⎛
⎝ E

EA

EA2

⎞
⎠=

⎛
⎝ e1 e2 e3
e1λ1 e2λ2 e3λ3

e1λ
2
1 e3λ

2
2 e3λ

2
3

⎞
⎠ .

For the pair (A,E) to observable, the observability matrix O is required to have full
rank. In the above example, if any two eigenvalues of A are equal, then there can
be at most two linearly independent columns in O and thus rank of O can never
be made full by any choice of E. (One can also use the Hautus–Rosenbrock test for
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observability.) Therefore, an LTI scheme can never stabilize if two or more eigenval-
ues of a diagonal system matrix are equal, no matter how large power the encoder is
allowed to spend. In the following section, we present a linear time varying scheme
and show that this scheme can always stabilize the system.

2.3.1.2 Linear Time Variant Scheme

Consider that the linear system (2.1) has to be stabilized over a Gaussian channel
having information capacity C := 1

2 log(1+ P
N
), which means that the sensor trans-

mits with an average power P and the channel is disturbed by a zero mean Gaussian
noise with varianceN . In the following, we state a sufficient condition for the mean-
square stability under a linear time varying scheme.

Theorem 2.2 The linear system (2.1) can be mean-square stabilized by a linear
time-variant scheme over a scalar Gaussian channel of capacity C if log(|A|) < C.

Proof Without loss of generality, we assume that the system matrix is in real Jor-
dan form. Depending on the nature of eigenvalues, a real Jordan matrix J has the
following structure:

J =

⎛
⎜⎜⎜⎝
J1

J2
. . .

Jp

⎞
⎟⎟⎟⎠ , where

Ji =

⎛
⎜⎜⎜⎜⎝
λi 1

λi
. . .

. . . 1
λi

⎞
⎟⎟⎟⎟⎠ for λi ∈R,

Ji =

⎛
⎜⎜⎜⎜⎝
Ci I

Ci
. . .

. . . I

CI

⎞
⎟⎟⎟⎟⎠ for λi = σi ± jωi ∈C,

with Ci =
(
σi ωi
−ωi σi

)
.

Consider a scheme in which the sensor transmits only one component of the state
vector at each time step. Since the system matrix is in Jordan form, it can transmit
the state components corresponding to more unstable modes more often. In the fol-
lowing, we show that with such a time varying mode-by-mode transmission scheme,
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the plant can be stabilized if log(|A|) < C. We justify this with the help of two sim-
ple examples. In the first example, we consider the system matrix with repeated real
and complex eigenvalues having equal magnitude, whereas in the second example,
we consider eigenvalues with unequal magnitude. These two examples capture the
general principle. In the end, we outline a general transmission scheme.

Example 1 (Repeated eigenvalues with equal magnitude) Consider an LTI system
with the following state equation:

X̄t+1 =AX̄t + Ūt + W̄t , (2.7)

where A is an n × n matrix with eigenvalues λi such that |λi | = |λj | for all 1 ≤
i, j ≤ n. Assume that the control actions Ut are taken periodically after every n
time steps, i.e., at t = l(n − 1) for l = 1,2,3, . . . . Under this control scheme, the
state at times steps t = ln is given by

X̄t+n =AnX̄t + Ūt+n−1 +
n−1∑
i=0

An−i−1W̄t+i , t = ln, l ∈N.

Let T be a linear transformation such that T −1AnT is in real Jordan form. It is
known that such a transformation always exists [17]. Now apply the linear transfor-
mation Xt = T −1X̄t , which gives

Xt+n = T −1AnTXt + T −1Ūt+n−1 + T −1
n−1∑
i=0

An−i−1W̄t+i ,

= ÃXt +Ut+n−1 + Vt , for t = ln, l ∈N, (2.8)

where we have defined Ã := T −1AnT ,Ut := T −1Ūt , and Vt := T −1 ∑n−1
i=0 A

n−i−1×
W̄t+i . The matrix Ã is in real Jordan form with eigenvalues λ̃i = λni , where λi are the
eigenvalues ofA for i = 1,2, . . . , n. Now consider the following sensing scheme for
stabilization. The sensor periodically observes the state vectorXt ∈R

n after every n
time steps, i.e., at t, t+n, t+2n, . . . . The sensor linearly amplifies each component
of the state vector under an average transmit power constraint P and sequentially
transmits n state components over the Gaussian channel. The state vector is thus
transmitted to the controller by using the Gaussian channel n times. The controller
computes the MMSE estimate of the state vector X̂t based on the received signals
and periodically takes actions after every n time steps, i.e., Ut+n−1 =−ÃX̂t . Under
the above scheme, we can write (2.8) as

Xt+n = Ã(Xt − X̂t )+ Vt , t = ln, l ∈N. (2.9)

In the following, we consider an example with n= 6 and show that above scheme
is sufficient for stabilization.

Consider a six-dimensional plant (n = 6) with state vector Xt ∈ R
6, that is, a

plant with six poles (eigenvalues). Assume that the matrix Ã has a real eigenvalue
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and a complex conjugate pair, each with algebraic multiplicity two. That is we have
λ̃1 = λ̃3 = σ̃ + jω̃, λ̃2 = λ̃4 = σ̃ − jω̃, and λ̃5 = λ̃6 = λ̃. Since Ã is in real Jordan
form, we have

Ã=

⎛
⎜⎜⎜⎜⎜⎜⎝

σ̃ ω̃ 1 0 0 0
−ω̃ σ̃ 0 1 0 0
0 0 σ̃ ω̃ 0 0
0 0 −ω̃ σ̃ 0 0
0 0 0 0 λ̃ 1
0 0 0 0 0 λ̃

⎞
⎟⎟⎟⎟⎟⎟⎠
. (2.10)

By substituting Ã from (2.10) in (2.9), each component of the state vector is given
by

x1,t+n = σ̃ (x1,t − x̂1,t )+ ω̃(x2,t − x̂2,t )+ (x3,t − x̂3,t )+ v1,t ,

x2,t+n =−ω̃(x1,t − x̂1,t )+ σ̃ (x2,t − x̂2,t )+ (x4,t − x̂4,t )+ v2,t ,

x3,t+n = σ̃ (x3,t − x̂3,t )+ ω̃(x4,t − x̂4,t )+ v3,t ,

x4,t+n =−ω̃(x3,t − x̂3,t )+ σ̃ (x4,t − x̂4,t )+ v4,t ,

x5,t+n = λ̃(x5,t − x̂5,t )+ (x6,t − x̂6,t )+ v5,t ,

x6,t+n = λ̃(x6,t − x̂6,t )+ v6,t .

(2.11)

We now find conditions for all modes to be stable. We start with the lowest mode.
The second moment of x6,t is given by

E
[
x2

6,t+n
]= λ̃2

E
[
(x6,t − x̂6,t )

]+E
[
v2

6,t

]
(a)= λ̃22−2C

E
[
x2

6,t

]+ nv,6, (2.12)

where (a) follows from the linear mean-square estimation of a Gaussian variable
over a scalar Gaussian channel of capacity C and nv,k := E[v2

k,t ] for k = 1,2, . . . ,6.

We observe that E[x2
6,t ] is bounded if λ̃22−2C < 1. Since |λ̃6| = λ̃, the state compo-

nent x6,t is stable if

|λ̃6|22−2C < 1 ⇒ log
(|λ̃6|

)
<C. (2.13)

Now consider x5,t , whose second moment can be bounded as

E
[
x2

5,t+n
] (a)= λ̃2

E
[
(x5,t − x̂5,t )

2]+ 2λ̃E
[
(x5,t − x̂5,t )(x6,t − x̂6,t )

]
+E

[
(x6,t − x̂6,t )

2]+ nv,5
(b)= λ̃22−2C

E
[
x2

5,t

]+ 2λ̃E
[
(x5,t − x̂5,t )(x6,t − x̂6,t )

]+ 2−2C
E
[
x2

6,t

]+ nv,5
(c)≤ λ̃22−2C

E
[
x2

6,t

]+ 2λ̃
√
E
[
(x5,t − x̂5,t )2

]
E
[
(x6,t − x̂6,t )2

]
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+ 2−2C
E
[
x2

6,t

]+ nv,5
= λ̃22−2C

E
[
x2

5,t

]+ 2λ̃
√

2−2CE
[
x2

5,t

]√
2−2CE

[
x2

6,t

]
+ 2−2C

E
[
x2

6,t

]+ nv,5
(d)≤ k1E

[
x2

5,t

]+ k2

√
E
[
x2

5,t

]+ k3, (2.14)

where (a) follows from (2.11); (b) follows from the linear mean-square estimation
of a Gaussian variable over a scalar Gaussian channel of capacity C; (c) follows
Cauchy–Schwarz inequality; (d) follows from the fact E[x2

6,t ]<M (assuming that

(2.13) is satisfied) and by defining k1 := λ̃22−2C , k2 := 2λ̃2−2C
√
M , and k3 :=

2−2CM + nv,5. We now want to a find condition which ensures convergence of the
following sequence:

αt+1 = k1αt + k2
√
αt + k3. (2.15)

In order to show convergence, we make use of the following lemma.

Lemma 2.2 [67, Lemma 6.1] Let T :R �→R be a non-decreasing continuous map-
ping with a unique fixed point x� ∈R. If there exists u≤ x� ≤ v such that T (u)≥ u
and T (v)≤ v, then the sequence generated by xt+1 = T (xt ), t ∈N converges start-
ing from any initial value x0 ∈R.

Proof The proof is can be found in [67]. �

We observe that the mapping T (α)= k1α + k2
√
α + k3 with α ≥ 0 is monoton-

ically increasing since k1, k2 > 0. It will have a unique fixed point α� if and only if
k1 < 1, since k2, k3 > 0. Assuming that k1 < 1, there exists u < α� < v such that
T (u)≥ u and T (v)≤ v. Therefore, by Lemma 2.2, the sequence {αt } is convergent
if k1 = λ̃22−2C < 1⇒ log(λ̃) < C. Since |λ̃5| = λ̃, the state x5,t is stable if

log
(|λ̃5|

)
<C. (2.16)

The second moments of x3,t and x4,t are given by

E
[
x2

3,t+n
]= σ̃ 22−2C

E
[
x2

3,t

]+ ω̃22−2C
E
[
x2

4,t

]
+ 2σ̃ ω̃E

[
(x3,t − x̂3,t )(x4,t − x̂4,t )

]+ nv,3,
E
[
x2

4,t+n
]= ω̃22−2C

E
[
x2

3,t

]+ σ̃ 22−2C
E
[
x2

4,t

]
− 2σ̃ ω̃E

[
(x3,t − x̂3,t )(x4,t − x̂4,t )

]+ nv,4.
(2.17)

By using the above equations, we can write

E
[
x2

3,t+n
]+E

[
x2

4,t+n
]= (

σ̃ 2 + ω̃2)2−2C(
E
[
x2

3,t

]+E
[
x2

4,t

])+ nv,3 + nv,4.
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We observe that the sum E[x2
3,t+n] + E[x2

4,t+n] is bounded if (σ̃ 2 + ω̃2)2−2C < 1.

Since |λ̃3|2 = |λ̃4|2 = (σ̃ 2 + ω̃2)2, the state components x3,t and x4,t are stable if

log
(|λ̃3|

)
<C, log

(|λ̃4|
)
<C. (2.18)

Finally, the second moments of x1,t and x2,t are given by

E
[
x2

1,t+n
]= σ̃ 22−2C

E
[
x2

1,t

]+ ω̃22−2C
E
[
x2

2,t

]+ 2−2C
E
[
x2

3,t

]
+ 2σ̃ ω̃E

[
(x1,t − x̂1,t )(x2,t − x̂2,t )

]+ 2σ̃E
[
(x1,t − x̂1,t )(x3,t − x̂3,t )

]
+ 2ω̃E

[
(x2,t − x̂2,t )(x3,t − x̂3,t )

]+ nv,1,
E
[
x2

1,t+n
]= ω̃22−2C

E
[
x2

1,t

]+ σ̃ 22−2C
E
[
x2

2,t

]+ 2−2C
E
[
x2

4,t

]
− 2σ̃ ω̃E

[
(x1,t − x̂1,t )(x2,t − x̂2,t )

]− 2ω̃E
[
(x1,t − x̂1,t )(x4,t − x̂4,t )

]
+ 2σ̃E

[
(x2,t − x̂2,t )(x4,t − x̂4,t )

]+ nv,2.
(2.19)

By using the above equations, we can write

E
[
x2

1,t+n
]+E

[
x2

2,t+n
]

= (
σ̃ 2 + ω̃2)2−2C(

E
[
x2

1,t

]+E
[
x2

2,t

])
+ 2σ̃

(
E
[
(x1,t − x̂1,t )(x3,t − x̂3,t )

]+E
[
(x2,t − x̂2,t )(x4,t − x̂4,t )

])
+ 2ω̃

(
E
[
(x2,t − x̂2,t )(x3,t − x̂3,t )

]−E
[
(x1,t − x̂1,t )(x4,t − x̂4,t )

])
+ nv,1 + nv,2. (2.20)

We can now bound E[x2
1,t+n] +E[x2

2,t+n] as

E
[
x2

1,t+n
]+E

[
x2

2,t+n
] (a)≤ (

σ̃ 2 + ω̃2)2−2C(
E
[
x2

1,t

]+E
[
x2

2,t

])
+ 4σ̃ 22−2C

(√
E
[
x2

1,t

]
E
[
x2

3,t

]+√
E
[
x2

2,t

]
E
[
x2

4,t

])
+ 4ω̃22−2C

(√
E
[
x2

2,t

]
E
[
x2

3,t

]+√
E
[
x2

1,t

]
E
[
x2

4,t

])
+ nv,1 + nv,2

(b)≤ k1
(
E
[
x2

1,t

]+E
[
x2

2,t

])+ k2

√
E
[
x2

1,t

]+E
[
x2

2,t

]+ k3,

(2.21)

where (a) follows from the Cauchy–Schwarz inequality; and (b) follows from
E[x2

3,t ] < M and E[x2
4,t ] < M (assuming that the condition in (2.18) is satisfied)

and by defining k1 := (σ̃ 2 + ω̃2)2−2C , k2 := 16(σ̃ 2 + ω̃2)22−2CM , and k3 :=
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nv,1 + nv,2. By using Lemma 2.2, we can show that x1,t and x2,t are stable if
k1 = (σ̃ 2 + ω̃2)22−2C < 1. Since |λ̃1|2 = |λ̃2|2 = (σ̃ 2 + ω̃2)2, we get

log
(|λ̃1|

)
<C, log

(|λ̃2|
)
<C. (2.22)

It follows from (2.22), (2.22), and (2.22) that the system is stable if

n∑
i=1

log
(|λ̃i |)= log

(|Ã|)< nC.
Since |Ã| = |T 1AnT | = |A|n, we have

log
(|A|)<C.

Having shown sufficiency of the linear time variant scheme for the system matrix
having equal magnitude eigenvalues with algebraic multiplicity, we next consider an
example of a system matrix having eigenvalues with unequal magnitude.

Example 2 (Eigenvalues with unequal magnitude) Consider a system matrix A with
three eigenvalues, λ1 ∈R and λ2, λ3 ∈C with |λ1| = |λ2|2 = |λ3|2. For this system,
consider the following scheme. The transmission from the sensor to the controller
happens periodically, where each transmission period consists for four time slots. In
the first two time slots, the state corresponding to λ1 is transmitted and in the last
two slots the states corresponding to λ2 and λ3 are transmitted. Note that the sensor
is serving more unstable modes more often. In the following, we show again that
under this transmit scheme, the system is mean-square stable if log(|A|) < C.

Let us assume that the transmission period starts at t and ends at t + 4. At
time t , the sensor transmits x1,t and the controller takes action Ut = [−λ1x̂1,t ,0,0].
At time t + 1, the sensor transmits x1,t+1 and the controller takes action Ut =
[−λ1x̂1,t+1,0,0]. At time t + 2, the sensor transmits x2,t and the does not take
any action. Like in the previous example, we are using such a scheme to make the
analysis simpler, although it is better to transmit the most recent state and apply
control action as early as possible. At time t + 3, the sensor transmits x3,t and the
controller takes the following action: Ut = [0,−λ1x̂2,t ,−λ1x̂2,t ]. Under this trans-
mit and control scheme, the second moments of x1,t are given by

E
[
x2

1,t+1

]= λ2
12−2C

E
[
x2

1,t

]+ n1, E
[
x2

1,t+2

]= λ2
12−2C

E
[
x2

1,t+1

]+ n1,

E
[
x2

1,t+3

]= λ2
1E

[
x2

1,t+2

]+ n1, E
[
x2

1,t+4

]= λ2
1E

[
x2

1,t+4

]+ n1,

(2.23)

where n1 is the variance of the process noise. Using the above equations, the second
moment of the state x1,t at the start of each transmission period is given by

E
[
x2

1,t+4

]= λ8
12−4C

E
[
x2

1,t

]+ ñ1, t = 4l, l ∈N, (2.24)
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where ñ1 = n1(1+λ2
12−2C +λ2

12−6C +λ2
12−8C). Similarly, using the approach that

was used in the previous example, we can show that

E
[
x2

2,t+4

]+E
[
x2

2,t+4

]= |λ2|82−2C(
E
[
x2

2,t+4

]+E
[
x2

2,t+4

])+ ñ2, t = 4l, l ∈N,
(2.25)

where ñ2 is the term due to the process noise. From (2.24) and (2.25) we observe
that all modes will be stable if

λ8
12−4C < 1, λ8

22−2C < 1, λ8
32−2C < 1

⇒ log
(|λ1|

)
<

1

2
C, log

(|λ2|
)= log

(|λ3|
)
<

1

4
C

⇒
n∑
i=1

log
(|λi |)= log

(|A|)<C.
(2.26)

For a general n-dimensional system, the transmit scheme can be generalized as
follows: Choose k, km, such that km

k
= log(|λm|)∑n

i=1 log(|λi |) for m= 1,2, . . . , n. The sensor

transmits periodically with a period equal to k time slots, in which the state xm cor-
responding to λm is transmitted km times. Note that

∑n
m=1 km = k. The system will

be stable if log(|λm|) < log(|λm|)∑n
i=1 log(|λi |)C for all m ∈ {1,2, . . . , n}, which is equivalent

to
∑n
i=1 log(|λi |)= log(|A|) < C. �

Remark 2.1 Although we have proved Theorem 2.2 for Gaussian distributed ini-
tial states, it is also valid for other distributions with finite variance. For any non-
Gaussian distributed initial state with finite variance, we can use the approach in
[64, Sect. IV] to make the state process Gaussian distributed and then the schemes
discussed earlier in this section can be applied.

According to Theorem 2.2, there is no loss in the mean-square stabilizability by
restricting the sensing and control scheme to be linear. This makes linear policies
a good choice for stabilization over scalar Gaussian channels. Notice, while deriv-
ing an achievable stability region, the objective was to keep the second moment of
the state process bounded and we did not aim at minimizing the second moment.
One might be interested in minimizing the second moment of the state process over
a finite or an infinite time horizon. In the following, we consider a finite horizon
stabilization problem and present an optimal linear scheme.

2.3.1.3 An Optimal Linear Scheme for Stabilization

Consider a linear system with diagonalizable system matrixA and diagonalKW . For
this linear system, we derive an optimal linear time varying sensing policyE�t which

minimizes the following cost:
∑tf
i=1 E[‖Xt‖2]. We have restricted the matrices A

and KW to be diagonal for the ease of analysis. The optimal time varying sensing
scheme is presented in the following theorem.
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Theorem 2.3 Let G̃ := [√P ,0,0, . . . ,0],Kt =AT (I +Kt+1)A(I − G̃T G̃( 1
N+P ))

withKtf = 0, and πt be a unitary matrix such that πTt (Λ
1
2
t A

T (I +Kt+1)AΛ
1
2
t )πt =

diag(υ1,t , . . . , υN,t ) with υ1,t ≥ υ2,t ≥ · · · > 0. The optimal linear time varying

sensing is given by E�t = G̃πtΛ−
1
2

t .

Proof We rewrite the Riccati equation (2.6) as

Λt+1 =AΛ
1
2
t

(
I − Λ

1
2
t E

T
t√
N

[
EtΛtE

T
t√

N
+ 1

]−1
EtΛ

1
2
t√
N

)
Λ

1
2
t A

T +KW
(a)= AΛ

1
2
t

(
I −CTt

[
CtC

T
t + 1

]−1
Ct
)
Λ

1
2
t A

T +KW
(b)= AΛ

1
2
t

[
I +CTt Ct

]−1
Λ

1
2
t A

T +KW, (2.27)

where (a) follows from Ct := EtΛ
1
2
t√
N

; and (b) follows from the matrix inversion

lemma [I + UWV ]−1 = I − U [W−1 + VU ]−1V , by choosing U = CTt , W = 1,
V = Ct .

The finite horizon optimal stabilization problem can be stated as

{
C�i

}tf−1
i=0 = arg min

{Ci }
tf −1

i=0
:CtCTt ≤ P

σ2

tf−1∑
t=0

tr[Λt+1],

subject to

Λt+1 =AΛ
1
2
t

[
I +CTt Ct

]−1
Λ

1
2
t A

T +KW. (2.28)

This is a nonlinear dynamic optimization problem. In order to solve this problem,
we follow a dynamic programming approach. Such an approach has also been con-
sidered for continuous time systems in [7]. At any time t , let the value function be
Vt(Λt )= tr[KtΛt +Lt ]. We have to find Ct such that

tr[KtΛt +Lt ]
= min

Ct :CtCTt ≤ PN

{
tr[Λt+1] + tr[Kt+1Λt+1 +Lt+1]

}
= min
Ct :CtCTt ≤ PN

tr
[
(I +Kt+1)Λt+1 +Lt+1

]
(a)= min
Ct :CtCTt ≤ PN

tr
[
(I +Kt+1)×

(
AΛ

1
2
t

[
I +CTt Ct

]−1
Λ

1
2
t A

T +KW
)+Lt+1

]
(b)= tr

[
(I +Kt+1)KW +Lt+1

]
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+ min
Ct :CtCTt ≤ PN

tr
[
(I +Kt+1)AΛ

1
2
t

[
I +CTt Ct

]−1
Λ
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2
t A

T
]

= tr
[
(I +Kt+1)KW +Lt+1

]
+ min
Ct :CtCTt ≤ PN
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2
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T (I +Kt+1)AΛ
1
2
t

[
I +CTt Ct

]−1]
(c)= tr

[
(I +Kt+1)KW +Lt+1

]+ tr
[
Λ

1
2
t A

T (I +Kt+1)AΛ
1
2
t

[
I + πtGTGπTt

]−1]
(d)= tr

[
(I +Kt+1)KW +Lt+1

]
+ tr

[
Λ
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2
t A

T (I +Kt+1)AΛ
1
2
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(
I − πtGT

(
1+GπTt πtGT

)−1
GπTt
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(e)= tr

[
(I +Kt+1)KW +Lt+1

]
+ tr

[
AT (I +Kt+1)A

(
Λt −Λ
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2
t πtG

TGπTt Λ
1
2
t

(
1+ P

N

)−1)]
(f)= tr

[
(I +Kt+1)KW +Lt+1

]
+ tr

[
AT (I +Kt+1)A

(
I −GTG

(
N

N + P
))
Λt

]
, (2.29)

where (a) follows by substituting Λt+1 using (2.28); (b) follows from the fact that

Kt+1 and Lt+1 do not depend on Ct ; (c) follows from the fact that according to [6]

the unique solution to the trace minimization problem unique minimizer is given

by C�t = GπTt , where G := [
√
P
N
,0,0, . . . ,0], and πt is a unitary matrix which

diagonalizes (Λ
1
2
t A

T (I +Kt+1)AΛ
1
2
t ) such that πTt (Λ

1
2
t A

T (I +Kt+1)AΛ
1
2
t )πt =

diag(υ1,t , . . . , υN,t ) with υ1,t ≥ υ2,t ≥ · · · > 0; (d) follows from the matrix inver-

sion lemma, [I + UWV ]−1 = I − U [W−1 + VU ]−1V , by choosing by choosing

V = GπTt ,W = 1,U = πtGT ; (e) follows from πtπ
T
t = I and GGT = P

N
; and

(f) follows from the assumption that A and Λt are diagonal, which implies that

Kt+1 and πt are also diagonal. (Diagonality of Kt+1 will become clear shortly.)

Therefore, we have Λ
1
2
t πtG

T GπTt Λ
1
2
t =Λ

1
2
t G

T GΛ
1
2
t =GTGΛt , since GTG is di-

agonal. In order to satisfy the above equality (2.29), we choose Ktf = Ltf = 0 and

{Kt+1,Lt+1} according to

Kt =AT (I +Kt+1)A

(
I −GTG

(
N

N + P
))
,

Lt = (I +Kt+1)KW +Lt+1.

(2.30)
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Fig. 2.3 Stabilization over
noisy forward and reverse
Gaussian channels

We can observe that Kt is also diagonal if A and KW are diagonal, since GTG

is diagonal. We have found the optimal C�t = Gπt and we know that Ct = EtΛ
1
2
t√
N

;

therefore, E�t = G̃πtΛ−
1
2

t where G̃ := √NG= [√P ,0,0, . . . ,0]. �

2.3.1.4 Noisy Feedback Link

So far we have considered the communication link from the controller to the plant
to be noiseless. Noiseless communication link from the controller to the plant can
be a good assumption for certain scenarios in which the controller is either con-
nected to the plant via a cable or the controller has very large power to spend for
transmission of signals over the air. However, in some practical situations, it may
not be reasonable to model the communication link from the controller to the plant
as noiseless. In these situations, the remote controller can be equipped with an en-
coder to encode the control actions before transmitting them over a noisy channel
and the remotely located actuator can be equipped with a decoder, to decode the
control actions using the signal received over the noisy channel. In Fig. 2.3, such
a setup is shown, where there are two encoders to encode the plant’s state and the
control actions with average transmit powers E[(Sf,t )2] = Pf and E[(Sr,t )2] = Pr ,
respectively. The forward and the reverse channels are disturbed by white Gaussian
noises Zf,t ∼N (0,Nf ) and Zr,t ∼N (0,Nr), respectively. Thus the capacities of
the forward channel and the reverse channel are given by Cf := 1

2 log(1+ PS
Nf
) and

Cr := 1
2 log(1+ Pr

Nr
). In the following, present necessary and sufficient conditions

for the mean-square stability over the given channel.

Theorem 2.4 The linear system (2.1) can be mean-square stabilized over a noisy
forward channel with capacity Cf and a noisy reverse channel with capacity Cr
only if

log
(|A|)≤min{Cf ,Cr}. (2.31)

Proof The system in Fig. 2.3 can be viewed as the system depicted in Fig. 2.4, where
the encoders, decoders, and controllers are viewed as decision makers. The encoder
in the forward link (Encoder 1) is the first decision maker DM1. The decoder in
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Fig. 2.4 Another
representation of the system
model in Fig. 2.3

the forward link (Decoder 1), the controller, and the encoder in the reverse link
(Encoder 2) are altogether can be viewed as second decision maker DM2. Finally,
the DM3 represents decoder of the reverse link (Decoder 2). For the system shown
in Fig. 2.4, we know from Lemma 2.1 that the following condition is necessary for
stabilization:

log
(|A|)≤ lim inf

T→∞
1

T
I (X̄[0,T−1] →R[0,T−1]). (2.32)

According to the proof of Theorem 3.1 in [67], the directed information can be
bounded as

I (X̄[0,T−1] →R[0,T−1])≤min

{
T−1∑
t=0

I (Sf,t ;Yt ),
T−1∑
t=0

I (Sr,t ;Rt)
}

≤ 1

2
min

{
log

(
1+ Pf

Nf

)
, log

(
1+ Pr

Nr

)}

=min{Cf ,Cr}, (2.33)

where the last equality follows from the definition of channel capacities. By using
(2.33) in (2.32), we get (2.31). �

Theorem 2.4 shows that the reliability of the reverse channel is as important as the
forward channel. The necessary condition (2.31) was first obtained for memoryless
sensors and controller in [56, Theorem 8.1]. In [56], the authors have also obtained
a sufficient condition for stabilization by restricting the encoders and the decoders
to be linear and memoryless, which is stated in the following theorem.

Theorem 2.5 [56, Theorem 8.1] The linear system (2.1) can be mean-square sta-
bilized over a Gaussian forward channel with capacity Cf and a Gaussian reverse
channel with capacity Cr using a linear memoryless sensing and control scheme if

log
(|A|)≤ 1

2
log

(
1

2−2Cf + 2−2Cr − 2−2(Cf+Cr)

)
. (2.34)

In Fig. 2.5, we have fixed forward channel capacity Cf = 5 bits/channel use, and
have plotted stability region achievable with linear memoryless scheme as a func-
tion of reverse channel capacity Cr using (2.34). The figure shows that an LTI plant
with system matrix A is stabilizable with linear scheme if log(|A|) is below the sta-
bility curve drawn in the figure. For the sake of comparison, the outer bound on the
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Fig. 2.5 Stability Region

achievable stability region is also plotted according to (2.31). One can observe that
the linear memoryless scheme is quite efficient because its performance gets close
to optimal as one of the two links becomes relatively more reliable. In Sect. 2.5,
we discuss sub-optimality of linear policies for estimation over multi-hop relay net-
works. It is shown that a simple three-level quantizer policies can outperform the
best linear policy even over a two-hop network. The setup of noisy forward and
noisy reverse channel can be viewed as a two-hop network, as illustrated in Fig. 2.4.
Use of such nonlinear schemes in forward and reverse channels can potentially im-
prove stability of the closed-loop system; however, this is yet to explored. Control
over noisy forward and reverse channels have been considered also for more general
channels in [56].

In the remainder of the chapter, we keep the assumption of noiseless link from
the controller to the plant, in order to simplify the analysis and to avoid tedious
computations. As long as the encoders and decoders are linear and the channels are
modeled as Gaussian, the nature of the problem does not change and one can obtain
stability results for noisy reverse channels with some straightforward analysis.

2.3.2 Schemes for Vector Channel

In the previous section, we showed that linear schemes can achieve the minimum
signal-to-noise required for stabilization of multi-dimensional LTI system over a
scalar Gaussian channel. That is there is no rate loss in restricting the scheme to be
linear. In fact, for the stabilization of scalar plant over a scalar Gaussian channel,
linear policies are optimal. However, for transmission over vector channels, linear
schemes may not be good enough. It is known from the information theory literature
[38] that a distributed joint source–channel code is optimal in the MMSE sense, if
the following conditions hold: (i) The information transmitted on all available chan-
nels is independent, (ii) Capacity is utilized by all channels (source-channel needs
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to be matched). By using any linear scheme, it is not possible to make the trans-
mitted signals on parallel channels independent. However, independent signals can
be transmitted on parallel channels by employing nonlinear schemes. Some nonlin-
ear sensing schemes for stabilization and control of a scalar system over parallel
Gaussian channels are given in [24, 58]. In [58], the authors considered two parallel
channels and proposed to send the magnitude of the observed state process on one
channel and the phase value (plus or minus) on the second channel. The phase and
magnitude of a signal are shown to be independent, thus satisfying the first condition
of optimality. Although the second condition of optimality is not met, the proposed
nonlinear schemes outperforms the best linear scheme. In [24], the authors proposed
to use a hybrid digital–analog scheme, in which the state process is quantized and
the quantized signal is transmitted on one channel and quantization error is trans-
mitted on the other channel. This scheme can be extended to arbitrary number of
parallel channels and it achieves the minimum signal-to-noise ratio requirement for
the mean-square stabilization of a scalar noiseless plant.

In order to demonstrate inefficiency of linear schemes over vector channels, let
us consider the following example.

Example Consider a scalar LTI system that has to be stabilized over M parallel
white Gaussian channels. Assume that the sensor has an average transmit power
constraint PS and all channels are disturbed by noises of equal power, i.e., zi,t ∼
N (0,N) for all i ∈ {1,2, . . . ,M}. It can be easily shown that the system can be
stabilized over the given channel by a linear sensing and control scheme if log(λ) <
1
2 (1 + P

N
). However, with the nonlinear scheme proposed in [24], the achievable

stability region is given by log(λ) < M
2 (1 + P

MN
). The stability regions achieved

by linear and nonlinear schemes have been plotted in Fig. 2.6 for P = 1 and M =
2,10, and 100. Note that in the given example, the achievable stability region of
linear scheme is independent of the number of available parallel channels M . But
with the nonlinear scheme, the stability region significantly enlarges as the number
of parallel channels increases. This example shows that linear schemes can be very
inefficient in some parallel channel settings.

The nonlinear scheme proposed in [24] works for scalar plants. For stabiliza-
tion of a multi-dimensional plant, the non-linear scheme of [24, 58] can be used
together with the time varying (mode-by-mode transmission) scheme discussed in
Sect. 2.3.1.2. Such a nonlinear time varying scheme can achieve the minimum rate
required for stabilization. An interesting open problem is to determine tight condi-
tions for optimality of linear scheme for stabilization of multi-dimensional systems
over vector Gaussian channel. In the following, we state a sufficient condition for
optimality of a linear time varying scheme proposed in [68].

Theorem 2.6 [68, Theorem 3.2] A linear time varying scheme is optimal for mean-
square stabilizing an n-dimensional plant over m parallel Gaussian channels if
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Fig. 2.6 Comparison of
linear and nonlinear schemes

there exist fij ∈Q such that fij ≥ 0,
∑m�

j=1 fij ≤ 1,
∑n
i=1 fij = 1 and

log
(|λi |)< m�∑

j=1

fij

2
log

(
1+ P

�
j

Nj

)
,

for all i ∈ {1,2, . . . , n} and j ∈ {1,2, . . . ,m�}, where P �j is the optimal power al-
location given by the water-filling solution [46, pp. 204–205] and m� ≤ m is the
number of active channels for which optimal transmit power is nonzero.

Some relevant works on the source–channel matching and optimality of linear esti-
mation can be found in [1, 15, 25, 34, 45, 47, 51].

2.4 Stabilization over Relay Channels

In this section, we study stabilization of linear systems over Gaussian relay chan-
nels. The basic relay channel consists of one sender (source), one receiver (desti-
nation), and an intermediate node (relay) whose sole purpose is to help the com-
munication between the source and the destination [10]. The basic three node relay
channel is a basic block of a large sensor network where a group of sensor nodes
cooperate to communicate information from a source to a destination. In order to un-
derstand the problem of stabilization over a general relay network, we study some
basic relay network topologies such as non-orthogonal relay channel and orthogo-
nal relay channel. By the orthogonality of the relay channel we mean that the signal
spaces of the encoder and the relay are orthogonal. For example, if the source node
and the relay node transmit in disjoint frequency bands or non-overlapping time
slots, then the relay channel is considered to be orthogonal. These topologies serve
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as the basic building blocks of a large network. In practice, the relay node can be ei-
ther half-duplex or full-duplex. A node which is capable of transmitting and receiv-
ing signals simultaneously using the same frequency band is known as full-duplex
while a half-duplex node cannot simultaneously receive and transmit signals. It is
expensive and hard to a build a communication device which can transmit and re-
ceive signals at the same time using the same frequency, due to the self-interference
created by the transmitted signal to the received signal. Therefore, half-duplex sys-
tems are mostly used in practice.

The problem of control over a basic three node Gaussian relay channel was first
introduced in [59, 61], some sufficient conditions for the mean-square stability were
derived. Further related work on control over noisy relay channels can be found in
[23, 64].

We know from [36] that the concept of Shannon capacity is not sufficient to
characterize moment stability. Moreover, even for the general three node Gaussian
relay channel, a single-letter expression for Shannon capacity is still not known. In
[14], Gastpar and Vetterli determined capacity of a particular large Gaussian relay
network in the limit as the number of relays tends to infinity. The achievable infor-
mation rate over the relay channel depends on the processing strategy of the relay.
The most well known relaying strategies are amplify-and-forward (AF), compress-
and-forward, and decode-and-forward [22]. The AF strategy is well suited for delay
sensitive control applications and is therefore addressed here.

In this section, we discuss the mean-square stabilization of the system in (2.1)
over some fundamental relay channels such as non-orthogonal half-duplex relay
channels, non-orthogonal full-duplex relay channel, and orthogonal relay channel
in Sects. 2.4.1, 2.4.2, and 2.4.3, respectively. For each relay channel, we present
necessary conditions and sufficient conditions for stabilization. In Sect. 2.4.4, we
briefly compare achievable stability regions using linear schemes over these basic
relay channels.

2.4.1 Non-orthogonal Half-duplex Relay

Consider a non-orthogonal half-duplex Gaussian relay channel shown in Fig. 2.7.
A sensor node (state encoder) E senses the state of the plant and transmits it to the
remote controller, while another sensor node R acts as a relay to support communi-
cation from E to the controller. The state encoder and the relay transmit in the same
frequency band and the relay node is assumed to be half-duplex, i.e., it cannot trans-
mit and receive signals simultaneously. In [64], the authors proposed a transmission
protocol having two transmission phases, as shown in Fig. 2.7. The signals trans-
mitted by E and R are denoted as Se,t and Sr,t , respectively. The variables Zr,t and
Zt denote two mutually independent white Gaussian noise components with zero
mean and variancesNr andN , respectively. In the first transmission phase (odd time
steps), E transmits signal with an average power 2βPS , where 0< β ≤ 1 is a param-
eter that distributes power between the two transmission phases. In this transmission
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Fig. 2.7 Half-duplex AWGN
relay channel

phase, the relay R receives a noisy signal Yt from the encoder but it does not trans-
mit any signal. In the second transmission phase (even time steps), both the encoder
E and the relay R transmit with average powers 2(1− β)PS and Pr , respectively.
The relay node employs amplify-and-forward (linear) strategy, where amplification
at the relay is done under an average power constraint PR . The multiplicative gain
of the E–D link is assumed to be a constant h ∈ R and the gain of the R–D link
is assumed to be one, without loss of generality. The presence of relay node can
be more useful in scenarios where the direct link is weaker, i.e., |h| is small. The
controller in the first transmission phase receives Rt = hSe,t + Zt and in the sec-
ond phase receives Rt = hSe,t + Sr,t +Zt . At any time, the controller estimates the
present state of the plant using all the signals it has received so far, and then takes
an action to stabilize the plant using its state estimate. In the following, we discuss a
linear control and communication scheme based on the above transmission protocol
and give necessary and sufficient conditions for stabilization. The communication
and control scheme is presented in Sect. 2.4.1.1 and the mean-square stability of the
system under the given scheme is analyzed in Sect. 2.4.1.2.

2.4.1.1 Sensing and Control Scheme

The control and communication scheme has an initialization step, which is done
to make the state distribution Gaussian. This initialization step works as follows.

The encoder E observes X0 and transmits Se,0 =
√
PS
α0
X0. The controller D receives

R0 = hSe,0 +Z0 and estimates the initial state as

X̂0 = 1

h

√
α0

PS
R0 =X0 + 1

h

√
α0

PS
Z0.
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The controller C then takes an action U0 =−λX̂0 which results in

X1 = λX0 +U0 +W0 = λ(X0 − X̂0)+W0 =−λ
h

√
α0

PS
Z0 +W0. (2.35)

The new plant state X1 is Gaussian distributed with zero mean and variance α1 =
λ2N

h2PS
α0 + nw . This initialization step is not required if the initial state is already

Gaussian distributed. After the initialization, further transmissions are divided into
two separate transmission phases as discussed earlier. In the first transmission phase,

i.e., for t = 1,3,5, . . . , the encoder E transmits Se,t =
√

2βPS
αt
Xt to the controller.

The relay R operates in the receiving mode, i.e., it receives the signal transmitted
by E . The controller C observes Rt = hSe,t +Zt and computes the MMSE estimate
of Xt based on R[0,t]. It can be shown that E[XtRt−j ] = 0 for j ≥ 1; therefore, the
optimal MMSE estimator uses only the latest received signalRt to estimate the state.
Further, the optimal estimator is linear in the received signal due to the Gaussian

distribution. The optimal MMSE state estimate is computed as X̂t = ( h
√

2βPSαt
2h2βPS+N )Rt .

Based on the estimate X̂t , the controller C takes an action Ut =−λX̂t which results
in Xt+1 = λ(Xt − X̂t )+Wt . The new plant state Xt+1 is a linear combination of
zero mean Gaussian variables {Xt, X̂t ,Wt }; therefore, it is also zero mean Gaussian.
The variance of Xt+1 can be computed as

αt+1 := E
[
X2
t+1

]= λ2
E
[
(Xt − X̂t )2

]+E
[
W 2
t

]= λ2
(

N

2h2βPS +N
)
αt + nw.

(2.36)

In the second transmission phase, i.e., for t = 2,4,6, . . . , the encoder E transmits

Se,t =
√

2(1−β)PS
αt

Xt to the controller. The relay now operates in the transmitting
mode. It amplifies the previously received signal under the average transmit power
constraint and transmits the following signal to the controller,

Sr,t =
√

Pr

(2βPS +Nr)(Se,t−1 +Zr,t−1).

The controller C thus receives a linear combination of the signal transmitted from
the relay and the state encoder. The signal received at the controller is given by

Rt = hSe,t + Sr,t +Zt = L1Xt +L2Xt−1 + Z̃t , (2.37)

where L1 =
√

2(1−β)h2PS
αt

, L2 =
√

2βPSPr
(2βPS+Nr)αt−1

, and Z̃t = Zt +
√

Pr
2βPS+Nr Zr,t−1

with Z̃t ∼N (0, Ñ(β,Pr)). Next, the controller computes the MMSE estimate ofXt
given all previous channel outputs R[0,t] in the following three steps: (i) Compute
the MMSE prediction of Rt from R[0,t] as R̂t = L2X̂t−1, where X̂t−1 is the MMSE
estimate of Xt−1, (ii) Compute the innovation as It = Rt − R̂t , and (iii) Estimate
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the state using only the innovation It as X̂t = E[Xt |It ] . Note that this is the op-
timum MMSE estimate since Xt is independent of {R1,R2, . . . ,Rt−1} due to the
orthogonality property of MMSE estimation. The optimal MMSE state estimate is
computed as

X̂t = E[Xt |It ] = λ(λL1 +L2)αt

(λL1 +L2)2αt +L2
2nw + λ2Ñ(β,Pr)

It .

Based on the state estimate, the controller C takes an action Ut =−λX̂t that results
in Xt+1 = λ(Xt − X̂t )+Wt . The new plant state Xt+1 is a linear combination of
zero mean Gaussian variables {Xt, X̂t ,Wt }; therefore, it is also zero mean Gaussian
distributed. The variance of the new plant state Xt+1 follows from simple computa-
tions as

αt+1 = λ2
E
[
(Xt − X̂t )2

]+E
[
W 2
t

]
= λ2αt

(
L2

2nw + λ2Ñ(β,Pr)

(λL1 +L2)2αt +L2
2nw + λ2Ñ(β,Pr)

)
+ nw

= λ2(λ2kαt−1 + nw
)

×
(

( nwk1
λ2 )

1
αt−1

+ Ñ(β,Pr)
(k2 +

√
k1k+ nwk1

λ2
1
αt−1

)2 + ( nwk1
λ2 )

1
αt−1

+ Ñ(β,Pr)

)
+ nw, (2.38)

where the last equality follows by substituting αt from (2.36) and by defining k :=
N

2h2βPS+N , k1 := 2βPSPr
2βPS+Nr , k2 := q

√
2h2(1− β)PS . Having presented the sensing

and control scheme, we now discuss stability of the plant under the given scheme.

2.4.1.2 Stability Analysis

We wish to find the values of the system parameter λ for which the second moment
of the state remains bounded, i.e., the sequence {αt } has to be bounded. Rewriting
(2.36) and (2.38), the variance of the state at any time t is given by

αt = λ2
(

N

2h2βPS +N
)
αt−1 + nw, t = 2,4,6, . . . , (2.39)

αt = λ2(λ2kαt−2 + nw
)
f (αt−2)+ nw, t = 3,5,7, . . . , (2.40)

where

α1 = λ2N

h2PS
α0 + nw and

f (αt−2)�
(

( nwk1
λ2 )

1
αt−2

+ Ñ(β,Pr)
(k2 +

√
k1k+ nwk1

λ2
1
αt−2

)2 + ( nwk1
λ2 )

1
αt−2

+ Ñ(β,Pr)

)
.
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If the odd indexed sub-sequence {α2t+1} in (2.40) is bounded, then the even indexed
sub-sequence {α2t } in (2.39) is also bounded. Therefore, it is sufficient to consider
the odd indexed sub-sequence {α2t+1}. A complicated structure of f (αt ) in (2.40)
makes it difficult to find a condition on λ for which this sequence is bounded. There-
fore, in [64], we use the following approach. We construct a sequence {α′t } which
upper bounds the sub-sequence {α2t+1} and is easier to analyze. Then we derive a
condition on the system parameter λ for which the sequence {α′t } converges to a
limit point as t→∞, and consequently the boundedness of {α2t+1} is guaranteed.
We will show later that there is no loss in considering the majorizing sequence in-
stead of the original sequence. The detailed analysis is given in [64], and here we
merely give the condition under which the system is stable:

λ4 <

(
(k2 +√k1k)

2 + Ñ(β,Pr)
kÑ(β,Pr)

)
(2.41)

⇒ log(λ)≤ 1

4

(
log

(
1+ 2h2βPS

N

)
+ log

(
1+ M̃(β,Pr)

Ñ(β,Pr)

))
, (2.42)

where in the last equality we substituted k = N

2h2βPS+N and M(β,Pr) = (k2 +√
k1k)

2 in order to show the dependencies on the average relay power Pr and the
power allocation parameter β at the encoder. Since the relay node amplifies the
desired signal as well as the noise which is then superimposed at the decoder to
the signal coming directly from the encoder, an optimal choice of the relay trans-
mit power 0≤ Pr ≤ PR depends on the relay channel parameters {PS,Nr,N,h,β}.
Moreover, an optimal choice of the power allocation factor β at the encoder also de-
pends on the relay channel parameters {PS,Pr,Nr,N,h}. Therefore, we can rewrite
(2.42) as

log(λ) <
1

4
max
0<β≤1

0≤Pr≤PR

(
log

(
1+ 2h2βPS

N

)
+ log

(
1+ M̃(β,Pr)

Ñ(β,Pr)

))
, (2.43)

which is a sufficient condition for the mean-square stability of a scalar plant.
It is interesting to see that the sufficient condition for the mean-square stability

does not depend on the process noise. This provides motivation to study stabiliz-
ability of the system in (2.1) without process noise, i.e., Wt = 0. In the absence of
the process noise in (2.1), the state variance of the noiseless system at any time step
t is then given by substituting nw = 0 in (2.38), that is,

αt =
(

λ2N

2h2βPS +N
)
αt−1, t = 2,4,6, . . . ,

αt =
(

λ4kÑ(β,Pr)

(k2 +√k1k)2 + Ñ(β,Pr)
)
αt−2, t = 3,5,7, . . . .



64 A.A. Zaidi et al.

Fig. 2.8 Comparison of
second moments of the plant
state process at three different
levels of process noise

Since α1 = λ2N

h2PS
α0 + nw , the state variance αt→ 0 as t→∞ if

(
λ4kÑ(β,Pr)

(k2 +√k1k)2 + Ñ(β,Pr)
)
< 1.

This is the same condition as in (2.41). Thus by using the proposed linear coding
and control scheme, we obtain identical sufficient conditions for the mean-square
stability of noisy and noiseless first LTI system over half-duplex relay channel. Al-
though the sufficient conditions are identical, the state variance in the noisy plant
scenario cannot converge to zero like in the noiseless scenario.

A comparison of the second moments of the plant’s state process at three differ-
ent power levels of the process noise is illustrated in Fig. 2.8. In this figure, we have
fixed the relay channel parameters {PS = 2,Pr = 2, h= 1, β = 0.5,N = 0.5,Nr =
0.1}, the plant parameters {α0 = 0.25, λ = 1.5}, and have plotted the second mo-
ment E[X2

t ] of the state process as a function of time t for three power levels of the
process noise, i.e., nw = 0, 0.2, and 0.4. For the given set of channel parameters, the
mean-square stability of the system requires λ < 1.975, according to Theorem 2.7.
In Fig. 2.8, we have fixed λ= 1.5 (i.e., less than 1.975); therefore, starting from an
arbitrary initial value the second moment of the state process stays bounded for all
levels of the process noise. For nw = 0 the second moment converges to zero, start-
ing from an initial value equal to 0.25 as shown in Fig. 2.8. For nonzero values of
the process, the second moment keeps alternating between two different values. This
happens due to the first and the second transmission phases. As shown in Fig. 2.8,
for nw = 0.2 and nw = 0.4 the second moment converges to a unique nonzero value
for each transmission phase, and thus it keeps alternating between these two unique
limit points. In Fig. 2.8, we can also observe that the rate of convergence is similar
in the three examples, and seems to be unaffected by the power level of the process
noise.

The sufficient condition for a multi-dimensional plant can be obtained by using
the time varying (mode-by-mode transmission) scheme proposed in Sect. 2.3.1.2 to-
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Fig. 2.9 Optimal relay power
Pr for PR = 2, PS = 10,
N = 1

gether with the linear scheme used for the scalar plant above. With a similar analysis
as above, we can prove the following theorem.

Theorem 2.7 [64, Theorem 3.1] The linear time invariant system in (2.1) can be
mean-square stabilized over the half-duplex AWGN relay channel if

log
(|A|)< 1

4
max
0<β≤1

0≤Pr≤PR

(
log

(
1+ 2h2βPS

N

)
+ log

(
1+ M̃(β,Pr)

Ñ(β,Pr)

))
, (2.44)

where Ñ(β,Pr)= PrNr
2βPS+Nr +N , βın[0,1], and

M̃(β,Pr)=
(√

2h2(1− β)PS +
√

2βPSPrN

(2βPS +Nr)(2h2βPS +N)
)2

.

Remark 2.2 It has been shown in [64, Appendix I] that the term on the right-hand
side of (2.44) is the information rate over the half-duplex AWGN relay channel with
noiseless feedback.

Optimal choices of the power allocation parameter β at the encoder and the re-
lay transmit power Pr which maximize the term on the right hand side of (2.44)
depend on the quality (i.e., SNR) of E–D, E–R, and R–D links. To illustrate this,
we have plotted optimal relay power P �r as a function of the relay noise power Nr
for fixed values of PR = 2,PS = 10,N = 1 in Fig. 2.9, with the help of numeri-
cal computations. We observe that for low values of Nr , the relay uses all available
power. As the Nr increases, P �r decreases because the relay is using an amplify-
and-forward strategy in which noise also gets amplified along with the signal of
interest (state information). Eventually, P �r goes to zero for very high values of Nr ,
indicating the fact that the relay is not useful anymore if linear strategy is employed
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at the relay. However, nonlinear strategies might be useful for high values of Nr .
Some nonlinear relaying protocols have been proposed in [62] for the given half-
duplex non-orthogonal relay channel, which give significantly higher transmission
rates than the linear relaying. Such nonlinear schemes [62] can potentially enlarge
the achievable stability region if one uses them for remote stabilization. However, a
careful analysis is yet to be carried out to quantify the gains one can obtain in terms
of stability with those non-linear relaying strategies.

The optimal choices of power allocation parameter β has not been plotted; how-
ever, we have observed via numerical experiments that β = 0.5 is usually a good
choice which corresponds to an equal power allocation to the two transmission
phases. For very low values of Nr (i.e., very reliable E–R link), an optimal β can
be slightly greater than 0.5, which is due to the reason that the communication via
the relay can be more helpful.

We now consider a special case, where there is no direct communication link
from the encoder to the decoder and the information can be communicated only via
the relay. We call this setup as a two-hop relay channel, since the communication
from the sensor to the controller takes places in two hops: the first hop is from the
E to R and the second hop is from R to C. The half-duplex relay channel discussed
earlier becomes two-hop if h = 0. Naturally, for this case, we choose β = 1 and
Pr = PR and obtain the following sufficient condition for stabilization.

Corollary 2.1 [64, Corollary 3.2] The linear time invariant system in (2.1) can be
mean-square stabilized over a two-hop half-duplex AWGN relay channel if

log
(|A|)< 1

4
log

(
1+ 2PSPR

PRNr +N(2PS +Nr)
)
. (2.45)

For a setup which is equivalent to the two-hop relay channel, we find a necessary
condition in [56, Theorem 4.1] which reads as

log
(|A|)< 1

4
min

{
log

(
1+ 2PS

Nr

)
, log

(
1+ PR

N

)}
.

The condition in (2.45) becomes both necessary and sufficient if either the E–R link
is noiseless (Nr = 0) or the R–D link is noiseless (N = 0).

Consider a two-hop relay channel with a causal noiseless feedback link from the
controller to the relay. For this setup, the condition in (2.45) becomes necessary
and sufficient if we restrict the encoder to be linear in the state. This result is an
application of a result in [53, 55]. It follows from the following arguments:

For the two-hop relaying scenario with a noiseless causal feedback link from
the controller to the relay, we have a partially nested type of information pattern. It
is known that the separation of estimation and control holds for such an informa-
tion pattern and there is no dual effect of control [5]. The optimal control strategy
using dynamic programming is Ut = −λE[Xt |Rt0], where Rt0 = {Ri,0 ≤ i ≤ t}.
By applying the optimal control action, the plant’s state at any time t is given
by Xt+1 = λ(Xt − E[Xt |Rt0]) +Wt . If we restrict the state encoder policy to be
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linear, then an innovation (memoryless) encoder is optimal since the control ac-
tions whiten the state process. Given a linear and memoryless policy at the en-
coder, let us now find an optimal relaying policy which minimizes E[X2

t+1] =
λ2
E[(Xt −E[Xt |Rt0])2] +E[W 2

t ]. The cost to be minimized is

E
[(
Xt −E

[
Xt |Rt0

])2] (a)= E
[(
Xt −E

[
Xt |Y t0

])2]+E
[(
E
[
Xt |Y t0

]−E[Xt |Rt0])2]
(b)= E

[(
Xt −E

[
Xt |Y t0

])2]+E
[(
cYt −E

[
Xt |Rt0

])2]
,

(2.46)

where (a) follows from E[(Xt −E[Xt |Y t0])(E[Xt |Y t0]−E[Xt |Rt0])] = 0 (by the or-
thogonality principle of MMSE estimation); and (b) follows from the fact that the
encoder transmits only innovation at each time step and the MMSE estimation of
a Gaussian variable is linear, i.e., E[Xt |Y t0] = cYt , where c is a scalar. An optimal
relaying policy is the one which minimizes E[(cYt − E[Xt |Rt0])2], since the re-
maining term of the cost function in (2.46) is independent of the relaying policy.
A similar problem was studied in [3], from which it follows that an optimal relaying
policy is linear and memoryless. We have earlier obtained the sufficient condition
in (2.45) by using optimal linear (memoryless) communication and control policies;
therefore, this condition is also necessary provided that the encoder is constrained to
be linear in the state. Moreover, if we restrict the relay to be linear, then the two-hop
relay channel becomes equivalent to a scalar Gaussian channel. For this channel,
it has been shown earlier that a linear scheme is optimal. Therefore, if the relay is
restricted to be linear in the received signal, then the condition in (2.45) becomes
necessary and sufficient.

2.4.2 Non-orthogonal Full-duplex Relay Channel

Although a half-duplex relay node is easier to build compared to a full-duplex
node, there is some loss in the performance due to its inability to communicate
simultaneously with state encoder and the controller. A full-duplex system can be
realized by placing transmit and receive antennas far enough to ensure sufficient
isolation and/or by incorporating some interference cancellation schemes in ana-
log and/or digital domain. In the following, we consider remote stabilization of
linear plant over non-orthogonal full-duplex Gaussian relay channel depicted in
Fig. 2.10. The variables {Zr,t ,Zd,t } denote mutually independent white noise com-
ponents with Zr,t ∼ N (0,Nr) and Zd,t ∼ N (0,N). The gain of R–C link is de-
noted by h. At time step t , the encoder E inputs Se,t to the relay channel with
an average power PS . The relay simultaneously listens to Se,t and transmits Sr,t
which is the amplified version of the noisy signal received in the time step t − 1.
The amplification at the relay is done under an average power constraint Pr , where

0≤ Pr ≤ PR . That is, the relay transmits, Sr,t =
√

Pr
PS+NR (Se,t−1+Zr,t−1). The con-

troller receives Rt = Se,t + hSr,t + Zt , computes the MMSE estimate of the state
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Fig. 2.10 Non-orthogonal
full-duplex AWGN relay
channel

as, X̂t = E[Xt |R[0,t]], and then applies an action to stabilize the system, as done
in the half-duplex case. The stabilization of linear plant over full-duplex Gaussian
relay channel under a linear scheme has been in studied in [59]. In the following,
we present sufficient condition for stabilization under the best linear scheme.

Theorem 2.8 [59, Theorem 6] The linear system in (2.1) can be mean-square sta-
bilized over the non-orthogonal full-duplex AWGN relay channel if

log
(|A|)< 1

2
max

0≤Pr≤PR
log

(
1+ (

√
PS(PS +NR)+ η�h√PSPR)2
h2PRNR +N(PS +NR)

)
, (2.47)

where η� is the unique root in the interval [0,1] of the following fourth order poly-
nomial

(
h2PSPR

PS +NR
)
η4 +

(
2hPS

√
PR

PS +NR
)
η3 +

(
PS +N + h

2PRNR

PS +NR
)
η2

=
(
N + h

2PRNR

PS +NR
)
.

Proof This theorem can be proved by employing linear sensing and control poli-
cies, and by following the same analysis as in the proof of Theorem 2.7. The de-
tailed proof for a scalar plant can be found in [59]. The result can be extended to
multi-dimensional systems using a similar time-sharing (mode-by-mode) transmis-
sion scheme as discussed in Sect. 2.3.1.2. �

2.4.3 Orthogonal Relay Channel

An orthogonal AWGN relay channel is depicted in Fig. 2.11. The variables
{Zr,t ,Z1,t ,Z2,t } denote mutually independent white noise components with Zr,t ∼
N (0,Nr) and Zid,t ∼N (0,Ni) for i ∈ {1,2}. At any discrete time step t the encoder
E inputs Se,t to the relay channel with an average power PS . The relay observes Se,t
in noise, amplifies it under an average power constraint PR and forwards it to the
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Fig. 2.11 Orthogonal
half-duplex AWGN relay
channel

controller. Accordingly, the relay transmits

Sr,t = α(Se,t +Zr,t )=
√

PR

PS +NR (Se,t +Zr,t ),

where the amplification factor α is chosen equal to
√

PR
PS+NR in order to satisfy the

average power constraint, i.e., E[S2
r,t ] ≤ PR . The output of the relay channel at the

decoder D is {R1
t ,R

2
t }, which is given by

R1
t = Se,t +Z1

d,t ,

R2
t = Sr,t +Z2

d,t = αSe,t + Z̃t ,
(2.48)

where Z̃t ∼N (0, α2Nr +N2).
By using a linear sensing and control scheme over the given channel (as done in

the previous sections), we obtain the following sufficient condition for stabilization.

Theorem 2.9 [59, Theorem 2] The linear time invariant system in (2.1) can be
mean-square stabilized over the orthogonal half-duplex AWGN relay channel if

log
(|A|)< 1

2
log

(
1+ PS(PSN2 + PRNR +N2NR + PRN1)

N1(PRNR + PSN2 +NRN2)

)
. (2.49)

Proof This theorem can be proved by employing linear sensing and control policies,
and by following the same analysis as in the proof of Theorem 2.7. The detailed
proof for a scalar plant can be found in [59]. �

By using information theoretic arguments, we can obtain the following necessary
condition for stabilization.

