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Vol. 344.Atilla Elçi, Mamadou Tadiou Koné, and
Mehmet A. Orgun (Eds.)
Semantic Agent Systems, 2011
ISBN 978-3-642-18307-2

Vol. 345. Shi Yu, Léon-Charles Tranchevent,
Bart De Moor, and Yves Moreau
Kernel-based Data Fusion for Machine Learning, 2011
ISBN 978-3-642-19405-4

Vol. 346.Weisi Lin, Dacheng Tao, Janusz Kacprzyk, Zhu Li,
Ebroul Izquierdo, and Haohong Wang (Eds.)
Multimedia Analysis, Processing and Communications, 2011
ISBN 978-3-642-19550-1



Weisi Lin, Dacheng Tao, Janusz Kacprzyk, Zhu Li,
Ebroul Izquierdo, and Haohong Wang (Eds.)

Multimedia Analysis, Processing
and Communications

123



Dr.Weisi Lin
School of Computer Engineering
Nanyang Technological University,
Singapore 639798
E-mail: wslin@ntu.edu.sg
http://www3.ntu.edu.sg/home/wslin/

Dr. Dacheng Tao
School of Computer Engineering
Nanyang Technological University,
Singapore 639798
E-mail: dctao@ntu.edu.sg
http://www3.ntu.edu.sg/home/dctao/

Dr. Janusz Kacprzyk
Intelligent Systems Laboratory
Systems Research Institute
Polish Academy of Sciences
E-mail: Janusz.Kacprzyk@ibspan.waw.pl
http://www.ibspan.waw.pl/ kacprzyk/

Dr. Zhu Li
Department of Computing
Hong Kong Polytechnic University,
Hung Hom, Hong Kong
E-mail: zhu.li@ieee.org
http://users.eecs.northwestern.edu/ zli/

Dr. Ebroul Izquierdo
School of Electronic Engineering and
Computer Science, Queen Mary,
University of London, London, U.K.
E-mail: ebroul.izquierdo@elec.qmul.ac.uk
http://www.elec.qmul.ac.uk/mmv/people/ebroul/

Dr. Haohong Wang
TCL-Thomson Electronics
Santa Clara, California
E-mail: haohong@ieee.org
http://users.eecs.northwestern.edu/ haohong/

ISBN 978-3-642-19550-1 e-ISBN 978-3-642-19551-8

DOI 10.1007/978-3-642-19551-8

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2011923797

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



 

Preface 

The rapid advances in computing, communication and storage technologies have 
heralded a new age of explosive growth in multimedia applications, such as online 
image and video repository, mobile TV and IPTV, video on demand, interactive 
multimedia game, video blogging, and multimedia based social interaction. These 
applications open up new opportunities and present new challenges to the 
technologies in the area of multimedia computing architectures, audio/visual 
information processing, multimedia analysis and understanding, multimedia 
retrieval and mining, multimedia coding, communication and networking. During 
the recent years, considerable amounts of research activities in both industry and 
academia have been devoted to these topics and a key piece of puzzle is to 
develop novel and effective approaches in modeling and analyzing, representing 
and understanding, and encoding and distributing multimedia content, all of which 
will be the focus of this book. 

This edited book provides an excellent forum for experts around the world to 
present their newest research results, exchange latest experiences and insights, and 
explore future directions in this important and rapidly evolving field. It aims at 
increasing the synergy between academic and industry professionals working in 
the field. It focuses on the state-of-the-art research in various essential areas 
related to emerging technologies, standards and applications on analysis, 
processing, computing, and communication of multimedia information. 

The target audience of this book will be mainly researchers and engineers as 
well as graduate students working in various disciplines linked to multimedia 
analysis, processing and communications, e.g., computer vision, pattern 
recognition, information technology, image processing, and artificial intelligence. 
The book is also meant to a broader audience including practicing professionals 
working in image/video applications such as image processing, video surveillance, 
multimedia indexing and retrieval, and so on. 

Since this book comprises different algorithmic advances and applications, it 
has been organized into three parts, as outlined and introduced as follows. 

Part I: Image Processing and Analysis 

The issues related to image processing and analysis are to be discussed in the first 
eight chapters. In particular, image processing is usually referred to as the 
mathematical operations on images, generally with digital computers, in order to 
make modifications, extract certain information or perform understanding and 
retrieval. The earliest techniques, such as medical imaging, character recognition 
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and image enhancement, can be traced back to 1960s. Throughout the years, with 
the proliferation of digital cameras and the advances of computing hardware, more 
and more image processing techniques are developed, and they are attracting the 
interests of multiple research communities.  Nowadays, people are living with the 
surroundings of images and their processing.  After capturing a photo, you can 
perform many meaningful modifications like segmentation, fusion and matting.  
When photos are uploaded to Facebook, face detection and recognition technology 
can help to organize these photos. One can also easily finds images or photos he or 
she wants via content-based or text-based retrieval techniques. In this part, we 
cover image database visualization and browsing, human computer interactions in 
image retrieval, image watermarking, and sketch based face recognition, as well as 
some low level image processing techniques, e.g., image segmentation and deblur. 
In each chapter, appropriate evaluation has been included for the introduced 
techniques and their applications in multimedia services. 

Part II: Video Processing and Analysis 

We then turn to discussion about video processing and analysis in Chapters 9 to 
19. Today’s fast developments in digital media processing capabilities and 
network speeds have made the dissemination of multimedia data more rapid and 
reliable, and attracted significant research attentions to action recognition, event 
detection, and video tracking and surveillance. The big improvements in digital 
multimedia processing are beneficial to the fast and reliable production, 
processing and dissemination of large amounts of digital data. However, this can 
easily become a time consuming and cumbersome problem. Therefore, the 
automated extraction of high level information (such as when and where activities 
occur, or who and what is in a video) using low-level image and video features 
(e.g. color, texture, shape, motion) is critical for the future development of 
multimedia research. Some specific video processing and analysis techniques like 
video frames localization, video shots detection and segmentation, and activity 
localization have attracted significant attention. In this part, we focus on the 
research works on object detection/tracking in surveillance videos, human action 
recognition based on different types of features, 2D and 3D pose recovery, domain 
driven video analysis, knowledge extraction with scalable ontological networks 
for video retrieval, visual quality assessment, and video recommendation. 
Examples in real world applications and computer simulation results are also 
presented to give convincing illustrations and help the readers to achieve a deeper 
insight in the related topics. 

Part III: Communications Related Processing 

In present age of information technology, multimedia data are ubiquitous in our 
daily life and work. Thus, multimedia research has become one of the central 
issues in the relevant research and development. The rapid growth of computer 
network and communication technology has pushed forward greatly the overall 
advance of multimedia technology. The study on multimedia data compression is 
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not only important for theoretical studies but also urgently needed in practice. 
Along with the development of digital video equipment, people take photos and 
videos with better quality. Moreover, people’s continuously pursuing of better 
visual effect and experience promotes the emergence of high definition (HD) TV, 
HD video, etc. How to store and transfer these huge data becomes a critical issue 
for multimedia research. For example, when people need to share photos on the 
internet, they need a proper compression technique to maintain data quality. 
Therefore, communication related issues are important for multimedia research. In 
this part (Chapters 20 to 26), we introduce techniques related to multimedia signal 
coding, evaluation and transmission. 

This book project has brought 26 groups of active researchers together in the 
areas which we really believe in and with the technology that is expected to have 
great impact in our work and life. The preparation of this book has been a long, 
arduous and difficult task. We would like to thank all the authors for their great 
effort and dedication in preparing their quality contributions. Also, all the 
reviewers of this Springer book deserve our utmost gratitude. We have enjoyed 
the whole process, and hope that the researchers, engineers, students and other 
professionals who read this book would find it informative, useful and 
inspirational toward their own work in one way or another.   
 
 
November 2010 Weisi Lin

Dacheng Tao
Janusz Kacprzyk

Zhu Li
Ebroul Izquierdo

Haohong Wang
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Visualisation and Browsing of Image Databases

William Plant1 and Gerald Schaefer2

1 School of Engineering and Applied Science
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In this chapter we provide a comprehensive overview of the emerging field of
visualising and browsing image databases. We start with a brief introduction
to content-based image retrieval and the traditional query-by-example search
paradigm that many retrieval systems employ. We specify the problems as-
sociated with this type of interface, such as users not being able to formulate
a query due to not having a target image or concept in mind. The idea of
browsing systems is then introduced as a means to combat these issues, har-
nessing the cognitive power of the human mind in order to speed up image
retrieval. We detail common methods in which the often high-dimensional fea-
ture data extracted from images can be used to visualise image databases in
an intuitive way. Systems using dimensionality reduction techniques, such as
multi-dimensional scaling, are reviewed along with those that cluster images
using either divisive or agglomerative techniques as well as graph-based vi-
sualisations. While visualisation of an image collection is useful for providing
an overview of the contained images, it forms only part of an image database
navigation system. We therefore also present various methods provided by
these systems to allow for interactive browsing of these datasets. A further
area we explore are user studies of systems and visualisations where we look
at the different evaluations undertaken in order to test usability and compare
systems, and highlight the key findings from these studies. We conclude the
chapter with several recommendations for future work in this area.

1 Introduction

Nowadays, the majority of people possess some form of digital camera to
use in their everyday lives. Devices range from relatively low quality web
cameras, to medium range cameras integrated into mobile devices, to higher
quality cameras aimed at the average user, on to high-end cameras used

W. Lin et al. (Eds.): Multimedia Analysis, Processing & Communications, SCI 346, pp. 3–57.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



4 W. Plant and G. Schaefer

by professional photographers. Affordability of devices and storage media
coupled with increased capabilities and the ‘to hand’ availability of camera
equipment has led to a dramatic increase in the number of digital images the
average end user creates and stores.

With the reduction in digital photography costs, a shift in the attitude
towards photo taking can be observed. Users tend to take more images now
than before, particularly of the same objects or scene (e.g. from different
perspectives) [25]. This is certainly a change from the past, where one would
generally be concerned about the number of exposures left on the current
film roll or the cost of developing photographs, whereas a digital camera user
not happy with a photo can simply delete it from the camera’s memory and
images can be printed on home printers.

Personal image collections nowadays are typically in the range of hundreds
to thousands of images. The rapid increase in the number of digital images
taken by individuals has also caused an exponential growth in the number of
images available online. Social networking sites allow users to instantly share
images with friends, family or a wider community of users that also have the
ability to comment and even ‘tag’ who or what may be in an image.

Commercially, professional photography companies may store millions of
digital images in their databases [50]. These are generally manually anno-
tated image collections used by journalists from a variety of publications to
search for images suited to their particular needs. As one can imagine, the
search for any particular image in collections of either personal or commercial
magnitude can be tiresome and exhaustive. Generally, images are arranged in
a one-dimensional linear arrangement, whereby an image has no correlation
to any of its neighbours. Images are usually grouped together in a manually
named folder or on the basis that they were uploaded to the computer at the
same time.

This organisation of images is not ideal for a variety of reasons. Firstly,
the cost of storage media has dramatically decreased whilst storage capacity
has increased. Therefore an average end user may take many photos of many
different events (such as birthdays, holidays etc.) on a camera before upload-
ing them to their computer. If not sorted manually, multiple events may get
grouped together, potentially making it difficult for the user to locate specific
images in the future.

This leads to a second issue of manually annotating folders. If images of
multiple events are stored in the same folder, it is difficult to describe the am-
biguity of the content contained within it using just a folder name. Typically
the date of the camera upload will be chosen, but this could become rather
meaningless after a long period of time. Rodden and Wood [62] demonstrated
in their analysis of digital photograph management that users are generally
unwilling to annotate their images. Another issue is that words chosen to an-
notate an image can be highly subjective, with appropriate keywords chang-
ing between different users which in turn can render keyword-based search
unintuitve and difficult to operate [39].
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1.1 Content-Based Image Retrieval

Since textual annotations are not available for most images, searching for par-
ticular pictures becomes an inherently difficult task. Luckily a lot of research
has been conducted over the last two decades leading to many interesting
methods for content-based image retrieval [75, 11]. Content-based image re-
trieval (CBIR) does not rely on textual attributes but allows search based
on features that are directly extracted from the images [75]. This however is,
not surprisingly, rather challenging and often relies on the notion of ‘visual
similarity’ between images or parts thereof. While humans are capable of
effortlessly matching similar images or objects, machine vision research still
has a long way to go before it will reach a similar performance for computers.

Smeulders et al. [75] define three primary applications of CBIR systems.
A target search is undertaken when the user has an absolute target in mind,
perhaps of an exact image or images of a specific object or scene. A category
search is undertaken when a user requires an image that best represents some
class of images. Finally, in search by association, users have no initial aim
other than to search for images of interest. This usually leads to an iterative
procedure whereby the search may be focussed on an image which the user
finds interesting.

1.2 Query-By-Example

In the early days of CBIR, the general method used by systems such
QBIC [15], Virage [20], PhotoBook [52] or NeTra [43], to query an image
database was through a query-by-example (QBE) approach. QBE allows a
user to specify a query image to the system in order to retrieve images from
the database that are deemed similar to that query. Each image is charac-
terised by a feature vector (e.g. the bins of a colour histogram as originally
proposed in [76], or a combination of colour, texture and shape features as
in [15] - see [75] for a detailed review on image features). An equivalent feature
vector is extracted from the query image and compared to all database vec-
tors to arrive at similarity or dissimilarity scores between query and database
images (using metrics such as L1 [76] and L2 [15] norms or the earth mover’s
distance [64]).

Upon comparing the database images to the query, the system will present
the top N similar images according to their distance from the query image.
The presentation of results is typically a one-dimensional linear arrangement,
in order of increasing distance (i.e. decreasing similarity) starting from the
top left hand corner of a grid.

There are two main drawbacks of QBE-based CBIR. The first one is that
users may not deem the images presented by the system as actually being
similar to the query. For example, a user may supply the system with a red
flower. The system will return all images with a large red content, and the
texture and shape similar to a flower. However the user may be searching
either for red flowers, or a particular species of flower that happens to be red
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in their particular picture. This high-level interpretation of an image by the
user cannot be satisfied by the low-level feature calculations performed by
the computer. This problem is of course not specific to QBE-based retrieval
but is common to all similarity-based CBIR approaches and is known as the
‘semantic gap’ [75].

The second shortcoming of QBE is that a user may not actually have an
image to give to the system, thus rendering QBE effectively useless. While
potential solutions such as sketch-by-example [28, 38] have been proposed
in order to overcome this issue, these have limitations of their own and are
hence rarely explored.

1.3 Relevance Feedback

A commonly explored approach to improve the retrieval performance of CBIR
systems, and a partial solution to the first issue presented above, is relevance
feedback (RF) [86]. This mechanism modifies the underlying parameters of
the algorithms of a system in an attempt to learn what a user is searching
for. Upon presentation of the initially retrieved images, the user can specify
whether they deem a retrieved image useful or not. Multiple images can be
selected as either positive or negative examples and these are then used in
order to weight the different features according to the user’s preference, and
update the search results which should now contain more relevant images.
This process can be repeated to further improve the retrieved results. In the
aforementioned example of the red flower, if the user were to select multiple
images of red flowers as positive examples the system is then likely to return
more red flowers, weighing the colour feature more highly than shape or
texture. On the other hand, if the user selects images of the same species of
flower but with varying coloured petals, the system will emphasise shape and
texture more than colour. A variety of RF mechanisms exist [86], the most
common being a relevant or non-relevant selection (as e.g. used in [15]) or
slide mechanisms allowing the user to specify a continuous score of relevance
(as employed e.g. in [65]).

The user will generally only select a small amount of positive and negative
examples. Therefore, small sample learning methods are required. The most
successful of these methods include discriminant analysis and support vector
machines (SVMs) [77]. In the work of Tao et al. [78], the authors state that
SVM based RF has shown promising results in previous studies due to good
generalisation abilities, but show that incorporating asymmetric bagging and
a random subspace into a SVM, can lead to improved results, while reducing
computational complexity. The authors of [77] experiment with variations of
discriminant analysis for RF, namely LDA (Fisher linear discriminant analy-
sis) and BDA (biased discriminant analysis) and develop an improved method
named directed kernel BDA (DKBDA). The reader is directed to works such
as [86, 77, 78] for further information on these and other RF algorithms.
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Another variation of RF allows the user to manually drag the system
results closer or further away from the query image based on preference [23].
Other browsing-based RF mechanisms are described in Section 3.5.

1.4 Image Browsing Systems

Image browsing systems attempt to provide the user with a more intuitive
interface, displaying more images at once in order to harness the cognitive
power of the human mind in order to recognise and comprehend an image
in seconds. Interaction with a traditional QBE system can often lead to a
confusing and frustrating user experience. Formulating queries from images
can prove difficult for the user, and the ‘black-box’ state of such approaches
means that users typically cannot derive how the system is retrieving these
results, and are thus unable to modify the query in order to improve the
results returned by the system.

This is confirmed in a user study presented by Rodden and Wood [62]
where the authors provided users with an image retrieval system that offered a
variety of querying facilities, including speech recognition and the traditional
QBE approach. The authors found (by examining usage logs) that most users
did not use the QBE function as the system did not meet their unrealistic
expectations of the current state of CBIR. For example, a user explained how
he had attempted to find all the images of a new blue car by using a query
image, but the images provided were irrelevant. As he had no idea how the
system was providing these results, he could not improve the query and thus
abandoned the search.

Browsing systems give a useful alternative to QBE. Providing an overview
of the database to the user allows for intuitive navigation throughout the
system. This is particularly the case when images are arranged according to
mutual similarity as has been shown in [59], where a random arrangement of
images was compared with a visualisation which positioned images accord-
ing to their visual similarities, i.e. where images that are visually similar to
each other are located close to each other in the visualisation space. It was
discovered that during a target search (i.e. looking for a particular image),
similarity-based visualisation reduced image retrieval time.

QBE systems cannot be used when the user does not have a specific im-
age in mind, as no query image can be provided. Image browsing systems
overcome this problem by showing an overview of the image database. An
overview of the collection will give the user a good indication whether or not
an image or image class they have in mind might actually be present in the
database. In some cases, the entire database will be displayed to the user
on a single display. The user can then focus on regions of the visualisations
that they are attracted to or believe will harbor a particular concept they
have in mind. Browsing such visualisations when arranged according to image
similarity, as shown in [59], can increase the rate of retrieval. These visuali-
sations are usually achieved through dimensionality reduction, whereby the
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relationships between images in a high-dimensional feature space are main-
tained as best possible in a reduced 2D (or 3D) space which is more compre-
hensible to the user.

In case image collections are too large to fit to a single display, images can
be grouped according to similarity through the application of a clustering
procedure. The user is then able to navigate through these clustered groups
of images in order to browse the collection. An overview of the database is
provided by initially presenting the user with a representative image for each
cluster. Clustering can also be performed in a hierarchical manner which in
turn allows for visualisation of very large datasets.

Another way in which image databases can be displayed is through graph-
based visualisations. In these approaches, links are formed between images
that are deemed similar or that share a common concept, while the images
themselves form the nodes of the graph. The whole connected graph, or part
thereof, is then displayed to the user for visualisation and navigation.

Similarity-based visualisation is not the only useful form of arranging im-
age databases. In particular for personal collections, grouping according to
the time images were created has shown to be useful. This approach can be
adopted to automatically cluster event images. In cases where time informa-
tion is not always available or not necessarily reliable, this approach can be
combined with similarity-based systems.

The fundamental issue with the development of a browsing system is how
to present the user with the images in a database. With image collections
ranging in the size of millions, any browsing system needs to utilise the limited
screen space provided by a typical computer monitor in a manner which is
intuitive and easily navigable by the common user. Immersive environments
and virtual reality allow for a completely new way of visualising information
with a unique user experience. It is only natural that this approach has also
been adopted for visualising image databases. The user is immersed into the
actual database, while the addition of a third dimension coupled with the
larger visualisation space can lead to a more effective approach of navigation.

While a visualisation of an image collection is useful for providing an
overview of the contained images, it provides only part of a useable im-
age database navigation system. Once a collection is visualised, users should
have the ability to interact with it in order to arrive at the image(s) they
are looking for. Typical operations here include panning and zooming which
allow the user to focus on images in a different part of the visualisation space,
respectively on images which were previously hidden.

With regards to the three primary CBIR applications of [75], browsing
interfaces clearly allow for better search by association (searching with no
specified target) than QBE approaches. As for target search (looking for a
particular image), QBE interfaces may provide quicker retrieval times com-
pared to a browsing interface, but of course need a query image to start with.
For category search, arranging images by similarity creates intuitive group-
ings of images relating to the same category. On the other hand, formulating
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a single query image of a category for QBE could prove difficult. For example,
suppose a user wanted to enrich a travel article of Australia with a handful
of pictures. It is not clear which images in the database would be best suited,
without seeing all the Australia related pictures in the database. QBE could
only work in this instance if the user knows exactly which aspect of Australia
they require (e.g. an image of a kangaroo or the Sydney Opera House). In
contrast, allowing the user to browse the database can help cross the ‘seman-
tic gap’ by allowing the user’s cognitive system to play a more active role
during image selection.

Browsing systems can provide users with a much less constrained, con-
tinuous interface in order to explore an image database. In this chapter, we
review a variety of methods used by different researchers in order to arrange
and visualise image databases to support intuitive image database naviga-
tion. The rest of the chapter is organised as follows: Section 2 focusses on
how these databases can be visualised, explaining approaches based on di-
mensionality reduction, clustering, and graph-based visualisations. Section 3
describes different tools implemented by researchers in order to enable users
to browse these visualisations. Section 4 highlights user studies undertaken
in the field, how they are performed and what discoveries such studies have
found. In each section we provide a critical discussion of the various ap-
proaches proposed in the literature. Our observations are summarised and
future directions identified in Section 5.

2 Visualisation of Image Databases

In order to browse an image database, the users need to be presented with
thumbnails of the images so that they may intuitively navigate the database.
The primary issue associated with visualisation is how to best display the
images within the limited space of (typically) a 2D screen. A variety of meth-
ods have been devised in order to visualise images, whether it be the entire
database or a subset of images. In this section we look at the different tech-
niques used in order to visualise image databases for browsing.

2.1 Mapping-Based Visualisation

CBIR systems typically employ high-dimensional features to represent im-
ages. Clearly, it is impossible for the human mind to perceive a feature space
of this magnitude, and based on the raw data, we are therefore unable to
recognise potential relationships within the dataset. In order to visualise this
high-dimensional data, various techniques exist which describe the feature
space layout within a low-dimensional model which the human mind can
more readily understand. For image database browsing, this mapping is typ-
ically down to just two dimensions, namely the x and y co-ordinates of a
2D computer display. The main problem is obviously how to perform this
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mapping so that the relationships of the original data are maintained. In
the following, we discuss various approaches that have been employed to this
effect.

Principal Component Analysis (PCA)

Principal component analysis (PCA) is the simplest dimensionality reduction
approach, working in a linear manner. The starting point for PCA is the sym-
metric covariance matrix of the feature data from which the eigenvectors and
their respective eigenvalues are calculated and ranked in descending order of
eigenvalues. The principal components are selected from the top eigenvectors
according to the number of dimensions required (i.e. for 2D the top two eigen-
vectors are selected). These eigenvectors are then used to plot the original
data where image thumbnails are plotted at the co-ordinates derived through
projection of the orginal feature data into the low-dimensional space. PCA
has the advantage that it is relatively simple. However, since it maximises
the variance of the captured data it does not necessarily best preserve the
mutual relations between the individual data items (this is only the case if
the underlying metric in the original feature space is the L2 norm).

The Personal Digital Historian (PDH) project developed by Mitsubishi
Electronics Research Lab (MERL) [45] uses PCA splats in order to visualise
images. PDH attempts to bring photo sharing to a round table top, with the
system being projected down from above. The authors use colour, texture,
and shape features which are then projected, using PCA, to a 2D format
whereby similar images appear close together. Keller et al. also use a PCA
visualisation to present images in a virtual 3D interface based on texture
features [31].

Multi-Dimensional Scaling (MDS)

In contrast to PCA, multi-dimensional scaling (MDS) [36] attempts to pre-
serve the original relationships (i.e. distances) of the high dimensional space,
as best possible in the low-dimensional projection. MDS starts with a simi-
larity matrix which describes all pair-wise distances between objects in the
original, high-dimensional space. The goal is then to best maintain these dis-
tances which in turn can be formulated as minimizing a ‘stress’ measure,
often defined as [36]

STRESS =

∑
i,j(δ̂ij − δij)2∑

i,j δ2
ij

(1)

where δij is the original distance between objects i and j, and δ̂ij is the
distance in the low-dimensional space. Starting from either a random initial
configuration, or from the co-ordinates after applying PCA, the algorithm
continues to reposition the images in order to reduce the overall stress, until
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a termination condition has been reached (for example a maximum number
of iterations or threshold stress value).

MDS was employed by Rubner et al. [64] who suggested using it for brows-
ing image collections. Based on colour signatures of images and the earth
mover’s distance (EMD) [64], the authors were able to create a representation
of the high-dimensional feature space using MDS, placing image thumbnails
at the co-ordinates derived by the algorithm. Figure 1 shows an example of
a MDS visualisation of an image database.

Fig. 1. An MDS visualisation of the UCID image database [74]

MDS provides a more accurate representation of the relationships between
images in the feature space compared to PCA. The work of [64] also suggested
that MDS can be used for both image query results (local MDS) and to give
an overview of a collection of images, providing the user with a general scope
of images contained within the database (global MDS). However, MDS comes
at the cost of more expensive computation compared with PCA, working in
quadratic time. This suggests that image co-ordinates cannot be calculated
interactively, and thus that MDS is not well suited to present query results.
For global MDS, though image co-ordinates may be calculated off-line in order
to browse the data set interactively. Additional difficulties arise when adding
images to a collection visualised through MDS, as this typically requires
recalculation of the whole dataset and the relocation of image thumbnails in
the visualisation.

Rodden et al. have investigated the use of MDS for image database vi-
sualisation based on the evalution of several user studies [59, 60, 61, 62].
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In [59], they compare two approaches, one based on random assortment of
images, and one using a similarity-based MDS interface, and conclude that
the MDS-based system is faster for locating specific images.

MDS has also been used to measure the effectiveness of particular fea-
ture vectors for conveying similarity within a CBIR system. In [40], MDS is
employed to manually inspect the similarity derived by using the MPEG-7
texture retrieval descriptor (TRD) and texture browsing descriptor (TBD).
They conclude that using the TRD with either the L1 norm or EMD distances
provides more suitable MDS layouts. Besides visual inspection, they also used
spatial precision and recall in order to arrive at quantitative conclusions.

These accuracy measures, which are adaptations of the classical precision
and recall measures used in information retrieval, were first proposed in [58],
where a quantitative comparison between different distance measures is un-
dertaken to examine which provides the best MDS visualisation according
to similarity perceived by humans. In order to calculate the average spatial
precision and recall, each image in the database is treated as a query image.
In Figure 2 the dashed circles represent the increasing levels of recall from
the query image (coloured dark gray). The levels of recall are set based on the
next closest relevant image (coloured light gray) to the query. The number
of relevant images within a circle is divided by the total number of images in
that recall circle to calculate spatial precision. This is then averaged for all
the recall circles, giving an average level of precision.

Fig. 2. Illustration of the spatial precision and recall measures used in [58]

Using these measures, [58] examines the quality of visualisations when us-
ing different indexing methods and distance measures. They evaluated feature
vectors consisting of averages of hue, saturation and value, localised average
hue, saturation and value features (where the image is partitioned into 9 reg-
ular grid cells), and colour signatures as used in [64], HSV histograms using
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the χ2 (chi-squared) and Jeffery Divergence measures, and finally a scheme
named IRIS, which is a fairly complex index introduced in the paper. The au-
thors first compared the indexing techniques using a standard QBE system,
where results show that the more complex IRIS indexing method achieves the
best precision and recall. They then explored how these indexing techniques
compare in terms of average spatial recall and precision for an MDS visu-
alisation. Interestingly, they found that here the simplest measure, namely
average HSV values, is able to retain roughly 85% of the accuracy, whilst IRIS
achieves only around 52%. The authors conclude that, in a reduced dimen-
sionality space, an average HSV MDS visualisation is comparable with a more
complex indexing technique, such as IRIS, yet much more simple to compute.
They furthermore investigate the computational complexity in more detail
and report that the most time consuming indexing technique is the colour sig-
nature/EMD method of [64] which takes about 230 times longer to compute
a full similarity matrix compared to the average HSV computation.

FastMap

FastMap is an alternative dimensionality reduction technique devised by
Faloutsos and Lin [16]. FastMap is able to reduce high-dimensional spaces
down to a linear 2D or 3D space. The algorithm selects two pivot objects, an
arbitrary image and its furthest possible neighbour. All points are mapped
to the line that connects the two pivot points using a hyper-plane located
perpendicular to the line that connects the two pivots. The co-ordinates
where images appear on the hyper-plane can be used to display the im-
ages on the screen, maintaining the relationships which occur in the high-
dimensional space. As with MDS, a distance matrix is required as input for
the algorithm.

The advantage of FastMap is that it requires less computation compared to
MDS, having a linear O(kn) complexity, where n is the number of images and
k is the number of dimensions to reduce the data to. In their experiments, the
authors tested FastMap against MDS, showing more than comparable results
in much shorter times. This suggests that FastMap could potentially be used
for computing visualisations ‘on-the-fly’, for example to visualise results of
QBE searches. The resultant visualisation however, is not always as accurate
as those created by MDS.

FastMap is also employed in the virtual reality system 3D MARS [47]
to map images to a 3-dimensional space in which users can virtually nav-
igate themselves around the image database through query selection (see
Section 2.4 for more details on virtual reality visualisation systems).

Self-Organising Maps

A self-organising map (SOM) [33] is a neural network which is trained to
perform feature extraction and visualisation from the input of raw data.
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Using an input layer of neurons, the feature vector of a sample is computed
and assigned to a best matching unit (BMU) on a 2D map. Each unit has an
associated weight vector, with the same dimensionality of the feature vectors
computed from each of the samples in the dataset. A learning rule, typically
defined as

wi(t + 1) = wi(t) + γ(t)hb,i(t)[x(t) − wi(t)] (2)

where wi(t) is the weight vector of node i, γ(t) is the learning rate and hb,i is
a function modifying the weights around the BMU, is then applied to update
the weight vectors.

Applied to image databases, employing SOMs leads to similar images being
located closer together on the resulting 2D map than less similar images [12].
To avoid a time consuming linear search of what could be an extremely large
map (according to the size of the database), hierarchical self-organising maps
(HSOMs) can be constructed where only root BMUs need to be compared to
the input vector during mapping [12].

An earlier use of SOMs for image database visualisation is the PicSOM
system [37]. PicSOM uses layers of parallel SOMs to form a hierarchy, in
particular a tree-structured self-organising map (TS-SOM) [34]. Here also, a
linear search of all units in the map for the BMU of a given feature vector
(constructed in PicSOM using MPEG-7 descriptors for colour, texure and
shape) is avoided, by restricting the search for a BMU to a 10×10 unit search
below the BMU of the previous level. This reduces the overall BMU search
complexity from O(n) to O(log(n)). After training has been implemented on
each of the TS-SOM levels (using each image in the test set 100 times), each
node is assigned the image most similar from the database. This results in
similar images being mapped closer together than dissimilar images on the
2D map. These representative images may then be browsed by the user in a
hierarchical manner (see Section 3.2).

While the work of Zhang and Zhong [85] focusses on the development of
a content-based HSOM as an indexing structure, Deng et al. [12] and Eiden-
berger [14] implement visualisations that facilitate the browsing of the images
in the database. Deng et al. [12] train a HSOM using Sammon mapping [67],
an MDS variant. The low-level features extracted from the images were re-
gional CIEL*u*v* colour averages, an edge density histogram and texture
features extracted through Gabor filters. In their experiments, the system
was used to visualise a collection of 3,000 images.

Eidenberger [14] describes a system where HSOMs of video stills are cre-
ated based on a variety of MPEG-7 descriptors. Each input vector is com-
pared with a BMU representing a cluster of images. When these clusters
of images are visualised by the HSOM, a representative image (closest to
the BMU weight vector) is displayed. Furthermore, an HSOM is employed
for time-based visualisation. Here, each node is required to be visualised by
exactly one image, rather than a cluster as with similarity-based visualisa-
tion. This is achieved by using the weight vector of each node in the map and
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assigning it with the closest image feature vector available in the database.
The output maps were computed on a hexagonal layout, and images cropped
to hexagons.

Other Mapping-based Techniques

A range of more recent techniques for visualising high-dimensional data are
investigated by Nguyen and Worring [49]. The three non-linear embedding al-
gorithms employed are ISOMAP (isometric mapping), SNE (stochastic neigh-
bour embedding) and LLE (local linear embedding). In ISOMAP [79], nearest
neighbour graphs are formed within the data, and the shortest path between
every pair of points is calculated, with the length of the path being used in
a distance matrix for MDS. SNE [26] calculates the probability that any two
points take each other as nearest neighbours in both the high- and reduced-
dimensional space, and attempts to match the two probability distributions.
LLE [63] can be seen as an approximation of SNE. The authors further pro-
pose to merge ISOMAP with SNE and LLE to form two new techniques,
ISOSNE and ISOLLE. In ISOSNE, the distances found through ISOMAP
are used to form the probabilities used by SNE, rather than using MDS, and
ISOLLE is derived in an analogous way.

In their evaluation they found that both ISOSNE and ISOLLE perform
better than MDS. Although ISOSNE performed best, the computation time
was reported at being around 10 times that of ISOLLE. The authors therefore
concluded that if off-line calculations can be performed, ISOSNE can be used,
while for faster visualisations, ISOLLE should be the method of choice.

Milanese et al. [44] describe the use of correspondence analysis [30] as a
dimensionality reducing mapping technique. Using a data table, a mathemat-
ical function is applied in order to create an observation matrix, which can be
be used with the eigenvectors of a covariance matrix in order to project the
data table into the 2D space. This formulation allows both images and fea-
tures to be projected onto a common space, and to distinguish which features
are closer to a particular cluster of images.

Handling Overlap in Visualisations

Rodden et al. [59] observed that the vast majority of users do not like the
overlapping and occlusion effects occurring in MDS displays due to images be-
ing located too close to each other (see also Figure 1). This issue with partial
or even total occlusion is of course not exclusive to MDS, but also occurs in
other visualisations such as PCA splats. Co-ordinates that are close together
in the feature space will inevitably become even closer in a 2D representation
generated through mapping. When image thumbnails are overlaid at these
co-ordinates, parts of or indeed entire images are hidden from the user.

In order to combat this, various systems invoke some mechanism which
adapts the layout in order to reduce the amount of overlap occurring be-
tween images. Much work here has focussed on mapping the visualisation to
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a regular grid structure. Gomi et al. [18] used MDS “as a template” in order
to locate images within rectangular regions representing a cluster. Rodden et
al. [59] developed a method for spreading the images around a grid. First the
co-ordinates are used to locate the ideal grid cell for an image. Should this
cell be already occupied, a spiral search emanating from the selected cell is
performed in order to locate the closest free cell (see Figure 3 on the left). In
addition to this basic strategy, where the image is simply mapped to the next
closest free cell, a further swap strategy was also proposed. Here, an image
is moved to the next closest cell, and the new image is placed in the optimal
cell. Finally, in a bump strategy, the images in the line of cells between the
optimum cell and the next closest cell are all moved outwards (from the opti-
mum centre cell) by one cell, with the new image being placed at the centre
optimum cell. From experiments it was found that the bump strategy pro-
duces the lowest average error (i.e. lowest average distance an image is from
its optimal cell). The complexity of the algorithm is O(m2)+O(n2) where m
is the size of the grid and n is the number of images to be located. The three
strategies are presented visually in Figure 3 on the right. This technique was
also adopted by Schaefer and Ruszala in [73] and [71] to spread out images
on an MDS plot and a spherical visualisation space respectively.

Fig. 3. The spreading strategies proposed in [59]

Liu et al. [42] developed two different approaches for overlap reduction in
order to present web search engine results. Their first technique also fitted the
visualisation to a grid structure, but they comment that the bump strategy
of [59] works in quadratic time, and is thus not suitable for real-time use.
Their method creates an ordered data set, optimised in one dimension while
sub-optimising the other and has a complexity of O(2nlog(n) − nlog(m))
where m is the number of columns or rows and n is the number of images.
Their second technique allows the user to dynamically set the amount of
overlap through use of a slider bar. Image co-ordinates are established by

P i
new = γP i

Sim + (1 − γ)P i
Grid (3)



Visualisation and Browsing of Image Databases 17

where P i
Sim and P i

Grid represent the locations of the image in the similarity-
based and grid-based visualisations respectively, and γ is the overlap ratio
controlled through the slider bar.

Nguyen and Worring [49] specify two requirements with regards to dimen-
sionality reduced visualisations, a structure preservation requirement and an
image visibility requirement. The first requirement states that the structure
of the relationships between images in the feature space should be retained,
while the second demands that images should be visible enough so that the
content of the image is distinguishable. It is clear that these two are intrin-
sically linked. Moving an image in order to make it more visible will detract
from the original structure, while maintaining the structure could cause a
loss of visibility in certain images.

As a solution to this, Nguyen and Worrring define a cost function which
considers both image overlap and structure preservation. In order to detect
overlap, a circle is placed about the centre of the image, as it is assumed
that an object of focus will be about the centre of an image. If the circles of
two images overlap, the position of the images will be modified according to
values derived from the cost function. A similar cost function is also used to
modify the PCA visualisations in the PDH system of Moghaddam et al. [45].

Discussion

From the various works that have employed mapping-based techniques, it
is clearly difficult to formulate a direct comparison of which is best. Each
individual approach uses a different image database and different underlying
features and distance measures to quantify the similarity between images.
Ruszala and Schaefer [66] attempt to compare PCA, MDS and FastMap by
considering the complexity of the algorithms required. They conclude that
if accuracy is of importance then MDS should be used, otherwise FastMap
should be implemented when faster visualisation generations are required.
However this study does not include the more recent use of local linear em-
bedding algorithms detailed in [49], shown to be faster and as accurate as
MDS. Future work could aim at comparing a variety of dimensionality re-
duction visualisations using the spatial precision and recall measure defined
in [60, 58]. The use of approximation algorithms such as FastMap and LLE,
operating at lower complexity than more accurate algorithms such as MDS,
offers the possibility of visualising dynamically produced data sets such as
query results.

From works such as [59, 42, 49] it is clear, that image overlap is an un-
deniable problem for users who prefer to see images in their entirety. Much
research has been undertaken into how is best to resolve this problem. Moving
images too far from their mapped location can cause the relationships in the
full-dimensional feature space to be distorted, and hence there is a trade-off
between image clarity and maintaining the overall structure of the relation-
ships [49]. The placement of images within a grid structure is a visualisation
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which the general user is familiar with. Hence, arranging images within a
grid according to their mutual similarities will typically enhance the general
user’s browsing experience.

2.2 Clustering-Based Visualisation

Dimensionality reduction techniques applied to image database visualisation
are fundamentally limited by the number of pixels displayed on a computer
monitor, as this will directly determine the number of images that can be
displayed on the screen. Much work has been undertaken in order to reduce
the number of images to be displayed to the user at any one time. This
is usually achieved by clustering groups of similar images together, so that
only a single image for each group is displayed to the user, hence freeing
up visualisation space. In this section we describe the principle methods in
which images can be grouped automatically for the purpose of image database
visualisation, and how each group can be portrayed by representative images.

Content-based Clustering

Content-based clustering uses extracted feature vectors in order to group
perceptually similar images together. The advantage of this approach is that
no metadata or prior annotation is required in order to arrange images in this
manner, although image features or similarity measures which do not model
human perception well, can create groupings that may potentially make it
difficult for a user to intuitively browse an image database.

Krischnamachari and Abdel-Mottaleb [35] were among the first to propose
clustering images by image content. Local colour histograms (extracted from
image sub-regions) were used to cluster similar images and each cluster was
visualised using a representative image. Schaefer and Ruszala [72] also cluster
images based on colour descriptors (the average hue and value in HSV colour
space).

Hilliges et al. [25] use a combination of colour, texture and roughness fea-
tures. These are extracted based on a YUV colour histogram, some Haralick
texture features and the first four roughness moments of the image. The
resulting clustering is utilised in conjunction with an image quality classifi-
cation technique. The work by Borth et al. [5] represents another example of
content-based clustering using colour and texture features.

K-means clustering is one of the most commonly used clustering techniques
which iteratively approximates cluster centres. Image database navigation
approaches that employ k-means include the works by Abdel-Mottaleb et
al. [1] and Pecenovic et al. [51]. Hilliges et al. [25] use a variant of k-means
named X-means. In their approach, images are first clustered using colour
histograms comprised of the u* and v* values of the images in CIEL*u*v*
colour space. This way, the system is able to detect series of multiple similar
images, which are then classified based on image quality in order for users to
only keep their best photographs.
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Metadata-based Clustering

Despite the difficulties of manually annotating images, work has been under-
taken to visualise images according to this associated metadata. The intro-
duction of systems such as ALIPR (Automatic Linguistic Indexing of Pictures
- Real Time) [39] demonstrates that images can be automatically annotated.
However, this assignment of high-level semantic meaning by machines is still
in its infancy and often not very reliable. Systems such as ImageGrouper [48]
and EGO (Effective Group Organisation) [81] allow the user to manually ar-
range images into clusters and perform the bulk annotation of the contained
images.

CAT (Clustered Album Thumbnail) by Gomi et al. [18] uses a combination
of keyword and content-based clustering. At the top level of the clustered
hierarchy, images are clustered by keywords. The user is presented with a list
of keywords, of which they can select one or more. Upon keyword selection, all
images in the database associated with the chosen keyword(s) are clustered
by localised average colour content (average CIEL*u*v* values from grid cells
placed over the image) and image texture (calculated through a Daubechies 4
wavelet transform). Each cluster takes a representative image, which in higher
levels is sized dependent on the proportion of images from the database that
are located in that particular cluster. At lower levels of the structure, images
are arranged more uniformly in a grid-like structure using MDS and PCA
templates.

The rectangular boxing of clusters employed is similar to that used in
PhotoMesa. PhotoMesa [4] has the ability to arrange images in quantum
treemaps or bubblemaps. Quantum treemaps are designed to display images
of indivisible size regularly, whereas bubblemaps fill the space with indivisable
items but generate irregular shaped groups. Images with a shared metadata
attribute (e.g. directory, time taken, or keyword) are grouped together. When
an image is first loaded into the database, multiple sized thumbnails of the
same image are stored in a filesystem and dynamically loaded based on the
size of the rectangular sections.

For the quantum treemap algorithm, the input is a list of numbers specify-
ing the size of the rectangles, and the display space. The output is the layout
of the rectangles. The algorithm generates rectangles with integer multiples
of a given element size, where all the grids of elements align perfectly. When
images are assigned to their groups, an evening algorithm is run to re-arrange
the images in the boxes. The authors note that a relatively large amount of
wasted space may occur on the screen, particulary when the number of images
in a group is small. PhotoMesa has three different grid arranging mechanisms
in order to irradicate irregular layouts. The size of the rectangle is dependent
on the proportion of images from the database that cluster contains. Figure 4
shows an example of a regular layout of images in PhotoMesa.

In an attempt to remove unused space, [4] also introduces the idea of using
bubblemaps in order to visualise the database. In this approach, images are
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Fig. 4. Clustered images, taken from the UCID dataset [74], visualised as a quan-
tum treemap in PhotoMesa [4]

still displayed on a regular grid, but the surrounding area can be arbitrary
in shape.

Time-based and Combined Time/Content-based Clustering

Time-based clustering uses time stamp information associated with an image
in order to group images within a collection. This time data may have been
provided either by the digital camera when the photograph was taken, or
by an operating system when the image was euploaded from the camera or
downloaded from the internet, or set manually by the user. The possible
ambiguity of when a time stamp may have been attached to an image can
indeed be the downfall of this particular method of grouping. Furthermore,
some images may contain no time stamp information at all [55].

It has been demonstrated by Rodden and Wood [62] that users find brows-
ing through time-ordered images more intuitive than content-based browsing
(see also Section 3.4 for more discussion on this). Graham et al. [19] justify
their approach of grouping and visualising images according to time with the
observation that “people tend to take personal photographs in bursts”. Based
on this premise, images are clustered according to the time difference between
time stamps with images first being clustered by year, then month, day then
hour. The authors give an analogy of a birthday party in order to explain
sub-clusters in their approach. The event itself will take up an entire day, but
different parts of the day may contain different bursts of images, for example
blowing out the candles on the cake may have several images attributed to it.

The time-based clustering algorithm employed in Calendar Browser [19] is
based on Platt et al.’s PhotoTOC system. PhotoTOC (Photo Table of Con-
tents) [55] visualises images in two panes: overview and detail. In the overview
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pane, a grid of representative images is presented to the user, arranged by
month and year, where each image corresponds to a particular time cluster.
Images are arranged in a sequential list and new events can be detected by

log(gN) ≥ K +
1

2d + 1

d∑
i=−d

log(gN+1) (4)

Assuming gi is the time gap between image i and image i+1, gN is considered
a gap if it is much longer than the average gap. K is an empirically selected
threshold value and d is the window size.

The main difference between the approach by Graham et al. and Photo-
TOC is how identified events are sub-clustered. In [19], medium sized clusters
are first created by a pre-defined time gap. These new clusters are then sub-
clustered by the rate at which images are taken for that cluster. This rate
can then be matched with the other intra-cluster rates to split and merge
clusters. Parent clusters are developed through fixed measurements of time,
i.e. events that occurred in the same day, week, month and year. In con-
trast, PhotoTOC sub-cluster events based on colour content, therefore not
completely relying on time stamp information. This approach is hence also
applicable to image sets which are only partially time-stamped.

Another approach using a combination of time- and content-based clus-
tering is the PhotoSim system [8]. PhotoSim uses k-means to cluster images
already clustered via time, enabling the system to derive clusters that model
human perception. For this, they utilise colour histograms based on the U and
V components of the YUV colour space. In the example shown in Figure 5,
the images in the cluster have been separated into portraits and pictures of
buildings taken at either night or day.

Hierarchical Clustering

Hierarchical clustering can be seen as analogous to file structures found in
common operating systems with clusters of images corresponding to folders
and individual images being mapped to files. Indeed, this is often how users
organise their personal collections. The majority of systems that cluster im-
ages, arrange clusters in a hierarchical manner. Examples of this can be found
in [55, 8, 18, 5].

Hierarchical clustering algorithms are typically divided into agglomerative
and divisive methods [29]. Agglomerative, or bottom-up clustering, begins
with treating each individual sample as an individual cluster. Using a form
of similarity, clusters are merged with their most similar neighbours and
this process is repeated until a pre-defined number of clusters remain. These
clusters then form the top layer of the generated tree. In contrast, divisive,
or top-down, clustering begins with all samples starting as a single large
cluster which is then iteratively split into smaller clusters until a termination
criterion is met (such as all clusters corresponding to individual samples). In
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Fig. 5. Images from a cluster in PhotoSim [8] further clustered into portraits,
buildings at night and buildings in the day

terms of image database visualisation, the leaf nodes of the tree correspond
to the individual images, while the nodes at different levels of the tree form
the various image clusters.

Despite being computationally more expensive than partional methods
such as k-means clustering, it has been shown that approaches based on ag-
glomerative clustering afford better retrieval accuracy [1]. Krischnamachari
and Abdel-Mottaleb [35] use local colour histograms to form a hierarchical
structure of images. First, each image is treated as its own cluster, and rep-
resents a leaf node of the tree. From all the clusters, the two with the most
similar average colour histograms are merged together to form a parent clus-
ter. Consequently each parent node has exactly two child nodes, forming a
binary tree.

The CAT system in [18] first uses agglomerative clustering to group images
initially by the keywords associated with them, and then creates internal
clusters based on colour and texture features, again through the application
of agglomerative clustering. Borth et al. [5] also use agglomerative clustering
for their Navidgator system, which allows browsing through a dataset of video
stills.

Pecenovic et al. [51] employ a hierarchical form of k-means clustering,
where nodes are successively split as proposed in the LBG algorithm [41] to
form a tree structure that can be visualised and browsed.

A hierarchical structure can also be derived without the application of an
actual clustering algorithm. This is demonstrated by Schaefer and Ruszala
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in [73] and [72] who perform a uniform quantisation type clustering based
on the definition of a grid structure for visualisation. Once the grid is de-
fined, each image in the dataset will fall into one of the grid cells. Each grid
cell hence corresponds to an image cluster. A spreading algorithm as in [59]
is applied to reduce the number of unused cells and the number of images
assigned to one partiular cell. When multiple images are mapped to a par-
ticular cell, a tree structure is formed by subdividing each cell into further
uniform partitions with the spreading algorithm being applied to the root
grid and all child grids in order to prevent the addition of unnecessary levels
in the hierarchy. Based on this structure, using a grid of 24 × 30 cells and
an assumption that 40% of the cells are assigned images, the system could
visualise ((24 × 30) × 0.4)3, i.e. over 23 million images.

Selection of Representative Images

For visualisation purposes, each clustered group of images needs to be rep-
resented either by a single image or perhaps a small group of images. The
manner in which these representative images are selected can vary between
systems. In many approaches (such as the one in [72]), the centroid image of
the cluster is selected. Formally, this is the image with the minimal cumulative
distance from all other images in the database. Alternatively, other systems
such as CAT [18] select the image closest the the centroid of the cluster in
the feature space. A similar approach is adopted in PhotoTOC [55]. Here,
to derive the most representative image of a cluster, the Kullback-Leibler
divergence between every image histogram in the cluster and the average his-
togram for all images in the cluster is measured. The image with the colour
histogram closest to the average histogram of the cluster is selected to be the
representative image.

A cluster may also be visualised using more than one representative im-
age. For example, the clustered visualisation of web search engine results
generated by Liu et al. [42] displays a cluster preview of 4 images. Another
content-based representative image selection scheme with the ability to dis-
play several representative images is that of Krischnamachari and Abdel-
Mottaleb [35]. Based on a user-defined number of representative images R, a
set of representative images Rn is formed. If R = 1, then the representative
image is the leaf node of the sub-tree with the feature vector closest to the
average feature of all images in a conjoined set R0. When R > 1, image se-
lection is taken from several subsets of images. Referring to Figure 6, if the
user requires R = 2 representative images for cluster 14, the subsets will be
R0 = 1, 2, 3, 4 and R1 = 5. The image most similar to the average of R0 will
be selected, together with the sole image from R1.

While the works of [18, 55, 72] use content-based analysis in order to select
a representative image for the cluster, the Calendar Browser in [19] chooses
representative image(s) based on time. The system displays a summary of 25
images at any granularity (i.e. year, month or day). This 25 image summary
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Fig. 6. Example of the hierarchically clustered image database arranged as a binary
tree in [35] ( c© 2009 IEEE)

is created using a two step process. The first step is screen space assignment,
where one space is assigned to each cluster. If there are too many clusters,
priority is given to large clusters. Any remaining spaces after the allocation
of a single space to each cluster are divided amongst the clusters according to
their size. This creates a target number of photos for the second step, which
performs the actual selection of representative images. The first criteria for
selection is based on consecutive images with the smallest time difference,
since it is likely that images taken close together describe the same event.
One of these two consecutive images is then selected as the representative.
If from the first step more than one representative images are required, the
largest time difference between images is used, which will typically signify a
new event and the second image in this pair will be selected.

Discussion

Clustering-based visualisations have the advantage that a user is given an
overview of all images contained within the database at the top level of the hi-
erarchy without displaying each individual image. This gives a good summary
of the database. In addition, clustering can be performed in a hierarchical way
leading typically to a tree structure representation of the database. As the
user traverses this tree, the images become more similar to each other, and
hopefully also more suited to the type of image the user is browsing for [5].
One downside of this approach is that if an image is erroneously clustered by
the system (i.e. is assigned to a cluster of images that are not very similar
to it), it will make that particular image very difficult for the user to locate,
effectively making it lost. An example of this would be searching for an image
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of children playing football in a park, in a database that clusters based on
colour similarity. In such a system the image in question might be clustered
together with images of plants due to the green colour of the grass the children
are playing on. If the chosen representative image is then also one of a plant,
intuitively the user may not think to navigate into that cluster.

2.3 Graph-Based Visualisation

Graph-based visualisations utilise links between images to construct a graph
where the nodes of the graph are the images, and the edges form the links
between similar images. Links can be established through a variety of means
including visual similarity between images, or shared keyword annotations.
Once a graph has been constructed, it needs to be presented to the user in a
visualisation that allows for intuitive browsing of the database.

Mass Spring Visualisation

Dontcheva et al. [13] use a mass spring model to generate the visualisation.
A spring is formed between two images if they share an associated keyword.
The length of the spring is assigned based on the number of images sharing
the same keyword and a constant used to control the density of the layout.
To generate the layout, the visualisation is evolved using the Runge-Kutta
algorithm [3]. The authors conclude that this technique is only suitable for
relatively small databases of a few hundred images due to the time required to
stablise the arrangement. Worring et al. [83] also created a mass spring visu-
alisation [6] based on keyword similarity (the number of keywords a given pair
of images have in common). A k-nearest neighbour network is then formed
based on this similarity measure. In order to visualise this high-dimensional
structure in 2D, connected images are placed closer together while uncon-
nected images are moved further apart. This is achieved by applying attrac-
tive or repulsive forces respectively between the images. The authors claim
that this visualisation technique aids particularly when implementing a cat-
egory search (i.e. searching for an image of a particular class), due to the
fact that an image selected by the user will have nearest neighbours most
relevant based on keyword. For example, selecting a picture of a cat with an
associated keyword “pet” could present the user with images of dogs, cats
or any other domesticated animal. A set of user interactions are available,
designed to reduce the amount of effort required to form a subset of purely
relevant images (see Section 3.1). User simulated tests were performed using
only relatively small visualisations of up to 300 images. The main difference
between the visualisations of [13] and [83] is that in the system of Worring
et al., the links between images are explicitly displayed whilst Dontcheva et
al. do not display such links.
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Pathfinder Networks

The use of Pathfinder networks [6] for image browsing was introduced in [7].
The interface, fronting an image database named InfoViz, was used in con-
junction with QBIC [15], allowing the user to query and browse the database.
Pathfinder networks were originally used to analyse proximity data in psy-
chology, although many other types of high-dimensional data can also be rep-
resented using this technique [6]. The underlying theory behind Pathfinder
networks is that a link between two items exists if it is the shortest possible
link. The Pathfinder algorithm removes all but the shortest links by test-
ing for triangle inequality. In the case that this does not hold, the path is
considered redundant and is removed from the network.

For the layout of the network, images with many links between them are
considered similar and therefore placed closer together, while images with
fewer links are generally located further away. Chen et al. inspect the visual-
isations produced using colour, texture and layout features from the images
and state that colour (through use of a colour histogram) provides the best
visualisation, achieved using a spring-embedder node placement model. Fig-
ure 7 shows an image database visualised using colour histograms in such a
Pathfinder network, where images with similar colour histograms form clus-
ters. The experiments in [7] were implemented on a database containing 279
images. With such a small image collection, it is difficult to predict how well
Pathfinder network visualisations may scale to larger image database sizes.

Fig. 7. An image database visualised using a Pathfinder network based on colour
histograms [7]
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NNk Networks

NNk networks, where NN stands for nearest neighbour and k describes a
set of different features, were proposed by Heesch and Rüeger [22] to browse
through an image database. The basic principle is that a directed graph is
formed between every image and its nearest neighbours if there exists at least
one possible combination of features for which the image is the top ranked of
the other. Seven different features were extracted, including an HSV colour
histogram, a colour structure descriptor (for detailing spatial formation of
colour), a thumbnail feature (where the image is scaled down and gray values
calculated), three texture features and a ‘bag of words’ (stemmed words taken
from text attributted to images) feature.

A weight space is used which is a pre-defined set of weights for each of
the features. The number of weight sets for which an image is top ranked,
forms the similarity measure between images. For example, assuming that
three weight sets are defined together with a query image Q, then if image A
is ranked top in the first image set, but image B top in the second and third
weight sets, image B will take a higher proportion of the weight space and
therefore is deemed more similar to Q than image A.

Each image in the network stores its nearest neighbours, along with the
proportion of the weight space for which the image is ranked top. Given a
query image, a user-defined number of nearest neighbours will be displayed
to the user, as well as links between the neighbours. Images with a higher
similarity (i.e. a higher proportion of weight space) are displayed closer to
the query which is centralised on the display. The initial display to the user
is an overview of the database, generated by clustering the images and dis-
playing the most representative thumbnail from that cluster (as described
in Section 2.2). Figure 8 shows an example of how the network is visualised
after an image has been selected as a query. In their experiments, the authors
used a database containing 34,000 video stills.

Heesch and Rüeger [23] also describe their system’s ability to query
a database through keywords. In the example of Figure 9, searching the
database with the query “airplane taking off” returns a variety of results.
The top matching image is placed at the centre of the interface, with the
nearest neighbors placed along an Archimedean spiral according to the pro-
portion of the weight space they possess in terms of the query image. Images
closer to the centre of the image are larger in size than those on the periph-
ery of the spiral. The user can drag these smaller images closer to the centre
where they are dynamically resized and can be inspected more closely by the
user. They may then select multiple images to further the query.

Discussion

The use of graph-based visualisations appears to be less common than either
mapping-based or clustering-based visualisations. Graph-based visualisations
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Fig. 8. An example of a an NNk query selection taken from [22]

Fig. 9. An example of a query for “airplane taking off” in the interface devised
in [23]
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are typically quadratic in complexity, and therefore can only be computed off-
line in order to allow for real-time browsing. Generating query results ‘on the
fly’ is not particularly suited to this style of visualisation. As with dimen-
sionality reduced or clustered visualisations, the introduction of additional
images in the database often requires re-calculation of the entire structure.

The major approaches in graph-based visualisations use contrasting vi-
sualisation methods. While mass-spring models and the Pathfinder network
present a global visualisation similar in form to that of mapping-based tech-
niques, NNk visualisations present images one by one, allowing users to make
an interactive choice on the next image to pursue. This is closer to traditional
QBE methods, although the implementation of similarity by proximity should
aid the user more than a linear format. Whilst NNk networks can have a vast
number of links (dependent on the size of k), Pathfinder networks attempt
to minimise the number of links between images. So far, no study has been
undertaken to explore which graph would allow for faster retrieval through
browsing. It would also be of interest to see how well Pathfinder and Mass
Spring networks are able to visualise larger databases, such as that used for
testing the NNk network.

2.4 Virtual Reality-Based Visualisation

The development of image browsing interfaces has also produced some in-
teresting approaches based on the use of virtual reality (VR) equipment and
software. Rather than limiting the user to traditional input hardware such as
mouse and keyboard, work has been conducted using more interactive devices
such as head tracking equipment [82] and the use of input wands [82, 47].
In general we can divide VR-based image visualisation techniques into two
classes: immersive and non-immersive visualisations.

The 3D Mars system [47] visualises an image database in 3 dimensions.
Images are projected onto four walls (left, right, front and floor) of a CAVE
environment [10] around a user wearing shutter glasses. The interaction with
the system begins with a random assortment of images from the database.
As the user moves between the walls, the images rotate to face the user in
order to prevent images being hidden. A virtual compass is provided on the
floor allowing the user to ‘fly’ through the 3D space. The user can select a
starting query image from the random assortment via use of an interactive
wand. Each of the dimensions in the display represents either colour, texture
or structure features. The query image selected by the user is placed at the
origin of the axis, and all similar images are visualised in the space depen-
dent on their distance from the query image. This visualisation is generated
through the application of FastMap, as described in Section 2.1. The nov-
elty of the system is that it makes interaction much more interesting for the
user. However, unfortunately the system does not have the functionality to
visualise an overview of the entire database.
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In [82] the authors present their system StripBrowser. Images are arranged
upon filmstrips and can be ordered using colour content along a rainbow scale
or from light to dark. A user can navigate along each filmstrip using a head-
tracking device (see also Section 3.1). An issue with projecting all images
along one dimension is that the user must browse each image sequentially.
This will require more user interactions compared with various approaches
that use a 2D or 3D visualisation space.

Non-immersive VR image browsing systems create a virtual environment
for users to navigate around in order to view the images in the database.
Tian and Taylor [80] use MDS to plot 80 coloured texture images in a 3D
space. The images are wrapped to spheres and plotted at the locations derived
by MDS based on features vectors comprising a PCA projection of a colour
and texture histogram. The user can navigate through the 3D space using a
control panel located at the bottom of the screen. An issue not tackled by this
system though is the potential overlap of spheres, presumably not occurring
within the small database used for testing.

A different non-immersive VR image browsing system is presented by Ass-
falg et al. in [2]. Here, a graphical environment allows the user to move
around a virtual world taking photographs of scenes in order to query the
database. Upon loading the environment, pre-defined shapes are randomly
placed within the scene. The user can ‘walk’ through the environment us-
ing navigation icons located on a panel on screen. The user may then edit
the objects in the environment, having the ability to add new pre-defined
shapes to the current scenery, and to texture and colour the shapes as de-
sired. Shapes in the prototype system presented include a variety of tree like
structures, statues and buildings. The user can select a rectangle over the
current view in order to take a photograph, something the authors state as
an intuitive metaphor for the user. The selected portion of the scene within
the rectangle is used as a starting point for an adjoined QBE system, which
retrieves all similar images from the database. Textures can be taken from
results retrieved through QBE and applied to the environment in order to
achieve modified results. Figure 10 shows a set of possible interactions a user
may have with the browser.

3 Browsing Image Databases

In the previous section of this chapter we looked at how the often large im-
age databases can be visualised and presented to the user. Although usually
closely related, browsing the database is not the same as visualising it; Web-
ster’s dictionary defines browsing as “to look over casually” and visualisation
as “putting into visible form”. A variety of tools have been developed which
aid the user in order to interactively browse the images in a database. In this
section we review common tools included within image database navigation
systems to aid in the task of ultimately arriving at images of interest in an
effective and efficient manner. We divide browsing methods into horizontal
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Fig. 10. Interactions available in the VR browsing environment presented of [2]

browsing, which presents images on the same level of a visualisation to the
user, and vertical browsing, which can be used to navigate to a different
level of the collection. Graph-based visualisations are typically browsed by
following the links between images. For systems that organise images based
on time stamps, browsing methods should also take this information into ac-
count. Finally, browsing can also be usefully employed in relevance feedback
mechanisms.

3.1 Horizontal Browsing

We can define horizontal browsing as the navigation within a single plane
of visualised images. This type of browsing is often useful when an image
database has been visualised either through a mapping scheme (as described
in Section 2.1), a single cluster of images (Section 2.2) or through a graph-
based visualisation (Section 2.3). Several tools have been developed in order
to support this browsing experience.
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Panning

If the entire visualised image collection cannot be displayed simultaneously
on screen, a panning function is required in order to move around the vi-
sualisation. There are a variety of different ways in which panning can be
implemented within browsing interfaces. The simplest manner in which a
user can pan through an image collection is through the use of traditional
scroll bars. This is particularly the case when images are arranged in a regular
grid format, such as in the QBIC interface [15]. If possible, scrolling should
be limited to one direction only in order to reduce the number of actions re-
quired by the user to browse the entire collection [54]. An alternative to scroll
bars is the use of a control panel for panning (and zooming) as implemented
in various approaches. The systems described in [7, 72, 80] all provide such
a navigational toolbar enabling the user to browse through the visualisation
space.

The hue sphere system by Schaefer and Ruszala [72] allows for intuitive
panning by the user, as it uses the metaphor of a globe in order for users to
browse the images in the collection. Images are plotted along the latitude of
the globe according to the average hue of the image, whilst the average value
is used to plot the image upon the longitude of the globe. The user is able
to spin the globe about either horizontal or vertical axes, in order to bring
images into view. This is illustrated in Figure 11, showing an image collection
after various rotation/panning operations by the user.

StripBrowser [82] also allows for intuitive panning using a head tracking
device. As the user looks to the right side, images are being scrolled to the
left, while looking to the left causes the scrolling of images to the right. The
greater the angle at which a user moves, the faster the scroll motion will be.
Scrolling only occurs when the angle reaches a threshold value, otherwise the
strip remains stationary. The 3D Mars system [47] allows users to pan the
generated visualisation by walking around the 3D space projected on the four
CAVE walls.

Zooming

When presenting many images on a single 2D plane, the thumbnail repre-
sentations of images often have to be reduced to small rectangles which are
difficult to distinguish on the screen. This can be seen in the MDS plot in
Figure 1. There, although it is possible to see that the images vary in colour,
it is not possible to depict the content of each individual image. It would
therefore be useful to have a facility to zoom into an area of interest.

For dimensionality reduced visualisations, Rubner et al. proposed zoom
operations on a global MDS visualisation, using of a joystick in order to
“get closer to the area of interest” [64]. Another example of a dimensionality
reduced visualisation with a browsing interface facilitating zooming is the
CIRCUS system presented in [51]. CIRCUS uses multi-dimensional scaling,
in particular Sammon mapping [67], in order to present representative images
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Fig. 11. Browsing through UCID images [74] of different hues in the system pro-
posed in [72]

at each level of the hierarchically clustered database (where clustering is based
on content). By selecting a ‘Browse Collection’ tab, users are presented with
a browsing window which, at the minimum zoom factor (i.e. zoomed out as
far as possible), shows the Sammon mapping layout of all images at that level
of the database.

To reduce the amount of computation required, and to allow the user to
browse the database interactively, CIRCUS displays images at the minimum
zoom factor simply as dots. This maintains the user’s understanding of the
relationships between the representative images at this level of the database,
while reducing the amount of processing time required by the system. As the
user zooms into an area of interest, thumbnails are rendered. When the user
focusses on a single image, metadata associated with that image is also pre-
sented. Further zooming on a particular image causes CIRCUS to present the
next level of images in the hierarchy and hence implements vertical browsing
(see Section 3.2).

CIRCUS also implements what is described as a “fixed small overview”,
preventing the user from becoming lost in a 2D space larger than that of
the display area. A detail view is provided, where the images are shown
together with an overview displaying a map of the overall visualisation (with
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Fig. 12. A screenshot of the CIRCUS browsing interface presented in [51]

the current area of focus highlighted). This is presented to the user in the
left hand pane of the CIRCUS browser, shown in Figure 12.

Another system using a similar overview approach is the Photosim system
presented in [8], allowing users to view and modify multiple clusters (de-
scribed in more detail in Section 3.5). A zooming tool is also implemented in
the hue sphere system devised by Schaefer and Ruszala [72].

While most zooming interfaces require the use of a computer mouse, a
more novel approach to zooming is adopted in the StripBrowser system [82].
Zooming in and out is achieved by moving closer and further away respec-
tively from the screen. The authors note that this is an ideal metaphor for
users, as generally to inspect an item in the real world a person will move
closer to it. Another implementation of this metaphor is provided in the fully
immersive 3D Mars system [47], where the user can zoom in on an image by
physically moving closer to the wall on which it is projected.

Hilliges et al. [25] provide a clustered visualisation with a zoomable in-
terface. The user may zoom into particular clusters to examine the images
within them more closely. In the graph-based system by Chen et al. [7] a con-
trol panel located at the bottom of browser window has two control buttons
allowing the user to zoom the current view in the detail pane in or out. A
very similar interface is also implemented by Tian and Taylor [80], allowing
the user to zoom in and out of a 3D MDS visualisation of textured images.

Magnification

Although similar to zooming, magnification usually occurs when a cursor is
placed over an image. This maintains the overall structure of the visualisation
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by rendering only small thumbnails for each image in the database at first,
while higher resolution images are loaded only when required. An example
of a system using mouse over magnification in order to dynamically display
a higher resolution image is PhotoMesa [4], illustrated in Figure 4.

The hexagonal browsing system by Eidenberger [14] also provides a high
resolution preview image when the mouse cursor is moved over any of the
images in the visualisation. For the system created for the user studies con-
ducted by Rodden et al. [61], a 3x magnification of an image occurs when the
cursor is placed over an area of the MDS visualisation.

Another form of image magnification that can be used for examining im-
age database visualisations is the application of a fisheye lens [69]. Using this
magnification mechanism, images located at the centre of the lens are magni-
fied whilst those immediately around the focused image(s) are distorted [54].
Figure 13 shows an example of how a fisheye lens could effect a collection of
images fitted to a regular grid.

Fig. 13. Example of a fisheye lens browsing over images from the UCID dataset [74]

Scaling

Some browsing systems use scaling, rather than zooming, allowing users to
view a particular image in more detail. In the EIB (Elastic Image Browser)
system [57], the user may use two slider tools in order to dynamically resize
images both horizontally or vertically. This enables the user to display more
images in the browser, at the expense of image clarity. Images can also be por-
trayed as lines, with the colours in the lines becoming the only distinguishing
feature between images. The author claims that this could potentially speed
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up browsing. However, in the EIB visualisation, images are not arranged by
mutual similarities; rather they are placed randomly within the grid visuali-
sation leading to a negative effect in terms of the user’s browsing experience.

The PDH system [45] also includes a slider tool so that the user may
dynamically resize images, whilst maintaining the 2D spatial relationships
between images achieved through PCA.

3.2 Vertical Browsing

In visualisation approaches that are based on a hierarchical structure, the
contained images can also be navigated using vertical browsing methods. As
discussed in Section 2.2, clusters of images are typically visualised through the
use of representative images. These images are crucial for vertical browsing
as they are typically the reason for which a vertical browsing step into the
next level of the hierarchy is initiated by the user.

In the quantum treemap visualisation of image clusters provided in Pho-
toMesa [4] (shown in Figure 4), the user may click on a highlighted image in
order to invoke a smooth zoom into that group of images. The box around
the selected cluster remains highlighted to prevent user confusion. Zooming
may continue until a single image is displayed at full resolution. The CAT
system [18] provides a functionality similar to this.

In systems using a regular grid structure at different levels, such as the hi-
erarchical hue sphere by Schaefer and Ruszala [72], or the hexagonal browsing
system by Eidenberger [14], selecting a representative image at a given layer
of the hierarchy will present the user with the subsequent layer of the sub-
tree, for which the selected image acts as the root. The user may traverse all
layers of the tree. The hue sphere system also displays a visual history of the
followed browsing path, while in the hexagonal browsing system, the user is
presented with a view of both the previous layer and a preview of the layer
described by the currently selected cell. A similar combination of history and
preview is included in the PhotoMesa system [4].

A navigational history is also provided in the Navidgator video browsing
system [5] shown in Figure 14. Here, the user’s most recent image selec-
tions are displayed in the top right hand corner of the interface, and may
be revisited by selecting one of the thumbnails. The representative images
at each level are displayed in the lower portion of the screen. Selecting an
image creates a larger preview just above the layer viewing portion of the
interface, and also adds a thumbnail of the image to the history. The user
may then zoom in or out of the levels in the database using arrow buttons.
Single arrows move the user up or down a single layer of the database (up
to the previous layer, or down to the first layer of the sub-tree for which the
currently selected representative image acts as the root) while double arrows
enable the user to perform a multi-level zoom, whereby every third layer of
the tree is displayed. A max zoom function is also included which allows the
user to navigate directly to the bottom or top layers of the tree.
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Fig. 14. A screen shot of the Navidgator system detailed in [5]

A different vertical browsing function is implemented in the CIRCUS sys-
tem [51]. The authors introduce a semantic zoom facility which allows users
to zoom into areas of interest. As the user zooms into a representative image
beyond a certain zoom factor, the sub-clusters associated with the cluster of
interest are automatically displayed.

3.3 Graph-Based Browsing

Operations such as panning and zooming can also be applied to graph-based
visualisations. For example, in the Pathfinder network approach by Chen et
al. [7], a global view of the network is presented (as shown in Figure 7).
Displaying this global representation of the structure bears some similarity
with some of the mapping-based visualisations of image databases from Sec-
tion 2.1. In the Pathfinder system, a toolbar is displayed at the bottom of
the browsing window, which the user can use to zoom into areas of interest
or to pan around the collection. Images found through browsing may then be
selected in the interface to be used as a query for the QBIC system [15].

The structure of the graph itself however also allows for different methods
to browse from image to image. This is realised in the NNk network approach
by Heesch and Rüeger [22] which exploits the links between images in the
graph. First, the user is presented with an overview of the database through
representative images of clusters formed through a Markov chain clustering.
The user can then select one of these images as a query image. As shown in
Figure 8, the selected image is placed at the centre of the screen and a user
defined number of nearest neighbours are placed around it based on their
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similarity to the query image. Furthermore, links between these neighbours
are also displayed. Selecting a neighbour will put it as the query image in
the centre, with its nearest neighbours then presented in a similar fashion.
This process can then be repeated until a required image has been found.
The user also has the ability to zoom in or out of the visualisation. As with a
typical web browsing interface, a ‘Back’ button is provided so that the user
may return to the previous query, should the newly selected image provide
no images of interest.

Browsing the graph-based visualisation developed by Worring et al. [83]
lies somewhere between the two browsing methods of the NNk and Pathfinder
visualisation styles. While the overview of the database is presented, the user
may invoke one of five different actions in order to select a subset of images
that are deemed relevant. A user may select a single image, as well as se-
lecting the single image and all of the linked neighbours in the network in a
single action. The opposite two actions are also available, whereby the user
can deselect a single image (and disable it from future automatic selections)
or an image and the associated neighbours. Another action available to the
user is the ability to expand the current selection of images by automatically
selecting all connected neighbours. A simulated user test showed that the
provided interactions can reduce the amount of effort required to select all
possible relevant images (compared with selecting images one-by-one). Wor-
ring et al. conclude that using the functionality of selecting an image and all
the nearest neighbours, followed by deselecting all images deemed irrelevant,
a higher recall and precision measure can be achieved whilst maintaining the
same interaction effort required for a one-by-one selection technique.

3.4 Time-Based Browsing

As described in Section 2.2, time stamp information attached to images can
be used to cluster and visualise image collections. Clearly, if a collection is
visualised based on temporal concepts, browsing should also be possible in
a time-based manner. One of the earliest time-based image browsing sys-
tems is the AutoAlbum system introduced in [56] further developed into the
PhotoTOC system [55]. Here, a two-level hierarchy based on time is utilised.
As can be seen in Figure 15, dates, in monthly intervals, are shown in the
overview pane on the left hand side of the interface, with the representative
images of the clusters falling into that date also being displayed. Selecting a
representative image displays the contents of that cluster in the detail pane,
located to the right of the interface.

Whilst AutoAlbum and PhotoTOC restrict the user to monthly intervals,
the Calendar Browser in [19] allows the user to ‘zoom in’ to other time in-
tervals by selecting one of the representative images. At the year level, two
controls located at the top of the interface provide a summary of the previ-
ous year and next year respectively. This approach is also adapted for the case
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Fig. 15. The PhotoTOC [55] interface. The user has selected the image bottom
and centre of the overview pane (left). This image has been highlighted in the detail
pane(right), and is amongst visually similar images.

when viewing images at a monthly granularity (i.e. summaries of the previous
and next month are displayed). When viewing images with a time stamp
attributed to a particular day, images maybe browsed 25 at a time. Selecting
an image at this level places it in the centre of the interface, with the images
taken immediately before or after displayed around the selected image.

In [19], a modification of the Calendar Browser is also implemented and
tested. In the modified interface Hierarchical Browser, a pane located on the
left hand side displays a hierarchy of dates. Starting at root nodes represent-
ing years, these can be expanded to display monthly nodes, followed by dates
and time intervals. Selecting a node from this pane displays the representa-
tive images in the detail pane located on the right side of the interface. This
is similar to the approach of PhotoTOC [55]. User testing suggested that
users could use the Calendar Browser more quickly, but the number of task
failures occurring was lower in the Hierarchical Browser.

A different approach to time browsing is presented in the PhotoHelix sys-
tem [24]. An interactive touch screen table top is used with an interactive
pen and a specially developed piece of hardware created using the workings
of an optical mouse and an egg timer. By placing the hardware on the in-
teractive screen, a virtual helix is created at the location of the hardware.
Images are arranged on the helix according to time, with newer images being
located closer to the outside of the spiral. Grouped images, known as piles,
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are magnified when the spiral is rotated under a fixed lens. The magnified
group can then be manipulated by the user through use of an interactive pen.
New groups can be formed or individual images scaled, rotated and moved
freely around the interactive screen.

The table top PDH system [45] also allows users to browse images accord-
ing to time. By selecting a ‘Calendar’ button, images are sorted along a linear
timeline.

The hexagonal browsing system of Eidenberger [14] allows users to swap
between a content-based and a time-based tree structure. As the time-indexed
tree has all the key frames of the collection visualised (as described in Sec-
tion 2.1), any cell selected in the content-based tree will have a corresepond-
ing cell in the time-based tree. However in the content-based tree, images
may only occur as leaf nodes if they have not been selected as representa-
tive images for clusters. Therefore, when switching between an image in the
time-based tree to the content-based tree, the leaf node of the corresponding
cell is selected and a message is displayed to the user in order to minimise
confusion.

3.5 Browsing-Based Relevance Feedback

As described in Section 1.3, many CBIR systems use some form of relevance
feedback (RF) in order to tailor the search towards the current user’s needs.
The most common mechanisms are the standard relevant/non-relevant clas-
sifier, used in QBIC [15], and a slider tool whereby images can be given
a continuous score of relevance by the user, as demonstrated by the MARS
system [65]. However, the introduction of novel image database visualisations
have also led to the development of new RF mechanisms.

In the PDH [45] and the El Niño [68] systems, the intrinsic weightings of
feature vectors are modified by allowing the user to manually specify where
images should reside in the visualisation. PDH provides the user with a small
subset of images to be placed as they wish on a “user guided display”. Based
on the user layout, PDH uses the location of images in order to estimate
feature weights for colour, texture and structure. Using these weightings, a
larger image collection is then presented based upon their provided layout.
Figure 16 shows a user guided layout on the left, and an automatic layout of
a larger set on the right.

The El Niño system [68] allows users to manipulate the entire visualisation,
rather than just a subset as in PDH. Images presented to the user may be
moved to modify the internal weightings of the system. Each image manually
relocated by the user is considered an anchor. The distances between anchors
are then used to modify the colour, texture and shape feature weights. The
visualisation is then updated based on the new similarity measure. As only
a subset of images is shown to the user (typically 100-300), the updated
visualisation may lose images which were not selected as anchors by the
user. A possible issue with these systems is it may not be clear to the user
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Fig. 16. A user guided layout of UCID images [74] in PDH (Personal Digital
Historian) [45]

how far relocate images in order to modify the system to meet their search
requirements [48].

Another category of mapping-based visualisations with an example of an
RF implementation is the self-organising map based system PicSOM [37]
(described in Section 2.1). Here, the user selects images as either relevant or
irrelevant. The images, and their user determined relevance, are projected to
SOM surfaces in order to find regions of relevant or irrelevant images. A low-
pass filtering system is used to expand the regions of relevance on the map. A
qualification value is assigned to each image based upon the relevance of the
image and surrounding images. Each SOM is searched for the top 100 images
with the highest qualification value. The top 20 images from the combined set
are returned to the user, from which the process can be repeated if necessary.

While the above systems use RF within a dimensionality reduced visu-
alisation, there have also been clustered visualisations with integrated RF
mechanisms. An example of this is Photosim [8], shown in Figure 5. Whilst
higher level clusters are created based on time, images within the same time
period are clustered on content. Photosim allows users to transfer images
between clusters manually, if they are not satisfied with the automatically
formed groupings. Furthermore, the user also has the ability to create entirely
new clusters. Using a slider tool, the user can alter the degree of similarity in
which images are automatically added to the new cluster. Setting the slider
to zero creates a cluster with just a single image, dragged from an existing
cluster. The higher the threshold value, the degree of similarity required in
order to add new images to the cluster is lowered.

Similar approaches with solely manual clustering occurs in the EGO [81]
and ImageGrouper [48] systems. In EGO (Effective Group Organisation), a
manually created grouping of images retrieved through some search (such
as QBE, or keyword-based search) can be defined. EGO then recommends
other images in the system by treating each image in the group as a positive
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training example, and modifying the feature weights to find similar images
in the database. ImageGrouper adopts a different approach in that manually
created groups can be selected as positive, negative, or neutral examples. The
system will then return images based on the positive examples given by the
user. Sub-groups can be made within groups in order to narrow the search.
For example within a group of car images, the user may narrow the search by
selecting only the red cars in the group as positive. The manual groupings in
these two systems allow for bulk annotation. Instead of labelling each image
individually, the user may simply annotate the entire group with keywords,
in order to facilitate future keyword searches.

The fully immersive 3D Mars system [47] also has a RF mechanism in-
corporated, allowing the user to choose positive or negative examples using
an interactive wand. The system then modifies the weightings of the features
used to query the remainder of images in the database.

3.6 Discussion

The browsing tools described in this section aim to aid the user during the
navigation of an image database. While horizontal browsing can be applied
to all visualisations where either a selection or all images in the database
are displayed to the user on a single plane, vertical browsing is limited to
hierarchically organised visualisations. The user is able to select a represen-
tative image to view a collection of images similar to their selected image. In
this way, the user is presented with a subset of more similar images relating
to their intended target. However, unlike horizontal browsing, once the user
traverses down a particular path of representative images they can lose the
overview of the database. Therefore, to reduce the user’s cognitive load and to
minimise confusion, systems will often give the user some indication of their
current position within the database. An example of this is implemented in
the Navidgator system [5], whereby a textual description includes the cur-
rent level of the database being displayed and the total number of images in
the current layer. A potential improvement to this would be a visual map,
displaying the user’s current location in the database.

The two contrasting styles of graph-based visualisations are providing an
overview of the collection (as in the Pathfinder network of Chen et al. [7]
or the approach by Worring et al. [83]) or presenting singular images in the
database and their linked neighbours (as implemented in the NNk network of
Heesch and Rüeger [22]). Whilst such an overview may be explored in a similar
manner to mapping-based visualisations, the NNk implementation presents a
selected image as a query centralised on the display, with its nearest neigh-
bours displayed around it at distances based on similarity. Unfortuntately,
this technique suffers from a drawback similar to that of vertical browsing.
Once users enter the database (from selection of an initial query image from
an overview formed of representative images of clusters from the database),
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they may become lost in the network. The only option available to the user is
to use a ‘Back’ button to return to previous query selections or to the initial
overview. Presenting the user with the entire network visualisation prevents
this problem. The user interactions presented by Worring et al. [83] show that
such browsing techniques can reduce the amount of user effort required to
create a subset of solely relevant images. However, such visualisations have
only been tested with up to 300 images and it is not clear how well they
would scale for larger datasets.

Time-based browsing as implemented in a variety of systems, such as Cal-
endar Browser [19] or PhotoTOC [55], are typically aimed at personal users,
as they can recall the event at which an image was taken in relation to other
events in the collection [62]. Browsing such systems assumes that the images
in the database are correctly time stamped, which may not be the case for
all image collections.

The development of browsing systems has also resulted in some interesting
relevance feedback mechanisms in which the user can dynamically update
the intrinsic similarity measure by moving the position of the image directly
in the visualisation space. However, it is not clear to the user how much
effect a particular movement may have upon the system [48]. The EGO [81]
and ImageGrouper [48] systems require the user to manually form groups
before suggesting to the user possible matches. The approach undertaken in
Photosim [8] automatically creates initial clusters before allowing the user to
modify them, an approach that typically requires less user effort.

4 User Evaluation of Image Database Navigation
Approaches

As is apparent from the previous sections, a lot of research has been con-
ducted aimed at providing intuitive navigation interfaces for users of image
collections. Unfortunately, the systems most widely used in practise do not
offer any of these approaches. Most users rely solely on a graphical interface of
file structure browsers included in common operating systems, whilst others
use commercial software such as Apple’s iPhoto [27] or Google’s Picasa [53]
in order to display their personal photos. Professional photography agencies
employ staff whose sole responsibility is to manually annotate images with
keywords or free text, yet they also do not employ any of the techniques
reviewed in this chapter. The low uptake of browsing systems is further hin-
dered by the fact that traditionally only few examples of image management
software invoke some use of CBIR techniques, and that CBIR itself still has
major challenges to overcome. In this section we explore in more detail the
various tasks for which image database navigation systems are particularly
useful, reducing the time required to perform them, and review various user
evaluation studies that support this argumentation.
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4.1 User Tasks

Image browsing systems can be used for a variety of tasks and tests which we
will highlight in the following. Typically, different approaches are more suited
to particular tasks. For each task, specific data can be extracted in order to
measure the performance of a developed system. In addition, the subjective
opinion of users can also be measured.

Target Search

Target search [75] is the most commonly employed and tested task in browsing
systems, and used in works such as [9, 59, 55, 19, 18]. It is also often used
as a method of testing traditional CBIR systems [46]. In target search, the
user is shown an image and asked to browse the system in order to locate
this target image. When the user has found the image, they perform some
test termination action (e.g. click on the target image in the system). The
time taken for the user to locate the image can then be recorded for further
analysis. A timeout is also often implemented (i.e. when a user is unable to
find the image within a specified time limit). Clearly, the gathered timing
information can be used to a compare different systems, or to compare some
system against a traditional search through a linear list of images.

A variation of this task was used in [48] where users were shown a target
image as before, but rather than locating that particular image, were asked
to select 10 semantically relevant images from the collection. Apart from the
timing information, another measure that can be derived in this test is the
error rate, which counts the number of images incorrectly selected by users.

The advantage of a target search task is that it is relatively easy to conduct,
and enables a quantitative comparative analysis of two or more systems. It
is also more likely to model the more general use of a system, e.g. browsing
personal photographs.

Journalistic Task

As outlined in [75], a common use of image retrieval systems for journalistic
purposes are “searches to illustrate a document”. To replicate this within a
user study, participants can be given a short piece of text in which they are
instructed to find a set of images from the database which best represent
the topic of the text. In the experiments conducted by Rodden et al. [61],
ten graphic design students were asked to compare an interface with im-
ages arranged according to their visual similarity through MDS assigned to
a grid structure, and an interface which grouped images according to key-
words, namely the geographical location of where the image was taken. Users
were issued a travel article based upon some tourist destination (such as New
York) and were instructed to browse 100 images from that location and se-
lect three that they deemed the most appropriate to accompany the article.
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Another study by Rodden et al. [61] compared a similarity-based approach
with a randomly arranged image set, employing a test population of average
computer users. The creators of EGO [81] conducted a similar study with
general users.

