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Preface

With the widespread use of GPS-equipped handheld devices, location metadata
(a.k.a geotags) has rapidly become an integral part of photos and videos shared over
the Web. This trend enabled location-based multimedia organization, search, and
retrieval on many Internet services such as Google, Facebook, and Flickr. The main
driving force behind these services is the creation of highly personalized user
experiences, allowing for better recommendations and targeted advertisements.
Even with this trend, it has been estimated that only about 5 % of the existing
multimedia content on the Internet is actually geotagged. A significant amount of
consumer-produced media content is still obtained using devices that do not have
GPS functionality. Privacy concerns have motivated users to disable automatic
geotagging of media. Furthermore, even GPS-enabled devices cannot provide
accurate location information when the photo or video was captured in an indoor
environment.

Nevertheless, the volume of high-quality geotagged videos and photos on the
Web represents a quantity of training data for machine learning on an unprece-
dented scale, giving rise to the idea of creating an automated task that would try to
locate non-geotagged media from the Web using models obtained through the
geotagged subset. Put simply: Given a video and its associated textual metadata,
can we infer the location where it was taken? This idea of “multimodal video
location estimation” was proposed several years ago by the authors of the book.

Since then, the “Placing Task” of the MediaEval evaluation evaluated the task on
a global scale and the United States Government has sponsored the research in their
Finder program with a separate set of evaluations conducted by National Institute of
Standards and Technology (NIST). As a result, the problem has been approached
with diverse methods and ideas in the research community and significant
improvements have been made. Multimodal Location Estimation has become a
powerful tool and accuracies now come close to human capabilities.

The goal of the book is to present an overview of this field to software devel-
opers, engineers, and researchers and to bring together the different communities
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working in the area. Apart from research interest, forensics experts, developers, and
engineers for targeted advertising tools, as well as many people working in social
media retrieval have become interested in the subject.

Berkeley, CA, USA, June 2014 Jaeyoung Choi
Gerald Friedland
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Chapter 1
Introduction

Jaeyoung Choi and Gerald Friedland

In driving school, we learned that “traffic is defined by the fact that no two cars
can be at the same point at the same time.” While quantum physicists might argue
differently, this statement can be generalized to all objects in the universe, making
time and space coordinates a physically guaranteed unique database key. This is, of
course, especially interesting for indexing and retrieval of objects that are dependent
on space and time, such asmost photographs and videos. It is therefore nowonder that
the inclusion of GPS coordinates into photos and videos has become commonplace.
A photo or video taken at the same time and at the same place has an overwhelming
chance of showing the same event and/or objects, regardless of any other descriptive
element that may be provided along with the media. Furthermore, location-based
services are rapidly gaining traction in the online world. Besides major players like
Google and Yahoo!, there are many smaller startups in the space as well. The main
driving force behind these services is the enabling of a very personalized experience.
In a parallel development, a growing number of sites now provide public APIs for
structured access to their content, and many of these already come with geolocation
functionality. Flickr, YouTube, and Twitter all allow queries for results originating at
a certain location. After an incident, law enforcement agencies spend many person-
months to find images and videos, including tourist recordings, that show a specific
address, to find a suspect or other evidence. Also, intercepted audio, terrorist videos,
and evidence of kidnappings is often most useful to law enforcement when the
location can be inferred from the recording. To date, however, human expert analysts
have to spend many hours watching for clues of the location of a target video.

In the end, however, still less than 10% of videos and images are geotagged. Like-
wise, the belief is that retrofitting archives with location informationwill be attractive
to many businesses and enable new usage scenarios. Therefore, and as part of the

J. Choi (B) · G. Friedland
International Computer Science Institute, Berkeley, CA, USA
e-mail: jaeyoung@icsi.berkeley.edu

G. Friedland
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2 J. Choi and G. Friedland

Big Data movement, we introduced [3] a task called Multimodal location estimation.
The task denotes the utilization of one or more cues potentially derivable from dif-
ferent media, e.g., audio, video, and textual metadata to estimate the geocoordinates
of content recorded in digital media. Evaluation of algorithms works by utilizing
images and videos that have geotags and comparing the results against them.

Pioneering early work, mostly focusing on a single modality, in the area of loca-
tion estimation already existed before 2010. For example, in early articles [9, 12],
the location estimation task was reduced to an image retrieval problem on small
self-produced, location-tagged photo databases. Krotkov’s approach [1] for robot
applications extracts sun altitudes from images while Jacobs’ system [5] relies on
matching images with satellite data. In both these settings, single images have been
used or images have been acquired from stationary webcams. In the work of [7],
geolocation is also determined based on the estimate of the position of the sun.
They provide a model of photometric effects of the sun on the scene, which does
not require the sun to be visible in the image. The assumption, however, is that the
camera is stationary, and hence only the changes due to illumination are modeled.
This information in combination with time stamps is sufficient for the recovery of
the geolocation of the sequence. A similar path is taken in [6]. Previous work that has
been carried out in the area of automatic geotagging of multimedia content has been
based on textual tags of Flickr images. User-contributed tags have a strong location
component, as brought out by [11], who reported that over 13% of Flickr image tags
could be classified as locations using Wordnet. Rattenbury et al. [8] and Serdyukov
et al. [10] estimate the posterior distribution of the geolocations given the tags or
vice versa from the training database and use this to estimate the geolocation of a
query video. We should not forget to mention the pioneering work of [4], which is
still often used as a basis for multimodal location estimation systems.

Since the only-recent introduction and start of the field,work in thefield of location
estimation is currently creating progress in many areas of multimedia research. As
discussed in [3], cues used to estimate location can be extracted using methods
derived from current research areas. Since data found from the Internet is used,
multimodal location estimationwork is performed usingmuch larger test and training
sets than traditional multimedia content analysis tasks and the data are more diverse
as the recording sources and locations differ greatly. This offers the chance to create
machine learning algorithms of potentially higher generality. Overall, multimodal
location estimation has the potential to advance many fields, some of which we don’t
even know of, as they are created based on user demand for new applications.

This book aims at presenting an overview of the field, summarizing research
done in Europe, Asia, and the Americas. As ironic as it may seem, these political
boundaries do matter, as even a task as globally inspiring as geolocation is mostly
funded and therefore defined and evaluated through geographically limited research
projects.

Our book is structured based on approaches. We start with a deeper overview of
the field and benchmarkingmethodology in Chap. 2. Chapters3, 4, and 5 then present
three different visual approaches for location estimation before Chap. 6 presents an
acoustic approach. Chapter7 follows with a graphical framework approach to model

http://dx.doi.org/10.1007/978-3-319-09861-6_2
http://dx.doi.org/10.1007/978-3-319-09861-6_3
http://dx.doi.org/10.1007/978-3-319-09861-6_4
http://dx.doi.org/10.1007/978-3-319-09861-6_5
http://dx.doi.org/10.1007/978-3-319-09861-6_6
http://dx.doi.org/10.1007/978-3-319-09861-6_7


1 Introduction 3

locations with feature probabilities. Chapter8 then presents a multimodal approach.
We conclude the book with a study on human performance in Chap.9 and an inter-
esting application described in Chap.10.

Another way to view the structure of this research field is based on data resources
and modalities. We therefore also provide an overview along this structure.

As explained above, social network photo sharing services provide billions of
useful resources for location estimation. However, these data samples are contributed
by lay people and are thus very diverse and potentially noisy. Many services provide
ways to geotag the posts, photos, or videos, and some of the services allow the
usage of GPS information recorded by the camera module in the EXIF metadata.
Chapters2, 3, 5, 6, 7, 8, and 9, and 10 present work on this type of data.

Many videos and images are annotated with descriptive text, which forms a valu-
able source of information for geotagging as well. This is explained in Chaps. 2,
7, and 8. Social media videos also contain audio, thereby allowing the inference of
location over environmental noise, which is the focus of Chap.6. In fact, social media
images and videos have become so important for research that close to the finish of
this book, Yahoo! announced the release of a dataset containing 100 million images
and videos, many of them geotagged, for research purposes.

An alternative source for images used in the community are Satellite and Aerial
image databases, such as Google Earth and Microsoft Bird’s Eye View, which
virtually cover the entire globe. Images from these databases provide information
about the environment of different areas and can provide coverage for regions with
sparse photos and videos. This is explored in Chap.4.

A Gazetteer is a geographical dictionary that translates location names into
geocoordinates and vice versa. A popular gazetteer among location estimation
developers is called GeoNames.org. GeoNames covers all countries and contains 8
million entries. It provides a web-based search engine which returns a list of match-
ing entries ordered by their relevance to the query. The GeoNames database also
contains semantic information about the point of interest. The popular WordNet1

is a freely available online lexical database of English which contains a network of
semantic relationships betweenwords; Augmented-WordNet2 is an extended version
of WordNet with more data. Augmented-WordNet can be used for filtering out these
common nouns by looking at their part-of-speech tag. It also has limited geographi-
cal annotation. Chapter2 discusses the use of dictionaries. There has been a constant
debate in the community on whether it is better to rely on statistical methods only or
to rely more on so-called semantic methods using dictionaries. We intentionally left
the discussion out of this book but refer the reader to [2].

We hope that this book can contribute to a unification of the different approaches.
The authors firmly believe that multimodality is the key to approach location esti-
mation. We hope this book will do its part to bring the field closer together. Most
importantly, we hope the reader will find the book educational and entertaining.

1 http://wordnet.princeton.edu.
2 http://ai.stanford.edu/~rion/swn.

http://dx.doi.org/10.1007/978-3-319-09861-6_8
http://dx.doi.org/10.1007/978-3-319-09861-6_9
http://dx.doi.org/10.1007/978-3-319-09861-6_10
http://dx.doi.org/10.1007/978-3-319-09861-6_2
http://dx.doi.org/10.1007/978-3-319-09861-6_3
http://dx.doi.org/10.1007/978-3-319-09861-6_5
http://dx.doi.org/10.1007/978-3-319-09861-6_6
http://dx.doi.org/10.1007/978-3-319-09861-6_7
http://dx.doi.org/10.1007/978-3-319-09861-6_8
http://dx.doi.org/10.1007/978-3-319-09861-6_9
http://dx.doi.org/10.1007/978-3-319-09861-6_10
http://dx.doi.org/10.1007/978-3-319-09861-6_2
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Chapter 2
The Benchmark as a Research Catalyst:
Charting the Progress of Geo-prediction for
Social Multimedia

Martha Larson, Pascal Kelm, Adam Rae, Claudia Hauff, Bart Thomee,
Michele Trevisiol, Jaeyoung Choi, Olivier Van Laere, Steven Schockaert,
Gareth J.F. Jones, Pavel Serdyukov, Vanessa Murdock
and Gerald Friedland

Abstract Benchmarks have the power to bring research communities together to
focus on specific research challenges. They drive research forward by making it
easier to systematically compare and contrast new solutions, and evaluate their
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6 M. Larson et al.

performance with respect to the existing state of the art. In this chapter, we present a
retrospective on the Placing Task, a yearly challenge offered by the MediaEval Mul-
timedia Benchmark. The Placing Task, launched in 2010, is a benchmarking task
that requires participants to develop algorithms that automatically predict the geolo-
cation of social multimedia (videos and images). This chapter covers the editions
of the Placing Task offered in 2010–2013, and also presents an outlook onto 2014.
We present the formulation of the task and the task dataset for each year, tracing the
design decisions that were made by the organizers, and how each year built on the
previous year. Finally, we provide a summary of future directions and challenges
for multimodal geolocation, and concluding remarks on how benchmarking has cat-
alyzed research progress in the research area of geolocation prediction for social
multimedia.

2.1 Introduction

A benchmark is a standardized task that is carried out in order to evaluate alternative
approaches to addressing the task and to facilitate a fair comparison betweenmultiple
strategies for tackling this task. Benchmarks bring research communities together
to focus on a specific research challenge. This coming together of researchers with
common interests to work on a specific task can drive research forward by enabling
them to comparatively evaluate their work. In this chapter, we present a retrospective
of the Placing Task, a challenge offered within the MediaEval Benchmarking Initia-
tive for Multimedia Evaluation.1 We track the development of the Placing Task over
four editions from 2010 to 2013, and present an outlook to 2014. The evolution of the
Placing Task in MediaEval illustrates the power of a benchmark to establish a new
research topic and a community of collaborating researchers working to address the
challenges of this topic, together with persistent datasets that enable researchers to
evaluate their results with respect to the state of the art, and explore the effectiveness
of the new algorithms that they develop.

1 http://multimediaeval.org.
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2 The Benchmark as a Research Catalyst . . . 7

Geoprediction for socialmultimedia, also known as placing, is the task of inferring
geocoordinates for images or videos that users have uploaded to social sharing web-
sites. The key application of geoprediction technology is indexing images and videos
online, making them easier, to find, manage, and browse, and, in general, more useful
for users. Location, and concepts related to location, have a close connection with
howusers interpret, organize, and usemultimedia, and consequently applications that
use geocoordinates are considered to be important in allowing users to get the most
out of social multimedia. Many of today’s cameras and phones can and do record
geoinformation. Nonetheless, a large number of videos and images are uploaded
without georeference. For this reason, high-performance placing algorithms are nec-
essary in order to generate metadata that makes it easier for users to retrieve and
browse social multimedia.

This chapter discusses Placing Task, a challenge offered by theMediaEval Bench-
marking Initiative forMultimediaEvaluation2 to themultimedia research community
with the goal of fostering the development of new algorithms addressing the task of
automatically predicting the geocoordinates of social multimedia. While this chapter
focuses on the topic of geoprediction, we anticipate that is also relevant to multime-
dia benchmarking and general. We hope that it might ultimately serve to support the
consolidation and catalyzation of results in other research areas, which may benefit
from applying the strategies and techniques used by the MediaEval Placing Task.

2.1.1 The Placing Challenge for Social Multimedia

The nature of social multimedia means that placing is fundamentally a multimedia
challenge, involving different modalities. Images and videos uploaded by users are
associated with metadata, such as titles and descriptions. They are also associated
with user-contributed tags and comments. Often the user-uploaded multimedia items
are connected in a social network: here, information such as social connections and
views may also be available. In the case of video, the multimedia signal involves
temporal patterns which can be exploited. Video typically involves both a visual and
an audio channel. Audio includes spoken content, but also music and environmental
sounds contained in videos.

Interest in technologies that infer geocoordinates was established by work such
as [22] and [16]. Research effort devoted specifically to placing multimedia that
users share on the Internet gained momentum along with the rise of social media.
Geoprediction for social multimedia took on an independent form as a task in its own
right, with the publication of a paper entitled,“Placing Flickr Photos on a Map” [52],
which followed on the heels of [10]. Due to the influence of [52], the word “Placing”
was adopted as the name of the task in the MediaEval benchmark.

It is important to note that the task of placing social multimedia is different from
predicting geolocation of multimedia data that was not captured by users for per-
sonal use or social sharing. The phenomenon of people taking and sharing pictures

2 http://multimediaeval.org.

http://multimediaeval.org
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and videos ranges from people who point-and-shoot in order to capture a moment
or memory, to people who document events and objects, and people who pursue
photography as a hobby. For whatever reason that people produce and distribute
multimedia, it is clear that taking a picture or capturing a video is not a random
act. Rather it occurs with a reason. The result is that social multimedia is charac-
terized by a particular distribution of subject matter and of photographic style. In
short, multimedia shared on the Internet can be considered a social signal, i.e., an
information stream whose characteristics are determined by the underlying behavior
of the people who produce it.

The challenge of placing social multimedia has multiple dimensions: First, plac-
ing algorithms must be able to confront the noise and uncertainty associated with
social multimedia. The relationship between the visual content of an image and the
location at which the image was taken is often a weak one. For example, two images
can both depict a Black Labrador in front of a red Volkswagen. The content of both
images is visually distinctive, making the images potentially very similar to each
other with respect to image processing algorithms. Yet, it is possible that that the
two were taken many kilometers apart. Conversely, two images taken at the same
location, for example, a panorama and a close-up shot, may have no visual content in
common. Another source of uncertainty is user-contributed metadata: titles, descrip-
tions, and tags often receive only little attention from users uploading photos and
can be incomplete or completely misleading.

Second, algorithms must be capable of effectively combining multiple modali-
ties. Noise and uncertainty can be addressed by simultaneously exploiting multiple
information sources. However, in order to benefit from the availability of multiple
modalities, multimedia placing algorithms must be able to effectively exploit the
complementary information that they contain. The contribution of each modality
should enhance the ability of the algorithm to distinguish location. In the extreme
cases, such exploitation requires the ability to identify cases in which one modality
should be trusted and the others ignored.

Third, placing algorithms must be able to exploit large quantities of data.
Geoprediction for social multimedia requires building algorithms that can place a
multimedia item at any point in the world. The ability of algorithms to predict place
reliably rests on their capacity to process and exploit the large amounts of social
multimedia data that are available online, if they are to maximize their ability to
cover the world’s surface.

Finally, placing algorithms must be able to deal with the uneven distribution of
the geotagged data that is available for training. Many locations are associated with
rich resources in the form of a large number of multimedia items that have been taken
there, and are associated with geocoordinates and available online. Other locations
are represented by little to no data, creating an overall data sparseness problem. Fully
facing the challenge of “placing” requires developing algorithms that explore a range
of different techniques so that it is possible to cover each of these dimensions.

In this chapter, we trace the rise of interest and attention in themultimedia commu-
nity to the task of placing multimedia items on the world map. Placing has received
attention from a broad spectrum of researchers. However, a unique community of
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researchers has emerged who have worked together to actively define the task of
placing social multimedia and to guide and pursue the development of placing
solutions. This community, ofwhichkeymembers are the authors of this chapter, have
used benchmarking as a tool to encourage and guide the development of algorithms
that address the task of multimodal geolocation estimation for social media. Specifi-
cally, they have launched and grown the benchmarking task “Placing: Geocoordinate
Prediction for SocialMultimedia” within theMediaEval Benchmarking Initiative for
Multimedia Evaluation.3 In this chapter, we discuss the major developments in algo-
rithms to address the challenges of “placing,” and how these developments have been
guided by the Placing Task at the MediaEval benchmark.

This chapter charts the development of the Placing Task over the years 2010–
2014. In Sect. 2.1.2, we briefly discuss the history of benchmarking, and its ability
to promote progress in specific areas of research. Then, in Sect. 2.2, we discuss the
design of the task in each year and mentions major results. Based on the experiences
in the benchmark, Sect. 2.3 presents an overview for the future challenges that are
faced by researchers in the area of Placing. Finally, Sect. 2.4 finisheswith a conclusion
and outlook.

2.1.2 The Benefits of Benchmarking

A benchmark is a standardized task that is carried out in order to make possible a
fair comparison among multiple algorithms. A benchmark generally consists of a
description of a task, resources needed to address that task, and a standard metric or
evaluation procedure used to judge the quality of algorithms that address the task.
Although other areas have a slightly different definition, this definition holds for the
fields of information retrieval and multimedia, from which the Placing Task draws
most of its participants.

The roots of the benchmark evaluation movement that gave rise to the MediaEval
Multimedia Benchmark can be traced to TREC, the Text REtrieval Conference,4

which was established in 1992 by the US National Institute of Standards and Tech-
nology (NIST). TREC focused initially on text retrieval tasks, but has progressed
to topics such as web search, various social media search tasks, and speech and
video search, the latter within the TRECVid benchmark. TREC was followed by
the establishment in 1999 of NTCIR5 in East Asia and in 2000 of CLEF—Cross
Language Evaluation Forum in Europe.6 MediaEval was founded in 2008 as a track
named “VideoCLEF” within CLEF. In 2008–2009, VideoCLEF ran tasks examin-
ing automatic video tagging and cross-language video search. In 2010, VideoCLEF

3 http://www.multimediaeval.org.
4 http://trec.nist.gov.
5 http://research.nii.ac.jp/ntcir/.
6 http://www.clef-campaign.org.

http://www.multimediaeval.org
http://trec.nist.gov
http://research.nii.ac.jp/ntcir/
http://www.clef-campaign.org
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expanded its task offering and became an independent benchmarking initiative named
MediaEval. In this year, the Placing Task was established within MediaEval.

Themost often cited benefits of benchmarks is that they concentrate research effort
on specific problems or challenges, enable cross-site comparison of approaches to
address these problems, and drive forward the state of the art with respect to under-
standing methods or development of new ones. These benefits have been discussed
specifically in relation to MediaEval in [36] and [34]. Another important benefit
of benchmarks it that they provide stakeholder, e.g., companies who are interested
in developing products based on placing technology, with a way to overview and
to compare different solutions. Involving stakeholders in benchmarking can couple
technologies to real-world needs [45].

One of the less-discussed benefits of benchmarking is that it allows researchers to
learn how to deal with a new type of problem. Participating in a benchmark enables
researchers to expand the horizons or scope of their research. The opportunities pre-
sented by benchmarks are valuable for both studentswho are developing thesis topics,
and also for experienced researchers in the field who are interested in broadening
the scope of their investigations. As a multimedia benchmark, MediaEval is related
to TRECVid [54]. TRECVid is a video retrieval benchmark was first established
as TREC track 2001–2002 and became an independent benchmark in 2003. Tradi-
tionally, TRECVid has been more closely tied to the signal processing aspects of
multimedia challenges. MediaEval distinguishes itself from TRECVid by focusing
on the human and social aspects of multimedia.

MediaEval follows a yearly cycle, like many other benchmarks. However, it is
distinct in important aspects, which we discuss briefly here.

First, the tasks that are offered by MediaEval are decided on the basis of a com-
munity survey. This survey gives details of the tasks potentially available for the
next round of the benchmark, and is circulated widely at the beginning of the year.
The survey gives details of the offered task, but frequently also different possibilities
for test data might be used or the specific research questions to be addressed. The
survey gathers information about which tasks researchers and stakeholders find most
interesting, and which aspects of the tasks that would be interested in focusing on. In
the case of the Placing Task, the survey has allowed us to determine that researchers
appreciate extra resources, such as visual features, to be released along with the task
data, and has also made it possible to ensure that the dataset is structured so that it is
computationally feasible for researchers in a wide variety of research labs to tackle
the task.

Second, MediaEval tasks are largely autonomous from the overall benchmark,
whose role is limited to ensuring the smooth running of the overall activity by main-
taining the schedule for the year, and organizing the yearly workshop. This autonomy
means that the entire responsibility for developing the task description and dataset,
organizing submission of the “runs” (i.e., the results of experimental conditions)
submitted by the task participants and their evaluation lies in the hands of the task
organizers. In this way, the task organizers have the freedom to develop the most
productive and useful task possible, but they also bear the responsibility of ensuring
that the dataset is released on time, and that the task is successful.
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Third, the MediaEval workshop is seen as a gathering place at which teams
that have developed solutions to the tasks come together to exchange ideas and
experiences and to forge communities with shared research interests. MediaEval
encourages task participants to make use of the resources developed for the task
and participants; shared experiences in tackling the task to move beyond the results
reported in the Working Notes proceedings published at the workshop. After the
workshop task participants, either as individual teams or in combined groups pub-
lish papers at mainstream venues. Placing is one example of a new task which has
developed an active ongoing research community of shared interested through its
participation in the MediaEval benchmark. The communities are typically highly
energetic and are comprised of both established researchers and those develop-
ing their careers, such as postdoctoral researchers and those beginning their rese-
arch journey, such as PhD students. Publication of MediaEval results outside the
MediaEval workshop promotes the work of MediaEval to wider research communi-
ties.

A benchmark is useful if it allows researchers to make progress on a specific
problem. It is even more useful if it allows researchers to make gain insight into a
whole new class of problems. We believe that multimedia placing represents a new
class of multimedia problems. Here, we briefly mention the aspects of the Placing
Task that have led us to the conclusion that developing approaches to address the
Placing Task will contribute to moving the field of multimedia forward as a whole.

Placing a photo on theworldmap involves inferringmeaning from huge quantities
of multimedia data, qualifying it as the type of problem currently often referred
to be the term Big Data. As mentioned above, it is a fundamentally multimodal
problem: creating solutions to address the Placing Task requires developing effective
approaches for combining modalities. The data has been created by humans, and, as
such, is characterized by an underlying social signal that reflects human behavior,
such as travel and photo taking habits. The data used in the Placing Task is “found
data.” In other words, it is not collected under controlled conditions, but rather
gathered in the wild. Finally, Placing Task algorithms build successfully on “classic”
machine learning and information retrieval algorithms. For this reason, results of the
Placing Task are likely to find application in other areas of the fields of multimedia
and information retrieval.

2.2 Charting the Progress

In this section, we discuss, in turn, each year that the Placing Task has been offered
at the MediaEval benchmark. The discussion documents the process of building
each new year of the benchmark on the following year. Each year chose a different
direction in which to push beyond the challenge that was addressed by the previous
year into potentially productive, however, yet uncharted territory.
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2.2.1 Placing Task 2010: Inception

The inception of the MediaEval Placing Task dates to 2010, the year that MediaEval
became an independent benchmark. The task was launched by Pavel Serdyukov and
Vanessa Murdock in the wake of their 2009 SIGIR paper entitled “Placing Flickr
Photos on a Map” [52]. The paper, and its follow-up [44], showed the strength
of methods that exploit metadata assigned by users to images in order to predict
geocoordinates.

Previously, Flickr had started to allow users to upload videos of up to 90s in length
in addition to photos. The tagline associated by Flickr with the introduction of video
was, “It is like a photo, but it moves!” Both the size limit and the tagline suggest that
it should not be assumed a priori that Flickr videos have the same characteristics as
videos uploaded elsewhere on the Internet. Instead, Flickr videos could be expected
to have much in common with photographs.

The original paper had investigated photos, and the task was designed to inves-
tigate the problem of placing Flickr videos on the map. Use of open resources such
as gazetteers or Wikipedia were encouraged. This made it possible to compare
approaches that try to extract place names from user-contributed metadata using
gazetteers to approaches that build statistical models of text features. Also, use of
images to help predict the geolocation of videos was encouraged. In this sense, the
task could be considered to be related to computer vision work carried out on scene
matching. The ICCV 2005 Computer Vision Contest was called “Where am I?”7 and
required participants to use visual features to match images with unknown locations
to images whose locations were known. In contrast to the Placing Task, this contest
tackled a small-scale problem (in the order of hundreds of images), and also did not
use social images shared online.

2.2.1.1 Design and Data

The MediaEval 2010 Placing Task8 was carried out using a dataset of Creative
Commons licensed videos crawled from Flickr containing 5125 videos in the train-
ing set and 5091 videos in the test set. The metadata for each video included
user-contributed title, tags, description comments, and also information about the
user who uploaded the video (including favorites and contacts). The metadata for
∼3Million Creative Commons licensed, geotagged Flickr images was also included.
Participants wishing to use visual features could use this metadata to download the
images from Flickr.

A set of basic visual features extracted for all images and for keyframes of the
videos was provided. Such a resource makes it possible for teams to participate in
the benchmark that do not have the infrastructure necessary for large-scale visual
feature extraction. Additionally, it ensures that everyone has access to features that
were extracted using the same implementation of the feature extractor. In this way,

7 http://research.microsoft.com/en-us/um/people/szeliski/visioncontest05/default.htm.
8 http://multimediaeval.org/mediaeval2010/placing.

http://research.microsoft.com/en-us/um/people/szeliski/visioncontest05/default.htm
http://multimediaeval.org/mediaeval2010/placing
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it is possible to control for the impact of minor variations in feature extraction on the
comparison of geolocation approaches.

There are 16 zoom levels with which users can place multimedia items on the
map in Flickr, and this corresponds to 16 accuracy levels between 1 (world-level)
and 16 (street level). The videos in the dataset were selected to provide a broad
coverage of users, but also because they have a high accuracy at the street level. The
location at which the uploading user had placed the videos on the map was used as
the ground truth. Performance was measured in terms of the distance between the
location hypothesized by the experimental system and the reference location, i.e.,
ground truth. The results were reported in terms of the number of photos correctly
placed within a 1, 5, 10, 50 and 100km radius.

2.2.1.2 Results and Insights

Five groups “crossed the finish line” for this task in MediaEval 2010, submitting
runs and also a working notes paper. Their papers can be found in the MediaEval
2010 Working Notes Proceedings [33]. The best results for each team are plotted
in Fig. 2.1. Note that for the maximum evaluation radius, an approach will achieve
100% accuracy unless it fails to produce a prediction for all multimedia items.

Here we summarize the major results in 2010. The best performing run was
submitted by Ghent University, which used a two-step approach that made use of
the textual metadata associated with the images. In the first step, a language model
identified the most likely area of the video. In the second step, the location of the
video was pinpointed by identifying the closest resources (images and videos) from
the training set. The results were reported in the working notes paper [58] and also
in [59].

Fig. 2.1 Participants of the
Placing Task 2010
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International Computer Science Institute (ICSI) proposed two approaches [7].
The first exploited the prior distribution of tags, in particular choosing tag candidates
extracted from video metadata on the basis of small spatial variance. The second
approach also undertook supervised resolution of toponyms (using Geonames9).

The Universitat Politecnica de Catalunya (UPC) pursued an approach apply-
ing knowledge resources (a placenames database) combined with natural language
processing used to detect and disambiguate geographical names in themetadata [12].
TheSINAIgroup from theUniversity of Jaen applied geographic-named entity recog-
nizer [23].

The only group to make use of visual features in 2010 was the Technische Univer-
sität Berlin, who took a grid-based approach to the task, predicting the grid position
of the video by combining a textual model based on metadata and a visual model
based on low-level visual features [24, 26]. It is interesting to observe that this initial
effort by a single group proved “contagious” and in future years more groups moved
on to attempt to exploit not only visual but also audio features.

In the first year of the Placing Task, the importance of the user signal became
clear. If a user has taken multiple images in the same place, and tagged them with
the same tag set, the presence of one of these images in the training data will be
enough to correctly identify the location of any of the other images in the test set.
The challenge of placing reduces to a matching problem. Flickr allows users to carry
out a so-called “bulk upload,” i.e., uploading multiple items at the same time and
assigning them the same tag set. On the one hand, “bulk uploads” can be seen as part
of the overall problemof prediction the geolocation ofmultimedia items onFlickr.On
the other hand, the fact that bulk uploads occur is strongly influenced by the technical
possibilities offered by the platform. For this reason, the patterns in the data caused
by bulk uploads cannot be directly attributed to the underlying social signal, i.e.,
human photo-taking behavior in the real world. Further, participants discovered that
if the user specified a home location, this location provided a good fallback location.
Systems placed a photo at the home location if there was no other way to predict
location.

Already in the first year, the Placing Task embraced the model of publishing
initial results in the MediaEval working note proceedings, but not encouraging the
working notes paper to be a final product. Instead, researchers attended the bench-
mark, discussed the results, and wrote revised papers, which they submitted to other
venues. The task contributed to a session called “Automatic Tagging and Geotagging
in Video Collections and Communities” [34]. The conference included a paper from
the Ghent University team concerning their two-step metadata-based approach [59].
It also included a paper from the Technische Universität Berlin team on their com-
bined textual/visual approach [26]. Other publications were directed at ACM Mul-
timedia 2011 and its satellite workshops [15, 25] and IEEE conferences [5, 37].
The presentation and discussion of the results at these conferences contributed to the
growth of the task at future years of MediaEval.

9 http://www.geonames.org.

http://www.geonames.org
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An important insight of the first year was that participants were quickly tempted to
download the dataset and start to implement approaches without reading the related
work. The task organizers were concerned that participants’ efforts would then result
in them “re-inventing the wheel”. In future years, the task description was accompa-
nied by a list of papers entitled “Recommended Reading” and often even referred to
as “Required Reading” by the task organizers. This practice was surprisingly helpful,
and allowed teams in future years to boost the level of sophistication with which they
approached the task.

2.2.2 Placing Task 2011: Consolidation

The main goal of MediaEval 2011 Placing Task10 was to consolidate the task of
geolocation prediction for social video by building on the 2010 edition. Pascal Kelm
and Adam Rae joined Vanessa Murdock and Pavel Serdyukov as organizers of the
task.

2.2.2.1 Design and Data

The videos in the test and development sets of 2010were combined to create the 2011
development set (total of 10,216 videos). Again, metadata for ∼3 Million Creative
Commons licensed Flickr images was also released for use in training, and task
participants could use the metadata or also crawl images from this set from Flickr
to develop their systems. Also, a basic set of visual features was again released. The
test data consisted exclusively of video and contained 5,347 individual videos. As in
2010, the results were reported as the number of photos correctly placed within a 1,
5, 10, 50, and 100km radius. Additional details can be found in [50].

2.2.2.2 Results and Insights

Six groups submitted results for the Placing Task 2011, and their papers can be
found in the MediaEval 2011 Working Notes Proceedings [32]. ICSI, Ghent, and
UPC returned to participate in the task again, and were joined by University of
Campinas (UNICAMP), Delft University of Technology (WISTUD), and Chemnitz
University of Technology (CUT). The best scoring runs of each of these groups is
plotted in Fig. 2.2.

UPC [13] focused on textual features, an improvement of their 2010 approach [12],
and also extended to explore and information retrieval approach. Their best
scoring approach exploited a combination of the two. Chemnitz University of
Technology [29] applied a text-based retrieval approach.

10 http://multimediaeval.org/mediaeval2011/placing2011/.

http://multimediaeval.org/mediaeval2011/placing2011/
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Fig. 2.2 Participants of the
Placing Task 2011
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ICSI proposed an approach integrating textual tags with visual and audio cues [9].
Their best scoring approach used tags refined with visual features.

WISTUD [18] used both textual and visual features, but achieved its best perfor-
mance using filtered terms. Textual terms that were used by few users or that had
a very high geographical spread were filtered out. Interestingly, at the 1km scale,
filtering was not useful.

The innovation of UNICAMP [39] was to exploit the visual content of the video.
They used a Histogram of Motion approach [1]. Although the approach could not
compete with text-only approaches, it was an important contribution because it rep-
resented an effort to use the temporal patterns in video in order to tackle the task.
Other groups using visual features had confined themselves to static features derived
from individual keyframes.

Ghent [60] extended their textual-metadata approach of 2010 [58]. They success-
fully exploited additional resources gathered from Flickr (mutually exclusive with
the test set). Further, they built on an insight gained in 2010, namely that the granu-
larity of the georegions used by the algorithm is critical. They use Dempster–Shafer
theory to determine if there is sufficient evidence for an image to be placed using a
given level of granularity [61]. The user’s home location and visual similarity were
used as fall back features.

As in the previous year, after the workshop, several of the participants improved
and consolidated their approaches and published results in mainstream venue. Papers
included the work of Claudia Hauff at TU Delft on exploiting information extracted
from microblog posts (i.e., Twitter) and geographical priors [19, 20]. Also, ICSI
developed a graph-based approach aimed at dealing with data sparsity [6], and
UniCamp extended their approach [46]. Olivier Van Laere and colleagues from the
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University of Ghent published a systematic overview of their approaches to the
MediaEval 2010 and 2011 Placing Tasks as [62].

In 2011, for the first time, the task was described with an overview paper [50].
There were two reasons for the introduction of overview papers in MediaEval 2011.
First, the overview paper describes the task, and communicates to the participants
what the organizers are trying to achieve with the task. Second, participants were
asked to focus theirworking notes paper on the unique contribution of their algorithm,
and on analyzing their results. They can cite the overview paper for the formulation
of the task and a description of the dataset.

In 2011, the Placing Task became interested in the impact of the identity of the
uploader on the performance of algorithms. It was observed that the items uploaded
by the same person are often near duplicates and/or have the same tag sets. For this
reason, it is generally easier to predict the location of an item uploaded by a user, if
other items uploaded by that user are included in the training set.

Note that in any given social multimedia collection, it can be expected that users
uploadmultiple items and that some users upload substantiallymore than others. As a
whole, user uploading patterns are part of the underlying characteristics of the social
multimedia collection under study. However, the amount of user overlap between
the test and the training set is not a fundamental property of the collection. Rather, it
has strong dependencies on the data collection process. First, it is dependent on the
amount of time that has elapsed between when the test set and when the training set
is crawled. Second, it is dependent on the specific characteristics of the users that
upload multimedia items in high volumes. Specific characteristics of one or two of
these users (e.g., one of them happen to only uploadmultimedia captured in London),
can have a disproportionally large impact on geolocation prediction results.

Although in 2011, the organizers became aware of the impact of exploiting “same-
uploader” items for geolocation prediction, it was not until 2013 that the Placing Task
issued a dataset in which the training and the test data were uploaded by mutually
exclusive sets of users.

2.2.3 Placing Task 2012: Expansion

The MediaEval 2012 Placing Task11 again addressed the challenge of generating
geolocation predictions for video. It focused on extending the dataset from previous
years. In order to encourage participants to developmethods exploiting video content,
the task organizers required teams to submit one algorithm that used only video/audio
features.

In 2012, Pascal Kelm and Adam Rae served as task organizers. Within the larger
context of MediaEval, 2012 saw the handover of both the Placing Task and the
Tagging Task (dedicated to automatically generating topical tags for video [51]) to
organizer groups that did not include the original founders of the task, but rather were

11 http://multimediaeval.org/mediaeval2012/placing2012.

http://multimediaeval.org/mediaeval2012/placing2012
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comprised of a “second generation” of organizers, including people who had joined
the task as participants. The ability ofMediaEval to renew itself in this way has made
an important contribution to the sustainability and the growth of the benchmark.

2.2.3.1 Design and Data

The test and development data of 2010 and 2011 was combined to create the
2012 development set (total of 15,563 videos). As in 2010 and 2011, metadata for
∼3 Million Creative Commons licensed Flickr images was also released. Again,
a basic set of visual features were again released. The test set consisted of 4,182
videos. As in previous years, the results were reported as the number of photos cor-
rectly placed within a 1, 5, 10, 50, and 100km radius. A basic set of visual features
were again released. Additional details on the dataset can be found in [49].

2.2.3.2 Results and Insights

Seven groups submitted results for the Placing Task 2012, and their papers can be
found in theMediaEval 2012Working Notes Proceedings [35]. The best runs of each
group are plotted in Fig. 2.3. New participants in 2012 were INRIA/IRISA [56] and
CEA LIST [48].

The submission of CEALIST [48] demonstrated the positive effect of usermodels
on predicting geolocation. Previously, information on user tagging behavior had been
exploited by [7] and information about the user home location had been used by [60].

Fig. 2.3 Participants of the
Placing Task 2012
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The graph-based approach of ICSI [4] carried out a joint estimation of all the
locations of the test videos. Joint estimation was shown to lead to a performance
improvement. Another notable contribution was the attempt of CEA LIST [48] to
exploit motion features extracted from the videos.

Other approaches to the 2012 Placing Task combined textual and visual [40, 56,
63]. The Ghent University submission [63] built on its system from the previous year,
exploring new feature selection and similarity search, but also experimenting with
visual features. The UNICAMP approach is notable because it aggregated ranked-
lists derived from various modalities. It was extended and subsequently published
as [38]. The INRIA/IRISAapproachwas extended into an approachpublished as [57].
This approach exploits two-stage hypothesis refinement, which has proven effective
in a number of different variants proposed to address the MediaEval Placing Task.
It also exploits user’s upload history, social network, and a visual-based matching
technique, as well as visual similarity.

TUD proposed a visual-only approach that attempted, with unfortunately little
success, to exploit geographical information [42]. Underlying geographical regions
related to climate and anthropogenic biomes was used to create regions of the world,
on the basis of the assumption that such regions would prove to be visually stable
and lend themselves well to modeling.

TU Berlin [27] participated in the MediaEval 2013 Placing Task as an organizer
team. As is customary practice within MediaEval, organizers do not report their
results in the overall ranking.

Placing Task 2012 was the first time that participants shared code. Because this
was also a first for MediaEval, Adam Rae was invited to give a talk at the Media-
Eval workshop on the importance of code sharing practices. He entitled his talk,
“MediaEvalCodeofConduct”. The talkwas aimedat reinforcingwith the community
the importance of releasing code.