Theorem 2.10 The linear time invariant system in (2.1) can be mean-square sta-
bilized over the orthogonal half-duplex AWGN relay channel only if

log
(|A|)< 1

2
min

{
log

(
1+ PS

N1

)
+ log

(
1+ PR

N2

)
, log

(
1+ PS

N1
+ PS
Nr

)}
. (2.50)

In order to see the performance of the proposed linear scheme over the orthogo-
nal relay channel, we plot two achievable stability region in Figs. 2.12 and 2.13 as
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Fig. 2.12 Achievable
Stability Region for
PS = PR = 10, N1 =N2 = 1

Fig. 2.13 Achievable
Stability Region for
PS = PR = 10, N1 =Nr = 1

functions of Nr and N2 according to (2.49). For comparison we also show the outer
bound on stability region using (2.50). We can observe that the linear scheme usually
performs good when either Nr is much greater than N2 or when N2 is much greater
than Nr , i.e., when one of the two links (either E–R or R–C) is much stronger
than the other. However, in some regimes, there is a large gap between stability re-
gion achieved by the linear scheme and the outer bound, indicating that the linear
schemes can be highly suboptimal in general for orthogonal Gaussian relay net-
works. In Sect. 2.6, we will present some nonlinear relaying schemes for real-time
transmission of a Gaussian source over an orthogonal Gaussian relay channel. Those
nonlinear schemes significantly outperform linear schemes, which makes them po-
tential candidates to be used in remote control or stabilization over Gaussian relay
networks.
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Fig. 2.14 Comparison of
linear and nonlinear schemes

2.4.4 Comparison of Relaying Topologies

We have so far studied following three relaying topologies: (i) non-orthogonal half-
duplex relay channel, (ii) non-orthogonal full-duplex relay channel, (iii) orthogonal
relay channel. In Fig. 2.14, we make a comparison of achievable stability regions
over these network topologies. We fix PS = 10,PR = 1,N = N1 = N2 = 1 and
show the stability regions that are achieved with linear schemes as functions of
increasing relay noise power Nr , according to Theorems 2.7, 2.8, and 2.9. Since
in the half-duplex setting the relay transmits in alternate time steps, it can trans-
mit with double power compared to the full-duplex case. Therefore, for the full-
duplex relay and the orthogonal relay channels we have used PR = 1, whereas for
the half-duplex relay channel we have used PR = 2 while plotting achievable stabil-
ity regions in Fig. 2.14. The figure shows that the full-duplex relaying is superior to
the half-duplex relaying. The reader should keep in mind that the full-duplex sensor
nodes are usually more expensive due to the implementation issues discussed earlier.
Moreover, we can observe that the orthogonal relaying outperforms non-orthogonal
relaying for higher values of Nr ; however, this gain is obtained at the cost of using
more channel resources (for example, using extra bandwidth).

2.5 Sub-optimality of Linear Policies for Multi-hop Networks

It is known from [27, 65] that linear schemes are not optimal in general for estima-
tion and control over Gaussian multi-hop relay networks. The paper [65] considers
the problem of transmission of an i.i.d. Gaussian source over most basic two-hop
relay channel illustrated in Fig. 2.15. The problem formulation is as follows: Con-
sider a sequence of independent and identically distributed real-valued Gaussian
random variables {Xt }t∈N having zero mean and variance σ 2

x , where t denotes a



72 A.A. Zaidi et al.

Fig. 2.15 Real-time transmission of a memoryless Gaussian source over a two-hop relay channel

Fig. 2.16 Source and Relay
Policies

discrete time index. According to the figure, at a discrete time t ∈ N the source
encoder E observes Xt and produces Se,t = f1,t (X[0,t]) suitable for transmission,
where f1,t : Rt �→ R is a causal measurable mapping. The mapping f1,t has to sat-
isfy the following average power constraint

E
[
S2
e,t

]≤ PS.
The signal Se,t is then observed in noise by the relay node R as Yt = Se,t + Zr,t ,
where {Zr,t }t∈N is a zero mean white Gaussian noise sequence of varianceNr . Since
there is no direct link from the source encoder to the destination, we neglect trans-
mission and processing delays at the relay, i.e., the relay node applies a causal map-
ping on the received signal f2,t : Rt �→ R to produce Sr,t = f2,t (Y[0,t]) under the
power constraint

E
[
S2
r,t

]≤ Pr . (2.51)

The signal Sr,t is then transmitted over a Gaussian channel. Accordingly, the des-
tination node D receives Rt = Sr,t + Zd,t , where {Zd,t }t∈N is a zero mean white
Gaussian noise sequence of variance N . Upon receiving Rt , the decoder wishes to
reconstruct the transmitted variable Xt by applying a mapping gt : Rt �→ R to pro-
duce X̂t = gt (R[0,t]). Let us define the signal-to-noise ratios of the E–R and R–D
links as γr := PS/Nr and γd := Pr/N , respectively. The encoder, the relay, and the
decoder are all causal and delay-free (zero delay). The objective is to choose the
encoder, relay, and decoder mappings such that following distortion

D = lim sup
T→∞

1

T + 1

T∑
t=0

E
[
(Xt − X̂t )2

]
(2.52)

is minimized subject to the power constraints.
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Fig. 2.17 Comparison of the linear and the nonlinear schemes

It has been shown in [65] that the following simple time invariant nonlinear
source and relay policies can beat the best linear scheme in some cases:

f2,t (yt )=
⎧⎨
⎩
b, for yt > m2,

0, for |yt | ≤m2,

−b, for yt <−m2,

f1,t (xt )=
⎧⎨
⎩
a, for xt > m1,

0, for |xt | ≤m1,

−a, for xt <−m1.

The functions f1,t (·) and f2,t (·) are illustrated in Fig. 2.16.
In Fig. 2.17, we have plotted the distortion achieved with the nonlinear and the

optimal linear schemes as functions of signal-to-noise ratios for some fixed param-
eters. These figures demonstrate that the simple three-level quantizer policies can
outperform the best linear policies. The proposed nonlinear scheme is not always
better than the optimal linear scheme as demonstrated in Fig. 2.17, where we have
plotted distortion achieved with the nonlinear and the optimal linear schemes as
functions of signal-to-noise ratios for some fixed parameters. The nonlinear scheme
outperforms the linear scheme in low SNR regions; however, there might exist better
nonlinear strategies which may outperform the linear strategy also in high SNR re-
gions. When the channels are very noisy, the proposed nonlinear strategy is superior
because it does not amplify the large values of channel noise at its input unlike the
linear (amplify-and-forward) strategy. When linear schemes are employed in multi-
hop relay networks, noise is accumulated in every hop, whereas nonlinear schemes
can suppress noise. In Sect. 2.6, we discuss an algorithm to numerically optimize
the source and relay mappings for an orthogonal relay channel. One can use a sim-
ilar approach to numerically optimize the source and relay mappings for the given
two-hop relay channel as well.

The motivation for choosing three-level quantizer policies comes from the multi-
stage decision problem studied in [27] where a binary quantizer was shown to beat
the best linear policy for five or more stages. The given two-hop relaying setup
corresponds to three stages. It is, however, not known whether binary quantizers
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Fig. 2.18 Real-time
transmission of a Gaussian
source over an orthogonal
half-duplex Gaussian relay
channel

are always worse than the best linear scheme for the given three-stage problem.
The intuition for choosing symmetric quantizer comes from the fact that symme-
try in distribution is preserved when symmetric functions are applied to sources
with symmetric distributions. Moreover, with centering the quantizer at zero, the
encoders can utilize the available transmit power in an efficient way by transmitting
signals with power equal to zero more often.

2.6 Real-Time Transmission over an Orthogonal Relay Channel

In this section, we consider real-time transmission of a memoryless source over
an orthogonal half-duplex Gaussian relay channel. The system model is depicted
in Fig. 2.18, where a sensor node E observes a Gaussian variable X ∼ N (0, σ 2

x )

and transmits it to the destination D over a Gaussian channel. An intermediate sen-
sor node R called relay, overhears the signal transmitted from sensor E and relays
its received information to the destination D over an orthogonal channel. We as-
sume that the relay is half-duplex, i.e., it cannot simultaneously receive and trans-
mit signals. For real-time coding of i.i.d. sources, memoryless coding is optimal
[55]. Therefore, we consider memoryless encoders. For each source sample Xi , the
source encoder E uses channel K1 times and the relay encoder R uses channel K2,
where K1,K2 are positive integers. Thus the transmission of source each sample
takes K =K1+K2 channel uses. For each source sample, E transmits Se = fe(X),
where fe : R �→ R

K1 , subject to an average power constraint E[f 2
e (X)] ≤ PS . The

relay and the destination accordingly receive:

Y= Se +Zr ,

R1 = Se +Z1
d,

(2.53)

where Zr ,Z1
d ∈R

K1 are mutually independent zero mean white Gaussian noise vec-
tors with E[Z1

d(Z
1
d)
T ] = N1

d I and E[ZrZTr ] = NrI . Upon receiving Y, R trans-
mits Sr = fr(Y), where fr : RK1 �→ R

K2 is subject to an average power constraint
E[f 2

r (Y)] ≤ Pr . Accordingly, the destination D receives R2 = Sr + Z2
d , where

Z2
d ∈R

K2 is a white Gaussian noise vector with E[Z2
d(Z

2
d)
T ] =N2

d I . After receiving
signals from both E and R, the decoder D reconstructs X as X̂ = fd(R1,R2) where
the mapping fd :RK �→R is chosen such that the mean-squared error E[(X− X̂)2]
is minimized.
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Fig. 2.19 Relay and decoder mappings (K1 = K2 = 1) optimized for σ 2
x = Ps = Pr = 1 and

γed = 5 dB, γer = 10 dB, and γrd = 25 dB

The problem of real-time transmission of a Gaussian source over the given three
node orthogonal Gaussian relay channel has been studied in [20], where the au-
thors propose an algorithm to numerically optimize the source, relay, and destina-
tion mappings. Since there are three mappings to be optimized for a given set of
channel parameters, the design algorithm in [20] uses a common strategy of opti-
mizing one mapping at a time while keeping the other two fixed. Moreover, each di-
mension of the channel space is discretized into equally spaced points in the design
algorithm. The optimized mappings obtained in [20] are in general nonlinear and
are shown to provide significant gains over linear mappings in terms lower achiev-
able distortion. In the following, we use the design algorithm of [20] to optimize
mappings for some fixed channel parameters. We give examples of optimized map-
pings for only two cases: (i) K1 = K2 = 1, and (ii) K1 = 1,K2 = 2. Let us define
the SNRs of the E–D, E–R, and R–D links as γed := PS/N1

d , γer := PS/Nr , and
γrd := Pr/N2

d , respectively. For the case K1 =K2 = 1, we provide some examples
of optimized mappings in Figs. 2.19, 2.20, 2.21. In these examples, we have fixed
the source mapping to be linear and optimized the other two mappings (relay and
decoder mappings) for different values of signal-to-noise ratios as given in the cap-
tions of the respective figures. We observe that these optimized relay mappings are
non-invertible and have an almost periodic like behavior. Several input values are
mapped to the same output value; this way of reusing output values can be seen as
Wyner–Ziv type compression. This reuse of output values (an almost periodic be-
havior) makes the relay mappings more power efficient. Such non-invertible map-
pings have become possible due to the availability of the side information via the
E–D link. In Figs. 2.19–2.21, we have also plotted decoder mappings, which basi-
cally estimate the source X using the two received signals R1 and R2. The decision
regions along with the reconstructions X̂ are also shown in the figures. From these
examples of optimized mappings, we observe that the number of periods in the relay
mappings increase as the reliability of side information increases, thus making the
relay more power efficient.
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Fig. 2.20 Relay and decoder mappings (K1 = K2 = 1) optimized for σ 2
x = Ps = Pr = 1 and

γed = 10 dB, γer = 10 dB, and γrd = 25 dB

Fig. 2.21 Relay and decoder mappings (K1 = K2 = 1) optimized for σ 2
x = Ps = Pr = 1 and

γed = 20 dB, γer = 30 dB, and γrd = 25 dB

In Figs. 2.22 and 2.23, we give two examples of optimized relay mappings for
K1 = 1, K2 = 2. That is the case where the relay performs an expansion—from its
one-dimensional input to its two-dimensional output. Once again, there is a reuse
of the output symbols which is only possible due to the side information from the
direct link. As reliability of the side information increases, the reuse of the same
output values also increases. The mappings have a spiral like shape. As reliability
of direct link increases, the reuse of same output values also increase. Looking at
the spiral from above, a similarity to the polynomial based source–channel codes
proposed in [19, 42] can be seen.

In order to see the gains of nonlinear optimized mappings over linear mappings in
terms of achievable distortion, we refer the reader to [20]. In [20], the authors have
analyzed the performance in detail for various values of channel dimensions (K1 and
K2) and signal-to-noise ratios. It is observed that with these optimized mappings
significantly lower distortion can be achieved, which makes them very useful for
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Fig. 2.22 Relay mapping
(K1 = 1,K2 = 2) optimized
for σ 2

x = Ps = Pr = 1 and
γed = 5 dB, γer = 15 dB, and
γrd = 10 dB

Fig. 2.23 Relay mapping
(K1 = 1, K2 = 2) optimized
for σ 2

x = Ps = Pr = 1 and
γed = 15 dB, γer = 15 dB,
and γrd = 10 dB

large sensor networks and remote control scenarios where delay is a critical factor
and transmit powers are limited.

2.7 Distributed Sensing for Control

In this section, we consider a multi-sensor setup, where multiple sensors in parallel
observe noisy versions of the state process and communicate their observations to
a remotely situated controller over orthogonal (parallel) channels. This scenario is
different from the one studied earlier since each sensor has access to a different
observation due to the addition of the measurement noise. The sensors then transmit
their local observations to the controller. The schemes of [24, 58] can also be used
for distributed sensing. However, it is not known how useful they are in the presence
of measurement noise.

For the sake of simplicity, consider a two sensor setup shown in Fig. 2.24 with
a scalar plant whose state equation is given by (2.1) with A = λ. The state Xt is
observed in noise by the sensors E1 and E2 as

Y it =Xt +Zie,t , i = 1,2,
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Fig. 2.24 A closed-loop
control system with state
measurements transmitted
over wireless channels

where Z1
e,t and Z1

e,t are two i.i.d. mutually independent measurement noise compo-
nents, which are Gaussian distributed with zero means and variances N1

e and N2
e ,

respectively. Based on their noisy observations, the two sensors transmit the follow-
ing signals:

Sit = fi,t
(
Y it
)
, i = 1,2,

subject to the following power constraints:

E
[(
Sit
)2]≤ Pi, i = 1,2. (2.54)

Accordingly, the remote controller receives

Rit = Sit +Zid,t , i = 1,2, (2.55)

where Zid,t , i = 1,2, are independent and i.i.d. zero-mean Gaussian with power Nid .
We have assumed orthogonal channels from the sensors to the controller; therefore,
there is no interference between the two received signals (i.e., we have two parallel
Gaussian channels from the sensors to the sink node). Based on the received signals,
the controller takes an actionUt = πt (R1[0,t],R2[0,t]). The objective is to minimize the
following finite horizon quadratic cost function

JT = E

[
T∑
t=1

X2
t

]
, (2.56)

where the expectation is taken over the initial state X0, the process noise Wt , the
measurement noise Zie,t , and the channel noise Zid,t .

In the following, we present a nonlinear distributed sensing scheme which out-
performs the best linear scheme. This scheme was first introduced in [47] for the
transmission of a Gaussian source over orthogonal Gaussian channels and was later
used in control context in [2].
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Fig. 2.25 Nonlinear
distributed sensing

2.7.1 Sensing Scheme

The nonlinear distributed sending and control scheme works as follows. The signals
transmitted by the two sensors are given by

S1
t = ηtY 1

t , (2.57)

S2
t = ηt

(
Y 2
t −Δt

⌊
Y 2
t

Δt

⌉)
, (2.58)

where �·� denotes rounding to the nearest integer. A pictorial illustration of this non-
linear scheme is given in Fig. 2.25. The parameter Δt controls the length of each
period in the periodic sawtooth function. The values Δ[0,t] are chosen such that the
cost function JT in (2.56) is minimized. The procedure of choosing Δ[0,t] can be
found in [2]. The parameters {ηt ,Δ[0,t]} are chosen such that the average transmit
power constraints (2.54) are met.

2.7.2 Control Scheme

The controller is assumed to have a separation structure where it first computes
an estimation of the state and then take action using the state estimate. Since the
computation of optimal MMSE estimate based on all previously received signals
{R1[0,t],R2[0,t]} is not practical, the following sub-optimal algorithm is proposed in
[2]:

1. Compute estimates X̃0|t , . . . , X̃t |t of X0, . . . ,Xt based on the previous estimate
X̂t−1 and R1

t using a Kalman filter (cf. Kalman Filter 1 in the Fig. 2.26).
2. Assume that |(X̃s|t − Y 2

s − Z2
d,s)/ηs | ≤ Δs/2 ∀s and compute the Maximum

Likelihood estimates Ŷ 2
s as (cf. ML decoder in Fig. 2.26):

Ŷ 2
s = argminYs∈Y

((
S2(Ys)−R2

s

)2)
, (2.59)

where Y = {Ys : |X̃s|t − Ys | ≤ ηsΔs/2}.
3. Finally, assume that the estimates Ŷ 2

s had been linearly encoded (multiplied by
ηt0) and find the estimate X̂t from a Kalman filter using {R1[0,t], η[0,t],U[0,t−1]}
and U[0,t−1] as input (cf. Kalman Filter 2 in Fig. 2.26).
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Fig. 2.26 State estimator for
the nonlinear distributed
sensing scheme

Fig. 2.27 Nonlinear
distributed sensing

The above nonlinear sensing and control scheme is delay-free and can be im-
plemented with reasonable complexity. This nonlinear scheme has been shown to
outperform the best linear strategy in [2]. Furthermore, it is robust to the knowledge
of noise statistics at the sensors as demonstrated in [2]. Intuitively, this scheme can
be easily extended to an arbitrary number of sensors by employing a linear mapping
at the first sensor node and sawtooth mappings at the remaining sensor nodes with
successively decreasing time periods Δt . How the number of sensor nodes will af-
fect the system performance compared to the best linear scheme is yet to be studied.

Another nonlinear distributed sensing scheme has been proposed in [58] for the
two-sensor setup, where one sensor transmits magnitude of the received signal and
the other sensor transmits phase value of the received signal. The mappings em-
ployed by the two distributed sensors are shown in Fig. 2.27. It has been shown
in [58] that the outputs of these two sensor mappings are mutually independent
and thus enable us to send independent information over the two parallel channels.
This nonlinear scheme has been shown to outperform linear scheme in absence of
measurement noise. A careful comparison of these two nonlinear sensing schemes
discussed in this section is yet to be made. There might be certain regimes where
one scheme may perform better than the other.
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2.8 Bibliographic Notes

There exists a diverse literature on the problem of control and real-time communi-
cation over Gaussian channels, focusing on different models, objectives, and design
constraints. For instance, the plant and the channel models can be either discrete-
time or continuous with different network topologies and different assumption on
Gaussian noise. There can be different design constraints such as transmission
delay-constraints, sum and individual power constraints, average and peak power
constraints, bandwidth constraint, etc. And the commonly studied objectives are
minimizing a quadratic cost function of the state and the control variables, achiev-
ing moment stability or invariant state distribution on the state of the plant. In this
chapter, the discussion was mostly limited to the problem of the mean-square sta-
bilization of an LTI discrete-time plant and real-time communication over some
specific discrete-time white Gaussian channels with average transmit power con-
straints. In the following, we highlight some of the important and related research
contributions on the problem of control over Gaussian channels.

Some of the earliest papers addressing the control of linear systems over Gaus-
sian channels include [43, 50]. These papers show that for linear systems subject
to Gaussian noise with linear sensing policies having perfect memory (recall), the
optimal control policies are linear and there exists a separation property between es-
timation and control. However, in [48], Witsenhausen showed via a simple counter
example that linear policies may not be optimal when there are more two or more
decision makers (sensors/controllers) without perfect memory (recall). At this point,
we emphasize the importance of information structures and recommend some fun-
damental papers on stochastic team decision problems [16, 35, 49, 57]. The infor-
mation structure can be classical, quasiclassical, and non-classical. The problem
studied in [43, 50] falls in the class of classical information structure, for which
linear control policies were shown to be optimal. In the quasiclassical information
structure, decision maker A effects the information of decision maker B, and the de-
cision maker B knows what is known by decision maker A. For LQG systems having
a quasiclassical information structure, linear policies have been shown to be opti-
mal, for example, see [16, 35]. The Witsenhausen problem [48] has a non-classical
information structure in which decision maker A effects the information of decision
maker B, but the decision maker B does not have access to what is known by de-
cision maker A. The Witsenhuasen problem is unsolved till today, which indicates
the hardness of such problems. However, for some LQG systems with non-classical
information structures, linear policies have been shown to be optimal, for example,
see [3–5, 52]. These papers have used tools from information theory. The paper [3]
studies the problem of a causal memoryless transmission of a noisy Gaussian source
over a Gaussian channel and shows that linear coding and decoding policies are op-
timal. The optimality of linear sensing and control policies for a first order scalar
LTI system with an objective of minimizing a quadratic cost function of state and
control variables was established in [5], where some concepts from rate distortion
theory were used. Another paper [44] used tools from source coding and channel
coding to establish necessary condition for stabilization over a large class of com-
munication channel including a memoryless Gaussian channel. The authors of [45]
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found the conditions under which separation property between estimation and con-
trol holds for LQG problems where there is a communication link (for example,
a memoryless Gaussian channel) between the sensor and the controller. Moreover,
they introduced a framework of sequential rate distortion theory for designing the
encoders and the decoders. In [8, 13, 31, 39], the reader can find relevant studies
on signal-to-noise ratio requirements for stabilization over some Gaussian channel
models. The papers [18, 40] have proposed some techniques for designing linear
controllers for Gaussian channels. Some recent results on control over Gaussian
fading channels can be found in [9, 26].

The problem of control over communication channels is closely related to the
problem of communication over channels with feedback. In [11], a general equiv-
alence was shown between feedback stabilization over an analog communication
channel and a communication scheme for channels with noiseless feedback. This
communication scheme is a generalization of Schalkwijk–Kailath coding scheme
[37] for a single user channel. And for multi-user channels such as broadcast,
multiple-access and interference channels, this scheme is a generalization of cod-
ing scheme given in [21, 32, 33]. Using the communication schemes proposed in
[21, 32, 33] for multi-user Gaussian channels with noiseless feedback, necessary
and sufficient conditions for stabilization of multiple plants over multi-user Gaus-
sian channels are obtained in [60, 63, 66]. A decentralized design of linear sensors
and controllers over white Gaussian channels with the objective of the mean-square
stability is studied in [12]. A comprehensive study of stabilization and optimization
of networked control, and information structures is present in [57] and [30].
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Chapter 3
Optimal Radio-Mode Switching for Wireless
Networked Control

Nicolas Cardoso de Castro, Federica Garin, and Carlos Canudas de Wit

3.1 Introduction

Networked Control Systems (NCS) are systems where the communication be-
tween the sensors, the controller, and the actuators occurs through a network, see
Fig. 3.1(a) and [18]. Energy is a key resource in those systems, in particular in
applications concerning wireless networks. Energy-efficiency in Wireless Sensor
Networks (WSN) has given rise to a rich literature in the last ten years, see, e.g.,
[1, 8, 11, 13, 20, 32].

However, an important number of these contributions are focused on the trans-
mission techniques regardless of the nature of the data or the final application. In
a closed-loop system, the control performance is a crucial point that is omitted in
the works cited in the last paragraph. On the other hand, the control community has
been interested in saving energy in wireless NCS, see [3, 12, 15, 24, 28, 29] among
others.

The authors of [10, 22] state that additional energy can be saved in control appli-
cations by a multi-layer design. The notion of a layer is taken from communications
theory, and illustrated in Fig. 3.1(b). Contributions considering this approach are
few. Liu and Goldsmith in [22] optimize the control performance taking into account
some network parameters (throughput, packet delay, and packet loss probabilities).
The authors of [23, 25] state that there does not exist a communication protocol ded-
icated to NCS. Then they derive communication protocols suited to NCS because
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Fig. 3.1 (a) Block diagram of a typical Networked Control System: the sensor sends its mea-
surement to the controller over the network, which sends the control input to the actuator over
the same network. (b) Different steps involved in a networked communication are commonly ab-
stracted with a layer approach, grouped in a stack, where each layer has a dedicated function. The
Physical layer is in charge of the radio modulation of the digital data. The Data Link (MAC) layer
manages and shares the transmission medium. The Network layer routes the data to the destination
in an efficient manner. Finally, the Application layer is related to the control scheme and possibly
includes source encoding and decoding

they expose various protocol parameters to the application layer, which can provide
the desired trade-off between reliability/latency and control performance. Quevedo
et al. in [28] derive a state estimator that accounts for packet loss probabilities. In-
deed, these probabilities depend upon time-varying channel gains, packet lengths,
and transmission power levels of the sensors. By adapting the source coding scheme
and the transmission level at the sensor side, they are able to find a trade-off between
energy and estimation performance.

Our main goal in this chapter is to design control laws and switching power con-
trol policies to save energy in an NCS by considering communication and control
co-design. An often-quoted rule of thumb is that executing 3 million instructions
is equivalent to transmitting 1000 bits at a distance of 100 meters in terms of ex-
pended energy [26]. From such an observation that the radio is an important energy
consumer in a wireless node, we decide to focus on the management of the radio
chip. Our strategy gathers two main components. The first one is Event-Based Con-
trol (EBC) which consists in relaxing the time-triggering paradigm. Indeed, instead
of closing the loop periodically at each sampling interval, the control input applied
to the system is only updated when a given event occurs. The second component
is radio-mode management. Indeed, when a node is not transmitting data, its radio
can be switched to one of the several non-transmitting radio-modes. Each mode is
characterized by its consumption and the transition costs, and the time needed to
switch back to a transmitting mode. On the other hand, when the radio emits a mes-
sage, it can use one of the available power levels. Increasing the power level permits
improving the quality of the transmission (modeled as a lower erasure probability
in a memoryless packet-erasure channel) at the price of consuming more energy.
Our strategy is a joint design of the radio-mode switching policy and of the feed-
back control law. It is derived in the framework of optimal control with the use of a
suitable cost function. The optimization problem is solved using Dynamic Program-
ming with the Value Iteration method.
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Fig. 3.2 Block diagram of the problem setup. The smart node measures the noisy state xk from
the system, it computes the feedback law ûk , and decides whether to send it or not to the actuator
node. ûk can actually be ∅ when no transmission is scheduled or when the transmitted message
is dropped. Then, the receiver is able to determine if it has received an update or not. βk equals 1
when the transmission is successful or 0 when there is a dropout

The rest of this chapter is organized as follows: Sect. 3.2 gives the mathemat-
ical model of the NCS that we consider, which is turned into a switched model
formulation in Sect. 3.2.6. The optimization problem that describes the trade-off
between energy saving and control performance is derived and solved in Sect. 3.3
with the use of Dynamic Programming. Section 3.4 provides simulation results and
comparison to standard periodic approaches. Finally, the chapter is concluded in
Sect. 3.5.

3.2 Control and Communication Joint Modeling

We restrict our focus to a setup composed of two nodes, as depicted in Fig. 3.2
and described hereafter. A two-nodes setup captures the challenges of energy effi-
ciency without introducing the difficulties appearing in a multi-nodes setup (such as
medium access control or routing).

The first node, called the smart sensor node, has sensing and computing ca-
pabilities. It is in charge of sensing the system output, computing the feed-
back law, and deciding whether or not to send the control input to the sec-
ond node, in charge of applying the control law to the actuator. We assume
that the receiver node is co-located with the actuator. This configuration, also
called one-channel feedback NCS, is commonly considered in the literature, as
it is described in [18]. We focus our attention on the problem of energy-saving
at the sensor side only because the assumption that the receiver node is co-
located with the actuator usually implies that it has access to a large energy sup-
ply, since actuators often require more energy than radio-receivers and comput-
ers.

The communications from the smart sensor to the receiver node are event-
based. This means that the smart sensor can decide to let the system run open
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loop when the control performance is good enough. We define in Sect. 3.3 a
cost function that is used by the smart sensor to determine how good the con-
trol performance is with respect to the energy needed for a transmission. When
the receiver node does not receive any new update from the smart sensor, it
holds the memory of the last received control input. The memory is imple-
mented in a Zero Order Holder (ZOH) device in Fig. 3.2. The control update
computed at the smart sensor side, denoted ûk , can be different from the con-
trol input actually applied to the system, denoted uk . Both ûk and uk take values
in R

nu .
This event-based behavior is considered on the base of a discrete-time monitor-

ing. This means that the smart sensor only monitors the system at a given sampling
period. Then, depending on the state of the system, it decides if whether or not
a transmission occurs at the current sampling time. This last point is important,
as highlighted by the authors in [17], since it relaxes a widely used assumption
in Event-Based control that the events are monitored in continuous time, which is
barely implementable in practice.

In addition to the event-based approach, we consider a radio-mode manage-
ment scheme. Indeed, not only the smart node decides whether or not to use
the radio, but also it decides upon the radio-modes. When the radio is active, a
transmission power level is chosen; when it is not active, it is switched to one
of the several non-transmitting radio-modes. The radio can use different power
levels to change the transmission success probability in the case of unchanged
channel conditions. In the case of a varying channel, the transmission power
can be increased to face bad channel conditions and keep the transmission suc-
cess probability constant, but the study of varying channel conditions is beyond
the scope of this work. The non-transmitting modes (e.g., Idle, Sleep), ex-
plained in details in Sect. 3.2.2, allow saving energy by turning off some com-
ponents in the radio chip when there is no transmission. If no transmission hap-
pens in a long time span, it is clear that the best choice is the lowest-consuming
radio-mode. However, a certain time and energy are needed to switch between
active and inactive modes, and this is different depending on how many compo-
nents are switched off in the radio chip, thus motivating the use of intermediate
modes, with some components still active, when a transmission is likely to happen
again soon. This also means that the choice is not independent of the transmis-
sion decisions (the past ones, and some indication of the possible future ones),
so that in our control application it must be related to the event-based control
law.

Hereafter, we will denote by N1 the number of transmission levels and by N2 the
number of non-transmitting modes, so that the total number of radio-modes is given
by N =N1+N2. Moreover, the feedback law will refer to the feedback control law
that is used to compute the control input ûk possibly sent to the receiver node and
applied to the system, while the switching policy will refer to the node’s decision to
switch to a given radio-mode. The switching decision is denoted vk ∈ {1,2, . . . ,N},
where vk = i means that the radio-mode is switched to mode i at time k.
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3.2.1 System Model

The system to be controlled is a linear discrete-time system with an additive zero-
mean white Gaussian noise, described by Eq. (3.1):

xk+1 =Axk +Buk +wk, (3.1)

where xk ∈R
nx is the system state, uk ∈R

nu is the control input, andwk ∼N (0,W)
is the system noise. For simplicity, we assume that the state is fully observed, namely
the sensor measures xk (more precisely, the measurement should be xk plus the
measurement noise, but we can assume that the term wk already models both the
system and measurement noises). A and B have appropriate dimensions and the
system is controllable, and may be unstable.

Our goal is to stabilize this system around the origin, i.e., xk = 0, while saving
energy.

3.2.2 Radio Chip Model

The state of the radio chip is the mode at time k, mk :

mk ∈M�M1 ∪M2

with

M1 � {1,2, . . . ,N1} being the set of transmitting modes and

M2 � {N1 + 1,N1 + 2, . . . ,N} the set of non-transmitting modes.

The radio-mode is updated according to the switching decision: mk+1 = vk .
The consumption of the radio chip during any sampling interval, called the tran-

sition cost and denoted θmk,vk , depends on the radio-mode mk and on the switching
decision vk . The transition costs are introduced in details in Sect. 3.2.5.

The amount of energy E consumed since the commissioning can be computed
as follows:

E0 = 0,

Ek+1 =Ek + θmk,vk =Ek + θmk,mk+1 .

3.2.3 Channel Model

As it is done in [19], the channel is modeled as a simplified memoryless erasure
channel where the message ûk is dropped with probability ε(mk) for mk ∈M1, and
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otherwise is correctly received. We consider a model where the dropout concerns
the real-valued message ûk , not single bits or packets.

The dropout probabilities depend on the transmission power used by the radio
chip, i.e. , the transmitting mode. Higher transmission power implies higher success
probability, i.e. , ε(1) < ε(2) < · · ·< ε(N1). The dropouts are modeled by Bernoulli
random variables βk , where 1 denotes success and 0 dropout, and where

P{βk = 0|mk =m} = ε(m),
P{βk = 1|mk =m} = 1− ε(m).

Given the mode mk , βk is conditionally independent of the past {βh}h<k , {wk}h<k ;
the mapping ε(m), m ∈M1, is known for design purposes.1

Acknowledgments (ACKs) are sent by the receiver node to confirm to the smart
sensor that a new control update has been applied to the system. These ACKs are
assumed to be reliable, i.e. , always correctly received by the smart node. This is a
reasonable assumption since we are not considering energy restrictions at the actu-
ator node, so that the ACKs can be transmitted with enough power. Moreover, an
ACK is a short message (possibly reduced to a single bit), and hence it is possible
to encode it with a very large redundancy for error correction.

If ACKs were not reliable, then the smart node would not know if the control
update has been applied when no ACK is received. This would result in having the
control memory at the smart node possibly different from the actual control input
applied to the system, and the associated decision not optimal. However, the control
memory at the smart node side and the actual value applied to the system will be
synchronized again as soon as a control update transmission is successfully sent and
acknowledged.2

3.2.4 Switching Policy and Feedback Law

The sensor node embeds a switching policy η (whose joint-design with the feedback
law μ will be described hereafter) to assign the radio-mode. The decision to switch
between modes is based on the current system output xk , the last control input uk−1
applied to the system, and the current radio-mode, denoted mk . Introducing ũk =
uk−1, the memory of the last control input, the switching decision is given by vk =
η(xk, ũk,mk). The ACK sent by the actuator node when a transmission is successful

1It is reasonable to assume that the values of ε(m) are known as motivated in [28].
2When considering unreliable ACKs, several behaviors can be considered for the smart sensor
in the case where no ACK is received. They depend mostly on the system and thus will not be
discussed in details here. In a few words, depending on the criticality of the system, the difference
between the sensor-node memory and the actual control input can be ignored, or the system can
enforce a transmission until an ACK is successfully received. Again, a trade-off appears between
energy consumption and closed-loop performance.
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lets the smart sensor have perfect knowledge of the last control input applied to the
system.

The control input applied to the system, denoted uk , depends on the arrival of the
update ûk , which depends on the transmission success and on the decision to send
an update, as described by Eq. (3.2). If an update is received, then the control law
is the optimal law computed by the smart sensor, denoted ûk = μ(xk, ũk,mk) and
derived in the next sections. Otherwise, the control input is held to its previous value
as long as no update is received from the smart node:

uk =
{
βkûk + (1− βk)uk−1, in case of transmission,

uk−1, otherwise.
(3.2)

Thus, we have a Jump Linear System (JLS), where we decide upon the transition
probabilities. This stands in contrast to many Markov JLS approaches, where tran-
sition probabilities are assumed given; see, e.g., [14, 30].

3.2.5 Transition Costs Model

A radio chip can be modeled by an automaton where:

• The states describe the radio modes (e.g., Transmitting, Idle, Sleep),
• And the transitions model events, which in our case are the radio-mode switching

requests.

The number of states of the automaton is the number of radio-modes N . The modes
that allow a transmission are numbered 1 to N1 and the non-transmitting ones are
numbered N1 + 1 to N =N1 +N2.

Concerning the transitions, we consider that the state of the automaton only
changes at the sampling instant. In other words, the radio chip stays in a given
state for the whole sampling interval and may only switch periodically at the sam-
pling instants. The costs associated to the transitions have to take into account the
current and time constraints imposed by the radio chip, as they are provided in the
radio chip datasheet.3 The transition costs are denoted θi,j , and describe the energy
needed to switch from mode i to mode j and then stay in mode j until the next
sampling instant. Note that θi,i gives the cost to stay in mode i.

The costs θi,j are derived in order to respect the properties of the radio chip.
For instance, there is no extra cost to change the transmission level, which implies
that the cost to switch from a transmitting mode T x1 to another transmitting mode
T x2, denoted θT x1,T x2 , is the same as the cost to stay in the transmitting mode
T x2, denoted θT x2,T x2 . Also, it is often impossible to switch between modes that
are not consecutive at the radio chip level, for instance, in order to switch from the

3See [27] for the case of the CC1100 Low-Power Sub-1 GHz RF Transreceiver from Texas Instru-
ments.
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Fig. 3.3 Illustration of the transition costs with N1 = 3 and N2 = 2. Idle is an intermediate
mode between the transmitting modes and the Sleep mode. Modes are ordered according to their
energy consumption, e.g., θ5,5 < θ4,4. Transmitting modes with higher energy consumption have
a higher probability to transmit successfully. The arrows represent the transition costs. A more
detailed figure would make every transition θi,j from any mode i to any mode j appear

Sleep mode to any transmitting mode, the radio needs to switch first to the Idle
mode. However, the costs θi,j describe the consumption of the radio over a sampling
interval, which may include several state switchings, as long as the sampling interval
is large enough to satisfy the time constraints of the radio chip.

This model assumes that the mode transition time-constraints are smaller than
the sampling interval. This implies that the smart node has enough time to switch to
the desired mode (and possibly transmit the control input) before the next sampling
time. An impossible transition can be modeled by an infinite cost.

An illustration of the transition costs with 3 transmitting modes and 2 non-
transmitting modes is given in Fig. 3.3.

3.2.5.1 Scenario in which to Apply Our Technique

Our approach considers several non-transmitting modes in order to save further en-
ergy than a simple On/Off pattern. However, because of transition costs and time-
constraints, switching to intermediate non-transmitting mode may result in more
energy waste than holding a transmitting mode. Although the goal of this contribu-
tion is to derive a switching policy that offers actual energy savings, our approach re-
duces the expended energy only under some assumptions on the transition costs θi,j .

Assumption 3.1 θi,i > θj,j ≥ 0 for all i ∈M1 and j ∈M2. This means that the
transmitting modes consume more than the non-transmitting modes and that the
cost to stay in a given mode for a sampling period is always positive for the trans-
mitting modes, and can be null for the non-transmitting modes. Moreover, it holds
that θi,j > 0 for all i, j ∈M such that i 
= j . This means that any mode transition
has a positive cost.
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We introduce the convention to number the modes according to their energy
costs, namely θ1,1 ≥ θ2,2 ≥ · · · ≥ θN,N . The amount of energy that can be saved
when using the non-transmitting modes is directly related to the difference between
θ1,1 and θN,N .

Assumption 3.2 For any j1 ∈M2 and j2 ∈M2, if j1 < j2 then 0 < θi,j1 ≤ θi,j2
for all i ∈M1. This means that the transition cost from a transmitting mode to a
non-transmitting mode is larger for deeper non-transmitting mode. The symmetric
condition (from a non-transmitting mode to a transmitting one) is also assumed to
hold, i.e. , for any j1 ∈M2 and j2 ∈M2, if j1 < j2 then 0 < θj1,i ≤ θj2,i for all
i ∈M1.

The way radio chips are designed enforces that the transition to (or from) a non-
transmitting mode has a larger cost when the non-transmitting mode saves more
energy (i.e. , there are more radio-chip components to be turned off or on during the
transition). However, this does not imply that Assumption 3.2 holds because the cost
represented by θi,j accounts for the energy consumed over an entire sampling inter-
val, including both the cost of the transition and the cost to remain in the reached
mode after having finished the transition.

3.2.6 Switched Model

The evolution of the system under the different choices of radio-mode is now for-
mulated as a switched linear system, with as many systems as the number of modes
N . From a control point of view, the different modes are actually reduced to two
cases: when a successful transmission occurs (i.e. , the control loop is closed) and
when the system runs open loop. The different modes affect the energy consumption
and also the success probability (in case of transmission).

Choosing the switching policy at time k is equivalent to choosing the radio-mode.
The evolution of the switched system depends on xk , the state of the system, on
ũk = uk−1, the memory keeping track of the last applied control input, and on mk
the mode of the radio chip. We define zk as the system state augmented with the
control memory:

zk =
[
xk
ũk

]
∈R

nx+nu, and also ωk =
[
wk
0

]
.

Then, the state of the switched system is the following:

(zk,mk) ∈X�R
nx+nu ×M.

The evolution of the system given in Eq. (3.1) with the feedback law μ described in
Eq. (3.2), together with the radio-mode switching policy η, give rise to the following
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switched system: ⎧⎪⎪⎨
⎪⎪⎩
zk+1 = fvk (zk, ûk, βk,ωk),
mk+1 = vk = η(zk,mk),
ûk = μ(zk,mk),

(3.3)

where the function fvk is defined as

fvk (zk, ûk, βk,ωk)=Φvk (βk)zk + Γvk (βk)ûk +ωk,
and the matrices Φvk (βk),Γvk (βk), for vk ∈M, are as follows:

1. If vk ∈M1, i.e. , if there is a transmission, then

Φvk (βk)=
[
A (1− βk)B
0 (1− βk)I

]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ΦCL =

[
A 0
0 0

]
if βk = 1,

ΦOL =
[
A B

0 I

]
if βk = 0,

Γvk (βk)= βk
[
B

I

]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ΓCL =

[
B

I

]
if βk = 1,

ΓOL =
[

0
0

]
if βk = 0.

2. If vk ∈M2, i.e. , if there is no transmission, then

Φvk (βk)=ΦOL ∀βk,
Γvk (βk)= ΓOL ∀βk.

3.3 Derivation of the Optimal Joint Control Law and Switching
Policy

The goal of the jointly designed switching policy and feedback law is to obtain
a trade-off between the energy consumption and the feedback performance. The
framework of Optimal Control is chosen to derive the joint policy since it solves an
optimal problem based on a cost function. The cost function that we consider ex-
plicitly accounts for the two criteria under focus, namely the feedback performance
and the energy consumption. First, we define the cost-to-go, also called step cost,
denoted �, as the cost that is payed by the closed-loop system over one sampling
interval. This cost-to-go depends on the state of the system xk , on the state of the
radio chip mk , on the control input uk , and on the switching decision vk :

�vk (xk,mk,uk)= x�k Q̄xk︸ ︷︷ ︸
performance

+ u�k R̄uk︸ ︷︷ ︸
control energy

+ θmk,vk .︸ ︷︷ ︸
transmission energy

(3.4)
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Q̄ and R̄ are symmetric positive definite matrices which can be tuned to give differ-
ent trade-offs between the feedback performance and energy consumption.

As detailed in Eq. (3.2), the control input depends on the switching decision vk
and on the success of the transmission as described by βk ∈ {0,1}. Thus the cost-to-
go can be written as follows:

�vk (xk,mk,uk,βk)

=
{
x�k Q̄xk + βkû�k R̄ûk + (1− βk)ũ�k R̄ũk + θmk,vk if vk ∈M1,

x�k Q̄xk + ũ�k R̄ũk + θmk,vk , otherwise.

Finally, using the notation introduced in Sect. 3.2.6:

�vk (zk,mk, ûk, βk)= z�k Qvk (βk)zk + û�k Rvk (βk)ûk + θmk,vk , (3.5)

where the matrices Qvk (βk) and Rvk (βk), for vk ∈M, are defined as follows:

1. If vk ∈M1, i.e. , if uk = βkûk + (1− βk)ũk , then

Qvk (βk)=
[
Q̄ 0
0 (1− βk)R̄

]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
QCL =

[
Q̄ 0
0 0

]
if βk = 1,

QOL =
[
Q̄ 0
0 R̄

]
if βk = 0,

Rvk (βk)= βkR̄ =
{
RCL = R̄ if βk = 1,

ROL = 0 if βk = 0.

2. If vk ∈M2, i.e. , if uk = ũk , then

Qvk (βk)=QOL ∀βk,
Rvk (βk)=ROL ∀βk.

The cost function Jμ,η accounts for the expected cost the system has to pay when
controlling the system (3.1) with the policy (μ,η) over an infinite time horizon with
the initial condition z0,m0:

Jμ,η(z0,m0)= lim
H→∞ E{βk,ωk}H−1

k=0

[
H−1∑
k=0

λk�vk (zk,mk, ûk, βk)

]
, (3.6)

where ûk = μ(zk,mk), vk = η(zk,mk), zk+1 = fvk (zk, ûk, βk,ωk), and λ ∈ [0,1) is
a discount factor discussed hereafter. Jμ,η is a function of the initial conditions only,
defined as an expectation with respect to the random sequence of noises and chan-
nel erasures encountered along the evolution of the dynamical system, where the
dynamics are those obtained by applying the policies μ and η for the control feed-
back law and for the radio-mode switching decision, respectively. The time horizon
is considered infinite by taking the limit when the horizon length H goes to infinity.
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The optimization problem we consider consists in finding a feedback law μ∗ and
a switching policy η∗ such that

J ∗(z0,m0)� Jμ∗,η∗(z0,m0)=min
μ,η
Jμ,η(z0,m0). (3.7)

Note that the minimum is indeed attained, as proved in Sect. 3.3.1.1.

Remark 3.1 We are only searching for a stationary policy (μ∗, η∗) because a time-
dependent policy (μk, ηk) on an infinite time-horizon would not be implementable.
Fortunately, as it is explained in Sect. 3.3.1, a stationary policy exists, which is
optimal among all policies.

Remark 3.2 According to Assumptions 3.1 and 3.2, the optimization problem is
considered under the non-triviality assumption that transmissions have a non-zero
cost whatever the previous mode, i.e., θi,j > 0 ∀i ∈M, ∀j ∈M1. Indeed, in the
case where a mode allows transmission free of cost, the optimal radio-management
consists in always transmitting.

It is only relevant to consider a solution of the optimal problem (3.7) that leads to
a finite cost. Indeed, if the cost function Jμ,η(z,m) is always infinite for any policy
(μ,η) and any state (z,m), then any policy is considered as optimal in the sense
that any policy leads to J ∗ =minμ,η Jμ,η(z,m)=+∞.

The purpose of the discount factor is precisely to force the cost function to be
finite for some policies. It weights the importance of immediate actions versus long-
term decisions. It is generally not used (i.e., taken equal to 1) when the cost function
is naturally finite for some policies.

Unfortunately, given the structure of the cost-to-go (3.5), one cannot ensure that
such cost function is finite if λ = 1. Indeed, when λ = 1, one can distinguish two
cases from the basic formulation of the cost-to-go (3.4):

• The first case considers that an infinite number of transmissions is scheduled over
the infinite horizon. The term related to the energy cost of the radio chip, θmk,vk ,
is a non-zero additive term in infinitely many time steps. Indeed, θi,j > 0 ∀i ∈
M, j ∈M1 thanks to Assumption 3.1. This makes the sum infinite.

• In the second case, the number of transmissions is finite, which implies that there
exists a time index k0 such that, for all k > k0, the system runs open loop since
no more transmissions update the control input. From that observation, the con-
ditions for the cost function to converge to a finite value are that the system is
open-loop stable despite the noise and that one of the radio-modes has a null cost
that is scheduled an infinite number of times.

In order to be as general as possible, and particularly to consider open-loop un-
stable systems, the discount factor is taken such that λ < 1 in order to admit policies
that make the cost function finite.

However, it has to be noticed that introducing the discount factor λ < 1 prevents
from proving stability with the standard argument in Linear Quadratic (LQ) optimal
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control, using the cost-to-go as a Lyapunov function. To the authors’ knowledge,
a stability proof in discounted problems solved with Dynamic Programming is an
open issue. The authors of [5, 16] discuss the stability of systems controlled with
feedback laws derived using Dynamic Programming approaches.

Finally, we notice that the control space is constrained by the switching deci-
sion. Indeed, if no transmission is scheduled, then the control input is forced to the
memory value ũ. We thus define the control space U(ũ) as follows:

Definition 3.1

U(ũ)�
{
(u, v) : u ∈R

nu, v ∈M1
}∪ {(ũ, v) : v ∈M2

}
.

For ease of notation, we will use U(z) instead of U(ũ). The joint policy (μ,η) must
take its values in U(z).

3.3.1 Optimal Solution with the Value Iteration Method
and Convergence Proof

The framework of Dynamic Programming provides methods to solve optimization
problems which can be decomposed into nested sub-problems. We consider the
Value Iteration method to solve the optimization problem described in Eq. (3.6)
and (3.7).This method is based on Bellman’s Principle of Optimality [2], stated as
follows:

An optimal policy has the property that whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision.

In order to introduce the Value Iteration method, we consider that the horizon length
is finite, and called H , i.e., that no limit is taken in Eq. (3.6). Note also that in the
finite horizon case, one often considers a final cost, denoted �F (z,m), that accounts
for the state of the system at the end of the horizon. This final cost is simply added
to the right-hand side of Eq. (3.6).

The Value Iteration method exploits the fact that if we know all the optimal paths
from time k + 1 to time H , then every optimal path from time k must use one of
the optimal paths from time k+ 1. We denote J ∗H−i (z,m) the optimal cost function
for the same problem starting at time k =H − i over an horizon i, 0< i ≤H . The
Bellman’s Principle of Optimality leads to the following relation:

J ∗H−i (z,m)= min
(û,v)∈U(z)

{
Eβ,ω

[
λH−i�v(z,m, û, β)+ J ∗H−i+1

(
fv(z, û,ω,β), v

)]}
.

(3.8)

The Value Iteration method consists in computing backward in time (start-
ing from the final cost at time H , J ∗H (zH ,mH ) = �F (zH ,mH )) the optimal cost
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J ∗ = J ∗0 . The Value Iteration method is a recursion that computes the so-called
Value Function, denoted Vi(z,m), at each time step i from H to 0. The Value Func-
tion is related to the cost function as follows:

Vi(z,m)=
J ∗H−i (z,m)
λH−i

.

Based on the recursion on the cost function given by Eq. (3.8), the recursion on
the Value Function, up to iteration H , ∀(z,m) ∈ X, is given by (see [4, Proposi-
tion 1.3.1]):

V0(z,m)� gF (z,m),

Vi+1(z,m)= min
(û,v)∈U(z)

{
Eβ,ω

[
�v(z,m, û, β)+ λVi

(
fv(z, û,ω,β), v

)]}
,

VH (z,m)= J ∗0 (z,m)= J ∗(z,m).
(3.9)

The re-scaled final cost gF (z,m) is defined as a function of the final cost �F (z,m):

gF (z,m)= �F (z,m)
λH

.

Note that the notion of final cost is only used for the initialization of the recursion,
it will be dropped shortly in the infinite horizon formulation. Note also that the
iteration index of the Value Function i goes backward in time.

This scheme provides the optimal cost function J ∗0 (also denoted J ∗H−H when us-
ing the notation previously introduced) over a finite horizon H . Then, under proper
assumption on the initialization stage, the computation of the optimal cost function
over an horizon H + 1 is directly obtained from Eq. (3.9), when the optimal cost
function over an horizon H is already computed.

This provides the intuition that taking the limit of the recursion as H goes to
infinity converges to the optimal cost function J ∗ over an infinite horizon. The actual
Value Iteration method consists indeed in iterating the Value Function Vi according
to Eq. (3.9), but initializing V0 to the null function. This algorithm provides an
optimal joint policy (μ∗, η∗) and the optimal cost J ∗, as stated in Theorem 3.1. The
proofs are given in the next subsection. Note that the optimal joint policy derived
with the Value Iteration method is not necessarily unique; if several joint policies
lead to the optimal cost, this method allows deriving one of them.

The Value Iteration method consists in the following iterative computation of the
functions Vi(z,m), (z,m) ∈X:

V0(z,m)= 0,

Vi+1(z,m)= min
(û,v)∈U(z)

{
Eβ,ω

[
�v(z,m, û, β)+ λVi

(
fv(z, û, β,ω), v

)]}
,

(3.10)

(
μi+1(z,m), ηi+1(z,m)

)
� arg min(û,v)∈U(z)

{
Eβ,ω

[
�v(z,m, û, β)+ λVi

(
fv(z, û, β,ω), v

)]}
. (3.11)
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Theorem 3.1 Given the switched system (3.3) and the cost function Jμ,η(z,m) (see
Eq. (3.6)), then the Value Iteration (3.10) converges to the optimal cost J ∗(z,m)�
minμ,η Jμ,η(z,m), i.e.,

J ∗(z,m)= lim
i→∞Vi(z,m),

and, moreover, any stationary policy (μ̄, η̄) obtained as a limit point of the policies
{μi, ηi} computed with the Value Iteration method (3.11) is optimal, i.e.,

J ∗(z,m)� Jμ̄,η̄(z,m).

Comprehensive details about the Value Iteration method both in the finite and
infinite cases can be found in [4, 6, 21].

3.3.1.1 Proof of the Convergence of the Value Iteration Method

This subsection proves Theorem 3.1. The proof is based on [6, Chap. 3]. However,
the problem that is considered here is slightly different. Indeed, in our case, the state
vector is composed of a real vector zk and a discrete variable mk taking values in a
finite set, whereas the state space in [6, Chap. 3] is only R

n. Moreover, in addition to
the system noise ω, we consider another random variable β (describing the message
dropout) and we deal with two control variables, i.e., the discrete switching decision
v and the continuous feedback control input u.

For these reasons, we need to prove that the Value Iteration method given in [6,
Chap. 3] and reformulated for our setting in Eqs. (3.10) and (3.11) actually provides
the optimal cost and policy. The reasoning that we use to prove our main result is
similar to the one in [6, Chap. 3], and in this section we refer to the propositions and
corollaries from this book. In spite of the differences between our problem and the
one considered in this book, some propositions from the book have proofs that can
be extended to our case without any difficulty and hence will be stated here without
proof. On the contrary, we will give a detailed proof of the results which require a
careful new arrangement of ideas and techniques still inspired from [6], in particular
due to the necessity to combine continuity arguments for the vector-valued part of
the state and arguments involving the finiteness of the number of modes.

Another comment has to be made about the nature of the noise ωk in Eq. (3.3).
We have defined it as a Gaussian noise, whose realizations are vectors of reals,
whereas noise takes values in a countable space in the book [6], on which the proof
is based. For simplicity, we present here the proof for the case of noise taking values
in a countable space, following [6], but our results can be extended to a more general
setting using the results from [7, Chap. 9].

After proving that the cost function is well defined, we show that the optimal so-
lution is the smallest fixed point of the Bellman’s equation, and that the Value Itera-
tion method converges to the smallest fixed point the Bellman’s equation; therefore,
the Value Iteration method converges to the optimal value.
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As a shorthand notation, we introduce the operator T , defined as follows. Given
a function V (z,m), T V (z,m) is given by:

T V (z,m)= min
(û,v)∈U(z)

Eβ,ω
[
�v(z,m, û, β)+ λV

(
fv(z, û, β,ω), v

)]
,

Tμ,ηV (z,m)= Eβ,ω
[
�η(z,m)

(
z,m,μ(z,m),β

)
+ λV (fη(z,m)(z,μ(z,m),β,ω), η(z,m))].

To ease the notation, we can write Tu,vV (z,m) where u and v are real values rather
than functions.

For the operators T and Tμ,η , we will denote by the “power” notation T i and T iμ,η
the composition, e.g., T 2V (z,m)= (T (T V ))(z,m) and T 0V (z,m)= V (z,m).

We recall that a fixed point for the operator T is a function F(z,m) such that
F = T F .

Our problem satisfies the Positivity Assumption, as defined in [6, Chap. 3.1] by:

Assumption 3.3 (Positivity) The cost per stage �v satisfies

0≤ �v(z,m, û, β), for all (z,m) ∈X, û ∈R
nu, v ∈M and β ∈ {0,1}.

Remark 3.3 The Positivity Assumption implies the monotonicity of T and Tμ,η:

V (z,m)≤ V ′(z,m) ⇒
T V (z,m)≤ T V ′(z,m) and Tμ,ηV (z,m)≤ Tμ,ηV ′(z,m).

(3.12)

We define V0 as the zero function on X,

V0(z,m)= 0, ∀(z,m) ∈X.

We notice that positivity implies

V0(z,m)≤ T V0(z,m)≤ · · · ≤ T iV0(z,m), ∀i > 1. (3.13)

Indeed, T V0(z,m)≥ 0= V0(z,m), and then the other inequalities follow by recur-
sively applying the monotonicity property (3.12).

We define the function V∞ as the following limit:

V∞(z,m)= lim
i→∞T

iV0(z,m).

The limit exists thanks to monotonicity, see Eq. (3.13). However, notice that V∞
might take the value∞.

The proof of the convergence of the Value Iteration method follows five steps:

1. J ∗ is a fixed point of T (Proposition 3.1);
2. J ∗ is the smallest fixed point of T (Proposition 3.2);
3. V∞ is a fixed point of T (Proposition 3.3);



3 Optimal Radio-Mode Switching for Wireless Networked Control 103

4. V∞ = J ∗ (Corollary 3.2);
5. The Value Iteration method also provides an optimal stationary policy (Proposi-

tion 3.5).

As a first step, we recall Bellman’s equation, which states that J ∗ is a fixed point
of T :

Proposition 3.1 (Proposition 3.1.1 from [6]) The optimal cost function J ∗ is a fixed
point for T , i.e., J ∗ satisfies

J ∗(z,m)= min
(û,v)∈U(z)

Eβ,ω
[
�v(z,m, û, β)+ λJ ∗

(
fv(z, û, β,ω), v

)]
, ∀(z,m) ∈X

or, equivalently,

J ∗ = T J ∗.

Proof See proof of Proposition 3.1.1 in [6]. �

In the second step, we establish that J ∗ is the smallest fixed point of T .

Proposition 3.2 (Proposition 3.1.2 from [6]) If J̃ : X→ (−∞,∞] satisfies J̃ ≥
T J̃ and J̃ ≥ 0, then J̃ ≥ J ∗.

Proof See proof of Proposition 3.1.2 in [6]. �

This proposition leads to the following corollary:

Corollary 3.1 (Corollary 3.1.2.1 from [6]) If J̃ : X→ (−∞,∞] satisfies J̃ ≥
Tμ,ηJ̃ and J̃ ≥ 0, then J̃ ≥ Jμ,η .

Proof The proof is obtained with a simple trick, introduced in [6] in the proof of
Corollary 1.1.2.1 and used to prove Corollary 3.1.2.1. The idea is that the above
proposition can be applied to a modified optimization problem, where the mini-
mization in (3.7) is performed over a restricted set of policies, containing only one
policy μ,η. �

In the third step, we show that V∞ is a fixed point of T , i.e., that V∞ satisfies
V∞ = T V∞. This is the part of the proof where some care is needed in adapting the
proofs from [6] to our setting where part of the state is a vector of reals and part
of the state is finite. Before stating and proving the main proposition, we make a
remark about continuity, which will be used in the proof.

Remark 3.4 If V (z,m) a continuous function of z, for any fixed v ∈ M1, then
Eβ,ω[�v(z,m, û, β) + λV (fv(z, û, β,ω), v)] is a continuous function of û, which
tends to +∞ for ‖û‖→∞.

Moreover, given V0(z,m)= 0 ∀(z,m), it holds that, for all k ≥ 0, T kV0(z,m) is
a continuous function of z.
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Proposition 3.3 V∞ is a fixed point of T , i.e.,

V∞ = T V∞.
Moreover, letting (μ̄, η̄) be the stationary policy corresponding to any limit point of
the optimal policies along the Value Iterations,

V∞ = Tμ̄,η̄V∞.

Proof This proof is inspired by the proofs of [6, Proposition 3.1.6] and [6, Proposi-
tion 3.1.7], adapted to our setting.

First, we prove that V∞ ≤ T V∞. By (3.13), we have

V0 ≤ T V0 ≤ T 2V0 ≤ · · · ≤ T iV0 ≤ · · · ≤ V∞.
In particular, for all i ≥ 0, T iV0 ≤ V∞, from which, by applying T to both sides and
recalling monotonicity (see Remark 3.3), we get

T i+1V0 ≤ T V∞.
Taking the limit when i goes to infinity, we obtain

V∞ ≤ T V∞.
Then, in the second and main part of the proof, we will show that any stationary

policy (μ̄, η̄) obtained as a limit point of the Value Iteration method is such that
V∞ ≥ Tμ̄,η̄V∞.

Consider any (z,m) ∈ X. If V∞(z,m) = ∞, then trivially V∞(z,m) ≥
Tμ̄,η̄V∞(z,m) for any policy (μ̄, η̄). If V∞(z,m) <∞, then consider, for all i ≥ 0,

(ûi , vi)= arg min
(û,v)∈U(z̄)

Eβ,ω
[
�v(z̄, m̄, û, β)+ λT iV0

(
fv(z̄, û, β,ω), v

)]
.