Graham et al. [19] employed a modified version of the journalistic task,
providing users with a textual description and 3 minutes to locate as many
images in the database relevant to the description. While comparing presen-
tation of image from web search engines in [42], the authors asked the users
in the study to find those images out of the top 200 image results that best
represent the query terms.

The journalistic task, models a true requirement of a retrieval system. An
issue with this test however is, that is difficult to recruit users that would
actually employ such a system in the real world (e.g. journalists) and evalua-
tion is hence often performed upon general users who may undertake different
search patterns to browse through image collections.

Annotation Task

Rodden and Wood [62] observed that users rarely manually annotate each
individual image in a collection (or indeed do not annotate any images at all).
One obvious reason for this is the amount of effort required for annotation.
Systems such as ImageGrouper [48] and EGO [81] have hence been devised
in order to simplify and speed up the annotation of images in a database.
Nguyen and Worring [49] run a simulated user study, measuring the num-
ber of total interactions required by a user in order to annotate the entire
database. They used this method to evaluate a mapping-based visualisation.
The baseline number of annotations used is that of a standard linear visuali-
sation which equals the number of images in the database (i.e. one interaction
per image). It was shown that the mapping-based visualisation can reduce
the number of interactions needed for annotation by up to 94% (dependent
on the categories of images in the database and the features used to define
similarity). Such a test would obviously be simple to implement in practice,
asking users to annotate each image in the database with a keyword from a
preset list while measuring the number of interactions or the time spent on
the task. In addition, if a ground truth of correct annotations is available,
the error rate can also be measured.

Clustering Study

A novel way of measuring the quality of image clustering is presented by
Platt [56]. Two users each used their own personal collections (one of which
had corrupt time stamps), and were asked to manually cluster the images into
albums which acted as the ground truth for database. Each of the personal
collections were then automatically clustered by either time, content, or a
combination of the two (as well as a control of equally sized clusters). Each
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image in the database was used as a query, and based on that the automatic
clusterings were compared with the ground-truth (i.e. user-based clusterings),
using the number of true positives, false positives and false negatives. These
were averaged for all the images in the database to generate a percentage
known as the F1 metric. It was found that a combination of time and content-
based clustering achieved the highest F1 score for both the corrupt and non-
corrupt image collections.

This approach provides an interesting measurement of the quality of auto-
matic clustering algorithms since it directly compares the results of automatic
techniques with those derived manually by a user. The drawback is of course,
the time involved to generate the ground truth clustering. In [56] the image
collections consisted of 294 and 405 images respectively, whereas for collec-
tions of 1,000s of images the task will become not only infeasible, but also
prone to human error.

User Opinion

After a user study has been conducted, researchers will generally issue the
users with a questionnaire in order to gauge their opinions on the different
aspects of the system and its user interface. The results of these questionnaires
can then be used to modify the system as was done by Rodden et al. where
the general dislike of users towards image overlapping in MDS visualisations
caused the authors to consider fitting the images to a more regular grid
structure. When this type of user questioning is included with some other
task such as those listed above, it allows to gain an impression on how such
a system could be applied in the real world. However, if used without a test
such as those listed above, the lack of quantitative statistical data prevents
drawing full conclusions upon the true quality of the approach.

4.2 Key Findings from User Studies

User evaluations attempt to prove that the system proposed by the authors
improves upon methodologies currently used in the field. Sometimes these
studies provide interesting insights into how general users gauge these novel
browsing systems and additional functions. Perhaps the most significant user
studies have been conducted by Rodden et al. In [59], a user study was
conducted using target search on a randomly assorted grid of images and an
MDS visualisation based on image similarity. The authors were able to show:

• Image retrieval is faster when images are arranged by their mutual simi-
larity.

• Users prefer visualisations that do not overlap.
• More distinct images (i.e. images that are on average less similar to all

other images in the database) are easier to find.
• Images located closer to the centre of the screen are retrieved faster than

those located closer to the edge.
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In a later work of Rodden et al. [61], an MDS visualisation fitted to a grid
is compared first to a system organising images in groups through keywords,
and then with a grid arrangement whereby the images are randomly sorted.
The users were asked to perform a journalistic task. The key findings from
this work were:

• Users prefer the MDS grid visualisation to one arranged through key-
words.

• Users are slower at selecting preferred images within the MDS grid visu-
alisation than the randomly assorted grid.

The authors were surprised that users took longer to select images for a travel
article using the MDS grid visualisation rather than the randomly assorted
grid of images. As a possible reason, they argue that when images are ar-
ranged randomly, images appear to be more distinct as it is unlikely that
it will be similar to all of their neighbours. However, the authors state that
judging from post-test questionnaires, it appeared that users were generally
more satisfied with their image selections when using the MDS based inter-
face. This may be because they have selected an image they were looking for
in particular, rather than settling for a related image found quickly using the
random arrangement.

Rodden and Wood [62] also explored how users manage their digital pho-
tographs. Subjects were supplied with a digital camera and a system called
Shoebox, an image browsing system arranging images in folders according to
the time they were created. Shoebox also has the added functionality of a
QBE search facility and a voice annotation system. Findings from this work
include:

• The general user has unrealistic expectations of a QBE system, and can
find it difficult to improve a query.

• Users are fairly reluctant to manually annotate images, even when pro-
vided with a voice annotated system. Only a small percentage of users in
the study changed the title of any image in the system.

• Sorting images according to the time at which they were taken allows users
to browse the collection by recalling which particular event the image
required is from.

• Displaying many image thumbnails at a time decreases the time required
for image retrieval.

The work of Rodden et al. has looked at arranging images by similarity as
well as time; one of the fundamental conclusions from [62] is that displaying
as many images as possible to the user improves retrieval time. However an
issue with displaying too many image thumbnails is that the user needs to
be able to comprehend what is actually depicted within the image.

A zoom facility as described in Section 3.1, allows thumbnails to be dis-
played within an overview at a fairly low resolution and zoomed into at the
user’s discretion. A study by Combs and Bederson [9] investigates solely the
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effect zooming has on improving the user’s browsing experience. A Zoomable
Image Browser (ZIB) is compared with a traditional image browsing sys-
tem, whereby image folders can be selected from the left hand pane, and the
contents of the folder are displayed in the right hand pane. Enlargement of
images can only be performed by opening a new window. The ZIB system
provides a keyword search in a top pane, while the results of the search are
displayed in a pane located below. The user has the facility to zoom into the
search query results. Despite showing that a target search test was faster us-
ing ZIB, this was shown not to be statistically significant. The authors of the
study also comment that of the 30 users tested, only 50% actually invoked
the zoom facility. Combs and Bederson suggest that the number of query re-
sults shown at any time was not enough to warrant a zoom facility, as images
were displayed at a resolution distinguishable without the zoom requirement.
They conclude that a study into the maximum number of images that can
be displayed without zoom should be investigated in future work.

Interesting user studies have also been conducted by the developers of the
RF browsing systems EGO [81] and ImageGrouper [48]. Both systems are
relatively similar, allowing a user to first query the database, then group the
images presented in the results in order to modify the feature weights of the
internal similarity measure. A target search was performed, asking the user to
select ten semantically relevant images to the target. EGO and ImageGrouper
were compared with a slider based and a selection based RF system. The key
finding from these studies was:

• Image retrieval took longer using the grouping systems rather than the
simple relevant or non-relevant selection system.

The authors attributed this to the fact that the drag-and-drop interfaces
require more user actions than a simple selection interface.

In clustering-based visualisations, image groups can be displayed to the
user in the form of representative images (as discussed in Section 2.2). In [18],
the subjective opinion of users was measured for varying forms of the CAT
interface. The authors found that:

• Users preferred the CAT interface when representative images were used
rather than when representative images were not included.

Unfortunately the evaluation was performed only with 10 users, making it
difficult to conclusively state that representative images indeed do improve a
user’s browsing experience. Future work could use quantitative tests in order
to provide a better insight into the effectiveness of representative images as
a tool for browsing.

While the CAT interface is an example of a system invoking hierarchical
clustering, user studies conducted by Rodden et al. were designed to test the
effectiveness of dimensionality reduced visualisations. Relatively little work
has been conducted into testing which of these different approaches might
perform better in terms of image retrieval. Liu et al. [42] however do offer
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some comparison between a clustered and dimensionality reduced approach.
The authors were interested to discover how the results from a web image
search engine query can be visualised in order to improve the user’s browsing
experience. Nine users participated using the standard ranked list interface
provided by Google image search, an MDS visualisation that could be man-
ually adjusted to fit images to a grid (as described in Section 2.1) and a
clustering-based approach which creates five groups of images based on con-
tent. Clusters are represented in a left hand pane through a set of the four
most representative images in that group. Should the user select the clus-
ter preview thumbnail, all the images from that cluster are displayed in the
right hand pane of the browser. 17 queries were performed in which the top
200 images were displayed on each of the interfaces. Users were instructed to
browse the results in order to find the images they deemed most relevant to
the query terms. Liu et al. found that:

• Both the MDS and the clustering-based visualisations clearly outperform
the standard ranked list results.

• Although search times were similar between the MDS and cluster visual-
isations, users clearly preferred the layout of MDS plots characterising it
as “more intuitive and interesting, also convenient for comparing similar
images”.

4.3 Discussion

Evaluation of image database navigation systems, more often than not, tends
to compare the newly proposed browsing system with a more traditional
approach. Various studies have confirmed that image databases visualised,
as described earlier in this chapter, do indeed allow for faster retrieval than
traditional linear approaches [19, 42, 59].

What the majority of user studies have not been able to show is how their
browsing system can perform against other browsing systems discussed in
this chapter. For example, little work exists in comparing a hierarchically
clustered visualisation of a database against the same database visualised
using MDS. While the study of Liu et al. [42] does offer such a comparison
based on a target search scenario, the results were too close to conclude which
of the two paradigms offers a more efficient way of searching.

Analysis of questionnaires returned by users after testing allows the collec-
tion of personal preferences. However, unlike e.g. the time required to perform
a test which can be statistically analysed, user opinion is highly subjective
and is often linked to the background and environment of the test population.
In addition, the majority of user studies conducted are based on a relatively
small number of participants, often no more than ten. Clearly, drawing statis-
tically relevant conclusions from such a small sample size is difficult, both for
quantitive measures such as search time and for subjective opinions collected
through questionnaires (including those where subjects are asked to assign
scores on an ordinal scale).
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Future work should focus on developing a standardised benchmark that
could be used within the browsing community in order to fully gauge the
quality of a newly developed system. This benchmark could comprise both
specific search tasks (such as target search) and annotation tasks (similar
to the one adopted in [49]) which can be applied to any image database
navigation system. Such a benchmark would of course require an underlying
dataset with a ground truth (e.g. manual annotations) which in itself is not
straightforward to obtain due to the work involved and other factors such as
copyright issues.

5 Conclusions

In this chapter we have investigated, in detail, the current state-of-the-art
of image retrieval systems that allow a user to visually navigate through an
image collection. We first looked at similarity-based methods providing an
intuitive visualisation of an image collection and identified three main ap-
proaches. Mapping-based visualisations maintain the relationships between
images in the database in the high-dimensional feature space. Projection into
the (typically 2-dimensional) visualisation space is achieved through appli-
cation of dimensionality reduction techniques such as PCA or MDS. This
type of visualisation has also been adopted in systems that employ virtual
reality concepts to provide a more immersive browsing experience. However,
the costs associated with the necessary equipment will prevent wide-spread
adoption of this approach. Clustering-based methods employ, as the name
implies, a clustering algorithm to organise images in a collection. Clustering
the images into smaller groups of similar images allows the user to browse
down a hierarchy, whereby the further down the tree they delve, the more
similar images become. Graph-based visualisations express relationships be-
tween images (such as visual similarity or common keyword annotation) as
links of a graph structure that is visualised to the user. Image collections can
also be displayed based on time stamp information which can prove useful to
identify distinct events and display relevant pictures.

Mapping-based visualisations aim to maintain the relationships between
images occurring in the high-dimensional feature space, and display them
usually within the 2D constraints of a computer display or a 3D virtual en-
vironment. It has been shown in [59] that arranging images according to
visual similarity can reduce the time required for image retrieval. These vi-
sualisations harness the power of the human cognitive system, passing a vast
quantity of data processing subconsciously to the user’s mind. However, one
of the drawbacks of this type of visualisation is that the limited space of-
ten causes images to overlap or to occlude each other. Ways to address this
issue and reduce overlap include the fitting of images to a regular grid struc-
ture or slight adjustments of the visual arrangement in order to preserve the
structure. Another problem with mapping-based visualisations is that they
are computationally expensive to generate, and are hence rarely suitable for
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computing ‘on-the-fly’ visualisations of a large number of query results. Fur-
thermore, the addition of images to the collection typically requires these
visualisations to be recalculated in their entirety.

Clustering-based visualisations have the advantage that by dividing the
database into smaller entities, only a small subset of images needs to be
visualised. This ultimately leads to less processing for both the system and
the user. The system needs only to load a section of the database when the
user has accessed a particular cluster of images, rather than loading all images
as is the case with global mapping-based visualisations. The cognitive load
on the user is also reduced as the number of distinct images to be inspected
is much lower. However, a disadvantage of clustered visualisations is that the
user can become ‘trapped’ in a subset of the database. This can occur when
representative images used at higher levels of the tree either do not represent
the images in that subtree well enough, or are not distinct enough from other
representative images at the same level. Both scenarios can lead to the user
traversing nodes of the structure in vain, leading to excessive time required
for retrieval and added frustration to the user. It should be noted that this
is not so much a flaw of the visualisation itself but is rather caused by the
underlying similarity measure employed, the best of which are still incapable
of modeling human perception appropriately.

Indeed, this problem applies to all forms of visualisations including graph-
based approaches. If the features extracted and similarity measures do not
model human perception well, the links formed between images may impede
rather than support the browsing experience. Creating links to multiple im-
ages based on a variety of features, as implemented in NNk networks [22],
allows the user to browse through images in the database based upon a partic-
ular feature such as colour or texture. However, the user may need to adjust
the number of neighbours displayed as an excessive number of links between
images will make the visualisation more complex and less intuitive.

The variety of browsing tools available to the user are usually common to
all visualisations. Being able to zoom into areas of interest can be applied to
any visualisation, although vertical zooming is available only in hierarchically
organised visualisations. These structures often come with some overview of
the underlying tree and the user’s current location within the system in order
to help with the navigation task. This kind of overview can also be applied
to mapping-based and graph-based visualisations, particularly when the user
has increased the zoom factor so that not all of the visualisation is visible
within the screen area. In this case a panning function is required to allow
the user to navigate the structure without having to zoom out again. Manual
scaling of images and magnified previews of images can further enhance the
user’s browsing experience.

Relatively little work has been performed into investigating which visual-
isation paradigm may be the most useful, although a variety of user stud-
ies have shown that organising image databases in the ways presented in
this chapter can reduce the retrieval time when compared with traditional
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approaches. What is currently missing is a standard benchmark for assessing
the effectiveness and efficiency of browsing systems. Such a benchmark would
be based on a standardised image set (or several collections of different mag-
nitudes in order to be able to judge scalability) together with a ground truth
and a number of pre-defined tasks. One such task which seems particularly
interesting is the annotation task defined in [49], a ‘real world’ task which can
be quantitatively measured in order to compare systems. A large, copyright-
free image database however is still an issue, although systems such as those
presented in [13, 39] use the online image resource Flickr [17] to obtain im-
ages. Defining a ground truth is an even bigger challenge (as can e.g. be seen
immediately by inspecting the annotations that are given on Flickr).

In addition to advancements in the evaluation of image database naviga-
tion systems, further research and new browsing paradigms are likely to be
required to harness the true potential of image browsing. One of the com-
ing challenges for browsing systems is the decreasing screen resolution and
reduced processing available, that have come as a consequence of mobile
computing. More and more people use their mobile phones to explore the
internet, and require access to the millions of images available online. Nowa-
days, mobile phones also act as a primary source of image capture for many.
Photographs are often uploaded to the web to either share on social network-
ing sites, or uploaded to a ‘cloud’ (or server) whereby the user can access
their images from any device. Works such as [21, 70, 84] have looked at de-
veloping traditional QBE CBIR systems for mobile devices, whilst [32] does
briefly look at browsing on a mobile device. With the increasing graphical
and processing ability of handheld devices, coupled with the increasing num-
ber of images stored locally and online, browsing large image databases in
the palm of the users hand will almost certainly be a future requirement.
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Abstract. We investigate models for content-based image retrieval with relevance
feedback, in particular focusing on the exploration-exploitation dilemma. We pro-
pose quantitative models for the user behavior and investigate implications of these
models. Three search algorithms for efficient searches based on the user models are
proposed and evaluated. In the first model a user queries a database for the most (or
a sufficiently) relevant image. The user gives feedback to the system by selecting
the most relevant image from a number of images presented by the system. In the
second model we consider a filtering task where relevant images should be extracted
from a database and presented to the user. The feedback of the user is a binary clas-
sification of each presented image as relevant or irrelevant. While these models are
related, they differ significantly in the kind of feedback provided by the user. This
requires very different mechanisms to trade off exploration (finding out what the
user wants) and exploitation (serving images which the system believes relevant for
the user).

1 Introduction

In this section we introduce the exploration-exploitation dilemma in the context of
content-based image retrieval by giving two examples of exploration-exploitation
dilemmas a search engine might face.

Assume that a user is looking for an image of a tiger, and the first images pre-
sented to the user are of a dog, a car, and a tree. The user might select the dog as most
relevant to her query. From this feedback the search engine might conclude that the
user is searching for a specific dog, and continues by presenting images of dogs.
Thus narrowing the search space too much in response to the user’s feedback, might
hinder an efficient search. But another user — giving the same feedback — might
indeed be looking for a poodle, such that narrowing the search space is appropriate
and efficient.

Another example is a user interested in dogs and hunting. Given images of a dog,
a car, and a tree, he might classify only the dog as relevant. If the search engine con-
tinues to present images of dogs, images of hunting will rarely be presented. Again,
the search space is narrowed too much. But also in this case the user might indeed
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be interested only in dogs, and exploring other topics will results in a significant
number of irrelevant images presented to the user.

These examples show that a search engine needs to trade off between selecting
images which are close to the images a user has selected so far, and selecting images
which reveal more about the implicit query of the user.

In Section 2 we review some prior work in content-based image retrieval with
relevance feedback. Our first model, the comparative feedback model, is presented
in Section 3, where we propose also some algorithms for this model and present
experimental results. Our second model, the binary feedback model, is considered
in Section 4 and some previous results are reviewed.

2 Relation to Previous Work

Content-based image retrieval with relevance feedback can be divided into two sub-
problems: 1.) how we can conduct a specific search to find a suitable image in as few
iterations as possible, and 2.) how we can learn a good similarity measure among
images based on long-term user feedback from a large number of user search ses-
sions or user labels from datasets.

In previous work [29, 26, 10, 3], active learning has been used to select images
around the decision boundary for user feedback, for speeding up the search process
and to boost the amount of information which can be obtained from user feedback.
However, images around the decision boundary are usually difficult to label. A user
might find it hard to label images in between two categories. Such difficulties and
noise from user feedback is not explicitly modeled or taken into account in most
previous work.

While active learning tries to boost the amount of information which can be ob-
tained from user feedback — mostly by asking the user about examples which are
hard to distinguish — this approach ignores that (a) the user typically is not inter-
ested in borderline cases, and (b) the user himself might find it difficult to distinguish
between difficult examples, such that the user feedback might be quite noisy. These
issues and the noise from user feedback has not been explicitly modeled or taken
into account in most previous work. In contrast, we explicitly model the noisy user
feedback and select images for presentation to the user, such that — after obtain-
ing the user feedback — the algorithm can efficiently search for suitable images by
eliminating images not matching the user’s query.

To solve the second of the two sub-problems, i.e. how we can learn a good simi-
larity measure among images, it is necessary to find a reasonable similarity measure
among the images. In this paper, we do not address this problem. But, we note
that recently user labels are easily obtainable because of the technological advances
of the Internet. Large amounts of data for high-level features can be found from
databases with user labels, often called image tags, such as Flickr, Facebook and
Pbase. The popularity of these databases enhances the accuracies of image search
engines. For example, the Yahoo image search engine is using tags from images on
Flickr. Thus we will consider a combination low-level visual features and high-level
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features obtained from user labels, and we assume that a reasonably good similarity
measure among images can be defined using this features. In our experiments we
will use a similarity measure based on the 2-norm. A combination of keywords and
visual features has also be used in [12] and [30].

Traditionally, content-based image retrieval with user feedback is considered a
learning problem using data from user feedback and, with visual features most
previous work assumes that no label describing images in datasets is available,
[26, 4, 24, 23]. Metric functions measuring similarity based on low-level visual
features are obtained by discriminative methods. Long-term learning is used with
training datasets from the feedback of different users [11, 9, 16, 14, 19, 18, 28, 22].
However, because of different perceptions about the same object, different users
may give different kinds of feedback for the same query target. Short-term learning
using feedback from a single user in a single search session can be used to deal with
the different perceptions of objects. Weighting the importance of different low-level
features is often used for short-term learning (e.g. PicSOM [15]).

The use of user feedback as training data has played an important role in most
recent work [27, 25, 5, 17, 7]. Feedback is used as positive or negative labels for
training. But as the user chooses the most relevant images in any iteration, such an
image may be chosen even if the image is rather dissimilar to any suitable image.
Furthermore, images predicted to be positive examples by discriminative methods
are traditionally selected for presentation in each round. Thus, mistakes of the dis-
criminative method might hinder progress in the search significantly — by ignoring
part of the search space with images which are incorrectly predicted as negative.

3 Comparative Feedback

In this section we consider a model in which the search engine supports the user in
finding an image which matches her query sufficiently well. In each iteration of the
search, the search engine presents a set of images to the user and the user selects
the most relevant image from this set. We assume a given database D of images x,
and in each iteration a fixed number k of images is presented to the user. The formal
search protocol is as follows:

• For each iteration i = 1,2, . . . of the search:
– The search engine calculates a set of images xi,1, . . . ,xi,k ∈ D and presents

the images to the user.
– If one of the presented images matches the user’s query sufficiently well,

then the user selects this image and the search terminates.
– Otherwise the user chooses one of the image x∗i as most relevant, according

to a distribution D
{

x∗i = xi, j|xi,1, . . . ,xi,k; t
}

where t denotes the ideal target
image for the user’s query.

The crucial element of this model is the distribution D assumed for the user’s feed-
back, and how it can be used for an effective search algorithm.
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3.1 A Possible User Model

Instead of expecting that the user deterministically chooses the presented image
which is most relevant to her query, we assume that this choice is a random process
where more relevant images are just more likely to be chosen. This models some
sources of noise in the user’s choice, in particular it might be difficult for the user
to distinguish between images of similar relevance. We assume a similarity measure
S(x1,x2) between images x1,x2, which also measures the relevance of an image
x compared to an ideal target image t by S(x, t). Formally, let 0 ≤ α ≤ 1 be the
uniform noise in the user’s choices and we assume that the probability of choosing
image xi, j is given by

D
{

x∗i = xi, j|xi,1, . . . ,xi,k;t
}

= (1−α)
S(xi, j,t)

∑k
j=1 S(xi, j, t)

+
α
k

.

Assuming a distance function d(·, ·) on the images, two possible choices for the
similarity measure S(·, ·) are

S(x, t) = exp{−ad(x, t)} (1)

and
S(x, t) = d(x, t)−a (2)

with a parameter a > 0. We note that these two similarity measures predict the user
behavior in a subtly but significantly different way: Considering only the case k = 2,
we find for the polynomial similarity measure (2) that

D{x∗i = xi,1|xi,1,xi,2;t} = D
{

x∗i = xi′,1|xi′,1,xi′,2;t
}

if
d(xi,1,t)
d(xi,2,t)

=
d(xi′,1,t)
d(xi′,2,t)

.

In contrast, for the exponential similarity measure (1) we find

D{x∗i = xi,1|xi,1,xi,2;t} = D
{

x∗i = xi′,1|xi′,1,xi′,2;t
}

only if
d(xi,1,t)−d(xi,2,t) = d(xi′,1,t)−d(xi′,2,t).

Thus for the polynomial similarity measure the user’s response depends on the rela-
tive size of the distances to the ideal target image, while for the exponential similar-
ity measure it depends on the absolute difference of the distances. As a consequence,
the accuracy of the user’s response will remain high for the polynomial similarity
measure even when all presented images are close to the ideal target image, while
the accuracy will significantly deteriorate for the exponential similarity measure. At
the current stage it is not clear which model of user behavior is more adequate.

In all the following we use the squared Euclidean norm d(x, t) = ||x − t||2 as
distance measure between image x and the ideal target image t.
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3.2 Algorithms

In this model the goal of a search algorithm is to present a sufficiently relevant im-
age in as few as possible search iterations. Such a search algorithm will need to
continue exploring, since the images which are chosen by the user as most relevant
among the presented images, might still be rather irrelevant to the user’s query. If
the user chooses an image of a dog in the first iteration, the algorithm should not
present only images of dogs in the following iterations. Such a greedy exploita-
tion approach where only images close to the already chosen images are presented
to the user, is likely to lead to search failures (as the user might be looking for
another kind of animals instead). Presenting the images closest to the already cho-
sen images also limits the amount of information obtained from feedback because
the presented images are largely similar. Thus, some exploration strategy has to be
adopted.

In the following we describe three exploration strategies which serve as early
attempts to solve the search problem and which are evaluated in some initial exper-
iments. All three algorithms maintain weights w(x) on the images x in the database
D and calculate images to be presented to the user according to these weights. The
first algorithm selects images at random according to their weights. This algorithm
is used in the PicSOM system [15]. The second algorithm performs weighted clus-
tering of the images in the database and selects the cluster centers for presentation
to the user. The third algorithm is motivated by noise robust binary search algo-
rithms [13, 21]. Our approximate binary search algorithm presents to the user im-
ages which divide the search space into two parts of equal weight such that either
response of the user will lead to discounting half of the weights.

3.2.1 Weighting Images

All three algorithms described in this section maintain the weights on the images in
the database in the same way. Let wi(x), x ∈ D , be the weights of the images which
are used to calculate the images xi,1, . . . ,xi,k presented to the user in the i-th iteration
of the search. Assuming no a priori information about the relevance of images, the
weights are initialized as w1(x) = 1 for all x ∈ D . If the user model were known,
e.g. (1) or (2) with known parameter a, then in the i-th iteration the weights wi(x)
could represent the a posteriori likelihood of the images according to their relevance.
But in this initial report we do not want to rely too much on a specific user model.
Instead, the only information we take from the user feedback is that some images
are more likely to be relevant than others, without quantifying how much more
likely that would be. This leads to the following weighting scheme which demotes
all apparently less relevant images by a constant discount factor 0 ≤ β < 1: Let
x∗i ∈ {xi,1, . . . ,xi,k} be the image chosen by the user as most relevant. If the search
has not terminated, then all images xi,1, . . . ,xi,k are not sufficiently relevant and thus
their weights are set to 0. All images x ∈ D which are closer to some xi, j than to x∗i
are demoted by the discount factor β . Formally, we use the following update of the
weights:
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• Initialize w1(x) = 1 for all x ∈ D .
• For each iteration i = 1,2, . . . of the search:

– For all x ∈ D set

wi+1(x) =
{

wi(x) if d(x∗i ,x) = min j d(xi, j,x)
β ·wi(x) otherwise .

– Set wi+1(xi, j) = 0 for all j = 1, . . . ,k.

Exponential discounting has been proven to be very useful in various learning sce-
nario. An algorithm which uses the very same discounting scheme as above is the
weighted majority algorithm [20]. This is an algorithm for online prediction where
in each iteration a binary prediction is to be made by the algorithm. After making
its prediction the algorithm receives as feedback whether the prediction was correct
or not. The weighted majority algorithm relies on a set of hypotheses H where all
hypotheses h ∈ H make binary predictions which are combined into the algorithm’s
prediction. For this combination the algorithm maintains weights on the hypotheses
which are discounted if the prediction of a hypothesis is incorrect. The assumption
is that at least one of the hypotheses gives good predictions. In the search scenario
with relevance feedback the possible target images can be seen as the set of hy-
potheses, and the user feedback can be used to discount images which are likely to
be less relevant.

More directly related to the proposed weighting scheme are noisy binary search
algorithms [13, 21]. Such binary search algorithms tolerate a certain amount of in-
correct information about the target value given to them during the search. In Sec-
tion 3.2.4 we propose such an approximate binary search algorithm for the search
with relevance feedback.

3.2.2 The Random Sampling Algorithm

The random sampling algorithm is the simplest algorithm of the algorithms we de-
scribe in this section for calculating the sets of images presented to the user in each
search iteration. This algorithm randomly selects (without repetition) images from
the dataset according to their weights. The rational of this approach — besides it
simplicity and efficiency — is that images with higher weights, which are more
likely to be relevant, are included in the set presented to the user with a larger prob-
ability. Further, this random selection will spread the selected images well across
the database, such that a suitable amount of exploration takes place. This algorithm
is implemented in the current version of the PicSOM system [15].

3.2.3 The Weighted Clustering Algorithm

The intuition for this algorithm is that various parts of the search space should be
represented by the images presented to the user. To calculate k such representatives
we use k-means weighted clustering, where the weight of each image gives its in-
fluence on the cluster center: the objective is to find cluster centers y1, . . . ,yk ∈ D
which minimize
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∑
x∈D

w(x) min
1≤ j≤k

||x− y j||2.

The cluster centers calculated by the clustering algorithm are presented to the user.

3.2.4 The Approximate Binary Search Algorithm

In this section we present a search algorithm which is based on robust binary
search [13, 21]. For an easy simulation of the binary search we describe our algo-
rithm only for the case of k = 2 images presented to the user in each search iteration.
The main idea of the algorithm is to present images xi,1 and xi,2 to the user such that
the sum of weights of the images closer to xi,1 is about equal to the sum of weights
of the images closer to xi,2. Thus, whether xi,1 or xi,2 is more relevant, half of the
weights will be discounted in response to the user’s feedback.

An important difference between binary search and search with relevance feed-
back is that in search with relevance feedback the noise of the user feedback depends
on the images presented to the user: even if the pairs xi,1,xi,2 and x′i,1,x

′
i,2 give the

same partition of the search space, the noise of the user feedback might be quite
different, depending on the distance of the presented images (and also depending
on the target image). To illustrate this, we consider a 1-dimensional search prob-
lem for a target t ∈ [−1,+1] with either the pair of examples (x1,x2), x1 = −1/2,
x2 = +1/2, presented to the user, or x′1 = −1/4, x′2 = +1/4, presented to the user.
Both pairs split the search space at 0, but Figure 1 shows that the noise in the user
model behaves quite differently for the two pairs: for a target distant from 0, the
pair (−1/2,+1/2) delivers reliable feedback, but for a target close to 0, the pair
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Fig. 1. Probability of correct feedback for different pairs of examples (x1,x2) presented to
the user, depending on the target t. The feedback is correct if the example closer to the target
is chosen by the user.
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(−1/4,+1/4) is more reliable1. Thus it is important to not only calculate an ap-
propriate partition of the search space but also to present images — inducing this
partition — which result in relatively low noise in the user feedback.

Since we are using the squared Euclidean norm ||x− t||2 to measure the distance
between images x and t, the partition of the search space induced by presented im-
ages xi,1 and xi,2 is given by a hyperplane. For efficient computation we use the
following heuristic to find a hyperplane which partitions the search space into parts
of approximately equal weight: for a random hyperplane through the centroid of all
weighted images, two images are calculated for this hyperplane with about distance
σiΔ from the hyperplane. Here σ2

i is the average weighted distance of all images to
the centroid (where distance is measured by the squared Euclidean norm), and Δ is
a parameter of the algorithm which we call the gap parameter. Essentially the gap
parameter measures the closeness of the presented images and thus influences the
amount of noise in the user feedback.

3.3 Experiments

The three search algorithms for content-based image retrieval with user feedback
are evaluated with Monte Carlo simulations where randomness is introduced by
the user model, the algorithms, and the data themselves, in particular through the
randomly selected ideal target of a search. In all experiments the ideal target was an
image from the database, and the search terminated as soon as the target image was
selected for presentation to the user. In a more realistic scenario it can be expected
that searches will terminate earlier since the user will be satisfied with a sufficiently
similar image.

In all experiments we use the exponential user model (1). We investigate the in-
fluence of the relevant parameters on the number of search iterations. These param-
eters are the uniform noise rate α , the parameter a of the user model, the discount
factor β of the weighting scheme, and for the approximate binary search algorithm
also the gap parameter Δ . To reduce statistical fluctuations, each reported plot is
averaged over ten repeated experiments with the same set of parameters.

In the first set of experiments we use synthesized data for which the distribution
is known such that the experiments are easier to analyze. Very surprisingly, we find
in these experiments that the simple random sampling algorithm performs best for
a wide range of reasonable parameter settings. We discuss this result in Section 3.4
below. Before we compare the three algorithms in Figures 9–11, we investigate the
behavior of the algorithms separately in Figures 2–8.

In a second set of experiments we have simulated actual searches on the VOC2007
dataset [8], and we report qualitative results.

3.3.1 Experiments on Synthetic Data

For this data an image is generated as a 23-dimensional vector with each element
uniformly distributed between 0 and 1. The synthetic database contains 10,000 such

1 Here we used model (2) with the absolute distance and parameters a = 2 and α = 0.1.
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images. The dimensionality and number of data were chosen to match the VOC2007
dataset [8] which contains about 10,000 images from 23 categories. Using the cate-
gories as high level features gives image descriptions of the same dimension.

For an easier analysis we set k = 2 in these experiments, such that only 2 images
are presented to the user in each search iteration. The number of search iterations is
expected to be significantly reduced for larger k. All reported results are averaged
over 10 searches for randomly selected target images from the dataset.

We first investigate the influence of the user model parameter a and the algo-
rithms’ parameters on the number of search iterations. For this, we keep the uniform
noise at α = 0.1 and vary the user model parameter a and the discount factor β . For
the approximate binary search algorithm we report also results for fixed β = 0.5 and
varying a and varying gap parameter Δ .

For the user model parameter a we consider the range 2 ≤ a ≤ 16 and 0.1 ≤ α ≤
0.3. This gives an overall noise rate of about 5% to 16% in early search iterations
and 17% to 45% close to the end of the search.

Figures 2 and 3 show the performance of the random sampling algorithm and the
weighted clustering algorithm for varying a and β . Figure 4 shows the performance
of the approximate binary search algorithm for fixed gap parameter Δ and varying
a and β , Figure 5 shows the performance for fixed β and varying a and Δ .

In Figures 6, 7, and 8 we investigate the influence of the discount factor β for
various uniform noise rates α and fixed user model parameter a = 8. For the approx-
imate binary search algorithm we set the gap parameter Δ = 2, which is a reasonable
choice given Figure 5.
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Fig. 2. Average number of search iterations on synthetic data for the random sampling
algorithm with α = 0.1 and varying a and β



68 P. Auer and A. Po Leung

��� ��� ��� ���

�

��

��

��

��

���

���

���

���

���

���

�
	


��



��

�
�
�


��
�
��
��


��
��
�
�
�

����

����

����

�����

Fig. 3. Average number of search iterations on synthetic data for the weighted clustering
algorithm with α = 0.1 and varying a and β
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Fig. 4. Average number of search iterations on synthetic data for the approximate binary
search algorithm with α = 0.1, Δ = 2, and varying a and β
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Fig. 5. Average number of search iterations on synthetic data for the approximate binary
search algorithm with α = 0.1, β = 0.5, and varying a and Δ
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Fig. 6. Average number of search iterations on synthetic data for the random sampling
algorithm with a = 8 and varying α and β
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Fig. 7. Average number of search iterations on synthetic data for the weighted clustering
algorithm with a = 8 and varying α and β
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Fig. 8. Average number of search iterations on synthetic data for the approximate binary
search algorithm with a = 8, Δ = 2, and varying α and β
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We find that with increasing uniform noise and increasing noise from the user
model (i.e. decreasing user model parameter a) the number of search iterations in-
creases as expected. More interestingly, we find that the performance of the algo-
rithms is relatively insensitive in respect to the choice of the discount factor β . For
a reasonable range around β = 0.5 the number of iterations is quite stable. Never-
theless, the number of search iterations can be reduced by an optimal choice of the
discount factor. Finally, it seems that a large gap parameter Δ for the approximate
binary search algorithm seems advantageous, see also the discussion in Section 3.4.

Finally, we compare the three algorithms for some parameter settings. In Figure 9
we vary the user model parameter a and fix the uniform noise rate α = 0.1 and the
discount rate β = 0.5, in Figure 10 we vary the uniform noise rate α and fix a = 8
and β = 0.5, and in Figure 11 we vary the discount factor β and fix α = 0.1 and
a = 8. For the approximate binary search algorithm we set the gap parameter Δ = 2.
We find that the simple random sampling algorithm performs best for a wide range
of reasonable parameter settings. We discuss this result in Section 3.4 below.
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Fig. 9. Average number of search iterations on synthetic data for the three algorithms with
α = 0.1, β = 0.5, Δ = 2 and varying a

3.3.2 Results on the VOC2007 Dataset

For the experiments on realistic data we use the VOC2007 dataset with 23 categories
and 9963 images. This dataset has been built for the PASCAL Visual Object Classes
Challenge 2007 [8]. The goal of the challenge was to recognize objects from several
classes in realistic scenes. The 23 object (sub-)classes are Person (person, foot, hand,
head), Animal (bird, cat, cow, dog, horse, sheep), Vehicle (aeroplane, bicycle, boat,
bus, car, motorbike, train), and Indoor (bottle, chair, dining table, potted plant, sofa,
tv/monitor). Each of the 9963 images in the dataset is annotated by a bounding box
and class label for each object from the 23 classes which is present in the image.
Multiple objects from multiple classes may be present in an image.
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Fig. 10. Average number of search iterations on synthetic data for the three algorithms with
a = 8, β = 0.5, Δ = 2, and varying uniform noise rate α
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Fig. 11. Average number of search iterations on synthetic data for the three algorithms with
α = 0.1, a = 8, Δ = 2, and varying discount factor β
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In our experiments we use 23 high-level features, one feature for each object class,
to describe the images. For an image the feature value for an object class is the size (as
calculated from the bounding box) of the largest object from this class in the image.
If no object from the class is present in the image, then the feature value is 0.

We first replicate an experiment of the previous section: We use the weighted
clustering algorithm to search for a target image in the dataset. The results
(Figure 12) are quite comparable with the experiments on the synthetic data
(Figure 7). Since the results in Figure 12 are averages of only 3 random searches,
the fluctuation of the results for the VOC2007 dataset is higher.

In the last set of experiments we perform two realistic searches on the VOC2007
dataset, with a human selecting the most relevant image in each search iteration. In
each search iteration 20 images are presented to the user, which are calculated by
the weighted clustering algorithm. In addition to the high-level features described
above we use also the low-level visual features (color, texture, and edge orientations)
calculated by the PiCSOM system [15]. This results in a 761-dimensional feature
vector with 23 high-level features and 738 low level features.

The first search was for a car on grass. Figures 13 and 14 show the images pre-
sented in the first and second iteration of the search and the images chosen by the
user as most relevant in these iterations. Figure 15 shows images chosen by the user
as most relevant in subsequent iterations. The second search was for a motorbike on
grass, and the images chosen by the user as most relevant are shown in Figure 16.
For both searches a good image was found within 10 search iterations.

Fig. 12. Average number of search iterations on the VOC2007 dataset for the weighted
clustering algorithm with varying α and β
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Fig. 13. Search for a car on grass in the VOC2007 dataset by a real user: Iteration 1

Fig. 14. Search for a car on grass in the VOC2007 dataset by a real user: Iteration 2
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Fig. 15. Search for a car on grass in the VOC2007 dataset by a real user: Most relevant
images in iterations 3, 4, 5, and 8

Fig. 16. Search for a motorbike on grass in the VOC2007 dataset by a real user: Most relevant
images in iterations 1, 2, 3, 4, 5, 6, 9, and 10

3.4 Discussion

The surprising result of our preliminary experiments is that the simple random sam-
pling algorithm performs significantly better than the algorithms specifically de-
signed for the search task. We are currently investigating possible reasons for this
result and we offer a first hypothesis about this below.

As far as the approximate binary search algorithm is concerned, it seems best to
present images to the user which are as far as possible from the separating hyper-
plane, cf. Figure 5. This is plausible given the exponential user model (1) which pre-
dicts high noise if the presented images are close. To some extend this observation
might explain also the rather poor behavior of the weighted clustering algorithm: the
clustering algorithm selects the centroids for presentation to the user while extreme
points at the (opposite) boundaries of the clusters might give better performance. By
the construction of our 23-dimensional synthetic data, the squared length of most of
the random feature vectors is close to the average squared length 23

3 . Thus most of
the points are rather extreme points and the sampling algorithm is quite likely to
choose such points.

The experiments on the synthetic data show that even with only two images pre-
sented to the user a relatively fast search is possible. Presenting 10–20 images should
reduce the number of search iterations considerably. This will be verified in further
experiments. Initial experiments on the realistic VOC2007 dataset with high-level
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features already confirm that around 10 search iterations are sufficient for finding a
suitable image. Naturally, the search performance depends on appropriate features,
and this relation needs also to be investigated further.

4 Binary Feedback

In our second feedback model we are considering a filtering task, where relevant
images shall be presented to the user. The user gives a binary classification to each
presented image as either relevant or irrelevant. The goal of the search engine in this
model is to present mostly relevant images to the user, and only a small number of
irrelevant images.

We distinguish two scenarios for this binary feedback model. In the first scenario,
in each iteration a set of k images becomes available and the search engine has to
decide, which single image out of the k available images should be presented to
the user. In the second scenario, the search engine needs to select relevant images
x ∈ D from a database D . We will argue that the difference between these scenarios
is rather minor.

We assume that an image x is represented by a normalized vector of non-negative
features, x ∈ Rd

+, ||x||= 1. Furthermore, we assume that the probability of an image
x being relevant is given by the inner product x · t with an ideal target image t ∈ Rd

+,
||t|| = 1. By using appropriate features — possibly given implicitly by a kernel
function — these are reasonable assumptions.

4.1 Selecting a Relevant Image from k Images

The formal search protocol considered in this section is the following:

• The user has an ideal target image t in mind.
• In each iteration i = 1,2, . . .:

– There are k images xi,1, . . . ,xi,k given to the search engine.
– The search engine selects an image x∗i ∈ {xi,1, . . . ,xi,k} and presents it to the

user.
– The user’s feedback is yi = +1 with probability x∗i · t (the image is relevant

to the user), or yi = 0 otherwise.

The goal of the search engine is to maximize the number of relevant images, ∑i yi.
The exploitation-exploration trade-off in this model is more pronounced than in the
model discussed in Section 3: Based on the presented images and the received user
feedback in previous iterations < i, the search engine can calculate an estimate t̂i for
the unknown ideal target image. From a new set of images xi,1, . . . ,xi,k, the search
engine might select the image which maximizes the estimated probability xi, j · t̂i of
being relevant. But since the estimate t̂i might be inaccurate, this exploitative choice
might be suboptimal. Thus, alternatively, the search engine might exploratively se-
lect an image for which the user feedback improves the accuracy of the estimate t̂i
the most.
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This model has been analyzed by Auer in [1, Section 4], and an appropriate algo-
rithm based on upper confidence bounds has been proposed. This algorithm implic-
itly trades off exploration and exploitation. It calculates upper confidence bounds
p̂i, j on the probability of image xi, j being relevant, and selects the image with the
largest upper confidence bound. Hence, an image is selected (a) if its true proba-
bility of being relevant is indeed large, or (b) if the estimates for this probability
are rather unreliable and the resulting confidence interval is large. Case (a) gives an
exploitative choice, while case (b) improves the estimates of the probabilities and
thus is explorative. In [1] it is shown that the proposed algorithm performs almost
as well as if the ideal target image t would have been known in advance: in the n

iterations the number of presented relevant images is only O
(√

dn log(kn)
)

less

than if t were known in advance.

4.2 Selecting a Relevant Image from a Database

Here we assume a given image database D . The formal search protocol considered
in this section is the following:

• The user has an ideal target image t in mind.
• In each iteration i = 1,2, . . .:

– The search engine selects an image x∗i ∈ D and presents it to the user.
– The user’s feedback is yi = +1 with probability x∗i · t (the image is relevant

to the user), or yi = 0 otherwise.

Again the goal of the search engine is to maximize the number of relevant images,
∑i yi. We argue that the algorithm of [1] from the previous section can be adapted
to work also for the protocol with a given database. The obvious reduction is to set
k = |D | and give all images from the database to the algorithm. This poses some
computational problems and an efficient implementation is needed, but the search
performance will degrade at most logarithmically with the size of the database. A
rigorous analysis of a variant of this approach has recently be given in in [6].

4.3 Discussion

In this section we have presented a theoretical approach to the filtering problem with
binary feedback. The next step will be an empirical evaluation of this approach on
realistic data. Since the performance of approaches like the algorithm in [1] depends
rather strongly on the number of features, such approaches are indeed much more
suitable for filtering a large set of data than for individual search queries considered
in Section 3. For individual search queries the amount of information gained by
binary feedback seems to be too small for finding good images in few iterations.

5 Conclusion

Two models for the user behavior of content-based image retrieval with relevance
feedback are proposed in the this work and the implications of these models are
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studied. The models can be applied not only to CBIR but also to other informa-
tion retrieval tasks in general. They require very different mechanisms to trade off
exploration and exploitation. Our experimental results show that the performances
of our proposed weighted clustering, random sampling, approximate binary search
algorithms for the models are promising.

Acknowledgments. The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
n◦ 216529.
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Summary. Automatic image clustering and classification is a critical and
vibrant research topic in the computer vision community over the last couple
of decades. However, the performance of the automatic image clustering and
classification tools have been hindered by the commonly referred problem
of “Semantic Gap”, which is defined as the gap between low-level features
that can be extracted from the media and the high-level semantic concepts
humans are able to perceive from media content. Addressing this problem,
recent developments in biologically inspired techniques for media retrieval is
presented in this chapter.

The problem of Image clustering and classification has been the subject of
active research across the world during the last decade. This is mainly due to
the exponential growth of digital pictures and the need for fully automatic
annotation and retrieval systems is ever increasing. The goal of image cluster-
ing is to group images such that the intra cluster similarity is increased while
the inter cluster similarity is decreased. Thus, the aim is to generate classes
providing a concise summarization and visualization of the image content.
Clustering is the first step for image classification and subsequent labeling
of semantic concepts. The optimization of the classes generated is currently
studied in three main research avenues [Fog94] : genetic algorithms (GA),
evolution strategies and evolutionary programming. GA stresses on chro-
mosomal operators, while evolution strategies emphasize behavioral changes
at the level of the individual. On the other hand evolutionary program-
ming stresses behavioral change at the level of the species for natural evolu-
tion. However, the optimization solutions generated by classical evolutionary
computation algorithms are far-away from the optimal solutions expected.
Therefore, research in imitating human cognition or more precisely biological
organisms have been increasingly studied for optimizing image clustering and
classification problem.

Recent developments in applied and heuristic optimisation have been
strongly influenced and inspired by natural and biological systems. Biolog-
ically inspired optimisation techniques are partially based on observations
of the sociobiologist E.O.Wilson. In particular to his statement [Wil75]:
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“In theory at least, individual members of the school can profit from dis-
coveries and previous experience of all other members of the school during
the search for food. The advantage can become decisive, outweighing the dis-
advantages of competition for food, whenever, the resource is unpredictably
distributed in patches.”

Some of the algorithms that are inspired based on such observations having
ties to artificial life: A− life are Ant Colony Optimisation (ACO) introduced
by Dorigo et al. in [DG96], Particle Swarm Optimisation (PSO) introduced by
Kennedy and Eberhart in 1995 [EK95] and Artificial Immune system based
optimisation introduced by Dasgupta in [Das99]. The rest of the chapter is
organized as follows. In Section 1, the study of Ant Colony Optimization for
image clustering is presented followed by the study of Particle Swarm Opti-
mization for image classification in Section 2. Before concluding the chapter
in Section 3, a brief discussion on application of clustering and classification
algorithms for media retrieval is presented.

1 Ant Colony Optimisation

Some recent studies have pointed out that, the self-organisation of neurons
into brain-like structures, and the self-organisation of ants into a swarm are
similar in many respects. Ants present a very good natural metaphor for
evolutionary computation. With their small size and small number of neurons,
they are not capable of dealing with complex tasks individually. The ant
colony, on the other hand, can be seen as an “intelligent entity” for its great
level of self-organisation and the complexity of the tasks it performs. Their
colony system inspired many researchers in the field of Computer Science to
develop new solutions for optimisation and artificial intelligence problems.

The ACO metaheuristic is a particular metaheuristic inspired by the be-
haviour of real ants [DG97]. A key feature of ACO is derived form the ability
of real ant colonies to find the shortest or optimal paths between food sources
and their nest.

1.1 Behaviour of Real Ants

A main means of communication between ants is the use of chemical agents
and receptors. The most important of such chemical agents is the pheromone.
Pheromones are molecules secreted by glands on the ant’s body. Once de-
posited on the ground, they evaporate at a known rate. Like neurons, ants
use pheromone to communicate. The release of a molecule of pheromone by
a single ant influences the behaviour of the other ants in the colony.

When one ant traces a pheromone trail to a food source, that trail will
be used by other ants reinforcing the pheromone trail each time. Such auto-
catalytic process will continue until a trail from the ant colony to the food
source is established. (see Fig. 1).
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Fig. 1. Ants moving in the pheromone trails

In laboratories, several studies have explored how pheromones are used
by ants. Deneubourg et al. [DAGP90] used a double bridge connecting a
nest of ants and a food source to study pheromone trail laying and following
behaviour in controlled experimental conditions. They ran a number of exper-
iments in which they varied the ratio between the length of the two branches
of the bridge (see Fig. 2). In this experiment, at the start the ants were left
free to move between the nest and the food source and the percentage of ants
that chose one or the other of the two branches was observed over time. The
outcome was that, although in the initial phase random oscillations could
occur, in most experiments all the ants ended up using the shorter branch. In
fact, ants do not pursue creation of a trail with the shorter distance from nest
to food source. Their goal is rather to bring food to the nest. However, the
pheromone trails they create are highly optimised. This collective trail-laying
and trail-following behaviour is the inspiring metaphor for ACO.

1.2 Ant System Algorithm

The Ant System approach (AS) was the first attempt to use the natural
metaphor of ants to solve a hard combinatorial problem as the traveling sales-
man problem. The importance of the original AS [DC99] resides mainly in be-
ing the prototype of a number of ant algorithms which collectively implement
the ACO paradigm. An ant is a simple computational agent, which iteratively
constructs a solution for the instance to solve. Partial problem solutions are
seen as states. At the core of the AS algorithm lies a loop, where at each iter-
ation t, each ant moves from a state i to another one j, corresponding to the
more complete partial solution. For ant k, the probability pk

i,j(t) ofmoving from
state i to state j depends on the combination of two values:

• the attractiveness ηi,j of the move, as computed by some heuristic
indicating the desirability of the move;

• the pheromone level τi,j indicating how proficient it has been in the past
to make that particular move;
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Fig. 2. Double bridge experiment. (a) Ants start exploring the double bridge. (b)
Eventually most of the ants choose the shortest path.

The probability of moving from state i to state j is given by following
formula, where α and β are heuristicaly estimated parameters (0<α, β<1):

pk
i,j(t) =

(τi,j(t))α.(ηi,j)β∑
k∈allowed(τi,k)α.(ηi,k)β

(1)

This formula means that the probability of moving ant k depends on both
the amount of pheromone τ on that edge and the distance η from i to j.
The parameters α and β control the relevance of pheromone and distance in
the probabilistic decision. Note that not all edges leaving from i to the next
neighbour are allowed.

After each iteration of the algorithm, i.e., when all ants have completed a
solution, the pheromone level τi,j(t) in the trails is updated by the formula:

τi,j(t) = ρ · τi,j(t − 1) + Δτi,j , (2)

where 0<ρ<1, is another parameter called evaporation coefficient and τi,j

(t − 1) is the previous pheromone concentration. Δτi,j represents the sum
of the pheromone contributions of all ants that used move (i, j) to construct
their solution:

Δτi,j =
m∑

k=1

Δτk
i,j . (3)
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In (3), m is the number of ants and Δτk
i,j is the amount of pheromone laid

on edge (i, j) by ant k. Δτk
i,j can be computed as

Δτk
(i,j) =

{ Q
Lk

, if ant k uses edge(i, j)
0 , otherwise

, (4)

where Q is a parameter that specifies the amount of pheromones ant k has
to distribute through its trail, and Lk is the tour length of ant k. The AS
algorithm simply iterates a main loop where m ants construct in parallel their
solutions, thereafter updating the pheromone levels according to the quality
of their solutions. The original AS algorithm has been further improved with
additional strategies. This leads to several other techniques including Ant-
Q [DG96], Ant Colony System (ACS) [DC99] and MAX-MIN Ant System
[SH96]. Each one of these techniques has been adapted and used in specific
domains as economics, data mining and networking.

1.3 Clustering of Images Using Ant Colony Optimisation

Clustering of images according to meaningful classes requires analysis of low-
level image attributes including particular combinations of colour, texture
or shape descriptors. Image clustering algorithms typically consider several
features, or dimensions, of the data in an attempt to learn as much as pos-
sible about the object similarities. However, a critical problem is that dif-
ferent low-level image descriptors and similarity measures are not designed
to be combined naturally and straightforwardly in a meaningful way. More-
over, particular features are often irrelevant for clustering of specific image
classes. Thus, they may lead to counterproductive effects negatively affecting
the clustering results. For that reason, it is important to learn associations
between complex combinations of low-level features and semantic concepts
by conveniently weighting the discriminative power of each low-level feature
descriptor.

ACO and its pheromone-driven learning mechanism is used to optimise
the performance of feature selection in a clustering process. The proposed
algorithm overcomes the limitation originated in the assumption that all the
clusters in a dataset can be estimated using the same set of features and by
assigning weights to features according to the local correlations of the data
along each dimension.

1.4 Data Model

For the sake of completeness, some general terms and notations that will be
used throughout the paper are defined next. Let F be the vector containing
m visual low-level features:

F = (F1, F2, ..., Fm), (5)
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where the lth component Fl, 1 ≤ l ≤ m, is a column vector belonging to
feature space Fl. Therefore, each feature set F lies on the m−fold cartesian
product F = F1 × F2 × F3... × Fm. Let’s further assume that each feature
space Fl, 1 ≤ l ≤ m, is endowed with a similarity function Dl. In ideal
case Dl represents a metric. However, in many cases the similarity function
Dl is not a metric in the mathematical sense. The problem at hand is how
to define a suitable similarity function for Fl. The solution to this problem
is not straightforward since the feature spaces {Fl}m

l=1 can possess different
dimensions and topologies. Due to the complex natures of the visual descrip-
tors, they usually possess non-linear behaviours and their direct combination
may easily become meaningless. To harmonise the various natures of visual
descriptors representing in the same semantic concepts, a simple solution to
the problem can be obtained by linear combination of multiple visual feature
spaces.

That is, given m valid similarity distances {Dl}m
l=1 between the correspond-

ing m component feature vectors F and F̃, we define a weighted similarity
measure between F and F̃ as

Dα(F, F̃) =
m∑

l=1

αlDl(Fl, F̃l), (6)

where the feature weights {α}m
l=1 are non-negative and sum to 1. We refer

to the vector of weights α = (α1, α2, ..., αm) as a feature weighting. Observe
that obviously (F, Dα) represents a metric space, if Dl is also metric for all l.

1.5 Clustering in High-Dimensional Spaces

Suppose that we are given set of n images {xi}n
i=1 represented by feature

vectors {Fi}n
i=1 and we are interested in partitioning them into k disjoint

clusters {πu}k
u=1. Given a partitioning {πu}k

u=1 , for each partition πu , we
write the corresponding generalised centroid as

cu = (c(u,1), c(u,2), ..., c(u,m)), (7)

where, 1 ≤ l ≤ m, and c(u,l) ∈ Fl . As an empirical average, the generalised
centroid may be thought of as being the closest in metric Dα to all images
in the cluster πu.

Subspace clustering is defined as feature selection procedure that assigns
(local) weights to features according to the local correlations of data along
each dimension. Motivated by (6), we measure the distortion of each individ-
ual cluster πu, 1 ≤ u ≤ k , as ∑

x∈πu

Dαu(F, cu). (8)
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The quality of the entire partitioning {πu}k
u=1 is defined as the combined

distortion of all k clusters:

k∑
u=1

∑
x∈πu

Dαu(F, cu). (9)

We would like to find k disjoint clusters π∗
1 , π∗

2 , ..., π∗
k such that the following

is minimised:

{πu}k
u=1 = arg min

{πu}k
u=1

(
k∑

u=1

∑
x∈πu

Dαu(F, cu), (10)

where αu = (α(u,1), α(u,2), ..., α(u,m)) is a local feature weighting for all clus-
ters {πu}k

u=1.
It’s important to note that different feature weightings αu lead to the

different similarities Dαu , hence, the minimisation problem (10) is known to
be NP-hard. Now we can turn to the crucial question of how to select the
“best” feature weighting. To solve this hard combinatorial problem, a novel
approach to image clustering based on ACO meta-heuristic is introduced.

1.6 Subspace Clustering Using Ants

In our proposal, The ACO model plays its part in assigning both images and
feature weights to a cluster and each ant is giving its own clustering solution
[PI09]. The proposed algorithm is outlined next:

Step 1: Initialisation
The whole process starts by choosing the number of clusters k and the

number of ants S . Each ant A , 1 ≤ A ≤ S , initialises a random cen-
troid cu and sets the feature weights equally to 1/m for each centroid cu .
The pheromone level τ(i,u) for each ant A is set to 1. To ensure the mini-
mum comparability, it is required that the similarity distances of all images
in all considered features spaces are normalised to the same range using
conventional Min-Max Normalisation.

Step 2: Clustering
In this step, each ant assigns each image xi, represented by feature vectors

{Fi}n
i=1, to the cluster πu, 1 ≤ u ≤ k, with the probability P(i,u) obtained

from:
P(i,u) =

τ(i,u)η(i,u)∑K
u=1 τ(i,u)η(i,u)

. (11)

In (11), η(i,u) is obtained from the following formula:

η(i,u) =
Q

Dαu(Fi, cu)
. (12)
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As the pheromone level τ(i,u) is initially set to 1, it does not have any effect
on the probability at the beginning. The constant Q is heuristicaly estimated
to balance the value of η and τ .

Step 3: Computation of weights
For each centroid cu , and for each feature Fl, new feature weights are

computed as follows:

α(u,l) =
e−R·Dl(F,cu)√∑m
s=1 e−2·R·Ds(F,cu)

, (13)

where Dl(F, cu) represents the average distance from the centroid cu to all
images assigned to the cluster πu along dimension l. That is:

Dl(F, cu) =
1

|πu|
∑

xi∈πu

Dl(Fi, cu), (14)

where |πu| is the cardinality of set πu and Dl is similarity measure in corre-
sponding feature space Fl . We empirically determine the value of R in our
experiments with synthetic data.

In (13), we use exponential function for feature weighting, in order to make
the weights more sensitive to changes in Dl(F, cu). Even in the first itera-
tion, each ant sets different feature weights due to the random initialisation
of the centroid. To facilitate the interpretation of weight values, we require
that

∑
l α(u,l) = 1 ∀u , by properly adjusting the normalisation factor of the

weighting scheme.

Step 4: Computation of Centroid
For each image xi , 1 ≤ i ≤ n , new generalised centroids are computed

according to clustering of images [Mac67]. Each ant repeats steps 2, 3 and 4
until the optimisation problem (10) is solved.

Step 5: Pheromone update
A widely adopted definition of optimal clustering is a partitioning that

the intra cluster similarity is minimised while the inter cluster similarity is
maximised [DB79]. In addition, subspace clustering must limit the scope of
the criterion function so as to consider different subspaces for each differ-
ent cluster. Following above definition, we define the average within-cluster
distortion and the average between-cluster distortion, respectively, as

Γ A(αu)=
m∑

l=1

α(u,l) ·Dl(F, cu), ΛA(αu)=
m∑

l=1

n∑
i=1

Dl(F(i,l), c(u,l))−Γ A(αu).

(15)
After all ants have done their clustering, the assigned pheromone to each
solution is incremented. In order to find optimal feature weightings, the
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pheromone value is updated according to the quality of the solution. For
updating the pheromone to each clustering the following formula is used:

τ(i,u)(t) = ρ · τ(i,u)(t − 1) +
S∑

A=1

ΔτA
(i,u)(t), (16)

where ρ is the pheromone trail evaporation coefficient 0 ≤ ρ ≤ 1 which
causes vanishing of the pheromone over the iterations. τ(i,u)(t− 1) represents
the pheromone value from previous iteration. ΔτA

(i,u)(t) is a new amount of
pheromone calculated from all S ants that assign image xi to cluster πu. This
approach of marking solutions by pheromone levels is carried out according
to

ΔτA
(i,i)(t) =

{
ΛA(αu)

n.Γ A(αu) , if xi belongs to cluster πu

0 , otherwise
(17)

Intuitively, we would like to minimise Γ A(αu) and to maximise ΛA(αu), that
is we like coherent clusters that are well-separated from each other. In other
words, more successful ant will put higher amount of pheromone and influence
probability of clustering particular image by other ants. After each solution
is marked by the pheromone, each ant will start clustering process with new
probability of assigning images to clusters. Whole process stops when all ants
choose the same clustering solution.

It is important to note, that the proposed algorithm doesn’t assign images
to clusters based on simply similarity distances between centroids and images.
Indeed, the pheromone value carrying the criterion information from the rest
of the ants is another important factor. This means that even if image is
closest to the centroid of a cluster, it might be assigned to different cluster
according to pheromone feedback from the other ants. This change will affect
new setting of feature weights for particular ant; hence, it will enable to
explore a new solution. In other words, the number of ants S does not implies
that the algorithm operates with only S possible solutions.

1.7 Experimental Evaluation

In this section, the proposed technique is comprehensively evaluated using
real-world image datasets. First dataset was obtained from The Corel Image
database and includes 600 images divided to 6 categories, each consist of
100 images. Second dataset was obtained from the Caltech Image dataset
and consist of 3550 images divided to 40 semantic categories. Third dataset
consist of 500 images taken from Flickr which are segmented into regions
and manually annotated. In order to investigate the clustering performance
of the developed method under varying problem complexity, the supported
semantic concepts were divided into two subsets containing 5 and 10 concepts.
Representative samples of images for each dataset are depicted in Fig. 3.
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Fig. 3. Several representative images from each database

On each dataset, we compare our subspace clustering approach based on
ACO (denoted by SC-ACO) with subspace clustering optimised by GA (de-
noted by SC-GA), and PROCLUS, and K-Means with global feature selection
(denoted by GFS-K-Means), and K-Means with feature weights set equally to
1/m for each feature. PROCLUS algorithm is well-known subspace clustering
method based on K-Medoid and local feature weighting. Genetic algorithm
was integrated with the K-Means for optimising feature weighting.

In general, it is difficult to evaluate the performance of clustering algo-
rithms on high dimensional data. Since there is no universal definition of
clustering, there is no universal measure with which to compare clustering
results. Cluster quality measures are just heuristics and do not guarantee
meaningful clusters, but the clusters found should represent some meaning-
ful pattern in the data in the context of the particular domain, often requiring
the analysis of a human expert. Therefore, a gradual approach for the evalua-
tion was taken. First, the proposed algorithm was tested on a small synthetic
dataset of images with obvious similarity with respect to given feature but
large differences with respect to others. Then we applied our algorithm to
the content based image clustering. For evaluation of clustering results, we
assume that we are given pre-classified data and benchmark the clustering
performance of various approaches against the given ground truth using the
clustering accuracy rate. To meaningfully define accuracy rate, we converted
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the clustering into classification using the following simple rule: identify each
cluster with the class that has the largest overlap with the cluster, and assign
every image in that cluster to the found class. Since we have the true cluster
labels, we can compute clustering accuracy as the number of images correctly
classified divided by the total number of images. All tested algorithms were
run 10 times and average accuracy rate was computed in order to show the
stability of methods. In all our experiments, the number of clusters k was
fixed to the number of “true” classes. The number of ants was empirically set
to 1000 for experiments on synthetic data and 10000 for experiments with real
data. Parameters Q, ρ and R were empirically set in the experiments with
synthetic data to be, Q = 100, ρ = 0.2 and R = 10. For visual representation
of images, following low-level features (descriptors) were used: Colour Layout
(CLD), Colour Structure (CSD), Dominant Colour (DCD), Edge Histogram
(EHD) and Grey Level Co-occurrence Matrix (GLC). Observe that the first
four are MPEG-7 descriptors [CSP01] while GLC is texture measurement
well established from [TJ88].

Fig. 4. Average accuracy rates for clustering of images/regions by different
clustering methods

The clustering performance of all tested algorithms on different image
datasets is depicted in Fig. 4. All tested methods depend on initialisation
of centroids/medoids, which causes unstable clustering. From experimental
results of image/region clustering can be seen that our proposed algorithm
performs overall the best and that ACO makes the clustering algorithm more
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stable. Our experiment results show the need for local feature selection. Fur-
thermore, the proposed algorithm can also provide us better understanding
of the underlying process that generates the data.

2 Particle Swarm Optimisation

The initial study on simulating social behaviour of bird flocks and fish school-
ing were conducted by Reynolds in [Rey87] and Heppner and Grenander in
[HG90]. Reynolds was intrigued by the aesthetics of bird flocking choreog-
raphy, and Heppner was interested in discovering the underlying rules that
enabled a large number of birds to flock synchronously, often changing direc-
tion. In PSO, the birds in a flock are symbolically represented as particles.
These particles are considered flying through a problem space searching for
the optimal solution. The location of the particles in a multi-dimensional
environment represents the solution to the problem.

The study of Artificial Intelligence (AI) by definition is “the design of
intelligent agents” [PMG98], where an intelligent agent is a system that per-
ceives its environment and takes actions which maximise its chances of success
[RN03]. The early AI researchers had made an important assumption, so fun-
damental that it was never stated explicitly nor consciously acknowledged.
The researchers assumed that cognition is something inside an individual’s
head. An AI program was modelled on the vision of a single disconnected per-
son, processing information inside his/her brain. However, humans as species
tend to socialise. Thus, in real social interaction, information is exchanged,
but also something more important: individuals exchange rules, tips and be-
liefs about how to process information. Therefore, a social interaction impacts
the process of thinking in individuals. Particle Swarm Optimisation has the
following two assertions at its heart as discussed in [KE01].

• Mind is Social. The notion of cognitivistic perspective of mind as an in-
ternal, private thing or process and argue that both function and phe-
nomenon derive from the interactions of individuals in a social world is
rejected. Though it is mainstream social science, the statement needs
to be made explicit in this age where the cognitivistic view dominates
popular as well as scientific thought.
– Human intelligence results from social interaction. Evaluating, com-

paring and imitating one another, learning from experience and em-
ulating the successful behaviours of others, people are able to adapt
to complex environments through the discovery of relatively optimal
patterns of attitudes, beliefs and behaviours. Humans predilection for
a certain kind of social interaction has resulted in the development of
the inherent intelligence of humans.

– Culture and cognition are inseparable consequences of human sociality.
Culture emerges as individuals become more similar through mutual
social learning. The sweep of culture moves individuals towards more
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adaptive patterns of thought and behaviour. The emergent and im-
mergent phenomenon occur simultaneously and inseparably.

• Particle swarms are a useful computational intelligence methodology.
There are a number of definitions of “computation intelligence” and “soft
computing”. Computational intelligence and soft computing both include
hybrids of evolutionary computation, fuzzy logic, neural networks and ar-
tificial life. Central to the concept of computational intelligence is system
adaptation that enables or facilitates intelligent behaviour in complex and
changing environments.
– Swarm intelligence provides a useful paradigm for implementing adap-

tive systems. In this sense, it is an extension of evolutionary compu-
tation.

– Particle swarm optimisation is an extension of, and potentially impor-
tant new incarnation of, cellular automata 1. The topologically struc-
tured systems in which the members’ topological positions do not vary.
Each cell, or location, performs only very simple calculations.

A very simple socio-cognitive theory underlies the Adaptive Culture Model
and particle swarms. The process of cultural adaptation comprises a high-
level component, seen in the formation of patterns across individuals and the
ability to solve problems and a low-level component, the actual and probably
universal behaviours of individuals is summarised in terms of three following
principles.

1. Evaluate: The tendency to evaluate stimuli - to rate them as positive
or negative, attractive or repulsive - is perhaps the most ubiquitous be-
havioural characteristic of living organisms. Learning cannot occur unless
the organism can evaluate, can distinguish features of the environment
that attract and features that repel, can tell good from bad. From this
point of view, learning could even be defined as a change that enables
the organism to improve the average evaluation of its environment.

2. Compare: In almost every aspect of life humans tend to compare with
others, whether in evaluating wealth, humour, intelligence or other as-
pects of opinion and ability. Individuals in the Adaptive Culture Model
and particle swarms also compare themselves with their neighbours on
the critical measure and imitate only those neighbours who are superior
to themselves.

3. Imitate: Humans imitation comprises taking the perspective of the other
person, not only imitating a behaviour but realising its purpose, executing
the behaviour when it is appropriate. True imitation is central to human
sociality and it is central to the acquisition and maintenance of mental
abilities.

1 Cellular Automata consist of a regular grid of cells, each of which can be in
only one of a finite number of possible states. The state of a cell is determined
by the previous states of a surrounding neighbourhood of cells and is updated
synchronously in discrete time steps. [Ros06]
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2.1 Algorithm

Originally, PSO was designed for real - valued problems. PSO is initialised
with a population of random solutions and each potential solution is assigned
a randomised velocity. The potential solutions, referred as particles are flown
through hyperspace [EK95]. Each particle has the memory to remember the
coordinates in hyperspace which are associated with the best solution (fitness
solution it has achieved so far). The value is called pbest, another best value
is also tracked, which is called gbest, it is the global version of the particle
swarm optimiser and keeps track of the overall best value. It is the optimal
location obtained thus far by any particle in a population.

The PSO consists of at each time step changing the velocity (accelerating)
of each particle toward its pbest and gbest. Acceleration is weighted by a
random term, with separate random numbers being generated for acceleration
toward pbest and gbest. The motion of the particles is governed by the velocity
update (18) and position update (19).

vid(t + 1) = vid(t) + c1(pbesti(t) − xid(t)) + c2(gbestd(t) − xid(t)) (18)

xid(t + 1) = xid(t) + vid(t + 1) (19)

• vid(t) - represents the velocity of particle
• pbesti(t) - represents the personal best solution of particle i
• gbestd(t) - represents the global best solution for d− dimension
• xid(t) - represents the position of the particle
• c1, c2 - constant parameters governing cognitive and social interaction

respectively.

The trajectory of each individual in the search space is adjusted by dynam-
ically altering the velocity of each particle, according to particles own flying
experience and the flying experience of the other particles in the search space.
The first summand of (18) represents the velocity at previous time instant,
which provides the necessary momentum for particles to roam across the
search space. The second summand in (18) is known as cognitive component
and represents the knowledge gained by individual particles. The third sum-
mand in (18) represents the social modelling of particles, which represents
the collaborative effect of the particles, in finding the global optimal solu-
tion. The values of the parameters c2 and c1 determine the choice between
the social and cognitive behaviour of the particles.

The pseudo code for the algorithm is presented below.

1. Initialise a population array of particles with random positions and
velocities on d dimensions, in the problem space.

2. For each particle, evaluate the desired optimisation fitness function in d
variables.
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3. Compare particles fitness evaluation with particles pbest. Then set pbest
value (to make it ) equal to the current value, and the pbest location
equal to the current location in d-dimensional space.

4. Compare fitness evaluation with the populations overall previous best. If
current value reduces the error to achieve global minima than previous
gbest, then update gbest value.

5. Update the velocity and position of the particle according to (18) and
(19).

6. Loop to 2, until the stoping criterion is satisfied.

After some number of iterations the members of the particle swarm popula-
tions are found to have congregated around one or more of the optima. In
cases where multiple global optima are discovered by the population, topo-
logical neighbours tend to cluster in the same regions of the search space.
These clusters extend beyond hard-coded neighbourhoods. When an individ-
ual finds a relatively optimal combination of elements, it draws its adjacent
neighbours toward itself; if the region is superior, the neighbours evaluation
will improve as well and they will attract their neighbours and so on. If an-
other subset of the population is attracted to a different but equally good
region of the problem space, then a natural separation of groups is seen to
emerge, each with its own pattern of coordinates that may easily be thought
of as norms or cultures.

When one solution is better than another, it usually ends up absorbing
the lesser pattern, though in some cases mediocre “compromise” individuals
on the borders of groups prevent the spreading of better solutions through
the population. The polarisation of these artificial populations into separate
cultures appears very similar to the convergence of human subpopulations on
diverse norms of attitude, behaviour and cognition. Interaction results in con-
formity or convergence on patterns that are similar for proximal individuals
and may be different between groups.

2.2 Variants

One of the disadvantages of the PSO is the optimal selection between the two
different models. The particles motion can be influenced in one of two ways.
The first is called the social behaviour, in which the particle gets attracted
to the group centre, i.e. following the group either updating/foregoing the
personal best solution. The second behaviour is the cognitive behaviour. In
this model, the particle follows the knowledge of self experience without using
the knowledge gained as a group. If the social model is followed, then it
is likely that, the group could converge at the local minima of the fitness
function, without properly exploring the entire problem space. On the other
hand, if cognitive model is chosen, the convergence at the sub-optimal value
will take a long time and even, may not converge. Since, the particle follows
its own path thereby ignoring the knowledge gained as group. To overcome
these problems, an optimal choice of both models need to be considered.
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Other complex techniques, includes the introduction of inertia weight in the
velocity update is given in (20).

vid(t) = ωvid(t−1)+c1(pbesti(t−1)−xid(t))+c2(gbestd(t−1)−xid(t)) (20)

The time-varying inertia weight (PSO-TVIW) ω [ES01] is introduced to bal-
ance between the particles’ global and local search abilities. A large inertia
weight facilitates global search, while a small inertia weight facilitates local
search. It was observed that the optimal solution can be improved by varying
the value of ω from 0.9 at the beginning of the search to 0.4 at the end of the
search for most problems. However, considering the dynamic nature of real
world applications, they have proposed a random inertia weight for tracking
dynamic systems, as in (21).

ω = 0.5 +
rand(.)

2
(21)

Where, rand(.) is a uniformly distributed random number within the range
[0, 1]. Therefore, the mean value of the inertia weight is 0.75. The disadvan-
tage of PSO-TVIW method is its inability to fine tune the optimum solu-
tion, mainly due to the lack of diversity at the end of the search [Ang98].
In [RHW04], a novel parameter automation strategy for the particle swarm
algorithm was proposed. Initially, to efficiently control the local search and
convergence to the global optimum solution, time varying acceleration co-
efficients (TVAC) were introduced in addition to the time-varying inertia
weight factor. The objective was to enhance the global search in the early
part of the optimisation and to encourage the particles to converge toward
the global optima at the end of the search. In this new development, authors
reduce the cognitive component and increase the social component, by chang-
ing the acceleration coefficients c1 and c2 with time. With a large cognitive
component and small social component at the beginning of the problem space
search, particles are exposed to the global search of the problem space. On
the other hand, a small cognitive component and a large social component
allows the particles to converge to the global optimal in the latter part of the
optimisation. The proposed modification is mathematically expressed as in
(22) and (23).

c1 = (c1f − c1i
iter

MAXITE
) + c1i (22)

c2 = (c2f − c2i
iter

MAXITE
) + c2i (23)

Where c1i, c1f , c2i and c2f are constants, iter is the current iteration num-
ber and MAXITE is the maximum number of allowable iterations. In PSO,
lack of diversity of the population, particularly during the latter stages of



Biological Inspired Techniques 97

the optimisation, was understood as the dominant factor for the convergence
of particles to local optimum solutions prematurely. Recently, several at-
tempts on improving the diversity of the population have been reported in
the literature, considering the behaviour of the particles in the swarm during
the search [LK02] [XZY02]. Furthermore, possible use of the concept “muta-
tion” in PSO as a performance enhancing strategy has also been investigated
[HI03]. In evolutionary programming, a mutation function is defined to con-
trol the search toward the global optimum solution. However, different forms
of mutation functions are used in evolutionary programming and the sever-
ity of mutation is decided on the basis of the functional change imposed on
the parents. On the other hand, in genetic algorithms, the search toward the
global optimum solution is mostly guided by the crossover operation. In PSO,
the search toward the global optimum solution is guided by the two stochas-
tic acceleration factors. Therefore, Angeline et al. [Ang98] related these two
acceleration factors to the mutation function in evolutionary programming,
whereas Shi and Eberhart [YR98] related these two factors to the cross over
operation in genetic algorithms.

To control the phenomenon of particles getting caught in the local minima,
the authors of [RHW04], enhance the global search via the introduction of
a mutation operator, which is conceptually equivalent to the mutation in
genetic algorithms. In this new strategy, when the global optimum solution is
not improving with the increasing number of generations, a particle is selected
randomly and then a random perturbation is added to a randomly selected
modulus of the velocity vector of that particle by a predefined probability
(mutation probability). However, the mutation step size is set proportionally
to the maximum allowable velocity.

In [HJPRY+04], a new hybrid evolutionary-based method combining the
particle swarm algorithm and the chaotic search is proposed for optimising.
To achieve high performance in optimising, the chaotic search mechanism is
embedded in the standard particle swarm algorithm adaptively to avoid the
stagnancy of population and increase the speed of convergence. To make the
particles escape from stagnancy, the inactive particle should be replaced with
freshly created particles adaptively. Chaos is a common phenomenon existing
in the non-linear system, which is characterised as ergodicity, randomicity and
regularity. The main idea of chaotic search is as follows: chaos queues are
generated by iteration of a certain equation, here an equation called Logistic
is employed to obtain chaos queues, which are taken into optimisation by
carrier wave. It means that chaotic dynamic is amplified into a range where
optimisation values are initialised. With the chaotic iteration, the algorithm
will find the optimal area effectively. However, chaotic search will sometimes
lose its superiority when the search space expands so widely that chaos queues
can not reach the optimal area for a short time. So, chaotic search should
be restricted into a small time. So, chaotic search should be restricted into a
small range in order to obtain high performance in local search.
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Liu and Abraham [LAZ07] introduced Turbulence in the particle swarm
optimisation (TPSO). The proposed algorithm uses a minimum velocity
threshold to control the velocity of particles. TPSO mechanism is similar
to a turbulent pump, which supplied some power to the swarm system to
explore new search space. The minimum velocity threshold of the particles is
tuned adaptively by using a fuzzy logic controller, which is further called as
fuzzy adaptive TPSO (FATPSO). The authors discuss the one of the main
reason for premature convergence of PSO is due to the stagnation of the par-
ticles exploration of a new search space. If a particle’s velocity decreases to
a threshold a new velocity is assigned to the particles using (24) and (25).

vji(t + 1) = ωv̌ + c1r1(pbesti(t) − xid(t) + c2r2(gbestd(t) − xid(t))) (24)

v̌ =
{

vij , if |vij | ≥ vc;
u(−1, 1)vmax/ρ, if |vij | < vc

(25)

Where u(−1, 1) is the random number, uniformly distributed with the inter-
val [-1,1], and ρ is the scaling factor to control the domain of the particles
oscillation according to vmax . vc is the minimum velocity, threshold, a tune-
able threshold parameter to limit the minimum of the particles velocity. The
performance of the algorithm is directly correlated to two parameter values,
vc and ρ. A large vc shortens the oscillation period, and it provides a great
probability for the particles to leap over local minima using the same num-
ber of iterations. But a large vc compels particles in the quick flying state,
which leads them not to search the solution and forcing them not to refine
the search.

2.3 Image Classification Using Self Organising Maps

The network architectures and signal processes used to model nervous sys-
tems can be categorised as Feedforward, Feedback and competitive. Feedfor-
ward networks [RHW86], transform sets of input signals into sets of output
signals. The desired input-output transformation is usually determined by
external, supervised adjustment of the system parameters. In feedback net-
works [Hop82], the input information defines the initial activity state of the
feedback system, and after state transitions the asymptotic final state is iden-
tified as the outcome of the computation. In competitive learning networks,
neighbouring cells in a neural network compete in their activities by means
of mutual lateral interactions and develop adaptively into specific detectors
of different signal patterns.

The basic idea underlying “competitive learning” is briefly presented here:
Assume a sequence of statistical samples of a vectorial observable x = s(t)
where t is the time coordinate and a set of variable reference vectors mi(t) :
mi, i = 1, 2, ..., k. Assume that the mi(0) have been initialised in some proper
way such as random initialisation. If x(t) can be simultaneously compared
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with each mi(t) at each successive instant of time, taken here to be integer
t = 1, 2, 3..., then the best matching mi(t) is to be updated to match even
more closely the current x(t). If the comparison is based on some distance
measure d(x, mi) altering mi must be such that if i = c is the index of the
best-matching reference vector, then d(x, mc) is decreased, and all the other
reference vectors mi with i 	= c are left intact. In this way, the different
reference vectors tend to become specifically “tuned” to different domains of
the input variable x.

In competitive neural networks, active neurons reinforce their neighbour-
hood within certain regions, while suppressing the activities of other neurons
[XI05]. This is called on-center/off-surround competition. The objective of
SOM is to represent high-dimensional input patterns with prototype vectors
that can be visualised in a usually two-dimensional lattice structure [Koh90],
[Koh97]. Each unit in the lattice is called a neuron, and adjacent neurons
are connected to each other which gives a clear topology of how the network
fits itself to the input space. Input patterns are fully connected to all neu-
rons via adaptable weights, and during the training process, neighbouring
input patterns are projected into the lattice, corresponding to the adjacent
neurons. SOM enjoys the merit of input space density approximation and
independence of the order to input patterns.

In the basic SOM training algorithm the prototype vector are trained with
(26).

mn(t + 1) = mn(t) + gcn(t)[x − mn(t)] (26)

Where m is the weight of the neurons in the SOM network, gcn(t) is the
neighbourhood function that is defined as in (27),

gcn(t) = α(t)exp(
||rc − ri||2

2α2(t)
) (27)

Where, α(t) is the monotonically decreasing learning rate and r represents
the position of the corresponding neuron. To further improve the performance
of SOM classifier, the weight of the neurons md in is optimised with PSO.

Rectangular Self Organising Maps

The initialising topology of the SOM network mesh is a rectangular array
of neurons with dimension size equal to the feature vector size. The network
topology is shown in Fig. 5. Each neuron represents an image with dimension
equal to feature vector. The weights of the neurons are updated by a PSO
algorithm. The PSO algorithm updates the weights of the neuron in all the
dimensions of the feature vector. The termination of the training step could
be achieved in one of two ways. The first approach is to set an iteration limit
and once the iteration limit is reached the training process is terminated.
The second approach is to iterate until the dissimilarity measure or distance
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Fig. 5. Rectangular Mesh Self Organising Map

between the input feature vector and particles global best (gbest) is min-
imised below a threshold. The classification step computes the winner node
for the corresponding feature vector, which represents the image belonging
to specific class. The algorithm for updating the weights of the SOM using
PSO [CI06b] is listed below.

1. The rectangular topology of the SOM is initialised with feature vectors
mi(0) , i = 0, 1, 2..., Krandomly, where K is the length of the feature
vector.

2. Input feature vector x is presented to the network; choose the winning
node J that is closest to x as (28).

J = argjmin||x − mj || (28)

3. Initialise a population array of particles representing random solutions in
d-dimension, of the problem space.

4. For each particle, evaluate the L1 norm for x in d dimensions.
5. Compare particle fitness evaluation with particles personal best, pbest.

Then set pbest value equal to the current value, and the pbest location
equal to the current location in d-dimensional space.

6. Compare fitness evaluation with the populations overall previous best. If
current value reduces the error to achieve global minima than previous
gbest, then update gbest value.

7. Update the velocity of each particle as in (29).

vid(t + 1) = vid(t) + c1(pbesti(t) − xid(t)) + c2(gbestd(t) − xid(t)) (29)
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8. Update the position of each particle as in (30).

xid(t + 1) = xid(t) + vid(t + 1) (30)

9. Loop to Step 2, until the distance between the mi(0) and x are greater
than a threshold value eth .

10. Repeat the Steps 2 and 3 until all the input patterns are exhausted in
training.

In steps 2 to 9, the weights of the neuron in SOM are trained to represent
the input feature vector. The degree of closeness in pattern matching is de-
termined by the value of eth.

The training set includes both positive and negative samples from the
dataset and forms a subset of the testing database. The training models gen-
erated online within the network are used to discriminate the image classes.
In ideal sense, the network acts as a binary classifier in which one class of
images need to be discriminated from the others.

Chaotic Particle Swarm Optimisation

A number of studies have been carried out by various researchers in order to
determine the criteria for the choice between social and cognitive models 2.
If the social model is followed then it is likely that the group could converge
at the local minima of the fitness function, without properly exploring the
complete problem space. On the other hand choosing cognitive model has its
own disadvantages. If the cognitive model is followed, the convergence at the
suboptimal value will be time consuming and may or may not even converge
to the optimal solution, because of the fact that each particle follows its own
path rejecting the knowledge gained by the group. To overcome this problem,
an optimal choice of both models needs to be considered. In combination,
the particles personal experience “Personal best (pbest)” and its neighbours
experience, “Global best (gbest)” influence the movement of each particle
through a problem space.

In this section, the elementary principle of Chaos is introduced to model
the behaviour of particle motion. In our earlier work, the notion of Chaotic -
PSO was introduced [CI06a] for image classification. The theoretical
discussion on Chaotic-PSO with an introduction of wind speed and wind
direction to the standard PSO model, in order to model the biological atmo-
sphere for position update of the particles, thus including the dynamics of
nature in modelling Chaos-PSO. The update of the wind speed is given by
the following (31).

vw(t + 1) = vw(t) + vop ∗ rand() + vsu ∗ rand() (31)

Where vw is the wind velocity, vop is the opposing direction equal to −1 and
vsu is the supporting direction equal to 1. The random values are generated
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to the 6th decimal position. The wind speed has one of two effects. The
motion of the particles can be opposed or supported by the wind velocity.
The opposing effect slows down the particle in reaching the group global best
solution, where the supporting effect increases the particle velocity in reaching
in global best solution. Since, each and every particle is separately updated
by the wind equation. This is supported by the fact that particles are spatial
separated from each other, experiencing different dynamics of atmosphere.
When the value of opposing and supporting direction wind velocity equals
each other, a static atmosphere is modelled.

xid(t + 1) = xid(t) + vid(t) + vw(t) (32)

The position update equation for CPSO is given is (32). The introduction of
the parameter vw introduces the elementary theory of chaos in particle swarm
optimisation. The initial values of wind speed along the direction plays an
important role in determining the final convergence of the particles to the
optimal solution. Also, this parameter ensures the optimal searching of the
solution space.