2.2.4 Placing Task 2013: Volume

The organization of the MediaEval 2013 Placing Task12 was taken over by a new
team, Claudia Hauff, Bart Thomee, and Michele Trevisiol. The team made four cru-
cial changes to the dataset, aswell as the overall task compared to previous years [21]:
(i) The task switched frompredicting the geolocation of video to predicting the geolo-
cation of images (a return to the original task tackled by [52]); (ii) in the 2013 edition,
data collection was carried out in a way that ensured that the set of users contributing
images to the training set was mutually exclusive with the set of users contributing
images to the test set; (iii) the test set size was several orders of magnitude larger than
in previous years to offer new computational as well as algorithmic challenges; and,

12 http://multimediaeval.org/mediaeval2013/placing2013.

http://multimediaeval.org/mediaeval2013/placing2013
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(iv) the new subtask of Placeability asks task participants to estimate the accuracy of
the predicted locations, a necessary metric when employing item location prediction
as a preprocessing step for an application.

2.2.4.1 Design and Data

Main task. Due to the changes described above, the existing datasets could not be
reused. The 2013 PlacingTask dataset13 contains nearly nine million Flickr images
released by the owners with Creative Commons License. The sampling process
ensured that regions which are popular by Flickr users are also represented as such
in the dataset. The extracted metadata and extracted low-level image features follow
the templates provided in previous editions, as does the evaluation.

The 2013 Placing Task pioneered the Russian Dolls approach to test set creation.
Under this approach, the test data is available in five different sizes, in order to
allow participation in the task evenwithout very powerful computational resources—
ranging from 5,300 images in the smallest test set and 262,000 images in the largest
test set. The Russian Dolls approach ensures that the images of a smaller test set are
also available in the larger test set as well.

Placeability subtask. The Placeability subtask was introduced to investigate whether
it is possible to derive a measure of confidence for a predicted location. Past years’
experiences had shown that many items can be placed with high accuracy; in 2013,
the task made the next step and investigate whether we can also place items with high
confidence. Based on the estimated confidence, in self-training, for instance, we may
enlarge the training data only with those items that have been located accurately with
high confidence, and in the location estimation task we can direct our computational
resources to those items, whose confidence score is low.

For a first evaluation, task participants are asked to estimate the error for each
prediction in kilometers. The linear and rank correlation coefficients are employed
to compare the ability of the algorithms to estimate the error correctly: the true
error distance in kilometers (as determined for the main task) is correlated with the
predicted error distance. A high correlation coefficient indicates that the algorithm
is able to infer the accuracy of the estimation.

As an example, a basic placeability approach can be the following: let us assume
that the location estimation approach computes a ranked list of locations (and the
top location is returned as estimated location). If the top n locations are distributed
all over the globe, the method may have low confidence and thus the estimated error
would be high. On the other hand, if the top n locations are spatially very close (e.g.,
having a standard deviation of a few kilometers), then the method’s confidence in the
location estimate would be high and the error thus low. To derive an error estimate
in kilometers the mean distance among the top n ranked locations can be employed.

13 Available for download: http://www.st.ewi.tudelft.nl/~hauff/placingTask2013Data.html.

http://www.st.ewi.tudelft.nl/~hauff/placingTask2013Data.html
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2.2.4.2 Results and Insights

An overview of all Placing Task 2013 submissions, including details concerning the
specific runs discussed in this section, can be found in the proceedings [31]. In total,
30 runs were submitted by seven different participants. Additionally, the organizers
provided two baseline runs.14 While four participants [11, 28, 43, 47] were able
to process the largest test set, two participants [3, 41] opted for the middle ground
(processing the third-largest test set with 53,000 test images) and one participant [55]
processed the smallest test set. Of the submitted runs, 12 relied on textual metadata,
8 exploited a combination of textual and visual information, and 10 runs used visual
information as sole features for location prediction.

As in previous years, relying solely onvisual featureswas not competitivewith text
features. The best performing submission [43] in this category was able to correctly
place less than 5% of the test images (across all test set sizes) within 100km of
the true location, the maximum error distance we consider useful for the purpose
of employing location prediction in practical settings. This approach employed a
two-step process that first retrieved candidate images that were visually similar to the
target image, and then refined the geoprediction hypothesis by considering additional
visually similar images taken in the neighborhood of the candidate images.

In Fig. 2.4 we show the results of a number of submissions on the test set con-
taining 53,000 images. Several points can be made about this figure. First, we note
that CEA_run5 [47] not only utilizes the provided dataset, but a large amount of
additional training data was crawled (90 million items) as well. Most importantly,
this includes images from users that are present in our test set, which means that this
run exploits the same-user signal.

Fig. 2.4 Overview of a
selected number of Placing
Task 2013 submissions
(evaluated on the test set
containing 53,000 images)
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14 The baseline runs used out-of-the-box location prediction software: https://github.com/chauff/
ImageLocationEstimation, with geographic filtering enabled.

https://github.com/chauff/ImageLocationEstimation
https://github.com/chauff/ImageLocationEstimation
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Further, we point out that CJW_SCUT_run5 [3], although not relying on external
training data, makes use of two aspects: the user’s home location (if available) as well
as the relationship between the test images themselves. A test user might contribute
100 images to the test set with only 20 having any tags associated with them—under
this approach, the locations predicted for images with tags are also distributed to
those images without tags if they have been taken in a short time frame. While the
home location has been employed in previous years, the use of the relationship of
images within the test set is relatively new, having been previously exploited by ICSI
in 2012 [4].

Finally, run CJW_SCUT_run5 [3] shows that large gains are also possible when
considering the relationship between test images themselves aswell as additional user
information. In contrast, most participants in 2013 who exploited textual metadata
focused on the best way tomodel regions, although the change in effectiveness across
the different modeling strategies was small.

The MediaEval 2013 Placing Task yielded several important overall insights.
First, the organizers’ baseline (based on an algorithm proposed in 2011) performed
very well: across all runs and evaluation metrics relying solely on the provided data
set, it always ranked second or third. This is a somewhat disappointing result, and
indicates that forward progress in the task is quite slow.

Second, the test set, although randomly sampled, has a strong influence on the
reported metrics, especially for the ErrorMedian metric, which is less stable than all
metrics relying on a radius based error measure. As an example, while the median
error of recod_run1 is 509km for the smallest test set (5,300 items), it is 168km
for the middle test set (53,000 items). In contrast, Error 10km is considerably more
stable, changing from 32.5 to 37.6% across the two test set sizes.

Third, we also note that despite the random sampling of test cases, some test sets
are easier than others—in particular, test set three (53,000) shows the best perfor-
mance for each run across all evaluated runs. This indicates, that results achieved on
particular sub (or super) sets of images cannot be directly compared.

As mentioned above, the run CEA_run5 shows the influence the use of training
data which includes images from test users has. ErrorMedian now ranges between
1.9 and 2.7 across test cases, while Error 10km ranges from 58 to 63%. This error
magnitude is in line with previous years’ results where training and test users were
usuallymixed.We stress that although increasing the training corpus also yields small
performance gains, the largest gain is achieved by including images of test users in
the training data—many users have a particular way of tagging, not only including
geographical or in general dictionary terms but they also include long tags (compound
phrases meshed together), nicknames or simply tags that only make sense to them.
Those tags stand out, and make the location estimation task considerably easier.
Thus, we conclude that by partitioning our data set according to training and test
users, the task is considerably harder to solve. Exploratory experiments conducted
post hoc suggest that after about 2 million sampled training images, the performance
gain when adding more training data slowly levels off (assuming that the partitioning
of training and test users is intact).



2 The Benchmark as a Research Catalyst . . . 23

Finally, we turn to the Placeability subtask, which was attempted by one partic-
ipating group [11]. Similarly to the intuitive example provided earlier, the error is
estimated to be large for test images whose location, modeled as a Gaussian, has a
high variance. The results of this task, with the linear correlation coefficient varying
between 0.06 and 0.37, depending on the evaluated run, indicates that the task itself
is feasible. At the same time, the moderate correlation achieved also points to the
difficulty and the need for future work: in order to employ such error estimate for
any practical means, such moderate correlation is not sufficient.

2.2.5 Placing Task 2014: Horizons

Currently, MediaEval is preparing to launch the 2014 edition of the Placing Task.
Organization of the task was assumed by Bart Thomee, Jaeyoung Choi. Gerald
Friedland, and Liangliang Cao. The MediaEval 2014 Placing Task15 will make use
of the Yahoo Flickr Creative Commons 100M dataset.16 The dataset, also referred
to as YLI, was created in collaboration with ICSI Berkeley17 and the Lawrence
Livermore National Laboratory18 [53]. In this section, we provide a list of highlights
that can be expected in the 2014 task.

Reintroduction of video: The 2010–2012 editions of the Placing Task focused on
geolocation prediction for video, and included both videos and images as training
material. The 2013 edition of the task, however, focused on data volume and to
this end collected millions of photos for inclusion in the dataset, although at the
expense of excluding videos. The exclusion was necessary due to the difficulty in
downloading videos in large quantities and the required disk space to store them.
In 2014, the task organizers worked to solve download and storage problem. They
were prompted to do this by demand among task participants, especially from those
that aim to exploit audio and motion features. The 2014 edition will therefore once
again feature videos in addition to images, including them both in the training and
test sets.

Evaluation granularity: In the previous editions of the task, the location predic-
tions were evaluated to be correct within distances of 1, 10, 100, 1,000 and 5,000km.
However, since the accuracy of geotagging has been shown to be much more pre-
cise [17] and since higher granularity is a must for various purposes, the 2014 task
additionally evaluates the predictions within distances of 10m and 100m.

Russian dolls: The 2014 test set will be again created according to the “Russian
Dolls” approach that was introduced in the 2013 task. This approach divides the test
set in multiple sets of varying size each, where each larger set is a superset of all

15 http://multimediaeval.org/mediaeval2014/placing2014.
16 http://webscope.sandbox.yahoo.com/catalog.php?datatype=i&did=67.
17 http://www.icsi.berkeley.edu/icsi/.
18 https://www.llnl.gov.

http://multimediaeval.org/mediaeval2014/placing2014
http://webscope.sandbox.yahoo.com/catalog.php?datatype=i&did=67
http://www.icsi.berkeley.edu/icsi/
https://www.llnl.gov
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smaller sets. The Russian Dolls approach enables participants that do not have access
to sufficient computational power and/or storage space to pick the largest subset they
can handle, while at the same time allowing the evaluation results of all participants to
at least be comparable on the smallest subsets they all have in common. This scheme
proved successful in the 2013 edition, where one participant used the smallest test
set of 5K photos and two participants used second smallest test set of 50K photos,
while the remaining four participants used the largest test set of 250K photos.

Dataset contents: The dataset of the 2014 edition will be the largest and most com-
plete in comparison with the previous tasks. The collection will contain thousands
of videos, millions of photos, device metadata, textual metadata, visual features,
and audio features. The dataset will be hosted in the cloud rather than on a single
workstation or server to ensure high data availability and fast downloads for the
participants.

2.3 Future Challenges for Geoprediction of Social Multimedia

The experiences that were gathered over the years of the Placing Task have allowed us
to formulate a series of challenges that need tobe addressed inorder to further improve
technology for multimodal geolocation. The ultimate aim of placing algorithms is to
generate geolocation information that is truly useful for userswithin applications. For
this reason, we view the challenges of placing as fundamentally determined by the
needs of users. In order to ensure that new technologies are directly satisfying human
needs, we allow the user perspective to drive our formulation of future challenges
for placing.

In this section, we present a picture in which human understanding of the relation-
ship between geolocation and social multimedia gives rise to technical challenges.
Our discussion is organized into two parts. The first discusses the different types of
relationships that exist between a multimedia item an a location. It uncovers new
notions of ‘place’ that need to be taken into account if our systems are to predict
geolocations that are maximally meaningful for users. The second discusses the
connection between the needs of users and the definition of the Placing Task. Such
considerations are necessary in order to ensure that we are addressing a Placing Task
that is future proof, in the sense that it will continue to produce technologies that are
relevant to user needs, as the use of location-related social multimedia continues to
grow.

2.3.1 Further Development of Definitions of “Place”

Upon first consideration, defining “place” (i.e., location) seems nearly trivial: it is a
set of geocoordinates that encode longitude and latitude. In the following discussion,
we will see that there are actually many different notions of place. This variety exists
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because concepts of place arise from different sources. One source is geolocation
as recorded by the devices that capture multimedia. Another source is human inter-
pretations of geolocation. These sources do not always agree with each other. We
discuss each in turn, and then explain why multiple notions of “place” are important
for the geolocation prediction for social multimedia, and why it is also critical that
we avoid conflating them, but rather that researchers maintain awareness that they
are distinct from each other.

2.3.1.1 Automatically Captured Geocoordinates

From a technical point of view, the geocoordinates of the camera, or other capture
device, used to record a multimedia item provide a straightforward definition of the
location of that multimedia item. Information in the form of geocoordinates of the
capture devicemakes an important contribution to the task of placing. It is an easy-to-
understand source of location information. More importantly, it allows the problem
of geolocation of social multimedia to be studied at large scale, since it is generated
without human effort and is associated with a large number of images and videos
that are shared by users on-line.

If the performance of geolocation predictions algorithms is to be judged against
automatically captured geoinformation, the quality of geocoordinate information is
critical so that geolocation prediction algorithms can be reliably assessed. However,
limitations exist with respect to the ability of recording devices to capture loca-
tion information, and media formats to encode location. These limitations can be
organized along three dimensions that characterize location description: accuracy,
precision, and granularity. Accuracy relates to systematic error between the stated
location and the actual location. For automatic systems, accuracy describes how
closely the coordinates given by the device match the actual location. The accuracy
of the location captured by a recording device can be improved by collecting more
readings over longer time periods, or by using more sophisticated signal processing
techniques. In the US, the horizontal accuracy of civilian GPS service, Standard
Positioning Service (SPS), is often within ∼1m.19 An augmentation system can
provide even greater accuracies.20

Precision refers to how close individual location readings are to the mean of the
reading. The precision of a capture device determines the degree to which a location
can be defined (e.g., the number of decimal places in which the geocoordinates can
be expressed). It quantifies the random error of geolocation capture. For satellite-
and triangulation-based mechanisms, precision is determined by the capability of the
system. For placing multimedia within the scope of the entire planet, the precision of
geolocation devices is usually sufficient to encode a location such that it distinguishes
it from other potential nearby locations. However, for placing with smaller scope,

19 http://www.gps.gov/systems/gps/performance/accuracy.
20 http://www.gps.gov/systems/augmentations.

http://www.gps.gov/systems/gps/performance/accuracy
http://www.gps.gov/systems/augmentations
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such as being able to accurate distinguish locations inside a building (e.g., statues
within a museum), current techniques are not sufficient.

Granularity refers to the geometric correctness-of-the-location description, be it
a single point, polygon or polyhedron. The majority of approaches for capturing and
encoding location information do so by storing a single geographic point representing
the location of the camera. As a result, it is challenging to design placing tasks for
social multimedia that move beyond the straightforward assumption that the position
of the camera defines the “place” of a photo. Currently, no recording technologies are
available that would make possible to create a large-scale social multimedia dataset
annotated automatically with geometrically correct descriptions of the locations of
objects. Theoretically, it may be desirable to describe an object, and especially a
large object like a range of mountains, with bounding rectangle, a planar polygon or
even a 3D polyhedron. Whether or not such geolocation descriptions are important
for the Placing Task will ultimately depend on whether users find that they provide
added value for social multimedia collections.

2.3.1.2 Beyond Automatically Captured Geocoordinates

In general, the geocoordinates associated with social multimedia on-line derive from
two sources. First, automatically captured geocoordinates, just discussed, and, sec-
ond, coordinates that are entered by the users at the moment that the images are
uploaded. The possibilities for manually associating multimedia with geocoordi-
nates are illustrated by Flickr, which provides users with a map interface. This
interface allows them to position their images on a map, which results in an image
being assigned geocoordinates, i.e., a geotag. Flickr records the location of photos at
16 levels of accuracy. In the Flickr API documentation, 1 is described as World, 3 as
Country, 6 as Region, 11 as City and 16 as Street.

Location information added by users is dependent on a number of factors. First,
it is important to note that the accuracy of manual annotation systems depends on
how well the interface maps the provided coordinates to a location on the planet. In
the case of manual annotation, the precision is limited only by the interface of the
annotation system, be it either a case of adding numerical coordinates directly, or
asking a user to select a point on amap. Second, users may be protecting their privacy
by choosing to geotag their images at a relatively low level of precision. Third, users
may have a limited amount of time and effort to devote to geotagging images, and
decide to assign a batch of images to a single location though some of them might
not have been taken at that location.

The overall combination of automatically captured geocoordinates and geoco-
ordinates assigned by users results in a wide variation of the characteristics of the
geolocation information associated with multimedia. More studies, such as the one
on the accuracy of geocoordinate information on Flickr was carried out by [17], are
necessary in order to gain a complete understanding of the underlying patterns.Mini-
mally, it is important to be aware that when geotagged images are collected from
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Flickr to use to evaluate placing algorithms, the underlying patterns of geotags will
impact the measurement of the performance of the system.

Ultimately, the Placing Task will strive to go beyond the geocoordinates that are
currently available associated with collections of social multimedia on-line. Specifi-
cally, the information should transcend the limitations imposed not only by cap-
ture devices, but also by metadata encoding standards. As an example of a common
encoding standard, we mention Exchangeable Image File format (Exif), which was
initially released in 1995. Exif can encode a wide range of information including
technical status values of the capture device (such as aperture, shutter speed for pho-
tos) that can be added without human intervention, as well as location information.
Currently, however, Exif can encode a single creation location using latitude, longi-
tude and altitude coordinates, as well as a single “destination” location, commonly
interpreted as a location pertinent to the content of the image.

Here, we would like to point out several directions that this expansion could take.
First, we point out that GPS systems are capable of generating more information
than a mere set of geocoordinates. If the error of the capture device is known, it
would be helpful to keep information about the error associated with the captured
multimedia. When automatically recorded geocoordinates are used as ground truth
for evaluating geolocation prediction algorithms, the error limits the resolution with
which it is possible to use the ground truth to measure performance.

Second, elevation has an important role to play in defining place. For example,
multiple floors in the same building with have the same geolocation, but different
elevation. Currently, there is no simply, widely-used manner to add elevation infor-
mation to social multimedia, either automatically with consumer capture devices, or
manually via input interfaces.

Third, it is possible that multiple locations are important for an image. Returning
to the example of the mountain range mentioned above, this could be the locations of
the individual mountain peaks. Multiple locations are certainly important for video,
since the position of the camera may move as the video is recorded. A single set of
geocoordinates is not capable of characterizing the capture location of a video, but
rather, an entire geopath is necessary.

The catalog of possible descriptions of locations is a long one. Researchers develo-
ping placing algorithms need to be able to prioritize the descriptions that they focus
on in their research. A great deal of the time, researchers are well served by focusing
on using the descriptions of locations that are most readily available at large scale.
This point explains the focus in the literature on using the geotags of photos on Flickr
as ground truth. Despite the shortcomings of the geoinformation associated with on-
line photos mentioned above, there is no other source of ground truth that would
allow research datasets of comparable size to be created. However, to the extent to
which resources for datasets are available, it is possible to take other priorities into
account. Specifically, we focus on descriptions of locations that will best capture
the way in which users understand the concept of location as it is related to social
images.
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2.3.1.3 Human Judgements and Interpretations of “Place”

The move towards human views on location starts with the question, “What do we
consider to be the location of a multimedia item?” Asking this question allows us to
uncover georelevance, which we define as the connection made by a user between
an image or a video and a place. Here, we examine some ways in which people
perceive how location is related to multimedia, and reflect on how these correspond
to different types of georelevance.

Perhaps the simplest contrast between two types of georelevance is the difference
between the location of the camera and the location of the subjectmaterial depicted by
the multimedia content. This distinction was already mentioned above, in reference
to the example of the image of a mountain. We turn to discuss that example again
now. The camera that is used to take a picture of the mountain could be positioned
kilometers from the mountain itself. It should be noted that the difference in location
between the photographer and the subject of the photo is regarded as an inherent fact
of photography, and not an exception. It is a common procedure when taking a photo
to move away from the subject in order to capture it better. We should be careful in
assuming that by default the photograph is at approximately the same location as the
subject.

It is easy to ignore the difference between the position of the photographer and
the position of the subject. Humans generalize so quickly from different views of
objects to the identity of the object themselves. For example, we can recognize the
same house taken from different points of view without effort. It is easy to imagine
that this interpretation takes place with no conscious awareness of the position of
the photographer. This effect can explain why people looking at photos and videos
are not specifically aware of the difference in position of the cameraperson and the
subject material. That difference is certainly not relevant for interpretation.

More sophisticated notions of relevance require more detailed consideration of
the connection between social multimedia and users. Researchers who study social
multimedia often study so-called “found” content: content collected from the Inter-
net. It is important to keep in mind that such content is not “found” in a vacuum.
Rather, social multimedia comes into existence because it was captured by users. As
such, it is natural that a given multimedia item (i.e., an image or a video) will be
interpreted differently by different people, and that this different interpretation will
also be relevant to place.

In order to understand how the relationship between a person and a multimedia
item impacts how that person perceives the connection of that item to location, it is
helpful to consider the case of people judging the location of a particular photo. We
consider the example of the image in Fig. 2.5, taken in Pisa, Italy.

The relationships that users have with an image determine the evidence and tech-
niques that they have at their disposal for making the decision of the location of
that image. Relationships of people to images can be considered to fall into differ-
ent classes. The classes should not be considered absolute, or necessarily mutually
exclusive. However, the existence of these classes shows that different perspectives
on location exist among social multimedia users. The following is a list of ten
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Fig. 2.5 Image taken in Pisa,
Italy (Flickr: PGBrown1987)

different statements, which could conceivably be made by ten different people (P1–
P10), regarding the ways in which they could judge that the location of the image is
Pisa.

• P1: I took the picture and when I see it, I remember it.
• P2: I was there when the picture was taken and when I see it, I remember this
moment.

• P3: I have been there, and I remember what the place looks like.
• P4: Someone told me about a picture that was taken in Pisa and there is something
that I see in this picture that tells me that this must be the picture that the person
was talking about.

• P5: I know of another picture that looks just like this one and it was labeled “Pisa”.
• P6: I’ve seen other pictures like this an recognize it (the specific buildings that
appear).

• P7: Someone who has been there described this place to me, and on the basis of
what we discussed about the place, I recognize it in the picture.

• P8: I’ve been there and recognize characteristics of the place (the type of archi-
tecture).

• P9: I am an Internet user, and I can formulate either keyword queries, or use
content-based image retrieval to find information that will allow me to identify the
picture as Pisa.

• P10: I am a multimedia forensic expert and have established a chain of logic that
identifies the place as Pisa.

From these statements, it is clear that a person in class P1, who knows the location
of the picture because they took it themselves, will give a different type of answer
than a person who is relying on descriptions or other external information. Further, a
person who is relying on information will judge the image differently depending on
what type of information is available: is it a near duplicate of the same photo, which
can be compared side by side, or is it a set of clues concerning details in the pictures
that would elude a human judge who was not inclined to detective work.
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In the literature, it is conventional to assume a ground truth that is generated
by a certain class of users. For example, in formulations of the task of placing
that use uploader contributed geocoordinates, the assumption is that users are in
class P1. The work of Choi et al. [8], comparing human and machine abilities to
generate geopredictions assumed people belonged to class P9. Specifically, in order
to collect judgements on human geoprediction performance, crowdsourcing workers
were asked to judge images using resources from the Internet, including Google
Maps and Streetview.

If different groups of users have different relationships to images, it is not sur-
prising that they also have different notions of the definition of place that is relevant
to an image. Another example is helpful in order to communicate this point.

Consider an image of a house. A user could describe this house as “my grand-
mother’s house”. This definition of place is relative to a particular user. It would be
most likely for someone who had taken the picture themselves, or had spent time
in the house (approximately corresponding to P1–P4 above). Such a person would
judge a geolocation prediction system to have failed if the prediction was off by
a few meters (e.g., if the house were assigned the geocoordinates of the neighbor’s
house). Another user could describe this house as a “southern bungalow”, referring to
a particular architectural style (approximately corresponding to P5–P10 above). This
person would judge a geolocation prediction system to have succeeded if it located
the neighbors’ house, and quite possibly would be quite satisfied if it correctly placed
the image in Florida, USA.

Currently, work in the area of geoprediction conflates these two notions of rele-
vance. It is an open question whether work being done to optimize systems for one
type of georelevance directly helps to advance systems optimized for another.

In order to develop detailed and well-supported notions of georelevance, it will
ultimately be necessary to carry out careful studies of user interpretations of mul-
timedia location and their location-related multimedia needs. However, we point
out already that some findings of such studies may be surprising. For example, it is
not unlikely that a large number of users consider an image of a sand dune to be a
georelevant depiction of the whole Sahara desert, and that the exact location of the
sand dune is relevant only to a minority of users. In this way, geolocation prediction
for social multimedia stands in clear contrast with geolocation prediction for military
or scientific purposes, in which the exact location may be critical.

Such examples should not automatically be assumed to be exceptions. Social
multimedia contains many images which were taken for the purpose of artistic value
or emotion impact. Think of a beautiful image of a starry night. An astronomer would
be bothered by a small deviation in the accuracy of a geoprediction of the camera
position, but a user who is looking for an inspiring or relaxing image would not feel
the image to be relevant to any particular geocoordinates. Such considerations would
also apply to images of fantastic landscapes, or photographs made as art.

Moving forward, how users interpret place will be strongly impacted by the types
of systems that are available for them to interact with geotagged multimedia. As
an example of this impact, we consider the case of video. A multimodal location
prediction system may be capable of generating a geopath that traces the movement
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of the camera during the video. However, unless there is some way to visualize this
path for the user, the existence of the path is not useful. A dot tracing the position
of a video on the map as the video plays is an interesting solution. However, many
questions are left open, such as how to display multiple videos at once.

While allowing more comprehensive geometries to be used to describe a location
does not solve this problem, it does give those annotating media better tools for
describe location better suited to their media. In addition, explicit annotation for
media that have no logical location associated with them would also be valuable.
This would help distinguish between media that have no sense of location and those
that have not had any location annotated yet.

In summary, users’ interpretations of the place that are most relevant for a photo
will depend on to which other photos it is being compared, and also on the way in
which the user is looking at the photo, or the purpose for which the photo should
be used. In the context of annotating multimedia, the existing state of correctness-
of-location could possibly be considered sufficient for current needs. However, as
technology develops and users begin to demand more from their media collections
and systems that handle them, more comprehensive location metadata schema may
be required.

Systems will need to be able to serve users who do not present geocoordinates as
queries, but rather designate locations by other means. For example, the location of
a photo of a person’s house may be described by a set of unambiguous coordinates,
but also by a postal address, or even a description tied to a specific user, such as
“Grandma’s House”. Multimedia systems need to be able to handle the translation
between objective, computer friendly descriptors and subjective, human friendly
location descriptors. This would allow multimedia information retrieval systems to
take in location queries in forms that are intuitive to humans and be able to search
an index of media that have formal location descriptions. The context of the query
as well as the personal profile of the user would need to be taken into consideration
to deliver effective results.

If the user does not have access to a map that can be referenced for the given
lat/lon pair, it is more useful to provide the answer in more practical, abstract or
conceptual way such as the postal address or a “tall red building”.

2.3.2 Definitions of the Task of Placing Social Multimedia

An important part of allowing the user perspective to drive our formulation of future
challenges for “placing” is understanding the underlying patterns of social multime-
dia. Social multimedia collections arise due to human behavior, rather than being
constructed according to a overall plan or premeditated purpose. For this reason they
may be influenced by a range of factors that may not be immediately obvious upon
first consideration. Here, we point out that definitions of the Placing Task that do not
take these factors into consideration, risk promoting the development of algorithms
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that address and artificial problem, whose solutions may not transfer to real-world
use scenarios.

A key observation is that different multimedia sharing platforms cater to different
communities with different values and, as such, can be considered to have specific
cultures. The culture of the platform, for example, includes the extent to which it
fosters photography as a hobby, in contrast to other reasons for capturing and sharing
images. Also, the technical possibilities of the platform, for example, how easy it is
to upload videos, and associate them with tags and geotags, have a large impact on
the characteristics of multimedia collections, including patterns of user contributed
metadata. Finally, governments impose restrictions around theworld on the collection
of geotagged multimedia. The definition of what constitutes security risk varies from
region to region, and can be expected to have an impact on social multimedia data
collections.

The usual reflex of a researcher would be to understand the impact of these factors
by making a systematic comparison between multiple datasets and data sources.
However, this method of understanding variation between datasets is limited when
studying geolocation for social images. As a multimedia sharing platform, Flickr
large and so widely used. Other large social multimedia sharing services are able
to develop alongside Flickr only to the extent that they serve a different purpose, or
supported a different group of users or type of sharing culture. In short, researchers
must study social multimedia sharing without having a large number of examples
of social multimedia collections of the same type, which would make it possible to
formulate a set of properties characteristic of a specific social multimedia collection.
The study of social multimedia is the study of specific collections, and not the study
of an ideal.

For this reason, it is important when creating a dataset that is to be used to develop
geolocation prediction algorithms, that the underlying characteristics of the social
multimedia collection from which it is drawn are preserved as much as possible.
In other words, dataset development should leave “found data” as much as possible
in the context in which it was found. The more that we change the data from its
“in the wild” state, the less certain we can be that we are developing algorithms,
or applications, that are relevant to multimedia that users actually produce and are
appropriate for the patterns with which they produce it.

Unfortunately, it is easy to get frustrated with “found data” because its properties
are a priori unknown and out of control of the researcher. The natural temptation is to
seek to somehow “improve” it. This temptation arises from our drive, as researchers,
to have the best possible dataset on which to carry out our research. It is critical, that
we define “best possible” dataset by considering the ultimate goal of our research,
and not focusing on what characteristics that our algorithms require in a dataset
in order to perform well. However, before we begin to devote effort to address a
particular “drawback” or “shortcoming” of our dataset, it is important to give careful
consideration towhether or not that shortcoming is a reflex of the underlying problem
to be solved.

An example serves to illustrate issues that can arise when we are overhasty to
identify an aspect of a dataset as a weakness. If we are tackling the goal of creating
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a better search and browsing functionalities for users of social multimedia websites,
we may feel that one “shortcoming” of the dataset is the fact that people take pictures
inside buildings, which possibly contain very little information distinctive for loca-
tion. If we “improve” our dataset by discarding all images taken inside buildings,
we actually have changed that underlying problem. We will no longer be working
toward algorithms that have a chance of improving search and browsing function-
alities overall, but rather only for a portion of all user-uploaded images. Changing
the dataset changes important aspects such as the prior probability of certain loca-
tions, the composition of the negative class, and the relative proximity of images to
each other in feature spaces, such as the visual feature space. In practice, difficult
challenges may be tackled by isolating subchallenges and addressing them individ-
ually. However, the overall implications of simplifying the dataset must be carefully
considered.

We can formulate best practice with the following statement: Researchers should
decide on the ultimate goal of the research independently of the collection of the
dataset, and where every possible datasets should be collected “in the wild” from the
communities that are ultimatelymeant to benefit from the algorithms that researchers
develop. Decisions to change the distribution of a dataset should not be viewed as
“improvements,” but rather should clearly be given the status of informed modifica-
tions of the original data, carried out with the purpose of accomplishing a subgoal.
Note that because the multimodal geolocation requires such large amounts of data,
the decisions to “change” datasets from their naturally occurring state does not take
place after the data has been collected, but rather during the collection process. It
is important to reflect thoroughly on whether the methodology used for crawling or
sampling pushes the dataset away from the “use case” corresponding to the ultimate
goal of the research.

2.4 Conclusion and Outlook

This article has presented a retrospective on the Placing Task offered by the Media-
Eval Multimedia Benchmark. We have traced the first four years of the benchmark
2010–2013, and provided an outlook on 2014. In this final section, we summarize
essential points concerning the ground covered by the task thus far, and anticipate
the new challenges that it will tackle in the immediate future.

2.4.1 Where Placing has Been

The Placing Task has successfully provided large-scale datasets to the multimedia
community that have supported cross-site comparison of multimodal location pre-
diction algorithms.
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Several important principles have emerged that transcend specific algorithms.
One is that two-stage approaches are highly effective. The first stage creates a set of
candidate hypotheses and the second stage seeks to refine these hypotheses. The first
two-state approach was introduced by Olivier Van Laere in 2010 [58] and has also
been exploited by Michele Trevisiol and colleagues [56]. Another principle is that
the test data can be jointly exploited to address issues of data sparsity. Both Jaeyoung
Choi and colleagues in 2012 and Jiewei Cao in 2013 exploited this principle within
two different algorithms. Finally, the importance of user modeling has been made
clear, both by approaches that build models of past tagging behavior and approaches
that default to users’ home locations. Here, notable contributions include [7] in
2010, [60] in 2011, and [48]. In 2013, the taskwas designed to encourage participants
to emphasize aspects other than the same-uploader signal.

The MediaEval Placing Task has successfully guided researchers to explore new
areas. In 2010, only a single group (TUBerlin [24])made use of visual features along-
side image metadata. By 2013, over half of the submitted runs used a combination
of textual and visual features, or visual features alone. Likewise, the task has suc-
cessfully guided researchers away from less promising areas. Already in 2010, [7]
and the follow-up work [14] reveals that the use of knowledge resources such as
gazetteers that contain lists of geographically related words, are not the silver bullet
for addressing the task of geolocation social multimedia. Instead, if enough data is
available, data-driven approaches will outperform approaches that use knowledge
resources. As a result, MediaEval participants used gazetteers judiciously, and did
not automatically assume that knowledge resources were necessary to implement
effective text-based geolocation prediction approaches.

Other results achieved by MediaEval involve the research community as a whole,
rather than individual algorithms.The fact that researchersworked togetherwithin the
framework of a benchmark rather than as individuals has strengthened the research in
this area. ThePlacingTask 2010–2013demonstrates that researchers can successfully
improve their approaches via discussionwith other teams at the yearlyworkshop, and
results on extended algorithms have gone on to be published in mainstream venues.

The benchmarking framework is also important in driving forward the state of the
art. Specifically, the Placing Task experience has shown that encouraging state-of-
the-art baseline works: When provided with specific papers and code, participants
did better at starting where others had left off, rather than re-inventing the wheel.
Lowering the threshold works: Sites could participate that would not otherwise have
been able to take part, had they not had access to data, features, and also had the
“Russian Doll” approach allowed them to work on a smaller dataset. Students benefit
from the support of the community as they carry out their thesis research.

Finally the Placing Task has brought benefits to the research community by open-
ing the door to exploration of new topics. It is a laudable goal to make social multi-
mediamore easily findable and browsable by annotating it with location information.
However, it is also critical to remember that geoinformation does not always make a
positive contribution. Many Internet users avoid geotagging their videos and photos,
or turn the GPS functionality of their phones off, since they do not want the location
of their media items to be known. An important development was that ICSI was able
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to use the MediaEval 2010 dataset in order to move forward with its work in the area
of privacy [14].

2.4.2 Where Placing Is Going

As discussed in Sect. 2.3, researchers developing automatic geoprediction algorithms
for social multimedia stand before a large number of challenges. We have argued
that the most worthwhile future challenges are those driven by user needs or user
behavior.

We have discussed a variety of notions of georelevance that arise from how people
interpret images. These new notions of georelevance will also require new evaluation
metrics. Currently, the Placing Task evaluates the quality of a prediction by calcu-
lating the Haversine distance between the predicted geocoordinates and the ground
truth. Distance does not necessarily correspond to human perceptions of relevance,
however.We have alreadymentioned the importance of the relationship of the person
to the multimedia item in determining their perception of georelevance. However,
the problem cannot be solved by merely enlarging the evaluation radius, but rather
researchers must dig deeper.

One effect that they will uncover is that human interpretations of georelevance
can be assumed to be spatially discontinuous. Users may consider an image to be
accurately geolocated if its location is predicted to be anywhere along the shore of
a lake. However, if the location is predicted to be in the middle of the lake, users
would feel that the geolocation is inaccurate. Such judgements are clearly related to
the semantic content of the example.

In the future the Placing Task will need to decide the extent to which it is address-
ing a challenge of image understanding.When humans interpret images, it is possible
for them to find image content to be relevant to a geolocation without the image con-
tent being physically located at the geolocation. Clearly, if a geolocation prediction
system identifies a picture of a cowboy in New York City as “Texas” would be less
disturbing for a user than geotagging the Statue of Liberty “Texas”. User studies are
necessary to understand the extent to which users expect and are able to use systems
that can predict geoconnections going beyond physical location.

In any case, future work will necessarily involve a better understanding of the
properties of social multimedia data that allow geocoordinate prediction systems
to work. For example, in the case of visual features, it remains unclear if systems
should be optimized to identify near duplications, to match scenes, to match specific
landmarks, or to match types of objects. This choice will determine the types of
visual features that are best suited to the task.

Overall, geoprediction stands to benefit from a better understanding of when
particular approaches are most likely to work well and when they should be avoided.
For example, currently, many systems apply the same approach to predicting the
geolocation of multimedia items in regions that are represented with a wealth of
multimedia content to multimedia items where data is sparse. Instead, a system
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could first predict whether it is confronting a “easy” or “hard” prediction, and then
react accordingly. The initial groundwork has been laid for such approaches by the
Placing Task 2013 Placeability subtask. Further, the use of audio for predicting the
geolocation of social video has delivered some initially promising results. Here, it
is still necessary to understand the types of situations in which audio can be used to
the best advantage.

In all cases, algorithms must anticipate the challenges they face as the amount of
available social multimedia grows larger and perhaps even changes in composition.
In this chapter, we have focused heavily on Flickr. This focus is primarily dictated
by the availability of the data for research purposes. However, many other sources
of online multimedia exist, including: YouTube,21 Facebook,22 Vimeo,23 blip.tv,24

Instagram,25 and Vine.26 New patterns in multimedia collections can be expected as
new capture devices are introduced (e.g., sports cameras, Google Glass) and users
change their capture and sharing habits.

In the face of increasing amounts of multimedia data, it is important to remember
that ultimately we are best served by not only reflecting on where we can obtain more
data, but also, how we can be sure that we are using the right data. Ultimately, the
Placing Task must be steered by the geoprediction needs of users for multimedia-
associated geoinformation. We should be alert to cases in which users needs can be
addressed by a smaller number of specific multimedia items. Such cases could be
expected to arise, for example, in geolocation systems for constrained location, i.e.,
geolocating images taken within a museum.

Moving forward, it will be important to pursue new avenues of research that are
opened by the MediaEval Placing Task. As already mentioned above, developing
algorithms that are capable of automatically prediction the geolocation of social
multimedia has important implications for user privacy. In view of these implica-
tions, it is important to study not only the geolocation problem, but also the inverse
challenge. Addressing this challenge involves determining if it possible to maintain
those properties that make multimedia items understandable and interesting to users,
while at the same time hiding the information necessary to produce geopredictions.
We refer to this challenge as “Geo-Cloaking”. A geocloaking task could involve
merging the Placing Task with another task offered at MediaEval, namely Visual
Privacy [2]. The Visual Privacy task seeks to develop methods of obscuring video
that are acceptable to human viewers, while at the same time also obscuring per-
son information. In order to test the effectiveness of such systems, state-of-the-art
geolocation prediction algorithms are necessary.

Another interesting avenue is to turn the Placing Task on its head. Instead of
inferring information about anmultimedia item in the form of a location, it is possible

21 https://www.youtube.com.
22 https://www.facebook.com.
23 https://vimeo.com.
24 http://blip.tv.
25 http://instagram.com.
26 https://vine.co.
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to conceptualize the task as inferring information about a location by gathering
information about multimedia items. Ghent University has taken the lead in work
dedicated to learning geographically relevant information by using georeferenced
social media [30]. This perspective is an interesting one for future pursuit.