Notice that this is one of the possibly multiple minimizers and that its existence is
ensured by Remark 3.4.

Now we want to prove that:

• There exists a subsequence of {(ûi , vi)} which is convergent,
• And for all limit points ( ˆ̄u, v̄) of {(ûi , vi)}, T ˆ̄u,v̄V∞(z,m)≤ V∞(z,m).
Notice that vi is eventually constant on any convergent subsequence, and there exist
subsequences with constant vi .

For all j ≥ 0 such that j ≤ i, from Eq. (3.13), it holds that

T jV0(z,m)≤ T iV0(z,m).

The monotonicity of Tûi ,vi yields

(
Tûi ,vi

(
T jV0

))
(z,m)≤ (

Tûi ,vi

(
T iV0

))
(z,m).
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We notice that (
Tûi ,vi

(
T iV0

))
(z,m)= T i+1V0(z,m),

and that

T i+1V0(z,m)≤ V∞(z,m),
according to Eq. (3.13). This implies the following:(

Tûi ,vi

(
T jV0

))
(z,m)≤ V∞(z,m).

Look at any subsequence with vi = v̄, take j = 0, and notice that

Tûi ,v̄V0(z,m)≤ V∞(z,m)
implies the existence of a subsequence with i ∈K, where K is an infinite subset of
integers, such that

lim
i→∞,i∈K ûi =

¯̂u.

Indeed, the set {u : Tu,v̄V0(z,m)≤ V∞(z,m)} is compact, and thus such a ¯̂u exists.
Take any limit point ( ¯̂u,v), take any subsequence {(ûi , v̄)}i∈K converging to

( ¯̂u,v), for all j , for all i ∈K, i ≥ j , then

Tûi ,v̄T
jV0(z,m)≤ V∞(z,m). (3.14)

Taking the limit of Eq. (3.14) as i goes to infinity, i ∈K, i ≥ j ,

∀j : T ˆ̄u,v̄T
jV0(z,m)≤ V∞(z,m).

Now taking the limit as j goes to infinity, it holds that

T ˆ̄u,v̄V∞(z,m)≤ V∞(z,m).
If we define a stationary policy (μ,η) as follows:

(
μ̄(z,m), η̄(z,m)

)=
⎧⎨
⎩
( ¯̂u, v̄) as defined above if V∞(z,m) <∞,
an arbitrary ( ¯̂u, v̄) if V∞(z,m)=∞,

we have proved that Tμ̄,η̄V∞ ≤ V∞.
For the final part of the proof, we will show that V∞ = Tμ̄,η̄V∞ = T V∞.
By noticing that the optimal policy leads to the smallest Value Function, i.e., that

T V∞ ≤ Tμ̄,η̄V∞,
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and by using the first and second part of the proof, we have the following chain of
inequalities

V∞ ≤ T V∞ ≤ Tμ̄,η̄V∞ ≤ V∞,
which implies that all the above inequalities are indeed equalities. This ends the
proof of Proposition 3.3. �

The fourth step consists in proving that V∞ is indeed the optimal cost function.
We know that V∞ is a fixed point of T , but we need to prove that it is the smallest
one, to conclude that V∞ = J ∗. To this end, we can use the following result.

Proposition 3.4 (Proposition 3.1.5 from [6]) If V0 ≤ V ≤ J ∗ and

V∞(z,m)= T V∞(z,m), ∀(z,m) ∈X,

then

lim
i→∞T

iV (z,m)= J ∗(z,m), ∀(z,m) ∈X.

Proof See the proof of [6, Proposition 3.1.5]; V∞ = J ∗ follows by taking V (z,m)=
V0(z,m)= 0 for all (z,m) ∈X. �

Choosing V (z,m)= V0(z,m)= 0, Proposition 3.3 ensures that the assumptions of
Proposition 3.4 are satisfied, which immediately proves the following result.

Corollary 3.2 The value iteration converges to the optimal cost, i.e.,

V∞ = J ∗.

In the last step, we prove that the stationary policy derived in the proof of Propo-
sition 3.3 is an optimal policy.

Proposition 3.5 The policy (μ̄, η̄) derived in Proposition 3.3 is optimal, i.e.,

Jμ̄,η̄(z,m)= J ∗(z,m), ∀(z,m) ∈X.

Proof From Proposition 3.3, V∞ = Tμ̄,η̄ and, by Corollary 3.2 ,V∞ = J ∗, so that

J ∗ = Tμ̄,η̄J ∗.

This result allows applying Corollary 3.1 with J̃ = J ∗, which leads to

J ∗ ≥ Jμ̄,η̄.
On the other hand, the optimal cost function is the smallest possible cost, i.e., J ∗ ≤
Jμ̄,η̄ . This implies that Jμ̄,η̄ = J ∗. �
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3.3.2 Numerical Computation of the Optimal Solution

While the previous section provides an iterative algorithm to derive an optimal joint
control law and switching policy, this section discusses the implementation issues of
such a method. First, we highlight the practical procedure to obtain an optimal solu-
tion from the Value Iteration method. Then we study the particular case of determin-
istic formulation which introduces an analytical expression of the Value Function to
derive the optimal solution.

3.3.2.1 Implementation of the Optimal Solution

The method we have presented to solve the optimization problem is composed of
two parts.

The first part is run offline, and it provides the optimal joint policy to switch
between radio-modes and to control the feedback loop. It consists in iterating the
Value Function Vi(z,m) to converge to the optimal cost function, which provides
the solution of our optimization problem. A caveat is that, at each iteration, we
need to compute a function of (z,m), where (z,m) takes values in an uncountable
space X. A common way to implement such iterations in practice is to partition
(a portion of) X in a grid, then compute the Value Function Vi+1(z,m) at the grid
points only, by using interpolation to find Vi(fv(z)) when fv(z) is not on the grid.
The subset of X is chosen to fit the domain of interest the system is supposed to lie
in. The number of grid points is chosen as a trade-off between the precision needed
for the final application and the computation burden it implies. This approach has
been taken, e.g., in [31], and provides a look-up table for ηi(z,m) at all grid points.

Computationally, it is very heavy, although this is not a major issue since the long
computations are done offline. Some minor drawbacks of this approach are that the
solution is limited to a finite domain, and that the numerical approximations and
interpolation might introduce some errors giving a sub-optimal solution.

The second part, run online on the smart sensor, consists in computing the op-
timal switching decision, v∗k , only for the current switched system state (zk,mk) at
time k, according to the switching policy derived offline. If the switching decision
schedules a transmission, then the update of the control law is computed for the
current state, also from the feedback law derived offline.

Depending on the way the feedback law and the switching policy are derived
in the offline computation, some computations may be needed online to extract the
values for a given state (zk,mk). This is the case in the deterministic case presented
in Sect. 3.3.2.2. To limit the computation burden online in the smart sensor, it is pos-
sible to compute offline the optimal switching decisions and feedback control inputs
for a finite number of states, on a given grid on a portion of the state space. This ends
up with a look-up table, easily implementable on nodes with limited computational
capacity.
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Practical Convergence of the Value Iteration Method The Value Function iter-
ation method consists in running a recursion an infinite number of times in order to
obtain the optimal policy. Obviously, the recursion is not run an infinite number of
times in practice, and this raises the question of defining a stopping criterion. Let us
assume that the iteration is run using a discretization scheme on a grid on a portion
of X, denoted X̄. We propose a stopping criterion by introducing a scalar ξ whose
choice depends on the precision needed:

If ‖Vi+1(z,m)− Vi(z,m)‖< ξ ∀(z,m) ∈ X̄,

then we consider that the Value Function is close enough to the optimal value.

3.3.2.2 The Deterministic Case

As we explained in Sect. 3.3.2.1, it is difficult to find an analytical expression of the
Value Function which can be used to compute the iterations. However, in the case
where the system is deterministic and no channel dropouts are considered, a quasi-
analytical expression can be derived. In this case, we can exploit a structure that the
Value Function preserves along the iterations. This is inspired both by the results in
classic LQ optimal control and by the work in [21]. As a reminder, in LQ control,
for any i the Value Function is a quadratic function of z, i.e., Vi(z)= z�Πiz.

In the rest of this subsection, we consider the deterministic system, i.e., wk = 0
and βk = 1 for all k ≥ 0, namely that the system is not affected by noise and that the
communication channel never loses messages. This implies that the control input û
computed at the sensor side is always the one applied to the system at the actuator
side u. Hereafter we drop the notation û to use only u. Also, to ease the notation,
we use fv(z,u) and �v(z,m,u) rather than fv(z,u,1,0) and �v(z,m,u,1), respec-
tively. Finally, note that in the case where there are no message dropouts, there is no
need for several transmission power levels. Then, the number of transmitting modes
is limited to 1 in the rest of this subsection.

For our problem, the structure is more involved than in the LQ case: as we show
hereafter, Vi(z,m) is the minimum on some finite set of quadratic functions of the
form z�Πz + πm. Indeed, if V0(z,m) ≡ 0 ∀(z,m), then the iterations (3.10) give
Value Functions Vi(z,m) such that

Vi(z,m)= min
(Π,π)∈Pi

{
z�Πz+ πm

}
,

where the set Pi is composed of elements (Π,π), where Π is a symmetric matrix
and π = [

π1,π2, . . . , πN
] ∈ R

N is a vector of non-negative scalars, and πm repre-
sents the mth component of π .

The correctness of the above expressions for Pi can be proved using mathemati-
cal induction, which also gives an explicit recursive construction of the set Pi :
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(a) Initial Step By definition, V0(z,m) = 0 for all (z,m) ∈ X. V1(z,m) is com-
puted using Eq. (3.10):

V1(z,m)= min
(u,v)∈U(z)

{
�v(z,m,u)+ λV0

(
fv(z,u), v

)}
= min
(u,v)∈U(z)

{
z�Qvz+ u�Rvu+ θm,v

}
=min

{
min
u∈Rnu

{
z�QCLz+ u�RCLu+ θm,1

}; min
v∈M2

{
z�QOLz+ θm,v

}}
.

(3.15)

One can explicitly find the value u∗ that minimizes the first expression in Eq. (3.15),
which is clearly u∗ = 0. This yields

V1(z,m)=min
{
z�QCLz+ θm,1; z�QOLz+ min

v∈M2
{θm,v}

}
,

V1(z,m)= min
(Π,π)∈P1

{
z�Πz+ πm

}
,

where

P1 =
{ (
QCL,

[
θ1,1 θ2,1 · · · θN,1

])
,(

QOL,
[
minv∈M2

{
θ1,v

}
minv∈M2

{
θ2,v

} · · · minv∈M2

{
θN,v

}])
}
.

(b) Inductive Step We assume that the Value Function at the ith iteration is given
by

Vi(z,m)= min
(Π,π)∈Pi

{
z�Πz+ πm

}
.

The computation of the Value Function at the next iteration, using Eq. (3.10), is very
similar to the base case:

Vi+1(z,m)

= min
(u,v)∈U(z)

{
�v(z,m,u)+ λVi

(
fv(z,u), v

)}
= min
(u,v)∈U(z)

{
z�Qvz+ u�Rvu+ θm,v

+ λ min
(Π,π)∈Pi

{
z�Φ�v ΠΦvz+ u�Γ �v ΠΓvu+ 2u�Γ �v ΠΦvz+ πv

}}

=min
{

min
u∈Rnu ,(Π,π)∈Pi

{
z�

(
QCL + λΦ�CLΠΦCL

)
z+ u�(RCL + λΓ �CLΠΓCL

)
u

+ θm,1 + 2λu�Γ �CLΠΦCLz+ λπ1
};

min
v∈M2,(Π,π)∈Pi

{
z�

(
QOL + λΦ�OLΠΦOL

)
z+ θm,v + λπv

}}
.

(3.16)



110 N. Cardoso de Castro et al.

Note that zΦ�v ΠΓvu= u�Γ �v ΠΦvz since the Π matrices in Pj are symmetric for
any admissible j , see Lemma 3.1.

We denoteΨ (u)= z�(QCL+λΦ�CLΠΦCL)z+u�(RCL+λΓ �CLΠΓCL)u+θm,1+
2λu�Γ �CLΠΦCLz. One can compute the value of u that minimizes the previous
equation, denoted u∗, as follows:

∂Ψ (u)

∂u
= (

2
(
RCL + λΓ �CLΠΓCL

)
u+ 2λΓ �CLΠΦCLz

)
,

∂Ψ (u)

∂u

∣∣∣∣
u∗
= 0 ⇒ u∗ = −(RCL + λΓ �CLΠΓCL

)−1
λΓ �CLΠΦCLz�−κΠz.

We can check that u∗ actually exists and is a minimum. First of all, one should
notice that (RCL+λΓ �CLΠΓCL) is positive definite, as the sum of the positive definite
matrices Γ �CLΠΓCL and RCL, then the inverse exists, so as κΠ . The same argument
can be used to prove that the extremum is actually a minimum since one can check
that the Hessian matrix of Ψ (u∗) is positive definite. Note also that the minimum in
Eq. (3.15) is indeed attained for u∗.

We can also check that the minimization on u provides a state feedback de-
pending only on z. Assuming that Π can be written

[Π11 Π12
Π12 Π22

]
, and denoting

R̂CL � R̄ + λ(B�Π11B +B�Π12 +Π12B +Π22), we have

κΠ =
(
RCL + λΓ �CLΠΓCL

)−1
λΓ �CLΠΦCL

= (R̂CL)
−1λ

[
(B�Π11 +Π12)A 0

]
.

From the form of κΠ , one sees that only the component on x from z is used to
compute u∗.

We notice that Ψ (u∗) can be written as follows:

Ψ
(
û∗
)= z�(QCL + λΦ�CLΠΦCL

)
z+ u�

=0︷ ︸︸ ︷[(
RCL + λΓ �CLΠΓCL

)
u+ λΓ �CLΠΦCLz

]
− λu�Γ �CLΠΦCLz+ θm,1,

Ψ
(
û∗
)= z�(QCL + λΦ�CLΠΦCL

)
z− λz�κ�ΠΓ �CLΠΦCLz+ θm,1.

(3.17)

Equations (3.16) and (3.17) yield

Vi+1(z,m)=min
{
z�

(
QCL + λΦ�CLΠΦCL − λκ�ΠΓ �CLΠΦCL

)
z+ θm,1 + λπ1;

z�
(
QOL + λΦ�OLΠΦOL

)
z+ min

v∈M2
{θm,v + λπv}

}
,

Vi+1(z,m)= min
(Π,π)∈Pi+1

{
z�Πz+ πm

}
,
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where

Pi+1 =P(1)i+1 ∪P(2)i+1,

P(1)i+1 �
{(
QCL + λΦ�CLΠΦCL − λκ�ΠΓ �CLΠΦCL,[
(θ1,1 + λπ1) (θ2,1 + λπ1) · · · (θN,1 + λπ1)

])
such that (Π,π) ∈ Pi and κΠ =

(
RCL + λΓ �CLΠΓCL

)−1
λΓ �CLΠΦCL

}
,

P(2)i+1 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝QOL + λΦ�OLΠΦOL,

⎡
⎢⎢⎢⎣

minv∈M2{θ1,v + λπv}
minv∈M2{θ2,v + λπv}

...

minv∈M2{θN,v + λπv}

⎤
⎥⎥⎥⎦
�⎞
⎟⎟⎟⎠such that (Π,π) ∈ Pi

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

(3.18)

Lemma 3.1 The Π matrices in Pi are symmetric positive definite for any i > 0.

Proof The recursion used to compute theΠ matrices is given in Eq. (3.18). EachΠ
matrix in Pi generates one matrix in P(1)i+1 and another in P(2)i+1, denoted hereafter

Π
(1)
+ and Π(2)+ , respectively. Equation (3.18) yields

Π
(1)
+ =QCL + λΦ�CLΠΦCL − λκ�ΠΓ �CLΠΦCL

=QCL + λΦ�CLΠΦCL + κ�ΠRCLκΠ + λκ�ΠΓ �CLΠΓCLκΠ − 2λκ�ΠΓ �CLΠΦCL

(thanks to Eq. (3.17))

=QCL + λΦ ′�ΠΦ ′ + κ�ΠRCLκΠ

where Φ ′ =ΦCL − κΠΓCL

and

Π
(2)
+ =QOL + λΦ�OLΠΦOL.

We recall thatQCL,QOL, and RCL are symmetric positive definite. Also, for any
matrices Λ and Ξ of appropriate dimensions, if Λ is symmetric positive definite,
then Ξ�ΛΞ is also symmetric positive definite.

Then, if theΠ matrices in Pi are symmetric positive definite, we have proven that
the Π matrices in Pi+1 are also symmetric positive definite. Since the Π matrices
in P1 areQCL andQOL (which are symmetric positive definite) then this proves that
the Π matrices in Pi are symmetric positive definite for any i ≥ 0. �

Implementation of the Optimal Solution in the Deterministic Case As ex-
plained in Sect. 3.3.2.2, the iterative algorithm in the deterministic case can use
the analytical formulation of the Value Function to compute an optimal solution.
In this case, the implementation still comprises a two-phases computation process,
which is given as follows.



112 N. Cardoso de Castro et al.

Offline Computation The first stage, run offline, consists in computing the Value
Function Vi(z,m) given by

Vi(z,m)= min
(Π,π)∈Pi

{
z�Πz+ πm

}
,

where the computation of Pi is done recursively. After initializing the Value Func-
tion to the zero function, the recursion is given by Eq. (3.18). The Value Function
converges to the optimal cost function as i goes to infinity. In the case of practical
computations, the recursion is stopped after a sufficient number of iterations that
can be denoted by I , large enough to assume convergence of the iterative scheme,
and the Value Function at iteration I is considered as optimal. In the following sub-
section, we call P∞ the set PI .

Online Computation The second stage is run online. It consists in computing the
optimal switching decision at time k, v∗k , as a function of the current state of the
system (zk,mk), as given by the optimal switching policy: v∗k = η∗(zk,mk). In order
to compute v∗k , one first needs to compute the value of the Value Function for the
current system state, or more precisely to determine the couple (Πk,πk) that results
from the minimization of the Value Function:

(Πk,πk)� arg min
(Π,π)∈P∞

{
z�k Πzk + πmk

}
.

Then the optimal switching decision is computed as follows:

v∗k = η∗(zk,mk)�
{

1 if (Πk,πk) ∈ P(1)∞ ,

arg minv∈M2
{λπk|v + θmk,v} if (Πk,πk) ∈ P(2)∞ .

The notation πk|v refers to the vth element of the vector πk . Notice also that, by
construction, P∞ is the union of two subsets, P(1)∞ and P(2)∞ .

If a transmission is scheduled at time k, i.e., v∗k = 1, then the optimal feedback
control is given by

u∗k = μ∗(zk,mk)�−κΠkzk =−
(
RCL + λΓ TCLΠkΓCL

)−1
λΓ TCLΠkΦCLzk.

The definitions of η∗ and μ∗ are obtained naturally from the recursion (3.18).

Stopping Criterion in the Deterministic Case In the deterministic case, where
we can implement the recursion on the sets Pi instead of the grid approach, having
the set Pi converging to a fixed set would provide a stopping criterion. However, the
number of elements in this set increases exponentially. Despite Pi not being conver-
gent to any set P∞, clearly the Value Function Vi(z,m) is still ensured to converge
to the optimal cost J ∗(z,m) by Theorem 3.1. Hence we will simply implement the
same stopping criterion as in the general case.
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3.4 Simulations

To illustrate the proposed method, we present here a simple example of a first-order
unstable system, with the following parameters:

xk+1 = 1.074xk − 1.4808uk +wk, Ts = 0.05 s,

where the variance of the noise is W = 0.02.
In order to simplify the simulation, and to focus on the radio-mode switching

policy, we decide to use a static state feedback. This implies that the control law is
fixed and given by

ûk = μ(xk, ũk,mk)=−Kxk, ∀k ≥ 0,

with K =−0.23.
The parameters of the cost function are as follows:

Q̄= 0.01, R̄ = 0.1, λ= 0.8.

We consider the radio chip Texas Instruments CC1100. We consider one trans-
mitting mode, N1 = 1, namely, the Tx mode (mode number 1), and two non-
transmitting modes, N2 = 2, the Idle and Sleep modes, numbered mode 2 and 3,
respectively. The values of the transition costs are given in [mJ] and are computed
from the datasheet of the radio chip:⎡

⎣θ11 = 2.85 θ12 = 1.8 θ13 = 1.9
θ21 = 3.2 θ22 = 1.4 θ23 = 6× 10−5

θ31 = 3.5 θ32 = 3.7× 10−3 θ33 = 6× 10−5

⎤
⎦ .

Finally, we consider that 30 % of the messages are dropped by the erasure channel,
i.e., ε = 0.3.

Our choice of this simple example is motivated by the fact that a first-order sys-
tem allows a clear pictorial representation of the offline optimization because in
this case the mode-switching law can be plotted in a simple figure, as it will be
shown in Sect. 3.4.1. Despite the simplifying assumption that the control law is a
pre-defined static feedback law ûk = −Kxk , this example still illustrates the idea
that the mode-switching decision is designed taking into account the control prob-
lem. Indeed, the switching policy is derived by solving the optimization problem
in Eqs. (3.6) and (3.7) (where now optimization is w.r.t. η only, with fixed control
law μ), which takes into account the control problem. Roughly speaking, the intu-
itive idea is that a transmission is triggered only if this is necessary (no transmission
when the state is already near to zero, nor when the memory contains a value similar
to the computed control input), and that, moreover, when not transmitting the choice
between Idle and Sleep depends on how likely a new transmission will happen
soon. This is in contrast with pre-defined schedules where the choice between modes
is done irrespective of the current measured state.
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Fig. 3.4 Optimal switching policy derived from the offline computation, light grey ⇔ switch to
Tx (vk = 1), dark grey ⇔ switch to Idle (vk = 2), and black ⇔ switch to Sleep (vk = 3), the
control memory ũk = uk−1 is on the x-axis and the system output xk on the y-axis

3.4.1 Offline Results

The offline computation provides the switching policy v = η∗(x, ũ,m) which is the
optimal for the problem described in Eqs. (3.6) and (3.7), where in our simplified
example the optimization is w.r.t. the mode-switching η only, while the control law
is fixed to state-feedback ûk = −Kxk . The solution is obtained with the Value It-
eration Method, i.e., by iterating Eq. (3.11). The policy η∗ is stationary, i.e., at any
time k, it gives the optimal switching decision v∗ ∈M as a function of the current
measurement xk , of the last control input applied to the system uk−1 = ũk and of
the current radio-mode mk . This function is depicted in Fig. 3.4, with a sub-figure
per each current mode mk .

We observe that the regions where the radio is switched to non-transmitting
modes (colors dark grey and black in Fig. 3.4) are finite sets around the origin
(xk, ũk) = (0,0), and follow the direction ũk = −Kxk (K < 0 in our example).
Outside of these regions, a transmission is forced. This means that when the last
control input applied to the system is close to what the state-feedback law would
have decided, the switching policy does not send an update.

Note that we obtain an event-based radio-mode switching policy. Indeed, a
switching occurs only when the state of the system crosses one of the regions in
Fig. 3.4.

3.4.2 Online Results

After deriving the switching policy, we run online temporal simulations to observe
the behavior of the system. In Fig. 3.5, we compare our event-based switching policy
with some periodical ones using the same state feedback law u=−Kx, where the
radio is alternatively switched to Tx and low-consuming modes. We consider vari-
ous periodic patterns for the radio mode: we will denote by periodic i–j a sequence
with period i + j where the mode is Tx for i consecutive sampling intervals and
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Fig. 3.5 Online simulations comparing our event-based switching policy with periodic ones. Ad-
ditive zero-mean white Gaussian noise and channel dropouts are considered. The green triangles
in (b) indicate time instants where a transmission was intended but a dropout occurred

then is Sleep for j intervals. We will then denote by periodic i–j min a sequence
with the same period and the same Tx intervals (so that the control performance is
unchanged), but where the mode for the non-transmitting intervals is chosen in M2

so as to minimize the energy consumption. The online simulations include channel
dropouts and additive output noise on the system.

Figure 3.5(a) shows that the system is stabilized in a set around the origin in both
cases. In Fig. 3.5(b), one can see the switching decisions for both cases. The green
triangles indicate time instants where a transmission was intended but a dropout oc-
curred. When an update is dropped, the Event-Based Control (EBC) scheme holds
the Tx mode to actually transmit a new control update, while the periodic scheme is
not taking dropouts into account. Moreover, the EBC scheme may hold the Sleep
mode for a long time interval when transmissions cost more than the deviation ob-
served on the state.

Finally, Fig. 3.5(c) compares the EBC scheme to several periodic patterns. In
this figure, the performance of the closed loop system is computed from the cost
function (

∑Tmax
i=0 (x

�
i Q̄xi + u�i R̄ui) where Tmax = 4 s) and normalized such that

100 % and 0 % are the best and the worst performances, respectively. The EBC
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Fig. 3.6 Stability
check—Average trajectories
with zero-noise for some
different initial states are
plotted in a vector field giving
the initial mean directions of
the augmented state z,
omitting the radio mode

scheme is very close to the best, although not exactly the best, but it offers the least
energy consumption, and especially the best trade-off.

3.4.3 A Posteriori Stability

It is worth mentioning that the commonly used definition for stability is to asymp-
totically drive the state of the system to the origin as time goes to infinity. This kind
of stability cannot be achieved in our setup when the plant is open-loop unstable.
Indeed, our scheme bases its energy saving on the action to turn off the radio chip
when the transmission cost dominates the cost associated with the control perfor-
mance. This makes the system run open loop and deviate from the origin. The pol-
icy schedules a transmission when the cost associated with the control performance
dominates the transmission cost. In our simulations, the system naturally oscillates
around the origin without leaving a ball around the origin. Considering this defi-
nition, one could expect to check a posteriori that the obtained switching policy is
actually stable, as done in [16].

In this section, we check that, on a given domain around the origin, the direction
given by our policy leads toward the equilibrium. However, this is not a formal proof
but only an illustration. In all our figures, we consider the same system and policy
as described and illustrated online and offline in the beginning of this section, and
we plot trajectories with zero noise w and averaged w.r.t. to the packet loss β .

Figure 3.6 shows a vector field of the directions of the augmented state z= [x ũ]�
over a sampling interval. The vector at a point z is given by

1

α

(
(1− ε)fη∗(z,m)(z,−Kz,1,ω)+ εfη∗(z,m)(z,−Kz,0,ω)− z

)
,

where ω = 0 and m = 2 (a very similar figure is obtained if m = 1 or m = 3 are
considered instead). The scaling factor α is introduced to avoid intricate figure. We
recall that the switched system described by fv is given in Eq. (3.3) and the switch-
ing law η∗ is the one minimizing the cost described in Eq. (3.6).

This figure also shows some (average) state trajectories, i.e., for some ini-
tial conditions, the bold red arrows connect points which are obtained from an
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Fig. 3.7 Stability
check—Same plot as in
Fig. 3.6 zoomed near the
origin for only one trajectory
over an important number of
sampling periods. This figure
illustrates that the system
keeps oscillating around the
origin in a constrained region

initial condition (z0,m0) by applying over some consecutive time steps the law
fη∗(zi ,mi)(zi ,−Kzi,β,0). Note that the mode also varies along the trajectory, but
is not depicted here. It can be seen that all these trajectories are driven toward the
origin.

However, this does not ensure that the system is kept around the origin for the
next sampling periods. Figure 3.7 depicts what actually happens around the origin
for one trajectory, on a zoomed area. One can observe that the system keeps oscil-
lating around the origin because of the switchings, it deviates when switched to the
unstable open-loop behavior, and it converges when transmissions occur.

3.5 Conclusion

In this chapter, we have studied the optimal management of the radio-chip modes
of a wireless smart sensor in a networked control problem. The novelty of this work
is to introduce the use of more than two radio-modes in a control problem, whereas
previous related control-theoretic literature was focused on the choice between two
options (Tx/Sleep). We have considered a networked control problem where the
system to be stabilized is linear and can be unstable. The closed-loop includes a
single wireless smart sensor whose transmissions to the actuator are performed with
an optimal choice of the radio-mode.

For this problem, we have defined a suitable cost function, which describes a
trade-off between the control performance and the energy consumption, and whose
minimum can be computed with an iterative Dynamic Programming algorithm (the
Value Iteration method). We obtained an event-based policy to switch between
radio-modes. Limiting the amount of communication to save energy naturally de-
creases the closed-loop performance, but we show on an example that an event-
based approach permits keeping the performance good and saving a larger amount
of energy than with a periodic approach.

This work is a first step in the direction of understanding the advantages of radio-
mode management in more general networked control problems. Some further work
in a similar direction has been addressed in [9], where we have considered a finite-
horizon approach to solve the same problem as the one considered in this chapter. In
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that work, the optimization is performed over a finite receding horizon, similarly to
the framework of Model Predictive Control, an approach which has the advantage
of providing tools to prove stability in the practical-Input-to-State stability sense.
However, the problem of radio-mode management in the context of closed-loop
systems is still open, in particular in the case of multi-sensor and multi-actuator
systems.

Acknowledgement This research was supported by LCCC—Linnaeus Grant VR 2007-8646,
Swedish Research Council.
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Part II
Stochastic Networked Control

and Estimation

Decentralized stochastic control arises in multi-stage decision-making with multiple
decision-makers having different information and a common objective. This second
part of the book collects three contributions investigating fundamental relations be-
tween control and information-theoretic quantities.

In Chap. 4, Nayyar et al. present the common-information approach to decen-
tralized stochastic control. The key idea behind this approach is to formulate an
equivalent centralized stochastic control problem from the point of view of a ficti-
tious coordinator that observes only the information that is commonly available to
all decision-makers. The optimal control problem for the fictitious coordinator is
shown to be a partially observable Markov decision process which can be solved
using techniques from Markov decision theory. The authors describe this approach
for a general model and illustrate it by examples from real-time communication,
networked control systems, paging and registration in cellular systems, and multi-
access broadcast systems.

Chapter 5 by Asnani et al. reviews some of the recent literature on rela-
tions between information- and estimation-theoretic quantities. The chapter begins
by exploring the connections between mutual information and causal/non-causal,
matched/mismatched estimation for the setting of a continuous-time source cor-
rupted by white Gaussian noise. Relations involving causal estimation, in both
matched and mismatched cases, and mutual information persist in the presence of
feedback. The authors present a new unified framework, based on Girsanov theory
and Itô’s Calculus, to derive these relations, and conclude by deriving some new
results using this framework.

In Chap. 6, Yüksel discusses the properties of information/measurement chan-
nels for stabilization and optimization problems in networked control. First, the
chapter considers a finite horizon optimal control problem, and investigates struc-
tural and topological properties of such a problem over the space of information
channels. The existence of optimal channels is studied, and the structure and exis-
tence of optimal quantization policies are investigated, first for static settings and
then for dynamic settings. Then, the stabilization problem of open-loop unstable
linear systems controlled over communication channels is discussed and tight nec-
essary and sufficient conditions for stochastic stabilizability of such systems driven
by Gaussian noise over channels are presented.



Chapter 4
The Common-Information Approach
to Decentralized Stochastic Control

Ashutosh Nayyar, Aditya Mahajan, and Demosthenis Teneketzis

4.1 Introduction

Many modern technological systems, such as cyber-physical systems, communi-
cation, transportation and social networks, smart grids, sensing and surveillance
systems are informationally decentralized. A key feature of informationally decen-
tralized systems is that decisions are made by multiple decision makers that have
access to different information. This feature violates the fundamental assumption
upon which centralized stochastic control theory is based, namely, that all deci-
sions are made by a centralized decision maker who has access to all the informa-
tion and perfectly recalls all past observations and decisions/actions. Consequently,
techniques from centralized stochastic control cannot be directly applied to decen-
tralized stochastic control problem primarily for the following reason. In centralized
stochastic control, the controller’s belief on the current state of the system is a suf-
ficient statistic for decision making. A similar sufficient statistic does not work for
decentralized stochastic control because controllers have different information and
hence their beliefs on the state of the system are not consistent.

Nevertheless, two general approaches that use ideas from centralized stochastic
control theory have been used for the solution of decentralized control problems:
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(i) the person-by-person approach; and (ii) the designer’s approach. A detailed dis-
cussion of the features and merits of these approaches, as well as their application
to various classes of problems appears in [20]. Here we briefly present the key char-
acteristics of each approach.

The person-by-person approach investigates the decentralized control problem
from the viewpoint of one decision-maker, say the ith decision-maker and proceeds
as follows: (i) arbitrarily fixes the strategy of all other decision-makers; and (ii) uses
centralized stochastic control to derive structural properties for the optimal best-
response strategy of the ith decision-maker. The person-by-person approach can, in
several problem instances [9, 13, 16–18, 26–30, 33–37, 41, 42], identify qualitative
properties of globally optimal control strategies; furthermore, it provides an iterative
method to obtain person-by-person optimal strategies [7] which, in general, are not
globally optimal.

The designer’s approach looks at the decentralized control problem from the
point of view of a system designer who knows the system model and the statistics of
the primitive random variables, and chooses control/decision strategies for all deci-
sion makers. This approach leads to a centralized planning problem whose solution
results in globally optimal control strategies. Such strategies are determined by a dy-
namic program where each step is a functional optimization problem (in contrast to
the usual centralized dynamic program where each step is a parameter optimization
problem). Thus, the determination of globally optimal strategies via the designer’s
approach is a computationally formidable problem [40].

In several instances of decentralized control problems [13, 36, 37], the person-
by-person approach is used first to identify qualitative properties of globally optimal
strategies; then, the designer’s approach is employed to determine globally optimal
strategies with the identified qualitative property.

In addition to the above mentioned approaches, other methods that exploit sys-
tem’s information structure have been developed for the solution of decentralized
control problems. Specifically, solution approaches for systems with partially nested
information structure have appeared in [4, 8, 10, 11, 23]; a generalization of partial
nestedness called stochastic nestedness was defined and studied in [44]. In [8], it
was shown that for linear quadratic Gaussian (LQG) control problems with partially
nested information structure, there is an affine control strategy that is globally op-
timal. In general, the problem of determining optimal control strategies within the
class of affine control policies may not be a convex optimization problem; condi-
tions under which it is convex were identified in [2, 24].

Decentralized stochastic control problems with specific models of information
sharing among controllers, such as delayed information sharing [1, 19, 31, 43], pe-
riodic information sharing [22], broadcast information structure [42], control shar-
ing [3, 12], and systems with common and private observations [14] have also been
investigated in the literature.

In [20], a new general model of decentralized stochastic control, called partial
history sharing information structure, was presented. In this model, it is assumed
that: (i) controllers sequentially share part of their past data (observations and con-
trol actions) with one another by means of a shared memory; and (ii) all controllers
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have perfect recall of the commonly available data (also called the common infor-
mation). This model subsumes a large class of decentralized control models where
information is shared among the controllers. A solution methodology for this model
was presented in [20]. This solution methodology is based on the common infor-
mation approach developed in [15] which is applicable to all sequential decision
making problems. The common information approach provides a unified frame-
work for several decentralized control problems that had previously been addressed
using problem specific solution techniques. The key idea behind this approach is
the reformulation of the original decentralized control problem into an equivalent
centralized problem from the perspective of a coordinator. The coordinator knows
the common information and selects prescriptions that map each controller’s local
information to its control actions. The optimal control problem at the coordinator
is a partially observable Markov decision process (POMDP) that can solved using
techniques from Markov decision theory. This approach provides: (i) structural re-
sults (qualitative properties) for optimal strategies; and (ii) a dynamic program for
obtaining globally optimal strategies for all controllers in the original decentral-
ized problem. Notably, the structural results of optimal control strategies obtained
by the common information approach cannot be obtained by the person-by-person
approach (see [20, Sect. III-A]; and the dynamic program obtained by the com-
mon information approach is simpler than that obtained by the designer’s approach
(see [20, Sect. III-A].

In this chapter, we present the common information approach to decentralized
stochastic control. Our objective is to demonstrate that this approach is conceptu-
ally powerful as it overcomes some of the fundamental difficulties in decentralized
decision making, it has broad applicability, it can resolve a long-standing open prob-
lem in decentralized stochastic control, and it can simplify the search for globally
optimal strategies.

This chapter is organized as follows. In Sect. 4.2, we first present two examples,
one for a one stage decentralized control problem (static team) and the other for
a two stage decentralized control problem (dynamic team), that illustrate how the
common information approach simplifies the search of globally optimal strategies;
then we describe the key steps of the approach. In Sect. 4.3, we present a brief recap
of partially observed Markov decision processes (POMDPs) which play a key role
in the common information approach. In Sect. 4.4, we illustrate how the common
information approach can be used to solve problems that arise in control, commu-
nication, and queueing systems. In Sect. 4.5, we demonstrate how our approach can
resolve a long-standing open problem [39] in decentralized stochastic control. We
conclude in Sect. 4.6 by discussing how the common information circumvents the
conceptual difficulties associated with decentralized stochastic control.

4.1.1 Terminology

Decentralized stochastic control problems are also referred to as team problems and
further classified as static and dynamic teams. In dynamic teams, the information
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observed by a decision maker depends on the control actions of other decision mak-
ers, while in static teams it does not; see [7, 8] for details. Decentralized stochastic
control problems are typically dynamic team problems.

4.1.2 Notation

Random variables are denoted by upper case letters; their realization by the corre-
sponding lower case letter. For integers a ≤ b and c ≤ d , Xa:b is a short hand for
the vector (Xa,Xa+1, . . . ,Xb). When a > b, Xa:b equals the empty set. In general,
subscripts are used as time index while superscripts are used to index controllers.
P(·) is the probability of an event, E[·] is the expectation of a random variable. For
a collection of functions g, we use Pg(·) and Eg[·] to denote that the probability
measure/expectation depends on the choice of functions in g.

4.2 The Common Information Approach to Decentralized
Stochastic Control

The main idea of the common information approach to decentralized stochastic con-
trol is to formulate and analyze an alternative but equivalent centralized stochastic
control problem. To illustrate this idea, we start with two of the simplest examples
of decentralized stochastic control: (i) a two controller static team problem; and
(ii) a two controller two-stage dynamic team problem. For both these examples,
we show how the common information approach works and simplifies the search of
globally optimal strategies. After presenting these examples, we present a high-level
description of the main steps of the common information approach.

4.2.1 Illustrative Example 1: A Two Controller Static Team

The following example, which is adapted from [20], illustrates how the common
information approach decomposes a static team problem into several smaller sub-
problems that are easier to solve.

Consider a two controller static team. Nature selects a random variableW . Con-
troller i, i = 1,2, observes a common observation C and a local observation Mi .
The observations (C,M1,M2) are a function ofW .

The controllers select their control actions U1 and U2 using control laws g1 and
g2 of the form

U1 = g1(C,M1), U2 = g2(C,M2).
The system incurs a loss �(W,U1,U2).
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Suppose all system variables are finite valued and W , C, Mi , Ui take values
in finite sets W , C, Mi , and U i , i = 1,2, respectively. The objective is to choose
control laws

g1 : C ×M1 �→ U1, g2 : C ×M2 �→ U2

to minimize

J
(
g1, g2)=E(g

1,g2)
[
�
(
W,U1,U2)].

Since all system variables are finite valued, one solution approach is to find
the globally optimal control laws (g1, g2) by a brute force search over all possi-
ble

∏2
i=1|U i ||C||Mi | control laws. For example, if all system variables are binary

valued, we need to search over 24 × 24 = 256 possibilities.
The common information approach reduces the number of possibilities that need

to be searched. The main idea of this approach is that instead of specifying the
control laws (g1, g2) directly, we specify them indirectly as follows. Consider an
alternative coordinated system in which a coordinator observes the common infor-
mation C and chooses prescriptions (Γ 1,Γ 2), where Γ i is a mapping from local
information Mi to control action Ui , according to a coordination law ψ that is of
the form (

Γ 1,Γ 2)=ψ(C).
The coordinator communicates these prescriptions (Γ 1,Γ 2) to the controllers who
use them to generate control actions as follows:

U1 = Γ 1(M1), U2 = Γ 2(M2).
The objective of the coordinated system is to find a coordination law ψ to mini-

mize

J̃ (ψ)=Eψ
[
�
(
W,U1,U2)].

It is easy to verify that there is an one-to-one correspondence between the control
laws (g1, g2) of the original system and the coordination law ψ of the coordinated
system. The optimization problem at the coordinator is a centralized stochastic opti-
mization problem in which the coordinator is the only decision-maker. To solve this
centralized stochastic optimization problem, consider any coordination law ψ and
for any c ∈ C, let (γ 1

c , γ
2
c )=ψ(c). Write the expected loss J̃ (ψ) as∑

c∈C
P(C = c)E[�(W,γ 1

c

(
M1), γ 2

c

(
M2)) ∣∣ C = c].

Minimizing J̃ (ψ) is equivalent to separately minimizing, for each value of c ∈ C,
the expected conditional loss E[�(W,γ 1

c (M
1), γ 2

c (M
2)) | C = c] over the choice of

(γ 1
c , γ

2
c ). One solution approach to solve each of these latter minimizations is by a

brute force search over all possible
∏2
i=1|U i ||Mi | possibilities. Thus, this approach

requires searching over |C|∏2
i=1|U i ||Mi | possibilities. For example, if all system
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variables are binary valued, we need to search over 2× 22 × 22 = 32 possibilities.
Contrast this by the 256 possibilities that need to be evaluated for a brute force
search in the original setup. In general, for this example, the common information
approach provides an exponential simplification by reducing the search complexity
from (

2∏
i=1

∣∣U i∣∣|Mi |
)|C|

to |C|
2∏
i=1

∣∣U i∣∣|Mi |
.

4.2.2 Illustrative Example 2: A Two-Stage Two-Controller
Dynamic Team

The following example illustrates how the common information approach provides
a dynamic programming decomposition in a multi-stage dynamic team problem.
Consider a two-stage two-controller dynamic team that evolves as follows.

• At t = 1, nature selects a random variable W1. Controller i, i = 1,2, ob-
serves a common observation C1 and a local observation Mi

1. The observations
(C1,M

1
1 ,M

2
1 ) are a function of W1.

The controllers select their control actions U1
1 and U2

1 using control laws g1
1

and g2
1 of the form

U1
1 = g1

1

(
C1,M

1
1

)
, U2

1 = g2
1

(
C1,M

2
1

)
.

• At t = 2, nature selects a random variable W2 that may be correlated with W1.
As in stage 1, controller i, i = 1,2, observes a common observation C2 and
a local observation Mi

2. The difference from stage 1 is that the observations
(C2,M

1
2 ,M

2
2 ) are a function of (W2,U

1
1 ,U

2
1 ).

The controllers select their control actions U1
2 and U2

2 using control laws g1
2

and g2
2 of the form

U1
2 = g1

2

(
C1,C2,M

1
1 ,M

1
2

)
, U2

2 = g2
2

(
C1,C2,M

2
1 ,M

2
2

)
.

• At the end of the two stages, the system incurs a loss �(W1,W2,U
1
1 ,U

2
1 ,U

1
2 ,U

2
2 ).

Suppose all system variables are finite valued andWt , Ct , Mi
t , U

i
t take values in

finite sets Wt , Ct , Mi
t , and U it , i = 1,2, t = 1,2. The objective is to choose control

laws

gi1 : C1 ×Mi
1 �→ U i1, gi2 : C1 × C2 ×Mi

1 ×Mi
2 �→ U i1, i = 1,2

to minimize

J
(
g1

1, g
1
2, g

2
1, g

2
2

)=E(g
1
1 ,g

1
2 ,g

2
1 ,g

2
2)
[
�
(
W1,W2,U

1
1 ,U

2
1 ,U

2
1 ,U

2
2

)]
.
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Since all system variables are finite valued, one solution approach is to find glob-
ally optimal control strategies (g1

1, g
1
2, g

2
1, g

2
2) by a brute force search over all pos-

sible
2∏
i=1

∣∣U i1∣∣|C1||Mi
1|∣∣U i2∣∣|C1||C2||Mi

1||Mi
2|

control strategies. For example, if all system variables are binary valued, we need to
search over (24 × 216)2 = 240 possibilities.

The common information approach enables us to decompose the above multi-
stage optimization problem using a dynamic program. As in the static case, the
main idea of the common information approach is that instead of specifying the
control strategies (g1

1, g
1
2, g

2
1, g

2
2) directly, we specify them indirectly as follows.

Consider an alternative two-stage coordinated system in which a coordinator with
perfect recall observes the common information Ct at time t and chooses prescrip-
tions (Γ 1

t , Γ
2
t ) where Γ i1 is a mapping from local information Mi

1 to control action
Ui1 while Γ i2 is a mapping from local information (Mi

1,M
i
2) to control action Ui2.

These prescriptions are chosen according to a coordination strategy (ψ1,ψ2) that is
of the form (

Γ 1
1 ,Γ

2
1

)=ψ1(C1),
(
Γ 1

2 ,Γ
2

2

)=ψ2(C1,C2).

At time t , the coordinator communicates prescriptions (Γ 1
t , Γ

2
t ) to the controllers

who use them to generate control actions as follows:

Ui1 = Γ i1
(
Mi

1

)
, Ui2 = Γ i2

(
Mi

1,M
i
2

)
, i = 1,2.

The objective of the coordinated system is to find coordination strategy (ψ1,ψ2)

to minimize

J̃ (ψ1,ψ2)=E(ψ1,ψ2)
[
�
(
W1,W2,U

1
1 ,U

2
1 ,U

2
1 ,U

2
2

)]
.

It is easy to verify that there is a one-to-one correspondence between the con-
trol strategies (g1

1, g
1
2, g

2
1, g

2
2) of the original system and the coordination strategy

(ψ1,ψ2) of the coordinated system. The multi-stage optimization problem at the co-
ordinator is a centralized stochastic control problem in which the coordinator is the
only decision maker and has perfect recall. To solve this centralized stochastic con-
trol problem, proceed as follows. Consider any coordination strategy (ψ1,ψ2) and
any realization (c1, c2) ∈ C1×C2 of the common information. Suppose the prescrip-
tions (γ 1

1 , γ
2
1 ) = ψ1(c1) are fixed. Given this information, what is the best choice

of the prescriptions (γ 1
2 , γ

2
2 )=ψ2(c1, c2) at time t = 2? For any choice (γ̃ 1

2 , γ̃
2
2 ) of

the prescriptions at time t = 2, the expected conditional loss is given by

E
[
�
(
W1,W2,U

1
1 ,U

2
1 ,U

2
1 ,U

2
2

) ∣∣ c1, c2, γ
1
1 , γ

2
1 , γ̃

1
2 , γ̃

2
2

]
.

Since all the prescriptions are specified, the control actions (U1
1 ,U

2
1 ,U

2
1 ,U

2
2 ) are

well-defined random variables, and the above conditional expectation is well-
defined. To obtain the best choice of the prescriptions at time t = 2, minimize the
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above conditional expectation over all possible choices of (γ̃ 1
2 , γ̃

2
2 ) and define the

minimum value as

V
(
c1, c2, γ

1
1 , γ

2
1

)= min
γ̃ 1

2 ,γ̃
2
2

E
[
�
(
W1,W2,U

1
1 ,U

2
1 ,U

2
1 ,U

2
2

) ∣∣ c1, c2, γ
1
1 , γ

2
1 , γ̃

1
2 , γ̃

2
2

]
.

(4.1)
One solution approach to solve the above minimization is by a brute force search

over all possible
∏2
i=1|U i2||M

i
1||Mi

2| prescription pairs. To find the optimal coordi-
nation law ψ2, we need to solve the above minimization problem for all possible
realizations of the common information (c1, c2) and choices of past prescription

(γ 1
1 , γ

2
1 ). Thus, we need to solve |C1||C2|∏2

i=1|U i1||M
i
1| minimization problems,

each requiring the evaluation of
∏2
i=1|U i2||M

i
1||Mi

2| conditional expectations.
Now that we know how the coordinator selects optimal prescriptions at time

t = 2, what is the best choice of prescriptions (γ 1
1 , γ

2
1 ) at time t = 1? For any real-

ization c1 ∈ C1 and any choice of coordination law ψ̃2, the expected conditional loss
at the coordinator when the prescriptions at time t = 1 are (γ̃ 1

1 , γ̃
2
1 ) is given as

E
[
�
(
W1,W2,U

1
1 ,U

2
1 ,U

2
1 ,U

2
2

) ∣∣ c1, γ̃
1
1 , γ̃

2
1

]
=E

[
E
[
�
(
W1,W2,U

1
1 ,U

2
1 ,U

2
1 ,U

2
2

) ∣∣ c1,C2, γ̃
1
1 , γ̃

2
1 , ψ̃2

] ∣∣ c1, γ̃
1
1 , γ̃

2
1

]
. (4.2)

Use the optimal prescription at time t = 2, which is given by (4.1), to lower
bound the conditional expected cost in (4.2) as follows:

E
[
E
[
�
(
W1,W2,U

1
1 ,U

2
1 ,U

2
1 ,U

2
2

) ∣∣ c1,C2, γ̃
1
1 , γ̃

2
1 , ψ̃2

] ∣∣ c1, γ̃
1
1 , γ̃

2
1

]
≥E

[
V
(
c1,C2, γ̃

1
1 , γ̃

2
1

) ∣∣ c1, γ̃
1
1 , γ̃

2
1

]
(4.3)

with equality if the coordinator uses the optimal prescriptions at time t = 2, which
are given by (4.1).

One solution approach to select the best prescriptions at time t = 1 is to evaluate
the conditional expectation in (4.3) for all

∏2
i=1|U i1||M

i
1| choices of (γ̃ 1

1 , γ̃
2
1 ). To

find the optimal coordination law ψ1, we need to solve the above minimization
problem for all possible realizations of c1. Thus, we need to solve |C1|minimization
problems, each requiring the evaluation of

∏2
i=1|U i1||M

i
1| conditional expectations.

The above dynamic program based on the common information approach re-
quires

|C1|
2∏
i=1

∣∣U i1∣∣|Mi
1| + |C1||C2|

2∏
i=1

∣∣U i2∣∣|Mi
1||Mi

2|
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evaluations.1 For example, when all variables are binary valued, we need to evaluate
214 conditional expectations. Contrast this with 240 possibilities that need to be eval-
uated for a brute force search in the original setup. In general, for this example, the
common information approach provides an exponential simplification by reducing
the search complexity from

(
2∏
i=1

∣∣U i1∣∣|Mi
1|(∣∣U i2∣∣|Mi

1||Mi
2|)|C2|

)|C1|

to

|C1|
(

2∏
i=1

∣∣U i1∣∣|Mi
1| + |C2|

2∏
i=1

∣∣U i2∣∣|Mi
1||Mi

2|
)
.

In general, it is possible to improve the computational advantage of the common
information approach by:

1. Identifying irrelevant information at the controllers: One way of reducing the
complexity of coordinator’s problem is to show that part of local information is
irrelevant for controllers. If this can be established (often by using the person-by-
person approach described in Sect. 4.1), then the coordinator’s prescription are
mappings from the reduced local information to control actions. This reduces the
number of possible prescription choices to be considered by the coordinator.

2. Identifying an information state for the coordinator: An information state serves
as a sufficient statistic for the data available to the coordinator. Instead of finding
best prescriptions for all possible realizations of coordinator’s data, we only need
to find best prescriptions for each realization of coordinator’s information state. If
the coordinator’s decision problem can be shown to be equivalent to some known
models of centralized stochastic control (such as Markov decision problems or
partially observed Markov decision problem), then we can use stochastic control
techniques to find an information state for the coordinator.

4.2.3 The Common Information Approach

The previous two examples illustrate how the common information approach works
for simple static and dynamic teams. We generalize this approach to a broad class
of decentralized stochastic control systems by proceeding as follows:

1We assume that evaluating expected loss or expected conditional loss requires the same computa-
tional effort irrespective of the cost function and the probability measure. This analysis is meant to
provide a general idea of reduction in complexity, and is not a strict evaluation of the computational
benefits of the common information approach.
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1. Construct a coordinated system: The first step of the approach is to identify the
common information at the controllers. The common information at time t must
be known to all controllers at t . Define the local information at a controller to
be the information left after subtracting the common information from all the
data available at that controller. If the common information is non-empty, con-
struct a coordinated system in which at each time a coordinator has access to
the common information at that time and selects a set of prescriptions that map
each controllers’ local information to its control action. The loss function of the
coordinated system is the same as the loss function of the original system. The
objective of the coordinator is to choose a coordination strategy (i.e., a sequence
of coordination laws) to minimize the expected total loss.

2. Formulate the coordinated system as a POMDP: If the system model is such that
the data available at the coordinator—the common information—is increasing
with time, then the decision problem at the coordinator is centralized stochastic
control problem. The second step of the approach is to formulate this centralized
stochastic control problem as a partially observable Markov decision process
(POMDP). To do so, we need to identify the (unobserved) state for input–output
mapping for the coordinated system. In general, the vector consisting of the state
of the original system and the local information of all controllers (or an appropri-
ate subset of this vector) is a state for input–output mapping for the coordinated
system.

3. Solve the resultant POMDP: The third step of the approach is to use Markov
decision theory to identify the structure of optimal coordination strategies in the
coordinated system and to identify a dynamic program to obtain an optimal co-
ordination strategy with such structure.

4. Show equivalence between the original system and the coordinated system: The
fourth step of the approach is to show that the two models are equivalent. In
particular, for any coordination strategy in the coordinated system, there exists
a control strategy in the original system that yields the same expected loss, and
vice-versa.

5. Translate the solution of the coordinated system to the original system: The fifth
step of the approach is to use the equivalence of the fourth step to translate the
structural results and the dynamic program obtained in the third step for the coor-
dinated system to structural results and dynamic program for the original system.

In Sects. 4.4 and 4.5, we illustrate how the above methodology applies to prob-
lems is communication, control, and queueing systems. Before we present these
applications, we briefly review the POMDP model and results.

4.3 A Brief Recap of Partially Observable Markov Decision
Processes (POMDPs)

A partially observable Markov decision process (POMDP) is a model of centralized
(single decision-maker) stochastic control. It consists of a state process {St }Tt=1,
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an observation process {Ot }Tt=1, and an action process {At }Tt=1. For simplicity, as-
sume that all system variables are finite valued and St , Ot , At takes value in time-
homogeneous finite sets S , O, and A. A POMDP has the following features:

1. The decision maker perfectly recalls its past observations and actions and
chooses the action as a function of its observation and action history, that is,

At = dt (O1:t ,A1:t−1),

where dt is the decision rule at time t .
2. The state, observation, and action processes satisfy the following controlled

Markov property

P(St+1,Ot+1 | S1:t ,O1:t ,A1:t )=P(St+1,Ot+1 | St ,At ).

3. At each time, the system incurs an instantaneous cost �(St ,At ).
4. The objective of the decision-maker is to choose a decision strategy d :=
(d1, . . . , dT ) to minimize a total cost which is given by

J (d)=E

[
T∑
t=1

�(St ,At )

]
.

The following standard result from Markov decision theory identifies the struc-
ture of globally optimal decision strategies and a dynamic program to find optimal
strategies with that structure; see [38] for details.

Theorem 4.1 (POMDP Result) Let Θt be the conditional probability distribution
of the state St at time t given the observations O1:t and actions A1:t−1,

Θt(s) :=P(St = s |O1:t ,A1:t−1), s ∈ S.

Then,

(a) Θt+1 = ηt (Θt ,At ,Ot+1), where ηt is the standard nonlinear filter described as
follows: If θt , at , ot+1 are the realizations of Θt,At and Ot+1, then the realiza-
tion of sth element of the vector Θt+1 is

θt+1(s)=
∑
s′ θt (s

′)P(St+1 = s,Ot+1 = ot+1 | St = s′,At = at )∑
s′′,s̃ θt (s

′′)P(St+1 = s̃,Ot+1 = ot+1|St = s′′,At = at )
=: ηst (θt , at , ot+1).

The function ηt (θt , at , ot+1) is the vector of functions (ηst (θt , at , ot+1))s∈S .
(b) There exists an optimal decision strategy of the form

At = d̂t (Θt ).
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Furthermore, the following dynamic program determines such an optimal strat-
egy: Define

VT (θ) :=min
a

E
[
�(ST , a)

∣∣ΘT = θ],
and for t = T − 1, T − 2, . . . , 1, recursively define

Vt(θ) :=min
a

E
[
�(St , a)+ Vt+1

(
ηt (θ, a,Ot+1)

) ∣∣Θt = θ,At = a].
Then, for each time t and each realization of θ of Θt , the optimal action d̂t (θ)
is the minimizer in the definition of Vt (θ).

4.4 Applications of the Common Information Approach
to Communication, Networked Control, and Queueing
Systems

In this section, we illustrate how the common information approach provides a uni-
fied framework for solving problems that arise in various disciplines such as com-
munication, networked control, and queueing systems. These problems have been
previous investigated using problem specific solution techniques.

4.4.1 Point-to-Point Real-Time Communication with Feedback

Communication problems can be thought of as team problems with the encoders and
the decoders as the decision-makers in the team. Point-to-point feedback commu-
nication, in particular, is a dynamic team problem because: (a) the encoder (and in
some cases the decoder as well) has to make decisions over time based on informa-
tion that is changing with time, and (b) the decoder’s information is directly affected
by the decisions (i.e., the transmitted symbols) selected at the encoder. We will con-
sider the point-to-point feedback communication with the real-time constraint, that
is, we will require the decoder to produce estimates of the current state of the source
in real-time. We describe the model and the common information approach below.

4.4.1.1 Problem Description

Consider the model of real-time communication with noiseless feedback, shown
in Fig. 4.1, that was investigated in [37]. The source Xt ∈ X , t = 1,2, . . . , T is a
discrete-time, finite state Markov chain with a fixed transition probability matrix,
PS(·|·), and a fixed distribution on the initial state. At each time instant, the encoder
can send a symbol Zt ∈ Z to the decoder over a memoryless noisy channel that
is characterized by the transition probability matrix PC(·|·). The received symbol
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Fig. 4.1 A real-time
communication system with
noiseless feedback

Fig. 4.2 Timing diagram for
the real-time communication
system

Yt ∈ Y at the decoder is fed back noiselessly to the encoder. At the end of each
time instant t , the decoder produces an estimate X̂t ∈ X of the current state of
the Markov source. A distortion metric ρ(Xt , X̂t ) measures the accuracy of the
decoder’s estimate. The order of events at time t is the following (see Fig. 4.2):
(i) the state Xt of the Markov source is generated, (ii) the encoder transmits Zt over
the channel, (iii) the channel outputs Yt to the receiver, (iv) Yt is fed back to the
encoder, and (v) the decoder produces the estimate X̂t .

The encoder and the decoder are the two decision makers in this system. The
encoder selects the symbol Zt to be transmitted according to

Zt = ft (X1:t , Y1:t−1,Z1:t−1),

where ft is the encoder’s decision rule at time t and f := (f1, f2, . . . , fT ) is the
encoder’s strategy. The decoder selects its estimate according to

X̂t = gt (Y1:t ),

where gt is the decoder’s decision rule at time t and g := (g1, g2, . . . , gT ) is the
decoder’s strategy. The objective is to select f,g so as to minimize

J (f,g) :=E

[
T∑
t=1

ρ(Xt , X̂t )

]
. (4.4)

4.4.1.2 Preliminary Result: Ignoring Irrelevant Information

As explained in Sect. 4.2.2, one way to extend the scope of the common informa-
tion approach is to combine it with the person-by-person approach so as to identify
and ignore irrelevant information at the decision makers. For the above example,
a person-by-person approach was used in [37] to show that irrespective of the de-
coder’s strategy, there is no loss of performance in restricting attention to encoding



136 A. Nayyar et al.

strategies of the form

Zt = ft (Xt , Y1:t−1). (4.5)

This result is a consequence of the Markovian nature of the source and the real-time
nature of the distortion function. After restricting attention to encoding strategies of
the form in (4.5), we proceed with the common information approach.

4.4.1.3 Applying the Common Information Approach

We follow the five-step outline in Sect. 4.2.3.