Experimental Evaluation

In this section, four different algorithms are evaluated on D700 dataset pre-
sented in [DI07]. The details of the algorithms evaluated are listed below:

• SOM - Standard Self Organising Map algorithm, in which the network
neurons are trained using the neighbourhood function.

• SOM+GA - Self Organising Maps algorithm, in which the feature vector
of the winner node is optimised using Genetic Algorithm.

• SOM+PSO - Self Organising Maps algorithm, in which the feature vector
of the winner node is optimised using Standard-Particle Swarm Optimi-
sation technique.

• SOM+Ch-PSO - Self Organising Maps algorithm, in which the feature
vector of the winner node is optimised using Chaotic-Particle Swarm
Optimisation technique.

The objective of this evaluation is to study the performance of SOM net-
work with and with out the additional optimisation implemented. To this
effect, three optimisation techniques are considered, namely Genetic Algo-
rithm, Particle Swarm Optimisation and Chaotic-Particle Swarm Optimisa-
tion. The feature set used in the evaluation is MPEG - 7 visual descriptor
namely, Colour Layout Descriptor. The feature vector dimension is of size
“12”. The visual classifier evaluation is carried out for “7” concepts namely:
Building, Car, Cloud, Elephant, Grass, Lion and Tiger. The visual classifier
evaluation results is presented in Fig. 6. The evaluation of the framework is
presented in terms of “Accuracy”, which is defined as the percentage of the
image regions that were assigned to the correct semantic concept.
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Fig. 6. Classifier Comparison

From the results presented, general observation suggests the application of
additional optimisation technique leads to improved performance of the Self
Organising Maps network.

Specific observation on the effects of Genetic algorithm and PSO leads to
the conclusion that, PSO optimised SOM network provides improved results
compared to GA optimised SOM networks. Also, for concepts Building, Car,
Cloud, Grass and Lion Chaotic-Particle Swarm Optimisation provides better
results compared to standard-PSO technique. However for concepts, Elephant
and Tiger, standard-PSO performs better than Chaotic-PSO technique.

The average accuracy for each individual technique SOM, SOM+GA,
SOM+s-PSO, SOM+Ch-PSO is 33.9671%, 41.1428%, 62.2% and 64% re-
spectively. From this results, it is evident that, the s-PSO and Ch-PSO op-
timisation techniques improves the performance of the SOM network under
similar test conditions compared to other techniques.

The improved performance of PSO could be attributed to advantages of
PSO optimisation technique compared to the genetic algorithm: (i) PSO does
not suffer from some of GA’s difficulties in interacting with the group mem-
bers and rather detracts from progress towards the solution; (ii) a particle
swarm system has memory, where as the genetic algorithm does not have.
Change in genetic populations results in destruction of previous knowledge of
the problem, except when elitism is employed, in which case usually one or a
small number of individuals retain their identities. In PSO, individuals who
fly past optima are tugged to return towards them; and also the knowledge
of good solutions are retained by all particles.
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2.4 Media Retrieval

Content - based image retrieval (CBIR) exploits visual content descriptions to
index and search images from large scale image databases. It has been an active
and fast advancing research field over the last decade. CBIR uses visual infor-
mation extracted from a media such as colour, shape and texture to represent
and index the database. In typical CBIR systems, the visual contents of the
images in the database are extracted and described by multi-dimensional fea-
ture vectors. To retrieve media, users provide the retrieval system with query
samples. The system then translates these query(ies) into its internal represen-
tation of feature vectors.The similarities/distances between the feature vectors
are then calculated and the database is accordingly rankedwith the aid of an in-
dexing scheme. The indexing scheme provides an efficient way to search in the
image database. Recent retrieval systems have incorporated users’ relevance
feedback to modify the retrieval process in order to generate perceptually and
semantically more meaningful retrieval results.

Unlike textual information,which is humandefined andprecise inmeaning, a
picture has a hidden component of creative reasoning of the human brain. This
provides the content an overall shape and meaning far beyond capabilities of
any language-based representation. Early approaches for image retrieval were
based on keywords and manually annotated images inspired by information
retrieval [vR79] in text documents. Though manual annotations were devel-
oped to preserve knowledge they are burdensome and dependent on subjective
interpretations of the professional annotator, thereby resulting in low perfor-
mance of CBIR system. However, incorporating users judgment on similarity
of some media items during a relevance feedback session is a consequence of
the knowledge the user has build up through his/her life. Therefore a level of
this semantic information is transferred onto the similarity model in order to
capture human notion of semantic similarity. Several researchers have worked
on building relational base of concepts and content through the use of iterative
relevance feedback is presented in [ZLZ01], [MLC98]. The objective of the sys-
tem is to build a semantic network on top of the keyword association, leading
to enhanced deduction and utilisation of semantic content.

In designing a CBIR system, the first and the most important assump-
tion is that discrimination between relevant and non-relevant items is pos-
sible with the available features. Without this condition satisfied relevance
feedback is futile. There can be established a relatively straightforward trans-
formation between the topology of the feature space and the semantic char-
acteristics of the items the user wants to retrieve. There are relevant items in
the archive and they are a small part of the entire available collection. If such
items form the majority in the collection the performance of the retrieval pro-
cess might become limited and sometimes inadequate feedback information
is feedback by predominantly labelling positive items and less often negative
items.
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To simulate human visual perception, multiple low-level features are
extracted from image content needs to be considered. The aim is to obtain
information from different low-level visual cues at various levels of complexity
and to jointly exploit that information to obtain higher levels of conceptual
abstraction. Low-level descriptors are very useful to search for patterns of
interest and similarities in image database. The proposed system, as shown
in Fig. 7, consists of two main subsystems. The first subsystem runs offline
and embraces two processing steps. The aim of this step is to extract the dif-
ferent low-level features from the image dataset. The extracted features are
stored in the metadata repository. The metadata repository is then further
indexed based on the image id’s. The second subsystem involves online inter-
action with the user and comprises a number of processing steps. The second
subsystem consists of two online search modules namely “visual search” and
“RF system” which are discussed in detail in the following subsections. The
reminder of this section will discuss the workflow of the framework.

The interaction is initialised by randomly presenting the user with equal
distribution of the database. The user marks only the relevant images from
the presented results. The first user interaction inputs are presented to the
“visual search module”. The visual search module implicitly generates a
model for irrelevant model and performs the retrieval. The objective of this
step is to infer and predict the user preferences. From the set of results pre-
sented from first iteration, the user selects both relevant and irrelevant images
and the input is presented to “RF System”. The aim of this step is to en-
hance the inference of the user preferences in order to improve the image
retrieval. The user is then iteratively interacts with the system until the user
has retrieved all relevant documents or satisfied with the retrieved results.
The proposed RF system has been presented in Fig. 7.

Fig. 7. Proposed RF Framework
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2.5 Experimental Results

Feature Set. The MPEG - 7 visual descriptors namely Colour Layout De-
scriptor (CLD) [MSS03], [MOVY01] and Edge Histogram Descriptor (EHD)
are extracted for images in the following datasets. The CLD extracts colour
histograms over 8 X 8 image layout. Its similarity measure is a weighted
metric with nonlinearly quantised DCT coefficients. The EHD builds on his-
tograms of edges in different directions and scales. Detected edges in a number
of directions are used as localised input edge histogram of 80 bins. Its dis-
tance is a sum of distances over the original features, as well as global and
semi-global histogram values generated by various grouping of local image
parts.

PSO Implementation. The PSO model implemented is a combination of
cognitive and social behaviour. The structure of the PSO is “fully connected”
in which a change in a particle affects the velocity and position of other
particles in the group as opposed to partial connectivity, where a change in
a particle affects the limited number of neighbourhood in the group. Each
dimension of the feature set is optimised with 50 particles. The size of the
SOM network is pre-fixed with the maximum number of training samples to
be used in the network. The stopping criteria threshold is set to 1.0. The value
of the threshold indicated the closeness in solving the optimisation problem.

Corel Dataset. The database used in the experiments is generated from
Corel dataset consisting of seven concepts. In [DI07], an overview of the
selected dataset is presented. The dataset includes concepts building, cloud,
car, elephant, grass, lion and tiger, with the following number of ground truth

Fig. 8. Average Results
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images per concept: 141, 264, 100, 100, 279, 100 and 100 respectively. The
Corel database has been specifically modelled for seven concepts and though
it is a smaller size it consists of natural images with a variety of background
elements with overlapping concepts which make the dataset complex. In
Fig. 8, the average precision of the retrieval system has been presented.

3 Conclusion and Future Work

The recent revolutionary development of multimedia processing techniques,
combined with the rapid increase in computational capability and decrease in
storage and transmission costs, has led to a proliferation of digital multime-
dia content. One of the most crucial aspects of current interactive multimedia
systems is the functionality of indexing and retrieval of the visual information
in response to a query. However, the semantic gap between human percep-
tion of multimedia content and the automatic interpretation derived from
machine remains a formidable challenge. As discussed, the evaluation of the
proposed image clustering and classification has shown significant perfor-
mance improvement over the application of conventional evolutionary com-
putation techniques.
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Abstract. In image watermarking, binding the watermark synchronization with the
local features has been widely used to provide robustness against geometric dis-
tortions as well as common image processing operations. However, in the existing
schemes, the problems with random bending attack, nonisotropic scaling, general
affine transformation, and combined attacks still remain difficult. In this chapter, we
present and discuss the framework of the extraction and selection of the scale-space
feature points. We then propose two robust image watermarking algorithms through
synchronizing watermarking with the invariant local feature regions centered at fea-
ture points. The first algorithm conducts watermark embedding and detection in
the affine covariant regions (ACRs). The second algorithm is combining the local
circular regions (LCRs) with Tchebichef moments, and local Tchebichef moments
(LTMs) are used to embed and detect watermark. These proposed algorithms are
evaluated theoretically and experimentally, and are compared with two represen-
tative schemes. Experiments are carried out on a set of standard test images, and
the preliminary results demonstrate that the developed algorithms improve the per-
formance over these two representative image watermarking schemes in terms of
robustness. Towards the overall robustness against geometric distortions and com-
mon image processing operations, the LTMs-based method has an advantage over
the ACRs-based method.

1 Introduction

With the rapid developments of information technologies, digital media can be ac-
cessed, distributed, and copied in many convenient ways, but this also leads to the
problem of illegal redistribution and manipulations. Therefore, there is an increas-
ing concern over copyright protection of digital media. Traditionally, cryptography
can be used to protect the copyright of digital contents. But once the content is de-
crypted, there is no way to control its subsequent uses. As a popular and powerful
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technique, digital watermarking has been widely studied to manage the intellec-
tual property of digital contents. It inserts visible or invisible copyright information,
termed watermark, into the content. Ownership of the contents can be verified by
retrieving the inserted information. In this chapter, we focus on the digital water-
marking technologies to protect the digital content copyright.

For a desired image watermarking system, the watermark is supposed to be robust
against various attacks. Usually, these attacks can be classified into two categories:
common image processing operations and geometric distortions. Geometric distor-
tions are considered as one of the most difficult attacks to resist. They induce syn-
chronization errors between the extracted watermark and the original watermark,
and therefore disable the detector even though the watermark still exists in the
watermarked image. Nowadays, a few specialized watermarking approaches have
presented to address the geometric distortions. These approaches can be roughly
divided into four categories.

The first category is to perform an exhaustive random search for the watermark
over the space containing the set of acceptable attack parameters. One concern in
the exhaustive search is computational cost. The larger the search space, the more
accurate the synchronizer outcome, but it also requires more computation to perform
it. Another is the false-positive probability as it increases with the size of the search
space [1]-[2].

The second category includes those which embed watermark in the geometrically
invariant domain. In [3]-[4], the watermark was embedded in the magnitude part of
Fourier-Mellin transform. A rotation, scaling and translation invariant domain is
obtained by the Fourier transform after log-polar mapping(LPM). However, those
watermarking algorithms are known as the implementation difficulties due to the use
of LPM. In [5], phase correlation was used to resynchronize the watermarked image
and avoid the inverse log-polar mapping (ILPM). Watermarking techniques involv-
ing invariant domains suffer from implementation issue and are usually vulnerable
to cropping.

The watermarking techniques belonging to the third category use a template or
insert a periodic watermark pattern for the purpose of resynchronization. In [6] and
[7], templates were embedded in the discrete Fourier transform(DFT) domain to
generate the shape of local peaks. The local peaks are searched in the detection
process to identify transformations undergone by the image. The performance of
the template-based methods depends on the dimensionality of the attack param-
eter space. For some complicated attacks, these template-based methods will be
incapable of estimating the attack parameters. In [8], a self-reference watermark
generated as a special structural pattern was embedded in the spatial domain. In
[9], Delannay and Macq designed 2-D cyclic patterns to achieve resynchronization.
Dugelay et al. added predefined additional information in the useful message bits at
the embedding step. During the extraction step, these bits are then used as anchor
points to estimate and compensate for global/local geometric distortions [10]. The
major drawback of the periodical pattern-based techniques is relatively vulnerable
to watermark estimation attack, such as collusion attack.
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The fourth category includes those methods which exploit features invariant
to geometric distortions. These invariant features may be the whole image, some
invariant regions or invariant feature points [11]. By binding the watermark syn-
chronization with the image features, watermark detection can be done without syn-
chronization error. This class of watermark synchronization techniques is also called
second generation watermarking [12]. In [13]-[16], image moments were employed
to embed watermark. In spite of the robustness against global affine transformations,
the moment-based approaches are highly vulnerable to cropping. In [17], a region-
based watermarking scheme was proposed by segmenting an image into a set of re-
gions. Two largest regions approximated by ellipsoids are chosen as the embedding
area for the watermark. The problem of this method is that the image segmentation
depends on the image contents so that image distortions seriously affect the seg-
mentation results [18]. In [19], the Harris detector was used to extract feature points
to decompose an image into a set of meshes by using Delaunay tessellation. Both
the watermark embedding and detection are conducted in the normalized meshes. In
[20], Tang and Hang adopted Mexican-Hat wavelet filtering to extract feature points,
and image normalization was then applied to these non-overlapped disks centered
at the extracted feature points. In [21],the scale-space theory was applied for feature
point extraction. For a chosen feature point, a specific geometric shape is formed
and used for embedding watermark.

After surveying the existing watermarking methods that provide a certain degree
of robustness against geometric distortions, we have observed that the feature-point-
based watermarking methods exhibit more promising than others in terms of robust-
ness. This is mainly because that 1) the extracted feature points are proven to be
robust against many common image processing operations and geometric distor-
tions; 2) the watermarks are embedded in a number of local regions centered at
these feature points, which increase the ability of the watermark to resist cropping.
However, there are some main drawbacks indwelled in current feature-point-based
schemes. First, the feature point extraction techniques adopted by the
current feature-point-based approaches, such as Harris detector [19] and Mexican-
Hat wavelet filtering [20], are sensitive to image modification. Secondly, the fixed
value is used to determine the size of local regions so that the watermarking scheme
is vulnerable to the scaling of an image [22]. Thirdly, it still remains difficult
for the current feature-point-based watermarking schemes to resist random bend-
ing attack(RBA), nonisotropic scaling, general affine transformation, and combined
attacks. These practical problems existed in the current feature-point-based water-
marking methods restrict the robustness against geometric distortions and common
image processing operations. To this end, two image watermarking based on local
feature regions are developed and compared in this chapter.

In the method based on affine covariant region (ACRs), the Harris-Affine detec-
tor is adopted to extract ACRs. The feature selection criterion based on the graph
theoretical clustering algorithm is then employed to select a set of nonoverlapped
ACRs for watermark embedding. In order to achieve affine invariance, each region
is locally normalized by transforming an ellipse into a circle and rotated to align
with its dominant gradient orientation. In watermark embedding, circular watermark
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pattern is embedded in the normalized patch. For the purpose of imperceptibility
after watermarking, an image-dependent visual model is utilized to adjust the em-
bedding strength.

In the method based on local Tchebichef moments (LTMs),feature points are ex-
tracted by the Harris-Laplace detector and then selected by the proposed feature se-
lection criterion. For each chosen feature point, we construct a local circular region
(LCR) that is invariant to geometric distortions. The Tchebichef moments (TMs) are
then employed to describe the global characteristics of the local invariant region.
Obviously, the extracted LTMs are independent to the slight changes of pixels in
this region. Here we select TMs rather than others because TMs have not only in-
sensitivity to noise but also better feature representation capability and reconstruc-
tion accuracy. The magnitudes of LTMs are modified through quantization index
modulation, which can achieve the blind detection and improve the detection accu-
racy. Extensive experimental results show that the proposed schemes are resilient to
various geometric distortions as well as common image processing operations and
outperform the existing representative works.

The reminder of this paper is organized as follows: In Section 2, some prelim-
inaries are given, including feature points extraction and feature points selection;
in Section 3, two image watermarking algorithms based on feature regions are de-
scribed in detail, respectively. Experimental results and detailed analysis are given
in Section 4, and conclusion is drawn finally.

2 Preliminaries

In the framework of the proposed watermarking methods, feature points extraction
and feature points selection will play important roles in achieving the desired goal,
and they will be discussed in this section.

2.1 Feature Point Extraction

2.1.1 Harris-Laplace Detector

Harris-Laplace detector [23] is the improvement of Harris detector. To obtain the
invariance to scale changes, this detector first calculates a set of images represented
at different resolution levels for reliable Harris detector. It then selects feature points
with an automatic scale selection procedure. For Harris-Laplace detector, the scale-
normalized second moment matrix is defined as

μ(x,σI,σD) = σ2
Dg(σI)∗

[
L2

x(x,σD) LxLy(x,σD)
LxLy(x,σD) L2

y(x,σD)

]
, (1)

where σI is the integration scale, σD is the differentiation scale, Ls is the derivative
computed in the s direction, and ∗ denotes the convolution operator over x ∈ ℜ2.
The scale-space representation is a set of images represented at different levels of
resolutions. Given the σD, the uniform Gaussian scale-space representation L is
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L(x,σD) = g(x,σD)∗ f (x), (2)

where g(x,σD) is the uniform Gaussian kernel with standard deviation σD and mean
zero, f is an image, and ∗ is convolution operator.

Given σI and σD, the strength measure of this detector can be computed as

m(x,σI ,σD) = det(μ(x,σI,σD))− k · trace2(μ(x,σI,σD)), (3)

where k is an predefined constant. At each level of the scale space, the local maxima
of the strength measure are regarded as the feature points.

The idea of automatic scale selection is to select the characteristic scale of a local
structure, for which a given function attains an extremum over scales. Normalized
Laplacian-of-Gaussian(LoG) operator is used for finding the characteristic scale.
The LoG is defined as

|LoG(x,σI)| = σ2
I

∣∣Lxx(x,σI)+ Lyy(x,σI)
∣∣ , (4)

where Lxx and Lyy are second partial derivatives with respect to x and y, respectively.
For each candidate point, an iterative algorithm is applied for detecting the loca-

tion and the scale of feature points. The extrema over scales of the LoG are used to
select the scale of feature points. Given an initial point x with scale σI , the iteration
steps are:

Step 1: Find the local extremum over scale of the LoG for the point xk , otherwise,

reject the point. The investigated range of scales is limited to σ (k+1)
I = tσ (k)

I with
t ∈ [0.7, · · · ,1.4].

Step 2: Detect the spatial location xk+1 of a maximum of the strength measure

nearest to xk for selected σ (k+1)
I .

Step 3: Go to Step 1 if σ (k+1)
I 	= σ (k)

I or xk+1 	= xk.
Since these feature points can only provide position information, the neighbor-

hood of the points are required for watermark embedding and detection. For each
feature point, a LCR can be constructed. The radius of the LCR is

R = τ · [σ ] (5)

where [·] is rounding operation, σ is the characteristic scale, and τ is a positive inte-
ger, which is used to adjust the size of a LCR. Because the radius of each LCR is in
direct proportion to its corresponding characteristic scale, the LCR can be covariant
to the image content changes, such as scaling.

2.1.2 Harris-Affine Detector

Lindeberg and Garding [24] extended the notion of the scale space to the affine
Gaussian scale space. Then, the rotationally symmetric Gaussian window func-
tion in Eq. (2) is substituted by an affine Gaussian scale-space elliptical window
function:
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g(x,Σ) =
1

2π
√

detΣ
exp

(−xT Σ−1x
2

)
, (6)

where Σ is a symmetric positive-definite 2 × 2 matrix. Then the affine Gaussian
scale-space representation is defined by

L(x,Σ) = g(x,Σ)∗ f (x). (7)

In the affine Gaussian scale space, the second moment matrix μ at a given point x
is described by

μ(x,Σs,Σt) = g(x,Σs)∗
[
(∇L)(x,Σt )(∇L)(x,Σt )T ] , (8)

where Σs and Σt are respectively covariance matrices corresponding to the integra-
tion scale and local scale.

The Harris-Affine detector is based on the affine normalization around multi-
scale Harris points. After a set of feature points are detected by Harris-Laplace
detector, an iterative procedure is utilized to estimate elliptical ACRs around the
feature points, wherein these regions are relative invariant to arbitrary affine trans-
formations [25]. Consider an image I(x) and its corresponding linearly transformed
image Ĩ = I(Bx) , the affine scale-space second moment matrices μ and μ̃ of I and
Ĩ respectively satisfy

μ(x,Σs,Σt) = BT μ̃(Bx,BΣsBT ,BΣt BT )B. (9)

It can be proven that if the following property holds for the second moment matrix
ML at a fixed point xL of the image I(x), i.e.,

μL(xL,Σs,L,Σt,L) = ML, Σs,L = s ·M−1
L , Σt,L = t ·M−1

L , (10)

then the second moment matrix at the point xR(xR = BxL) of the image Ĩ(x) satisfies
the following property

μ̃R(xR,Σs,R,Σt,R) = MR, Σs,R = s ·M−1
R , Σt,R = t ·M−1

R , (11)

where M−1 is the inverse of second moment matrix M and s, t ∈ ℜ+.
Baumberg [26] employed the square root of the second moment matrix to trans-

form an image to a normalized one. The transformed images of I(x) and Ĩ(x) are
respectively defined as

I′(M−1/2
L x) = I(x), Ĩ′(M−1/2

R x) = Ĩ(x), (12)

where M−1/2 is the square root matrix of M. By using the transformation property,
the normalized image can be shown as

μ ′
L(M

−1/2
L xL,sI,tI) = μ ′

R(M−1/2
R xR,sI,tI) = I, (13)
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where I is the 2×2 identity matrix. Thus, the affine transformation can be expressed
as

B = M−1/2
R RM−1/2

L , (14)

where R is a rotational matrix.
If the neighborhood of points xL and xR are normalized by transformations x′L =

M1/2xL and x′R = M1/2xR, respectively, the normalized images are related according
to xL = Rx′R, which is simply a rotational transformation.

We further simplify the Harris-Affine detector with four steps: (1) detect initial
feature points by using multi-scale Harris detector; (2) select the characteristic scale
for each of the located feature points; (3) determine the shape of a point by the
eigenvalues and eigenvectors of the second moment matrix; and (4) normalize ACRs
according to x′ = M1/2x.

As mentioned above, the elliptical shape of the ACRs are determined by the sec-
ond moment matrix M,

(x−x0)T M(x−x0) ≤ 1, (15)

where x0 is the center of the elliptical region, namely, the location of the feature
point, M is the second moment matrix. For an affine transformation, scaling is dif-
ferent in each direction. Nonisotropic scaling has an influence on the spatial loca-
tion, the scale and the shape of a local structure. Therefore, elliptical ACRs are more
adaptive to an anisotropic local structure.

2.2 Feature Point Selection

Scale-space feature detectors, such as Harris-Laplace detector and Harris-Affine de-
tector, was originally developed for matching and recognition. It extracts many fea-
ture points that densely cover the whole image. Hence, the local regions centered
at feature points are overlapped with each other seriously. These local regions are
not directly applicable to watermarking. Therefore, we present a selection criterion
based on the graph theoretical clustering algorithm for scale-space feature points.
This selection criterion adjusts the number, distribution, and scale of the features
and removes those features that are vulnerable to watermark attacks. The frame-
work of this selection criterion is illustrated as Fig. 1.

The scale of feature points derived from scale-space feature detectors is related
to the scaling factor of the Gaussian kernel in scale space. Usually, features with
small scales have a low repeatability, while features with large scales also have
a low probability of being redetected. Moreover, using large-scale features means
that local regions centered at these feature points will seriously overlap with each
other, which will severely degrade the performance of the watermarked image. As
a consequence, we only select features whose scale is in the middle-scale band
(a ≤ s ≤ b). Here, parameters a and b can be adjusted according to the different
detectors.
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Fig. 1. Framework of the feature selection criterion based on the graph theoretical clustering
algorithm

The distribution of features is also related to the performance of the watermarking
system. That is to say, the distance between adjacent features must be determined
carefully. If the distance between two features is small, their overlap will be large.
On the contrary, if the distance between them is large, the number of local regions
will be insufficient. Therefore, distance constraint is adopted to modulate the dis-
tribution of the features. We utilize minimum spanning tree (MST) clustering algo-
rithm [27] to group these features according to the distance constraint D . In other
words, features whose adjacent distance is less than D will be assigned into a clus-
ter. With regard to the same cluster, features whose strength is the largest are used
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to form local regions. In our experiments, distant constraint D can be adaptively
adjusted according to the different detector. At the same time, distant constraint D
can be treated as a secret parameter to enhance the security of the watermarking
system. That means the receiver will not be able to generate the same local regions
if he/she does not know this parameter.

After the above steps, non-overlapped local regions are selected appropriately
for watermarking. Fig. 2 and Fig. 3 show the procedures in selecting the ACRs and
the LCRs for Baboon, Lena, and Plane, respectively. The original feature points
extracted by scale-space feature detectors are illustrated in Fig. 2(a) and Fig. 3(a).
While keeping the selected feature points in middle-scale band, as shown in Fig. 2(b)
and Fig. 3(b), the final feature points are well chosen after MST-based clustering
algorithm. The local regions appropriate for watermarking are shown in Fig. 2(c)
and Fig. 3(c).

Fig. 2. ACRs selection for Baboon, Lena, and Plane, respectively: (a) original scale-space
feature regions, (b) feature regions in middle-scale band, and (c) final selected feature regions
for watermarking



120 C. Deng et al.

Fig. 3. LCRs selection for Baboon, Lena, and Plane, respectively: (a) original scale-space
feature regions, (b) feature regions in middle-scale band, and (c) final selected feature regions
for watermarking

3 Robust Image Watermarking Based on Local Features

3.1 Geometrically Invariant Image Watermarking Based on ACRs

Seo and Yoo [21] present a geometrically invariant image watermarking based on
ACRs that provides a certain degree of robustness. However, as described previ-
ously, there are some main problems in [21]. First, the feature selection process
in [21] does not completely solve the issue of the overlapping between the fea-
ture regions. In fact embedding watermark into a number of non-overlapped feature
regions is the most important pre-requisite for designing a robust image watermark-
ing. In view of the multi-characteristic of scale-space feature point, feature selection
process combined with clustering algorithm should be a promising solution to this
problem. Secondly, even though the feature regions in [21] have been called invari-
ant regions, in principle they should be termed covariant regions since they deform
covariantly with the transformation. The confusion probably arises from the fact
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that, even though the regions themselves are covariant, the normalized image pattern
they covered is typically invariant [28]. So, an ACR directly used as the embedding
unit inherently restricts the obtainable robustness against geometric distortions. As
to that, combining ACR extraction with geometric invariant region construction will
evidently improve the robustness of the watermarking system. Thirdly, 1-D water-
mark is affinely transformed into an elliptical pattern according to the shape of the
elliptical region, which will dramatically reduce the resulting watermark energy in
detection end and cause the watermark detection failure.

Take the above problems into consideration, we propose a new image water-
marking scheme by incorporating the advantages of the Harris-Affine detector, the
image normalization and the orientation alignment seamlessly. The Harris-Affine
detector is adopted to extract ACRs. The graph theoretical clustering algorithm is
then employed to select a set of separated ACRs for watermark embedding. In order
to achieve affine invariance, each region is locally normalized by transforming an
ellipse into a circle and rotated to align with its dominant gradient orientation. In
watermark embedding, circular watermark pattern is embedded in the normalized
patch. For the purpose of imperceptibility after watermarking, an image-dependent
visual model is utilized to adjust the embedding strength [29].

3.1.1 Watermark Embedding

For watermark embedding, we first select a set of suitable ACRs according to the
procedure mentioned in the Section 2, wherein the selected regions are possible
for watermark embedding. Secondly, these regions are transformed into circular
patches by normalization and dominant orientation alignment. Finally, the circular
watermark pattern is embedded repeatedly in all normalized patches. This process
is visualized by Fig. 4, in detail,

Fig. 4. The watermark embedding procedure of the ACRs-based scheme
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Step 1: The Harris-Affine detector is used to extract ACRs according to the pro-
cedure mentioned in the Section 2. In order to embed watermarks, a set of stable
and non-overlapped ACRs are selected according to the scale range, repeatability,
and distribution.

Step 2: Each selected ACR Pi is normalized to a circular patch NPi with a fixed
radius r . When all ACRs are normalized, corresponding regions are differed only
by a simple rotation.

The size of normalized patch needs to be properly considered. It has been proven
that if a large patch is warped into a small patch, which means that the warping
process is a multiple-to-one pixel mapping, then one pixel in NPi represents sev-
eral pixels in Pi. Under this circumstances, a small normalized patch is beneficial
for achieving robustness. In our study, the size of normalized patch is empirically
found to be 39×39 (r = 19) for achieving a tradeoff between imperceptibility and
robustness.

Step 3: The watermark sequence C = {c1,c2, · · · ,cN} is generated by a secret key
and then mapped into circular watermark pattern W with the radius of r.

Step 4: For each normalized patch, we can calculate its dominant gradient orien-
tation and align the patch according to this orientation by rotating. Thus, the rotation
invariance of the patch can be obtained. Let RPi denote the rotated circular patches.

In [30], a window centered at these feature points is defined. The gradients of
all pixels in a window are calculated by using the first order derivative. Then the
histogram of gradients is computed and the peak of the histogram is assigned as the
dominant orientation of the feature point. This orientation is usually robust against
noise, small local distortions and some displacement of the feature point position.

The gradient of the pixel (x0,y0) in the image I is computed as follows

∇I(x0,y0) = [(∂ I/∂x), (∂ I/∂y)]|(x0,y0). (16)

The magnitude of this gradient is
√

(∂ I/∂x)2 +(∂ I/∂y)2 and its orientation is given
by tan−1[(∂ I/∂y)/(∂ I/∂x)].

Step 5: To make the embedded watermark imperceptible, we adopt the following
image-dependent visual model [31]

Λ = (1−NVF) ·α + NVF ·β , (17)

where α and β are the watermark strength. For most real-world images, β is set to
3, and α can be adjusted to keep the peak signal-to-noise ratio (PSNR) higher than
a certain value (in our case, α is set to 15). The noise visibility function(NVF) is
calculated as follows:

NVF(i, j) =
1

1 + θ ·σ2
x (i, j)

, θ =
D

σ2
x max

, (18)

where σ2
x (i, j) is the local variance of the neighboring pixels, σ2

x max is the maximum
local variance of the image, and D ∈ [50,100] is an experimental constant.

Step 6: Thereafter, the watermarked circular patch is obtained by the additive
rule, i.e.,
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RPw
i (x) = RPi(x)+Λ(x) ·W(x). (19)

Once the watermarked normalized patch RPw
i is obtained, the inverse orientation

alignment and the inverse normalization are used to yield a watermarked ACR.
Although direct inverse normalization is intuitive, blocking effects caused by the
one-to-multiple pixel mapping may degrade the imperceptibility [32]. To deal with
this problem, the difference between RPi and RPw

i , which is caused by watermark-
ing in the normalized domain, is inversely aligned and then inversely normalized to
yield the difference Pdi f f

i in the spatial domain. Hence, the watermarked ACR in the
spatial domain can be described as

pw
i = pi + pdi f f

i . (20)

Finally, by integrating all watermarked ACRs, the watermarked image can be
obtained.

3.1.2 Watermark Detection

The watermark detection stage uses the same feature selection process as it in the
watermark embedding procedure. Even though the watermarked image undergoes
specific affine transformations, the ACRs with the locally largest repeatability can
be conserved. The procedure for watermark detection is described in detail as below.

Step 1-3: These three steps are the same as Steps 1-3 in the watermark embedding
procedure.

Step 4: Because the Wiener filter can separate the image components from the
watermark components, we use it to estimate embedded watermark patterns. The
estimated watermark is then converted into a sequence V = {v1,v2, · · · ,vN}.The ex-
tracted watermark sequence is then compared with the original embedded water-
mark to decide whether a watermark exists in an ACR.

3.1.3 False-Positive Probability Analysis

For each ACR, the matching bits between C and T is calculated. If the matching
bits is greater than predefined threshold T , it is said that a watermark is existed in
a ACR. To determine the threshold, we consider the false-positive probability and
the false-negative probability. Usually, it is difficult to analyze the false-negative
probability because a wide variety of distortions exist in the procedure of watermark
embedding and detection. Hence, it is usual to select the threshold T based on a fixed
false-positive probability.

For an unwatermarked image, the extracted bits are treated as independent ran-
dom variables with probability 0.5. According to Bernoulli trials, the false-positive
probability of an ACR is

Pf p =
N

∑
i=T

(0.5)N
(

N!
i!(N − i)!

)
, (21)
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where T is the predefined threshold, i is the number of the matching bits, and N is
the length of the watermark sequence. Furthermore, an image is claimed to be wa-
termarked if at least m regions are detected. Therefore, the false-positive probability
of one image is

Pf p−image =
M

∑
j=m

(
M
j

)
(Pf p) j(1−Pf p)M− j, (22)

where M is the total number of ACRs in an image.
We can plot Pf p−image against various T values, as shown in Fig. 5 using Eq. (22)

when the above parameters are set to T = 160, M = 20, N = 256, the false-positive
probability of an image for m = 1,2,3 are 4.0×10−4, 9.3×10−8, and 1.2×10−11,
respectively.

Fig. 5. False-positive probability Pf p versus watermark detection threshold T

3.2 Robust Image Watermarking Based on LTMs

The ACRs-based image watermarking scheme has improved the performance in
term of robustness. However, it still has some problems: first, normalization and
direct inverse normalization of feature regions will lead to blocking effects and de-
grade the imperceptibility of watermarked image; secondly, transforming watermark
into a specific shape (e.g., circular or ellipse) will reduce the resulting watermark
energy in detection end; thirdly, if the watermark is directly embedded in the spa-
tial domain, the shift problem may cause the watermark extraction failure. These
practical problems existed in the ACRs-based method restrict the robustness against
geometric distortions as well as common image processing operations. To this end,
we develop an image watermarking approach that has greater robustness against
geometric distortions and common image processing operations simultaneously by
incorporating the advantages of the moment-based method and the feature-point-
based method [33].

In the proposed watermarking scheme, the Harris-Laplace detector is used to
extract feature points. For each chosen feature point, a LCR is constructed that is
invariant to rotation and scaling. The TMs are then employed to describe the global
characteristics of the local invariant regions. Obviously, the extracted LTMs are in-
dependent to the slight change of pixels in this region. Here we select TMs rather
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than ZMs/PZMs based on the fact that TMs have not only insensitivity to noise but
also better feature representation capability and reconstruction accuracy. The mag-
nitudes of LTMs are modified through quantization index modulation, which can
achieve the blind detection and improve the detection accuracy.

3.2.1 Tchebichef Polynomials and Tchebichef Moments

Unlike Zernike moments(ZMs)/Pseudo Zernike moments(PZMs) polynomials only
defined inside the unit circle, discrete Tchebichef polynomials are directly defined in
the image coordinate space and preserve the property of orthogonality in a moment
set. TMs are hence more suitable for square digital image. The accuracy of image
reconstruction with TMs is distinctly better than with ZMs/PZMs [34].

The discrete Tchebichef polynomials[35] are defined as

tn(x) = n!
n

∑
k=0

(−1)n−k
(

N −1− k
n− k

)(
n + k

n

)(
x
k

)
. (23)

and satisfies the following orthogonal condition

N−1

∑
x=0

tp(x)tq(x) = ρ(n,N)δpq 0 ≤ p,q ≤ N −1, (24)

where ρ(n,N) = (2n)!
(

N + n
2n + 1

)
, n = 0,1, . . . ,N −1.

For a digital image f (x,y) with size N×N, the (p+q)th order scaled Tchebichef
moments are given by

Tpq =
1

ρ̃(p,N)ρ̃(q,N)

N−1

∑
x=0

N−1

∑
y=0

t̃p(x)̃tq(y) f (x,y) p,q = 0,1,2, . . . ,N −1, (25)

where the scaled Tchebichef polynomials t̃n(x) = tn(x)/β (n,N) and ρ̃(n,N) =
ρ(n,N)/β (n,N)2 . Here, β (n,N) is a suitable constant which is independent of x.

The inverse moment transformation can be defined as

f (x,y) =
N−1

∑
p=0

N−1

∑
q=0

Tpqt̃p(x)̃tq(y) x,y = 0,1, . . . ,N −1. (26)

However, the TMs tend to exhibit numerical instabilities and propagation of numer-
ical errors with the moment order increasing. Then, the quality of image reconstruc-
tion will be affected severely. To solve this problem, the constant β (n,N) should be
modified as

β (n,N) =

√
N(N2 −1)(N2 −22) · · · (N2 −n2)

2n + 1
. (27)

In this case, ρ̃(n,N) = 1.0 [36].
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Fig. 6 shows the relationship between the maximum moment orders of TMs and
reconstruction errors. We use the following measure to evaluate the reconstruction
error

ε =

√√√√N−1

∑
i=0

N−1

∑
j=0

{
f (i, j)− f̃ (i, j)

}2
, (28)

where f (x,y) is an input gray-level image and f̃ (x,y) is the reconstructed version.

Fig. 6. Reconstruction error with respect to the maximum moment order for Lena image
(128×128)

3.2.2 Watermark Embedding

The process of watermark embedding is shown in Fig. 7, and the detailed algorithm
is given as follows.

Step 1: A set of feature points are extracted by the Harris-Laplace detector ac-
cording to the proposed selection criterion, as described in Section 2.

Step 2: For each LCR, we need to calculate the gradient direction of all pixels
within it by using first order derivative. Then the histogram of the gradient is com-
puted and the peak of the histogram is assigned as the dominant orientation of the
feature point. To achieve the rotation invariance, the dominant orientation of the
LCR is aligned by rotating.

Ideally, the watermarks are only embedded in the LCRs, as illustrated in Fig.
8(a). But in implementation, as shown in Fig. 8(b) and (c), we actually first obtain
original square patches, and the ideal LCRs can then be generated after padding the
original square patches with zeros. Considering the fact that discrete TMs polyno-
mials define their moments directly on image coordinate space and the regions for
watermarking must preserve the covariant properties, the inscribed square patches
of the LCRs, as shown in Fig. 8(d), are extracted as the final embedding regions.
Fig. 8 illustrates the formation of the embedding regions.

Step 3: To further enhance the robustness to common image processing opera-
tions, such as additive noise and JPEG compression, LTMs are calculated in each
inscribed square patch.

Step 4: The set of LTMs whose order are less than or equal to ωmax is denoted
as {Ω = Tpq, p + q < ωmax, p,q 	= 0}. Watermarks should be embedded in Ω to
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Fig. 7. The watermark embedding procedure of the LTMs-based scheme

Fig. 8. The formation of the embedding regions: (a) the ideal embedding region, (b) the
original square patch, (c) the square patch after orientation alignment and zero-padding, and
(d) the inscribed patch for watermarking

balance invisibility and robustness. Dither modulation [37] is adopted for the modi-
fication of LTMs to conduct watermark embedding.

Let watermark sequence be b = b1, . . . ,bL, and bi ∈ {0,1}. We first use a se-
cret key K1 to randomly select L LTMs from Ω to form a TM vector T =
(Tp1q1 , . . . ,TpLqL). To embed a watermark bit bi, the magnitude of Tpiqi is quantized,
producing a new vector T̃ = (T̃p1q1 , . . . , T̃pLqL) [38], whose magnitudes satisfy

|T̃piqi | =
[ |Tpiqi |−di(bi)

Δ

]
Δ + di(bi), i = 1, . . .L, (29)
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where [·] is rounding operation, Δ is quantization step and di(·) is the dither
function for the ith quantizer satisfying di(1) = Δ/2 + di(0). The dither vector
(d1(0), . . . ,dL(0)), which follows uniform distribution over [0,Δ ], is generated by
secret key K2. Thus, the modified LTMs can be expressed as

T̃piqi =
|T̃piqi |
|Tpiqi |

Tpiqi , i = 1, . . . ,L. (30)

Step 5: For each watermarked inscribed square patch, it is composed of two parts.
One is the reconstructed patch by the LTMs not selected, which is

frest (x,y) = f (x,y)− fT(x,y), (31)

where f (x,y) is the original patch and fT(x,y) is the reconstructed patch by the
selected LTMs before they are changed.

The other is the patch fT̃(x,y), which is reconstructed by those modified LTMs.
Consequently, we can obtain a watermarked inscribed square patch by combining
these two parts

f̃ (x,y) = frest(x,y)+ fT̃(x,y). (32)

After all of the watermarked inscribed square patches replace the original ones, the
watermarked image can be obtained.

3.2.3 Watermark Detection

The procedure for watermark detection is illustrated in Fig. 9. In detail,
Step 1-3: These first three steps are identical to Steps 1-3 in the watermark em-

bedding procedure.
Step 4: With the same secret key K1, L relevant LTMs can be chosen, which is

denoted by T ′ = (T ′
p1q1

, . . . ,T ′
pLqL

).
First, with the same key K2, the same two dither vector (d1(0), . . . ,dL(0)) and

(d1(1), . . . ,dL(1)) are regenerated. As the Eq. (29), the magnitude of each T ′
piqi

is
then quantized with the above two corresponding dithers, respectively,

|T ′
piqi

| j =
[ |T ′

piqi
|−di( j)
Δ

]
Δ + di( j), (33)

where i = 1, . . . ,L, j ∈ 0,1 and [·] is the rounding operation.
Finally, by comparing the distances between |T ′

piqi
| with its two quantized ver-

sions, we can estimate the watermark bit embedded in |Tpiqi |

b′i = arg min
j∈{0,1}

(
|T ′

piqi
| j −|T ′

piqi
|
)2

. (34)
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Fig. 9. The watermark detection procedure of the LCRs-based scheme

3.2.4 False-Positive Probability Analysis

For an un-watermarked image, the extraction of watermark bit, analogy with coin-
tossing, can be regarded as Bernoulli trials. The extracted bits can be treated as
stochastic variable with probability p = 0.5. A LCR is claimed to be watermarked
if the number of the matching bits is larger than a threshold. Thus, the false-positive
error probability of the LCR can then be described as

Pf p =
L

∑
r=T

(0.5)L
( L!

r!(L− r)!

)
, (35)

where T is a predefined threshold, r is the number of the matching bits and L is the
length of watermark bits.

When L is large, the probability density for a binary stochastic variable is known
to approximate a Gaussian probability variable with an average m = Lp and a vari-
ance σ̂2 = Lp(1− p) [39]. Therefore, Eq. (35) can be rewritten as

Pf p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− 1

2π
e−T ′2/2

(a−1)T ′+a
√

T ′2+b
(T < pL)

0.5 (T = pL)
1

2π
e−T ′2/2

(1−a)T ′+a
√

T ′2+b
(T > pL)

, (36)

where T ′ = (T −m)/σ̂ , a = 1/π , and b = 2π .
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For instance, when L = 224 and T = 140 (140 bits out of 224 match), Pf p =
9.13e− 5, based on Eq. (36). Therefore, when we assume watermark is embedded
in a disk, the probability that this assumption is wrong is 9.13e−5.

4 Experimental Results and Analysis

In this section, the two proposed algorithms are evaluated in two aspects: impercep-
tibility and robustness. We collect a set of standard test images including images
Baboon, Lena, Peppers and Plane to build a dataset. The watermark generated by
secret key is respectively 256-bit (N = 256) and 224-bit (L = 224) in the ACRs-
based scheme and the LTMs-based scheme.

4.1 Imperceptibility Test

In the ACRs-based scheme, the original images and the watermarked images are
shown in Fig. 10(a) and Fig. 10(b). The difference between the original images and
the watermarked versions are magnified by a factor 100 and shown in Fig. 10(c).
Based on Eq. (17), it is clear that for a region with high local variance (NVF → 0),
a strong watermark is embedded, while for a homogenous region (NVF → 1), the
watermark strength is almost zero. Through NVF, it can modulate the watermark
strength adaptively based on local image characteristics and in the meanwhile make
the embedded watermark hardly perceptible. In addition, the overall PSNR values
of all images in our testing set between the original and watermarking versions are
greater than 40 dB.

Fig. 10. (a) Original image, (b) watermarked image, and (c) difference image for Baboon and
Lena
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In the LTMs-based scheme, the PSNR value between the original image and the
watermarked version depends on the following two main factors. On the one hand,
given a fixed watermark length, the quantization step Δ in the dither modulation has
an impact on the PSNR. A larger value of Δ will increase the watermark strength, but
decrease the PSNR, and vice versa. On the other hand, given a fixed Δ or watermark
strength, the more watermark bits are embedded, the lower PSNR value is, and vice
versa. The relationship between the average PSNR and these two factors are shown
in Fig. 11.

In our experiments, we set the quantization step Δ = 18 and the watermark length
L = 224. Thus, the overall resulting PSNR is greater than 50dB. Fig. 12 shows the
original images, the watermarked versions and the residuals between the original
and watermarked versions after magnified by a factor 100. As shown in Fig. 12(a)
and (b), it is clear that the embedded watermarks are perceptually invisible.

Fig. 11. The relationship between the average PSNR, quantization step Δ and the number of
the embedded watermark bits L

Fig. 12. (a) Original image, (b) watermarked image, and (c) difference image for Baboon and
Lena
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4.2 Robustness Test

Apart from the imperceptibility test, two experiments are conducted to measure (1)
the performance of the watermark synchronization based on the feature point detec-
tors; (2) the robustness of the proposed watermarking schemes.

4.2.1 Performance of the Feature Detector

In our scheme, only a set of feature points chosen by our feature selection criterion
are used to construct local feature regions. The stability of these feature points is im-
portant for robustness. To measure the stability, we first extract feature points from
the original images and the attacked images, and then compute the repeatability ra-
tio between the number of point-to-point correspondences and the number of points
detected in original images.

By utilizing Stirmark 4.0 [40], we apply various attacks to four benchmark
images Baboon, Boat, Lena, and Peppers. These attacks include median filtering
(3×3), Gaussian filtering (3×3), JPEG compression (QF 40 and 50), Cropping (5%
and 10% off), Rotation (5◦ and 10◦), Scaling (×0.9, ×1.1), and Rotation+Cropping
(1◦ and 5◦).

Fig. 13 and Fig. 14 illustrate the results for the ACRs-based scheme and the
LTMs-based scheme, respectively. Corresponding ratio refers to the ratio of the
number of corresponding feature points between the original images and the at-
tacked versions to the number of the feature points extracted from the origi-
nal images. As shown in Fig. 13(a) and (b), the corresponding ratio is more
than 62% on average for common image processing operations, and nearly 50%
feature points can be redetected in geometric distortions. As may be seen from

Fig. 13. Corresponding ratio in the ACRs-based method: (a) common image processing op-
erations and (b) geometric distortions for Baboon, Boat, Lena and Peppers

Fig. 14. Corresponding ratio in the LTMs-based method: (a) common image processing op-
erations and (b) geometric distortions for Baboon, Boat, Lena and Peppers
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Fig. 14(a) and (b), the corresponding ratio is nearly 70% on average for common
image processing operations, and 60% feature points can be redetected under geo-
metric distortions. Therefore, these selected feature points are stable and useful for
robust watermarking against common image processing operations and geometric
distortions.

4.2.2 Robustness of the Watermarking Schemes

We use Stirmark 4.0 to evaluate the robustness of the proposed schemes. Table 1
and Table 2 present the detection results of the ACRs-based watermarking scheme
in comparison with two representative schemes [20] and [21] under common image
processing operations and geometric distortions respectively. Table 3 and Table 4 is
the detection results of the LTMs-based watermarking scheme in comparison with
the two representative schemes [20] and [21] under the same attacks. The values in
main table unites indicate the ratio of the number of regions where watermarks are
successfully detected from attacked images to the number of original watermarked
regions.

For most of attacks, the proposed watermarking schemes can detect the embed-
ded watermark from a considerable number of feature regions and the ownership can
be proven with high confidence. The scale-space feature point detector can provide
a set of distinctive and localized feature regions which are covariant to significant
affine transformation. Moreover, local feature regions are constructed, which are ge-
ometrically invariant. Consequently, the proposed watermarking schemes perform
well in common image processing operations, geometric distortions, and even the
combined complex attacks.

As shown in Tables 1, 2, 3, and 4, the newly proposed schemes outperform the
conventional schemes [20] and [21]. Among these two existing schemes, scheme
[21] shows the worst performance. According to the detection results of [20], this
scheme can withstand many common image processing operations, e.g., Gaussian

Table 1. Experimental results of the ACRs-based scheme under common image processing
operations

Attack Type
Baboon Lena Peppers

ACRs- Ref. Ref. ACRs- Ref. Ref. ACRs- Ref. Ref.
based [20] [21] based [20] [21] based [20] [21]

Median filter(3×3) 6/15 2/11 0/13 6/10 1/8 2/11 17/23 1/4 2/13
Gaussian filtering(3×3) 4/15 7/11 1/13 5/10 3/8 1/11 9/23 1/4 2/13

Additive uniform noise(s=0.20) 9/15 5/11 0/13 6/10 1/8 0/11 12/23 1/4 0/13
JPEG 70 10/15 8/11 2/13 4/10 5/8 3/11 14/23 3/4 2/13
JPEG 50 8/15 6/11 0/13 6/10 4/8 1/11 14/23 2/4 1/13
JPEG 30 8/15 4/11 0/13 5/10 2/8 1/11 10/23 0/4 1/13

Median filter(3×3)+JPEG 90 5/15 1/11 0/13 3/10 1/8 2/11 16/23 1/4 2/13
Gaussian filtering(3×3)+JPEG 90 4/15 7/11 1/13 4/10 3/8 1/11 5/23 1/4 2/13
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Table 2. Experimental results of the ACRs-based scheme under geometric distortions

Attack Type
Baboon Lena Peppers

ACRs- Ref. Ref. ACRs- Ref. Ref. ACRs- Ref. Ref.
based [20] [21] based [20] [21] based [20] [21]

Cropping (5%off) 7/15 2/11 3/13 7/10 2/8 5/11 8/23 2/4 4/13
Cropping (10%off) 6/15 1/11 1/13 5/10 2/8 4/11 6/23 2/4 1/13

Scaling (90%) 5/15 1/11 1/13 5/10 1/8 3/11 8/23 0/4 2/13
Scaling (150%) 7/15 0/11 3/13 6/10 0/8 3/11 13/23 0/4 4/13

Aspect ratio change(0.7,0.9) 2/15 0/11 0/13 4/10 0/8 1/11 6/23 0/4 0/13
Shearing(1%) 6/15 4/11 0/13 4/10 2/8 2/11 7/23 1/4 0/13

Removed 5 row & 17 column 6/15 2/11 2/13 5/10 1/8 3/11 11/23 0/4 0/13
Rotation 5◦ 5/15 2/11 0/13 4/10 2/8 3/11 9/23 0/4 2/13

Rotation 30◦ 4/15 0/11 0/13 4/10 0/8 0/11 7/23 0/4 0/13
Random bend 7/15 3/11 0/13 5/10 2/8 1/11 8/23 0/4 0/13

Cropping 5%+JPEG70 6/15 2/11 1/13 6/10 1/8 3/11 7/23 2/4 2/13
Rotation 5◦+Cropping+JPEG70 5/15 0/11 0/13 5/10 0/8 2/11 7/23 0/4 0/13

Line Transform (1.007) 4/15 1/11 0/13 6/10 2/8 1/11 7/23 1/4 0/13

Table 3. Experimental results of the LTMs-based scheme under common image processing
operations

Attack Type
Baboon Lena Peppers

LTMs- Ref. Ref. LTMs- Ref. Ref. LTMs- Ref. Ref.
based [20] [21] based [20] [21] based [20] [21]

Median filter(3×3) 11/17 2/11 0/13 7/13 1/8 2/11 14/18 1/4 2/13
Gaussian filtering(3×3) 8/17 7/11 1/13 5/13 3/8 1/11 9/18 1/4 2/13

Additive uniform noise(s=0.20) 12/17 5/11 0/13 9/13 1/8 0/11 11/18 1/4 0/13
JPEG 70 15/17 8/11 2/13 9/13 5/8 3/11 16/18 3/4 2/13
JPEG 50 13/17 6/11 0/13 8/13 4/8 1/11 16/18 2/4 1/13
JPEG 30 9/17 4/11 0/13 8/13 2/8 1/11 12/18 0/4 1/13

Median filter(3×3)+JPEG 90 11/17 1/11 0/13 7/13 1/8 2/11 14/18 1/4 2/13
Gaussian filtering(3×3)+JPEG 90 8/17 7/11 1/13 5/13 3/8 1/11 9/18 1/4 2/13

filtering, JPEG compression, and noise contaminating, but fails to rotation, scaling,
and particularly nonisotropic scaling. In term of the overall watermark detection rate
under geometric distortions and common image processing operations, the LTMs-
based algorithm is obviously better than the ACRs-based algorithm.
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Table 4. Experimental results of the LTMs-based scheme under geometric distortions

Attack Type
Baboon Lena Peppers

LTMs- Ref. Ref. LTMs- Ref. Ref. LTMs- Ref. Ref.
based [20] [21] based [20] [21] based [20] [21]

Cropping (5%off) 10/17 2/11 3/13 6/13 2/8 5/11 9/18 2/4 5/13
Cropping (10%off) 9/17 1/11 1/13 6/13 2/8 4/11 7/18 2/4 4/13

Scaling (90%) 7/17 1/11 1/13 8/13 1/8 3/11 7/18 0/4 2/13
Scaling (150%) 9/17 0/11 3/13 6/13 0/8 3/11 9/18 0/4 4/13

Aspect ratio change(0.7,0.9) 3/17 0/11 0/13 5/13 0/8 1/11 7/18 0/4 0/13
Shearing(1%) 8/17 4/11 0/13 7/13 2/8 2/11 8/18 1/4 0/13

Removed 5 row & 17 column 6/17 2/11 2/13 7/13 1/8 3/11 7/18 0/4 0/13
Rotation 5◦ 5/17 2/11 0/13 9/13 2/8 3/11 6/18 0/4 2/13
Rotation 30◦ 5/17 0/11 0/13 8/13 0/8 0/11 4/18 0/4 0/13
Random bend 6/17 3/11 0/13 5/13 2/8 1/11 8/18 0/4 0/13

Cropping 5%+JPEG70 8/17 2/11 1/13 4/13 1/8 3/11 6/18 2/4 2/13
Rotation 5◦+Cropping+JPEG70 4/17 0/11 0/13 4/13 0/8 2/11 6/18 0/4 0/13

Line Transform (1.007) 9/17 1/11 0/13 6/13 2/8 1/11 6/18 1/4 0/13

5 Conclusion

This chapter mainly proposes and studies two robust image watermarking algo-
rithms by synchronizing watermarking with the invariant feature regions of the
scale-space representation of an image. In the ACRs-based method, Harris-Affine
detector is adopted to extract feature points, and watermark embedding and detec-
tion are conducted in the ACRs which is invariant to geometric distortions after
image normalization and direction alignment. In the LTMs-based method, Harris-
Laplace detector is used to detect feature points and construct LCRs, and the magni-
tudes of LTMs within LCRs are applied for referencing the watermark. Experimen-
tal results show these two proposed schemes perform well under various geomet-
ric distortions and common image processing operations and outperformed some
representative schemes in terms of robustness. With respect to the two developed
algorithms, the LTMs-based method outperforms the ACRs-based method in per-
formance on average.
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1 Introduction

The primary reason for the requirement of authenticating images stems from the in-
creasing amount of doctored images that are presented as accurate representations
of real-life events, but are later discovered to be faked. The history of manipulating
images reaches back almost as far as photography itself, and with the ease of use
and availability of image editing software, it has become ubiquitous in the digital
age. Image authentication schemes attempt to restore trust in the image by accu-
rately validating the data, positively or negatively. Especially for law enforcement
scenarios, images captured at the scene, such as for crime scene investigation and
traffic enforcement, potentially be used as evidence in the court of law. If an image
presented in court as evidence from a crime scene is to be effectively used by the
jury, the integrity of the information must not be in question. The role of a scene
of crime officer (SoCOs) is to capture, as much as possible, the left-over evidence
at the crime scene by taking photographs and collecting any exhibits found. After
the collection of evidence, there is no other way of examining the crime scene as
a whole, apart from analysing the collected exhibits and photographs taken [1]. In
order to maintain the integrity of the images, not only it is essential to verify that
the photographic evidence remains unchanged and authentic, but any manipulated
regions should also be localised to help identify which parts of the image cannot
be trusted. With the tremendous growth and usage of digital cameras and video de-
vices, the requirement to verify the digital content is paramount, especially if it is to
be used as evidence in court [2]. Therefore, digital watermarking technique can be
utilised for image content authentication applications to verify or authenticate the
integrity of the digital media content.

Digital watermarking is the process of embedding relevant information (such as
a logo, fingerprint and serial number), into a media. This technique can be applied
to different media types such as video, audio and image content. An example of
digital visible watermark is the translucent logos that are often seen embedded at
the corner of videos or images, in an attempt to prevent copyright infringement.
However, these visible watermarks can be targeted and removed rather simply by
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cropping the media, or overwriting the logos. Subsequently, the field of digital
watermarking is primarily focused on invisible watermarks, which are impercep-
tible and operate by tweaking the physical data of the media [3, 4]. There are three
different classifications associated with digital watermarking, depending on the ap-
plications: robust, fragile and semi-fragile. Robust watermarking is primarily de-
signed to provide copyright protection and proof of ownership for digital images.
The most important property of robust watermarking is its ability to tolerate certain
signal processing operations that usually occur during the lifetime of a media object,
as well as preventing any more deliberate attacks.

Fragile and semi-fragile digital watermarking techniques are often utilised for
image content authentication. Fragile watermarking schemes are designed to detect
any possible manipulations that affect the watermarked image pixel values [5, 6].
In comparison, while fragile watermarking is aptly named because of its sensitivity
to any form of attack, semi-fragile watermarking is more robust against attack, and
can be used to verify tampered content within images for both malicious and non-
malicious manipulations [7–9]. In addition, semi-fragile schemes make it possible
to verify the content of the original image, as well as permitting alterations caused
by non-malicious (unintentional) modifications such as system processes. More-
over, semi-fragile watermarking is more focused on detecting intentional attacks
than validating the originality of the image [10, 11]. During the image transmission,
the mild signal processing errors caused by signal reconstruction and storage, such
as transmission noise or JPEG compression, are permissible. However, the image
content tampering such as copy and paste attack will be identified as a malicious
attack. Additionally, in the literature, a significant amount of research has been fo-
cused on the design of semi-fragile algorithms that could tolerate JPEG compression
and other common non-malicious manipulations [12–18]. However, watermarked
images could be compressed by unknown JPEG compression rates of various qual-
ity factors (QFs). As a result, in order to authenticate the images, these algorithms
have to set a pre-determined threshold that could allow them to tolerate different
QF values when extracting the watermarks. To determine the threshold more accu-
rately, the generalised Benford’s law can be utilised to estimate the unknown JPEG
compression QF, then appropriate thresholds could be adapted for each test image,
before initialising the watermark extraction and authentication process. This law has
already been successfully used in image forensics technique for JPEG compression
evaluation [19]. This adaptive threshold could help to decrease the false alarm and
missed detection rates.

In contrast to authenticate the image using active watermarking technique, the
image forensics as passive technique has attracted much attention [20–22]. The sig-
nificant difference is that image forensics seeks to authenticate images based solely
on the image data provided in image statistical analysis, meaning it is a passive
approach to the problem. As such, no embedded information is loaded into an im-
age, and so the security risks and robustness issues associated with a payload, are
avoided. Therefore, image forensics presents itself as an alternative approach to
the active insertion of watermarking data to authenticate images. In this chapter,
we will review active watermarking techniques, such as fragile and semi-fragile
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methods as well as passive image forensics techniques such as camera identifi-
cation and forgery detection methods for image authentication. Furthermore, we
will introduce our three proposed image authentication related methods, which are
fragile watermarking scheme in Slant transform (SLT) domain, utilising the gener-
alised Benford’s Law as image forensics technique to improve semi-fragile water-
marking technique and the use of the statistical process control (SPC) for camera
identification in image forensics research.

The chapter is organized as follows:

• In Section 2, several fragile and semi-fragile watermarking schemes will be re-
viewed. Our proposed SLT semi-fragile watermarking algorithm is then intro-
duced. The watermark embedding, detection and authentication processes are
described in detail as well as the proposed experimental results are analysed
and evaluated by comparing with two other transform based scheme, which in
Discrete Cosine transform (DCT) and Pinned Sine transform (PST) domain.

• Section 3 discusses three typical methods of employing predetermined thresh-
olds in semi-fragile watermarking algorithms and the limitations of using pre-
determined thresholds were highlighted from the literature. Then we proposed
a framework incorporating the generalised Benford’s Law that could detect un-
known JPEG compression QFs in semi-fragile watermarked images to adjust the
appropriate threshold with experimental results.

• Section 4 will review image forensics techniques that focus on two main areas,
camera identification and image forgery detection and their applications. Then
we propose to utilise SPC methods to analyses images captured from different
digital camera devices.

• Section 5 gives the conclusion of this chapter and presents some directions for
future work of the research.

2 Fragile and Semi-fragile Watermarking

In this section, both fragile and semi-fragile watermarking algorithms for image au-
thentication are reviewed. A detailed discussion on our proposed semi-fragile wa-
termarking schemes in SLT domain to further explain the concept of semi-fragile
watermarking is also presented. The results of miss detection rates and false alarm
rates are then compared with two existing transforms based on the DCT and PST
transforms.

2.1 Literature Review for Fragile and Semi-fragile Watermarking

Fragile Watermarking

As mentioned in Section 1, fragile watermarking schemes should be able to de-
tect any possible manipulations that affect the watermarked image any pixel val-
ues. Therefore, it is possible to exploit the inherent weakness of the LSB schemes,
and implement a fragile watermarking scheme in the spatial domain. Fridrich [23]
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proposed a spatial domain based fragile watermarking scheme that could localise
tampered regions of a watermarked image, by adapting Wongs method [24]. The
watermark embedding process is shown in Figure 1. The original image is first di-
vided into non-overlapping blocks of equal size 8 by 16. In each block, the seven
Most Significant Bits (MSB) of each pixel are extracted, and a cryptographic hash
function is applied as illustrated in Figure 2. The logo is also divided into 816 blocks
and each block contains information about the original block position, image index,
original image dimensions (resolution), camera ID and author ID (PIN). The hashed
seven MSBs of each block and its corresponding logo block are subjected to an
Exclusive-OR (XOR) operation and then encrypted using a key. Finally, the LSBs
of the original image are replaced with the result of the XOR operation and en-
crypted watermark bits, and the watermarked image is created. In the authentication
process, the LSBs of the test image are extracted, and the seven MSBs from each
block are hashed as shown in Figure 3. For each block, the LSBs are decrypted with
a key, along with its corresponding hashed seven MSBs using the XOR operation.
Finally, the authentication process itself is achieved by comparing each block of the
image with the corresponding block from the logo. If this set of the block is not the
same, the block of the image is flagged as a tampered block.

Watermarked
image

Divided into
block (8 * 16)

Key

Original 
image

Hash 7 MSBs

Replace LSB

Logo

XOR&
Encryption

Divided into
block (8 * 16)

Fig. 1. Fridrich’s fragile watermark embedding algorithm

0

7 MSBs 

1 11 011 1

LSB

Fig. 2. MSBs and LSB of pixel value 221 in 8 bits binary sequence
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Fig. 3. Fridrich’s fragile watermark detection algorithm

Zhang and Wang [25] proposed a statistical scheme of fragile watermarking
scheme that embed a folded version of the authentication data derived from five most
significant bits (5MSBs) of the original image along with other additional data into
the image with acceptable watermarked image quality PSNR as 37.9dB. Their results
showed their algorithm could localized the tampered pixels accurately. Then they
further improved their method in [25] that could restore the tampered image content
after localized the tampered area without any errors [26]. He et al. [27] proposed a
conventional self-embedding fragile watermarking scheme based on adjacent-block
based statistical detection method (SDM) that could against copy-paste attack and
collage attack. Their algorithm could identify the tampered blocks with a probability
more than 98% even the tampered area is up to 70% of the host image.

Fragile watermarking scheme can also be applied in transform domain. Li and
Shi [5] proposed a fragile watermarking algorithm in Discrete Wavelet Transform
(DWT) to achieve the requirements of high security, low distortion, and high accu-
racy of tamper localization for authenticating JPEG2000 images. Their algorithm
could also tolerate vector quantization attack, Holliman-Memon attack, college at-
tack and transplantation attack. Aslantas et.al [28] proposed intelligent optimization
algorithms (IOA) to improve fragile watermarking schemes in discrete cosine trans-
form (DCT) domain. They used IOA which including four genetic algorithm (GA),
clonal selection algorithm (CSA), particle swarm optimization (PSO), and Differ-
ential Evolution (De) to correct rounding errors caused by transforming an image
from the frequency domain to the spatial domain with the objective of improving
DCT-based fragile watermarking. The experimental results showed that the CSA
produces better PSNR results whereas DE has lower computational time than other
algorithms. Yeh and Lee [29] proposed reversible fragile watermarking by utiliz-
ing the pyramidal structure method. They select appropriate embedding areas by
analysing the pyramid-structure of the image for embed watermark bits in wavelet
domain. The experimental results showed that their scheme could successfully lo-
calized even when 50% of the watermarked image is tampered as well as detect
counterfeiting attack.
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Semi-fragile Watermarking

Many semi-fragile watermarking techniques have been already proposed by re-
searchers. Lin et al. [31] proposed embedding algorithm that first applied Discrete
Cosine Transform (DCT) to 16 by 16 blocks of the cover image, then embed the
watermarks in middle to low frequency (except DC coefficient) of each block. Their
scheme could identify the tampered area with 75% accuracy under moderate com-
pression and with near 90% accuracy under light compression. Ho et al. [7] pro-
posed a semi-fragile watermarking scheme in Pinned Sine Transform (PST) domain.
In their algorithm, the original image is applied by using PST to get the pinned and
boundary fields in 8 by 8 blocks. The watermark bits are then inserted into middle
to high frequency of each block in the pinned field. The scheme also used a self-
restoration method, originally proposed by Fridrich and Goljan [33] to recover the
tampered regions. Their scheme could tolerate some common image processing ma-
nipulations such as JPEG and wavelet compression, and the detection rate is higher
than DCT-based scheme. The algorithm has been further improved by using irregu-
lar Sampling instead of the LSB method [15],which aimed to improve the robustness
of tampering restoration. Kundur and Hatziankos [18] proposed a DWT based algo-
rithm called telltale tamper-proofing, which made it possible to determine tampered
regions in multi-resolutions. Unlike other schemes that use DCT, this method does
not require a block division process to detect the tampered regions due to the local-
isation ability of the wavelet transform. The localization ability of the wavelets in
both spatial and frequency domains would potentially indicate a good candidate for
semi-fragile watermarking.

Maeno et al. [34] presented two algorithms that focused on signature generation
techniques. The first algorithm used random bias to enhance the block based DCT
watermarking scheme proposed by Lin and Chang [12]. The second algorithm used
nonuniform quantisation on a non-block based semi-fragile watermarking scheme
in the wavelet domain. Their experimental results showed their method was frag-
ile to malicious manipulations, but robust to non-malicious manipulations such as
JPEG and JPEG2000 compression. Ding et al. [35] also proposed a method by us-
ing DWT. In their algorithm, chaos was used to generate a pseudo-random sequence
as a watermark, in an effort to improve the overall security. This made an improve-
ment to the more traditional methods of generating a pseudo-random sequence. The
sub-bands (HL2,LH2,HH2) were used for embedding the watermark after apply-
ing a 2-level wavelet decomposition of the original image. The normalized cross-
correlation (NC) was used to evaluate their algorithm by comparing between the
original watermark and the extracted watermark after applying JPEG compression
and Additive white Gaussian noise (AWGN) manipulations. Ni et al. [30] proposed
a robust lossless data hiding technique that could be employed into semi-fragile
watermarking scheme. The different bit-embedding strategies for groups of pixels
with different pixel grayscale value distributions and error correction codes are uti-
lized in their scheme. They analyzed their results into two modules, which are loss-
less and lossy. If the watermarked image has experienced losslessly compression,
the watermark bits can be extracted correctly and the image will be classified as
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authentic and the original image can be recovered exactly. If this losslessly
compressed watermarked image has been further undergone lossy compression, the
original image will not be able to be recovered and will be rendered authentic as
long as the compression is not so severe that the content has been changed.

2.2 Proposed Slant Transform (SLT) Semi-fragile Watermarking

This section will discuss our proposed method [36] in detail, which consist of the
embedding, detection and authentication processes associated with watermarking.

Slant Transform (SLT)

The Slant Transform has been applied to image coding in the past [37] and was
recently adopted for robust image watermarking [38]. The SLT can be considered
as a fast computational algorithm provides a significant bandwidth reduction and
result in a lower mean-square error for moderate size image blocks [37]. In addi-
tion, for textured images, the quality of the Slant Transformed images is higher than
images coded by using other transforms such as DCT and Hadamard [39]. More-
over, as a similar image processing application to Walsh-Hadamard transform, Slant
transform can be identified as a sub-optimum for energy compaction, which is es-
sential for digital watermarking as the robust information hiding can be ensured
by capitalizing the spread of middle to higher frequency bands. Furthermore, Slant
transform is simpler, faster and especially suitable for highly textured images [38].
Hence, the Slant Transform is proposed for semi-fragile watermarking and authen-
tication of images in this section. The authentication as the method to corroborate
the genuineness of an object is mainly focusing on examining whether the image
has been tempered or not, the location(s) of tampered region(s) and to what extent
it has been changed can also be identified. Furthermore, the SLT can also be used
for compressing the original image [39], providing a means to self-recovering the
tampered regions by embedding the compressed cover image into the LSBs of the
watermarked image [33]. The forward and inverse of SLT [37–39] can be expressed
as follows:

[V] = [SN ][U][SN ]T [U] = [SN ]T [V][SN ] (1)

where [U] represents the original image of size N × N , [V] represents the trans-
formed components and [SN ] is the N × N unitary Slant matrix given by

[SN ] =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0
aN bN −aN bN

0 I(N/2)−2 0 I(N/2)−2

0 1
0

0 −1
0−bN aN bN aN

0 I(N/2)−2 0 −I(N/2)−2

⎤⎥⎥⎥⎥⎥⎥⎦
[
SN/2 0

0 SN/2

]
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where I(N/2)−2 is the identity matrix of dimension (N/2) − 2 and

a2N =
(

3N2

4N2 − 1

)1/2

, b2N =
(

N2 − 1
4N2 − 1

)1/2

are constants.

Watermark Embedding

A novel semi-fragile Slant Transform digital watermarking method is adopted based
on previous work relating to PST [7] and self-restoration method [33]. The entire
embedding process using the Slant Transform is illustrated in Figure 4, which con-
sists of two parts. The first 7 bits of the cover image are extracted and divided into
8× 8 blocks, SLT method is then applied to each block. The watermark embedding
algorithm is then utilised, which is illustrated in the pseudo-code below. The wa-
termarks for each block are then random generated by input a key as a seed. The
obtained watermarks are embedded into the midband of each 8×8 block. After wa-
termark embedding, frequency coefficients of each block of the watermarked image
are converted back by using the inverse Slant Transform. Consequently, the first 7
bits of final watermark image is obtained. The SLT watermark embedding algorithm
in pseudo-code form is shown as follows:

If w == 1 And x ≥ τ, Then y = x, Else y = α.
If w == 0 And x < −τ, Then y = x, Else y = −α.

where w is the watermark bit, x is the SLT coefficient of the host, y is the modified
SLT coefficient, τ is the threshold which controls the perceptual quality of the wa-
termarked image and α is a constant. Similar to part 1, the original image is divided
into 8 × 8 sub-blocks and also undergoes the same Slant Transform; compression
for each sub-block is then achieved by discarding the high frequency coefficients.
Accordingly, 64 bits information for each block is acquired after compression and
then encrypted by utilizing a key as a seed. Obtained blocks are then shuffled, e.g.
the value of block 1 moves to block 50, the value of block 35 moves to block 10.
Therefore, LSBs of the final watermark image are then gained. Finally, the com-
bination of part1 and part 2 forms the final watermarked image and the key file is
generated, which contains information that mentioned previously.

Watermark Detection, Authentication and Restoration

The proposed semi-fragile Slant Transform for image authentication and restoration
method is shown in Figure 5. Similar to embedding process, the first 7 bits of the
test image are extracted and divided into 8 × 8 blocks by applying SLT and then
apply the detection algorithm to the first 7 bits, which is explained in the paragraph
below. Meanwhile, the LSBs are extracted from the test image and only the LSBs of
the detected regions are quantized back for recovery by according to authentication
result. Consequently, authenticated and recovered images can be output.
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Fig. 5. Our proposed SLT watermark detection, authentication and restoration process

The watermark bits can be detected by extracting the watermarked coefficients
y. If y larger than 0, the watermark bit value is 1; if y smaller than 0, the watermark
bit value is 0. The retrieved watermark needs to be compared with the watermark
that exists in the key file. After the watermark bits from the entire block have been
retrieved, the comparison between the watermark bits can be accomplished by using
the correlation coefficient ρ, computed as follows:

ρ =
∑∑

(w′ − w̄′) (w − w̄)√∑∑
(w′ − w̄′)2

∑∑
(w − w̄)2

(2)

where w is the original and w′ is the retrieved watermarks corresponding to the
block. For error correction, the correlation coefficient ρ can be compared with a
pre-determined threshold value λ. If ρ < λ, which indicates that the block has been
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tampered as authentication, and which is followed by restoration of the tampered
regions based on the decompression and extraction of the LSBs for the watermarked
image.

2.3 Results and Evaluation

A number of experiments have been carried out to evaluate the performance of
the proposed SLT watermarking scheme. The proposed watermarking scheme is
compared with two other watermarking schemes: the PST-based [7] and the DCT-
based [31]. For a fair comparison, the embedding strength of the watermark in each
scheme is adjusted such that the peak signal-to-noise ratio (PSNR) of the water-
marked images is around 33 dB, which is subjectively considered as acceptable.
The performance of the watermarking schemes is measured in terms of the false
positive detection rate (PFP ), false negative detection rate (PFN ) and the average
detection rate (Pavg), defined as:

PFP =
Number of pixels in the untampared region as detected as tampered

Total number of pixels in the untampered region

PFN =
Number of pixels in the tampared region as detected as untampered

Total number of pixels in the tampered region
and

Pavg =
(

1 − PFP + PFN

1 + N

)
× 100. (3)

where N is the number of area(s) have been tampered with. A number of standard
test images are used in the experiments and the results for 6 images, each of size
512 × 512 are reported.

JPEG Compression Attack

Table 1 shows that SLT, DCT and PST are compared by applying JPEG compression
attack to 6 different grayscale images (512 × 512) in order to determine the false
positive rate, i.e. over detected rate. As can be seen from the table below, SLT, DCT
and PST have similar error detection rates when QF = 85. After experiencing
75% JPEG compression attack, the over detection rate of SLT is still considerably
low with average rate of 1.2, whereas PST and DCT have the higher average over
detection rates of 86 and 31.4, respectively. Although the over detection rates of all
three methods have increased when QF = 65, SLT still has the lowest increased
rate of 30.8 comparing with the average value of over detection rates of PST and
DCT, of 92.2 and 88.2 respectively. The reason for the relatively better results using
the Slant Transform was that the embedding locations concentrated mainly in the
middle frequency band, which is considered to be more robust, whereas DCT and
PST mainly concentrated more on high frequencies. Overall, the results indicate that
the SLT watermarking method achieves lower errors than PST and DCT based on
the JPEG compression attack.
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Table 1. Comparative performance of the watermarking schemes against JPEG compression
with varying quality factor

Test Image QF = 85 QF = 75 QF = 65
SLT PST DCT SLT PST DCT SLT PST DCT

Lena 0.0 0.5 0.0 0.7 91.2 31.5 37.2 93.5 81.4
Baboon 0.1 0.5 0.1 0.9 91.2 31.6 24.1 91.2 91.0
Bridge 0.4 1.2 0.5 1.6 83.7 32.9 28.4 91.8 91.5
Trucks 0.2 0.8 0.4 1.4 87.4 31.2 33.3 92.8 90.1
Ship 0.2 0.8 0.4 2.0 89.0 31.3 37.5 92.3 85.0

San Diego 0.0 0.4 0.0 0.6 83.4 30.0 24.2 91.3 90.2
Average 0.2 0.7 0.2 1.2 86.0 31.4 30.8 92.2 88.2

Copy and Paste Attack

The copy and paste attack is utilized to compare the performance of detection rates
SLT, DCT and PST for six grayscale test images (512 × 512) as given in Table
2. Three different tampering rates of 10%,20% and 30% will be applied to each
test image to analyse the overall detection rate of the three transform methods. The
tamper tests are performed with 100 random locations on each image. Consequently,
5400 test images are obtained based on this experimental setup. Table 2 shows the
comparative performance of the three watermarking schemes against copy and paste
attack with different amount of tampering. However, the results show that PST is the
most sensitive method as it has the highest overall detection rate after experiencing
all three tamper tests (10%, 20% and 30%) of all images. Figure 6(a-e), shows the
original, watermarked, tampered, authenticated and restored images for the image
Trucks, respectively.

Table 2. Comparative performance of the watermarking schemes against copy-paste attack

Test Image 10% tamper 20% tamper 30% tamper
SLT PST DCT SLT PST DCT SLT PST DCT

Lena 96.0 97.6 95.5 97.9 98.7 97.1 98.3 99.0 97.3
Baboon 96.7 97.3 96.3 98.1 98.8 96.5 98.5 99.0 97.0
Bridge 96.3 97.5 95.4 97.9 98.6 97.0 98.2 98.8 96.9
Trucks 95.7 97.6 95.1 97.6 98.7 96.7 98.3 98.8 96.9
Ship 96.1 97.6 95.2 97.7 98.8 96.2 98.3 98.8 96.7

San Diego 96.6 97.6 95.4 98.1 98.8 96.6 98.6 99.0 97.5
Average 96.2 97.5 95.5 97.9 98.7 96.7 98.4 98.9 97.0

JPEG Compression + Copy and Paste Attack

In Table 3, the six watermarked images (512 × 512) are compressed with three
different JPEG compression rates QF of 85, 75 and 65. Th experimental setup
is similar to the previous copy and paste attack with 100 random locations for
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(a) Original (b) Watermarked (c) Tampered

(d) Authenticated (e) Restored

Fig. 6. Demonstration of the image Trucks in SLT semi-fragile watermarking scheme

Table 3. Comparative performance of the watermarking schemes against copy-paste attack
(20% tampering) followed by JPEG compression with varying quality factor

Test Image QF = 85 QF = 75 QF = 65
SLT PST DCT SLT PST DCT SLT PST DCT

Lena 92.1 94.9 91.6 91.6 51.4 77.0 75.3 50.7 54.0
Baboon 92.1 94.7 92.1 92.3 56.1 77.0 81.8 51.8 49.9
Bridge 91.9 94.0 91.6 92.3 55.3 76.6 79.5 51.6 49.5
Trucks 92.0 94.5 91.2 91.4 53.5 76.9 76.7 51.0 50.4
Ship 91.5 93.7 91.9 91.4 52.7 76.9 75.7 50.8 52.7

San Diego 93.1 94.5 92.2 92.4 55.4 77.6 81.6 51.5 49.7
Average 92.1 94.4 91.8 91.9 54.1 77.0 78.4 51.2 51.0

tampered areas. Overall, the PST achieves a relatively higher detection rate than
DCT and SLT after experiencing QF of 85. However, for detection, it is worse at
54.1% with QF = 75. In comparison, SLT has the highest overall detection rate as
91.9% at QF = 75 and 65. From the analysis, SLT is showed to achieve a more
accurate detection result than PST and DCT. On the whole, the result indicates that
the best overall detection rate among the three methods is SLT, which has 91.9%
detection rate with QF = 75. However, all the attacked images could not be recov-
ered by any of the three transform schemes after applying JPEG compression attack.
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This is duo to the fact that the restoration technique is based on LSB embedding in
the spatial domain of the watermarked image which is fragile. As such, it can be
easily removed by JPEG compression.

2.4 Summary

In this section, we reviewed a number of different fragile and semi-fragile wa-
termarking schemes. Our proposed SLT semi-fragile watermarking scheme was
discussed in detail. The performance of the SLT based semi-fragile scheme was
compared with the PST and DCT based schemes by using average detection rate
calculated from false positive and false negative detection rates. The comparative
studies showed that the SLT-domain watermarking scheme performed better against
JPEG compression, copy-paste attack, as well as combined JPEG compression and
copy-paste attacks than the PST and DCT-domain watermarking schemes.

3 Image Forensics Technique - Benford’s Law for Semi-fragile
Watermarking

As mentioned in Section 1, semi-fragile watermarking scheme has been used to
authenticate and localise malicious tampering of image content, while permitting
some non-malicious or unintentional manipulations. These manipulations can in-
clude some mild signal processing operations such as those caused by transmission
and storage of JPEG images. However, watermarked images could be compressed
by unknown JPEG QFs. As a result, in order to authenticate the images, these al-
gorithms have to set a pre-determined threshold that could allow them to tolerate
different QF values when extracting the watermarks.

Figures 7 and 8 illustrate the overall relationship between the threshold, false
positive and false negative detection rates. The watermarked image Lena has been
tampered with a rectangular block and JPEG compressed at QF = 75. Figure 7(a)
shows the pre-determined threshold T = 0.5 used for authentication. The authen-
ticated image shows that the proposed semi-fragile watermarking scheme can lo-
calise the tampered region with reasonable accuracy, but with some false positive
detection errors. In Figures 7(b) and 7(c), the lower and upper thresholds T = 0.3
and T = 0.7 were used for comparison, respectively. Figure 7(b) shows that the
false positive rate has decreased whilst the false negative rate has increased in the
authenticated image. Figure 7(c) shows the image has a lower false negative rate
but with a higher false positive rate. From this comparison, T = 0.5 was chosen
for JPEG compression at QF = 75. However, if QF = 95, then T = 0.5 may
not be adequate as shown in Figure 8(a). The false negative rate is higher than
Figure 8(b) with T = 0.9. Therefore, it would be advantageous to be able to
estimate the QF of JPEG compression, so that an adaptive threshold can be ap-
plied for increasing the authentication accuracy. In this section, we discuss our pro-
posed method [40] to utilise the generalised Benford’s Law,as an image forensics
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(a) T = 0.5 (b) T = 0.3 (c) T = 0.7

Fig. 7. Different thresholds for QF = 75

(a) T = 0.5 (b) T = 0.9

Fig. 8. Different thresholds for QF = 95

technique to estimate the QF for semi-fragile watermarked images. The background
of Benford’s Law, generalised Benford’s Law and their relationship with the water-
marked image, JPEG compressed watermarked image are also described.

3.1 Benford’s Law and Generalised Benford’s Law

Benford’s Law was introduced by Frank Benford in 1938 [41] and was developed
by Hill [42] for analysis of the probability distribution of the first digit (1 − 9) of
the number from natural data in statistics. Benford’s Law has also been applied to
accounting forensics [43, 44]. The DCT coefficients of a digital image was forward
to obey Benford’s Law, it has recently attracted a significant amount of research
interests in image processing and image forensics [19, 45, 46]. The basic principle
of Benford’s Law is given as follows:

p (x) = log10

(
1 +

1
x

)
, x = 1, 2, ...9 (4)

where x is the first digit of the number and p(x) is the probability distribution of x.
In contrast to digital image watermarking which is an active approach by embed-
ding bits into an image for authentication, image forensics is essentially a passive
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approach of analysing the image statistically to determine whether it has been tam-
pered with. Fu et al. [19] proposed a generalised Benford’s Law, used for estimating
the QF of the JPEG compressed image, as shown in equation 5.

p (x) = Nlog10

(
1 +

1
s + xq

)
, x = 1, 2, ...9 (5)

where N is a normalisation, and s and q are model parameters [19]. Their research
indicated that the probability distribution of the 1st digit of the JPEG coefficients
obey generalised Benford’s Law after the quantisation. Moreover, the probabil-
ity distributions were not following the generalized Benford’s Law if the image
had been compressed twice with different quality factors. Thus, by utilizing this
property, the QF of the image can be estimated.

Figures 9 to 11 illustrate the comparisons between the probability distribution
of Benford’s Law, generalized Benford’s Law and the mean distributions of the 1st
digits of block JPEG coefficients of the watermarked images compressed at QF =
100, 75, 50, respectively. Throughout this section we adhere to the same terminology
as used in [19], where JPEG coefficients refers to the 8 × 8 block-DCT coefficients
after the quantisation. These results based on 1338 images from [47] indicate a good
fitting between generalized Benford’s Law and watermarked images compressed
with different QFs. The results indicate that the probability distributions of the 1st

digits of JPEG coefficients of the watermarked images, as shown in Figures 9 to 11,
obey the generalised Benford’s Law model proposed by Fu et al. [19], in equation
5. Hence, we could employ their model to estimate the unknown QF of test images
to adjust the threshold for authentication. The improved authentication process is
described in the next section.