We close this chapter with a few words on the larger implications of the Media-
Eval Placing Task. We have seen in this article that the Placing Task represents a
multi-year, international cooperative effort to solve the overall problem of predicting
the geocoordinates of a social multimedia item,wherever in theworld that itemmight
be located. It distinguishes itself from other initiatives in the area of geocoordinate
prediction by its focus on large collections of social multimedia—it seeks to solve
the problem using “found” datasets gathered from online multimedia sharing plat-
forms and transferred as directly as possible into a task. The most advanced resource
imaginable to tackle this problemwould be a multimedia collection containing every
item available in the world. If individual research sites were to develop such a col-
lection, few would be able to afford to carry out Placing research. The Placing Task
can, for this reason, be considered to share similarities with future-oriented initia-
tives that are formulated on a grand scale, such as the International Space Station.27

Such projects require an international coalition which comes together to build and
maintain a resource that allow scientific research to be carried out that would not be
possible any other way. The Placing Task has made a strong start, and its organizers
look forward to further growth in the future. As they push forward the state of the
art in geolocation of social multimedia, the sky is the limit.
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Chapter 3
Large-Scale Image Geolocalization

James Hays and Alexei A. Efros

Abstract In this chapter, we explore the task of global image geolocalization—
estimating where on the Earth a photograph was captured. We examine variants of
the “im2gps” algorithm using millions of “geotagged” Internet photographs as train-
ing data. We first discuss a simple to understand nearest-neighbor baseline. Next, we
introduce a lazy-learning approach with more sophisticated features that doubles the
performance of the original “im2gps” algorithm. Beyond quantifying geolocaliza-
tion accuracy, we also analyze (a) how the nonuniform distribution of training data
impacts the algorithm (b) how performance compares to baselines such as random
guessing and land-cover recognition and (c) whether geolocalization is simply land-
mark or “instance level” recognition at a large scale. We also show that geolocation
estimates can provide the basis for image understanding tasks such as population
density estimation or land cover estimation. This work was originally described, in
part, in “im2gps” [9] which was the first attempt at global geolocalization using
Internet-derived training data.

3.1 Introduction

Is it feasible to estimate the location of generic scenes? One of the main questions
addressed by this study is as much about the Earth itself as it is about computer
vision. Humans and computers can recognize specific, physical scenes that they’ve
seen before, but what about more generic scenes that may be impossible to specifically
localize? We know that our world is self-similar not just locally but across the globe.
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Film creators have long taken advantage of this (e.g., “Spaghetti Westerns” films
that were ostensibly set in the American Southwest but filmed in Almería, Spain.)
Nonetheless, it must be the case that certain visual features in images correlate
strongly with geography even if the relationship is not strong enough to specifically
pinpoint a location. Beach images must be near bodies of water, jungles must be near
the equator, and glaciated mountains cover a relatively small fraction of the Earth’s
surface.

Consider the photographs in Fig. 3.1. What can you say about where they were
taken? The first one is easy—it’s an iconic image of the Notre Dame cathedral in
Paris. The middle photo looks vaguely Mediterranean, perhaps a small town in Italy,
or France, or Spain. The rightmost photograph is the most ambiguous. Probably all
that could be said is that it’s a picture of a seaside in some tropical location. But even
this vague description allows us to disregard all noncoastal, nontropical areas—more
than 99.9 % of the Earth’s surface! Evidently, we humans have learned a reasonably
strong model for inferring location distribution from photographs.

What explains this impressive human ability? Semantic reasoning, for one, is
likely to play a big role. People’s faces and clothes, the language of the street signs,
the types of trees and plants, the topographical features of the terrain—all can serve as
semantic clues to the geographic location of a particular shot. Yet, there is mounting
evidence in cognitive science that data association (ask not “What is it?” but rather
“What is it like?”) may play a significant role as well [2]. In the example above, this
would mean that instead of reasoning about a beach scene in terms of the tropical sea,
sand and palm trees, we would simply remember: “I have seen something similar on
a trip to Hawaii!”. Note that although the original picture may not actually be from
Hawaii, this association is still extremely valuable in helping to implicitly define the
type of place that the photo belongs to.

Of course, computationally we are quite far from being able to semantically rea-
son about a photograph (although encouraging progress is being made). On the other
hand, the recent availability of truly gigantic image collections has made data asso-
ciation, such as brute-force scene matching, quite feasible [8, 33].

In this chapter, we examine algorithms for estimating a distribution over geo-
graphic locations from an image using a data-driven scene matching approach. For
this task, we leverage a dataset of over 6 million GPS-tagged images from Flickr.com.

Fig. 3.1 What can you say about where these photos were taken?
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We measure how often a geolocation strategy can correctly locate a query photo,
where “correct” is defined as “within 200 km of the actual location.” with meta-tasks
such as land cover estimation and urban/rural classification.

A key idea of the im2gps work is that humans or algorithms can estimate the
location of a photograph without having to perform “instance level” or “landmark”
recognition. While instance-level recognition techniques are impressive, we show
that such matches only account for about one half of successful geolocalizations.

3.1.1 Background

There exist a variety of geolocalization algorithms operating on different input modal-
ities. While we will review a few techniques, see [19] for a broader survey. Im2gps
assumes the input is an unlabeled photograph while other methods make use of
sequences of photos [12] or try to relate ground level views to aerial imagery [17].
Jacobs et al. [11] propose a clever method to geolocalize a webcam by correlating its
video-stream with satellite weather maps over the same time period. Visual localiza-
tion on a topographical map was one of the early problems in computer vision. It turns
out to be challenging for both computers and humans [32], but recent methods [1]
based on terrain “curvelet” features work surprisingly well.

The availability of GPS-tagged images of urban environments coupled with
advances in multiview geometry and efficient feature matching led to a number
of groups developing place recognition algorithms, some of which competed in the
“Where am I?” Contest [31] at ICCV’05 (winning entry described in [37]). Similar
local feature geometric matching approaches have also been successfully applied to
co-registering online photographs of famous landmarks for browsing [30] and sum-
marization [28], as well as image retrieval in location-labeled collections, e.g. [4].
Landmark photos are linked to Wikipedia photos and articles within a specified city
in [26]. Since the publication of im2gps, [6] and [38] have attacked the global land-
mark recognition problem, in the latter case scaling up to thousands of landmarks
with high accuracy.

But can these geometric local feature matching approaches scale up to all photos
of world? This is unlikely in the near future, not just because of computational cost,
but simply because the set of all existing photographs is still not large enough to
exhaustively sample the entire world. Yes, there are tens of thousands of photos of
a many landmarks, but some ordinary streets or even whole cities might be entirely
missing. Even with a dense visual sample, much of the world is too self-similar (e.g.,
the 300,000 square kilometers of corn fields in the USA). Clearly, a generalization
of some sort is required.

On the other side of the spectrum from instance-level recognition is the task of
scene categorization which tries to group forests with forests, kitchens with kitchens,
deserts with deserts, etc. A large body of work exists on scene recognition [16, 22,
27, 34, 35] which involves defining a fixed taxonomy of scene categories and using
various features to classify a novel image into one of these categories.
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We use a combination of features from both the local feature matching literature
(best suited for instance-level recognition) as well as features more commonly seen
in category recognition (best suited for recognizing broader geographic concepts,
e.g., “Mediterranean”). If the query image is a famous landmark, there will likely
be many similar images of the same exact place in the database, and our approach
is likely to return a precise GPS location. If the query is more generic, like a desert
scene, many different deserts could match, producing a location probability that is
high over the dry, sandy parts of the world.

3.1.2 Chapter Outline

In Sect. 6.4 we create training and testing databases from geotagged Internet images.
In Sect. 3.3 we discuss the original, relatively simple “im2gps” geolocalization algo-
rithm [9]. In Sect. 3.4 we add new features and utilize a lazy learning technique
to nearly double the original “im2gps” performance. In Sect. 3.5, we analyze fac-
tors affecting geolocalization accuracy such as geographic bias in the influence of
instance-level landmark matching.

3.2 Building a Geo-tagged Image Dataset

In order to reason about the global location of an arbitrary scene we first need a large
number of images that are labeled with geographic information. This information
could be in the form of text keywords or it could be in the form of GPS coordinates.
Fortunately there is a huge (and rapidly growing) amount of online images with both
types of labels. For instance, Flickr.com has hundreds of millions of pictures with
either geographic text or GPS coordinates.

But it is still difficult to create a useful, high-quality database based on user
collected and labeled content. We are interested in collecting images that depict
some amount of geographic uniqueness. For instance, pictures taken by tourists are
ideal because they often focus on the unique and interesting qualities of a place.
Many of these images can be found because they often have geographic keywords
associated with them (i.e., city or country names). But using geographic text labels
is problematic because many of them are ambiguous (e.g., Washington city/state,
Georgia state/country, Mississippi river/state, and LA city/state) or spatially broad
(e.g., Asia or Canada).

Images annotated only with GPS coordinates are geographically unambiguous
and accurate, but are more likely to be visually irrelevant. Users tend to geo-tag all of
their pictures, whether they are pet dog pictures (less useful) or hiking photos (more
useful). In fact, the vast majority of online images tagged with GPS coordinates and
to a lesser extent those with geographic text labels are not useful for image-based
geolocation. Many of the images are poor quality (low resolution, noisy, black and

http://dx.doi.org/10.1007/978-3-319-09861-6_6
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white) or depict scenes, which are only marginally useful for geolocation (most
portraits, wedding pictures, abstracts, and macro photography). While these types
of photos can sometimes reveal geographic information (western-style weddings are
popular in Europe and Japan but not in India; pet dogs are popular in the USA but
not in Syria) the customs are so broadly distributed that it is not very useful for
geolocation.

However, we find that by taking the intersection of these groups, images with both
GPS coordinates and geographic keywords, we greatly increased the likelihood of
finding accurately geolocated and visually relevant training data. People may geo-
tag images of their cats, but they’re less likely to label that image with “New York
City” at the same time. Our list of geographic keywords includes every country and
territory, every continent, the top 200 most populated cities in the world, every US
state, and popular tourist sites (e.g., “Pisa,” “Nikko,” “Orlando”).

This results in a pool of approximately 20 million geotagged and geographic
text-labeled images from which we excluded all photos which were also tagged with
keywords such as “birthday,” “concert,” “abstract,” and “cameraphone.” In the end,
we arrived at a database of 6,472,304 images. All images were downsized to max
dimension 1024 and JPEG compressed for a total of 1 terabyte of data.

While this is a tremendous amount of data it cannot be considered an exhaustive
visual sampling of Earth. Our database averages only 0.0435 pictures per square
kilometer of Earth’s land area. But as Fig. 3.2 shows the data is very nonuniformly
distributed towards places where people live or travel. We will revisit this nonuniform
distribution in Sect. 3.5.1. It can be seen as a desirable property in that this is the same
distribution from which people would generate query images or undesirable since it
leaves huge portions of the world under-sampled.

3.2.1 Evaluation Test Set

To evaluate geolocalization performance we use a separate, held-out test set of geo-
located images. We built the test set by drawing 400 random images from the original
dataset. From this set, we manually remove the types of undesirable photos that we

Fig. 3.2 The distribution of photos in our database. Photo locations are cyan. Density is overlaid
with the “jet” color map (log scale)
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Fig. 3.3 A sample of the 237 image im2gps test set. Note how difficult it is to specifically geolocalize
most of the images

tried to excluded during database construction—abstract photos, overly processed or
artistic photos, and black and white photos. We also exclude photos with significant
artifacts such as motion blur or extreme noise. Finally we remove pictures with
easily recognizable people or other situations that might violate someone’s privacy.
To ensure that our test set and database are independent we exclude from the database
not just test images, but all other images from the same photographers.

Of the 237 resulting images, about 5 % are recognizable as specific tourist sites
around the globe but the great majority are only recognizable in a generic sense
(See Fig. 3.3). Some of the images contain very little geographic information, even
for an astute human examiner. We think this test set is extremely challenging but
representative of the types of photos people take.

3.3 Simple, Baseline Geolocalization Method

This section briefly describes the original “im2gps” method [9]. We treat this as a
baseline for later studies in Sects. 3.4 and 3.5. In this section, we first look at a handful
of relatively simple “baseline” global image features. We hope that some of these
image properties correlate with geographic location.

Tiny Images. The most trivial way to match scenes is to compare them directly in
color image space. Reducing the image dimensions drastically makes this approach
more computationally feasible and less sensitive to exact alignment. This method of
image matching has been examined thoroughly by Torralba et al. [33]. Inspired by
this work we will use 16 by 16 color images as one of our base features.

Color histograms. We build joint histograms of color in CIE L*a*b* color space
for each image. Our histograms have 4, 14, and 14 bins in L, a, and b, respectively
for a total of 784 dimensions. We have fewer bins in the intensity dimension because
other descriptors will measure the intensity distribution of each image. We compute
distance between these histograms using χ2 distance.

Texton Histograms. Texture features might help distinguish between geographi-
cally correlated properties such ornamentation styles or building materials in cities
or vegetation and terrain types in landscapes. We build a 512 entry universal texton
dictionary [20] by clustering our dataset’s responses to a bank of filters with eight
orientations, two scales, and two elongations. For each image, we then build a 512
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dimensional histogram by assigning each pixel’s set of filter responses to the nearest
texton dictionary entry. Again, we use χ2 distances between texton histograms. This
representation is quite similar to dense “visual words” of local features.

Line Features. We have found that the statistics of straight lines in images are
useful for distinguishing between natural and man-made scenes and for finding scenes
with similar vanishing points. We find straight lines from Canny edges using the
method described in Video Compass [13]. For each image, we build two histograms
based on the statistics of detected lines- one with bins corresponding to line angles
and one with bins corresponding to line lengths. We use L1 distance to compare
these histograms.

Gist Descriptor + Color. The gist descriptor [23] has been shown to work well
for scene categorization [22] and for retrieving semantically and structurally similar
scenes [8]. We create a gist descriptor for each image with 5 by 5 spatial resolution
where each bin contains that image region’s average response to steerable filters at
6 orientations and 4 scales. We also create a tiny L*a*b image, also at 5 by 5 spatial
resolution.

Geometric Context. Finally, we compute the geometric class probabilities for
image regions using the method of Hoiem et al. [10]. We use only the primary
classes- ground, sky, and vertical since they are more reliably classified. We reduce
the probability maps for each class to 8 × 8 and use L2 distance to compare them.

We precompute all features for the 6.5 million images. At 15 s per image this
requires a total of 3.08 CPU years, but is trivially parallelized.

Our baseline geolocation algorithm is quite simple—for each query we find the
nearest neighbor scene in our database according to these features. We then take the
GPS coordinate of that nearest neighbor match as our geolocation estimate.

3.3.1 Is the Data Helping?

A key question for us is how strongly does image similarity correlate with geographic
proximity? To geolocalize a query we don’t just want to find images that are similarly
structured or of the same semantic class (e.g., “forest” or “indoors”). We want image
matches that are specific enough to be geographically distinct from otherwise similar
scenes. How much data is needed start to capture this geography-specific informa-
tion? In Fig. 3.4 we plot how frequently the 1-NN increase the size of the database.
With a tiny database of 90 images, the 1-NN scene match is as likely to be near the
query as a random image from the database. With the full database we perform 16
times better than chance.

Given a photo, how often can we pin-point the right city? Country? Continent?
With our simple baseline geolocalization algorithm, the first nearest neighbor is
within 64 km of the true location 12 % of the time, within 200 km 16 % of the time,
within 750 km 25 % of the time, and within 2,500 km 50 % of the time.
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Fig. 3.4 Accuracy of simple geolocalization baseline across database sizes. Percentage of test set
images that were correctly localized within 200 km of ground truth as function of dataset size using
1-NN. As the database shrinks the performance converges to chance

3.3.2 Grouping Geolocation Estimates

1-NN approaches are sensitive to noise. Alternatively, we also consider a larger set
of kNN (k = 120 in our experiments). This set of nearest neighbors together forms
an implicit estimate of geographic location—a probability map over the entire globe.
The hope is that the location of peak density in this probability map corresponds to
the true location of the query image. One way to operationalize this is to consider the
modes of the distribution by performing mean-shift [5] clustering on the geolocations
of the matches. We represent the geolocations as 3d points and re-project the mean-
shift clusters to the Earth’s surface after the clustering procedure. We use a mean-
shift bandwidth of 200 km (although performance is not especially sensitive to this
parameter). The clustering serves as a kind of geographic outlier rejection to clean
up spurious matches, but can be unfavorable to locations with few data-points. To
compute a geolocation estimate, one approach is to pick the cluster with the highest
cardinality and report the GPS coordinate of its mode. In practice, this works no better
than 1-NN, but we will use these mean shift clusters as the basis for our learning
algorithm in Sect. 3.4.4. For some applications, it might be acceptable to return a
list of possible location estimates, in which case the modes of the clusters can be
reported in order of decreasing cardinality. We show qualitative results for several
images in Fig. 3.5. Cluster membership is indicated with a colored border around the
matching scenes and with colored markers on the map.

3.4 Improving Geolocalization with More Features and Lazy
Learning

The features (global histograms, gist, bag of textons, etc) and prediction method (1
nearest neighbor) in the previous section represent the capabilities of the original
im2gps system [9]. However, we can dramatically improve global geolocalization
accuracy with more advanced features and more sophisticated learning.
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Fig. 3.5 Results of simple geolocalization baseline. From left to right: query images, nearest neigh-
bors, and three visualizations of the estimated geolocation probability map. The probability map is
shown as a jet-colorspace overlay on the world map. Cluster modes are marked with circumscribed
“X”’s whose sizes are proportional to cluster cardinality. If a scene match is contained in a cluster it
is highlighted with the corresponding color. The ground truth location is a cyan asterisk surrounding
by green contours at radii of 200, 750, and 2,500 km. From top to bottom, these photos were taken
in Paris, Barcelona, and Thailand

First, we describe additional scene matching features which are intended to be
more robust than those used in the previous section. Two shortcomings of the baseline
features are (1) sensitivity to scene layout and (2) poor performance at instance-level
recognition. To address these problems we describe additional geometry derived and
SIFT-derived features.

Second, we use “lazy learning” with these additional features. We train a mul-
ticlass, kernel SVM to decide which mean shift cluster of scene matches a query
belongs to. Together, the new features and lazy learning double the baseline im2gps
performance.

3.4.1 Geometry Specific Color and Texton Histograms

The baseline scene descriptors are all “global”—encompassing statistics of the entire
image or built on fixed image grid regardless of scene layout. This means that irrel-
evant scene transformations (e.g., cropping the image, shifting the horizon) produce
huge changes in the global descriptors and thus huge distances according to our dis-
tance metrics. This lack of invariance means that inconsequential image differences
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Fig. 3.6 For each geometric class we build separate color and texton histograms. Scene matching
is improved by restricting the histogram comparisons to corresponding geometric regions

will prevent otherwise good scene matches from being retrieved. To address this and
make histogram comparisons more meaningful we build color and texton histograms
for each geometric class in an image. For example, texture histograms for vertical
surfaces in an image. By restricting texture and color comparisons to geometrically
like regions of images, we expect their distances to be more reliable (Fig. 3.6).

We use geometric context [10] to estimate the probability of each image region
being “ground,” “vertical,” “sky,” or “porous” (i.e., vegetation). For any pixel, the
probability of “ground,” “sky,” and “vertical” sums to one, while “porous” is a subset
of “vertical.” We build color and texture histograms for each geometric class by
weighting each pixel’s contribution to each histogram according to the geometric
class probabilities. We also build global texture and color histograms in which the
“vertical” pixels get much higher contribution (the intuition being that the appearance
of vertical image content is more likely to be correlated with geolocation than the
sky or ground). Our approach is similar to the “illumination context” proposed in
Photo Clip Art [14] in which scenes are matched with color histograms built from
ground, sky, and vertical image regions.

The geometric context classification is not entirely reliable, especially for unusual
scenes, but the mistakes tend to be fairly consistent which is arguably more important
than accuracy in this task (e.g., if clouds were 100 % classified as “vertical,” our
feature distances would still be reasonable because the scenes would be decomposed
into consistent, although mixed, semantic groups). The geometric context probability
maps are themselves resized to 8 × 8 image features.

3.4.2 Bags of SIFT Features

SIFT [18] derived features have been used for scene representations with spatial
pyramids composed of densely sampled local features still near the state of the art
for scene recognition [15]. In these cases, the quantization of visual words is typically
rather coarse (e.g., 500 visual words). Quantized SIFT features have also been shown
to work well for instance-level recognition in large datasets [29]. Larger vocabularies
(1 million visual words) and geometric verification of candidate matches improve
performance further [24]. Landmark geolocation methods [6, 38] have relied entirely
on these types of features.
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Inspired by these successes, we compute SIFT features at interest points detected
by Hessian-affine and MSER [21] detectors. For each interest point type, we build
vocabularies of 1,000 and 50,000 visual words based on a random subset of the
database. The intuition is that a vocabulary of 1,000 captures texture qualities of
the scene while a vocabulary of 50,000 captures instance specific (landmark) image
elements. To build the visual vocabularies, we use 20 million SIFTS sampled from
roughly 1 million images. To build the 50,000 entry vocabularies a two level hierarchy
is used, as k-means would otherwise be prohibitively slow. The hierarchy is only used
to construct the vocabulary after which the leaf nodes are treated as a flat vocabulary.
We use “soft assignment” as described in [25], assigning each SIFT descriptor to its
nearest 5 vocabulary centers, inversely weighted by distance. Because we use soft
assignment, the 50,000 entry histograms are not sparse enough to merit an inverted
file system search.

3.4.3 Geolocalization with Additional Features

While these features perform especially well when coupled with a more sophisti-
cated machine learning method (Sect. 3.4.4), as a baseline we again use the first
nearest neighbor method. We use L1 distance for all image features (gist, geometric
context maps) and χ2 (chi squared) measure for all histograms (texture, color, lines,
SIFT). The scene matching process is implemented hierarchically—first, 2,000 near-
est neighbors are found with the baseline features and then distances are computed
for the new geometry derived and SIFT features and the matches are reranked.

Compared to the baseline features, the new features perform significantly better at
instance-level recognition, as would be expected from the new large-vocabulary SIFT
histograms. Scene matches for more “generic” scenes are also improved. Figure 3.7
shows cases where the first nearest neighbor with the new features is dramatically
improved from the baseline features. For common scene types under canonical view-
points, the difference is less noticeable.

Recall that with the 237 image im2gps test set and base im2gps features, the first
nearest neighbor is within 200 km of a query 16 of the time. Using the four SIFT
histograms by themselves (after the initial hierarchical search) gives an accuracy
18.6 %. Using all features improves accuracy to 21.1 %.

3.4.4 Lazy Learning for Large-Scale Scene Geolocalization

Nearest neighbor methods are attractive because they require no training, they are
trivially parallelizeable, they perform well in practice, and their query complexity
scales linearly with the size of the dataset. In fact, it is often possible to perform
nearest neighbor search in less than linear time, especially if one is willing to adopt
approximate methods. However, nearest neighbor methods lack one of the fundamen-
tal advantages of supervised learning methods—the ability to learn which dimensions
are relevant for a particular task.
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Fig. 3.7 Nearest Neighbors with New Features. The features introduced in this section are dra-
matically better at landmark recognition, especially when the viewpoints do not match, as in the
top row. This is to be expected from the SIFT features. The remaining figures show nonlandmark
scenes for which the matches are much better. The last row is an ideal case—even though an exact,
instance-level match can not be found, the new features have found a scene that is architecturally
very similar. Even more impressive, both photos are in Mongolia where there are few photos to
match to

This is critical because our feature representation is quite high-dimensional. In
total, including the features from the baseline method, we have an over-complete
set of 22 elementary features. The baseline features total 2,201 dimensions, while
the features proposed in this section total 109,436 dimensions dominated by the two
50,000 entry SIFT histograms. Such high feature dimensionality is problematic for
nearest-neighbor methods. Unfortunately, more sophisticated learning approaches
are difficult to apply when the number of training samples is large (over 6 million in
our case) and the feature dimensionality is high (over 100,000 in our case).

We adopt a “lazy learning” approach inspired by SVM-KNN [36] and prior
supervised, KNN enhancements (See [3] for an overview of “local” learning meth-
ods). Lazy learning methods are hybrids of nonparametric, KNN techniques and
parametric, supervised learning techniques. Our supervised lazy learning can be
seen as a post-process to refine the nearest-neighbor search we use as a baseline.
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The philosophy driving these works is that learning becomes easier when examin-
ing the local space around a query instead of the entire problem domain.

Consider the image geolocation problem. The boundary between geographic
classes (e.g., Tokyo and London) is extraordinarily complex because it must divide
a wide spectrum of scenes types (indoor, urban, landscape, etc...) that occur in both
locations. There is no simple parametric boundary between these geographic classes.
However, within a space of similar scenes (e.g., subway carriage photos) it may be
trivially easy to divide the classes and this allows one to employ simpler, faster,
and easier to interpret learning methods. Thus lazy learning is promoted not as an
approximation method, but as a learning enhancement. But it is the scalability to
very large datasets that makes lazy learning attractive to us.

For a novel query, our algorithm is:

1. Find Ksl = 2,000 nearest neighbors using the “baseline” features defined in
Sect. 3.3.

2. Reduce the Ksl nearest neighbors to K using both “baseline” features and the
additional features introduced in this section.

3. Cluster the K nearest neighbors according to their geographic locations using
mean shift. We use a bandwidth of 200 km. Each of the C clusters is now con-
sidered a distinct class for the sake of learning. Typical values of C are 30–60,
depending on the minimum allowed cluster size.

4. Compute the all-pairs distances between all K nearest neighbors using both the
“base” and additional features with L1 and χ2 (chi squared) distances.

5. Convert the all-pairs distances into a positive semi-definite kernel matrix (i.e.,
the “Kernel Trick”) and use it to train C 1-vs-all nonlinear SVMs.

6. For each of theC classifiers, compute how far the query point is from the decision
boundary. The class for which this distance is most positive is the “winner,” and
the query is assigned to that mean shift cluster.

7. The final geolocation estimate for the query is then the average GPS coordinate
of all members of the winning cluster.

As K becomes small, the technique reduces to 1NN. As K becomes large, the
technique reduces to a standard kernel SVM (which is intractable with our scale of
data).

Our approach depends on the nearest-neighbor search in steps 1 and 2 retrieving
enough geographically relevant scenes to train the SVM. If a query photo is from
Pittsburgh and none of the retrieved scenes are nearby, the learning can not hope to
recover. However, for 75 % of queries, the Ksl = 120 nearest neighbors according
to the baseline features have at least one image within 200 km of the ground truth
location. Thus we can have some confidence that geographically nearby scenes are
being included among our nearest neighbors and taking part in the learning process.

A point of interest about our approach is that our classes for the supervised
learning emerge in a lazy manner (after a nearest neighbor search) rather than being
pre-defined as in SVM-KNN [36]. Because the output of a geolocation estimation
system is a real-valued GPS coordinate, it might seem like it is more naturally a
regression problem. But for any query scene, the geolocation problem ends up being a
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decision between several discrete, disconnected possibilities (e.g., Alps vs. Cascades
vs. Rockies vs. Andes). Therefore we think it is natural to treat it as a classification
problem.

3.4.4.1 Complexity and Running Time

As with KNN-SVM, our complexity is linear with respect to N , the number of “base”
distances we compute to find K nearest neighbors, and quadratic with respect to K .
In our case, N = 6471706 and K =∼200 and our running time is still dominated
by the initial search which takes ∼2.5 min (amortized over many queries). We have
made little effort to optimize the initial search although “tiny images” [33] reports
good results from a very low dimensional initial search of PCA bases. Step 1 is
amenable to approximation because it does not need to have high precision, only
high recall, assuming that step 2 will filter out spurious matches.

3.4.5 Geolocalization Results with New Features and Lazy
Learning

With a one nearest neighbor algorithm, our accuracy is 16 % with baseline features
and 21 % with more advanced, higher dimensional features. Replacing the one nearest
neighbor prediction with the lazy learning method raises our accuracy to 31 %, nearly
doubling the performance of the original im2gps publication [9]. We show four
geolocalization results in Figs. 3.8 and 3.9.

3.5 Why Does it Work? Deeper Performance Analysis

3.5.1 Measuring Performance Without Geographic Bias.

Since the geographic distribution of data appears to be peaked in relatively few places
(Fig. 3.10), one concern is that our performance could be a result of random guessing.
In fact, the chance that two photos are within 200 km in the im2gps database is about
1.2 %. For our test set of 237 images sampled from the database chance is 0.97 %.
For individual test cases, chance ranges from less than 0.01 % in Libya, Colombia,
and Greenland to 4.9 % near London. That is to say, 4.9 % of the im2gps database
images (and probably 4.9 % of Internet images) are within 200 km of London. For
other cities the values are: New York City 4.3 %, San Francisco 3.1 %, Paris 2.8 %,
Chicago 1.9 %, Tokyo 1.8 %, and Barcelona 1.5 %.

How would our simple baseline geolocalization algorithm perform if the test set
distribution was not geographically peaked? To quantitatively evaluate this issue we
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Query Photograph Top scene matches Top cluster after learning

Query Photograph Top scene matches Top cluster after learning

Fig. 3.8 Geolocalization Results with Lazy Learning. Results are generated from K = 200 nearest
neighbors clustered with a mean shift bandwidth of 200 km and a minimum cluster size of 3. The
scene match montages are scanline ordered according to scene match distances. The colors of
scene match borders and globe markers indicate cluster membership. The coloring of the clusters
indicates their ordering by cardinality—yellow is largest, then cyan, magenta, red, green, and blue.
The geolocation estimate from learning is indicated by the red and white concentric rings. The
ground truth location is marked by concentric green rings of radius 200, 750, and 3,000 km. The
density of scene matches on the globe is indicated by a jet colormap overlay. Scene matches without
a cluster are plotted as black rings
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Query Photograph Top scene matches Top cluster after learning

Query Photograph Top scene matches Top cluster after learning

Fig. 3.9 Additional Geolocalization Results with Lazy Learning

define a new geographically uniform test set. We tessellate the globe into quadrilateral
regions roughly 400 km on edge (Fig. 3.10). We take one query from each of the 955
regions in that have at least ten photographs. Chance is an order of magnitude lower



3 Large-Scale Image Geolocalization 57

Fig. 3.10 Photo density in im2gps database, linear scale (top) and natural log scale (bottom). The
height of each bar is proportional to the density of geotagged photos in each equal area region. The
bars are colored according to the Matlab “jet” color scheme. Regions with zero photos have no bar

Fig. 3.11 Accuracy on Geographically Uniform Test Set. For each photo in the test set, the marker
color indicates how accurately the photo was geolocated

for this database—only 0.13 %.1 Figure 3.11 shows the geographic distribution of
the test set, as well as the geolocation accuracy for each photo. We are unable to
correctly localize any queries in large regions of South America, Africa, and Central
Asia. Overall, for only 2.3 % of the test set is the first nearest neighbor is within

1 This value was calculated by counting the number of database photos close enough to each query
in the test set. Alternatively, each geolocation guess has an area of 126,663 km2 and the land area of
the Earth is 148,940,000 km2, suggesting that a truly uniform test set would have a chance guessing
accuracy of 0.084 %. Chance is higher for our test set because our database (and thus test set) contain
no photographs in some regions of Siberia, Sahara, and Antarctica.
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200 km of the query photo’s location. Interestingly, relative to chance, this is just as
much of an improvement as on the im2gps test set (∼16 times better).

The fundamental, unavoidable issue is that we do not have enough data for many
locations around the world. A generic photo of Brazilian rain forest will find many
more matches in Hawaii, Thailand, or more temperate locations than in the cor-
rect location. It is not a matter of database peakedness drowning out the correct
matches—if a scene is visually distinct it will often be geolocated even if it is rarely
photographed. But for generic scenes, where the visual features distinguishing one
location from another are extremely subtle, a large amount of reference data is needed.
So it is certainly the case that im2gps performance is inextricably tied to the geo-
graphic distribution of our test set and database. A biased sampling strategy at data-
base creation time could help smooth out these differences, but there is not enough
geotagged data on Flickr to completely remove the geographic bias of photo taking.

3.5.2 Measuring Category Level Geolocation Performance.

While we have demonstrated that our geolocation accuracy is far better than chance,
random guessing is arguably not a realistic baseline comparison. Just by retrieving
scenes of the same broad semantic category as a query (for instance “beach,” “moun-
tain,” “city,” “forest,” “indoors,” etc...) chance must rise considerably. Does category
level guessing account for im2gps performance, or is it picking up on more subtle
geographic variations?

As we increase the size of the im2gps database we see a slow but steady increase
in performance (Fig. 3.4). If random matching within the same scene broad scene
category could account for im2gps performance, it is likely that performance would
saturate with a dramatically smaller database. Previous work has shown 90 % accu-
racy in 4-way categorization using a couple thousand training examples and nearest
neighbor classification with the gist descriptor [22]. Why does our performance dou-
ble as our database increases from 600,000 to 6 million geolocated examples? Part
of the gain is likely because the scene matches become more discriminative (not just
forest but rain forest, not just cities but European cities).

Figure 3.12 shows three queries that would fit into a broadly defined “city” cate-
gory. Notice how different the geographic distribution of scene matches is for each
query. The German city geolocation estimate is correctly peaked in central Europe.
The Hong Kong skyline is confused with other skylines (New York, Shanghai, Tokyo,
and Chicago). Hong Kong is the 5th largest cluster. The Alabama warehouse matches
many paved areas or streets in the USA, although none near the correct location. The
im2gps scene matches can definitely be more specific than typically defined scene
categories.

We can quantify how accurately im2gps would perform with perfect category
level scene recognition and random guessing within that category for our test sets.
We use land cover maps to assign a ground truth geographic scene category to
each image in a test set. The categories are “city,” “forest,” “water,” “shrubland,”
“rain forest,” “barren,” “snow and ice,” “crops and grassland,” and “savanna.”
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Fig. 3.12 im2gps results for different cities. These city queries from Germany, Hong Kong, and
Alabama produce very different geolocation estimates

We classify the entire im2gps database into the same 9 categories. Then for each
photo in a test set, we calculate the probability that randomly matching to scenes of
the same category will produce a geolocation guess within 200 km. This is some-
thing of an ideal case because it assumes that any two categories, e.g., “shrubland”
and “savannah,” can always be distinguished. Chance under this perfect categorical
matching is still quite low—2.09 % for the im2gps test set (up from 0.97 %) and
0.36 % for the geographically uniform test set (up from 0.13 %). We can safely say
that our geolocation method is discriminating far more than just scene categories.

3.5.3 Measuring Landmark Geolocation Performance

Perhaps 5 to 7 % of photos in the im2gps test set are readily recognizable landmarks
such as Sagrada Familia or the Sydney Opera House. A very geographically knowl-
edgeable person might even recognize the exact physical scene for 10 % of the test
cases. Landmarks are visually distinctive and often photographed so it makes sense
that they contribute a large amount to im2gps performance. For our baseline algo-
rithm, of the 16 % of queries whose first nearest neighbor is within 200 km, 58 %
of the 1 NN matches depict the same physical scene. Many of these would not be
considered “landmarks” by a layperson—an aircraft in the Smithsonian, an Apple
store in New York City, or a bridge in Portugal. At the same time certain possible
landmarks, such as the Millennium Wheel in London, are missed by the first nearest
neighbor.
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We also evaluate the contribution of instance-level matching when using the higher
dimensional features and lazy learning introduced in Sect. 3.4. With the improved
features, the first nearest neighbor is the same scene for 40 % of successfully localized
queries. The cluster chosen by the learning contains an instance-level match 58 % of
the time. In some of these cases, the geolocation probably would have been correct
even without the instance matches.

Thus, instance-level recognition does account for a slim majority of successful
geolocalizations for both the simpler and more complex geolocalization strategies.
But we are also able to localize a significant number of photos that are not landmarks
and would presumably fall through the cracks of methods such as [6, 38].

3.6 Discussion

Not only is photo geolocalization an important problem in itself, but it could also be
tremendously useful to many other vision tasks. Knowing the distribution of likely
locations for an image provides huge amounts of additional meta-data for climate,
average temperature for any day, vegetation index, elevation, population density, per
capita income, average rainfall, etc. Even a coarse geo-location can provide a useful
object prior for recognition. For example, knowing that a picture is somewhere in
Japan would allow one to prime object detection for the appropriate type of taxi cabs,
lane markings, average pedestrian height, etc.

Im2gps [9] was the first study of global image geolocation, a task that only became
possible because of the emergence of large-scale geotagged Internet imagery. While
the baseline im2gps approach was relatively simple, with the additional features
and learning discussed in Sect. 3.4, our results are qualitatively and quantitatively
greatly improved. In fact, our geolocalization accuracy exceeds that of nonexpert
humans [7]. Typically, humans are implicitly treated as an upper bound for per-
formance in vision tasks (e.g., object detection). Have we saturated performance for
automatic image geolocalization? Definitely not. There is still a great deal of room for
improvement. As Fig. 3.11 shows, the algorithm has trouble localizing photographs
from sparsely sampled regions of the world unless they contain distinct landmarks.
While it was hoped that our scene matching might be able to pick up on subtle land-
scape, vegetation, or architecture cues to geolocalize images this is rarely observed.
Our algorithm’s advantage over humans is its large visual memory, not its ability to
relate scene statistics to geographic locations. Geolocalization performance should
increase as algorithms include more high-level reasoning about architecture, writing,
clothing, lighting direction, geology, and plant and animal species.

Acknowledgments We thank Steve Schlosser, Julio Lopez, and Intel Research Pittsburgh for help-
ing us overcome the logistical and computational challenges of this project. All visualizations and
geographic data sources are derived from NASA data. Funding for this work was provided by
an NSF fellowship to James Hays and NSF grants CAREER 1149853, CAREER 0546547, and
CCF-0541230.



3 Large-Scale Image Geolocalization 61

References

1. G. Baatz, O. Saurer, K.Köser, M. Pollefeys, Large scale visual geo-localization of images in
mountainous terrain, In Proceedings of the 12th European Conference on Computer Vision -
Volume Part II, (2012), pp. 517–530

2. M. Bar, The proactive brain: using analogies and associations to generate predictions. Trends
Cogn. Sci. 11(7), 280–289 (2007)

3. S.S. Chris Atkeson, Andrew Moore, Locally weighted learning. AI. Review 11, 11–73 (1997)
4. O. Chum, J. Philbin, J. Sivic, M. Isard, A. Zisserman, Total recall: Automatic query expansion

with a generative feature model for object retrieval, in Proceedings of ICCV, 2007
5. D. Comaniciu, P. Meer, Mean shift: A robust approach toward feature space analysis. IEEE

Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)
6. D.J. Crandall, L. Backstrom, D. Huttenlocher, J. Kleinberg. Mapping the world’s photos, in

WWW ’09: Proceedings of the 18th international conference on World wide web 2009, pp.
761–770, 2009

7. J. Hays, A. Efros. Where in the world? human and computer geolocation of images, in Vision
sciences society meeting, 2009

8. J. Hays, A.A. Efros. Scene completion using millions of photographs, in ACM Transactions
on Graphics (SIGGRAPH 2007), 26(3), 2007

9. J. Hays, A.A. Efros. im2gps: estimating geographic information from a single image, in CVPR,
2008

10. D. Hoiem, A. Efros, M. Hebert, Recovering surface layout from an image. Int. J. Comput.
Vision. 75(1), 151–172 (2007)

11. N. Jacobs, S. Satkin, N. Roman, R. Speyer, R. Pless, Geolocating static cameras, in Proceed-
ings, ICCV, 2007

12. E. Kalogerakis, O. Vesselova, J. Hays, A.A. Efros, A. Hertzmann. Image sequence geolocation
with human travel priors, in Proceedings of the IEEE International Conference on Computer
Vision (ICCV ’09) (2009)

13. J. Kosecka, W. Zhang. Video compass, in ECCV ’02: Proceedings of the 7th European Con-
ference on Computer Vision-Part IV, 2002, pp. 476–490

14. J.-F. Lalonde, D. Hoiem, A.A. Efros, C. Rother, J. Winn, A. Criminisi. Photo clip art. ACM
Transactions on Graphics (SIGGRAPH 2007), vol. 26(3) (August 2007)

15. S. Lazebnik, C. Schmid, J. Ponce. Beyond bags of features: Spatial pyramid matching for
recognizing natural scene categories, in CVPR (2006)

16. L.-J. Li, L.F. Fei, What, where and who? classifying events by scene and object recognition, in
Proceedings, ICCV, (2007)

17. T.-Y. Lin, S. Belongie, J. Hays. Cross-view image geolocalization, in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (Portland, OR, June 2013)

18. D. Lowe, Object recognition from local scale-invariant features. ICCV 2, 1150–1157 (1999)
19. J. Luo, D. Joshi, J. Yu, A. Gallagher, Geotagging in multimedia and computer visiona survey.