1. Construct a coordinated system: After the time of reception of Yt at the decoder,
the information at the decoder is I dt := {Y1:t }. Just before the time of transmission
of Zt+1 by the encoder, the information at the encoder is I et := {Xt+1, Y1:t }.
Between the time of reception of Yt and the time of transmission of Zt+1, the
common information is then defined as

Ct = I dt ∩ I et = {Y1:t }.
The local information at the encoder is I et \Ct =Xt+1 and the local information
at the decoder is I dt \Ct = ∅.

The first step of the approach is to construct a coordinated system in which a
coordinator observes the common information and selects the prescriptions for
the encoder and decoder that map their respective local information to their de-
cisions. Since the decoder has no local information, the coordinator’s prescrip-
tion is simply a prescribed decision X̂t for the decoder. The prescription for
encoder, Γt , is a mapping from X to Z . For each possible value of encoder’s lo-
cal information xt+1, the prescription Γt prescribes a decision zt+1 = Γt (xt+1).
The coordinator selects its prescriptions according to a coordination strategy
(ψe1 ,ψ

d
1 ), . . . , (ψ

e
T ,ψ

d
T ) so that

Γt =ψet (Y1:t ), X̂t =ψdt (Y1:t ). (4.6)

For this coordinated system, the source dynamics, the distortion metric, and the
problem objective are the same as in the original system.

2. Formulate the coordinated system as a POMDP: The second step of the approach
is to formulate the decision problem for the coordinator as a POMDP. In order to
do so, we need to identify a state for input–output mapping for the coordinated
system. As suggested in Step 2 of the common information approach, the state
for input–output mapping is a subset of the state of the original dynamic system
(in this case, the source) and the local information at each decision maker. In
this example, the state of the source Xt is sufficient for input–output mapping. In
particular, define the state, action, and observation processes for the coordinator
as:

St :=Xt, At = (Γt , X̂t ), Ot := Yt .
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It is easy to verify that

P(St+1,Ot+1 | S1:t ,O1:t ,A1:t )=P(St+1,Ot+1 | St ,At ). (4.7)

Furthermore, for specific realization of the random variables involved, the right
hand side of (4.7) can be written as

P(xt+1, yt+1 | xt , γt , x̂t )= PC
(
yt+1 | γt (xt+1)

)
PS(xt+1|xt )

and the distortion cost can be written as

ρ(Xt , X̂t )= ρ̃(St ,At ),
with a suitably defined ρ̃. Thus, the coordinator’s decision problem can be
viewed as an instance of the POMDP model of Sect. 4.3.

3. Solve the resultant POMDP: The third step of the common information approach
is to solve the resultant POMDP at the coordinated system. Using Theorem 4.1
for the coordinated system, we get the following structural result and dynamic
programming decomposition.

Theorem 4.2 Let Θt be the conditional probability distribution of the state Xt at
time t given the coordinator’s observations Y1:t and actions Γ1:t−1, X̂1:t−1, i.e.,

Θt(x)=P(Xt = x|Y1:t , Γ1:t−1, X̂1:t−1), x ∈X .

Then,

(a) If θt , γt , x̂t , yt+1 are the realizations of Θt,Γt , X̂t and Yt+1, the realization of
xth element of the vector Θt+1 is

θt+1(x)=
∑
x′ θt (x

′)P(Xt+1 = x,Yt+1 = yt+1|Xt = x′,Γt = γt , X̂t = x̂t )∑
x′′,x̃ θt (x

′′)P(Xt+1 = x̃, Yt+1 = yt+1|Xt = x′′,Γt = γt , X̂t = x̂t )

=
∑
x′ θt (x

′)PC(Yt+1 = yt+1|Zt+1 = γt (x))P S(Xt+1 = x|Xt = x′)∑
x′′,x̃ θt (x

′′)PC(Yt+1 = yt+1|Zt+1 = γt (x̃))P S(Xt+1 = x̃|Xt = x′′)
=: ηxt (θt , γt , yt+1). (4.8)

Therefore, we have that θt+1 = ηt (θt , γt , yt+1) where ηt (θt , γt , yt+1) is the vec-
tor of functions (ηxt (θt , γt , yt+1))x∈X .

(b) There exists an optimal coordinator strategy of the form

Γt =ψet (Θt ), X̂t =ψdt (Θt ).
Furthermore, the following dynamic program determines such an optimal strat-
egy. Define:

VT (θ) :=min
x̂

E
[
ρ(XT , x̂)

∣∣ΘT = θ],
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and for t = T − 1, T − 2, . . . , 1, recursively define

Vt (θ) :=min
x̂,γ

E
[
ρ(Xt , x̂)+ Vt+1

(
ηt (θ, γ,Yt+1)

) ∣∣Θt = θ,Γt = γ ].
Then, for each time t and each realization of θ of Θt , the optimal prescriptions
ψet (θ),ψ

d
t (θ) are the minimizers in the definition of Vt(θ).

4. Show equivalence between the original system and the coordinated system: The
fourth step of the common information approach is to show the equivalence be-
tween the original system and the coordinated system. To show this equivalence,
we show that any strategy for the coordinator can be implemented in the original
system and vice versa.

Let ψet ,ψ
d
t , t = 1,2, . . . , T , be the coordinator’s strategy of the form (4.6).

Define the strategies for the encoder and decoder in the original system as fol-
lows:

ft+1(·, Y1:t ) :=ψet (Y1:t ), gt (Y1:t ) :=ψdt (Y1:t ). (4.9)

For each realization of the common information y1:t and each realization of the
source state xt+1, the encoder and decoder strategies as defined by (4.9) result
in the same symbol zt+1 being transmitted and same estimate x̂t being produced
as in the coordinated system. Thus, the strategies for the encoder and the de-
coder defined by (4.9) will achieve the same expected cost as the coordinator’s
strategies ψet ,ψ

d
t , t = 1,2, . . . , T .

Conversely, given any strategies f = (f1, . . . , fT ), g = (g1, . . . , gT ), for the
encoder and the decoder in the original system, we can construct strategies for
the coordinator that achieve the same expected cost. Simply reverse (4.9) and
define the coordinator’s strategy as:

ψet (Y1:t ) := ft+1(·, Y1:t ), ψdt (Y1:t ) := gt (Y1:t ). (4.10)

Then, for each realization of the common information y1:t and each realization
of the source state xt+1, the coordinator strategies as defined by (4.10) will result
in the same symbol zt+1 being transmitted and same estimate x̂t being produced
as in the original system. Thus, the coordinator’s strategies defined by (4.10) will
achieve the same expected cost as the strategies (f,g).

Consequently, the original system is equivalent to the coordinated system. The
equivalence between the two systems implies that translating a globally optimal
strategy for the coordinator to the original system (using (4.9)) will give globally
optimal strategies for the original system.

5. Translate the solution of the coordinated system to the original system: The last
step of the approach is to translate the result of Theorem 4.2 to the original sys-
tem, which gives the following:

Theorem 4.3 For the real-time communication problem formulated above, there
exist globally optimal encoding and decoding strategies of the form

Zt+1 = f ∗t+1(Xt+1,Θt ), X̂t = g∗t (Θt ),
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Fig. 4.3 A networked control
system with communication
over a rate-limited channel

where Θt = Pf1:t (Xt |Y1:t ) and Θt evolves according to (4.8). Furthermore, if
(ψe∗t ,ψd∗t ) is an optimal coordination strategy (i.e., the solution of dynamic pro-
gram of Theorem 4.2), then the optimal encoding and decoding strategies are given
by

f ∗t+1(·,Θt )=ψe∗t (Θt ), g∗t (Θt )=ψd∗t (Θt ).

The result of Theorem 4.3 is equivalent to the result of [37, Theorem 2 and (4.4)].

4.4.2 Networked Control Systems

In networked control systems, the controller relies on a communication network
to gather information from the sensors at the plant and/or to send control actions
to actuators at the plant. Communication related imperfections such as rate limited
channels, delays and noise can affect the performance of the control system. A key
question in such systems is whether the communication system and the control sys-
tem can be jointly designed for improved performance. We consider a basic model
of such a system where a sensor needs to communicate with the controller over a
rate limited channel.

4.4.2.1 Problem Description

The structure of the problem above bears considerable similarity to the real-time
communication problem formulated in Sect. 4.4.1.

Consider the model of networked control system with communication over a
rate-limited channel shown in Fig. 4.3. A related problem was first considered
in [36]. The state of the plant Xt ∈ X , t = 1,2, . . . , T is a discrete-time, finite state
controlled Markov chain that evolves according to the equation

Xt+1 = ht (Xt ,Ut ,Wt ),
where Ut is the control action applied by the controller andWt is the random noise.
The sensor observes the state of the plant and sends a symbol Zt ∈ Z to the con-
troller. We assume that Z is finite; thus, the communication link between the sensor
and the controller is a rate limited communication link. At the end of each time in-
stant t , the controller selects a control action Ut that is applied to the system. The
order of events at time instant t is the following: (i) the state Xt is generated, (ii) the
sensor transmits Zt over the channel, (iii) the controller generates Ut .



140 A. Nayyar et al.

The sensor selects the symbol to be transmitted Zt according to

Zt = ft (X1:t ,Z1:t−1),

the controller selects its action according to

Ut = gt (Z1:t ).

At each time an instantaneous cost �(Xt ,Ut ) is incurred. The objective is to select
f= (f1, . . . , fT ),g= (g1, . . . , gT ) so as to minimize

J (f,g) :=E

[
T∑
t=1

�(Xt ,Ut )

]
. (4.11)

4.4.2.2 Preliminary Result: Ignoring Irrelevant Information

The structure of the problem above bears considerable similarity to the real-time
communication problem formulated in Sect. 4.4.1. As in that example, using a
person-by-person approach, we can show that irrespective of the controller’s strat-
egy, there is no loss of performance in restricting attention to sensor strategies of the
form

Zt = ft (Xt ,Z1:t−1).

This result is analogous to structural result of encoder’s strategies in (4.5) and is
derived using similar arguments; see [36] for a proof of a similar result for a slightly
different channel model.

4.4.2.3 Applying the Common Information Approach

We follow the five-step outline in Sect. 4.2.3.

1. Construct a coordinated system: Between the time of reception of Zt at the con-
troller and the time of transmission of Zt+1 by the sensor, the information at the
controller is I ct := {Z1:t }, and the information at the sensor is I st := {Xt+1,Z1:t }.
The common information is then defined as

Ct = I ct ∩ I st = {Z1:t }.
The local information at the sensor is I st \ Ct = Xt+1 and the local information
at the controller is I ct \Ct = ∅.

The first step of the approach is to construct a coordinated system in which a
coordinator observes the common information and selects the prescriptions for
the sensor and the controller that map their respective local information to their
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decisions. Since the controller has no local information, the coordinator’s pre-
scription is simply a prescribed action Ut for the controller. The prescription for
the sensor, Γt , is a mapping from X to Z . For each possible value of sensor’s lo-
cal information xt+1, the prescription Γt prescribes a decision zt+1 = Γt (xt+1).
The coordinator selects its prescriptions according to a coordination strategy
(ψs1 ,ψ

c
1), . . . , (ψ

s
T ,ψ

c
T ) so that

Γt =ψst (Z1:t ), Ut =ψct (Z1:t ). (4.12)

For this coordinated system, the plant dynamics, the loss function and the prob-
lem objective are the same as in the original system.

2. Formulate the coordinated system as a POMDP: The second step of the approach
is to formulate the decision problem for the coordinator as a POMDP. As in
Sect. 4.4.1, define the state, action, and observation processes for the POMDP as

St :=Xt, At := (Γt ,Ut ), Ot := Zt .

It is easy to verify that

P(St+1,Ot+1 | S1:t ,O1:t ,A1:t )=P(St+1,Ot+1 | St ,At )

and the instantaneous cost can be written as

�(Xt ,Ut )= �̃(St ,At ),

with a suitably defined �̃. Thus, the coordinator’s decision problem can be viewed
as an instance of the POMDP model of Sect. 4.3.

3. Solve the resultant POMDP: The third step of the common information approach
is to solve the resultant POMDP at the coordinated system. Using Theorem 4.1
for the coordinated system, we get the following structural result and dynamic
programming decomposition.

Theorem 4.4 Let Θt be the conditional probability distribution of the state Xt at
time t given the coordinator’s observations Z1:t and actions Γ1:t−1, X̂1:t−1, i.e.,

Θt(x)=P(Xt = x |Z1:t , Γ1:t−1,U1:t−1), x ∈X .

Then,

(a) The realization θt of Θt updates according to a nonlinear filtering equation,

θt+1 = ηt (θt , γt , ut , zt+1).

(b) There exists an optimal decision strategy of the form

Γt =ψst (Θt ), X̂t =ψct (Θt ).
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Furthermore, the following dynamic program determines such an optimal strat-
egy: Define

VT (θ) :=min
u

E
[
�(XT ,u)

∣∣ΘT = θ],
and for t = T − 1, T − 2, . . . , 1, recursively define

Vt (θ) :=min
u,γ

E
[
�(Xt , u)+ Vt+1

(
ηt (θ, γ,Zt+1)

) ∣∣Θt = θ,Γt = γ ].
Then, for each time t and each realization of θ of Θt , the optimal prescriptions
(ψst (θ),ψ

c
t (θ)) are the minimizers in the definition of Vt(θ).

4. Show equivalence between the original system and the coordinated system: The
fourth step of the common information approach is to show the equivalence be-
tween the original system and the coordinated system. This equivalence follows
from the same argument used in Sect. 4.4.1. In particular, the optimal strategy
for the coordinator can be translated to optimal strategies for the sensor and the
controller in the original system.

5. Translate the solution of the coordinated system to the original system: The last
step of the approach is to translate the result of Step 3 to the original system,
which gives the following result.

Theorem 4.5 For the networked control problem formulated above, there exist
globally optimal strategies for the sensor and the controller of the form

Zt+1 = f ∗t+1(Xt+1,Θt ), Ut = g∗t (Θt )

where Θt = Pf1:t (Xt |Z1:t ). Furthermore, if ψs∗t ,ψc∗t is an optimal coordination
strategy (i.e., a solution of the dynamic program of Theorem 4.4), then the optimal
sensor and controller strategies are given by

f ∗t+1(·,Θt )=ψs∗t (Θt ), g∗t (Θt )=ψc∗t (Θt ).

The result of Theorem 4.5 is equivalent to the result of [36, Theorem 3.2] when
specialized to the above model.

4.4.3 Paging and Registration in Cellular Networks

In cellular networks, the network needs to keep track of the location of a mobile
station. This tracking may be done in two ways: the network may either page the
mobile station, or the mobile station may register its location with the network.
Both operations have an associated cost. The problem of finding optimal paging
and registration strategies can be viewed as a team problem with the mobile station
and the network operator as the decision-makers.
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4.4.3.1 Problem Description

Consider a cellular network consisting of one mobile station (MS) and one network
operator (N). The mobile station’s motion is described by a discrete-time, finite
state Markov chain Xt ∈X , t = 1,2, . . . , with known transition probability matrix.
Each state represent a cell of the cellular network. At each time instant t , the MS
may or may not register with the network. The cost of registration is r . If the MS
registers with the network at time t , the network learns its location Xt . At each
time t , the network may receive an exogenous paging request to seek MS’s location.
The exogenous paging request is an i.i.d. binary process which is independent of the
motion of MS. The probability of a paging request at any time t is p. If a paging
request arrives, the network operator must decide an order in which the cells are to
be searched in order to locate the MS. We assume that if the MS is present in the cell
being searched, the network successfully finds it. Further, we assume that the time
it takes to search one cell is negligible compared to the time step of MS’s motion,
so that the paging request is completed within one time step. The cost of paging
depends on the number of cells that are searched before MS is located. This model
was investigated in [5].

The order of events at time instant t is the following: (i) The MS moves to loca-
tion Xt according to a probability distribution that depends on its previous location;
(ii) A paging request arrives with probability p; (iii) If a paging request arrives, the
network operator must decide an order in which the cells are to be searched; (iv) If
no paging request is made, the MS decides whether or not to register its location
with the network.

Define a random variable Yt as

Yt =

⎧⎪⎨
⎪⎩
Xt−1 if the network learns MS location either by a paging

request or by MS registration at time t − 1,

ε otherwise.

Let σ(X ) denote the set of all permutations of the locations in X . At the beginning
of time t , if the network received a paging request, it selects UN

t ∈ σ(X ) according
to

UN
t = gt (Y1:t ).

If a paging request does not arrive, the MS makes a decision UMS
t ∈ {0,1} according

to

UMS
t = ft (X1:t , Y1:t ),

where UMS
t = 1 represents a decision to register and UMS

t = 0 represents a decision
to not register with the network. The collection of functions f := (f1, f2, . . . , fT )

and g := (g1, g2, . . . , gT ) are the strategies of the MS and the network, respectively.
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The objective is to select f,g so as to minimize

J (f,g) :=E

[
T∑
t=1

(1− p)rUMS
t + pkτ(Xt,UN

t

)]
, (4.13)

where p is the probability of paging request arrival, r is the cost of registration by
MS, k is the cost of searching one cell, τ(x,uN) is the position of x in the permu-
tation specified by uN and, therefore, τ(Xt ,UN

t ) is the number of cells searched by
the network before MS is located at time t .

4.4.3.2 Preliminary Result: Ignoring Irrelevant Information

For the above example, we may use an argument similar to the argument based on
the person-by-person approach used in Sect. 4.4.1 to show that irrespective of the
strategy of the network, there is no loss of performance in restricting attention to the
strategies of the MS of the form

UMS
t = ft (Xt , Y1:t ). (4.14)

This result is a consequence of the Markovian nature of the MS motion and the fact
that a paging request is completed within one time step. After restricting attention
to MS strategies of the form in (4.14), we proceed with the common information
approach.

4.4.3.3 Applying the Common Information Approach

We follow the five-step outline in Sect. 4.2.3.

1. Construct a coordinated system: At the beginning of time t , the information at
the network is IN

t := {Y1:t }, and the information at the MS is IMS
t := {Xt,Y1:t }.

The common information at time t is

Ct = IN
t ∩ IMS

t = {Y1:t }.
The local information at the network is IN

t \Ct = ∅ and the local information at
the MS is IMS

t \Ct =Xt .
The first step of the approach is to construct a coordinated system in which

a coordinator observes the common information and selects the prescriptions
for the network and the MS. Since the network has no local information, the
coordinator’s prescription is simply a prescribed order UN

t in which to search
the cells if a paging request arrives. The prescription Γt for the MS is a map-
ping from X to {0,1}. If a paging request does not arrive, the prescription Γt
prescribes a registration decision uMS

t = Γt (xt ) for each possible value of MS
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location xt . The coordinator selects its prescriptions according to a coordination
strategy (ψMS

1 ,ψN
1 ), . . . , (ψ

MS
T ,ψN

T ) so that

Γt =ψMS
t (Y1:t ), UN

t =ψN
t (Y1:t ).

For this coordinated system, the MS motion dynamics, the cost function and the
problem objective are the same as in the original system.

2. Formulate the coordinated system as a POMDP: The second step of the approach
is to formulate the decision problem for the coordinator as a POMDP. In order to
do so, we define the state, action and observation processes of the POMDP as:

St :=Xt, At =
(
Γt ,U

N
t

)
, Ot := Yt .

It is easy to verify that

P(St+1,Ot+1 | S1:t ,O1:t ,A1:t )=P(St+1,Ot+1 | St ,At )
and that the instantaneous cost (1− p)rUMS

t + pkτ(Xt ,UN
t ) can be written as

a function of St and At . Thus, the coordinator’s decision problem can be viewed
as an instance of the POMDP model of Sect. 4.3.

3. Solve the resultant POMDP: The third step of the common information approach
is to solve the resultant POMDP at the coordinated system. Using Theorem 4.1
for the coordinated system, we get the following structural result and dynamic
programming decomposition.

Theorem 4.6 Let Θt be the conditional probability distribution of the state Xt at
time t given the coordinator’s observations Y1:t and actions Γ1:t−1, i.e.,

Θt(x) :=P(Xt = x | Y1:t , Γ1:t−1), x ∈X .

Then,

(a) The realization θt of Θt updates according to a nonlinear filtering equation,

θt+1 = ηt (θt , γt , yt+1).

(b) There exists an optimal decision strategy of the form

Γt =ψMS
t (Θt ), UN

t =ψN
t (Θt ).

Furthermore, the following dynamic program determines such an optimal strat-
egy: Define

VT (θ) := min
γ,uN

E
[
(1− p)rΓT (XT )+ pkτ

(
XT ,U

N
T

) ∣∣ΘT = θ,
ΓT = γ,UnT = uN],
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and for t = T − 1, T − 2, . . . , 1, recursively define

Vt(θ) := min
γ,uN

E
[
(1− p)rΓt (Xt )+ pkτ

(
Xt,U

N
t

)
+ Vt+1

(
ηt (θ, γ,Yt+1)

) ∣∣Θt = θ,Γt = γ,UN
t = uN].

Then, for each time t and each realization of θ of Θt , the optimal prescriptions
(ψMS
t (θ),ψN

t (θ)) are the minimizers in the definition of Vt (θ).

4. Show equivalence between the original system and the coordinated system: The
fourth step of the common information approach is to show the equivalence be-
tween the original system and the coordinated system. This equivalence follows
from the same argument used in Sect. 4.4.1. In particular, the optimal strategy
for the coordinator can be translated to optimal strategies for the MS and the
network in the original system.

5. Translate the solution of the coordinated system to the original system: The last
step of the approach is to translate the result of Step 3 to the original system,
which gives the following result.

Theorem 4.7 For the paging and registration problem formulated above, there ex-
ist globally optimal strategies of the form

UN
t = g∗t (Θt ), UMS

t = f ∗t (Xt ,Θt ),
whereΘt =Pf1:t (Xt |Y1:t ). Furthermore, if (ψMS∗

t ,ψN∗
t ) is an optimal coordination

strategy (i.e., the solution of dynamic program of Theorem 4.6), then the optimal
paging and registration strategies (f∗,g∗) are given by

f ∗t (·,Θt )=ψMS∗
t (Θt ), g∗t (Θt )=ψN∗

t (Θt ).

The result of Theorem 4.7 is equivalent to the result of [5, Sect. III-C]. The
dynamic program was using in [5] to identify further structural properties of the
optimal paging and registration strategies when the motion of the MS follows a
symmetric random walk.

4.4.4 Multiaccess Broadcast Systems

In a multiaccess broadcast system, multiple users communicate to a common re-
ceiver over a broadcast medium. If more than one user transmits at a time, the trans-
missions “collide” and the receiver cannot decode the packets due to interference.
Such systems can be viewed as team problems in which all users must cooperate to
maximize system throughput. In this section, we consider a specific variation of a
two-user multiaccess broadcast system.
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4.4.4.1 Problem Description

Consider a two-user multiaccess broadcast system. At time t , Wi
t ∈ {0,1} packets

arrive at each user according to independent Bernoulli processes with P(Wi
t = 1)=

pi , i = 1,2. Each user may store only Xit ∈ {0,1} packets in a buffer. If a packet
arrives when the user-buffer is full, the packet is dropped.

Both users may transmit Uit ∈ {0,1} packets over a shared broadcast medium. If
only one user transmits at a time, the transmission is successful and the transmitted
packet is removed from the queue. If both users transmit simultaneously, packets
“collide” and remain in the queue. Thus, the state update for user 1 is given by

X1
t+1 =max

(
X1
t −U1

t ·
(
1−U2

t

)+W 1
t ,1

)
.

The state update rule for user 2 is symmetric dual of the above.
Due to the broadcast nature of the communication medium, each user knows

the control action of the other user after one-step delay. Thus, each user chooses a
transmission decision as

Ut = git
(
Xi1:t ,U1:t−1

)
where Ut = (U1

t ,U
2
t ). A user can transmit only if it has a packet, thus only actions

Uit ≤Xit are feasible.
Instead of costs, it is more natural to work with rewards in this example. The ob-

jective is to maximize throughput, or the number of successful packet transmissions.
Thus, the per unit reward is r(X,U)=U1 ⊕U2, where ⊕ means binary XOR. The
objective is to maximize

J (g)=E

[
T∑
t=1

U1
t ⊕U2

t

]

which corresponds to the total throughput.
When the arrival rates at both users are the same (p1 = p2), the above model

corresponds to the two-user multiaccess broadcast system considered in [6, 12, 14,
21]. Slight variations of the above model were considered in [25, 32].

4.4.4.2 Preliminary Result: Ignoring Irrelevant Information

As suggested in Sect. 4.2.2, we may use the person-by-person approach to identify
and ignore irrelevant information at the decision makers before applying the com-
mon information approach. For the above example, a person-by-person approach
was used in [12] to show that there is no loss of performance in restricting attention
to the transmission strategies of the form

Uit = git
(
Xit ,U1:t−1

)
. (4.15)



148 A. Nayyar et al.

This result is a consequence of the fact that irrespective of the transmission strate-
gies, the processes {X1

t } and {X2
t } are conditionally independent given U1:t−1. After

restricting attention to transmission strategies of the form (4.15), we proceed with
the common information approach.

4.4.4.3 Applying the Common Information Approach

We follow the five-step outline in Sect. 4.2.3.

1. Construct a coordinated system: At the beginning of time t , the information at
user i is I it = {Xit ,U1:t−1}. Thus, the common information at time t is

Ct = I 1
t ∩ I 2

t = {U1:t−1}.
The local information at user i is I it \Ct =Xit .

The first step of the common information approach is to construct a coordi-
nated system in which a coordinator observes the common information and se-
lects the prescriptions that map each user’s local information to its actions. The
prescription Γ it for user i is a mapping from X i to U i . For each realization xit
of the local information, the prescription Γ it prescribes a decision uit = Γ it (xit ).
Since, Γ it (0) = 0, the prescription Γ it is completely specified by Γ it (1), which
we denote by Yt ∈ {0,1}. Then, the control action is Uit =Xit Y it . The coordinator
selects its prescriptions according to a coordination strategy (ψ1, . . .ψT ), so that(

Y 1
t , Y

2
t

)=ψt(U1:t−1).

For this coordinated system, the queue dynamics, the reward function, and the
problem objective are the same as the original system.

2. Formulate the coordinated system as a POMDP: The second step of the approach
is to formulate the decision problem for the coordinator as a POMDP. Define the
state, action, and observation processes for the POMDP as

St :=
(
X1
t ,X

2
t

)
, At :=

(
Y 1
t , Y

2
t

)
, Ot :=

(
U1
t−1,U

2
t−1

)
.

It is easy to verify that

P(St+1,Ot+1 | S1:t ,O1:t ,A1:t )=P(St+1,Ot+1 | St ,At )
and the instantaneous reward function can be written as

r(Xt ,Ut )=U1
t ⊕U2

t =X1Y 1 ⊕X2Y 2 =: r̃(St ,At ).
Thus, the coordinator’s decision problem can be viewed as an instance of the
POMDP model of Sect. 4.3.

3. Solve the resultant POMDP: The third step of the common information approach
is to solve the resultant POMDP at the coordinated system. Using Theorem 4.1
for the coordinated system, we get the following structural result and dynamic
programming decomposition.
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Theorem 4.8 Let Θt be the conditional probability distribution of the state Xt =
(X1
t ,X

2
t ) given the coordinator’s observations U1:t−1 and actions Y1:t−1, i.e.,

Θt(x)=P(Xt = x |U1:t−1,Y1:t−1).

Then,

(a) The realization θt of Θt updates according to a nonlinear filtering equation,

θt+1 = ηt
(
θt , y

1
t , y

2
t , u

1
t , u

2
t

)
.

(b) There exists an optimal decision strategy of the form(
Y 1
t , Y

2
t

)=ψt(Θt ).
Furthermore, the following dynamic program determines such an optimal strat-
egy: Define

VT (θ) := min
(y1,y2)

E
[
X1
T y

1 ⊕X2
T y

2
∣∣ΘT = θ],

and for t = T − 1, T − 2, . . . , 1, recursively define

Vt (θ) := min
(y1,y2)

E
[
X1
t y

1 ⊕X2
t y

2 + Vt+1(ψt
(
θ, y1, y2,X1

t y
1,X2

t y
2) ∣∣Θt = θ]

Then, for each time t and each realization θ of Θt , the optimal prescription
ψt(θ) is the minimizer in the definition of Vt (θ).

4. Show equivalence between the original system and the coordinated system: The
fourth step of the common information approach is to show the equivalence be-
tween the original system and the coordinated system. This equivalence follows
from the same argument used in Sect. 4.4.1. In particular, the optimal strategy for
the coordinator can be translated to optimal transmission strategies in the original
system.

5. Translate the solution of the coordinated system to the original system: The last
step of the approach is to translate the result of Step 3 to the original system,
which gives the following result.

Theorem 4.9 For the two-user multiaccess broadcast system formulated above,
there exists optimal transmission strategies of the form

Uit =Xit ·ψit (Θt )
where Θt =Pψ1:t (Xt |U1:t−1). Furthermore, an optimal ψ∗t = (ψ∗,1,ψ∗,2) is given
by the solution of the dynamic program in Theorem 4.8.

The result of Theorem 4.9 is equivalent to the result of [12, Proposition 14].
The dynamic program (extended to infinite horizon average reward setup) was used
in [12] to explicitly characterize the optimal transmission strategies when p1 = p2.
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4.5 Application to Delayed Sharing Information Structures

In this section, we present the result of [19], in which we use the common infor-
mation approach to solve a long standing open problem associated with delayed
sharing information structures.

In a decentralized control system with delayed sharing information structure, the
controllers sharing their observations and control actions with each other after a
fixed delay. The delayed sharing information structure is a link between classical
information structure, which may be viewed as a degenerate decentralized control
system in which controllers instantaneous sharing their observations and control
actions, and a completely decentralized information structure, where there is no
“lateral” sharing of information.

This information structure was proposed by Witsenhausen in a seminal paper [39]
where he conjectured the structure of the globally optimal control strategies. Later
Varaiya and Walrand [32] showed that Witsenhausen’s assertion is true when the
delay in the sharing of information is one (called one-step delayed sharing), but
false for larger sharing delay; see [19] for a more detailed history of the problem.

4.5.1 Problem Description

The delayed-sharing information structure consists of n controllers. Let Xt denote
the state of the system, Y it denote the observations of controller i, and Uit denote the
control action of controller i. The system evolves according to

Xt+1 = f it
(
Xt,Ut ,W 0

t

)
where Ut = (U1

t , . . . ,U
n
t ) and {W 0

t }Tt=1 is an i.i.d. noise process that is independent
of the initial state X1. The observations of the controllers are given by

Y it = hit
(
Xt,W

i
t

)
, i = 1, . . . , n

where {Wi
t }Tt=1, i = 1, . . . , n, are i.i.d. noise process that are independent of each

other and also independent of {W 0
t }Tt=1 and X1.

The controllers share their observations and control actions with each other after
a k-step delay. Thus, the control actions are selected as follows:

Uit = git
(
Y1:t−k,U1:t−k, Y it−k+1:t ,U

i
t−k+1:t−1

)
where Yt = (Y 1

t , . . . , Y
n
t ).

The instantaneous loss function is given by �(Xt ,Ut ).
For simplicity, assume that all system variables are finite valued and Xt , Y it , Uit ,

Wi
t take values in time-homogeneous finite sets X , Y i , U i , and W i , respectively.
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The objective is to choose control strategies g1:n where gi = (gi1, . . . , giT ), to
minimize the expected total loss

J
(
g1:n)=E(g

1:n)
[
T∑
t=1

�(Xt ,Ut )

]
.

4.5.2 Applying the Common Information Approach

1. Construct a coordinated system: The first step of the approach is to construct the
coordinated system. At the beginning of time t , the information at controller i is

I it =
(
Y1:t−k,U1:t−k, Y it−k+1:t ,U

i
t−k+1:t−1

)
.

Thus, the common information at all controllers is

Ct =
n⋂
i=1

I it = (Y1:t−k,U1:t−k)

and the local information at controller i is Lit = (Y it−k+1:t ,U
i
t−k+1:t−1).

Consider a coordinated system where the coordinator observes the common
information and selects prescriptions (Γ 1

t , . . . , Γ
n
t ) for the controllers where Γ it

maps the local information Lit to control action Uit , i.e., for each possible value
lit of the local information Lit , the prescription Γ it prescribes a control action
uit = Γ it (lit ). For convenience, define Zt = (Yt−k,Ut−k) so that Ct = Z1:t . The
coordinator selects its prescriptions according to a coordination law ψt so that

(
Γ 1
t , . . . , Γ

n
t

)=ψt(Ct )=ψt(Z1:t ).

For this coordinated system, the source dynamics, the loss function, and the prob-
lem objective are the same as the original problem.

2. Formulate the coordinated system as a POMDP: The second step of the approach
is to formulate the coordinated system as a POMDP. In order to do so, define the
state, observation, and action processes of the POMDP as

St = (Xt ,Lt ), Ot = Zt , At =
(
Γ 1
t , . . . , Γ

n
t

)
.

It is easy to verify that

P(St+1,Ot+1 | S1:t ,A1:t )=P(St+1,Ot+1 | St ,At )

and that the instantaneous loss �(Xt ,Ut ) = �̃(St ,At ) for an appropriately de-
fined �̃. Hence, the decision problem at the coordinator is a POMDP.
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3. Solve the resultant POMDP: The third step of the common information approach
is to solve the resultant POMDP at the coordinated system. Using Theorem 4.1
for coordinated system defined above, we get the following structural result and
dynamic programming decomposition.

Theorem 4.10 Let Θt be the conditional probability distribution of the state St
given the coordinator’s history of observations Ct and actions (Γ 1

1:t−1, . . . ,Γ
n

1:t−1),
i.e., for any realization s of St

Θt (s)=P
(
St = s

∣∣ Ct ,Γ 1
1:t−1, . . . ,Γ

n
1:t−1

)
.

Then,

(a) The realization θt of Θt updates according to a nonlinear filtering equation,

θt+1 = ηt
(
θt , zt+1, γ

1
t , . . . , γ

n
t

)
where zt+1 = (yt−k+1,ut−k+1).

(b) There exists an optimal coordination strategy of the form(
Γ 1
t , . . . , Γ

n
t

)=ψt(Θt ).
Furthermore, the following dynamic program determines such an optimal strat-
egy (recall that Uit = Γ it (Lit )): Define

VT (θ)= min
(γ 1
T ,...,γ

n
T )

E
[
�(XT ,UT )

∣∣ΘT = θ,Γ 1
T = γ 1

T , . . . ,Γ
n
T = γ nT

]

and for t = T − 1, T − 2, . . . , 1, recursively define

Vt(θ)= min
(γ 1
t ,...,γ

n
t )

E
[
�(Xt ,Ut )+ Vt+1

(
ηt
(
θ,Zt+1, γ

1
t , . . . , γ

n
t

)) ∣∣Θt = θ,
Γ 1
t = γ 1

t , . . . , Γ
n
t = γ nt

]
. (4.16)

Then, for each time t and each realization θ to Θt , the optimal prescription
(γ 1
t , . . . , γ

n
t ) is the minimizer in the definition of Vt (θ).

4. Show equivalence between the original system and the coordinated system: The
fourth step of the common information approach is to show the equivalence be-
tween the original system and the coordinated system. This equivalence follows
from the same argument used in Sect. 4.4. As a consequence, we can translate an
optimal coordination strategy for the coordinated system to an optimal control
strategy for the original system.

5. Translate the solution of the coordinated system to the original system: The last
step of the approach is to translate the results of Step 3 to the original system,
which gives the following result.
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Theorem 4.11 For the delayed sharing information structure, there exists optimal
control strategies of the form

Uit = git
(
Lit ,Θt

)
where Θt =P(Xt ,Lt | Ct). Furthermore, if ψ∗ is the optimal coordination strategy
(i.e., the solution to the dynamic program of Theorem 4.10), and ψ∗,i denote its ith
component, then the optimal control strategy g∗1:T is given by

g
∗,i
t (·, θ)=ψ∗,it (θ).

4.6 Conclusion

In centralized stochastic control, the controller’s belief on the current state of the
system plays a fundamental role for predicting future costs. If the control strategy for
the future is fixed as a function of future beliefs, then the current belief is a sufficient
statistic for future costs under any choice of current action. Hence, the optimal action
at any time t is only a function of the controller’s belief on the system state at
time t . In decentralized problems, where there are many controllers with different
information interacting with each other, the controllers’ belief on the system state
and their predictions of future costs are not expected to be consistent. Furthermore,
since the costs depend both on system state as well as other controllers’ actions, any
controller’s prediction of future costs must involve a belief on system state along
with a prediction of other controllers’ actions. The above discussion describes the
difficulties that arise if one attempts to use a controller’s belief on the system state
for decision-making in decentralized systems.

The common information approach attempts to address the above difficulties
based on two key observations: (i) Beliefs based on common information are consis-
tent among all controllers and can serve as a consistent sufficient statistic. (ii) Even
though controllers cannot accurately predict each other’s control actions, for any
realization of common information they can know the exact mapping used by each
controller to map its local information to its control actions. These observations mo-
tivate the creation of a coordinated system with a fictitious coordinator which ob-
serves only the common information, forms its beliefs based on the common infor-
mation, selects prescriptions (described in Sects. 4.4 and 4.5) and has the same ob-
jective as the original decentralized stochastic control problem. If the system model
is such that the data available at the coordinator—the common information—is in-
creasing with time, then the decision problem at the coordinator is a centralized
stochastic control problem. This centralized problem is equivalent to the original
decentralized stochastic control problem. This equivalence allows the use of results
obtained from centralized stochastic control theory to obtain: (i) qualitative proper-
ties of optimal strategies for the controllers in the original decentralized stochastic
control problem, and (ii) a dynamic program for determining optimal strategies for
all controllers. The fictitious coordinator is invented purely for conceptual clarity.
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It is important to realize that the coordinator’s problem can be solved by each con-
troller in the original system. Thus, the presence of the coordinator is not necessary.
Nevertheless, its presence allows one to look at the original optimization problem
from the view point of a “higher level authority” and simultaneously determine how
each controller maps its local information to its action for the given realization of
common information.

A key assumption in the common information approach is that common informa-
tion is increasing with time. This assumption ensures that the coordinator has perfect
recall and connects the coordinator’s problem with centralized stochastic control
and POMDPs. The connection between the coordinator’s problem and POMDPs
can be used for computational purposes as well. The dynamic program obtained
for the coordinator is essentially similar to that for POMDPs. In particular, just as
in POMDPs, the value-functions can be shown to be piecewise linear and concave
function of the coordinator’s belief. This characterization of value functions is uti-
lized to find computationally efficient algorithms for POMDPs. Such algorithmic
solutions to general POMDPs are well-studied and can be employed here. We re-
fer the reader to [45] and references therein for a review of algorithms to solve
POMDPs.

This chapter illustrates how common information approach can be used to solve
decentralized stochastic control/decision-making problems that arise in control,
communication and queueing systems and to resolve a long-standing theoretical
problem on the structure of optimal control strategies in delayed sharing informa-
tion structures.

As is the case for the designer’s approach discussed in Sect. 4.1, the common
information approach may be combined with the person-by-person approach as fol-
lows. First, use the person-by-person approach to identify qualitative properties of
globally optimal strategies (e.g., identifying irrelevant information at controllers).
Then, use the common information approach to further refine the qualitative proper-
ties and determine globally optimal strategies with those properties. In fact, all the
examples of Sect. 4.4 used such a combined approach.

In this chapter, and in [20], it is assumed that the system has a partial history shar-
ing information structure in which: (i) part of the past data (observations and control
actions) of each controller is commonly available to all controllers; and (ii) all con-
trollers have perfect recall of this commonly available data. Although this particular
information structure makes it easier to describe the common information approach,
it is not necessary for the approach to work. In particular, the common information
approach applies to all sequential decision making problems (see [15] for a complete
exposition).
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Chapter 5
Relations Between Information and Estimation
in the Presence of Feedback

Himanshu Asnani, Kartik Venkat, and Tsachy Weissman

5.1 Introduction

In this chapter, we present and discuss relations between Information and Estima-
tion for signals corrupted by Gaussian noise. While providing an exposition of pre-
viously established results in this context, we will present a new unified framework
for understanding the existing relations and deriving new ones. As we illustrate in
the exposition, this framework allows us to understand whether and how these re-
sults carry over to accommodate the presence of feedback, a natural element in con-
trol and communication. Interpretations of information-theoretic quantities in terms
of minimum mean loss also hold for other channels, such as the Poisson channel
[1] (under an appropriate loss function), and many of the results in this discussion
have parallels therein. For concreteness and to keep the exposition to a reasonable
scope, in this presentation, we focus exclusively on the Gaussian channel under
mean squared loss.

We begin by introducing the scalar Gaussian channel. This problem is charac-
terized by an underlying clean signal X (which follows a law PX) and its AWGN
corrupted version Yγ measured at a given ‘signal-to-noise ratio’ γ , which is to say

Yγ |X ∼N
(√
γX,1

)
, (5.1)

where N (μ,σ 2) denotes the Gaussian distribution with mean μ and variance σ 2.
In a communication setting, we are interested in the mutual information between

the input X and the output Yγ , denoted by I (X;Yγ ). It quantifies the exponential
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growth rate of the maximum number of distinguishable messages that can be trans-
mitted across multiple uses of the channel. In an estimation setting, one would be
interested in using the observed output to estimate the underlying input signal op-
timally with respect to a given loss function. Define mmse(γ ) to be the minimum
mean square error at ‘signal-to-noise ratio’ γ

mmse(γ )� E
[(
X−E[X|Yγ ]

)2]
. (5.2)

Intriguing ties have been discovered between the input–output mutual information
and the mean squared estimation loss for the Gaussian channel. Before delving into
the main results, we begin with some classical definitions (cf., e.g., [4] for more on
these and a broader context).

Definition 5.1 (Entropy) For a discrete random variable X with probability mass
function p, we define the entropy as

H(X)=−
∑
x

p(x) logp(x). (5.3)

When X is a continuous random variable with support S, and admits a density f—
the corresponding quantity known as differential entropy is defined as

h(X)=−
∫
S

f (x) logf (x)dx. (5.4)

Definition 5.2 (Relative entropy) For a given measurable space (Ω,F) and on it
defined two probability measures P and Q, where P is absolutely continuous with
respect to Q. The relative entropy between P and Q is defined as

D(P ‖Q)=
∫

log
dP

dQ
dP. (5.5)

Definition 5.3 (Mutual information) For a given probability space (Ω,F ,P ) with
jointly distributed random variables (X,Y ), the mutual information between X and
Y is defined as

I (X;Y)=D(PX,Y ‖ PX ⊗ PY ), (5.6)

where PX ⊗ PY denotes the product measure of the marginals.

In [7], Guo et al. discovered the I-MMSE relationship, namely, for the additive
Gaussian channel, an elegant functional relationship holds between the minimum
mean square error and the mutual information between input X and output Ysnr (the
subscript making the ‘signal-to-noise ratio’ explicit):
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Theorem 5.1 (I-MMSE) Let X be a random variable with finite variance, and Ysnr
related to X as in (5.1). Then,

d

dsnr
I (X;Ysnr)= 1

2
mmse(snr), (5.7)

or writing (5.7) in its integral form,

I (X;Ysnr)= 1

2

∫ snr

0
mmse(γ ) dγ. (5.8)

The aforementioned relationship holds for all input distributions of the random
variable X. It is quite intriguing that a simple interpretation of the mutual informa-
tion, in terms of the mean squared error, holds universally. One of the proofs of (5.7)
relies on establishing its equivalence with de Bruijn’s identity which was presented
in Stam’s paper [16]. This identity presents the derivative of the differential entropy
of a Gaussian noise corrupted observation as a Fisher information. An integral ver-
sion of de Bruijn’s identity, while imposing only a finite second moment constraint
on X was presented by Barron in [2]. An interesting and alternative proof route for
Theorem 5.1 presented in [7], which is referred to as the ‘incremental channel tech-
nique’, proves (5.7) by analyzing the decrease in mutual information in the presence
of an infinitesimal amount of additional Gaussian noise. In this exposition, we will
not focus on the intriguing regularity properties associated with the MMSE and mu-
tual information functionals, a detailed treatment of which can be obtained in [22].

Beyond elegance, the statement in Theorem 5.1 has several implications and ap-
plications in problems of estimation, and information theory alike. For one example,
note that from (5.8), one can immediately read off the following relationship in the
infinite snr limit, when X is discrete:

H(X)= 1

2

∫ ∞

0
mmse(γ ) dγ, (5.9)

which is quite striking since, while the left hand side is obviously invariant to one-
to-one transformations of X, such an invariance would be hard to deduce from the
expression in the right side. Another immediate implication of Theorem 5.1 is the
concavity of the mutual information as a function of the signal to noise ratio. Noting
that Gaussian signals are the hardest to estimate [8, Proposition 15], (5.8) directly
shows that Gaussian inputs maximize the mutual information and are thus capacity
achieving under AWGN. The I-MMSE relationship and its extensions have similar
implications in multi-terminal problems in information theory, and applications in
communication problems [8]. There have also been extensions for vector channels
and general additive channels which are non-Gaussian, such as in [13].

An interesting generalization of the I-MMSE relationship (5.8) to the scenario
of mismatched estimation was revealed by Verdú in [19]. For the same observa-
tion model, the underlying clean signal X is distributed according to P , while the
decoder or estimator is optimized assuming the law is Q. Verdú in [19] presents
the following relationship between the relative entropy of the true and mismatched
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output laws, and the difference between the mismatched and matched estimation
losses:

Theorem 5.2 (Mismatched estimation and relative entropy) For a random variable
X with finite variance under laws P and Q,

D
(
P ∗N (0,1/snr)

∥∥Q ∗N (0,1/snr)
)= 1

2

∫ snr

0
mseP,Q(γ )−mseP,P (γ ) dγ,

(5.10)

where ∗ denotes the convolution operation, and mseP,Q(γ ) is defined as

mseP,Q(γ )= EP

[(
X−EQ[X|Yγ ]

)2]
. (5.11)

The above relations between fundamental quantities in information and estima-
tion, which hold regardless of the specific underlying distributions, give general
insights into both information measures and estimation loss. Having introduced the
scalar channel and the interesting links between relative entropy and the cost of
mismatch, we now proceed to the continuous-time Gaussian channel.

Let XT0 = {Xt,0≤ t ≤ T } be the underlying stochastic process to be estimated.

Remark 5.1 (Stipulations) Throughout our treatment of continuous-time signals in
this work, we impose the condition of square integrability on X(·), which assumes

E[∫ T0 X2
s ds] <∞. For a given probability space (Ω,F ,P ), we also assume that

the mapping X(t,ω) on the set [0, T ] ×Ω is (jointly) measurable with respect to
the product σ -algebra B[0, T ] ×F .

The continuous-time channel is characterized by the following relationship be-
tween the input and output processes at signal-to-noise ratio snr,

dYt =
√

snrXt dt + dWt , (5.12)

where {Wt }t≥0 is a standard Brownian motion, independent of XT0 (for more discus-
sion on the properties of the Brownian motion, the reader is referred to [10]). Let
I (XT0 ;YT0 ) denote the mutual information between the input and the output process,
observed for a time duration [0, T ]. We are interested in studying the relationship
between filtering and smoothing errors, and the mutual information. To do this, we
first denote the instantaneous filtering and smoothing errors at time t ∈ [0, T ] as
follows:

cmmse(t, snr) � E
[(
Xt −E

[
Xt
∣∣Y t0])2] (5.13)

mmse(t, snr) � E
[(
Xt −E

[
Xt
∣∣YT0 ])2]

. (5.14)

Denote the time averaged filtering and smoothing squared errors by

cmmsesnr(T ) �
∫ T

0
cmmse(t, snr) dt, (5.15)
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mmsesnr(T ) �
∫ T

0
mmse(t, snr) dt. (5.16)

In [5], Duncan proved the equivalence of input–output mutual information to the
filtering squared error, of a square integrable continuous-time signal Xt , corrupted
according to (5.12) to yield the process Yt .

Theorem 5.3 (Mutual information and causal squared error) Let XT0 be a
continuous-time stochastic process observed through the Gaussian channel at signal
to noise ratio snr, as in (5.12). Then, we have

I
(
XT0 ;YT0

)= snr

2
cmmsesnr(T ). (5.17)

Thus, the causal filtering error bears a direct equivalence with the input–output
mutual information regardless of the input distribution. Further, the invariance of
the mutual information to time-reversal, indicates the remarkable equality of the
time-averaged causal and the average anti-causal error, i.e., when we consider the
causal estimation of the time reversed signal. Note that the optimal anti-causal fil-
ter will have a different structure than the optimal causal filter, in general. In the
continuous-time setting, the authors of [7] also established the I-MMSE relationship
for processes, where we have a representation of the mutual information in terms of
the non-causal estimation error. In [23], Zakai derived this relationship among other
relationships in continuous-time, using Malliavin calculus. This result, which can
be viewed as an extension of Theorem 5.1 for continuous-time processes, is stated
below.

Theorem 5.4 (I-MMSE for processes) For a continuous-time process XT0 , cor-
rupted by the Gaussian channel in (5.12), the input–output mutual information sat-
isfies the following relationship:

I
(
XT0 ;YT0

)= 1

2

∫ snr

0
mmseγ (T ) dγ. (5.18)

From both the above results, one gets the remarkable relationship between the fil-
tering and smoothing errors (cf. [7]) in a crisp distribution independent form, which
can be stated as:

cmmsesnr(T )= 1

snr

∫ snr

0
mmseγ (T ) dγ. (5.19)

That two such fundamental quantities are related in such a simple manner, and
bridged further by the mutual information, is indeed striking, particularly since the
optimal filtering and smoothing filters may in general be highly nonlinear. Thus, the
mutual information emerges as a bridge to help understand two purely estimation
theoretic quantities.
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The pioneering result by Duncan in 1970 was followed shortly by its extension
to incorporate the presence of feedback by Kadota et al. in [9]. The channel input φt
is a function of the underlying process Xt as well as the past outputs of the channel
Y t0 , in an additive Gaussian noise setting. The observation window is t ∈ [0, T ]. The
channel can be represented as

Yt =
∫ t

0
φs
(
Y s0 ,Xs

)
ds +Wt, (5.20)

where, as usual, the standard Brownian motionW(·) is independent of the underlying
process X(·). In differential form, (and using shorthand to represent φt (Y t0,Xt )) we
can rewrite (5.20) as

dYt = φt dt + dWt . (5.21)

We denote the causal estimate of φt based on observations up until t by

φ̂t = E
[
φt
∣∣Y t0]. (5.22)

Under mild regularity conditions on φt (cf. [9]), the mutual information between the
input and output is equal to half the causal mean squared error. With our notation,
the main result of [9] is expressed as follows:

Theorem 5.5 (Channels with feedback) For the Gaussian channel with feedback,
as in (5.20), the input–output mutual information satisfies

I
(
XT0 ;YT0

)= 1

2

∫ T

0
E
[
(φt − φ̂t )2

]
dt. (5.23)

That Duncan’s result (Theorem 5.3) extends so naturally to incorporate feedback
in the continuous-time channel, is quite satisfying. Further, in the recent [21], The-
orem 5.3 is extended to more general scenarios involving the presence of feedback,
and it is shown that (5.17) remains true in these more general cases upon replacing
the mutual information on the left-hand side with directed information. Note that
one can simply ignore the feedback by setting φt =Xt , in which case Theorem 5.5
recovers the result stated in Theorem 5.3, when snr= 1.

One may be tempted to conjecture a similar extension to the presence of feed-
back for the relation between mutual information and the smoothing error in Theo-
rem 5.4. However, such an extension does not hold. This is primarily because such
an extension to feedback depends on the adaptedness of the decoder’s estimate to the
filtration induced by the observations.1 This feature is maintained in the presence of
feedback in causal but not in non-causal estimation.

1Define the filtration FYt = σ {Y (B) : B ⊆ {s : s < t}}. Note that in the setting of Theorem 5.5, the

encoder φt is measurable w.r.t. the σ -algebra FXT ∨ FYt , and the estimate φ̂t is measurable w.r.t.
(or adapted to the filtration) FYt .
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Inspired by the relationship between mismatched estimation and relative entropy
in the scalar Gaussian channel in Theorem 5.2, Weissman [20] proved a generaliza-
tion of Duncan’s relationship for the mismatched scenario in continuous-time. The
result establishes that the relative entropy between the output laws can be expressed
as the cost of mismatch in estimation, much like in the scalar setting. In particular,
this extension, not only recovers the relationship of Duncan, but also holds in the
presence of feedback, as in the general observation model in (5.20).

Let us now consider the setting in [20] in detail, where a continuous-time signal
Xt , distributed according to a law P , is observed through additive Gaussian noise,
and is estimated by an estimator that would have been optimal if the signal were
governed by the law Q. In this general setting, the main result in [20] shows that
the relative entropy between the laws of the output for the two different underlying
distributions (P and Q) is exactly half the difference between the mismatched and
matched filtering errors. Let Yt be the continuous-time AWGN corrupted version
of Xt as given by (5.12). Let PYT0

and QYT0
be the output distributions when the

underlying signal XT0 has law P andQ, respectively. As before, T denotes the time
duration for which the process is observed. We denote the mismatched causal mean
squared error

cmseP,Q(T )=
∫ T

0
EP

[(
Xt −EQ

[
Xt
∣∣YT0 ])2]

dt. (5.24)

In this setting, then next theorem [20] informs us that the relative entropy between
the output distributions is half the difference between the mismatched and matched
filtering errors.

Theorem 5.6 (Mismatched filtering and relative entropy) Let XT0 be a continuous-
time process in [0, T ], under laws P and Q. Then, for the Gaussian channel in
(5.12), we have

D(PYT0
‖QYT0 )=

1

2

[
cmseP,Q(T )− cmseP,P (T )

]
. (5.25)

The above results for mismatched estimation, also give insights into the decision-
theoretic formulation of minimax statistical estimation. This is in contrast to the
Bayesian framework where the underlying signal has a known distribution. In min-
imax filtering, the source is known to belong to a class of possible sources, and the
goal is to find the best filter that would minimize the worst case difference between
its MSE and the MMSE of the active source. For details on the application of The-
orem 5.6 to this setting, the reader is referred to the recent [12], where the authors
show that the optimal minimax filter is, in fact, a Bayesian filter, under a particu-
lar “least favorable” prior, which turns out to coincide with the capacity achieving
distribution for a certain channel.
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5.2 Pointwise Extensions and Identities

Thus far, we have explored important and fundamental links between mea-
sures of information and estimation loss, for the Gaussian channel in scalar and
continuous-time. Recently, the authors in [18], presented a pointwise analysis of
the information-estimation identities discussed in Sect. 5.1. By characterizing the
aforementioned identities as identities of expectations over random quantities, such
an analysis not only generalizes and gives previously established results as corol-
laries, but also presents new and intriguing relations between central quantities in
information and estimation. The Girsanov theorem and Itô calculus emerge as tools
to understand the pointwise behavior of these random quantities, and to explore
their properties. Here, we provide a brief illustration of the pointwise approach,
by applying the analysis to Duncan’s theorem for the continuous-time Gaussian
channel.

Recall the continuous-time Gaussian channel in (5.12), where for simplicity we
set snr= 1,

dYt =Xt dt + dWt . (5.26)

Denoting the time averaged filtering squared error

cmmse(T ) =
∫ T

0
E
[(
Xt −E

[
Xt
∣∣YT0 ])2]

dt (5.27)

and letting I (XT0 ;YT0 ) denote the input–output mutual information for the channel
(5.26), Duncan’s theorem (Theorem 5.3), as we have already seen in the previous
section, tells us that

I
(
XT0 ;YT0

)= 1

2
cmmse(T ). (5.28)

Consider the random variable E defined as

E = log
dPYT0 |XT0
dPYT0

− 1

2

∫ T

0

(
Xt −E

[
Xt

∣∣YT0 ])2
dt. (5.29)

Thus E is the difference of two quantities. The information density, defined as the
log Radon–Nikodym derivative of the conditional distribution of the output given
the input, with respect to the law of the output, is a quantity of fundamental interest
in itself, for its mean is the mutual information between the input and the output
processes. Further, its variance under the capacity achieving input prior is referred
to in the communication literature as the channel dispersion, and emerges in the
characterization of fundamental limits in the finite block-length regime, cf. [15].
The second quantity is half the cumulative squared error in estimating the input
process in a causal manner. Duncan’s theorem tells us that these two quantities are
equal in expectation, and is therefore equivalently expressed as

E[E] = 0. (5.30)
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The quantity E referred to as the ‘tracking error’ is the difference between the un-
derlying random quantities which appear in Duncan’s theorem. In the following
proposition from [18], this quantity is explicitly characterized:

Proposition 5.1 Let E be as defined in (5.29). Then,

E =
∫ T

0

(
Xt −E

[
Xt
∣∣YT0 ]) · dWt a.s. (5.31)

Note that on the right side of (5.31) is a stochastic integral with respect to the
Brownian motion W·, driving the noise in the channel. With this representation,
Duncan’s theorem follows from the mere fact that this stochastic integral is a mar-
tingale and, in particular, has zero expectation.

On applying another basic property of the stochastic integral one gets the follow-
ing interesting result for the variance of E .

Theorem 5.7 (Variance of tracking error) For a continuous-time signal XT0 , E as
defined in (5.29) satisfies

Var(E)= cmmse(T ). (5.32)

In conjunction with Duncan’s theorem (5.17), we get the following relationship:

Var(E)= cmmse(T )= 2 I
(
XT0 ;YT0

)
. (5.33)

Thus, the difference of the information density and half the cumulative squared
error, a random variable which we know to have zero mean via Duncan’s pioneering
result in 1970, turns out to be expressible as a martingale. Further, what is striking is
that the variance of this random variable is equal to the filtering error, which in turn
is given by twice the mutual information by invoking Duncan’s theorem. That this
statement is true regardless of the distribution of the input gives further insight into
the general structure of the underlying links between information and estimation. In
[18], the authors present such a pointwise extension of other fundamental identities
in both scalar and continuous-time. Of particular interest in the context of feedback
is the pointwise extension of the relationship given by Kadota et al. [9] for the white
Gaussian noise channel with feedback. With our notation, the main result of [9] is
expressed in Theorem 5.5 as

I
(
XT0 ;YT0

)= 1

2

∫ T

0
E
[
(φt − φ̂t )2

]
dt. (5.34)

Define

Eφ � log
dPYT0 |XT0
dPYT

− 1

2

∫ T

0
(φt − φ̂t )2 dt. (5.35)

In [18], the authors present the following pointwise characterization of Theorem 5.5:
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Theorem 5.8 (A pointwise information-estimation result)

Eφ =
∫ T

0
(φt − φ̂t ) · dWt a.s., (5.36)

where Eφ is as defined in (5.35).

Parallel to the discovery in the pointwise treatment of Duncan’s theorem, one can
use Theorem 5.8 to deduce various results. Note from (5.36) that Eφ is a martingale.
Therefore,

E[Eφ] = 0, (5.37)

recovering the main result of [9], namely Theorem 5.5. Using Itô’s Isometry, one
also immediately obtains

Var(Eφ)=
∫ T

0
E
[
(φt − φ̂t )2

]
dt. (5.38)

Thus, even for the generalized setting of communication over channels with feed-
back, one can characterize how closely the information density and squared filtering
error track each other. In particular, these results may have applications in approxi-
mating the mutual information via estimation theoretic quantities, for channels with
feedback. In the special case when φt = Xt , we recover the results obtained in the
pointwise treatment of Duncan’s theorem (5.31). Venkat and Weissman [18] also
extend this analysis to incorporate mismatch.

The key ingredients that have emerged in the pointwise analysis of the identities
discussed in Sect. 5.1 include the use of Girsanov’s theorem to characterize the
information density via a change of measure argument, in conjunction with Itô’s
formula for the time evolution of a martingale. Further, the specific structure of
the Gaussian noise allows one to express the log-Radon–Nikodym derivative as a
time integral of the squared estimation loss, plus a zero mean martingale. Equipped
with these tools, we now proceed to illustrate their utility in providing a unified
understanding of the above results, as well as obtaining new ones.