3.2 The Improved Authentication Method

In order to improve the detection rate in semi-fragile authentication process, the test
image is first used for detecting the QF by the quality factor estimation process. This
process works by firstly classifying the test image as compressed or uncompressed
by adapting from [19]. If the test image has been compressed, the test image is then
recompressed with the largest QF, from QF = 100 to QF = 50, in decreasing steps
of 5. We decrease in steps of 5 as this gives us the most frequently used quality fac-
tors for JPEG compressed images (i.e. 95, 90, 85 etc.). For each compressed test
image, the probability distribution of the 1st digits of JPEG coefficients is obtained.
Each set of values are then analysed by employing the generalized Benford’s Law
equation and using the best curve-fitting to plot the data. In order to obtain the good-
ness of fit, we calculate the sum of squares due to error (SSE) of the recompressed
images. We can detect the QF of the test image by iteratively calculating the SSE
for all QFs (starting at QF = 100, and decreasing in steps of 5), and as soon as
SSE < 10−6, we have reached the estimated QF for the test image. The threshold
10−6, was reported in [19], has been set to allow us to detect the QF of the test
image, and has also been verified by the results in our experiment.
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Fig. 9. 1st digit of JPEG coefficients (QF = 100)

Fig. 10. 1st digit of JPEG coefficients (QF = 75)
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Fig. 11. 1st digit of JPEG coefficients (QF = 50)

Figure 12 illustrates the results of estimating the QF for a test image that has
previously been compressed with QF = 70. Three curves have been drawn in or-
der to fit the three probability distribution data sets: generalized Benford’s Law for
QF = 70, the test image recompressed with QF = 70, and separately recom-
pressed at QF = 90. The distribution of QF = 90 shows the worst fit and is
considerably fluctuated, while the distribution of QF = 70 is a generally decreas-
ing curve, which also follows the trend of generalized Benford’s Law. These results
indicate that if the test image has been double compressed without the same quality
factor, the probability distribution would not obey the generalised Benford’s Law.

Once the QF is estimated, the threshold T can be adapted according to differ-
ent estimated QFs, based on the following conditions in Equation 6. Finally, the
correlation coefficient between original watermarks and extracted watermarks for
each block is compared using the attuned threshold T to authenticate, in order to
determine whether any blocks have been tampered with.

T =

⎧⎨⎩
0.9 QF ≥ 90
0.7 90 < QF < 75
0.5 QF ≤ 75

(6)

3.3 Results and Evaluation

The watermarked images are generated based on a simple DCT domain based semi-
fragile watermark embedding scheme by using the 1338 test images from [47].
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Fig. 12. Estimating the QF of a watermarked image

In order to achieve a fair comparison, different embedding parameters are ran-
domised for each image such as the watermarks location, watermark string and wa-
termark bits. For our analysis, four types of test images with and without attacks are
considered as shown in Figure 13.

Fig. 13. Four types of test images with and without attacks

Table 4 summaries the results obtained for test images that have been JPEG com-
pressed only. To evaluate the accuracy of the quality factor estimation process, each
test image has been blind compressed from QF = 100 to QF = 50 in decreasing
steps of 5. For each JPEG compression, the quality factor estimation process was
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Table 4. QF estimation for watermarked images (JPEG compression only)

Actual QF Estimated QF Pde T Pde2

100 98.16 65.7%
0.9 98.8%95 94.87 97.3%

90 90.06 98.2%

85 84.20 91.4%
0.7 99.1%

80 79.77 97.5%

75 75.35 97.0%

0.5 99.4%

70 69.77 98.8%
65 64.42 93.7%
60 62.42 38.6%
55 55.15 94.1%
50 54.25 18.2%

used to determine the QF. The mean estimated QFs for all 1338 test images and each
correctly identified detection accuracy rate Pde for each JPEG compression quality
factor are shown in Table 4, based on equation 7.

Pde =
∂

β
× 100% (7)

where ∂ is the number of correctly detected QF and β is the number of images
tested. The mean estimated QF results indicate the QFs can be estimated with high
accuracy. The only exceptions for lower correct detection rates, Pde, were obtained
for QF = 50, QF = 60, and QF = 100. In the case of QF = 50, Pde was very low
at approximately 18.2%, meaning that the process was probably detecting QFs close
to QF = 55. For QF = 60, and QF = 100, the detection rates were slightly better
at 38.6% and 65.7%, respectively. For comparison, both the mean estimated QF
value and correct detection rate were used for each result to estimate the actual QF
for the images. The QFs were then grouped into three different ranges: QF ≥ 90,
90 < QF < 75 and QF ≤ 75. The grouping into three QF ranges did not have an
overall effect on the authentication process. Results obtained for Pde2 also showed
the correct detection accuracy rates in these QF ranges were on average at 99%.

Table 5 summaries the results obtained for test images that have been attacked
via copy-paste and then JPEG compressed. Each watermarked image has been tam-
pered randomly in different regions by applying a copy-paste attack to 5% of the
watermarked image (9830 pixels in 384512 pixels image), and also compressed
with different QF values. The results showed that the quality factor estimation pro-
cess was highly accurate even under these attacks. From Table 5, the lowest cor-
rect detection rates were obtained for QF = 50, QF = 60, and QF = 100.
Two other experiments were performed with the test image subjected to only the
copy and paste attack and with the test image without any modification. The de-
tected QFs achieved for both experiments were approximately 99, and fit well in
the upper range of QF ≥ 90. Similarly, the results of Pde2 also showed the correct
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Table 5. QF estimation for watermarked images (Copy and paste attack + JPEG compression)

Actual QF Estimated QF Pde T Pde2

100 98.60 72%
0.9 99.1%95 95.00 100%

90 90.14 98.6%

85 84.83 97.9%
0.7 99.3%

80 79.95 99.6%

75 75.22 99.1%

0.5 99.2%

70 69.87 99.5%
65 64.46 98.7%
60 61.54 63.9%
55 54.93 96.6%
50 53.32 20.4%

detection rates in the three ranges were highly accurate with an overall average of
99%. As such, the threshold can be adapted into the three QF ranges according to
the estimated QF of each test image as described in Section 3.2.

3.4 Summary

In this section, we presented the relationship between QF and threshold, and
proposed a framework incorporating the generalised Benford’s Law as an image
forensics technique to accurately detect unknown JPEG compression levels in semi-
fragile watermarked images. We discussed the limitations of using predetermined
thresholds in semi-fragile watermarking algorithm. In our improved semi-fragile
watermarking method, the test image was first analysed to detect its previously un-
known quality factor for JPEG compression by using generalised Benford’s Law
model, before proceeding with the semi-fragile authentication process. The results
showed that QFs can be accurately detected for most unknown JPEG compressions.
In particular, the average QF detection rate was as high as 96% for watermarked im-
ages compressed with QFs between 95−65, and 99% when the image was subjected
to tampering of 5% pixels of the image and compressed with QFs between 95− 65.
The threshold was adapted into three specific ranges according to the estimated QF
of each test image.

4 Image Forensics

Recently, an interest has developed in identifying reliable techniques that are ca-
pable of accurately proving the authenticity of an image, without the requirement
of actively inserting a digital watermark or signature into the data. Whilst the wa-
termarking schemes discussed in section 2 have been shown to be useful for pro-
tecting the integrity of the image, there always exists the underlying risk that the
watermark data might be forcibly or accidentally removed. When this happens, the
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image is effectively stripped of its identity, and its integrity is extremely difficult to
prove. Forensic techniques aspire to achieve similar objectives but do not rely on
the strength of embedded data. Instead, the ambition is to prove the authenticity of
an image based solely on the data provided.

The two main areas of focus within the field of image forensics are camera iden-
tification and forgery detection. Camera identification is the task of successfully
linking suspect images to the source camera that captured the image, in order to
provide evidence that the origin of the image is as claimed. For example, a claim
might be made by Person A that they captured an image of a compelling real-life
event in order to gain acclamation. However, it is possible that Person B makes the
same claim, and suggests that it was taken from their camera which happens to be a
different make or model. A scrutinised forensic evaluation would attempt to review
the properties of both cameras’ image acquisition process, and determine the cor-
rect source for the image. This exercise might be relatively trivial if both camera’s
are vastly different, but what happens if Person A and Person B both own the same
make and model camera? The forensic expert must then locate features in the im-
age acquisition process of both cameras that differ. It should be possible to locate
this feature within the data of the image in question, and therefore conclude which
device captured the image. Forgery detection, on the other hand, is the practise of
ensuring that the content of the image has not been manipulated. One of the most
typical forms of content manipulation is splicing, which involves removing content
from one image and overwriting it with something similar from another image to
form a composite. This type of modification dates back over 150 years; a famous
example of which is the Abraham Lincoln portrait [48]. In this example, a portrait
of John Calhoun was manipulated such that it appeared as if the portrait was of
Abraham Lincoln. In fact, Lincoln never posed for the portrait, and the image was
actually constructed by flipping and resizing Lincoln’s head from a head-shot pho-
tograph taken by Mathew Brady such that it resembled the same proportions as the
Calhoun portrait. Calhoun’s face was then replaced by Lincoln’s face to produce a
composite image.

Part of the challenge for image forensics lies in the fact that it is rarely immedi-
ately obvious whether or not an image has been manipulated. If a good job has been
made of doctoring the image, it will look completely legitimate in plain sight. There-
fore a distinction must be made between clean images that have not been altered in
any way, and dirty images that are no longer true to their original form. Clean im-
ages are typically those that have come directly from the source that created them,
without having been subjected to any external post-processing. However, it is of-
ten extremely rare to locate an image as clean as this, as most photographers (even
at an amateur level) are likely to enhance their images through image editing soft-
ware to provide better visual clarity, even though the content itself will remain true.
To what extent such enhancements constitute a manipulation remains uncertain at
this point. For this chapter we define clean images as those extracted straight from
the camera that captured them, and dirty images as any image that has been ma-
nipulated in any way, including enhancements. By classifying the images according
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(a) John Calhoun portrait. (b) Lincoln head-shot. (c) Composite image.

Fig. 14. The Lincoln composite

to these terms, we are effectively suggesting that a clean image accurately repre-
sents the exact scene from which the image was captured, and also inherits only the
characteristic properties marked into the image data by camera processing.

Figure 15 presents a diagram of the two main areas of research in image forensics.
The diagram shows that a given image can either be captured by a digital camera
(in which case, the task is to identify anomalies in the camera processes that are
also found in the image data), or the image will have been edited by software (in
which case, anomalies are found in the image data that reflect manipulations). A
suspect image is usually intercepted after either or both of these processes have
been instantiated, and it is the job of the forensic specialist to establish the origin of
the image.

In this section, we begin by explaining the most significant techniques that
have been developed for the camera identification and forgery detection areas. In
Section 4.2 we focus purely on camera identification, and present a novel approach
to identifying anomalies within image data, before discussing the results of this
work in Section 4.3. We then provide a concluding summary in Section 4.4.

4.1 Literature Survey

Camera Identification

One of the earliest reported approaches for digital camera identification charac-
terised the imaging sensor from the device [49]. The imaging sensor is arguably
the most important component of the image acquisition process, as it captures the
light intensity of the scene on a pixel-by-pixel basis, and converts it into an electrical
signal. From here, the signal will pass through a Colour Filter Array (CFA), which
interpolates the colours for each pixel and the image is effectively born. However,
it is possible that the imaging sensor operates with an element of noise, caused by
hot or dead pixels. Errors such as this can often be seen in the final image, even if
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Fig. 15. Examples of camera-based and software-based image manipulations

the image has been lossy compressed. As the error is likely to be slightly different
for several devices, the technique is useful for reliably linking images to the source
sensor - and therefore the source camera - that captured the image. However, most
modern cameras are able to detect deficiencies in the processing such as this, and
often remove the hot or dead pixels altogether. As the scheme relies on the existence
of such pixels, it can only be targeted towards cameras that do not correct errors such
as these.

In 2006, research by K. S. Choi et al. led to the discovery that the camera lens
produces aberrations in images, due to the design and manufacturing process [50].
Lens radial distortion was found to be quite a common property for inexpensive
wide-angle lenses, and it causes straight lines to render as curved lines on the cam-
era sensor. A camera lens has various focal lengths and magnifications in different
areas, and when the transverse magnification MT increases with the off-axis image
distance r, a barrel distortion presents itself, as shown in Fig 16.

By calculating the precise radial distortion for a given device, as well as the rela-
tive radial distortion witnessed from a suspect image, it is possible to infer whether
or not the image originated from that device. The technique acts as an excellent
feature for providing a successful classification, but is likely to be insufficient in
isolation. Instead, this feature will need to be used in conjunction with several other
similar techniques in order to make a more informed and justified classification.

Arguably the most prominent research in the camera identification area, is that
proposed by J. Lukáš et al. [20, 51], and verified by N. Khanna et al. in 2009
[22]. The technique relies on pattern noise, which is a deterministic component
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(a) An undistorted rectan-
gular grid.

(b) Grid with barrel distor-
tion.

Fig. 16. Barrel distortion of a rectangular grid [50]

that remains consistent for all images that the sensor captures. Pattern noise can be
sub-divided into two categories: fixed pattern noise (FPN) and photo-response non-
uniformity noise (PRNU). The FPN is an additive noise that is supressed to varying
standards by many camera manufacturers, and is relative to exposure and temper-
ature [20]. For these reasons, it is not reliable for camera identification purposes
as it is inconsistent. PRNU, on the other hand, is a multiplicative noise and con-
tains a property refered to as pixel non-uniformity (PNU), which is defined as the
sensitivity differences to light at each pixel. The PNU is a direct result of the manu-
facturing process and is therefore not influenced by exposure and light. Indeed, the
PNU noise remains the same for each image that is taken, meaning this component
is extremely useful for determining the source camera that captured an image. To
complete the classification, a reference pattern for the camera must first be identi-
fied. This is achieved by using a denoising filter F and averaging the noise residuals
n(k) from multiple images p(k).

n(k) = p(k) − F (p(k)). (8)

Selected regions from image p are then checked for the existence of the pattern
noise from camera C by calculating the correlation PC between the noise residual
n = p − F (p) with the camera reference pattern PC , as shown in Equation (9).

PC(p) = corr(n, PC ) =
(n − n) · (PC − PC)
‖n− n‖‖PC − PC‖

. (9)

where the bar above a symbol denotes the mean value [52].
The pattern noise obtained from a suspect image can now be compared with the

pattern noise obtained from the device itself. If the correlation is identical, then there
can be little doubt that the image originated from the device, as the chances of two
camera’s producing the same pattern noise are extremely remote.

Forgery Detection

Significant progress has also been made in the forgery detection research area for au-
thenticating image content, such as the splicing example discussed at the beginning
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of this section. In fact, the sensor pattern noise technique introduced by J. Lukáš
et al. can easily be adapted to authenticate images. As the complete pattern noise
exists for every pixel in an image, a manipulated image can be derived when the
pattern noise is not present at a particular region of interest. It is important to
note, however, that the PRNU noise will not be present in highly saturated areas
of clean images, and is also highly supressed in dark areas, as the noise is mul-
tiplicative. Therefore, a region that does not contain the pattern noise should be
checked to ensure that neither of these two properties hold true before classifying
the image as tampered. Further details of how this can be achieved statistically are
discussed in [52].

Whilst much research is concentrated on calculating anomalies in the image ac-
quisition process of digital cameras, and then locating marks of those anomalies
in the image data, some researchers have taken a different approach and are con-
sidering how ”fingerprints” of software manipulation also exist in the image data.
The most prolifent work from this angle is lead by H. Farid’s research group at
Dartmouth college. Specifically, they have reviewed how certain image manipula-
tion operations such as resizing, alter the underlying pattern of pixels in a distinct
way [53]. When creating a composite from two or more images, parts of an image
are often enlarged (up-sampled), and when this happens, extra pixels are formed.
Figure 17 shows what happens when a small 4x4 pixel patch is stretched to pro-
duce a 4x7 pixel patch. The numbers contained within the original 4x4 block shown
in 17(a), correspond to the brightness at each location. The highlighted rows in
17(b) indicate added information, which is calculated by averaging the values of the
immediate neighbours.

(a) A 4x4 pixel patch. (b) Extra pixels added
when enlarging.

Fig. 17. Enlarging a 4x4 pixel patch [53]
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When images are enlarged in this manner, there exists a perfect correlation
between neighbouring pixels, which is a rare property to find in natural images.
Therefore, whenever this property is detected by a forensics specialist, they can
derive a probability that the image has been manipulated.

In other work, H. Farid’s research group also found that composite images can
also be identified by studying the light reflected into the subjects eyes. The position-
ing of white dots (caused by flash photography) indicate the direction of the light
when the image was captured [53]. When images are spliced together, these issues
are often overlooked. For a clean image, when several people all appear in the scene
the correlation of the light direction will match almost exactly. However, when a
person has been spliced into the image from another image, the direction of light
on the subjects eyes will not match. By studying the light pattern, it is often a fairly
trivial process to determine whether the image is genuine or not. Similarly, the au-
thor discusses how lighting observations can be applied more generally to images in
[21]. In this work, the author explains how the light striking a surface is dependant
on the position of the light source. An estimate of the direction of the light source
can be derived from an image by reviewing a given object’s 2-D surface contour,
such as a human jawline and chin. The lighting of this object can ultimately be
compared against that of other objects in the photo, and if there exists a mismatch
in lighting direction, then the image is likely faked.

As described in this section, there have been significant advances made in the
fields of camera identification and forgery detection in recent years. For the remain-
der of this chapter, we concentrate solely on the camera identification area, and
present a novel technique for locating anomalies in image data.

4.2 Statistical Process Control

At present, much research for camera identification has been based around identi-
fying anomalies in a camera’s image acquisition process, and then hoping to find a
“fingerprint” of these properties in the image data. Whilst this research has produced
some promising results, it is never easy to generalise the image acquisition process
for a wide range of digital cameras, as each process can be quite vastly different
from manufacturer to manufacturer. Instead, it is desirable to create a model such
that the anomalies for any type of digital camera can be quickly and easily identi-
fied. In this section, we discuss how Statistical Process Control (SPC) can be used
for such a purpose, and how it fits into the camera identification model as shown in
Figure 18.

Introducing Statistical Process Control

The theory of SPC was developed in the late 1920’s by Dr. Walter Shewhart, a
physicist and statistician at the AT&T Bell Laboratories, USA, and was designed in
an effort to acknowledge quality control and improvement for the manufacture of
goods [54]. Shewhart recognised that products built to a high standard with good
quality components, often produced better results in the field. In 1931, Shewhart
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Fig. 18. SPC alternative to the camera identification process

released a study of his work that outlined a statistical approach for detecting the
degree of control within processes over time [55]. The aim of Shewhart’s work was
to eliminate unexpected sources of variation that cause the process to operate with
less accuracy. These variations were refered to as special-cause, and are caused by
irregular events or circumstances that have an obvious impact on the process. Any
variation that could be explained, was refered to as common-cause variation. In a
perfect world, each measurement taken over time would produce the exact same
result. However, in the real world, there are often external influences that affect the
performance of processes.

SPC has been successfully applied to many areas of manufacture to maximise
the efficiency of production processes to deliver high quality products. It was first
applied to automobile manufacture by several Japanese manufacturers, and such
was the success of its use on the end product, the Ford Motor Company soon fol-
lowed [56]. It has since also been applied to industrial applications such as the pulp
and paper industry [57–59], and has even been considered for improving healthcare
processes [60].

The use of SPC can easily be adapted for use in image processing by substituting
the measurements with image data taken from a digital camera. The quality of the
complete image acquisition process for the camera can be infered, and a study of any
widely varying images can lead to the discovery of a unique feature of the device
that can act as a ”fingerprint” for camera identification.

Control Charts

A key tool of SPC for reviewing process variation, are control charts, which are
used to graphically display the variation shifts from each measurement. Typically,
two control charts are required to expose the data obtained from the process in its
entirety: one to display the shifts in the process mean, and one to display the shifts or
changes in the amount of process availability [55]. There are several types of control
chart, each calculated in different ways, and chosen according to the best fit for the
application. Our initial work is focused on individuals charts (commonly referred to
as X charts) to display the process mean, and moving range charts (referred to as
Rm charts) to display an estimate of the common-cause variability of the process. X
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and Rm charts are suited to instances where individual measurements are obtained,
and will therefore be useful for representing data collected from multiple images
taken by several digital cameras.

Both control charts are comprised of a centreline CL (which is the mean value
obtained from all measurements), an upper control limit UCL, and a lower control
limit LCL, as well as the physical data obtained from each measurement X . The
UCL and LCL are calculated at around ±3 standard deviations above and below
CL, respectively, to obtain results with a false-positive margin of approximately
0.27% [55]. If any measurement falls outside of these control limits, then the mea-
surement is considered out-of-control.

Constructing the Control Charts

The construction of the control charts is based completely on the data measure-
ments obtained for X . Traditionally, the Rm chart is plotted first, as these charts
provide information on the overall process variability. The first step is to calculate
the differences between neighbouring values in X to produce Rm. The CL is sim-
ply the mean of all measurements of Rm, denoted as Rm, and is therefore calculated
according to Equation (10).

Rm =

k∑
i=1

Rmi

k
. (10)

where k refers to the total number of elements in Rm. A table of constants (Table 6)
is then used to calculate the UCL and LCL control limits.

Table 6. Constants for Calculating Control Limits [54]

Observations in Sample d2 A2 D3 D4

2 1.128 1.880 0 3.267
3 1.693 1.023 0 2.575
4 2.059 0.729 0 2.282
5 2.326 0.577 0 2.115
6 2.534 0.483 0 2.004
7 2.704 0.419 0.076 1.924
8 2.847 0.373 0.136 1.864
9 2.970 0.337 0.184 1.816
10 3.078 0.308 0.223 1.777
15 3.472 0.223 0.348 1.652
20 3.735 0.180 0.414 1.586

The UCL and LCL values are calculated by using Equation (11), where D3 and
D4 are obtained when observations in sample n = 2.
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UCLRm = D4Rm

LCLRm = D3Rm. (11)

When constructing X charts, the CL refers to the mean value of all measurements
in X , and is denoted as X . The UCL and LCL values are calculated by adding or
subtracting 3 standard deviations from this value, where an estimate of the standard
deviation is obtained from Equation (12).

σ̂X =
Rm

d2
. (12)

where d2 is taken from the table of constants, again when observations in sam-
ple n = 2. The UCL and LCL control limits can then be calculated from
Equation (13).

UCLX = X + 3σ̂X

LCLX = X − 3σ̂X . (13)

Using Statistical Process Control for Image Forensics

SPC can be used to identify anomalies in the image acquisition process of a digi-
tal camera by collecting a series of identical images from the device, and using the
mean pixel data (across each colour plane) as the measurements for X . As men-
tioned previously, the aspiration is that the anomaly investigation process will lead
to the uncovering of unique ”fingerprints” for camera identification. According to
Flickr (a popular image and video hosting site), the current most commonly used
cameraphone device on their website is the Apple iPhone.

For our experiments, we therefore use four Apple iPhone 3G devices as primary
devices. As cameraphones by definition are not primarily engineered for photog-
raphy, inexpensive components are typically used, meaning the expectancy of wit-
nessing a poor statistical control is increased. The Apple iPhone devices contain a
2 MegaPixel CMOS sensor and do not process any user settings or a zoom of any
kind, meaning the exposure settings, focus, ISO settings, aperture, etc. are all au-
tomatically defined, if indeed they exist at all. The results obtained from the Apple
iPhone 3G devices are later compared with those obtained from similar devices such
as a Sony Ericsson W810i, and two Nokia N97 devices.

When acquiring the image data, it is important to nullify any environmental issues
that could affect the data negatively. If the external conditions remain uncontrolled,
it is likely that each device produces quite contrasting results, not necessarily be-
cause their image acquisition processes are different, but because, for example, the
temperature or lighting conditions suddenly change. In our initial work in [61], the
images are acquired from a room that is not subjected to outside lighting as this con-
stantly changes. Instead, the test scene was lit via fluorescent lighting. In addition,
the room was air-conditioned to a constant temperature so as to reduce the influence
of temperature changes on the image acquisition process. It is worth noting, how-
ever, that the SPC model can be applied when these external influences do exist,
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so long as they are taken into consideration when reviewing the data. For instance,
if the temperature increases as each image is taken, this will have an affect on the
image acquisition process. As such, if the process becomes less and less controlled
over time, then the temperature is a likely cause.

The scene itself comprises a white bowl of colourful confectionaries (Figure 19,
where the bright colours maximise the load on the CFA. A location reference point
is then set up to determine the position for each device, and a series of 10 images
are collected one after the other for each device.

Fig. 19. Example image obtained from test scene

4.3 Results and Evaluation

In this section, we present the results from our initial implementation of SPC for im-
age forensics, as reported in [61]. We also evaluate the significance of these results,
and consider a refined implementation of a similar model based on images captured
from a controlled environment. Comparisons are then made between both models,
and a critique of how SPC can aid camera identification is provided.

The mean pixel values obtained from 10 images for all four Apple iPhone 3G
devices is shown below in Table 7. By taking the 10 values for each device as X ,
control charts can be plotted to display the degree of control about the process mean
X . First, the Rm values are determined by calculating the difference between neigh-
bouring values of X . Table 8 shows the X and Rm data for iPhone A.

Using this data, the CL for the Rm control chart is calculated as 1.141. The table
of constants from Table 6 is used, where n = 2 to obtain D3 = 0 and D4 = 3.27.
Subsequently, the UCL and LCL are then calculated as follows:

UCLRm = D4Rm = (3.27)(1.141) = 3.729
LCLRm = D3Rm = (0.0)(0.294) = 0.0 (14)
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Table 7. Mean pixel values obtained for all Apple iPhone 3G devices [61]

Shot No. iPhone A iPhone B iPhone C iPhone D
1 110.2097 105.4888 104.6182 104.4518
2 109.6045 106.5222 104.6503 97.4483
3 109.1334 106.7678 105.4275 97.1251
4 109.1161 98.0294 105.4614 97.0542
5 109.2108 98.064 105.676 97.0346
6 101.3616 97.7303 105.1278 97.0085
7 101.7246 98.9264 105.4571 97.4346
8 101.2875 96.9707 105.5588 97.4245
9 101.2724 98.4508 105.5459 97.0113
10 101.6922 97.4999 105.4956 97.0198

Table 8. X and Rm values obtained for iPhone A

Shot No. X Rm

1 110.2097
2 109.6045 0.605
3 109.1334 0.471
4 109.1161 0.017
5 109.2108 0.095
6 101.3616 7.849
7 101.7246 0.363
8 101.2875 0.437
9 101.2724 0.015

10 101.6922 0.420

Similarly, the CL for the X chart, X is calculated as 105.461. The UCL and LCL
control limits are calculated according to Equation (15).

UCLX = X + 3σ̂X = 105.461 + (3)(1.011) = 108.497
LCLX = X − 3σ̂X = 105.461− (3)(1.011) = 102.426.

(15)

The final control charts for iPhone A are shown in Figure 20, where circled nodes
indicate that the measurements are out-of-control as they fall outside the control
limits.

The X chart (top) shows that every measurement taken from iPhone A is out-
of-control. This indicates that the complete image acquisition process is statistically
unstable. The Rm chart shows that sample 5 is out-of-control. When mapped to
the X chart, this corresponds to the 5th and 6th images. The values of these two
images are quite vastly different. The value for image 5 is 109.2108 compared to
image 6 which yields the value 101.3616. By reviewing these two images further, it
is possible to see a significant change in brightness between these images.
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Fig. 20. X and Rm control charts for iPhone A

It is now worth evaluating how the results for iPhone A compare with the data
obtained from the other iPhone devices. The control charts for iPhone B are shown
in Figure 21.

Whilst the X chart is undoubtedly far more controlled than the X chart for iPhone
A, the same significant drop in values can be seen, this time between image 3 and
image 4. Again, when reviewing these two images, a large shift in brightness is
observed.

Figure 22 illustrates the X and Rm control charts for iPhone C. For this de-
vice, there appears to be no significant shift in measurements, and in fact, the two
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Fig. 21. X and Rm control charts for iPhone B

out-of-control measurements are only marginally outside the control limits. This
indicates that this device was far more controlled than the previous two, at least for
the 10 observations reviewed.

To complete the exercise for the iPhone devices, the X and Rm control charts are
plotted for iPhone D, as shown in Figure 23. The same property of significant shifts
in measurement values that was observed for iPhone A and iPhone B, also exists for
iPhone D between the first and second images. Again, when reviewing both these
images, a change in brightness value can be observed.

For comparison purposes, the same experiment was performed with the Sony
Ericsson W810i cameraphone and standalone Samsung NV3 camera. We would
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Fig. 22. X and Rm control charts for iPhone C

expect that the quality of the image acquisition process should be greatly improved
for the Samsung NV3, as it is likely to use higher quality components, and more
care is likely to have been taken to ensure errors are corrected in the pixel data.
The Sony Ericsson W810i on the hand should be more comparable to the iPhone
3G devices, and if it does not posess the same brightness problem, it may be more
controlled - although not as controlled as the Samsung NV3 is expected to be. The
control charts for the Sony Ericsson W810i cameraphone are shown in Figure 24.

This device contains no out-of-control measurements, meaning that the image
acquisition process is far more controlled compared to that of the iPhone 3G devices.
The Samsung NV3 device is even more controlled, with the difference between the
highest value measurement (132.04) and the lowest value measurement (131.89)
only 0.15.
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Fig. 23. X and Rm control charts for iPhone D.

As we only have access to one Sony Ericsson W810i and one Samsung NV3, we
cannot collect enough data to make an informed review of any errors found within
the image data. However, it is clear that the SPC model is reacting to the quality of
each device.

Based on these observations it is obvious that there is some aspect of the iPhone
image acquisition process that is affecting the brightness. The measurements taken
before and after the decrease in data values are actually quite consistent, but the
change in brightness is so vast that it renders much of the process out-of-control.
It also appears from the SPC experiment as though the change in brightness is
time dependant. Whilst iPhone C did not display any signs of this characteristic,
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Fig. 24. X and Rm control charts for a Sony Ericsson W810i cameraphone

it might have showed itself if we took more than 10 measurements. The initial
work has therefore highlighted a feature of the image acquisition process for iPhone
3G devices, that could be analysed in more detail to potentially create a unique
“fingerprint” for identifying images captured from these devices.

In our most recent work, we have studied the effect that the lighting conditions
have on the image acquisition process. As fluorescent lighting is known to flicker,
the overall intensity of light could vary from shot to shot depending from when the
image was captured. The environment was therefore adapted such that the fluores-
cent lighting was replaced by a flicker-free task lamp. The bulb itself emitted a true
representation of daylight based on the Spectral Power Distribution (SPD). It is im-
portant to simulate daylight conditions as this ensures the digital camera’s are still
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Fig. 25. X and Rm control charts for a Samsung NV3

processing the images based on real-world lighting. Some lamps will emit light that
is faded or distorted, which would not provide useful results for our experiments.

The scene itself was also modified such that we use a light tent to ensure no exter-
nal light sources filter onto the object. The bowl of confectionaries was also replaced
with an X-Rite ColorChecker R© chart, as this comprises 24 carefully selected colour
squares, that each represent real-world colours (i.e. skin, sky, and landscape tones).
The chart is specially designed such that each colour is reflected just as it is in the
real-world. The colours within the chart are also defined in terms of their exact RGB
reference values which means it will be possible to review exactly how each device
is interpreting the colours if necessary. Figure 26 shows a sample image that was
captured from this revised environment.
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Fig. 26. Sample image taken from the modified test scene

Finally, the number of measurements taken from each device is increased from
10 to 30 to provide us with a more complete representation of the processing. The
calculations involved for constructing the control charts, however, remain the same.

Figure 27 shows the X control chart obtained from iPhone A. Again, the same
variation shifts that appeared in the earlier experiment can be noted. At each of
these points, the brightness of the images shifted quite significantly. It can also be
observed that the fluorescent lighting conditions from the first experiment was not
the cause for the error scene in the camera processing, as the difference between the
highest and lowest measurements for both experiments is approximately equal with
that of this controlled experiment.

Whilst carrying out the experiment, an updated iPhone 3G model was released by
Apple called the iPhone 3GS. The updated model carries a 3.2 MegaPixel camera,
and allows the user to define the focal point of the image. To identify the significance
of these improvements, we ran the SPC experiment on the new model. The results
of which are expressed as an X chart in Figure 28.

This chart shows that the image acquisition process is far more controlled than
that of its predecessor. Each of the 30 measurements taken are under perfect control,
and there are no significant shifts in variation as seen for the iPhone 3G devices. A
more diligent review of the new ’focus’ setting on the iPhone 3GS shows that the ex-
posure of the image is also defined when the focus is set. The exposure then remains
the same until the camera is moved, or the conditions of the environment change
drastically. This backs up our assumption that the brightness issues witnessed for
the iPhone 3G devices are due to an exposure calculation error, which is why the
brightness flicks between dark and bright over time.

The experiment was also performed against two Nokia N97 devices. The camera
on the Nokia N97 devices contains a 5 MegaPixel resolution, and allows the user to
define white balance settings, ISO settings, and also zoom. To form the most suitable
comparison with the results obtained from the iPhone devices, the resolution was set
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Fig. 27. X control chart acquired from iPhone A

Fig. 28. X control chart acquired from an iPhone 3GS

to 2 MegaPixels, and all other settings were disabled where possible, or otherwise
set to ”Automatic”. The X control charts for the two Nokia N97 devices are shown
in Figures 29 and 30.

The control charts for the N97 devices show that each measurement - whilst
more closely centred around X - is again not under complete statistical con-
trol. The second N97 device shows even less control than the first. By analysing
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Fig. 29. X control chart acquired from Nokia N97 A

Fig. 30. X control chart acquired from Nokia N97 B

the out-of-control measurements in greater detail, (or indeed any contrasting mea-
surements) and comparing them with the more controlled images, it is likely that
the variation can be explained and a unique “fingerprint” uncovered.

4.4 Summary

In this section, we have introduced image forensics, and outlined the most pro-
lifent research in the field - specifically, the latest research for camera identification
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and forgery detection have been introduced. In addition, we have demonstrated the
benefits of using Statistical Process Control for analysing image data on a range
of different digital cameras. Based on our initial research in [61], an anomaly in
the camera processing elements was identified for iPhone 3G devices, whereby the
brightness of the images was fluctuating. By analysing the latest iPhone 3GS model
under the same conditions, we have been able to prove that the newer model does not
contain this property, meaning there is promise for the reliable detection of images
obtained from iPhone 3G devices, and images captured from the iPhone 3GS.

We have also proved through both experiments, that SPC is useful for mod-
elling the overall control of the image acquisition process for a particular camera.
Figure 31 illustrates the degree of variability obtained from the initial experiment
in [61] for 6 devices. It is clear from this illustration that the iPhone 3G devices all
operate with a similar degree of variation (approximately 21%). The Sony Ericsson
W810i is far more controlled, and outputs a degree of variance of approximately
1%. The Samsung NV3 standalone digital camera is even further controlled, and
offers a variation of only 0.5%.

Fig. 31. Depth of variation for all devices

5 Conclusion and Future Work

Our future work in the image forensics domain will be concentrated on identifying
more benefits of the SPC framework for camera identification. Further control charts
can be examined, such as the Exponentially Weighted Moving Average (EWMA)
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chart, to determine whether there is an even more descriptive tool that can replace
the X and Rm control charts. In SPC control charts, the formation of the measure-
ments along CL can be used to derive common-cause and special-cause variation.
Therefore, a scrutinised analysis of this content might be useful for isolating unique
”fingerprints” for digital cameras. Similarly, Pareto charts and Cause & Effect dia-
grams have also been proved to be useful for identifying the cause of variation for a
range of processes. These techniques could be adapted for use in the image forensics
domain for identifying anomalies in the image data.
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Abstract. This chapter presents a novel metric for image quality assessment from 
a single image. The key idea is to estimate the point spread function (PSF) from 
the line spread function (LSF), whereas the LSF is constructed from edge informa-
tion. It is proven that an edge point corresponds to the local maximal gradient in a 
blurred image, and therefore edges can be extracted from blurred images by con-
ventional edge detectors. To achieve high accuracy, local Radon transform is im-
plemented and a number of LSFs are extracted from each edge. The experimental 
results on a variety of synthetic and real blurred images validate the proposed 
method. To improve the system efficiency, a criterion for edge sharpness is further 
proposed and only the edge points from sharp edges are selected for extracting the 
LSF without using all edge information. The effects of nearby edges on the se-
lected edge feature and the resultant LSF are analyzed, and two constrains are 
proposed to determine appropriate LSFs. The experimental results demonstrate the 
accuracy and efficiency of the proposed paradigm. This scheme has fast speed and 
can be served in blind image quality evaluation for real-time automatic machine-
vision-based applications.   

1   Introduction 

Vision-based systems have been used in a wide spectrum of applications, ranging 
from product inspection, production control to vehicle navigation, target recogni-
tion and surveillance. To achieve consistently high performance under varying en-
vironments and accommodate uncertainties, one of the crucial steps is to evaluate 
the quality of the images acquired, based on which the usability of the images or 
the confidence of the decision-making is determined. As these systems are auto-
matically operated, it is necessary to develop objective quality evaluations (Wolin 
et al. 1998) or called blind image quality assessments (Li 2002) which are reliable 
and repeatable from acquired images instead of human observation.  
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However, the determination of image quality is a formidable task, and no well 
accepted, standardized method of accomplishing this has been developed because 
“quality” of images is a subjective notion (Wolin et al. 1998, Li 2002, Keelan 
2002). An image can be defined to be of good quality in one imaging system, but 
does not necessarily rank similarly in another one. From the vision application 
point of view, an image can be defined to be of good quality if it fulfils its in-
tended task well. In this case, image quality is determined by the relevance of the 
information presented by the image to the task we seek to accomplish using the 
image. In other words, image quality is task-dependent (Keelan 2002). 

From the perspective of blind image quality assessment, i.e., evaluating from 
one image, image quality can be characterized by a large number of attributes , 
e.g. contrast, brightness, noise variance, sharpness, radiometric resolution, point 
spread function (PSF), modulation and contrast transfer function (MTF, CTF), re-
solving power, etc. Some of these attributes are objective and absolute, and are 
subject to rigorous measurement. Others are highly dependent upon the intended 
use of the image. Generally, the specific metrics used to characterize an image are 
not necessarily the same for each application (Wolin et al. 1998, Li 2002, Keelan 
2002). Li (Li 2002) exploited the appropriate mathematical tools to characterize 
most important aspects of image quality and proposed to appraise the image qual-
ity by three objective measures: 1) edge sharpness level; 2) random noise level 
and 3) structural noise level. It was indicated by Li (Li 2002) that the three meas-
ures jointly provide a heuristic approach of characterizing the most important as-
pects of visual quality, and edges are the most important features in images.  

Sharpness is an important attribute of image quality. The lack of sharpness is 
mainly caused by the physical phenomena of blur and low-pass filtering during 
image processing. Frequently, the blur in real vision applications comes from two 
sources, i.e., out-of-focus blur and motion blur. Blur images inherently have less 
information than sharp images and lead to difficulty in image analysis and scene 
interpretation. Consequently, the imaging systems should have the functionality of 
blur detection.  

Generally, digital imaging systems use active methods, for instance, with infra-
red or ultrasonic sensors to avoid blur. This affects the compactness and cost of 
cameras. Moreover, the active operation is not always possible in automatic vision 
systems. To satisfy the requirements of practical applications, several passive 
measure techniques, such as measurements based on gradient magnitude, histo-
gram of local variance, high frequency components of Fourier Transform and so 
on have been proposed (Subbarao and Tyan 1995). These methods generally work 
on a sequence of images containing the identical content with different blur ex-
tents, and the sharpest image is then selected. Accordingly, these methods depend 
on image contents, and the criteria may vary from one image to another. In other 
words, these paradigms do not provide an explicit expression of blur measure-
ments which can be applied to all images. 

Some blind approaches based on one image have been developed, and Kundur 
& Hatzinakos (1996) provided a good survey in the related research. In this cate-
gory of approaches, the most frequently used method is the frequency domain ze-
ros (Rom 1975, Cannon 1976, Fabian & Malah (1991)). The idea is based on the 
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fact that the frequency responses of some particular PSFs have regular zero cross-
ings, which determine the types and extent of the PSF. The pattern of the zero 
crossings can be analyzed by using cepstrum (Rom 1975) or spectrum (Cannon 
1976) to identify the type of blurs. A major drawback of this method is its high 
sensitivity to noise. More robust techniques (Fabian & Malah 1991, Chang et al. 
1991) have been proposed to improve the accuracy of identifying the spectral nulls 
in the presence of noise. However, such methods cannot identify PSFs that do not 
possess any spectral nulls, such as the Gaussian PSF.  

On the other hand, techniques working on spatial domain have received great 
attention because they are simple and have low computational requirements with-
out complex Fourier transform. The general idea is to derive the PSFs using local 
image characteristics, such as point-source, line or edge information wherein 
edges are the frequently used information. Marziliano et al. (Marziliano et al. 
2004) used only the vertical and horizontal edges for blur estimation. Kim et al. 
(Kim et al. 1998) proposed a method to identify PSF from vertical and horizontal 
edges as well as the 450 edges. Wu et al. (Wu et al. 2005, Wu et al. 2009) pro-
posed to use edges in arbitrary directions. This alleviates the dependence of image 
content. Different from the ad hoc methods (Marziliano et al. 2004, Kim et al. 
1998), some exact metrics have been proposed for PSF estimation (Kayargadde & 
Martens 1996, Wu et al. 2005, 2009). 

In the meantime, several methods simultaneously incorporating blur identifica-
tion with restoration have been reported, among which, the ARMA (autoregres-
sive moving average) parameter estimation using maximum-likelihood (ML) 
method is the most popular one (Lagendijk et al. 1990a, 1990b). It is indicated by 
Lagendijk et al. that this paradigm can be effective when no information about the 
distortion (blurring and noise) is known. Normally, it is robust to noise, and can 
identify a variety of blurs including those that do not have zero crossings. Another 
technique under the same framework is the general cross-validation (GCV)  
method proposed by Reeves & Mersereau (Reeves & Mersereau 1992). It is dem-
onstrated that the GCV method is superior over the ML one in the context of regu-
larization parameter estimation, and is also more robust (Fortier et al. 1993). 
However, the performance of these methods largely depends on the determination 
of initial PSF, especially the order (support) of the PSF (Chen & Yap 2006). 
Moreover, these methods are iterative and intensive in computation. 

This chapter presents the complete scheme of blind spatial-domain blur meas-
urement based upon estimating the LSF in a single image. This work focuses on 
oft-encountered machine vision problems instead of astronomical (Luxen & 
Forstner 2002), remote sensing (Bones et al. 2000) or biological (Lehr et al. 1998) 
applications. The out-of-focus is our main concern, without considering the mo-
tion blur because the movement involved is usually slow in such applications. The 
blind blur measurement based on single image is presented in the following sec-
tion. Implementing details are described in Section 3. Experimental results are 
given in Section 4. Some issues are further discussed in Section 5. A computa-
tional efficient method is presented in Section 6, followed by conclusion drawn in 
Section 7. 
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2   Metric for Blur Measurement 

Considering the image degradation as a linear space-invariant model, a blurred 
image ( , )g x y  can be expressed as follows (Kundur & Hatzinakos 1996): 

( , ) ( , ) ( , ) ( , )g x y h x y f x y n x y= ⊗ +                                             (1) 

where ( , )f x y  is the original image, ( , )h x y  is the PSF, ( , )n x y  is additive noise, 

and ⊗  represents the convolution. It has been indicated by Kundur & Hatzinakos 
(Kundur & Hatzinakos 1996) that this linear model can represent the degradation 
of images in many practical image processing applications. 

In most cases, the out-of-focus blur can be modeled as a uniform disk with  
radius R : 

2

0
( , )

1/( )
h x y

Rπ

⎧⎪⎪⎪= ⎨⎪⎪⎪⎩
   

2 2

2 2

x y R

x y R

+ >

+ ≤
                                          (2) 

This is a simple geometric model with circular aperture ignoring diffraction in 
which the radius R  reflects the degree of blur. It has been shown (Savakis & 
Trussell 1993, Sezan et al. 1991) that a more accurate and complex physical 
model does not perform significantly better. 

Although the PSF is expressed in a simple form, the estimation is not easy be-
cause it is with two dimensions. In optics, the PSF can be determined by the image 
of a point source. Similarly, the line spread function (LSF) is also used to charac-
terize a blurred line in an image. For simplicity, it is assumed hereinafter that the 
LSF is parallel to the horizontal (x-) axis. This does not affect the generality of the 
derivation that follows, because the PSF in Equation (2) is rotationally invariant, 
and the LSFs at different orientations are identical. The relation of the PSF and the 
LSF can be expressed as follows (Andrews & Hunt, 1977): 

( ) ( , )L y h x y dx
∞

−∞
= ∫                                                 (3) 

where ( )L y denotes the LSF. Equation (3) illustrates that the PSF can be inferred 

from the LSF, while the LSF is simpler than the PSF because it is with one  
dimension. 

In a typical image, there exist plenty of edges in heterogeneous space. 
Let ( )eh y be a unit step edge parallel to the x-axis in a blurred image, and is repre-

sented by a unit step function ( )U y : 

( ) ( , ) ( )eh y h x y U y y dx dy
∞ ∞

−∞ −∞
′ ′ ′ ′ ′= −∫ ∫                              (4)           
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Taking partial derivative of both sides with respect toy : 

( )
( , ) ( )

( , ) ( )

( , ) ( )

eh y h x y U y y dx dy
y y

h x y y y dx dy

h x y dx L y

δ

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞
∞

−∞

∂ ∂′ ′ ′ ′ ′= −
∂ ∂

′ ′ ′ ′ ′= −

= =

∫ ∫

∫ ∫
∫

                         (5)  

where ( )y yδ ′− is the impulse function. Equation (5) reveals that the derivative of 

a blurred unit step edge is actually its correspondent LSF in the image. Since Eq-
uation (2) implies that the PSF of out-of-focus blur is circularly symmetric, Equa-
tion (5) is held for a unit step edge in any direction.  

According to Equation (3), the LSF is the integral of the correspondent PSF in 
the direction of a line. Thus for the case of out-of-focus blur, its LSF can be ex-
pressed as follows: 

2 2

2 2

2 2
2 2

1 2
( ) ( , )

R y

R y
L y h x y dx dx R y

R Rπ π

∞ −

−∞ − −
= = = −∫ ∫                  (6)  

The maximum of the LSF can be obtained from Equation (6): 

max
0

2
( ) |yL L y

Rπ== =                                                    (7) 

Then, we have: 

max

2
R

Lπ
=                                                               (8) 

This is the metric to estimate the blur parameter R from an image, wherein the 
measurement of maxL  can be done from any edge in an image. 

3   Implementation 

Since the proposed method relies on step edges, it is assumed that there is at least 
one sharp edge in the underlying image. To estimate the blur parameter, the identi-
fication mainly comprises four steps as shown in Fig. 1. 

 
 
 
  

Fig. 1. Flowchart of the proposed method 

PSF estimation LSF derivation Edge detection Line determination 
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3.1   Edge Location in Blurred Images 

We have shown in Section 2 that it is possible to construct the LSF from edges, 
i.e. the derivative of unit step edge. However, if the image is blurred as shown in 
Fig. 2(b), it is not obvious where the edges are located, but the edge localization is 
crucial in extracting information from the edges.  
 
 
 
 
 
 
 
 
(a) A sharp image with a unit step edge             (b) The corresponding blurred image with R =15 

Fig. 2. Sharp image with a step edge and the corresponding blurred image 

Theorem: If 0 0( , )P x y  is a real edge point in a sharp image f(x, y), it is with the 

local maximal gradient in a blurred image g(x, y). 
Proof: If 0 0( , )P x y  is an edge point, the first-order differential at 0 0( , )P x y  has 

the following property: 

0 0( , ) max( ( , ))Df x y Df x y= ,      ( , )P x y ∈ Ω                            (9) 

where Ω  is the domain containing the edge point 0 0( , )P x y , and  

2
0 0( , ) 0D f x y =                                                         (10) 

According to differential rule of convolution, we obtain from Equation (1) without 
considering the noise n(x,y): 

( ( , ) ( , )) ( ( , )) ( , ) ( , ) ( ( , ))D h x y f x y D h x y f x y h x y D f x y⊗ = ⊗ = ⊗             (11) 
2 2( ( , ) ( , )) ( , ) ( ( , ))D h x y f x y h x y D f x y⊗ = ⊗                                               (12) 

Then  
2 2

0 0 0 0 0 0( , ) ( , ) ( ( , )) 0D g x y h x y D f x y= ⊗ =                       (13) 

This proves that the real edges in blurred images still have local maximal gradi-
ents, and consequently they can be detected by conventional gradient operators. 

As an example, take differentiation in the horizontal direction in the blurred 
image shown in Fig. 2 (b), we obtain the LSF demonstrated in Fig. 3. It is shown 
that the greatest horizontal gradient occur on actual edge. The LSF in Fig. 3 is 
identical to the result obtained from Equation (7). 
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Fig. 3. The LSF extracted from image Fig. 2(b) 

3.2   Edge Detection 

Currently, many edge detectors have been proposed, among which Sobel and 
Canny detectors are the most commonly used two. Sobel operator works fast, but 
tends to amplify the noise as well. Canny method on the other hand, is sensitive to 
change of intensity and detects weak edges or even artifacts. Moreover, Canny  
detector involves with more computation. In the following analysis, Sobel detector 
is used for its efficiency. More discussion for edge detection will be given in  
Section 5. 

Denote the intensity image as M NI ×∈ , and  we obtain the gradient informa-
tion of each pixel as follows: 

2 2( , ) ( , ) ( , )x yG i j G i j G i j= +                                                 (14) 
1( , ) tan ( ( , )/ ( , ))y xi j G i j G i jα −=                                           (15) 

where G(i, j), ( , )i jα  are the gradient magnitude and direction respectively at lo-

cation (i, j). Then the image I is converted to a binary image M NB ×∈  according 
to the following: 

1 ( , )
( , ) 1,2 , , 1,2

0 ( , )

if G i j
B i j i M j N

if G i j

ξ

ξ

⎧ ≥⎪⎪⎪= = =⎨⎪ <⎪⎪⎩
                 (16) 

where  

1 1

2
( , )

N M

j i

G i j
MN

ξ
= =

= ∑∑                                                       (17) 
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3.3   Edge Selection and Location  

To deduce the LSFs, it is necessary to locate the straight edges from the binary 
image B. In our proposed method, Radon transform is used to locate line features. 

Radon transform (RT) of ( , )f x y is the line integral along a specific direction 

(Jain 1989): 

( , ) ( , ) ( cos sin )R s f x y x y s dxdyθ δ θ θ
∞ ∞

−∞ −∞
= + −∫ ∫                          (18) 

In the rotated coordinate system (s, t), where  

cos sins x yθ θ= +                                                        (19) 
sin cost x yθ θ= − +                                                      (20) 

Equations (19) and (20) can also be represented as 

( , ) ( cos sin , sin cos ) , 0R s f s t s t dt s= + < < <,
  (21) 

Therefore, the RT maps the spatial domain (x, y) to the domain ( ,s θ ), where a line 

in the spatial domain corresponds to a high value in the ( ,s θ ) domain. 

Set the angle interval be 
180
π

, and the RT of image B be ( , )R s θ . Then the line 

candidates are determined as follows: 

2 2

( , ) ( , ) max( ( , ))
( , )

0 ( , ) max( ( , ))

179
0, , , , 0, 1,

180 180

i i i i

i i
i i

i i

R s if R s R s
L s

if R s R s

s M N

θ θ δ θ
θ

θ δ θ

π π
θ

⎧ ≥⎪⎪⎪= ⎨⎪ <⎪⎪⎩

= = +

               (22) 

where 0 1δ< <  being a parameter to determine the number of line candidates. 
The accuracy of the line direction is very important for LSF extraction. It 

should be noted that the RT is a global transform, which implies that the detection 
of a local line is affected by other lines. On the other hand, the choice of δ  may 
miss some real lines and includes some artificial ones. To alleviate the effect of 
the random choice of δ , and accurately detect real lines with different image con-
tents, local processing of the RT is proposed. 

First, label the binary image B as follows:  

( , ) 1 ( , ) ( )
( , )

0L

k if B i j and B i j k
B i j

others

⎧ = ∈ Ω⎪⎪⎪= ⎨⎪⎪⎪⎩
                    (23) 
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where ( , )B i j  is 8-connection to kth edge ( )kΩ . If an edge segment is short, say, 

contains less than 10 pixels, it is then excluded.   
Assume LB  have u edge segments. For each edge segment k ( 1,2,k u= ), 

search 

{ }( , ) | ( , )LJ i j B i j k= =                                               (24) 

find the points: 

{ }|| ( ) ( ( )) |K J J median Jα α σ= − ≤                              (25) 

where σ  is a threshold. If there are enough connected points with similar gradient 
feature, an edge segment is located.  

For each detected line, the RT is performed, and the line parameters ,l ls θ  are 

determined as follows: 

{ }, , | ( ) max ( )l l l l l ls s R s R sθ θ θ θ= =                                    (26) 

Assume that a line AB shown in Fig. 4 represented by ( , )l ls θ  be detected with the 

RT, then the position of point P which is perpendicular to AB and crosses  the ori-
gin is 

                 
cos

sin

P l l

P l l

x s

y s

θ

θ

=

=
                                                      (27) 

 

 

Fig. 4. A line represented by ( , )l ls θ  

The segment AB is delineated as follows: 

           ( )tan( )
2P P ly y x x
π

θ= + − +                                          (28) 
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3.4   Pixel Interpolation and LSF Extraction                               

As illustrated in Section 2, the LSF is the derivative along the direction orthogonal 
to the edge in a given direction θ . In a discrete domain, the LSF is characterized 
by a sequence of points in 1-D orthogonal to the edge interested.  

After obtaining the location and slope of the edge, for example AB as shown in 
Fig. 4, the sequence of points orthogonal to the edge and crossing P is: 

cos

sin

i P l

i P l

x x i T

y y i T

θ

θ

= + × ×

= + × ×
     0, 1, 2,i r=                         (29) 

where T is the interval of the sequent points and is chosen as 1 pixel; r is the num-
ber of points to be extracted. As can be seen from Equation (29), the position 
( , )i ix y  cannot be accurately located at the pixel position if lθ  is not equal to 0 or 

2
π

. Interpolation is therefore necessary for the actual position.    

Assume that one point P locate within its 4 neighbor pixels ( , )g i j , ( , 1)g i j + , 

( 1, )g i j+ , and ( 1, 1)g i j+ + , which has distances xd , yd  from ( , )g i j  in x- and 

y- axes respectively, as shown in Fig. 5. First, we interpolate the intensities of 
points kP  ( 1,2, 3, 4k = ), which cross the point P as follows: 

1

2

3

4

( , )(1 ) ( 1, )

( , )(1 ) ( , 1)

( , 1)(1 ) ( 1, 1)

( 1, )(1 ) ( 1, 1)

P y y

P x x

P y y

P x x

g g i j d d g i j

g g i j d d g i j

g g i j d d g i j

g g i j d d g i j

= − + +

= − + +

= + − + + +

= + − + + +

                                   (30) 

 

Fig. 5. Interpolation of point P which is not on the pixel 

Then, the intensity of point P is computed as follows: 

1 3 2 4
[ (1 ) (1 ) ]/2P P x P x P y P xg g d g d g d g d= − + + − +                        (31) 
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After interpolation, we extract the sequence data ( , )i ig x y  ( 1,2,i r= ) in the di-

rection perpendicular to the edge.  
Generally, the underlying edges in the image may not be a unit step edge. It is 

necessary to normalize them to unit step edges. Let ( )e x be an edge parallel to x-

axis. Then 

( ) ( )ee y Kh y=                                                           (32) 

where K is the step value of the edge. We have  

   
( ) ( )

( )ee y h y
dx K dx K L y dx K

y y

∞ ∞ ∞

−∞ −∞ −∞

∂ ∂
= = =

∂ ∂∫ ∫ ∫                  (33)  

This indicates that the integration of edge derivative furnishes us the step value of 
this edge, and we can normalize an edge to the unit step one by division with K. 

Consequently, the estimated LSF is obtained by taking differential of the se-
quence data ( , )i ig x y  ( 1,2,i r= ) as follows: 

( ) ( ( , )/ )i iL i D g x y K=            1,2,i r=                              (34) 

where K is determined by the maximum of ( , )i ig x y , 1,2,i r= . 

3.5   LSF Alignment and Determination 

It is obvious that the accuracy of the extracted LSF is affected by image noise and 
the pattern outside the edge region. To reduce this effect, one effective solution is 
to extract more LSFs from different locations of one edge and from different 
edges as well.  

Denote i

n n r
lL ×∈  be n LSFs, and ˆ ( )

i

k
lL j  ( j = 1, 2 · · · r, k = 1, 2, · · · n) be the 

jth element of the kth LSF extracted from the ith edge.  To average the LSFs, we 
have to know the position that each datum corresponds to, i.e. it is needed to align 
each LSF to the right position. As illustrated in Section 3.1, the largest gradient 
occurs at the actual edge. Accordingly, the peak gradient is the only basis to align 
the LSFs.  

For each LSF sequence ˆ
i

k r
lL ∈ , find 

1, 2,

ˆarg max ( ( ))
i

k
lj r

J L j
=

=                                                (35) 

then circularly shift each LSF sequences to keep the peak element at the central 
position. After alignment, the missing data will be padded as 0s, and the LSF 

maxˆ
il
L  from the edge is finally determined as follows: 
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1 2maxˆ ( ( ), ( ) ( ))i i ii

n
l l llL median L J L J L J=                                    (36) 

Fig. 6 demonstrates two LSF sequences (after taking derivative) extracted from an 
edge. The data in the circles are the peaks and correspond to the actual edges. 

 

Fig. 6. Two LSF sequences and their alignment 

Assume that there are q LSFs 1 2

max max maxˆ,
q

l l lL L L…  extracted from different edges 

in the image, then the final LSF 
max
lL  is determined by: 

1 2

max max max maxˆmax( , )
q

l l l lL L L L= …                                         (37) 

3.6   Determination of PSF Parameter 

After the maximum of LSF, max
l̂L , is extracted, the PSF parameter R is calculated 

using Equation (8). As max
l̂L  is determined by the maximum of all maxˆ

il
L  

( 1,2,i q= ) shown in Equation (37), this implies that the blur extent is evalu-
ated by the sharpest edge. OnceR  is known, we can use it as a criterion for meas-
uring the blur degree,  construct the PSF according to Equation (3) and perform 
image restoration as demonstrated in the next section. 

4   Experimental Results  

In order to verify the effectiveness of the proposed method, we have conducted 
experiments using a variety of synthetic and real blurred images in Matlab envi-
ronment. The parameters predefined are as follows: the threshold 3σ = , the LSF 
length r = 21. The experimental results are demonstrated in following subsections.  

4.1   Simple Images    

Fig. 7 shows a simple and sharp image of size 900×900. To demonstrate the  
proposed method, the original image is blurred with different parameters R (R =1, 
2, … , 11). After the blur parameter is estimated, the blurred image is restored us-
ing Lucy-Richardson algorithm. Note that the minimal unit in processing is 1 
pixel, the PSF parameter is therefore rounded to an integer. The restoration  
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performance is evaluated in terms of the identified parameter R̂ and the improve-
ment in SNR (ISNR) which is given by: 

 
2

,
10 2

,

[ ( , ) ( , )]

10 log ˆ[ ( , ) ( , )]
i j

i j

f i j g i j

ISNR
f i j f i j

−
=

−

∑

∑
                                      

(38)

 

where ( , )f i j  is the original image, ( , )g i j is the blurred image and (̂ , )f i j  is the 

corresponding restored image. If the ISNR is calculated using the identified pa-
rameter rounded to the nearest integer, the ISNR results are tabulated in Table 1. 

 

Fig. 7. Original simple image 

It is seen from Table 1 that the error of identification is less than one pixel for 
all cases, and the fact that all ISNRs are positive reveals that all the restored im-
ages are improved. As an example, Fig. 8 shows a blurred image (R = 11) and the 
restored image. 

 

 
    (a) Synthetic blurred image (R = 11)               (b) Restored image via Lucy-Richardson method 

Fig. 8. Synthetic blurred image and restored image 
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Table 1. Identified results for simple image 

R (pixels) 1 3 5 7 9 11 

R̂  (pixels) 1.42 3.43 5.48 7.13 9.54 11.48 

ˆ| |R R−  0.42 0.43 0.48 0.13 0.54 0.48 

ISNR 5.97 3.31 3.13 3.14 2.02 3.06 

 
It is found from experiments that the sharp edges occur on the octagon. Table 2 

demonstrates the accuracy of edge localization and the performances based  
on edges in different orientations when R is 5. As the internal angle at each  
vertex is 135, it is seen that the maximum error of the edge orientations is 3  
degrees. The results illustrate that the performance is not dependent on edge  
orientation. 

Table 2. Performance on edge localization and orientation 

Edge Angle (degree) R̂ (pixel) 

1 10 5.60 

2 11 5.82 

3 59 5.48 

4 57 5.66 

5 103 5.50 

6 103 5.74 

7 148 5.61 

8 148 5.62 

 
It is also observed from Table 1 that even the error of estimated blur parameter  

is the same (for example, ˆ| |R R− = 0.48), the ISNRs are not identical in different 

blur extents (ISNR = 3.13, 3.06 in R = 5, 11 respectively). The more blur the  
image is, the smaller the ISNR is when the estimated error is identical.  

In order to illustrate the effect of rounding error on ISNRs, choose the blur ra-
dius to be one pixel away from the ideal parameter, the ISNRs under different blur 
extents are demonstrated in Fig. 9. It is found that the ISNRs with underestimation 
are always higher than those with overestimation, but the difference becomes 
smaller with the increase of blur extents. This implies that the error caused  
by truncation is small for heavily blurred images. Accordingly, we round the  
identified parameter to the nearest integer towards zero in the experimental  
results.  
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Fig. 9. Rounding error vs ISNR 

The two-order moment was proposed by Wu et al. (Wu et al. 2005) to measure 
the blur degree. The experimental results in the image shown in Fig. 7 are tabu-
lated in Table 3. We see that the identified errors are comparable to the proposed 
metric (less than one pixel) when R = 3 ~ 9. But the estimated errors are large 
when the image is sharp (R < 3) or very blur (R >10). Therefore, the proposed 
method is capable of handling wider scopes of applications. 

Table 3. Identified results for simple image using two-order moment 

R (pixels) 1 3 5 7 9 11 

R̂  (pixels) 4.2 3.28 4.96 6.57 8.32 9.22 

ISNR -15.23 3.31 3.13 3.14 2.69 1.87 

4.2   Standard Test Images 

The 13 standard real-world images shown in Fig. 10 are used, with different pic-
ture sizes and visual content.  The original images are blurred to different extents. 
The parameters identified are listed in Table 4. The ISNRs for three typical images 
under different blur conditions are illustrated in Fig. 11. 
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     (a) Cameraman (256x256)             (b) Lena (512x512)                       (c) Barbara512x512 

                   
      (d) Caps (512x768)                      (e) Lake (512x512)                   (f) Parrot (512x768) 

                                 
    (g) Canoeing (512x768)                  (h) Girl (512x768)                   (i) House (512x768) 

          
  (j) Stream (512x768)         (k) Zebra (561x400) (l) Cornfield (480x512)   (m) Tiffany (512x512) 

Fig. 10. Representative images for experiments 

 
Fig. 11. The ISNRs and blur extents for representative images 
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Table 4. Identified results for representative images 

         R (pixels) 

Image 

 

1 

 

3 

 

5 

 

7 

 

9 

 

11 

 

13 

 

15 

Cameraman 1.2 3.2 5.3 7.4 9.6 11.5 12.1 13.5 

Lana 1.8 3.4 5.4 7.0 8.7 10.8 12.0 13.3 

Barbara 2.1 4.1 5.4 7.5 9.6 11.9 13.3 12.7 

Caps 1.9 4.1 5.7 7.2 8.7 10.3 11.6 12.6 

Lake 2.4 4.4 5.6 5.8 9.5 13.7 14.2 14.9 

Parrot 2.3 4.2 7.6 8.6 10.6 12.5 14.3 17.5 

Canoeing 1.8 4.2 6.2 7.7 12.0 12.5 13.7 15.7 

Girl 1.3 3.0 5.2 7.1 9.2 10.8 11.4 12.6 

House 1.5 3.4 5.7 6.9 8.1 10.9 13.1 14.4 

Stream 2.8 4.4 6.0 7.4 9.9 12.1 14.0 17.9 

Zebra 2.6 3.9 5.8 6.1 7.0 7.9 8.9 9.2 

Cornfield 2.2 3.5 5.6 7.6 10.1 11.9 12.7 12.2 

Tiffany 1.9 3.2 5.2 7.0 9.5 11.6 14.2 15.1 

 
As it is observed from Table 4 and Fig. 11, the ISNRs for different images with 

same blur extent are different even the PSFs are correctly estimated (for example, 
R = 5 ~ 8). This implies that ISNR depends on not only accuracy of PSF estima-
tion but also image contents.  

4.3   Blurred Images with Noise 

To further show the effect of noise on the performance, Gaussian white noise is 
injected into the “Cameraman” image. The noisy image is measured by SNR as 
follows: 

10

var ( , ) ( , )
10 log

var ( , )

of d i j f i j
SNR

of n i j

⊗
=                                (39) 

The results are shown in Table 5. Our results show that the proposed method is 
robust up to at least 30dB in SNR.  
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Table 5. Identified results under different noise levels 

                          SNR (dB) 

 R (pixels) 
40 30 20 10 

1 1.2 1.3 1.4 N/A* 

3 3.2 3.0 3.0 N/A 

5 5.5 5.1 4.3 N/A 

7 7.6 6.9 N/A N/A 

9 9.4 8.3 N/A N/A 

11 10.6 N/A N/A N/A 

13 N/A N/A N/A N/A 

                    * no edges are detected 

4.4   Real Blurred Images 

Then, some real defocus-blurred images downloaded from Internet as shown in 
Fig. 12 are used to test the proposed approach. In this case, we have no knowledge 
about the blur information, and the “true value” of  R is obtained in the following 
way: restoring the blurred images by setting PSF = 1, 2, … 20, choose the right R 
which corresponds to the best restored image perceptually. The blurred parameters 
identified by the proposed method are shown in Table 6. It is observed from Table 
6 that the identified results are quite good.  

 

                  
      (a) Eye (436x579)                   (b) Bird (341x241)                 (c) Woman (432x581)     

                           
    (d) Car (303x404)                    (e) Pepper (199x199)              (f) Fishingboat (197x199) 

Fig. 12. Real blurred images 

 
 



Blind Measurement of Image Blur for Vision-Based Applications 203
 

Table 6. Estimated blur parameters for real blurred images 

Image R̂  (pixels) Estimated true value 

Eye 9.42 9 

Bird 6.47 5 

Woman 8.07 9 

Car 3.96 5 

Pepper 8.57 9 

Fishing boat 3.65 3 

 
As a blind method, the proposed algorithm can serve as a tool for image quality 

evaluation used in robot navigation, face recognition, surveillance system and so 
on. For instance, blur detection can be used a pre-processor before object recogni-
tion; if an input image fails in this quality check, the vision-based system can trig-
ger the camera to re-take the image. For the images which are available, the blur 
extents provide weightings for decision-making in face recognition. 
 

                     
                     (a)                                 (b)                                (c)                                (d) 

Fig. 13. A sequence of facial images 

Fig. 13 shows four human facial images of size 494×373 applied to a facial recog-
nition system. The first one is the best focused, and the last one is the most 
blurred. The test results for these images are tabulated in Table 7.  

Table 7. Estimated blur radius for facial images 

Image A B C D 

R̂  (pixels) 1.3 4.0 6.6 7.7 
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5   Further Analysis  

In this section, the Sobel and Canny operators are compared, and the performance 
of the proposed method is thoroughly analyzed.  

5.1   Sobel Operator vs Canny Detector 

Canny edge detector is frequently used in image processing due to its good detec-
tion, good localization and only one response to a single edge. Table 8 shows  
the identified results using the representative images shown in Fig. 10 by Canny 
detector.  

Table 8. Identified results using Canny operator 

          R (pixels) 

Image 

 

1 

 

3 

 

5 

 

7 

 

9 

 

11 

 

13 

 

15 

Cameraman 1.2 3.3 5.4 7.4 9.6 11.3 13.1 13.7 

Lana 1.9 3.6 5.8 7.3 9.0 10.6 12.0 13.8 

Barbara 1.8 4.2 6.2 8.4 10.6 11.9 13.1 14.0 

Caps 1.7 4.2 6.7 7.4 10.3 10.6 12.1 13.7 

Lake 1.9 4.1 6.2 7.8 8.5 10.5 12.5 13.7 

Parrot 2.3 4.3 6.5 8.6 10.9 12.6 14.3 16.8 

Canoeing 1.5 4.1 6.5 7.5 10.4 10.9 13.7 15.8 

Girl 1.5 3.1 5.5 8.3 10.1 10.7 12.7 14.1 

House 1.2 3.4 5.7 6.2 8.1 9.7 11.5 13.9 

Stream 1.9 3.7 6.0 7.2 9.4 12.0 13.3 14.6 

Zebra 2.0 3.5 4.7 5.7 7.2 8.4 9.6 10.0 

Cornfield 1.5 3.6 5.8 7.6 9.9 11.9 13.3 14.9 

Tiffany 1.8 3.3 5.1 7.5 9.5 11.8 13.9 16.4 

 
It is observed from Tables 4 and 8 that Canny method generally outperforms 

Sobel detector as it provides higher quality edges than Sobel detector. The edges 
extracted by Canny method are continuous and smooth, especially for seriously 
blurred images so that is easy to detect lines when using local Radon transform. 
However, the computation of Canny detector is much more expensive than Sobel 
operator, and more predefined parameters are needed that it is not convenient to 
use. Sobel detector is chosen in this work because of its simplicity and fast speed. 
More importantly, although the accuracy of edge localization by Sobel detector is 
not as good as the Canny detector, the alignment of LSFs illustrated in Section 3.5  
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abates the effect of edge detectors, and enables Sobel detector to provide compa-
rable performance. 

5.2   Error Source 

The estimation accuracy of the proposed method mainly depends on the following 
factors: 1) how sharp the step edges occur in the image; 2) whether the LSF is de-
rived from the sharpest edge; 3) how accurate the line orientations are detected; 
and 4) image content. 

Due to imperfection in the imaging system and capturing process, the recorded 
image represents a degraded version of the original scene. This reveals that the 
spatially continuous PSF cannot be modeled as a Dirac delta function. Accord-
ingly, it is impossible to find an ideal step edge shown in Fig. 2(a). This situation 
results in error of LSF extracted from unsharp edges in the underlying image as 
indicated in Equations (5) and (6). This explains why the estimated parameters 
shown in Tables 1, 4 and 8 are always bigger than theoretical values when R is 
small, although the edges can be accurately detected by Sobel operator and both 
the edge location and orientation are also accurately estimated in this case. On the 
other hand, a seriously blurred image will decrease the sharpness of edges due to 
large amount of spread.  

It is proven in Section 3.1 that a real edge is with the local maximum of gradi-
ent in a blurred image, and we use Sobel operator for edge detection. However, 
Sobel operator, unlike the Canny edge detector, does not perform non-maximum 
suppression and hysteresis thresholding. This leads to wide ridges around the true 
edges and produces disconnected edges. Such situation becomes worse when the 
image is seriously blurred as demonstrated in Fig. 14. As indicated by Ziou (Ziou 
2001), the gradient magnitude of the non-radial edge detectors is affected by edge 
translation and orientation. This implies that a sharpest edge in the original image 
may be not the sharpest one in the blurred image. For the “Cameraman” image, 
the back of the man’s body (as shown in Fig. 14(a)) is the sharpest edge which de-
rives the right PSF when the blur parameter R is no more than 13. This edge is not 
good for blur estimation when R is bigger than 13. 

The detection of edge orientation is crucial for LSF extraction as it is the de-
rivative along the direction orthogonal to the edge. It was indicated by Ziou (Ziou 
2001) that the accuracy of edge orientation depends on detector scale, edge trans-
lation and edge orientation. Frequently, the edges detected by Sobel operator from 
blurred images yield parallel shifting of the actual edge and are broken into small 
pieces, as shown in Fig. 14(b). Although the thinning processing is performed be-
fore the Radon transform，the orientation error may be big for seriously blurred 
images (R > 11), as demonstrated in Fig. 15. 
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(a) Blurred radius R =3                                 (b) Blurred radius R = 13 

Fig. 14. Edges detected in image Cameraman by Sobel operator 

 

Fig. 15. Orientation error of edges (R =13) 

6   An Efficient Solution 

The aforementioned sections provide a general and accurate solution for blind blur 
measurement. It should be highlighted that this paradigm is lack of efficiency. The 
algorithm uses Radon transform for detection of edge directions, and leads to in-
tensive computation. On another hand, it is seen from Equations (8) and (37) that 
the blur extent is determined by the sharpest edges in the underlying image, from 
which the LSF is extracted. To find the sharp edges, every edge in the underlying 
image is extracted for evaluation in the above solution. If we develop a criterion to 
measure the edge sharpness, only some points from sharp edges are required. This 
is the motivation to develop an efficient solution for blind blur assessment so that 
it can be deployed in real-time vision-based applications. In practice, there is al-
ways intrinsically blur regions in an image due to the limited depth of field for a 



Blind Measurement of Image Blur for Vision-Based Applications 207
 

camera. Use of the sharpest edge also leads to the measurement oriented to the re-
gion-of-interest in applications.  

6.1   Edge Model and Sharpness 

It is seen in Section 2 that Equation (8) is derived based on step edge, which is in 
general form as below: 

( , ; , ) ( , )E x y b c cU x y b= +                                          (40) 

where U(x,y) is the unit step function, c is the contrast of the edge and b is the 
function value at the base of the edge. However, infinitely sharp edges such as 
step edges do not exist in practical images, due to the band-limiting characteristics 
of the optical acquisition system. An edge in an image is normally corresponding 
to a discontinuity in the scene function f (i, j), distorted by a PSF h(i, j) as shown 
in Equation (1). Specifically, a Gaussian function ( , ; )h x y σ , with σ as the 

smoothing parameter, is frequently used to represent the PSF of an optical system: 

2 2

2 2

1
( , ; ) exp( )

2 2
x y

h x y σ
πσ σ

+
= −                                           (41)  

Therefore, a step edge in Equation (40) convolved by a Gaussian PSF results in a 
scaled error function s(x,y; b,c,w,θ) : 

cos sin
( , ; , , , ) (1 ( ))

2 2
c x y

s x y b c w b erf
w
θ θ

θ
+

= + +                         (42)  

with erf(.) as the error function, w as the parameter controlling the width of the 
edge, and θ being the angle with respect to the x-axis. The 1D edge model is de-
picted in Fig. 16. 

 

Fig. 16. Edge model in one-dimension 

Assume that an edge is detected, say by Sobel or Canny detector, and based on 
the aforementioned edge model, the model parameters are derived using multi-
point estimation as follows (Beck, 1995): 
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σ= −                                                          (43) 
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1/ 42
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2
( )

ln( / )
ada

c d
d d d d
π

=                                               (44) 

where a is the distance of the selected two points to the edge, ( 1,2, 3)id i =  is the 

response of the edge to the first derivative of a Gaussian filter at multiple points as 
follows: 

( , , , , , ) ( , , , , , ) * ( ( , ; ))xd x y c w s x y c w h x y
x

σ θ σ θ σ
∂

=
∂

                         (45)    

( , , , , , ) ( , , , , , ) * ( ( , ; ))yd x y c w s x y c w h x y
y

σ θ σ θ σ
∂

=
∂

                         (46)                      

and  
2 2( ) ( )x y

i i id d d= +        1,2, 3i =                                 (47) 

Furthermore, the direction of the smoothed gradient is equal to the direction of the 
edge: 

1 ( , ; , , , )
tan ( )

( , ; , , , )

y

x

d x y c w
d x y c w

σ θ
θ

σ θ
−=                                     (48) 

We see from Fig. 16 that there are three parameters in the edge model: 1) contrast 
c; 2) intensity at the base of the edge b, or alternatively, intensity at the edge cen-
ter m = b+c/2; 3) spatial width of the edge w.  It is obvious that the parameters c 
and b are mainly determined by the scene characteristics without imaging infor-
mation. The edges with large c alleviate the effect of noise and edge detectors. 
However, parameter w is dependent not only on intrinsic scene sharpness, but also 
the smoothness introduced by image formation process. 

Considering the factors of contrast as well as width, we define the following 
criterion for edge sharpness measure: 

c
S

w
=                                                             (49) 

It is easy to understand from Fig. 16 that S represents the slope of transition. Big S 
reveals that the underlying edge is sharp. Therefore, we can select the sharp edges 
according to S for LSF extraction. 

6.2   Effect of Nearby Edges on LSF 

In the aforementioned analysis, only isolated edges have been discussed. Natu-
rally, plenty of edges exist in an image, and the filter response of a particular edge 
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is affected by a nearby edge, especially when the scale of the filter is large in com-
parison to the distance between these two edges. Not only the peak value of the re-
sponse can change, but also the peak location can shift because of the influence of 
a nearby edge. 

It has been analyzed by Beck (Beck, 1995) that two types of interaction be-
tween two nearby edges occur. If the contrasts of the two edges have the same 
sign, the edges together form a staircase edge; otherwise, the edges together form 
a pulse edge as shown in Fig. 17.  For the pulse edge, the two edges move further 
apart as the filter scale increase, while for the staircase edge, the locations move 
closer together as the filter scale increase. The error of the peak values is deter-
mined by the first derivative of a Gaussian function. Refer to Beck’s work (Beck, 
1995) for detailed analysis. 

       

(1) Staircase edge                                   (2) Pulse edge 

Fig. 17. Effect of nearby edges 

From the LSF point of view, it is highlighted that the LSFs extracted from two 
close edges are always contaminated by the diffraction of light energy. Fig. 18 
demonstrates the interaction of two nearby LSFs (R = 15). The blur spreads a step 
edge’s energy to a distant as far asR , and two nearby edges (for example, the dis-
tance is 20 pixels in the figure) will increase the peak value of the LSFs and re-
sults in smaller PSF.  

 

Fig. 18. Interaction of two nearby LSFs 
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Considering the effects of nearby edges, the following two constrains are neces-
sary in extracting the LSFs: 

Constrain (1) Space constrain: suppose  ( , )P i j  to be an edge point whose  

gradient direction is θ calculated by Equation (48). If no edge is found in the  
gradient direction within distance D, the point ( , )P i j  is selected for LSF  

calculation. 

Constrain (2) Peak shift of LSFs: assume that ( , )kL i j  is an extracted LSF. If 
max| ( , ) ( , ) |kL i j P i j δ− > ，where δ is a predefined threshold, then the max( , )kL i j is 

distorted and discarded.  
After edge detection, we obtain the edge locations and directions, the LSFs can 

be extracted from the sharp edges according to the criterion of edge sharpness. It 
should be noted that the pixel interpolation is also necessary, which is identical as 
shown in Section 3.4. As the edge points extracted may be from different edges, 
LSF alignment is not necessary before LSF extraction. The following procedure 
summarizes the algorithm: 
 
Procedure: estimate the blur extent of an image 
Input: an image 

Output: blur parameter R̂  
Begin 
   1) Determine edge location via Canny edge detection. 
   2) Find the appropriate edges according to space constrain. 
   3) Find edge directions according to Equation (48) 
   4) Compute sharpness S according to Equations (43), (44) and (49). 
   5) Extract n edge points corresponding to the n largest S. 
   6) Pixel interpolation according to Equations (30) and (31) 
   7) Extract LSF according to Equation (34) 
   8) Discard the LSFs which are not satisfied with the constrain of peak shift 
   9) Find the maximal LSF max max max max

1 2max( , )nL L L L= …  

   10) Compute the blur parameter R̂ according to Equation (8) 
End    

6.3   Experimental Results 

To verify the effectiveness of the proposed method, we conducted experiments us-
ing the above images. The parameters predefined are as follows: the threshold 

1σ = , the space D = 10, distance a = 2, LSF length r = 21, and number of edge 
points n = 200.  

For the standard real-world images shown in Fig. 10, the parameters identified 
by the efficient method are listed in Table 9.  
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Table 9. Results for representative images with the efficient method 

          R 

Image 

 

1 

 

3 

 

5 

 

7 

 

9 

 

11 

 

13 

Cameraman 1.1 3.2 5.4 6.8 8.6 10.4 11.3 

Lana 1.6 3.7 5.7 8.2 10.7 12.6 15.4 

Barbara 1.8 3.9 6.2 8.5 10.3 12.7 14.1 

Lake 1.7 3.9 5.3 7.4 10.8 11.8 14.4 

Canoeing 1.7 4.0 5.9 7.9 9.8 12.6 17.5 

Girl 1.4 3.6 5.7 7.6 9.7 11.6 13.1 

House 1.3 3.6 5.7 7.5 9.7 12.6 14.6 

Zebra 1.9 4.0 5.8 7.7 9.3 10.6 12.7 

Cornfield 1.3 3.3 5.5 7.5 10.2 12.5 14.4 

Tiffany 2.1 3.3 5.1 6.8 9.6 13.8 17.2 

 

Table 10. Results for real blurred images with the efficient method 

Image R̂  (pixels) Estimated true value 

Eye 7.2 9 

Bird 5.2 5 

Car 3.2 5 

Fishing boat 3.5 3 

 
For the real defocus-blurred images shown in Fig.12, the blurred parameters 

identified by the efficient method are shown in Table 10. Table 11 demonstrates 
the results estimated by the efficient method for the facial images shown in  
Fig. 13. 

Table 11. Results for facial images with the efficient method 

Image A B C D 

R̂  (pixels) 1.1 3.5 5.7 6.5 

                                                     
As discussed in Section 5, the accuracy of the proposed method mainly depends 

on the following factors: 1) whether the LSF is derived from the sharpest edge;  
2) how accurate the LSF is extracted. In Section 6, we used S to assess the  
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sharpness of edges. To check the validity of sharpness criterion, the LSFs ex-
tracted corresponding to the first 400 biggest S in the image Lena are plotted in 
Fig. 19. It is observed that the LSF curve generally decreases, which implies that 
the sharpness decreases. However, the curve is not strictly monotonous, i.e., the 
location of the best result (maximal LSF) is not the first one, but occurs at point 8. 
Table 12 shows the locations of maximal LSFs in other images.  It is seen that the 
optimal value is within 200 samples. 
 

 

Fig. 19. The LSFs corresponding to the first 400 biggest S (R = 5) 

Table 12. Location of maximal LSF (R = 5) 

 Cameraman Barbara Lake Canoeing Girl 

Location 70 125 20 135 130 

 
It is noticed from Tables 9~ 11 with Tables 4, 6 and 7 that the performance by 

the efficient method is almost the same as the one presented in Sections 2 and 3, 
where all edges are extracted via Radon transform, a number of LSFs are extracted 
from one edge and their average LSF represents the result of the edge, and the fi-
nal LSF is determined by LSFs from all edges. The solution proposed in this sec-
tion estimates the blur extent by limited LSFs from only sharp edges.  The edge 
direction is obtained from gradient angle of the underlying point without complex 
Radon transform. Nevertheless, such point-wise method is easily affected by im-
age noise, and results in error of edge directions and LSF extraction. 

However, it is highlighted that if the images are not serious blurred, say, R < 9, 
both methods yield similar results. This is because serious blurred images results 
in great error in edge location and direction, while the method in Sections 2 and 3 
alleviates such error by full use of edge information in the underlying image. Fig. 
20 shows the blurred image when R = 9. We see that the image is very blur, and 
usually images with R>9 are discarded in vision-based applications. 
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Fig. 20. A blurred image with R = 9 

It is also noted that the proposed efficient approach achieves better results than 
the one in Sections 2 and 3 for the “zebra” image. This is because the image has 
sharp but very close edges that the interaction of edges is very strong. This verifies 
that the two constrains in extracting LSFs to eliminate the interaction of nearby 
edges in this section is effective in selecting the correct LSFs. 

Although the method in Sections 2 and 3 is accurate, the computation is much 
more expensive. For an image with size of M M× , the computational complexity 
of  edge detection is approximately 2( )O M , and is independent of image content. 

The computational complexity of Radon transform is 2( log )O M M and the com-

putational complexity of LSF extraction is ( )O rnq , where r is the number of 

points representing an LSF, n is the number of LSFs extracted from one line and q 
is the number of total lines found in the underlying image. Therefore, the opera-
tional time of LSF extraction is content-dependent.  

On another hand, it is noted that the line determination of the efficient method 

needs computation of 
1

( )
q

i
i

O n
=
∑  instead of 2( log )O M M , where in  is the pixel 

number of the i-th edge, and q is the total number of lines. The computational 
complexity of LSF extraction is reduced to ( )O rn   instead of ( )O rnq  

(note:
1

q

i
i

n n
=

= ∑ ) when the sharpest edge is detected. The comparison of opera-

tional time on Dell Precision T7400 (3.2GHz) in Matlab environment is tabulated 
in Table 13. It is observed that the efficient method has much faster speed than  
the scheme by Wu et al. (Wu et al., 2009) and can be implemented in real-time 
applications. 

Table 13. Operational time 

Method Cameraman Lena Barbara 

Method by Wu et al. (2009) 0.74 6.60 4.6 

The efficient method 0.19 0.98 0.97 
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7   Conclusions 

This chapter presents a new metric for image quality assessment in terms of image 
sharpness since the sharpness is considered as characteristics of blurring.  The es-
sential idea is to estimate the blur parameter from LSFs, whereas the LSF is con-
structed from edge information. To achieve high efficiency, a criterion for edge 
sharpness is proposed and only the sharpest edge is selected for LSF extraction 
without using each edge in the underlying image. The influences of nearby edges 
on LSF estimation are analyzed, and constrains on edge space as well as peak shift 
of LSFs are put forward to select appropriate LSFs. The experimental results 
demonstrate that the proposed method is accurate if the blur is not serious. This 
paradigm has fast speed and can serve as blind image quality evaluation for auto-
matic machine-vision-based applications.  
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Summary. This paper presents a new unified level set model for multiple re-
gional image segmentation. This model builds a unified tensor representation
for comprehensively depicting each pixel in the image to be segmented, by
which the image aligns itself with a tensor field composed of the elements in
form of high order tensor. Then the multi-phase level set functions are evolved
in this tensor field by introducing a new weighted distance function. When the
evolution converges, the tensor field is partitioned, and meanwhile the image
is segmented. The proposed model has following main advantages. Firstly,
the unified tensor representation integrates the information from Gaussian
smoothed image, which results the model is robust against noise, especially
the salt and pepper noise. Secondly, the local geometric features involved
into the unified representation increase the weight of boundaries in energy
functional, which makes the model more easily to detect the edges in the im-
age and obtain better performance on non-homogenous images. Thirdly, the
model offers a general formula for energy functional which can deal with the
data type varying from scalar to vector then to tensor, and this formula also
unifies single and multi-phase level set methods. We applied the proposed
method to synthetic, medical and natural images respectively and obtained
promising performance.