Multime’d Tools Appl. 51, 187–211 (2011)
20. D. Martin, C. Fowlkes, D. Tal, J. Malik. A database of human segmented natural images and

its application to evaluating segmentation algorithms and measuring ecological statistics, in
Proceedings ICCV (July 2001)

21. J. Matas, O. Chum, M. Urban, T. Pajdla, Robust wide-baseline stereo from maximally stable
extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

22. A. Oliva, A. Torralba, Modeling the shape of the scene: a holistic representation of the spatial
envelope. Int. J. Comput. Vision 42(3), 145–175 (2001)

23. A. Oliva, A. Torralba. Building the gist of a scene: The role of global image features in recog-
nition, in Visual Perception, Progress in Brain Research, 2006, vol. 155

24. J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman. Object retrieval with large vocabularies
and fast spatial matching, in CVPR (2007)



62 J. Hays and A.A. Efros

25. J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman. Lost in quantization: Improving particular
object retrieval in large scale image databases, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2008)

26. T. Quack, B. Leibe, L. Van Gool. World-scale mining of objects and events from community
photo collections, in CIVR ’08: Proceedings of the 2008 international conference on Content-
based image and video retrieval (2008)

27. L.W. Renninger, J. Malik, When is scene recognition just texture recognition? Vis. Res. 44,
2301–2311 (2004)

28. I. Simon, N. Snavely, S.M. Seitz. Scene summarization for online image collections, in Pro-
ceedings, ICCV (2007)

29. J. Sivic, A. Zisserman, Video Google: A text retrieval approach to object matching in videos.
ICCV 2, 1470–1477 (2003)

30. N. Snavely, S.M. Seitz, R. Szeliski, Photo tourism: exploring photo collections in 3d. ACM
Trans. Graph. 25(3), 835–846 (2006)

31. R. Szeliski. “Where am I?”: ICCV 2005 Computer Vision Contest. http://research.microsoft.
com/iccv2005/Contest/

32. W. Thompson, C. Valiquette, B. Bennett, K. Sutherland, Geometric reasoning for map-based
localization. Spatial Cogn. Comput 1(3), 291–321 (1999)

33. A. Torralba, R. Fergus, W.T. Freeman, 80 million tiny images: a large dataset for non-parametric
object and scene recognition. IEEE PAMI 30(11), 1958–1970 (2008)

34. J. Vogel, B. Schiele, Semantic modeling of natural scenes for content-based image retrieval.
Int. J. Comput. Vis. 72(2), 133–157 (2007)

35. J. Xiao, J. Hays, K. Ehinger, A. Oliva, A. Torralba. Sun database: Large-scale scene recognition
from abbey to zoo, in CVPR (2010)

36. H. Zhang, A.C. Berg, M. Maire, J. Malik. Svm-knn: Discriminative nearest neighbor classifi-
cation for visual category recognition, in CVPR ’06 (2006)

37. W. Zhang, J. Kosecka. Image based localization in urban environments, in 3DPVT ’06 (2006)
38. Y. Zheng, M. Zhao, Y. Song, H. Adam, U. Buddemeier, A. Bissacco, F. Brucher, T.-S. Chua,

H. Neven. Tour the world: building a web-scale landmark recognition engine, in CVPR (2009)

http://research.microsoft.com/iccv2005/Contest/
http://research.microsoft.com/iccv2005/Contest/


Chapter 4
Vision-Based Fine-Grained Location Estimation

Heng Liu, Tao Mei, Houqiang Li and Jiebo Luo

Abstract In this chapter, we explore a variety of vision-based location estimation
techniques, inwhich the goal is to determine the location of an image at a fine-grained
level. First, we introduce the concept about image-based location and landmark
recognition (Sect. 4.1), which determines the location of a given image by leverag-
ing collections of geo-located images. Early techniques usually treat this as a similar
image matching problem and use the geo-tags transferred from the matched data-
base images. Some recent works have examined how to estimate more fine-grained
and comprehensive geo-context information, such as the viewing direction estima-
tion (Sect. 4.3) of photos. Next we will review the techniques for city-scale location
recognition, informative codebook generation, and geo-visual clustering (Sect. 4.4).
Moreover, we will introduce the structure-from-motion technique, which is closely
related to estimating the camera geo-location by generating 3D models. With the
3D scenes reconstructed from the image collections, images are localized by 2D–3D
alignment (Sect. 4.5). The camera location, viewing direction, and scene location
are estimated simultaneously, which are essential to various applications. Moreover,
another class of vision-based location estimation technique using satellite-imagery
database is also described (Sect. 4.6).
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4.1 Landmark and Location Recognition

The problem of location recognition has been studied in the past few decades, and
a variety of approaches have been proposed [1, 2]. The basic idea is to calculate the
position of a query image with respect to a database of geo-referenced images [2].
Most of these methods consider this as an image matching problem, that is, accurate
matching to images of the same scene (Sect. 4.2).

However, estimating the geo-information of an image is not only finding sim-
ilar images. More comprehensive parameters, such as viewing direction can also
be estimated by considering geometric relationships between ground-level image
pairs (Sect. 4.2) or between the ground-level image and satellite-imagery (Sect. 4.6)
or aligning image to 3D scene models (Sect. 4.5). There is a trend of using mas-
sive amount data for large-scale vision-based location estimation, related techniques
such as large-scale image database indexing, discriminative code-book generation,
geo-visual clustering are described (Sect. 4.4). The comprehensive and fine-grained
geo-information is useful for a variety of applications (Sect. 4.6).

4.2 Image-Based Location Recognition

Given a user provided photo as the query image, the image-based location recognition
is to determine the geo-location of the query image. Typically, it requires to leverage
collections of geo-located images for training or matching. Furthermore, location
recognition methods generally attempt to directly match feature points or structures
from an unknown image to the images with known locations. In [3], a method is
proposed to find a probabilistic distribution of the location of an unknown image by
searching similar images. The idea is to use a data-driven scene matching approach.
An image is summarized using typical scene descriptors including color histograms,
GIST [4], and texton histograms and then compared against a dataset of over
6-million GPS-tagged images [3]. This approach is able to estimate the locations
of images by summarizing the likelihood that such an image is captured in a partic-
ular part of the world. In essence, the training dataset is used to represent general
appearance (e.g. color, the amount of vegetation, and the type of architecture) of
different locations. The estimated location is correct to within 200km about 16% of
the time.

Instead of using global features that summarize the scene of an image, the meth-
ods using interest point detections show better performance for accurate location
recognition [1, 5, 6]. The interest points (detected using local feature detectors such
as SIFT [7], SURF [8], or MSER [9]) from a query image are matched to the interest
points in one or more training image sets to find the images which contained at least
some overlap with the query image. In [2], the location estimation is further refined
using a triangulation procedure based on planar homography transformations to the
top image matches. The landmark recognition is performed by first finding a set of
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candidate matches [10]. Each candidate receives a score measuring the similarity
between the query and the candidate. Then the top scored image is used to determine
the location.

4.3 Estimating the Camera Viewing Direction

In [11], the problem of image geo-tagging is extended to estimate the viewing direc-
tion given the camera location of the image. An approximation method that uses the
homography constraint only is proposed, which is less dependent on the accuracy
of camera parameters of the database images. Instead of estimating homography
transformation and the camera parameter directly, it is assumed that any 3D plane
that induces homography is mostly vertical on street-level images. Thus a simplified
method is proposed for viewing direction estimation as follows.

Given a query image, U , and the relevant images (Si for i = 1 ∼ N) collected
from the SIFT matching process, there are N viewing directions associated with Si

and N sets of matching correspondences, denoted by Mus between U and Si . To
estimate an initial rough viewing direction, each field of view is examined at the
center of matched street view images. The overlapping regions between all street
view images are found and given relevance weights proportional to the number of
inliers, as shown in Fig. 4.1a.

Then a Parzen window estimation is used to find the highest mode of the 2D
distribution of the location of interesting region and to obtain an initial estimation of
the viewing direction as a ray coming from the center of user location to the highest
mode, as shown in Fig. 4.1b.When estimating the 2D viewing direction, (i.e., the yaw
angle), the problem can be relaxed by considering only x-axis information from Mus .
Through this relaxation, the optimization that would be required by triangulation of
rays with some assumptions is avoided. It is assumed that the principle point of each
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Fig. 4.1 The initial estimate of yaw angle. The red circles in (a) and (b) indicate the user the
blue circle in (b) indicates 2D location of interesting object. a Field of view (FOV) at every Street
View center. Each region covered by FOV is given a relevance weight proportional to the number
of inliers found in matching. b Parzen window estimation of interesting area seen by Street View
images
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(a) (b)

Fig. 4.2 The red lines are rays from each camera center. The green lines are rays passing through
the principal points. The white crosses are the triangulated 2D points. a Triangulation of rays cannot
find any crossing points visible by both cameras showing the given viewing direction is not possible.
b 2D points that are visible by both cameras are computed by triangulation of rays

Si and U is the center of each image, and the FOV of U is extracted from the camera
metadata. Then the 3D rays are projected onto the y = 0 plane to form2D rays. Planes
intersect with the y = 0 plane results in 2D lines on the y = 0 plane. Therefore,
the proposed method tries to find collinear 2D points on the y = 0 plane, since the
projection of a 3D plane onto the y = 0 plane remains to be a line approximately. By
varying the FOV horizontally for each Si and the viewing direction of the user photo,
a hypothetical 2D point for each of Mui is computed by triangulation, as shown in
Fig. 4.2b. Since these 2D points, (xk, yk) for k = 1 ∼ m should be approximately
collinear. A scatter matrix of the 2D points is built by:

S = 1

m

[∑
k=1 m(xk − x̄)2

∑
k=1 m(xk − x̄)2∑

k=1 m(xk − x̄)2
∑

k=1 m(yk − ȳ)2

]
(4.1)

where x̄ and ȳ are the mean of xk and yk , respectively. Then the eigenvalues of S
is computed to measure the collinearity of the point (xk, yk). The viewing direction
and horizontal FOV of Si that minimizes a ration r is selected by:

r = λmin

λmax
, (4.2)

where λmin and λmax are the minimum and maximum eigenvalues of the scatter
matrix S.

4.4 City-Scale Location Recognition

When a database contains more images, e.g., the street view images for a city (up to
million images), the computational cost of forementioned approaches which use
direct feature matching is unaffordable. There are usually hundreds to thousands
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features extracted from an ordinary street view image. So for a city scale street view
image database with million images, there will be up to billion features in total.

On the other hand, several techniques that have emerged to make location recog-
nition approaches scale up for such huge collections. First we will review large-
scale image database indexing (Sect. 4.4.1). Next, several approaches for selecting
discriminative features or generating informative visual codebooks are described
(Sect. 4.4.2). Clustering images that are geographically proximate and visually sim-
ilar into subsets is also an efficient way to boost the location estimation performance
in large datasets (Sect. 4.4.3).

4.4.1 Large-Scale Image Database Indexing

To address the problem for fast and accurate image similarity calculation with high
dimensional feature, several techniques are widely used. One is based on nearest
neighbor search, which uses methods such as kd-tree for approximate and fast fea-
ture matching. For example, FLANN [12] is used to index all the SIFT features
of a database image into a kd-tree to estimate the location of a query [6]. How-
ever, these methods need to store all the image features thus the memory cost is
large and will not be suitable for million scale database. Another way is using bag-
of-words (BoW) model inherited from document retrieval. Sivic and Zisserman first
proposed to use BoW in image retrieval by quantizing the local descriptors [13].
Each descriptor is mapped to an integer index representing the visual word ID. An
image is represented by a visual word histogram instead of its feature descriptors.
The similarity between two images is measured by the distance between their BoW
histograms. Typically, the visual words are trained from a sampled SIFT descriptor
set by clustering, while the resulting descriptors are defined as visual words. For
efficient clustering and quantization, a hierarchical tree-based structure is adopted
and the resulting leaf nodes are considered as visual words [14]. Compared with
nearest neighbor descriptor matching, BoW-based methods are better in terms of
compactness and memory requirements thus have better scalabilities. In the city-
scale location recognition, Schindler et al. extend feature point matching methods to
investigate the use of large vocabulary trees for finding the location of query image
by matching it to large geotagged image database [1]. Extensions of interest point-
based approaches are widely seen in large-scale location recognition works such
as [5, 15–18]. The hierarchical tree has two basic settings: branching factor B and
hierarchical layer H , where B controls the cluster numbers at each iteration and H
determines the depth of tree. In general, the visual word number is approximate B H

and the descriptor comparisons which quantize a descriptor is equivalent to B × H .
For example, in the implementation of the proposed system “accurate mobile visual
localization” (AMVL) [16] the parameters are set to B = 10, H = 6, yielding a
codebook with 1 million visual words and the inverted file system is exploited to
index the images with the trained vocabulary tree.
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4.4.2 Informative Codebook Generation

One of the main challenges using interest point-based matching methods for loca-
tion recognition is the mismatches in image retrieval caused by noisy image features.
Especially in urban areas, features from common objects such as vegetation, auto-
mobiles and pedestrians will lead to incorrect retrieval results. Since these objects
are widely distributed and the features have similar appearances that quantized to the
same visual word may actually come from faraway objects. Some researchers try to
avoid the mismatches brought by these confusing features. One method is tracking
features in a video sequence to remove moving objects such as cars or pedestrians
in the query [17]. However, the static confusing objects such as trees or road marks
cannot be handled by this method. Turcot and Lowe take features that are robust to
view changes [19].

A similar scheme is proposed by Knopp et al. to detect confusing objects by
using the available geo-tags as image labels to train feature classifiers [20]. The
images from far away locations are considered negative examples, since they depict
different places, so image patches in which detected features match these negative
examples are detected as confusing layers. These features are suppressed in image
representation to improve retrieval accuracy. The afore mentioned twomethods need
to match features between each image pair and build an image adjacency graph
in the training stage, making the process computationally very energy-consuming.
In another paper [21], Doersch et al. tried to find representative image patches of
a certain city. They propose using support vector machines (SVM) for iteratively
learning the patches that frequently appear in a city and distinguish this city from
other cities. More commonly, a term frequency-inverse document frequency (tf-idf)
model is used to weigh the visual words [13], but this only considers information
from descriptors. Similarly, Ji et al. proposed to create a ranking sensitive projection
matrix for each region to adjust the codebook weighing [22].

In order to avoid noisy and select informative visual words for more accurate
image retrieval results in location recognition. A straightforward yet effective code-
book weighting scheme that takes the geo-tags of the database image as prior knowl-
edge [16]. The proposed Location-based Codebook Weighting (LCW) embeds the
geographic distribution of each visual words into the codebook. Similar to the tf-idf
model, the proposed LCW prone to give lower weights to visual words from com-
mon objects, which will lead to confusing matches while giving higher weights to
distinctive visual words. The motivation of LCW is that, if a visual word is related to
features which are patches from common objects, such as trees, cars, or road signs,
the locations of the images contained in this visual word are prone to be uniformly
distributed since these objects can be seen everywhere. On the other hand, if the
visual words are generated from feature patches that are in some unique buildings or
scenes (such as the Arch), most of the images will be located near this building and
form a peak in this area. The 2D geographic distribution of each visual word is calcu-
lated using the location of indexed images in the database. Examples of visual word
distribution can be seen in Fig. 4.3, the Kurtosis of the 2D distribution is calculated
as the node weight of the visual word (WoV), given by:
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Fig. 4.3 Examples of visual word patches and their geographic distributions. The visual words
that related to unique patches (top left Norte Dame, top right inner The Arch, bottom left a pattern
in New York street view images) are in distributions with more concentrated peaks. While for
nondistinctive visual words (bottom right patches from trees in New York street view images), the
images have this visual words seem to be uniformly distributed

W oV (vk) = −3 + 1

σ 4

∑
Lat

∑
Lon

(Lat − uLat )
2(Lon − uLon)2φvk (Lat, Lon) (4.3)

where φvk (Lat, Lon) is the distribution function of vk with (Lat, Lon) as the vari-
ables, uLat and uLon are expected values of (Lat, Lon) respectively. We can see
from Fig. 4.3 that with higher Kurtosis value, the related images are more concen-
trated. Otherwise the image location distribution is diverse. Therefore, the computed
WoV is used to weight visual words in the codebook for better location recognition
performance.

4.4.3 Geo-Visual Clutering

As we know, there are numerous images with GPS tags and other contextual infor-
mation in geo-referenced image datasets. There are several types of geo-referenced
datasets, which are collections of images with GPS information. One way for col-
lecting images is harnessing street-view images with vehicles equipped with cameras
and other sensors (e.g., GPS) [5]. Images collected in this way are consistent and
have high level of accuracy (e.g., Google Street View and Bing Streetside). Another
commonly seen type of geo-referenced image datasets are images collected from
increasingly popular and accessible online photo-sharing services. More and more
people are sharing their photos on these websites such as Flickr and Panoramio. A
portion of these social images are captured using devices with a GPS module or
manually labeled with geographic information. While these community resources
are plentiful, their contents are often diverse and prone to noisiness. These abundant
resources of geo-referenced images have proven very useful in location recognition.

As can be seen from previous section Sect. 4.4.1, indexing images with local fea-
ture descriptors is an efficient way for location recognition. To better utilize these
geo-referenced datasets for location recognition, a number of strategies similar to
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query expansion are used. Clustering visually consistent images into groups is an
effective approach. Avrithis et al. [15] proposed to cluster images to compress a large
corpus of images to form “scene maps” which depict different views of the same
scene. All views are mapped to one reference image to construct the 2D scene map
by preserving details from all images while discarding repeating visual features. The
indexing, retrieval and spatialmatching scheme then operates directly on scenemaps.
This can boost the retrieval recall performance thus lead to more precise location
recognition. Visual clustering is very helpful for the speeding up of 3D reconstruction
in a hierarchical way [10], which is related to more accurate location estimation with
2D–3Dmatching that will be introduced in Sect. 4.4. Similar with recent approaches,
a two-layer clustering scheme that considers both geographic and visual similarity
is proposed in [23]. First the location information (latitude, longitude) is used. Only
geographically close images are grouped in the same cluster, assumed that faraway
images are impossible depicting the same scene. This significantly reduce the com-
putational costs of the subsequent visual-clustering. Images far away from each other
are disconnected by leveraging an open-ball operation for simplicity, with the radius
rg . Thus the geographical similarity matrix is computed as follows:

Simg(i, j) =
{

gi, j , dgeo(i, j) < rg

0, dgeo(i, j) ≥ rg
, (4.4)

where gi, j = exp{−dgeo(i, j)
σg

} denotes the geo-proximity of two images, dgeo(i, j) is
the distance from the location of image i to image j , and σg is the scale factor. Then,
the affinity propagation (AP) algorithm is adopted to get the geo-clusters [24]. The
total number of groups is automatically inferred from the data.

When the geo-clusters are determined, clustering based on visual similarity of
images is further conducted. Same as geo-clustering, it requires to compute a matrix
Simv for each geo-cluster that represents the pairwise visual similarity between
images in this cluster. Unlike geo-clustering, to compute the pairwise similarity of
images is the most computational procedure. Typically this is done by matching
local visual features according to a variety of different methods like mutual nearest
neighbors or distance ratio, followed by checking consistency in geometry by means
of RANSAC and other forms of spatial matching [25]. The inverted-indexing tech-
nique is employed here to speed up this procedure. For each image in the cluster, its
features are quantized to visual words as the same as described in Sect. 4.4.1, then
each image is represented using the histogram of visual words. Matching between
this image and other images in the cluster is conducted using the inverted index file
and followed by a fast geometric verification. This matching is conducted in a small
subset (within a geo-cluster) instead of the whole database thus the computational
cost is greatly reduced. Furthermore, we restrict that only image pairs that have an
inlier match feature number more than rv are connected in the visual graph. So the
visual similarity matrix is:
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Fig. 4.4 An example of geo-visual clustering in the city of Paris. a The geographical regions are
generated by employing affinity propagation clustering. Different clusters are denoted by different
colors. b Part of the visual clusters in one geo-cluster near Norte Dame de Paris. Each row represents
images in the same visual cluster along with the reconstructed 3D scene model

Simv(i, j) =
{

vi, j , vi, j ≥ rv

0, vi, j < rv
, (4.5)

where vi, j is the number of inlier matches between image i and j , representing
their visual similarity. The clustering results of geo-clustering of community photo
collections in a city and an example of visual clusters of a geo-cluster are shown
in Fig. 4.4, and each row in Fig. 4.4b depicts the images in the same visual cluster.
Reconstructed 3D model is shown at end of each row in Fig. 4.4b.

4.5 Location Estimation by 2D–3D Alignment

2.4 Another topic that is closely related to location estimation is 3D scene model
reconstruction from image collections. In this section, we will briefly review the 3D
reconstruction technique first Sect. 4.5.1 and then describe how the comprehensive
geo-information including camera location, viewing direction and scene location is
estimated using 2D–3D alignment Sect. 4.5.2.

4.5.1 3D Model Reconstruction

The 3D information related to the location itself can also be incorporated to location
recognition. Estimating image camera geo-location is a topic that closely related to
the fields of camera calibration. In [26], image features that are visible in two or
more images of a scene are used to estimate the geometric relations between image
pairs. Then both the coordinates of the image features and the camera parameters
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(including the location of each cameras in the 3D coordinate frame, rotation matrix,
and other intrinsic parameters) are estimated in an external 3D coordinate frame.
In [19], the structure-from-motion (SfM) technique is explored to reconstruct 3D
models of Internet photo collections of landmarks. The estimation of image location
is accomplished by placing the reconstructed 3D model within the context of the
coordinate system of the Earth. In [10, 27–30], images are localized by matching the
2D image feature points to the 3D point cloud model.

In [16, 23], the location estimation technique based on 2D–3D feature matching
is extended to city-scale cooperating with the forementioned geo-visual clustering
process. Through the fore two-stage clustering, images are grouped into clusters.
Images in the same cluster are visually similar and geographically close. Let {Ci }N

i=1

depicts the N image clusters . Each clusterCi = {I m
i }Mi

m=1 consist of images depicting
the same scene. Instead of representing the scenes with sets of images, a better choice
is using 3D models which contains stronger geometric constraints. These geometric
constraints deliver the pose of images directly compared to the 2D image matches.

3D models are created using multiple-view vision methods from image clusters
C = {I m}M

m=1. In [16, 23] the reconstruction of 3D scenes from images in the
same cluster is mainly based on SfM algorithm [31]. The relevant steps of 3D scene
reconstruction can be briefly summarize here. First, for each pair of image, the key
point descriptors is matched using the approximate nearest neighbors (ANN) kd-
tree algorithm [32]. Then, the set of cameras and 3D points can be reconstructed by
bundle adjustment. The reconstruction starts from a selected initial image pair that
has a large number of matches while with certain viewpoint changes. The 5-point
algorithm is used to estimate camera parameters for this initial pair [33] and matched
image points are triangulated to estimate their 3D coordinates. Then, the scenemodel
is incrementally built by adding a few images to the model at a time.

The reconstructed model S (C ) � (X ,A ,W ) of a cluster C is represented
with following structures: (1) A set of 3D points X = {Xn}N

n=1 in 3D Euclid
coordinate (U, V, Z) , (2) A set of camera A = {Am}M

m=1, where each camera
Am consists of an image I m , a rotation matrix Rm , a translation tm , and a focal
length lm , and (3) a set of Binary mappings W = {wn,m}n=N ,m=M

n,m=1 between the
points and cameras indicates whether Xn could be observed from camera Am . If
Xn = (Xn

U , Xn
V , Xn

Z ) is observable in Am , then there exists an 2D feature point
xn,m = (xn,m

u , xn,m
v ) represented in 2D image coordinate (u, v). At each iteration,

the reconstructed model is further refined using bundle adjustment. It is equivalent
to the following optimization problem that minimize the reprojection error:

arg min
X,R,t,l

∑
Xn ,Rm ,tm ,lm

wn,m ‖ xn,m − x̂n,m ‖2, (4.6)

where x̂n,m = (̂xn,m
u , x̂n,m

v ) is the reprojection of Xn into image I m , the reprojection
is computed as:
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Fig. 4.5 Visual clusters and reconstructed 3D scene models. The examples are from three different
datasets. Left Model in “SF street view” [5]. Middle Model in “Flikcr five cities” [23]. Right Model
in “Google street view” [16]

λ

⎛
⎝ x̂n,m

u
x̂n,m

v
1

⎞
⎠ = lm(RmXn + tm), (4.7)

where λ is an arbitrary homogeneous scaling factor. Thus bundle adjustment jointly
refines the estimated camera parameters and 3D points. Finally, when the reconstruc-
tion has been completed and the coordinate is converted to the real world coordinate.
With labeled GPS information of the images, a similar transformation is estimated
to register the 3D model into real world coordinate. Then, the query image is local-
ized by searching and registering to the 3D scenes in this superior geo-referenced
database Fig. 4.5 shows some 3D model reconstructed from image visual clusters.

4.5.2 Image Localization by View Registration

The reconstructed 3Dmodels and the related images are indexed using forementioned
BoW model with inverted files. When estimating the location, first similar images
are retrieved for the query image. The retrieval system then returns a short list of
candidate images, along with filtered feature matches between the query image and
these candidates. At the same time, all the 3D scene models {S (Ci )|q ∩ Ci �= �}
in the database that has some candidate images related to are scored using these
retrieved images and feature matching results. We use a majority voting scheme to
select the 3D scene model that the query image q has the most overlap with. For each
3D scene model S (Ci ), a voting score V (S (Ci ), q) is accumulated as follows:

V (S (Ci ), q) =
∑

f q∈q
δ( f q , ,S (Ci )), (4.8)
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Image Cluster Reconstructed Model Aligned query image to the model

Fig. 4.6 3D models are reconstructed from image clusters. For localization, the query image is
aligned to the scene model which shares most image feature overlap with it

where δ( f q , ,S (Ci )) → {0, 1} indicateswhether an feature point f q in query image
canfindmatch in the candidate images that related to the sceneCi . ThusV (S (Ci ), q)

denotes the strength of the link between query image and S (Ci ) approximately by
measuring how many of the feature points in the query image are covered by the
scene model. The scene model with highest hits is chosen to further align the query
image for accurate localization.

From the previous voting procedure, the most related scene model is determined.
Figure4.6 illustrates the registration procedure. The camera pose is then estimated
by registering the query image to 3D points. For descriptors of each 3Dmodel, a KD-
tree is established. Nearest neighbors are searched in this tree to find matches for the
features extracted from the query image. When there is sufficient correspondences
between image features x and 3D points X , the 3×4 projectionmatrixP is estimated.

λ

⎡
⎣xu

xv

1

⎤
⎦ = P

⎡
⎢⎢⎣

XU

XV

X Z

1

⎤
⎥⎥⎦, (4.9)

where λ is an arbitrary homogeneous scaling factor same as in Sect. 4.5.1. There are
11 degrees of freedom (DOF) in P and usually the 6-point DLT algorithm is adopted
[26]. P can be decomposed into a 3 × 3 intrinsic matrix K, a 3 × 3 rotation matrix
R, and a translation vector t. where

P = K[R|t], (4.10)

K =
⎡
⎣l γ u0
0 l v0
0 0 1

⎤
⎦, (4.11)

where l is the focal length of the camera, γ is the skew of the camera, which is
often 0, and u0 and v0 define the principal point of the image, usually in the center.
With these assumptions, only l need to be considered in K. Notice that R is actually
determined by three constituent Euler angles and t is a 3-vectors, and the total DOF
is reduced to 7 and only 4-points are needed.
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There are methods that can estimate the focal length and other parameters like
4-point-solver recently proposed in [34].When focal length is given, e.g., in EXIF, the
3-point perspective pose estimation method could be used. According to the report
in [10, 30], the camera position of the image is given by R and t, the camera position
of the image is given by −R′t and view direction is −R′[0 0 1

]′. The scene position
is estimated using the 3D points that could be observed from the query image and
we use the mean of them as the scene location of the image. Finally, by estimating a
similar transform from 3D model’s horizontal axis to the GPS coordinate, the image
is registered to the real worldmap. Then (lu, θu, ls) denoting camera location, camera
view direction, and scene location is calculated respectively by this similar transform.
Figure4.6 shows an example of an image aligned to the retrieved 3D scene model.

4.6 Accurate Mobile Visual Localization and Its Applications

Location recognition has many potential applications, such as automatically image
annotation, geo-trajectory mining [35], visual summarization [10, 31] and virtual
navigation [16, 23].

In [16], a visual-based localization approach that take advantage fo the foremen-
tioned large-scale landmark image recognition technique and image localization by
2D–3D alignment is proposed. The proposed approach is able to estimate accurate
and comprehensive location information (including the camera location, viewing
direction and distance to the captured scene) for the user according to the phone cap-
tured photo (typically associated with a rough GPS). The framework of the proposed
system is shown in Fig. 4.7.

The comprehensive set of geo-context attributes can lead to a wide variety of LBS
applications; in the following there are three applications:

Application I: On spot tour guide As its core functionality, the framework [16]
can supply accurate localization and mapping service for a mobile user. Augmented
reality is a promising application on mobile devices. This relies on accurate and

Client CloudNetwork 

Fig. 4.7 The proposed framework for accurate mobile visual localization in [16]
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comprehensive position information obtained by the camera. For example, a tourist
wants to have a clearer view of the surrounding or to find his hotel around him. He
needs his accurate location and direction in such applications. The user interface for
this application is shown in Fig. 4.8. The user interface for mobile visual localization:
(1) the user captures the scene with his phone camera, (2) the location and viewing
direction are estimated by our proposed mobile visual localization approach, and the
nearby local businesses are also displayed on the screen by augment reality, (3) the
map view of the localization results and route to the selected destination, and (4)
the map view overlaid with recommended nearby local businesses. First the user
uses the camera to capture a photo as a fingerprint of the scene. Then by pressing
the “localization” button the image and rough GPS is transmitted to the cloud. The
service returns (lu, θu, ls), which defines the location, view direction, and location
of captured scene. With the rich and accurate information, better mapping services
are supplied to help the user better explore the surrounding. In addition, we can
recommend the nearby local business to user and show related entities along the
view direction θu using augment reality techniques. For example in Fig. 4.8, the
radar shows the surrounding area of the user within a given radius.

Application II: Collaborative routingAnother scenario is that friends in a crowded
areamayget separated fromeach other. It is difficult for them tofindothers, especially
in an unfamiliar scene. To locate themselves and find their way back together quickly,
each of them can take a photo of a landmark at his/her location and upload the photos

(a) (b)

(c) (d)

Fig. 4.8 The user interface for mobile visual localization. a shows that the user captures the scene
with the phone camera. b Then the location and view direction are estimated by the proposed
framework. The nearby local businesses are shown to the screen by augment reality. c The map
view of the localization result and route to the selected destination. d The map view with nearby
local businesses
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(a) (b)

(c) (d)

Fig. 4.9 Multiple user system interface. a, b Two users are located in collaboration. c Their relative
locations, view directions and suggested rendezvous for them shared on the same map. d The
suggested rendezvous and route

to the cloud. With the multiple image localization service, they will receive the
accurate geographic information of themselves and their friends’ . Let (lu1, θu1, ls1)
and (lu2, θu2, ls2) denote their localized context respectively. These information are
shownwith a radar on the screen as a clear guideline for them:whether they have been
the same scene (lu1 close to lu2), which direction should they turn to (θu1 ↔ θu2).
Moreover, we will recommend the rendezvous for them. According to the users’
purpose (e.g., dine together) and the geo-context, and suggest the route to there
(Fig. 4.9).

Application III: Sightseeing guide There is another application that especially
useful for tourists. When browsing on the Internet, people may be attracted to some
pictures. They will think about where these pictures were taken and decide to visit
the same scenery spot. Furthermore, they probably want to take a similar photo
of the scene. But what they have is only the picture with no other information.
The system could help the user to find and reach the specific “rendezvous” point
with the scenery. When the user feel attracted by an online photo, he could use our
plugins on mobile phone to search and locate the photo. As described in Sect. 4.5,
the accurate localization system returns R, t, K of the photo to user, which could
be further translated to (lp, θp, ls). And other parameters could be suggested to the
user for photographing too. Through this application, the user can have suggestions:
where to go (lp), what to photograph (ls), with what camera pose (θp could further
be decomposed to heading, tilt and roll of the camera) and other parameters (e.g.,
focal length) to generate a satisfied photo [36] (Fig. 4.10).
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Fig. 4.10 User interface of sight seeing guide. When a user is browsing a photo online, we
could calculate the location and view direction for the user to take a similar photo and suggest
route from user’s current location to the rendezvous for photographing

4.6.1 Aerial-Imagery Matching

In previous section, the approaches for location recognition when ground-level
images are validated when the database is available. Unfortunately, the ground-level
images such as Google Street View images are not always available. To further esti-
mate the geo-location of the user photo, other modalities such as satellite-imagery
and bird-view imagery are considered.

Aerial image databases such as Google Earch and Micorsoft Bird’s Eye View
capture the globe at vary levels of detail and can be used for acquiring geographical
knowledge. In this section, we describe algorithms that use aerial-imagery match-
ing techniques. Ground-level user photos are matched to near orthogonal satellite
imagery or 45◦ bird-view imagery.

The satellite view image is top-down from above, while computing the match
between the satellite view image and ground-level image is extremely challenging
using local features such as SIFT because the appearance of common objects can vary
significantly due to the wide view-point changes and different imaging conditions.
The proposed method in [11] is on the basis that the ground plane and fixture objects
on the ground are visible from both the satellite view and ground view (Fig. 4.11).

Provided that there are structures visible from both views, we need to align the
two planes in a way that minimize the alignment error. First, the field of view (FOV)
is extracted from the user image to simulate a ground-level view in a certain viewing
direction by rotating the FOV on the co-located satellite image. Image patch covered
by the FOV is extracted and warped to the ground-level view (Fig. 4.11). Then the
horizon of the user image is detected and ground plane region is picked for the
matching.

4.6.1.1 Horizon Detection

First, a user image is segmented into several regions. Then the boundary of each
segmentation is taken as an edge. And the edge responses along the x axis is summed
to yield a vector with length equal to the height of the image. Then a box filter is
used to convolve the computed vector since the image may not be perfectly normal
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Fig. 4.11 Matching the ground-level user photo to a satellite view: a user photo, b detected ground
plane from the user photo using horizon detection, c extraction of the ground plane at a specific
user photo location, viewing direction, and FOV, d simulated ground-level view using the result of
(c), e dynamic time warping and disparity score for (b) and (d)

to the ground plane. To detect a rotated horizon with possible large tilt change, the
size of the box filter can be increased. Formally, the solution is given as follows:

Ir (y) =
width∑
x=1

Im(y, x) (4.12)

where Im(y, x) is the edge magnitude at pixel (x, y) on a segmented image and Ir (y)

is an edge response at vertical axis y.

Ir (y) = Ir (y)∑height
y=1 Ir (y)

(4.13)
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Fig. 4.12 Horizon detection: red horizontal line is a maximum likelihood solution and green is a
minimum mean squared solution

yM L = argmax
y

(Ir ∗ BOX)(y) (4.14)

yMMSE =
height∑
y=1

y × (Ir ∗ BOX)(y) (4.15)

where BOX is a box filter and ∗ is a convolution operator. Some examples of detected
horizon in the images can be seen in Fig. 4.12.

4.6.1.2 Alignment of Ground-Level Image and Satellite View

Then both images are resized into small patches, which are called codes, to normalize
the horizontal axis and vertical axis (Fig. 4.11b, d). Since the same FOV is use when
simulating a ground-level view from the satellite image, this normalizationmakes the
horizontal axes of the two codes approximately correspond to each other. However,
sometimes the tilt angle of the camera is unknown so the y-axes that relate to distances
from a camera center may not correspond to each other. Discussion about how to
take care of this is given in Sect. 4.6.2.

4.6.2 Intensity-Based Matching Through Dynamic Time Warping

Regarding the vertical axis as a time axis, the matching problem has a conceptual
similarity with time series analysis problem where two signals have different speed
and acceleration (e.g., speech). The similarity between two time series is evaluated
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by the similarity score of the two 3 × w matrices (mi , m j ), where w is the width
of the code extracted from both codes at distance (i, j) at a given time (i, j) (see
Fig. 4.11b, d). Having converted this matching problem to time-series analysis, then
normalized cross correlation (NCC) can be used to generate a 2D disparity map
(Fig. 4.11) between the codes and dynamic programming can be used to find the
minimum shortest path (Fig. 4.11). Any types of appearance similarity scores and
features such as the earth mover’s distance, color histogram, NCC and texture can be
used to help overcome the differences in terms of optics, weather, lighting and other
factorswhich originated from two extremely different imaging conditions (one image
captured by a camera on a satellite vs. one captured by a consumer-level camera on
the ground). Finally,the viewing direction that generates the minimum shortest path
is chosen as the solution. When estimating viewing direction a dataset of 55 images
captured with smart phone with ground truth viewing directions inWashington D.C.,
New York City, Rochester, NY, and State College, PA areas for experiments, they
show an average mean error of 11.1◦ and standard deviation of 9.5◦.

4.6.3 Conclusions

In this chapter, we have covered a broad range of vision-based fine-grained location
estimation. Starting with landmark recognition, we have seen how images can be
used for geo-location estimation. Moreover, instead of studying location estimation
only, we have also explored to techniques that can calculate more fine-grained and
comprehensive geo-information parameters such as viewing direction. Techniques
that closely related to vision-based location estimation such as 3D reconstruction,
large-scale image database indexing, and image clustering are also described. There
are multimodal geo-image database that are useful for location estimation, we have
also described location estimation method using satellite imagery. A variety of appli-
cations have shown that vision-based location estimation is essential and very helpful
for users. Having the broad material covered in this chapter, one of the recent trends
in vision-based fine-grained location estimation is to use massive amount of images
on the Internet together with data-driven approaches and advanced computer vision
techniques that can provide more detailed information such as building structures,
to get more accurate understanding of the geo-context.
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Chapter 5
Image-Based Positioning of Mobile Devices
in Indoor Environments

Jason Zhi Liang, Nicholas Corso, Eric Turner and Avideh Zakhor

5.1 Introduction

Indoor positioning allows for many commercially viable applications, such as
navigation, behavior and movement tracking, and augmented reality (AR). These
applications all require the user’s location and orientation to be reliably estimated.
Positioning is noticeably more challenging indoors than outdoors since GPS is typ-
ically unavailable in interior environments due to the shielding effect of structures.
As a result, much research has been focused on relying on other types of signals, or
in our case, images as a basis for positioning.

Avariety of sensors are capable of performing indoor positioning, including image
[1], optical [2], radio [3–7], magnetic [8], RFID [9], and acoustic [10]. WiFi-based
indoor positioning takes advantage of the proliferation of wireless access points (AP)
and WiFi capable smartphones and uses the signal strength of nearby WiFi beacons
to estimate the user’s location. A few drawbacks are that APs cannot be moved or
modified after the initial calibration, and that a large of number of APs are required to
achieve reasonable accuracy. For instance, 10 or more wireless hotspots are typically
required to achieve submeter accuracy [4]. The most debilitating drawback of WiFi
positioning is its inability to estimate the user’s orientation, which is necessary for
AR applications. Other forms of indoor positioning that rely on measuring radio
signal strength such as bluetooth, GSM, and RFID, also share the same strengths and
weaknesses of WiFi-based indoor positioning.

There have also been previous attempts at indoor image-based positioning [1]. An
image-based positioning system involves retrieving the best image from a database
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that matches to the user’s query image, then performing pose estimation on the
query/database image pair in order to estimate the location and orientation of the
query image. The authors in [1] take advantage of off the shelf image matching algo-
rithms, namely color histograms, wavelet decomposition, and shape matching and
achieve room level accuracy with more than 90% success probability, and meter-
level accuracy with more than 80% success probability for one floor of the computer
science building at Rutgers University. This approach however, cannot be used to
determine the absolute metric position of the camera, nor its orientation. Thus, it can-
not be used in augmented reality applications where precise position and orientation
is needed.

In this chapter, we demonstrate an image-based positioning system for mobile
devices capable of achieving submeter position accuracy as well as orientation recov-
ery. The three stages of that pipeline are: (1) preparing a 2.5D locally referenced
image database, (2) image retrieval, and (3) pose recovery from the retrieved data-
base image. We also present a method to estimate confidence values for both image
retrieval and pose estimation of our proposed image-based positioning system. These
two confidence values can be combined to form an overall confidence indicator. Fur-
thermore, the confidence values for our pipeline can be combined with that of other
sensors such as WiFi in order to yield a more accurate result than each method by
itself.