5.3 Applications

In this section, we illustrate how Girsanov theory and Itô’s rule are at the heart of
the basic relations between information and estimation in Gaussian noise. In doing
so, we employ these tools to recover the I-MMSE and the mismatched estimation
relationship. Along with emphasizing the simplicity of this proof route, we show
that these tools also yield new and hitherto unknown results in relations between
information and estimation.
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We organize this section into three parts. The first part introduces a generalized
divergence between two probability measures, a special case of which is the rela-
tive entropy. We observe that for the full generality of the Gaussian channel with
feedback, our tools reveal an elegant relationship between the divergence and an
associated filtering error of the channel input. In the second part, we show how the
same approach gives rise to simple proofs of previously known results. For brevity,
we only present the results for the scalar Gaussian channel, though we stress that
essentially the same technique carries through in continuous-time as well. Finally,
we discuss and present an informational quantity referred to as Lautum Information,
introduced by Palomar and Verdu in [14], and present a new conservation principle
exhibited by this quantity and the mutual information.

5.3.1 f -Information via Itô

We begin by considering a generalized divergence between two probability mea-
sures defined on an appropriate measurable space. Given a convex function f satis-
fying f (1)= 0, the f -divergence between measures P and Q is defined as

Df (P ‖Q)=
∫
f

(
dQ

dP

)
dP. (5.39)

Note this is a generalization of relative entropy, as the latter is recovered by taking
f = − log. This divergence retains key properties of relative entropy such as non-
negativity, monotonicity, convexity. For more discussion on this topic, the reader is
referred to [11].

There is also a corresponding generalized notion of mutual information,

If (X;Y)�Df (PX,Y ‖ PX × PY )=
∫
Df (PY |X=x ‖ PY )dPX(x). (5.40)

In this section, we shall look at the generalized mutual information and how we can
use Itô calculus to represent it in terms of estimation theoretic quantities of interest.

The channel input is a function of an underlying process Xt as well as the past
outputs of the channel Yt , in an additive white Gaussian noise setting:

Yt =
∫ t

0
φs
(
Y s0 ,Xs

)
ds +Wt. (5.41)

Note that we can use the Girsanov Theorem [6] to write the Radon–Nikodym deriva-
tive of the conditional law PY t0 |Xt0 with respect to the marginal law PY t0 as follows;

Λt =
dPY t0 |Xt0
dPY t0

= exp

{
1

2

∫ t

0
(φs − φ̂s)2 ds +

∫ t

0
(φs − φ̂s) · dWs

}
, (5.42)
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where φ̂t =E[φt |Y t0].
Let

Zt �
1

2

∫ t

0
(φs − φ̂s)2 ds +

∫ t

0
(φs − φ̂s) · dWs. (5.43)

Let g be a concave function corresponding to any general convex function f , related
as g(x)= f ( 1

x
). We can represent the generalized f -information

If
(
Xt0, Y

t
0

) = EP

[
g

(
exp

{
1

2

∫ t

0
(φs − φ̂s)2 ds +

∫ t

0
(φs − φ̂s) · dWs

})]

= EP

[
g
(
eZt

)]
. (5.44)

We now proceed to write the Itô evolution equation (cf. [17]) for g(eZt )

g
(
eZt

) = g(1)+ ∫ t

0
g′
(
eZs

)
eZs

[
1

2
(φs − φ̂s)2 ds + (φs − φ̂s) · dWs

]

+ 1

2

∫ t

0

[
g′′
(
eZs

)
e2Zs + g′(eZs )eZs ](φs − φ̂s)2 ds. (5.45)

On taking expectation with respect to P, and simplifying we get the following ex-
pression (for arbitrary f ) for the generalized f -information

If = E
[
g
(
eZt

)]= g(1)+ ∫ t

0
E

[(
g′
(
eZs

)
eZs + 1

2
g′′
(
eZs

)
e2Zs

)
(φs − φ̂s)2

]
ds.

(5.46)

Note that for the special choice of g(x)= log(x) the above expression simplifies to
give the known Kadota–Ziv–Zakai relationship (Theorem 5). Note in this case that
the term in the large parentheses in the r.h.s. simplifies to 1

2 . Another sanity check
is choosing g(x)= 1/x in which case the integrand in the r.h.s. becomes 0. In this
case, we recover the identity E[dQ/dP ] = 1.

5.3.2 Information and Estimation via Itô

In this subsection, we show how a simple application of Itô’s rule yields a relation
from which we derive, as corollaries, relations such as the heat equation [3], the
de Bruijn identity [16], I-MMSE [7], and D-MMSE [20]. Consider a scalar Itô’s
drift–diffusion process, with zero drift and diffusion coefficient unity,

dYt = dBt , Y0 = x, (5.47)
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where Bt is the standard Brownian motion. Let f (t, y, x) be sufficiently smooth and

denote ft = ∂
∂t
f , fy = ∂

∂y
f , fyy = ∂2

∂y2 f , etc. Then Itô’s rule reads

f (t, Yt , x)= f (0, Y0, x)+
∫ t

0
fy(s, Ys, x) dBs +

∫ t

0
ft (s, Ys, x) ds

+ 1

2

∫ t

0
fyy(s, Ys, x) ds (5.48)

almost surely. Taking expectations (and noting that the stochastic integral above has
zero mean), and then differentiating with respect to t gives

∂

∂t
E
[
f (t, Yt , x)

]=E[ft (t, Yt , x)]+ 1

2
E
[
fyy(t, Yt , x)

]
. (5.49)

Now if x is a realization of the random variable X, then taking expectation with re-
spect to X in Eq. (5.49) (assuming the expectations remain well-defined), we obtain

∂

∂t
E
[
f (t, Yt ,X)

]=E[ft (t, Yt ,X)]+ 1

2
E
[
fyy(t, Yt ,X)

]
, (5.50)

which is the heat equation, as derived in Theorem 1 of [3]. Using the above
Eq. (5.50), we have the following immediate results:

• I-MMSE, i.e., the I-MMSE relation in [7],

∂

∂γ
I (X;√γX+W)= 1

2
mmse(X;√γX+W), (5.51)

where W ∼N (0,1) independent of X. To derive this, let fY denote the density
of the output process Y . Take f (t, y, x)=− logfY (y). With this substitution, we
obtain de Brujn’s Identity [16],

∂

∂t
h(Yt )= 1

2
J (Yt ), (5.52)

where h(·) stands for the differential entropy and J (·) for Fisher information.
With slight abuse of notation we denote fY (Yt ) by fYt . Let Zγ = √γX +W .
First note that a simple manipulation yields

∂
∂y
fYt

fYt
= ∂

∂y
logfYt =

1

t

(
E[X|Yt ] − Yt

)
, (5.53)

which implies

J (Yt )= E

[(
∂

∂y
logfYt

)2]

= 1

t2
E
[(
E[X|Yt ] − Yt

)2]
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= 1

t2
E
[(
Yt −X+X−E[X|Yt ]

)2]
= 1

t2

[
t + 2E

[
(Yt −X)

(
X−E[X|Yt ]

)]+E
[(
X−E[X|Yt ]

)2]]
. (5.54)

As any function of Yt is orthogonal to the estimation error X−E[X|Yt ], we have
E[(Yt −E[X|Yt ])(X−E[X|Yt ])] = 0 and equation (5.54) becomes

J (Yt ) = 1

t2

[
t −E

[(
X−E[X|Yt ]

)2]]
= 1

t2
[t −MMSE]. (5.55)

Now, from the definition of mutual information, we can write

∂

∂γ
I (X;Zγ ) = ∂

∂γ

[
h(Zγ )− h(Zγ |X)

]

= ∂

∂γ

[
h(Zγ )− h(Zγ −√γX|X)

]
.

Substituting Zγ −√γX by W , we obtain

∂

∂γ
I (X;Zγ )= ∂

∂γ

[
h(Zγ )− h(W)

]
.

Since h(W) does not depend on γ , the partial derivative of h(W) with respect to
γ is zero. Therefore, we have

∂

∂γ
I (X;Zγ )= ∂

∂γ
h(Zγ )= ∂

∂γ
h(
√
γ Y 1

γ
)
(a)= ∂

∂γ

[
h(Y 1

γ
)+ 1

2
logγ

]
. (5.56)

The equality (a) follows from the scaling property of differential entropy. Let

p(t)= h(Yt ),
q(t)= J (Yt ).

The equation (5.56) can be rewritten as

∂

∂γ
I (X;Zγ )=− 1

γ 2
p′
(

1

γ

)
+ 1

2γ
.

By applying de Bruijn’s Identity, we obtain

∂

∂γ
I (X;Zγ )=− 1

2γ
· 1

γ
q

(
1

γ

)
+ 1

2γ
= 1

2

[
1

γ
− 1

γ 2
J (Y 1

γ
)

]
. (5.57)

Comparing Eqs. (5.55) and (5.57), we obtain the I-MMSE relation.
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• D-MMSE, i.e., the relation,

∂

∂t
D(PYt ‖QYt )=

1

2t2
(
mseP,P (t)−mseP,Q(t)

)
, (5.58)

where D(· ‖ ·) is the Kullback–Leiber divergence and

mseP,Q = EP

[(
X−EQ[X|Yt ]

)2]
. (5.59)

To obtain this, let f PYt and fQYt denote the density of Yt when X is distributed as

P and Q, respectively. Also, let X̂P and X̂Q stand for EP [X|Yt ] and EQ[X|Yt ],
respectively. We substitute

f (t, y, x) = log
f PY (y)

f
Q
Y (y)

− 2

t2

∫ y

0

∫ v

0

(
EQ[X|Y = u]

)2 −EQ

[
X2

∣∣Y = u]dudv
− 2

t2

∫ y

0

∫ v

0
(u− x)EQ[X|Y = u]dudv, (5.60)

in Eq. (5.50) to obtain (note again with slight abuse of notation, fQY (Yt ) and

f PY (Yt ) are denoted by fQYt and f PYt , respectively)

∂

∂t
D(PYt ‖QYt )= EP

[ ∂
∂t
f PYt

f PYt

]
−EP

[ ∂
∂t
f
Q
Yt

f
Q
Yt

]

− 1

2
EP

[( ∂
∂y
f PYt

f PYt

)2]
+ 1

2
EP

[( ∂
∂y
f
Q
Yt

f
Q
Yt

)2]

+ 1

2
EP

[ ∂2

∂y2 f
P
Yt

f PYt

]
− 1

2
EP

[ ∂2

∂y2 f
Q
Yt

f
Q
Yt

]

− 1

t2
EP

[(
EQ[X|Yt ]

)2 −EQ

[
X2

∣∣Yt ]+ (Yt −X)EQ[X|Yt ]].
(5.61)

A simple differentiation yields the heat equation for the density, fQYt , i.e.,

EP

[ ∂
∂t
f
Q
Yt

f
Q
Yt

]
= 1

2
EP

[ ∂2

∂y2 f
Q
Yt

f
Q
Yt

]
.

Using this, simplifies Eq. (5.61) to

∂

∂t
D(PYt ‖QYt )= 2EP

[ ∂
∂t
f PYt

f PYt

]
− 2EP

[ ∂
∂t
f
Q
Yt

f
Q
Yt

]
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− 1

2
EP

[( ∂
∂y
f PYt

f PYt

)2]
+ 1

2
EP

[( ∂
∂y
f
Q
Yt

f
Q
Yt

)2]

− 1

t2
EP

[(
EQ[X|Yt ]

)2 −EQ

[
X2|Yt

]+ (Yt −X)EQ[X|Yt ]].
(5.62)

What is left is to show that the expression on the right-hand side of the above
equation equals 1

2t2
(mseP,P (t)−mseP,Q(t)). Note from Eq. (5.53), we have

∂
∂y
f
Q
Yt

f
Q
Yt

= 1

t

(
EQ[X|Yt ] − Yt

)
. (5.63)

A similar algebra yields

∂
∂t
f
Q
Yt

f
Q
Yt

= 1

2t2
EQ

[
(X− Yt )2

∣∣Yt ]. (5.64)

Substituting the above partial derivatives in Eq. (5.62), we obtain

∂

∂t
D(PYt ‖QYt ) = −

1

2t2
(
EQ[X|Yt ] −EP [X|Yt ]

)2

= 1

2t2
(
mseP,P (t)−mseP,Q(t)

)
. (5.65)

5.3.3 Lautum Information and Estimation

The Lautum information between X and Y is defined as

L(X;Y)=D(PX × PY ‖ PX,Y ), (5.66)

i.e., we switch the order of the joint and the product distributions in the relative en-
tropy from the definition of mutual information. We refer to recent work by Palomar
and Verdu [14] for more about this measure of dependence and its significance.

Consider now our usual setting where dYt =Xt dt + dWt (for simplicity, though
what follows carries over to the more general setting of Sect. 5.3.1). Assuming XT0
is a zero mean process,

L
(
Xt0;Y t0

) (a)= EP
Xt0
×P

Yt0

[
−1

2

∫ t

0

(
Xs − X̂s

(
Y s
))2
ds −

∫ t

0

(
Xs − X̂s

(
Y s
))
dWs

]

= EP
Xt0
×P

Yt0

[
−1

2

∫ t

0

(
Xs − X̂s

(
Y s
))2
ds
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−
∫ t

0

(
Xs − X̂s

(
Y s
))
(dYs −Xs ds)

]

(b)= EP
Xt0
×P

Yt0

[
−1

2

∫ t

0
X2
s + X̂s

(
Y s
)2
ds +

∫ t

0
X2
s ds +

∫ t

0
X̂s

(
Y s
)
dYs

]

(c)= EP
Xt0,Y

t
0

[
−1

2

∫ t

0
X2
s + X̂s

(
Y s
)2
ds +

∫ t

0
X2
s ds +

∫ t

0
X̂s

(
Y s
)
dYs

]

(d)= EP
Xt0,Y

t
0

[
−1

2

∫ t

0
X2
s + X̂s

(
Y s
)2
ds +

∫ t

0
X2
s ds +

∫ t

0
X̂s

(
Y s
)
Xs ds

]

= EP
Xt0,Y

t
0

[
−1

2

∫ t

0

(
Xs − X̂s

(
Y s
))2
ds +

∫ t

0
X2
s ds

]
, (5.67)

where

• (a) follows using the following equation:

Λt =
dPY t0 |Xt0
dPY t0

= exp

{
1

2

∫ t

0
(φs − φ̂s)2 ds +

∫ t

0
(φs − φ̂s) dWs

}
, (5.68)

• (b) follows since under PXT0
× PYT0 we have E[Xs X̂s] = E[Xs]E[X̂s] = 0,

E[X̂s] = 0 and similarly E[Xs dYs] = 0 and E[X̂s Xs] = 0,
• (c) follows because the expectation of the expression in the square brackets de-

pends on the joint distribution of (Xt0, Y
t
0) only through the marginals of Xt0

and Y t0 ,
• (d) follows since under PXt0,Y t0 we have

E

[∫ t

0
X̂s

(
Y s
)
dYs

]
= E

[∫ t

0
X̂s

(
Y s
)
Xs ds

]
.

Thus, for a general, not necessarily zero mean process we get

L
(
Xt0;Y t0

)= E

[
−1

2

∫ t

0

(
Xs − X̂s

(
Y s
))2
ds +

∫ t

0
Var(Xs) ds

]
. (5.69)

Or, more succinctly, and recalling also Duncan’s relation, we get

L
(
Xt0;Y t0

)= ∫ t

0
Var(Xs) ds − 1

2
cmmset =

∫ t

0
Var(Xs) ds − I

(
Xt0;Y t0

)
. (5.70)

In other words, the mutual and Lautum information satisfy the “conservation law”

I
(
Xt0;Y t0

)+L(Xt0;Y t0)=
∫ t

0
Var(Xs) ds. (5.71)
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As usual, of course, all this specializes to the scalar setting ofX observed through
and additive Gaussian at SNR level snr, for which we get

I (snr)+L(snr)= snr ·Var(X), (5.72)

and by differentiating,

L′(snr)=Var(X)− I ′(snr)=Var(X)− 1

2
mmse(snr). (5.73)

Similar to the Eq. (5.72), for the case of a vector source corrupted with Gaussian
noise, a result appears in [13] (cf. Eq. (114)) relating Lautum and mutual infor-
mation between input and output. In (5.71), we present a new analogous result in
continuous-time.

5.4 Conclusion

We revisited the problem of mean-squared estimation of a source corrupted by white
Gaussian noise, and explored relations between causal and non-causal estimation er-
rors and the mutual information between input and output process. In both matched
and mismatched settings, the relations involving causal estimation are observed to
persist even in the presence of feedback. Girsanov Theory and Itô’s calculus give
the required tools to explore the pointwise nature of identities between information
and estimation, and forms the basis of the approach presented in this chapter, that
allows to derive the existing results as corollaries, as well as obtain new ones.
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Chapter 6
Design of Information Channels
for Optimization and Stabilization
in Networked Control

Serdar Yüksel

6.1 Introduction and the Information Structure Design Problem

In stochastic control, typically a partial observation model/channel is given and one
looks for a control policy for optimization or stabilization. Consider a single-agent
dynamical system described by the discrete-time equations

xt+1 = f (xt , ut ,wt ), (6.1)

yt = g(xt , vt ), t ≥ 0, (6.2)

for (Borel measurable) functions f,g, with {wt } being an independent and identi-
cally distributed (i.i.d.) system noise process and {vt } an i.i.d. measurement distur-
bance process, which are independent of x0 and each other. Here, xt ∈ X, yt ∈ Y,
ut ∈ U, where we assume that these spaces are Borel subsets of finite dimensional
Euclidean spaces.

In (6.2), we can view g as inducing a measurement channelQ, which is a stochas-
tic kernel or a regular conditional probability measure from X to Y in the sense that
Q(·|x) is a probability measure on the (Borel) σ -algebra B(Y) on Y for every x ∈X,
and Q(A|·) :X→[0,1] is a Borel measurable function for every A ∈ B(Y).

In networked control systems, the observation channel described above itself is
also subject to design. In a more general setting, we can shape the channel input
by coding and decoding. This chapter is concerned with design and optimization of
such channels.

We will consider a controlled Markov model given by (6.1). The observation
channel model is described as follows: This system is connected over a noisy chan-
nel with a finite capacity to a controller, as shown in Fig. 6.1. The controller has
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Fig. 6.1 Control over a noisy channel with feedback. The quantizer and the channel encoder form
the coder in the figure

access to the information it has received through the channel. A quantizer maps the
source symbols, state values, to corresponding channel inputs. The quantizer out-
puts are transmitted through a channel, after passing through a channel encoder. We
assume that the channel is a discrete channel with input alphabet M and output
alphabet M′. Hence, the channel maps q ∈M to channel outputs q ′ ∈M′ prob-
abilistically so that P(q ′|q) is a stochastic kernel. Further probabilistic properties
can be imposed on the channels depending on the particular application.

We refer by a Composite Coding Policy Πcomp, a sequence of functions
{Qcomp

t , t ≥ 0} which are causal such that the quantization output (channel input)
at time t , qt ∈M, under Πcomp is generated by a function of its local information,
that is, a mapping measurable on the sigma-algebra generated by

Iet =
{
x[0,t], q ′[0,t−1]

}
to a finite set M, the quantization output alphabet given by

M := {1,2, . . . ,M},
for 0≤ t ≤ T − 1 and i = 1,2. Here, we have the notation for t ≥ 1:

x[0,t−1] = {xs,0≤ s ≤ t − 1}.
The receiver/controller, upon receiving the information from the encoders, gen-

erates its decision at time t , also causally: An admissible causal controller policy is
a sequence of functions γ = {γt } such that

γt :M′t+1 →R
m, t ≥ 0,

so that ut = γt (q ′[0,t]).
We call such encoding and control policies, causal or admissible.
Two problems will be considered.

Problem P1: Value and Design of Information Channels for Optimization
Given a controlled dynamical system (6.1), find solutions to minimization problem

inf
Πcomp,γ

E
Πcomp,γ

P

[
T−1∑
t=0

c(xt , ut )

]
, (6.3)
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over the set of all admissible coding and control policies, given c : X× U→ R+,
a cost function.

Problem P2: Value of Information Channels for Stabilization The second
problem concerns stabilization. In this setting, we replace (6.1) with an n-
dimensional linear system of the form

xt+1 =Axt +But +wt, t ≥ 0 (6.4)

where xt is the state at time t , ut is the control input, the initial state x0 is a zero-
mean second order random variable, and {wt } is a sequence of zero-mean i.i.d.
Gaussian random variables, also independent of x0. We assume that the system is
open-loop unstable and controllable, that is, at least one eigenvalue has magnitude
greater than 1.

The stabilization problem is as follows: Given a system of the form (6.4) con-
trolled over a channel, find the set of channels Q for which there exists a policy
(both control and encoding) such that {xt } is stable. Stochastic stability notions will
be ergodicity and existence of finite moments, to be specified later.

The literature on such problems is rather long and references will be cited as
they are particularly relevant. We refer the reader to [56, 63], and [58] for a detailed
literature review.

6.2 Problem P1: Channel Design for Optimization

In this section, we consider the optimization problem. We will first consider a single
state problem and investigate topological properties of measurement channels.

6.2.1 Measurement Channels as Information Structures

6.2.1.1 Topological Characterization of Measurement Channels

Let, as in (6.2), g induce a stochastic kernelQ, P be the probability measure on the
initial state, and PQ denote the joint distribution induced on (X×Y,B(X×Y)) by
channel Q with input distribution P via

PQ(A)=
∫
A

Q(dy|x)P (dx), A ∈ B(X×Y).

We adopt the convention that given a probability measure μ, the notation z ∼ μ
means that z is a random variable with distribution μ.

Consider the following cost function:

J (P,Q,γ )=EQ,γP

[
T−1∑
t=0

c(xt , ut )

]
, (6.5)
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over the set of all admissible policies γ , where c :X×U→R is a Borel measurable
stagewise cost (loss) function and EQ,γP denotes the expectation with initial state
probability measure given by P , under policy γ and given channel Q.

Here, we have X= R
n and Y= R

m, and Q denotes the set of all measurement
channels (stochastic kernels) with input space X and output space Y.

Let {μn, n ∈ N} be a sequence in P(Rn), where P(Rn) is the set of probability
measures on R

n. Recall that {μn} is said to converge to μ ∈ P(Rn) weakly [5] if∫
Rn

c(x)μn(dx)→
∫
Rn

c(x)μ(dx)

for every continuous and bounded c : Rn→ R. The sequence {μn} is said to con-
verge to μ ∈P(Rn) setwise if

μn(A)→ μ(A), for all A ∈ B
(
R
n
)

For two probability measures μ,ν ∈ P(Rn), the total variation metric is given by

‖μ− ν‖T V := 2 sup
B∈B(Rn)

∣∣μ(B)− ν(B)∣∣
= sup
f : ‖f ‖∞≤1

∣∣∣∣
∫
f (x)μ(dx)−

∫
f (x)ν(dx)

∣∣∣∣,
where the infimum is over all measurable real f such that ‖f ‖∞ = supx∈Rn |f (x)| ≤
1. A sequence {μn} is said to converge to μ ∈ P(Rn) in total variation if
‖μn −μ‖T V → 0.

These three convergence notions are in increasing order of strength: convergence
in total variation implies setwise convergence, which in turn implies weak conver-
gence.

Given these definitions, we have the following.

Definition 6.1 (Convergence of Channels [63])

(i) A sequence of channels {Qn} converges to a channel Q weakly at input P if
PQn→ PQ weakly.

(ii) A sequence of channels {Qn} converges to a channel Q setwise at input P if
PQn→ PQ setwise, i.e., if PQn(A)→ PQ(A) for all Borel sets A⊂X×Y.

(iii) A sequence of channels {Qn} converges to a channel Q in total variation at
input P if PQn→ PQ in total variation, i.e., if ‖PQn − PQ‖T V → 0.

If we introduce the equivalence relation Q ≡ Q′ if and only if PQ = PQ′,
Q,Q′ ∈ Q, then the convergence notions in Definition 6.1 only induce the corre-
sponding topologies on the resulting equivalence classes in Q, instead of Q. Let

J (P,Q) := inf
γ
E
Q,γ

P

[
T−1∑
t=0

c
(
xt , γt (y[0,t])

)]
.
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In the following, we will discuss the following problems.

Continuity on the space of measurement channels (stochastic kernels): Suppose
that {Qn,n ∈ N} is a sequence of communication channels converging in some
sense to a channel Q. Then the question we ask is when does Qn→Q imply

inf
γ∈Γ J (P,Qn,γ )→ inf

γ∈Γ J (P,Q,γ )?

Existence of optimal measurement channels and quantizers: Let Q be a set of com-
munication channels. A second question we ask is when do there exist minimizing
and maximizing channels for the optimization problems

inf
Q∈Q

inf
γ
E
Q,γ

P

[
T−1∑
t=0

c(xt , ut )

]
and sup

Q∈Q
inf
γ
E
Q,γ

P

[
T−1∑
t=0

c(xt , ut )

]
. (6.6)

If solutions to these problems exist, are they unique?

Before proceeding further, however, we will obtain in the next section a structural
result on such optimization problems.

6.2.1.2 Concavity of the Measurement Channel Design Problem and
Blackwell’s Comparison of Information Structures

We first present the following concavity results.

Theorem 6.1 [61] Let T = 1 and let the integral
∫
c(x, γ (y))PQ(dx, dy) exist for

all γ ∈ Γ and Q ∈Q. Then, the function

J (P,Q)= inf
γ∈Γ

E
Q,γ

P

[
c(x,u)

]
is concave in Q.

Proof For α ∈ [0,1] and Q′,Q′′ ∈Q, let Q= αQ′ + (1− α)Q′′ ∈Q, i.e.,

Q(A|x)= αQ′(A|x)+ (1− α)Q′′(A|x)
for all A ∈ B(Y) and x ∈X. Noting that PQ= αPQ′ + (1− α)PQ′′, we have

J (P,Q) = J (P,αQ′ + (1− α)Q′′)= inf
γ∈Γ

E
Q,γ

P

[
c(x,u)

]

= inf
γ∈Γ

∫
c
(
x, γ (y)

)
PQ(dx, dy)

= inf
γ∈Γ

(
α

∫
c
(
x, γ (y)

)
PQ′(dx, dy)
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+ (1− α)
∫
c
(
x, γ (y)

)
PQ′′(dx, dy)

)

≥ inf
γ∈Γ

(
α

∫
c
(
x, γ (y)

)
PQ′(dx, dy)

)

+ inf
γ∈Γ

(
(1− α)

∫
c
(
x, γ (y)

)
PQ′′(dx, dy)

)

= αJ (P,Q′)+ (1− α)J (P,Q′′), (6.7)

proving that J (P,Q) is concave in Q. �

Proposition 6.1 [61] The function

V (P ) := inf
u∈U

∫
c(x,u)P (dx),

is concave in P , under the assumption that c is measurable and bounded.

We will use the preceding observation to revisit a classical result in statistical
decision theory and comparison of experiments, due to David Blackwell [4]. In a
single decision maker setup, we refer to the probability space induced on X×Y as
an information structure.

Definition 6.2 An information structure induced by some channel Q2 is weakly
stochastically degraded with respect to another one,Q1, if there exists a channelQ′
on Y×Y such that

Q2(B|x)=
∫
Y

Q′(B|y)Q1(dy|x), B ∈ B(Y), x ∈X.

We have the following.

Theorem 6.2 (Blackwell [4]) IfQ2 is weakly stochastically degraded with respect
to Q1, then the information structure induced by channel Q1 is more informative
with respect to the one induced by channel Q2 in the sense that

inf
γ
E
Q2,γ

P

[
c(x,u)

]≥ inf
γ
E
Q1,γ

P

[
c(x,u)

]
,

for all measurable and bounded cost functions c.

Proof The proof follows from [61]. Let (x, y1) ∼ PQ1, y2 be such that Pr(y2 ∈
B|x = x, y1 = y)=Q′(B|y) for all B ∈ B(Y), y1 ∈Y, and x ∈X. Then x, y1, and
y2 form a Markov chain in this order, and therefore P(dy2|y1, x)= P(dy2|y1) and
P(x|dy2, y1)= P(x|y1). Thus we have

J (P,Q2) =
∫
V
(
P
(·|y2))P (dy2)
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=
∫
V

(∫
P
(·|y1)P (dy1|y2))P (dy2)

≥
∫ (∫

P
(
dy1|y2)V (P (·|y1)))P (dy2)

=
∫
V
(
P
(·|y1))(∫ P

(
dy1|y2)P (dy2))

=
∫
V
(
P
(·|y1))P (dy1)= J (P,Q1),

where in arriving at the inequality, we used Proposition 6.1 and Jensen’s inequal-
ity. �

Remark 6.1 When X is finite, Blackwell showed that the above condition also has a
converse theorem if P has positive measure on each element of X: For an informa-
tion structure to be more informative, weak stochastic degradedness is a necessary
condition. For Polish X and Y, the converse result holds under further technical
conditions on the stochastic kernels (information structures), see [6] and [10].

The comparison argument applies also for the case T > 1.

Theorem 6.3 [60] For the multi-stage problem (6.5), ifQ2 is weakly stochastically
degraded with respect toQ1, then the information structure induced by channelQ1
is more informative with respect to the one induced by channelQ2 in the sense that
for all measurable and bounded cost functions c in (6.5)

J (P,Q1)≤ J (P,Q2).

Remark 6.2 Blackwell’s informativeness provides a partial order in the space of
measurement channels; that is, not every pair of channels can be compared. We
will later see that, if the goal is not the minimization of a cost function, but that of
stochastic stabilization in an appropriate sense, then one can obtain a total order on
the space of channels.

6.2.1.3 Single Stage: Continuity of the Optimal Cost in Channels

In this section, we study continuity properties under total variation, setwise conver-
gence, and weak convergence, for the single-stage case. Thus, we investigate the
continuity of the functional

J (P,Q) = inf
γ
E
Q,γ

P

[
c(x0, u0)

]
= inf
γ∈Γ

∫
X×Y

c
(
x, γ (y)

)
Q(dy|x)P (dx) (6.8)
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in the channel Q ∈Q, where Γ is the collection of all Borel measurable functions
mapping Y into U. Note that γ is an admissible one-stage control policy. As before,
Q denotes the set of all channels with input space X and output space Y.

Our results in this section as well as subsequent sections in this chapter will
utilize one or more of the assumptions on the cost function c and the (Borel) set
U⊂R

k :

Assumption 6.1

A1. The function c :X×U→R is non-negative, bounded, and continuous on X×
U.

A2. The function c :X×U→R is non-negative, measurable, and bounded.
A3. The function c : X× U→ R is non-negative, measurable, bounded, and con-

tinuous on U for every x ∈X.
A4. U is a compact set.

Before proceeding further, we look for conditions under which an optimal control
policy exists, i.e., when the infimum in infγ E

Q,γ

P [c(x,u)] is a minimum.

Theorem 6.4 [63] Suppose assumptions A3 and A4 hold. Then, there exists an
optimal control policy for any channel Q.

Theorem 6.5 [63]

(a) J defined in (6.8) is not continuous under setwise or weak convergence even for
continuous and bounded cost functions c.

(b) Suppose that c is continuous and bounded on X× U, U is compact, and U is
convex. If {Qn} is a sequence of channels converging weakly at input P to a
channelQ, then J satisfies lim supn→∞ J (P,Qn)≤ J (P,Q), that is, J (P,Q)
is upper semi-continuous under weak convergence.

(c) If c is bounded, measurable, then J is sequentially upper semi-continuous on
Q under setwise convergence.

We have continuity under the stronger notion of total variation.

Theorem 6.6 [63] Under Assumption A2, the optimal cost J (P,Q) is continuous
on the set of communication channels Q under the topology of total variation.

Thus, total variation, although a strong metric, is useful in establishing continuity.
This will be useful in our analysis to follow for the existence of optimal quantiza-
tion/coding policies.

In [63], (sequential) compactness conditions for a set of communication channels
have been established. Given the continuity conditions, these may be used to identify
conditions for the existence of best and worst channels for (6.6) when T = 1.
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6.2.2 Quantizers as a Class of Channels

In this section, we consider the problem of convergence and optimization of quan-
tizers.

We start with the definition of a quantizer.

Definition 6.3 An M-cell vector quantizer, Q, is a (Borel) measurable mapping
from a subset of X = R

n to the finite set {1,2, . . . ,M}, characterized by a mea-
surable partition {B1,B2, . . . ,BM} such that Bi = {x :Q(x)= i} for i = 1, . . . ,M .
The Bi ’s are called the cells (or bins) of Q.

We allow for the possibility that some of the cells of the quantizer are empty.
Traditionally, in source coding theory, a quantizer is a mapping Q : Rn→R

n with
a finite range. Thus q is defined by a partition and a reconstruction value in R

n for
each cell in the partition. That is, for given cells {B1, . . . ,BM} and reconstruction
values {q1, . . . , qM} ⊂R

n, we haveQ(x)= qi if and only if x ∈ Bi . In the definition
above, we do not include the reconstruction values.

A quantizer Q with cells {B1, . . . ,BM } can also be characterized as a stochastic
kernel Q from X to {1, . . . ,M} defined by

Q(i|x)= 1{x∈Bi }, i = 1, . . . ,M,

so thatQ(x)=∑M
i=1 q

iQ(i|x). We denote by QD(M) the space of allM-cell quan-
tizers represented in the channel form. In addition, we let Q(M) denote the set of
(Borel) stochastic kernels from X to {1, . . . ,M}, i.e., Q ∈ Q(M) if and only if
Q(·|x) is probability distribution on {1, . . . ,M} for all x ∈ X, and Q(i|·) is Borel
measurable for all i = 1, . . . ,M . Note that QD(M)⊂Q(M). We note also that ele-
ments of Q(M) are sometimes referred to as random quantizers.

Consider the set of probability measures

Θ := {
ζ ∈ P (Rn ×M

) : ζ = PQ,Q ∈Q
}
,

on R
n×M having fixed input marginal P , equipped with weak topology. This set is

the (Borel measurable) set of the extreme points on the set of probability measures
on R

n ×M with a fixed input marginal P [9]. Borel measurability of Θ follows
from [40] since set of probability measures on R

n ×M with a fixed input marginal
P is a convex and compact set in a complete separable metric space, and therefore,
the set of its extreme points is Borel measurable.

Lemma 6.1 [63] The set of quantizers QD(M) is setwise sequentially precompact
at any input P .

Proof The proof follows from the interpretation above viewing a quantizer as
a channel. In particular, a majorizing finite measure ν is obtained by defining
ν = P × λ, where λ is the counting measure on {1, . . . ,M} (note that ν(Rn ×
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{1, . . . ,M}) =M). Then for any measurable B ⊂ R
n and i = 1, . . . ,M , we have

ν(B × {i})= P(B)λ({i})= P(B) and thus

PQ
(
B × {i})= P(B ∩Bi)≤ P(B)= ν(B × {i}).

Since any measurable D ⊂ X× {1, . . . ,M} can be written as the disjoint union of
the sets Di × {i}, i = 1, . . . ,M , with Di = {x ∈ X : (x, i) ∈D}, the above implies
PQ(D) ≤ ν(D) and this domination leads to precompactness under setwise con-
vergence (see [5, Theorem 4.7.25]). �

The following lemma provides a useful result.

Lemma 6.2 [63] A sequence {Qn} in Q(M) converges to a Q in Q(M) setwise at
input P if and only if∫

A

Qn(i|x)P (dx)→
∫
A

Q(i|x)P (dx) for all A ∈ B(X) and i = 1, . . . ,M.

Proof The lemma follows by noticing that for anyQ ∈Q(M) and measurable D ⊂
X× {1, . . . ,M},

PQ(D)=
∫
D

Q(dy|x)P (dx)=
M∑
i=1

∫
Di

Q(i|x)P (dx)

where Di = {x ∈X : (x, i) ∈D}. �

However, unfortunately, the space of quantizers QD(M) is not closed under set-
wise (and hence, weak) convergence, see [63] for an example. This will lead us to
consider further restrictions in the class of quantizers considered below.

In the following, we show that an optimal channel can be replaced with an opti-
mal quantizer without any loss in performance.

Proposition 6.2 [63] For any Q ∈ Q(M), there exists a Q′ ∈ QD(M) with
J (P,Q′) ≤ J (P,Q). If there exists an optimal channel in Q(M), then there is
a quantizer in QD(M) that is optimal.

Proof For a policy γ : {1, . . . ,M}→U=X (with finite cost) define for all i,

B̄i =
{
x : c(x, γ (i))≤ c(x, γ (j)), j = 1, . . . ,M

}
.

Letting B1 = B̄1 and Bi = B̄i \ ⋃i−1
j=1Bj , i = 2, . . . ,M , we obtain a partition

{B1, . . . ,BM } and a corresponding quantizer Q′ ∈QD(M). Then EQ
′,γ

P [c(x,u)] ≤
E
Q,γ

P [c(x,u)] for any Q ∈Q(M). �

The following shows that setwise convergence of quantizers implies convergence
under total variation.
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Theorem 6.7 [63] Let {Qn} be a sequence of quantizers in QD(M) which con-
verges to a quantizerQ ∈QD(M) setwise at P . Then, the convergence is also under
total variation at P .

Combined with Lemma 6.2, this theorem will be used to establish existence of
optimal quantizers.

Now, assume Q ∈ QD(M) with cells B1, . . . ,BM , each of which is a convex
subset of Rn. By the separating hyperplane theorem [24], there exist pairs of com-
plementary closed half spaces {(Hi,j ,Hj,i) : 1 ≤ i, j ≤M,i 
= j} such that for all
i = 1, . . . ,M ,

Bi ⊂
⋂
j 
=i
Hi,j .

Each B̄i :=⋂
j 
=i Hi,j is a closed convex polytope and by the absolute continuity

of P one has P(B̄i \ Bi) = 0 for all i = 1, . . . ,M . One can thus obtain a (P -a.s.)
representation of Q by theM(M − 1)/2 hyperplanes hi,j =Hi,j ∩Hj,i .

Let QC(M) denote the collection of M-cell quantizers with convex cells and
consider a sequence {Qn} in QC(M). It can be shown (see the proof of Theorem 1
in [20]) that using an appropriate parametrization of the separating hyperplanes, a
subsequence Qnk can be found which converges to a Q ∈QC(M) in the sense that
P(B

nk
i  Bi)→ 0 for all i = 1, . . . ,M , where the Bnki and the Bi are the cells of

Qnk and Q, respectively.
In the following, we consider quantizers with convex codecells and an input dis-

tribution that is absolutely continuous with respect to the Lebesgue measure on R
n

[20]. We note that such quantizers are commonly used in practice; for cost functions
of the form c(x,u)= ‖x−u‖2 for x,u ∈R

n, the cells of optimal quantizers, if they
exist, will be convex by Lloyd–Max conditions of optimality; see [20] for further
results on convexity of bins for entropy constrained quantization problems.

Theorem 6.8 [63] The set QC(M) is compact under total variation at any in-
put measure P that is absolutely continuous with respect to the Lebesgue measure
on R

n.

We can now state an existence result for optimal quantization.

Theorem 6.9 [63] Let P admit a density function and suppose the goal is to find
the best quantizer Q with M cells minimizing J (P,Q) = infγ E

Q,γ

P c(x,u) under
Assumption A2, whereQ is restricted to QC(M). Then an optimal quantizer exists.

Remark 6.3 Regarding existence results, there have been few studies in the litera-
ture in addition to [63]. The authors of [1] and [41] have considered nearest neighbor
encoding/decoding rules for norm based distortion measures. The L2-norm leads to
convex codecells for optimal design. We also note that the convexity assumption as
well as the atomlessness property of the input measure can be relaxed in a class of
settings, see [1] and Remark 4.9 in [60].
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6.2.3 The Multi-stage Case

6.2.3.1 Static Channel/Coding

We now consider the general stochastic control problem in (6.5) with T stages. It
should be noted that the effect of a control policy applied at any given time-stage
presents itself in two ways, in the cost incurred at the given time-stage and the effect
on the process distribution (and the evolution of the controller’s uncertainty on the
state) at future time-stages. This is known as the dual effect of control [3]. The next
theorem shows the continuity of the optimal cost in the measurement channel under
some regularity conditions.

Definition 6.4 A sequence of channels {Qn} converges to a channel Q uniformly
in total variation if

lim
n→∞ sup

x∈X

∥∥Qn(·|x)−Q(·|x)∥∥T V = 0.

Note that in the special but important case of additive measurement channels,
uniform convergence in total variation is equivalent to the weaker condition that
Qn(·|x)→ Q(·|x) in total variation for each x. When the additive noise is abso-
lutely continuous with respect to the Lebesgue measure, uniform convergence in
total variation is equivalent to requiring that the noise density corresponding to Qn
converges in the L1-sense to the density corresponding to Q. For example, if the
noise density is estimated from n independent observations using any of the L1-
consistent density estimates described in, e.g., [15], then the resulting Qn will con-
verge (with probability one) uniformly in total variation [63].

Theorem 6.10 [63] Consider the cost function (6.5) with arbitrary T ∈N. Suppose
Assumption A2 holds. Then, the optimization problem is continuous in the observa-
tion channel in the sense that if {Qn} is a sequence of channels converging to Q
uniformly in total variation, then

lim
n→∞J (P,Qn)= J (P,Q).

We obtained the continuity of the optimal cost on the space of channels equipped
with a more stringent notion for convergence in total variation. This result and its
proof indicate that further technical complications arise in multi-stage problems.
Likewise, upper semi-continuity under weak convergence and setwise convergence
require more stringent uniformity assumptions. On the other hand, the concavity
property applies directly to the multi-stage case. That is, J (P,Q) is concave in the
space of channels; the proof of this result follows that of Theorem 6.1.

One further interesting problem regarding the multi-stage case is to consider
adaptive observation channels. For example, one may aim to design optimal adap-
tive quantizers for a control problem. We consider this next.
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6.2.3.2 Dynamic Channel and Optimal Vector Quantization

We consider a causal encoding problem where a sensor encodes an observed source
to a receiver with zero-delay. Consider the source in (6.1). The source {xt } to be
encoded is an R

n-valued Markov process. The encoder encodes (quantizes) its in-
formation {xt } and transmits it to a receiver over a discrete noiseless channel with
common input and output alphabet M := {1,2, . . . ,M}, where M is a positive in-
teger, i.e., the encoder quantizes its information.

As in (6.5), for a finite horizon setting the goal is to minimize the cost

Jπ0

(
Πcomp, γ, T

) :=EΠcomp,γ
π0

[
1

T

T−1∑
t=0

c0(xt , ut )

]
, (6.9)

for some T ≥ 1, where c0 :Rn×U→R+ is a (measurable) cost function andEΠπ0
[·]

denotes the expectation with initial state distribution π0 and under the composite
quantization policy Πcomp and receiver policy γ .

There are various structural results for such problems, primarily for control-free
sources; see [25, 27, 49, 52, 53, 58] among others. In the following, we consider
the case with control, which have been considered for finite-alphabet source and
control action spaces in [51] and [27]. The result essentially follows from Witsen-
hausen [53].

Theorem 6.11 [57] For the finite horizon problem, any causal composite quanti-
zation policy can be replaced without any loss in performance by one which, at
time t = 1, . . . , T − 1, only uses, xt and q[0,t−1], with the original control policy
unaltered.

Hereafter, let P(X) denote the space of probability measures on X endowed with
weak convergence. Given a composite quantization policy Πcomp, let πt ∈ P(Rn)
be the conditional probability measure defined by

πt (A) := P(xt ∈A|q[0,t−1])

for any Borel set A. Walrand and Varaiya [52] considered sources taking values in a
finite set, and obtained the essence of the following result. For control-free sources,
the result appears in [58] for Rn-valued sources.

Theorem 6.12 [57] For a finite horizon problem, any causal composite quantiza-
tion policy can be replaced, without any loss in performance, by one which at any
time t = 1, . . . , T − 1 only uses the conditional probability P(dxt−1|q[0,t−1]) and
the state xt . This can be expressed as a quantization policy which only uses (πt , t)
to generate a quantizer Qt : Rn→M, where the quantizer Qt uses xt to generate
the quantization output as qt =Qt(xt ) at time t .
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For any quantization policy in ΠW and any T ≥ 1 we have

inf
γ
Jπ0

(
Πcomp, γ, T

)=EΠcomp

π0

[
1

T

T−1∑
t=0

c(πt ,Qt )

]
,

where

c(πt ,Qt )=
M∑
i=1

inf
u∈U

∫
Q−1
t (i)

πt (dx)c0(x,u).

In the following, we consider the existence problem. However, to facilitate the
analysis we will take the source to be control-free, and assume further structure on
the source process. We have the following assumptions in the source {xt } and the
cost function.

Assumption 6.2

(i) The evolution of the Markov source {xt } is given by

xt+1 = f (xt )+wt, t ≥ 0 (6.10)

where {wt } is an independent and identically distributed zero-mean Gaussian
vector noise sequence and f :Rn→R

n is measurable.
(ii) U is compact and c0 :Rn ×U→R+ is bounded and continuous.

(iii) The initial condition x0 is zero-mean Gaussian.

We note that the class of quantization policies which admit the structure sug-
gested in Theorem 6.12 is an important one. We henceforth define:

ΠW :=
{
Πcomp = {

Q
comp
t , t ≥ 0

} : ∃Υt :P(X)→Q

Q
comp
t

(
Iet
)= (

Υt(πt )
)
(xt ),∀Iet

}
, (6.11)

to represent this class of policies. For a policy in this class, properties of conditional
probability lead to the following expression for πt (dx):∫

πt−1(dxt−1)P (qt−1|πt−1, xt−1)P (xt ∈ dx|xt−1)∫ ∫
πt−1(dxt−1)P (qt−1|πt−1, xt−1)P (xt ∈ dx|xt−1)

.

Here, P(qt−1|πt−1, xt−1) is determined by the quantizer policy. The following fol-
lows from the proof of Theorem 2.5 of [58].

Theorem 6.13 The sequence of conditional measures and quantizers {(πt ,Qt )}
form a controlled Markov process in P(Rn)×Q.

Theorem 6.14 Under Assumption 6.2, an optimal receiver policy exists.
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Proof At any given time an optimal receiver will minimize
∫
P(dxt |q[0,t])c(xt , ut ).

The existence of a minimizer then follows from Theorem 3.1 in [63]. �

LetΠCW be the set of coding policies inΠW with quantizers having convex code-
cells (that is, Qt ∈QC(M)). We have the following result on the existence of opti-
mal quantization policies.

Theorem 6.15 [62] For any T ≥ 1, under Assumption 6.2, there exists a policy in
ΠCW such that

inf
Πcomp∈ΠCW

inf
γ
Jπ0

(
Πcomp, γ, T

)
(6.12)

is achieved. Letting J TT (·)= 0 and

J T0 (π0) := min
Πcomp∈ΠCW ,γ

Jπ0

(
Πcomp, γ, T

)
,

the dynamic programming recursion

T JTt (πt )= min
Q∈QC(M)

(
c(πt ,Qt )+ T E

[
J Tt+1(πt+1)|πt ,Qt

])
holds for all t = 0,1, . . . , T − 1.

We note that also for optimal multi-stage vector quantization, [8] has obtained
existence results for an infinite horizon setup with discounted costs under a uniform
boundedness assumption on the reconstruction levels.

6.2.3.3 The Linear Quadratic Gaussian (LQG) Case

There is a large literature on jointly optimal quantization for the LQG problem dat-
ing back to early 1960s (see, for example, [23] and [13]). References [2, 7, 17,
18, 31, 38, 48], and [57] considered the optimal LQG quantization and control, with
various results on the optimality or the lack of optimality of the separation principle.

For controlled Markov sources, in the context of Linear Quadratic Gaussian
(LQG) systems, existence of optimal policies has been established in [57] and [60],
where it has been shown that without any loss, the control actions can be decoupled
from the performance of the quantization policies, and a result similar to Theo-
rem 6.15 for linear systems driven by Gaussian noise leads to the existence of an
optimal quantization policy.

Structural results with control have also been studied by Walrand and Varaiya
[51] in the context of finite control and action spaces and by Mahajan and Teneketzis
[27] for control over noisy channels, also for finite state-action space settings.
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6.2.3.4 Case with Noisy Channels with Noiseless Feedback

The results presented in this section apply also to coding over discrete memoryless
(noisy) channels (DMCs) with feedback. The equivalent results of Theorems 6.11
and 6.12 apply with q ′t terms replacing qt , if q ′t is the output of a DMC at time t , as
we state in the following.

In this context, let πt ∈ P(X) to be the regular conditional probability measure
given by πt (·) = P(xt ∈ ·|q ′[0,t−1]), where q ′t is the channel output when the input
is qt . That is, πt (A)= P(xt ∈A|q ′[0,t−1]),A ∈ B(X).

Theorem 6.16 [60] Any composite encoding policy can be replaced, without any
loss in performance, by one which only uses xt and q ′[0,t−1] at time t ≥ 1 to generate
the channel input qt .

Theorem 6.17 [60] Any composite quantization policy can be replaced, without
any loss in performance, by one which only uses the conditional probability measure
πt (·)= P(xt ∈ ·|q ′[0,t−1]), the state xt , and the time information t , at time t ≥ 1 to
generate the channel input qt .

Remark 6.4 When there is no feedback from the controller, or when there is noisy
feedback, the analysis requires a Markov chain construction in a larger state space
under certain conditions on the memory update rules at the decoder. We refer the
reader to [26, 49], and [25] for a class of such settings.

6.3 Problem P2: Characterization of Information Channels
for Stabilization

In this section, we consider the stabilization problem over communication channels.
The goal will be to identify conditions so that the controlled state is stochastically
stable in the sense that

• {xt } is asymptotically mean stationary (AMS) and satisfies the requirements of
Birkhoff’s sample path ergodic theorem. This may also include the condition that
the controlled (and possibly sampled) state and encoder parameters have a unique
invariant probability measure.

• limT→∞ 1
T

∑T−1
t=0 |xt |2 exists and is finite almost surely (this will be referred to

as quadratic stability).

There is a very large literature on this problem. Particularly related references
include [11, 28–30, 32, 37, 42, 43, 45, 46, 54, 55, 59]. In the context of discrete
channels, many of these papers considered a bounded noise assumption, except no-
tably [30, 36, 37, 55, 64], and [56]. We refer the reader to [32] and [60] for a detailed
literature review.

In this section, we will present a proof program developed in [55] and [64] for
stochastic stabilization of Markov chains with event-driven samplings applied to
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networked control. Toward this end, we will first review few results from the theory
of Markov chains. However, we first will establish fundamental bounds on informa-
tion requirements for stabilization.

6.3.1 Fundamental Lower Bounds for Stabilization

We consider a scalar LTI discrete-time system and then later in Sect. 6.3.6 the multi-
dimensional case. Here, the scalar system is described by

xt+1 = axt + but +wt, t ≥ 0 (6.13)

where xt is the state at time t , ut is the control input, the initial state x0 is a zero-
mean second order random variable, and {wt } is a sequence of zero-mean i.i.d.
Gaussian random variables, also independent of x0. We assume that the system
is open-loop unstable and controllable, that is, |a| ≥ 1 and b 
= 0. This system is
connected over a noisy channel with a finite capacity to a controller, as shown in
Fig. 6.1, with the information structures described in Sect. 6.1.

We consider first memoryless noisy channels (in the following definitions, we
assume feedback is not present; minor adjustments can be made to capture the case
with feedback).

Definition 6.5 A Discrete Memoryless Channel (DMC) is characterized by a dis-
crete input alphabet M, a discrete output alphabet M′, and a conditional probabil-
ity mass function P(q ′|q), from M×M′ to R which satisfies the following. Let
q[0,n] ∈Mn+1 be a sequence of input symbols, let q ′[0,n] ∈M′n+1 be a sequence

of output symbols, where qk ∈M and q ′k ∈M′ for all k and let Pn+1
DMC denote the

joint mass function on the (n + 1)-tuple input and output spaces. It follows that
Pn+1

DMC(q
′[0,n]|q[0,n]) =

∏n
k=0PDMC(q

′
k|qk), ∀q[0,n] ∈Mn+1, q ′[0,n] ∈M′n+1, where

qk, q
′
k denote the kth component of the vectors q[0,n], q ′[0,n], respectively.

Channels can also have memory. We state the following for both discrete and
continuous-alphabet channels.

Definition 6.6 A discrete channel (continuous channel) with memory is character-
ized by a sequence of discrete (continuous) input alphabets Mn+1, discrete (con-
tinuous) output alphabets Mn+1, and a sequence of regular conditional probability
measures Pn(dq ′[0,n]|q[0,n]), from Mn+1 to M′n+1.

In this chapter, while considering discrete channels, we will assume channels
with finite alphabets.

Remark 6.5 Another setting involves continuous-alphabet channels. Such channels
can be regarded as limits of discrete-channels: Note that the mutual information for
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real valued random variables x, y is defined as

I (x;y) := sup
Q1,Q2

I
(
Q1(x);Q2(y)

)
,

where Q1 and Q2 are quantizers with finitely many bins (see Chap. 5 in [19]). As
a consequence, the discussion for discrete channels applies for continuous alphabet
channels. On the other hand, the Gaussian channel is a very special channel which
needs to be considered in its own right, especially in the context of linear quadratic
Gaussian (LQG) systems and problems. A companion chapter deals with such chan-
nels, see [65], as well as [60].

Theorem 6.18 [56] Suppose that a linear plant given as in (6.13) controlled over a
DMC, under some admissible coding and controller policies, satisfies the condition

lim inf
T→∞

1

T
h(xT )≤ 0, (6.14)

where h denotes the entropy function. Then, the channel capacity C must satisfy

C ≥ log2

(|a|).
Remark 6.6 Condition (6.14) is a weak one. For example, a stochastic process
whose second moment grows subexponentially in time, namely,

lim inf
T→∞

log(E[x2
T ])

T
≤ 0,

satisfies this condition.

We now present a supporting result due to Matveev.

Proposition 6.3 [30] Suppose that a linear plant given as in (6.13) is controlled
over a DMC. If

C < log2
(|a|),

then

lim sup
T→∞

P
(|xT | ≤ b(T ))≤ C

log2(|a|)
,

for all b(T ) > 0 such that limT→∞ 1
T

log2(b(T ))= 0

We note that similar characterizations have also been considered in [29, 43], and
[32], for systems driven by bounded noise.
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Theorem 6.19 [60] Suppose that a linear plant given as in (6.13) is controlled over
a DMC. If, under some causal encoding and controller policy, the state process is
AMS, then the channel capacity C must satisfy

C ≥ log2
(|a|).

In the following, we will observe that the condition C ≥ log2(|a|) in Theo-
rems 6.18 and 6.19 is almost sufficient as well for stability in the AMS sense. Fur-
thermore, the result applies to multi-dimensional systems. Toward this goal, we first
discuss the erasure channel with feedback (which includes the noiseless channel
as a special case), and then consider more general DMCs, followed by a class of
channels with memory. We will also investigate quadratic stability. We discuss an
essential ingredient in the proof program next.

6.3.2 Stochastic Stability and Random-Time State-Dependent Drift
Approach

Let X = {xt , t ≥ 0} denote a Markov chain with state space X. Assume that the
state space is a complete, separable, metric space, whose Borel σ -field is denoted
B(X). Let the transition probability be denoted by P , so that for any x ∈ X, A ∈
B(X), the probability of moving from x to A in one step is given by P(xt+1 ∈ A |
xt = x)= P(x,A). The n-step transitions are obtained via composition in the usual
way, P(Xt+n ∈ A | Xt = x)= Pn(x,A), for any n ≥ 1. The transition law acts on
measurable functions f : X→R and measures μ on B(X) via

Pf (x) :=
∫
X

P(x, dy)f (y), x ∈X,

μP (A) :=
∫
X

μ(dx)P (x,A), A ∈ B(X).

A probability measure π on B(X) is called invariant if πP = π . That is,∫
π(dx)P (x,A)= π(A), A ∈ B(X).

For any initial probability measure ν on B(X) we can construct a stochastic pro-
cess with transition law P , and satisfying x0 ∼ ν. We let Pν denote the resulting
probability measure on the sample space, with the usual convention ν = δx when the
initial state is x ∈ X. When ν = π , then the resulting process is stationary. A com-
prehensive treatment of Markov chains can be found in [35].

Throughout this subsection, the sequence of stopping times {Ti : i ∈ N+} is as-
sumed to be non-decreasing, with T0 = 0, measurable on the filtration generated by
the state process. Additional assumptions are made in the results that follow.
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Before proceeding further, we note that a set A ⊂ X is μ-small on (X,B(X))
if for some n, and some positive measure μ, Pn(x,B) ≥ μ(B),∀x ∈ A, and
B ∈ B(X). A small set leads to the construction of an accessible atom and to an in-
variant probability measure [35]. In many practical settings, compact sets are small;
sufficient conditions on when a compact set is small has been presented in [60]
and [35].

Theorem 6.20 [64] Suppose that X is a ϕ-irreducible and aperiodic Markov
chain. Suppose moreover that there are functions V : X→ (0,∞), δ : X→[1,∞),
f : X→[1,∞), a small set C and a constant b ∈R, such that the following hold:

E
[
V (φTz+1)

∣∣FTz
]≤ V (φTz )− δ(φTz )+ b1{φTz∈C},

E

[Tz+1−1∑
k=Tz

f (φk) |FTz

]
≤ δ(φTz ), z≥ 0.

(6.15)

Then the following hold:

(i) φ is positive Harris recurrent, with unique invariant distribution π
(ii) π(f ) := ∫

f (φ)π(dφ) <∞
(iii) For any function g that is bounded by f , in the sense that supφ |g(φ)|/f (φ) <

∞, we have convergence of moments in the mean, and the Law of Large Num-
bers holds:

lim
t→∞Eφ

[
g(φt )

]= π(g),
lim
N→∞

1

N

N−1∑
t=0

g(φt )= π(g) a.s., φ ∈X.

This theorem will be important for the stability analysis to follow.

6.3.3 Noiseless and Erasure Channels

We begin with erasure channels (which contain discrete noiseless channels as a
special case), before discussing more general noisy channels. Before discussing the
multi-dimensional case in Sect. 6.3.3.2, we first discuss the scalar version described
by (6.13).

The details of the erasure channel are specified as follows: The channel source
consists of state values from R. The source output is, as before, quantized. We con-
sider the following uniform quantizer class. A modified uniform quantizer QΔK :
R→ R with step size Δ and K + 1 (with K even) number of bins satisfies the
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Fig. 6.2 A modified uniform quantizer. There is a single overflow bin

following for k = 1,2 . . . ,K (see Fig. 6.2):

QΔK(x)=

⎧⎪⎨
⎪⎩
(k − 1

2 (K + 1))Δ if x ∈ [(k − 1− 1
2K)Δ, (k − 1

2K)Δ),

( 1
2 (K − 1))Δ if x = 1

2KΔ,

0 if x /∈ [− 1
2KΔ,

1
2KΔ].

(6.16)

where we have M = {1,2, . . . ,K + 1}. The quantizer–decoder mapping thus
described corresponds to a uniform quantizer with bin size Δ. The interval
[−K/2,K/2] is termed the granular region of the quantizer, and R \ [−K/2,K/2]
is named the overflow region of the quantizer (see Fig. 6.2). We will refer to this
quantizer as a modified uniform quantizer, since the overflow region is assigned a
single bin.

The quantizer outputs are transmitted through a memoryless erasure channel,
after being subjected to a bijective mapping, which is performed by the channel
encoder. The channel encoder maps the quantizer output symbols to corresponding
channel inputs q ∈M := {1,2, . . . ,K + 1}. A channel encoder at time t , denoted
by Et , maps the quantizer outputs to M such that Et (Qt (xt ))= qt ∈M.

The controller/decoder has access to noisy versions of the encoder outputs for
each time, which we denote by {q ′} ∈M∪ {e}, with e denoting the erasure symbol,
generated according to a probability distribution for every fixed q ∈M. The channel
transition probabilities are given by

P
(
q ′ = i|q = i)= p, P

(
q ′ = e|q = i)= 1− p, i ∈M.

At each time t ≥ 0, the controller/decoder applies a mapping Dt :M∪ {e}→R,
given by

Dt
(
q ′t
)= E−1

t

(
q ′t
)× 1{q ′t 
=e} + 0× 1{q ′t=e}.