Keywords: Gabor filter bank, geometric active contour, tensor subspace anal-
ysis, image segmentation, level set method and partial differential equation.

1 Introduction

Image segmentation, a process of subdividing an image into a series of non-
intersected regions with approximately similar properties, is a fundamental

W. Lin et al. (Eds.): Multimedia Analysis, Processing & Communications, SCI 346, pp. 217–238.
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step in process of automatic image analysis, since it helps to identify, describe
and understand different interested objects in images.

The field of image segmentation kept continuously developing for almost
forty years and a number of algorithms came forth steadily in each year [38]. In
recent years, active contours models are increasingly and widely used in image
processing. These methods all need to initialize a closed curve, also called the
evolving curve [3] [4] [20] [27], in the image to be segmented, and then evolve
it by a partial differential equation (PDE) until the evolving curve converges.
According to the representation of the evolving curve, active contours models
can be classified as the explicit [5] [6] [10] [36] and the implicit [1] [2] [3] [9] [12]
[17] [19] [20] [22] [23] [26] [27] categories. Snake [5] [10] [36], a typical explicit
active contours model, uses parametric equations to explicitly represent the
evolving curve. However, implicit active contours models, also called level set
methods, implicitly represent the evolving curve by using the zero level set of a
signed distance map defined in higher dimensional space. Compared with ex-
plicit active contours, implicit active contours have many advantages of which
the most important is the capability to handle the topological changing in an
easier way than explicit active contours models do [26].

Based on the way to model image, level set methods can be further catego-
rized into either edge-based [1] [2] [9] [12] [17] [19] [22] or region-based [3] [4]
[34] [35] algorithms. The former has to design an edge indicator to locate the
edges in the image, but these edges are not always keeping closed and also
do not always correspond to the boundaries of objects. Meanwhile, it’s hard
to prevent the evolving curve from leaking at some weak boundaries because
of the presence of noise. The latter seems to be a better choice and indeed
it attracts more and more research interests in recent years. Essentially, it
regards the image domain as the composition of some regions with similarity
properties, and the image is segmented by finding these similarity proper-
ties. Chan and Vese [3] proposed a region-based level set method, called CV
method, which incorporates Mumford-Shah [15] [16] functional into level set
framework to give a cartoon representation to the image. The main idea of
this method is to find an optimum cartoon representation for the image. The
evolving curve is driven by an energy functional incorporating a ”fitting”
item. This ”fitting” item defines the extent that the cartoon representation
approaches the given image. The CV method [3] is well extended in two ways
generally as follows. Chan et al. [4] extended it to segment multi-channel im-
ages, and Wang and Vemuri [34] [35] extended it to segment tensor diffusion
MRI images. Although these methods can evolve the curve in vector or tensor
data field, they just take into account the pixel density depicted by a scalar,
and that is not adequate to represent all image information. On the other
side, Vese and Chan extended it to multi-phase level set (MCV) method [33]
which did not provide a practical formula to deal with the case more than two
level set functions being used. Zhao et al. [37] extended it to multiple level
set functions by adding a constraint into the energy functional to ensure one
pixel just belongs to one level set function. Lie et al. [14] shared the same idea
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with [33] except for using binary level set functions which has to be regular-
ized by using another constraint. These two methods utilized an unnatural
way to describe the partitioned regions, which results they had to append
some regularization to the energy functional, and that is not computational.

Aiming at the above problems, we employ Gabor filter bank [7] [8] [11]
[28] to extract the local geometrical features, e.g., scale, orientation, and
then integrate these Gabor features and the intensity of the image and the
Gaussian smoothed image into a unified tensor representation. There are
three main reasons to consider the Gabor filter bank: 1) being Gaussian
functions with different deviations, the envelopes of Gabor functions can
provide multiple scale edge information,2) the amplitudes of Gabor functions
provide gradient information, 3) for the orientation selectivity of Gabor basis
function, the Gabor filter bank can capture abundant orientation information
of object boundaries. This unified tensor preserves more information than
a scalar used in other level set method [3] [4] [33]. Based on this tensor
representation, we propose a unified tensor level set method which can accept
tensors as input for high quality image segmentation.

The proposed model has several advantages as follows. Firstly, this model
is robust for noisy images since the unified tensor representation incorporates
the information of the Gaussian smoothed image. Secondly, because the ten-
sor representation contains Gabor features, the model has ability to make
texture segmentation. Thirdly, the model takes into account the gradient in-
formation that intrinsically increases the weights of boundaries in the energy
functional, which makes the evolving curve stop at the boundaries easier and
help to segment objects in non-homogenous background. Finally, the model
is capable of dealing with data type varying from scalar to vector and to high
order tensor and provides a general energy functional formula for single and
multi-phase level set functions. The proposed method has been applied to
a set of synthetic, medical and natural images. The result proves that the
proposed method is robust against salt and pepper type noise, deals with
the non-homogenous image better, has the capacity of orientation selectivity,
and detects object more accurately.

The organization of the reminder in this paper is as follows. In Section II,
we firstly describe the background of the CV model [3], its extensions to multi-
channel images [3] and the extension to 2-order symmetrical tensor field [34]
[35], and then introduce Gabor filter bank. Section III details the proposed
unified tensor level set model, involving the construction of unified tensor field
and the tensor level set method as well as its special cases. Section IV contains
the implementation of the proposed model, including the regularization of the
Heaviside step and Dirac delta function, evolution function, and its numerical
scheme. Section V assesses the proposed model in comparison with the CV
model [3] and WV method [34] [35] on synthetic and medical images. Section
VI gives the concluding remarks and future work.
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2 Backgrounds

Gabor filter bank and region-based level set methods are both the basis of
the proposed method. In this section, we firstly describe the gradual progress
in region-based level set methods, and then introduce the Gabor filter bank
utilized to build the unified tensor representation for pixel.

2.1 Region-Based Level Set Methods

Compared with edge-based level set methods, region-based level set methods
have many advantages [4], e.g., more robustness against noise and insensitiv-
ity to initial position of the evolving curve. Since Chan and Vese proposed the
scalar CV method [3], region-based level set methods have been sequentially
extended from scalar to vector, and then to tensor. In this process the data
structure became more and more complex, but the basic idea is similar. The
rest of this section describes these methods respectively. Let u0 : Ω → R be
a given image, where Ω ⊂ R2 and is the image domain. Let C ⊂ Ω be a
closed curve implicitly represented by the zero level set of a Lipschitz func-
tion φ : Ω → R . In scalar CV method [3], the energy functional E(c1, c2, C)
is defined by

E (c1, c2, C) = μLength (C) + vArea (C)
+λ1

∫
in(C) |u0 (x, y) − c1|2dxdy

+λ2

∫
out(C) |u0 (x, y) − c2|2dxdy,

(1)

where μ ≥ 0 , ν ≥ 0 , λ1 > 0 and λ2 > 0 are constant parameters controlling
the influences of different energy items. c1 and c2 are the intensity averages
of the regions inside and outside the evolving curve respectively. Length(C)
is the length of evolving curve and Area(C) is the area of the region inside
the evolving curve. Chan et al. [4] proposed a region-based level set method
for multi-channel images, e.g., color image. This method can be regarded as
a kind of vector CV method [4]. The energy functional is defined by

E (c̄+, c̄−, C) = μLength (C)

+
∫

in(Ω)
1
N

N∑
i=1

λ+
i

∣∣u0,i (x, y) − c+
i

∣∣2dxdy

+
∫

out(Ω)
1
N

N∑
i=1

λ−
i

∣∣u0,i (x, y) − c−i
∣∣2dxdy,

(2)

where c̄+ and c̄− are the averages vector of the regions inside and outside
the evolving curve respectively, and u0,i(x, y) is the ith channel image. Wang
and Vemuri [34] [35] proposed a level set method for segmenting DT-MRIs
being a multi-channel image arranged in symmetrical tensor form. The energy
functional is
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E (T1, T2, C) = μLength (C)
+
∫
in(Ω) dist2 (T (x, y) , T1) dxdy

+
∫
out(Ω) dist2 (T (x, y) , T2) dxdy,

(3)

where T1 and T2 are the averages inside and outside regions respectively, and
they are both symmetrical matrix, i.e., 2-order symmetrical tensor.dist(·) is
the Frobenius norm of matrices.

To sum up, the region-based level set methods extend from single image [3]
to multi-channel images [4], and then to symmetrical tensor images [34] [35].
But they basically use a scalar for representing each pixel in the given image
or single channel image, and they do not provide a full and comprehensive
representation for images. In following section, we introduce Gabor filter
bank, and describe the process using Gabor filter bank to extract the local
geometric features of the image.

2.2 Gabor Filter Bank

Human visual system is similar to a filter bank.Marcelja [18] and Daug-
man [7] [8] used Gabor functions to model the responses of the visual cortex.
Daugman [7] [8] further developed 2D Gabor functions used by Lee [11] and
Tao et al. [28] [29] [30] [31] [13] to give images a Gabor-based image repre-
sentation.

Fig. 1. The real part of a Gabor function with fixed direction and scale and its
envelope represented by red grid line

2D Gabor function is defined as

Gs,d (x̄) =
||k̄||
σ2

· e− ||k̄||2·||x̄||2
2σ2 ·

[
eik̄·x̄ − e−

σ2
2

]
, (4)

where k̄ = kmax

fs ei π
dmax

d is the frequency vector determining the scales and
directions of Gabor functions. x̄ = (x, y) is the variable in a spatial domain.
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σ is a parameter controlling the number of oscillations under the Gaussian
envelope. s and d denote the scale and direction respectively. In fact, Gabor
function is the product of a Gaussian function and a complex wave. As shown
in Fig. 1, the real part of a 2D Gabor function with a fixed direction and
scale has a Gaussian envelope represented by the red grid. When we choose
different scales and directions, a series of Gabor functions are obtained. In our
model, kmax = π/2 , f =

√
2 , σ = 3π/2 , dmax = 8 , d ∈ {0, 1, 2, 3, 4, 5, 6, 7}

and s ∈ {0, 1, 2, 3} , then a set of Gabor functions with four scales and eight
directions are obtained and illustrated in Fig. 2.

(a)

(b)

Fig. 2. The real part of Gabor functions with four different scales and eight different
directions. (a) Gabor functions in 2D. (b) Gabor functions in 3D. The scale from 0
to 3, stepping 1. And the orientation varies from 0 to 7, stepping 1.

From Fig. 2, we can visually find that these Gabor functions have great
capacity for spatial localization and orientation selectivity. In our model, the
Gabor-based image representation [7] [8] [11] [28] is obtained by convolving
these functions with the image to be segmented. The convolution outputs
contain gradient and orientation information which are incorporated into the
unified tensor representation as a matrix component.
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3 The Unified Tensor Level Set

This section firstly details the construction of the unified pixel tensor repre-
sentation and the tensor field, and then describes the energy functional and
gradient flow (i.e., the evolution function) of the proposed unified tensor level
set method. Finally the three special cases of the proposed model are discussed.

3.1 The Unified Tensor Representation

To segment an image more accurately, more overall information in the given
image should be involved by segmentation algorithms, and more suitable rep-
resentation for this information should be used to describe the image. The
early region-based level set methods [3] [4] just use a scalar, e.g., intensity, for
representing pixel. Wang and Vemuri’s method [34] [35] has ability to segment
DT-MRIs being a multi-channel image arranged in symmetrical tensor. This
method also can deal with the tensor data (being similar to DT-MRIs) cre-
ated by the local structural tensor (LST) [32] [39] to segment texture images,
but this method ignores an important feature, i.e., the intensity of pixel. In
short, none of these methods provides a relative comprehensive representa-
tion for images. Moreover, [4] [34] [35] mainly focus on multi-channel images
or DT-MRIs, and not on an appropriate representation for a single image.
By introducing Gabor features, we build a unified tensor representation for
pixels. This tensor representation contains more in-formation (e.g. average
intensity, gradient, and orientation.), and is relatively overall. As illustrated
in left side of Fig. 3, the construction of unified tensor representation contains
following steps.

Fig. 3. The pixel tensor representation is zoomed out in left, and the two curves
with different color evolve in the tensor field composed of the element in the form
of the unified tensor representation

Step 1 : To make our model more robust against noise, the initial image is
smoothed with Gaussian filter bank, and then the smoothed image is included
into the unified tensor representation as a matrix written as
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[
ts,d,k=1
x,y

]
S×D

=
1√
SD

⎡⎢⎣Gσ1

(
u0

x,y

) · · · Gσ1

(
u0

x,y

)
...

...
...

GσS

(
u0

x,y

) · · · GσS

(
u0

x,y

)
⎤⎥⎦

S×D

, (5)

where ts,d,k
x,y is an element in the high order tensor representation. s denotes

the scale and its maximum number is S and S = 4. d is the direction and its
maximum number is D and D = 8. u0

x,y is the initial image, and Gσ1,...,S (·)
are the outputs generated by using the Gaussian functions with different stan-
dard deviations convolving with the initial image. The standard deviations
correspond with the standard deviations used by Gabor filter bank.

Step 2 : The intensity of each pixel in the initial image to be segmented is
embedded into the unified tensor representation, and the process is formu-
lated by [

ts,d,k=2
x,y

]
S×D

= 1√
S×D

[
u0

x,y

]
S×D

. (6)

Step 3 : The Gabor features are used to represent gradient and orientation
of images. Having Gabor functions defined by (4) convolved with the initial
image, the Gabor-based image representation in RM×N×S×D is obtained.
Thus, a rule of correspondence between each pixel of the initial image and a
matrix in RS×D is built as follows

Gabor
(
u0

x,y

)
=
∣∣u0

x,y ∗ Gs,d (x, y)
∣∣[

ts,d,k=3
x,y

]
S×D

=
[
Gabor

(
u0

x,y

)]
S×D

,
(7)

where Gs,d(·) is the Gabor function defined by (4), and Gabor(·) is the out-
puts generated by convolving Gabor functions with the image respectively.
By steps 1-3, an image is projected on a 5-order tensor in RM×N×4×S×D .
The first two indices give the pixel location and the last three indices give the
3-order tensor representation. That is to say, the third index gives the value
of the scale, and the fourth index gives the direction. Since the image varies
from coarse to fine along the fifth index, we call this index the fineness. Thus,
each pixel in the image is represented by a 3-order tensor in RS×D×K which
contains the densities in different fineness, the gradient and orientation in-
formation extracted from the neighborhood of the pixel by using Gabor filter
bank.

Step 4 : To reduce the dimensionality of the unified tensor representation,
the OTA [25], a kind of generalization of principle component analysis for ten-
sors, is applied on the Gabor-based image representation, the dimensionality
of the tensor representation is reduced as follows,[

ts,d,k=3
x,y

]
S′×D′ =

[
OTA

(
u0

x,y ∗ GTs,d (x, y)
)]

S′×D′ , (8)

where OTA(·) denotes the output of offline tensor analysis (OTA). After
OTA, S × D is reduced to S′ × D′ , where S′ < S and D′ < D. The unified
tensor representation becomes the tensor in RS′×D′×K , and the cost of com-
putation is reduced from O((S ×D ×K)×N) to O((S′ ×D′ ×K)×N) per
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time step, where N is the numbers of the pixels in the image. In a word, we
utilize (5)-(8) to build a rule of correspondence between a pixel and a unified
tensor. This tensor provides pixels a more comprehensive and flexible tensor
description which results in a more accurate segmentation.

3.2 The Unified Tensor Level Set Method

In this section we propose the unified tensor level set method, and detail the
energy functional, the associated evolution equation and a weighted distance
function. Let us define a tensor T in RM×N×S×D×K , and then unfold T along
mode-1 and mod-2 simultaneously. Thus T becomes a tensor field [25] [21]
with elements in form of 3-order tensor in RS×D×K and each element corre-
sponds to a pixel in the image to be segmented. There are I evolving curves
Si in Ω ∈ RM×N that divide the field T into J = 2I regions. Representing
these regions with their mean values respectively, we obtain a cartoon repre-
sentation of the field T . The fitting error between this cartoon representation
and the field T is Ee . Adding a regularization item, the energy functional is
defined as

E (S) = Eg + Ee. (9)

where Eg denotes the geometrical feature of the evolving curve, i.e., the
length of the curve. Accompanied with the decreasing of this energy, the fit-
ting term is minimized and the segmentation result is obtained. This process
is formulated by

inf
Si

{E (Si)} . (10)

The evolving curve Si in tensor field, illustrated in Fig.3, is implicitly rep-
resented by the zero set of the function φi : Ω → R , and written as [3]

Si = {(x, y) : φi (x, y) = 0}. (11)

Substituting (10) and (11) into (9), the energy functional is rewritten as

E (Φ, C) =
I∑

i=1

μiLength (φi) +
J∑

j=1

Ej (cj , χj)

=
I∑

i=1

μi

∫
Ω

δ (φi (x, y)) |∇φi (x, y)| dxdy

+
J∑

j=1

∫
Ω dist2x,y

(
ts,d,k
x,y , cs,d,k

j

)
χj (Φ)dxdy,

(12)

where Φ = {φ1, . . . , φI} , C = {c1, . . . , cJ} , and ts,d,k
x,y is the element in

the tensor field T . Length(φi) is the length of the evolving curve Si , a
regularization item, making the curve more smoothed, and it is computed by

Length (φi) =
∫

Ω |∇H (φi (x, y))| dxdy
=
∫

Ω
δ (φi (x, y)) |∇φi (x, y)| dxdy.

(13)
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H(·) is the Heaviside step function, i.e.,

H (x) =
{

1, if x ≥ 0
0, if x < 0.

(14)

δ(·) is the Dirac delta function, i.e., the differential of Heaviside step function,
defined as

δ (x) =
d

dx
H (x) . (15)

χj in (12) denotes the sub-region and formulated as

χj (Φ) =
I∏

l=1

(
(1 − bl) − (−1)blH (φl)

)
, (16)

where [bl] = dec2binvec (j) and converts the denary number j into its binary
notation. cs,d,k

j is the mean tensor inside the sub-region χj and defined as

cs,d,k
j =

∫
Ω

ts,d,k
x,y χj (Φ) dxdy

/∫
Ω

χj (Φ) dxdy. (17)

The distance function is defined as

distx,y

(
T s,d,k

x,y , cs,d,k
j

)
=

√√√√ S∑
s=1

αs

D∑
d=1

βd

K∑
k=1

γk

(
T s,d,k

x,y − Cs,d,k
j

)2

, (18)

where

αs ≥ 0,

S∑
s=1

αs = 1; βd ≥ 0,

D∑
d=1

βd = 1; γk ≥ 0,

K∑
k=1

γk = 1. (19)

The definition of distance can be considered as a kind of weighted Frobenius
norm or Hilbert-Schmidt norm. Replacing the energy in (10) by (12), (10) is
rewritten as

inf
Φ,C

{E (Φ, C)} . (20)

That means the energy functional, i.e., (12), should be minimized accom-
panied with the evolution of the level set functions Φ, which is a problem
of calculus of variations. In order to solve this problem, we firstly fix mean
values C , and then compute the associate Euler-Lagrange equation for each
unknown level set function φi . By adding an artificial time variable t ≥ 0 ,
the evolution equation is obtained as

∂φi

∂t = μδ (φi) div
(

∇φi

|∇φi|
)

+
J∑

j=1

∂χj(Φ)
∂φi

S∑
s=1

αs

D∑
d=1

βd

K∑
k=1

γk

(
ts,d,k
x,y − cs,d,k

j

)2

,
(21)
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where div(·) is the mean curvature of each evolving curve,i ∂χj/∂φi is calcu-
lated by

∂χj (Φ)
∂φi

= −(−1)blδ (φi)
I∏

l=1(l �=i)

(
(1 − bk) − (−1)blH (φl)

)
. (22)

After computing the level set functions, the mean values are updated by (17).

3.3 Special Cases of the Proposed Model

The proposed unified tensor level set model is a generalized version of several
level set method [3] [4] [33] [34] [35]. This section presents four special cases of
the proposed model. By taking integral sign into the summation, the external
force Ee(Φ, C) in (12) is rewritten as

Ee (Φ, C) =
J∑

j=1

∫
Ω

[ S∑
s=1

αs

D∑
d=1

βd

K∑
k=1

γk

(
T s,d,k

x,y − cs,d,k
+/−

)2]
χj (Φ) dxdy

=
J∑

j=1

S∑
s=1

αs

D∑
d=1

βd

K∑
k=1

γk

∫
Ω

(
T s,d,k

x,y − cs,d,k
+/−

)2

χj (Φ) dxdy

=
J∑

j=1

S∑
s=1

αs

D∑
d=1

βd

K∑
k=1

γkEs,d,k
j .

(23)

Substituting (23) into (12), the energy functional is rewritten as

E (Φ, C) =
I∑

i=1

μiLength (φi) +
J∑

j=1

S∑
s=1

αs

D∑
d=1

βd

K∑
k=1

γkEs,d,k
j , (24)

where i denotes the i th level set function and I is the number of level set
functions, j the index of sub-regions partitioned by level set functions and
J the maximum number and J = 2I . s denotes scale, d direction, and k
fineness, and the maximum number of these parameters are S = 4 , D = 8 ,
and K = 3 respectively. Applying this method to the unified tensor field, we
can reduce the unified tensor level sets into the following cases.

Case 1 : WhenI = 1 and J = 2I = 2 , then there is only one level set
function evolving in the field to be segmented. Meanwhile, if S = D = K = 1
and α1 = β1 = γ1 = 1 , T s,d,k

x,y is simplified as a scalar. Thus the proposed
model reduces into the scalar CV model [3].

Case 2 : When I = 1 and J = 2I = 2 , then there is only one level set
function evolving in the field to be segmented. Meanwhile, if S = D = 1
and α1 = β1 = 1 , T s,d,k

x,y is simplified as a vector. Thus the proposed model
reduces into the vector CV model [4].

Case 3 : When I = 1 and J = 2I = 2, then there is only one level set
function evolving in the field to be segmented. Meanwhile, if K = 1 and
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S = D = 2 , T s,d,k
x,y is simplified as 2-order symmetry tensor. Additionally if

α=[1, 1, · · · , 1] , β = [1, 1, · · · , 1] and Tx,y =

[
∂x
∂xu0

x,y · ∂
∂xu0

x,y
∂
∂xu0

x,y · ∂
∂y u0

x,y
∂
∂y u0

x,y · ∂
∂xu0

x,y
∂
∂y u0

x,y · ∂
∂y u0

x,y

]
(i.e., LST [32] [39] ), the proposed model reduces into the model [34] [35] pro-
posed by Wang and Vemuri.

Case 4 : When I = 2 and J = 2I = 4 , then there are two level set functions
evolving in the field to be segmented. Meanwhile, if S = D = K = 1 and
α1 = β1 = γ1 = 1 , T s,d,k

x,y is simplified as a scalar. Thus the proposed model
reduces into the MCV model [33].

In brief, the proposed tensor level set method has capacity to deal with
the data type varying from scalar to vector and then to tensor, and integrate
the single and multi-phase level set functions into a general formula. Many
methods [3] [4] [33] [34] can be obtained by simplifying the proposed model.

4 Implementation

The evolution of level set function is driven by the evolution equation,
i.e.,(21). To solve this equation, we firstly regularize the Heaviside step func-
tion and the Dirac delta function, and then choose the numerical scheme for
these PDEs for different unknown level set functions.

4.1 Regularization of the Heaviside and Dirac Functions

Heaviside step function and Dirac delta function are discontinuous functions.
To minimize the energy functional defined by (12), the Heaviside step function
and the Dirac delta function should be regularized to be continuous.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H1,ε =

⎧⎨⎩
1 x > ε,
0 x < −ε,
1
2

(
1 + x

ε + 1
π sin(πx

ε )
) |x| ≤ ε.

δ1,ε = H ′
1,ε =

⎧⎨⎩
1 x > ε,
0 x < −ε,
1
2ε

(
1 + cos(πx

ε )
) |x| ≤ ε.

(25)

{
H2,ε = 1

2

(
1 + 2

π arctan(x
ε )
)

δ2,ε = H ′
2,ε = 1

π · ε2

(x2+ε2) .
(26)

In practice, (25) and (26), illustrated in Fig. 4, are both applicable to the ap-
proximations of the Heaviside and Dirac functions. Although (25) looks more
similar to the Heaviside and Dirac function than (26) does, our model em-
ploys (26) to replace the corresponding function, since (25) has small support
interval which sometimes causes the whole algorithm more easily compute a
local minimum value of the energy. For more details, please refer to [3].
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Fig. 4. Two different regularization of the Heaviside step and Dirac delta functions
with ε = 2.0 . The Heaviside step function is plotted with red line, and the Dirac
delta function is plotted with blue line.

4.2 Numerical Scheme

There are many types of numerical scheme for solution of PDEs, e.g., explicit
scheme [1] [19] [20], implicit scheme [3]. Here, Since the semi-implicit scheme
[4] [24] has the longer time step than explicit scheme does and it is more
easily implemented than the implicit scheme, this kind of scheme is used in
the proposed model. The semi-implicit numerical scheme for the evolution
equation,i.e., (17), is

φn+1
i,x,y = 1

C

[
m(C1φ

n
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n
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n
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2
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(27)

where Δt is the time step,
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Δt

h2
δε

(
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)
μ, (28)

and C = 1 + m (C1 + C2 + C3 + C4), where
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The mean values are updated respectively with following regularized equa-
tion, i.e.,

cs,d,k
j =

∫
Ω

ts,d,k
x,y χj (φ) dxdy∫
Ω

χj (φ) dxdy
. (30)



230 X. Gao et al.

5 Experimental Results

We conducted several experiments on synthetic, medical and natural images
to illustrate the effectiveness of the proposed unified tensor level set method
compared with the CV method [3] and the WV method [34].

Fig. 5. The first to the final rows represent the evolution applying the CV method
[3], the WV method [34] and the proposed method on a texture image with a
rectangular object. The CV method [3] fails to segment objects correctly, but the
WV method [34] and the proposed method do.

In experiment 1, the CV method [3], the WV method [34] and the proposed
method were applied to a synthetic texture images. In this image, the only
difference between object and background is the orientation, as shown in Fig.
5. According to [3], we replace intensities in the CV method [3] by O(x, y) =
tan−1(I ′y/I ′x) to represent the orientation, but the method does not work well
for the image. Using LST [32] [39] for representing the local texture, the WV
method [34] correctly segments the object. Due to the incorporation of the
Gabor features, the proposed method is sensitive to specialized orientations,
and also obtains the desired results.

Experiment 1 illustrates that the WV method [34] and the proposed
method both have the feature of the orientation selectivity. Though, eight
orientations are used in unified tensor representation, but this is not the
maximum number that Gabor filter bank supports. If necessary, we can use
more orientations to accurately extract the orientation information in images.

In Experiment 2, the image to be segmented is composed of three paper-
cut snowflakes with different intensity. The number of objects is more than
one, so the MCV method [33] is used to compare with the proposed method.
The images are polluted by the salt and pepper noise. Fig. 6 shows that
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Fig. 6. The first row represents the evolution applying the MCV method [33] on
the image with the noise density equaling 0.005, The second row to the fifth row
represent the evolution applying the proposed method on the different images with
the noise density 0.005, 0.05, 0.1 and 0.3 respectively. The noise adding into the
image is the salt and pepper noise. The MCV method [33] is not robust against
the noise even with the smallest noise density 0.005 in this experiment, but the
proposed method is relatively robust against the noise. It can correctly segment
the image, when the noise density increases to 0.3.

even the noise density is very small, i.e., equals 0.005, the MCV method [33]
still wrongly classifies the positive impulse points as the objects, and misses
the snowflake with the darkest grayscale. The proposed method correctly
segments all snowflakes from the background when the noise density increases
from 0.005 to 0.05 and then to 0.1. Even when the noise density increases to
0.3, the proposed method still can demarcate all snowflakes.

Experiment 2 shows that the proposed method is more robust against the
salt and pepper noise than the MCV method [33], since the proposed method
reduces the influence from the salt and pepper noise by involving the intensity
of the associated smoothed image.
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Fig. 7. The first and the second rows represent the evolution using the CV method
[3] and the proposed method with one level set function, respectively. The third
and fourth rows represent the evolution using MCV method [33] and the proposed
method with two level set functions. In the two cases, the proposed method obtains
better segmentation result.

Experiment 3 applied the CV method [3] , the MCV method [33] and
the proposed method with different number of level set functions on a real
Magnetic Resonance Image (MRI) of human brain, as shown in Fig. 7. The
boundaries detected by CV method [3] are not smooth, and some real bound-
aries are missed. While the proposed method with one level set function
correctly detects the boundaries and obtains better performance. The MCV
method [33] obtains more accurate segmentation than CV method [3] does,
but it still cannot correctly separate the cerebrospinal fluid from the grey
matter, while the proposed method with two level set functions does. That
is because the Gabor features contains gradient information, the weights of
pixels on the boundaries in the energy functional (i.e., (12)) are essentially
increased so that the evolving curve can stop at boundaries easier.

Experiment 3 illustrates the proposed method is effective to segment real
MRIs, and the segmentation result is more accurate than that of the CV
method [3] and MCV method [33]. Additionally the result segmented by
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Fig. 8. The first to the last rows represent the evolution by using the CV method [3],
the WV method [34] and the proposed method, respectively. The CV method [3]
fails to segment the zebra, the WV method [34] also does not segment the zebra
correctly, and the proposed approach can well segment the zebra from the grassland
because the proposed unified tensor considers the local texture.

the proposed method looks more rational because the Gabor-based image
representation coincides with human vision system.

In experiment 4, the CV method [3], the WV method [34] and the pro-
posed method were applied to an image containing a zebra on the grassland
respectively, as shown in Fig. 8. Because the proposed unified tensor contains
the Gabor features, the image intensity and the Gaussian smoothed images,
so it can duly separate the zebra from the grassland. However, because the
CV method [3] only considers the intensity information, it cannot work as
well as the proposed method. LST [32] [39] used by the WV method [34] lacks
scale information, which results in the failure of the segmentation of zebra.

Fig. 9. The first to the last rows represent the evolution by using the CV method [3],
the WV method [34] and the proposed method, respectively. The CV method [3]
fails to segment the zebra, the WV method [34] also does not segment the zebra
correctly, and the proposed approach can well segment the zebra from the grassland
because the proposed unified tensor considers the local texture.
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In experiment 5, the CV method [3] , the WV method [34] and the proposed
method were applied on a natural image of a cat on rocks, as shown in Fig. 9.
The CV method [3] does not correctly outline the cat, since it just considers the
intensity of the pixels. However, the intensities are very close in this image. The
WV method [34] also does not correctly demarcate the cat because of the weak-
ness of the LST [32] [39]. Involving Gabor features, the proposed method makes
the evolving curve stop at boundaries easier. Meanwhile, Gabor filter bank sub-
tract the DC component of images to make the proposed method insensitive to
the illumination. So the proposed method segments the image correctly.

In experiment 6, the CV method [3], the WV method [34] and the proposed
method were applied to an image containing a leopard in the underbrush, as
shown in Fig. 10. Because the proposed unified tensor contains the Gabor
features, the image intensity and the Gaussian smoothed images, so it can
duly separate the leopard from the underbrush. However, because the CV
method [3] only considers the intensity information, it cannot work as well
as the proposed method. The WV method [34] fails to segment the leopard
because of the same reason as the above experiment.

Experiment 4, 5 and 6 suggest that the unified tensor representation is
effective in segmenting the real texture image, e.g., zebra and leopard images.

Fig. 10. The first to the last rows represent the evolution by using the CV method
[3], the WV method [34] and the proposed method, respectively. The CV method [3]
and the WV method [34] cannot separate the leopard from the grass land, but the
proposed method almost does.
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Fig. 11. The first and the second rows represent the evolution using the CV method
[3] and the proposed method, respectively. The CV method [3] cannot separate the
butterfly from the grass, but the proposed method almost does.

This is because Gabor features incorporating into the unified tensor describe
the local texture better than LST [32] [39] used by the WV method [34].

Experiment 7 applied the CV method [3] and the proposed methods on
a natural image with a butterfly settling on the one of big plant, as shown
in Fig.11. The CV method [3] cannot separate the butterfly from the grass-
land, whereas the proposed basically does for the unified tensor represen-
tation being more comprehensive and containing more information than a
scalar, i.e., the intensity. This representation results in a correct segmentation
performance.

Experiment 8 applied the CV method [3] and the proposed methods on a
natural image with a horse running on the beach. The CV method [3] cannot
completely separate the horse from the background, whereas the proposed
basically does. This is because the proposed method uses a unified tensor
representing each pixel in the image. This tensor contains information from
the smoothed image which smoothes the weak boundaries in background,
meanwhile the gradient and orientation extracted from the neighbor of pixels
give a more accurate depiction to pixels. These all result in a natural result.

Fig. 12. The first and the second rows represent the evolution using the CV method
[3] and the proposed method, respectively. The CV method [3] cannot separate the
horse from the ocean wave and the beach, but the proposed method almost does.
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Experiment 7 and 8 show that the proposed method is effective in the
segmenting natural images, especially for the natural images with the complex
background.

6 Conclusions

In this paper, we built a unified tensor representation for pixels to compre-
hensively depict the information of the image, and then provide a unified
tensor level set method by proposing a weighted tensor distance definition.
This method can deal with the data type varying from scalar to vector then
to tensor, and integrates the single and multi-phase level set methods into
a unified framework. By involving Gabor features into the unified tensor
representation, our model has the capacity of orientation selectivity and bet-
ter sensitivity to gradient. Meanwhile, by incorporating intensity in different
fineness into the tensor pixel representation, the proposed method is more
robust against noise, especially against the salt and pepper type noise. For
the future work, more images will be used to check the effectiveness of the
proposed method.
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Summary. Face recognition by sketches in photos makes an important com-
plement to face photo recognition. It is challenging because sketches and
photos have geometrical deformations and texture difference. Aiming to
achieve better performance in mixture pattern recognition, we reduce dif-
ference between sketches and photos by synthesizing sketches from pho-
tos, and vice versa, and then transform the sketch-photo recognition to
photo-photo/sketch-sketch recognition. Pseudo-sketch/pseudo-photo patches
are synthesized with embedded hidden Markov model and integrated to derive
pseudo-sketch/pseudo-photo. Experiments are carried out to demonstrate
that the proposed methods are effective to produce pseudo-sketch/pseudo-
photo with high quality and achieve promising recognition results.

Keywords: sketch-photo recognition, pseudo-sketch, pseudo-photo, image
quilting, averaging overlapping areas.

1 Introduction

In the research of pattern recognition, face recognition has attracted great
deal of attention. Automatic face recognition not only saves many person-
hours but also lessens the subjective assessment [25], [41] and has played
an important role in many application areas. Usually, we can only acquire
witnesses’ verbal description of the person in question instead of his pho-
tos, and consequently, simulated sketches have to been produced by artists
or by combining interchangeable templates of local facial features with the
help of computer [4], according to some described features. Face recognition
is transformed into sketch-photo recognition which determines the person’s
identity from photo database based on simulated sketches automatically, but
different mechanism for generating and expressing sketches and photos leads

W. Lin et al. (Eds.): Multimedia Analysis, Processing & Communications, SCI 346, pp. 239–262.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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to that most of the existing significant achievements for face recognition are
not active for sketch-photo recognition. To be more specific, in producing
sketches, artists make use of shadow texture to convey light and shade in-
formation, and sketch the contours subjectively, while photos are obtained
with optical imaging equipments or other sensors objectively. Sketches and
photos for a person have great geometrical deformations and large difference
of texture. So, sketch-photo recognition becomes a challenging research focus
of face recognition and deserves further research.

There has been considerable research on the problem of identifying a per-
son by searching for the existing image most similar to his photo, but in
contrast less research on the face recognition without photos of the person to
be recognized has been done since the first automatic sketch-photo recogni-
tion algorithm was proposed in 1994 [27]. In the existing sketch-photo recog-
nition algorithms, the research focus is transforming photos and sketches
into the same modality to reduce their difference, so as to perform face
recognition by sketches in pseudo-sketches or by pseudo-photos in photos
with classical face recognition approaches [1], [35]. Face sketches referred to
in sketch-photo recognition may be line-drawing sketch or complex sketch.
Line-drawing sketches present the face information by nothing more than
lines, and photos in database have to be converted into sketches, with which
the recognition is performed. Complex sketches have more information de-
picted by lighting and shading besides lines, and photos in database and the
sketch in question can be converted to each other; accordingly our aim is
the recognition of complex sketch in photo database. Photos are converted
into pseudo-sketches by Tang et al. firstly. They proposed a method based
on principal components analysis (PCA) [31], [32], [33], a linear model, and
then introduced manifold in the pseudo-sketch synthesis [18] in which non-
linearity between photos and sketches is approximated by local linearity. Gao
et al. synthesize sketches [9], [42] based on embedded hidden Markov model
(EHMM) so that complex nonlinear relationship between photos and sketches
is learnt exactly. Furthermore, we proposed the algorithm [8], in which local
strategy is introduced because local features are more specific and in fa-
vor of state estimation of EHMM. Facial pseudo-photo was obtained for the
first time based on basic pixels [26], [27], low-level feature, and later, hybrid
subspace method [17] and statistical methods [19] were proposed. The first
two kinds of methods are based on assumption that there is linear mapping
from sketch to photo, while statistical methods are nonlinear mappings. The
drawback of the method in [19] is that it requires a great many of training
samples which cannot be provided because of the high cost of sketch acquisi-
tion, so we proposed the method in [39] , a sketch-photo pair is sufficient for
synthesizing a pseudo-photo in a way. In sketch-photo synthesis and recogni-
tion algorithms [8], [39], pseudo-sketch patches and pseudo-photo patches are
combined by averaging the overlapping areas of adjacent patches, which may
introduce blurring effect in synthesized sketches and photos. In the stage of
recognition in sketches or photos, only eigenfaces based method is adopted.
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Fig. 1. The framework of the proposed methods

Aiming at these problems, we propose a novel face sketch-photo recognition
algorithm [40] in which pseudo-sketch/pseudo-photo patches are combined
into a pseudo-sketch/pseudo-photo with image quilting [7].

In our methods [8], [39], [40] whose framework is shown in Fig. 1, photos
and sketches are divided into overlapping patches and sketch-photo patch
pairs in training set are selected according to the similarity of testing and
training photo/sketch patches. The nonlinear relationship of each selected
sketch-photo patch pair is learnt by a pair of EHMMs. After pseudo-sketch
patches/pseudo-photo patches are derived based on the learnt EHMM pairs,
they are combined into a pseudo-sketch/pseudo-photo whose idea will be
presented in detail in Section 3. After the photos and sketches are transformed
into the same modality, many subspace learning based methods are applied
into sketch-sketch recognition and photo-photo recognition. It can be proved
that the proposed methods lead to pseudo-sketches/pseudo-photos with high
quality and high recognition rate of sketch-photo recognition.

The remainder of this article is organized as follows. In section 2 and sec-
tion 3, the synthesis and assembling of pseudo-sketch patches/pseudo-photo
patches are explained in detail. The recognition of sketches/photos is per-
formed with subspace learning based methods in section 4. The experimental
results are presented in section 5, and the final section gives the conclusions.

2 Pseudo-sketch Patch/Pseudo-photo Patch Synthesis

EHMM [22] extracts two-dimensional facial features with a moderate compu-
tational complexity and has been used for the face-to-face transform [20]. It is
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employed to model the nonlinear relationship of the sketch patch and photo
patch located at the same position in a sketch-photo pair. Given a training
set with M photo-sketch pairs (Pi, Si), where i = 1, 2, · · · , M , and a photo P
to be transformed, they are evenly divided into N overlapping patches whose
size is B ×B and overlapping degree is D. If a patch of the photo P is p and
photo patches in training set are {ptrj}, where j = 1, 2, · · · , M ×N , K train-
ing photo patches, most similar with the patch p, are hunted. Corresponding
to the K photo patches, K sketch patches are selected to form pairs of photo
patches and sketch patches. K EHMM pairs for them are constructed and K
intermediate pseudo-sketch patches are derived based on these models. These
pseudo-sketch patches are fused to result in the expected pseudo-sketch patch.
The specific steps are given as below. Pseudo-photo patch synthesis can be
performed similarly by exchanging the roles of photos and sketches.

Step 1: Searching for training photo patch and sketch patch pairs
The similarity degree of patches p and ptrj is measured with the doubly

embedded Viterbi algorithm. K training photo patches with the greatest sim-
ilarity degree wl are hunted and denoted with pchol, where l = 1, 2, · · · , K,
according to which K training sketch patches {schol} are selected.

Step 2: Constructing EHMMs λp = (Πp, Ap, Λp, Np) and λs = (Πs, As, Λs,
Ns) for each pair of training photo patch and sketch patch {pchol, schol},
l = 1, 2, · · · , K according to the Fig. 2.

• Observation vector sets Op and Os are extracted. Op is the observation
sequence for the training photo patch pchol and denoted as Op = {Oyp, 1 ≤
y ≤ Y }, where Oyp = {oyxp, 1 ≤ x ≤ X}. Oyp is observation sequence of the
y-th line,oyxp is the observation vector of the x -th column in the y-th line,
and X and Y are the numbers of observation vectors in horizontal and vertical
directions. The observation sequence Os of the sketch patch schol is similar
to Op . The observation vector at each pixel in pchol and schol consists of
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patch
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Decomposition

),,,( PPPPP NA

),,,( sssss NA

EHMM of the  photo patch

EHMM of the  sketch patch

Fig. 2. The procedure of EHMM construction
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the pixel gray value, Gaussian, Laplacian, horizontal derivative and vertical
derivative operators, in which pixel gray value and Gaussian operator are
related to the low-frequency information and average intensity respectively
while other three operators are used for characterizing the high-frequency
information;

• Observation vectors oyxp and oyxs for the x -th column and y-th line
pixel in pchol and schol are combined into a vector oyx = [oyxp, oyxs] so as
to form the combined observation vectors O = {Oy, 1 ≤ y ≤ Y }, where
Oy = {oyx, 1 ≤ x ≤ X};

• The number of super-states, embedded-states in each super-state and
mixture components in each embedded-state are specified beforehand. Then
the observation sequence O is segmented uniformly according to the number
of states, and observation vectors within an embedded-state are clustered
as many clusters as the number of mixture components in the embedded-
state. The model λ = (Π, A, Λ, N) of the photo patch and sketch patch pchol

and schol is joint-trained according to the segmented observation sequence O
with the help of Baum-Welch algorithm [2], [23]. The algorithm is equivalent
to the idea of expectation-maximization (EM) algorithm [3], [5]. With all
parameters in λ initialized according to the sequence O, these parameters
are modified iteratively based on the idea of EM algorithm until P (O|λ),
which is the similarity evaluation of observation vectors and the model λ , is
convergent. EM algorithm is a two-step iteration:

In the E-step, P (O|λ) is evaluated with forward algorithm [21]. Corre-
sponding to the observation sequence, the state sequence S is S = {Sy, 1 ≤
y ≤ Y }, where Sy = {syx, 1 ≤ x ≤ X}. Sy is state sequence of the y-th line,
syx is the state index of the x -th column in the y-th line. The forward and
backward variables for the observation sequence Oy are defined as

αi
yx(k) = P (oy1, · · · , oyx, syx = Λ

(i)
k |Sy = Λ(i), λ)

βi
yx(k) = P (oy,x+1, · · · , oyX |syx = Λ

(i)
k , Sy = Λ(i), λ)

(1)

which are computed by one-dimensional HMM forward-backward algorithms
according to formulas (2) and (3):

α
(i)
y1 (k) = π

(i)
k bi

k(o1) and αi
y(x+1)(k) = [

N(i)
e∑

l=1

αi
yx(l)a(i)

lk ]b(i)
k (oy(x+1)) (2)

βi
yX(k) = 1 and βi

yx(k) =
N(i)

s∑
l=1

a
(i)
kl b

(i)
l (oy(x+1))βi

y(x+1)(l) (3)

Based on these two variables, we can compute P i
y and

P i
y = P (Oy |Sy = Λi, λ) =

∑N(i)
e

k=1 αi
yx(k)βi

yx(k) .
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The forward variable for the observation sequence O1, O2, · · · , Oy is defined
as

ηy(i) = P (O1, · · · , Oy, Sy = Λ(i)|λ).

With these definitions in hand, the forward algorithm is carried through with
the initialization of

η1(i) = ΠiP
i
1

and

ηy+1(i) = [
∑N

j=1 ηy(j)aji]P i
y

is computed recursively until

ηY (i) and P (O|λ) =
∑N

i=1 ηY (i)

are obtained. Although the the form of P (O|λ) is too intricate to be given
straightforwardly, it is derived iteratively based on the known quantities such
as GMMs, state transition, and so on.

State sequence and mixture index sequence corresponding to O is reesti-
mated with the doubly embedded Viterbi algorithm [15], [37]. It starts with

δ1(i) =
∏

i Qi
1,

and

δy+1(i) = maxj∈[1,Ns][δy(j)aji]Qi
y

is computed recursively until maxi∈[1,Ns]δY (i) is acquired, where

Qi
y = maxsy1,sy2,··· ,syX P (Oy, sy1, sy2, · · · , syX |Sy = Λi, λ)

and it is processed with the help of one-dimensional HMM Viterbi algorithm:
ϑi

yx(k) is initialized as

ϑi
y1(k) = π

(i)
k b

(i)
k (O1)

and induced according to

ϑi
y(x+1)(k) = max

1≤l≤N
(i)
e

[ϑi
yx(l)a(i)

lk ]b(i)
k (oy(x+1))

until

ϑi
yX(k) and Qi

y = max
1≤k≤N

(i)
e

[ϑi
yX(k)]

are got. When maxi∈[1,Ns]δY (i) is computed, there is an array to keep track
of the arguments that maximize δy(i) and ϑi

yx(k) in each iteration so that
the best state sequence and mixture index sequence Sb and Mb are tracked
back finally.

In the M-step, observation sequence O is segmented with the reestimated
state and mixture index sequences Sb and Mb, and then the joint-trained
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EHMM is updated according to the segmented observation sequence. The
re-estimation of EHMM parameters are performed with formulas (4)-(8):

Π̂i =
P (S1 = Λ(i)|λ, O)∑Ns

i=1 P (S1 = Λ(i)|λ, O)
, (4)

âij =

∑Y
y=1 P (Sy−1 = Λ(i), Sy = Λ(j)|λ, O)∑Y

y=1 P (Sy−1 = Λ(i)|λ, O)
, (5)

π̂
(i)
j =

∑Y
y=1 P (sy1 = Λ

(i)
j , Sy = Λ(i)|λ, O)∑Y

y=1 P (Sy = Λ(i)|λ, O)
, (6)

â
(i)
jl =

∑Y
y=1

∑X
x=1 P (sy(x−1) = Λ

(i)
j , syx = Λ

(i)
l , Sy = Λ(i)|λ, O)∑Y

y=1

∑X
x=1 P (sy(x−1) = Λ

(i)
j , Sy = Λ(i)|λ, O)

, (7)

b̂
(i)
j (k) =

∑Y
y=1

∑X
x=1,s.t.oyx=vk

P (syx = Λ
(i)
j , Sy = Λ(i)|λ, O)∑Y

y=1

∑X
x=1 P (syx = Λ

(i)
j , Sy = Λ(i)|λ, O)

, (8)

where V = {v1, v2, · · · , vK} reserves distinct observation vectors and K is the
length of it. If P (O|λ) is convergent, EM algorithm is completed, otherwise
it comes back to E-step.

• The model λ derived in the previous step is decomposed into λp =
(Πp, Ap, Λp, Np) for the photo patch pchol and λs = (Πs, As, Λs, Ns) for the
sketch patch schol. As already stated, λp and λs only have different GMMs in
each pair of corresponding embedded-states and the decomposition of λ in-
cludes dividing the mean vector and covariance matrix of every mixture com-
ponent in each embedded-state. We suppose that

∑(k)
iml is a diagonal matrix

and l = 0, 1, where 0 and 1 represent photo patch and sketch patch respec-
tively. Consequently, for the m-th mixture component in i-th embedded-state
and k -th super-state, the division is performed as below:

μ
(k)
im = [μ(k)

im0, μ
(k)
im1] and

∑(k)
im =

[∑(k)
im0 0

0
∑(k)

im1

]
.

Step 3: Synthesizing a pseudo-sketch patch s for the photo patch p of P
K intermediate pseudo-sketch patches spseul is derived by decoding based

on each λp and reconstructing based on corresponding λs. The weighted
average of these intermediate pseudo-sketch patches is the expected pseudo-
sketch patch s, that is,

s =
K∑

j=1

wj × spseuj (9)
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3 Combination of Pseudo-sketch Patches/

Pseudo-photo Patches

With the pseudo-sketch/pseudo-photo patches, having overlapping regions,
in hand, we assemble them into a pseudo-sketch/pseudo-photo by averaging
the overlapping areas between patches. Given two neighboring patches hori-
zontally, there is an overlapping area between them along their vertical edge,
which is shown with shadow region in Fig.3. The overlapping area in the left
patch is denoted as Lov and that in the right patch is Rov , which are of the
same size r × c. In [8], [39], as illustrated in Fig. 4, the pixel values of the
overlapping area are computed by averaging the corresponding elements in
Lov and Rov with Eq. (10).

Vov =
1
2
(Lov + Rov) (10)

Although this method is simple, it leads to blurring effect in the synthesized
sketches and photos. We make use of the idea of image quilting [7], whose idea

ovL

ovR

Fig. 3. Two overlapping patches
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Fig. 4. Averaging two overlapping patches
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Image quilting

Fig. 5. Image quilting

is illustrated in Fig. 5. For the overlapping area shown in Fig. 3, the value
of corresponding elements in Lov and Rov may be different and we have to
determine whether the element value in Lov or that in Rov should be used for
each pixel in overlapping area, which equals to finding an edge for combining
these two patches smoothly. The value of pixels on the left side of the edge
is given according to Lov and that of pixels on the right side is according to
Rov . The solution is searching for an optimal edge

E∗ = {(1, y1), (2, y2), · · · , (r, yr)},
where (i, yi) means i-th row and yi-th column in Lov and Rov, such that,

E∗ = argminE

⎛⎝ ∑
(i,yi)∈E

|Lov(i, yi) − Rov(i, yi)|2
⎞⎠ (11)

If
pi,yi = |Lov(i, yi) − Rov(i, yi)|2, (12)

the difference between Lov(i, yi) and Rov(i, yi), is regarded as the cost of
traversing (i, yi), the edge E∗ is determined by searching for the minimum

Fig. 6. Image quilting for four patches
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(a)

(b)

(c)

Fig. 7. Scheme for stitching four patches
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cost path [6] through the overlapping area from the top down, as Fig. 5.
The elements belonging to the optimal edge E∗ are located row by row in
the overlapping area. When the element in the i-th row is determined, whose
index of column is yi, elements at (i+1, yi−1), (i+1, yi) and (i+1, yi+1) of Lov

and Rov are compared and position of the element corresponding to the least
difference is added into E∗. The steps are given as below. For two vertically
neighboring patches, the minimum cost path through the overlapping area is
founded horizontally.

Step 1: E∗ is initialized as NULL and p1,1, p1,2, · · · , p1,c are computed for the
first row of Lov and Rov according to formula (12).

Step 2: The minimum among p1,1, p1,2, · · · , p1,c is selected and preserved in
p1,y1 , and its row and column index (1, y1) is added into the set E∗.

Step 3: If the pixel traversed by E∗ in the (i-1)-th row is not in the leftmost or
the rightmost column of the overlapping area, pi,yi−1−1, pi,yi−1 and pi,yi−1+1

are calculated and the minimum pi,yi is selected. If it is in the leftmost or the
rightmost column, pi,yi−1 and pi,yi−1+1, or pi,yi−1−1 and pi,yi−1 , are compared,
minimum among which is preserved in pi,yi . (i, yi) is added into the set E∗.

Step 4: Step 3 is repeated from the second to the last row until the optimal
edge E∗ is acquired.

For four overlapping patches shown in Fig. 6, there are overlapping ar-
eas for each pair of neighboring patches and an overlapping area for four
patches, shown as shadow region. We find the minimum cost path for each
pair of neighboring patches and we will obtain four paths, but the path in
the overlapping area for four patches is confusing. Consequently, we combine
them according to the scheme shown in Fig. 7. In Fig. 7(a) and Fig. 7(b), the
patches in the first line and in the second line are respectively combined into
two large patches with image quilting algorithm shown in Fig. 5. These two
large patches are combined in Fig. 7(c) and image quilting of four patches is
completed.

4 Recognition of Sketches/Photos with Subspace
Learning Based Methods

After the training photos are transformed into pseudo-sketches or the sketch
to be identified is transformed into a pseudo-photo, sketch-photo recognition
is performed by recognizing sketch in pseudo-sketches or pseudo-photo in
photos. Training and testing samples of recognition are in the same modality
and several subspace learning based face recognition algorithms can be ap-
plied straightforwardly. For an image set, subspace learning methods find a
basis space constituted by a set of basis images which account for latent vari-
ation making images in the set distinct. By projecting an input face image
into the basis space, it is encoded in a reduced dimensional feature space.
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Fig. 8. Sketch-sketch recognition based on subspace learning methods

For a sketch S and a pseudo-sketch set {Si},i = 1, 2, · · · , M , the recogni-
tion of S in {Si} based on subspace learning methods is illustrated in Fig. 8
and this method is available for photos recognition by substituting pseudo-
photo for the sketch and photo set for the pseudo-sketch set.

Step 1: M − 1 basis images W = {wk} are derived according to the pseudo-
sketches {Si} to constitute basis space, k = 1, 2, · · · , M − 1.

Step 2: All pseudo-sketches are project into the basis space W to derive the
vectors of projection coefficients ci according to Si = ci × W .

Step 3: The sketch S is also project into the space W and the projection
coefficients vector cs is computed according to S = cs × W .

Step 4: Weight vector cs is compared with all ci, that is di = ‖cs − ci‖ , and
the pseudo-sketch corresponding to the minimum values in {di} is adopted
to identify the sketch S.

The key of the above procedure is seeking for the basis images of pseudo-
sketch set {Si}, i = 1, 2, · · · , M . In this paper, we employ several sub-
space learning methods including PCA [24], independent component analysis
(ICA) [1], [13], kernel principal component analysis (KPCA) [14], [28], local-
ity preserving projection (LPP) [11] and offline tensor analysis (OTA) [30].
In the future, we will consider some discriminative methods [43] [46]. In these
algorithms, pseudo-sketches in the set {Si} are arranged as a matrix X , in
which each column corresponds to a pseudo-sketch.

The basis images extracted out of the image set by PCA is eigenfaces
which are orthogonal. The recognition method based on eigenfaces [36] is
regarded as the first successful facial recognition method and surpasses other
face recognition methods at its speed and efficiency. It works especially well
when the faces are captured in frontal view and under similar lighting, which
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are satisfied by the experimental data in this paper. Average pseudo-sketch
of {Si} is computed as

MS =
1
M

M∑
i=1

X(:, i), (13)

and the covariance matrix is

C =
1
M

M∑
i=1

(X(:, i) − MS)(X(:, i) − MS)T . (14)

Eigenvalues and eigenvectors of C can be computed and eigenvectors corre-
sponding to maximum eigenvalues are eigenfaces.

ICA is generalized on the basis of PCA to explore the high-order rela-
tionships among pixels. The basis images extracted by ICA are independent
components which are assumed nongaussian and mutually independent. The
correlation between pseudo-sketches is given as the rows of a mixing matrix
A. Each basis image is a row of source matrix S which is extracted according
to the formula

X
′
= A · S. (15)

KPCA is integration of PCA with kernel methods and is a nonlinear form
of PCA. PCA derives principal components of input images, while KPCA
focuses on those of variables which are nonlinearly related to the input images.
With a kernel, the input images are projected into a high dimensional feature
space so that high order correlations between input images are explored. Dot
product is computed by a kernel function k for each pair of the pseudo-sketch
vectors to form the dot product matrix K:

Kij = (k(X(:, i), X(:, j)))ij . (16)

Eigenvalues λ1, λ2, · · · , λM and eigenvectors v1, v2, · · · , vM of K can be com-
puted, and then eigenvectors are normalized such that

λm(vm · vm) = 1. (17)

The normalized eigenvectors are the basis images derived by KPCA.
Different from PCA preserving global structure of the image space, LPP

specializes in holding local relationship which is in favor of classification. The
basis images extracted LPP is called Laplacianface [12] and it has more dis-
crimination than Eigenfaces. A similarity matrix M is defined for measuring
the similarity of pairwise pseudo-sketches, based on which a diagonal matrix
D is computed according to

Dii =
∑

j

Mji. (18)

Laplacian matrix is L = D −M . The generalized eigenvectors of XLXTw =
λXDXT w are basis images.
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Furthermore, LPP can be carried out in two directions of images. Each
pseudo-sketch Si in the pseudo-sketch set, i = 1, 2, · · · , M , is of size n1 × n2

and it is reshaped into a vector of n1 × n2 elements in the above methods.
Tensor subspace analysis (TSA) [10] attaches importance to the relationship
between the rows of the pseudo-sketch matrix and that between the columns.
The pseudo-sketch Si can be represented as the second order tensor in the
tensor space Rn1 ⊗ Rn2 . Basis images are extracted in row- and column-
directions respectively in the virtue of LPP.

Inspired by the idea of [34] [44] [45], each pixel of pseudo-sketch Si is
decomposed into 5-scales and 8-directions by Gabor filters and the pseudo-
sketch Si is represented as a fourth-order tensor χi ∈ Rn1×n2×5×8, i =
1, 2, · · · , M , that is to say, the second order tensor is extended into a fourth-
order one. OTA [16] can accept a high order tensor and output its basis
images along each dimension. Basis images matrix of each dimension is ini-
tialized as U (1) ∈ Rn1×n1 , U (2) ∈ Rn2×n2 , U (3) ∈ R5×5 and U (4) ∈ R8×8.
The covariance matrix for the first dimension is defined as

C =
M∑

m=1

zmzT
m, (19)

where zm = χm ×2 U (2) ×3 U (3) ×4 U (4) and zm is transformed into a matrix
of size n1 × (n2 × 5 × 8). Basis images matrix for the first dimension U (1) is
updated to eigenvectors of the matrix C. Basis images for other dimensions
are computed similarly based on the updated U (1), U (2), U (3) and U (4).

5 Experimental Results and Analysis

In this section, we conduct experiments on the color face photo-sketch
database and gray photo-sketch database to evaluate the proposed sketch-
photo recognition algorithms from two aspects that are the quality of synthe-
sized pseudo-sketches/pseudo-photos and recognition performance of sketches
in photo set, with the direct sketch-photo recognition method as reference.
These two databases are provided by the Multimedia Lab of the Chinese
University of Hong Kong, and the instances of experimental data are shown
in Fig. 9 and Fig.10, in which photos and the corresponding sketches are
shown in the first and the second line respectively. In the experiments, all
experimental data are resized into 64 × 64 and divided into patches of size
32×32 pixels. The overlapping degree of neighboring patches is 75%. As men-
tioned above, sketches and photos are transformed into the same modality by
two proposed schemes that photos are transformed into pseudo-sketches and
sketches into pseudo-photos, and then recognition is performed in sketches
or photos. The transformation is based on EHMM which has 3 super-states
from top to bottom, 6 embedded-states from left to right in each super-state
and 12 mixture components in each embedded-state.
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Fig. 9. Instances of color photo-sketch pairs provided by the Multimedia Lab of
the Chinese University of Hong Kong

Fig. 10. Instances of gray photo-sketch pairs provided by the Multimedia Lab of
the Chinese University of Hong Kong

5.1 Synthesis and Recognition of Pseudo-sketches

When we perform pseudo-sketch synthesis in the colorful photo-sketch
database, leave-one-out strategy [29] is adopted. For the database, a photo
is left as the testing sample in turn while other photo-sketch pairs are train-
ing samples until all photos in the database are transformed into pseudo-
sketches. Fig. 11 shows examples of sketch synthesis results of the proposed
methods [8], [40]. From the first column to the last one, examples of original
photos, original sketches, pseudo-sketches obtained with the method in [8],
pseudo-sketches obtained with the method in [40] are listed. The method
in [40] produces pseudo-sketches not only with less blurring and blocking
effect, but also more like original sketches.

In order to quantify the quality of synthesized pseudo-sketches, we make
use of universal image quality index (UIQI) [38]. It evaluates the quality of
testing image based on the reference one from three aspects. In the future,
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(a) (b) (c) (d)
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Fig. 11. Examples of pseudo-sketches obtained with two methods. (a) original
photos (b) original sketches (c) pseudo-sketches obtained with the proposed method
in [8], (d) pseudo-sketches obtained with the proposed method in [40].
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we will consider more phosificated method for quality assessment [47]. First,
their correlation degree is measured linearly according to Eq. (20),

C =
σxy

σxσy
, (20)

where σx and σy are the variance of reference image and that of testing one
respectively, and σxy is their covariance. Secondly, luminance distortion of
the reference image is reflected by the similarity of mean luminance x̄ and ȳ
of reference and testing images, that is,

L =
2x̄ȳ

(x̄)2 + (ȳ)2
. (21)

Thirdly, the similarity of contrast σx and σy is computed as

T =
2σxσy

(σx)2 + (σy)2
. (22)

The UIQI is defined by integrating these three measurements, that is,

U = C × L × T (23)

If σx and x̄ are more close to σy and ȳ, C, L and T are getting nearer to one,
otherwise, C is getting nearer to −1, and L and T are to zero. So, higher
UIQI value indicates higher quality of testing images.

The pseudo-sketches and original photos are treated as testing images and
original sketches are reference images. The UIQI value of pseudo-sketches and
photos in Fig. 11, and average UIQI value of all pseudo-sketches are shown
in Table 1. It can be found that UIQI value corresponding to pseudo-sketches
is higher than that of photos and pseudo-sketches obtained with the method
in [40] has higher UIQI value than those obtained with the method in [8].
The method in [40] leads to the pseudo-sketches having the highest quality.

Table 1. The UIQI of pseudo-sketches obtained with different methods and photos

P1 P2 P3 P4 P5 P6 P7 P8 P9 Means

Fig. 11 (a) 0.6065 0.7792 0.7329 0.7613 0.8608 0.7043 0.7758 0.8627 0.8750 0.7797
Fig. 11 (c) 0.8346 0.8564 0.8858 0.8298 0.8780 0.8349 0.9176 0.8930 0.9069 0.8927
Fig. 11 (d) 0.8882 0.9044 0.8984 0.8758 0.9249 0.8639 0.9455 0.9287 0.9426 0.9064

After photos in training set are transformed into pseudo-sketches, the
sketch to be identified is compared with pseudo-sketches by subspace learning
based methods. In our experiment, all sketches in database are testing images
and pseudo-sketches or photos are training samples. Six subspace learning
based methods such as eigenfaces, ICA, KPCA, Laplacianfaces, TSA and
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(a) (b) (c) (d)
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Fig. 12. Examples of pseudo-sketches obtained with two methods. (a) original
photos, (b) original sketches, (c) pseudo-sketches obtained with the method in [8],
(d) pseudo-sketches obtained with the method in [40].

Table 2. Pseudo-sketch recognition rate of three methods

Training set Eigenfaces ICA KPCA Laplacianfaces TSA OTA

Fig. 11 (a) 36.7% 78.89% 27.78% 15.56% 76.67% 67.78%
Fig. 11 (c) 94.4% 91.11% 94.44% 64.44% 78.89% 92.22%
Fig. 11 (d) 100% 93.33% 100% 81.11% 86.67% 97.78%
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Table 3. The UIQI of pseudo-sketches obtained with different methods and photos

P1 P2 P3 P4 P5 P6 P7 Means

Fig. 12 (a) 0.4661 0.4226 0.5189 0.5455 0.4995 0.6592 0.5551 0.5311
Fig. 12 (c) 0.5915 0.6068 0.6491 0.6464 0.6161 0.7376 0.7347 0.6887
Fig. 12 (d) 0.6340 0.6400 0.6551 0.6971 0.6485 0.7753 0.7866 0.6893

Table 4. Pseudo-sketch recognition rate of three methods

Training set Eigenfaces ICA KPCA Laplacianfaces TSA OTA

Fig. 12 (a) 19.05% 71.43% 14.29% 14.29% 57.14% 76.19%
Fig. 12 (c) 85.71% 85.71% 85.71% 66.67% 61.90% 95.24%
Fig. 12 (d) 90.48% 85.71% 90.48% 76.19% 47.62% 100%

OTA based approaches are used to match the testing and training images.
The recognition rate of sketches is shown in Table 2 and the method in [40]
obtains the highest recognition rate in any case.

We perform experiments in the gray sketch-photo database, the sketch
synthesis results of the proposed methods [8], [40] are given in Fig. 12. The
proposed method in [40] produces pseudo-sketches with less blocking effect
and more like original sketches. Table 3 shows the UIQI of pseudo-sketches in
Fig.12 and average UIQI value of all pseudo-sketches. Conclusion coincident
with that of colorful sketch-photo database can be achieved. The result of
sketch-photo recognition is shown in Table 4, and our method has the best
recognition performance except that TSA is adopted in recognition.

5.2 Synthesis and Recognition of Pseudo-photos

Firstly, pseudo-photo synthesis and photo-photo recognition are conducted
in the colorful photo-sketch database. The examples derived by the proposed
methods in [39], [40] are illustrated in Fig. 13. Pseudo-photos synthesized
by the proposed method in [40] are less blurred and reserve more texture
information in favor of face recognition. The UIQI value of pseudo-photos
is shown in Table 5 with original photos as reference images. All sketches
in database or their corresponding pseudo-photos are testing images while
photos are training samples for recognition, and recognition results are shown
in Table 6. The method in [40] not only synthesizes pseudo-photos with the
highest quality but also have the most favorable recognition results.

Similar experiments are conducted in the gray photo-sketch pairs. The
photo synthesis results of the proposed methods in [39], [40] are compared
in Fig. 14 and the recognition rate of sketches is shown in Table 7. For
gray sketches and photos, the pseudo-photos resulted by our method in [40]
are less blurred too and more like original photos. The recognition results
demonstrate that our method achieves best results based on most of the
subspace methods.
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(a) (d)(c)(b)

P1

P4

P3

P2

P7

P6

P5

Fig. 13. Examples of pseudo-photos obtained with two methods. (a) original
photos, (b) original sketches, (c) pseudo-photos obtained with the method in [39],
(d) pseudo-photos obtained with the method in [40].

Table 5. The UIQI of pseudo-photos obtained with different methods and sketches

P1 P2 P3 P4 P5 P6 P7 Means

Fig. 13 (b) 0.6895 0.8696 0.8726 0.8709 0.6655 0.8203 0.6065 0.7797
Fig. 13 (c) 0.8503 0.9105 0.9020 0.9522 0.8374 0.8600 0.7180 0.8865
Fig. 13 (d) 0.9232 0.9264 0.9124 0.9525 0.8979 0.8768 0.8302 0.9088
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Table 6. Pseudo-photo recognition rate of three methods

Testing set Eigenfaces ICA KPCA Laplacianfaces TSA OTA

Fig. 13 (b) 36.7% 78.89% 27.78% 15.56% 76.67% 67.78%
Fig. 13 (c) 95.6% 78.89% 94.44% 70% 73.33% 98.89%
Fig. 13 (d) 100% 78.89% 100% 80% 80% 100%

Table 7. Pseudo-photo recognition rate of three methods

Testing set Eigenfaces ICA KPCA Laplacianfaces TSA OTA

Fig. 14 (b) 19.05% 61.9% 14.29% 14.29% 57.14% 76.19%
Fig. 14 (c) 71.43% 71.43% 80.95% 61.90% 33.33% 71.43%
Fig. 14 (d) 76.19% 61.9% 80.95% 71.43% 38.1% 80.95%

(a)(d) (c) (b)

P1

P5

P4

P3

P2

Fig. 14. Examples of pseudo-photos obtained with two methods. (a) original
photos, (b) original sketches, (c) pseudo-photos obtained with the method in [39],
(d) pseudo-photos obtained with the proposed method in [40]
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6 Conclusion

With the aim of modeling the nonlinear relationship between sketch and
photo with less training samples, we propose pseudo-sketch and pseudo-
photo synthesis algorithms based on EHMM. Besides that, local features
reflect more specific information than the whole face, so local strategy is
adopted, that is to say, sketches and photos are divided into patches firstly,
and then pseudo-sketch patches and pseudo-photo patches are integrated
into the pseudo-sketch and pseudo-photo after they are derived with the
help of EHMMs. After synthesizing pseudo-sketch and pseudo-photo, sketch-
photo recognition is transformed into sketch-sketch or photo-photo recogni-
tion which is conducted with several subspace learning based methods. These
methods achieve optimistic performance for synthesizing pseudo-sketch and
pseudo-photo, and leads to higher sketch-photo recognition rate compared
with the direct sketch-photo recognition.

Acknowledgments. The authors are grateful to the helpful comments and sugges-

tions from the anonymous reviewers. Thanks must be expressed to the Multimedia

Lab of the Chinese University of Hong Kong for providing us with the face photo-

sketch images database. This research was supported partially by the National

Natural Science Foundation of China under Grant 60832005, the Ph. D. Programs

Foundation of Ministry of Education of China under Grant 20090203110002, the

Key Science and Technology Program of Shaanxi Province of China under Grant.

2010K06-12, and the Natural Science Basic Research Plan in Shaanxi Province of

China under Grant 2009JM8004.

References

1. Bartlett, M., Movellan, J., Sejnowski, T.: Face recognition by independent com-
ponent analysis. IEEE Trans. Neural Netw. 13(6), 1450–1464 (2002)

2. Baum, L., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains. Ann.
Math. Statist. 41(1), 164–171 (1970)

3. Bilmes, J.: A gentle tutorial of the EM algorithm and its application to param-
eter estimation for Gaussian mixture and hidden Markov models, Technical
Report, ICSI TR-97-021, International computer science institute, University
of California, Berkeley, USA (1998)

4. Davies, G.M., Willie, P.V.D., Morrison, L.J.: Facial composite production:
a comparison of mechanical and computer driven systems. J. Appl. Psy-
chol. 85(1), 119–124 (2000)

5. Dempster, A., Laird, N., Rubin, D.: Likelihood from incomplete data via the
EM algorithm. J. Roy. Statist. Soc. B 39(1), 1–38 (1977)

6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer.
Math. 1(1), 269–271 (1959)

7. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer.
In: Proc. ACM Conference on Computer Graphics and Interactive Techniques,
pp. 341–346 (2001)



Recognition of Sketches in Photos 261

8. Gao, X., Zhong, J., Tao, D., Li, X.: Local face sketch synthesis learning. Neu-
rocomputing 71(10-12), 1921–1930 (2008)

9. Gao, X., Zhong, J., Tian, C.: Face sketch synthesis algorithm based on machine
learning. IEEE Trans. Circuits Syst. Video Technol. 18(4), 487–496 (2008)

10. He, X., Cai, D., Niyogi, P.: Tensor subspace analysis. In: Proc. 19th Annual
Conference on Neural Information Processing Systems (2005)

11. He, X., Niyogi, P.: Locality preserving projections. In: Proc. 17th Annual Con-
ference on Neural Information Processing Systems, pp. 153–160 (2003)

12. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using lapla-
cianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 1–13 (2005)

13. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and ap-
plications. Neural Networks 13(4-5), 411–430 (2000)

14. Kim, K.I., Jung, K., Kim, H.J.: Face recognition using kernel principal compo-
nent analysis. IEEE Signal Processing Letters 9(2), 40–42 (2002)

15. Kuo, S., Agazzi, O.: Keyword spotting in poorly printed documents using
pseudo 2-D hidden Markov models. IEEE Trans. Pattern Anal. Mach. In-
tell. 16(8), 842–848 (1994)

16. Lathauwer, L.D., DeMoor, B., Vandewalle, J.: On the best rank-1 and rank-
(r1,r2. rn) approximation of higher-order tensors. SIAM J. Matrix Anal.
A. 21(4), 1324–1342 (2000)

17. Li, Y., Savvides, M., Bhagavatula, V.: Illumination tolerant face recognition
using a novel face from sketch synthesis approach and advanced correlation
filters. In: Proc. IEEE Int’l Conf. on Acoustics, Speech, and Signal Processing,
pp. 57–360 (2006)

18. Liu, Q., Tang, X., Jin, H., Lu, H., Ma, S.: A nonlinear approach for face sketch
synthesis and recognition. In: Proc. IEEE Conf. on Computer Vision and Pat-
tern Recognition, pp. 1005–1010 (2005)

19. Liu, W., Tang, X., Liu, J.: Bayesian tensor inference for sketch-based fa-
cial photo hallucination. In: Proc. Int’l Joint Conf. on Artificial Intelligence,
pp. 2141–2146 (2007)

20. Nagai, T., Nguyen, T.: Appearance model based face-to-face transform.
In: Proc. IEEE Int’l Conf. on Acoustics, Speech, and Signal Processing,
pp. 749–752 (2004)

21. Nefian, A.: A hidden markov model-based approach for face detection and
recognition, Ph.D., Georgia Institute of Technology (1999)

22. Nefian, A., Hayes, M.H.: Face recognition using an embedded HMM. In:
Proc. Int’l Conf. on Audio- and Video-based Biometric Person Authentication,
pp. 19–24 (1999)

23. Nefian, A., Hayes III, M.H.: Maximum likelihood training of the embedded
HMM for face detection and recognition. In: Proc. IEEE Int’l Conf. on Image
Processing, pp. 33–36 (2000)

24. Pearson, K.: On lines and planes of closest fit to systems of points in space.
Philos. Mag. 2(6), 559–572 (1901)

25. Phillips, P., Flynn, P., Scruggs, T., Bowyer, K., Hoffman, K.J.C., Marques, J.,
Worek, W.J.M.: Overview of the face recognition grand challenge. In: Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, pp. 947–954 (2005)

26. Robert, G.U.J., de Van Lobo, N.: A framework for recognizing a facial image
from a police sketch. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, pp. 586–593 (1996)



262 B. Xiao et al.

27. Robert, G.U.J., de Lobo, N., Van Kwon, Y.H.: Recognizing a facial image from
a police sketch. In: Proc. 2nd IEEE workshop on applications of computer
vision, pp. 129–137 (1994)

28. Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a
kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

29. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J.
Roy. Statist. Soc. B 36(2), 111–147 (1974)

30. Sun, J., Tao, D., Papadimitriou, S., Yu, P.S., Faloutsos, C.: Incremental tensor
analysis: theory and applications. ACM Trans. on Knowledge Discovery from
Data 2(3), 1–37 (2008)

31. Tang, X., Wang, X.: Face photo recognition using sketch. In: Proc. IEEE Int’l
Conf. on Image Processing, pp. 257–260 (2002)

32. Tang, X., Wang, X.: Face sketch synthesis and recognition. In: Proc. IEEE Int’l
Conf. on Computer Vision, pp. 687–694 (2003)

33. Tang, X., Wang, X.: Face sketch recognition. IEEE Trans. Circuits Syst.Video
Technol. 14(1), 50–57 (2004)

34. Tao, D., Li, X., Wu, X., Maybank, S.: General tensor discriminant analysis
and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. In-
tell. 29(10), 1700–1715 (2007)

35. Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proc. IEEE Conf.
on Computer Vision and Pattern Recognition, pp. 586–591 (1991)

36. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neurosci. 3(1),
71–86 (1991)

37. Viterbi, A.: Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm. IEEE Trans. Inf. Theory 13(2), 260–269 (1967)

38. Wang, Z., Bovik, A.: A universal image quality index. Signal Processing
Lett. 9(3), 81–84 (2002)

39. Xiao, B., Gao, X., Tao, D., Li, X.: A new approach for face recognition by
sketches in photos. Signal Process. 89(8), 1576–1588 (2009)

40. Xiao, B., Gao, X., Tao, D., Li, X., Li, J.: Photo-sketch synthesis and recognition
based on subspace learning. Neurocomputing (2009) (submitted)

41. Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.: Face recognition: a litera-
ture survey. ACM Comput. Surv. 35(4), 399–458 (2003)

42. Zhong, J., Gao, X., Tian, C.: Face sketch synthesis using E-HMM and selec-
tive ensemble. In: Proc. IEEE Int’l Conf. on Acoustics, Speech, and Signal
Processing, pp. 485–488 (2007)

43. Tao, D., Li, X., Wu, X., Maybank, S.: Geometric mean for subspace selection.
IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 260–274 (2009)

44. Tao, D., Li, X., Wu, X., Hu, X., Maybank, S.: Supervised tensor learning.
Knowl. Inf. Syst. 13(1), 1–42 (2007)

45. Tao, D., Li, X., Wu, X., Maybank, S.: Tensor rank one discriminant analysis –
a convergent method for discriminative multilinear subspace selection. Neuro-
computing 71(10-12), 1866–1882 (2008)

46. Zhang, T., Tao, D., Yang, J.: Discriminative locality alignment. In: Forsyth,
D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302,
pp. 725–738. Springer, Heidelberg (2008)

47. Gao, X., Lu, W., Tao, D., Li, X.: Image quality assessment based on multiscale
geometric analysis. IEEE Trans. Image Processing 18(7), 1608–1622 (2009)



Part II 

Video Processing and Analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Object Detection and Tracking
for Intelligent Video Surveillance

Kyungnam Kim and Larry S. Davis

1 HRL Laboratories, LLC., Malibu CA, USA
kkim@hrl.com

2 Computer Science Dept. University of Maryland, College Park, MD, USA
lsd@cs.umd.edu

Abstract. As CCTV/IP cameras and network infrastructure become cheaper and
more affordable, today’s video surveillance solutions are more effective than ever
before, providing new surveillance technology that’s applicable to a wide range end-
users in retail sectors, schools, homes, office campuses, industrial /transportation
systems, and government sectors. Vision-based object detection and tracking, espe-
cially for video surveillance applications, is studied from algorithms to performance
evaluation. This chapter is composed of three topics: (1) background modeling and
detection, (2) performance evaluation of sensitive target detection, and (3) multi-
camera segmentation and tracking of people.

Keywords: video surveillance, object detection and tracking, background subtrac-
tion, performance evaluation, multi-view people tracking, CCTV/IP cameras.

Overview

This book chapter describes vision-based object detection and tracking for video
surveillance application. It is organized into three sections. In Section 1, we describe
a codebook-based background subtraction (BGS) algorithm used for foreground de-
tection. We show that the method is suitable for both stationary and moving back-
grounds in different types of scenes, and applicable to compressed videos such as
MPEG. Important improvements to the above algorithm are presented - automatic
parameter estimation, layered modeling/detection and adaptive codebook updating.
In Section 2, we describe a performance evaluation technique, named PDR analysis.
It measures the sensitivity of a BGS algorithm without assuming knowledge of the
actual foreground distribution. Then PDR evaluation results for four different back-
ground subtraction algorithms are presented along with some discussions. In Section
3, a multi-view multi-target multi-hypothesis tracker is proposed. It segments and
tracks people on a ground plane. Human appearance models are used to segment
foreground pixels obtained from background subtraction. We developed a method
to effectively integrate segmented blobs across views on a top-view reconstruction,
with a help of ground plane homography. The multi-view tracker is extended effi-
ciently to a multi-hypothesis framework (M3Tracker) using particle filtering.

W. Lin et al. (Eds.): Multimedia Analysis, Processing & Communications, SCI 346, pp. 265–288.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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1 Background Modeling and Foreground Detection

Background subtraction algorithm

The codebook (CB) background subtraction algorithm we describe in this section
adopts a quantization/clustering technique [5], to construct a background model (see
[28] for more details). Samples at each pixel are clustered into a set of codewords.
The background is encoded on a pixel by pixel basis.

Let X be a training sequence for a single pixel consisting of N RGB-vectors:
X = {x1,x2, ...,xN}. Let C = {c1, c2, ..., cL} represent the codebook for the
pixel consisting of L codewords. Each pixel has a different codebook size based on
its sample variation. Each codeword ci, i = 1 . . . L, consists of an RGB vector vi =
(R̄i, Ḡi, B̄i) and a 6-tuple auxi = 〈Ǐi, Îi, fi, λi, pi, qi〉. The tuple auxi contains
intensity (brightness) values and temporal variables described below.

Ǐ, Î : the min and max brightness, respectively,
that the codeword accepted;

f : the frequency with which the codeword has occurred;
λ : the maximum negative run-length (MNRL)

defined as the longest interval during the
training period that the codeword has NOT recurred;

p, q : the first and last access times, respectively,
that the codeword has occurred.

In the training period, each value, xt, sampled at time t is compared to the current
codebook to determine which codeword cm (if any) it matches (m is the matching
codeword’s index). We use the matched codeword as the sample’s encoding approx-
imation. To determine which codeword will be the best match, we employ a color
distortion measure and brightness bounds. The detailed pseudo algorithm is given
below.

Algorithm for Codebook Construction

I. L ← (← means assignment), C ← ∅ (empty set)
II. for t=1 to N do

i. xt = (R,G, B), I ← R + G + B
ii. Find the codeword cm in C = {ci|1 ≤ i ≤ L} matching to xt based on two

conditions (a) and (b).
(a) colordist(xt,vm) ≤ ε1
(b) brightness(I, 〈Ǐm, Îm〉) = true

iii. If C = ∅ or there is no match, then L ← L + 1. Create a new codeword cL by
setting

vL ← (R,G, B)
auxL ← 〈I, I, 1, t − 1, t, t〉.

iv. Otherwise, update the matched codeword cm, consisting of vm = (R̄m, Ḡm, B̄m)
and auxm = 〈Ǐm, Îm, fm, λm, pm,
qm〉, by setting
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vm ← ( fmR̄m+R
fm+1

, fmḠm+G
fm+1

, fmB̄m+B
fm+1

)

auxm ← 〈 min{I, Ǐm}, max{I, Îm}, fm + 1,
max{λm, t − qm}, pm, t 〉.

end for
III. For each codeword ci, i = 1 . . . L, wrap around λi by setting λi ← max{λi, (N −

qi + pi − 1)}.

The two conditions (a) and (b) are satisfied when the pure colors of xt and cm are
close enough and the brightness of xt lies between the acceptable brightness bounds
of cm. Instead of finding the nearest neighbor, we just find the first codeword to
satisfy these two conditions. ε1 is the sampling threshold (bandwidth).

We refer to the codebook obtained from the previous step as the fat codebook. In
the temporal filtering step, we refine the fat codebook by separating the codewords
that might contain moving foreground objects from the true background codewords,
thus allowing moving foreground objects during the initial training period. The true
background, which includes both static pixels and moving background pixels, usu-
ally is quasi-periodic (values recur in a bounded period). This motivates the temporal
criterion of MNRL (λ), which is defined as the maximum interval of time that the
codeword has not recurred during the training period.

Let M denote the background model (a new codebook after temporal filtering):

M = {cm|cm ∈ C ∧ λm ≤ TM}. (1)

Usually, a threshold TM is set equal to half the number of training frames, N
2 .

To cope with the problem of illumination changes such as shading and high-
lights, we utilize a color model [28] separating the color and brightness components.
When we consider an input pixel xt = (R, G, B) and a codeword ci where vi =
(R̄i, Ḡi, B̄i), we have ‖xt‖2 = R2 +G2 +B2, ‖vi‖2 = R̄2

i +Ḡ2
i +B̄2

i , 〈xt,vi〉2 =
(R̄iR + ḠiG + B̄iB)2.

.
.
vi (codeword)

xt (input pixel)
p

δδδδ

R

G

B O

εεεε

Ilow

Ihi
decision boundary

θθθθ

I

I

Fig. 1. The proposed color model - separate evaluation of color distortion and brightness
distortion
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The color distortion δ can be calculated by

p2 = ‖xt‖2 cos2 θ = 〈xt,vi〉2
‖vi‖2

colordist(xt,vi) = δ =
√
‖xt‖2 − p2.

(2)

The logical brightness function is defined as

brightness(I, 〈Ǐ, Î〉) =

{
true if Ilow ≤ ‖xt‖ ≤ Ihi

false otherwise.
(3)

Subtracting the current image from the background model is straightforward. Unlike
Mixture-of-Gaussians (MOG) [2] or Kernel method [4] which compute probabili-
ties using costly floating point operations, our method does not involve probability
calculation. Indeed, the probability estimate in [4] is dominated by the nearby train-
ing samples. We simply compute the distance of the sample from the nearest cluster
mean. This is very fast and shows little difference in detection compared with the
probability estimate. The subtraction operation BGS(x)for an incoming pixel value
x in the test set is defined as:

Algorithm for Background Subtraction (Foreground Detection)

I. x = (R,G, B), I ← R + G + B
II. For all codewords in M in Eq.1, find the codeword cm matching to x based on two

conditions:
colordist(x,vm) ≤ ε2
brightness(I, 〈Ǐm, Îm〉) = true

III. BGS(x) =

{
foreground if there is no match

background otherwise.

ε2 is the detection threshold.

Detection Results and Comparison

This section demonstrates the performance of the proposed algorithm compared
with MOG [2] and Kernel [4].

Fig.2(a) is an image extracted from the MPEG video encoded at 70 kbits/sec.
Fig.2(b) depicts a 20-times scaled image of the standard deviations of green(G)-
channel values in the training set. The distribution of pixel values has been affected
by the blocking effects of MPEG. The unimodal model in Fig.2(c) suffers from these
effects. For compressed videos having very abnormal distributions, CB eliminates
most compression artifacts - see Fig.2(c)-2(f).

To test unconstrained training, we applied the algorithms to a video in which
people are almost always moving in and out a building (see Fig.3(a)-3(d)). By λ-
filtering, CB was able to obtain the most complete background model.