Our pipeline can be summarized as follows:

1. Database Preparation, shown in Fig. 5.1a: We use a human operated ambulatory
backpack outfitted with laser scanners, cameras, and an orientation sensor (OS),
as seen in Fig. 5.2, to map the interior of a building in order to generate a locally
referenced 2.5D image database complete with SIFT features [11–13]. By locally
referenced image database, wemean that the absolute six degrees of freedom pose
of all images, i.e., x, y, z, yaw, pitch, and row, are known with respect to a given
coordinate system. By 2.5D, we mean that for each database image, there is a
sparse depthmap that associates depth values with image SIFT keypoints only.

2. Image Retrieval, shown in Fig. 5.1b: We load all of the image database SIFT
features into a k-d tree and perform fast approximate nearest neighbor search to
find a database image with most number of matching features to the query image
[14–16].

3. Pose Estimation, shown in Fig. 5.1c: We use the depth of SIFT feature matches
along with cell phone pitch and roll to recover the relative pose between the
retrieved database image in step (2) and the query image. This results in complete
six degree of freedom pose for the query image in the given coordinate system
[17].

In Sect. 5.2, we describe our approach for generating sparse depthmaps during
database preparation. InSect. 5.3,wewill goover image retrieval andpose estimation.
Section5.4 includes estimation of confidence values for both image retrieval and pose
estimation are estimated. In Sect. 5.5, we show experimental results, characterizing
the accuracy of our pipeline. Section5.6 includes conclusions and future work.
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Fig. 5.1 Overview of our indoor positioning pipeline. The pipeline is composed of a database
preparation, b image retrieval, and c pose estimation steps

5.2 Database Preparation

In order to prepare the image database, an ambulatory human operator first scans
the interior of the building of interest using a backpack fitted with two 2D laser
scanners, two fish-eye cameras, and one OS as shown in Fig. 5.2. The database
acquisition system requires two laser scanners, namely the pitch and yaw scanners
in Fig. 5.2. Measurements from the backpack’s yaw and pitch laser range scanners
are processed by a scan matching algorithm to localize the backpack at each time
step and recover its six degrees of freedom pose [18]. Specifically, the yaw scanner
is used in conjunction with a 2D positioning algorithm in [11–13] to recover x, y
and yaw, the OS is used to recover pitch and roll, and the pitch scanner is used to
recover z [11]. Since the cameras are rigidly mounted on the backpack, recovering
the backpack pose essentially implies recovering camera pose. Figure5.3a shows
the recovered path of the backpack within a shopping center, while Fig. 5.3b shows
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Fig. 5.2 Diagram of the data acquisition backpack

the surrounding wall points recovered by the backpack by projecting the yaw scans
onto the ground plane [19]. These wall points can be connected interactively via
commercially available CAD software to produce an approximate 2D floorplan of
the mall as seen in Fig. 5.3c. The recovered pose of the rigidly mounted cameras on
the backpack are then used to generate a locally referenced image database in which
the location, i.e., x, y, and z, as well as orientation, i.e., yaw, pitch, and roll, of each
image is known within one coordinate system.

To create a sparse depthmap for the database images, we first temporally sub-
sample successive captured images on the backpack while maintaining their overlap.
We then extract SIFT features from each pair of images and determine matching
feature correspondence pairs through nearest neighbor search. In order to ensure the
geometric consistency of the SIFT features, we compute the fundamental matrix that
relates the two sets of SIFT features and removes any feature pairs which do not
satisfy epipolar constraints.

We then triangulatematching SIFT keypoint pairs in 3D space. As seen in Fig. 5.4,
for each pair of SIFT correspondences, we calculate the 3D vectors that connects the
camera centers of the images to the respective pixel locations of their SIFT features.
In doing so, we make use of the database images’ poses and intrinsic parameters to
ensure both vectors are correctly positioned within the same world coordinate frame.
Next, we determine the depth of the SIFT features by finding the intersection of these
rays and computing the distance from camera center to the intersection point. We
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Fig. 5.3 a Recovered path of backpack traversal. b Wall points generated by backpack. c 2D
floorplan recovered from wall points

use the following to determine the intersection point or the point mutually closest to
the two vectors:

x =
(

2∑
i=1
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i

)−1 (
2∑

i=1

(
I − vi v

T
i

)
pi

)
(5.1)
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Fig. 5.4 Triangulation of two matching SIFT features. v1 and v2 are the resulting vectors when
the camera centers c1 and c2 are connected to the SIFT features p1 and p2 on the image planes.
The two vectors intersect at x

where x is the intersection point, vi is the normalized direction of the i th vector,
and pi is a point located on the i th vector. The availability of highly optimized
library functions for determining fundamentalmatrices and performing linear algebra
operations means that sparse depthmap generation can be done in amatter of seconds
per image. For debugging and visualization purposes, we combine the intersection
points of SIFT features from every database image into a single sparse 3D point
cloud, shown in Fig. 5.5a, b.

Fig. 5.5 a Top-down and b side views of sparse 3D point cloud generated from triangulation of
SIFT feature correspondence of the database images
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5.3 Image Retrieval and Pose Estimation

The next step of our image-based positioning pipeline shown in Fig. 5.1c is image
retrieval, which involves selecting the best matching image from the image database
for a particular query image. Our indoor image retrieval system loads the SIFT
features of every database image into a single k-d tree [16]. Next, we extract SIFT
features from the query image and for each SIFT vector extracted, we lookup its top
N neighbors in the kd-tree. For each closest neighbor found, we assign a vote to the
database image that the closest neighbor feature vector belongs to. Having repeated
this for all the SIFT features in the query image, the database images are ranked by
the number of matching SIFT features they share with the query image.

After tallying the votes, we check geometric consistency and rerank the scores
to filter out mismatched SIFT features. We then solve for the fundamental matrix
between the database and query images and eliminate feature matches that do not
satisfy epipolar constraints [14]. We also remove SIFT feature matches where the
angle of SIFT features differ by more than 0.2 rad. Since these geometric consistency
checks only eliminate feature matches and decrease the scores of database images,
we only need to partially rerank the database images. The database image with the
highest score after reranking is exported as the best match to the query image. The
image retrieval step takes roughly 2–4s depending on the processing power of the
processor used.

As shown in Fig. 5.1c, the last step of our indoor positioning pipeline is pose
recovery of the query image. Pitch and roll estimates from cell phone sensors are used
in vanishing point analysis to compute yawof the query image [17]. Oncewe estimate
orientation, SIFT matches are used to solve a constrained homography problem
within Random Sample Consensus (RANSAC) to recover translation between query
and database images. The method for scale recovery of the translation vector only
requires depth values at the SIFT features which are considered inliers from the
RANSAC homography. These depth values are present in the sparse depthmaps
generated during the database preparation step of Sect. 5.2. We have also found that
reducing the size of the query images significantly reduces the number of iterations
required for RANSAC homography. This is because the resolution of our database
images is significantly lower than that of the query image camera. If the RANSAC
homography fails to find inliers, we use the pose of the matched database image as
the solution. Depending on the image and speed of the processor, pose estimation
requires 2–10s.

5.4 Confidence Estimation

Our confidence estimation system consists of several classifiers that output confi-
dence values for both the image retrieval and pose recovery steps in our pipeline.
These classifiers are trained using positive and negative examples from both image
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Fig. 5.6 Comparison of a
number of SIFT matches after
geometric consistency check
and b vote ranking
distribution before geometric
consistency check for
correctly and incorrectly
retrieved images

retrieval and pose recovery stages of our proposed pipeline in Sect. 5.3. We have
empirically found a logistic regression classifier to perform reasonably well even
though other classifiers can also be used for confidence estimation. In order to evalu-
ate the performance of our confidence estimation system, we create a dataset of over
270 groundtruth images where roughly 25 % are used for validation and the rest for
training. To boost classifier performance, 50 out of the 270 images in the validation
set are chosen to be “negative” images that do not match to any image database.

To generate confidence values for image retrieval, we train a logistic regression
classifier based on features obtained during the image retrieval process. We assign
groundtruth binary labels to the images in the training set that indicate whether the
retrieved images matches the query images. For a given query image, the retrieval
classifier generates both a predicted binary label and a retrieval confidence value
between 0 and 1. We have found the following features to be well correlated with
image retrieval accuracy [14]: (a) number of SIFT featurematches between query and
database image before geometric consistency checks; (b) number of SIFT matches
after geometric consistency checks; (c) the distribution of the vote ranking before
geometric consistency checks; (d) the distribution of the vote ranking after geometric
consistency checks; (e) physical proximity of the top ranking database images in the
vote ranking. For example, as shown inFig. 5.6a, the average number of SIFTmatches
after geometric consistency checks for correctly matched query images is over three
times that of incorrectly matched query images. Likewise, as shown in Fig. 5.6b, the
number of database images with at least half the number of votes of the top ranked
image before the geometric consistency check is much lower for correctly retrieved
images than the incorrectly retrieved ones.

Similarly for pose estimation, we train a separate logistic regression classifier
on another set of features that correlate well with the pose recovery accuracy. We
assign a groundtruth “True” label if the location error of a training image is below
a pre-specified threshold of 4m, and a “False” label otherwise. As with the image
retrieval classifier, our pose estimation classifier generates a predicted binary label
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Fig. 5.7 Scatterplot of a confidence metric used in [17] and b number of inliers after RANSAC
homography versus location error. Red (blue) dots correspond to images with less (more) than 4m
of location error

and a confidence value between 0 and 1. The features use to train the classifier are:
(a) number of inliers after RANSAC homography; (b) reprojection error; (c) number
of SIFT feature matches before RANSAC homography; (d) number of RANSAC
iterations; (e) a confidence metric in [17] that is used to choose the optimal inlier
set. In Fig. 5.7, we use scatterplots to visualize the correlation between some of these
features and pose recovery accuracy. Specifically, Fig. 5.7a plots the relationship
between the confidence metric used to choose the optimal inlier set and location
error of the pose estimation while Fig. 5.7b does the same for the number of inliers
remaining after RANSAC homography and location error. The red (blue) dots in
the scatterplots correspond to images with less (more) than 4m of location error. As
seen, query images with larger location error tend to have less inliers and a smaller
inlier set confidence metric.

We also perform support vector regression (SVR) on the training set and use the
resulting regression model to predict location error of the testing set for our proposed
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Fig. 5.8 Plot of actual (blue) versus predicted (red) location error for images in validation set using
SVR regression. For the negative examples in the validation set, we set the actual error to be an
arbitrary high value of 100m

pose recovery method. In doing so, we assign an arbitrarily large location error of
100m to the negative examples in the validation set. As seen in Fig. 5.8, there is a
reasonable correlation between our predicted and actual location error.

We find the predicted binary label of the image retrieval and pose estimation
confidence system to be in agreementwith the actual groundtruth label 86 and 89%of
the query images in the validation set respectively. Figure5.9a, b show the distribution
of confidence values for image retrieval and pose estimation respectively on the
validation set. Green (red) bars represent the confidence distribution of imageswhose
predicted label (do not) match the groundtruth label. To create an overall system
confidence score between0 and1 andprediction label,weuse the following algorithm
below:

overall confidence = 0.5 * (retrieval confidence + pose confidence);
if overall confidence >0.5 then

prediction label = true;
else

prediction label = false;
end

By comparing the groundtruth and the overall confidence prediction labels for the
query images in the validation set, the accuracy of the overall confidence estimation
is determined to be 86%. Figure5.9c shows the distribution of overall confidence
scores for the validation set.

To determine the optimal location error threshold, we set it to values ranging from
1 to 12m and test the accuracy of the pose estimation confidence system. As shown
in Fig. 5.10, the optimal value for the threshold is around 3–5m.
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Fig. 5.9 Confidence
distribution for a image
retrieval, b pose recovery, c
overall system on the
validation set; Red (green)
bars correspond to incorrectly
(correctly) predicted images

5.5 Experimental Results

For our experimental setup, we use the ambulatory human operated backpack of
Fig. 5.2 to scan the interior of a two story shopping center located in Fremont, Cal-
ifornia. To generate the image database, we collect thousands of images with two
5 megapixel fish-eye cameras mounted on the backpack. These heavily distorted
fish-eye images are then rectified into 20,000 lower resolution rectilinear images.
Since the images overlap heavily with each other, it is sufficient to include every
sixth image for use in the database. By reducing the number of images, we are able
to speed up image retrieval by several factors with virtually no loss in accuracy.

Our query image data set consists of 83 images taken with a Samsung Galaxy
S3 smartphone. The images are approximately 5 megapixels in size and are taken
using the default settings of theAndroid camera application. Furthermore, the images



96 J.Z. Liang et al.

Fig. 5.10 Scatterplot showing relationship between pose recovery confidence estimation accuracy
and the threshold ts used for location error

consist of landscape photos either taken head-on in front of a store or at a slanted
angle of approximately 30◦. After downsampling the query images to the same
resolution as the database images, i.e., 1.25 megapixels, we successfully match 78
out of 83 images to achieve a retrieval rate of 94%. Detailed analysis of the failure
cases reveal that two of the incorrectly matched query images correspond to a store
that does not exist in the image database. Therefore, the effective failure rate of
our image retrieval system is 3 out of 80 or less than 4%. As shown in Fig. 5.11a,
successful retrieval usually involves matching of store signs present in both the query
and database images. In cases such as Fig. 5.11b where retrieval fails, there are few
matched features on the query image’s store sign.

Next, we run the remaining query images with successful retrieved database
images through the pose estimation part of the pipeline. In order to characterize pose
estimation accuracy, we first manually groundtruth the pose of each query image
taken. Groundtruth is estimated by using the 3D model representation of the mall,
and distance and yaw measurements recorded during the query dataset collection.
We first locate store signs and other distinctive scenery of the query image within the

Fig. 5.11 a Successful and b unsuccessful examples of image retrieval.Red lines showSIFT feature
matches



5 Image-Based Positioning of Mobile Devices in Indoor Environments 97

Fig. 5.12 Cumulative density function of a location,b yaw error of and probability density function
of c location, d yaw error of our indoor positioning pipeline

3D model to obtain a rough estimate of the query image pose, which is then refined
using the measurements. The resulting groundtruth values are in the same coordinate
frame as the output of the pose recovery step.

Figure5.12 summarizes the performance of the pose estimation stage of our
pipeline. Figure5.12a, b show the cumulative distribution functions of location and
yaw error respectively while Fig. 5.12c, d show the probability distribution functions
of location and yaw error. As we can see, over 80% of the images have their yaw
correctly estimated to within 10◦ of the groundtruth values. Furthermore, over 55%
of all the images have a location error of less than 1m. As seen in the example in
Fig. 5.13a,when the location error is less than 1m, the SIFT features of corresponding
store signs present in both query and database images are matched by the RANSAC
homography [17]. Conversely, in less accurate cases of pose estimation where the
location error exceeds 4m, the RANSAChomography finds “falsematches” between
unrelated elements of the query and database images. For instance in Fig. 5.13b, dif-
ferent letters in the signs of the two images are matched. In general, we find that
images with visually unique signs perform better during pose estimation than those
lacking such features.

On a 2.3GHz i5 laptop, our complete pipeline from image retrieval to pose recov-
ery takes on average 10–12s to run. On an Amazon EC2 extra-large computing
instance, the runtime is reduced further to an average of 4.5 s per image. The indi-
vidual runtimes for each image is highly variable, with some images taking twice as
long as the average time.
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Fig. 5.13 a Example of accurate pose estimation on query image. b Example of inaccurate pose
estimation. Notice how different letters in the same sign are matched

5.6 Conclusion

In this chapter, we have presented a data acquisition system and processing pipeline
for image-based positioning in indoor environments. Several possible improvements
to our image-based positioning pipeline include tracking the position of the user and
reducing the amount of noise in the depthmaps by utilizingmore images for the sparse
depthmap generation process. For future research, we are planning to examine ways
to further increase the accuracy of indoor positioning. One method we are exploring
is to combine our image-based indoor positioning pipeline with aWiFi-based indoor
positioning system. The final position is determined by a particle filter that receives
measurement updates from both positioning systems.
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Chapter 6
Application of Large-Scale Classification
Techniques for Simple Location Estimation
Experiments

Howard Lei, Jaeyoung Choi and Gerald Friedland

Abstract This chapter describes an application using established classification
techniques for performing simple multimodal location estimation experiments. It
demonstrates the use of Gaussian Mixture Model (GMM)—and language model-
based approaches for verifying the cities fromwhich Flickr videos are taken based on
the videos’ audio and textual metadata. The methods used in most of the approaches
are described in detail, allowing people with no background in location estimation
to perform simple experiments. The city-verification results for the approaches are
not eye-popping by any means, but are above-random and present opportunities for
future work in the development of better approaches. The techniques may also be
suitable for class projects, for students who wish to gain hands-on experience in
performing location estimation.

6.1 Introduction

This chapter is based on the work of Lei et al. [1], and discusses the potential
for the use of large-scale classification algorithms for multimodal location esti-
mation at the city-scale. It uses consumer-produced videos from the Internet, and
provides the reader a tutorial for the use of matured algorithms that have been suc-
cessfully applied to other tasks. The use of large-scale algorithms is of interest to
researchers, due to increasing amounts of multimedia data being uploaded to the
web. It has become increasingly attractive for researchers to build massive corpora
out of videos, images, and audio files. A corpora could potentially contain thousands
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of hours of audio/video, where large-scale classification algorithms would be needed
for their location estimation. Furthermore, consumer produced content on the Inter-
net is completely uncontrolled, and therefore imposes amassive challenge for current
signal processing and machine learning algorithms. These challenges present many
opportunities for the development of new approaches, as well as the application of
approaches from existing big-data tasks, for multimodal location estimation.

In approaching the location estimation task, the goal is to discover an approach
that’s suitable for the location estimation dataset, and apply the approach to the dataset
in hopes of obtaining satisfactory results.While it’s inherently desirable to invent new
specialized approaches specifically tuned to the dataset, the challenge lies in the fact
that the datasets can be sufficiently “wild”—especially if consumer-uploaded videos
from the Internet are being used for the task. Those without any location estimation
and/or classification background may have trouble deciding where to start.

For those wishing to “jump in” to the fun of performing location estimation, we
present the application of well-established Gaussian Mixture Model (GMM)-based
approaches to a city-scale location verification task. The audio and textual metadata
of the videos are used in the task. While much of the information in the videos are
discarded by using only the audio and metadata, our approaches demonstrate the
cross-domain adaptability of well-established techniques in acoustic and language
modeling. The audio-based approach uses supervised GMM training, with audio
from consumer-produced Flickr videos, while the textual metadata-based approach
uses unigram, bigram, and trigram language models. The task proves extremely
difficult because of the “wild” nature of the videos, which contain many different
background and foreground noises, and textual metadata. However, the approaches
do achieve results that are significantly above-random. They also leave room for the
reader to make improvements that are appropriate for future work in the field.

6.2 Approaching the City-Verification Task

The biggest challenge to any large-scale classification task is determining models
that are suitable for the entities that need to be modeled. For the task of audio-based
city verification, the challenge lies in determining models suitable for modeling the
audio from different noises and sounds of each city.

Our use of the GMM-based approach stems from the fact that GMMs are easy to
statistically train, and is suitable formodelingdata under awide rangeof distributions.
We borrowed the GMM-UBM [2] approach that has been widely used in speaker
verification until around 2005, to demonstrate how a simple approach can be applied
to the difficult city-scale location estimation task.

The approach trains a single GMM per city in the dataset using acoustic feature
vectors of the dataset’s audio. The GMMs are used to represent the distribution of
acoustic feature vectors of each city, and to classify featureswith unknown city labels.
The acoustic features are the Mel Frequency Cepstral Coefficients (MFCCs) [3],
which are widely used in speech processing applications. While the features have
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been designed for speech, they are based primarily on the audio’s frequency-domain
representation, which is useful for audio signal processing and analysis. The MFCC
features are hence applicable to any audio-based task requiring the parameterization
of the audio into acoustic feature vectors, with subsequent statistical modeling of the
features.

6.2.1 MFCC Acoustic Feature Extraction

Figure6.1 illustrates the process of obtaining the MFCC features. A detailed feature
extraction process can be found in [3, 4].

The process involves taking 25ms windows (i.e., Hamming windows) of the
audio signal. For each windowed signal, a Fourier Transform is applied to obtain
the frequency spectrum. A filterbank is then applied to the frequency spectrum,
where each triangular filter is centered at frequency locations that are linear in the
Mel-Frequency scale. Integration of the frequency spectrummagnitude is performed

Fig. 6.1 The Mel-Frequency Cepstral Coefficient (MFCC) extraction process
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with each filter, and a logarithm is applied to each integration result to obtain a
vector of log-energies. Finally, a Discrete Cosine Transform (DCT) is applied to the
vector of log energies to obtain the final MFCC features for a given 25ms window of
the signal. The process is repeated for each 25ms window, which are spaced 10ms
apart. TheMFCC features of each audio file can bemean and variance-normalized for
increased robustness, since each file may have different recording environments and
noises.Mean and variance normalization ofMFCC features by nomeans compensate
for all variability from the noises, but is an easy enough procedure to implement.
The related task of speaker verification typically uses MFCC mean subtraction (also
known as Cepstral Mean Subtraction) [2], and Gaussian Feature Warping [5].

The MFCC features used in the experiments described in this chapter are the
0th through 19th (C0-C19) parameters after application of the DCT. C0 correlates
with the energy of the frequency spectrum. Delta and acceleration coefficients are
appended to the 20-dimensional MFCC parameters, for a total of 60 parameters per
feature vector.

6.2.2 Gaussian Mixture Modeling

Once the MFCCs are obtained, the next step involves obtaining GMMs for each
city in the training dataset, using the MFCCs of each city’s audio. This is a two-
step process, first involving the training of a city-independent model, or Universal
Background Model (UBM) [2]. The UBM is trained using MFCCs from a large set
of cities in the training data. Once the UBM is trained, the city-dependent GMM
models are adapted (via the maximum a-posteriori method) from the UBM using
city-specific MFCC feature vectors [2]. Figures6.2 and6.3 illustrates this process.

Once a GMM is trained for each city, a similarity score can be generated between
MFCC feature vectors from a city in the test set, to one of the cities for which a
GMM has been trained. Figure6.4 illustrates this process.

Specifically, a probabilistic log-likelihood ratio is computed for theMFCCvectors
using a city-dependent GMM (numerator of likelihood ratio) and the UBM (denom-
inator of likelihood ratio). The UBM is used for score normalization purposes. This
is the standard approach used in GMM-UBM speaker verification [2].

6.2.3 GMM-SVM Approach

A alternative, closely related approach to the GMM-UBM is the GMM-SVM
approach, which was first used by Campbell et al. for speaker verification [6]. In
this approach, a city-dependent GMM is trained for each city (regardless if the city is
in the training or test dataset). Once the GMM is trained, the mean parameters of the
GMM are extracted into a city-dependent “supervector.” A Support Vector Machine
(SVM) model is trained for each city in the training data using that city’s super-
vector, and supervectors from a large collection of other cities. The city-dependent
supervector serves as the positive SVM training example, while the rest serve as
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Fig. 6.2 City-independent model (i.e., UBM) training using MFCCs from N cities

Fig. 6.3 City-dependent model training using MFCCs from a single city, along with the UBM

negative training examples. Note that multiple positive examples can be used for
a given city if sufficient data is available. The classification and scoring of a city
in the test dataset is achieved by computing an SVM classification (or regression)
score against each SVMmodel from a city in the training dataset. Figures6.5 and6.6
illustrate supervector extraction and SVM model training.
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Fig. 6.4 Computing similarity scores between cities using city-dependent MFCC feature vectors
and GMM models

Fig. 6.5 City-dependent supervector extraction from MFCC features and GMM models

Fig. 6.6 Support Vector
Machine model training from
positive and negative training
examples
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We note that for both the GMM-UBM and GMM-SVM approaches, the GMM
models are trained using the open-source ALIZE toolkit [7], and the MFCC fea-
tures are obtained via HTK [8]. SVM models are implemented using the SVMlight

toolkit [9], with wrapper scripts provided by SRI International.

6.2.4 Language Modeling

The language-modeling based approach involves training back-off language models,
implemented using the SRILM toolkit [10]. Uni-, bi-, and trigram word language
models are trained for each city using themetadata (keywords and descriptions) of all
videos for the city in the training data. The probabilistic likelihoods of the metadata
of test videos are computed using each city’s language model to determine similarity
scores of each test video versus each city.

6.2.5 Performance Evaluation

For each of the above approaches, a similarity score is generated for a pair of cities—
one in the training set, one in the test set. A scoring threshold is establish to separate
the scores with matching-cities (matching scores), from scores with nonmatching
cities (nonmatching scores). TheEqualErrorRate (EER)occurs at a scoring threshold
where the percentage of matching scores classified as nonmatching scores (misses)
equals the percentage of nonmatching scores classified as matching scores (false
alarms). The EER corresponds to either percentage when the percentages are equal.
We note that in practice, it’s rarely the case that the percentage of misses and false
alarms can be made exactly equal. The EER can then be computed from an average
of the percentages.

6.3 Related Work

There has been a considerable amount of work done on multimodal location estima-
tion. Articles [11, 12] on location estimation of images have indicated that the task
may be approached as a retrieval problem on a location-tagged image database. In the
work of [13], the goal was to estimate a rough location of an image as opposed to its
exact GPS location. For example, images of certain landscapes could occur only in
certain places on Earth. Jacobs’ system [14] relied on matching images with satellite
data. The above work (alongwith other work) relied on the detection ormatching of a
set of explicit visual features (e.g., landmarks or sun altitudes) rather than performing
an implicit matching of unknown cues as performed in this article. Works have also
been performed in the 2011 MediaEval Placing task evaluation [15], where partici-
pants must obtain the geo-location of Flickr videos based on textual metadata, video,
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and audio. While the accuracies achieved there were better than city-scale, audio
usage had been virtually ignored in all systems. Lei et al. in [1] performed work on
city-scale location estimation, which this chapter is based on. More recently, Kelm et
al. [16] has performed work on novel fusion techniques integrating multiple modal-
ities of knowledge for location estimation, while Choi et al. [17] considered human
versus machine performance for multimodal location estimation, using Amazon’s
Mechanical Turk [18].

6.4 Dataset

The audio tracks for the experiments are extracted from videos distributed as a train-
ing dataset for the Placing Task of MediaEval 2010 [19], a multimedia benchmark
evaluation. The dataset consists of 5,125 Creative Commons licensed Flickr videos
uploaded by Flickr users. Manual inspection of the dataset led us to conclude that
most visual/audio contents of the videos lack reasonable information for estimation
of their origin. For example, some videos have been recorded indoors or in private
spaces such as the backyard of a house, which makes the Placing Task nearly impos-
sible if only the visual and audio contents were examined. This indicates that the
videos have not been pre-filtered or pre-selected in any way to make the dataset more
relevant to the city-verification task.

From an examination of 84 videos from the dataset, we found that most of the
videos’ audio tracks are quite “wild.” Only 2.4% of them have been recorded in a
controlled environment such as inside a studio at a radio station. The other 97.6%
are home-video style with ambient noise. 65.5% of the videos have heavy ambient
noises; 14.3% of the videos contain music. About 50% of the videos do not contain
human speech, and even for the ones that contain human speech, almost half are
from multiple subjects and crowds in the background speaking to one another. 5%
of the videos are edited to contain changed scenes, fast-forwarding, muted audio, or
inserted background music. While there are some audio features that may hint at the
city-scale location of the video—features such as the spoken language in cases where
human speech exist, type and genre ofmusic, etc.—such factors are not prevalent, and
are often mixed with heavy amounts of background noise and music. The maximum
length of Flickr videos is limited to 90s. About 70% of videos are less than 50s.
The relatively short lengths of each audio track should also noted as can be seen in
Fig. 6.7.

A listening of the audio also gave us insight into the extent to which city-scale
geo-locations of videos are correlated with their audio features. We rarely found
city-specific sounds that would enable a human listener to accurately perform city
verification of the videos based on their audio. In addition, while location and/or
language-specific metadata tags could sometimes be found in the Flickr videos to aid
in the city-verification task, the useful metadata was sparse. Hence, this work demon-
strate the power of machine learning algorithms in performing a task that would
likely be difficult for humans. Because the audio and metadata modalities are likely
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Fig. 6.7 A histogram visualizing the duration of the videos of the MediaEval 2010 dataset

complementary to other modalities (i.e., video), achieving success using only the
audio and metadata modalities would suggest the potential for further improvements
when additional modalities are incorporated.

For the task of city verification, a video is considered to be located within a city if
its geo-coordinates are within 5km of the city center. The following cities are con-
sidered for verification because of the predominance of videos belonging to these
cities:Bangkok, Barcelona, Beijing, Berlin,Chicago,Houston, London, LosAngeles,
Moscow, NewYork, Paris, Praha, Rio, Rome, San Francisco, Seoul, Sydney, and
Tokyo.

6.5 Experiments and Results

Experiments are performed using the GMM-UBM and GMM-SVM approaches,
along with unigram, bigram, and trigram language models to obtain city verification
results. For audio-based experiments, the entire duration of each audio track is used,
and MFCC features are mean- and variance-normalized prior to GMM and UBM
training. Different combinations of data are used for training and testing. The main
audio experiment uses a 117-video development set, a 1,080-video training set, and a
285-video test set with no common users (i.e., common Flickr user accounts hosting
the videos) in the training set. The city-specific distribution of videos in the 1,080-
video training set is such that 43% of videos are from San Francisco, 17% are
from London, and each remaining city has 7% or less of the total number of videos.
The distribution in the 285-video test set is such that 25% of videos are from San
Francisco, 22% are from London, and each remaining city has 7% or less of the
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Table 6.1 Results for the
GMM-UBM and GMM-SVM
audio-based approaches for
city verification

Approach EER (%)

GMM-UBM 32.3

GMM-SVM 32.3

total number of videos. The 285-video test set allows us to generate 5,130 similarity
scores (with 285 matching scores). Table6.1 shows the audio-based results.

According to the results in Table6.1, both the GMM-UBM and GMM-SVM
approaches give identical EER performance (32.2%). While the result is not impres-
sive by any means, it is significantly above random (50% EER). Metadata-based
approaches are also examined, primarily in combination with the audio-based
approach. To combine the audio and metadata-based approaches at the score level, a
Multi Layer Perceptron (MLP) with 2 hidden nodes and 1 hidden layer, implemented
using Lnknet [20], is used. The EER results represent averaged EER values over 100
splits amongst the training cities and test videos, where each split contained training
and test subsplits. For each of the 100 splits, MLP weights are trained using the
training subsplit, and applied to the test subsplit.

The metadata-based experiments use a newly defined training dataset of 542
videos, and a test dataset of 541 videos (i.e., different training and test splits of the
same overall dataset). A small fraction of the videos across the new training and test
sets share common users. The EER averaging is done for all results using this training
and test data combination. Table6.2 shows the metadata-based results, along with
its combination with the GMM-UBM approach. The Unigram LM, Bigram LM, and
Trigram LM approaches use unigram, bigram, and trigram Language Models (LM).
The GMM-UBM result is also shown for purposes of comparison.

The metadata experiments give surprisingly similar results compared to the audio
experiments. The Unigram LM approach gives a 23.9% EER, which is a 5.5% rela-
tive EER improvement over theGMM-UBMapproach (25.3%EER). Combining the
Unigram LM and GMM-UBM approaches results in a 21.8% EER, an 8.8% relative
EER improvement over the Unigram LM standalone. Note that the Unigram LM
approach (23.9% EER) gives lower EER than the Bigram LM (29.4% EER) and

Table 6.2 Results ofmetadata-based approaches for city verification, using adifferent set of training
and test videos

Approach EER (%)

Unigram LM 23.9

Bigram LM 29.4

Trigram LM 30.9

GMM-UBM 25.3

GMM-UBM + Unigram LM 21.8

Combining the Unigram LM approach with the GMM-UBM approach gives a minimum EER of
21.8%
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Trigram LM (30.9% EER) approaches. This is likely because most metadata
keywords haveno lexical connectionswith other keywords, and thevideodescriptions
are short. Overall, there is an average of 6.3 usable lexical tags per video in our
dataset, such that higher-order language models are sparse and would likely result
in overtraining. Given the sparsity of metadata information, it is surprising that the
metadata-based approaches are comparable in terms of their performances to the
audio-based approaches.

6.6 Discussion and Analysis

The audio-based results are interesting considering that after listening to a random
sample of the videos across different cities, we did not get the sense that there were
any clear, distinctive audio features for each city. For instance, there are no sounds
that would clearly verify audio as belonging to the city of San Francisco. However, a
close listening to the test videos with the high true trial scores indicates that speech
may play a significant role in city verification. Test videos with the top three true
trial scores are all from Rio and contain monologue speech from a family excursion,
where the words “Rio De Janeiro” are spoken. One high-scoring test video from
London contains speech with British accents, while one from Paris contains city-
specific ambulance noise. Many high-scoring videos hence appear to contain some
kind of city-specific audio feature (i.e., speech or language/dialect marker, or other
city-specific noise). However, there are also high-scoring test videos without city-
specific audio features—a video from Tokyo contains audio of a train arriving, one
from San Francisco contains bagpipe music, and one from Paris contains loud engine
noise.

An analysis of high-scoring test videos for the unigram language model exper-
iments indicates that many high-scoring test videos contain location- or language-
specific metadata keywords. Such videos include one from Barcelona, with Span-
ish metadata bicicletas, policia, brigada, along with the location-specific word
barcelona. A video from London contains the metadata london, one from San Fran-
cisco contains sanfrancisco, and one from Beijing contains asia, china, tibetan, and
buddha. However, some high-scoring test videos do not contain any location or
language-specific metadata.

Because high-scoring test videos from the audio-based approaches differ from
those for the metadata approaches, the two approaches are complementary, resulting
in an EER improvement in their combination. Furthermore, potential improvements
in city verification can be obtained by combining other modalities, such as video and
keyframe image data, as well as making better use of the audio and metadata.
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6.7 Conclusion and Future Work

This chapter illustrates applications of simple large-scale classification algorithms
for the task of city-verification. The results are above random, but not admirable
by any means. Nevertheless, the experiments described serve as a teaching tool,
demonstrating the applicability of cross-domain algorithms and techniques for han-
dling multimodal location estimation. Anyone new to location estimation can begin
with such algorithms as a starting point for experiments. The experiments described
also illustrate many challenges, and may suggest to the reader potential areas of
improvement in future projects.

For instance, an investigation of how the classification approaches can better
handle the audio and metadata modalities, and incorporating other modalities to
enhance performance, can be performed.Other investigations on how to better handle
the conglomeration of factors in the audio, such as differences in music, language,
loudness, can also be performed. Overall, the experiments described do not serve to
demonstrate large-scale multimodal location estimation being a solved problem, but
as a task that should inspire future research.
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Chapter 7
Collaborative Multimodal Location Estimation
of Consumer Media

Venkatesan Ekambaram, Kannan Ramchandran, Jaeyoung Choi and Gerald
Friedland

7.1 Introduction

With the emergence of Web 2.0 and with GPS devices becoming ubiquitous and
pervasive in our daily life, location-based services are rapidly gaining traction in the
online world. The main driving force behind these services is the enabling of a very
personalized experience. Social-media websites such as Flickr, YouTube, Twitter,
etc., allow queries for results originating at a certain location. Likewise, the belief is
that retro-fitting archives with location information will be attractive to many busi-
nesses, andwill enable newer applications. The task of estimating the geo-coordinates
of a media-recording goes by different names such as “geo-tagging”, “location esti-
mation” or “placing”. Geo-tagging multimedia content has various applications. For
example, geo-location services can be provided for media captured in environments
without GPS, such as photos taken indoors on mobile phones. Vacation videos and
photos can be better organized and presented to the user if they have geo-location
information. With the explosive growth of available multimedia content on the Inter-
net (200 million photos are uploaded to Facebook daily), there is a dire need for
efficient organization and retrieval of multimedia content, which can be enabled
by geo-tagging. Geo-location information further helps develop a better semantic
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Fig. 7.1 Geo-tagging: given
a database of training
images/videos with their
geo-coordinates and textual
data, estimate the
geo-location of a query video
given its textual metadata,
visual and audio features

understanding of multimedia content. These are some of the main motivations of the
MediaEval Placing task [1, 2].

Even though many of the high-end cameras and video recorders are retrofitted
with GPS chips, it has been estimated that only about 5% of the existing multimedia
content on the Internet is actually geo-tagged [3]. Most of the consumer-produced
media content are obtained using low-end cameras that do not have GPS chips.
Further, privacy concerns have motivated users to disable automatic geo-stamping
of photos taken on their phones. However, users usually tag their uploaded videos
with textual data that can have some geo-location information. Under this scenario,
we ask the question, “Given a set of videos and their associated textual tags, how
do we determine their geo-locations?” To aid this process, we are provided with a
training database of videos with their geo-location estimates (Fig. 7.1).

The main contribution of our work is the development of an estimation theoretic
collaborative framework based on graphical models for the purpose of determining
the geo-coordinates of query videos. We pose the problem of geo-tagging as one of
inference over an underlying graph constructed using the query video database and
jointly estimate the geo-locations of all the query videos. The main advantage of
this approach is that, even when the training data is sparse, the query videos whose
geo-tags are estimated act as “virtual” training data for incoming query data, thereby
effectively bootstrapping the geo-tagging process. Our results show that we obtain
up to 10% performance improvements over existing state-of-the-art algorithms. The
generic nature of the framework facilitates fusing multimodal data sources such
as textual tags, audio and visual features. Thus, any other additional information
obtained can be easily incorporated into the framework.

Our paper is organized as follows. Section7.2 provides a brief overview of the
existing work in this field and the novelty of our work as compared to this literature.
Section 7.3 describes in detail the problem of data sparsity and a simple example
illustrating the intuition behind our algorithm. Section7.4 describes in detail our
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graphical model framework for geo-tagging. Section7.5 describes the datasets we
use and our simulation results. Section7.6 concludes with a summary of the paper
and possible research directions.

7.2 Literature Review

The problem of geo-tagging is closely related to the problem of user location esti-
mation using images captured from his/her camera. Some of the earlier work in
this domain [4, 5] posed the problem as one of image retrieval from a database
of self-produced, location-tagged images using specialized visual features. Similar
approaches based on visual descriptors such as [6] have been used to geo-tag images.
Larson et al. [7] provide a comprehensive overview of the ongoing research in this
field. Most users tag the media they upload to sites like Flickr with text that can
include information regarding the location or activity captured by the images. Rat-
tenbury et al. [8] and Serdyukov et al. [9] estimate the posterior distribution of the
geo-locations given the tags or vice-versa from the training database and use this to
estimate the geo-location of a query video.

The 2010, 2011 and 2012 MediaEval Placing tasks [1] provided a common plat-
form to evaluate different geo-tagging approaches on a corpus of randomly selected
consumer-produced videos. One of the top performing systems proposed by Van
Laere et al. [10] used a combination of language models and similarity search to geo-
tag the videos purely based on their textual tags. Several other proposed approaches
[11–14] relied on both textual and visual features. However, none of these systems
utilized audio features. A subset of the authors of this paper proposed a hierarchical
system [15] that uses the spatial variance of the tags’ geo-location distribution to
find an initial estimate of the query image location, which is used as an anchor point
for a visual nearest neighbor search in the next stage. Their enhanced system [16]
incorporates audio features as well, motivated by their previous work on location
estimation of ambulance videos from different cities [3] using audio features.

All of the existing approaches described above have the common feature of
processing each query video independently and estimating its geo-location based
on textual, visual, and audio features using a geo-tagged training database. Clearly,
the performance of these systems largely depends on the size and quality of the train-
ing database. However, data sparsity is one of the major issues that can adversely
affect the performance of these systems. Our approach differs from the existing work
in the literature in the aspect that we jointly estimate the geo-locations of all the input
query images. Each query image added to the database enhances the quality of the
database by acting as “virtual” training data and thereby boosts the performance of
the algorithm. We elaborate on the data sparsity issue in the next section and provide
an intuition for our algorithm.
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Fig. 7.2 Distribution of videos and images of the MediaEval 2010 Placing Task training set.
Randomly sampling videos from Flickr results in a non-uniform geographical prior

Fig. 7.3 Comparison of the
performance of a data-driven
algorithm [15] on grids with
different training data density.
Query video from a denser
area has higher chance of
being estimated with lower
error in distance

7.3 Data Sparsity

Traditional approaches such as [12, 15] use training sets that are several orders of
magnitude larger than the test set. These approaches suffer from the drawback that
their accuracies are significantly affected when the training data is sparse. There
are two reasons for sparsity in training data. First, it is estimated that only 5% of
Internet videos are actually geo-tagged [3], and hence the training set is typically
much smaller than the test set, contrary to what is assumed in the literature. Sec-
ond, the training database is largely skewed toward certain geographical regions
(see Fig. 7.2).