Let {Υt } denote a binary sequence of i.i.d. random variables, representing the
erasure process in the channel, where the event Υt = 1 indicates that the signal is
transmitted with no error through the channel at time t . Let p = E[Υt ] denote the
probability of success in transmission.

The following key assumptions are imposed throughout this section: Given
K ≥ 2 introduced in the definition of the quantizer, define the rate variables

R := log2(K + 1), R′ = log2(K). (6.17)
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We fix positive scalars δ,α satisfying

|a|2−R′ < α < 1 (6.18)

and

α
(|a| + δ)p−1−1

< 1. (6.19)

We consider the following update rules. For t ∈ Z+ and with Δ0 ∈R selected arbi-
trarily, consider

ut =−a
b
x̂t ,

x̂t =Dt
(
q ′t
)= ΥtQΔtK (xt ),

Δt+1 =ΔtQ̄
(
Δt,

∣∣∣∣ xt

Δt2R
′−1

∣∣∣∣,Υt
)
.

(6.20)

Here, Q̄ :R×R× {0,1}→R is defined below, where L> 0 is a constant;

Q̄(Δ,h,p) = |a| + δ if |h|> 1, or p = 0,

Q̄(Δ,h,p) = α if 0≤ |h| ≤ 1, p = 1, Δ > L,

Q̄(Δ,h,p) = 1 if 0≤ |h| ≤ 1, p = 1, Δ≤ L.

The update equations above imply that

Δt ≥ Lα =: L′. (6.21)

Without any loss of generality, we assume that L′ ≥ 1.
We note that given the channel output q ′t 
= e, the controller can simultaneously

deduce the realization of Υt and the event {|ht | > 1}, where ht := xt

Δt2R
′−1 . This

is due to the fact that if the channel output is not the erasure symbol, the controller
knows that the signal is received with no error. If q ′t = e, however, then the controller
applies 0 as its control input and enlarges the bin size of the quantizer. As depicted
in Fig. 6.1, the encoder has access to channel outputs, that is, there is noiseless
feedback.

Lemma 6.3 Under (6.20), the process (xt ,Δt ) is a Markov chain.

Proof The system’s state evolution can be expressed

xt+1 = axt − ax̂t +wt,
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where x̂t = ΥtQΔtK (xt ). It follows that the process (xt ,Δt ) evolves as a nonlinear
state space model:

xt+1 = a
(
xt −ΥtQΔtK (xt )

)+wt,
Δt+1 =ΔtQ̄

(
Δt,

∣∣∣∣ xt

2R′−1Δt

∣∣∣∣,Υt
)
.

(6.22)

in which (wt ,Υt ) is i.i.d. Thus, the pair (xt ,Δt ) forms a Markov chain. �

Let for a Borel set S, τS = inf(k > 0 : (xk,Δk) ∈ S) and Ex,Δ,P(x,Δ) denote the
expectation and probabilities conditioned on (x0,Δ0)= (x,Δ).

Proposition 6.4 [64] If (6.18)–(6.19) hold, then there exists a compact setA×B ⊂
R

2 satisfying the recurrence condition

sup
(x,Δ)∈A×B

Ex,Δ[τA×B ]<∞

and the recurrence condition P(x,Δ)(τA×B <∞)= 1 for any admissible (x,Δ).

A result on the existence and uniqueness of an invariant probability measure is
the following. It basically establishes irreducibility and aperiodicity, which leads to
positive Harris recurrence, by Proposition 6.4.

Theorem 6.21 [64] For an adaptive quantizer satisfying (6.18)–(6.19), suppose
that the quantizer bin sizes are such that their base-2 logarithms are integer mul-
tiples of some scalar s, and log2(Q̄(·)) takes values in integer multiples of s. Then
the process (xt ,Δt ) forms a positive Harris recurrent Markov chain. If the integers
taken are relatively prime (that is they share no common divisors except for 1), then
the invariant probability measure is independent of the value of the integer multi-
plying s.

We note that the (Shannon) capacity of such an erasure channel is given by
log2(K + 1)p [12]. From (6.18)–(6.19), the following is obtained.

Theorem 6.22 If log2(K)p > log2(|a|), then α, δ exist such that Theorem 6.21 is
satisfied.

Remark 6.7 Thus, the Shannon capacity of the erasure channel is an almost suf-
ficient condition for the positive Harris recurrence of the state and the quantizer
process. We will see that under a more generalized interpretation of stationarity, this
result applies to a large class of memoryless channels and a class of channels with
memory as to be seen later in this chapter (see Theorem 6.27): There is a direct re-
lationship between the existence of a stationary measure and the Shannon capacity
of the channel used in the system.
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Under slightly stronger conditions we obtain a finite second moment:

Theorem 6.23 [64] Suppose that the assumptions of Theorem 6.21 hold, and in
addition the following bound holds:

a2
(

1− p+ p

(2R − 1)2

)
< 1. (6.23)

Then, for each initial condition, limt→∞E[x2
t ] =Eπ [x2

0 ]<∞.

Remark 6.8 We note from Minero et al. [36] that a necessary condition for mean
square stability is a2(1 − p + p

(2R)2
) < 1. Thus, the sufficiency condition in The-

orem 6.23 almost meets this bound except for the additional symbol sent for the
under-zoom events. We note that the average rates can be made arbitrarily close
to zero by sampling the control system with larger periods. Such a relaxation of
the sampling period, however, would lead to a process which is not Markov, yet
n-ergodic, quadratically stable, and asymptotic mean stationary (AMS).

6.3.3.1 Connections with Random-Time Drift Criteria

We point out the connection of the results above with random-time drift criteria in
Theorem 6.20.

By Lemma 6.3, the process (xt ,Δt ) forms a Markov chain. Now, in the model
considered, the controller can receive meaningful information regarding the state
of the system when two events occur concurrently: the channel carries information
with no error, and the source lies in the granular region of the quantizer, that is,
xt ∈ [− 1

2KΔt,
1
2KΔt) and Υt = 1. The times at which both of these events occur

form an increasing sequence of random stopping times, defined as

T0 = 0, Tz+1 = inf
{
k > Tz : |hk| ≤ 1,Υk = 1

}
, z ∈N.

We can apply Theorem 6.20 for these stopping times. These are the times when
information reaches the controller regarding the value of the state when the state is
in the granular region of the quantizer. The following lemma is key:

Lemma 6.4 The discrete probability measure P(Tz+1− Tz = k | xTz ,ΔTz ) has the
upper bound

P(Tz+1 − Tz ≥ k | xTz ,ΔTz )≤ (1− p)k−1 +Gk(ΔTz ),

where Gk(ΔTz )→ 0 as ΔTz→∞ uniformly in xTz .

In view of Lemma 6.20, first without an irreducibility assumption, we can es-
tablish recurrence of the set Cx × Ch by defining a Lyapunov function of the form
V (xt ,Δt )= 1

2 log2(Δ
2)+B0 for some B0 > 0. One can establish the irreducibility
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of the Markov chain by imposing a countability condition on the set of admissi-
ble bin sizes. A similar discussion, with a quadratic Lyapunov function, applies for
finite moment analysis.

6.3.3.2 The Multi-dimensional Case

The result for the scalar problem has a natural counterpart in the multi-dimensional
setting. Consider the linear system described by

xt+1 =Axt +But +Gwt, (6.24)

where xt ∈ R
N is the state at time t , ut ∈ R

m is the control input, and {wt } is a
sequence of zero-mean i.i.d. Rd -valued Gaussian random vectors. Here A is the
square system matrix with at least one eigenvalue greater than or equal to 1 in mag-
nitude, that is, the system is open-loop unstable. Furthermore, (A,B) and (A,G)
are controllable pairs. We also assume at this point that the eigenvalues are real,
even though the extension to the complex case is primarily technical. Without any
loss of generality, we assume A to be in Jordan form. Because of this, we allow
wt to have correlated components, that is, the correlation matrix E[wtwTt ] is not
necessarily diagonal. We also assume that B is invertible (if B is not invertible, a
sampled system can be made to have an invertible control matrix, with a periodic
scheme with period at most n).

We restrict the analysis to noiseless channel in this section. The scheme pro-
posed in the previous section is also applicable to the multi-dimensional setup. Sta-
bilizability for the diagonalizable case immediately follows from the discussion for
scalar systems, since the analysis for the scalar case is applicable to each of the sub-
systems along each of the eigenvectors. The possibly correlated noise components
will lead to the recurrence analysis discussed earlier. For such a setup, the stopping
times can be arranged to be identical for each modes, for the case when the quan-
tizer captures all the state components. Once this is satisfied, the drift conditions
will be obtained. The non-diagonalizable Jordan case, however, is more involved, as
we discuss now.

Consider the following system:

[
x1
t+1

x2
t+1

]
=
[
λ 1

0 λ

][
x1
t

x2
t

]
+B

[
u1
t

u2
t

]
+
[
w1
t

w2
t

]
. (6.25)

The approach entails quantizing the components in the system according to
the adaptive quantization rule provided earlier for scalar systems: For i = 1,2, let
R′ = R′i = log2(2

Ri − 1) = log2(Ki) (that is, the same rate is used for quantizing
the components with the same eigenvalue). For t ≥ 0 and with Δ1

0,Δ
2
0 ∈ R, con-
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Fig. 6.3 A uniform vector quantizer. There is a single overflow bin

sider:

ut =−B−1Ax̂t ,[
x̂1
t

x̂2
t

]
=
⎡
⎣QΔ1

t

K1
(x1
t )

Q
Δ2
t

K2
(x2
t )

⎤
⎦ , (6.26)

Δ1
t+1 =Δ1

t Q̄
(∣∣h1

t

∣∣, ∣∣h2
t

∣∣,Δ1
t

)
, Δ2

t+1 =Δ2
t Q̄

(∣∣h1
t

∣∣, ∣∣h2
t

∣∣,Δ2
t

)
, (6.27)

with, for i = 1,2, δi, εi, ηi > 0, ηi < εi and Li > 0 such that

Q̄(x, y,Δ) = |λ| + δi if |x|> 1, or |y|> 1,

Q̄(x, y,Δ) = |λ|
2R

′
i − ηi if 0≤ |x| ≤ 1, |y| ≤ 1, Δi > Li,

Q̄(x, y,Δ) = 1 if 0≤ |x| ≤ 1, |y| ≤ 1, Δi ≤ Li.

Note that the above imply that Δit ≥ Li |λ|
2R
′
i−ηi

=: L′i . We also assume that

for some sufficiently large ηΔ, Δ1
0 = ηΔΔ2

0, which leads to the result that
Δ1
t = ηΔΔ2

t for all t ≥ 0. See Fig. 6.3 for a depiction of the quantizer used
at a particular time. The sequence of stopping times is now defined as fol-
lows:

T0 = 0, Tz+1 = inf
{
k > Tz :

∣∣hik∣∣≤ 1, i ∈ {1,2, . . . , n}}, z ∈ Z+,
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where hik = xit

Δit2
R′
i
−1

. Here Δi is the bin size of the quantizer in the direction of the

eigenvector xi , with rate R′i .
With this approach, the drift criterion applies almost identically as it does for the

scalar case.

Theorem 6.24 [21, 60] Consider the multi-dimensional system (6.24). If the system
is controlled over a discrete-noiseless channel with capacity

C >
∑
|λi |>1

log2
(|λi |),

there exists a stabilizing scheme leading to a Markov chain with a bounded second
moment in the sense that lim supt→∞E[|xt |22]<∞.

Extensions of such settings also apply to systems with decentralized multiple
sensors. We refer the reader to [22] and [60].

6.3.4 Stochastic Stabilization over Noisy Channels with Noiseless
Feedback

In this subsection, we consider discrete noisy channels with noiseless feedback. We
first investigate Discrete Memoryless Channels (DMCs).

6.3.4.1 Asymptotic Mean Stationarity and n-Ergodicity

The condition C ≥ log2(|a|) in Theorem 6.18 is almost sufficient for establishing
ergodicity and stability, as captured by the following discussion.

Consider the following update algorithm. Let n be a given block length. Consider
a class of uniform quantizers, defined by two parameters, with bin size Δ> 0, and
an even number K(n) ≥ 2 (see Fig. 6.1). Define the uniform quantizer as follows:
For k = 1,2 . . . ,K(n),

QΔK(n)(x)=

⎧⎪⎨
⎪⎩
(k − 1

2 (K(n)+ 1))Δ if x ∈ [(k − 1− 1
2K(n))Δ, (k − 1

2K(n))Δ),

( 1
2 (K(n)− 1))Δ if x = 1

2K(n)Δ,

Z if x /∈ [− 1
2K(n)Δ,

1
2K(n)Δ],

where Z is the overflow symbol in the quantizer. Let {x : QΔK(n)(x) 
= Z} be the
granular region of the quantizer.

At every sampling instant t = kn, k = 0,1,2, . . . , the source coder E st quantizes
output symbols in R∪{Z} to a set M(n)= {1,2, . . . ,K(n)+1}. A channel encoder
Ect maps the elements in M(n) to corresponding channel inputs q[kn,(k+1)n−1] ∈
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Mn. For each time t = kn− 1, k = 1,2,3, . . . , the channel decoder applies a map-
ping Dtn :M′n→M(n) such that

c′(k+1)n−1 =Dkn
(
q ′[kn,(k+1)n−1]

)
.

Finally, the controller runs an estimator

x̂kn =
(
E skn

)−1(
c′(k+1)n−1

)× 1{c′
(k+1)n−1 
=Z} + 0× 1{c′

(k+1)n−1=Z}.

Hence, when the decoder output is the overflow symbol, the estimation output is 0.
As in the previous two chapters, at time kn the bin size Δkn is taken to be a

function of the previous state Δ(k−1)n and the past n channel outputs. Further, the
encoder has access to the previous channel outputs, thus making such a quantizer
implementable at both the encoder and the decoder.

With K(n) > !|a|n�, R = log2(K(n)+ 1), let us introduce R′(n)= log2(K(n))

and let

R′(n) > n log2

( |a|
α

)
,

for some α,0 < α < 1 and δ > 0. When clear from the context, we will drop the
index n in R′(n). We will consider the following update rules in the controller ac-
tions and the quantizers. For t ≥ 0 and with Δ0 >L for some L ∈R+, and x̂0 ∈R,
consider, for t = kn, k ∈N,

ut =−1{t=(k+1)n−1}
an

b
x̂kn,

Δ(k+1)n =ΔknQ̄
(
Δkn, c

′
(k+1)n−1

)
,

(6.28)

where c′ denotes the decoder output variable. If we use δ > 0 and L> 0 such that

Q̄
(
Δ,c′

)= (|a| + δ)n if c′ =Z,

Q̄
(
Δ,c′

)= αn if c′ 
=Z, Δ≥ L,
Q̄
(
Δ,c′

)= 1 if c′ 
=Z, Δ < L,

(6.29)

we can show that a recurrent set exists. Note that the above implies thatΔt ≥ Lαn =:
L′ for all t ≥ 0.

Thus, we have three main events: When the decoder output is the overflow sym-
bol, the quantizer is zoomed out (with a coefficient of (|a|+ δ)n). When the decoder
output is not the overflow symbol Z , the quantizer is zoomed in (with a coefficient
of αn) if the current bin size is greater than or equal to L, and otherwise the bin size
does not change.

In the following, we make the quantizer bin size process space countable and as
a result establish the irreducibility of the sampled process (xtn,Δtn).

Theorem 6.25 [56] For the existence of a compact coordinate recurrent set, the
following is sufficient: The channel capacity C satisfies: C > log2(|a|).
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Theorem 6.26 For an adaptive quantizer satisfying the conditions of Theo-
rem 6.25, suppose that the quantizer bin sizes are such that their logarithms are
integer multiples of some scalar s, and log2(Q̄(·)) takes values in integer multiples
of s. Suppose the integers taken are relatively prime (that is they share no common
divisors except for 1). Then the sampled process (xtn,Δtn) forms a positive Harris
recurrent Markov chain at sampling times on the space of admissible quantizer bins
and state values.

Theorem 6.27 [56] Under the conditions of Theorems 6.25 and 6.26, the pro-
cess {xt ,Δt } is n-stationary, n-ergodic, and hence asymptotically mean stationary
(AMS).

Proof Sketch The proof follows from the observation that a positive Harris recurrent
Markov chain is recurrent and stationary and that if a sampled process is a positive
Harris recurrent Markov chain, and if the intersampling time is fixed, with a time-
homogeneous update in the inter-sampling times, then the process is mixing, n-
ergodic and n-stationary. �

Remark 6.9 Converse Results for Quadratic Stability For quadratic stability, that
is, the condition that limT→∞ 1

T

∑T−1
t=0 |xt |2, exists and is finite almost surely; more

restrictive conditions are needed and Shannon capacity is not sufficient (see [43]
and [56]). We note that for erasure channels and noiseless channels, one can obtain
tight converse theorems using Theorem 6.18 (see [36] and [64]). For general DMCs,
however, a tight converse result on quadratic stabilizability is not yet available. One
reason for this is that the error exponents of fixed length block codes with noiseless
feedback for general DMCs are not currently known. It is worth noting that the
error exponent of DMCs is typically improved with feedback, unlike the capacity
of DMCs. Some partial results have been reported in [16] (e.g., the sphere packing
upper bound is tight for a class of symmetric channels for rates above a critical rate
even with feedback). Related references addressing partial results include [33] and
[34] which consider lower bounds on estimation error moments for transmission
of a single variable over a noisy channel (in the context of this chapter, this single
variable may correspond to the initial state x0). A further related notion for quadratic
stability is the notion of any-time capacity introduced by Sahai and Mitter (see [42]
and [43]). Further discussion on this topic is available in [60] and [59].

6.3.5 Channels with Memory and Noiseless Feedback

Definition 6.7 Channels are said to be of Class A type, if

• They satisfy the following Markov chain condition:

q ′t ↔ qt , q[0,t−1], q ′[0,t−1] ↔ {x0,wt , t ≥ 0},
for all t ≥ 0, and
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• Their capacity with feedback is given by

C = lim
T→∞ max

{P(qt |q[0,t−1],q ′[0,t−1]), 0≤t≤T−1}
1

T
I
(
q[0,T−1] → q ′[0,T−1]

)
,

where the directed mutual information is defined by

I
(
q[0,T−1] → q ′[0,T−1]

)= T−1∑
t=1

I
(
q[0,t];q ′t |q ′[0,t−1]

)+ I(q0;q ′0
)
.

DMCs naturally belong to this class. For DMCs, feedback does not increase the
capacity [12]. Such a class also includes finite state stationary Markov channels
which are indecomposable [39], and non-Markov channels which satisfy certain
symmetry properties [44]. Further examples can be found in [47] and in [14].

Theorem 6.28 [56] Suppose that a linear plant given by (6.13) is controlled over
a Class A type noisy channel with feedback. If the channel capacity (with feedback)
is less than log2(|a|), then (i) the following condition

lim inf
T→∞

1

T
h(xT )≤ 0,

cannot be satisfied under any policy, and (ii) the state process cannot be AMS under
any policy.

Remark 6.10 The result above is negative, but one can also obtain a positive result:
If the channel capacity is greater than log2(|a|) and there is a positive error exponent
(uniform over all transmitted messages, as in Theorem 14 of [39]), then there exists
a coding scheme leading to an AMS state process provided that the channel restarts
itself with the transmission of every new block (either independently or as a Markov
process). We also note that if the channel is not information stable, then information
spectrum methods lead to pessimistic realizations of capacity (known as the lim inf
in probability of the normalized information density, see [47, 50]).

6.3.6 Higher-Order Plants

The result for the scalar problem has a natural counterpart in the multi-dimensional
setting. Consider the linear system described by (6.24). In the following, we assume
that all eigenvalues {λi,1 ≤ i ≤ N} of A are unstable, that is, have magnitudes
greater than or equal to 1. There is no loss here since if some eigenvalues are stable,
by a similarity transformation, the unstable modes can be decoupled from the stable
ones and one can instead consider a lower dimensional system; stable modes are
already recurrent.
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Theorem 6.29 [60] For such a system controlled over a Class A type noisy channel
with feedback, if the channel capacity (with feedback) satisfies

C <
∑
i

log2
(|λi |),

there does not exist a stabilizing coding and control scheme with the property

lim inf
T→∞

1

T
h(xT )≤ 0.

Proposition 6.5 [60] For such a system controlled over a Class A type noisy chan-
nel with feedback, if

C < log2
(|A|),

then

lim sup
T→∞

P
(|xT | ≤ b(T ))≤ C

log2(|A|)
> 0,

for all b(T ) > 0 such that limT→∞ 1
T

log2(b(T ))= 0.

With this lemma, we state the following.

Theorem 6.30 [60] Consider such a system controlled over a Class A type noisy
channel with feedback. If there exists some encoding and controller policy so that
the state process is AMS, then the channel capacity (with feedback) C must satisfy

C ≥ log2
(|A|).

For sufficiency, we will assume that A is a diagonalizable matrix (a sufficient con-
dition for which is that its eigenvalues are distinct real).

Theorem 6.31 [56] Consider a multi-dimensional system with a diagonalizable
matrix A. If the Shannon capacity of the DMC used in the controlled system satisfies

C >
∑
|λi |>1

log2
(|λi |),

there exists a stabilizing scheme in the AMS sense.

On achievability of AMS stabilization over channels with memory, the discus-
sions in Remark 6.10 also apply for this setting.

Remark 6.11 Theorem 6.31 can be extended to the case where the matrix A is not
diagonalizable, in the same spirit as in Theorem 6.24, by constructing stopping times
in view of the coupling between modes sharing a common eigenvalue [60].
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6.4 Conclusion

In this chapter, we considered the optimization of information channels in net-
worked control systems. We made the observation that quantizers can be viewed
as a special class of channels and established existence results for optimal quanti-
zation and coding policies. Comparison of information channels for optimization
has been presented. On stabilization, the relation between ergodicity and Shannon
capacity has been discussed.

The value of information channels in optimization and control problems require
further analysis. Particularly, further research from the information theory commu-
nity for optimal non-asymptotic or finite delay coding will lead to useful applica-
tions in networked control. Error exponents with fixed block-length and feedback is
currently an unresolved problem, which may lead to converse theorems for quadratic
stabilization over noisy communication channels.
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Part III
Information in Networks

Information in networks is the focus of very active current research. It is well known
that information does not generally behave like a conservative fluid flow in commu-
nication networks with multiple sources and sinks. This phenomenon is even more
pronounced in distributed computing systems whereby decentralized units perform
computations and dynamically exchange information through a communication net-
work. Another topic of great interest is Markov random fields, i.e., undirected graph-
ical models describing spatial dependencies among countable sets of random vari-
ables. This third part of the book collects three contributions in these fields.

In Chap. 7, Nair addresses the question of whether there is a nontrivial class of
network topologies for which associating separate data streams with each source–
sink pair, with only routing and no coding performed at the network nodes, does
not cause any loss of optimality. The chapter considers possibly cyclic, directed,
errorless networks with n source–sink pairs and mutually independent source sig-
nals. The concept of downward dominance is introduced and it is shown that, if the
network topology is downward dominated, then the achievability of a given combi-
nation of source signals and channel capacities implies the existence of a feasible
multicommodity flow.

In Chap. 8, Elia et al. take the unifying view of systems interacting over com-
munication networks as distributed computing systems and propose to study them
as networked control systems. First, the chapter points out how a popular and well-
behaved algorithm for distributed averaging can instead generate a collective global
complex behavior when the inter-agent communication happens over unreliable
links. Then, to mitigate the effects of the unreliable information exchange, the au-
thors propose a new distributed averaging algorithm robust to noise and intermittent
communication. The algorithm and the control perspective are the basis for the de-
velopment of new distributed optimization systems that we can analyze and design
as networked control systems.

Finally, Chap. 9 by Sedghi and Jonckheere discusses a problem of fast detection
of faulty events and false data injection in the smart grid. The authors’ approach
is based on modeling the phasor measurement units as a Gaussian Markov random
field, and performing a conditional covariance test.



Chapter 7
Structural Routability of n-Pairs Information
Networks

Girish N. Nair

7.1 Introduction

In an n-pairs or multiple unicast communication network, n source signals must
be conveyed to their corresponding sinks without exceeding any channel capacities.
Until quite recently, the belief was that this was possible iff there existed a rout-
ing solution, i.e., if every symbol generated by a source could be carried without
modification, over channels and through network nodes, until it reached the sink.
At a macroscopic level, this is equivalent to presuming the existence of a feasible
multicommodity flow [12].

However, in [2, 16], an example was constructed of a 2-pairs communication
network that did not admit a routing solution, but became admissible if nodes could
perform modulo-2 arithmetic on incoming bits. This counter-intuitive result started
the field of network coding, in which nodes are permitted to not just route incoming
symbols, but also to perform causal functions on them, so as to better exploit the
network structure and the available channel capacities.

It is now known that the capacity regions for n-pairs networks are not generally
given by feasible multicommodity flows. In [1], n-pairs networks were constructed
with coding capacity much larger than the routing capacity. Other related work in-
cludes [9], in which a necessary and sufficient condition for broadcasting correlated
sources over erroneous channels was found, and [13], in which linear network cod-
ing was shown to achieve capacity for a multicast network.

Notwithstanding the power of network codes, routing/multicommodity flow so-
lutions are appealing in several respects. Most obviously they are simpler because
network nodes are not required to perform extra mathematical operations on arriving
bits. In addition, because different data streams are not ‘hashed’ together by means
of some function, there is arguably less potential for cross-talk between different

A short, preliminary version without proofs was presented in the conference paper [14].
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source–sink pairs, arising, for instance, from nonidealities during implementation in
the physical layer. For similar reasons, routing may be preferred over network cod-
ing if security and privacy are important. Furthermore, being able to treat informa-
tion as a conservative fluid flow could potentially provide a simple basis to analyze
communication requirements in areas outside traditional multiterminal information
theory, e.g., networked feedback control and multi-agent coordination/consensus
problems—see, e.g., [3].

These considerations raise the natural questions of whether there is a general
class of network topologies on which achievability is always equivalent to the exis-
tence of a feasible multicommodity flow. This chapter aims to answer this questions
for possibly cyclic, directed, errorless networks with n source–sink pairs and mu-
tually independent source signals, where the goal is to reconstruct source-signals
perfectly at their respective sinks. The structural concept of downward dominance
(Definition 7.8) is introduced, and the main result (Theorem 7.2) is that if the net-
work topology is downward dominated then the existence of an achievable combi-
nation of source signals and channel capacities always implies the existence of a
feasible multicommodity flow.

The proof relies on the iterative construction of an entropically feasible mul-
ticommodity flow (Definition 7.10). As downward dominance inheres solely in
the topology of the network, this result suits situations where channels, switches,
transceivers and interfaces are expensive to set up and difficult to move, or where
channel capacities and source-signal statistics are unknown. On these structures,
information can always be treated like a flow of conservative, immiscible fluids.

Downward dominance is a more general condition than the notion of ‘triangular-
isability’ that was introduced in the conference version [14] of this chapter. While
it is not generally easy to verify in arbitrary n-pairs networks, Lemmas 7.2 and 7.3
give simpler, sufficient conditions for it to hold. Several examples are then provided
in Sect. 7.6 to illustrate the applicability of Theorem 7.2 to various directed cyclic
and acyclic examples, including cycles [10, 11], trees and trees of cycles, among
others.

Although downward dominance is sufficient to guarantee that routing can always
achieve the full coding capacity of a network, it is not necessary. For instance, bidi-
rectional cycles can be shown to not be downward dominant, but routing achieves
coding capacity on them [15]. The important question of finding a more general—or
even tight—structural condition remains open. In the concluding section, potential
directions for future work are outlined.

7.1.1 Notation and Basic Terminology

For convenience, the basic notation and terminology used in this chapter are de-
scribed below.

• The set of nonnegative integers (i.e., whole numbers) is denoted by W, the set of
positive integers (i.e. natural numbers) by N, and the set of positive reals by R>0.
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• A contiguous set {i, i + 1, . . . , j} of integers is denoted [i : j ].
• Other sets are usually written in boldface type.
• Random variables (rvs) are written in upper case and their realizations are indi-

cated in corresponding lower case.
• The set operation A \B denotes A∩Bc.
• A discrete-time random signal or process (F (k))∞k=0 is denoted F , and the finite

sequence (F (k))tk=s is denoted F(s : t).
• Given a subscripted rv or signal Fj , with j belonging to a countable set J, FJ

denotes the tuple (Fj )j∈J, arranged according to the order on J.
• The entropy of a discrete-valued rv E is denoted H[E] ≥ 0, and the conditional

entropy of E given another rv F is H[E|F ] :=H[E,F ] −H[F ].
• The mutual information between rvs E and F is denoted I[E;F ] := H[E] −

H[E|F ] ≥ 0, and the conditional mutual information between rvs E and F given
G is denoted I[E;F |G] :=H[E|G] −H[E|F,G].

• If E and F are random processes and E is discrete-valued, then the entropy rates
of E, and the conditional entropy rate of E given (past and present) F are respec-
tively defined as

H∞[E] := lim
t→∞

H[E(0 : t)]
t + 1

,

H∞[E] := lim
t→∞

H[E(0 : t)]
t + 1

,

H∞[E|F ] := lim
t→∞

H[E(0 : t)|F(0 : t)]
t + 1

,

• If E,F and G are random processes, then the mutual information rates of E
and F , and the conditional mutual information rate of E and F given (past and
present) G are respectively defined as

I∞[E;F ] := lim
t→∞

I[E(0 : t);F(0 : t)]
t + 1

,

I∞[E;F ] := lim
t→∞

I[E(0 : t);F(0 : t)]
t + 1

,

I∞[E;F |G] := lim
t→∞

I[E(0 : t);F(0 : t)|G(0 : t)]
t + 1

.

• A directed graph (digraph) (V,A) consists of a set V of vertices, and a set A of
arcs that each represent a directed link between a particular pair of vertices.

• The initial vertex of an arc is called its tail and the terminal vertex, its head.
• A walk in a digraph is an alternating sequence ω= (ν1, α1, ν2, α2, . . . , αk, νk+1),
k ≥ 0, of vertices and arcs, beginning and ending in vertices s.t. each arc αl con-
nects the vertex νl to νl+1. Each vertex νj and arc αl in the sequence is said to be
in the walk; with a minor abuse of notation, this is denoted νj ∈ ω.
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• A path is a walk with no loops, i.e., it passes through no vertex more than once,
including the initial one.

• An undirected path is an alternating sequence ω = (ν1, α1, ν2, α2, . . . , αk, νk+1),
k ≥ 0, of vertices and arcs, beginning and ending in vertices s.t. no vertex is
repeated and each arc αl connects the vertex νl to νl+1, or νl+1 to νl .

• A cycle is a walk in which the initial and final vertices are identical, but every
other vertex occurs once.

• A subpath of a path (ν1, α1, ν2, α2, . . . , αk, νk+1) is a segment (νl, αl, νl+1, . . . , νj )

of it, where 1≤ l ≤ j ≤ k + 1.
• A vertex ν is said to be reachable from another vertex μ, denoted μ� ν, if ∃ a

path leading from μ to ν. Equivalently, it is said that μ can reach ν. The same
terminology and notation apply, with analogous meaning, for pairs of arcs as well
as mixed pairs of arcs and vertices. For example, given an arc β , μ� β means
that there is a path from the vertex μ to the tail of β .

• Similarly, a (vertex or arc) set W is said to be reachable from another set U,
denoted U � W, if there is an element of W that is reachable from an element of
U; equivalently, it is said that U can reach W.

• For any vertex set U⊆V, ARCS(U)⊆A is the set of arcs with tails in U.
• The notation OUT(U) (IN(U)) represents the set of arcs in A that have tails (resp.,

heads) in a vertex set U⊆ V and heads (tails) ∈ V \U. If OUT(U) (IN(U)) con-
sists of a single arc, this arc is denoted out(U) (in(U)). When U is a singleton
{μ}, the braces are omitted.

7.2 Problem Formulation

A network of unidirectional, point-to-point channels may be modeled using a di-
graph (V,A), where the vertex set V represents information sources, sinks, re-
peaters, routers, etc., and the arc set A indicates the directions of any channels be-
tween nodes. As usual with digraphs, it is assumed that no arc leaves and enters the
same vertex, and that at most one arc leads from the first to the second element of
any given ordered pair of vertices. In other words, every arc in A may be uniquely
identified with a tuple (μ, ν) ∈V2, with μ 
= ν.1 It is also assumed that the digraph
is connected, i.e., there is an undirected path between any distinct pair of vertices.

In an n-pairs information network, the locations of sources and sinks are respec-
tively represented by disjoint sets S= {σ1, . . . , σn} and T= {τ1, . . . , τn} of distinct
vertices in V, with each source σi aiming to communicate to exactly one sink τi .
It is assumed that σi � τi . Let P denote the sequence ((σi, τi))ni=1 of source–sink
pairs, arranged in a specified order. Without loss of generality, it is assumed that ev-
ery source (sink) has no in-coming (resp., out-going) arcs and exactly one out-going

1Such digraphs are sometimes called simple.
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(in-coming) arc.2 The boundary ∂V of the network is the set S ∪ T of source and
sink vertices, and its interior is int V :=V \ ∂V.

Each channel in the network can transfer bits errorlessly up to a maximum av-
erage rate, as specified by a positive arc-capacity cα ∈ R>0. In some situations, it
may be natural to assign infinite capacity to certain arcs,3 and the set of all such arcs
is denoted A∞ ⊂ A. In particular, the arcs leaving sources are by convention as-
signed infinite capacity. The set of finite-capacity arcs is written Af =A \A∞, with
associated arc-capacity vector c := (cα)α∈Af ∈ R

|Af|
>0 . The structure of the n-pairs

information network is defined as the tuple Σ = (V,Af,A∞,P).
The communication signals in the network are represented by a vector S ≡

(Sα)α∈A of discrete-valued random processes called arc signals. In particular, the
arc signals leaving sources and entering sinks respectively represent the exogenous
inputs to and outputs from the network. For convenience, the input signal Sout(σi )
generated by the ith source σi ∈ S is called Xi , and the output signal Sin(τi ) entering
the ith sink τi ∈ T is called Yi . It is assumed throughout this chapter that the signals
X1, . . . ,Xn are mutually independent processes with strictly positive entropy rates
H∞[Xi]> 0.

The arc-signal vector S is assumed to have the following property:

Definition 7.1 (Setwise Causality and Signal Graphs) An arc-signal vector S is
called setwise causal on a structure Σ = (V,Af,A∞,P) if all arc signals leaving
vertices in any internal vertex-set U⊆ int V are causally determined by those enter-
ing U from outside it. That is, ∀U⊆ int V, ∃ an operator gU s.t.

SARCS(U)(t)= gU
(
t, SIN(U)(0 : t)

)
, ∀t ∈W, (7.1)

where ARCS(U)⊆A denotes the set of arcs leaving vertices of U.
The tuple (Σ,S) is then called a signal graph.

Remark Setwise causality is a strengthened version of the basic concept of well-
posedness [17] in feedback control theory. In a well-posed feedback system, the
current values of all internal and output signals are uniquely determined by the past
and present values of external inputs.4 Setwise causality essentially imposes an anal-
ogous condition on any subcollection of nodes and associated signals, treated as a
system. In acyclic digraphs (i.e., in which every walk is a path), it is equivalent
to causality at every internal vertex. However, feedback signals may be present in
cyclic digraphs, in which case vertex-wise causality cannot guarantee (7.1) without
further assumptions, e.g., a positive time-delay at every vertex.

2If a source or sink were actually connected to multiple nodes in the network, it would be rep-
resented in the digraph by an auxiliary vertex connected by an arc (of infinite capacity) with a
multiply-connected vertex.
3For instance, when a single network node is represented as two ‘virtual’ vertices connected by an
arc of unbounded capacity.
4In the linear, time-invariant context of [17], this is equivalent to the corresponding transfer func-
tions being well-defined and proper.
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In the n-pairs network problem studied here, the objective is for each sink to per-
fectly reconstruct each source signal, block-by-block, using only causal operations
and without exceeding any arc-capacities. This leads to the following definition:

Definition 7.2 (Achievability) Consider an n-pairs information network with struc-
ture Σ , source-signal vector X and arc-capacity vector c ∈ R

|Af|
>0 . The tuple

(Σ,X, c) is called achievable if ∃ a setwise-causal arc-signal vector S (Defini-
tion 7.1) and a positive integer m ∈N s.t.

Sout(σi ) =Xi, ∀i ∈ [1 : n], (7.2)

Yi(km− 1)=Xi
(
(k − 1)m : km− 1

)
, ∀k ∈N, i ∈ [1 : n], (7.3)

H∞[Sα] ≤ cα, ∀α ∈Af. (7.4)

Such an S is called a solution to the n-pairs information network problem (Σ,X, c).
The arc-capacity vector c is called achievable on (Σ,X) and (X, c) is called achiev-
able on Σ .

Remarks This differs from standard formulations of network coding in several re-
spects. For instance, in [2, 5, 7, 11] and most of [10], the inequalities (7.4) are
replaced by bounds either on the cardinalities of channel alphabets, or on block-
coding rates over a period of time. In addition, in previous formulations, the sinks
typically must reconstruct the source signals either perfectly and instantaneously
[5, 7, 10], which corresponds to setting m= 1 in (7.3), or else with arbitrarily small
probability of decoding error over blocks of sufficiently large length m [2, 11].

In this work, bounds are imposed directly on entropies, as in [10, Sect. VIII], in
order to focus on the information-theoretic aspects of the problem. Errorless recon-
struction is demanded so as to enable the graphical characterization of informational
dominance from [10] to be used with very minor changes. However, perfect recon-
struction is not required instantaneously in (7.3), but only in blocks of length m.
This allows a solution S to be interpreted operationally in terms of variable bit-rate
codes.5 It is conjectured that the results in this chapter also apply if (7.3) is relaxed
so that Yi is causally determined by Xi , with H∞[Yi]> 0.

Finally, note that in articles on acyclic networks such as [5, 7], each source emits
a vector of common dimension k and each channel carries a vector of identical
dimension n, with all components taken from the same discrete alphabet. If k = n
a solution is said to exist and if k = n= 1, the solution is called scalar; otherwise,

5In other words, if S solves (Σ,X, c), then there exist variable bit-rate codes for each arc that yield
errorless, block-by-block reconstruction of the source-signals at their sinks, with expected bit-
rates at worst negligibly larger than arc-capacities. Conversely, if there exists a distributed entropy
coding scheme that achieves perfect reconstruction of source-signals at their sinks in blocks of
length m, and with expected bit-rates no larger than the arc-capacities, then this yields a solution S
as defined above. However, these operational interpretations will not be used in this article.
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if k 
= n the solution is called fractional. The definition above is more general, and
also applies to cyclic networks.

As mentioned in the introduction, it was once thought that a network was achiev-
able6 iff it admitted a routing solution. In the present context, this is equivalent to
presuming the existence of an (X, c)-feasible multicommodity flow, i.e., of a non-
negative tuple f = (fα,j )α∈A,j∈[1:n] ∈R

|A|n
≥0 , of bit-rates on each arc associated with

every source–sink pair, s.t.

n∑
j=1

fα,j ≤ cα, ∀α ∈Af (capacity bound), (7.5)

fin(τj ),j = fout(σj ),j =H∞[Xj ], ∀j ∈ [1 : n] (supply equals demand),
(7.6)∑

α∈IN(ν)

fα,j =
∑

α∈OUT(ν)

fα,j (conservation of flow), (7.7)

for any j ∈ [1 : n] and ν ∈ V \ ({σj } ∪ {τj }). Via an explicit counterexample, the
article [2] showed that this intuitive notion was incorrect, i.e., that although the
existence of a feasible multicommodity flow is sufficient for achievability, it is not
generally necessary. This laid the foundations for (linear) network coding, in which
nodes are permitted to not just route incoming bits, but also to combine them using
(linear) functions.

Nonetheless, routing/multicommodity-flow solutions have certain virtues, as dis-
cussed in Sect. 7.1. This chapter poses the question: Is there a general class of n-
pairs information network structuresΣ in which the achievability of (X, c) is equiv-
alent to the existence of an (X, c)-feasible multicommodity flow f (7.5)–(7.7)?

Any n-pairs information network structure Σ can support (X, c)-feasible multi-
commodity flows if the arc-capacities are sufficiently larger than the source entropy
rates, provided each sink is reachable from its source. However, there are exam-
ples of structures on which an (X, c)-feasible multicommodity flow does not exist
if arc-capacities are reduced, even though (X, c) is still achievable (see Sect. 7.6).

The aim of this chapter is to isolate certain structural properties that ensure
routability over all achievable combinations of (X, c). Such properties would in-
here solely in Σ , suiting situations in which channels, switches, transceivers and
interfaces are expensive to set up and difficult to move, and/or where channel ca-
pacities and source-signal statistics are variable or unknown.

7.3 Preliminary Notions

Before proceeding, several existing graph-theoretic notions are needed. Throughout
this section, Σ = (V,A,P)≡ (V,Af,A∞,P) is the structure of an n-pairs informa-

6Ignoring differences in the definition of achievability.
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tion network as described in Sect. 7.2, and Γ = (Σ,S) is its setwise-causal signal
graph (Definition 7.1), with source- and sink-signal vectors X and Y .

First, some largely familiar concepts are revisited. A (directed, acyclic) path in
Σ that goes from a source σi to its sink τi is called here an i-path, and the set of
all i-paths, an i-bundle. Given a set J ⊆ [1 : n], the set of all i-paths with i ∈ J is
called a J-bundle (not the same as the set of σJ � τJ-paths, which contains it). Let
(VJ,AJ) denote the subgraph formed by all the vertices and arcs in the J-bundle.
In particular, (Vi ,Ai ) is the subgraph formed by the i-bundle. A vertex set U⊂ Vi

such that σi ∈U and τi /∈U is called an i-cut.
The following concepts are adapted from [10], with minor changes in terminol-

ogy.

Definition 7.3 (Indirect i-Walks—Based on [10]) An indirect i-walk (ii-walk) ω
is an alternating sequence (α1, β1, . . . , αj−1, βj−1, αj ) of forward- and reverse-
oriented paths in the n-pairs structure Σ such that

1. α1 begins with the ith source vertex σi ;
2. Both α� and β� end with the same vertex μ�, ∀� ∈ [1 : j − 1];
3. Both β� and α�+1 begin from the same source vertex, ∀� ∈ [1 : j − 1];
4. αj ends with the sink vertex τi ; and
5. Every arc and vertex in ω can reach τi .

An ii-walk ω is said to bypass an arc-set C if no arc in ω lies in C.

Remarks Note that the fifth condition above is equivalent to the requirement that
each joint vertex μ� reaches τi , ∀� ∈ [1 : j − 1].

An ii-walk as defined above is, in the terminology of [10], an indirect walk from
out(σi) to in(τi) in a subgraph G(∅, i). Similarly, an ii-walk that bypasses C is an
indirect walk from out(σi) to in(τi) in a subgraph G(C, i); if such a bypass exists,
then Yi is not always fully determined by SC, even if all i-paths go through C. See
Fig. 3 and [10, Definitions 10–11].

Indirect i-walks are related to the concept of fd-separation [11]. In particular,
if SC fd-separates Xi and Yi for any setwise causal S (Definition 7.1), then all
ii-walk’s pass through C; that is, an ii-walk that bypasses C corresponds to an
undirected path between Xi and Yi in a functional dependence subgraph GXi,SC,Yi

constructed according to the procedure in [11].
However, the converse is not generally true, i.e., ‘ii-separation’ is a less stringent

requirement. This is because paths connecting Xi and Yi in GXi,SC,Yi do not have
to satisfy an analogue of the fifth condition, which arises from the requirement that
each sink reproduce its source signal with perfect fidelity. For this to be possible, it
turns out that each joint vertex μ� in an ii-walk must be able to reach τi .

Put another way, requiring SC to fd-separate Xi and Yi is equivalent to requiring
that (a) C be an i-cut, and (b) for each j 
= i, either all σj � τi -paths (if any) bypass
C, or all pass through it. Under ii-separation, (a) must still hold, but (b) is relaxed:
a source σj can have a path π to τi that bypasses C as well as another that passes
through C, provided that π is not the last leg of an ii-walk that bypasses C.
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Definition 7.4 (Structural Dominance—Based on [10]) For any arc-set B ⊆ A in
an n-pairs network, SDOM(B) is the smallest arc-set C⊆ A that satisfies the con-
ditions below:

1. C⊇ B
2. out(σi) ∈C iff in(τi) ∈C
3. If α ∈A is downstream from C—i.e., all paths from sources to the tail of α pass

through C—then α ∈C.
4. If all indirect i-walks (Definition 7.3) pass through C then out(σi), in(τi) ∈C.

The arcs in SDOM(B) are said to be structurally dominated by B.

Remarks Note that SDOM(B) is the smallest such arc-set in the sense of being
contained by every C⊆A that satisfies criteria 1–4.

As noted in [8, pp. 199–200], SDOM(B) can be constructed by setting C = B,
letting T=A \B 
= ∅ be the set of arcs to be tested, and then following this greedy
algorithm:

(i) Pick any arc α ∈ T.
(ii) If α satisfies any of the conditions 2–4 in Definition 7.4, update C← C ∪ {α}

and then T←A \C; else keep C the same and update T← T \ {α}.
(iii) If T= ∅ then exit; else go to step (i).

The final set C is then SDOM(B). However, the following lemma gives two quicker
conditions for guaranteeing that a specific arc lies in SDOM(B).

Lemma 7.1 (Based on [10])

1. If an arc α ∈A is downstream from B, then α ∈ SDOM(B).
2. If all indirect i walks (Definition 7.3) pass through B then out(σi), in(τi) ∈

SDOM(B).

Proof If either of these criteria hold, then the relevant arcs—α, out(σi), in(τi)—
must lie inside any arc-set C that satisfies the conditions 1–4 in Definition 7.4. As
SDOM(B) is such a set, the lemma follows. �

The significance of structural dominance arises from the following result:

Theorem 7.1 (Informational Dominance—Based on [10]) Consider any arc α ∈
A and arc-set B ⊆ A in an n-pairs network with structure Σ . If α ∈ SDOM(B)
(Definition 7.4), then for any setwise causal arc-signal vector S (Definition 7.1) and
positive integer m ∈N that satisfy (7.2) and (7.3), ∃ a function γ such that

Sα(0 : km)= γ
(
k,SB(0 : km)

)
, ∀k ∈N. (7.8)

Conversely, if for any setwise causal S that meets (7.2)–(7.3) with block-length
m there is a function γ ensuring that (7.8) holds, then α ∈ SDOM(B).
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Remarks The property specified in (7.8) is a version of the concept of informational
dominance [10]; the important of this result lies in giving this functional concept a
purely structural characterization. The proof follows similar lines as that of Theo-
rem 10 in [10] and is omitted. Minor differences are that m is not constrained to
be 1 here, and that cyclic networks are handled using the notion of setwise causal-
ity (Definition 7.1), rather than by introducing channel delays and ‘unrolling’ the
network over time to yield an infinite directed acyclic graph.

7.4 Main Result

The main result of this chapter is presented in this section. In order to do so, several
nonstandard graph-theoretic notions are needed. The reader is referred to Sect. 7.6
for examples that illustrate these notions. Recall again that Σ = (V,A,P) ≡
(V,Af,A∞,P) is the structure of an n-pairs information network as described in
Sect. 7.2, and Γ = (Σ,S) is its setwise-causal signal graph (Definition 7.1), with
source- and sink-signal vectors X and Y .

Definition 7.5 (J-Disjointness) Given an index set J⊆ [1 : n], an arc set B⊆ A is
J-disjoint if each path in the J-bundle passes through at most one arc in B.

If J= {i} for some i ∈ [1 : n], then B is called i-disjoint.

Remarks It is easy to see that empty and singleton arc-sets are automatically J-
disjoint, that every B ⊆ A is ∅-disjoint, and that every subset of a J-disjoint set
inherits its J-disjointness. With a little effort, it can also be shown that J-disjoint arc-
sets satisfy the ‘augmentation’ property. Thus J-disjoint sets form a finite matroid
on A.

Structural dominance (Definition 7.4) and [1 : i]-disjointness are next used to
define nested families of arc-sets with certain structural properties. These properties
are needed later to inductively extract entropically feasible multicommodity flows
(Definition 7.10). First, for any arc-set E ⊆ A and h ∈ [1 : n] define the source-
augmented set

E∗h := E∪OUT(σJh−1∪[h+1:n]), Jh−1 ≡ {
j ∈ [1 : h− 1] : E∩Aj = ∅}. (7.9)

That is, E is augmented by those source-arcs that either have indices greater than h
or that have indices less than h but no source-sink paths going through E.

Definition 7.6 (i-Downward Dominated Sets) For each i ∈ [1 : n], the family Di
consists of all arc sets E⊆A such that

1. E is [1 : i]-disjoint (Definition 7.5), and
2. For each h ∈ [1 : i], either the h-bundle does not touch E, i.e. E ∩ Ah = ∅, or

else the source-augmented arc-set E∗h (7.9) structurally dominates the source-
arc out(σh) (Definition 7.4).
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Every member-set of Di is called i-downward dominated.

Remark Clearly, every Di -set is also in Di−1.

The next concept describes a class of i-cuts that have a special structure:

Definition 7.7 (Viable i-Cuts) Given an index i ∈ [1 : n], an i-cut U⊂Vi is called
viable under the following conditions:

1. Every arc leaving U in the i-bundle is finite-capacity, i.e., OUT(U)∩Ai ⊆Af.
2. There is an i-path that leaves U without re-entering.
3. Each arc in OUT(U)∩Ai lies in an i-path that either exits U without re-entering

or else lies in the [1 : i − 1]-bundle.
4. Every vertex ν ∈U lies on an undirected path π from σi to ν such that

(a) All vertices before ν on π are in U, and
(b) Every reverse-oriented arc in π (i.e. pointing from ν to σi ) lies on an i-path

that does not re-enter U.

Remark Viable i-cuts correspond to possible min-cuts in a residual capacitated di-
graph that is used to prove the main result of this chapter (Theorem 7.2). Further
investigation of these min-cuts may yield other structural properties to add to the
list above; however, this is left for future work.

Definition 7.8 (Downward Dominance) A structure Σ is called downward dom-
inated if for each i ∈ [2 : n] and viable i-cut U (Definition 7.7), the set Oi =
OUT(U) ∩ Ai of outgoing arcs in the i-bundle satisfies the following two condi-
tions:

1. Oi ∈Di−1 (Definition 7.6), and
2. The source-augmented arc-set Oi∗i (7.9) structurally dominates the source-arc

out(σi) (Definition 7.4).

Remark Note that 1-pair structures are automatically downward dominated, since
the conditions above become empty.

A sequence of simpler and increasingly restrictive sufficient conditions for down-
ward dominance can also be found by exploiting Lemma 7.1:

Lemma 7.2 (Simpler Condition 1) Suppose that for each i ∈ [2 : n] and viable
i-cut U ⊂ Vi (Definition 7.7), the arc-set Oi = OUT(U) ∩ Ai ⊆ Af satisfies the
following conditions:

1. Oi is [1 : i − 1]-disjoint (Definition 7.5), and
2. For each index h ∈ [1 : i] for which there is a h-path that passes through Oi ,

i.e., Oi ∩Ah 
= ∅, all indirect h-walks (Definition 7.3) pass through the source-
augmented arc-set Oi∗h (7.9).
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Then Σ is downward dominated (Definition 7.8).

Proof Follows immediately from applying Lemma 7.1 to Definitions 7.6 and 7.4. �

Lemma 7.3 (Simpler Condition 2) Suppose that for each i ∈ [2 : n] and viable
i-cut U ⊂ Vi (Definition 7.7), the arc-set Oi = OUT(U) ∩ Ai ⊆ Af satisfies the
following conditions:

1. Oi is [1 : i − 1]-disjoint (Definition 7.5).
2. For every h ∈ [1 : i] and s ∈ [1 : h] such that Oi ∩Ah and Oi ∩As 
= ∅, all paths

from σs to τh pass through Oi .

Then Σ is downward dominated (Definition 7.8).

Proof Let Oi ∩ Ah 
= ∅ for some h ∈ [1 : i]. It is asserted that all indirect h-walks
(Definition 7.3) must pass through Oi∗h.

To see this, suppose in contradiction that there is an indirect h-walk ω that does
not pass through Oi∗h ≡ Oi ∪ OUT(σJh−1∪[h+1:n]), where Jh−1 ≡ {j ∈ [1 : h− 1] :
Oi ∩Aj = ∅}. Let σs be the last source vertex in ω, and let π be the subpath from σs
to τh. Clearly, s /∈ Jh−1 ∪ [h+ 1 : n]. In addition, s 
= h, since otherwise ω reduces
to a path from σh to τh, which by the second condition above must pass through
Oi ⊆Oi∗h.

Thus s ∈ [1 : h− 1] \ Jh−1, i.e. Oi ∩As 
= ∅. By the second condition above, all
σs � τh-paths must then pass through Oi . As π is such a path, the indirect h-walk
ω, of which it is a part, passes through Oi ⊆Oi∗h, yielding a contradiction.

The result then follows from Lemma 7.2. �

Lemma 7.4 (Simpler Condition 3) Suppose that for each i ∈ [2 : n] and every
viable i-cut U⊂Vi (Definition 7.7), there is exactly arc in Oi =OUT(U)∩Ai ⊆Af.

Furthermore, suppose that for each h ∈ [1 : i] and s ∈ [1 : h] such that Oi ∩Ah

and Oi ∩As 
= ∅, all paths from σs to τh pass through Oi , or none of them do.
Then Σ is downward dominated (Definition 7.8).

Proof Observe that Oi consists of a single arc α. Thus the first condition of
Lemma 7.3 is trivially satisfied. To show that its second condition is also met, sup-
pose that Oi ∩Ah,Oi ∩As 
= ∅ for some h ∈ [1 : i], s ∈ [1 : h]. Thus α is on both
an s-path and a h-path. Let π1 be the subpath of the s-path from σs to the tail
of α and π2, the subpath of the h-path from the head of α to τh. Then the con-
catenation π1απ2 is a σs � τh-path that passes through Oi . By the all-or-nothing
condition above, all σs � τh-paths then pass through Oi . The result then follows
from Lemma 7.3. �

Remark It is often easier to check the conditions above on all i-cuts U having finite-
capacity outgoing arcs in the i-bundle, rather than trying to identify the ones that are
also viable.
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The main result of this chapter can now be stated:

Theorem 7.2 (Downward Dominance ⇒ Structural Routability) If there is an
ordering of the source–sink pairs in an n-pairs network so that the structure Σ
is downward dominated (Definition 7.8), then the achievability of (X, c) (Defini-
tion 7.2) implies the existence of an (X, c)-feasible multicommodity flow (7.5)–(7.7).

Conversely, if X is stationary and there exists an (X, c)-feasible multicommodity
flow with (7.5) holding in strict form, then (Σ,X, c) is achievable. %

Remarks This result defines a non-trivial class of directed network structures for
which achievability is essentially equivalent to the existence of a feasible multicom-
modity flow. On these structures, information can indeed be treated like an incom-
pressible, immiscible fluid flow.

The proof of Theorem 7.2 is given in the next section. In Sect. 7.6, several net-
work examples are discussed to illustrate the applicability of Theorem 7.2.

7.5 Proof of Theorem 7.2

In both the proofs of necessity and sufficiency, use will be made of the fact that
∀i ∈ [1 : n], any single-commodity flow q from σi to τi in the structure Σ can
be decomposed into a superposition of i-path flows and cycle flows (see, e.g., [4,
Theorem 3.3.1]). That is, if π1,i , . . . , πpi ,i are the distinct i-paths and γ1, . . . , γg ,
the distinct cycles, then ∃ numbers u1,i , . . . , up,i ≥ 0 and w1,i , . . . ,wg,i ≥ 0 s.t.

qα =
∑

1≤k≤pi :πk,i&α
uk,i +

∑
1≤l≤g:γl&α

wl,i . (7.10)

If wl,i = 0 for all l ∈ [1 : g], then the flow q is called acyclic.
The proof of sufficiency in Sect. 7.5.2 is relatively straightforward. Given an

(X, c)-feasible multicommodity flow f (7.5)–(7.7) on Σ , the decomposition (7.10)
is used directly to devise a routing solution S.

The proof of necessity in Sect. 7.5.1 is more difficult and involves induction,
using the following building blocks.

Definition 7.9 (J-Flow) Given an index set J ⊆ [1 : n], a nonnegative tuple f =
(fα,j )α∈A,j∈J ∈ R

|A||J|
≥0 is called a J-flow on the structure Σ if ∀j ∈ J and ν ∈ V \

{σj } ∪ {τj }, ∑
α∈IN(ν)

fα,j =
∑

α∈OUT(ν)

fα,j (j -flow conservation), (7.11)

As a convention, the ∅-flow is defined as the empty sequence ().
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Remark A J-flow is a (possibly infeasible) multicommodity flow with source-sink
pairs (σj , τj ), j ∈ J. If each j -flow fA,j is acyclic, ∀j ∈ J, then f is called an
acyclic J-flow.

The next concept is central to the proof of necessity. It defines a class of feasible
[1 : i]-flows that obey certain information-theoretic bounds when only the signals
Xj , j ∈ [1 : i], need to be communicated.

Definition 7.10 (Entropic Feasibility) Given i ∈ [1 : n] and a solution S to
(Σ,X, c) (Definition 7.2), a [1 : i]-flow f ∈R

|A|i
≥0 (Definition 7.9) is called entropi-

cally feasible if it satisfies the following conditions:

(i) On every arc α ∈Af,

i∑
j=1

fj,α ≤ cα. (7.12)

(ii) On any i-downward dominated arc set B (Definition 7.6),∑
α∈B,j∈[1:i]

fα,j ≤H∞[SB|XJi∪[i+1:n]], (7.13)

where Ji = {j ∈ [1 : i] : B∩Aj = ∅}.
(iii) On arcs entering sinks and leaving sources,

fin(τj ),j = fout(σj ),j =H∞[Xj ], ∀j ∈ [1 : i]. (7.14)

Remarks Note that the ∅-flow is entropically feasible, since the condition (7.14)
disappears and (7.13) is trivially satisfied due to a zero left-hand side (LHS).

The proof of necessity in the next section proceeds by constructing an entropi-
cally feasible [1 : n]-flow on (Σ, c,S), which automatically gives the desired (X, c)-
feasible multicommodity flow (7.5)–(7.7).

7.5.1 Necessity Proof for Theorem 7.2

Let the arc-signal vector S be a solution (Definition 7.2) to the n-pairs information
network problem (Σ,X, c). An entropically feasible [1 : n]-flow (Definition 7.10)
f n will be constructed, using upward induction.

Let Σ be downward dominated (Definition 7.8) and suppose that f i−1 =
(fα,j )α∈A,j∈[1:i−1] ∈ R

|A|(i−1)
≥0 is an entropically feasible, acyclic [1 : i − 1]-flow

for some i ∈ [1 : n], noting that the ∅-flow f 0 is entropically feasible. An i-flow
(fα,i)α∈A ∈ R

|A|
≥0 will be constructed in such a way that f i ∈ R

|A|i
≥0 will be an en-

tropically feasible, acyclic [1 : i]-flow.
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On any arc α ∈A, let

rα :=
{
cα −∑i−1

j=1 fα,j if α ∈Af,

∞ if α ∈A∞ ≡A \Af
(7.15)

be the residual capacity after subtracting the relevant components of f i−1. Note

that rα
(7.12)≥ 0 since f i−1 is an entropically feasible [1 : i − 1]-flow. The next step

is to find an acyclic i-flow (Definition 7.9) q ∈ R
|A|
≥0 from σi � τi that is a) ≤ the

residual capacity on each arc, and b) ≥ H∞[Xi] on the arc entering τi . There are
two mutually exclusive cases to consider.