Multiple backgrounds moving over a long period of time cannot be well trained
with techniques having limited memory constraints. A sequence of 1000 frames
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recorded at 30 frames per second (fps) was trained. It contains trees moving ir-
regularly over that period. The number of Gaussians allowed for MOG was 20. A
sample of size 300 was used to represent the background for Kernel. Fig.4(a)-4(d)
shows that CB captures most multiple background events. This is due to a compact
background model represented by quantized codewords. The implementation of our
approach is straightforward and it is faster than MOG and Kernel.

(a) original image (b) standard deviations (c) unimodal model in [1]

(d) MOG (e) Kernel (f) CB

Fig. 2. Detection results on a compressed video

(a) original image (b) MOG (c) Kernel (d) CB

Fig. 3. Detection results on training of non-clean backgrounds

(a) original image (b) MOG (c) Kernel (d) CB

Fig. 4. Detection results on very long-time backgrounds
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Automatic Parameter Estimation - ε1 and ε2

Automatic parameter selection is an important goal for visual surveillance systems
as addressed in [7]. Two of our parameters, ε1 and ε2, are automatically determined.
Their values depend on variation within a single background distribution, and are
closely related to false alarm rates. First, we find a robust measure of background
variation computed over a sequence of frames (of at least 90 consecutive frames,
about 3 seconds of video data). In order to obtain this robust measure, we calculate
the median color consecutive-frame difference over pixels. Then we calculate Θ
(median color frame difference) which is the median over time of these median
differences over space. For example, suppose we have a sequence of N images. We
consider the first pair of frames, and calculate the color difference at each pixel, and
take the median over space. We do this for all N−1 consecutive pairs, until we have
N − 1 medians. Then, Θ is the median of the N − 1 values. In fact, an over-space
median of medians over time is almost the same as Θ, while Θ is much easier to
calculate with limited memory. Θ will be proportional to the within class variance of
a single background. In addition, it will be a robust estimate, which is insensitive to
the presence of relatively small areas of moving foreground objects. The same color
difference metric should be used as in the background modeling and subtraction.

Finally, we multiply a constant k by this measure to obtain ε1(= kΘ). The default
value of k is 4.5 which corresponds approximately to a false alarm rate of detection
between .0001 - .002. ε2 can be set to k′Θ, where (k − 1) < k′ < (k + 1) but
usually k′ = k. Experiments on many videos show that these automatically chosen
threshold parameters ε1 and ε2 are sufficient. However, they are not always accept-
able, especially for highly compressed videos where we cannot always measure the
robust median accurately.

Layered modeling and detection - Model maintenance

The scene can change after initial training, for example, by parked cars, displaced
books, etc. These changes should be used to update the background model. We
achieve this by defining an additional model H called a cache and three parameters
described below:

• TH: the threshold for MNRL of the codewords in H;
• Tadd: the minimum time period required for addition, during which the codeword must

reappear;
• Tdelete: a codeword is deleted if it has not been accessed for a period of this long.

The periodicity of an incoming pixel value is filtered by TH, as we did in the back-
ground modeling. The values re-appearing for a certain amount of time (Tadd) are
added to the background model as short-term background. Some parts of a scene
may remain in the foreground unnecessarily long if adaptation is slow, but other
parts will disappear too rapidly into the background if adaptation if fast. Neither
approach is inherently better than the other. The choice of this adaptation speed is
problem dependent.
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We assume that the background obtained during the initial background modeling
is long-term. This assumption is not necessarily true, e.g., a chair can be moved
after the initial training, but, in general, most long-term backgrounds are obtainable
during training. Background values not accessed for a long time (Tdelete) are deleted
from the background model. Optimally, the long-term codewords are augmented
with permanent flags indicating they are not to be deleted∗. The permanent flags
can be applied otherwise depending on specific application needs.

Thus, a pixel can be classified into four subclasses - (1) background found in the
long-term background model, (2) background found in the short-term background
model, (3) foreground found in the cache, and (4) foreground not found in any of
them. The overview of the approach is illustrated in Fig.5. This adaptive modeling
capability allows us to capture changes to the background scene.

Background model
(long-,short-term)

Input video

Background
Subtraction

Cache

Foreground
Regions

Foreground
Model

Tracking
Final

Output

Short-term
backgrounds

Layers in 2.5D-like space

Foregroundshort-term backgrounds: color-
labeled based on ‘first-access-time’

Updating
Finding
Match

Finding
Match Updating

Fig. 5. The overview of our approach with short-term background layers: the foreground and
the short-term backgrounds can be interpreted in a different temporal order. The diagram
items in dotted line, such as Tracking, are added to complete a video surveillance system.

Adaptive codebook updating - detection under global illumination changes

Global illumination changes (for example, due to moving clouds) make it difficult to
conduct background subtraction in outdoor scenes. They cause over-detection, false
alarms, or low sensitivity to true targets. Good detection requires equivalent false
alarm rates over time and space. We discovered from experiments that variations of
pixel values are different (1) at different surfaces (shiny or muddy), and (2) under
different levels of illumination (dark or bright). Codewords should be adaptively
updated during illumination changes. Exponential smoothing of codeword vector
and variance with suitable learning rates is efficient in dealing with illumination
changes. It can be done by replacing the updating formula of vm with vm ← γxt +
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(1− γ)vm and appending σ2
m ← ρδ2 +(1− ρ)σ2

m to Step II-iv of the algorithm for
codebook construction. γ and ρ are learning rates. Here, σ2

m is the overall variance
of color distortion in the color model, not the variance of RGB. σm is initialized
when the algorithm starts. Finally the function colordist() in Eq.2 is modified to
colordist(xt,vi) = δ

σi
.

We tested a PETS’20011 sequence which is challenging in terms of multiple
targets and significant lighting variation. Fig.6(a) shows two sample points (labelled
1 and 2) which are significantly affected by illumination changes and Fig.6(b) shows
the brightness changes of those two points. As shown in Fig.6(d), adaptive codebook
updating eliminates the false detection which occurs on the roof and road in Fig.6(c).

(a) original image -
frame 1
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Fig. 6. Results of adaptive codebook updating for detection under global illumination
changes. Detected foregrounds on the frame 1105 are labelled with green color.

2 Performance Evaluation of Sensitive Target Detection

In this section, we propose a methodology, called Perturbation Detection Rate
(PDR) Analysis [6], for measuring performance of BGS algorithms, which is an
alternative to the common method of ROC analysis. The purpose of PDR analysis
is to measure the detection sensitivity of a BGS algorithm without assuming knowl-
edge of the actual foreground distribution. In PDR, we do not need to know exactly
what the distributions are. The basic assumption made is that the shape of the fore-
ground distribution is locally similar to that of the background distribution; however,
foreground distribution of small ("just-noticeable") contrast will be a shifted or per-
turbed version of the background distribution. This assumption is fairly reasonable
because, in modeling video, any object with its color could be either background or
foreground, e.g., a parked car could be considered as a background in some cases;
in other cases, it could be considered a foreground target. Furthermore, by varying
algorithm parameters we determine not a pair of error rates but a relation among the
false alarm and detection rates and the distance between the distributions.

Given the parameters to achieve a certain fixed FA-rate, the analysis is performed
by shifting or perturbing the entire BG distributions by vectors in uniformly random

1 IEEE International Workshop on Performance Evaluation of Tracking and Surveillance
2001 at http://www.visualsurveillance.org/PETS2001
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directions of RGB space with fixed magnitude Δ, computing an average detection
rate as a function of contrast Δ. It amounts to simulating possible foregrounds at
certain color distances. In the PDR curve, we plot the detection rate as a function of
the perturbation magnitude Δ given a particular FA-rate.

First, we train each BGS algorithm on N training background frames, adjusting
parameters as best we can to achieve a target FA-rate which would be practical in
processing the video. Typically this will range from .01% to 1% depending on video
image quality. To obtain a test foreground at color contrast Δ, we pass through the
N background frames again. For each frame, we perturb a random sample of M
pixel values (Ri, Gi, Bi) by a magnitude Δ in uniformly random directions.

The perturbed, foreground color vectors (R′, G′, B′) are obtained by generating
points randomly distributed on the color sphere with radius Δ. Then we test the BGS
algorithms on these perturbed, foreground pixels and compute the detection rate for
the Δ. By varying the foreground contrast Δ, we obtain an monotone increasing
PDR graph of detection rates. In some cases, one algorithm will have a graph which
dominates that of another algorithm for all Δ. In other cases, one algorithm may be
more sensitive only in some ranges of Δ. Most algorithms perform very well for a
large contrast Δ, so we are often concerned with small contrasts (Δ < 40) where
differences in detection rates may be large.

In this study, we compare four algorithms shown in Table 1. Since the algorithm
in [4] accepts normalized colors (KER) or RGB colors (KER.RGB) as inputs, it has
two separate graphs. Figure 2 shows the representative images from four test videos.

To generate PDR curves, we collected 100 empty consecutive frames from each
video. 1000 points are randomly selected at each frame. That is, for each Δ,
(100)×(1000) perturbations and detection tests were performed. Those 100 empty
frames are also used for training background models. During testing, no updating
of the background model is allowed. For the non-parametric model in KER and
KER.RGB, a sample size 50 was used to represent the background. The maximum

Table 1. Four algorithms used in PDR performance evaluation.

Name Background subtraction algorithm
CB codebook-based method described in Section 2

MOG mixture of Gaussians described in [2]
KER and KER.RGB non-parametric method using kernels described in [4]

UNI unimodal background modeling described in [1]

(a) indoor office (b) outdoor woods (c) red-brick wall (d) parking lot

Fig. 7. The sample empty-frames of the videos used for the experiments
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number of Gaussians allowed in MOG is 4 for the video having stationary back-
grounds and 10 for moving backgrounds. We do not use a fixed FA-rate for all four
videos. The FA-rate for each video is determined by these three factors - video qual-
ity, whether it is indoor or outdoor, and good real foreground detection results for
most algorithms. The FA-rate chosen this way is practically useful for each video.
The threshold value for each algorithm has been set to produce a given FA-rate. In
the case of MOG, the learning rate, α, was fixed to 0.01 and the minimum portion of
the data for the background, T , was adjusted to give the desired FA-rate. Also, the
cluster match test statistic was set to 2 standard deviations. Unless noted otherwise,
the above settings are used for the PDR analysis.

Evaluation Results

Figures 9(a) and 9(b) show the PDR graphs for the videos in Figures 7(a) and 7(b)
respectively. For the indoor office video, consisting almost entirely of stationary
backgrounds, CB and UNI perform better than the others. UNI, designed for uni-
modal backgrounds, has good sensitivity as expected. KER performs intermediately.
MOG and KER.RGB do not perform as well for small contrast foreground Δ, prob-
ably because, unlike the other algorithms, they use original RGB variables and don’t
separately model brightness and color. MOG currently does not model covariances
which are often large and caused by variation in brightness. It is probably best to
explicitly model brightness. MOG’s sensitivity is consistently poor in all our test
videos, probably for this reason.

For the outdoor video, all algorithms perform somewhat worse even though the
FA-rate has been increased to 1% from .01%. CB and KER, both of which model
mixed backgrounds and separate color/brightness, are most sensitive, while, as ex-
pected, UNI does not perform well as in the indoor case. KER.RGB and MOG are
also less sensitive outdoors, as before indoors.

Figure 2 depicts a real example of foreground detection, showing real differ-
ences in detection sensitivity for two algorithms. These real differences reflect per-
formance shown in the PDR graph in Figure 9(c). The video image in Figure 8(a)
shows someone with a red sweater standing in front of a brick wall of somewhat
different reddish color. There are detection holes through the sweater (and face) in
the MOG result (Figure 8(b)) . The CB result in Figure 8(c) is much better for this

(a) original frame of a per-
son in a red sweater

(b) detection using MOG (c) detection using CB

Fig. 8. Sensitive detection at small delta
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small contrast. After inspection of the image, the magnitude of contrast Δ was de-
termined to be about 16 in missing spots. This was due to difference in color balance
and not overall brightness. Figure 9(c) shows a large difference in detection for this
contrast, as indicated by the vertical line.

Figures 9(d), 9(e), 9(f) show how sensitively the algorithms detect foregrounds
against a scene containing moving backgrounds (trees) as well as stationary sur-
faces. In order to sample enough moving background events, 300 frames are allowed
for training. As for previous videos, a PDR graph for the ‘parking lot’ video is given
in Figure 9(d). Two windows are placed to represent ‘stationary’ and ‘moving back-
grounds’ as shown in Figure 7(d). PDR analysis is performed on each window with
the FA-rate obtained only within the window - a ‘window’ false alarm rate (instead
of ‘frame’ false alarm rate).

Since most of the frame is stationary background, as expected, the PDR graph
(Figure 9(e)) for the stationary background window is very close to that for the entire
frame. On the other hand, the PDR graph (Figure 9(f)) for the moving background
window is generally shifted right, indicating reduced sensitivity of all algorithms for
moving backgrounds. Also, it shows differences in performance among algorithms,
with CB and KER performing best. These results are qualitatively similar those for
the earlier example of outdoor video shown in Figure 5. We can offer the same
explanation as before: CB and KER were designed to handle mixed backgrounds,
and they separately model brightness and color. In this video experiment, we had
to increase the background sample size of KER to 270 frames from 50 in order to
achieve the target FA-rate in the case of the moving background window. It should
be noted that CB, like MOG, usually models background events over a longer period
than KER.

3 Multi-camera Segmentation and Tracking of People

A multi-view multi-hypothesis approach, named M3Tracker, to segmenting and
tracking multiple (possibly occluded) persons on a ground plane is presented. Dur-
ing tracking, several iterations of segmentation are performed using information
from human appearance models and ground plane homography. The full algorithm
description is available in [30].

Survey on people tracking techniques

Table 22 lists different single-camera and multi-camera algorithms for people track-
ing along with their characteristics.

Human appearance model

First, we describe an appearance color model as a function of height that assumes
that people are standing upright and are dressed, generally, so that consistently col-
ored or textured color regions are aligned vertically. Each body part has its own color
2 MCMC: Markov chain Monte Carlo, KLT: Kanade-Lucas-Tomasi, JPDAF: Joint Proba-

bilistic Data Association Filter, Tsai’s: [22], I: indoor, O: outdoor, n/a: not applicable.



276 K. Kim and L.S. Davis
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(a) PDR for ’indoor office’ in Figure
7(a)
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(b) PDr for ’outdoor woods’ in Figure
7(b)

Detection rate at perturbation Δ
(video 'red-brick wall' / false alarm rate = .01%)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

Δ

D
et

ec
tio

n 
R

at
e(

%
) CB

MOG

KER

KER.RGB

UNI

(c) PDR for ‘red-brick wall’ in Figure
7(c)

Detection rate on frame at perturbation Δ
(video 'parking lot' / 'frame' false alarm rate = .1%)
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(d) PDR for ‘parking lot’ in Figure 7(d)

Detection rate on window at perturbation Δ
(video 'parking lot' / 'window' false alarm rate = .1%)
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(e) PDR for window on stationary back-
ground (Figure 7(d))

Detection rate on window at perturbation Δ
(video 'parking lot' / 'window' false alarm rate = .1%)
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(f) PDR for window on moving back-
ground (Figure 7(d))

Fig. 9. PDR graphs
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Table 2. Characteristics of people tracking algorithms

Comparison chart 1
Algorithm Tracking Segment Occlusion Human Appearance

-ation Analysis Model

si
ng

le

Haritaoglu [8] Heuristic Yes No Temporal template
Elgammal [9] n/a Yes Yes Kernel density est.
Zhao [10] MCMC No Yes Shape, histogram
Rabaud [11] KLT tracker No No Feature-based

m
ul

ti
-c

am
er

a

Yang [12] No (counting) No Yes None
Khan [13] Look-ahead No Yes None
Kang [14] JPDAF, Kalman No Yes Polar color distrib.
Javed [15] Voting-based No No Dynamic color histo.
Mittal [16] Kalman Yes Yes Kernel density
Eshel [17] Score-based No Yes None
Jin [18] Kalman No Yes Color histogram
Black [19] Kalman No Yes Unknown
Xu [20] Kalman No No Histogram intersect.
Fleuret [21] Dynamic prog. No Yes Color distrib.
Ours Particle filtering Yes Yes Kernel density

Comparison chart 2
Algorithm Calibration Area Sensors Background Initialization

Subtraction

si
ng

le

Haritaoglu [8] n/a O B/W Yes Auto
Elgammal [9] n/a I Color Yes Manual
Zhao [10] Yes O Color Yes Auto
Rabaud [11] No O Color No Auto

m
ul

ti
-c

am
er

a

Yang [12] Yes I Color Yes Auto
Khan [13] Homography O Color Yes n/a
Kang [14] Homography O Color Yes Unknown
Javed [15] No I,O Color Yes Manual
Mittal [16] Stereo I Color Yes Auto
Eshel [17] Homography I,O B/W Yes Unknown
Jin [18] Homography I Color, IR Yes Manual
Black [19] Tsai’s O Color Yes Auto
Xu [20] Tsai’s O Color Yes Auto
Fleuret [21] Homography I,O Color Yes Unknown
Ours Homography I,O Color Yes Auto
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model represented by a color distribution. To allow multimodal densities inside each
part, we use kernel density estimation.

Let M = {ci}i=1...NM be a set of pixels from a body part with colors ci. Using
Gaussian kernels and an independence assumption between d color channels, the
probability that an input pixel c = {c1, ..., cd} is from the model M is estimated as

pM (c) =
1

NM

NM∑
i=1

d∏
j=1

1√
2πσj

e
− 1

2

(
cj−ci,j

σj

)2

(4)

In order to handle illumination changes, we use normalized color (r = R
R+G+B , g =

G
R+G+B , s = R+G+B

3 ) or Hue-Saturation-Value (HSV) color space with a wider
kernel for ‘s’ and ‘V’ to cope with the higher variability of these lightness variables.
We used both the normalized color and HSV spaces in our experiments and observed
similar performances.

Viewpoint-independent models can be obtained by viewing people from different
perspectives using multiple cameras. A related calibration issue was addressed in
[24, 26] since each camera output of the same scene point taken at the same time or
different time may vary slightly depending on camera types and parameters.

Multi-camera Multi-person Segmentation and Tracking

Foreground segmentation. Given image sequences from multiple overlapping
views including people to track, we start by performing detection using background
subtraction to obtain the foreground maps in each view. The codebook-based back-
ground subtraction algorithm is used.

Each foreground pixel in each view is labelled as the best matching person (i.e.,
the most likely class) by Bayesian pixel classification as in [16]. The posterior prob-
ability that an observed pixel x (containing both color c and image position (x, y)
information) comes from person k is given by

P (k|x) =
P (k)P (x|k)

P (x)
(5)

We use the color model in Eq.4 for the conditional probability P (x|k). The color
model of the person’s body part to be evaluated is determined by the information of
x’s position as well as the person’s ground point and full-body height in the camera
view (See Fig.10(a)). The ground point and height are determined initially by the
method defined subsequently in Sec.3.

The prior reflects the probability that person k occupies pixel x. Given the ground
point and full-body height of the person, we can measure x’s height from the ground
and its distance to the person’s center vertical axis. The occupancy probability is
then defined by
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Ok(hk(x), wk(x)) = P [wk(x) < W (hk(x))] = 1 − cdfW (hk(x))(wk(x)) (6)

where hk(x) and wk(x) are the height and width of x relative to the person k. hk and
wk are measured relative to the full height of the person. W (hk(x)) is the person’s
height-dependent width and cdfW (.) is the cumulative density function for W . If
x is located at distance W (hk(x)) from the person’s center at a distance W , the
occupancy probability is designed so that it will be exactly 0.5 (while it increases or
decreases as x move towards or move away from the center).

The prior must also incorporate possible occlusion. Suppose that some person l
has a lower ground point than a person k in some view. Then the probability that l
occludes k depends on their relative positions and l’s (probabilistic) width. Hence,
the prior probability P (k) that a pixel x is the image of person k, based on this
occlusion model, is

P (k) = Ok(hk, wk)
∏

gy(k)<gy(l)

(1 − Ol(hl, wl)) (7)

where gy(k) is the y-location of the ground point of k and x is omitted for simplicity
(i.e., hk = hk(x) and wk = wk(x)).

The best class k∗ is determined by maximum a posteriori (MAP) estimation:
k∗ = arg max

k
P (k)P (x|k). Finally, the foreground maps are segmented into

the best matching persons based on their appearance models and occlusion
information.

Model initialization and update. Full automatic tracking is enabled by initializing
the human appearance model when a person is detected in a view by searching
for isolated foreground blobs (See Fig.10(b)). In order to get a bounding box of a
person from the foreground map, we used the object detection technique in [25].
The bounding boxes in the figure were created when the blobs are isolated before.
For the case when a person does not constitute an isolated blob, a manual selection
is employed. The full-body height of a person is initialized upon model creation

person k

torso

bottom

hk

wk

head

Wtorso
(with medium variance)

Whead (with low variance)

Wbottom
(with high variance)

pixel to be 
evaluated

ground point

(a) (b)

Fig. 10. (a) Illustration of appearance model, (b) Bounding box detection
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and is updated during segmentation. When the unclassified pixels (those having a
probability in Eq.4 lower than a given threshold) constitute a connected component
of non-negligible size, a new appearance model should be created.

Multi-view integration. Ground plane homography: The segmented blobs across
views are integrated to obtain the ground plane locations of people. The correspon-
dence of a human across multiple cameras is established by the geometric con-
straints of planar homographies. For NV camera views, NV (NV − 1) homography
matrices can possibly be calculated for correspondence; but in order to reduce the
computational complexity we instead reconstruct the top-view of the ground plane
on which the hypotheses of peoples’ locations are generated.

Integration by vertical axes: Given the pixel classification results from Sec.3, a
ground point of a person could be simply obtained by detecting the lowest point of
the person’s blob. However those ground points are not reliable due to the errors
from background subtraction and segmentation.

We, instead, develop a localization algorithm that employs the center vertical axis
of a human body, which can be estimated more robustly even with poor background
subtraction [29]. Ideally, a person’s body pixels are arranged more of less symmetri-
cally about a person’s central vertical axis. An estimate of this axis can be obtained
by Least Mean Squares of the perpendicular distance between the body pixel and
the axis as in 3© in Fig.11. Alternatively, the Least Median Squares could be used
since it is more robust to outliers.

The homographic images of all the vertical axes of a person across different views
intersect at (or are very close to) a single point (the location of that person on the
ground) when mapped to the top-view (See [29], [30]). In fact, even when the ground
point of a person from some view is occluded, the top-view ground point integrated
from all the views is obtainable if the vertical axis is estimated correctly. This in-
tersection point can be calculated by minimizing the perpendicular distances to the
axes. Fig.11 depicts an example of reliable detection of the ground point from the
segmented blobs of a person. The Nv vertical axes are mapped to the top-view and
transferred back to each image view.

Let each axis Li be parameterized by two points {(xi,1, yi,1), (xi,2, yi,2)}i=1...NV .
When mapped to the top-view by homography as in 4© in Fig.11, we obtain
{(x̂i,1, ŷi,1), (x̂i,2, ŷi,2)}i=1...NV . The distance of a ground point (x, y) to the axis

is written as d ((x, y), Li) = |aix+biy+ci|√
a2

i +b2i
where ai = ŷi,1 − ŷi,2, bi = x̂i,2 − x̂i,1,

and ci = x̂i,1ŷi,2 − x̂i,2ŷi,1. The solution is the point that minimizes a weighted
sum of square distances:

(x∗, y∗) = arg min
(x,y)

NV∑
i=1

w2
i d2((x, y), Li) (8)

The weight wi is determined by the segmentation quality (confidence level) of the
body blob of Li (We used the pixel classification score in Eq.5).
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Top-view ground plane
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Fig. 11. All vertical axes of a person across views intersect at (or are very close to) a single
point when mapped to the top-view

If a person is occluded severely by others in a view (i.e., the axis information is
unreliable), the corresponding body axis from that view will not contribute heavily
to the calculation in Eq.8. When only one axis is found reliably, then the lowest
body point along the axis is chosen.

To obtain a better ground point and segmentation result, we can iterate the seg-
mentation and ground-point integration process until the ground point converges to
a fixed location within a certain bound ε. That is, given a set of initial ground-point
hypotheses of people as in 1© in Fig.11, segmentation in Sec.3 is performed ( 2©),
and then newly moved ground points are obtained based on multi-view integration
( 4© and 5©). These new ground points are an input to the next iteration. 2-3 iterations
gave satisfactory results for our data sets.

There are several advantages of our approach. Even though a person’s ground
point is invisible or there are segmentation and background subtraction errors, the
robust final ground point is obtainable once at least two vertical axes are correctly
detected. When total occlusion occurs from one view, robust tracking is possible
using the other views’ information if available; visibility of a person can be maxi-
mized if cameras are placed at proper angles. Since the good views for each tracked
person are changing over time, our algorithm maximizes the effective usage of all
available information across views. By iterating the multi-view integration process,
a ground point moves to the optimal position that explains the segmentation results
of all views. This nice property is used, in the next section, for a small number of
hypotheses to explore in a large state space that incorporates multiple persons and
multiple views.

Extension to Multi-hypothesis Tracker

Next, we extend our single-hypothesis tracker to one with multiple hypotheses. A
single hypothesis tracker, while computationally efficient, can be easily distracted
by occlusion or nearby similarly colored objects.
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The iterative segmentation-searching presented in Sec.3 is naturally incorporated
with a particle filtering framework. There are two advantages - (1) By searching for
a person’s ground point from a segmentation, a set of a few good particles can be
identified, resulting in low computational costs, (2) Even if all the particles are away
from the true ground point, some of them will move towards the true one as long as
they are initially located nearby. This does not happen generally with particle filters,
which need to wait until the target “comes to" the particles.

Our final M3Tracker algorithm of segmentation and tracking is presented with a
particle filter overview and our state space, dynamics, and observation model.

Overview of particle filter, state space, and dynamics. The key idea of par-
ticle filtering is to approximate a probability distribution by a weighted sample
set S = {(s(n), π(n))|n = 1...N}. Each sample, s, represents one hypothetical
state of the object, with a corresponding discrete sampling probability π, where∑N

n=1 π(n) = 1. Each element of the set is then weighted in terms of the observa-
tions and N samples are drawn with replacement, by choosing a particular sample
with probability π

(n)
t = P (zt|xt = s(n)

t ).
In our particle filtering framework, each sample of the distribution is simply given

as s = (x, y) where x, y specify the ground location of the object in the top-view.
For multi-person tracking, a state st = (s1,t, ..., sNp,t) is defined as a combination of
Np single-person states. Our state transition dynamic model is a random walk where
a new predicted single-person state is acquired by adding a zero mean Gaussian
with a covariance Σ to the previous state. Alternatively, the velocity ẋ, ẏ or the size
variable height and width can be added to the state space and then a more complex
dynamic model can be applied if relevant.

Observation. Each person is associated with a reference color model q� which is
obtained by histogram techniques [27]. The histograms are produced using a func-
tion b(ci) ∈ {1, ..., Nb} that assigns the color vector ci to its corresponding bin. We
used the color model defined in Sec.3 to construct the histogram of the reference
model in the normalized color or HSV space using Nb (e.g., 10 × 10 × 5) bins to
make the observation less sensitive to lighting conditions.

The histogram q(C) = {q(u; C)}u=1...Nb
of the color distribution of the sample

set C is given by

q(u; C) = η

NC∑
i=1

δ[b(ci) − u] (9)

where u is the bin index, δ is the Kronecker delta function, and η is a normalizing
constant ensuring

∑Nb

u=1 q(u; C) = 1. This model associates a probability to each
of the Nb color bins.

If we denote q� as the reference color model and q as a candidate color model,
q� is obtained from the stored samples of person k’s appearance model as men-
tioned before while q is specified by a particle sk,t = (x, y). The sample set C in
Eq.9 is replaced with the sample set specified by sk,t. The top-view point (x, y) is
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transformed to an image ground point for a certain camera view v, Hv(sk,t), where
Hv is a homography mapping the top-view to the view v. Based on the ground point,
a region to be compared with the reference model is determined. The pixel values
inside the region are drawn to construct q. Note that the region can be constrained
from the prior probability in Eq.7, including the occupancy and occlusion informa-
tion (i.e., by picking pixels such that P (k) > Threshold, typically 0.5). In addition,
as done in pixel classification, the color histograms are separately defined for each
body part to incorporate the spatial layout of the color distribution. Therefore, we
apply the likelihood as the sum of the histograms associated with each body part.

Then, we need to measure the data likelihood between q� and q. The Bhat-
tacharyya similarity coefficient is used to define a distance d on color histograms:

d[q�,q(s)] =
[
1 −

Nb∑
u=1

√
q � (u)q(u; s)

] 1
2

. Thus, the likelihood (πv,k,t) of person

k consisting of Nr body parts at view v, the actual view-integrated likelihood (πk,t)
of a person sk,t, and the final weight of the particle (πk,t) of a concatenation of Np

person states are respectively given by:

πv,k,t ∝ e
∑Nr

r=1 −λd2[q�
r ,qr(Hv(sk,t))], πk,t = ΠNV

v=1πv,k,t, πt = Π
Np

k=1πk,t (10)

where λ is a constant which can be experimentally determined.

The M3Tracker algorithm. Iteration of segmentation and multi-view integration
moves a predicted particle to an a better position on which all the segmentation
results of the person agree. The transformed particle is re-sampled for processing of
the next frames.

Algorithm for Multi-view Multi-target Multi-hypothesis tracking

I. From the “old" sample set St−1 = {s(n)
t−1, π

(n)
t−1}n=1,...,N at time t− 1, construct the

new samples as follows:
II. Prediction: for n = 1, ..., N , draw s̃(n)

t from the dynamics. Iterate Step III to IV for
each particle s̃(n)

t .
III. Segmentation & Search

s̃t = {s̃k,t}k=1...Np contains all persons’ states. The superscript (n) is omitted
through the Observation step.
i. for v ← 1 to NV do

(a) For each person k, (k = 1...Np), transform the top-view point s̃k,t into
the ground point in view v by homography, Hv (̃sk,t)

(b) perform segmentation on the foreground map in view v with the occlusion
information according to Sec5.

end for
ii. For each person k, obtain the center vertical axes of the person across views, then

integrate them on the top-view to obtain a newly moved point s̃∗k,t as in Sec3.
iii. For all persons, if ‖s̃k,t − s̃∗k,t‖ < ε, then go to the next step. Otherwise, set

s̃k,t ← s̃∗k,t and go to Step III-i.
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IV. Observation
i. for v ← 1 to NV do

For each person k, estimate the likelihood πv,k,t in view v according to
Eq.10. s̃k,t needs to be transferred to view v by mapping through Hv for eval-
uation. Note that qr(Hv (̃sk,t)) is constructed only from the non-occluded
body region.

end for
ii. For each person k, obtain the person likelihood πk,t by Eq.10.

iii. Set πt ← Π
Np

k=1πk,t as the final weight for the multi-person state s̃t.

V. Selection: Normalize {π(n)
t }i so that

∑N
n=1 π

(n)
t = 1.

For i = n...N , sample index a(n) from discrete probability {π(n)
t }i over {1...N},

and set s(n)
t ← s̃

a(n)
t .

VI. Estimation: the mean top-view position of person k is
∑N

n=1 π
(n)
t s

(n)
k,t .

People Tracking Results

The results on the indoor sequences are depicted in Fig.12. The bottom-most row
shows how the persons’ vertical axes are intersecting on the top-view to obtain their
ground points. Small orange box markers are overlaid on the images of frame 198
for determination of the camera orientations. Note that, in the figures of ‘vertical
axes’, the axis of a severely occluded person does not contribute to localization
of the ground point. When occlusion occurs, the ground points being tracked are
displaced a little from their correct positions but are restored to the correct positions
quickly. Only 5 particles (one particle is a combination of 4 single-person states) was
used for robust tracking. Those indoor cameras could be easily placed properly in
order to maximize the effectiveness of our multi-view integration and the visibility
of the people.

Fig.13(a) depicts the graph of the total distance error of people’s tracked ground
points to the ground truth points. It shows the advantage of multiple views for track-
ing of people under severe occlusion.

Fig.13(b) visualizes the homographic top-view images of possible vertical axes.
A vertical axis in each indoor image view can range from 1 to each maximum im-
age width. 7 transformed vertical axes for each view are depicted for visualization.
It helps to understand how the vertical axis location obtained from segmentation af-
fects ground point (intersection) errors on the top-view. When angular separation is
close to 180 degrees (although visibility is maximized), the intersection point of two
vertical axes transformed to top-view may not be reliable because a small amount
of angular perturbation make the intersection point move dramatically.

The outdoor sequences (3 views, 4 persons) are challenging in that three peo-
ple are wearing similarly-colored clothes and the illumination conditions change
over time, making segmentation difficult. In order to demonstrate the advantage of
our approach, single hypothesis (deterministic search only) tracker, general particle
filter, and particle filter with deterministic search by segmentation (our proposed
method) are compared in Fig.14. The number of particles used is 15.
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Fig. 12. The tracking results of 4-view indoor sequences from Frame 138 to 198 are shown
with the segmentation result of Frame 138
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frame362 frame407

deterministic
search only

general
particle filter

our method
Initially, all methods are good.

Fig. 14. Comparison on three methods: While the deterministic search with a single hypoth-
esis (persons 2 and 4 are good, cannot recover lost tracks) and the general particle filter (only
person 3 is good, insufficient observations during occlusion) fail in tracking all the persons
correctly, our proposed method succeeds with a minor error. The view 2 was only shown
here. The proposed system tracks the ground positions of people afterwards over nearly 1000
frames.

Conclusions

All the topics described in the book chapter are all closely related and geared toward
intelligent video surveillance.

Our adaptive background subtraction algorithm, which is able to model a back-
ground from a long training sequence with limited memory, works well on moving
backgrounds, illumination changes (using our color distortion measures), and com-
pressed videos having irregular intensity distributions.

We presented a perturbation method for measuring sensitivity of BGS algorithms.
PDR analysis has two advantages over the commonly used ROC analysis: (1) It does
not depend on knowing foreground distributions, (2) It does not need the presence
of foreground targets in the video in order to perform the analysis, while this is re-
quired in the ROC analysis. Because of these considerations, PDR analysis provides
practical general information about the sensitivity of algorithms applied to a given
video scene over a range of parameters and FA-rates.

A framework to segment and track people on a ground plane is presented. The
multi-view tracker is extended efficiently to a multi-hypothesis framework (M3

Tracker) using particle filtering. To tackle with the explosive state space due to mul-
tiple targets and views, the iterative segmentation-searching is incorporated with a
particle filtering framework. By searching the ground point from segmentation, a set
of a few good particles can be identified, resulting in low computational costs.
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Abstract. As surveillance cameras become widespread, filters are needed to proc-
ess large streams of image data and spot interesting events. Programmed image 
filters generally result in low to medium performing solutions. Data-derived filters 
perform better in that they tap on selected image features, but require a per-sensor 
effort by an analyst or a machine learning expert. This contribution addresses filter 
shaping as a data-driven process that is ‘placed in the hands of many end-users’ 
with extensive domain knowledge but no expertise in machine learning. The focus 
is on interactive machine learning technologies as a means to achieve self-
programming and specialization of image filters that learn to search images by 
their content, sequential order, and temporal attributes. We describe and assess the 
performance of two interactive algorithms designed and implemented for a real 
case study in process monitoring for nuclear safeguards. Experiments show that 
interactive machine learning helps detect safeguards relevant event while signifi-
cantly reducing the number of false positives. 

Keywords: Interactive machine learning, Hidden Markov models, Decision trees. 

1   Overview 

As camera technology becomes widespread (for example surveillance cameras), 
filters are needed to process large streams of image data and spot relevant events 
as seen from the camera point-of-view in the world.  

A-priori programming of image filters generally results in low to medium per-
forming solutions, because the programming attitude is - by definition - generalist, 
largely assuming, and non-situated. By contrast, data-derived filters perform better 
in that they tap on specific image features, but require a per-sensor effort by an ana-
lyst or machine learning (ML) expert whose availability is scarce. To overcome this 
limitation, we address filter shaping as a data-driven process that is placed in the 
hands of many end-users with extensive domain knowledge but no expertise in ML. 
                                                           
* Corresponding author. 
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The contribution arises from a case study in process monitoring for nuclear 
safeguards where a review tool for streams of surveillance images is designed and 
developed. This combines: a scene change detection algorithm, pattern classifica-
tion in a relevance feedback context, automatic selection of image features, and 
suitable visualization and interaction loops.  

The focus of this contribution is on interactive machine learning (IML) tech-
nologies as a means to achieve self-programming and specialization of filters that 
learn to search images by their content, sequential order, and temporal attributes to 
speed up the detection of relevant images in large surveillance streams. The ulti-
mate objective is to design a self-improving tool to assist nuclear inspectors in im-
age review tasks. In a nutshell, filters learn to detect relevant images based on ex-
amples labeled by the nuclear inspectors online, in an iterative way. At each 
iteration, new image filters are induced and swiftly used to re-classify the image 
stream for inspection.  

For IML to become viable, we acknowledge the need to provide the user with a 
meaningful experience, given that the review tool changes its behavior over time 
due to its learning capabilities. Further, a number of practical conditions exist for 
IML be deployable to everyday users. First, all ML technicalities have to be ‘hid-
den’: our target user is neither a scientist nor an expert of ML, nor a person who 
has the attitude and time to work with ML configuration parameters. Second, the 
quality of learning should be manifest to the user for him/her to decide whether to 
accept or not the selection of images presented as ‘relevant’ by the tool. Are these 
all the relevant images s/he needs to see out of a large set? Is the tool capturing 
what s/he is looking for or is it just over-fitting few example images? Is the learn-
ing tool ‘confused’? Third, since users label examples online, computation time 
becomes a central issue: it needs to stay within a human acceptable level from one 
training iteration to the next. 

 

In this Chapter we discuss interactive machine learning from an applicative stand-
point. Sections 2, 3 and 4 are introductory: we review state-of-the-art approaches 
in IML, establish the difference between uninformed and informed image filters, 
and describe the context of surveillance for nuclear safeguards. Section 5 explains 
the significance of using ML in this context: it provides continuity of knowledge 
between image reviews which otherwise lacks. Sections 6 to 8 deal with the filters 
themselves: Section 6 presents an uninformed filtering technique, whereas Sec-
tions 7 and 8 describe the core contributions of this Chapter, namely two IML fil-
ters for image streams based on decision trees and Markov models. In Section 9 
we present tests conducted on the use of these filters on real safeguards image 
streams. Section 10 wraps up and concludes. 

2   Interactive Machine Learning 

Classical machine learning (ML) assumes a sufficiently large set of labeled data is 
available to estimate the ML model parameters and test its generalization capabil-
ity. Computation time, due to model inference and testing, is generally a non is-
sue. Predictive accuracy of the model is the main goal of ML.  
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By contrast, interactive machine learning (IML) applies to situations where few 
labeled examples become available over time. The training set grows iteratively 
with a user labeling examples online -mostly to correct wrong classifications or to 
resolve uncertainties that appear when the model is tested.  In this setting, compu-
tation time is the user’s time, and becomes a central issue.   

Conceptually, IML approaches may be framed in two groups depending on who 
drives the examples’ labeling process: we distinguish between (i) user centered 
methods and (ii) active learning techniques.  

User centered methods leave entirely to the user the decision as to which data 
points to label. The underlying rationale is to take highest advantage of the user’s 
understanding of the domain area from which the data originated. This also in-
cludes the user’s expectations on the IML model’s performance on a given task. 
For example, in most surveillance tasks it is not necessary that an image review 
tool classifies as relevant all images related to a specific event: it is sufficient that 
the tool detects a ‘large enough’ set of images around the event so as to focus the 
user’s attention to that part of the image stream [1]. Although fuzzy, this perform-
ance criterion makes sense for humans. However, it hardly translates in a clear  
cut optimization criterion needed for machine learning, and is very application  
dependent. 

In the case of active learning, an algorithm selects data points which should re-
ceive a label by the user. This decision is driven, for instance, by the uncertainty 
associated to data classification as measured by the algorithm. For example, data 
points that fall close to decision boundaries of a classifier are the most uncertain 
from a classification point of view, and would be presented with priority for the 
user to label them. 

In short, user centered approaches appear to be more domain- and task-related, 
while active learning techniques are more generic and driven by the idea of maxi-
mizing the predictive accuracy of the IML model.  

In what follows user centered approaches and active learning are illustrated by 
selected sample works drawn from the state-of the-art. Though not mutually ex-
clusive, it appears that either one approach or the other is adopted in each IML set-
ting we have surveyed. 

2.1   User Centered Methods 

User centered techniques originated within the human-computer interaction re-
search community for the design of perceptual user interfaces and interactive sen-
sors as enabling technologies for ubiquitous computing.  

As an example, [2, 3, 4] describe ‘Crayons’, a tool to design user interfaces for 
camera-based interaction. By this tool, interface designers can turn any surface 
visible to cameras into interactive widgets (e.g., buttons, sliders). Widgets are then 
triggered by the presence of hands on their area. To implement the widgets, the 
core part of the tool is a facility to train a ‘skin’ classifier by IML. The designer 
paints portions of training images with ‘skin’ or a ‘background’ crayons, thus 
generating training data in few stokes. The labeled data is used to induce auto-
matically a decision tree based classifier [5, 6]. The classifier is then run on test 
images for the user to decide if the skin detection performance is appropriate. To 
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this goal, the tool interface augments the original images with two semi-
transparent layers, one showing the original training data (if any), the other show-
ing the image classification. 

Several key aspects of this set-up are recurrent in user centered IML scenarios 
dealing with image data. First, ordinary users have no familiarity with image 
processing, feature selection, and machine learning to build an image classifier.  
They do, however, have a good understanding of what it means to locate an object 
of interest on the image plane. Second, to describe the image content, a generic 
IML toolkit needs to embed a large repertoire of image features (e.g. color, shape, 
texture, motion-related) and gradually select those describing the content of inter-
est to the user. The Crayon prototype includes 175 features per pixel. Although 
feature selection has a computational cost, it is largely paid off by the fact that 
testing a compact classifier is much faster than running one built on a fixed, large 
set of (mostly irrelevant) features. Feature selection speeds-up interaction with the 
user when working with data sets made of thousands of images. Third, special 
care is to be put on the design of the interface for the user to generate the training 
examples. In the case of Crayons, the ‘paint’ action generates hundreds of exam-
ples in one go, thus reducing that number of ‘user iterations’ needed to generate an 
accurate a classifiers. Fourth, the authors conclude that having a fast training  
algorithm is more important than strong induction. By using the Crayons toolkit, 
interface designers were able to created skin classifiers in few minutes, despite no 
specific knowledge in image processing or machine learning. Though data overfit-
ting may occur, this can be readily perceived by the designer and corrected by the 
addition of new examples on ‘problem areas’. Hence, fifth, a powerful output in-
terface is needed for the user to decide on the quality of learning.  

Other works [7, 8] on user centered approaches have studied the role of rich 
user feedback as means to improve a classifier’s accuracy over the longer term; 
researched ways to incorporate user feedback into machine learning algorithms 
besides the generation of additional training examples, and emphasized the value 
of IML systems that can explain their results in a user understandable way. 

Finally, [9] explored techniques that let users build directly classifiers (decision 
trees) by visual means. 

2.2   Active Learning 

Active learning is based on the premise that the learner has access to a pool of 
unlabeled data and can ask labels for some of these. The issue is to find a strategy 
that limits the number of label requests while inducing an accurate classifier [10]. 

A work with good theoretical foundations in pool-based active learning is pre-
sented in [11, 12] using support vector machines (SVMs) [13] as classifier. 
Benchmark results are provided for text classification [11] and image retrieval 
[12]. 

For illustrative purposes, a simple linear SVM for binary classification can be 
visualized as the hyperplane separating (in a high-dimensional feature space) the 
(projected) ‘relevant’ and ‘irrelevant’ training data by a maximal margin (Fig. 1, 
the training data are the empty circles and the crosses), the margin of the SVM  
being the distance between the closest training data points of both classes to the 
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hyperplane. The maximal margin requirement is to optimize the predictive accu-
racy on test data [13]. Given a training set, SVMs can be induced by established 
learning techniques [13]. 
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Fig. 1. A linear SVM trained by active learning for information retrieval 

The active learning setting requires defining a search strategy to select the next 
data point from the pool to be labeled by the user (Fig. 1, all triangles). Noting that 
each labeled instance restricts the space of possible SVMs consistent1 with the ex-
tended training set, the goal is to select a data point which, when labeled, reduces 
the SVMs solution space as quickly as possible. In view of this, a good search 
strategy is to choose a data point that halves the set of SVMs solution space [11].  

Because it is unpractical to compute the size of the SVM solution spaces ob-
tained by labeling each possible data point as positive or negative, approximations 
are provided based on the concept of margin [11]. From a computational view, the 
cheapest one is the simple margin rule. It states that, given a SVM, the next points 
to label are the data points closest to the SVM’s hyperplane (Fig. 1, gray trian-
gles). The rule reflects the intuition that the most uncertain predictions fall close to 
the boundary of the current classifier. Hence, labeling these points mostly helps 
disambiguating the classification problem.   

For a symmetric argument, data points which fall far away from the SVM hy-
perplane have a higher prediction confidence.  This observation leads to a natural 
implementation of content-based image retrieval (see also Section 7) with SVMs 
in an active learning context [12]. Given a pool of images, the retrieval system is 
seeded by the user labeling a random set of images. On this, a first SVM is in-
duced and an iterative process starts. At each iteration, the user is asked to label 
the images closest to the SVM boundary and a new SVM is induced. Given a final 

                                                           
1 The consistent space is the space of SVMs that separate perfectly the training set extended 

by the newly labeled data point. 
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SVM, the images retrieved by the system are those classified ‘relevant’ and falling 
the farthest away from the SVM hyperplane (Fig. 1, black triangles and black  
circles).  

Experimental results [12] show that the active SVM achieves higher search ac-
curacy in image retrieval tasks than traditional query refinement schemes. In par-
ticular, it outperforms the passive SVM where the examples to be labeled by the 
user are selected at random.  

On the negative side, it has been observed that the performance of SVMs in im-
age retrieval trained by active learning can be affected by several factors [14]: (i) 
small size training sets may lead to SVMs instabilities; (ii) SVMs are sensitive to 
the presence of an unbalanced number of positive and negative feedbacks; (iii) 
overfitting may occur due to an unbalanced number of image features and exam-
ples in the training set. To mitigate these problems, an asymmetric bagging and 
random subspace technique has recently been proposed and validated on bench-
mark image sets [14]. Briefly, bagging addresses the SVM instability problem by 
creating multiple classifiers then aggregated by majority voting. Each classifier is 
trained on a balanced number of positive and negative samples due to a procedure 
which bootstraps only the negatives examples (asymmetric bagging). Finally, this 
is coupled with a random subspace method, which bootstraps -this time- in feature 
space to re-balance the number of features with the number of training examples.  

In summary, active learning is a lively area of research and very relevant for 
image retrieval contexts. Still, it appears that the use of these techniques requires a 
level of expertise in machine learning technologies to set-up a working system 
that, today, surpasses the ordinary user’s capabilities.  

2.3   User Centered Methods or Active Learning? 

The groups of techniques presented earlier in this Section appear to be researched 
as mutually exclusive, but they address the same problem – interactive machine 
learning (IML). 

Interestingly, the two approaches to IML emerged from different communities 
of researchers – the Human Computer Interaction (HCI) and the Machine Learn-
ing (ML) communities. It is not surprising that HCI emphasizes the user’s role in 
IML, while active ML is driven by the classifier’s point of view on the IML  
problem. 

Noting that it would be valuable to research and combine the two approaches in 
a single one, the remainder of this Chapter focuses on ML filters for surveillance 
and presents a user centered approach to IML for the review of surveillance im-
ages in a nuclear safeguards context.  

3   Filters and Learning Techniques for Surveillance Image 
Streams 

In a typical surveillance scenario, one or more cameras look over a scene and the 
outgoing image streams are transmitted to a set of displays for online inspection 
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and to storage for offline (delayed) inspection. Cameras are usually installed to 
view large areas so as to minimize the number of cameras and data streams.  

The task of inspecting image streams can require the application of different 
techniques, very much depending on the nature of the area under surveillance and 
on the installation pattern of cameras. For example, in a scenario of surveillance of 
an airport or station where the police is looking for a person wearing known 
clothes, a human supervisor may screen the images for people wearing colors 
matching the description. The same approach can be used by an automatic system: 
a filter may select images containing blobs of the given colors describing a human 
shape. 

This is what we call an informed search: the supervisor (human or image filter) 
checks the presence of data that is known to correspond to a meaningful event. 
This technique can be used only when the supervisor possesses a precise expecta-
tion on the target of her search. The more precise the information, the better the 
selection of meaningful image streams segments.  

When the supervisor possesses only general information on the type of events, 
uninformed search techniques must be employed. In the same example as above, 
if the police are not searching any specific person, attention may be focused to 
violation of prohibited areas or counter-crowd movements. These events are not 
always meaningful, but show at least a correlation with events of interest. 

These concepts of informed and uninformed search can be applied also to im-
age streams review tools. In short, informed search techniques consist in matching 
a model of a significant event with the image data. They require that the image re-
view software incorporates such a model. They are typical of a top-down ap-
proach, i.e. they start from knowledge and expectations and verify these on the 
data. Uninformed search techniques are based on the detection of features that 
show a correlation with significant events. Uninformed search is by nature a bot-
tom-up approach, starting from evidence of stimuli to build knowledge. 

In the literature, uninformed techniques are also known as novelty detection 
techniques [15, 16]. Novelty detection is the identification of new signals that are 
different from a reference. Two fundamental components in these systems are: (i) 
the reference signal to which new data are compared, and (ii) the conditional test 
that triggers the identification of ‘novel’ data. The reference signal is an image 
feature that can be learned from images assumed to be ‘normal’. In video surveil-
lance, the most common form of uniformed technique is background maintenance 
for motion detection [17]. In this context, machine learning has been proposed to 
bootstrap and maintain the background model. Methods being applied include sta-
tistical models [18], kernel-based classifiers [19], Wiener filters [20], Kalman fil-
ter [21], and mean shift [22]. In Section 6 we illustrate the state-of-the-art filter 
used today in nuclear safeguards, which relies on simple form of background 
model. 

Informed techniques in video analysis are numerous; those pertinent to our dis-
cussion fall in two categories: (i) behavior analysis and (ii) video annotation. 
Learning for video surveillance has been focused prevalently around behavior 
analysis. The goal is to learn patterns of ‘normal’ behavior in surveillance  
video and to alert guards if an abnormal situation is detected. The concept is that 
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trajectories of tracked objects are selectively clustered and labeled by machine 
learning to add semantics. Methods of representation and clustering include poly-
nomial fitting, multi-resolution quantization, Hidden Markov Models, kernel 
methods, neural networks, and k-means [23]. The currently accepted reference 
model for these systems has been introduced in [24]: machine learning algorithms 
build a graph representation of an image in which nodes represent points of inter-
est (e.g. entry/exit points, stop points) and arcs represent activity paths (e.g. mo-
tion, change of activity). Groupings of points of interest and activity paths can be 
labeled for higher-level semantics (e.g. “car enters”, “car moves” and “car stops” 
may be labeled as “parking”).  

To our knowledge, all behavior-analysis systems assume the availability of mo-
tion tracking data, typically extracted with the uninformed techniques reviewed 
above [25, 26]. This in turn requires either a high visual correlation (i.e. similar 
appearance) or a high temporal correlation (i.e., reasonable frame rate) of object 
occurrences in consecutive images. Let us defer a deeper discussion on this to Sec-
tion 8. Here we want to underline that current research on behavior analysis is fo-
cused on real-time, video-rate image streams. Review and search of image streams 
stored at a far lower frame rate (e.g. one image per minute) because of, for in-
stance, scarce storage capabilities or features dictated by industrial process, cannot 
be treated with the same methods. 

Video annotation is rarely used in video surveillance; however the filters we 
discuss in Sections 7 and 8 are highly related to this topic. A typical learning-
based video annotation system takes a video segmented into short units and ex-
tracts low-level features from each unit to describe its content. Given a concept in 
a set of predefined concepts, each unit is then manually annotated to be ‘positive’ 
or ‘negative’ according to whether it is associated with this concept [27]. Exam-
ples abound in the literature, spanning rule-based systems [28], multi-cue statisti-
cal learning [29, 30], support vector machines [27], graph matching [31], among 
the others. We are interested in cases where the standard video segmentation tech-
niques are not applicable. In these cases standard learning algorithms must be 
adapted accordingly, and interactivity must be enhanced to make profitable use of 
supervised training.   

In later Sections we discuss the application of uninformed and informed filters 
using interactive machine learning similar to that developed for video annotation 
to the field of surveillance image streams analysis, with novel contributions espe-
cially focused on the application setting of nuclear safeguards. 

4   The Nuclear Safeguards Surveillance Context  

Nuclear safeguards verify that a State’s nuclear material is not diverted to build 
weapons or explosive devices. In the European Union, more than 1000 nuclear 
sites are verified by about 200 inspectors of the EURATOM safeguards authority. 

Camera surveillance in nuclear facilities helps to attain safeguards at a reason-
able cost without interfering with a facility’s operations (Fig. 2).   
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Fig. 2. Inspectors setting-up cameras in a nuclear plant (left). A camera’s view (right) (©  
D. Calma/IAEA). 

The specific scenario of nuclear plants poses several challenges to state-of-the-
art image filters. First, the field of view covers all the locations where important 
processing takes place (Fig. 2, right). These locations are many meters apart, thus 
the appearance of a flask of nuclear material, which is the object of interest in 
safeguards image reviews, significantly changes during the process. Second, the 
image acquisition rate is very low -one frame every several minutes. This frame 
rate is designed to match the pace of the process to be supervised. It also guaran-
tees that all acquired images can be stored on the camera’s local memory, a need 
stemming from the fact that most cameras operate on-site as stand-alone systems. 
Third, the flask is visible only in a small subset of images. Typically, each in-
stalled surveillance camera acquires several thousands of images (10 to 100 thou-
sands) before these need be reviewed2. Of these images, less than 1% are expected 
to relate to safeguards-relevant events. The remaining either present no change be-
tween consecutive frames or contain events not involving flask movements (e.g. 
moving cranes, trolleys, illumination changes). 

Date              Time                 Scene Nr. Event annotation

2006/11/07    09:38:08          Scene #4314    Flask visible over hatch
2006/11/07    09:52:08          Scene #4316    Flask visible in decontamination area
2006/11/07    13:29:08          Scene #4347    Flask visible over hatch
2006/11/07    13:43:08          Scene #4349    Flask visible in decontamination area
2006/11/07    15:00:08          Scene #4360    Flask visible over pond
2006/11/08    08:30:08          Scene #4510    Flask visible over pond
2006/11/08    08:44:08          Scene #4512    Flask visible in decontamination area
2006/11/08    15:16:08          Scene #4568    Flask visible over pond
2006/11/09    09:14:08          Scene #4722    Flask visible over pond
2006/11/09    10:17:08          Scene #4731    Flask visible in decontamination area
2006/11/10    08:06:08          Scene #4918    Flask visible over hatch
2006/11/10    12:11:08          Scene #4953    Flask visible over hatch
2006/11/13    10:11:08          Scene #5553    Flask visible over hatch
2006/11/13    10:25:08          Scene #5555    Flask visible in decontamination area
2006/11/13    14:30:08          Scene #5590    Flask visible over hatch
2006/11/13    14:37:08          Scene #5591    Flask visible in decontamination area  

Fig. 3. Report resulting from an image review 

                                                           
2 The frequency of the reviews is determined for each specific plant to ensure that these are 

timely, i.e. they allow the verification that no abrupt diversion of nuclear material has oc-
curred in the plant. 
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Inspectors eliminate the no-change images by applying an uninformed scene 
change detection filter [32] (Section 6). This operation may reduce the image set 
to 10% of the original size. The latter, reduced set is reviewed by inspectors on a 
frame-by-frame basis, and safeguards-relevant images are annotated to produce a 
review report (Fig. 3), i.e. a list of time-stamped, chronologically ordered images, 
each one labeled by the class of the event recognized by the inspector. 

5   Combining Uninformed and Informed Search Strategies 

In this context, we have developed tools based on interactive machine learning, 
collectively named ‘Safeguards Review Station’ (SRS), to assist nuclear inspec-
tors in the review of surveillance images.  The approach followed is that SRS tools 
learn to improve their detection performance by tapping on information available 
both from past reviews and from the on-line compilation of a review report. 

Figure 4 highlights how the state-of-the-art review flow is augmented in the 
SRS. In the state-of-the-art review flow (block arrows), image data is generated 
over time continuously, but it is broken down in batches to ensure the timeliness 
of reviews. Given a batch of images, a filter is applied to extract events. This step 
is in large part automatic and relies on scene change detection (SCD). The main 
role of the inspector is in the annotation of the SCD events. As noted in Section 4, 
many of these SCD events turn out to be false positives. The few safeguards-
relevant events are labeled by the event class and become part of the review report 
(Fig. 3). 
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Fig. 4. The state-of-the-art review flow (solid arrows) and the augmented flow in the Safe-
guards Review Station (dashed arrows) 
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In a traditional review flow, when a new batch of images becomes available, 
the same review process is repeated unchanged, this meaning that the SCD filter 
which assists the inspector in the detection of events does not learn from the re-
sults of past reviews.  

By contrast, the SRS concept is to ‘re-connect’ the sequence of reviews be-
cause the stream of images to be reviewed over time is generated by the same nu-
clear process. By adopting this view, we design filters that take advantage of past 
results to support the present and future reviews. 

For the SRS, a departure point is the archive of review reports produced by in-
spectors over time for a given plant and camera view. Table 1 lists plant- and 
camera-specific information that can be derived from these reports. Besides high-
lighting the typical classes of safeguards-relevant events annotated by inspectors 
(P1), they establish an association between these classes of events and their visual 
appearance exemplified by the corresponding time-stamped image files (P2). The 
annotated sequence of events provides information on the stages of the processing 
of flasks of material within the plant (P3), and the event time-stamps give an indi-
cation on the duration of each stage of the processing (P4). 

Table 1. Plant properties that can be derived from review reports 

Property ID  Property description 

P1 Classes of typical events taking place in the plant as per the events’ annotations 
(e.g. ‘flask over hatch’, ‘flask in decontamination area’, ‘flask over pond’). 

P2 Examples of the visual appearance of  safeguards-relevant events as seen from a 
specific camera (by retrieving the corresponding image files). 

P3 Sequence of the events (e.g. a ‘hatch’ event is followed by a ‘decontamination’ 
event,  then by a ‘pond’  event). 

P4 Duration of events (by computing the time interval between events). 

On these properties, we can build informed filters to detect the typical classes 
of safeguards-relevant events with higher precision: possibly all relevant events 
with less false positives. 

Specifically, the SRS includes two novel filters, each used in cascade to a state-
of-the-art SCD filter. The novel filters are based on: (i) decision trees (DT) and (ii) 
Markov models (MM). Filter DT, described in Section 7, relies on the visual ap-
pearance of events (properties P1 and P2 in Table 1). By contrast MM (Section 8) 
performs a ‘meta-classification’ of the sequence of events extracted by SCD,  
and hence it is trained on statistics about P1, P2 and P4 derived from past review 
reports. 

6   Searching Image Streams by Scene Change Detection 

Uninformed event detection arises from monitoring some quantities derived from 
image streams over time. An event is declared if a quantity alters its value with  
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respect to a given condition. The conditional test triggering the event can be as 
simple as an individual threshold, to as complex as frequency component analysis 
or case-based reasoning [15, 18, 19]. The crucial point is that the parameters of the 
conditional check do not relate to information specific to the event type being 
searched. Rather, they are set a priori so as to trigger the detection for a broader 
family of events that contains the target event.   

As an example of uninformed technique, we illustrate the scene change detec-
tion (SCD) filter in use in official nuclear inspection software [32]. The technique 
is a two-frame differencing based on the average intensity value of pixels inside 
one or more area of interest (AOI). Before starting the algorithm, the user draws 
the AOIs on a reference image (Fig 5) around image regions including locations of 
interest. For an image at a given time, SCD computes the average intensity of pix-
els belonging to an AOI. This is compared to the same value computed on the pre-
vious image, so as to derive a measure of the relative change. If the change in in-
tensity breaks a threshold, an SCD event is marked for that image and that AOI. 
The same computation is repeated separately for every AOI, possibly with differ-
ent thresholds. As a result, for each image the SCD filter may detect a number of 
events up to the number of AOIs defined by the inspector. By altering the thresh-
olds, the user can increase or decrease the number of events detected by SCD. 

 

Fig. 5. AOIs are drawn on the camera’s image plane 

Although they may change in some installations, there are three locations of in-
terest in a typical nuclear plant that are usually assigned an AOI: 

1. the hatch (H), 
2. the decontamination area (D), 
3. the pond (P).  

In a normal operation process (Fig. 6) a flask of nuclear fuel enters the hatch and 
reaches the decontamination area, whence it is moved to the pond. From the pond, 
the flask moves back to the decontamination area and then exits the scene through 
the hatch. In SCD, each AOI can be assigned to a label. In plants with the three lo-
cations listed above, the label set is {h, d, p}. All images for which a motion event  
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has been detected are associated with one or more of these labels. For instance, if 
an image t is labeled [h, p], this means that the AOIs of hatch and pond exhibited 
sufficient change from t-1 to t. Later in this Chapter, Figure 8 shows an example 
of how the output is communicated in the user interface. Inspectors browse the la-
beled batch and annotate only the relevant images with the appropriate event class. 

Due to the loose correlation between the target event and the signal being moni-
tored, filters that use uninformed techniques like SCD typically are employed in 
the first stage of an image stream analysis to eliminate obvious false negatives. In 
general, the parameters that regulate the conditional test must be set as to attain a 
true positive rate of 100%. As a trade-off, the number of false positives is gener-
ally very high. 

decontamination

hatch

pond

1

2

3

4

5

6

decontamination

hatch

pond

1

2

3

4

5

6

 

Fig. 6. Schematic flow of the movements of a flask of nuclear material within a plant 

In our studies of image surveillance for nuclear safeguards, most parts of the 
image sequences contain little or no activity. Sequences of about 20,000 images 
must be reviewed offline by nuclear inspectors operating under time pressure. The 
use of SCD filter can reduce the amount of images to be inspected on average by 
90%, from 20,000 to 2,000. Reviewing 2000 images one-by-one is still a hard job.  

Actually inspectors are interested only in motion events that include the move-
ment of nuclear materials, and not in movements due to persons or auxiliary ma-
chines. Typically, out of 2,000 images associated with SCD, only 3-30 images are 
meaningful events. Thus the rate of false positives of this technique is generally 
close to 99%. It is then reasonable to follow SCD with informed techniques  
that contain a model of the meaningful events to highlight SCD events of potential 
interest. 

Why do inspectors employ this uninformed SCD? The answer has to do mainly 
with the degree of programmability offered by uninformed techniques. Nuclear 
inspectors, like most users of image review software for surveillance, are not ex-
pert of image processing or automatic pattern recognition. On the other hand, they 
do understand event detection by setting a threshold. This understanding and the 
total degree of control given by changing one or two simple parameters give the 
inspector confidence of mastering the tool.  
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7   Searching Image Streams by Their Content 

The image review technique described in this Section is based on the premise that 
image content can be described in a suitable feature space and be searched on. 
Typically, this is a vector space on which the images are projected, and where the 
relevant images are expected to be discriminated from the irrelevant ones by an 
appropriate classifier. A central issue in search by content techniques is then to 
find image representations that enhance image data relevant to the search and re-
duce the remaining aspects [33]. 

7.1   Image Features 

Sophisticated search by content systems use image processing techniques to first 
segment the image in regions of interest and extract objects silhouettes [34]. Then, 
for each region, a set of features is computed. Features can be related to color, tex-
ture, and shape, and they can be binary-valued, discrete or continuous. Finally, 
images are stored in a database as vectors of features for each region of interest.  
Other systems simply compute features on the global image such as the mean in-
tensity value or the color distribution histogram [35]. 

A popular example of search by content technique is image retrieval by simi-
larity [33, 34, 35, 36, 37].  The core idea is that the user may query a database for 
visually similar images by pointing an example image together with a set of fea-
tures to describe the image at hand. In a simple nearest-neighbor approach [38], 
the image retrieval program computes for each image in the database its distance 
to the example in the selected feature space. Images within a small distance to the 
example are considered similar to it, and retrieved for inspection by the user.  

A weak point in this procedure is that the result of the query depends strongly 
on the ‘right’ choice of features, a step which requires expert knowledge in the 
definition of features. This knowledge is usually not available to the end-user nor 
of interest to her.  

Not only that. The ‘right’ features are relative to the specific image set on 
which the query is run. As an example, suppose that the images of interest to the 
user show a red can, and that this happens to be the only red object in the data-
base. In this case, a ‘red color’ feature is optimal to represent and search the im-
ages. By contrast in a database with many different red objects, searching by the 
‘red feature’ would retrieve many irrelevant images.  

7.2   Image Classifiers 

Classification techniques also depend on a number of parameters that make them 
non user-friendly. A classifier can be built according to a number of construction 
options that are specific to the classification technique at hand and that must be 
somehow decided. For instance, if the intended classifier is a neural network [39], 
one must specify the network architecture (e.g. number of neurons and how they 
relate to each other).  

As pointed out in Section 2.1, for search by content techniques to become work 
tools for everyday users, it is important to ‘hide’ to the largest possible extent all 
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parameters on which these techniques depend. This is the purpose of relevance 
feedback mechanisms designed for user centered interactive machine learning 
(IML) [3, 4, 7, 8, 9]. The underlying principle is that the user should concentrate 
on issues where she is expert and ‘ignore the rest’. In our case study, this means 
that inspectors should concentrate on the labeling of example images (say which 
are safeguards-relevant and which are irrelevant, their core expertise) and ignore 
how the image content is described, or how the classifier is built.  

In Sections 7.3 and 7.4 we describe DT, a tool that implements a user centered 
relevance feedback mechanism for the classification of safeguards-relevant im-
ages. DT is based on image descriptors commonly used by image retrieval soft-
ware and uses decision trees [5] as classifier. Both the image descriptors and the 
decision tree that performs the classification are selected automatically and remain 
hidden to the end-user. The only input required from her is the labeling of the  
example images (the training set) that occurs in an iterative way, implicitly guid-
ing the tool to the discovery of suitable images descriptors and decision tree  
parameters.  

Briefly, a decision tree is a classifier that takes as input the vector of features 
describing an image and outputs a ‘relevant/irrelevant’ decision (Fig. 7).  
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Fig. 7. A decision tree 

Each node in the tree is labeled by a feature; arches are labeled by possible val-
ues of features or tests, and leaves by ‘relevant/irrelevant’ decisions. Given an in-
put image described by a feature vector, the image is classified by navigating the 
tree top-down from the root until a leaf is reached. 

The decision tree itself is induced on the basis of a training set of examples by 
the C4.5 algorithm [5] or its extension See5 [6]. To build a tree, these algorithms 
tests different features in order of decreasing importance. A feature is considered 
important if, by using it, one is able to discriminate most relevant and irrelevant 
examples of the training set. Using this heuristic, the decision tree is built recur-
sively. First, the most important feature is selected. Then, a new decision tree 
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building problem is addressed with one feature less and some examples less -those 
examples that are classified by the first feature are not considered anymore. 

Why decision trees? The motivation for using them in our application is mani-
fold and reflects issues highlighted in Section 2.1 on user centered methods for in-
teractive machine learning. 

First, decision trees deal in a natural way with features of different nature: bi-
nary, discrete-valued and continuous. This provides flexibility in the choice of the 
initial repertoire of image features implemented in an image review tool which 
should work well for many different environments. On the contrary, other families 
of classifiers are targeted to either discrete-valued or continuous features. For ex-
ample, neural networks are particularly suited for the processing of continuous 
variables.  

Table 2. Coarse comparison of advantages and drawback of different classifiers 

Classifier Evaluation Comment 

neural nets 

+ 

+ 

+/- 

- 

map complex patterns (non-linear relationships) 

learn incrementally 

mostly suited to deal with continuous data 

learning depends on parameters 

decision trees 

+ 

+ 

- 

learning is parameter –free 

mix naturally binary, discrete, continous-valued data 

do not learn incrementally 

nearest-neighbor 

+ 

+/- 

- 

- 

very simple learning algorithm 

mostly suited to deal with continuous data 

learning depends on parameters 

very sensitive to the presence of irrelevant features 

naïve Bayes 

+ 

+ 

- 

very simple learning algorithm 

learning is parameter –free 

features need to be independent from each other 

Second, the learning algorithms that are used to induce decision trees come 
close to the ‘parameter-free ideal’. Basically, one needs to have a set of positive 
and negative examples on which to run the induction algorithm. In other words, 
the result little depends on settings of other parameters as it is needed for other 
classifiers. For example, in a nearest-neighbor classifier one has to decide the 
number of centroids; in a neural network the number of neurons, the network ar-
chitecture, the learning rate, etc. Because our aim is to have the IML module 
working in a ‘silent way’, we should avoid parameters setting as much as possible. 
Table 2 summarizes advantages and drawbacks of different classifiers at a very 
coarse level. The Table highlights that, when choosing a classifier, one has to con-
sider a number of dimensions and tradeoffs. 
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Third, the algorithm that induces the decision trees also performs feature selec-
tion. The resulting classifier will thus be compact and fast to be run in the testing 
phase, a property required for online learning. An additional standard argument in 
favor of feature selection is that it ‘overcomes the curse of dimensionality’ related 
to an unbalanced number of features and training examples, which is typical of 
IML settings3. Feature selection is then meant to increase the predictive accuracy 
of the classifier. On this, it must be reported that, quite surprisingly, recent 
benchmarks revealed that feature selection is seldom needed to enhance the pre-
diction accuracy of classifiers [40], and indicate other reasons to limit the number 
of features, such as computational and storage requirements.  

7.3   The DT Image Review Tool 

The DT tool is designed to filter scene change detection (SCD) events by decision 
tree classifiers. When an image triggers SCD, it is submitted for further opinion to 
the decision trees. If these classify the image as relevant (this time based on an in-
formed analysis of its content), then the corresponding SCD event is ‘highlighted’ 
in the DT interface, i.e. the image is recommended for review by the inspector. In 
this way, the initial list of SCD events is profiled by DT to a reduced list of high-
lights. In the example shown in Figure 8, DT has highlighted 189 events out of the 
original 1,054 SCD events triggered on an image set of 16,000 images. 

 

Fig. 8. SCD (‘Motion’) events hightlighted by DT 

Since SCD events may be triggered by changes occurring in different areas of 
interest (AOIs), as explained Section 6, DT can associate a decision tree to each 
AOI defined by the inspector for SCD. For example, the list of highlighted events 
in Figure 8 results from the activity of two trees associated, respectively, to AOI 
nr. 1 defined over the hatch area and AOI nr. 2 defined over the pond. A SCD 
event is highlighted if at least one decision tree classifies the image as relevant. A 
tree takes its decision based only on the image part covered by the AOI –i.e. DT 
computes image features within each AOI. In this way, each tree specializes in the 
detection of a specific safeguards-relevant event as it is perceived by the camera in 
the corresponding AOI. 

                                                           
3 As noted in Section 2.2, this motivated part of the work presented in [14] for active learn-

ing with support vectors machine. 
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7.4   Training Decision Trees with DT 

The general idea of user centered IML is to let the user label in an iterative and in-
teractive way a number of example images (training set) on which a classifier is 
induced automatically. Initially, the she labels just few relevant and irrelevant im-
ages by browsing the image stream. On this basis, a first classifier is built auto-
matically and run to classify the images in the database. The result of the classifi-
cation is presented to the user for relevance feedback: for as many images as she 
wants, she can point out correct and wrong classifications. In this way, the initial 
training set grows and a more refined classifier is constructed on the basis of this 
extended examples' set. Again, the new and improved classifier is used to re-
classify the database of images and the result of the classification is displayed for 
user feedback. The convergence point of the process is a classifier that retrieves 
images of interest to the user with some false positives.  

For the tree training phase, DT needs a review report to have been compiled for 
an image set, and that this contains a number of events of the type for which the 
inspector would like to train a tree. In other words, the training session happens off 
the review context. As described in Section 5, the trained trees will then become 
available to filter scene change detection events at next review time (cfr. Fig. 4).  

Assume that a review report has become available on a given image set to train 
decision trees for two selected AOIs. Typically, these would be the hatch and the 
pond, because the events taking place in these areas are the most significant from 
a safeguards standpoint.  

The user interface for the training is made of several panels (Fig. 9). In what 
follows, we illustrate the information displayed in these panels at some mid point 
during the interactive training session. 

The bottom panel shows the review report, i.e the ground truth on the whole 
image set. It lists and counts the events in the report -in this case 53 in total.  

The mid panel is a viewer to display the images in the set, focusing on one im-
age at a time. It also shows the AOIs.  

The top panel is a timeline, where each square represents an image in the set.  
During training, a function of the timeline is to provide an overview on the classi-
fication of a part of the image stream: gray squares represent images classified 
‘relevant’ by (at least) a decision tree, black squares indicate images classified as 
‘irrelevant’ by both trees.   

The same color convention is adopted within the other two panels. When an 
image is displayed on the viewer, the surrounding frame shows its classification 
by the color (i.e., gray for relevant, black for irrelevant). The frames of the AOIs 
are also colored to reflect how each decision tree has classified the image at hand. 
In this way, the user knows which tree voted the image as relevant, if any. On the 
review report panel, events classified as relevant by the trees are highlighted by a 
gray background. A counter indicates the number of ‘highlighted ground truth 
events’, i.e. how many report events are currently correctly classified by the trees 
as relevant out of the total true events. Note that the ratio between these numbers 
is the recall performance index used in information retrieval ([33], see Section 9). 

The information displayed in the three panels is inter-connected. Clicking on an 
event of the review report loads the corresponding image on the viewer and scrolls 
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the timeline to make visible a segment of the image set which includes the event. 
Any other image in the set can be viewed either by the scrollbar on top of the 
viewer or by moving the mouse over the timeline, the current image being indi-
cated by a bold square. This latter navigation modality provides a very fast way to 
browse the classification of individual images and to support the relevance feed-
back process. 

timeline

AOI AOI

review report

image viewer

relevance 
feedback

‘irrelevant’

‘relevant’

‘relevant’

timeline

AOI AOI

review report

image viewer

relevance 
feedback

‘irrelevant’

‘relevant’

‘relevant’

 

Fig. 9. DT interface to train decision trees 

The ‘input device’ to provide feedback is the circle shown in each AOI’s top-
right corner. By default, its color is ‘white’, meaning that no information has been 
provided by the inspector on the target classification for the image. Clicking on 
the circle by <mouse-left> and <mouse-right> changes the feedback from neutral 
(white) to relevant (gray) and irrelevant (black), respectively. In this way, DT col-
lects examples of relevant and irrelevant images associated to each AOI. These are 
used to train the associated decision trees.  
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Finally, the user can control the number of images used to test the classification 
performance of the decision trees. This is to support in an effective way the itera-
tive nature of training. Note that the cost of each cycle is dominated by the number 
of images used to test, and not by tree induction algorithm given that the number 
of training examples remains limited.  At early iterations, the parameter ‘Test until 
scene’ must be set to a few thousands (say, 2000). This is because the first trees 
induced on the basis of very few examples are not expected to be accurate, but are 
used to bootstrap the example labeling process on the ‘classification problem ar-
eas’ that appear evident on the timeline (Fig. 10). At later iterations, increasing the 
number of images for testing gives the user a feeling on the generalization capabil-
ity of the trees, i.e. their ability to classify correctly images that are not part of the 
training set, a sort of cross-validation. An indication on the quality of learning is 
also given by the number of ‘scenes classified relevant’ displayed on the top-right 
corner.  The ratio between the ‘highlighted ground truth events’ and the number of 
scenes classified relevant is the precision performance index used in information 
retrieval ([33], see Section 9). The general goal of learning is to maximize both 
recall and precision on both the training and the test set. However, for surveil-
lance applications, the distribution of the detected events also matters. As noted in 
Section 2, in surveillance it is not necessary to classify as relevant all images re-
lated an event, but a sufficiently large number for the event to ‘appear’ on the 
timeline (Fig. 9). 

 

Fig. 10. A ‘confused’ timeline is a sign of bad classification 

The ‘rules of thumb’ for the inspector to select the training examples are as  
follows.  

Train one tree at a time.  DT gives the possibility to train one tree at a time by 
excluding the other AOIs. By doing this, the classification shown on the timeline 
and on the other panels just reflects the activity of one tree. This can simplify the 
user’s understanding on the quality of the learning. 

Separate well training and test examples.  Generally an image set contains vari-
ous cycles of the processing of flasks of nuclear material. It is recommended to 
focus the training examples on a consecutive number of cycles and leave the re-
maining cycles ‘untouched’ for testing. This approach makes sense in our context, 
because the process supervised by the cameras is stationary, does not evolve  
over time. This is generally true for industrial processes whose nature is essen-
tially repetitive. 

Focus relevance feedback on ‘classification problem areas’.    A strong point of 
IML is that the user can provide training examples where these are needed. This is  
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in opposition to traditional machine learning (ML) where a large batch of training 
examples is compiled and mined all together. With IML, the user naturally focuses 
her feedback on misclassifications, exactly providing the information that the clas-
sifier has missed at the previous iteration.  

Balance positive and negative examples.    In our application context the number 
of irrelevant images largely dominates the number of the relevant ones. During in-
teractive training, attention must be paid to balance positive and negative exam-
ples in the training set to avoid trees degenerate to the ‘all-is-irrelevant’ classifier. 
To counteract this, a first strategy is to increase the number of positive examples 
by labeling as relevant images correlated to safeguards-relevant events. For ex-
ample, the event ‘flask over hatch’ is correlated with images showing a crane’s 
cables pull out the flask from the hatch. Temporally, these images just precede the 
hatch entry event. By labeling the cables images as relevant, the user creates a 
stronger detector for the hatch event. Visually, the effect is that one sees on the 
timeline a longer segment of images classified as relevant, a clear signature for a 
hatch event. A second possibility (which is hard-coded in DT) is to induce deci-
sion trees by differential misclassification costs and not by the total number of 
classification errors. In this framework, the cost associated with a classification er-
ror depends on the predicted and true class of the misclassified example. Because 
missing a safeguards-relevant is a more severe error that classifying as relevant an 
irrelevant image, DT sets a much higher cost for the misclassification of the ex-
amples marked relevant in the training set.  

A general remark to the IML approach is that this process is worth if: (i) it con-
verges after a reasonable number of feedback iterations; (ii) the gain obtained by 
filtering the scene change detection events by the trees is significant; (iii) the filter 
can be re-used over time without requiring re-training. On (i), it can be reported 
that in our benchmarks on safeguards images the training sets contained at most 
100 examples.  This seems to be a reasonable effort for the user to pay given the 
workload reduction provided by the DT: this is illustrated by the benchmark pre-
sented in Section 9. Concerning the re-usability of DT filters over time, this is fa-
vored by the fact that nuclear plants need to operate under stable conditions. In 
case of a degrading review performance, DT foresees the possibility re-train the 
decision trees. The original training set is extended by new examples defined on a 
new image set and review report. Although decision trees do not learn incremen-
tally, the cost of re-inducing the trees on an extended training set is negligible for 
training sets of limited size like those used in IML. As a final remark on the use of 
IML versus ML, we can report that we ran a classical ML training phase by batch 
learning over the review report and randomly selected irrelevant images. The re-
trieval performance was inferior to that of IML, probably because by such a pro-
cedure one misses the opportunity of balancing the positive and negative examples 
in an intelligent and ‘human-controlled’ way by indicating as relevant images cor-
related to the safeguards relevant events.  
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8   Searching Image Streams by Sequence and Time Attributes 

Video content analysis is by far the most explored topic in image streams analysis. 
Conversely the temporal structure of image streams is generally more the focus of 
compression algorithms. These algorithms exploit the high correlation between a 
frame and its successors/predecessors without depending of models of event se-
quences and timings (uninformed techniques) [41]. 

An informed approach is applicable when image streams are expected to con-
tain regular motion or event patterns. For instance, in video-based human-
machine interaction a user’s hands or face movements are checked for model ges-
tures that correspond to commands [42]. Similar regular patterns can be observed 
in surveillance applications in some constrained scenarios, like for instance home 
and ambient intelligence applications [43]. Also process monitoring in a manufac-
turing plant can benefit from model-based temporal analysis. Manufacturing proc-
esses follow standard paths, and deviations can indicate errors and anticipate de-
fects in the final product. 

To build the model underlying an informed technique for temporal structure 
analysis, image streams must exhibit at least one of the following properties: 

1. traceable objects; 
2. regular sequence of events; 
3. regular timing of events. 

The first property has to do with continuity of information, whereas the second and 
third properties have to do with recurrence of information. The presence of one of 
these properties alone is sufficient to enable some kind of analysis, independently 
of the other properties. 

The case of traceable objects corresponds to situations where object move-
ments can be tracked. This is the assumption underlying gesture recognition and 
most surveillance and behavior analysis systems (e.g. tracking people and ani-
mals). Objects are if they exhibit a video signature with high self-correlation and 
low cross-correlation with other objects or the background. In turn, this requires 
either highly characterized visual features (e.g. color, motion, shape, texture, etc) 
– for visual self-correlation – or a high acquisition frame rate of the system cam-
eras – for temporal self-correlation –, or, in most scenarios, both elements. 

Image streams with regular sequences of events contain events that happen 
with regularity one after the other. Consider the example of monitoring a manu-
facturing process where the product should be visible by surveillance cameras af-
ter each processing inside machines: if it does not appear after a step, there has 
clearly been a malfunction. 

Similarly regular timing of events may constitute per se a valid model, even 
without conserving visual appearance or logical sequence. These situations present 
regular durations and/or intervals between events. An example is monitoring 
abandoned objects in metro stations: if an image region is occupied by a fore-
ground object for more than the expected ‘regular’ time, the software detects an 
event [44]. To use durations, frames must be accurately time stamped especially 
when multiple cameras are involved. 
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The first case, the one of traceable objects, is by far the most commonly studied 
in computer vision [25, 45]. When the conditions of traceability are not met, video 
mining algorithms must rely on the other two properties, if present. Our contribu-
tion in this Chapter is to describe an informed technique based on a Markov 
Model representation of events that does not use traceability of objects. 

The context of nuclear plant monitoring is favourable to this study because nu-
clear flasks are hardly traceable: they have a weak visual signature when in the 
decontamination areas, where in some settings they occupy <20 pixels; and the 
acquisition rate is typically very low, ranging from 1 fps to 0.001 fps. Hence self-
correlation of neither visual nor temporal features is sufficient to enable visual 
tracking of a flask. However, the process a flask undergoes is structured and re-
current. Therefore tracking can be performed by modeling the process’s regulari-
ties, instead of the flask’s. 

8.1   Hidden Semi-markov Models 

To better understand the contribution of sequence and timing of events to video 
mining, we have isolated the filtering on image content from the filtering on these 
temporal properties. We use scene change detection to transform the sequence of 
images into a sequence of symbols. As said in Section 6, the outcome is a se-
quence of symbols corresponding to the active areas of interest, and the associated 
image timestamps. This approach allows us to study the use in this context of the 
most common models of time series, i.e. Markov Models [46]. 

Hidden Markov Models are powerful and well-known tools that address all of 
the following aspects: i) a discrete, symbolic observation space; ii) a discrete, fi-
nite state space; iii) known machine learning algorithms [47]. Hidden models are 
justified in contexts where objects are not traceable. In our scenario flasks have no 
distinctive identifier and even a trained supervisor cannot discern one flask from 
another. Also, the low frame rate confuses the perception of motion direction: de-
ciding whether a flask is entering or exiting a location requires more reasoning 
than simply inspecting the visual content of the previous and present frames. In 
probabilistic terms, these characteristics make the process ‘hidden’. 

A further step is to include explicit duration models. Hidden semi-Markov 
models (HSMM) are a family of probabilistic models useful for representing sto-
chastic stationary processes with explicit state durations that can be observed only 
indirectly [47]. HSMMs introduce state occupancy distributions to represent so-
journ times in non-absorbing states. The distribution of sojourn times is not con-
strained to the geometric distribution as in hidden Markov models. 

A semi-Markov model is composed of an embedded first-order Markov chain 
X, and of discrete distributions of sojourn times S. The embedded chain is de-
scribed by (T, χo), where χo is the initial state distribution and T is the transition 
matrix, such that Tij = P(Xt+1=j | Xt=i). For a semi-Markov model, Tii= 0, ∀i. The 
sojourn time distributions are a set of discrete distributions depending only on the 
current state, S = {Si, ∀i}. The model is hidden if the relation between the state 
and the observation is probabilistic. The emission distributions for every state are 
summarized in the emission matrix E, Eis = P(Ot=s | Xt=i), s being an emitted sym-
bol (Fig. 11). 
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Fig. 11. A hidden semi-Markov model represents events with generic durations 

The model building process is made by training the HSMM model on timings 
and durations on hand-labeled image streams, i.e. in our case on the official re-
ports (cfr. Fig. 3). The algorithm for training an HSMM is an extension of the 
Baum-Welch algorithm and is detailed in [48]. 

8.2   Application to Nuclear Plants 

In this Section let us develop the HSMM for a nuclear plant to exemplify the tech-
nique. We define a plant by the parameters (F, K, N). F is the maximum number 
of flask processes supported in parallel by the plant. K is the number of available 
cranes to move the flasks around (K ≤ F). N is the number of processing stages 
that make up the nuclear process. In the example of Figure 6, N = 6. In realistic 
plants, 1 ≤ F ≤ 3, K=1, and 3 ≤ N ≤ 10. 

For building the state space, let us first define the real states of the plant as  
F-arrays of labels indicating the progression stage of each flask in its individual 
process. This space includes all possible permutations (with repetition) of flask 
positions. The real states of a plant with F = 3 and N = 6 are [1 1 1], [1 1 2],  
[1 2 2], [6 6 6]. State [2 3 5] means that one flask is in stage 2, a second is in  
stage 3, and a third is in stage 5.  We alter the number of real states for two  
reasons: 

1. flasks are indistinguishable: flasks cannot be distinguished from one another, 
and so we can reduce the state space to the number of combinations with repe-
titions. For instance [122], [212], and [221] are equivalent. 