For the MediaEval dataset [1], we analyzed the performance of a data-driven
algorithm from [15] in different regions with varying data densities. The world map
was divided into 64,800 grids of one latitude by one longitude each and the number
of training data in each grid was counted. Figure 7.3 shows the performance of the
algorithm for different data densities. The different curves are for different values
of the training data density, i.e., we look at the performance in grids with varying
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quantities of videos: over 6,400, 6,400, 1,600, 400, and 100. The x-axis corresponds
to the different error ranges in km and the y-axis to the percentage of geo-tagged
videos in these error ranges. Grids with a denser population of training data perform
significantly better than thosewith lesser training data. Thus, estimationmodelsmust
be developed to handle data sparsity.

One can exploit the fact that while the training data may be small, test data may
be very large. Existing algorithms do not take this into account. Thus the question of
interest is, “Can we intelligently process the test/query videos in such a way that each
additional query video not only is placed but also improves the quality of the existing
database?” To take a simple example demonstrating our idea, let us suppose that we
have two query videos, Q1 andQ2, with associated textual tags {berkeley, sathergate,
california} and {sathergate, california} respectively. Assume that the training set
only contains the tags, {berkeley, california}. If Q1 and Q2 were to be processed
independently, then Q1’s location estimation would be good whereas the location
ambiguity of Q2 would be much larger. However, if we jointly process Q1 and Q2,
then given that Q1 and Q2 have the tag “sathergate” in common, it is very likely
that their locations are also very close by and hence an intelligent algorithm would
estimate their locations to be the same, which would improve the location accuracy
of Q2. The proposed graphical model framework in the next section applies this
principle to a database of query videos and appropriately weighs the edges based on
the common tags between the videos.

7.4 Graphical Models for Geo-tagging

Graphical models provide an efficient representation of dependencies amongst dif-
ferent random variables and have been extensively studied in the statistical learning
theory community [17]. The random variables in our setup are the geo-locations of
the query videos that need to be estimated. We treat the textual tags and visual and
audio features as observed random variables that are probabilistically related to the
geo-location of that video. The goal is to obtain the best estimate of the unobserved
random variables (locations of the query videos) given all the observed variables.
We use graphical models to characterize the dependencies amongst the different
random variables and use efficient message-passing algorithms to obtain the desired
estimates. We give a brief introduction to graphical models and apply the framework
to our setup.

An undirected graphical model or a Markov Random Field (MRF) G(V, E) con-
sists of a vertex set V and an edge set E . The vertices (nodes) of the graph represent
random variables {xv}v∈V and the edges capture the conditional independencies
amongst the random variables through graph separation [17]. The joint probability
distribution for a N -node pairwise MRF can be written as follows [17],

p(x1, . . . , xN ) =
∏
i∈V

ψ(xi )
∏

(i, j)∈E

ψ(xi , x j ). (7.1)



120 V. Ekambaram et al.

ψ(.)’s are known as potential functions that depend on the probability distribution of
the random variables. A typical problem of inference over a graphical model involves
finding the marginal distribution of the random variables p(xi ). Finding the exact
marginals is in general an NP-hard problem [17] and approximation algorithms such
as the sum-product algorithm are used in practice. In the sum-product algorithm,
messages are passed between nodes that take the following form:

m j→i (xi ) ∝
∫
x j

ψ(xi , x j )ψ(x j )
∏

k∈N ( j)/ i

mk→ j (x j )dx j , (7.2)

where m j→i (xi ) is the message passed from node j to node i and N ( j) is the set of
neighbors of j. The messages are iteratively passed until convergence and the final
estimate of p(xi ) is obtained as follows,

p̂(xi ) ∝ ψ(xi )
∏

j∈N (i)

m j→i (xi ). (7.3)

This algorithm is seen to work well in practice for many applications.
In order to obtain a graphical model representation for our problem setup, we need

to model the joint distribution of the query video locations given the observed data.
Since it is hard to obtain the exact probability distribution, we will use a simplistic
conditional dependency model for the random variables as described below. Each
node in our graphical model corresponds to a query video and the associated random
variable is the geo-location of that query video (i.e., latitude and longitude). Intu-
itively, if two images are nearby, then they should be connected by an edge since their
locations are highly correlated. The problem is that we do not know the geo-locations
a priori. However, given that textual tags are strongly correlated to the geo-locations,
a common textual tag between two images is a good indication of the proximity of
geo-locations. Hence, we will build the graphical model by having an edge between
two nodes if and only if the two query videos have at least one common textual tag.
Note that this textual tag need not appear in the training set.

Figure7.4 shows an example of one such graph. The edge potential functions
appropriately weigh the edge based on the common textual tag. The potential

x1

x2

x3

x4

ψ(x3, x4) ∝ p(x3, x4|haas)
ψ(x3) ∝ p(x3|berkeley, haas)

Fig. 7.4 An example graphical model for geo-tagging. Each node corresponds to an image/video
and an edge is drawn between two nodes if they share a common textual tag. Potential functions
are associated with each edge that reflect the strength of the connection
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functions associated with the edge that reflects the strength of the edge, are a func-
tion of the common tag. For example, if the common tag is highly location specific
(e.g. “sathergate”), then one would expect the potential function to have more weight
than compared to a tag that ismore generic (e.g. “school”).Themodel could be further
improved using the audio and visual features as well.

Let xi be the geo-location of the i th video and {tk
i }ni

k=1 be the set of ni tags
associated with this video. Based on our model, under a pairwise MRF assumption,
the joint probability distribution factorizes as follows:

p(x1, . . . , xN |{tk
1 }, . . . , {tk

N }) ∝
∏
i∈V

ψ(xi |{tk
i })

∏
(i, j)∈E

ψ(xi , x j |{tk
i }, {tk

j }). (7.4)

Given the potential functions, one could use the sum-product iterates (7.2), to estimate
the marginal distribution, p(xi |{tk

1 }, . . . , {tk
N }).

We now need to model the node and edge potential functions. The literature pro-
vides numerous techniques for modeling potential functions and adaptively learning
them from the given data [18]. We use the following simple model for the potential
functions. Given the training data, we fit a Gaussian Mixture Model (GMM) for
the distribution of the location given a particular tag t , i.e., p(x |t). The intuition is
that tags usually correspond to one or more specific locations and the distribution
is multi-modal (e.g., the tag “washington” can refer to two geographic places). To
estimate the parameters of the GMM, we use an algorithm based on Expectation
Maximization [19] that adaptively chooses the number of components for different
tags using a likelihood criterion. Assuming conditional independence for different
tags, we take the node potential as follows, ψ(xi ) ∝ ∏ni

k=1 p(xi |tk
i ). For the poten-

tial functions, ψ(xi , x j |{tk
i }, {tk

j }), we use a very simple model. Intuitively, if the
common tag between two query videos i and j occurs too frequently either in the
test set or the training set, that tag is most likely a common word like “video” or
“photo” which does not really encode any information about the geographic close-
ness of the two videos. In this case, we assume that the edge potential is zero [drop
edge (i, j)] whenever the number of occurrences of the tag is above a threshold.
When the occurrence of the common tag is less frequent, then it is most likely that
the geographic locations are very close to each other and we model the potential
function as an indicator function,

ψ(xi , x j |{tk
i }, {tk

j }) =
{
1 if xi = x j ,

0 otherwise.
(7.5)

This model is a hard-threshold model and we can clearly use a soft-version wherein
the weights on the edges for the potential functions are appropriately chosen.

Further, we propose the following simplification, which leads to analytically
tractable expressions for the potential functions and message updates. Given that
for many of the tags, the GMMwill have one strong mixture component, the distrib-
ution ψ(xi ), can be approximated by a Gaussian distribution with the mean (μ̃i ) and
variance (σ̃ 2

i ) given by,
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(μ̃i , σ̃
2
i ) =

⎛
⎜⎜⎜⎜⎜⎝

ni∑
k=1

1

(σ k
i )2

μk
i

ni∑
k=1

1

(σ k
i )2

,
1

ni∑
k=1

1

(σ k
i )2

⎞
⎟⎟⎟⎟⎟⎠

, (7.6)

where μk
i and (σ k

i )2 are the mean and variance of the mixture component with the
largest weight of the distribution p(xi |tk

i ). Under this assumption, the iterations of
the sum-product algorithm take on the following simplistic form. Node i at iteration
m, updates its location estimate (μ̂i (m)) and variance (σ̂ 2

i (m)) as follows,

μ̂i (m) =

1
σ̃ 2

i
μ̃i +

∑
j∈N (i)

1

σ̂ 2
j (m − 1)

μ̂ j (m − 1)

1
σ̃ 2

i
+

∑
j∈N (i)

1

σ̂ 2
j (m − 1)

, (7.7)

σ̂ 2
i (m) = 1

1
σ̃ 2

i
+

∑
j∈N (i)

1

σ̂ 2
j (m − 1)

. (7.8)

The location estimate for the i th query video x̂i is taken to be μ̂i (m) at the end of
m iterations, or when the algorithm has converged. The variance σ̂ 2

i (m) provides a
confidence metric on the location estimate. Figure 7.5 provides an illustration of the
algorithm.

Given the graphical model framework, it is now easy to incorporate visual and
audio features. These features can be used tomodify the potential functionsψ(xi , x j )

on the edges. The intuition is that if two images are similar in some feature space,
then they are alsomost likely geographically closer. However, this intuition holds true
only when we already have a coarse estimate of their locations and wewant to further
refine it. For this purpose, we adopt a hierarchical approach. We first obtain a coarse
estimate of the query video’s location using only the tags in the graphical model. We
then choose a subgraph for each query video consisting only of query and training

x 1

x 3

x 4

x 2

(μ̂3(m), σ̂2
3(m))

(μ̂4(m), σ̂2
4(m))(μ̂2(m), σ̂2

2(m))

(μ̃1, σ̃
2
1)

Fig. 7.5 Illustration of messages passed along the edges
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videos within some particular radius of each other. Visual and acoustic features are
obtained for each video using GIST and MFCC features similar to what Friedland
et al. use in [16]. The probability distribution of the geographic distance between
two videos given the closeness of the videos in the visual and audio feature space
is modeled as a mixture of exponentials and is incorporated in the edge potential
function ψ(xi , x j ).

7.5 Experimental Results

We tested our algorithm on theMediaEval 2011 Placing Task data set, which consists
of Creative Common-licensed videos manually crawled from Flickr [20]. Videos are
not filtered or selected in any way to make the data set more relevant to the task, and
are therefore likely representative of videos selected at random. In current online
databases (e.g., Flickr and YouTube), videos are not equally distributed over the
earth (Fig. 7.2), so downloading a random sample shows a large bias for certain
locations. The metadata for each video includes user-contributed title, tags, and
description, and may include other data as well. Flickr requires that an uploaded
video be created by its uploader and therefore many videos are home-video style
short clips. Manual inspection of the data set led us initially to conclude that most
of visual/audio contents lack reasonable evidence to estimate the location without
textual metadata. For example, unlike the filtered test datasets used in [6], many
videos were recorded indoors or in a private space such as the backyard of a house.
The data set consists of 10,216 training videos and 5,347 query videos.

Figure7.6 plots the overall estimation error for all the query videos. The x-axis is
the estimation error binned at different error values and the y-axis is the percentage
of videos that had an estimation error falling in the corresponding bin.

In order to better understand the performance of the algorithm as a function of
the number of training and test data, we carry out experiments for different values
of training and test data. We also evaluate the performance relative to a state-of-art

Fig. 7.6 Histogram of the
estimation error in
geotagging. The x-axis is the
estimation error binned at
different error values and the
y-axis is the percentage of
videos that had an estimation
error falling in the
corresponding bin
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Fig. 7.7 Performance
improvement in geo-tagging
5,347 videos using a training
set of 500 videos as a function
of the number of query videos
used in the graphical model

algorithm in the literature. Figure7.3 shows the performance of [15].We evaluate the
performance of the proposed algorithm for different subsets of the training videos in
comparison with this system.

In order to understand the performance improvements obtained in the data sparse
case, we use 500 training videos and plot the performance improvement as more
and more query videos are added to the system. Figure7.7 shows the performance
improvement in different categories. The number of test videos for this plot is fixed
at 5,347. The x-axis shows the number of query videos that were used in forming
the graph. For example, the point 1,000 on the x-axis means that, while building
the graph for all the 5,347 videos, each video had a neighbor only from these 1,000
videos. The best case is when any video in 5,347 videos could be a neighbor of any
other video. The y-axis is the performance improvement over the baseline system.
The different curves correspond to different error categories i.e., <1km error, 10–
100km error etc. The performance improvement in each category is calculated as
follows,

A = Num. of videos with < 1km error using our algorithm, (7.9)

B = Num. of videos with < 1km error using the baseline algorithm, (7.10)

Perf. improvement in < 1km error category = A − B

B
× 100.

This extends to the other error categories. The performance improvement can be over
10% and increases with the number of test videos. However, one can clearly see the
diminishing returns with increasing number of query videos.

Figure7.8 shows the performance improvement from the test videos as the number
of training videos increases. In this plot, the underlying graph was generated with all
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Fig. 7.8 Performance
improvement in geo-tagging
5,347 videos as a function of
the number of training videos

the 5,347 test videos and the performance improvement was observed as a function
of the number of training videos. Though there are gains initially, as the number of
training videos increases, the performance improvement obtained by using the query
videos decreases. This is to illustrate that in the sparse data case with fewer training
videos, the performance improvements can be large. However, with a larger training
set, the performance improvement can be very marginal. In practice, given that most
of the videos are not geo-tagged, i.e., the test set can be orders of magnitude larger
than the training set, one can hope to achieve significant performance gains.

7.6 Conclusions and Future Work

We presented a novel approach to address the problem of geo-tagging multimedia
content on the Web like Flickr videos and images. In particular, we addressed the
case where the training data set is sparse and explored the possibility of using the
test data set to improve the quality of the training database. We proposed a graphical
model framework, posed the problem of geo-tagging as one of inference over this
graph, and showed that performance improvements can be achieved by processing
the test data set in an intelligent way.

Various issues remain to be explored. The modeling of edge potentials in the
graphical model is very naive and one can explore richer models such as hierarchical
models (e.g., latent dirichlet topic models) to model the correlations on the edges.
The node potentials are further modeled as a product of the distributions given each
tag individually. However, the distribution of the locations given multiple tags is
not independent. For example, the location distributions of the tags “berkeley” and
“sathergate” are clearly not independent. Hence a better correlation model needs to
be explored for these distributions.
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Chapter 8
Georeferencing Flickr Resources Based on
Multimodal Features

Pascal Kelm, Sebastian Schmiedeke, Steven Schockaert, Thomas Sikora,
Michele Trevisiol and Olivier Van Laere

8.1 Introduction

The popularity of social media, and location-based services in particular, has led to
a vast increase in the number of georeferenced resources on the web. Examples are
the large numbers of Flickr photos, Twitter posts (tweets), and Wikipedia articles
for which explicit geographic coordinates are currently available. This trend has also
led to an upsurge in research into methods for automatically assigning coordinates
to web content. Being able to associate coordinates to web content is important in
applications such as geographic information retrieval [16], where search results are
adapted to the location of the user, and in applications which rely on characterizing
places, e.g., for offering personalized travel recommendations [13].

Although there are differences between georeferencing Flickr photos, tweets, and
general web documents, the most useful input is usually in textual form, viz. the
tags associated with Flickr photos and the contents of tweets and web documents.
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As a result, methods that have been proposed for georeferencing these types of
resources tend to be similar. Broadly speaking, there are three ways coordinates can
be assigned to a text document. First, named-entity tagging has traditionally been
used to identify mentions of place names in documents, with gazetteers subsequently
being used to map these place names to coordinates. The geographic scope of a web
document can then be identified with the centroid of those coordinates, or, more
commonly, with a probability density of locations. This method is difficult to apply
to Flickr photos, since tags lack the context needed to effectively identify named enti-
ties. This is exacerbated by the fact that Flickr tags are converted to lower case, which
makes it challenging to resolve ambiguities between place names and common nouns
(e.g., nice vs. Nice). Second, we can treat the problem of georeferencing text docu-
ments as a classification problem. This approach has been adopted in, among others,
[19] for Flickr photos and [29] for Wikipedia articles. Essentially, in this approach,
the locations on Earth are discretized into a finite set of areas, using clustering, a
fixed-grid representation, or administrative boundaries of geographic regions. Using
standard text classificationmethods, such asNaiveBayes or support-vectormachines,
the most plausible area is identified, and the centre-of-gravity of that area is used
as the estimated location. Third, we can try to find resources with known coordi-
nates which are similar to the resource to be georeferenced, and the location of
these resources can be used to estimate the location. A combination of the latter two
approaches was advocated in [25], which showed that a two-step approach which
first uses a text classifier to find an appropriate area and then uses a similarity search
to find a plausible location within that area consistently outperforms either of the
two individual methods.

In this chapter, we focus on the case of Flickr photos, and in particular on the ques-
tion of how the aforementioned text-basedmethods could be improved by taking into
account visual information as well as information from the user profile of the photo
uploader. Taking visual information into account efficiently has generally proved
challenging in the field. When easily identifiable landmarks such as the Eiffel tower
are shown in a photo, methods based on, e.g., SIFT features can be very effective in
determining the correct coordinates from the photo alone. However, such cases are
rare in practice, and in most of these cases, the correct location can also be obtained
from available tags, at a much lower computational cost. We argue that the most
effective way to utilize visual features of photos is by extending the aforementioned
two-step approach from [25] to a three-step approach. Specifically, an approximate
location is first identified using textual information alone (possibly also with some
evidence from the owner’s user profile), and this location is then refined by compar-
ing the photo to be georeferenced with nearby photos with known coordinates. Given
that only nearby photos are considered, lower-level visual features can be especially
effective, even though such features are too general to be of use at a worldwide scale.

This chapter is structured as follows. In the next section, we discuss the peculiari-
ties of Flickr photos and describe preprocessingmethods whichmake the subsequent
analysis more reliable. Section8.3 then gives an overview of text-basedmethods, and
visual methods are presented in Sect. 8.4. Finally, in Sect. 8.5, we discuss how the
two types of approaches can be integrated.
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8.2 Data Selection and Preprocessing

Flickr contains more than 300 million photos with associated geographical
coordinates.1 By analyzing correlations between the locations of these photos on
the one hand, and the visual features and textual metadata of the photos on the other
hand, we can train a system that estimates the location of previously unseen Flickr
photos or videos.

For each uploaded photo, Flickr maintains several types of metadata, which can
be obtained via a publicly available API.2 In this paper, three types of metadata will
be relevant. First, photos may be associated with descriptive tags provided by the
photos’ owners. Many of these tags provide evidence about where the photo was
taken (e.g., because they refer to a place name or the name of an event, because they
are in a particular language, or because they refer to regional cuisine), so modeling
the spatial distribution of photos which have been assigned a particular tag will play
a particularly important role in our framework. Second, photos are associated with
an owner, whose user profile contains a free-text field describing their home location
(e.g., “Ghent, Belgium”). It turns out that this home location is particularly helpful
when dealing with photos that do not contain any location-specific tags, or only
tags which are ambiguous. All things being equal, photos are more likely to have
been taken close to the owner’s home location than at the other side of the world.
Finally, the photos we consider are also associated with a geographical coordinate,
which is considered as the ground truth for the purposes of this work. Note, however,
that this is a simplifying assumption, as, for example, photos of a landmark may be
associated with the position at which the photo was taken or with the location of the
landmark. Indeed, while a small percentage of coordinates come from GPS devices,
most coordinates aremanually provided by users. For each pair of coordinates, Flickr
provides information about its precision, encoded as a number between 1 (world-
level) and 16 (street-level), reflecting the zoom level of the map the owners used to
assigned the coordinates (in the case of manually assigned locations).

In most approaches for georeferencing Flickr photos, a number of preliminary
filtering steps are carried out to clean the training data:

1. Photos that do not have any tags or have invalid coordinates are removed.
2. Photos whose location precision is too low for the task (e.g., 11 or lower) are dis-

carded, retaining only those photos that provide meaningful location information
at the sub-city scale.

3. If there are multiple photos with the same upload date, an identical tag set, and
identical coordinates, only one of the photos is retained. Users on Flickr can
upload content in bulk, i.e., upload multiple photos at once and tag them with the
same information; this can skew the analysis, as was first pointed out in [20].

The photos that remain after these filtering steps are used for obtaining clusters of
locations and for estimating language models.

1 http://pressroom.yahoo.co.uk/pr/ycorpuk/flickr-tips-safer-photos.aspx, accessed 31March 2014.
2 http://www.flickr.com/services/api/, accessed 28 January 2014.

http://pressroom.yahoo.co.uk/pr/ycorpuk/flickr-tips-safer-photos.aspx
http://www.flickr.com/services/api/
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The tags associatedwith the photos can also be preprocessed. Flickr normalizes the
user-provided tags by converting them to lowercase, removing spaceswithin tags, and
then replacing commas between tags with spaces. For example, the set of tags “Trip
2010, Sagrada Familia, Barcelona” becomes “trip2010 sagradafamilia barcelona”.
Some approaches use a number of additional preprocessing steps, e.g., removing
diacritics and numbers, separating numerical characters from alphanumeric tags,
and/or discarding words from a problem-specific list of stop words (e.g., camera
brands and lens types). It should be noted that such forms of preprocessing do not
always improve results. For example, we found that the tag “911” (referring to the
attacks on 11 September 2001) is strongly correlated with locations in New York
City. To give an idea of how many videos with tags tend to remain after these
preprocessing steps, in the MediaEval training set of 2012, approximately 40% of
the photos contained at least one tag.

8.2.1 Clustering the Training Data

Most approaches to georeferencing Flickr resources interpret it as a classification
problem. To this end, the locations of the photos in the training data are clustered
into sets of disjoint areas, which are then interpreted as the class labels. Once a
classifier has identified the most likely area where a photo was taken, we may use
other techniques to find the most likely location within that area, as detailed in
Sects. 8.3 and 8.4.

A number of techniques are available for obtaining a clustered representation of
locations. Some of these methods are compared experimentally in [9, 11, 27]. Here,
we summarize the main advantages and disadvantages of several popular methods.
We will also illustrate each of these methods by using them to cluster the MediaEval
Placing Task data set (Figure8.1 shows the distribution of this dataset over Europe).

Fig. 8.1 Distribution of the
MediaEval Placing Task 2012
data set for Europe
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Fig. 8.2 Sample clustering
for Europe using k-medoids,
k = 1,000 (worldwide)

k-medoids clustering is closely related to the well-known k-means clustering
algorithm, differing only in how the center of each cluster is determined. While
k-means uses the center-of-gravity for this purpose, in k-medoids, the center is
selected as the medoid of the cluster, i.e., the element which minimizes the sum
of the distances to the other elements of the cluster. The main advantage of using
k-medoids is that the selection of the medoid is more robust to outliers than the
center-of-gravity; this is why k-medoids is more commonly used than k-means for
clustering sets of coordinates. However, it should be noted that selecting the medoid
of a cluster has a time complexity which is quadratic w.r.t. the size of the cluster, in
comparison with the linear complexity of selecting the center-of-gravity. For very
large training sets, this means that the number of clusters chosen must be sufficiently
high (such that the number of photos per cluster is manageable), or that only a sample
of the training data can be used to obtain the clusters. Distances are usually calculated
using the Haversine metric instead of the Euclidean metric. An example clustering
with k = 1, 000 clusters (worldwide) is shown in Fig. 8.2.

Grid clustering uses a fixed grid of square (or sometimes hexagonal) cells over the
surface of the Earth. The main advantage of this method is that it is computationally
inexpensive. In the example in Fig. 8.3, grid cells correspond to 4.375 degrees of
latitude and longitude; this value results in 1001 clusters worldwide, making it easily
comparable with Fig. 8.2. An important distinction from k-medoids clustering is that
the size of the grid cells does not depend on the amount of available training data.
However, this means we cannot attempt a more accurate classification in areas of
the world for which we have abundant training data while being more cautious in
areas where training data is sparse. Experimental results described in [27] confirm
that using a grid leads to worse performance than using k-medoids.

Mean shift clustering does not require predefining the number of clusters, but
instead relies on a scale parameter h. The number of resulting clusters emerges from
the choice of the scale factor. An example with h = 150 is given in Fig. 8.4. Two
points are worth noting here. First, outliers tend to end up in separate clusters, leading
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Fig. 8.3 Sample clustering
for Europe using a grid of
1,001 cells over the world

Fig. 8.4 Sample clustering
for Europe using the mean
shift algorithm (h = 150,
resulting in 2,349 clusters
worldwide)

to a large number of small clusters. Second, aswith the grid clustering, the granularity
of the clusters does not reflect the amount of training data. As a result, models for
georeferencing Flickr photos (see Sect. 8.3) perform worse when using mean shift
clustering than when using k-medoids clustering, even if small clusters with outliers
are merged with other clusters [27].

Finally, as an alternative to clustering, considered in [9, 10], we could also define
the set of areas based on national boundaries (as depicted in Fig. 8.5). This method
has the advantage that the definition of the areas is likely to be better aligned with
the distribution of tags (e.g. the distribution of toponyms and of languages used for
tags). As with grids and mean-shift clustering, a disadvantage is that the size of the
clusters does not reflect the amount of available training data. However, we could
combine the best of both worlds, by considering a two-level hierarchical clustering,
where the first level is based on national boundaries and the second level corresponds
to k-medoids-based clusterings of photos within the same country. Note that such a
two-level approach requires that we can accurately find out the correct country for
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Fig. 8.5 Two-level hierarchical clustering [9]

a given test photo or video. In many cases, this is a realistic assumption, since the
determination of a country is usually less problematic than disambiguating the name
of a landmark or a city. For example, for a given photo, each associated term (e.g.
tag or title word) may potentially refer to a place name. We ca use a gazetteer (i.e.,
a dictionary of named places, usually linking place names to geographic locations
and sometimes a semantic type) to find out which terms may be place names, and
where on Earth places with that name occur. One of the most popular gazetteers
is the GeoNames database [1] which contains over 10 million geographical names
corresponding to over 7.5 million unique features and provides a web-based search
engine which returns a list of entries ordered by relevance. The approach from [9,
10] uses GeoNames to create a ranking of the possible countries with which a photo
or video can be associated (based on the possible interpretations of the place names
associated with its tags). Then, the boundary of the most likely country is determined
by querying the Google Maps API [2].

8.2.2 Term Selection

Many of the tags associated with photos and videos on Flickr are not useful for
estimating geographic location. To prevent overfitting, it is useful to apply a term
selection step, in which all tags that are not deemed geographically relevant are
removed. There is a wide selection of methods that can be used for this purpose.

If we consider the areas obtained after clustering, term selectionmethods that have
proven effective for text classification could be applied [30, 31]. Examples of popular
methods includeχ2 and information gain. The advantage of suchmethods is that they
are easy to implement and they are based on well-known statistical and information
theoretic principles. However, such methods effectively ignore the spatial dimension
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of the problem. For this reason, [5] introduced a heuristic, location-aware method for
selecting terms. The method proposed in [5], called geographic spread, first clusters
adjacent grid cells in which a particular tag occurs. Tags are deemed geographically
relevant if the number of clusters is sufficiently small and the largest cluster contains
a sufficiently large number of tag occurrences. Despite the heuristic nature of this
measure, it substantially outperforms methods such as χ2 and information gain.
Finally, methods from the field of geospatial statistics could be considered. For
example, using kernel density estimation (KDE) we may model each tag as a smooth
probability distribution over the set of locations on Earth. We could then select tags
whose associated distribution diverges from a background distribution (reflecting
the distribution of Flickr photos and videos). Another possibility is to use methods
from epidemiology, such as Ripley’s K statistic, to identify tags whose pattern of
occurrences deviates significantly from a uniform sampling. Finally, methods for
measuring spatial autocorrelation could be used to identify tags whose occurrences
tend to be clustered in space.

In [23], an analysis is presented of howdifferent term selection techniques perform
in the context of georeferencing Flickr resources. The geographical spread measure,
KDE-based methods and a method based on Ripley’s K statistic performed com-
parably. Of these three approaches, the geographical spread measure has the clear
advantage of being the easiest method to implement and being the computationally
least expensive method. However, it was found to be more sensitive to the number
of selected features. Out of a total of about 300K features, all methods performed
optimally when about 50–100K features were selected. However, while the KDE
and Ripley’s K-based approaches still performed well when only 10 or 25K features
could be selected, the geographic spread measure was not competitive in that range.
Overall, the experiments in [23] strongly suggest that measuring spatial autocorre-
lation is not sufficient; for a term selection method to be effective in this context, it
needs to favor terms which only occur in a small number of areas around the world.
For example, while the term beach is clearly geographically relevant (i.e., spatially
autocorrelated), it is not a useful term for deciding in which area a photo was most
likely taken.

8.3 Textual Approach

There are two main text-based approaches for estimating the geographic location
of a Flickr photo or video. First, we may view the problem as a classification task,
in which the classes are geographic areas. For a given photo, the most likely area
is determined and the center of that area is used as the estimated location. This
approach was proposed in [20]. Second, we may treat the task of assigning a location
to a Flickr photo or video as a retrieval task. In this case, we first identify the photos
in the training data which are most similar to the considered resource, and use their
locations to determine the estimated location. As proposed in [24], we can combine
these two approaches by first using a classifier to find the most likely area where the
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photo or video was taken, and then find similar photos in the training set from that
area. Experimental results in [22, 27] show that such a hybrid two-step approach
outperforms either of the individual methods. A key factor is the number of clusters
considered: the fewer clusters are used, the more emphasis there is on the retrieval
step. It turns out that, in general, the more training data is available, the smaller the
optimal number of clusters.

In the remainder of this section, we explain in more detail how both approaches
operate.

8.3.1 Variations on the Classification Approach

As we explained in Sect. 8.2.1, various methods exist to segment the training data
in a set of disjoint areas. We can see each of these areas as a class, and treat the
problem of georeferencing Flickr photos as a standard text classification problem.
Some authors have used support vector machines [4] or Kullback-Leibler divergence
[29] for georeferencing social media documents. The most popular approach, how-
ever, seems to be to use a naive Bayes classifier [20, 27], based on a multinomial
bag-of-words language model.

In this model, the probability that a Flickr photo d with tags t1, ..., tn was taken
in area a is estimated as:

P(a|d) ∼ P(a) ·
n∏

i=1

P(ti |a) (8.1)

As usual, the use of logarithms replaces the multiplication by a summation and
prevents the underflow of floating points:

log P(a|d) ∼ log P(a) +
n∑

i=1

log P(ti |a) (8.2)

We now go in more detail on how the likelihood P(ti |a) and the prior probability
P(a) can be estimated from Flickr.

8.3.1.1 Estimation of Term Location Distribution

The probability P(t |a) reflects the likelihood of seeing a photo with tag t in photos
that have been taken in area a. The simplest way of estimating this likelihood would
be to choose P(t |a) = Nt,a

Na
, where Nt,a is the number of photos with tag t in

area a and Na is the total number of photos in area a. However, this would lead to
P(a|d) = 0 as soon as d has one tag which has not previously been seen in area a.
To cope with this problem, usually some form of smoothing is applied.
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One possibility for smoothing the probability P(t |a), called Laplace smoothing:

P (t |a) = Nt,a + 1

Na + |V | , (8.3)

where V is the set of all tags (that have been retained after feature selection). Another
possible smoothing method is Bayesian smoothing with Dirichlet priors, in which
case we have (μ > 0):

P(t |a) = Nt,a + μ P(t |V )

Na + μ
(8.4)

where the probabilistic model of the vocabulary P(t |V ) is defined using maximum
likelihood:

P(t |V ) =
∑

a Nt,a∑
t ′∈V

∑
a Nt ′,a

(8.5)

A final possibility is to use Jelinek-Mercer smoothing, in which case we have (λ ∈
[0, 1]):

P(t |a) = λ
Nt,a

Na
+ (1 − λ) P(t |V ) (8.6)

with P(t |V ) defined as in (8.5). For more details on these smoothing methods for
language models, we refer to [32]. A comparison between these smoothing methods
in the context of georeferencing Flickr photos has been given in [27]. Figure8.6
shows the term-location probabilities P(t |a) of terms t occurring in a video located
at the Ground Zero, Mahattan, New York, USA. As shown, single terms do not
indicate a specific or right location, only the combination maximizes the likelihood
of the right spatial segment. Thus we can conclude that generic terms like ‘911’
do help with specifying the location despite the fact that these terms do not have a
geographical relation in the sense of being an entry in a gazetteer.

Note that all the above formulas describe our probabilistic model when using
a multinomial distribution with term frequency (tf) weighting. Other weighting
schemes are possible, as we will explain in Sect. 8.3.1.3.

8.3.1.2 Estimation of the Prior Probability

There are at least three different ways of choosing the prior probability P(a) that a
photo is taken in area a. In some situations, we want to refrain from introducing any
bias, and choose P(a) as a uniform probability. However, if photos are randomly
sampled from Flickr, some areas of the world are much more likely than others. We
ca use a maximum likelihood estimation to include this evidence, in which case we
choose:
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Fig. 8.6 Probabilities P(t |a) of a video containing the terms: ‘usa’, ‘manhattan’ and ‘911’

P(a) = Na∑
a′ Na′

(8.7)

A third possibility is to take into account prior knowledge about the home location
of the owner of the photo, using the intuition that areas closer to where the owner
lives are more likely. In [26], the following prior probability was proposed:

P(a) ∼
(

1

d(a, h)

)θ

(8.8)

where h is the estimated home location of the user (obtained by georeferencing the
corresponding text field in their profile) and a is the centre of area a. Along similar
lines, [6] uses a prior probability which is based on population density and a prior
probability which is based on climate data (assigning a higher prior probability to
more temperate climates).Additionally, it could beworth considering a different prior
probability for each user, if sufficient information is available. This was proposed
in [22], using a method called User History. In particular, when the training set
contains previously uploaded photos or videos made by the same user, computing
the prior probability based on these locations may help to improve the estimation.
Furthermore, it has been investigated in [22] how the user’s social network could
be used to extend the user-based prior location, following the assumption that the
location of a user might be related with the locations of her social connections.
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8.3.1.3 Weighting of Term Occurrences

So far, the term-location probability and the prior probability are estimated by
counting the frequency of each term, as applied in (8.3)–(8.6). In this section we
will explain how term weighting is used to improve these estimations. Hereby, the
count Nt,a is replacedwith aweight W (t, a)whichmay reflect other aspects than just
the frequency of occurrence of the term. Term weighting is a well know technique
in the Information Retrieval domain [15].

As a first method, the term frequency (tf) weighting, which has been used so far,
is used to distinguish between areas that contain a given tag only a few times and
those that contain the tag many times. The use of term frequency corresponds to the
assumption that areas which contain more mentions of a given tag are more likely to
contain the location of a photo or video with that tag. The number of occurrences of
a tag t in area a is usually normalized, by dividing it by the number of occurrences
of the most frequent tag, among those tags in photo or video d.

Wtf(t, a) = Nt,a

maxt ′∈d Nt ′,a
(8.9)

Some studies in [9] have shown that it is not always useful to weight the frequency
of a tag, assuming that all that matters is whether it occurs at least once.

Wto(t, a) =
{
1, Nt,a > 1
0, otherwise

(8.10)

In the context of geo-location recognition, certain tags have little or no discrim-
inating power. For instance, the term ‘video’ or ‘photo’ exists almost in every area.
The idea is to reduce the tf weight of a given tag by a factor which is increasing in
the number of areas in which the tag occurs. For this reason the inverse document
frequency (idf) of a tag t is defined as follows:

Widf(t, a) = log
N∑

a Wto(t, a)
(8.11)

where N denotes the total number of areas.
The term frequency-inverse document frequency (tf-idf) weighting schemes is

one of the best known in information retrieval. It combines the term frequency and
inverse document frequency: The N (ti , d) in (8.9) and Nt,l in (8.10) are replaced by
the tf-idf scores.

Wtf−idf(t, a) = Wtf(t, a) · Widf(t, a) (8.12)

These three weighting schemes are used for estimating the term-location prob-
ability (Sect. 8.3.1.1) and the prior probability (Sect. 8.3.1.2) by replacing the term
count N by one of the introduced weightings. The three different weighting schemes
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Table 8.1 Correct decision
for spatial segments

Top-N grid cells TO (%) TF (%) TF-IDF (%)

1 31.7 44.5 51.4

2 39.7 51.2 57.5

3 44.3 54.3 60.0

4 47.1 56.0 61.6

5 48.8 57.6 62.6

6 50.4 58.6 63.8

7 51.3 59.4 64.8

8 52.1 60.2 65.3

9 53.3 60.7 65.8

10 53.9 61.3 66.4

— term occurrence (to), term frequency (t f ), and term frequency-inverse document
frequency (tf-idf )—are used for term-location probability and prior probability, and
then compared against each other. Table8.1 displays the percentage of correctly
predicted cells (i.e., area) in a large grid of 360 × 180 segments (see Sect. 8.2.1),
according to the meridians and parallels of the world map. In particular, this table
shows how frequently the correct location is within one of the N highest ranked grid
cells. The textual model with tf-idf weighting predicts the correct grid cell for the
half of the Placing Task 2012 dataset. In 66% of all cases, the correct locations is
among the 10 most likely grid cells.

The Okapi bm25 is more than a term scoring method, but rather a method for
scoring documents in relation to a query. It was introduced in the early 1990s in [17],
the bm25 formula has been widely adopted, and it has repeatedly proved its value
across a variety of search domains. One of the first comparisons with tf-idf was done
by [28], showing that the Okapi bm25 weighting scheme performed better in many
cases. In the context of geo-location recognition, it can be used in line with a Query-
Document retrieval approach, such as the one we discuss in Sect. 8.3.2. Alternatively
the term weight could also be pre-computed independently from a given query, in
which case the Okapi bm25 weights are defined as follows:

Wbm(t, a) = idf(t) × w′
t,s × (k + 1)

w′
t,s + k × (1 − b + b × |D|

avg dl
)

(8.13)

where w′
t,s is the weight of the term t associated to the area a , avgdl is the average

number of tags per training sample, k and b are free parameters usually chosen as
k ∈ [1.2, 2.0] and b = 0.75 (see [15]).
The idf part instead is given by

idf(t) = log
M − Nt + 0.5

Nti + 0.5
(8.14)
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where M is the total number of training photos, and Nt is the number of training
photos containing tag t . We refer to [9, 10, 22] for an experimental comparison of
these methods.

8.3.2 Variations on the Retrieval Approach

This approach is inspired by the standard information retrieval setting, where the
goal is to retrieve the documents which are most closely related to a given input
query. In a geo-location context, our query is formed by the text attached to the test
photo or video. The text could be the title, description, tags, or any other associated
text. In this section we consider only the tags, but similar considerations apply if
other text fields are used. In order to interpret georeferencing as a document retrieval
problem,we also need to define the document collection.One possibility is to identify
documents with geographic areas. In particular, each document then consists of the
tags associated with all training photos of the corresponding area. Section8.3.2.2
will discuss a number of alternative approaches that could be considered. First, in
Sect. 8.3.2.1, we discuss a way to compute the geo-descriptiveness of a word. This
measure of how much a word is related to a specific location is important to reduce
the impact of noise (i.e., tags which are not indicative of a particular location, but
whose distribution is not entirely uniform due to chance).

8.3.2.1 Geo-Relevance Filtering

Describing a geographic area or a specific coordinate as aweighted set of tags requires
a weighting scheme that reflects the relationship between tags and coordinates. Since
we want to consider only tags that are geographically relevant, we first need a way
to determine the level of geographic spread (or geo-descriptiveness) of a tag. This is
similar to the problemof term selection, whichwas discussed in Sect. 8.2.2. However,
whereas term selection requires a hard decision, here we are interested in measuring
the degree to which a tag is geographically relevant, so that we can discount, rather
than ignore, geographically less relevant tags in the retrieval model.