7.5.1.1 1st Case: ∃ an i-Path with No Finite-Capacity Arcs

Denote this i-path by πe, noting that rα =∞, ∀α ∈ πe by the second line of (7.15).
Set the i-path flows as

uk =
{

H∞[Xi] if k = e,
0 otherwise,

∀k ∈ [1 : p], (7.16)

and the cycle flows equal to zero in the decomposition (7.10) (dropping the i-
subscripts), so that

qα
(7.10)=

∑
1≤k≤p:πk&α

uk, ∀α ∈A. (7.17)

Evidently q is acyclic and meets the residual capacity constraint on all arcs in A.
Furthermore, since every i-path passes through the single arc entering τi ,

qin(τi )
(7.17)=

∑
1≤k≤p

uk
(7.16)= ue =H∞[Xi], (7.18)

satisfying the conditional information constraint.

7.5.1.2 2nd Case: Every i-Path Has One or More Finite-Capacity Arcs

Observe first that for any arc set B⊆A,

∑
β∈B

cβ
(7.4)≥

∑
β∈B

H∞[Sβ ] ≡
∑
β∈B

lim
t→∞

H[Sβ(0 : t)]
t + 1

≥ lim
t→∞

1

t + 1

∑
β∈B

H
[
Sβ(0 : t)

]≥ lim
t→∞

H[SB(0 : t)]
t + 1

≡H∞[SB] (7.19)

≥H∞[SB|XJi−1∪[i+1:n]] (7.20)
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= lim
t→∞

(
H[SB(0 : t)|XJi−1∪[i+1:n](0 : t)] −H[SB(0 : t)|XJi−1∪[i:n](0 : t)]

t + 1

+ H[SB(0 : t)|XJi−1∪[i:n](0 : t)]
t + 1

)

= lim
t→∞

(
I[SB(0 : t);Xi(0 : t)|XJi−1∪[i+1:n](0 : t)]

t + 1

+ H[SB(0 : t)|XJi−1∪[i:n](0 : t)]
t + 1

)

≥ I∞[Xi;SB|XJi−1∪[i+1:n]] +H∞[SB|XJi−1∪[i:n]]
= I∞[Xi;SB,XJi−1∪[i+1:n]] +H∞[SB|XJi−1∪[i:n]], (7.21)

where (7.19) is due to the subadditivity of joint entropy, (7.20) holds because con-
ditioning cannot increase entropy, and (7.21) arises from the mutual independence
of X1, . . . ,Xn.

Now, consider the residual capacitated digraph (Vi ,Ai , rAi ) formed by the i-
bundle.7 Let q be an acyclic maximal flow on it under the constraints

0≤ qα ≤ rα, ∀α ∈Ai . (7.22)

By the Max-Flow Min-Cut Theorem (see, e.g., [4, Theorem 3.5.3]) ∃ an i-cut U⊂
Vi , consisting of every vertex ν ∈ Vi for which ∃ an undirected path π in (Vi ,Ai )
from σi to ν s.t.

• (Forward Slack) Every forward-oriented arc α in π (i.e., pointing from σi to ν)
has qα < rα , and

• (Backward Flow) Every backward-oriented arc α in π (pointing from ν to σi ) has
qα > 0.

As a consequence of this,

qα = rα, ∀α ∈Oi :=OUT(U)∩Ai , (7.23)

qα = 0, ∀α ∈ Ii := IN(U)∩Ai . (7.24)

Note also that since the cyclic flow components w1, . . . ,wj in (7.10) are zero,

qα =
∑

1≤k≤p:πk&α
uk, ∀α ∈Ai . (7.25)

The i-cut U evidently depends on the residual capacity vector r . However, the
following purely structural statements may be made about it:

7Here, arcs are permitted to have rα = 0.
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1. Every arc in Oi lies in Af, i.e., is finite-capacity. Otherwise, qα
(7.23)= rα

(7.15)= ∞,
implying by (7.25) that uk =∞ on some i-path πk , which is impossible since
every i-path in this case travels over at least one finite-capacity arc.

2. Every arc α ∈Oi is in an i-path that exits U without re-entering, or else α is in
the [1 : i − 1]-bundle. To see this, suppose that every i-path πk passing through
α re-enters U. Evidently, it must then pass through some arc β ∈ Ii . By (7.24),
qβ = 0, implying by virtue of (7.25) and nonnegativity that uk = 0. From (7.23)
and (7.25), this implies that rα = 0. As cα > 0, it must then hold that fα,j > 0 for
some j ∈ [1 : i − 1]. As the j -flow (fα,j )α∈A is acyclic by construction, α must
then lie on a j -path, by (7.10).

3. There must be an i-path that leaves U without re-entering. To see this, suppose
in contradiction that every i-path re-enters U. By the preceding argument, all
i-paths must then have associated acyclic flow components uk = 0. Pick any i-
path and let ν be the last vertex in U that it traverses before leaving U without
further re-entry. Let ω denote its subpath from ν � τi . By the definition of U,
there is an undirected path π from σi to ν such that all forward-oriented arcs in it
are slack and all backward-oriented arcs carry strictly positive q-flow. Note also
that all vertices before ν in π must also lie in U, by construction. From (7.25),
any backward arc in π would have to carry an i-path flow component uk > 0,
which would be a contradiction. Consequently, all the arcs in π must be forward-
oriented, i.e., π is a directed path in U from σi � ν. The concatenation of π with
ω then yields an i-path that leaves U exactly once, a contradiction.

4. Finally, by construction of U, every vertex ν in it must lie on an undirected path
π from σi to ν such that

(a) Every vertex before ν in π is also in U (since the subpath from σi to ν auto-
matically satisfies the defining forward-slack and backward-flow properties),
and

(b) Every reverse-oriented arc in π lies on an i-path that does not re-enter U
(since such arcs must by definition carry positive q-flow, and i-paths that
re-enter U carry zero q-flow).

In other words, U is a viable i-cut (Definition 7.7). By downward dominance (Defi-
nition 7.8), Oi ∪OUT(σJi−1∪[i+1:n]) structurally dominates out(σi) (Definition 7.4),
and Oi is a Di−1-set (Definition 7.6). Using i-flow conservation,

qin(τi ) =
∑
β∈Oi

qβ −
∑
α∈Ii

qα
(7.23), (7.24)=

∑
β∈Oi

rβ

(7.15)=
∑
β∈Oi

cβ −
∑

β∈Oi ,j∈[1:i−1]
fβ,j

(7.21)≥ I∞[Xi;SOi ,XJi−1∪[i+1:n]] +H∞[SOi |XJi−1∪[i:n]] −
∑

β∈B,j∈[1:i−1]
fj,β

(7.13)≥ I∞[Xi;SOi ,XJi−1∪[i+1:n]]. (7.26)
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As out(σi) ∈ SDOM(Oi ∪ OUT(σJi−1∪[i+1:n])), it follows that Xi(0 : km− 1) is a
function of SOi (0 : km− 1) and XJi−1∪[i+1:n](0 : km− 1). Consequently, ∀k ∈N,

I
[
Xi(0 : km− 1);SOi (0 : km− 1),XJi−1∪[i+1:n](0 : km− 1)

]=H
[
Xi(0 : km− 1)

]
.

As entropy and mutual information are monotonic, a sandwich argument with k→
∞ then yields that the RHS of (7.26) is just H∞[Xi], so that

qin(τi ) ≥ I∞[Xi;SOi ,XJi−1∪[i+1:n]] =H∞[Xi], (7.27)

as desired.

7.5.1.3 Construction of f i in Both Cases

For both cases above, let

fα,i := H∞[Xi]
qin(τi )︸ ︷︷ ︸
=:v

qα ≡ vqα, ∀α ∈A, (7.28)

where v ∈ (0,1] by (7.27). Clearly, fA,i is still an acyclic i-flow since it just a scaled
version of q . Furthermore,

i∑
j=1

fα,j
(7.28)= vqα +

i−1∑
j=1

fα,j
(7.27)≤ qα +

i−1∑
j=1

fα,j
(7.15)≤ cα.

The next step is to verify that f i = fA×[1:i] satisfies the remaining conditions
(7.13), (7.14) for an entropically feasible [1 : i]-flow. First, (7.13) is checked. Let E
be any arc-set in Di (Definition 7.6). If E∩Ai = ∅, then∑

η∈E,j∈[1:i]
fη,j =

∑
η∈E,j∈[1:i−1]

fη,j

(7.13)≤ H∞[SE|XJi−1∪[i:n]] =H∞[SE|XJi∪[i+1:n]]
since E ∈ Di−1 automatically, and where the last equality follows because Ji−1 ∪
{i} = Ji . Else if E∩Ai 
= ∅, write∑

η∈E,j∈[1:i]
fη,j =

∑
η∈E

fη,i +
∑

η∈E,j∈[1:i−1]
fη,j (7.29)

and bound each sum on the RHS as follows. First, note that since E ∈Di−1,

∑
η∈E,j∈[1:i−1]

fη,j
(7.13)≤ H∞[SE|XJi−1∪[i:n]]. (7.30)
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Then write

∑
η∈E

fη,i
(7.28)=

∑
η∈E

vqη
(7.25), (7.17)= v

∑
η∈E

( ∑
1≤k≤p:πk&η

uk

)

= v
∑

1≤k≤p
uk

( ∑
η∈E:η∈πk

1

)

≤ v
∑

1≤k≤p
uk ≡ νqin(τi )

(7.28)= H∞[Xi], (7.31)

where the inequality arises because the i-path flows u1, . . . , up ≥ 0 and each i-path
πk transits over at most one arc in E. As out(σi) ∈ SDOM(E∪OUT(σJi−1∪[i+1:n])),
the same arguments that lead to the equality in (7.27) show that

H∞[Xi] = I∞[Xi;SE,XJi−1∪[i+1:n]].

Substituting this into (7.31) and then combining with (7.29) and (7.30) yields

∑
η∈E,j∈[1:i]

fη,j ≤ I∞[Xi;SE,XJi−1∪[i+1:n]] +H∞[SE|XJi−1∪[i:n]]

(7.20), (7.21)≤ H∞[SE|XJi−1∪[i+1:n]] =H∞[SE|XJi∪[i+1:n]], (7.32)

since Ji = Ji−1 in this case. This confirms that f i satisfies (7.13). As f i−1 is an
entropically feasible [1 : i − 1]-flow, (7.14) is satisfied ∀j ∈ [1 : i − 1]. Using flow
conservation,

fout(σi ),i = fin(τi ),i
(7.28)= vqin(τi ) =H∞[Xi],

verifying (7.14) when j = i. Thus f i is an entropically feasible [1 : i]-flow.
By induction, f n is an entropically feasible [1 : n]-flow, giving the desired

(X, c)-feasible multicommodity flow (7.5)–(7.7).

7.5.2 Sufficiency of Multicommodity Flows

The converse part of Theorem 7.2 is easier to establish, since it is not difficult to
see that the existence of a feasible multicommodity flow implies achievability. Thus
only the key steps are provided below.

Suppose f is an (X, c)-feasible multicommodity flow (7.5)–(7.7) on an n-pair
network structure Σ , with X stationary, and further suppose that (7.5) is satisfied
strictly. In the decomposition (7.10) for each i-flow fA,i , no cycle flow can enter
any sink, since it has no departing arcs. Consequently, the cycle flows may be taken
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to be zero in (7.10) without violating (7.5)–(7.7), yielding

fα,i =
∑

1≤k≤pi :πk,i&α
uk,i , (7.33)

where π1,i , . . . , πpi ,i are the i-paths and u1,i , . . . , upi ,i ≥ 0, the i-path flows. In
particular,

H∞[Xi] (7.6)= fout(σi ) = fin(τi ),i =
pi∑
k=1

uk,i . (7.34)

For an arbitrary ε > 0, divide the time axis W into epochs of sufficiently long
duration m ∈N such that ∀j ∈N, i ∈ [1 : n],

H[Xi((j − 1)m : jm− 1)]
m

= H[Xi(0 :m− 1)]
m

≤H∞[Xi] + ε, (7.35)

where the first equality arises from stationarity. Next use Huffman coding [6] to
losslessly encode each source-block Xi((j − 1)m : jm − 1), j ∈ N, into binary
codewords Zi,j of variable length Li,j , where

E[Li,j ] ≤H
[
Xi(0 :m− 1)

]+ 1
(7.35)≤ mH∞[Xi] +mε+ 1. (7.36)

Then partition the bits of Zi,j into p consecutive sub-blocks Zi,j,k , k ∈ [1 : pi], of

length Li,j,k := ! uk,i
H∞[Xi ]Li,j �. This is always possible since

∑pi
k=1Li,j,k

(7.34)≥ Li,j ,
padding the last sub-blocks with zeros if necessary.

Transmit and route each sub-block Zi,j,k along the kth i-path πk,i . On every
arc α ∈ A apart from those leaving sources, let the arc-signal be Sα(t) = 0 when
t (mod m) 
=m− 1 and by Sα(t)= (Zi,j,k)i∈[1:n],k∈[1:pi ]:πk,i&α when t ≡ jm− 1,
j ∈ N.8 The arc signals leaving sources are set to the respective source signals to
satisfy (7.2). Clearly, S is setwise causal (Definition 7.1), since every arc-signal is
constructed by routing blocks along acyclic paths. In addition, ∀α ∈Af,

H∞[Sα] = 1

m
H
[
(Zi,j,k)i∈[1:n],k∈[1:pi ]:πk,i&α

]
≤

∑
i∈[1:n],k∈[1:pi ]:πk,i&α

H[Zi,j,k]
m

(7.37)

≤
∑

i∈[1:n],k∈[1:pi ]:πk,i&α

E[Li,j,k]
m

(7.38)

≤
∑

i∈[1:n],k∈[1:pi ]:πk,i&α

1

m
+ uk,i

mH∞[Xi]E[Li,j ]

8If an arc is not on any i-path, then its arc signal may be taken to be 0.
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≤O(1/m)+
∑

i∈[1:n],k∈[1:pi ]:πk,i&α
uk,i

mH∞[Xi] +mε+ 1

mH∞[Xi]

=
∑

i∈[1:n],k∈[1:pi ]:πk,i&α
uk,i +O(ε)+O(1/m)

(7.33)=
∑
i∈[1:n]

fα,i +O(ε)+O(1/m)

= fα +O(ε)+O(1/m)≤ cα
for ε sufficiently small and m sufficiently large. In the above, the bound (7.37) is
due to the subadditivity of entropy, and (7.38) is due to the fact that the expected
number of bits needed to uniquely specify the value of a random variable is never
less than its entropy. Furthermore,

Yi(jm− 1)= (Zi,j,k)pik=1 ≡ Zi,j ≡Xi
(
(j − 1)m : jm− 1

)
.

Consequently, S is a solution to the n-pairs information network problem (Σ,X, c),
establishing achievability (Definition 7.2).

7.6 Examples

In this section, several examples are given to illustrate the applicability of Theo-
rem 7.2. However, to begin with a well-known counterexample is discussed.

To avoid cluttering the figures in this section, the infinite-capacity arcs leading
out of sources and into sinks are not explicitly depicted.

7.6.1 Butterfly Network

The first example, a 2-pairs butterfly network, is adapted from [11, 16] and depicted
in Fig. 7.1. For this network, it is well-known that routing does not achieve linear
coding capacity, and it is a useful exercise to verify that it is not downward domi-
nated.

Consider the viable 2-cut having the set O2 = {α} of outgoing arcs in the 2-
bundle. Clearly, both β,γ are downstream of O2 =O2∗2, so

C= {α,β, γ } ⊆ SDOM
(
O2).

No other arcs are downstream of C. Furthermore, the indirect 2-walk concisely rep-
resented by (ϕ, δ, ε) does not pass through α, and neither does the indirect 1-walk
(δ,ϕ,χ). Thus C is the smallest set satisfying all the conditions of Definition 7.4),
i.e., C= SDOM(O2). As C does not include any source or sink arcs, this network
is not downward dominated (Definition 7.8) and Theorem 7.2 does not apply.
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Fig. 7.1 Butterfly network

Fig. 7.2 A directed tree.
Sources and sinks may be
attached to any of the nodes
depicted

Fig. 7.3 A tree of directed
cycles. Sources and sinks
may be attached to any of the
nodes depicted

7.6.2 Examples that Satisfy Lemma 7.4

Any network where there is at most one (directed) path from any vertex to any other
automatically satisfies the conditions of Lemma 7.4, and is therefore downward
dominant and structurally routable (Theorem 7.2). This includes in the first instance
both directed lines and directed cycles, agreeing with results in [10, 11]. It also cov-
ers more complicated structures, for instance, directed trees (Fig. 7.2), and directed
cycles arranged in a line or tree structure via one or more gateway nodes (Fig. 7.3).
In all these networks, routing achieves coding capacity regardless of where sources
and sinks are placed.

In networks where there are vertex pairs with two or more connecting paths,
downward dominance will still hold by virtue of Lemma 7.4 if there is at most
one path between each pair of source and sink vertices, or at least from each σs to
each τh, where 1≤ s ≤ h≤ n. Examples include directed versions of the undirected
Okamura–Seymour network (Fig. 7.4).
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Fig. 7.4 A directed version
of the Okamura–Seymour
Network. Only one path
exists from any source to any
sink

Fig. 7.5 An acyclic network
covered by Lemma 7.3

7.6.3 Examples that Satisfy Lemma 7.3

Now consider the acyclic 2-pairs network in Fig. 7.5. Observe that there is one 1-
path, concisely represented by the arc-sequence βε, but two 2-paths, αβ and γ .
Hence Lemma 7.4 cannot be applied. Neither would it become applicable if the
indices 1 and 2 were relabeled 2′ and 1′, respectively. To see this, consider the
viable 2′-cut with O2′ = {β}. Clearly, A2′ ∩O2′ and A1′ ∩O2′ 
= ∅, since the 1′-path
αβ and 2′-path βε both pass through O2′ . However, the path γ from σ ′1 to τ ′1 does
not.

In this instance, Lemma 7.3 can be applied. The possible viable 2-cuts have sets
O2 of outgoing arcs in the 2-bundle equal to either {α,γ } or {β,γ }. In the first
case, O2 has no intersection with any arcs in the 1-bundle, and all 2-paths obvi-
ously pass through it. In the second case, all paths from σs to σh, 1 ≤ s ≤ h ≤ 2,
pass through O2. This the requirements of the lemma are met and the network is
downward dominant.

Another example of the use of Lemma 7.3 is the cyclic 2-pairs network of
Fig. 7.6. Observe that there is one 1-path, εβ and two 2-paths, ϕ and βγ . The pos-
sible viable 2-cuts have sets O2 of outgoing arcs in the 2-bundle equal to either
{ϕ,β} or {ϕ,γ }. In the second case, O2 has no intersection with any arc in the 1-
bundle, and all 2-paths obviously pass through it. In the first case, O2 intersects all
2-paths and a 1-path, εβ , and it can be seen that all from σs to σh, 1 ≤ s ≤ h ≤ 2,
pass through O2. This the requirements of the lemma are met and the network is
downward dominant.
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Fig. 7.6 A cyclic network
covered by Lemma 7.3

7.7 Conclusion

This chapter examined the routability of possibly cyclic n-pairs information net-
works from a structural perspective. The concepts of downward dominance was
introduced, and it was shown that for downward dominated networks, achievability
always implies the existence of a feasible multicommodity flow.

Downward dominance is a conservative structural condition, and future work
will focus on trying to relax it. One refinement is to partition the set of source–sinks
paths into subsets having no arcs in common; it is anticipated that this approach will
allow bidirectional cycles [15] and other networks to be handled.

From [2, 16], it is known that routing does not achieve linear network coding
capacity, and in more recent work [7], it has been shown that linear coding does
not generally achieve network coding capacity. Thus, two other important lines of
research are to investigate whether the inductive approach of this chapter can be
adapted to find structural conditions under which routing achieves linear network
coding capacity, and under which linear coding achieves network coding capacity.
It is anticipated that techniques from linear systems and control theory would be
needed, especially if loops are present.
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Chapter 8
Computing over Unreliable Communication
Networks

Nicola Elia, Jing Wang, and Andalam Satya Mohan Vamsi

8.1 Introduction

In this chapter, we present analysis and design tools for networked systems. Net-
worked systems often need to perform cooperatively control, estimation, opti-
mization, or computation with limited computational, power, and communication
resources. The distributed nature of the system and the limited capability of the
individual subsystems (nodes or agents) force them to cooperate by exchanging in-
formation on the network, through alternative physical sensing and through their in-
teraction with the environment. The information exchange is limited by the structure
of the network, the nature of the interactions, and by various sources of uncertainty
(e.g., noisy channels, packet drops, delays), but also sensor and actuators limitations
and environment unpredicted changes.

As a starting point, let us consider the problem of computing the average of the
private quantities of n agents/nodes in a distributed fashion. The agents, connected
over ideal communication network, exchange information with their nearest neigh-
bors. The network is represented by its Laplacian, L, and is assumed to be strongly
connected and undirected, but not necessarily complete. This is a well known and
studied problem [14, 19, 38, 49, 50]. An interesting solution would have each agent
exchange relative errors with their neighbors, as described by the following algo-
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Fig. 8.1 (a) Distributed
averaging system of [47];
(b) Its fragility to noise

rithm in terms of dynamic equations:

xi(k + 1)= xi(k)+ β
∑
j∈Ni

(
yj (k)− yi(k)

)
,

yi(k)= ri − xi(k).
The agent private quantity is ri and Ni is the set of neighbors of node i. β > 0 is a
small enough update gain. This version of the algorithm is due to [47]. Figure 8.1(a)
shows the block-diagram of the computational system. Under some mild condi-
tions, all agent’s output variables yi converge to the average of r , i.e., 1

n

∑n
i=1 ri .

It is interesting to go over the implicit assumptions behind the convergence of the
algorithm. (i) The communication network is ideal, each link is perfect, namely it
can communicate perfectly any number of bits between time epochs. (ii) Each node
can compute sums with arbitrarily high accuracy within time epochs. (iii) ri does
not change with time and is known with arbitrarily high accuracy. These idealized
assumptions remove noise and physical time from the problem. However, there are
some lingering issues related to the presence of uncertainty not accounted for in the
idealized model.

What happens to the algorithm if ri is measured and is therefore uncertain with
some limits? Does it still make sense to use virtually infinite communication band-
width and computation precision for computing an uncertain quantity? Similarly,
when ri is re-measured at every epoch, the uncertainty in the measure will make ri
different over time. What happens if noise enters the system? Like when the com-
munication links are not ideal and transmit messages with a little additive noise?
It is not difficult to show that the simple algorithm is fragile to additive noise, and
in this case, it completely loses its ability to compute averages even with infinite
computational accuracy and speed, as shown in Fig. 8.1(b).

Finally, assume the agents’ state and output correspond to desired physical lo-
cations (for example, in a formation control problem) where the computational ab-
straction no longer applies, and we would need a way to guarantee that the mobile
agents can actually move to the desired locations, with arbitrary accuracy, within
epochs.

This example embodies some critical issues of a large class of systems where
the agents need to compute timely and approximately correct decisions to pursue
a collective/private goal, based on partial and unreliable information about the
environment and the other agents.
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Motivated by the above questions, in this chapter we merge the dynamical system
interpretation of distributed computational systems with the integrated theory of
communication and control and provide a unified view of computational systems
over unreliable communication networks.

While a great deal of fundamental understanding has been drawn from char-
acterizing the minimum transmission rate necessary for stabilization for different
channel models [3, 34, 48, 63], most of the research has focused on stabilization of
single loop systems closed over various kind of unreliable or uncertain communica-
tion links. In these settings, the feedback system becomes a stochastic system and
the main finding is that different notions of stochastic stability require different no-
tions of reliable delivery of information through the loop. In particular, the bounded
moment stability requires the anytime notion of reliable communication, which is
stronger than Shannon’s notion, but weaker than the zero-error in [43, 44]. Sahai
[43] provides the explicit characterization of the anytime capacity limitations for a
single state unstable system with a binary erasure channel. More often, the anytime
limitations have been indirectly captured in terms of critical channel dropout proba-
bility for bounded second moment stability in a variety of settings mostly involving
a single channel on the sensor side. Limitations and coding for finite-rate packet-
drop channel [30, 33] in the presence of bounded and unbounded stochastic distur-
bance. Analog intermittent channels are studied in [12, 13, 16, 17, 23, 24, 45, 46].
Recently, [10] has provided the explicit link between anytime capacity and dropout
probability limitations for several channels models used in the literature.

The results points out that channel fading or intermittency rather than quantiza-
tion is a greater limiting factor in moment stabilization. This allows us to focus on
analog intermittent communications/interactions among networked dynamical sys-
tems and to neglect quantization and coding aspects. In this chapter, we provide
a common framework that efficiently allows considering the mean square stabil-
ity limitations of networked systems with multiple intermittent channels and ad-
ditive noise. We focus on how unreliable channels can be efficiently used in real-
time networked systems and how they limit the networked system performance and
behavior. The framework allows studying complex interconnections with multiple
loops and channels that are typical of complex systems organizations. We consider
networked systems mostly made of simple agents with limited computational and
communication capabilities, and study how such systems can compute and commu-
nicate at a physical level without sophisticated coding or computational intelligence,
and how the intermittent unreliable interactions affects the overall networked system
behavior and capabilities.

The chapter summarizes our recent results in a coherent way and a tutorial style,
and it is organized as follows: after some basic graph theory and some basic nota-
tion in Sect. 8.2, in Sect. 8.3 we introduce a large class of networked systems. We
first describe a class of systems over noiseless and delay free network. This is the
basis for studying limitation of networked systems only due to the network topol-
ogy. We then extend the models to the case where the networks are unreliable. In
Sect. 8.4, we summarize the main stability analysis result for systems over fading
networks. An application of the mean square stability analysis to a classical dis-
tributed averaging system when the agents’ interactions happen over intermittent
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noisy networks is presented in Sect. 8.5. We point out that the otherwise benign and
well behaved networked system can exhibit complex behavior for certain parameter
values when the communication is unreliable. We then present algorithms that are
resilient to additive noise and channel dropouts in Sect. 8.6, which are designed us-
ing multi-variable feedback system properties. The systems ideas used in developing
the new distributed averaging algorithms can be extended to develop dynamical sys-
tems solving distributed convex optimization problems. We introduce optimization
systems in Sect. 8.7 and show how simple agents can cooperatively solve complex
optimization problems using simple gradient sensing capabilities and by commu-
nicating over the network. The dynamical system perspective leads to many new
research directions. In particular, least squares optimization can be solved by LTI
systems. Thus, we can use the large set of analysis and design tools to develop
improved and ad-hoc versions of such systems. In particular, we can design net-
worked controllers to improve stability and performance of a network distributed
least squares system. In order to do so, we rely on a newly developed networked
controller design method, which provides controller implementable over the given
networks. We review such methodology in Sect. 8.8, and apply it to a simple dis-
tributed least squares system. Finally, in Sect. 8.9, we provide some concluding
remarks on the proposed unified view of networked computational systems put for-
ward in this chapter.

8.2 Notation

8.2.1 Elements of Graph Theory

A directed graph is represented as G := (V,E), where V = {1, . . . , n} is the set of
nodes and E ⊆ V ×V is the set of edges. An edge of G is denoted by (i, j) implying
there exists a directed link from node j to node i.

Given a directed graph G = (V,E), define the adjacency matrix A(G) to be a
binary matrix such that[

A(G)
]
ij
= 1 if (j, i) ∈ E, = 0 otherwise. (8.1)

Define directed neighborhoods around each node i, the in-neighbors N−
i =

{j |(j, i) ∈ E} and the out-neighbors N+
i = {j |(i, j) ∈ E}, which are the sets of

nodes that have edges to and from node i. The in-degree of each node is defined as
diin = |N−

i | and the out-degree of each node is defined as diout = |N+
i |. We denote

the graph Laplacian matrix of G as L = −D +A(G), where D = Diag[diin]. Thus
L1 = 0, where 1 is the vector consisting of all ones. The Laplacian is said to be
balanced if diin = diout for all i ∈ V . Therefore, the balanced Laplacian has the prop-
erty that 1′L= 0. The incidence matrix In of a directed graph G is an n× q matrix
where n and q are the number of vertices and edges, respectively, such that Inik = 1
if the edge k = (∗, i) leaves vertex i, Inik = −1 if edge k = (i,∗) it enters vertex
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i and 0 otherwise. A graph is undirected if for any (i, j) ∈ E , the edge (j, i) ∈ E .
The graph is said to be strongly connected if every node can reach every other node
through a sequence of elements in E . If the graph is strongly connected, L has only
one eigenvalue at zero and all other eigenvalues are in open right half plane, and the
left eigenvector associated with the zero eigenvalue has its components all positive.

8.2.2 Vectors and Partitions

To make representations compact, we use the notation vec[xi]i∈I for vertical ar-
rangement of vectors {xi}i∈I , of appropriate dimension, where I is an index set. Let
[xij ]i,j∈I represent a matrix formed by arranging the sub-matrices {xij }i,j accord-
ing to I . Also, let diag[xi]i∈I denote the matrix formed by arranging the vectors or
matrices {xi}i∈I in a block diagonal fashion and the remaining entries being zeros.
Sometimes, if the index set I equals {1, . . . , n}, then we will not explicitly mention
the index set.

8.2.3 Structured Systems

In this section, we define finite Dimensional Linear Time Invariant Discrete-Time
(FDLTI-DT) Systems that have structures in their state-space or input–output repre-
sentations consistent with the sparsity structure induced by a graph defined earlier.
These structures are amenable to efficient searches and capture the representations
of systems over networks. These representations become relevant when we want to
design networked systems, and networked controllers in particular, as we will see in
later sections.

Definition 8.1 We say a block matrix A = [Aij ]i,j∈{1,...,n} is structured according
to an n×n binary matrix J if the sub-matrix Aij is a zero matrix whenever Jij = 0.
The dimensions of the sub-matrices {Aij }i,j are described using two integer-valued
vectors as follows. Let Pa = (a1, . . . , an) and Pb = (b1, . . . , bn) be two n-tuples
with ai and bi being integers for all i ∈ {1, . . . , n}. Then, matrix A is said to be
partitioned according to (Pa,Pb) if the sub-matrixAij has dimensions ai×bj ∀i, j .

This definition of partitioning easily extends to the case of vectors. A vector x is
said to be partitioned according to Pa if it can be written as vec[xi]i∈{1,...,n} where
xi is a real vector of size ai for all i ∈ {1, . . . , n}.

Definition 8.2 Given a graph G = (V,E) and the partitions Px , Pu and Py , let
S(G,Px,Pu,Py) denote the set of state-space realizations (A,Bu,Cy,Dyu) where
A, Cy are structured according to the adjacency matrix A(G)+I , while Bu,Dyu are
block-diagonal and the state-space matrices are partitioned as follows: A (Px,Px),
Bu (Px,Pu), Cy (Py,Px), and Dyu (Py,Pu).
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Let Rp denote the set of real-rational proper transfer function matrices, Rsp
denote the set of real-rational strictly proper transfer function matrices and RH∞
denote the set of real-rational proper stable transfer function matrices.

Definition 8.3 Given a graph G and the input and output partitions, Pu and Py , let
T(G,Pu,Py) denote the set of transfer function matrices P(z)= [Pij (z)]i,j that are
partitioned according to (Py,Pu) where Pij (z) is of the form:

Pij (z)=

⎧⎪⎨
⎪⎩
Hii(z) if i = j,
z−l(j,i)Hij (z) if l(j, i)≥ 1,

0 otherwise,

(8.2)

where l(j, i) is the length of a shortest path from node j to node i on the graph G
and Hij (z) ∈Rp for all i, j .

We want to point out that, if a system P has a state-space representation in
(A,Bu,Cy,Dyu)∈S(G,Px,Pu,Py), then its transfer function P(z)∈T(G,Pu,Py)
[51].

8.3 Networked Systems

In this section, we describe systems built over communication networks and discuss
some of the properties of their state-space and input–output descriptions.

Given a graph G = (V,E) with n nodes, we associate a sub-system {Pi}i∈{1,...,n}
to each node.

Each sub-system Pi is a DT system with local inputs ui(k), local outputs yi(k),
network inputs νi(k) and network outputs ηi(k). Each Pi has the following state-
space description (assumed to be minimal)

Pi :
⎡
⎣xi(k + 1)
yi(k)

ηi(k)

⎤
⎦=

⎡
⎢⎣
Ai Bui Bνi

C
y
i D

yu
i D

yν
i

C
η
i 0 0

⎤
⎥⎦
⎡
⎣xi(k)ui(k)

νi(k)

⎤
⎦ , (8.3)

where xi(k) is the local state. The subsystems interact over communication
links corresponding to the edges of the graph. The vectors ηi(k) and νi(k)

are the stacking of the corresponding vectors indexed according to the out-
neighbors and in-neighbors of node i, namely, ηi(k) = vec[ηij (k)]j∈N+

i
and

νi(k)= vec[νij (k)]j∈N−
i
∀i. They correspond to the overall set of messages trans-

mitted and received by Pi , where ηij (k) is the message vector transmitted from
plant Pi to Pj at the time instant k and νij (k) is the message received by Pi from
Pj at time instant k.

For convenience and without loss of generality, we often allow each node to
explicitly send and receive messages from itself. In these cases, ηi and νi include
self-messages.
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Define P = diag[Pi]i as a system with a state-space representation given by

⎡
⎣x(k + 1)
y(k)

η(k)

⎤
⎦=

⎡
⎣ Â B̂u B̂ν

Ĉy D̂yu D̂yν

Ĉη 0 0

⎤
⎦
⎡
⎣x(k)u(k)

ν(k)

⎤
⎦ , (8.4)

where all the matrices are block diagonal consistent with the dimension of the corre-
sponding state-space matrices of P ′i s. The state, input and output vectors are given
by x(k)= vec[xi(k)]i , u(k)= vec[ui(k)]i , y(k)= vec[yi(k)]i , η(k)= vec[ηi(k)]i ,
and ν(k) = vec[νi(k)]i . Let the corresponding partitions of x(k), u(k), y(k), η(k),
ν(k) be Px , Pu, Py , Pη, and Pν , respectively. Based on these partitions, we can see
that the matrices in (8.4) are partitioned accordingly.

8.3.1 Systems over Noiseless Delay-Free Networks

The case of noiseless delay-free network is important to study limitations of net-
worked systems induced solely by the network topology.

Definition 8.4 A noiseless and delay-free network, N , is a static relation between
η and ν,

ν =Nη, (8.5)

partitioned consistently with P and structured according to A(G)+ I .

From the above definition, a networked systemG is obtained by the feedback in-
terconnection of P with N , by substituting Eq. (8.5) in Eq. (8.4), or equivalently, by
G= Fl(P,N), where Fl stands for lower Linear Fractional Transformation (LFT)1

as defined in [65].

G= Fl(P,N)

=
[
Â+ B̂νNĈη B̂u

Ĉy + D̂yνNĈη D̂yu

]

:=
[
A Bu

Cy Dyu

]
. (8.6)

Note that A, Cy are structured according to A(G)+ I , while Bu, Dyu have a block
diagonal structure. Thus, G ∈S(G,Px,Pu,Py).

Figure 8.2 describes the basic block diagram of such networked systems.

1Note that having Dηui = 0, and Dηνi = 0 ∀i assures that the feedback interconnection of P and N
is well-posed.
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Fig. 8.2 The networked
system over a noiseless and
delay-free network

8.3.2 Fading Networks

More generally, the network interconnections are unreliable, subject to noise and
intermittency or fading. To model systems over such networks, we introduce the
following definitions adapted from [12]. The idea is to describe the random vari-
ables, which are parts of the link model as the source of uncertainty in an otherwise
purely deterministic model, the Mean Network. In the next definition, we abuse the
notation and define the Mean Network by N as it is a generalization of N in (8.5).

Definition 8.5 An analog Fading Network is composed of two parts:

1. The Mean Network, N .
2. The stochastic perturbation, Δ.

The Mean Network is, for this chapter,2 a deterministic static system described by
the following static map:

N :
[
ν

zΔ

]
=
[
Lνη Lνυ LνwΔ

LzΔη LzΔυ LzΔwΔ

]⎡⎣ η

υ

wΔ

⎤
⎦ , (8.7)

where η and ν are partitioned according to P and are the Network input vector com-
ing from P and output vector going to P , υ is a vector representing additive noise in
the links,wΔ ∈R

p and zΔ ∈R
p . The stochastic perturbationΔmaps zΔ→wΔ and

is defined asΔ= diag[Δi]i=1:p . For each i = 1, . . . , p,Δi(0),Δi(1), . . . ,Δi(k), . . .
are IID random variables with

E
{
Δi(k)

}= 0, and E
{(
Δi(k)

)2}= σ 2
i ∀k ≥ 0.

Moreover, Δ1(k), . . . ,Δp(k) are independent for each k, although not necessarily
identically distributed. Δ acts as multiplication operator on z to provide w, i.e.,
wΔ,i(k) = Δi(k)zΔ,i(k) for i = 1, . . . , p, ∀k ≥ 0. Finally, υ is a vector of white
noise signals independent from each other and independent from Δ.

Several fading channel models can be represented in the framework. In particular,
a simple model of a packet-drop link can be represented as a Bernoulli switch ξ(k)
(neglecting quantization effects). ξ(k) can in turn be re-parameterized as μ+Δ(k)

2More general dynamical models can be studied [12].
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Fig. 8.3 (a) Networked system over a Fading Network; (b) Subsystem relevant to MS stability
analysis

where μ is the mean of ξ and Δ(k) is a zero mean random variable with variance
equal to the variance of ξ(k).

When there is no uncertainty and additive noise, then the fading network model
reduces to the noiseless and delay-free network of the previous section, with N =
Lνη partitioned consistently with P and structured according to A(G)+ I .

An example of fading network is presented in Sect. 8.5.

8.4 Systems over Fading Networks

The interconnection of the plant and the Fading Network can be put into the robust
control framework described in Fig. 8.3(a). In particular, let

G= Fl(P,N) :
[
y

zΔ

]
=
[
Gyu Gyυ GywΔ
GzΔu GzΔυ GzΔwΔ

]⎡⎣ u

υ

wΔ

⎤
⎦ .

Note that Gyu corresponds to G in (8.6) when the network is noiseless and delay-
free. Note also that networked system is given by Fl(G,Δ). To study the MS stabil-
ity of the networked system we can assume that the inputs u and υ are zero as they
enter linearly in the equations [12], and concentrate on the MS stability of

H = Fl(GzΔwΔ,Δ).

Let M = GzΔwΔ be the system from wΔ and to zΔ, which is in feedback with
random uncertainty Δ. Let the state space equations ofM be the following.

M: χ+ =Aχ +BwΔ,
zΔ = Cχ +DwΔ.

(8.8)

Following the setup described in Fig. 8.3(b), the linear time-invariant discrete-time
system M has p-inputs and p-outputs and is in feedback with the diagonal uncer-
tainty Δ described in Definition 8.5.
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8.4.1 Mean Square Closed-Loop Stability

The state-space representation of H is given by

H :
χ+ =Aχ +BwΔ,
zΔ = Cχ +DwΔ,
wΔ = ΔzΔ.

(8.9)

Assume that χ0 = χ(0) is independent of Δ(k) for all k and that the feedback in-
terconnection of Δ and M is well-posed, namely that the solution to system (8.9)
exists for any realization of Δ.

Definition 8.6 System (8.9) is Mean Square stable if limk→∞E{χ(k)χ(k)′} = 0.

Theorem 8.1 [12] Assume that M = (A,B,C,D) is stable and that D is either
strictly lower triangular or strictly upper triangular. Let Σ2 = diag[σ 2

i ]i=1:p . The

feedback interconnection ofM andΔ is Mean Square Stable iff ρ(Σ2M̂) < 1 where
ρ(·) denotes the spectral radius and

M̂ =
⎡
⎢⎣
‖M11‖2

2 . . . ‖M1p‖2
2

...
. . .

...

‖Mp1‖2
2 . . . ‖Mpp‖2

2

⎤
⎥⎦ .

See [12] for a more extended version of the theorem and for references to related
work. Although rooted into the rich literature on stochastic systems [1, 8, 9, 22, 32],
the approach provides new insights on the role of the channel generated uncertainty
in affecting the stability of the closed loop.

8.5 Distributed Averaging over Unreliable Channels

The fading network framework applies to the MS stability analysis of a simple but
classical distributed averaging algorithm when the communication links are unreli-
able. In [55, 59], we have shown that the classical average consensus algorithm is
a prototype system for the emergence of Levy Flights, a type of complex behavior
ubiquitous in complex systems. We have considered a classical consensus algorithm
with the addition of noise, and communication intermittency:

xi(k + 1)= xi(k)+ β
∑
j∈Ni

ξij (k)
[
xj (k)− xi(k)

]+ υi(k), i = 1, . . . , n, (8.10)

where ξij (k)s are IID Bernoulli random variables with probability μij of being 1
characterizing the fading property of the channel at time k. υi(k)s (the communi-
cation noise) are Gaussian random variables independently identically distributed
across both k and i with zero mean and unit variance.
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One important characteristic of many distributed computation systems, includ-
ing those in this chapter, is their lack of minimality. This is due to the presence of
marginally stable poles corresponding to eigenvalues on the boundary of the stabil-
ity region that are unobservable and/or uncontrollable. For example, consider the
system in (8.10). Assume that all ξij (k) are independent but with the same mean μ
and variance σ 2. Then

xi(k + 1)= xi(k)+ β
∑
j∈Ni

(
μ+Δij (k)

)[
xj (k)− xi(k)

]+ υi(k), i = 1, . . . , n,

xi(k + 1)= xi(k)+ β
∑
j∈Ni

μ
[
xj (k)− xi(k)

]+wΔij (k)+ υi(k), i = 1, . . . , n,

zΔij (k)= xj (k)− xi(k), j ∈Ni,
wΔij (k)=Δij (k)zΔij (k).

(8.11)
The agents are discrete-time integrators (adders), Pi = PA with PA(z)= β

z−1 and
the Mean Network is given by

N :
[
ν

zΔ

]
=
[
μL I B

C 0 0

]⎡⎣ η

υ

wΔ

⎤
⎦ , (8.12)

where L = L is the graph Laplacian with 0–1 weights, C is the transpose of the
incidence matrix of the graph, and B is such that L= BC.

It follows that M = Fl(diag[PA]1:n,N) has state-space

x+ = (I + βμL)x +BwΔ + υ,
zΔ = Cx.

The Laplacian of a strongly connected graph has one eigenvalue at zero with eigen-
vector 1, i.e., L1= 0. One the other hand, C1= 0, too. Therefore,M has one eigen-
value at 1 (marginally stable) with eigenvector 1, but this mode is not observable
from C. Thus, the feedback interconnection of P and N is not detectable as it has
one eigenvalues on the unit circle (not strictly stable). The impulse response of M ,
and therefore its transfer function matrix M(z) will not show the marginal internal
instability. We see that the distributed averaging system cannot be (strictly) stable,
thus Theorem 8.1 will not directly apply and the system is indeed not MS stable.

However, since the mode at 1 in the direction 1 is not observable from Δ, we
could study how Δ affects the MS stability of the rest of the modes which can be
made stable by β small enough. A simple approach would be to obtain a minimal
state-space representation for M and to study that. However, this will destroy the
networked system structure and reduce our insights. Alternatively, we use a natural
decomposition of the state. Let γ be the left eigenvector of A= I +βμL associated
with this eigenvalue, and by normalization such that γ T A = γ T , γ T 1 = 1. It is
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natural to define operators

P := I − 1γ ′, F := 1γ ′. (8.13)

Let the deviation state and conserved state of the system be defined as xd(k) :=
Px(k) and xc(k) := Fx(k), respectively, where P and F are defined in Eq. (8.13).
Then, their evolutions are governed by

xd(k + 1)=PAPxd(k)+PBΔ(k)Cxd(k)+Pυ(k), (8.14)

xc(k + 1)= xc(k)+FBΔ(k)Cxd(k)+Fυ(k), (8.15)

where we have used the facts that PA=AP and P2 =P , which are easy to verify.
In the sequel, we refer to (8.14) as the deviation system and (8.15) as the conserved
system. Although xc is in R

n, it evolves on the subspace spanned by 1. Thus, essen-
tially xc is one-dimensional. It is convenient to define any component of xc as x̂c, or
equivalently,

x̂c(k)= γ ′xc(k). (8.16)

From (8.15), x̂c is the result of the integration (adder) of a process that depends on
xd through the coupling provided by Δ(k) and FB . Instead of reducing the sys-
temM , with this decomposition we are augmenting it by one dimension preserving
most of the structure of the system. In the Deviation system, the eigenvalue at 1 is
replaced with one at 0. This eigenvalue at 0 is still unobservable and does not impact
the behavior of the networked system but makes the Deviation System stabilizable
and stable for small enough β . The marginal internal instability is now captured in
xc by the conserved system. A similar state decomposition can be done for other
algorithms that are more general. Although some of the details may be omitted, we
will continue to use the terminology of conserved and deviation system to refer to
such decompositions.

8.5.1 Emergence of Complex Behavior

We can now apply Theorem 8.1 to the deviation system and study how its MS (in)-
stability impacts the behavior of the networked system. In [55, 59], we have shown
that the MS instability of the deviation system is responsible for the emergence
of a complex behavior of the networked system when additive noise is present. In
particular, we have characterized x̂c as a hype-jump diffusion process and as an
uncorrelated Levy flight in a special two-agents case. We refer the reader to the
cited references for details and in depth analysis. Thus, the MS instability of the
deviation system is an indication of a fragility of the system to the combined effect
of additive and multiplicative noises, which are typically both present in networked
systems. Figure 8.4(a) shows that the state of system (8.10) converges to a common
value when noise in not present although the deviation system is MS unstable for the
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Fig. 8.4 Hypersensitivity to
noise that can happen when
the channels are fading

chosen parameters. However, the system is in a critical state and is hypersensitive
to noise. This fragility emerges when noise is added to the system. Figure 8.4(b)
shows a remarkable new collective behavior of the system when a tiny noise is added
to the communications. There are abrupt jumps in the agents’ states, and between
jumps, periods where the agents’ states are reasonably close to each other. Levy
flights have been observed in many natural sciences as well as economics and many
other fields. Examples include biological searching patterns [4, 41], the distribution
of human travel [7], financial series of stock markets [28, 29] and photons in hot
atomic vapors [31]. This is the first example of a simple multi-agent model, inspired
by natural behaviors, like swarming and flocking, that exhibits such a collective
diffusion behavior [59] and for which such behavior can be predicted from the MS
instability condition.

Besides the fascinating connection with the physics and mathematics of com-
plex systems, the result above shows that limited communication can have serious
effects on the behavior of computing networked systems and motivates further de-
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velopments geared toward prediction, prevention, or mitigation of the emergence
of critical phenomena when we consider systems over unreliable networks. It also
points toward the study of networked systems organizations that may be more re-
silient to such behavior [55, 62].

8.6 Distributed Computing of Averages Resilient to Noise

Even without channel dropouts, we have already pointed out that the simple aver-
aging system (8.10) is fragile to additive noise. x̂c becomes a random walk and the
algorithm loses its ability to compute averages (Fig. 8.1(b)). This behavior is due to
the integration (accumulation) of the network noise in the states of the agents (8.15).
From a dynamical system viewpoint, there is a marginally stable MIMO pole-zero
cancellation in the system. The Laplacian provides a MIMO zero at 1, which cancels
the pole at 1 in the direction 1. The marginal instability is internal and not manifested
without noise, but its effect emerges when noise is present. At the same time, this
internal instability is embedded in the inner working of the algorithm and is not im-
mediately removable. To resolve this problem, we have proposed a new algorithm
that places another MIMO zero at 1 after the bank of integrators, preventing the ran-
dom walk to be visible at the output. The block diagram is shown in Fig. 8.5(a), and
uses the network twice [56]. Note that now not all Laplacians guarantee stability of
the system. However, symmetric Laplacians L = L′ (corresponding to undirected
graphs) are feasible:

xi(k + 1)= xi(k)+ β
∑
j∈Ni

(
zj (k)− zi(k)

)
,

zi(k + 1)= ri −
∑
j∈Ni

(
xj (k)− xi(k)

)
,

y(k)= z(k).

The algorithm is a modification of the dynamic consensus scheme of [47]. Each
node now uses the network twice sending two states, xi and zi . Under the assump-
tion of symmetric L, it can be shown that y(k) converges under quite general condi-
tions to the average of r . In this case, though, the algorithm is resilient to noise com-
ing into the system from various sources. Figure 8.5(b) shows the simulation when
the additive noise comes from the use of the communication links. Note that the al-
gorithm is a linear dynamical system and can be analyzed with many available tools.
When the noise is Gaussian, the result of the computation y(k) is a Gaussian ran-
dom variable with mean equal to the average of r . Its variance can be pre-computed
based on the assumed variance of the noise. We see that the dynamical system ap-
proximately computes averages under uncertainty. Moreover, if the average of r(k)
changes with time, y(k) will be able to detect it and track it.
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Fig. 8.5 (a) New averaging system; (b) Its resilience to noise

8.6.1 Resilience to Channel Intermittency

Although the computation of averages is now robust to additive noise, it is still frag-
ile to unreliable intermittent communication. To mitigate this limitation, the agents
need to be more intelligent and use the channel-state information from their neigh-
bors. In the following algorithm [56], each agent holds and uses the last good re-
ceived message from its neighbors:

h(k)=Λ2(k)
(
Cx(k)+ v(k))+ (

I −Λ2(k)
)
h(k − 1),

y(k)= u(k)−Bh(k),
x(k + 1)= x(k)+ βBΛ1(k)

(
Cy(k)+w(k)).

(8.17)

Λ1(k) and Λ2(k) are diagonal matrices of IID Bernoulli random variables, of di-
mension equal to the number of edges, representing the unreliable link among nodes.
As before, L= BC where C is the transpose of the incidence matrix of the graph.
h is the vector of holding states. When a component of Λ2(k) equal 0, the corre-
sponding component of h is held to the previous value. Otherwise, the component
of h updated with the current channel output. v and w are additive networks noises.
The MS stability of this system can be accessed using Theorem 8.1. Figure 8.6
shows the resilience of the algorithm to noise and channel intermittency with ap-
propriate choice of parameters. Details can be found in [56, 61]. We see that the
double Laplacian scheme is a robust network architecture that allows approximate
computing in the presence of unreliable communication under certain conditions. It
is the basis for extending the approach to distributed systems that compute solutions
of unconstrained optimization problems as we will see next.

8.7 Optimization Systems

Although computing averages in the presence of noise has a variety of applications,
our approach would still be limited in scope. A main development is given by the
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Fig. 8.6 Simulation examples to illustrate robustness of our algorithms to additive and multiplica-
tive uncertainties

extension of the dynamical systems view to solving distributed optimization prob-
lems.

Although extremely advanced, current optimization methods (including dis-
tributed ones [5]) have several limitations when the optimization algorithms need to
run real-time, over unreliable networks, distributed on physically separated (mobile)
agents immersed in a noisy environment. On the other hand, biological social and
other natural systems could be solving optimization problems, and therefore being
able to compute, without being “digital” or algorithmically based. This motivates
us to explore the dynamical system view, which could provide a natural implemen-
tation of these computational systems integrated with the dynamics of the physical
systems.

We consider the following constrained optimization problem:

p∗ = min
x∈Rm f (x)

s.t. Ax = b,
(8.18)

where A ∈R
n×m and b ∈R

n. To provide the main idea, we assume that f is strictly
convex and differentiable, and that problem (8.18) is feasible and has a finite optimal
cost −∞ < p∗ <∞. We use x∗ to denote the optimal solution to problem (8.18).
The Lagrangian function is given as

F(x,λ)= f (x)+ λT (Ax − b).
We consider the following dynamic system to solve the optimization problem above:

ẋ =−∇xF (x,λ),
λ̇=∇λF (x,λ),

(8.19)
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Fig. 8.7 The block diagram
of system (8.20)

where ∇x and ∇λ represent the gradients with respect to x and λ, respectively.
Substituting F(x,λ) in the above equations, we have

ẋ =−∇xf (x)−AT λ,
λ̇=Ax − b.

(8.20)

It is important to note that, under the current assumptions, the above dynamical
system always converges to the optimal solution x∗.

Theorem 8.2 Consider system (8.20) with f strictly convex and differentiable. For
any initial values of x and λ, we have limt→∞ x(t)= x∗.

The proof (see [2, 58]) links the global under-estimator property of the gradient
of a convex function with dissipation. This view is consistent with that one emerged
in the study of control of networks [11, 15, 20, 21, 27, 39].

8.7.1 Control Perspective

It is instructive to consider the block diagram of system (8.20) shown in Fig. 8.7.
We note several control features, which now apply to the optimization system. First,
the optimization system is subject to the fundamental limitations of feedback, even-
tually determining the limitations of disturbance and noise rejection. Second, note
that the vector b, which is part of the constraints, is a command or a disturbance.
From the classical control theory, we know the integrators (of the dual variable)
guarantee zero steady state tracking to constant b. This ensures the satisfaction of
the constraints. Moreover, we see that b can now change overtime. Thus, the system
can adapt the convergence point, leading to the possibility of real-time adaptive op-
timization. Finally, we may design advanced controllers to improve the convergence
speed and the performance of the optimization system.
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8.7.2 Distributed Optimization Systems

We apply the main idea described in the previous section to derive distributed opti-
mization systems. The new architectures allow for simple interconnected agents to
solve complex optimization problems collectively with only local gradient sensing
means. Consider the following unconstrained problem [57, 58]:

p∗ = min
θ∈Rm

n∑
j=1

fj (θ). (8.21)

We assume there are n agents. Each has its private cost function fj , strictly convex.
The agents connected over an ideal communication network exchange information
with their nearest neighbors. The network is represented by its Laplacian, L and
is assumed strongly connected and undirected, but not necessarily complete. We
propose the following equivalent optimization problem, where each agent has its
individual estimate of θ , called xj :

p∗d = min
x∈Rnm

n∑
j=1

fj
(
xj
)
,

Lx = 0,

(8.22)

where x = vec[xj ]j=1:n, xj ∈ R
m and L= L⊗ Im. The constraint Lx = 0 can be

implemented over the network and eventually enforces xj = xi = y for all i, j ∈
{1, . . . , n}, due to the property of the Laplacian.

Following (8.19), the associated optimization system is governed by the follow-
ing equations:

ẋ = vec
[∇xj fj (xj )]−Lλ,

λ̇= Lx,
(8.23)

where we have used L= LT . Figure 8.8(a) shows the resulting block diagram. We
note how the double Laplacian emerges naturally in the dynamic of the optimiza-
tion system. System (8.23) can be seen as a generalization of the popular average
consensus system of [38]. Expanding the equations reveals their distributed nature
more clearly. Each agent has the following dynamics:

ẋj =−∇xj fj
(
xj (t)

)+ ∑
i∈Nj

(
λi(t)− λj (t)),

λ̇j =−
∑
i∈Nj

(
xi(t)− xj (t)), (8.24)

where Nj is the set of neighbors of agent j ; xj , λj ∈R
m are the agent’s states; the

sum of relative errors represents a row of the Laplacian, and ∇xfj (xj ) is the (sub-)
gradient of fj (y) at xj .
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Fig. 8.8 Adapted from [58]. (a) The networked dynamical system solving the optimization (8.21)
distributively; (b) A variant based on the augmented Lagrangian method. Note the presence of a
networked PI (instead of an Integrator) feedback controller

8.7.3 Augmented Lagrangian and Control Interpretation

Consider the following optimization problem:

p∗au = min
x∈Rm

n∑
j=1

fj
(
xj
)+ 1

2
xT Lx,

Lx = 0.

(8.25)

Clearly, p∗au = p∗d since the constraint force Lx = 0, thus the added extra cost is
zero if the problem is feasible. This technique is known as augmented Lagrangian
method, see, e.g., [18]. It is easy to verify that the dynamical system for solving the
above problem is (8.26):

ẋ = vec
[∇xj fj (xj )]−Lx −Lλ,

λ̇= Lx.
(8.26)

Figure 8.8(a) shows the resulting block diagram.
It is interesting to note that the extra term, namely Lx in the first equation, is

equal to λ̇ from the second equation. Therefore, the dynamical system (8.26) in-
cludes a proportional action. Figure 8.8(b) shows the resulting scheme where the
Proportional Integral compensation is highlighted.

Having a PI compensator instead of just an integrator in the loop leads to
improved stability/convergence properties. The augmented Lagrangian method is
known for its better convergence properties. We now see that these properties are
justified from the feedback control system perspective.
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This leads to the question of finding more general and powerful controllers and
points to a new research direction of controller design for (distributed) optimization
systems, which we will address later.

8.7.3.1 Comparison with Existing Approaches

Problem (8.21), with or without more general constraints, has been considered in
[25, 26, 35, 36, 40, 66]. However, most of the proposed algorithms in the literature
adopt a local convex mixing and vanishing step size on local gradient searching.

The literature offers various other approaches, based on the Method of Multipli-
ers (MoM) [5], to impose the agreement among the xj s. Our approach, although
related to MoM, is more natural when a network interconnection is already in place.
Compared to alternating direction method of multipliers, which relies on the de-
composability of the augmented Lagrangian to provide distributed solutions, the
proposed approach allows one to explore the problem structure more directly. For
example, in the previous distributed optimization problem, our approach does not
require a global network collector as proposed in [6]. Note that we do not require
each node to solve an optimization problem at each step, as done in primal–dual
algorithms (e.g., [27]), and classical alternating direction method of multipliers (see
[6]) but only to move along a favorable direction. This last point may have important
implications that link to physical interconnected computing systems, as we see that
no much intelligence or computational capabilities are required at each node.

8.7.4 Distributed Least Squares

Least Squares problems have an important role in science and engineering. Thus, ad-
vances in the distributed version of these problems are bounded to have a significant
impact in many cooperative sensing, learning, and decision-making applications.

Consider the problem of estimating a common vector θ ∈ R
m, using a network

of n distributed sensors. Each sensor has the measurement

bi =Aiθ + vi,
where bi ∈R

ni , Ai is the known matrix to sensor i and vi is assumed to be a Gaus-
sian random variable with mean zero and covariance I . The most interesting case is
when ni = 1 and n > 1, which we consider next, and thus the sensors by themselves
do not have enough data to estimate θ . When a fusion center is present, all sensor
measurements can be aggregated as

b=Aθ + v,
where b,A and v are concatenations of bi ,Ai and vi , respectively. The fusion center
can then compute the best maximum-likelihood estimation of θ , by the least squares
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solution θ̂ = (A′A)−1A′b (assuming A has full column rank), which solves

θ̂ = arg min
θ∈Rm‖Aθ − b‖

2
2.

Beside the scalability problem, it is desirable to depart from the concept of a fusion
center, and understand if and how each sensor could obtain the above centralized
maximum likelihood estimate using scalable computations and only local informa-
tion exchange with its neighbors. With this objective in mind, note that the Least
Squares optimization can be simply rewritten in terms of sum of cost functions lo-
cal to the agents:

θ̂ = arg min
θ∈Rm

n∑
i=1

‖Aiθ − bi‖2
2 = arg min

θ∈Rm
n∑
i=1

fi(θ). (8.27)

Let L be the Laplacian associated with the undirected strongly connected commu-
nication network graph. Associated with L, let L = L⊗ Im. We assume that each
agent will need to compute the optimal and unique θ∗. Each agent then must update
a copy of θ , which we denote by xi . Let x = vec[xi]i=1:n.

Then, the following optimization system converges to the optimal solution of
problem (8.27) for any initial condition:

ẋ = −∇x −Lλ− q,
λ̇ = Lx, (8.28)

where ∇ = diag[2ATi Ai]i=1:n, and q = −vec[2bTi Ai]i=1:n. The dynamical sys-
tem (8.28) is clearly Linear Time Invariant and has q as input.

The basic challenge with the above problem is that each node does not know the
objective function of other nodes. Yet, they need to find the solution cooperatively.
However, the problem is now in the form of (8.21) and can be solved by system
(8.23) or (8.26).

The important feature of Least Squares, or convex Quadratic Programming prob-
lems, is that they lead to LTI optimization systems, as shown in the block diagram
of Fig. 8.9. Thus, a vast array of advanced analysis and design methodologies from
control theory apply to them. This may require us to move away from the general-
purpose optimization algorithms, which work for most problems, and to design
special-purpose optimization systems for specific applications and cost functions.
Another important feature of the system is that the vector q is an exogenous input to
the system. Thus, if qi changes over time as function of the problem data, bj (k), the
system can track and adapt the optimal point, as shown in Fig. 8.9, leading to real-
time adaptive optimization. We want to point out that our approach is different from
approaches based on the distributed implementation of the known optimal solution
with assistance of consensus algorithms, as done in [64] or [37].