2. emissions depend on the transition: by design, we associate the emission of a 
symbol to the event of a flask entering a state. So the starting state in a transi-
tion determines which symbol is emitted when the landing state is reached. For 
instance, consider a plant with F=2. Its real state [2 3] can be entered from [u 
3], u≠2, thus triggering an emission linked to a flask entering stage 2. Or it can 
be entered from [2 v], v≠3, thus triggering an emission typical of a flask enter-
ing stage 3. To allow for multiple emission distributions, each real state is de-
signed to be represented by F virtual states. 

Given these premises, the size of the state space for a plant (F, K, N) is M: 
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The transition matrix is a MxM square matrix. Even though M is independent of 
the number of cranes K, K constrains the transition probabilities so that Tij is 0 if 
two states i and j differ for more than K single-process states. If K=1, only one 
process at a time can change state, hence for instance the transition [1 1] [2 2] 
has 0 probability. All virtual states referring to the same real state have the same 
transition probabilities towards other real states (equal rows in T). 

In our instantiation the distributions of sojourn times S are referred to single-
flask processes, so that a real state has F associated distributions. We have found 
this approach to produce more accurate predictions than assigning one single dis-
tribution to each real state. We use parametric distributions of Gamma shape for 
single-flask stage durations. Gamma distributions are attractive because they can 
flexibly assume a shape ranging from an exponential to a bell Gaussian-like shape. 

Because the analysis is performed on the labels outputted by scene change de-
tection (SCD), we define the emission alphabet of size A as the set of SCD labels 
associated to the areas of interest drawn by inspectors. In the example used 
throughout this Chapter the emission alphabet is {H, D, P}, and A = 3. The matrix 
E is of size MxA. For the use as filter, the emission probabilities must be set to 1 
for the symbol expected for that transition, and 0 otherwise. This will constrain the 
model to admit only the correct symbols for each state and to filter out the false 
alarms. 

A trivial example of T for a plant with F=2, K=1, and N=2 is given in (2). Note 
that, with N=2, the only possible events are either a flask going from stage 1 to 
stage 2 or vice versa (Tii being null by definition). 

 

(2) 

8.3   The MM Image Review Tool 

The general idea is that, given the history of annotations produced by the inspector 
during the review, the (T, E, χo, S) model can highlight the next most likely rele-
vant scene change detection (SCD) image. The inspector can decide whether to 
annotate the proposed image with a label corresponding to an admitted event, e.g. 
H D or P, or to reject it. The interaction is repeated with the next image until the 
end of the review (Fig. 12). 
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Fig. 12. Using the HSMM as a filter for assisting a review 

Let us consider a mid-point during the review, when the inspector’s past anno-
tations form a sequence ν. In the framework of an official review, we are author-
ized to consider the inspector as a fully reliable knowledge source, so that ν is  
true with probability 1. This implies that the uncertainty on the timing of events 
and on the value of symbols in ν is null. HSMM decoding [48] becomes superflu-
ous: we are allowed to use simple HMM decoding [47] to retrieve the current 
state distribution χ, with an immediate advantage in terms of computational  
complexity. 

The next image to be inspected is selected by computing the likelihood of every 
future image selected by SCD given χ and S. This likelihood is given by summing 
the S distributions of all stages associated to a state i with uniform probability 
(1/F) and then weighting this sum by the probability of the state χi, ∀i. The image 
exhibiting Maximum Likelihood (MAXL) is selected. If the inspector rejects this 
candidate, its likelihood is set to zero and the second MAXL is proposed, etc (Fig. 
13). When an image is accepted and annotated, its symbol is added to ν and the 
procedure restarts. 

It is reasonable to project the likelihood of duration models for one step in the 
future only, when the predictions are reliable. Predictions for more than one step 
would involve resorting on the convolution of duration models, which quickly 
flattens the joint probability distribution and hence deteriorates the filtering effect. 
For instance, in the case of Gaussian duration models, the convolution of two 
Gaussian distributions – corresponding to two prediction steps – is a Gaussian 
with a variance that is sum of the two original variances. The resulting distribution 
has a much lower peak than individual distributions and brings less information on 
when the second event will take place. 
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Fig. 13. How HSMM selects the next image to show. Starting from the last annotated  
image (first, bold square, with annotation D), the model skips all images associated to un-
expected symbols (last two crossed squares). It then shows the image with Maximum Like-
lihood given the sojourn time pdf (circle nr. 1). The inspector rejects it (cross on the image), 
and so the model shows the second most likely (circle nr. 2).  This reveals to be the correct 
one and is annotated by the inspector as a ‘P’ event. 

In case of a missed detection, which can happen due to the Bayesian framework 
of predictions, ν can be either inconsistent or consistent given (T, E, χo). In the 
former case – easily detected because χ is zero –, confirmed symbols are sup-
pressed in turn, with the heuristic of “last-confirmed suppressed first”, and the  
remaining sequence is re-decoded until a consistent sequence is found. The predic-
tion procedure described above is then applied from that point. 

The case of a consistent sequence is treated as correct in all senses. Thus an er-
ror (missed detection) giving birth to a consistent sequence is not discovered 
unless, as the review progresses, the sequence becomes inconsistent. This problem 
unfortunately nullifies any guarantee of null false detection rate of the HSMM. In 
our software solution we have implemented case-based automatic reasoning to 
avoid false negatives, but the details are out of the scope of the current discussion. 
The point here, as we will see in Section 9, is the high rate of filtering provided by 
this time-based informed technique. 

The guarantee of detecting a missed event given an inconsistent sequence in-
stead exists. The duration distributions can be chosen so that all images are as-
signed a non-null probability of being selected (distributions with support on the 
whole set). Thus, in the worst case the whole set will be proposed for inspection, 
image by image, until consistency is re-established. Inspection of the whole set 
corresponds to the procedure currently in use. 

MM has been embedded in a software tool with a user interface similar to Fig-
ure 9. The image selected for review is shown in the main window and the corre-
sponding data are highlighted in the image list below. 

From a user’s viewpoint a MM-based review has a peculiar aspect: images are 
presented in a likelihood-driven order on the basis of duration models and not in a 
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chronological order. If the MAXL image is refused, the second most likely image 
may happen to refer to a previous instant, and so the inspector sees a backward 
leap in the image stream. To avoid confusion, a visualization of the back and forth 
jumps is suggested. In any case, given that duration likelihoods are projected for 
one step only in the future, these jumps are localized in time around the segment 
of the image stream currently under review. 

Because MM uses a model of structured processing, it does not discover images 
of irregular behavior. MM is useful as a way to eliminate regular events so that ir-
regular events can be more easily isolated and inspected. 

As a conclusive remark, employing the MM filter gives a strong advantage in 
terms of workload reduction (Section 9) and is not invasive for the inspector. The 
filter runs in the background and can be deactivated at anytime. Furthermore, its 
computational load is completely manageable by a standard laptop processor, 
thanks in particular to the choice of substituting HMM-like decoding in place of 
the more complex HSMM decoding. 

8.4   Training with MM 

Training the MM filter is substantially different than training the decision trees 
(Section 7.4), even though the concepts of interactivity and iteration are still ap-
plied. In MM, the user must specify the following parameters: 

1. the plant’s parameters F, K, and N (Section 8.2); 
2. the expected (standard) sequence of processing steps of an individual flasks. 

These parameters are plant-specific and need to be defined only the first time an 
inspector reviews image streams from a given plant. Typically they are set by an 
expert at system setup. 

Before the first use, MM must be trained to set the HSMM matrixes and dura-
tion models. In our scenario, the training set is provided by the reports redacted in 
the past about processing on the current plant. They contain all the necessary in-
formation to train both the symbolic and duration models, i.e. meaningful events 
and relative time stamps (Fig. 3). The reports are double-checked for precision and 
are plant-specific, two desirable aspects for a training set. MM automatically scans 
all reports regarding a given plant and uses the training algorithm in [48] to set the 
HSMM parameters. This procedure can be computationally intensive but it is done 
offline, outside review time. 

When MM starts training for the first time, the system manager must also spec-
ify the state in which the plant was before the first event in the first report used for 
training. This specification may be trivially that no flask is present in the plant, but 
still it is necessary. In the following, when MM is used in a review, the last state 
of the last available report is employed as the starting state for decoding. This state 
is computed and stored automatically by MM during training or use. If use of MM 
is discontinued, in the sense that inspectors do not run MM for a review, the start-
ing state must be specified again before employing MM the next time. 

During a review the model is used as it is before starting, without any online al-
teration. After completing the review on a batch, inspectors double-check the re-
sulting list of events and then approve it. Only at this point, the new report is 
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added to the tail of the previous reports to form a continuous history of past re-
views and MM models are retrained on this history.  

Updating the model online does not deliver better results. In fact as we ex-
plained above, the MM filter may skip momentarily one image. If an update were 
done in such a situation, the resulting models may spoil the filtering performance 
for the rest of the review. Thus, interactivity in the case of MM is confined to the 
offline retraining phase. 

9   Benchmarking Techniques to Search Streams of Images 

In the following, we focus on experimental results obtained by running scene 
change detection (SCD), decision trees (DT) and Markov Models (MM) image re-
view tools on grayscale images acquired by a GEMINI surveillance system [49] in 
two different plants, A and B.  

A is a single-flask plant (F = 1), while B has the capacity to process two flasks 
(F  = 2) with the constraint of a single crane (K = 1) (Section 8.2). 

The tests aimed at measuring the performance of each tool in the detection of 
flask events: events of type H and P for DT, and events H, D, and P for MM. For 
DT, we skipped events of type D because, as noted in Section 8, these have an ex-
tremely weak visual signature.   

9.1   Image Sets 

Table 3 provides information about the image sets used for the tests.  Sets A1, A2 
and A3 were acquired in plant A, while B1 and B2 stem from plant B.  Each image 
set spans over several months of plant activity. For each set, the number of target 
events to identify is shown: this ground truth information has been derived from 
inspectors’ official review reports. As anticipated in Section 4, the number of 
safeguards-relevant events is very exiguous compared to the number of images in 
each set.  Also, it is not unusual to have image sets where no safeguards-relevant 
activity needs to be reported by the inspectors as in A3. 

Table 3. Image sets used in the benchmark. For each set, the Table lists the number of im-
ages in the set, and the number of events to be detected over the hatch (H), decontamination 
(D), and pond (P) areas. 

Image set Images H D P 

A1 20160 17 17 17 

A2 15661 1 1 1 

A3 16022 - - - 

B1 16020 30 30 30 

B2 15446 12 12 12 
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9.2   Performance Metrics 

To evaluate the performance of the image review tools we adopt two measures.  
The first is a standard evaluation performance for classifiers used in informa-

tion retrieval, namely recall and precision [33]. For a given classification method 
M and benchmark containing R* true events, the retrieval indexes are defined as: 

*
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where: 

• MCR is the number of images classified by M as relevant,  

• *
MCR is the number of relevant images correctly classified by M.  

The classification is optimal in terms of recall and precision when both indexes 
have value 1. Recall equals 1 when there are no false negatives, i.e. no relevant 
image is classified as irrelevant. Precision equals 1 when there are no false posi-
tives, these being defined as:  

*
MMM CRCRFP −=                                                    (5) 

The second performance index is application-oriented [50]. Given that SCD is the 
default filter used in safeguards reviews, we measure the user advantage to  
filter SCD events by a second classifier M (provided that SCDrecall  and 

Mrecall equal 1) by: 

SCD

MSCD
M FP

FPFP
reductionworkload

−
=_

                             
(6) 

If MFP  equals FPSCD, M does not bring any advantage and the workload reduc-

tion is 0. If MFP  is 0, M brings a tremendous advantage and the workload reduc-

tion is 1. 

9.3   Experimental Results 

SCD has been parameterized in this benchmark to guarantee that all events are de-
tected by optimal thresholds for each area of interest (AOI), i.e. the thresholds that 
provide SCDrecall  equal to 1 minimize SCDFP .  Further, because DT is tested only 
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on H and P events, while MM is tested on the whole chain of events H-D-P, SCD 
was run twice on each image set. The first time on two AOIs only, to be followed 
by DT: the SCD performance is indicated by SCD-2. The second time SCD was 
run on three AOIs for MM, and it is referred to as SCD-3. 

DT and MM were trained by the procedures described in Sections 7.4 and 8.4 
on roughly the first half of the events contained in A1 and B1. Hence the remain-
ing events test DT and MM generalization performance.  For DT, the image con-
tent on each AOI was indexed by a grayscale histogram at 64 components.  

Since both DT and MM detected all ground truth events (i.e. recall = 1 for both 
techniques), the evaluation is focused on precision (Fig. 14) and work-
load_reduction (Fig. 15). 

Concerning precision (4), Figure 14 shows that SCD produces many false posi-
tives, even when it is parameterized to work at its best (striped bars). In particular, 
to detect all decontamination events, a very low detection threshold had to be set, 
and this accounts for the significant drop in precision between SCD-2 and SCD-3. 
With SCD-3, the number of SCD events to be reviewed by an inspector almost 
doubles. In this context, Figure 14 shows that the use of informed techniques after 
SCD pays off. Both DT and MM score a higher precision on all image sets. The 
use of search by content techniques like DT is advantageous for the events of type 
H and P, while MM copes well with the task of tracking the whole flask-
processing chain, despite the very noisy stream of SCD-3 events. 

The real advantage of using these techniques after SCD is measured by the 
workload reduction index (6) shown in Figure 15. The high peaks reached by DT 
and MM show that they manage to reduce the number of false positives generated 
by SCD by a very significant amount.  From the user point of view, this reduction 
implies at least 60% of images less to be reviewed.   

Note that, compared to the previous chart on precision, MM now scores in a 
comparable way w.r.t. DT, in that MM workload reduction is measured relatively 
to SCD-3. 

Finally, as term of comparison for a popular search by content technique, 
namely image retrieval (IR), Figures 14-15 include the performance of IR as im-
plemented in [1]. This is basically a nearest-neighbor classifier, as referred to in 
Section 7.1-7.2.  The comparison between IR and DT is interesting, because a rea-
son for choosing decision trees as classifiers was their ability to focus the classifi-
cation automatically on the ‘relevant features’ of the image content (Table 2).  In 
our experiments on real safeguards image streams, the lower precision by IR  
confirms that feature selection before classification is a necessary step. As a  
matter of fact, the trained decision trees include few features (always less  
than 5) of the original grayscale histograms, suggesting that the remaining compo-
nents act as noise in the IR retrieval by similarity process. Also, being economic in 
terms of number of features, DT classifiers are fast to be tested on large images 
sets like ours, a key aspect for interactive machine learning to be acceptable to  
users. 
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Fig. 14. Precision provided by SCD-2 (scene change detection on 2 AOIs), SCD-3 (SCD 
on 3 AOIs), IR (image retrieval by nearest neighbors), DT (decision trees), and MM 
(Markov models) measured on five image sets 
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Fig. 15. Workload reduction provided by three filters IR (image retrieval by nearest 
neighbors), DT (decision trees), and MM (Markov models) measured on five images sets 

10   Discussion and Wrap-Up 

The application of machine learning (ML) to the analysis of image streams in 
fields related to video surveillance is a hot topic in the computer vision commu-
nity. Until today, the penetration of automatic image-stream analysis systems in 
the market and real-world situations has been far lower than expectations. After 
the terrorist menace of the early years of this decade all observers had projected a 
dramatic increase in the demand of video analytics. However, projections of sector 
growth continue to be corrected downwards year after year [51, 52]. 
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From our survey of a large set of online sources, the main reasons for this 
missed opportunity are two, but strictly interconnected: one is reliability, the other 
is the complex setup of such systems. Automatic image stream analysis works well 
under certain conditions of illumination, camera setup, clutter of scene, and so on. 
The setup needs to be done by highly trained individuals that perfectly understand 
the assumptions that must be respected for these systems to achieve the expected 
performance. When these assumptions are not met, reliability slips below accept-
able standards. In this picture, machine learning will most probably play a crucial 
role in the future. For a real breakthrough in applied video analytics, ML methods 
will have to substitute technical experts of computer vision in setup phase and in 
self-reliability assessments. 

The issue of a more natural setup and training of vision algorithms has been 
discussed and exemplified all over this Chapter. As for the reliability issue, the au-
thors of [53] advocate for the advent of autonomic computer vision systems. The 
term ‘autonomic computing’ was inspired by natural self-governing systems, and 
in particular from the autonomic nervous system of mammals. In practical terms, 
the concept implies four capabilities: self-monitoring of internal parameters, self-
regulation to ensure a preset quality of service, self-repair in case of failure, and 
self-description of internal state. All these should be achieved given high-level ob-
jectives from system administrators, without intervention by highly skilled experts. 
Programming these capabilities for all possible settings will be prohibitive; the 
same authors suggest using automated learning, like clustering of data, to identify 
the ‘normal’ state of operation. 

Based on our experience, we believe that in the near-to-medium term interac-
tive machine learning will preserve the upper hand over unsupervised as to quality 
of models learned, especially when the supervisor possesses highly specialized 
application-related knowledge. Notwithstanding the likely advances in unsuper-
vised learning, the ‘user in the loop’ paradigm will still be more desirable in 
highly delicate fields (e.g. security, nuclear) where failure of video surveillance 
may have dramatic impact.  

 
Our contribution in this Chapter has hence focused on interactive machine learn-
ing (IML) and on ways to capture field knowledge from users that have no train-
ing in computer vision or ML. We have addressed an application field, that of 
monitoring for nuclear safeguards, having the following aspects: (i) identifiable 
objects with strong visual features in some images, contrasted by low resolution of 
the same object in following images, (ii) low frame rate, and – as a consequence 
of the latter – (iii) high variability of appearance in the (often) only image that 
shows the target in a given location. All three characteristics contrast with the as-
sumption of traceability underlying many computer vision studies.  

Our contribution is not limited to nuclear safeguards, but can be extended to 
other video surveillance scenarios that have those same characteristics. The most 
compelling scenario is general industrial process monitoring, where the video sys-
tem may not be set for video-surveillance standards. A surveillance system on a  
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parking lot that delivers a frame every ten or twenty seconds is also a good exam-
ple of an alternative scenario. Another example is browsing surveillance images 
ex-post, for instance in a university campus environment, that have been recorded 
at a lower rate than acquisition because of limited storage space. 

 
As specific technical contributions, in this Chapter we presented a range of filters 
based on scene change detection (SCD), decision trees (DT) and Markov Models 
(MM) to search streams of surveillance images, together with a benchmark on 
process monitoring for nuclear safeguards. 

Search techniques can be uninformed, as SCD, or informed, as DT and MM. A 
main difference is that informed techniques use priors on events derived from pre-
vious searches and annotations made by the users to facilitate the recognition of 
new, related events. 

Priors may concern not only the image content, but also some image meta-data 
information, like the temporal one. These techniques can be applied when the ty-
pology of events to be searched is recurrent, and has a distinct visual or temporal 
signature.  

Uninformed techniques should be applied when no prior exist about what is be-
ing searched. They are general purpose filters, and easily programmable. These 
two properties make them the default solution even in cases, like the safeguards 
process monitoring, where one could take advantage of past search results and  
annotations. 

A barrier for informed search techniques to be applied more largely lies in the 
number of machine learning parameters on which these techniques depend and 
which everyday users do not understand. The interactive machine learning ap-
proach can alleviate the problem. In our contribution the ‘user in the loop’ phi-
losophy took shape in two different ways.  

In the DT image review tool, interactive machine learning is used to address the 
shaping of search by content filters. All ‘machine learning parameters’ for the im-
age classifier are estimated implicitly on the basis of a relevance feedback loop by 
which the user provides a growing set of positive and negative examples of what 
she is looking for. During training, the iterative visualization of the classification 
result provides the user with intuitive information about the convergence of the 
learning process. This is crucial for her to decide if she can ‘trust’ the tool event 
detection capability.  

In MM, the ‘user in the loop’ part is shifted on the usage side of the tool, i.e. to 
perform the actual image review. MM is a predictor of the temporal location of 
events based on sequence and duration priors. The estimation process of its model 
is fully automatic. Because long term predictions are inherently more inaccurate 
than the short term ones, MM is intelligently embedded in the image review cycle: 
it takes advantage of the online event annotations provided by the user to itera-
tively re-estimate the temporal position of the next relevant event. In this way, 
MM helps the user detecting relevant events while reducing the number of false 
positives. 
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A non technical contribution of this Chapter is a comparison between interactive 
machine learning techniques as proposed by different research communities: the 
user centered methods, put forward by the human computer interaction commu-
nity, and active learning techniques which are closer to the machine learning re-
search community. In abstract terms the problem addressed is the same: machine 
learning on the basis of a limited number of examples labeled by the user online 
(and, hence, under limited computation time). A fundamental difference between 
the two approaches lies in who drives the examples’ labeling process. When the 
user drives it, emphasis is on informing machine learning by the user’s knowledge 
in a goal directed way. By contrast, in active learning the process is driven by an 
algorithm’s self analysis about its points of uncertainty on a given problem. Find-
ing suitable ways to integrate these approaches can be a valuable future research 
area. 
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Abstract. With the demands on public security and the availability of large stor-
age systems, an increasing number of video surveillance systems are being de-
ployed all over the world to help people detect interesting target events. However, 
most of these systems require intensive human monitoring, or require human op-
erators to review video footage corresponding to extended periods of time, only to 
find a few short clips that are of interest. The problem fosters a demand of an 
automatic computer surveillance system, which can assist the human operators in 
identifying possible interesting events. This challenge has attracted researchers 
from different domains, leading to a variety of proposed approaches, particularly 
in the field of human activity recognition. These approaches vary in the choice  
of representation and methodologies as well. This chapter gives a survey and re-
views the state of the art approaches to automatic human activity recognition in 
videos. 

1   Introduction 

There is an increasing interest in developing video monitoring systems all over the 
world. For example, the retailers are interested in surveillance systems that can 
prevent fraud in self-checkout systems or detect thefts at the point of sale. The 
medical staff is interested in home care surveillance systems that could help moni-
toring the elders so that they can respond promptly in case of emergencies. The 
law enforcement officers are interested in traffic surveillance systems that can 
help detect possible traffic violation events. Thus, it is very desirable to have an 
automatic computer surveillance system that can help the human operators in 
identifying possible interesting events. 

Owing to its great potential, the problem of how to automatically discover and 
recognize human activities from video data has become a popular topic and at-
tracted many researchers in the computer vision community. A solution to this 
problem will not only facilitate an automatic video surveillance system [30] but 
will also improve applications, such as video retrieval or summary and human 
machine/robot communication [2]. In addition to its importance for many practical 
applications, it is also important in the context of machine learning, particularly  
on how video processing approaches could allow a high-level understanding of  
the data.  
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The challenges faced by researchers include the following: 

− Video quality: When the video sequence is captured, factors such as lighting 
changes or the photometric variability of the camera can affect how objects ap-
pear in the captured video frames. When it is dark, the objects might not even 
be easily visible. 

 

− Occlusions: There might be multiple objects in the video, and the target object 
might be occluded by others, or even by itself.  

 

− Camera motion: The camera could be moving as well, either regularly or ir-
regularly, making the tracking or estimation of the target objects harder. 

 

− Cluttered background: There might not be always a clean background in the 
video. Combined with the effect of camera motion, part of the background 
could be erroneously detected as an object. 

 

− Event variations: Objects may be deformable and thus exhibit high variations 
even for the same activity.  In general, an event could have many variations and 
exceptions, making the recognition difficult.  We are interested in unusual 
events.  However, it is often difficult to describe what is an unusual event due 
to the large possible variations and exceptions of usual and unusual events. 

 

− Semantic gap: Many detection results depend on the semantics of the activities.  
It is often very difficult to detect high-level semantics of an activity from low-
level features.  

Therefore, the requirements of the video analysis techniques are manifold. They 
need to be capable of dealing with difficult situations such as cluttered  
background, poor lighting conditions, camera motion, occlusion, geometric and 
photometric variability, etc. In this chapter, we focus on single camera activity 
recognition. Also, due to its usefulness in typical real world surveillance settings, 
most works on activity recognition focus on human activities, i.e. recognizing how 
human body parts move, and also human motion patterns, i.e., the trajectories of 
human movement when the information about different parts are not available.  

Numerous methods have been proposed to address the problem of action rec-
ognition and analysis in video sequences. They are different in various ways in-
cluding models to use, features to extract, etc. In the subsequent sections, we will 
review the state of the art approaches in different major categories. We start with 
the template matching based approaches in Section 2, and elaborate on the trajec-
tory based methods in Section 3. In Section 4, we talk about methods based on 
state-space models, and in Section 5, we introduce the popular methods based on 
the “Bag of Words” features. We introduce the publicly available datasets and  
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report the performance comparison in Section 6, and finally conclude the chapter 
in Section 7. 

2   Activity Recognition Using Template Matching 

Template-based approaches use the straightforward principle of nearest neighbor 
search. They are typically used under the supervised learning framework with a 
labeled training set. When a new video sequence is given, these approaches com-
pare it with a set of stored video templates in the training set. The new video se-
quence is then assigned the class label of the template in the training set that most 
resembles it. Typically, these approaches make use of spatial temporal features to 
match and identify specific actions in videos. They are usually applied when train-
ing a specific model for each activity of interest is infeasible, for example, under 
the situation where the size of the training set is small compared to the number of 
activities. The difficulties underlying these approaches are the applicability of the 
extracted spatial temporal template and a suitable choice of distance measures. 

In [7], Bobick and Davis use motion history images - a.k.a. temporal templates 
- for action classification. A motion history image is one that encodes the motion 
information in recent frames. Let I(x, y, t) be a video sequence, and D(x, y, t) be 
the sequence of binary images indicating the regions of motion, which can be ob-
tained by simply differencing the adjacent frames or using other background sub-
traction techniques. Then each pixel of the motion history image H(x, y, t) can be 
defined as follows: 

 ( , , ) 1
( , , )

max(0, ( , , 1) 1)

if D x y t
H x y t

H x y t otherwise

τ =⎧
= ⎨ − −⎩

                 (1) 

where D(x, y, t) = 1 indicates that the pixel is inside the region of motion for frame 
t and τ  is an application dependent parameter that controls the temporal extent of 
the motion. That is, if a pixel at frame t is inside the region of motion, then its mo-
tion history is set toτ , which will be decremented if the pixel is stationary in the 
next frame. The intuition behind the motion history image is to aggregate the mo-
tion information of each pixel in the past τ frames, and as a result, the recently 
moving pixel would be brighter in the motion history image. The authors show 
that by using the temporal template, activities such as sitting down, hand waving, 
and crouching can be well distinguished. The approach provides a simple way to 
gather the motion statistics from video sequences and by matching these statistics 
against known action models, the class label of a new test video can be quickly  
determined. However, the approach is not suitable when applied to complex ac-
tivities, especially those that could overwrite the motion history images. Represen-
tation of the time, the order, or the sequence of how an activity is performed 
would be needed to address this problem [52].  
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Efros et al. [8] introduce a spatial temporal descriptor that works well for hu-
man activity recognition on far-field videos where the whole object of interest, for 
example, a person, may only be 30 pixels tall. The descriptor is based on the com-
putation of optical flow. Let IA(x, y, t) be sequence A, then for each frame t of se-
quence A, the descriptor first computes a horizontal and a vertical optical-flow 
field Fx, and Fy, which are decomposed into Fx = Fx

+
 - Fx

-
 , and Fy = Fy

+
 - Fy

- where 
the four fields Fx

+ ,Fx
-  ,Fy

+, Fy
- are nonnegative and later smoothed and normal-

ized. Note that Fx
+ (i, j) = Fx (i, j) if Fx (i, j) > 0, and 0 otherwise, while Fx

- (i, j) = 
Fx (i, j) if Fx (i, j) < 0, and 0 otherwise, similarly for Fy

+ and Fy
-. The similarity be-

tween frames from two sequences can be determined by comparing the computed 
optical-flow fields using measures such as the normalized correlation or the Sum 
of Absolute Difference (SAD). The sequence-level similarity can also be obtained 
by aggregating the frame-level similarities. With the motion descriptor, the authors 
show that it is possible to distinguish different sports activities, such as run  
left, run right, walk left, and walk right. However, this approach requires segment-
ing, tracking, stabilizing each human figure in the sequence, and then reliably ex-
tracting the bounding boxes, which might not always be possible in complex 
scenes. 

Other approaches include the space-time shape volumes proposed by Blank  
et al. [9] for classification, a space time volumetric feature proposed by Ke et al. 
[1], and a similarity metric between video patches based on the intensity variation 
proposed by Shechtman and Irani [10]. In [39], Wang et al. attempt to cluster hu-
man activities for each video frame based on deformable matching. 

A common drawback of the aforementioned template based methods is their in-
abilities to generalize from a collection of examples and create a single template 
which captures the intra class variability of an action.  

More recently, Rodriguez et al. [11] address this problem using the Maximum 
Average Correlation Height filter, or MACH filter [12], which was originally pro-
posed to solve target identification problems in static images. Given a set of train-
ing images I1, I2 …IN, the MACH filter aims to create a template H in the fre-
quency domain that gives the best representation of these images. The intuition is 
that if the filter H is viewed as a linear transform, then when correlated with the 
training images, it should produce a set of correlation planes that resemble each 
other and exhibit the least possible variations. It should also maximize the height 
of the main lobe on the correlation plane, while minimizing the magnitude of un-
desirable side lobes. Figure 1 shows a profile plot of a correlation example. A 
good H should try to make the plot resemble the Dirac Delta function by making 
the main lobe as narrow and as high as possible while keeping the magnitude and 
the number of side lobes small. Thus, H can be obtained by optimizing the afore-
mentioned criterions. By using the Clifford Fourier Transform [13] to handle vec-
tor valued functions, Rodriguez et al. [11] successfully extend the MACH filter 
into the video domain where the features usually are not simply pixel values but 
multi-dimensional vectors, such as gradients in different directions or optical flow, 
and achieve better performances on standard datasets. 
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Fig. 1. A sample profile of the correlation with a peaked main lobe and a few side lobes 

3   Activity Recognition Based on Tracking 

Recognizing activities based on tracking is extensively studied and researched in 
the computer vision community.  These approaches are usually applied in the set-
tings where the bounding boxes of the moving objects can be reliably extracted. 
Later on, features such as object speed, trajectory, or minimum bounding box size 
can be computed for activity recognition. For example, in a traffic surveillance 
system, the trajectories of cars can be gathered to determine the anomalies, such as 
a car making a wrong turn. 

3.1   Trajectory Clustering  

In earlier works [14, 15, 16, 17], the moving objects, typically cars and pedestri-
ans, are tracked and the trajectories are clustered in order to locate interesting lo-
cations in the scene, for example, regular paths, junctions, or exits, based on 
which, objects with trajectories that deviate from regular patterns can then be de-
tected, for example, a blindly walking person or a speeding car. 

More specifically, in [14], Makris et al. accumulate trajectory data over long 
time periods to learn a path model, which is later used to predict future pedes-
trian’s locations and aid the recognition of unusual behavior identified as atypical 
motion. Tan et al. [15, 16] perform hierarchical clustering on the collected trajec-
tory data in order to discover finer-grained motion patterns in a crossroad, e.g., 
traffic in the left lane versus traffic in the right lane. In [17], Junejo et al. propose a 
framework unifying automatic camera calibration, moving object tracking, and 
trajectory clustering. Aerial images are also incorporated and registered with the 
2D images to uncover the scene structure.  

The benefit of these approaches is that they provide a simple and intuitive way 
for a preliminary analysis of the video. The raw trajectories are collected using a 
tracking algorithm, and subsequently, the raw trajectory data are clustered to  
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uncover interesting spatial patterns in the scene. The drawback is that modeling or 
detecting more complicated activities is difficult as more advanced models are 
needed to incorporate the temporal information. We review some of these ad-
vanced models next. 

3.2   Activity Recognition Using Higher-Level Representations 

Recently, people become interested in detecting more complicated activities, 
which requires a higher-level representation of the trajectory instead of sparse 
samples in the 2D space. One common approach is to represent the trajectories as 
strings. Then, more sophisticated models can subsequently be applied to these 
strings to uncover latent semantics.  

As an example, in [18], a surveillance system is set up to detect various activi-
ties in a kitchen. The objects of interest, such as the stove, the fridge, or the tables 
are labeled and then the person is tracked to find out the sequence of his/her inter-
actions with those objects of interest. For example, if the person first goes to the 
fridge, then the table, and finally the stove, after tracking, the activity can be rep-
resented by the string {fridge, table, stove}. Note that an activity can be composed 
of sub-activities. Consider, for example, the activity a = {1, 2, 3, 1, 2, 3}. Note 
that subsequence {1, 2} occurs with the same frequency as {1, 2, 3}. In other 
words, {1, 2} does not encode any extra information given the subsequence {1, 2, 
3}, and therefore we can see that a is composed by the recurrent sub-activity {1, 2, 
3}. In order to efficiently represent an activity and uncover possible sub-activities,  
the string representation is transformed into a suffix tree. A suffix tree for a string 
S is one such that each suffix of S corresponds to exactly one path from the tree's 
root to a leaf, which can be constructed in linear time using the approach in [24]. 
Take the string S = {1, 2, 3, 2, 3, 2, 4} for example, its suffix tree is shown in Fig-
ure 2(a) and the suffix {2, 3, 2, 3, 2, 4} corresponds to the path R->2. After a 
suffix tree T is constructed, a histogram of the constituent suffixes can be effi-
ciently computed by traversing through T starting from the root-node.  The count 
of a particular suffix is the number of times its corresponding edge is traversed.  
 

 

Fig. 2. Examples regenerated from [18]. (a) Constructed suffix tree for string S ={1, 2, 3, 2, 
3, 2, 4} (b) Histogram of the subsequences of string S. 
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For example, to know the counts of subsequences {3, 2}, we simply count how 
many times edge {3, 2} is traversed when going through all the possible paths 
from the root to the leaves. In this case, it is two, since edge {3, 2} is traversed 
twice (Paths R->5 and R->6).  The histogram representation for the string S is 
shown in Figure 2(b). With the histograms at hands, the similarity between two ac-
tivities can be measured by comparing their corresponding histograms. The  
benefit of the Suffix-tree model is that how the activities are composed or  
structured can be easily seen from the suffix tree representation, and also by trans-
forming the activities into a tree, standard graph-theoretic methods can be easily 
applied. 

In [25], Zhang et al. are interested in analyzing the car trajectories extracted 
from a crossroad. Instead of looking at the spatial distribution of trajectories, they 
explore the temporal relationships and infer semantic meanings from the trajecto-
ries. They start out by dividing the entire scene into several semantic regions that 
could correspond to particular goals. All the cars are tracked and the collected tra-
jectories are then segmented according to these regions. In each region, these 
segments are clustered in order to form atomic events in different regions. For 
each of these atomic events, a Hidden Markov Model (HMM) classifier can be 
built. Upon encountering an unseen trajectory, the system first segments it accord-
ing to the predefined regions and then applies each classifier to find out the atomic 
events that constitute the trajectory. For example, a trajectory could be the result 
of the set of atomic events: {going in the left lane of the main road, turn left, going 
in the left lane of the side road}. With the HMM classifiers, any trajectory can be 
represented as a string. These strings are then used to train a stochastic grammar to 
uncover more complicated rules, such as, “Turn left from the side road to the main 
road”. These grammar-based approaches benefit from the fact that a context-free 
grammar, similar to suffix-tree, is already studied extensively. Therefore, after de-
fining and detecting the primitive events, the production rules that define higher-
level activities can be learned efficiently. 

There are several drawbacks to these trajectory-based approaches. First, the ex-
tracted features might be sensitive to different camera settings, which we will 
elaborate in the next section. Second, to model complex activities, primitive 
events usually need to be manually defined or labeled, but in many cases, it may 
not be clear which events should be considered primitives. Finally, the trajectories 
might not always be available due to occlusion or very few motion information 
exhibited by the target of interest. 

3.3   Cross Scene Transfer 

One common drawback of the tracking-based approaches is that, the extracted fea-
tures would depend on the camera settings. For example, the object location  
is usually scene dependent as it will change if the camera is set up differently.  
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Therefore, most of the time when the camera is redeployed, the entire system will 
need to be retrained. In [19], Bose et al. study an extensive set of features for clas-
sifying people and cars in videos. They find out that some features are scene de-
pendent, while others are scene invariant, i.e., these features can be used to train 
the system in one scene and test in another without degrading the performance 
much. Table 1 shows the partial lists for scene invariant and scene dependent fea-
tures. Orientation is the direction of principal axis of the object. Note that it is a 
scene invariant feature since the vertical world direction projects to the vertical 
axis in the image for most camera setups, so the objects would have an almost 
constant orientation. Variation in area refers to the second derivative of the num-
bers of pixels as a function of time, normalized by the mean area. Percentage oc-
cupancy is the number of silhouette pixels divided by the area of the bounding 
box. The magnitude of object velocity is also mostly constant regardless of the 
camera settings.  On the other hand, object area and aspect ratio, two commonly 
used features in vision systems are scene dependent, implying that most vision 
systems do not transfer well to new scenes. Based on this, they propose to first 
train a generic classifier using the scene invariant features only. When applied to a 
new scene, the classifier is adjusted using the scene dependent features. This way, 
the cost of retraining the system is reduced and the incorporation of the scene de-
pendent features also boosts the performance of the classifier.  

Table 1. Partial list of scene invariant and scene dependent features  

Scene Invariant Features Scene Dependent Features 

Orientation Area in pixels 

Variation in area Aspect ratio 

Percentage Occupancy X coordinate 

Velocity magnitude Y coordinate 

3.4   Human Activity Recognition Based on Tracking 

Other than the aforementioned surveillance systems, specifically for human action 
modeling, a variety of techniques that rely on tracking body parts (e.g., hands, 
arms, limbs, torsos, etc.) to classify human actions were also proposed [20, 21]. 
The classical review of [22] covers significant amount of work that falls into this 
category. Methods are also proposed [23] to distinguish activities under large 
viewpoint changes. 

There are also research works focusing on hand activity recognition by tracking 
the human hands and estimating the hand poses [40, 41]. Although very promising 
results have been achieved, it is still hard to accurately detect and track body parts 
in complex environments due to cluttered background or self-occlusion. Also, the 
high degree of freedom of human bodies or hands makes the estimation of the 
model parameters difficult as well. 
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4   Activity Recognition Using State-Space Models 

A range of methods based on state-space models now permeate the field of com-
puter vision. These models have been widely applied for short-term action recog-
nition and more complex behavior analysis, involving object interactions and  
activities at multiple levels of temporal granularity. Examples include Hidden 
Markov Model and its variations such as coupled HMMs [35], Layered HMMs 
[36], Stochastic Grammars [37], and Conditional Random Fields [38]. 

These models are typically used to model composite activities. Usually atomic 
activities are defined first and these models are applied over these atomic activities 
to classify more complicated ones. For example, as stated previously, Zhang et al. 
[25] first divide the scene from a traffic surveillance camera into different regions, 
based on which, vehicle trajectories are segmented. Then Stochastic Grammars  
are applied on the segmented trajectories in order to find the hidden semantic 
meanings. 

 

Fig. 3. Graphical representation of a coupled Hidden Markov Model. The shaded nodes 
represent observations, denoted by variables X1 ~ X4, while nodes Y1 ~ Y4 are state vari-
ables of interest to be inferred, for example, class labels. 

In [35], Brand et al. propose a coupled HMM to model the causal interactions 
between activities. Conventionally, HMM is used to model a sequential activity. 
When there are two or more activities interacting with each other, HMM will not 
be able to capture the interaction. The reason is that it makes the assumption that 
the current state of one activity only depends on the previous state of its own, 
which implies independence between any two activities. Suppose we are to model 
two tennis players in game, HMM will not work well as the current state of one 
player is causally related with the previous state of the others. For example, in a 
tennis game, if you go up to the net, you will usually drive your opponent back 
and a weak serve will tend to bring your opponent forward. Figure 3 shows the 
graphical representation of coupled HMM. As we can see from the figure, the 
states of the two processes are intertwined and mutually dependent and the current 
state of one process not only depends on the previous state of its own but that of 
the other process. In [35], the coupled HMM is used to recognize different arm 
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gestures in Tai Chi sports, where the arm movements are correlated. They report 
94% accuracy compared to the 70% accuracy using HMM.  

In [36], Oliver et al. try to identify different activities (phone conversation, 
presentation, face to face conversation, user present and engaged in some other ac-
tivities, distant conversation, and nobody present). They use two layers of HMM’s 
to recognize these activities. At the first layer, two banks of HMM’s are trained. 
The first bank of HMM’s detects different classes of sounds, such as human 
speech, phone ring, music, office noise, and ambient noise. The second bank of 
HMM’s aims at detecting how many people there are in the office (nobody, one, or 
more). After classification, the HMM’s at the first layer feed their classification re-
sults into the HMM on the second layer, which will make a final classification 
based on the sound and the video information and also the history of mouse and 
keyboard activities. The reported accuracy is 99.7% compared to 72.7% without 
the layering structure. 

Similar to [25], Bobick et al. try to detect complex hand gestures using stochas-
tic grammars. At the lower level, HMM’s are trained to recognize atomic hand-
movements, such as moving toward the right, the left, upward, or downward from 
both hands. Subsequently, the outputs of the HMM’s are fused together to train a 
stochastic grammar in order to recognize a more complex activity, for example, 
right hand moving clockwise.  

The aforementioned models are variants of HMM, a generative model assum-
ing conditional independences between the observations, which makes modeling 
of long-range dependencies difficult. In [44], J. Lafferty et al. propose the Condi-
tional Random Field (CRF), the discriminative counterpart of HMM, that directly 
maximizes the conditional distribution of the label variables, and thus, removes 
the independence assumptions. In [45], D. Vail et al. use CRF to identity which 
robot is the seeker, i.e., the one that moves the soccer to its closest teammate or 
the goal position, in a multi-robot soccer game using features such as relative posi-
tions and velocities. Similarly, C. Sminchisescu et al. [46] apply CRFs to classify 
human motion activities (i.e. walking, jumping, etc.) and their model can also dis-
criminate subtle motion styles such as normal walk and wander walk. 

In [47], A. Quattoni et al. propose the Hidden State Conditional Random Field 
(HCRF) model, an extension of CRF, by introducing a layer of hidden variables 
for object recognition, where the hidden variables model different parts of the  
object. The authors also apply this model to recognize different head gestures in-
cluding head nodding, head shaking, and head junking and arm gestures as well 
[38, 48].  

In [49], Y. Wang et al. apply HCRF to recognize human activities. Specifically, 
they combine HCRF with the constellation of local features, similar to [6] for hu-
man activities and achieve good performances on standard datasets. The limitation 
of HCRF is that the training involves summing over all the possible labeling  
of the latent variables, which could be hard if the hidden variables form  
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(a) Conventional HMM 
 

 
 

(b)  Conditional Random Field 

 
 

                                    (c)    Hidden state Conditional Random Field 

Fig. 4. Graphical representations of (a) HMM, (b) CRF, and (c) HCRF. The shaded nodes 
represent observation, denoted by variables X and Xi, while nodes Y and Yi are class labels 
and Si are latent variables. For CRF and HCRF, since there could be interactions between 
the observations, X1 - X4 are merged into a vector variable X. For HCRF, since the class la-
bel at each time stamp could be mutually dependent, variables Y1-Y4 are merged into a vec-
tor variable Y. 
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complicated structures. To tackle this problem, they propose Max-Margin HCRF 
[50] by incorporating structure learning during the training process in order to 
learn the optimal structures of the latent variables. Figure 4 shows the graphical 
representations of HMM, CRF, and HCRF respectively. 

By modeling the complicated interactions among the observations and latent 
variables, these models are capable of recognizing complex activities. However, 
this does come with a price. These models typically fall under the category of un-
directed graphical models, which are harder to learn as the variables are coupled 
together. Besides, the majority of these methods are supervised, requiring manual 
labeling of video clips, and when the state space is large, the estimation of many 
parameters makes the learning process more difficult.  

5   Activity Recognition Using Bag of Words Models 

Different from previous methods based on trajectories or template matching, bag 
of words models have recently become very popular and have shown great prom-
ise in action recognition. The idea is rooted from natural language processing, 
which assumes a document can be suitably represented as a histogram of its con-
stituent words. For example, suppose we are given a document and would like to 
find out what category it belongs to. As Figure 5 illustrates, we can first represent 
the document as a histogram of the words in it, then by looking at the word distri-
bution, we can infer that this document is more likely an article about Meteorol-
ogy than Machine Learning since the counts of the science related words, e.g., 
Earth and Moon, are high. 

 

Fig. 5. We can represent a document as a histogram of its constituent words. By looking at 
the word distribution of the document, we can have a rough idea about which category the 
document belongs to.  

5.1   Extraction of the “Bag of Words” Features 

When applied to computer vision, these approaches in general require the extrac-
tion of sparse space-time interest points [3, 4] from the video sequences. In [4], 
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Laptev and Lindeberg detect these interest points by extending the 2D Harris cor-
ner detector into the t dimension. Gradients are first found along x, y, and time 
axes and then the second moment matrices are computed at each pixel in order to 
determine if it is a spatial temporal corner.  

In [3], Dollar et al. propose to detect denser interest points using a temporal 
Gabor filter. For a video sequence with pixel values I(x, y, t), separable linear 
filters are applied to the video in order to obtain the response function as  
follows: 

22 )()( oddev hgIhgIR ∗∗+∗∗=                                        (2) 

where * indicates the convolution, g(x, y, σ) is the 2D Gaussian smoothing kernel 
applied only along the spatial dimensions (x, y), and hev and hod are a quadrature 
pair of 1D Gabor filters applied temporally, which are defined as: 
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The two parameters σ  and f correspond to the spatial and temporal scales of the 
detector respectively. The frequency of the harmonic functions is given by f. A re-
gion undergoing a complex, non-translational motion induces a strong response 
[3]. At the points where strong motion occurs, spatial temporal volumes or cuboids 
can be extracted, which are also called visual words space-time interest points.  
Figure 6 shows the detected interest points using the approach in [3] for a few se-
quences from the KTH dataset [5]. Considering Figure 6(c) as an example, we can 
see that the interest points occur at places around the arms, where the periodic mo-
tion induces strong responses.  

After the extraction of the interest points, application dependent features such 
as local optical flow or 3D gradient can be computed from these 3D volumes and 
then concatenated to form feature vectors. Usually Principal Component Analysis 
(PCA) is followed in order to reduce the feature dimension. Suppose the interest 
points with computed features are extracted from a set of video sequences. These 
extracted interest points can be used to build a codebook or dictionary using the 
K-means clustering algorithm. Later on, each video sequence can then be de-
scribed by a histogram of words from the codebook, and finally, either discrimina-
tive or generative models can be applied for categorizing the activities.  
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         (a)      (b) 

    (c)         (d) 

        (e)          (f)  

Fig. 6. Sample sequences with detected interest points for the KTH dataset. From (a) to (f), 
the activities are boxing, handclapping, hand-waving, jogging, running, and walking. The 
squares represent the detected interest points.  
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5.2   Activity Recognition Using the “Bag of Words” Features 

By representing each video sequence as a histogram of visual words, conventional 
discriminative models can be applied in order to determine the class label of a test-
ing video sequence. In this setting, the histograms are treated as the input vector 
variable x, and the class labels y is the output variable. The function y = f(x) is to 
be inferred from a training set (x, yi), i=1...N. In [3, 5], highly discriminative re-
sults are obtained using SVM classifiers based on these descriptors under a super-
vised learning framework.  

Recently, Niebles et al. [6] enhanced this approach by proposing a novel model 
characterized as a constellation of the “Bag of words” image features, which en-
codes both the shape and appearance of the actor for recognizing human activities 
in each video frame. The proposed model is illustrated in Figure 7. 

 

Fig. 7. The hierarchical model regenerated from [6]. The red nodes constitute the part layer, 
which is a higher layer while the feature layer is composed of the detected Bag of Words 
features. 

Let the model parameter for a particular human activity be wθ and assume the 

human body is composed of P parts, for example, P = 4 in Figure 7. Variable 
P1…Pp represent the locations of the parts of the body. Given a video frame I, 
with W detected visual words w = {wi}, i=1…W,  instead of directly using the vis-
ual words to recognize human activity, the model imposes a structural constraint 
on top of the feature-layer by introducing a part-layer composed of variables 
P1…Pp, and a variable Bg representing the background. The joint distribution of 
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P1…Pp is modeled as a multivariate Gaussian, implying that the body parts should 
not deviate from each other too much. In addition, a 1 x W vector variable m is  
introduced to represent the assignment of each of the W detected visual words, that 
is, it is a vector of W elements, each taking integer values in the range [0-P].    
Each visual word can be assigned to any of the P parts or the background. Sup-
pose the jth detected visual word comes from the second body-part, then we can 
set m(j)=2. Learning is done using Expectation Maximization (EM) to infer the 
model parameters and the hidden variables.   

We can consider the problem of recognizing human activities using the “Bag 
of words” features as one that assigns each of the visual words to one of the body 
parts.  Hence, the benefit of this two-layer model over a naïve “Bag of words” 
model is that by introducing the structural constraint, it keeps in mind the domain 
knowledge, that is, how a human should look like, when solving the assignment 
problem. With this constraint, lots of invalid human body configurations can be 
filtered out quickly. Without the constraint, it is possible that the model would as-
sign features induced by the hands to legs, and vice versa. The fact is also con-
firmed by the better performance reported in [6]. 

Other popular methodologies include using language models for unsupervised 
activity recognition. Due to the success in the image domain [26, 27] for object 
recognition, these methods combined with the bag of words model have also been 
proposed to solve the activity classification problems. They have become very 
popular as they could achieve excellent performance in standard datasets [28] and 
long surveillance videos [29, 30]. Generally, these unsupervised algorithms extract 
spatial temporal feature descriptors and then use document topic models such as 
Probabilistic Latent Semantic Analysis (pLSA) [31], Latent Dirichilet Allocation 
(LDA) [32], or HDP [33] to discover latent topics [34, 29, 30]. pLSA and LDA 
are two commonly used models for unsupervised learning. We briefly review 
them next. 

Figure 8 illustrates the graphical models of pLSA and LDA respectively. They 
are both generative models. For pLSA, a word can be generated as follows: select 
a document di with probability P(di), pick a latent class zk with probability P(zk | 
di), and finally generate word wj with probability P(wj | zk). The parameters, that is, 
how words are distributed given a topic z, can be learned using EM. pLSA as-
sumes that one document contains only one topic, therefore, a document d is clas-
sified into topic k if P(zk | d) is the largest. LDA assumes that one document can 
contain a mixture of topics. The mixture weight is controlled by the variable π  
whose distribution is determined byα.  Given a topic z, the word distribution is 
controlled by β . Learning for LDA is harder but can still be done using sampling 
techniques. 

In [34], Niebles et al. extract spatial-temporal interest points and use a genera-
tive model based on pLSA to cluster activities. In [30], Wang et al. try to recognize 
activities in a crossroad scene. The goal is to model the interactions between cars 
and pedestrians without relying on tracking. For each video, they first detect  
the moving pixels simply by computing the intensity difference between two  
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successive frames on a pixel basis. If the difference at a pixel is above a threshold, 
the pixel is detected as a moving pixel. The motion direction at each moving pixel 
is obtained by computing the optical flow. These result in two features, position 
and direction, for each moving pixel. For each moving pixel, its position and di-
rection are then quantized into different locations and directions. Then, they treat 
each video clip as a document and a moving pixel a word for word document 
analysis, and then use LDA to cluster the activities and find out interactions in 
surveillance videos. They report good performance in identifying different interac-
tions between cars and pedestrians in the crossroad. 

 

Fig. 8. The graphical model for pLSA and LDA. The shaded node represents observed vari-
ables while the white nodes are hidden variables. The enclosing rectangle represents multi-
ple copies of the model, i.e, M documents, N dictionary words. For pLSA, w is the word 
variable, z is the topic variable, and d is the document variable. For LDA, w is the word 
variable, z is the topic variable, β  controls how the words are distributed given a topic, π  

is the weight of each topic z and α controls how π  is distributed. 

The benefit of using the bag of words models is the easiness of representing 
the possible activities and the application of methods from the Natural Language 
Processing community. Although they achieve excellent results in real world video 
data, they could be further improved. Since they are borrowed from the language 
processing community, which usually represent documents as histograms of 
words, when applied to the image or video domain, they usually do not consider 
the spatial-temporal relationships among “visual words” unless the relationships 
are represented explicitly [29]. To address the problem, more recently, Savarese et 
al. [28] use spatial temporal correlations to encode flexible long-range temporal 
information into the local features. The other critic is the size of the codebook. As 
mentioned previously, these methods require vector-quantizing the local interest 
points into video words using the K-means algorithm, which clusters the cuboids 
based on their feature similarity. It has been noted that the size of the codebook af-
fects the performance and that the optimal codebook size is often determined 
through experiments. In [51], J. Liu et al. tackle the two problems at once by using 
the information maximization clustering in order to both determine the optimal 
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size of codebook and incorporate the correlogram to capture the spatial temporal 
relationships among the visual words. In [43], the authors also try to improve the 
performance by incorporating features extracted from static frames. 

6   Datasets and Performance Comparison 

In order to obtain a fair performance evaluation of different approaches, it is desir-
able to use a standard test dataset. However, although many approaches have been 
proposed, not everyone reports the performance on the same dataset. In this sec-
tion, we introduce the currently available standard datasets and summarize the per-
formance of some of the methods we reviewed. 

6.1   Standard Datasets 

Currently, two standard datasets for human activity recognition are widely used. 
The KTH dataset [5] is by far the largest dataset, containing six types of human 
activities (walking, jogging, running, boxing, hand waving, and hand clapping), 
which are performed by 25 actors in four different scenarios, resulting in 600 se-
quences, each with a spatial resolution of 160 x 120 pixels and a frame-rate of 25 
frames per second. Each sequence is about 15 seconds long.   

The Weizmann dataset [9] contains 10 types of activities (walking, running, 
jumping, gallop sideways, bending, one hand waving, two hand waving, jumping 
in place, jumping jack, and skipping), each performed by 9 actors, resulting in 90 
video sequences, each with a spatial resolution of 180 x 144 pixels and a frame-
rate of 50 frames per second. Each sequence is about three seconds long. 

More recent efforts to publish new dataset include the TREC Video Retrieval 
Evaluation Project [42] that released real world surveillance videos taken from the 
Gatwick airport in London. Also, J. Liu et al. [43] collected 1168 video sequences 
from Youtube that cover 11 kinds of sports activities including basketball shoot-
ing, volleyball spiking, trampoline jumping, and so on. These videos are mostly 
low resolution and differ in many aspects. For example, some are taken with 
shaky cameras, while others are not. The object scale, viewpoint, background 
cleanness and lighting condition are all different across the videos. Each sequence 
is roughly two to three seconds long with a frame-rate of 25 frames per second. In 
[53], the authors collected a set of 12 activities from Hollywood movies to study 
how context information, i.e., where the activities occur, can help in recognizing 
the activities.  

6.2   Performance Comparison 

Here, we report the performance of a few approaches reviewed on the KTH and 
the Weizmann datasets. For the approaches that use spatial temporal interest 
points [3], the parameters for the detector are set as follows: σ  = 2 and τ  = 2.5 
for the KTH dataset [5], and σ = 1.2 and τ  = 1.2 for the Weizmann dataset [9]. 
In all cases, f =4/ τ . PCA is used to reduce the dimension of the feature vectors 
to 100. Table 2 summarizes the performance of different methods. 
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Table 2. Performance reported for different methods on the KTH dataset [5] and the 
Weizmann dataset [9]. Numbers are reported on a per video sequence basis. * represents 
those reported on a per feature basis. x represents numbers on a per frame basis. 

Methods Type  Features Models  KTH  Weizmann 

J. Liu et al. [43] supervised ST [3]+image Decision Tree 91.8%  

J. Liu et al. [51] supervised ST [3]+correlogram SVM 94.1%  

Y. Wang et al. [50] supervised Motion features [8] MMHCRF 92%, 78%* 100%, 93%* 

Y. Wang et al. [49] supervised Motion features [8] HCRF 87%,  67%* 97.2%, 90.3%* 

Savarese et al. [28] unsupervised ST [3]+correlogram pLSA 86.8% N.A 

Nieble et al. [34] unsupervised ST [3] pLSA 83.3% 90% 

Dollar et al. [3] supervised ST [3] SVM 81.17% N.A 

Schuldt et al. [5] supervised ST [5] SVM 71.72% N.A 

Ke et al. [1] supervised Template based Binary classifier 63% N.A 

Blank et al. [9] supervised Template based N.A N.A 97.9%* 

Nieble et al. [6] supervised Bag of words Graphical Model N.A 72.8%  55%x 

This table summarizes the methods and features a few state-of-the-art ap-
proaches adopted and the performance numbers they reported on both datasets. 
However, it is still hard to say how well these methods perform and what merits 
these approaches possess. The complication arises from the following facts. To 
start with, the models are trained differently and thus the training sets and the test-
ing sets are generally different among different methods. For example, the training 
samples could be different depending on how many percentages of the data are 
withheld as training data.  

If the difference in training data were the only factor, we might still have a 
rough feeling about how well each method is performed. A more significant factor 
that makes it hard to fairly evaluate these methods is the difference in how they 
are evaluated. For example, the number reported by Blank et al. [9] on the Weiz-
mann dataset [9] is actually one reported on a per feature basis, different from oth-
ers on a per sequence basis. In [9], the authors reported the performance on a per 
sequence basis, however, it is to evaluate the performance of clustering, which is 
different from others performing classification tasks. Also, Nieble et al. [6] re-
ported a lower performance on a per frame basis. 

To cite another example, the performance reported by Ke et al. [1] on the KTH 
dataset [5] is lower compared to those reported by others. However, what the au-
thors are evaluating is the capability to search for a certain activity in a video se-
quence, which is harder than simply classifying a video sequence into one of the 
categories.  

The third factor arises from the inadequacy of the standard datasets. Most ac-
tivities in the two available standard datasets are stationary, that is, in most cases, 
the actors are standing still performing different activities, which makes it impos-
sible to evaluate motion-based or tracking-based approaches using these datasets. 
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To summarize, although many methods have been proposed to solve the prob-
lem of automatic activity recognition, many of them report their performance on 
customized datasets. This makes it difficult to fairly and extensively evaluate the 
performance of different approaches. We hope that the problem will be alleviated 
in the future if more standard and representative datasets are published and more 
research work could report their performance on these standard datasets.  

7   Conclusions 

The concerns of public security coupled with the advance of video and storage 
technology has led to a great need for an automatic surveillance system, and there-
fore, automatic video activity recognition is becoming an important research topic. 
It extends the conventional object recognition problems in static images into the 
video domain by introducing the extra time dimension. With the extra dimension, 
more information is available. This chapter reviews what previous research re-
garding activity recognition has paid off and comments on the pros and cons of 
each genre.  

To conclude, these approaches can be categorized into the following classes: 

Template based approaches search for the best match of the testing sequence in 
the database. The benefit of these approaches is that no model training is required 
but the choice of extracted feature and similarity measure is crucial in achieving 
better performance.  

More complicated activities or interactions among objects can be modeled us-
ing graphical models, such as Markov Random Field or Dynamic Bayesian Net-
work or their variants. In general, Markov Random Field is able to handle more 
complicated activities but it is also more difficult to train as the variables cannot 
be easily decoupled.  

Approaches based on tracking extract statistics such as the trajectories from the 
tracker for activity recognition.  These trajectories can be clustered to find out 
regular path patterns. For modeling more complex activities, a higher-level repre-
sentation is required to impose on these trajectories. 

The “Bag of words” model is becoming more popular. Different supervised and 
unsupervised models are developed based on it and achieve good performance.  
The main critic is its ignorance of relationship among the extracted features but 
increasing research is on going to bring feature relationships into the model. 

While the field has seen rapid progress, challenges still remain. It is still not 
clear how we can model the complex interactions among multiple objects or joint 
activities. In addition, occlusion handling is still hard but usually crucial in many 
applications. For instance, in hand activity recognition, it will be immensely useful 
to know the configuration of the hand, but in reality, the hand itself could be self-
occluded, creating an impasse for correct estimation.   

Finally, more work is needed to address these challenges and make the current 
approaches more robust in order to further the aim of an effective automatic sur-
veillance system. 
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Abstract. In this chapter we describe and evaluate two recent feature detectors and
descriptors used in the context of action recognition: 3D SIFT and 3D SURF. We
first give an introduction to the algorithms in the 2D domain, named SIFT and
SURF. For each method, an explanation of the theory upon which they are based
is given and a comparison of the different approaches is shown. Then, we describe
the extension of the 2D methods SIFT and SURF into the temporal domain, known
as 3D SIFT and 3D SURF. The similarities and differences for both methods are
emphasized. As a comparison of the 3D methods, we evaluate the performance of
3D SURF and 3D SIFT in the field of Human Action Recognition. Our results have
shown similar accuracy performance, but a greater efficiency for 3D SURF approach
compared with 3D SIFT.

1 Introduction

In the 2D domain, the search for interest points in images has many applications,
such as image registration, camera calibration, image retrieval, object recognition,
image stitching etc. The task of extracting such ’interest points’ can be divided into
two main parts: feature detection and feature description.

In the feature detection part, the interest points are detected at distinctive loca-
tions in the image, such as at edges, corners, blobs or other locations. The detector
of such interest points should be able to find the same interest point under different
viewing conditions, such as different viewpoints, illumination changes, contrast etc.
This characteristic is known as repeatability.

In the feature description part, the area around the interest point is described as a
feature vector. The descriptor has to be distinctive, discriminative and robust against
noise, geometric and photometric deformations. In applications such as camera cal-
ibration and image registration, one single feature should be correctly matched with
high probability against a large number of features.

In literature, a high number of detectors and descriptors in the 2D domain has
been proposed, e.g. [18, 21, 20], and a detailed comparison and evaluation have
been done [23, 22].

In this chapter we also focus the attention on the 2D feature detectors and descrip-
tors SIFT (Scale-Invariant Feature Transform, [18]) and SURF (Speeded-Up Robust
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Features, [3]). SIFT approach is currently widely used and it has been proved to give
better performances compared with other extraction and description methods [22];
The SURF algorithm approximates or slightly outperform SIFT and it is shown
to be computationally more efficient [3]. The applications of SIFT range from ob-
ject recognition [18] to image stitching and recognizing panoramas [5], from robotic
mapping and navigation [27] to augmented reality [9]. SURF’s applications are sim-
ilar with SIFT, such as object recognition [3, 24], 3D reconstruction [4] and, being
faster than SIFT, the SURF descriptor can also be used for real time application as
visual SLAM [30].

The theoretic background in the 2D domain for SIFT and SURF is required to
better explain and understand the extensions of these descriptors into the temporal
domain: 3D SIFT [26] and 3D SURF [28]. The aim of these methods is to detect
and describe ’space-time interest point’ (STIP) in video sequences. STIPs are, at
present, used for action recognition [14, 7, 15, 28, 26], content based video copy
detection [29] and also for biomedical applications [6, 1].

The aim of this chapter is (1) to explain the theoretic background for both SIFT
and SURF detectors and descriptors in both 2D and 3D domain, (2) to compare and
evaluate 3D SIFT and 3D SURF in the field of Human Action Recognition.

In order to clarify between the names used in the detection part and description
part of each method, in the following we refer to the 2D SIFT detection part as
Difference of Gaussian (DoG) and to the SURF detection part as 2D Hessian. In the
3D domain, the detection part of 3D SIFT is called Space-Time DoG and the name
3D Hessian stands for the detection part of 3D SURF. We refer as SIFT, SURF, 3D
SIFT and 3D SURF for the description part of each method. In the paper of Willems
et al. [28], the developed method is named ’An Efficient Dense and Scale-Invariant
Spatio-Temporal Interest Point Detector’; we are here calling this method as 3D
SURF because of simplicity and to enphasize the evolution of SURF into the 3D
domain.

The chapter is structured as follow: in Section 2 the feature detection part for
both 2D and 3D approaches is explained, while the feature description of these
techniques is shown in Section 3. In Section 4 we explain the methodology adopted
for our experiments in human action recognition and in Section 5 the results are
shown. Section 6 concludes the chapter.

2 Feature Detection

The detection of interest points has been widely investigated in literature. Harris
[10] proposed a corner detector, based on the eigenvalues of the second moment
matrix. Later, Lindeberg [17] has introduced the concept of automatic scale selec-
tion: the interest points are detected at their characteristic scale. Mikolajczyk et al.
[20] further developed interest point detection algorithms with Harris-Laplace and
Hessian-Laplace feature detectors. Kadir and Brady [12] proposed another feature
detector based on the maximization of the entropy and Matas et al. [19] detect inter-
est points on maximally stable extremal regions. Lowe [18] introduced SIFT detec-
tor (and also descriptor) which is based on local maxima or minima of Difference
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of Gaussians (DoG) filter. Recently, Bay et al. [3] developed another interest point
detector which relies on a Hessian matrix-based measure and on the approximation
of second order Gaussian derivatives with integral images and box filters.

In this sub-section, we explain the theoretic concepts for finding interest points
in an image using SIFT and SURF detection methods, called DoG and 2D Hessian,
respectively. We also show here the evolution of these methods into the temporal
domain and we named Space-Time DoG the detection part of 3D SIFT and 3D
Hessian the detection part of 3D SURF.

2.1 DoG

Lowe [18] developed a method for detection and description of distinctive scale-
invariant features named Scale Invariant Feature Transform (SIFT). These features
are shown to be invariant to image scaling and rotation, and partially invariant to
change in illumination and 3D camera viewpoint. This fact implies that a single
feature can be correctly matched with high probability against a large database of
features (e.g. in object and scene recognition applications [18, 22]).

The major stages of computation used to generate the set of image features are
(1) scale-space extrema detection, (2) interest point localization, (3) orientation as-
signment, (4) interest point description. We here take into consideration only the
first steps of finding such features: the computation of a Difference of Gaussian
(DoG) and the detection of local maxima and minima. Later steps will be explained
in sub-section 3.1.

The first stage in the algorithm is to detect scales and locations that are repeatable
under different viewing conditions, geometric deformations, addition to noise, etc.
Lindeberg [16] has shown that the only possible scale-space kernel is the Gaussian
function. Due to this concept, the scale space of an image is defined as a function
L(x,y,σ), which is the convolution of a variable-scale Gaussian, G(x,y,σ), with an
input image, I(x,y):

(a) Difference of Gaussian for various octaves and
scales

(b) Search for local maxima
and minima [18]

Fig. 1. SIFT detection part
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L(x,y,σ) = G(x,y,σ)∗ I(x,y) (1)

where ∗ is the convolution operation in x and y, and

G(x,y,σ) =
1

2πσ2 e−(x2+y2)/2σ 2
. (2)

In order to detect stable interest point locations in the scale-space, Lowe [18] pro-
posed to use scale-space extrema of the Difference of Gaussian function convolved
with the image, D(x,y,σ), which is the result from the difference of two nearby
scales separated by a constant multiplicative factor k:

D(x,y,σ) =(G(x,y,kσ)−G(x,y,σ))∗ I(x,y) (3)

=L(x,y,kσ)−L(x,y,σ) (4)

The Difference of Gaussian function is a close approximation to the scale-
normalized Laplacian of Gaussian, σ2∇2G, studied by Lindeberg [16]. Moreover,
Mikolajczyk et al. [23] found that the maxima and minima of σ2∇2G produce the
most stable image features compared to a range of other possible image functions.
The relationship between D and σ2∇2G can be understood as

σ∇2G =
∂G
∂σ

≈ G(x,y,kσ)−G(x,y,σ)
kσ −σ

(5)

G(x,y,kσ)−G(x,y,σ) ≈ (k−1)σ2∇2G. (6)

When the scales of DoG function differ by a constant factor k, the DoG already
incorporates the σ2 scale normalization, which is required for the scale-invariant
Laplacian. The factor (k−1) in the equation is a constant over all scales and it does
not influence extrema location; the approximation error goes to zero as k goes to 1.

The efficient approach used by Lowe in the construction of D(x,y,σ) is shown in
Figure 1a. As can be seen, the scale spaces are implemented as an image pyramid
(see also Figure 2a), where the images are repeatedly smoothed with a Gaussian
filter and subsampled in order to achieve a higher level of the pyramid. In this im-
plementation, each image is incrementally convolved with Gaussians to produce
images separated by a constant factor k in scale space. Lowe chose to divide each
octave of scale space into an integer number s of intervals, so that k = 21/s. The
method produces s+3 images in the stack of blurred images for each octave so that
the final extrema detection covers a complete octave. DoG images are computed
subtracting adjacent image scales (see the right side of Figure 1a). Once a complete
octave has been processed, the 2 images at the top of the stack are downsize by a
factor of 2. The process is repeated for all octaves.

The local maxima and minima of D(x,y,σ) are searched comparing the sample
point to its eight neighbors in the current image and nine neighbors in the scale
above and below, as illustrated in Figure 1b. A point is selected only if it is larger
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or smaller than all of these neighbors. Most of the sample points will be discarded
during the first few checks and this helps in speeding up the algorithm. For more
details about Lowe’s implementation, please refer to [18].

2.2 2D Hessian

Speeded Up Robust Features (SURF) is a scale and rotation invariant interest point
detector and descriptor used in the 2D domain and it has been developed by Bay et
al. [3]. As shown by the authors, SURF approximates or slightly outperforms SIFT
algorithm in term of repeatability, distinctiveness and robustness. Moreover, SURF
detector and descriptor can be computed much faster. This performance is achieved
by relying on integral images for image convolutions, on a fast Hessian detector and
on a distribution-based descriptor.

We here describe the detector part of SURF, which relyes on a basic approxima-
tion of the Hessian-matrix, as the DoG detector used in SIFT is also an approxima-
tion of the Laplacian-based detector. Here, the SURF detector pushes the approxi-
mation even further: integral images and box type filters are used for convolution,
greatly decreasing the computational time required. The Hessian matrix is used for
two purposes: its determinant is a measure for detecting blob-like structures and for
the selection of the characterstic scale.

Given a point in an image I at location (x,y), the Hessian matrix H(x,y,σ) at
scale σ is defined as follows

H(x,y,σ) =
(

Lxx(x,y,σ) Lxy(x,y,σ)
Lxy(x,y,σ) Lyy(x,y,σ)

)
(7)

where Lxx(x,y,σ) is the convolution of the Gaussian second order derivative ∂ 2

∂x2 g(σ)
with the image I at location (x,y) and similarly for Lxy(x,y,σ) and Lyy(x,y,σ).

As previously said in the DoG sub-section, Gaussians filters are optimal for scale-
space analysis, but in practice the real filters have to be discretised and cropped. The
authors pushed the approximation for the Hessian matrix further with box filters.
These approximate the second order Gaussian derivatives, denoted as Dxx, Dyy and
Dxy, and can be evaluated at a very low computational cost using integral images;
the calculation time is independent of the filter size. As a recall, an integral image at
a location (x,y) holds the sum of all pixels of the original image in the rectangular
region spanned by (0,0)− (x,y).

The determinant of the Hessian matrix is approximated as

det(Happrox) = DxxDyy − (wDxy)2 (8)

where the relative weight w is set to 0.9. The approximated determinant of the Hes-
sian represents the blob response in the image at location (x,y) and these responses
are stored in a response map over different scales since the interest points are de-
tected at different scales.

The scale spaces are implemented as an image pyramid and divided into octaves,
as it has been done in the SIFT detector (see Figure 1a). In Lowe’s approach, the
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filter size is kept constant and the images are sequentially convolved and subsam-
pled (as explained in sub-section 2.1); in Bay’s approach, the use of box filters and
integral images permits not to apply the same filter to the output of a previously fil-
tered layer, but box filters of different sizes can be applied at exactly the same speed
directly on the original image and subsampled images. The faster implementation
is done by up-scaling the filter size instead of iteratively reducing the image size. In
Figure 2b the approach used by SURF is shown, compared with the SIFT approach
in Figure 2a.

Interest points are expressed as maxima of the determinant of the Hessian matrix
and then localized in the image and over scales using a non-maximum suppression
algorithm in a 3×3×3 neighborhood, as it is done in the SIFT algorithm (see Figure
1b).

(a) SIFT (b) SURF

Fig. 2. SIFT Vs. SURF image filtering

2.3 Space-Time DoG (3D)

Space-Time Difference of Gaussians is an extension of the SIFT feature detector
into the 3D domain. The purpose of the detector is to find stable interest point lo-
cations not only in scale-space, but also in time and such features are called Space-
Time Interest Points (STIP). This method has been applied for biomedical image
processing purposes [6, 1], where the third dimension is other layers of 3D human
Magnetic Resonance Imaging (MRI). For our purpose of human action recognition,
the third dimension is represented by the time. The implementation and the theoretic
concepts are very similar to the 2D case (see sub-section 2.1).

The scale-space-time of a video sequence is defined as a function L(x,y, t,σ),
which is the convolution of a variable-scale Gaussian, G(x,y, t,σ), with an input
video sequence, I(x,y,t) as

L(x,y,t,σ) = G(x,y, t,σ)∗ I(x,y, t) (9)

where ∗ is the 3D-convolution operation in x, y and t and

G(x,y,t,σ) =
1

(2πσ)
3
2

e−(x2+y2+t2)/2σ 2
(10)



Robust Spatio-Temporal Features for Human Action Recognition 357

The Space-time DoG function, D(x,y, t,σ), convolved with the video sequence is
defined as

D(x,y,t,σ) =(G(x,y, t,kσ)−G(x,y, t,σ))∗ I(x,y, t) (11)

=L(x,y, t,kσ)−L(x,y, t,σ) (12)

The initial video sequence is incrementally convolved with a Gaussian to produce
volumes separated by a constant factor k in scale-space-time, as shown in the left
side of Figure 3a. Adjacent volume scales are subtracted to produce the Space-Time
DoG volumes shown on the right side of Figure 3a.

In order to find local extrema, each sample point is compared to its 26 neighbors
at time t, t-1 and t+1 in the current volume and to its 27 neighbors at time t, t-1 and
t+1 in the scale above and below, as shown in Figure 3b.

The sample space-time interest point is selected only if it is larger than all of
these neighbors. Most of the sample points are discarded during the first checks.
After the detection of scale-space extrema, the edge-like features are discarded [1].

The drawback of this method, compared with its 2D version, is the computa-
tional time, as 3D convolutions are very computational demanding. In the following
section, this step is speeded up with box filters and integral video approach.

(a) Space-time Difference of Gaus-
sian for various octaves and scales

(b) Search for
local maxima
and minima

Fig. 3. 3D SIFT detection part

2.4 3D Hessian

3D Hessian in an extension of the original SURF detector into the temporal domain
developed by Willems et al. [28]. This method has some common properties with
Space-Time DoG at a much lower computational cost. The two main advantages of
this approach are: (1) features can be localized both in the spatio-temporal domain
and over scales simultaneously using the determinant of the Hessian as saliency
measure; (2) an efficient implementation of the detector is built by approximating
all 3D convolutions using box-filters and integral video representation.
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For spatio-temporal feature detection, the authors proposed the use of the Hessian
matrix defined as

H(x,y,t;σ ,τ) =

⎛⎝Lxx(x,y,σ ,τ) Lxy(x,y,σ ,τ) Lxt(x,y,σ ,τ)
Lyx(x,y,σ ,τ) Lyy(x,y,σ ,τ) Lyt(x,y,σ ,τ)
Ltx(x,y,σ ,τ) Lty(x,y,σ ,τ) Ltt (x,y,σ ,τ)

⎞⎠ (13)

where Lxx(x,y,σ ,τ) is the convolution of the Gaussian second order derivative
∂ 2

∂x2 g(σ ,τ) with the video I at location (x,y,t) and similarly for Lxy(x,y,σ ,τ) and
Lyy(x,y,σ ,τ).

The strength of each space-time interest point at a certain scale is computed by
its determinant as follow

S = |det(H)| (14)

The scale selection is realized with the scale-normalized determinant of the Hessian
matrix. Using this approach, a single scale-invariant measure is obtained and it is
used for the localization and for the selection of the spatial and temporal scales. It
is interesting to notice that this implementation does not require an iterative method
as it must be used in another well known approach proposed by Laptev. For more
details about it, please refer to [14].

In the implementation, the use of integral video structure and box-filters reduce
greatly the computational time. As a first step, the video is converted into an integral
video structure, where an entry at location (x,y, t) holds the sum of all pixels in the
rectangular region spanned by (0,0)− (x,y), summed over all frames [0,t]. The use
of integral videos permits to obtain the sum of values within any rectangular volume
with only 8 additions, independently of the volume size. The Gaussian second-order
derivatives are roughly appoximated with box-filter, as it was done in the 2D SURF
detector. In total, 6 different second order derivatives in the spatio-temporal domain
are needed and are denoted as Dxx,Dyy, Dtt , Dxy, Dtx and Dty. They can be computed
using rotated versions of the two box-filters shown in Figure 4.

The scale spaces do not have to be computed hierarchically, as it is done in the
Space-Time DoG method (see sub-section 2.3), but can be efficiently implemented
by upscaling the box-filters and keeping the video volume in its original size. Each
octave is divided into 5 scales, with a ratio between subsequent scales in the range
1.2-1.5 for the inner 3 scales. The determinant of the Hessian is computed over
several octaves of both the spatial and temporal scale.

As a final step, a non-maximum suppression algorithm is used to obtain all ex-
trema within the obtained 5 dimensional search-space (x,y, t,σ ,τ).

Fig. 4. Box filter approximations for the Gaussian second order partial derivatives used in 3D
Hessian
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3 Feature Description

Once an interest point in an image (or a space-time interest point in a video) is
detected, the content around it has to be described. Several methods have been pro-
posed in the 2D domain to described the content as a feature vector, e.g. moment
invariants local derivatives [13], steerable filters [8], complex filters [2], SIFT [18],
SURF [3], GLOH [22], CS-LBP [11]. A comparison of several 2D descriptor in
shown in the work of Mikolajczyk et al. [22].

In this section, we explain the approaches used by SIFT and SURF description
methods for finding interest points in an image. We also explain here the evolution
of these methods into the temporal domain, known as 3D SIFT and 3D SURF.

3.1 2D SIFT

Scale Invariant Feature Transform (SIFT) descriptor [18] is based on the gradient
distribution in a detected image region. As a first step in the algorithm, the image
gradient magnitudes and orientations are computed in a square region centered on
the interest point location, and the scale of the interest point is used to select the
level of Gaussian blur for the image. For each image sample, L(x,y), at scale σ ,
the gradient magnitude, m(x,y), and orientation, θ (x,y) are computed using pixel
differences as

m2D(x,y) =
√

L2
x + L2

y (15)

θ (x,y) = tan−1(
Ly

Lx
) (16)

where Lx and Ly are respectively computed using finite difference approximations:
Lx = L(x + 1,y)−L(x−1,y) and Ly = L(x,y + 1)−L(x,y−1).

Orientation invariance is achieved by rotating the coordinates of the descriptor
and the gradient orientations relative to the main orientation of the interest point
detected in a previous step [18]. In order to avoid sudden changes in the descriptor
due to small changes in the position of the square window, a Gaussian weighting
function is used to give more enphasis to the gradients that are close to the interest
point location and less to the gradients that are far from it (a weight is therefore
assigned to the magnitude m2D(x,y) of each sample point). The Gaussian function
has σ equal to one half the width of the descriptor window and it is shown on the
left side of Figure 5a with a circular window .

The descriptor is built by histogramming the gradient orientations over a M×M
sample regions, as show on the right side of Figure 5a. The histogram is calculated as
n orientations and the length of each arrow on the right side of Figure 5a corresponds
to the magnitude value of that histogram entry. The final descriptor is then obtained
concatenating the M×M array of histogram with n orientation bins in each. As a
last step, the final vector is normalized to unit length to be invariant to illumination
changes.
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As an example, the common SIFT descriptor is divided into 16 subregions and
the histogram contains 8 orientation bins. This parameters give a descriptor whose
feature vector is 4×4×8=128 dimensions lenght. In Figure 5a only 4 subregions are
shown.

(a) SIFT descriptor (b) SURF descriptor

Fig. 5. SIFT and SURF descriptors

3.2 2D SURF

The Speeded Up Robust Features (SURF) descriptor [3] is based on the description
of the nature of the image intensity pattern in a detected region, unlike SIFT de-
scriptor which is based on a histogram approach. The first step of SURF algorithm
consists of constructing a square window centered around the interest point loca-
tion; in order to be rotational invariant, this region has to be oriented along the main
orientation selected in a previous step [3]. The size of the window is 20s, where s
is the scale at which the interest point was detected. The main window is then di-
vided regularly into smaller M×M square subregions (as it was done in SIFT) and
these divisions of the principal window helps in keeping into consideration the spa-
tial information. For each sub-region, few simple features at 5×5 regularly spaced
sample points are computed using Haar wavelet. The Haar wavelet response in hor-
izontal direction is denoted as dx and dy is the Haar wavelet response in the vertical
direction. The filter has size equal to 2s. As it was done in the SIFT descriptor, a
Gaussian weighting function (with σ = 3.3s) is used to weight the dx and dy re-
sponses to increase the robustness towards geometric deformations and localisation
errors.

For every sub-region, the wavelet responses dx and dy are summed up. The
sum of the absolute values of the responses, |dx| and |dy|, are also computed
and stored, in order to take into account the polarity of the intensity changes.
For each sub-region, the descriptor vector has therefore four dimension as v =
(∑dx,∑dy,∑ |dx|,∑ |dy|). The illumination invariance is achieved as the wavelet
responses are invariant to a bias in illumination and the invariance to contrast is
obtained by normalizing the descriptor into a unit vector (as the final step in SIFT
descriptor). Given the standard parameter M = 4, the descriptor vector is 4×4×4=64
dimension length.
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Compared with SIFT descriptor, SURF algorithm can describe the area around
an interest point much faster and this efficiency is achieved by relying on inte-
gral images, Haar wavelets and on simple summation of wavelet responses. More-
over, SURF descriptors integrates the gradient information within a subregion, while
SIFT depends on the orientation of individual gradients. SURF’s descriptor is half
the size of SIFT, property that permits a faster computation for a following matching
step between feature vectors (e.g. in image stitching applications).

3.3 3D SIFT

The 3-Dimensional Scale-Invariant Feature Transform (3D SIFT) descriptor is an
extension of SIFT into the 3-Dimensional space and it has been developed by Sco-
vanner el at. [26]. The gradient magnitude and orientation is computed in a similar
manner as in 2D SIFT. In a 3-Dimensional space, the magnitude and orientations
are given by

m3D(x,y, t) =
√

L2
x + L2

y + L2
t (17)

θ (x,y,t) = tan−1(
Ly

Lx
) (18)

φ(x,y, t) = tan−1(
Lt√

L2
x + L2

y

) (19)

where Lx, Ly and Lt are respectively computed using finite difference approxima-
tions: Lx = L(x + 1,y,t)−L(x− 1,y, t), Ly = L(x,y + 1, t)−L(x,y− 1,t) and Lt =
L(x,y,t + 1)−L(x,y,t −1). In this manner, each pixel has two values which repre-
sent the direction of the gradient in three dimensions: θ encodes the angle in the 2D
gradient direction, while φ encodes the angle away from the 2D gradient direction.

The angle φ is always in the range (− π
2 , π

2 ) since
√

L2
x + L2

y is positive. Every angle

is therefore represented by a single unique (θ ,φ) pair, which encodes the direction
of the gradient in three dimensions. A weighted histogram is then computed divid-
ing θ and φ into equally sized bins; this step can be seen as dividing the sphere into
meridians and parallels. For each 3D sub-region the orientations are accumulated
into a histogram and the final descriptor is a vectorization of the sub-histograms

hist(iθ , iφ )+ =
1
ω

m3D(x′,y′, t ′)exp(
−((x− x′)2 +(y− y′)2 +(t − t ′)2)

2σ2 ) (20)

where (x,y,t) represents the location of the interest points, (x′,y′,t ′) represents the
location of the pixel being added to the orientation histogram and ω is the solid angle
of the sphere. In order to be rotational invariant, the surrounding 3D neighborhood
should be rotate in the direction of the peaks of this histogram, but this is not the
case for our tests in Section 4.
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To create the sub-histograms, the sub-regions surrounding the interest point are
sampled, as shown in Figure 6, where each pixel contains a single magnitude value
m3D and two orientation values θ and φ . For each 3D sub-region the orientations
are accumulated into a histogram and the final descriptor is a vectorization of all
sub-region histograms.

Fig. 6. 3D SIFT descriptor

3.4 3D SURF

3D SURF descriptor has been developed by Willems et al. [28] and is a direct ex-
tension of SURF.

A rectangular video patch is extracted around each interest point and its dimen-
sion is sσ×sσ×sτ where σ is the spatial scale and τ is the temporal scale. A typical
value for s is set to 3 according to the authors. The volume is divided into M×M×N
subvolumes, where M and N are the number of division in the spatial and temporal
direction respectively.

For each sub-volume, simple features are computed using the 3 axis-aligned
Haar-wavelets shown in Figure 7. The Haar wavelet response in horizontal direc-
tion is denoted as dx, and dy and dt is the Haar wavelet response in the verti-
cal and in the time direction, respectively. Within each sub-regions, the wavelet
responses are weighted by a Gaussian function and are summed up; the vector
v = (∑dx,∑dy,∑dt) is obtained for each sub-volumes. The sums over the absolute
values could be taken into consideration, as it was done in the 2D case (sub-section
4), doubling the descriptor’s size.

Compared with 3D SIFT, 3D SURF is computationally faster, relyes on integral
video representation and Haar wavelet responses. As it was in 2D SURF, 3D SURF
descriptor integrates the gradient information within each subregions, instead of
computing 3-Dimensional gradient orientations.

Fig. 7. Haar wavelet filters dx, dy and dt
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4 Experimental Setup

In order to evaluate and compare the described 3D detection and description meth-
ods, we build a classification framework for human action recognition. The method-
ology we adopt is a Bag of Words classication model [7]. As a first step, space-time
interest points are detected using Space-Time DoG or 3D Hessian feature detection
method and small video patches are extracted from each interest point. They repre-
sent the local information used to learn and recognize the different human actions.
Each video patch is then described using 3D SIFT or 3D SURF feature description
method, respectively. The result is a sparse representation of the video sequence as
small video patch descriptors.

Having obtained all these data for the training set, a visual vocabulary is built
by clustering using the k-means algorithm. The center of each cluster is defined as
a spatial-temporal ’word’ of which length depends on the length of the descriptor
adopted. Each feature descriptor is successively assigned to the closest (using Eu-
clidean distance) vocabulary word and a histogram of spatial-temporal word occur-
rence in the entire video is computed. Thus, each video is represented as a collection
of spatial-temporal words from the codebook in the form of a histogram.