We can measure the relevance of a tag by jointly considering its frequency of
occurrence (or term frequency) and the average distance between the locations where
it occurs. Therefore, for each tag t we compute its term frequency t f t in the training
data and the average Haversine distance dt between the locations of the images or
videoswhich contain t . For example, using the data ofMediaEval2013 [7, 22] applied
the following heuristic approach for measuring the degree of geo-descriptiveness of
a tag t :

wt =

⎧⎪⎪⎨
⎪⎪⎩

−1 if tf t > 100K or dt < 0.2

10 if tf t ≥ 200 and 10 ≤ dt ≤ 50

5 if tf t ≥ 150 and dt ≤ 70

1 otherwise
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This weighting was designed to assign higher weights to tags representing
geographic information, i.e., not only places but also references to locations such
as monuments, e.g., Eiffel, Colosseum) or famous people with a geographical cor-
relation, e.g., Gaudi and Barcelona). Table8.2 illustrates the effect of using these
weights.

8.3.2.2 Frequency Matching

When interpreting the task of georeferencing Flickr photos as a document retrieval
task, it is intuitive to treat the set of tags associated with a Flickr photo or video that
we want to localise as the query. However, there are several possibilities for defining
the document collection.

A simple solution is to consider each photo in the training data as an individ-
ual document, where the tags associated with the photo represent the terms of the
document. However this approach is very noisy in the sense that it results in many
documents whose text is identical but which have a different location. For example,
the set of tags “france”, “pompidou” and “paris” appear in many photos with slightly
different coordinates, e.g., (48.8611, 2.3521) and (48.6172, 2.213), whereas we are
interested in assigning a single location to a given query. This issue can be tackled by
collecting all the coordinates associated to the same set of tags, counting how often
each pair of coordinates appears. For the set of tags highlighted before we obtain
the coordinates (48.8611, 2.3521) and (48.6172, 2.213) with frequency respectively
12 and 3. The frequency counter suggests that the first one is more reliable than the
latter one since it appears more often. Once we obtained themost frequent coordinate
we associate it to the set of tags. Alternatively, we could also select the medoid in
the set of coordinates. Each document in the collection is then a set of tags, with
an associated coordinate, such that no two documents correspond to the same set of
tags:

< france, pompidou, paris > → (48.8611, 2.3521)

A second way to define documents in our context is by grouping all tags that are
assigned to documents at the same location. In other words, there is a document for
each pair of coordinates, whose text contains all tags of all photos in the training data
that have these coordinates:

(48.8611, 2.3521) → < france, centre, pompidou, centrepompidou, paris, · · · >

However we have to consider the presence of “duplicates” as photos at slightly dif-
ferent coordinates are often associated with similar tags (as the example highlighted
before). In order to have a cleaner and more reliable collection of documents it is
possible to merge documents if their location is sufficiently close and their text is
sufficiently similar. Alternatively, we could use a clustering method to obtain a large
set of areas, and then associate one document to each cluster (Fig. 8.7).
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Table 8.2 On the left, we list the most frequently occurring tags. On the right, we list tags t which
maximize the weight, i.e., for which wt = 10, ordered by term frequency

Tag Frequency Avgerage distance Tag Frequency Average distance

Geotagged 81948 183.600974549 California 34756 17.3347855177

Water 36645 394.109273724 Italy 26432 28.2242237023

Beach 35799 189.702712644 France 25128 30.1802960837

Nature 35791 330.458447429 Australia 22746 48.9602486282

2009 35411 158.518797983 Germany 22060 30.3288003332

2008 34788 163.01576923 Canada 20611 44.1591343262

California 34756 17.3347855177 Spain 20583 33.9538296347

2007 33791 163.774148Z22 Japan 19859 33.8409323297

Sky 32268 500.652309767 Uk 19675 33.246712809

travel 29636 227.985879656 England 19477 25.9678916173

Usa 27933 112.840988813 Espana 14740 36.3307740002

Italy 26432 28.2242237023 Scotland 14418 20.0878818974

Sea 25435 264.814684265 Italia 14266 29.7714336536

France 25128 30.1802960837 Deutschland 12469 26.6710348635

Sunset 24839 530.829445257 Mexico 11248 44.1710727199

Landscape 24291 399.483239901 Washington 10528 29.2185701167

Snow 24251 252.464879232 Texas 9811 26.8342797456

Europe 24173 121.315134058 Florida 9773 19.2311687716

Blue 23187 554.374093842 Newyork 9550 26.7850834626

2006 22802 188.297981051 Portugal 9005 36.4910584785

Australia 22746 48.9602486282 Switzerland 8842 19.0660337254

Night 22745 439.445587846 Sweden 8825 43.4298253824

Germany 22060 30.3288003332 Taiwan 8614 8.58611101877

Winter 21605 264.227771688 Ireland 8277 27.8336567598

Tree 21335 626.460930315 Newzealand 7804 34.7207757884

Canada 20611 44.1591343262 Greece 7734 28.8041197511

Spain 20583 33.9538296347 Ontario 7684 13.5533928009

BW 20475 504.583508417 Oregon 7501 21.9655577751

Architecture 20155 331.577365854 Unitedkingdom 7469 45.7784858581

Japan 19859 33.8409323297 Netherlands 7258 23.4561091895

Green 19822 585.402442074 Austria 6670 17.0680578585

UK 19675 33.Z4671Z809 Colorado 6659 29.053739839Z

Clouds 19597 617.251967179 Thailand 6508 23.5652696046

Flower 19563 631.402098385 Nsw 6231 28.5942670687

England 19477 25.9678916173 Arizona 6041 26.381253062

Park 19245 289.55492473 Sanfrancisco 6021 41.1354079352

Vacation 18870 220.652637728 Nyc 5917 32.7179331764
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Fig. 8.7 Coordinates of three tags plotted on the world map. The first and the third figure show the
spread of tags that are not bound to specific locations, whereas the middle one shows a tag related
to a specific country. At first glance it is clear which is the more meaningful tag that describes a
specific location, a beach, b italy, c iphone

In each case, we obtain a collection of documents, defined by a bag of tags and a
unique location. To find the location of a test photo, we interpret its tags as the query
and then identify the most similar document in the collection, taking its location as
the most probably location of the test photo. In particular, we retrieve all documents
which have at least one word in common with the query and rank these documents
by relevance, using a standard weighting scheme such as tf-idf or Okapi BM25 (see
Sect. 8.3.1.3). According to [25], choosing the top ranked document outperforms
taking a weighted average of the top-k documents, although these experiments used
a term-frequency weighting, rather than tf-idf or Okapi BM25. However, in case of a
tie (i.e., when several documents have the maximal relevance score) we could apply
other approaches to select a pair of coordinates. In [21, 22], for example, the medoid
of all the top ranked documents, weighted by the number of occurrences of each
location, is taken as the most representative location.

8.4 Visual Approach

The georeferencing of photos or video recordings with visual features is useful
for fine-tuning the result of the textual approaches and for georeferencing Flickr
resources without any tags.3 Several authors have investigated the usefulness of
visual content for predicting geographical tags [11]. As expected, visual information
is more challenging to use than textual information. Nevertheless visual georeferenc-
ing is also useful for other vision tasks by narrowing down the possibilities for further
processing (e.g., visual landmark recognition) or refining textual approaches. Imag-
ine a photo depicting a coastal scene or open water for which the geo-coordinates
are not known. Many locations like hinterlands or metropolitan areas become very

3 13.6% do not have any tags in the Placing task data set, although some of them can also be
georeferenced by taking into account context information such as the home location of the user.
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unlikely, and can be excluded from further processing. As in the case of textual
methods, we ca use classification approaches and retrieval approaches to take into
account visual information.

8.4.1 A Classification Approach to Using Visual Information

The classification approach is about modelling the characteristics of a spatial region
in terms of visual features. These visual features can be described by various descrip-
tors, grouped in Colour and edge/texture descriptors. The most prominent are Colour
and Edge Directivity (CEDD), Gabor (GD), Scalable Colour (SCD), Tamura (TD),
Edge Histogram (EHD), Autocorrelogram (ACC) and Colour Layout (CLD). Colour
Histograms, in which the colour distribution is presented in quantised colour com-
ponent bins, are used to differentiate on the basis of colour perception of the human
vision. Edge features, as another class of visual features, help distinguish between
natural scenes and scenes containing man-made structures, while texture features
might help to discriminate properties such as different terrain types.

These features are applied on each single image or on key frames in case of video
sequences, in order to reduce their temporal dimensionality. With these descriptors,
a wide spectrum of colour and texture features within images is covered. We are
aware that some descriptors address similar image features. If computation time
matters, e.g., during a machine learning step, dimensionality reduction techniques
like principal component analysis or cross correlation analysis can be applied. In
this way, more or less sophisticated machine learning algorithms can be used to
generate a model of each spatial area. To this end, all feature can be included in the
learning step or several models can be generated, one for each feature. In the latter
case, classification performance of the individual models can be used for figuring
out the most geo-related visual feature, as shown in Table8.3. This table contains the
results of a nearest neighbour classification for each descriptor and two hierarchy
levels (see Sect. 8.2.1). Here, the classification result in terms of accuracy on selected
error margins is evaluated per descriptor. Details about the experimental set-up are
shown in [12]. This table does not only contain the classification accuracy for different
features and different margins of errors, but also for different area sizes (here labelled
as ‘Block size’). Block sizes labelled with ‘large’ stands for a spatial level in which
the areas are as big as the surface spaned by the meridians and parallels, resulting
in a size corresponding to one cell of a grid of 360 by 180 cells. Areas in the spatial
level labeled with ‘small’ are only a quarter of that size, that means the world map is
segmented in a grid of 720 by 360 cells. This method can iteratively determine the
most visually similar spatial area by calculating the Euclidean norm of the respective
visual descriptor values.

As can be seen in Table8.3, the scalable colour descriptor (SCD) consistently
outperforms the other descriptors.Althoughoverall textual approaches performmuch
better than visual approaches, it should be noticed that the best visual model with the
scalable colour descriptor achieves an result which is three timesmore accurate result



8 Georeferencing Flickr Resources Based on Multimodal Features 145

Table 8.3 Accuracies on selected error margins (in km) of the visual approach with different
descriptors

Feature Block
size

1 (%) 10 (%) 20 (%) 50 (%) 100
(%)

200
(%)

500
(%)

1,000
(%)

2,000
(%)

5,000
(%)

ACC small 2.3 2.4 2.5 3.3 7.4 12.6 19.9 31.6 43.6 59.7

large 2.3 2.4 2.5 3.3 7.4 12.6 19.9 31.6 43.6 59.7

CEDD small 3.2 3.2 3.4 5.1 7.3 11.7 22.1 29.8 44.5 62.9

large 2.3 2.4 2.5 3.3 7.4 12.6 19.9 31.6 43.6 59.7

CLD small 1.2 1.3 1.4 2.2 5.9 11.9 18.6 28.5 45.2 60.9

large 2.3 2.4 2.5 3.3 7.4 12.6 19.9 31.6 43.6 59.7

EHD small 1.8 2 2.2 3.1 5.2 12 20 30.2 47.3 62.5

large 2.3 2.4 2.5 3.3 7.4 12.6 19.9 31.6 43.6 59.7

GD small 1.2 1.3 1.3 2.3 4 7.1 12.5 24.2 37 65.2

large 2.3 2.4 2.5 3.3 7.4 12.6 19.9 31.6 43.6 59.7

TD small 0.7 0.7 0.7 1.4 4.7 9.6 15.3 21.6 37 55.9

large 2.3 2.4 2.5 3.3 7.4 12.6 19.9 31.6 43.6 59.7

SCD small 5.4 5.6 5.8 6.5 8.6 13.8 24.2 34.9 50.2 63.3

large 2.3 2.4 2.5 3.3 7.4 12.6 19.9 31.6 43.6 59.7

than the randombaseline (12%at 1,000km). The nearest neighbour classification can
be drastically speeded up by organising the descriptor values in tree structures. A k-d
tree has the advantage that the subsequent search for nearest neighbours is speeded up
because the search is recursively among the branches of the tree. Finding the nearest
neighbour is a O(logN ) operation instead of O(N ) in a naive implementation. Here,
the problem is the generation a proper ‘model’ for each area. The simple but fast
method of averaging is quite successful, but more sophisticated techniques such
as classification methods like support vector machines can be applied, which may
enhance the robustness of the model. Applying such a method, a decision ai, j and a
probability score wi, j is generated for each geographic areas (i.e., cluster or grid cell)
j and each photo or key frame i . Since videos consists ofmultiple images, these single
frames can be classified into different areas a j , so a subsequent step is necessary to
determine the final location decision for the whole sequence. Here, voting leads
to a single decision for the complete video sequence. Two voting methods have
been previously used are consensus voting and weighted voting. Weighted voting is
based on the idea that not all decisions on key frame level are equally accurate. The
decision of the predicted area is weighted with the probability score wi, j , such that
more accurate decisions on key frames givemore importance to the final video result.
This is in contrast to consensus voting, which assumes that each key frame’s decision
carries equal weight, i.e., the scores wi, j are effectively ignored. The decision for a
spatial area of a video sequence, when using weighted voting, is:
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a = argmax
j

∑
i

wi, j · ai, j , (8.15)

where the decision ai, j is set to 1, if key frame i is classified to be in the j th spatial
area, otherwise it is 0. The decision rule for consensus voting is obtained by replacing
the weights wi, j by 1 in the previous formula.

8.4.2 A Retrieval Approach to Using Visual Information

The retrieval approach is closely related to the field of content-based image retrieval
(CBIR). In CBIR visually similar media items are returned for a given query image.
These visually similar media items are taken from the training data and are therefore
geo-tagged, hence their location can be propagated to the query image or video. We
now explain the basic technique for geo-referencing media using their visual content
in more detail.

The starting point is an image depicting a outdoor scene for which the geo-
coordinates are not known.ACBIRsystem retrieves images that capture the gist of the
query image and returns geo-referenced images of similarly looking outdoor scenes.
Those can be used to predict the location of the query image, based on the assumption
that similar scenes in images (or key frames from video sequences) correlate to
similar geographic areas. In its simplest form, this approach looks for the nearest
neighbour of a query item by comparing relatively low-dimensional feature vectors,
which is faster than performing a sophisticated classification or object recognition
algorithm that has to be computed over many object models. Estimating location
using this nearest neighbour method requires a large dataset that covers the entire
world.This retrieval approach alsohas some restrictions; the requireddatabase should
not only be large, but should also densely cover the world, which is not often the
case. As a result, in practice there is a bias towards North American and Europe, and
popular tourist destinations due to the large number of photos taken in these areas.
However, the greatest limitation is due to visual ambiguity. Images depicting coastal
scenes but captured at different places can look very similar. This restricts the ability
of approaches based on visual similarity to geo-reference locations that look very
different. Georeferencing based on visual features often does not lead to accurate
locations, but it can constrain the search space, and may thus be used effectively
together with other methods (e.g., based on textual features or context information
such as the home location of the owner). However, using visual information is not
recommended as a stand-alone approach.
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8.5 Centroid-Based Candidate Fusion

We are interested in addressing cases where the training dataset is sparse (e.g., to
apply the methods discussed in this chapter to regions of the world where the uptake
of Flickr is limited). To this end, we explored the possibility of using unlabelled
instances, i.e., photos or videos whose coordinates are unknown. In particular, we
used the videos in the test data for this purpose. The Placing Task dataset benefits
from a high density of photographs at popular locations and well known places (see
Fig. 8.1) across the Earth. Sections8.3 and 8.4 shows that the retrieval approaches
perform very poorly when asked to locate images from undersampled regions. In [8]
and [14] it has been shown that the problem of a sparse dataset will not be solved
by increasing the size of the dataset. A greater number of training images does not
lead to a uniform distribution of the world but mainly to a better description of
popular places. Choi et al. [3] proposed a graphical model framework in which geo-
tagging is interpreted as a graph inference problem, and showed that performance
improvements can be achieved by smart processing of the test data set. The node
potentials in this graph-based framework are modelled as a product of the term
location distributions (see Sect. 8.3.1.1), given each tag individually.

Next, we describe a centroid-based candidate fusion method to solve the problem
of data sparsity and to enhance the distributions of single candidates in a multimodal
manner. The framework also facilitates the fusion of textual and visual features that
can further improve the localization performance. One of the biggest problems in
the fusion of multimodal features is the different range of features from each of the
domains.

This centroid-based candidate fusion approach is based on the sum rule in decision
fusion [18]. Since our textual locationmodel produces logarithmic confidence scores
Subsequently, these scores are used to generate normalized weights for the candidate
fusion:

wn = P(ln|d)∑N
i=1 P(li |d)

, (8.16)

where wn is the weight of the nth candidate of a test video d. The equation implies
that the sum of weights is 1. Then, the candidate locations GPS(·) are weighted
combined using the sum rule, assuming that the most likely location has the highest
weight. The location centroid xv|t arising from all visual(v) or textual(t) candidates
is calculated as follows:

xv|t =
N∑

n=1

wn · GPS(ln). (8.17)

This forms the most likely location for a given video, whereas the centroid does
not need to be an existing item within the training data. Then, we determine the
location for a specific feature. Since we want to include several different features
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Fig. 8.8 Illustration of fusion of textual and visual candidates

from different modalities in our framework, a confidence score for each calculated
centroid is needed for the subsequent multimodal fusion. Here, we choose the stan-
dard deviation as inversely proportional weights. The more a feature correlates with
a specific spatial location, the closer the likely candidates are located, which implies
a small deviation and therefore a high-valued weight. The calculation of the spatial
deviation is shown in the following equation:

σ v|t =
√√√√ N∑

n=1

(
GPS (ln) − GPS

(
xv|t))2 · wn (8.18)

Using these formulas, a centroid is determined for each feature. The final decision for
the video location X is specified as shown in Fig. 8.8 using the following multimodal
fusion:

X = wt · Xt + wv · Xv, (8.19)

wherewv|t are calculated according to (8.16), butwith 1
σ
instead of P(li |d). Figure8.9

shows the confidence scores of both modalities for an example video4 depicting a
formula one scene captured in Montreal, Canada. The confidence score is coded
in colours as follows; very unlikely areas are depicted in black, where the colour
gets lighter with the increasing likelihood of the corresponding areas. As seen, areas
around Montreal are more likely than most other areas. The scores of the visual
approach using scalable colour as feature as depicted in Fig. 8.9a. Here there are
many likely regions in the world: based on the visual information alone, this video

4 http://www.flickr.com/photos/88878784@N00/4706267893.

http://www.flickr.com/photos/88878784@N00/4706267893
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(a) (b)

Fig. 8.9 Confidence scores (in log scale) of the textual (a) and visual approach (b) for North
America

Fig. 8.10 Confidence scores
of the visual approach (SCD)
restricted to be in the most
likely spatial segment
determined by the textual
approach (tf-idf)

sequence may have been recorded at many locations in the world, hence we need
textual metadata to reduce the number of possible candidates.

Figure8.10 shows such a restriction. The tf-idf text model is based on the hierar-
chical spatial segmentationmethod explained in Sect. 8.2.1; it predicts themost likely
segment at the highest hierarchy levels and the visual SCD model predicts locations
within these segments. As shown, the previous example is correctly assigned to the
city of Montreal, Canada. Here, the fusion of textual and visual methods is important
to eliminate geographical ambiguities. The candidates of both modalities are com-
bined using our centroid-based fusion as described in Sect. 8.5. The videos of the
Placing Task dataset are well tagged, the textual model produced strong candidates
and the combination with the visual candidates effect a location gain in small scale.
In general, the fusion of several candidates of both modalities is important to elim-
inate geographical ambiguities. As depicted in Fig. 8.11, the centroid-based fusion
improves the results, especially on smaller margins of error, overcoming the sparse
nature of the dataset. The strongest gain is achieved by the gazetteer-based national
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Fig. 8.11 Accuracy achieved by single methods within the hierarchy for selected margins of error

border detection, which eliminates the geographical ambiguity in conjunction with
the probabilistic models.

8.6 Conclusion

In this chapter, we discussed a variety of techniques for estimating the geographical
location of a Flickr photo or video. We first discussed several methods for clustering
theworld into a finite number of disjoint geographic areas, as well as the idea of using
national borders for this purpose. We also noted that such a spatial segmentation step
can be done in a hierarchical fashion, which can have computational advantages
(e.g., computationally more expensive methods may be feasible once the range of
possible locations has been narrowed down to a particular country, or even to a
particular city). Once a set of disjoint geographical areas has been identified, we can
treat the problem of georeferencing Flickr photos or videos as a text classification
problem, where the geographic areas are the classes and each photo is a document
(with its tags as terms). Alternatively, georeferencing can be treated as a retrieval
problem. Experimental evidence suggests that optimal performance is achieved by
combining both methods, i.e., use a text classification method to find the most likely
geographic area, and then use a retrieval method to find the most likely location
within that area. Subsequently we discussed the value of visual features. We argued
that such features can be very valuable to refine the locations predicted based on
textual features, although visual features are not sufficiently powerful to come up
with likely locations by themselves (except in very particular cases, such as when
the photo contains an easily recognizable landmark). Finally, we discussed a method
for centroid-based candidate fusion, which ameliorates the problem of data sparsity
and enhances the distributions of single candidates using information from multiple
modalities.
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Chapter 9
Human Versus Machine: Establishing a Human
Baseline for Multimodal Location Estimation

Jaeyoung Choi, Howard Lei, Venkatesan Ekambaram, Pascal Kelm, Luke
Gottlieb, Thomas Sikora, Kannan Ramchandran and Gerald Friedland

Abstract In recent years, the problem of video location estimation (i.e., estimating
the longitude/latitude coordinates of a video without GPS information) has been
approached with diverse methods and ideas in the research community and sig-
nificant improvements have been made. So far, however, systems have only been
compared against each other and no systematic study on human performance has
been conducted. Based on a human-subject study with 11,900 experiments, this arti-
cle presents a human baseline for location estimation for different combinations of
modalities (audio, audio/video, audio/video/text). Furthermore, this article compares
state-of-the-art location estimation systems with the human baseline. Although the
overall performance of humans’ multimodal video location estimation is better than
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current machine learning approaches, the difference is quite small: For 41% of the
test set, the machine’s accuracy was superior to the humans. We present case studies
and discuss whymachines did better for some videos and not for others. Our analysis
suggests new directions and priorities for future work on the improvement of location
inference algorithms.

9.1 Introduction

This chapter is based on the work of Choi et al. in [4], and discusses the human base-
line of the multimodal video location estimation. Over the recent years, the problem
of video location estimation (i.e., estimating the longitude/latitude coordinates of a
videowithoutGPS information) has been approachedwith diversemethods and ideas
in the research community and significant improvements have been made. However,
approaches have only been compared against each other and there is little intuition
on how humans would perform at this task. Some researchers even assume that the
automated algorithms would probably always perform better on this task compared
to humans. In this paper, we establish a human baseline for video location estimation
and present a comparative analysis with automatic location inference systems. The
baseline was created by asking qualified humans to perform a total of 9,000 video
localizations. With the human baseline in our hand, we are able to analyze different
cases of when machines perform better than humans, humans perform better than
machines, or when both fail.

This chapter is organized as follows. Section9.2 provides a brief overview of the
existing work in the field and positions our work in comparison to the available liter-
ature. Section9.3 describes the task and the characteristics of the dataset that render
the task difficult. Section9.4 describes the experimental setup for establishing the
human baseline using a crowdsourcing platform. Section9.5 describes our technical
approaches to utilizing audio, audio/visual, and audio/visual/textual metadata for
automatic location inference. Section9.6 provides a comparison of the performance
of location estimation between machines and humans. In Sect. 9.7, we present case
studies and discuss why machines perform better for some videos and not for others.
Section9.8 concludes with a summary of the paper and future research directions
based on our analysis.

9.2 Related Works

Crowdsourcing is currently used for a range of applications such as exploiting unso-
licited user contributions, for spontaneous annotation of images for retrieval [18],
etc. Systematic crowdsourcing platforms, such as Amazon Mechanical Turk, have
been used to mass-outsource artificial intelligence jobs [9]. Further, crowdsourcing
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has also been used for surveying and evaluating user interfaces [12], designs, and
other technical approaches.

However, as the name coincidentally implies, platforms such as Mechanical Turk
are often best used for mechanical tasks, i.e., tasks that only require simple intuition.
Therefore, for a task like the one presented here, where there is a suspicion that
humans might perform worse than machines and there is no clear intuition as to how
to solve the task, one has to be very careful about how to approach it properly. Apart
from [5], there is no previous work on usingMechanical Turk for geo-tagging videos,
moreover there seems to be no previous work on how to use Mechanical Turk for a
task that is not straightforward to solve.

So far, no human baseline exists for location estimation, and systems have only
been compared against each other. At the same time, these systems differ quite
dramatically. This paper establishes a human baseline and compares it against two
state of the art systems from the literature to draw conclusions for future directions of
this research. To ensure the quality of the human baseline, we rely on the qualification
methodology described in [5] in combination with redundancy [10].

9.3 Task and Dataset

All experiments described in this article were performed using the dataset distributed
for the Placing Task of the 2010 MediaEval benchmark.1 The Placing Task is a
part of the MediaEval benchmarking initiative that requires participants to assign
geographical coordinates (latitude and longitude) to each test video. Participants can
make use of textual metadata, audio and visual features as well as external resources,
depending on the test run.

The dataset consists of 3,185,258 photos and 10,216 videos. All are Creative
Commons-licensed and from Flickr.2 The metadata for each video includes a user-
annotated title, tags, and a description among others. The videos are not filtered or
selected in any way to make the dataset more relevant to the task, and are therefore
likely to be representative of videos selected at random[13]. Figure9.1 shows the non-
uniform distribution of Flickr videos and images due to geographical, economical,
and political reasons.

Flickr requires that an uploaded video must be created by the uploader, and thus
almost all videos on Flickr are home-video style. The relatively short lengths of
each video should be noted, as the maximum length of a Flickr video was limited
to 90s when the dataset was collected. Moreover, about 70% of videos in this data
set have less than 50s of playtime. Manual inspection of the randomly sampled 150
videos from the dataset shows that if given only the audio and visual contents, 8% of
the videos contained enough information for accurate guesses, and 10% with rough
hints that would lead to city or country-level estimations. The rest of the videos had

1 http://multimediaeval.org/.
2 http://www.flickr.com.

http://multimediaeval.org/
http://www.flickr.com
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Fig. 9.1 Several frames from the randomly selected videos that were used in the experiment. Most
of them are very difficult to specifically geolocate. Figure is from [4]

very little cue for location estimation. Videos of indoor settings comprise 36% of the
videos and about half of them are private space such as one’s house or in the backyard.
24% of the videos contained human speech in various languages including English,
Spanish, Swedish, Japanese, etc. The metadata provided by the user often provided
direct and sensible clues for location estimation. 98.8% of videos in the training
dataset were annotated by their uploaders with at least one title, tag, or description,
which often included location information.

9.4 Establishing a Human Baseline

Collection of human baselinewas performed in two steps. In the first stepwe qualified
people, by filtering out incompetent or unmotivated workers and ensuring that the
quality of submissions were high enough for the second stage. In the second stage,
we collected the human baseline for 1,000 videos. We used Amazon Mechanical
Turk as the crowdsourcing platform.
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9.4.1 Qualification

The task of location estimation is different from a standard Mechanical Turk task
in that it is difficult for both humans and machines, whereas a standard Mechanical
Turk task is usually easy for humans and difficult or impossible for machines. There
are several notable challenges to finding skilled workers for this task: first, we must
find what we term “honest operators,” i.e., people who will seriously attempt to do
the task and not just click quickly through it to collect the bounty. Second, we need
to develop a meaningful qualification test set that is challenging enough to allow
us to qualify people for the real task, but is also solvable by individuals regardless
of their culture or location, although English language understanding was required
for instructions. For example, in the process of selecting videos, there were videos
of tourists in Machu Picchu, which our annotator immediately recognized, however
there were no clues to reveal this location that would be usable to someone who
had not heard or seen this location previously. These videos were ruled out for the
qualification. In the end, ten videos, which we called ‘Ideal10 set’, were carefully
chosen and presented to the workers.We created an in-depth tutorial which presented
the workers with the basic tools and skills for approaching this challenging task. The
workers are allowed to use any applicable resource from the Internet, including
Google Maps and Streetview.

Our previous study show that, after the qualification process, workers on the
crowdsourcing platform achieved almost equal level of accuracy as internal expert
volunteer testers which was composed of highly-educated, well-trained, and moti-
vated researchers. In Fig. 9.2, we have a comparison of the performance results for

Fig. 9.2 Comparison of performance results for Ideal10 set [5]. Error distance (y-axis) is in a log
scale. Figure is from [4]
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our internal testers, the initial test results of MTurkers, and their results with the tuto-
rial. The internal tester and initial test results were derived by using the classification
results from the first round for the videos in the Ideal10 set, as those videos are a
subset of our larger annotation.We can see that while the internal testers still perform
better than the Mechanical Turk workers, the addition of a tutorial greatly narrowed
the performance margin. This led us to conclude that a worker who is adequately
trained with a tutorial can be considered reasonably qualified.

However, to select only the highest qualityworkers,we applied a screeningprocess
to filter out not only bad but even workers who performed averagely well. Out of
290 workers on Mechanical Turk who had participated in the qualification task, we
qualified only 84 workers (29% acceptance rate), those who were able to achieve
very high accuracy, i.e., were able to put at least 8 of 10 qualification videos within
a 5km radius of the ground truth location. We considered 5km margin of error
as a city-level accuracy. When applied with the same evaluation criteria, internal
volunteers showed a similar acceptance rate of 34%.Additionally, time spent for each
human video localization was recorded and often directly correlated with accuracy,
giving us a further accuracy indicator for the actual localization test. After successful
qualification, we paid USD 1.50 for each HIT (Human Intelligence Task), which
consisted of 10 video localizations.

9.4.2 The Web Interface

Here, we describe our user interface which the Amazon Mechanical Turk workers
used for the task. We went through several rounds of internal testing and feedback
to enhance the usability of the tool.

Figure9.3 shows the final version of this interface. The instructions on the top of
the screen can be expanded and shrunk with a ‘Show/Hide’ button. It was shrunk
by default to make the whole interface fit in a normal-sized window to minimize
unnecessary scrolling of the screen. A progress bar was shown below the instructions
box to let workers know where they are along the progress of a HIT. A video was
played automatically once the page was loaded. All videos were re-uploaded to a
private file server without the metadata so that simply following the link on the
player would not reveal any additional information about the video. A Google Maps
instance was placed to the right of the video. A marker would be dropped where the
map was clicked, and it could be dragged around the map. The marker’s position was
automatically translated to the latitude and longitude and printed to the ‘Latitude’
and ‘Longitude’ boxes. A location search form was placed under the map to aid the
search of the location. The form had an auto-completion feature which would help in
cases where the worker did not know the exact spelling of the place, etc. At the end
of the HIT, we asked participants to leave comments about the HIT. This enabled us
to filter out submissions with incidents and other exceptions.
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Fig. 9.3 Screenshot of web interface used in the AmazonMechanical Turk experiments described.
Figure is from [4]

9.4.3 Collection of Human Intelligence

When we collected the human performance for a different set of modalities, we
presented the media with least information to all, i.e., first we gave audio then
audio/visual, and lastly audio/visual and textual information (tags). For each HIT, a
worker was given five videos with three different media combinations, thus the total
of 15 media streams. For the same set of media streams, three identical HITs were
generated redundantly for the comparison and to filter out the possible bad results.
HITs were assigned with first-come first-served basis to the pool of 84 qualified
workers. To distribute the HITs to as many as workers and as evenly as possible,
we applied some throttle control to limit the number of HITs that an individual
worker can accept. We started the reward for each HIT with USD 0.25 but, based
on feedback, quickly increased it to USD 1.50, which resulted in a much faster col-
lection result. Within 18 days, we were able to collect a total of 11,900 localizations
(2,900 from qualification, 9,000 from localizing 1,000 videos). Many workers have
left comments that the task was challenging, especially for the cases when only the
audio was given. At the same time, many of them reported the HIT to be fun and we
believe that this motivated people to try to submit better results.

9.5 Machine-Based Location Estimation

In this section, we describe the technical approach and our experimental setup
for automatic location inference. We first describe the audio-based approach, then
describe how visual feature was added to the modality, and finally, the method that
uses all three modalities (audio, visual, and textual metadata).
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9.5.1 Audio-Based Location Estimation

We used the city identification system reported in [14] as our machine baseline for
location estimation. We describe the main idea of the system as follows. The system
involves training a total variability matrix T to model the variability (both city- and
channel-related) of the acoustic features of all audio tracks, and using the matrix to
obtain a low-dimensional vector characterizing the city where each audio track was
from. Specifically, for each audio file, a vector of first-order statistics M—of the
acoustic feature vectors of the audio centered around the means of a GMM world
model—is first obtained, and can be decomposed as follows:

M = m + T ω (9.1)

where m is the GMMworld model mean vector, and ω are low-dimensional vectors,
known as the identity vectors or i-vectors.

The system then performs Probabilistic Linear Discriminant Analysis (pLDA) [8]
and Within-Class Covariance Normalization (WCCN) [6] on the i-vectors. pLDA
linearly projects the i-vectors ω onto a set of dimensions to maximize the ratio of
between-user scatter to within-user scatter of the i-vectors, producing a new set
of vectors. WCCN then whitens the pLDA-projected vectors via a second linear
projection, such that the resulting vectors have an identity covariance matrix. For
our city identification system, 1,024 mixtures are used for the GMM world model,
and a rank of 400 is used for the total variability matrix T , such that the i-vectors
ω have 400 dimensions. pLDA projects the i-vectors onto a set of 200 dimensions.
The cosine distance is used to obtain the city-similarity score of a pair of i-vectors
ω between two audio tracks of user-uploaded videos [19]:

score(ω1, ω2) = (AT ω1)
T W −1(AT ω2)√

(AT ω1)T W −1(AT ω1)
√

(AT ω2)T W −1(AT ω2)
(9.2)

where A and W are the LDA and WCCN projection matrices, respectively, and ω1
and ω2 are i-vectors from the two audio tracks being compared against. The acoustic
features consist of MFCC C0-C19+Δ+ΔΔ coefficients of 60 dimensions, computed
using 25ms windows and 10ms shifts, across 60 to 16,000Hz.

As we could not train the model to cover all regions of the earth due to the data
sparsity, we clustered the distribution of videos into the 40 cities in the training
dataset, and reduced the location estimation to a city-identification problem. We
trained the system with models for each city using the collection of audio tracks
extracted from each city. A video is defined to belong to a city when it is in a 50km
radius of the geographical city center. We then tested the audio tracks extracted
from the test videos against the trained models and picked the city with the highest
likelihood. For comparability, we converted the city labels to the (latitude, longitude)
formatwith the geo-coordinates of the center of the city. Note, that this creates a slight
disadvantage for the machine.
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9.5.2 Visual Location Estimation

In order to utilize the visual content of the video for location estimation, we reduce
location estimation to an image retrieval problem, assuming that similar images
mean similar locations, as in [7]. We used several visual descriptors extracted from
sample frames of both query and training videos along with the images given as
the Placing Task dataset and ran a k-nearest neighbor search on the training dataset
to find the video frame or an image that is most similar. We used Fuzzy Color and
Texture Histogram (FCTH) [2], CEDD (Color Edge Directivity Descriptor) [1], and
Tamura [20] visual descriptors that were given as a part of the Placing Task dataset.
In addition to these descriptors, we extracted Gist features [16] as it was shown
to be very effective at scene recognition in [7]. Weighted linear combination of
distances was used as the final distance between frames. The scaling of the weights
was learned by using a small sample of the training dataset and normalizing the
individual distance distributions so that each the standard deviation of each of them
would be similar. We used L2 norm to compare the combination of descriptors and
used 1-nearest neighbor matching between the closest pre-extracted frame to the
temporal mid-point of a query video and all photos and frames from the videos in the
training dataset. In order to handle the large amounts of development data efficiently,
we split the reference data set into chunks of 100,000 images, ran 1-NN in parallel on
each subset to get intermediate results, and ran 1-NN once again on the intermediate
results to get the final nearest neighbor. We used an approximate nearest neighbor
library [15] for the experiment.

While videos with soundtrack were shown to the crowd, due to data sparsity, our
comparison system did not use the acoustic modality and relied solely on the visual
modality.

9.5.3 Multimodal Location Estimation

To integrate textual and visual data, we combined the visual search method with
the system reported in [3]. Due to data sparsity, again, while the soundtrack was
available to humans, the acoustic modality was not used. The approach based on
graphical models is summarized as follows.

Graphical models provide an efficient representation of dependencies amongst
different randomvariables andhave been extensively studied in the statistical learning
theory community [21]. The random variables in our setup are the geo-locations of
the query videos that need to be estimated. We treat the textual tags as observed
random variables that are probabilistically related to the geo-location of that video.
Figure9.4 illustrates the idea. The goal is to obtain the best estimate of the unobserved
random variables (locations of the query videos) given all the observed variables.
We use graphical models to characterize the dependencies amongst the different
random variables and use efficient message-passing algorithms to obtain the desired
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Fig. 9.4 A theoretic viewpoint of the geo-tagging problem. Figure is from [4]

estimates. In order to obtain a graphical model representation for our problem setup,
we model the joint distribution of the query video locations given the observed
data. We use a simplistic conditional dependency model for the random variables as
described below. Each node in our graphical model corresponds to a query video and
the associated random variable is the geo-location of that query video. Intuitively,
if two images are nearby, then they should be connected by an edge since their
locations are highly correlated. The problem is that we do not know the geo-locations
a priori. However, given that textual tags are strongly correlated to the geo-locations,
a common textual tag between two images is a good indication of the proximity of
geo-locations. Hence, we will build the graphical model by having an edge between
two nodes if and only if the two query videos have at least one common textual tag.
Note that this textual tag need not appear in the training dataset.

Let xi be the geo-location of the i th video and {tk
i }ni

k=1 be the set of ni tags
associated with this video. Based on our model, the joint probability distribution
factorizes as follows:

p(x1, ...., xN |{tk
1 }, ....., {tk

N }) ∝
∏
i∈V

ψ(xi |{tk
i })

∏
(i, j)∈E

ψ(xi , x j |{tk
i }, {tk

j }).

We now need to model the node and edge potential functions. Given the training
data, we fit a Gaussian Mixture Model (GMM) for the distribution of the location
given a particular tag t , i.e., p(x |t). The intuition is that tags usually correspond to one
or more specific locations and the distribution is multimodal (e.g., the tag “washing-
ton” can refer to theState of Washington orWashingtonD.C., amongother locations).
To estimate the parameters of the GMM, we use an algorithm based on Expectation
Maximization that adaptively chooses the number of components for different tags
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using a likelihood criterion. Although distribution of the locations given multiple
tags is not independent, for this experiment, we start with a naive assumption that
different tags are conditionally independent. We take the node potential as follows,
ψ(xi ) ∝ ∏ni

k=1 p(xi |tk
i ). For the potential functions, ψ(xi , x j |{tk

i }, {tk
j }), we use a

very simple model. Intuitively, if the common tag between two query videos i and j
occurs too frequently either in the test set or the training set, that tag is most likely a
common word like “video” or “photo” which does not really encode any information
about the geographic closeness of the two videos. In this case, we assume that the
edge potential is zero (drop edge (i, j)) whenever the number of occurrences of the
tag is above a threshold. When the occurrence of the common tag is less frequent,
then it is most likely that the geographic locations are very close to each other and
we model the potential function as an indicator function:

ψ(xi , x j |{tk
i }, {tk

j }) =
{
1 if xi = x j ,

0 otherwise.
(9.3)

This model is a hard-threshold model and we can clearly use a soft-version wherein
the weights on the edges for the potential functions are appropriately chosen.