Finally, we want to point out that the approach presented in Sect. 8.6.1 for making
the distributed averaging system more resilient to channel dropouts also applies to
the distributed least squares systems. We refer the reader to [60] for details.
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Fig. 8.9 Block diagram of
the LTI optimization system
solving least squares. w1 and
w2 represent additive channel
noise

8.8 Networked Controller Design for Networked Systems

Until now, we have focused on the analysis of networked systems. In this case,
besides the network topology, the nodes’ dynamics are known and the signals ex-
changed over the network predefined. In the case of distributed optimization prob-
lems, we have encountered simple examples of networked system design. We have
seen how the agents’ dynamics and the signals exchanged are derivable from the op-
timization problem setup or from simple equivalent transformations. In this last part
of the chapter, we consider the problem of designing networked systems in more
general terms. Given the network topology, the problem is to define the nodes’ dy-
namics, as well as the signals that the nodes need to exchange over the network, in
order to accomplish a certain task. In particular, we consider the problem of design-
ing networked distributed optimal controllers for a given networked system under
the assumption that the controller’s network topology is the same as that of the
plant. Motivated by the derivation of the previous sections, we will consider the de-
sign of optimal networked controllers to improve the performance of a distributed
least squares system. Because we view distributed computational systems as dy-
namical systems, we can now look at them as plants for which to design networked
controllers. To our knowledge, this is the first time that advanced controller design
methods are applied to distributed computation systems. To do so, we need to rely
on new results on the design of optimal networked controllers for networked plants
[52, 53].

Because the size and nature of the signals to be exchanged over the network as
well as the dynamics of the nodes are not a priori specified, we need to identify
systems’ structures that are easily searchable and from which the dynamics of the
nodes with the necessary network signals can be recovered.

We have seen in Sect. 8.3 that networked systems over noiseless and delay-free
networks have structured state-space representations in S(G,Px,Pu,Py) and struc-
tured transfer functions in T(G,Pu,Py) defined in Sect. 8.2.3. A key question to
resolve is to find out if systems in these classes can be transformed back into net-
worked systems with specified nodes dynamics and network signals.
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8.8.1 Networked Controllers

The setting of Sect. 8.2.3 applies to networked controllers. Given a graph G = (V,E)
with n nodes, we associate a sub-system {PKi }i∈{1,...,n} to each node. PKi maps[ yi
νi

]→ [ ui
ηi

]
, i.e., each sub-system PKi is a minimal DT system with local inputs

yi(k), local outputs ui(k), network inputs νi(k), and network outputs ηi(k). Define

PK = diag
[
PKi

]
i

(8.29)

which, through rearrangement of input and outputs, maps
[ y
ν

]→ [ u
η

]
with partitions

Pu, Py , Pη, and Pν , and PKx if represented in state-space.

Definition 8.7 For given G and Py,Pu, we denote by N (G,Py,Pu) the set of net-
worked controllers (systems)K = Fl(PK,N) obtained by the feedback interconnec-
tion of some block diagonal PK defined as in (8.29) and a network interconnection
matrix N structured according to A(G)+ I for appropriate Pη,Pν .

It is not difficult to see that any networked controller K ∈N (G,Py,Pu) over a
noiseless and delay-free network G has a state-space representation that belongs to
the set S(G,PKx ,Py,Pu), for some state partition PKx , and has a transfer function
matrix K(z) that belongs to T(G,Py,Pu).

If a controller (or a system more generally) is built over a network, it is important
that the feedback interconnection of PK and N is detectable from u and stabilizable
from y. This excludes the presence of unstable internal modes in the networked
system.

Definition 8.8 Let N I (G,Py,Pu) ⊂ N (G,Py,Pu) be the subset of networked
controllers that are detectable from u and stabilizable from y.

What are the systems in S(G,PKx ,Py,Pu) or in T(G,Py,Pu) for which we can
find a networked controller (i.e., PK and N ) in N I (G,Py,Pu)?

8.8.2 Implementing and Realizing Systems over the Given Network

Definition 8.9 A system K ∈ S(G,PKx ,Py,Pu) is said to be network imple-
mentable if there exist PK , defined as in (8.29) with partitions PKx ,Py,Pu, and a
network interconnection matrix N structured according to A(G)+ I for appropriate
Pη,Pν such that K = Fl(PK,N) ∈N I (G,Py,Pu).

Excluding non-stabilizable and/or non-detectable systems from those, we con-
sider the property of being implementable over the network as important since it ex-
cludes the possibility that the networked system has hidden unstable modes. These
hidden unstable modes will make the networked system useless in practice as noise
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or uncertainty, always present in the network interconnections, will excite them and
manifest the “internal” instability. Thus, although we assume ideal network inter-
connections, we do not want our results to be fragile to this assumption.

Lemma 8.1 [52, 53] Any stabilizable and detectable systemK ∈S(G,PKx ,Py,Pu)
is implementable over the network G, i.e., K ∈N I (G,Py,Pu).

This lemma says that it is possible to find η and ν, PK and N with appro-
priate partitions, from the detectable and stabilizable structured state-space K ∈
S(G,PKx ,Py,Pu), so that the networked controller is stabilizable and detectable.

For a given G and input and output partitions Py and Pu, respectively, we denoted
by S(G,Py,Pu)=⋃

Px∈NnS(G,P
K
x ,Py,Pu).

Definition 8.10 A system K with transfer function matrix K(z) ∈ T(G,Py,Pu)
is said to be realizable over G if there exists a system K̃ with partitions Py , Pu
implementable over G (for some Px ), i.e., K̃ ∈ N I (G,Py,Pu), such that K(z) =
K̃(z).

Note that the definition of network realizability does not impose for the state-
space realization of a transfer function to be minimal, but only detectable and sta-
bilizable. Thus, the least requirement for acceptable realizations over the network
is that they cannot have unstable modes unobservable and/or uncontrollable while
they could have stable unobservable and/or uncontrollable modes. This allows more
flexibility in the realizing networked systems. We note that it is not known how
to obtain a minimal networked realization of a stable system in T(G,Py,Pu), in
general.

It turns out that any stable system in T(G,Py,Pu) is realizable over the network
G based on Definition 8.10. Unfortunately, we do not know yet if any system in
T(G,Py,Pu) is network realizable in general, and if is, how to realize it. Never-
theless, the network realizability of stable systems plays an important role in the
parametrization of all stabilizing network realizable controllers.

Theorem 8.3 Given a network represented by a directed graph G = (V,E) and the
input and output partitions, Py and Pu, any bounded-input bounded-output (BIBO)
stable system Q(z) ∈ T(G,Py,Pu) is realizable over the given network.

The proof is constructive and given in [51, 53].

Remark 8.1 The lack of a complete theory limits the applicability of input–output
approaches to design optimal network realizable distributed controllers that may
be unstable. These approaches search directly over the impulse responses and thus
provide optimal structured controllers in T(G,Py,Pu). Realizing such unstable con-
trollers over the network would be a problem, in general.
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We denote the set of all stable real-rational proper transfer function matrices in
T(G,Py,Pu) by Ts(G,Py,Pu). Note that, if Q(z) = [Qij (z)]i,j ∈ Ts(G,Py,Pu),
then Qij (z) ∈RH∞ for all i, j .

8.8.3 Generalized Networked Systems

We begin by extending the definition of the agents to allow local exogenous inputs
and local regulated outputs. A networked plant P is defined as in (8.4), but with
each sub-system now including local exogenous inputs wi(k) and local regulated
outputs zi(k). Thus, the state-space description of the sub-system Pi is written as

Pi :

⎡
⎢⎢⎢⎣
xi(k + 1)

zi(k)

yi(k)

ηi(k)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣
Ai Bwi Bui Bνi

Czi Dzwi Dzui Dzνi

C
y
i D

yw
i D

yu
i D

yν
i

C
η
i 0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
xi(k)

wi(k)

ui(k)

νi(k)

⎤
⎥⎥⎥⎦ , (8.30)

where Bwi , Czi ,Dzwi ,Dywi ,Dzui , andDzνi have dimensions compatible with the local
exogenous inputswi(k), local regulated outputs zi(k), local control inputs ui(k), the
local measurement outputs yi(k), the local network outputs ηi , and the local network
inputs νi :

G= Fl(P,N)

=

⎡
⎢⎢⎣
Â+ B̂νNĈη B̂w B̂u

Ĉz + D̂zνNĈη D̂zw D̂zu

Ĉy + D̂yνNĈη D̂yw D̂yu

⎤
⎥⎥⎦

:=
⎡
⎣A Bw Bu
Cz Dzw Dzu
Cy Dyw Dyu

⎤
⎦ . (8.31)

Note thatA, Cz, Cy are structured according to A(G)+I , while Bw,Bu,Dzw,Dzu,
Dyw,Dyu have a block diagonal structure.

We would like to find optimal H2 stabilizing networked controllers over the same
network as the plant. Let Tzw = Fl(G,K) be the networked closed loop system. We
consider the following optimization problems:

min ‖Tzw‖2

subject to K ∈N I (G,Py,Py),

Tzw is internally stable.

(8.32)

To solve this problem, it is natural to search over the structures in the state-
space, K ∈ S(G,PKx ,Py,Pu), or, as is often done, in the input–output K(z) ∈
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Fig. 8.10 The Networked
Control Framework for
Networked Plants

T(G,Py,Pu). (See Fig. 8.10.) However, for any stabilizingK ∈S(G,PKx ,Py,Pu),
or ∈ T(G,Py,Pu), we need to find a corresponding networked system K ∈
N I (G,Py,Pu). In particular, this last step is not usually addressed in the literature,
which implicitly assumes that searching over input–output structures is equivalent
to searching over networked systems.

8.8.4 All Stabilizing Network Implementable Controllers

Summarizing, we have seen that networked systems, over noiseless and delay free
networks, have specific state-space and transfer function matrix structures. We have
also seen that the state space structures can be implemented back as networked
systems. The implementation is constructive and allows identifying the agents dy-
namics and the signals they need to exchange on the given network topology. On the
other hand, obtaining networked systems out of structured transfer functions’ matri-
ces is possible for stable systems; it is not known if this is possible in general. It is
then natural to work with the structured state-spaces. In this section, we characterize
all the stabilizing controllers for a networked system, which are implementable over
the given network, provided that one networked stabilizing controller can be found.
This is always possible if the networked plant is stable. Sufficient conditions based
on LMI for finding a stabilizing controller in the general case are given in [51, 53].

Theorem 8.4 Given a networked plant G assume that G22 := (A,Bu,Cy,Dyu) ∈
S(G,Px,Pu,Py) is stabilizable and detectable with Dyu = 0. If there exist matri-
ces F partitioned according to (Pu,Px) structured according to A(G) + I and L
partitioned according to (Px,Py) block-diagonal such that A+BuF and A+LCy
are stable, then the set of all stabilizing FDLTI controllers for G, which are imple-
mentable over G, is parametrized by

K = Fl(J,Q), (8.33)

where

J =
⎡
⎢⎣
A+BuF+LCy −L Bu

F 0 I

−Cy I 0

⎤
⎥⎦ (8.34)
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is implementable over the network G, Q is any FDLTI system stable and imple-
mentable over the network G.

The structured state-space of the networked plant is compatible with the struc-
tured state-space of J , the nominal stabilizing controller, provided suitable struc-
tured F and L can be found. Then all the implementable stabilizing controllers can
be found by the feedback interconnection of J with any stable Q either in state-
space or in transfer function matrix form. In particular, we can now search over
stable Q in the frequency domain.

8.8.5 Optimal Solution for the Distributed H2-Problem

A distributed controller implementable over the network G can be seen as a stabiliz-
able and detectable system in S(G,Py,Pu).3 Thus, given a networked plantG over
a network G, the network distributed H2 control problem can be written as

min ‖Tzw‖2

subject to K ∈S(G,Py,Pu),

Tzw is internally stable,

(8.35)

where Tzw = Fl(G,K) denotes the closed-loop mapping from w(k) to z(k). Since
all the stabilizing controllers for Tzw are the stabilizing controllers forG22, we have
from Theorem 8.4 that

Tzw = Fl
(
G,Fl(J,Q)

)
,

where J is given by (8.34) and Q ∈ Ss(G,Py,Pu). If there exist matrices F and
L with the properties described in the hypothesis of Theorem 8.4, then the set of
all closed-loop transfer matrices from w(k) to z(k) can be obtained using Theo-
rem 8.4 and the results from [65] by an internally stabilizing proper controller im-
plementable over the network G as

Tzw = Fl(T ,Q)=
{
T11 + T12QT21 : Q ∈S

s(G,Py,Pu)
}
, (8.36)

where T is given by

T =
[
T11 T12
T21 T22

]

3Note that the input and output partitions of the controller have to match the output and input
partitions of the interconnected plant, while the state partition is not fixed.
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=

⎡
⎢⎢⎢⎣
A+BuF −BuF Bw Bu

0 A+LCy Bw +LDyw 0

Cz +DzuF −DzuF Dzw Dzu
0 Cy Dyw 0

⎤
⎥⎥⎥⎦ . (8.37)

Since the closed-loop transfer matrix is simply an affine function of the controller
parameter matrixQ, we can rewrite the distributedH2-problem in (8.35) as a convex
optimization problem

min ‖T11 + T12QT21‖2

subject to Q ∈S
s(G,Py,Pu).

(8.38)

It is convenient to solve the above problem in the frequency domain. This is possible
since Q ∈Ss(G,Py,Pu) is equivalent to Q(z) ∈ Ts(G,Py,Pu). We can maintain
the implementability of the controller due to the results of Theorem 8.3 which guar-
antees the realizability of Q(z) with a state-space realization Q̃ ∈ Ss(G,Py,Pu)
which is implementable over the network G. Thus, the optimization problem in
(8.38) can equivalently be expressed as

min
∥∥T11(z)+ T12(z)Q(z)T21(z)

∥∥
2

subject to Q(z) ∈ T
s(G,Py,Pu).

(8.39)

The problem is now reduced to a standard convex optimization form, whereQ(z) is
structured (see [42, 54]). Once the optimal Q(z) is found, we obtain a network
implementable state-space realization Q̃ ∈ Ss(G,Py,Pu) for Q(z) using Theo-
rem 8.3, and then a network implementable state-space realization for the opti-
mal K from Theorem 8.4, even if K is unstable. On the other hand, obtaining
K = Fl(J,Q(z)) directly fromQ(z) would lead to K having the right input–output
structure, i.e., K ∈ T(G,Py,Pu), but its state-space structure would be destroyed,
i.e.,K /∈S(G,Py,Pu), leaving us with a structured but centralized solution, in gen-
eral. We finally stress that, in order to guarantee the resulting controller is imple-
mentable over the network, we need a networked plant model in the state-space.

8.8.6 Networked Controllers for Distributed Least Squares Systems

We are now ready to apply the previous development to a least squares system. We
consider the Euler discretization of (8.28) with sampling time β for the least squares
system

x(k + 1)= x(k)− β∇x(k)− βLy(k)− βq,
y(k + 1)= y(k)+ βLx(k). (8.40)

We propose designing a networked controller to improve the performance of the
discrete-time approximation of the optimization system and extending the approach
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Fig. 8.11 Controller for
ad-hoc least squares
optimization

to directed graphs. Note that when the Laplacian is not symmetric as when the graph
is undirected, the dynamical system (8.28) (or (8.40)) does not converge, in general.

We look for more advanced controllers that still maintain the property of the
system to converge to the optimal solution. Although this problem can be posed in
grater generality, here we consider the setup shown in Fig. 8.11.

We consider the following generalized model for the networked plant:

x(k + 1)= x(k)− β∇x(k)− βLλ(k)− βq + βw1(k),

λ(k + 1)= λ(k)+ βu(k)+w2(k),

z1(k)= x(k),
z2(k)= αu(k),
y(k)= Lx(k)+w3(k),

(8.41)

where w1, w2, and w3 represent noise sources to which we want to be resilient,
and z1 z2 are the regulated variables. β is a scalar weight. w1 may model noisy
values of q . w3 models measurement noise, and w2 models noise generated within
the networked controller, possibly due to noisy communication links. We assume
for simplicity that all the noises are independent Gaussian distributed among com-
ponents and time, with zero mean and variances σ 2

1 I , σ 2
2 I , and σ 2

3 I , respectively.
More general correlated noise models are possible, but avoided here for simplicity.
The generalized plant has the following state-space structure from (8.41):

G=

⎡
⎢⎢⎢⎢⎢⎣

I − β∇ −βL −βσ 2
1 I 0 0 0

0 I 0 −βσ 2
2 I 0 −βI

I 0 0 0 0 0

0 0 0 0 0 αI

L 0 0 0 σ 2
3 I 0

⎤
⎥⎥⎥⎥⎥⎦
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with

G22 =
⎡
⎢⎣
I − β∇ −βL 0

0 I −βI
L 0 0

⎤
⎥⎦ .

Note thatG22 ∈S(G,Px,Pu,Py), by appropriate permutation of the states, is struc-
tured according to the network, but it is not detectable since it has unobservable
modes at 1. It is not known yet how to obtain a minimal realization guaranteed to be
network implementable, as standard approaches will destroy the network structure
of the state-space matrices.

To maintain the networked structure, we need to work with the non-minimalG22.
Theorem 8.4 can be extended in this setting (details omitted), however, to obtain
implementable controllers which stabilize the detectable and stabilizable modes of
G22 using the setup of Theorem 8.4, we now need matrices F structured according
to A(G) and L block-diagonal such that A+ B F and A+ LC have all the eigen-
values strictly inside the unit disc besides those that are not detectable and/or not
stabilizable. This allows obtaining J in (8.34), which is crucial for network realiz-
ability. When we pass to the frequency domain obtaining T in (8.37) and searching
for Q, the undetectable unstabilizable modes will automatically disappear from the
transfer functions, which are always minimal.

With these modifications, we next apply the design method of the previous sec-
tion to specific examples. We use distributed least squares to solve the distributed
averaging problem. A final remark is to clarify that the H2-design is to be intended
in the input–output sense, as the system has uncontrollable and/or unobservable
simple eigenvalues on the unit circle, which prevent computing the H2-norm using
state-space methods.

8.8.7 Examples

Consider the following least squares problem:

arg min
xi=xj ,∀i,j

n∑
i=1

1

2
(xi − qi)2.

where xi ∈R, and qi ∈R. This is a special case of the least squares problem which
has as optimal solution x∗ = 1

n

∑n
i=1 qi , i.e., the average of the agent private quan-

tities. It provides a different algorithm for computing distributed averages base on
optimization [67].

In this case, ∇ = I . We consider two network topologies of 3 agents. The first
has the following graph Laplacian:

L1 =
⎡
⎣−1 1 0

1 −2 1
0 1 −1

⎤
⎦ .
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Fig. 8.12 Convergence to average with different β: (a) β = 0.1 s, (b) β = 1 s

L1 is symmetric, so Theorem 8.2 applies. However, since we are using discretiza-
tion, there is a limit on the largest sampling time β < 0.12 that guarantees conver-
gence of (8.40) using the topology associated with L1.

Figure 8.12(a) shows the response of the controlled new algorithm with respect
to lightly damped response of (8.40); both algorithms have sampling time β = 0.1 s:
F = 0.01[L1, 0], L = 0.01

[ 0
I

]
. The order of each agent’s controller is 8,11,8, re-

spectively, and the overall networked controller is unstable with a pole at −1.1334
although networked.

Figure 8.12(b) shows the response of the controlled new algorithm designed for
sampling time of 1 s; (8.40) is unstable for such β . A small noise is added to show
the resilience of the algorithm to additive noise. In this case, each sub-controller has
order 6,8,6, respectively.

The second network is directed and with the following Laplacian:

L2 =
⎡
⎣−1 1 0

0 −1 1
1 0 −1

⎤
⎦ .

Theorem 8.2 does not apply, and system (8.40) does not converge without a net-
worked controller.

Figure 8.13 shows the tracking response of the controlled new algorithm de-
signed for sampling time of 1 s and the topology associated with L2. Here F =
−[0, I ] and L = 0.1

[
I
I

]
. Each agent has a time-varying private input, q1(k) =

10 cos(1/600πk), q2(k) = 20 cos(3/600πk), q3(k) = 30 cos(6/600πk). Then the
average of the inputs is r(k)= 1

3

∑2
i=1 qi(k), which is a periodic signal composed

of the three harmonics. The figure shows how each agent’s state tracks the average
over time and in the presence of additive noise.
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Fig. 8.13 Tracking
time-varying average q(t)
with noise

8.9 Conclusions

In this chapter, we have put forward an integrated view of systems interacting
over communication networks as distributed computing systems and proposed to
study them as networked control systems. We pointed out that, when the net-
work interconnections are unreliable, they can lead to the emergence of com-
plex behavior in the networked system trying to compute distributed averages of
the nodes private quantities. We believe that these results are relevant in study-
ing and understanding a variety of aspects in biological and social networks,
as averaging is central in many activities. We have also discussed how to mit-
igate the effects of complex behavior by reviewing network distributed averag-
ing schemes that can approximately compute averages in the presence of noise
and intermittent communication. The main ideas put forward for averaging sys-
tems can be extended to more general computing systems that solve convex dis-
tributed computations over the network. These results help understanding how sys-
tems with simple dynamics and limited resources can collectively compute solu-
tions to complex problems outside the capabilities of an individual. The dynam-
ical system view of optimization systems opens up many interesting directions
of research and allows studying the effect of noise and unreliable communica-
tions, as well as tracking and adaptation properties of the optimization systems.
In particular, designing controllers to improve the performance of optimization sys-
tems is now conceivable. In the last part of the chapter, we have presented an ap-
proach to improve the stability and convergence properties of a distributed least
squares system, based on a recently developed networked controller design method-
ology.
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Chapter 9
On the Conditional Mutual Information
in the Gaussian–Markov Structured Grids

Hanie Sedghi and Edmond Jonckheere

9.1 Introduction

9.1.1 The Smart Grid and Its Possibly Malicious Events

We are concerned with fast and reliable detection of threats in the power grid. This
extra capability of the grid to detect a malicious event, even when it is triggered by
a sophisticated antagonistic player, is among the attributes that make it smart.

Traditionally, the term grid is used to refer to an electricity system that sup-
ports the following four operations: electricity generation, electricity transmission,
electricity distribution, and voltage stability control. In the early days, generation
was co-located with distribution in what we would now call a micro-grid and the
connections among the micro-grids were meant to transmit energy in case of such
contingencies as shift in the supply/demand balance. After deregulation, however,
a large-scale generation–transmission–distribution network became the substitute
for the traditional generation–distribution co-location. The new network allows con-
sumers to purchase electricity at the cheapest price across the country, as opposed
to the former concept in which consumers were forced to purchase electricity from
local utility companies. Other considerations calling for an overhaul of the elec-
tricity system include the reduction of carbon emission, an objective that cannot be
achieved without a significant contribution from the electricity sector. This calls for
a bigger share of the renewable energy resources in the generation mix and a sup-
ply/demand that must be managed more effectively. Management and control of the
grid made increasingly complex by its response to electricity market conditions are,
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next to its ability to detect contingencies, the most fundamental attributes that make
it smart.

Automated large-scale management requires considerable exchange of informa-
tion, so that the smart grid has become a two-commodity flow—electricity and in-
formation. By utilizing modern information technologies, the smart grid is capable
of delivering power in a more efficient way and responding to wider ranging condi-
tions.

Massive amount of measurements and their transmission across the grid by mod-
ern information technology, however, make the grid prone to attacks. Next to mali-
cious events, the potential for fault events with cascading impact on the overall sta-
bility of the power grid remains. Today’s power systems are not adequately equipped
with fault diagnosis mechanisms against various attacks and non-malicious events
such as lines sagging in trees, as it had happened right before the 2003 blackout.
Thus, there is an urgent need for quick assessment of fault events so that corrective
feedback control actions can be taken promptly to avoid cascading events. Fast and
accurate detection of possibly malicious events is of paramount importance not only
for preventing faults that may lead to blackouts, but also for routine monitoring and
control tasks of the smart grid, including state estimation and optimal power flow.
Fault localization in the nation’s power grid network is known to be challenging,
due to the massive scale and inherent complexity.

9.1.2 State Estimator (SE) Versus Phasor Measurement Units
(PMUs)

Traditionally, the State Estimator (SE) processes the measurement data from the
power meters to reconstruct the state (bus voltages and phase angles). More recently,
however, synchronous Phasor Measurement Units (PMUs) with GPS time stamps
have been deployed across the grid and are considered the most reliable sensing
information to monitor the state of operation of the grid and, if necessary, to respond
to contingencies. Even though PMUs are more reliable than SEs, for economical
reasons, some parts of the grid will still use state estimators in a foreseeable future.
Therefore, any attack—either tampering with the power measurement to the SE or
compromising the PMU data, as shown in Fig. 9.6—can harm the power grid.

9.1.3 Outline of Method

In a nutshell, the conceptual foundation of our method is the reconstruction of the
graphical model of the phase data.

We use the Conditional Covariance Test for this goal. CCT algorithm can be
summarized as follows: Given i, j ∈ V , given a separator S, that is, a subset of
V \ {i, j}, find the correlation between Xi and Xj ∈ X given the separator. If for
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all reasonably chosen separators this conditional covariance remains above a cer-
tain threshold, then (i, j) is declared an edge. Under some conditions, the resulting
(V,E) is the Markov graph of X.

Next, it is shown that, under normal grid operation, and because of the grid graph
structure, the Markov graph of phasors should match the power grid graph; other-
wise, a discrepancy should trigger the alarm.

It turns out that our method can detect the most recently contrived attack on
the smart grid, which specifically fools the State Estimator, and against which no
counter-measures have been suggested thus far [23]. The attack is deemed “sophis-
ticated” in the sense that it assumes knowledge of the bus–branch model of the grid.

9.1.4 Related Work and Exclusivity of Approach

The line fault detection method of [8] is also based on a GMRF model of the PMU
data. Besides the fault versus attack detection discrepancy in motivation, the differ-
ence between [8] and the present work is two-fold. First, probably the most impor-
tant contribution of this chapter is to show that the 1-neighbor property is just an
approximation, and issue that was not addressed in [8]. Secondly, the fault detection
method of [8] utilizes PMUs, whereas here we utilize both PMUs and State Estima-
tor, as shown in Fig. 9.6. For economical reasons, future grids will still contain state
estimators in some parts; therefore, [8] and any other monitoring system that does
not have a method to check for data integrity can be deluded by such an attack as
false data injection.

9.2 Gaussian Markov Random Field (GMRF): General Concept

9.2.1 Graphical Models

Probabilistic graphical models provide diagrammatic representation of probability
distributions. This way they set up a simple way to visualize the structure of a proba-
bilistic model and provide insight into properties of the model including conditional
independence properties [4].

A graph consists of nodes V connected by links E . In a probabilistic graphical
model, each node represents a random variable or a group of random variables and
the links express the probabilistic dependence relationship among random variables.
The graph represents how the joint probability distribution can be decomposed into
factors that depend only on a subset of the variables [4].

There are two major classes of graphical models: Bayesian Networks, also known
as directed graphical models where links are directed, and Markov Random Fields,
also known as undirected graphical models where links are not directed [4].
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Fig. 9.1 Global Markov
property: XI ⊥XJ |XS

Fig. 9.2 Local Markov
property: E[Xi |XN(i)] =
E[Xi |X−i ]

9.2.2 Gaussian Markov Random Field (GMRF)

A probability distribution is said to have global Markov property with respect to a
graph if, for any disjoint subsets of nodes I , J , S such that S separates I and J
on the graph, the distribution satisfies XI ⊥ XJ |XS , i.e., XI is independent of XJ
conditioned upon XS . This is represented in Fig. 9.1.

A distribution is pairwise Markov with respect to a given graph if, for any two
nodes i and j in the graph such that there is no direct link in the graph between i
and j , Xi is independent of Xj given the states of all of the remaining nodes, i.e.,
Xi ⊥Xj |XV\{i,j}.

A set of random variables is said to have local Markov property corresponding
to a graph [13] if any variable Xi is conditionally independent of all other variables
X−i given its neighbors XN(i), where −i := {j ∈ V : j 
= i} and N(i) := {j ∈ V :
(i, j) ∈ E}. The local Markov property can be seen in Fig. 9.2.

Given an undirected graph G = (V,E), a set of random variables X = (Xv)v∈V
form a Markov Random Field with respect to G if they have the global Markov prop-
erty. It should be noted that the local Markov property and pairwise Markov property
are equivalent and they are a special case of global Markov property. For a strictly
positive probability distribution, the properties are equivalent and it can be shown
that the probability distribution can be factorized with respect to the graph [13].

One instance of this positivity condition happens in case of jointly Gaussian dis-
tributions.

A Gaussian Markov Random Field (GMRF) is a family of jointly Gaussian
distributions that factor in accordance with a given graph. Given a graph G =
(V,E), with V = {1, . . . , p}, consider a vector of Gaussian random variables *X =
[X1,X2, . . . ,Xp]T , where each node i ∈ V is associated with a scalar Gaussian ran-
dom variableXi . A Gaussian Markov Random Field (GMRF) on G has a probability
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density function (pdf) that may be parametrized as

fX(x)∝ exp

[
−1

2
xT Jx + hT x

]
, (9.1)

where J is a positive-definite symmetric matrix whose sparsity pattern corresponds
to that of the graph G. More precisely,

J (i, j)= 0 ⇐⇒ (i, j) /∈ E . (9.2)

The matrix J =Σ−1 is known as the potential or information matrix, the nonzero
entries J (i, j) as the edge potentials, and the vector *h as the vertex potential vec-
tor [2].

In general, the graph G = (V,E) is called the Markov graph (graphical model)
underlying the joint probability distribution fX(x), where the node set V repre-
sents each random variable Xi , if the edge set E is defined in order to satisfy local
Markov property. For a Markov Random Field, the local Markov property states
that Xi |X−i =Xi |XN(i), where X−i denotes all variables except for Xi , and XN(i)
denotes all random variables associated with the neighbors of i. Define

rij �
Σ(i, j |V \ {i, j})√

Σ(i, i|V \ {i, j})Σ(j, j |V \ {i, j}) (9.3)

as the partial correlation coefficient between variables Xi and Xj for i 
= j measur-
ing their conditional covariance given all other variables. The joint distribution of
the GMRF X follows N(μ, (I −R)−1), with Σ = (I −R)−1 being the covariance
matrix and R � [rij ] the matrix consisting of partial correlation coefficients off the
diagonal and zeros on the diagonal entries [21] , i.e.,

rij =− J (i, j)√
J (i, i)J (j, j)

. (9.4)

Therefore,

Xi |X−i ∼N
(
μi +

∑
j 
=i
rij (Xj −μj ),1

)
, (9.5)

where the distribution is normalized to highlight the partial correlations rij .
Setting X ∼ N(μ,J−1), the pairwise Markov property of GMRF implies that

(i, j) /∈ E⇔ rij = 0.

9.3 Bus Phase Angles as Gaussian Markov Random Field
(GMRF)

This section is the “hub” of this whole chapter. Specifically in this section, we exam-
ine the extent to which the bus phase angles of the power grid satisfy the conditions
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for them to qualify as a GMRF. We discuss the approximation in neighboring prop-
erty between bus phase angles.

Further, in Sect. 9.4.4, we explain the Conditional Covariance Test [2] as the
method we have chosen for finding out the Markov graph of bus phase angles. Next,
we explain why CCT method best describes this approximation and why this ap-
proximation is, in fact true, for a grid graph.

Finally, in Sect. 9.5, we argue that a discrepancy between the output of CCT and
the grid graph structure means that the system is under stealthy deception attack.

9.3.1 AC Power Flow: Review

The AC power flow states that the real power and the reactive power flowing from
bus i to bus j are, respectively,

Pij =GijV 2
i −GijViVj cos(θi − θj )+ bijViVj sin(θi − θj ), (9.6)

Qij = bijV 2
i − bijViVj cos(θi − θj )−GijViVj sin(θi − θj ), (9.7)

where Vi and θi are the voltage magnitude and phase angle, resp., at bus i and Gij
and bij are the conductance and susceptance, resp., of line ij . From [3], we obtain
the following approximation of the AC fluctuating power flow:

P̃ij = (bijV iV j cos θij )(θ̃i − θ̃i ), (9.8)

Q̃ij = (2bijV i − bijV j cos θij )Ṽi − (bijV i cos θij )Ṽj , (9.9)

where bar means steady-state value, tilde means fluctuation around the steady-state
value, and θij = θi − θj . These fluctuating values due to renewables and variable
loads justify the utilization of probabilistic methods in power grid problems.

Now, assuming that for the steady-state values of voltages we have V i = V j .
1p.u. (per unit), and the fluctuations in angles are about the same such that
cos θij = 1, we have

P̃ij = bij (θ̃i − θ̃j ), (9.10)

and

Q̃ij = bij (Ṽi − Ṽj ). (9.11)

9.3.2 Gaussian Distribution Assumption: Transmission Versus
Distribution Network

The power flow equations can be written, conceptually, as z = h(x), where z =
(P T ,QT )T is the vector of (active and reactive) powers injected at the various buses
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and x = (θT ,V T )T is the state, that is, the vector of voltage phase angles and volt-
age magnitudes at the buses.

Whether the Gaussian distribution assumption on θ is justified depends on two
considerations:

1. The nature of the injected power, which could be deterministic or stochastic.
2. The linearized approximation of z= h(x), the DC power flow equations.

Regarding the first item, in a high-voltage transmission grid, the aggregate prop-
erty of the demand justifies the Gaussian distribution assumption. On the other hand,
the loads in a low-voltage power distribution network do not correspond to aggre-
gate loads but single consumers. Hence the Gaussian distribution assumption cannot
be justified on the ground of the demand. The Gaussian distribution assumption can,
however, be justified by the aggregation of such renewables as wind turbines and so-
lar panels, the power output of which is inherently random. It is suggested in [18]
that as few as 5 wind turbines would suffice to see the Central Limit Theorem in
action, meaning that the power generation would behave like a Gaussian random
variable.

We note that the capability of detecting false data is also interesting in the dis-
tribution grid, where the high number of inexpensive sensors deployed in the grid
could hardly be managed via secure communication channels.1 For our method—
which relies on the Gaussian distribution assumption—to be applicable to the distri-
bution network, it is hence imperative to invoke the aggregation of the renewables.
In the general setting where renewables need not be present, our work more realis-
tically applies to the transmission grid, where aggregate demand is present.

Regarding the second item, if aggregate power at buses follows Gaussian distri-
bution, by linearity of DC power flow we can reach the same conclusion for bus
phase angles.

9.3.3 DC Power Flow: Active Power Versus Phase Angle

We now apply the preceding to bus phase angles. We would like to show that bus
phase angles form a GMRF and then discuss the Markov graph associated with it.

The DC power flow model [1] is often used for analysis of power systems in
normal steady-state operations. When the system is stable, the phase angle differ-
ences are small. In addition, DC power flow assumes that lines are highly inductive.
Therefore, sin(θi − θj ) ∼ θi − θj . Thus, the power flow on the transmission line
connecting bus i to bus j is given by

Pij = bij (Xi −Xj), (9.12)

1This was brought to our attention by an anonymous referee.
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where Xi and Xj denote the phasor angles at bus i and j , respectively, and bij
denotes the inverse of the line inductive reactance. The power injected at bus i equals
the algebraic sum of the powers flowing away from bus i:

Pi =
∑
j 
=i
Pij =

∑
j 
=i
bij (Xi −Xj). (9.13)

In the above formulation, the summation holds since bij = 0 is implied whenever
buses i and j are not connected. Thus, it follows that the phasor angle at bus i could
be represented as

Xi =
∑
j 
=i
cijXj + 1∑

j 
=i bij
Pi, (9.14)

where cij = bij∑
i 
=j bij

.

Because of load uncertainty in the transmission network, the injected power can
be modeled as a random variable [15] and since injected power models the super-
position of many independent factors (e.g., loads), it can be modeled as a Gaussian
random variable, as already argued in Sect. 9.3.2. Thus, the linear relationship in
(9.12) implies that the difference of phasor angles across a bus could be approx-
imated by a Gaussian random variable truncated within [0,2π). Considering the
fixed phasor at the slack bus, it is assumed that under steady-state, phasor angle
measurements can be considered as Gaussian variables [8].

The next step is to find the correct neighboring relationship between the Xi ’s.

9.3.4 Local Markov Property: Neighboring Relationship

Here we investigate the extent to which the θ ’s are in a 1-neighbor relationship, by
which we mean the local Markov property, E(Xi |X−i ) = E(Xi |XN(i)). We look
at two idealized cases: an infinite chain-structured bus system and a 2-dimensional
lattice-structured bus system.

In Sect. 9.3.4.1 dealing with the idealized chain bus, we consider (9.13) along
with independently injected powers Pi ’s and demonstrate a 2-neighbor relation-
ship between the Xi ’s, i.e., the Xi ’s are related to their first and second degree
neighbors in the grid graph; precisely, E(Xi |X−i ) = E(Xi |XN(i) ∪ XN(N(i))\{i}).
This implies that the J (i, j) matrix entry in Eq. (9.1) is nonvanishing if and
only if i and j are 1-neighbors or 2-neighbors in the grid graph; in other words,
J (i, j) = 0, ∀dhop(i, j) ≥ 3, where dhop(·, ·) denotes the hop metric defined as the
distance on the graph when the link weights are normalized to 1. Furthermore,
using the Toeplitz structure of the coefficient matrix of the system of Eq. (9.13)
and Fourier transform techniques, Sect. 9.3.4.1 shows that J (i, j ′) < J (i, j), for
2 = dhop(i, j

′) > dhop(i, j) = 1, that is, the J matrix entry in Eq. (9.1) for the
second-neighbor is smaller than the J matrix entry for the first-neighbor. It is shown
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Fig. 9.3 Infinite Line
Network

in Sect. 9.3.4.1 that this approximation falls under the generic fact of the tapering
off of Fourier coefficients.

In Sect. 9.3.4.2, a similar result is demonstrated to hold for the idealized 2-
dimensional lattice-structured grid.

Thus, we can approximate the neighboring relationship to be that of immediate
neighbors in grid graph,

E[Xi |X−i] .E[Xi |XN(i)]. (9.15)

Therefore, we have an approximate local Markov property. It is conjectured that
such an approximation holds whenever the grid has enough symmetry to allow for
Toeplitz and related Fourier transform techniques.

9.3.4.1 Independent Power Injection to an Infinite Chain

Consider a doubly infinite homogeneous chain-structured power network with
bi,i+1 = 1 as shown in Fig. 9.3.

The DC power flow equations, P = BX, in this specific case take the format

⎡
⎢⎢⎢⎢⎢⎢⎣

...

P−1
P0
P1
...

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . . 2 −1
−1 2 −1

−1 2
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

...

X−1
X0
X1
...

⎤
⎥⎥⎥⎥⎥⎥⎦
. (9.16)

Because of the symmetry of the problem, B is a doubly-infinite Toeplitz matrix,
also referred to as Laurent operator. By “Toeplitz matrix,” we mean a matrix whose
(i, j) entry depends only on the difference of indexes, i − j . Equivalently, a ma-
trix with constant entries on the diagonal, constant entries on the super-diagonals,
and constant entries on the sub-diagonals is a Toeplitz matrix, as can be seen from
Eq. (9.16).

Besides the usefulness of chains as testbeds for networks with shift invariant
properties, here, the most compelling justification is that the doubly-infinite chain
structure secures

∑+∞
k=−∞Pk = 0, as easily seen from the cancellation of the sum of

the column elements of B , but subject to some convergence issues, which are now
straightened out.



286 H. Sedghi and E. Jonckheere

To remain within the Hilbert space setup, we restrict X ∈ �2(−∞,+∞). Next, it
can be seen that the B-operator is bounded. Indeed, taking the Fourier transform of
P and X,

P̂
(
ejα

)= +∞∑
k=−∞

Pke
jkα, X̂

(
ejα

)= +∞∑
k=−∞

Xke
jkα, (9.17)

we get

P̂
(
ejα

)= (
2− ejα − e−jα)X̂(ejα). (9.18)

From the above, we notice that B is a multiplication operator in the Fourier domain:

P̂
(
ejα

)= B̂(ejα)X̂(ejα), B̂
(
ejα

) := 2(1− cosα), (9.19)

where B̂ is referred to as the symbol of the operator. Clearly, the multiplication
operator B̂ : L2[0,2π)→ L2[0,2π) is bounded and since the Fourier transform is a
Hilbert space isometry the operator B : �2(−∞,+∞)→ �2(−∞,+∞) is bounded
as well. This secures P ∈ �2(−∞,+∞) and hence gives sense to

∑+∞
k=−∞Pk = 0.

In order to determine the neighboring structure of a chain-generated random
phase angle vector *X, we assign a normal distribution to P . This results in X having
a Gaussian distribution

fX(P )∼ e− 1
2P

T Σ−1
d P = e− 1

2X
T BT Σ−1

d BX, (9.20)

where the covariance Σd is a trace class operator, a condition necessary to se-

cure
∫
�2(−∞,+∞) e

− 1
2P

T Σ−1
d PΠ+∞k=−∞dpk <∞ along with the Gaussian property

of the projection of the infinite-dimensional distribution on a finite-dimensional
space [19, Proposition 1.8], [17]. We takeΣd = diag{σ 2

d,k : k = · · · ,−1,0,+1, . . . }
with σd,k = 1 for |k| ≤ d , and lim|k|→∞ σd,k = 0 with σd,k > 0 for |k|> d , and such
that

∑+∞
k=−∞ σ 2

d,k <∞. With this covariance,

lim
d→∞ e

− 1
2X

T BT Σ−1
d BX = e− 1

2X
T B2X, (9.21)

where B2 is doubly-infinite Toeplitz as well with symbol

B̂2
(
eiα

)= [
2(1− cosα)

]2 = 6− 8 cosα + 2 cos 2α. (9.22)

From the above, it follows that

fX(x)∝ exp

⎛
⎜⎜⎝−1

2
XT

⎡
⎢⎢⎣
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

⎤
⎥⎥⎦X

⎞
⎟⎟⎠ . (9.23)

According to (9.23), we can see a two-neighbor correlation between the Xi ’s. It
can also be seen that the coefficients for the second neighbors are smaller than those
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Fig. 9.4 Euclidean Lattice

of the first neighbors. It should be noted that a power grid is not infinite, hence the
infinite Toeplitz structure is an idealization.

9.3.4.2 Euclidean Lattice

The preceding can be generalized to an infinite 2-dimensional Euclidean lattice. 2-
dimensional Euclidean lattice is depicted in Fig. 9.4. Given a 2-dimensional lattice
with vertices with integer coordinates {(k, l)}k,l∈Z, the neighboring relationship is
N((k, l)) = {(k ± 1, l), (k, l ± 1)}. In other words, the susceptance b(k,l),(m,n) be-
tween nodes (k, l) and (m,n) is nonvanishing only if either m= k ± 1 and l = n or
m= k and n= l ± 1. As in (9.17), we define the 2-dimensional Fourier transforms
as

P̂
(
ejα, ejβ

)= ∑
k,l∈Z

Pk,le
jkαejlβ, X̂

(
ejα, ejβ

)= ∑
k,l∈Z

Xk,le
jkαejlβ .

As in (9.19), the DC power flow equations can be written as

P̂
(
ejα, ejβ

)= B̂(ejα, ejβ)X̂(ejα, ejβ),
B̂
(
ejα, ejβ

)= (
4− ejα − e−jα − ejβ − e−jβ),

where B̂ : L2([0,2π)2)→ L2([0,2π)2) is the susceptance operator. In order to
write the equivalent of (9.20) for a 2-dimensional lattice, we use Parseval’s theo-
rem as a representation of

∑
k,l∈Z P 2

k,l as a quadratic function of Xk,l :

fX(P )∝ e− 1
2

∑
k,l∈Z P 2

kl = e− 1
2

1
2π

∮ ∮ |B̂|2|X̂|2dαdβ
Quadratic functions of 2-indexed variables do not lend themselves to obvious matrix
representation. The guiding idea here is to collect those Xk,l’s that are contributing
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to
∑
k,l∈Z P 2

k,l . Those Xk,l’s are the coefficients of the zeroth powers of ejα and ejβ

in the integrand. Given

|B̂|2 = 20− 8ejα − 8e−jα − 8ejβ − 8e−jβ

+ 2ej (α+β) + 2e−j (α+β) + 2ej (α−β) + 2e−j (α−β)

+ e2jα + e−2jα + e2jβ + e−2jβ

and

|X̂|2 =
∑

k,l,m,n∈Z
Xk,lXm,ne

j (k−m)αej (l−n)β,

it is not hard to see that∑
k,l∈Z

P 2
k,l =

∑
k∈Z

(
20X2

k,k − 8Xk,kXk+1,k − 8Xk,kXk−1,k − 8Xk,kXk,k+1

− 8Xk,kXk,k−1 + 2Xk,kXk+1,k+1 + 2Xk,kXk−1,k−1

+ 2Xk+1,k−1 + 2Xk,kXk−1,k+1 +Xk,kXk+2,k

+Xk−2,kXk,k +Xk,kXk,k+2 +Xk,kXk,k−2
)
.

Clearly,
∑
k,l∈Z P 2

k,l is quadratic in the Xk,l variables, but those variables that
are multiplied have their indexes within at most a 2-neighbor relationship in
the lattice structure. To be somewhat more specific, what we learn over the 1-
dimensional case is that the correlations decay with the �2-distance on the lattice.
Indeed, for d�2((k, k), (k + 1, k)) = 1, the canonical correlation r(k,k),(k+1,k) ∝ 8;
for d�2((k, k), (k + 1, k + 1)) = √2, the canonical correlation r(k,k),(k+1,k+1) ∝ 2;
and for d�2((k, k), (k + 2, k))= 2, the canonical correlation r(k,k),(k,k+2) ∝ 1.

As a word of technical warning, the fX(P ) expression should have been written

e
− 1

2

∑
k,l∈ZΣ−1

d,(k,l)
Pk,l , where

∑
k,l Σd,(k,l) <∞ and Σd,(k,l) = 1 for ‖(k, l)‖�2 ≤ d

and Σd,(k,l) ↓ 0 as ‖(k, l)‖�2 →∞. This brings some tempered coefficients in the
correlations, which have no effect unless for ‖(k, l)‖�2 →∞. Working out this tech-
nicality explicitly would have, however, resulted in substantial clutter in the nota-
tion.

9.3.5 Reactive Power Versus Voltage Amplitude

It is clear from (9.10), (9.11) that we can follow the same discussion we had about
real power and voltage angles with reactive power and voltage magnitudes.

It can be argued that, as a result of uncertainty, the aggregate reactive power
at each bus can be approximated as a Gaussian random variable and, because of
Eq. (9.11), voltage fluctuations around the steady-state value can be approximated
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as Gaussian random variables. Therefore, the same path of approach as for phase
angles can be followed to show the GMRF property for voltage amplitudes. Com-
paring (9.11) with (9.12) makes it clear that the same matrix, i.e., the B matrix
developed in Sect. 9.3.4, is playing the role of correlating the voltage amplitudes;
therefore, assuming that the statistics of the active and reactive power fluctuations
are similar, the underlying graph is the same. This can be readily seen by comparing
(9.10) and (9.11).

Therefore, voltage magnitudes provide another perspective for developing a
graphical model underlying the grid structure.

The dual of our approach (linear relationship between reactive power and voltage
magnitude) could be generalized to include line loss by linearizing Eq. (2) of [5] to
produce a linear relationship between voltage, active and reactive power.

9.4 Model Selection

In the context of graphical models, model selection means finding the real underly-
ing Markov graph among a group of random variables based on samples of those
random variables. There are two main classes of methods for learning the structure
of the underlying graphical model: convex and non-convex methods. �1-regularized
maximum likelihood estimators are the main class of convex methods [7, 9, 20].
In these methods, the inverse covariance matrix is penalized with a convex �1-
regularizer in order to encourage sparsity in the estimated Markov graph structure.
Other types of methods are the non-convex or greedy methods [2]. As we are faced
with GMRF in our problem, it would be useful to exploit one of these structure
learning methods.

We have decided to use the new Gaussian Graphical Model Selection method
called Conditional Covariance Test (CCT) [2].

It is proven in [2] that two nodes are connected in the Markov graph iff the condi-
tional mutual information between those measurements is greater than a threshold.
For Gaussian variables, testing conditional mutual information is equivalent to Con-
ditional Covariance Test.

In order to have structural consistency, the model should satisfy two important
properties:

1. α-walk-summability,
2. (γ, η)-local separation property.

9.4.1 α-Walk Summability

A Gaussian model is said to be α-walk-summable if ‖R̄‖ ≤ α < 1 where R̄ := [|rij |]
and where ‖ · ‖ denotes the spectral or 2-norm of a matrix, which for symmetric
matrices is given by the maximum absolute eigenvalue [2]. rij is defined in (9.3)
and (9.4). The power grids that we considered satisfied this criteria.
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Fig. 9.5 Local Separation
Property: γ = 3.
N(i)= {a, b, c} is the
neighborhood of i and the
γ -local separator set
S(i, j ;G,γ )= {a, c}

9.4.2 Local Separation Property

An ensemble of graphs has the (η, γ )-local separation property if for any (i, j) /∈
E(G), the maximum number of paths between i, j of length at most γ does not
exceed η [2]. The local separator concept is depicted in Fig. 9.5.

The power grid structure is an example of bounded local path graphs that satisfy
the local separation property.

9.4.3 Conditional Mutual Information

Mutual information between two random variables is a quantity that measures the
mutual dependence between the two random variables. In the case of continuous
random variables, mutual information between random variables X and Y can be
defined as

I (X;Y)=
∫
X

∫
Y

f (x, y) log

(
f (x, y)

f (x)f (y)

)
dx dy, (9.24)

where f (x, y) is the joint probability density function of X and Y , and f (x) and
f (y) are the marginal probability density functions of X and Y , respectively.

Mutual information can be defined in terms of entropies as follows:

I (X;Y) = H(X)−H(X|Y)
= H(Y)−H(Y |X)
= H(X)+H(Y)−H(X,Y )
= H(X,Y )−H(X|Y)−H(Y |X), (9.25)

where H(X) and H(Y) are the marginal entropies, H(X|Y) and H(Y |X) are the
conditional entropies, and H(X,Y ) is the joint entropy of X and Y .

In the special case of Gaussian distributed random variables, for an N -
dimensional Gaussian random vector *Z, we have

H( *Z)= 1

2
log

(
(2πe)N |Σ |), (9.26)
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whereΣ is the covariance matrix of *Z [6]. This implies that the mutual information
between two N -dimensional Gaussian variables is

I ( *X; *Y)= 1

2
log

( |Σ *X *X||Σ *Y *Y |
|Σ *X *Y |

)
, (9.27)

where

Σ =
[
Σ *X *X Σ *X *Y
Σ *Y *X Σ *Y *Y

]
. (9.28)

The conditional mutual information is, in its most basic form, the expected value of
the mutual information of two random variables given the value of a third, that is,

I (X;Y |Z)=Ez
(
I (X;Y)|Z). (9.29)

This can be rewritten as [16]

I (X;Y |Z)=H(X,Z)+H(Y,Z)−H(X,Y,Z)−H(Z). (9.30)

Conditional mutual information can also be written in terms of conditional en-
tropies:

I (X;Y |Z)=H(X|Z)−H(X|Y,Z). (9.31)

Therefore, considering two Gaussian random variables Xi , Xj , conditional mutual
information between these two random variables conditioned on a set of random
variables XS is given by (see [2])

I (Xi;Xj |XS)=−1

2
log

[
1− ρ2(i, j |S)], (9.32)

where ρ(i, j |S) is the conditional correlation coefficient, given by

ρ(i, j |S) := Σ(i, j |S)√
Σ(i, i|S)Σ(j, j |S) . (9.33)

As a result, for Gaussian random variables, for testing conditional independence,
testing conditional mutual information is equivalent to testing conditional covari-
ances [2].

If the distributions deviate from Gaussian, the conditional mutual information
can still be derived from (9.32), (9.33), providedΣ(i, j |S) is interpreted as the con-
ditional correlation of gi(Xi) and gj (Xj ), where the gi ’s are nonlinear processing
functions aimed at maximizing the correlation.

To be more precise, let ρgi,gj ,g(i, j |S) be the correlation coefficient between
gi(Xi) and gj (Xj ) conditioned upon g(XS), where gi , gj , and g are measurable
functions. Then by nonlinear processing of Xi and Xj with the distortion functions
gi and gj , the canonical correlation ρgi,gj ,g(i, j |S) can be made to increase towards
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the mutual information:

sup
gi ,gj ,g

(
−1

2
log

(
1− ρ2

gi ,gj ,g
(i, j |S)))≤ I (Xi;Xj |XS)

(see [10, Corollary 1]). Furthermore, the supremum can be achieved if gi(Xi) and
gj (Xj ) can be made jointly Gaussian conditioned upon g(XS) (see [10, Theo-
rem 3]). A computational procedure that precisely implements this idea is available
in [10, Sect. 6]. A related computational implementation is the sequential selec-
tion [11, 12]. A simplified numerical procedure based on the canonical correlation
between the powers of Xi and the powers of Xj is available in [22].

9.4.4 Conditional Covariance Test (CCT)

The Conditional Covariance Test is introduced in [2]. Using CCT method, the con-
ditional covariance is computed for each node pair (i, j) ∈ V2 and the conditioning
set that achieves the minimum, over all subsets of other nodes of cardinality at most
η, is found. If the minimum value exceeds the threshold ξn,p , then the node pair is
declared as an edge.

It is shown in [2] that under walk-summability the effect of faraway nodes on
covariance decays with the distance and the error in approximating the covariance
by local neighboring relationship decays exponentially with the distance. Thus by
correct tuning of threshold and having sufficiently many samples, we expect the
output of CCT method to follow the grid structure.

It has been shown that this method is superior to the �1-method [7, 20], as CCT
distributes edges fairly uniformly across the nodes, while the �1-method tends to
cluster all the edges together between the “dominant” variables, leading to a densely
connected component and several isolated points [2]. Therefore, CCT is more suit-
able for constructing the structure of the power grid from measurements.

9.5 Stealthy Deception Attack

The most recent false data injection attack on the power grid has recently been
introduced in [23]. For a p-bus electric power network, the l = 2p− 1 dimensional
state vector *x is (θT ,V T )T , where *V = (V1, . . . , Vp) is the vector of voltage bus
magnitudes and *θ = (θ2, . . . , θp) the vector of phase angles disregarding the slack
bus for which θ1 = 0. It is assumed that the nonlinear measurement model for the
state estimation is defined by

z= h(x)+ ε, (9.34)

where h(·) is the nonlinear measurement-valued function and *z is the m-dimen-
sional measurement vector consisting of active and reactive power measurements.
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Fig. 9.6 Power grid under a
cyber-attack

H(xk) := { ∂hi (*x)
∂xj

|*x=xk }1≤i≤m;1≤j≤l denotes the Jacobian matrix of the measure-

ment model h(*x) at xk .
According to [23], the goal of a stealthy deception attacker is to compromise the

measurements available to the State Estimator (SE) as

*za = *z+ *a, (9.35)

where *za is the corrupted measurement and *a is the attack vector. Vector *a is de-
signed such that the SE algorithm converges and the attack *a is undetected by the
Bad Data Detection (BDD) scheme. That is, the difference between *za and the h(xk)
is less than the BDD threshold. In addition, for the targeted set of measurements, the
estimated values at convergence are closest to the ones compromised by the attack.
The goal of attacker is to inject some data into the state estimator such that the
system does not recognize that the data is manipulated and acts upon that. Then it
is shown that, subject to some limitations, such an attack can be performed with
*a ∈ Im(H). The attack vector *a is designed in such a way that the difference be-
tween *za and *z is the desired value. Figure 9.6 represents the attack.

It is also stated that the introduced attack is only valid if performed locally. The
attack is performed under the DC flow assumption. Because of this assumption,
only the HPθ block of the H matrix is considered in the attack calculation and the
state vector introduced in [23] reduces to the vector of voltage angles, *X. Since
*a ∈ Im(H),

*za = *z+ *a =H( *X+ d). (9.36)

Thus, we have

Hd = *za −H *X = *a, (9.37)

whereH =HPθ , *za is the attacker’s goal and *X is the phasor angle vector. Consider-
ing (9.13), we haveHij =−bij for i 
= j andHii =∑

i 
=j bij , where bij denotes the
inverse of the line inductive reactance. Clearly, H is structured as a weighted graph
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Fig. 9.7 Evaluated 9-node
network

Laplacian. By “weighted graph Laplacian structure” we mean a symmetric matrix
with its (i, j) entry that can be interpreted as the negative of the “conductance” of
the (i, j) link and its (i, i) diagonal element equal to minus the sum of the other
elements in row i or column i. This is clearly a generalization of the combinatorial
graph Laplacian, where the “conductances” are normalized to 1.

Analysis of (9.36) and (9.37) shows that the Markov graph of an attacked system
changes from the grid graph. We use this to trigger the alarm.

It should be emphasized that the attack considered here assumes the knowl-
edge of the system’s bus–branch model. Hence under this scheme the attacker is
equipped with a wealth of information. Yet, we can detect such a strong attack with
our method.

9.6 Simulation

We considered a 9-node grid suggested by Zimmerman et al. [25]. The structure is
shown in Fig. 9.7. First, we fed the system with Gaussian demand and simulated the
power grid. We used MATPOWER [25] for solving the DC power flow equations
for various demand and used the resulting angle measurements as the input to CCT
algorithm. We used YALMIP [14] and SDPT3 [24] to perform CCT.

With the right choice of parameters and threshold, and enough uncompromised
measurements, the Markov graph follows the grid structure. Table 9.1 shows the edit
distance between the Markov graph and the grid graph that is used to lead us to the
correct threshold.
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Table 9.1 Normalized edit
distance under CCT for
Fig. 9.7; measurement
size= 400

Threshold No. of links of Markov graph Edit distance

0.0037 10 1

0.0038 9 0

0.0039 7 2

Table 9.2 Stealthy deception
attack on the grid shown in
Fig. 9.7

No. of attacked nodes Detection ratio

2 100

3 100

4 100

Next, we introduced the stealthy deception attack to the system. We considered
the cases where 2, 3 or 4 nodes are under attack. For each case, we simulated all
possible attack combinations. In all attack scenarios, the Markov graph of tampered
measurements lacked at least one link that was present in the grid graph, a discrep-
ancy that triggered the alarm. Thus we successfully detected the attack. Table 9.2
summarizes different attack scenarios and the corresponding detection ratios.

It should be noted that Table 9.1 shows the required sample size for tuning the
method to a specific network structure. So, it shows the initialization step that is
enough to be performed once at the beginning of every network analysis as long
as the network topology remains the same. Simulation results in the 9-bus network
show that even if only 1 of the samples is corrupted it is enough to secure 100 %
detection rate.

It should be noted that since we have made connections between phase angle
measurements Markov graph and power grid graph, the method can be performed in
a decentralized manner. In addition, as stated in [2], the complexity of CCT method
is polynomial.

9.7 Conclusion

We have shown that such statistical learning techniques as the Conditional Co-
variance Test—which is equivalent to the conditional mutual information test in
the Gaussian case—allows us to reconstruct the topology of the power grid as the
Markov graph of the phase angle measurements (or the voltage magnitudes) at the
buses. One of the main points of this chapter is that phase angle data only approxi-
mately satisfies the Markov property relative to the grid, a fact that was overlooked
in [8]. As shown in Sect. 9.3.4, correlations indeed extend beyond the 1-neighbor re-
lationship. Nevertheless, since the farther away neighboring relationship is weaker
and less significant than the 1-neighbor relationship, as shown here on the 9-bus
system, this difficulty can be overcome by correctly choosing the threshold.
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Finally, if the phase angle data is compromised, the reconstructed Markov graph
will be different from the grid interconnection, even when the attack is “stealthy”
and launched with the knowledge of the bus–branch model.

In further work, we would like to demonstrate the same concepts and results on
more realistic bus systems.
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