Further, we propose the following simplification, which leads to analytically
tractable expressions for the potential functions and message updates. Given that
for many of the tags, the GMMwill have one strong mixture component, the distrib-
ution ψ(xi ) can be approximated by a Gaussian distribution with the mean (μ̃i ) and
variance (σ̃ 2

i ) given by:

(μ̃i , σ̃
2
i ) =

⎛
⎜⎜⎜⎝

∑ni

k=1

1

σ k2
i

μk
i

∑ni

k=1

1

σ k2
i

,
1∑ni

k=1

1

σ k2
i

⎞
⎟⎟⎟⎠ , (9.4)

where μk
i and σ k2

i are the mean and variance of the mixture component with the
largest weight of the distribution p(xi |tk

i ). Under this assumption, the iterations of
the sum-product algorithm take on the following simplistic form. Node i at iteration
m, updates its location estimate (μ̂i (m)) and variance (σ̂ 2

i (m)) as follows:

μ̂i (m) =

1
σ̃ 2

i
μ̃i +

∑
j∈N (i)

1

σ̂ 2
j (m − 1)

μ̂ j (m − 1)

1
σ̃ 2

i
+

∑
j∈N (i)

1

σ̂ 2
j (m − 1)

, (9.5)

σ̂ 2
i (m) = 1

1
σ̃ 2

i
+

∑
j∈N (i)

1

σ̂ 2
j (m − 1)

. (9.6)
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The location estimate for the i th query video x̂i is taken to be μ̂i (m) at the end of
m iterations, or when the algorithm has converged. The variance σ̂ 2

i (m) provides a
confidence metric on the location estimate.

So far, only the textual features are used to estimate the location. We performed
the same visual search described in Sect. 9.5.2 around the location estimate μ̂i (m)

with the search boundary set dynamically according to the variance σ̂ 2
i (m). The

intuition is that more we are certain about the location estimate from the graphical
framework, we search a narrower range for similar images. Thus, if the variance is
low, the search boundary would be set low as well, and vice versa. Since the visual
search was limited to much smaller number of images and video frames dynamically
adjusted from the confidence of the textual-based location estimate, the results were
improved over searching naively across thewhole training dataset or searchingwithin
the fixed range from the text-based location estimate.

All of the algorithms described above, except for the acoustic system that seems
to be unique, achieved among the highest scores in the MediaEval 2012 evaluation
and we therefore consider them a state-of-the-art machine baseline.

9.6 Results

To evaluate the performance of both the online workers and the machine, the geo-
desic distance between the ground truth coordinates and those of the outputs from
participants or the machine, respectively, are compared. To take into account the
geographic nature of the evaluation, the Haversine [17] distance is used.

Figure9.5 shows the performance of humans versus the machine given three dif-
ferent combinations of modalities: audio, audio+ visual, and audio+ visual+ text.
Humanperformancewasmeasured byhaving three different qualifiedworkers redun-
dantly locate the same video. A total number of 1,000 geo-tagged videos were pre-
sented in the three different forms (as discussed in Sect. 9.4), resulting in a total
number of 9,000 experiments. The results of the qualification experiments are not
included in this chart. To obtain a conservative baseline for this chart, the best answer
out of the 3 was picked. For representing machine performance, we used the system
as described in Sect. 9.5 based on the combination of media tested.

Fig. 9.5 The human baseline of location estimation versus current stat-of-the-art algorithms on all
modalities (audio, audio+visual, and audio+ visual+ text). Figure is from [4]



9 Human Versus Machine: Establishing a Human Baseline . . . 165

Overall, humans are better at this task than machines. However, in the very accu-
rate (below 50m) region, current algorithms outperform humans by about a 12%
margin (number of correctly located videos). The difference between the algorithm
and human intelligence is quite low though, since overall only 59% of the videos are
located more accurately by the human than by the algorithm when all modalities are
utilized. An unqualified worker base would most certainly have resulted in machine
dominance of this task. As a control, choosing the second-best of the three results,
resulted in the humans being less accurate than the algorithm in 60% of the videos.
Both the machine and humans do better once more modalities are available. Using
only audio, the machine was better for only 16.4% of the videos. In the visual case,
the machine was only better in 25.5% of the videos.

We qualify the results in the following section.

9.7 Discussion

In this section, we analyze the cases where humans were successful in inferring
location while the machine failed and vice versa. We also investigate the videos
where humans and computers have both failed to infer location. The threshold for
determining the “success” and “failure” was set differently for each of the modalities
given. We were more generous when only the audio was given, as it is much more
difficult than the two other cases.

9.7.1 Machine Versus Human Using only Audio

For audio only experiments, the threshold to be considered a successful estimate was
set at 150km, and the failure threshold was set at 1,000km.

9.7.1.1 When Humans Are Better

Out of 1,000 audio-only test videos, there were 62 cases in which the audio provided
enough information for humans to infer location while the machines failed. Close
analysis of all of these audio tracks revealed that the cases where humans were better
than machines can be categorized into the following three classes:

1. Humans were able to identify location based on the kind of language spoken or
the distinctive accent or variation of the speakers in the video. With only this
information at hand and no other clues, human annotators picked the capital city
of the country or region where that language is mainly spoken or was originally
from (Paris for French, Glasgow for Scottish accented English, London for British
accented English, Lisbon for Portuguese). We have no way to investigate whether
the workers were able to use any additional information from understanding the
contents of the speech.
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2. Humans were able to pick up keywords from the speech that they were able
to understand either entirely or at least in part providing a clue sufficient to
estimate the location. For example, a Finnish singer saying, “Hello, Helsinki!”
at the opening of a concert was the only understandable portion for people who
don’t speak Finnish, but this is a sufficient clue for estimating the location.

3. Humans were also able to infer location information from the context of the text
spoken. In one video, the speech contained the keywords “California,” “grapes,”
“harvest,” and “wine,” which could be inferred to be in the Napa Valley using a
Google search or geographical knowledge.

On the machine side, the first category of videos could be localized with an audio-
based language or dialect identification system. The second category of videos could
be localized as if the textual metadata were given using the keywords extracted from
the transcript of the speech obtained from passing the audio track to an automatic
speech recognition system. The major challenge would be to deal with the noisy
transcript from the “wild” audio. The third kind of inference is the most difficult.

9.7.1.2 When Machines Are Better

While humans were in general better at the task using only the soundtrack, there were
10 cases when machines did reasonably well (estimating location under 100km,
which is the city-level boundary used for the audio-based approach) while all of
the human annotators failed. One notable finding from the analysis was that three
of these videos were from Prague, CZ. All three videos were from different users
and contained different scenes and events, however, a close inspection of the audio
revealed that three of the videos contained a musical noise in the background. Also,
two of the training videos used to train the model for the city of Prague had music
playing in the background. We believe that our city model from the i-vector system
picked up the common musical chords that are often played in the touristy locations
in Prague.

The system also gave the highest score to Tokyo for a video that shows the
Shinkansen train leaving from Tokyo station. Similarly with the above example, we
believe that the i-vector system has learned the very specific sound of the Shinkansen
train track.

These results are good news for automatic approaches: they show that machine
learning approaches can exploit very specific sounds that are hard to spot for humans
and use them for location matching.

9.7.1.3 When Both Fail

When a video is edited and the audio track is altered such as when its dubbed with
backgroundmusic, or if there’s no audible speech, both humans andmachines usually
failed. However, human workers did tend to converge on certain locations for the
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audio tracks that can be inferred to be a stereotype of a broader category of locations
such as “beach,” “fireworks,” or “farm.” For example, for beaches, all three human
annotators picked a beach in Los Angeles, CA when the audio track contained the
sound of sea gull and the sound of breaking waves, whereas the ground truth was a
beach in Liverpool, UK. Two of the annotators picked New York for the audio track
that contained the sound of fireworks.

This scheme is actually applicable to machine learning as well. For example,
the machine could be trained to classify the scene into a broader category to aid in
the estimation of location. Classifying the scene of a beach at night could benefit
from using audio as the visual features would not work well due to poor lighting
conditions.

9.7.2 Machine Versus Human Using Audio and Video

With the added visual feature, bothmachines and humanswere able to getmuchbetter
results than using audio alone. For these experiments, the threshold to be considered
a successful estimation was set at 50km, and the failure was set at 1,000km. We
excluded caseswhere audio-only had already given a sufficient clue for humans to get
below the 50km error range as we could not independently evaluate the effectiveness
of the visual feature. We also investigated cases where the audio and visual features
complement each other whereas only one modality would have failed.

9.7.2.1 When Humans Are Better

In 179 cases, humans were better than machines. We could separate out about four
classes.

1. The majority of cases where human workers perform extremely well (getting
under 5kmor even100merror) belong to the class that contain textual information
in the video. These can be in the form of captions added by the user, signs, or
even messages written on buildings or machinery in the video. This category of
videos could possibly be located with a video OCR system that extracts textual
information.

2. When the visual and audio modalities complement each other but when used
separately are less effective, humans are usually better. In otherwords,multimodal
integration in machines is not yet successful. For example, one video showed a
TV broadcast of an American Football game with the name of the team and the
score shown on the screen. The uploader makes a cheering sound as the game
ends and the all three human workers inferred that the uploader is a resident of
the winning team’s region, which is true.

3. When the scene contains a famous landmark humans perform very well. How-
ever, our location estimation system was not specifically trained to recognize
landmarks.
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4. The atmosphere and context of the scene can be understood by the humanworkers.
For instance, a video taken from a moving car shows the clothing style of the
people on the street, the status of the road, and the shape of buildings. In one
particular case, all three human workers inferred from this collected information
that this could be a specific rural town in India, which was in fact was the right
answer.

We did not find reasonable evidence that temporal information of the visual fea-
tures impacted the location inference of human workers.

9.7.2.2 When Machines Are Better

We found 81 cases where the machine was better than the humans using only visual
features.Most of these cases consisted of specific tourist spotswhere themachine had
many training videos the locations are not well known to a lot of people. For example,
all three human workers failed to recognize the foggy Machu Picchu (mislabeled as
pyramids in Mexico) or a mountain scene of Patagonia (mislabeled as Himalaya or
Canadian Rockies).

9.7.2.3 When Both Fail

Most of the cases where both humans and machines failed was when videos were
taken indoors such as the inside of a night club (poor lighting, poor audio), videos
of babies in a house, and so on. Other cases were some generic scenes such as an
unpopular mountain, outskirts of large cities with no landmarks or signs, etc.

9.7.3 Machine Versus Human Using All Modalities

The threshold for success in this case is 5km as the textual information is very
effective at allowing inference of location for both humans and the machine. The
threshold for failure is set at 1,000km. In 39 cases, the machine achieved less than
5km error while all three qualified human annotators failed to estimate the location
with an error of more than 1,000km. For the opposite case where the human does
better than the machine, we found 162 cases.

9.7.3.1 When Humans Are Better

In 162 cases, humanswere successful at picking a correct locationwhile themachines
failed. Many of the errors were from the system failing to pick up a single keyword
that represents the location within the list of tags.
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1. We believe the critical advantage in some of these 162 cases was from the mis-
spelling of a tag or that the tag was written in a foreign language (which was
not included in the training). Human locators did not have problems with the
misspelled words.

2. The bias in the distribution of the training dataset results from the failure of the
system to correctly process keywords if they were not seen in the training dataset.
Although our system tries to address the problem of sparsity using the graphical
framework, it is still bound by the quantity and quality of the data in both the
training and test sets. The use of semantic computing-based approaches as done
in [11] can be an effective solution in these cases.

9.7.3.2 When Machines Are Better

1. Some of the videos contained multiple tags that were not helpful in inferring
location but were repeatedly seen in other videos in the training dataset. For
example, “iphone, 3gs, iphone3gs” does not have a specific meaning related to
the location in one of the test videos. However, our system was able to pick up
the repeated common appearance of these tags in the training data and was able
to estimate the location under 0.5km error. This is due to similar users using the
same “language model” when tagging their videos. Keep in mind that test and
training set had different sets of users.

2. Humans failed to pick up clues from combination of words when too many tags
were given, whereas themachinewas able to implicitly incorporate n-grams using
the graphical framework.

3. Language barrier: In some cases, the tagswerewritten in a foreign language (not in
the training dataset).Worker populations onAmazonMechanical Turk aremostly
English-based, thus the presence of non-English tags presents a language barrier.
Some human workers managed to get over this by using translation services such
as Google Translate.

9.7.3.3 When Both Fail

There were 26 cases where both the machine as well as all humans failed to get
a location even with all possible sources of information present. This is expected
because sometimes there are just no useful cues to estimate location. For example, a
scene which is a closeup with no distinguishable sounds, and no textual description
to indicate location. In the end, wewere surprised though that only 2.5% of all videos
fell into this category (where the location was not estimated with under 1,000km
accuracy by either the human or the machine). This indicates a high growth potential
for future location estimation research.
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9.8 Conclusion and Future Work

In this article, we establish a human baseline for multimodal location estimation
of random consumer-produced videos with textual descriptions. Even though algo-
rithms work on low-level statistics, we show that humans outperform the algorithm
sometimes and in other cases the algorithm outperforms humans. The difference
between human performance and algorithmic performance is so close that we spec-
ulate that in a relatively short time, algorithms will become better than the human
baseline. Surprisingly enough, only about 2.5% of the videos could not be located
at all. This suggests a huge potential for future research in the field—even though
for some of the videos, the algorithm would already pass the “Turing test" as it was
already better than humans for 41% of the videos. The analysis of human versus
machine errors suggests complementarity, which implies future work might be very
successful when concentrating on interactive systems. For example, for humans the
acoustic modality works quite well when language and speech content can be picked
up.Machines are better at picking up specific sounds that might be the fingerprint of a
location. Similarly, in the visual domain, humans are very good at localization based
on written text, signs, architecture, and vehicle styles while machines are very good
at finding specific locations that appear often enough in the training data. Humans
can remember or search for specific locations based on context, while machines can
pick up patterns of tags or textual descriptions that indicate the location of a spe-
cific social group unknown to most humans. In summary, all three modalities (audio,
video, and text) are very powerful at determining location both for humans and the
machine, even though recent researchmostly has concentrated on text-based systems
with the aid of visual information. Future research on location estimation might gain
improved results from including optical character recognition and sign interpretation
as well as language identification and language-independent keyword spotting. The
use of semantic information fromGazetteers and other knowledge bases will be very
helpful for locations with limited training data.
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Chapter 10
Personalized Travel Navigation
and Photo-Shooting Navigation
Using Large-Scale Geotags

T. Yamasaki, A. Gallagher, T. Chen and K. Aizawa

Abstract In this chapter, a geotag-based inter/intra-city travel and photo-shooting
navigation system that considers both the personal preference and the seasonal/
temporal popularity is presented. For the inter-city travel navigation, similarity
among users is efficiently calculated by combining our visit pattern similarity and
photo shooting pattern similarity. Accurate intra-city travel navigation is achieved by
incorporating the seasonal and temporal information into a Markov model. Photo-
shooting navigation by using large-scale geotagged photos is also presented. The
effectiveness of the proposed algorithms have been experimentally demonstrated by
using more than millions of geo-tags and photos downloaded from Flickr.

10.1 Introduction

Travel planning is fun but sometimes troublesome especially when the travelers are
not familiar with the city. Therefore, we often refer to travel guidebooks such as
Verlag Karl Baedeker,1 the Michelin Guide,2 and Lonely Planet.3

1 http://www.baedeker.com.
2 http://www.michelintravel.com.
3 http://www.lonelyplanet.com.
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In the Internet era, we can also check user-generated travel assistance WEB sites
such as Yelp,4 TripAdvisor5 and Yahoo! Travel.6 However, most of the travel guides
mentioned above only provide a ranking list of the landmarks. Namely, they do not
provide how (in what order) we should travel around those landmarks and they do
not consider the travelers’ personal preference, either. In addition, it is often difficult
to know detailed travel information such as what the best season or the best time of
the day is to visit a certain landmark.

In recent years, travel recommendation and navigation using large-scale user-
generated photos has been a hot topic because such photos contain rich meta data such
as tags, time, and geo-locations (or geo-tags). Although there are also a lot of photos
without such meta data, location of the photos could be estimated using the location
estimation techniques in [9, 13, 15, 24, 32, 34] and those introduced in this book.

In this chapter, we propose both travel and photo-shooting navigation based on sta-
tistical analysis of such large scale user-generated photos and accompanying meta
data. As a result, we can navigate users considering the personal preference and
seasonal/temporal information. For the inter-city navigation, collaborative filtering
based similar traveler extraction is presented. The similarity among the travelers is
calculated by considering several user behavior patterns such as visiting patterns
and photo-shooting patterns. For the intra-city travel navigation, the Markov-based
behavior model considering seasonal/temporal information is demonstrated. Regard-
ing the photo-shooting navigation, “where to go” and “how to shoot” is recommended
based on the location-specified similar image retrieval.

The experiments for the travel navigation were conducted using 6.2 million geo-
tag data from 21 famous cities and parks in the world collected from Flickr.7 Exper-
imental results show that the proposed model drastically outperforms the previous
travel navigation systems. In addition, we demonstrate some photo-shooting naviga-
tion examples using 2.2 million geo-tags and photos in three cities.

The rest of this chapter is organized as follows. Section 10.2 reviews recent related
works. The algorithms for our navigation systems are summarized in Sects. 10.3 and
10.4. The experimental results are presented in Sect. 10.5, followed by concluding
remarks in Sect. 10.6.

10.2 Related Works

10.2.1 Travel Navigation

GPS-embedded cell phones and cameras and the popularity of photo sharing sites
have enabled us to analyze how people travel around the globe. Geotagged

4 http://www.yelp.com.
5 http://www.tripadvisor.com.
6 http://travel.yahoo.com.
7 www.flickr.com.

http://www.yelp.com
http://www.tripadvisor.com
http://travel.yahoo.com
www.flickr.com
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photos are the rich source of information because they contain not only spatial and
temporal information of the users but also text tags. It is also possible to analyze the
preference of the users by analyzing the number of pictures taken at certain locations.
In other words, the user generated geo-tag information can be regarded as human
sensors [14]. For instance, it has been demonstrated that Italian travelers and Amer-
ican travelers tend to take different travel routes in Rome [14]. This investigation
shows the potential of analysis of the large-scale geotagged data.

By analyzing the geo-tags and the text tags, it is possible to automatically extract
landmarks of the city [7, 12, 21, 31, 38], rank the landmarks [18], detect particular
events [21, 30], detect object of interest [30], extract representative photos of the
landmarks [12, 20, 21], detect panoramic view spots [29], and so on.

Travel route recommendation is one of such applications. Ying et al. [37] recom-
mended travel routes depending on how many hours users can spend in the landmark
or the city. [10] summarized the geo-tags of Flickr photos and solved the intra-city
travel recommendation as a orienteering problem. Kurashima et al. [22] proposed a
probabilistic behavior model by combining topic models and Markov models. Per-
sonal preference was implicitly included in the topic model. The system could also
suggest travel routes considering user-specified time periods. Arase et al. [2] catego-
rized the geotagged photos into six trip patterns such as landmark visiting, enjoying
nature, daily trips in local area, and so on. Users could browse typical photos of the
six categories to decide where to go. Cheng et al. [8] analyzed faces in the photos and
showed that the travelers’ attributes such as gender, age, and race can facilitate better
travel route recommendation. Such techniques can also be combined with automatic
travel guide generation systems [6] and drive navigation systems considering the
scenic attractiveness [39].

There are only a few approaches on inter-city travel recommendation as far as
we know [11, 19, 26, 28]. The inter-city recommendation is to recommend places
to visit in the city A to those who have traveled in the city B (but never been to the
city A). [11, 26] analyzed travelers’ similarity by collaborative filtering. Popescu
et al. [28] calculated the travel pattern similarity between users based on the kernel
convolution using the raw geo-tag data. Jiang et al. [19] introduced more features
such as similarity of the tags and visual similarity of the photos between users.

10.2.2 Photo-Shooting Navigation

Obtaining good photos as a memory of the travel has been an important but at the same
time difficult problem for us. In fact, we can find a lot of photo-shooting guidebooks
in bookstores.

Attractiveness enhancement of photos is one of the solutions and has been one
of the main topics of image processing and computer graphics such energy-based
impaing/retouching [3, 4, 33], and compositing [1]. Example-based processing using
large-scale photos on the Internet [16] is another hot topic in image manipulation.
Photo quality assessment [5, 36] and photo editing based on the quality measure
[23, 25, 27] can also be used for obtaining good photos.
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However, these approaches can be used for post-processing photos, only after
coming back from the travel. On the other hand, navigating “where to go” and “how
to take” has not been investigated deeply so far.

10.2.3 Contribution of this Work

The contribution of this work is as follows: (1) For the inter-city recommendation,
similarity between users is calculated by considering visit pattern similarity, photo
shooting pattern similarity and photo preference pattern similarity. In addition, sea-
sonal information is considered. (2) For the intra-city recommendation, seasonal and
temporal information is considered and incorporated into the Markov model for better
travel recommendation. (3) Photo-shooting navigation such as where to go and how
to shoot in order to obtain good photos is addressed by using large-scale geotagged
photos on the Internet. Note that this chapter is the extended version of [35].

10.3 Travel Navigation

10.3.1 Inter-city Travel Navigation

The purpose of the inter-city recommendation is to use the user’s previous travel
patterns in certain cities in order to recommend “must-see” landmarks when the
user is visiting another city. The assumption is that the travelers who had similar
travel patterns with the current user in a certain city would also have similar travel
patterns in another city. The user’s previous travel patterns are useful for the inter-city
recommendation because the travel patterns implicitly indicates the user’s preference.
In this chapter, collaborative filtering based approach is used. Here, let us assume
that the user has visited the city c previously and wants to visit the city d. In the
collaborative filter, travelers who have traveled both in the cities c and d are collected.
And those who had similar travel patterns in the city c with the current user are
extracted. Then, the landmarks in the city d are re-ranked by their travel patterns.
Therefore, how to calculate the similarity between users is a key issue. In this chapter,
two similarity measures between users are defined as follows.

Visit pattern similarity
The visit pattern similarity considers whether the user has visited certain landmarks
only. Therefore, the vector for the user i in the city c is defined as:

vc
i = (vc

i1, vc
i2, . . . , vc

i Lc ) (10.1)

where Lc is the number of landmarks in the city c. vc
il = 1 if the user has visited the

landmark l and vc
il = 0 if not. Then, the similarity between the user i and the user j
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is defined as the cosine similarity:
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. (10.2)

Photo shooting pattern similarity
The photo shooting pattern considers how the user liked the landmarks, which is
modeled as a function of the number of pictures taken at the landmarks:

pc
i = (pc

i1, pc
i2, . . . , pc

i Lc ) (10.3)
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il = log(N c

il + 1) (10.4)

where N c
il is the number of photos at the landmark l in the city c taken by the user i .

The similarity is calculated as:
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The total similarity between the user i and j is calculated by the weighted sum
of the visit pattern similarity and the photo shooting pattern similarity:
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p(p

c
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j ) (10.6)

where uc
i represents the user i in the city c.

In this chapter, the travelers whose total similarities are greater than a certain
threshold Simth are regarded as similar travelers. After extracting the similar travelers
by Eq. 10.6 from the city c, the score for each landmark in the city d is calculated as
follows:

Scored
k,s =

∑
m

(
αvd

m,s + (1 − α)pd
m,s

)
(10.7)

where Scored
k,s represents the score for the kth landmark in the city d, which con-

siders the seasonal popularity. vd
m,s and pd

m,s represent the visit pattern score and the
preference pattern score of the mth user in the city d in the season s, respectively.
Here, the users are those who had the similarity greater than Simth with the user i
in the city c as discussed above. Then, the ranking of the landmarks in the city d
is calculated based on Eq. 10.7. Note that the score for the landmarks in Eq. 10.7
is dependent on the user and the season. Therefore, the landmarks to visit in the
city d are recommended by analyzing similar travelers’ travel pattern and seasonal
attractiveness.

Different from intra-city recommendation, the temporal information is not con-
sidered because the inter-city recommendation is for generating a list of landmarks



178 T. Yamasaki et al.

to visit, not the order of landmarks to visit. Once the user actually starts traveling in
the city d, the route can be recommended by the intra-city recommendation.

10.3.2 Intra-city Travel Navigation

Let us assume that we are traveling in NYC. For instance, Rockefeller center is one
of the most popular landmarks in NYC, but it becomes particularly popular at night
in winter. Because people want to take photos of the Christmas tree, the statue of
Prometheus with the ice skate link, and clear night view from the top of the rock. It
is also recommended to visit the statue of liberty before Rockefeller center because
the statue of liberty is closed at night. These are just intuitive examples of how
our algorithm ca help users to find the most appealing landmark in the city. Small
festivals or events are not usually introduced in travel guidebooks. Some famous
buildings might be closed at night but it might be possible to take pictures from
outside. Therefore, a travel recommendation system that can automatically extract
temporal/seasonal popularity is required to handle these issues. And also, the system
can give us an important information when to visit to enjoy the landmark the best.

Similar to Cheng’s model [8], we generate a touring model using a Markov model.
Instead of using users’ profile such as gender and race as in [8], we introduce seasonal
and temporal information (Su).

L∗ = arg max
L j

P(L j |Su, Li ) (10.8)

Su ∈ (s, t) (10.9)

where s is the season and t is the time of the day. Namely, the next destination is
dependent only on the current user’s location and the other landmarks the user pre-
viously has visited do not matter. This model is practical because it can consider the
“temporal distance”. For instance, even when the landmarks A and B are geomet-
rically far away, there might be a public transportation and would take only a few
minutes. In such a case, the transition probability from the landmark A to the land-
mark B would become high. Although the Markov model can suggest only the next
place to visit, it can be used for travel route recommendation because we can repeat
the recommendation by eliminating already visited landmarks. In fact, the Markov
model-based approaches are often used for the travel recommendation as in [8, 22]

The simplest approach is to separate the geotagged data into different seasons and
time ranges and generate the transition probability matrices from the current location
Li to the next location L j . This transition model works fine if the number of travelers
in the city is large enough such as in NYC. On the other hand, in smaller cities, the
transition matrix tends to be sparse and might include only a few (or no) travelers in
a particular season and time. For instance, when we divide the data into four seasons
and four time spans (i.e., dividing a day into 6 h bins: morning, afternoon, night, late
at night), the travelers would be divided into 16 different transition matrices, which
would prevent proper recommendation.
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Another solution is to use the Bayes’ theorem as in [8]. The probability that the
location L j to be recommended when the user u with the seasonal and temporal
information Su is at the location Li is described as:

P(Li→ j |Su) = P(Li→ j , Su)

P(Su)
(10.10)

= P(Li→ j )P(Su |Li→ j )

P(Su)
(10.11)

= P(Li )P(L j |Li )P(Su |Li→ j )

P(Su)
(10.12)

Therefore, the Eq. (10.8) will become

L∗ = arg max
L j

P(L j |Li )P(Su |Li→ j ) (10.13)

because P(Li ) and P(Su) are independent of L j . If we assume the independence
between s and t , the joint probability P(Su |Li→ j ) can be rewritten as:

L∗ = arg max
L j

P(L j |Li )P(s|Li→ j )P(t |Li→ j ) (10.14)

P(L j |Li ), P(s|Li→ j ), and P(t |Li→ j ) can be estimated from the training data:

P(L j |Li ) = count(Li→ j )∑
j∈L count(Li→ j )

(10.15)

P(s or t |Li→ j ) = count(Li→ j ∩ Su = s or t)

count(Li→ j )
(10.16)

where count(Li→ j ) the total number of travelers who traveled from the location Li

to L j , and count(Li→ j ∩ Su = s or t) is that in a specific season and time of the day.
The model we propose in this chapter is a naive transition model:

L∗ = arg max
L j

P(L j |Li )P(s|Li→ j )P(t |Li→ j ) (10.17)

Therefore, the the transition model is divided into a general model, seasonal transition
model, and a temporal transition model.

Note that our seasonal and temporal modeling is orthogonal to the previous
Markov model-based approaches [8, 22] and thus can be integrated into them, as well.

10.4 Photo-Shooting Navigation

The travel guides usually tell us what we can see when we visit the landmarks. On
the other hand, when we want to take photos of landscape of the city, for instance,
we need to look for such landmarks by reviewing all the landmarks in the guidebook.
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In addition, taking “good” photos is another difficult problem for the travelers. There-
fore, we propose a photo-shooting recommendation system that can navigate the users
where to go and how to take in order to shoot photos they really want to take.

Assume that the user is now in the city c has a landscape photo which was either
taken by the user himself/herself or retrieved from the Internet by the keyword search.
Here, we do not care about where the landscape photo was taken (It might have been
taken in the city c or in another city). Then, we extract the GIST descriptor from the
landscape image. GIST descriptors are extracted for the photos taken in the city c,
as well. Since the GIST descriptor is good at retrieving similar scene/composition
images, we can retrieve similar landscape images taken in the city c and show the
locations of the retrieved photos on the map. This scenario is applied not only to
landscape photos, but also to buildings, streets, crowds, nature, and so on. In this
manner, the system can navigate where to go to take photos of a certain taste.

The example above is photo-to-photo-similarity-based recommendation. Simi-
larly, user-to-user similarity-based recommendation can also be achieved. When the
user inputs several photos they like, regardless of where they were taken, we can
retrieve the users who have taken similar photos in the city c and visualize where
such similar users visit and what kind of pictures they take.

It sometimes happens that the photos we have taken at landmarks are not as good
as those on the guidebooks. Therefore, we also present a “how to shoot” navigation
system using large-scale photos on the Internet. Once the user’s location is identified,
the photos taken around that area are retrieved and sorted by the order of photo
attractiveness. To evaluate such attractiveness, we use a model in [17]. Reference
[17] demonstrated that the attractiveness of the photos can be roughly estimated as
a function of the number of views, the number of favorites, and the number of days
the photo is reveled on the Internet as follows:

(Attractiveness score) = (# of favorites)2

(# of views)
+ γ ((# of views) − m) (10.18)

m = (average number of views of the photos uploaded on the same day) (10.19)

The advantage of this model is that the attractiveness score can be estimated only from
the meta data. When the users want to use more accurate attractiveness evaluation,
image-based approaches introduced in 10.2.2 can be used.

10.5 Experimental Results

10.5.1 Experimental Setup

The datasets used in the travel navigation were collected by crawling Flickr using
its public API by ourselves. The cities crawled were 21 cities and parks in the
world (Boston, Chicago, New York, Philadelphia, San Diego, San Francisco, Seattle,
Toronto, Washington D.C., Yosemite, Yellowstone, Niagara, Honolulu, Las Vegas,
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Taipei, Dallas, Praha, Kyoto, Vancouver, Firenze, Brisbane). All photos were taken
between January 1, 2004 and June 31, 2011. The geo-tag information was clustered by
using mean shift by following previous papers [12, 22] to find landmarks effectively.
The bandwidth was set as 100m. The landmarks with less than 100 unique users
were eliminated. As a result, the data consists of 6,253,865 photographs and their
associated meta data, which were taken by 219,390 unique users.

We evaluated the performance by using all the landmarks, the top 25 landmarks,
and the top 10 landmarks. For instance, if the user traveled

L5
1 → L24

2 → L1
3 → · · · , (10.20)

and if we look at only the top 10 land marks, the travel route is regarded as

L5
1 → L1

2 → · · · , (10.21)

where Lk
i means the popularity of the i th location is ranked at the kth place. When a

user is traveling from the landmark A to the landmark B, the user tends to visit other
landmarks on the way to B even if they are not very popular (i.e., Charging Bull on
the way from Ground Zero to Battery park in New York). This process neglects such
minor landmarks.

The recommendation was evaluated by the leave-one-user-out method. Namely,
the recommendation model was generated for each user using all the other travelers’
history in each city.

For photo-shooting navigation, we have collected 2.2 million geotagged photos
from Flickr, which were taken in New York, Paris, and Tokyo. The photos were
taken from January 1, 2008 to December 31, 2012. Since it is difficult to evaluate
the photo-shooting recommendation accuracy, only the results are shown below.

10.5.2 Inter-city Travel Navigation

For the inter-city recommendation, the users who have traveled two or more cities
(out of the 21 cities listed above) and have visited two or more landmarks in each city
were extracted. In addition, the city/park pairs that contained at least 500 travelers
were considered. As a result, 17,016 users and 36 city/park pairs were detected.

The accuracy was evaluated by the mean average precision (mAP) of the recom-
mended landmarks:

m AP = 1

Q

Q∑
q=1

APq (10.22)

APq = 1

Pq

Pq∑
p=1

p

(the order of pth hit)
(10.23)
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where Q is the number of travelers, APq is the average precision of the qth trav-
eler, and Pq is the number of landmarks the traveler q visited. Namely, the order
of landmarks to visit was not considered and only the ranking of the recommended
landmarks are evaluated. Simth and α were set to 0.1 and 0.6, respectively, in this
experiment.

The mean average precision values are shown in Fig. 10.1. Our proposed method
is compared with two baselines: the simple popularity-based recommendation, which
is generated solely from the popularity ranking, and seasonal-popularity-based rec-
ommendation, which is based on season-aware landmark popularity ranking. It is
demonstrated that our proposed inter-city recommendation model is better than the
simple popularity-based recommendation and seasonal-popularity-based recommen-
dation when top 10/25 landmarks were considered. For instance, mAP is better by
more than 0.02 when the top 10 landmarks are considered. It is observed that the
proposed model with the seasonal information is worse than that without the seasonal
information. It is because we do not have enough number of travelers in constructing
the model. It is expected that the proposed model with the seasonal information would
be improved if more travelers’ data are accumulated. On the other hand, our proposed
model gets worse than the baseline methods when we consider all the landmarks. This
is also because of the lack of the number of travelers. When we increase the dimen-
sion of the similarity pattern vector (the number of landmarks), the similarity score
would become sensitive to noise especially when the number of travelers is small.

The impact of changing Simth and α is demonstrated in Fig. 10.2. Simth should
be 0–0.2, which indicates that the similarity-based thresholding does not contribute
to better recommendation. However, we think that this is because the number of
similar travelers becomes too small when we set Simth larger. It is advised to set
α as 0.4–0.8, showing that visit pattern similarity is more informative than photo
shooting pattern similarity.

10.5.3 Intra-city Travel Navigation

For the intra-city recommendation, all the 6,253,865 geo-tags by 219,390 unique
users were used. The performance was evaluated by measuring how accurately the
system estimated the next location L j when the user was at the location Li . As
described in Sect. 10.5.1, the recommendation accuracy was calculated by the leave-
one-user-out method. Namely, one user is used as test data and the other users’ travel
history were used to build the model. In the experiment, we compared our approach
with the following probabilistic models:

• Multinomial model: predicts the next landmark based on its popularity. The most
popular landmark except for the current and already visited ones is recommended.
This model does not consider the user’s current location.

• Markov model: recommend the next landmark based on the user’s current location
using P(L j |Li ). This model considers the user’s current location but does not
consider the seasonal or temporal information.
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Fig. 10.1 Mean average precision of the inter-city recommendation: a all the landmarks, b top 25
landmarks, and c top 10 landmarks
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Fig. 10.2 Mean average precision as a function of a Simth b α. Top 10 landmarks were considered

• Seasonal/Temporal Markov model: recommend the next landmark based on the
user’s current location using P(L j , (s or t)|Li ). This joint model that considers
the user’s current location and either of the seasonal or temporal information.

• Seasonal&Temporal Markov model: recommend the next landmark based on the
user’s current location using P(L j ,s,t|Li ). This joint model that considers the
user’s current location, the seasonal information and the temporal information.

For each seasonal, temporal, and seasonal & temporal (proposed) model, two differ-
ent seasonal information (4 seasons and 12 months) and two different time divisions
(every 6 h and every 3 h) were trained and tested.

The detailed analysis of the recommendation accuracy is demonstrated in Fig. 10.3.
Although slight difference can be observed from each other, the recommendation
model considering the seasonal and temporal information always works better than
the original Markov model. It is also demonstrated that the temporal information
contributes more in the travel navigation when we look at the third to sixth columns
in the figures. In addition, our Bayesian-based model is always better than the joint
model in which the geotagged data are separated into different seasons and time
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Fig. 10.3 Detailed mean
accuracy of the next location
recommendation: a all
landmarks, b top 25
landmarks, and c top 10
landmarks
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Table 10.1 Accuracy of intra-city recommendation

Naive
Markov (%)

Their results (%) Improvement
from Markov (%)

Eastern cities in US
[22] (bw = 50m)

35.4 37.0 +1.6

Western cities in US
[22] (bw = 50m)

24.7 27.2 +2.5

New York [8]
(H(Li j ) ≥ 2)

28 28 +0.03

Naive
Markov (%)

Our results (%) Improvement
from Markov (%)

21 cities in the world
(all landmarks)

25.5 26.4 +0.9

21 cities in the world
(top 25 landmarks)

29.3 33.4 +4.1

21 cities in the world
(top 10 landmarks)

29.0 39.3 +10.3

ranges and the transition probability matrices from the current location Li to the
next location L j are generated independently from each other season and time.

Table 10.1 shows the accuracy comparison of the intra-city landmark recommen-
dation. Although the proposed model is simple, it is demonstrated that the perfor-
mance improvement is much larger than the other approaches [8, 22]. Note that
the datasets are different from each other because there is no open dataset. Cheng’s
work [8], in particular, requires that faces can be detected in the photos, therefore
they require different dataset from [22] and ours. It is also observed that the perfor-
mance becomes better when the number of landmarks to consider is smaller. This
observation does not necessarily mean that travel navigation becomes easier with
less number of landmarks to consider. In fact, if we look at the results by the naive
Markov approach, the navigation accuracies are almost all the same regardless of
the number of landmarks. This indicates that the difficulty of travel navigation is
almost independent of the number of landmarks but popular landmarks tend to have
stronger seasonal/temporal dependence in their popularity.

Two interesting examples from specific cities (New York and Taipei) are shown in
Fig. 10.4 and Table 10.2. Here, the results considering the top 25 landmarks are pre-
sented. It is shown that the recommendation accuracy is improved in both cities. The
accuracy becomes much better in New York (from 12.1 to 22.8 %) because some land-
marks are popular at a certain season or time of the day. For example, the Rockefeller
center gets more popular and the Statue of liberty gets less popular, respectively, in
winter though these landmarks are always popular in all seasons. On the other hand,
it can be observed that landmarks in Taipei have less such season or time specific
popularity, indicating that the popularities of the landmarks in Taipei are independent
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Fig. 10.4 Recommendation accuracy for specific cities: a New York b Taipei. The top 25 landmarks
were considered

Table 10.2 Accuracy of intra-city recommendation in specific cities

Naive Markov (%) Our results (%) Improvement from Markov (%)

New York 12.1 22.8 +10.7

Taipei 35.4 37.8 +2.4
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Query image

Suggested landmarks in Tokyo

Fig. 10.5 “Where to go” navigation for photo-shooting

of time and season. In fact, popular landmarks in Taipei such as Taipei 101, National
Palace Museum, etc., are indoor attractions and less sensitive to season and time.

10.5.4 Photo-Shooting Navigation

Figure 10.5 demonstrates the “where to go” navigation examples. In Fig. 10.5, a land-
scape photo taken at the Tokyo tower is used as a query and the recommended land-
marks in Paris where similar photos can be taken are displayed on the map along with
the photo examples. In Fig. 10.5, two different cherry blossoms are used as queries and
the navigation system properly suggests where to visit in order to take similar photos.

In Fig. 10.6, results of user-to-user-similarity-based navigation are shown. Here,
the user inputs three photos he/she has taken in Paris and the system retrieves the
users who have taken similar photos. In Fig. 10.6, the query images and a retrieved
user and his photos are shown. Then, the other photos that the retrieved user has taken
in Paris are displayed on the map. In this manner, the system can navigate where to
visit depending on the user’s photo-shooting styles.

Examples of the “how to shoot” navigation are demonstrated in Fig. 10.7. The
photos of the Eiffel tower in Paris and the Rockefeller center in New York with
higher attractiveness score are shown in Fig. 10.7a and b, respectively. By show-
ing such photo examples, the users can be advised how to take good photos by
themselves.
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Retrieved user who has taken similar photos to the imput (and photos taken by him/her)

(b)

Fig. 10.6 “Where to go” navigation based on similar user retrieval based on photo preference:
a query and retrieved photos and b suggested landmarks and photos

Fig. 10.7 “How to shoot” navigation: a Eiffel tower in Paris. b Rockefeller center in New York
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10.6 Conclusions

This chapter presented a personalized travel and photo-shooting navigation algo-
rithms. Our travel navigation model featuring seasonal and temporal information
can improve the recommendation accuracy better than previous approaches. It is
also possible to combine our proposed algorithm with the previous travel navigation
approaches. Experiments using more than 6.2 million geo-tag data demonstrated the
validity of our proposed algorithm. In addition, photo-shooting navigation examples
using large-scale geotagged photos have also been presented.
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