For classification, we use Support Vector Machines (SVM) with rbf kernel. As the
algorithm has random components, such as the clustering phase, any experimental
result reported is averaged over 20 runs. The database used is the standard KTH
human action database [25]. This database contains six types of human actions:
walking, jogging, running, boxing, hand waving and hand clapping. Each action
class is performed several times by 25 subjects in different scenarios of outdoor
and indoor environment. The camera is not static and the videos contain small scale
changes. In total, the dataset contains 600 sequences. We divide the dataset into two
parts: 16 people for training and 9 people for testing, as it has been done in [25, 15].
We limit the length of all video sequences to 300 frames.

5 Results

In our simulations, we used Scovanner’s publicly available code1 for the 3D SIFT
description part (sub-section 3.3). We adopted the suggested parameters, which are
slightly changed from what is described in the original paper [26]. For the detection
part of 3D SIFT, named Space-Time DoG (sub-section 2.3), we implemented our
own code. Regarding the 3D Hessian detection method (sub-section 2.4) and 3D
SURF description method (sub-section 3.4), we run the program publicly available
on Willems’s website2. During the clustering phase, a codebook of k = 1000 vi-
sual words is built and 100 features are extracted from each video sequence. These
parameters have been chosen due to previous tests.

In the previous sections, we described separately the detection part and descrip-
tion part for each method in order to better explain the different feature detection

1 http://www.cs.ucf.edu/~pscovann/
2 http://homes.esat.kuleuven.be/~gwillems/research/Hes-STIP/
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and feature description methods. Here we are testing the entire 3D SIFT and 3D
SURF approaches.

In Table 1 the performance for both methods is shown. As it can be seen, the per-
formance is quite similar: 3D SURF obtains 80.86% of accuracy, while the accuracy
of 3D SIFT is 82.72%, gaining about 2%. The confusion matrices for both methods
are shown in Figure 8.

Table 1. Performances using 3D SIFT and 3D SURF

Feature detector Feature descriptor Feature dimensions Accuracy

Space-Time DoG 3D SIFT 640 82.72 %
3D Hessian 3D SURF 288 80.86 %

(a) 3D SIFT, accuracy 82.72 % (b) 3D SURF, accuracy 80.86 %

Fig. 8. Confusion matrices for 3D SIFT and 3D SURF

In the 2D domain, SURF has been proved to perform similar to, or slighlty out-
perform, SIFT [4]. Hovewer, in our tests, the combination of the 3D SIFT detection
and description methods is performing better than the combination of the 3D SURF
detection and description methods. This could be explained as the 3D Hessian is
computing approximations of the Gaussian filters used in the 3D convolution. 3D
SURF descriptor is an accumulation of gradient information within each subregions,
while 3D SIFT descriptor is an histogram representation of the 3-Dimensional gra-
dient orientations and this could be another reason for the noticed differences in the
field of human action recognition. The accuracy of these methods could also be af-
fected by the descriptor’s dimension: 3D SIFT generates a 640 feature vector length,
while 3D SURF descriptor is a vector length of 288 dimensions.

The computational time for both approaches is shown in Table 2. The time is
measured on a computer equipped with an AMD Opteron 252 running at 2.6 Ghz
with 8 Gb RAM and computed as an average of 10 runs on different video se-
quences. 3D SURF is outperforming 3D SIFT by approximately 35 times faster.
This is explained as 3D SURF relies on box filter approximation and integral video
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representation, which greatly speed up the performance. Moreover, in the 3D SIFT
approach, the feature detection part takes the majority of the time, 306.54 seconds,
while the descriptor part requires 47.4 seconds for the description of 100 local video
patches.

Table 2. Computational time for detection and description of 100 features using 3D SIFT and
3D SURF

Feature detector Feature descriptor Environment Computational time (s)

Space-Time DoG 3D SIFT Matlab 353.94
3D Hessian 3D SURF C 10.35

6 Conclusion

In this chapter we have described SIFT and SURF in order to detect and to describe
interest points in an image. We have explained the theory upon which they are based
and we have shown their similarities and differences. From the 2D detection and
description methods, we explained the evolution into the 3D domain for both 3D
SIFT and 3D SURF respectively. Moreover, we highlighted their similarities and
differences.

As a comparison of their performance, we evaluated both the 3D approaches in
the field of human action recognition on the standard KTH human action database.
In our tests, the performance for both techniques is very close to each other: 3D
SIFT is performing slightly better (82.72 % of accuracy) than 3D SURF (80.86 %
of accuracy). However, 3D SURF is much more efficient than 3D SIFT, almost 35
times faster. Due to the greater efficiency and to the similar performance, 3D SURF
method would be our choice for future development of human action recognition
on a more realistic and challenging database, such as the Hollywood Human Action
database [15].
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Abstract. A new feature description is used for human action representa-
tion and recognition. Features are extracted from the Radon transforms of
silhouette images. Using the features, key postures are selected. Key postures
are combined to construct an action template for each action sequence. Lin-
ear Discriminant Analysis (LDA) is applied to obtain low dimensional feature
vectors. Different classification methods are used for human action recogni-
tion. Experiments are carried out based on a publicly available human action
database.

1 Introduction

Human action recognition is a fundamental topic in computer vision and has
become an active research area in recent years. It has many applications in
the areas of smart surveillance, user interface for control command and so on.

Human postures play an important role in human action. Therefore, hu-
man posture analysis is one of the most important steps toward successful
human action recognition. Blank et al. [4] represented actions by using the
shapes of silhouettes and recognized the action based on poisson transform.
Efros et al. [10] used optical flow to characterize motion in very low resolu-
tion video sequences. Their method relied on previously aligned video clips
of human actions. Singh, Mandal and Basu [24] used Radon transform for
pose recognition. But, their work was restricted to hand or feet positions.
This work is inspired by Boulgouris [5] who used Radon transform for gait
recognition. Wang et al. used R transform for action recognition in [31]. R
transform is based on Radon transform. In [31], they claimed that R trans-
form was translation invariant, rotation invariant and scaling invariant. In
fact, rotation invariance is not good for action recognition and rotation in-
variance may sometimes even degrade action recognition result. For example,
a feature which is rotation invariant cannot be used to distinguish the pos-
tures corresponding to standing from those of lying. Like R-transform, Radon
transform is also scaling invariant and translation invariant based on the fol-
lowing facts. Scaling invariance can be easily achieved through alignment

W. Lin et al. (Eds.): Multimedia Analysis, Processing & Communications, SCI 346, pp. 369–389.
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of the objects (i.e., the human silhouettes in this paper) of different scales
and translation invariance can be achieved by moving the centers of the ob-
jects to the origin before applying a Radon transform. In one word, Radon
transform is better for action recognition than R-transform when we re-
quest the recognition to be scaling and translation invariant but not rotation
invariant.

Key postures are selected for the representation of an action sequence be-
cause a typical human action contains only a few important postures which
are significantly different from each other. Toyama and Black [28] used ex-
emplar frames to achieve human action tracking. Their method was based
on learning and was not straightforward. Lim and Thalmann [16] proposed a
method to extract key postures using curve simplification. The limitation is
that it requires specific 3D motion capture device, which is costly and is not
practical for some applications. Lv and Nevaita [17] adopted motion energy
for automatic extraction of 3D key postures, which also required 3D motion
data. Chen . proposed a method using entropy to select key postures from
a video in [7]. But, they ignored the local features of a frame. Key postures
selected according to shapes or other vision features are different from key
frames which are selected using the video compression information as shown
in [6].

In order to obtain key postures in this paper, the action sequences are
extracted from the silhouette using Radon transforms. An unsupervised clus-
tering method is applied to identify the key postures in each sequence. Then,
the key postures are used in the subsequent training and testing steps.

To further optimize the extracted action features inside the key postures,
the Linear Discriminant Analysis (LDA) is adopted to reduce the dimen-
sion of the feature vectors. Several benchmark classifiers, including BayesNet
[20], C4.5 or Decision Trees [22], and the Sequential Minimal Optimiza-
tion (SMO) algorithms [21], are used in this work for action learning and
classification.

A contribution of this paper is that it proposes a method that uses key
postures to achieve action recognition. Using key postures is computation
efficient. This paper applies a Radon transform to represent key postures.
It will demonstrate that Radon transform is a good descriptor for human
posture representation.

Although motion extraction and tracking are also important in action
recognition, they are beyond the scope of this paper. It is supposed that all
the moving objects have been extracted. The inputs of the proposed method
are the silhouettes of the moving objects.

The remaining sections are organized as follows. Section 2 introduces the
Radon transform and posture representation using Radon transforms. Section
3 presents the key posture extraction based on Radon Transform. Section 4
illustrates the classification of the action sequences. The experiments can be
found in Section 5 and the conclusions are made in Section 6.
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2 Human Posture Representation Using Radon
Transforms

In this section, the Radon transform is introduced first and then we will
discuss how the human postures are represented using Radon transforms.

2.1 Radon Transform

Radon transform is named after J. Radon who showed how to describe a
function in terms of integral projections in 1917 [23]. The integral of a function
over a line is the Radon transform. Radon transform is well known for its
wide range of applications in various areas, such as radar imaging, geophysical
imaging and medical imaging. Radon transform has various definitions, we
use the one in [1] to illustrate it.

Fig. 1. The Radon transform computation [1]

As shown in Figure 1, let f be a continuous function vanishing outside
some interested regions in the Euclidean plane R2. The Radon transform,
denoted by Rf is a function defined on the space of lines L (AA′ in Figure
1) in R2 by

Rf (L) =
∫

L

f(x)dσ(x), (1)

where the integration is performed with respect to the arc length measure
dσ(x) on L. Concretely, any straight line L can be parameterized by

(x(t), y(t)) = t(sin α,− cosα) + s(cosα, sin α), (2)
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where s is the distance of L from the origin and α is the angle L makes with
the x axis. Thus the quantities (s, α) are coordinates on the space of all lines
in R2, and the Radon transform can be expressed in these coordinates by

Rf (α, s) =
∫ ∞

−∞
f(x(t), y(t))dt (3)

=
∫ ∞

−∞
f(t(sin α,− cosα) + s(cosα, sin α))dt. (4)

Figure 1 shows the computation of Radon transforms. Figure 2 shows an
example of Radon transform. Two parallel lines are in the image (see Figure
2 (a)). Its Radon transforms have two intensive highlights with the same
angle α but different distances from the original s (see Figure 2 (b)).

Fig. 2. Radon transform for two parallel lines

2.2 Human Posture Representation Using Radon Transform

Radon transform has several useful properties. Some of them are relevant to
human posture representation [9].

Fig. 3. Human images and their corresponding Radon transform
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Subsequent to the extraction of human images, Radon transform on the
human silhouette images are used to represent the corresponding human pos-
tures. Figure 3 shows some human images and their corresponding Radon
transforms. The human images are in normal x − y coordinate system. The
Radon transform images are in α−s coordinate system. These human images
are different because of shadow and noise. But their Radon transforms look
much closer and all have two similar bright parts.

3 Key Posture Selection

Key postures are used to represent action sequences because actions are con-
tinuous. Key postures are the most significant postures in an action sequence.
Once the key postures are selected, the other postures in the sequences can
be clustered into one of these key postures.

3.1 Affinity Propagation Clustering

Clustering data based on a measure of similarity is a critical step in pattern
recognition and image processing. It classifies data into different subsets so
that the data in a subset share common characteristics. The measure used
for the clustering method is the sum of squared errors between the data
points and their corresponding data center. k-means [25], fuzzy clustering
[3], and affinity propagation clustering [11] are some examples of the existing
clustering methods. Some clustering methods, e.g., k-means, begin with an
initial set of randomly selected exemplars and iteratively refine this set so as
to decrease the sum of squared errors. Other clustering methods, e.g., affinity
propagation, do not require initially selected exemplars explicitly.

The input of affinity propagation clustering is the similarity of data points
and user’s preference. The similarity s (i, k) indicates how well the data point
with index k is suited to be the exemplar for data point i. Similarity can
be obtained in many ways. For example, the similarity can be measured
using Euclidean distance, Manhanlanobis distance and so on. In order to
achieve minimum squared error for clustering, similarity is set to a negative
squared error. For points xi and xk, the similarity between these two points
is s (i, k) = −‖xi − xk‖2. Instead of taking the number of clusters as input,
affinity propagation takes the user preference as an input. The user’s prefer-
ence is an N × 1 matrix p. p(i) indicates the preference to choose point i as
a cluster center. If all data points are suitable as exemplars, the preference is
to use a common value. The preference is set to the median of the similarity
for this work.

There are two kinds of messages exchanged between data points. Each
takes into account a different kind of competition. The responsibility message,
r (i, k), sent from data point i to candidate exemplar point k, reflects the
accumulated evidence for how well-suited point k is to serve as the exemplar
for point i. The availability message, a (i, k), sent from candidate exemplar
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point k to point i, reflects the accumulated evidence for how appropriate it
would be for point i to choose point k as its exemplar.

Figure 4 is the procedure of affinity propagation clustering. At beginning,
the availabilities are initialized to zero: a(i, k) = 0. Then, the iteration be-
gins. The responsibilities are computed using Equation 5, where s(i, k) is the
element of similarity matrix, and a(i, k) is the element of availability matrix.
The update of the responsibilities updates all candidate exemplars competing
for ownership of a data point. The availabilities are computed using Equa-
tion 6.

r (i, k) = s (i, k) − maxk �=k, {a(i, k,) + s(i, k,} . (5)

a (i, k) = min

⎧⎨⎩0, r(k, k) +
∑

i, /∈i,k

max {0, r(i,, k)}
⎫⎬⎭ . (6)

The availability a(i, k) is set to the self responsibility r(k, k) plus the sum
of the positive responsibilities that candidate exemplar k receives from other
points. The availabilities and responsibilities are combined to identify ex-
emplars. For point i, the value of k that maximizes a(i, k) + r(i, k) either
identifies point i as an exemplar if i = k, or identifies the data point that is
the exemplar for point i. The message passing procedure is terminated in the
following situations:

– a preset number of iterations has been reached,
– changes in the messages fall below a threshold, or
– the local decisions stay constant for some number of iterations.

There are two reasons to choose affinity propagation clustering for key posture
selection in this paper. Firstly, it speeds up the convergence time compared
with other methods [11]. Secondly, it does not require initially chosen ex-
emplars. By considering all data points as candidate centers and gradually
identifying clusters, affinity propagation is able to avoid many of the poor
solutions caused by unlucky initialization.

3.2 Key Posture Identification

Radon transforms are computed frame by frame for an video action. Affinity
propagation clustering is applied to Radon transform to obtain key postures.
The inputs for affinity propagation clustering are the similarity matrix and
the preference as exemplar for each frame. The similarity matrix is computed
to measure between frame’s Radon transforms. In this work, each frame is
equally regarded as an exemplar. Therefore, the preference acting as exemplar
is set at the same value for each frame. The median of all Radon transforms
is used as the preference. The outputs of the affinity propagation clustering
are the cluster centers which are the key postures for an action.
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Fig. 4. Affinity propagation clustering procedure
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4 Action Recognition

One of the challenges for action recognition is to obtain the action template
from the given information of an action. In the following, we describe our
method to obtain templates of human actions using key postures, and the
method for learning or classification based on the templates.

4.1 Action Template Creation

Different people perform similar actions in different styles. Therefore, there
are different action sequences for one action no matter whether the action
is performed by the same person or by different people. However, from ob-
servation, each action has similar key postures although the key postures
are not exactly the same. The proposed method uses the combination of all
key postures as the feature descriptor for an action. The advantage of using
the combination of key postures is that it does not require starting posture
alignment.

Suppose that there is an action sequence which has N frames denoted in
the set F by

F = {F1, F2, F3, · · · , Fi, · · · |1 ≤ i ≤ N} . (7)

Their corresponding Radon transforms are denoted in the set R by

R = {R1, R2, R3, · · · , Ri, · · · |1 ≤ i ≤ N} . (8)

The Radon transform of a frame Rj(1 ≤ j ≤ N) is a matrix with large
amount of data. The key postures in an action sequence selected by the
method shown in Section 3 are named as K1, K2, · · · , Kj (1 ≤ j ≤ N).

Let RK1 , RK2 , · · · , RKj (1 ≤ j ≤ N) be the corresponding Radon trans-
forms of the selected key postures. For each action, the template TP is cal-
culated by

TP = RK1 + RK2 + · · · + RKj (1 ≤ j ≤ N). (9)

The dimension of TP and R is very high. Dealing with such high dimensional
data will cause poor recognition rate and high computing complexity. There-
fore, feature extraction is needed to extract most important information from
TR for the classification purpose. During feature extraction, the dimension of
data is reduced. Besides that, a good feature extraction will enhance those fea-
tures of input data that achieve better classification results. Typical methods
for extracting the most expressive features and reducing the feature dimen-
sion include Principal Component Analysis (PCA) [12][15][33], Independent
Component Analysis (ICA) [13] and their variances. In addition to PCA and
ICA, Linear Discriminant Analysis (LDA) [2][12][34] or Fisher’s Linear Dis-
criminant (FLD) [8][19] are used to discriminate different patterns. PCA and
LDA are two widely used, conventional tools for dimension reduction and
feature extraction [18][27]. However, there is a tendency for the preferred use
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of LDA over PCA because LDA deals directly with discrimination between
classes. In contract with LDA, PCA deals with the data in its entirety for the
principal component analysis without paying any attention to the underlying
class structures [18]. LDA requires category information in order to compute
a vector which best discriminates between classes. Therefore, in this paper,
LDA is chosen for feature extraction from template TP .

For a given dataset with c classes, LDA aims to find the best c−1 features
in the underlying data that best discriminate among classes. LDA defines
two measures:

1. within-class scatter matrix, as represented by

Sw =
c∑

j=1

Nj∑
i=1

(
xj

i − μj

)(
xj

i − μj

)T

, (10)

where xj
i is the i-th sample of class j, μj is the mean of class j, c is the

number of classes, and Nj is the number of samples in class j.
2. between-class scatter matrix, as represented by

Sb =
c∑

j=1

(μj − μ) (μj − μ)T
, (11)

where μ represents the mean of all classes.

Then, LDA tries to find a best (c−1) feature space Wpro that maximizes the
ratio of the between-class scatter matrix to the within-class scatter matrix,
i.e., maximizing the ratio Sb

Sw
.

The best feature space Wpro is defined as follows:

Wpro =
WT SbW

WT SwW
= [W1, W2, · · · , Wc−1]. (12)

Accordingly, when given a dataset denoted by X , its selected feature set
denoted by XLDA can be obtained by projecting X onto the (c − 1) feature
space as follows:

XLDA = X · Wpro. (13)

In order to obtain the the best features to discriminate the actions, the action
templates TP and their corresponding action classes are inputed for LDA
computation. Equation 13 is applied to obtain the most significant features of
TP . After using LDA, the dimension of TP has been decreased dramatically.

4.2 Learning and Classification Procedure

The classifiers used for this part of work are the Bayesian-based classifier
BayesNet [12][20], C4.5 or Decision Trees [22], and the Sequential Minimal
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Optimization (SMO) algorithm [29][32]. These three classifiers are available
in the WEKA package, a publicly available toolbox for automatic classifica-
tion [32].

BayesNet enables the use of a Bayesian Network learning using various
search algorithms and quality measures. C4.5 is a classifier for generating a
pruned or unpruned C4.5 decision tree. C4.5 is a supervised symbolic classifier
based on the notion of entropy since its output, a decision tree, can be easily
understood and interpreted by human. SMO is an algorithm for training a
support vector classifier.

During the training stage, the action templates of the training samples
are inputed into a classifier. The classifier learns from the input samples and
stores information for recognition task.

For recognition, the action descriptions of the testing samples are calcu-
lated as described in the previous sections. The descriptions are input into the
classifier. The classifier determines the action according to the information it
learns from the sample action.

5 Experiments

The experiments were based on Weizmann Institute of Science’s human ac-
tion database [4]. To our best knowledge, this database is one of the few
reasonable sized available public databases for human action recognition.
It contains 90 action videos (9 subjects, each subject performing 10 nat-
ural actions). The actions include walking (walk), running (run), bending
(bend), gallop-sideways (side), one-hand-waving (wave1), two-hand-waving
(wave2), jumping-forward-on-two-legs (jump), jumping-in-place (pjump),
skipping (skip) and jumping-jacking (jack). The actions include both pe-
riodic actions (e.g., walk, run) and non-periodic actions (e.g., bend). For the
periodic actions, a subject performed the same action multiple time (two or
three times). The resolution of the video is 180×144. The video sequence was
taken around the speed of 25 frames per second (FPS). Human silhouettes are
provided by the database. The quality of these silhouettes is generally good
although there are some defects. Morphological operations including dilation
and erosion are applied to repair these defects. Figure 5 is an example of the
database performing jack action. The heads of some humans are missing.

5.1 Experiments 1

Leaving-one-out cross-validation is used for the research in this experiment
because it avoids any possible bias introduced when relying on a particular
division of the sample into test and training components. In experiment 1,
leaving-one-out was leaving one subject out (LOSO). That means 8 subjects’
80 action videos were used for training while the remaining 1 subject’s 10
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Fig. 5. An Example of Database (Jack)

action videos were used for testing. The experiment repeated 9 times until
all of these 9 subjects’ actions were used for testing.

All of the action sequences had their corresponding key postures according
to Section 3. After the key postures were obtained, the action templates were
created according to Subsection 4.1. The learning and testing processes were
conducted according to Subsection 4.2.

During the training process, the action templates of the training samples
(8 subjects, 80 actions videos) were inputed into a classifier. The classifier
learned from these training input action templates and stored information
for future recognition task. During the testing process, the testing template
was fed into the classifier. Then, the classifier classified the template based
on the knowledge that it learned from the training templates.

The confusion matrix are shown in Table 1, Table 3 and Table 5 using
difference classifiers. Table 1 shows the results using the SMO classifier. Each
row represents the nine actions classified and their actual results. For ex-
ample, at row 5, there are nine running actions to be classified. The results
for the running action show that eight out of the nine actions are correctly
classified as ‘run’ and one of them is classified as ‘skip’. At row 7, there are
nine testing samples for skipping being classified. The results show that seven
out of the nine samples are correctly classified as ‘skip’, while one of them is
classified as ‘wave2’ and the other one is classified as ‘side’. Table 2 shows the
accuracies for this experiment using key postures based on SMO classifier. It
examines true positive rate, false positive rate, false negative rate, precision
rate and recall rate. All of these rates are evaluated for a recognition system.
Table 3 shows the results using BayesNet classifier. Table 4 shows the accura-
cies for this experiment using key postures based on BayesNet classifier. The
results obtained using Decision Tree/C4.5 classifier is illustrated in Table 5.
Table 6 shows the accuracies for this experiment using key postures based on
C4.5 classifier.
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Table 1. Confusion matrix for LOSO cross validation (SMO)

bend jack jump pjump run side skip walk wave1 wave2

bend 9 0 0 0 0 0 0 0 0 0

jace 0 9 0 0 0 0 0 0 0 0

jump 0 0 6 3 0 0 0 0 0 0

pjump 0 0 3 6 0 0 0 0 0 0

run 0 0 0 0 8 0 1 0 0 0

side 0 0 0 0 0 9 0 0 0 0

skip 0 0 0 0 0 1 7 0 0 1

walk 0 0 0 0 0 0 0 9 0 0

wave1 0 0 0 1 0 0 0 0 7 1

wave2 0 0 0 0 0 0 0 0 0 9

Table 2. Accuracies for LOSO cross validation(SMO)

TP rate FP rate FN rate Precision Recall

bend 1.000 0.000 0.000 1.000 1.000

jack 1.000 0.000 0.000 1.000 1.000

jump 0.667 0.037 0.333 0.947 0.667

pjump 0.667 0.049 0.333 0.931 0.667

run 0.889 0.000 0.111 1.000 0.889

side 1.000 0.012 0.000 0.988 1.000

skip 0.778 0.012 0.222 0.984 0.778

walk 1.000 0.000 0.000 1.000 1.000

wave1 0.778 0.000 0.222 1.000 0.778

wave2 1.000 0.025 0.000 0.976 1.000
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Table 3. Confusion matrix for LOSO cross validation (BayesNet)

bend jack jump pjump run side skip walk wave1 wave2

bend 9 0 0 0 0 0 0 0 0 0

jack 0 8 0 0 0 0 0 0 0 1

jump 0 0 7 1 1 0 0 0 0 0

pjump 0 0 3 5 1 0 0 0 0 0

run 0 0 0 0 8 0 1 0 0 0

side 0 0 0 0 0 9 0 0 0 0

skip 0 0 0 0 0 1 7 0 1 0

walk 0 0 0 0 1 0 0 8 0 0

wave1 0 0 0 1 0 0 0 0 7 1

wave2 0 0 0 0 0 0 0 0 0 9

Table 4. Accuracies for LOSO cross validation(BayesNet)

TP rate FP rate FN rate Precision Recall

bend 1.000 0.000 0.000 1.000 1.000

jack 0.889 0.000 0.111 1.000 0.889

jump 0.778 0.037 0.222 0.955 0.778

pjump 0.556 0.025 0.444 0.957 0.556

run 0.889 0.037 0.111 0.960 0.889

side 1.000 0.012 0.000 0.988 1.000

skip 0.778 0.012 0.222 0.984 0.778

walk 0.889 0.000 0.111 1.000 0.889

wave1 0.778 0.012 0.222 0.984 0.778

wave2 1.000 0.012 0.000 0.988 1.000
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Table 5. Confusion matrix for LOSO cross validation (C4.5)

bend jack jump pjump run side skip walk wave1 wave2

bend 8 0 0 0 0 1 0 0 0 0

jack 0 8 0 0 0 0 0 0 0 1

jump 1 0 7 1 0 0 0 0 0 0

pjump 0 0 3 5 0 0 1 0 0 0

run 0 0 0 0 8 0 1 0 0 0

side 0 0 0 0 0 9 0 0 0 0

skip 0 0 0 0 0 1 7 1 0 0

walk 0 0 0 1 0 0 0 8 0 0

wave1 0 0 0 1 0 0 0 0 6 2

wave2 0 0 0 0 0 0 0 0 0 9

Table 6. Accuracies for LOSO cross validation(C4.5)

TP rate FP rate FN rate Precision Recall

bend 0.889 0.012 0.111 0.986 0.889

jack 0.889 0.000 0.000 1.000 1.000

jump 0.778 0.037 0.222 0.955 0.778

pjump 0.556 0.037 0.444 0.938 0.556

run 0.889 0.000 0.111 1.000 0.889

side 1.000 0.025 0.000 0.976 1.000

skip 0.778 0.025 0.222 0.969 0.778

walk 0.889 0.012 0.111 0.986 0.889

wave1 0.667 0.000 0.333 1.000 0.667

wave2 1.000 0.037 0.000 0.964 1.000
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5.2 Experiments 2

In this part of experiment, leaving-one-sample-out (LOO) cross validation was
used because it is easier to compare our method with others work. Since we had
90 samples in our dataset, we had 89 samples for training, and the remaining
one for testing. The same experiment was repeated 90 times until all of the 90
samples were used as testing samples. The overall accuracy was estimated and
it was the average of the result obtained from the repeated experiments.

After the key postures were obtained for each video, the action tem-
plates were created for each action video. The learning and testing processes
were conducted according to Section 4.2. The recognition rate for SMO and
Bayesnet achieve 100%. However, the recognition rates for C4.5 is 92.222%.
Table 7, Table 9 and Table 11 show the confusion matrices using SMO,
Bayesnet and C4.5 respectively. Table 8 and Table 10 are the accuracies
for this experiment using SMO classifier and BayesNet classifier respectively.
Table 12 shows the accuracies of the experiment using C4.5 classifier.

Table 13 compares the best accuracy of our approach with the results
of related studies which used the same data set. Compared with leaving
one sample out, our leaving one subject is more strict because we leave one
subject’s 10 actions for testing. All the actions performed by this subject are
not in the training data. The information of the testing subject is totally
unknown from the training process. As shown in our result, our approach
has still achieved comparative results although our test condition has been
more strict. With a loose constraint, our leaving-one-sample out has achieved
100% recognition rate (see Table 8 and Table 10).

Table 7. Confusion matrix for leave-one-out cross validation (SMO)

bend jack jump pjump run side skip walk wave1 wave2

bend 9 0 0 0 0 0 0 0 0 0

jack 0 9 0 0 0 0 0 0 0 0

jump 0 0 9 0 0 0 0 0 0 0

pjump 0 0 0 9 0 0 0 0 0 0

run 0 0 0 0 9 0 0 0 0 0

side 0 0 0 0 0 9 0 0 0 0

skip 0 0 0 0 0 0 9 0 0 0

walk 0 0 0 0 0 0 0 9 0 0

wave1 0 0 0 0 0 0 0 0 9 0

wave2 0 0 0 0 0 0 0 0 0 9
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Table 8. Detail accuracy for leave-one-out cross validation(SMO)

TP rate FP rate FN rate Precision Recall

bend 1 0 0 1 1

jack 1 0 0 1 1

jump 1 0 0 1 1

pjump 1 0 0 1 1

run 1 0 0 1 1

side 1 0 0 1 1

skip 1 0 0 1 1

walk 1 0 0 1 1

wave1 1 0 0 1 1

wave2 1 0 0 1 1

Table 9. Confusion Matrix for leave-one-out cross validation (BayesNet)

bend jack jump pjump run side skip walk wave1 wave2

bend 9 0 0 0 0 0 0 0 0 0

jack 0 9 0 0 0 0 0 0 0 0

jump 0 0 9 0 0 0 0 0 0 0

pjump 0 0 0 9 0 0 0 0 0 0

run 0 0 0 0 9 0 0 0 0 0

side 0 0 0 0 0 9 0 0 0 0

skip 0 0 0 0 0 0 9 0 0 0

walk 0 0 0 0 0 0 0 9 0 0

wave1 0 0 0 0 0 0 0 0 9 0

wave2 0 0 0 0 0 0 0 0 0 9
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Table 10. Detail Accuracy for leave-one-out cross validation(BayesNet)

TP rate FP rate FN rate Precision Recall

bend 1 0 0 1 1

jack 1 0 0 1 1

jump 1 0 0 1 1

pjump 1 0 0 1 1

run 1 0 0 1 1

side 1 0 0 1 1

skip 1 0 0 1 1

walk 1 0 0 1 1

wave1 1 0 0 1 1

wave2 1 0 0 1 1

Table 11. Confusion matrix for leave-one-out cross validation (C4.5)

bend jack jump pjump run side skip walk wave1 wave2

bend 9 0 0 0 0 0 0 0 0 0

jack 0 9 0 0 0 0 0 0 0 0

jump 0 0 8 0 0 0 0 1 0 0

pjump 0 1 0 8 0 0 0 0 0 0

run 0 0 1 0 8 0 0 0 0 0

side 0 0 0 0 0 8 1 0 0 0

skip 0 0 0 0 1 0 8 0 0 0

walk 0 0 0 0 0 0 0 8 1 0

wave1 0 1 0 0 0 0 0 0 8 0

wave2 0 0 0 0 0 0 0 0 0 9
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Table 12. Detail accuracy for leave-one-out cross validation(C4.5)

TP rate FP rate FN rate Precision Recall

bend 1.000 0.000 0.111 1.000 0.900

jack 1.000 0.025 0.000 0.818 1.000

jump 0.889 0.012 0.111 0.889 0.889

pjump 0.889 0.000 0.111 1.000 0.889

run 0.889 0.012 0.111 0.889 0.889

side 0.889 0.000 0.111 1.000 0.889

skip 0.889 0.012 0.111 0.889 0.889

walk 1.000 0.012 0.111 0.900 0.900

wave1 0.889 0.012 0.111 0.889 0.889

wave2 1.000 0.000 0.000 1.000 1.000

Table 13. Comparison with related studies

Matching Method Brief Comments of Methods Test Dataset Best Accuracy

Ikizler [14] ‘bag-of-rectangles’ 9 actions 100%

SVM (no skip)

Blank et al. [4] Poisson equation 9 actions 99.61%

space time shape (no skip)

Thurau [26] no background subtraction 10 actions 87%

Wang & Suter [30] Dynamic shape 10 actions 100%

LPP

Our Approach Radon transform 10 actions 87.78%

(leave one subject out) SVM

Our Approach Radon transform 10 actions 100%

(leave one sample out ) SVM
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6 Conclusions

In this paper, one action recognition approach based on key posture sequence
matching has been proposed. The main points are listed here:

1. Radon transform is used to represent the human postures because it has
suitable features for human posture representation. The Radon trans-
forms of the extracted human silhouettes are calculated for further
process.

2. Affinity propagation clustering is applied to the Radon transforms of
the human postures to extract key postures from the action video. The
reasons for using affinity propagation cluster are that it does not re-
quire initial chosen exemplar and it has short convergence time. Affinity
propagation clustering clusters the similar postures to an exemplar. The
exemplars are the key postures of the action.

3. Summarization of all Radon transforms of the key postures is used for
the description of an action. Because of high dimensions of the template,
LDA is used to reduce the dimension of the description.

4. The conventional classifiers, including SMO, BayesNet and C4.5 are em-
ployed for training and testing. Experiments are carried out using leaving
one subject out and leaving one sample out cross validation.

The benefit of using key postures for human action recognition is the reduced
computation complexity. The advantages of using this method for human
action recognition are listed below.

1. The computation complexity has been reduced dramatically by using key
postures. This is because key postures can characterize the action well.
The key postures representation for human action can be used not only
for human action recognition but also for action retrieval.

2. The method does not require alignment between sequences. The selection
of the starting posture is not a problem any more using this approach
because we use one single template for matching.
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14. İkizler, N., Duygulu, P.: Human action recognition using distribution of oriented
rectangular patches. In: Elgammal, A., Rosenhahn, B., Klette, R. (eds.) Human
Motion 2007. LNCS, vol. 4814, pp. 271–284. Springer, Heidelberg (2007)

15. Jolliffe, I.T.: Principal component analysis. Springer, New York (2002)
16. Lim, I.S., Thalmann, D.: Swiss Federal Inst Of Technology Lausanne (Switzer-

land). Key-posture extraction out of human motion data by curve simplification
(2001)

17. Lv, F., Nevatia, R.: Single view human action recognition using key pose match-
ing and viterbi path searching. In: IEEE CVPR, pp. 1–8 (2007)

18. Martinez, A.M., Kak, A.C.: Pca versus lda. IEEE Transactions on Pattern
Analysis and Machine Intelligence 23(2), 228–233 (2001)

19. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.R.: Fisher discrimi-
nant analysis with kernels. In: Proceedings of the 1999 IEEE Signal Processing
Society Workshop on Neural Networks for Signal Processing IX, pp. 41–48
(1999)

20. Pavlovic, V., Garg, A., Kasif, S.: A Bayesian framework for combining gene
predictions*, pp. 19–27 (2002)

21. Platt, J.: Sequential minimal optimization: A fast algorithm for training sup-
port vector machines. Advances in Kernel Methods-Support Vector Learning,
208 (1999)

22. Quinlan, J.R.: Induction of decision trees. Machine learning 1(1), 81–106 (1986)
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2D and 3D Pose Recovery from a Single 
Uncalibrated Video 

A View and Activity Independent Framework 
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1   Introduction 

Human pose recovery from video sequences is an important task in computer vision 
since a set of reconstructed body postures provides essential information for the 
analysis of human behaviour and activity. Although systems have been proposed, 
they all rely on either controlled environments involving several and, generally, 
calibrated cameras or motion models learned for specific scenarios. Unfortunately, 
these constrains are not suitable for most real-life applications such as the study of 
athletes’ performances during competition, human computer interfaces for nomadic 
devices, video retrieval or the detection of antisocial behaviours from images 
captured from a closed-circuit television (CCTV) camera. Therefore, pose recovery 
remains a major challenge for the computer vision community. 

The goal of pose recovery is to localise a person’s joints and limbs in either an 
image plan (2D recovery) or a world space (3D recovery). The procedure usually 
results in the reconstruction of a human skeleton. A practical system should only be 
based on data recorded by a single uncalibrated camera. Moreover, in order to build 
a robust pose recovery framework, one has to address both the complexity of human 
poses, which includes a large posture space and self-occlusions, and the diversity in 
character appearance, which varies with individuals, clothing and viewpoints. The 
aim of this chapter is to present such a system. After a comprehensive literature 
review of the field of posture reconstruction from video data, the proposed pose 
recovery framework is outlined. It is divided into two essential modules. The first 
one focuses on 2D pose recovery. Not only is it an important step towards 3D pose 
recovery, but a 2D skeleton can also be used directly for applications such as linear 
gait analysis [57] and body part tracking [32]. The second module deals with the 
problem of 3D posture estimation. Since this task is particularly challenging when 
neither activity nor calibration parameters are known, some human biomechanics 
constrains need to be integrated in the framework.  

2   Related Work 

Human pose recovery has become a very active research topic in computer vision. 
Although the usage of optical markers led to the development of commercial 
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motion capture systems (mocap) [63], they impose constrains which are not 
acceptable in most computer vision applications. Similarly, methods based on data 
captured from several cameras have limited practicality [3, 5, 19, 34, 66]. 
Therefore, they will not be covered in the following review.  

The ability to extract body configurations simply from a single video sequence 
has the potential to allow subtle analysis of human motion and even body 
language, which have applications in a wide range of domains including visual 
surveillance, human computer interaction, image retrieval and sports science. 
Although such studies can be performed using 2D human body cues alone when 
conducted in a controlled environment [57], the recovery of 3D postures provides 
much richer information. Since 2D pose recovery can be an essential step towards 
3D pose recovery, these areas of research are covered separately in this state-of-art 
section. Finally, this review is completed with a section on evaluation of pose 
estimation methods. 

2.1   2D Pose Recovery 

Techniques aiming at 2D pose recovery are usually divided into two main 
categories [12]. Bottom-up approaches detect individual body parts and combine 
them to build a full body, whereas top-down ones start by identifying the whole 
human body shape before breaking it down into its compositional elements. 
Bottom-up methods exploit a variety of low level image cues to discover body 
parts. They can be detected by taking advantage of intrinsic partitions present in 
an image defined by edges [45, 50, 58]. An implementation of normalised graph 
cut (NCut) based on salient edges produced image pieces which were used to 
reconstruct human shapes following parsing rules [58]. Since limbs are often 
delimited by parallel edges, body part candidates can be identified by paring 
parallel lines according to anthropometric constraints [45, 50]. Ren et al. relied on 
refined edge maps where edges were, first, divided in linear segments and, then, 
constrained Delaunay triangulation was applied [50]. Parallel constraints were also 
included in an NCut based framework where body pieces were assembled using a 
dynamic programming approach [37]. Other cues, specific to individual body 
parts, have been combined to edge information to improve pose recovery: they 
include face/head, skin and limb detectors generated from training data [17, 55, 
65]. For example, 2D poses were inferred by a data driven belief propagation 
Monte Carlo algorithm using a variety of images cues [17]. Alternatively, these 
cues were used to build a set of weak classifiers, which were combined within a 
more powerful meta-classifier using the Adaboost algorithm [65].  

Despite the success of these bottom-up approaches, the absence of an explicit 
2D body model may lead to the production of impossible human postures when 
the body part pairing process fails. Consequently, alongside these techniques, 
many top-down methods have been developed. They rely on 2D articulated body 
models that are collection of parts arranged in a deformable configuration. 
Initially, poses were estimated by simply minimising a cost function consisting of 
individual body parts and part paring [9]. This scheme was refined by, first, 
adding constraints of symmetry and colour homogeneity in body parts [47] and, 
secondly, tackling self-occlusion problem by using an extended body model 
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containing occlusion likelihoods [56]. Such approach has also been used for body 
part tracking to initialise opportunistically trackers when a stylized pose is 
detected [46]. Although top-down techniques have proved efficient at recovering 
general poses, they tend not to provide accurate underlying body part 
segmentation. Consequently, a hybrid top-down/bottom-up approach, such as the 
one proposed in this chapter, should allow the production of plausible 2D poses 
with well defined body elements. 

2.2   3D Pose Recovery 

The process of 3D pose recovery from a single video sequence derives a 3D 
skeleton from high level 2D information, i.e. a 2D posture [23, 27, 36, 37, 38, 49, 
59] or a silhouette [15, 24, 25, 26, 42, 43]. 3D pose reconstruction methods can be 
classified according to their reliance on data collected for specific motions. 
Activity-specific approaches focus on learning prior models of motions directly 
from carefully selected training data provided by motion capture systems. Among 
them, example based approaches explicitly sample the entire space of possible 
solutions and store the extracted 2D features with their corresponding 3D poses. In 
such a framework, the recovery of a 3D posture is performed by interpolating 
between a set of 3D poses whose 2D features match the most the input query. This 
method was applied successfully by Poppe where silhouettes collected from 
various viewpoints were used as high level 2D information [43]. The main 
limitation of these techniques is that a very large training set is required to provide 
satisfactory accuracy and generalisation properties. In contrast, dimensionality 
reduction techniques learn an informative and compact representation of the 
training set which is then used to recover 3D poses with the usage of mapping 
functions. Complexity of human 3D motion requires nonlinear dimensionality 
reduction techniques to recover low dimension embeddings of original data. 
Mapping between image and 3D posture spaces can be intrinsic to a 
dimensionality reduction technique, e.g. Gaussian process latent variable models 
(GPLVM) [48], or learned in an additional step in so-called spectral methods [2, 
52, 60]. The elegant framework provided by GPLVM has made it recently 
extremely popular in the field [14, 24, 26]. However, because of its expensive 
computational cost, practical applications have been limited to small training data 
sets which compromise accuracy and generalisation properties. Since the 
complexity of spectral methods is proportional to the size of the training set, they 
are a suitable alternative to GPLVM if appropriate mapping between embedded 
and initial data space can be calculated. Lee and Elgammal learned a nonlinear 
mapping through generalized radial basis function mapping between the silhouette 
space and the torus manifold they used to represent walking motion [25, 26]. 
Since they were able to generate and handle a very large synthetic training data 
set, they managed to perform very accurate 3D body pose tracking. 

In many practical applications of 3D pose recovery such as visual surveillance, 
there is no limitation in the type of activities characters can be involved in. 
Moreover, there is often a particular interest in detecting uncommon behaviours. 
Therefore, in this context, activity-specific approaches are clearly not suitable. 
Since geometric camera calibration reveals the relationship between the 3D space 
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and its projection on the image plane, this is a line of research which has potential 
for the reconstruction of a 3D articulated structure in an activity independent 
framework. In a typical visual surveillance scenario where a CCTV network is 
exploited,   cameras cannot be calibrated manually. Consequently, calibration 
parameters have to be estimated automatically. In order to simplify this task, 
Taylor offered a pose recovery method based an orthographic projection model 
that assumes 3D objects are far away from the camera and thus the depth of their 
surface points is almost constant [59]. Although this approach has been widely 
used [36, 38, 49], quantitative evaluation of their pose estimates revealed accuracy 
is seriously compromised by such a strong assumption [23]. Another approach 
proposes to compute 3D pose using inverse kinematics based on prior knowledge 
about pose distribution. Lee and Cohen presented a data-driven iterative approach, 
where pose candidates are generated in Markov chain Monte Carlo search guided 
by image observations [27]. Despite a high computational cost, accuracy of 
posture estimates provided by this system is too low for many applications. This 
review suggests the most promising way of predicting 3D postures without 
activity constrain is to exploit geometric camera calibration if parameters can be 
estimated automatically without making unrealistic assumptions.   

2.3   Validation of Pose Recovery Algorithms 

Although some evaluation of pose estimates can be done qualitatively, 
quantitative evaluation against ground truth data is eventually required. While 2D 
joint positions can be generated painstakingly using ground truth authoring tools 
such as ViPER [31], it is not possible to produce manually 3D ground truth from 
video sequences. Fortunately, a few research groups have made available to the 
pose recovery research community data sets including ground truth data. The most 
popular of these data sets is called HumanEva (HE) [54] and is now a de facto 
benchmark for pose recovery. It consists of a set of videos consisting of around 
100,000 frames associated with motion capture data which were collected 
synchronously. Therefore, mocap data provides the 3D ground truth of human 
poses. Moreover, since video cameras were calibrated, 3D data points can be 
projected onto the image plane so that joint 2D locations are available for 
evaluation of 2D pose recovery algorithms. In addition, a standard set of error 
metrics has been defined so that results can be compared between research teams. 
For example, the error, E, between a pose estimate X’ and the ground truth X, 
where a body configuration is defined by a set of n joints X={x1,x2,…,xn}, is 
expressed by the average of the absolute distances between recovered joints, 

 
(1)

where δi=1 if the joint i can be estimated by the evaluated method.  
HumanEva video sequences show indoor scenes where a variety of human 

subjects (males and females) perform different types of motions including 
walking, jogging, balancing, jumping and boxing. Since the walking sequences are 
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performed around a rectangular carpet, they provide a particularly interesting 
testing environment where walking cycles are seen from a large variety of 
viewpoints and distances. Although not as complete as the HumanEva one, other 
publicly accessible data sets prove very useful for pose estimation. They include 
outdoor walking sequences produced by H. Sidenbladh [53], the MuHAVi data set 
of primitive actions [39] and the CMU motion capture library [7]. 

In this chapter, presented algorithms are illustrated and quantitatively evaluated 
using HumanEva sequences. 

3   Pose Recovery Framework 

Although many optical markerless systems have been proposed for 2D/3D pose 
recovery, they all rely on either data captured in a controlled environment or the 
assumption that characters are involved in specific activities. Consequently, those 
schemes are not suitable for many practical applications such as visual 
surveillance where images are usually produced by a single uncalibrated camera 
and human motion is unrestricted. In order to deal with such a challenging 
environment, a novel pose recovery framework is proposed. In this approach, 
constraints are limited to those which can be justified as being legitimate within 
visual surveillance scenarios. 

The structure of the suggested system (see Fig. 1) can be divided in four main 
modules. Initially, the sole input is a video sequence captured by a single uncalibrated 
camera. From this, 2D postures are automatically extracted and 2D skeletons are 
generated. Then, key poses are used to calculate camera parameters. Finally, this 
information is exploited to generate a set of 3D pose estimates for each video frame. 
The last part of the methodology is concerned with the allocation of a unique 3D pose 
to each image. This is achieved by selecting among a set of estimates the posture 
which optimises some cost function inferred from prior knowledge.  

This information may involve general 3D physics-based human kinematics 
models [4], which would enforce physically plausible postures and realistic 
dynamics properties between poses, or pose libraries built from the capture of 
body configurations representing human motion space [7]. Since this chapter is 
focused on presenting a non-learning based approach for the production of 3D 
pose estimates, pose selection will not be addressed. Interested readers should 
refer to the following review for more details on using prior knowledge to reduce 
3D pose space [44]. 

 

 
Fig. 1. Pose recovery framework (elements in dotted lines are outside the scope of this 
chapter) 
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4   2D Pose Recovery 

The goal of 2D pose recovery is to localise a character’s joints and limbs in the 
image plane to generate a human skeleton. However, since occlusions may 
prevent to access some or any visual information regarding the location of a 
specific body part, it is essential for a robust pose recovery system to provide a 
confidence measure with every pose estimate. The suggested approach relies on 
a probabilistic framework which clusters foreground pixels to identify body parts. 
This partition process is supported by the introduction of a human body model to 
impose some anthropometric constraints.  

The flow diagram of the pose recovery algorithm is shown in Fig. 2. The only 
input is a video sequence from which image cues are extracted and associated to 
every foreground pixel. Next, these pixels are partitioned into a set of clusters 
corresponding to the expected number of body parts. In order to label these 
clusters and ensure the production of a plausible posture, an adjustable 2D human 
body model is fitted on the foreground partition. Then, pixel body part labels are 
integrated into the pixel feature vector. Finally, the clustering and model fitting 
processes iterate until a stable body configuration is found. A 2D pose is then 
generated with its associated confidence measure. 

 

Fig. 2. 2D Pose recovery algorithm 

4.1   Image Feature Extraction and Clustering 

A robust algorithm aiming at recovering postures from a single camera must rely 
on as many relevant image features as possible to be able to deal with the largest 
variety of views, positions and character appearances. Initially, foreground pixels 
are selected using an advanced motion segmentation algorithm dealing with 
shadow removal [35] as illustrated in Fig. 3(b). Then, each of these pixels is 
associated to a feature vector describing its location, individual motion, orientation 
and value, i.e. grey level or colour. These cues were selected because they tend to 
exhibit homogeneity within a body part and help discriminate between different 
limbs.  

Location and individual motion express the property that body parts are made 
out of a continuous set of pixels moving in a continuous manner, except when 
occlusions occur. Whereas pixel position is given, their motion, i.e. speed and 
direction, is computed using a standard optical flow algorithm providing dense 
motion information [28]. To deal with noisy data, the motion map is smoothed 
using a moving-average temporal filter. 
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a)      b)      c)  d)  

 

Fig. 3. a) Input image from sequence S1_Walking_C1 of HumanEva data set, b) fore-
ground segmentation, c) edge detection and d) partition of pixel features in 10 clusters, 
where a 2-standard deviation boundary is used to represent each cluster as an ellipse. 

Orientation reflects the fact that limbs can be modelled using parallel lines 
corresponding to the underlying skeleton [50]. In order to associate a direction to 
each foreground pixel, edges are detected using a Canny Edge detector, see 
Fig. 3(c), then they are converted to line segments via Hough transform and, 
finally, their orientation is interpolated to all foreground pixels.  

Finally, pixel value is used to discriminate between body parts since each of 
them can usually be modelled by either homogenous colour/grey value or a low 
number of colour/grey value patterns [47]. In the case of colour values, since 
experiments showed that the colour space choice does not affect results in body 
part detection, colour cues can be simply expressed by their RGB values.  

Clustering is performed using Gaussian Mixture Models (GMMs) in the high 
dimensional space or ‘cue space’ defined by the pixel features previously 
mentioned and pixel associations to each body part as evaluated during the model 
fitting process. These labels constrain pixel partition towards clusters which 
display a topology compatible with a human body configuration.  

The choice of GMM clustering is dictated, first, by its ability to deal with 
clusters that have different sizes and may be correlated, and, secondly, by its 
probabilistic nature that allows the estimation of a confidence measure for pose 
recovery (detailed description of that measure is provided later). GMM clustering 
partitions foreground pixels in the cue space into as many clusters as there are 
body parts, n. Therefore, a set of n probabilities, P(pi|Cj),where  j∈ [0.. n] and 
ΣiP(pi|Cj)=1, is produced for each foreground pixel pi, indicating the likelihood of 
a pixel belonging to each of the n clusters, Cj. Fig. 3(d) illustrates some partition 
results. 

GMM clustering is usually initialised by K-means clustering [13]. However, 
since this algorithm does not always produce optimal partitions, it must be 
initialised either many times with random seeds or with reasonable estimates of 
cluster centres. Given the prior knowledge the foreground pixels belong to a 
human body, the overlapping of a 2D articulated model on these pixels and the 
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projection of the body part centres in the cue space provide reasonable seeds for 
K-means clustering. 

4.2   2D Body Model Fitting 

The aim of this process is to impose anthropometric constraints to the clustering 
process and to eventually produce a 2D pose estimate defined by a 2D skeleton. 
This hierarchical procedure optimises some overlapping costs by fitting a 2D 
articulated model on the clustered pixels.  

As commonly used in top-down pose recovery approaches, the 2D generic 
human body model (M) consists of 10 body pieces, M={ mhead, mtorso, mlua, mlla, 
mrua, mrla, mrul, mrll, mlul, mlll}

1 represented by basic shapes [45, 54, 66]: a circle for 
the head, a rectangle for the torso and ellipses for the eight limbs, see Fig. 4(a). 
Initially, the model is constructed using standard body part ratios [8] and its scale 
is estimated using the height of the segmented foreground. However, during the 
iterative clustering and model fitting process, the size of each body part is adjusted 
to accommodate any viewpoint and posture. Lengths of limbs are calculated from 
the produced clusters as the Euclidean distance between the joints of adjacent 
clusters. The position of a joint, Jj-k, between two clusters Cj and Ck is estimated 
using the conditional probabilities produced by GMM clustering: 

  
{ })|()|()|()|(maxarg kijikiji

i
kj CpPCpPCpPCpPJ −−+=−        

(2)
 

where pi are the foreground pixels. 
The algorithm performing the fitting of the 2D model onto the clustered pixels 

starts by detecting the most reliable body parts, i.e. head and then torso, before 
dealing with the limbs. The location of the head is estimated using the omega head 
detection algorithm [67] (see Fig. 4(b)). This method searches for an Ω-shaped 
model, which represents head and shoulders, in the image by minimising the 
Chamfer distance between the model and image edges. Then, the torso is detected 
by modelling the values of its pixels using GMM as proposed by Mckenna et al. 
[33]. This relies on using a sample region of the torso which can be inferred using 
the locations of the head and foreground pixels which are already known (see 
Fig. 4(c)). After discarding pixels which, statistically, appear to be outliers [10], 
the GMM is trained using the pixel values drawn from this sampling region. Then, 
torso pixels are detected from the segmented foreground by the trained GMM, as 
shown in Fig. 4(d). Finally, the torso region is approximated by a rectangular torso 
model, see Fig. 4(e), whose position, orientation, scale and height/width ratio are 
optimised according to the overlap between pixels belonging to the model and 
detected torso pixel 
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1 Apart from head and torso pieces, parts’ names are abbreviated by 3 letters denoting: 

“left” or “right”, “upper” or “lower” and “arm” or “leg”. 
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where 
torsomA and 

torsopixelA denote the pixel area of the rectangle model and the 

number of detected torso pixels respectively. 
The final stage of 2D model fitting recovers limb configuration. Each limb is 

translated and rotated to maximise the overlapping costs of the body partitions, i.e. 
clustered pixels. This is achieved by maximising the joint probabilities, as defined 
in Equation (6), between limbs and partitions. The expression of joint probabilities 
is detailed in the next section. Fig. 4(f) illustrates the result of fitting the model on 
the foreground. 
 
 
a)   b)      c)           d)               e)                     f)                 g)  

 

Fig. 4. 2D model fitting; a) 2D generic human body model, b) omega head detection, c) 
torso sample region, d) detected torso pixels, e) fitted head and torso f) fitted model and g) 
2D skeleton.  

4.3   Production of 2D Pose Estimates 

Once the iterative processes of clustering and model fitting converge, a skeleton, 
as shown in Fig. 4(g), is extracted from the final body model where clusters’ 
boundaries along principal axes define body joints. Fig. 5 shows 2D pose 
estimates produced for various views and activities, i.e. walking, running and 
balancing sequences. 

In addition to a pose estimate, a confidence measure is calculated to rate its 
accuracy. It is formulated as the probability that a pose is recovered successfully, 
P(pose). If one assumes this is determined by the success of recovering all body 
parts and their associated recovery probabilities are independent, it can be 
expressed by:  

 
(4)

where P(Xj) denotes the probability of body part, Xj, to be recovered successfully. 
This is evaluated by extending the definition of the overlap measure (Equation 3) 
to other body parts.  
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Experiments conducted on a set of HumanEva sequences show this activity 
independent algorithm achieves an average accuracy of 25 pixels per joint [22]. 
Moreover, results show good correlation (r=0.7) between accuracy and confidence 
measure. Therefore, selection of estimated poses according to this metric allows 
significant increase of precision, e.g. poses whose confidence values are among 
the top 10% have an accuracy below 20 pixels.    

It is important to note this confidence value is not only useful for pose 
evaluation but also for many applications built upon pose recovery. For example, 
body part tracking using either Kalman or Particle filter requires a prior 
probability to estimate how much an observation can be trusted [32]. 

The proposed method, which does not require any training, produces 
quantitatively and qualitatively convincing results. Although recent learning based 
approaches [16, 18, 25, 43] achieve 5-15-pixel error for HumanEva data, they are 
limited to the estimation of poses which are present in their training set. 
Consequently, they are not suitable for most realistic scenarios. Although other 
activity independent approaches have been suggested [45, 50, 58], only qualitative 
results were reported, which do not allow objective comparisons. Finally, activity 
independent pose tracking was proposed and tested on HumanEva sequences [32]. 
They achieved an average error of 13 pixels for this easier task which relies on 
manual initialisation. 

5   3D Pose Recovery 

The aim of human 3D pose recovery is the production of a 3D skeleton representing 
angles between adjacent joints. Given that the process has to be suitable for 
applications such as visual surveillance where a character’s activity is largely 
unknown, the proposed methodology is based on transforming 2D image points into 
a set of 3D poses in real world using pinhole projection. However, since this 
problem is ill-constrained, multiple postures are generated. Consequently, a pose 
selection mechanism is then required to extract the correct posture. 

A conceptual flow diagram of the 3D pose recovery algorithm is shown in Fig. 6. 
From a sequence of 2D skeletons, key poses as defined by a human biomechanics 
constrain are extracted. Then, the camera is automatically calibrated at these instants. 
Subsequently, joint 3D positions are calculated for those key frames using camera 
parameters and pinhole projection. Finally, other 3D poses are estimated by 
propagating key posture 3D information using another human bipedal motion 
constraint. 

 

Fig. 6. Conceptual framework for production of 3D posture estimates 
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5.1   Camera Auto-calibration from Mid-stance Position 

In order to perform 3D pose reconstruction based on pin-hole projection, camera 
calibration parameters need to be estimated. The most commonly used technique 
was proposed by Tsai [61] and is based on known correspondences between 3D 
points and their 2D image plane projections. In practice, this method requires 
capturing images of a calibration object of known geometry. Consequently, it does 
not appear suitable for many applications where frequent and physical access to 
camera is not possible. As a consequence, research effort has been invested in 
developing auto-calibration techniques. Solutions have been proposed exploiting 
camera motion [1, 29, 41]. For visual surveillance scenario, where the camera is 
usually fixed, research focus has been on taking advantage of the observed activity 
within a scene. Although many methods have been proposed [20, 30, 51], they all 
impose rather strong constraints on either pedestrian activity or 3D scene 
geometry.  

 In order to deal with realistic environments, a more general approach has to be 
developed. The technique presented here proposes to estimate camera calibration 
parameters by only using a generic property learned from human biomechanics. 
First, the camera model is simplified using common assumptions: the principal 
axis goes through the centre of the image and there is neither lens distortion nor 
skew. The required projection parameters, i.e. the focal length and the camera’s 
relative position to the object of interest, are then computed using Tsai’s coplanar 
calibration model [61]. This requires a set of correspondences between 3D 
coplanar points and their projected locations on the image plane. Study of human 
biomechanics reveals that, during a cycle of human bipedal motion, there is an 
instant, which is called the mid-stance position (Fig. 7), when shoulders and hips 
become coplanar. As a result, shoulder and hip joint locations are suitable for 
coplanar calibration if mid-stance postures are detected.  
 
 
                                                 a)           b)  

 

Fig. 7. a) Variation of hip-shoulder angle during a walking cycle, b) mid-stance position  
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The detection of these postures within a video sequence is achieved through 
estimation of the calibration parameters following Tsai’s two step algorithm using 
a set of 5 coplanar point candidates. During the first stage, these points permit the 
evaluation of 5 extrinsic parameters, i.e. 3D rotation and image centre coordinates. 
These values are then exploited in the second stage to resolve the ambiguity 
between the last extrinsic parameter, i.e. depth, and the effective focal length. This 
relies on solving an over-determined linear system, which produces 10 estimates 
of the parameter pairs. Since experiments have shown that there is correlation 
between the variability of these estimates and the coplanarity quality of the 5 
coplanar point candidates [21], this calculation is used to jointly detect mid-stance 
frames and evaluate the size of the associated 3D models and, eventually, to 
produce the camera parameters required for 3D reconstruction. 

 

Fig. 8. Algorithm allowing detection of mid-stance position from a 2D skeleton 

Fig. 8 describes the main steps of the camera auto-calibration algorithm which 
is applied to every frame. From each 2D skeleton, 5 torso points, e.g. shoulder and 
hip joints and mi-hip point, are used as coplanar point candidates. Using a generic 
torso 3D model, calibration parameters are calculated using Tsai’s algorithm. 
Then the variability of the 10 focal length estimates is analysed. If their standard 
deviation is below a given threshold, the frame is labelled as a mid-stance frame 
whose associated calibration parameters and torso 3D model will be used for 3D 
pose reconstruction. Alternatively, variability is used to guide the model search 
within the torso space. If no new model candidate can be produced, the process is 
stopped and the frame will not be associated to calibration parameters. Otherwise 
a new 3D model is produced, camera parameters are re-calculated and the process 
iterates. Finally, once all frames have been processed, a set of mid-stance frames 
is available. Their associated focal lengths and torso 3D models are averaged and 
a generic 3D full body model is adjusted to fit the torso model requirements. 

Experiments were conducted with a variety of walking and running sequences 
seen from many different camera angles and lenses [21]. They reveal that, if 2D 
joint positions are evaluated accurately, the camera focal length is usually 
predicted within 2% of its actual value. 
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5.3   3D Pose Estimation Based on Support Foot Propagation 

The general idea is to also apply equation (5) for 3D reconstruction of frames 
which are not defined as displaying mi-stance positions. However, since it 
requires the knowledge of the 3D coordinates of at least one point of the 3D 
skeleton and calibration is not possible, some new constraint has to be introduced.  

Further study of human biomechanics reveals that most human bipedal motions 
such as walking, loitering, balancing and dancing, rely on a series of ‘steps’ where 
one leg ‘swings’ around a ‘support’ leg which holds the body weight [11] (see 
Fig. 10). Since the ‘support’ foot stays in contact with the ground during the whole 
‘step’, in such motion, there is permanently a point whose 3D position is identical 
between two successive frames. Therefore, once a posture has been reconstructed 
such as a key pose the following and previous frames can also be processed by 
starting their reconstruction from the position of the support foot. This propagation 
process can be refined by combining support foot estimates coming from the 
previous and next key frames. 
 
 

 

Fig. 10. Right leg swinging around the left leg whose foot is static during the whole step 

Since a sequence of 2D skeleton is available at the start of the 3D 
reconstruction process, detection of the support foot is straight forward: it only 
relies in comparing foot positions between consecutive frames. Although this 
constrain does not fully hold for some activities such as running, when for a brief 
instant both feet leave the ground, this can be addressed by either interpolating 
between poses which meet the constrain requirements or by constructing the 3D 
pose from the foot which has the lowest velocity and is assumed to be immobile. 
Although, whatever the selected strategy, reconstruction accuracy suffers, the 
error is not propagated for long since reconstruction is reinitialised with the 
detection of the next mid-stance position. 

5.4   3D Pose Recovery for a Walking Sequence 

Fig. 11 illustrates the performance of the proposed 3D pose recovery methodology 
applied to a sequence of “walking in a circle” - S2 Walking (C1) - from the 
HumanEva data set [54]. Here, it is assumed the pose selection process 
successfully identified the most relevant posture from the set of estimates. Since 
motion capture data were collected synchronously with video data and cameras 
were calibrated, 2D locations of key body points in the sequences were extracted  
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Fig. 11. Reconstruction results; first row: walking sequence images; second and third row: 
reconstructed (solid) and ground truth (dotted) postures observed from the original view-
point and a novel viewpoint respectively. The first 4 images are detected as mid-stance 
frames. 
 
 
automatically by projecting mocap 3D points on the image plane. In Fig. 11, the 
first 4 columns show images which were detected as mid-stance frames and their 
3D reconstruction is compared to the 3D ground truth which corresponds to the 
mocap data. The other columns demonstrate the ability of reconstructing other 
frames using support foot propagation.  

In order to quantitatively evaluate the proposed algorithm, performance are 
provided using, first, the camera calibration parameters provided with the data set 
and, secondly, the auto-calibration scheme. Table 1 display these results along 
those achieved by other state of art 3D pose recovery techniques applied on the 
HumanEva data set. The 12-mm precision obtained by Cheng [6] using multiple 
manually calibrated cameras can be seen as the maximal accuracy that a single 
camera computer vision system could achieve on this data set.  

Most methods are activity specific and recover poses with a 3-4-cm accuracy 
[25, 40, 43, 62, 64]. However, as Poppes’s results show, the selection of training 
data is essential: in their approach reconstruction error doubles if the tested subject 
is not present in the training set. 3D reconstruction without any training data is a 
more difficult task which has been investigated by fewer groups. Fig. 12 provides 
a frame base accuracy comparison between activity independent methods, i.e. 
orthographic projection [59] and the proposed approach with auto-calibration or  
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Table 1. Performance of 3D pose recovery algorithms 

Algorithm Error (mm) Constraints Training 
Calibrated camera 21 Manual calibration No 
Proposed 80 Bipedal motion No 
Taylor [59] 236 None No 
Lee [25] 31 Activity specific & cyclic Yes 
Urtasun [62] 33 Activity specific Yes 
Vondrak [64] 34 Activity specific Yes 
Okad [40] 38 Activity specific Yes 
Poppe [43] 40 Activity specific 

Subject in training set 
Yes 

Poppe [43] 80 Activity specific Yes 
Cheng [6] 12 Multiple calibrated cameras 

Manual initialisation 
No 

 

 

Fig. 12. Accuracy comparison between activity independent methods 
 
 

calibrated camera. The orthographic projection model offers only a 24-cm 
accuracy, the proposed approach achieves a 8-cm accuracy with auto-calibration; 
this accuracy is usually sufficient to label poses for action recognition applications 
[23]. Though training based approaches perform better, their applicability is much 
more limited. Moreover, results with a calibrated camera show, camera model 
based approaches have the potential to outperform training based ones. This is 
consistent with the fact that pose recovery processes based on training data tend to 
smooth out stylistic variations of a specific motion.  

6   Conclusions 

This chapter describes a framework for 2D and 3D pose recovery from a single 
uncalibrated video. Since this methodology relies on generic human biomechanics 
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constrains, which are valid in most bipedal motions, it can be considered as view 
and activity independent. Therefore, this approach is suitable for many real life 
applications, such as visual surveillance, where neither scenario nor environment 
can be controlled. 

Many extensions of this framework can be envisaged. The probabilistic nature 
of the 2D pose recovery process makes it particularly suited to be incorporated 
within body part trackers which, in addition to initialisation, usually require prior 
probabilities about observations. Such scheme would undoubtedly improve the 
accuracy of 2D pose estimates since predictions provided by the tracker could be 
integrated in the feature vectors used for identifying body parts. 

The proposed method for 3D posture recovery could also be enhanced. First of 
all, a pose selection module needs to be developed exploiting human kinematics, 
pose consistency and any available prior knowledge to reduce 3D pose space. 
Furthermore, since 3D motion analysis based on extracted 3D postures could infer 
character’s activity, poses could be refined using relevant learned based activity 
models if available. Similarly, linear motion could be detected. Then, calibration 
methods relying on this constrain could be applied to extend the number of frames 
where camera parameters could be estimated.  

References 

[1] Armstrong, M., Zisserman, A., et al.: Euclidean Reconstructing from Image Triplets. 
In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 3–16. Springer, 
Heidelberg (1996) 

[2] Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data 
Representation. Neural Computation 15(6), 1373–1396 (2003) 

[3] Bhatia, S., Sigal, L., et al.: 3D Human Limb Detection using Space Carving and Mul-
ti-View Eigen Models. In: Proc. Conf. on Computer Vision and Pattern Recognition, 
pp. 17–24 (2004) 

[4] Brubaker, M., Fleet, D., et al.: Physics-Based Human Pose Tracking. In: Proc. NIPS 
Workshop on Evaluation of Articulated Human Motion and Pose Estimation (2006) 

[5] Caillette, F., Howard, T.: Real-Time Markerless Human Body Tracking with Multi-
View 3-D Voxel Reconstruction. In: Proc. British Machine Vision Conf. (2004) 

[6] Cheng, S., Trivedi, M.: Articulated Body Pose Estimation from Voxel Reconstruc-
tions using Kinematically Constrained Gaussian Mixture Models: Algorithm and 
Evaluation. In: Proc. Workshop on Evaluation of Articulated Human Motion and Pose 
Estimation (2007) 

[7] Carnegie Mellon University, Motion Capture Library,  
http://mocap.cs.cmu.edu (last accessed January 2010) 

[8] Da Vinci, L.: Description of Vitruvian Man (1492) 
[9] Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. Int. J. 

Computer Vision 61(1), 55–79 (2005) 
[10] Fritsch, J., Kleinehagenbrock, M., et al.: Audiovisual person tracking with a mobile 

robot. In: Proc. Int. Conf. on Intelligent Autonomous Systems, pp. 898–906 (2004) 
[11] Fryer, C.: Biomechanics of the lower extremity. Instruct Course Lect. 20, 124–130 

(1971) 



2D and 3D Pose Recovery from a Single Uncalibrated Video 409
 

[12] Gavrila, D.: The visual analysis of human movement: A survey. Computer Vision and 
Image Understanding 73(1), 82–98 (1999) 

[13] Hartigan, J., Wong, M.: A K-means clustering algorithm. Applied Statistics 28(1), 
100–108 (1979) 

[14] Hou, S., Galata, A., et al.: Real-time Body Tracking Using a Gaussian Process Latent 
Variable Model. In: Proc. Int. Conf. on Computer Vision (2007) 

[15] Howe, N.: Silhouette lookup for monocular 3D pose tracking. Image and Vision 
Computing 25(3), 331–341 (2007) 

[16] Howe, N.: Recognition-Based Motion Capture and the HumanEva II Test Data. In: 
Proc. Workshop on Evaluation of Articulated Human Motion and Pose Estimation 
(2007) 

[17] Hua, G., Yang, M., et al.: Learning to estimate human poses with data driven belief 
propagation. In: Proc. Conf. on Computer Vision and Pattern Recognition, vol. 2, 
pp. 747–754 (2005) 

[18] Husz, Z., Wallace, A., Green, P.: Evaluation of a Hierarchical Partitioned Particle Fil-
ter with Action Primitives. In: Proc. Workshop on Evaluation of Articulated Human 
Motion and Pose Estimation (2007) 

[19] Izo, T., Grimson, W.: Simultaneous pose recovery and camera registration from mul-
tiple views of a walking person. J. Image and Vision Computing 25(3), 342–351 
(2007) 

[20] Krahnstoever, N., Mendonca, P.: Bayesian autocalibration for surveillance. In: Proc. 
Int. Conf. on Computer Vision (2005) 

[21] Kuo, P., Nebel, J.-C., et al.: Camera Auto-Calibration from Articulated Motion. In: 
Proc. Advanced Video and Signal Based Surveillance, pp. 135–140 (2007) 

[22] Kuo, P., Makris, D., et al.: Integration of Local Image Cues for Probabilistic 2D Pose 
Recovery. In: Proc. Int. Symp. on Visual Computing (2008) 

[23] Kuo, P., Thibault, A.: Exploiting Human Bipedal Motion Constraints for 3D Pose Re-
covery from a Single Uncalibrated Camera. In: Proc. Int. Conf. on Computer Vision 
theory and Applications (2009) 

[24] Lawrence, N., Carl Henrik, E., et al.: Gaussian Process Latent Variable Models for 
Human Pose Estimation. In: Popescu-Belis, A., Renals, S., Bourlard, H. (eds.) MLMI 
2007. LNCS, vol. 4892, pp. 132–143. Springer, Heidelberg (2008) 

[25] Lee, C.-S., Elgammal, A.: Body Pose Tracking From Uncalibrated Camera Using Su-
pervised Manifold Learning. In: Proc. NIPS Workshop on Evaluation of Articulated 
Human Motion and Pose Estimation (2006) 

[26] Lee, C.-S., Elgammal, A.: Nonlinear manifold learning for dynamic shape and dy-
namic appearance. Computer Vision and Image Understanding 106(1), 31–46 (2007) 

[27] Lee, M., Cohen, I.: A Model-Based Approach for Estimating Human 3D Poses in 
Static Images. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(6), 
905–916 (2006) 

[28] Lucas, B., Kanade, T.: An iterative image registration technique with an application to 
stereo vision. In: Proc. Imaging Understanding Workshop, pp. 121–130 (1981) 

[29] Luong, Q., Faugeras, O.: Self-Calibration of a Moving Camera from Point correspon-
dences and Fundamental Matrices. Int. J. Computer Vision 22(3), 261–289 (1997) 

[30] Lv, F., Zhao, T., et al.: Self-Calibration of a Camera from Video of a Walking Hu-
man. In: Proc. Int. Conf. on Pattern Recognition (2002) 

[31] Mariano, V., Min, J., et al.: Performance Evaluation of Object Detection Algorithms. 
In: Proc. Int. Conf. on Pattern Recognition, pp. 965–969 (2002) 



410 J.-C. Nebel, P. Kuo, and D. Makris
 

[32] Martinez-del-Rincon, J., Nebel, J.-C., et al.: Tracking Human Body Parts Using Par-
ticle Filters Constrained by Human Biomechanics. In: Proc. British Machine Vision 
Conf. 

[33] Mckenna, S., Raja, Y., et al.: Tracking colour objects using adaptive mixture models. 
Image and Vision Computing 17, 225–231 (1999) 

[34] Menier, C., Boyer, E., et al.: 3D Skeleton-Based Body Pose Recovery. In: Proc. Int. 
Symp. on 3D Data Processing, Visualization and Transmission (2004) 

[35] OpenCV 2.0 C Reference,  
http://opencv.willowgarage.com/documentation/index.html 
(last accessed January 2010) 

[36] Mori, G., Malik, J.: Estimating Human Body Configurations Using Shape Context 
Matching. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. 
LNCS, vol. 2352, pp. 666–680. Springer, Heidelberg (2002) 

[37] Mori, G., Ren, X., et al.: Recovering human body configurations: Combing segmenta-
tion and recognition. In: Proc. Conf. on Computer Vision and Pattern Recognition, 
vol. 2, pp. 326–333 (2004) 

[38] Mori, G., Malki, J.: Recovering 3D Human Body Configurations Using Shape Con-
texts. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(7), 1052–1062 
(2006) 

[39] MuHAVi: Multicamera Human Action Video Data,  
http://dipersec.king.ac.uk/MuHAVi-MAS (last accessed January 2010) 

[40] Okada, R., Soatto, S.: Relevant Feature Selection for Human Pose Estimation and Lo-
calization in Cluttered Images. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 
2008, Part II. LNCS, vol. 5303, pp. 434–445. Springer, Heidelberg (2008) 

[41] Pollefeys, M., Van Gool, L.: Stratified Self-Calibration with the Modulus Constraint. 
IEEE Trans. on Pattern Analysis and Machine Intelligence 21(8), 707–724 (1999) 

[42] Poppe, R., Poel, M.: Comparison of silhouette shape descriptors for example-based 
human pose recovery. In: Proc. Int. Conf. on Automatic Face and Gesture Recogni-
tion, pp. 541–546 (2006) 

[43] Poppe, R.: Evaluating Example-based Pose Estimation: Experiments on the HumanE-
va sets. In: Proc. Workshop on Evaluation of Articulated Human Motion and Pose Es-
timation (2007) 

[44] Poppe, R.: Vision-based human motion analysis: An overview. Computer Vision and 
Image Understanding 108(1-2), 4–18 (2007) 

[45] Ramanan, D., Forsyth, D.: Finding and traking people from the bottom up. In: Proc. 
Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 467–474 (2003) 

[46] Ramanan, D., Forsyth, D., et al.: Strike a pose: Tracking people by finding stylized 
poses. In: Proc. Conf. on Computer Vision and Pattern Recognition, vol. 1, 
pp. 271–278 (2005) 

[47] Ramanan, D.: Learning to parse images of articulated bodies. In: Proc. Advanced in 
Neural Information Processing Systems, pp. 1129–1136 (2007) 

[48] Rasmussen, C., Williams, G.: Gaussian Processes for Machine Learning. MIT Press, 
Cambridge (2006) 

[49] Remondino, F., Roditakis, A.: 3D Reconstruction of Human Skeleton from Single 
Images or Monocular Video Sequences. In: Noltemeier, H. (ed.) WG 1980. LNCS, 
vol. 100, pp. 100–107. Springer, Heidelberg (1981) 

[50] Ren, X., Berg, A., et al.: Recovering human body configurations using pairwise con-
straints. In: Proc. Int. Conf. on Computer Vision, pp. 824–831 (2005) 



2D and 3D Pose Recovery from a Single Uncalibrated Video 411
 

[51] Renno, J., Remagnino, P., et al.: Learning Surveillance Tracking Models from the 
Self-Calibrated Ground Plane. Acta Automatica Sinica 29(3), 381–392 (2003) 

[52] Saul, L., Roweis, S.: Nonlinear dimensionality reduction by locally linear embedding. 
Science 290, 2323–2326 (2000) 

[53] Sidenbladh, H.: Image sequences provided,  
http://www.csc.kth.se/~hedvig/data.html 
(last accessed January 2010) 

[54] Sigal, L., Black, M.: HumanEva: Synchronized Video and Motion Capture Dataset for 
Evaluation of Articulated Human Motion, Technical Report CS-06-08, Brown Uni-
versity (2006) 

[55] Sigal, L., Black, M.J.: Predicting 3D People from 2D Pictures. In: Perales, F.J., Fish-
er, R.B. (eds.) AMDO 2006. LNCS, vol. 4069, pp. 185–195. Springer, Heidelberg 
(2006) 

[56] Sigal, L., Black, M.: Measure locally, reason globally: Occlusion-sensitive articulated 
pose estimation. In: Proc. Conf. on Computer Vision and Pattern Recognition, vol. 2, 
pp. 2041–2048 (2006) 

[57] Spencer, N., Carter, J.: Towards pose invariant gait reconstruction. In: Proc. Int. Conf. 
on Image Processing, vol. 2, pp. 261–264 (2005) 

[58] Srinivasan, P., Shi, J.: Bottom-up recognition and parsing of the human body. In: 
Proc. Conf. on Computer Vision and Pattern Recognition, pp. 1–8 (2007) 

[59] Taylor, C.: Reconstruction of Articulated Objects from Point Correspondences in a 
Single Image. In: Proc. Conf. on Computer Vision and Pattern Recognition, pp. 
677–684 (2000) 

[60] Tenenbaum, J.: Global Geometric Framework for Nonlinear dimensionality reduction. 
Science 290, 2319–2323 (2000) 

[61] Tsai, R.: A versatile camera calibration technique for high accuracy 3D machine vi-
sion metrology using off-the-shelf TV cameras and lensesp. IEEE J. Robotics and Au-
tomation RA 3, 323–343 (1987) 

[62] Urtasun, R., Darrell, T.: Sparse Probabilistic Regression for Activity-independent 
Human Pose Inference. In: Proc. Conf. on Computer Vision and Pattern Recognition, 
pp. 1–8 (2008) 

[63] Motion Capture Systems from Vicon, http://www.vicon.com (last accessed 
January 2010) 

[64] Vondrak, M., Sigal, L., Jenkins, O.: Physical Simulation for Probabilistic Motion 
Tracking. In: Proc. Conf. on Computer Vision and Pattern Recognition, pp. 1–8 
(2008) 

[65] Wang, Y., Mori, G.: Boosted multiple deformable trees for parsing human poses. In: 
Proc. Workshop on Human Motion Understanding, Modeling, Capture and Anima-
tion, pp. 16–27 (2007) 

[66] Yang, H., Lee, S.: Reconstructing 3D human body pose from stereo image sequences 
using hierarchical human body model learning. In: Proc. Int. Conf. on Pattern Recog-
nition, vol. 3, pp. 1004–1007 (2006) 

[67] Zhao, T., Nevatia, R.: Bayesian human segmentation in crowded situations. In: Proc. 
Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 459–466 (2003) 

 

 



A Comprehensive Study of Sports Video

Analysis

Ming-Chun Tien1, Ja-Ling Wu1, and Wei-Ta Chu2

1 Graduate Institute of Networking and Multimedia
National Taiwan University
No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan, 10617
{trimy,wjl}@cmlab.csie.ntu.edu.tw

2 Department of Computer Science and Information Engineering
National Chung Cheng University
168 University Road, Minhsiung Township, Chiayi County, Taiwan, 62102
wtchu@cmlab.csie.ntu.edu.tw

Abstract. Commercial applications of video analysis are getting valuable
with the development of digital television. People can easily record all kinds
of programs and enjoy the videos in their leisure time. Among these programs,
broadcasting sports videos are usually more tedious than others since they
involve not only the main games, but also break time or commercials. And
even main games comprise periods which are not splendid enough for the au-
dience. Therefore, a considerable amount of research focuses on automatically
annotating semantic concepts in sports videos, and providing a spellbinding
way to browse videos. In this chapter, we briefly introduce related work of
video analysis for different kinds of sports, and propose a generic framework
for sports video annotation. We explicitly elaborate the state of the art tech-
niques for sports videos analysis. Visual and audio information are utilized to
extract mid-level features, and different models for semantic annotation are
expounded with practical examples. We also expand on applications of sports
video analysis from the viewpoints of the audience, professional athletes, and
advertisers.

1 Related Work of Video Analysis for Different Sports

The advancement of digital video coding and transmission has caused a sharp
rise in video amount. Consequently, automatic video semantic analysis be-
comes substantial for efficiently indexing, retrieval, and browsing of the data
in digital libraries [21, 22]. Techniques of video segmentation [36], shot classifi-
cation [18], and event detection [41] have been proposed to facilitate semantic
understanding. Among all types of videos, sports videos involve much more
regularities than others owing to two main reasons: 1) Sports games are held
on specific playground with clear and definite rules. 2) A cameraman usually
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adopts regular manners to capture meaningful events during the game for
the audience. These regularities make it possible to extract semantics from
the videos. However, there are too many kinds of sports in the world and to
find a generic framework for analyzing all of them is nearly impossible. In
this chapter, we focus on video analysis of mainstream sports such as soccer,
tennis, basketball, football, billiards, baseball, etc.

There has been a proliferation of research on sports video analysis in the
past ten years. Most of them focused on highlight extraction, structure anal-
ysis and semantic event annotation. Gong et al. [23] utilized object color and
texture features to generate highlights in broadcast soccer videos. Xu et al.
[51] and Xie et al. [49] detect plays/breaks in soccer games by frame view
types and by motion/color features, respectively. Li et al. [31] summarized
football video by play/break and slow-motion replay detection using both
cinematic and object descriptors. Rui et al. [40] detected highlights using
audio features alone without relying on expensively computing video fea-
tures. Besides visual/audio features extracted from the video, Babaguchi et
al. [4] combined text information from closed captions (CC) to seek for time
spans in which events are likely to take place. With the aid of web-casting
text information, Xu et al. [50] tried to annotate sports videos with seman-
tic labels which not only cover general events, e.g. scoring/fouls in basket-
ball, but also the semantics of events, e.g. names of players. Moreover, some
works analyzed the superimposed caption to more accurately annotate the
videos [14, 56].

Object trajectories also provide rich information for semantic understand-
ing. Assfalg et al. [3] employed camera motion and locations of the play-
ers to detect events in soccer videos. Tovinkere et al. [45] utilized object
trajectories to achieve semantic event detection in soccer video with a set
of heuristic rules which are derived from a hierarchical entity-relationship
model. Intille et al. [29] analyzed interactions in football videos based on ob-
ject trajectories, which could be clues for play classification. Not surprisingly,
[3, 45, 29] assumed that trajectory information is obtained in advance. To
obtain the object trajectories automatically, Pingali et al. [38] proposed a
real-time tracking system for tennis videos captured by a stationary camera.
In [38], player trajectories are obtained by dynamically clustering tracks of
local features, and ball segmentation/tracking is realized based on shape and
color features of the ball. Guéziec [24] exploited the kinematic properties of
the baseball’s flight to track the ball during pitches in real-time. However,
extensive prior knowledge such as camera locations and coverage have to be
known for tracking the ball.

In this chapter, we present a generic framework for sports video analysis as
illustrated in Fig. 1. Techniques for video/audio signals processing are dilated
in Sect. 2 and Sect. 3, respectively. The extracted video/audio mid-level fea-
tures are then utilized for semantic annotation based on three methodologies as
expatiated in Sect. 4. Moreover, Sect. 5 introduces some applications of sports
video analysis from different viewpoints and Sect. 6 concludes this chapter.
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Fig. 1. A generic framework of sports video analysis. The video is first
segmented into shots and a shot classification scheme is applied to each shot. Mid-
level video/audio features are then extracted for semantic annotation. The mid-level
features and the annotation results can be further employed to some applications
of sports video analysis.

2 Analysis of Visual Information

The mission of a cameraman is to convey meaningful events to the audience.
Since most athletic events take place in an area of specific colors and dimen-
sion, sports programs usually focus on the area during the game. Moreover,
to perfectly capture the scene without loss of event concepts, a cameraman
will control the camera in particular manners. Hence, sports video analysis
significantly relies on visual information. Generic frameworks utilize low-level
visual features (e.g. color, texture, and motion) to achieve video preprocessing
steps including shot segmentation, shot classification, object detection, and
object tracking. According to the results of video preprocessing, representa-
tive mid-level visual features are extracted to describe each video segment.
These mid-level visual features play important roles in further analysis, and
can be employed to many applications.

2.1 Shot Segmentation

A video stream can be segmented into several video shots according to pro-
duction cues such as scene changes and shot boundaries. In sports videos,
abrupt transitions (cuts) occur when the camera view changes from one scene
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to another, and gradual transitions (e.g. dissolve, fade-in/out, and wipe) oc-
cur in the beginning and the end of a reply. Hence, detecting abrupt/gradual
transitions is an essential step of indexing, browsing, and searching sports
videos.

Shot segmentation for uncompressed video

There is an extensive literature on shot boundary detection (SBD) algorithms
[27, 33]. The SBD problem can be solved in the uncompressed domain with
the aid of color/edge information. The basic idea of color-based SBD is that
the color content remains almost consistent in the same shot while changes
rapidly across shots. Hence, we can detect cut transitions as peaks in the
time series of the differences between color histograms of contiguous frames.
The color histograms difference (CHD) can be defined as

CHDi =
1
N

k∑
r=0

k∑
g=0

k∑
b=0

|pi(r, g, b) − pi−1(r, g, b)|, (1)

where each color component is quantized to k different values, and pi(r, g, b)
denotes the number of pixels of color (r, g, b) in frame i of N pixels. A cut
transition is detected if a local maximum CHDi exceeds a threshold ΘCHD.
Since scene change is a local activity in the temporal domain, the threshold
ΘCHD should be determined adaptively to reduce false detection caused by
large object and camera motion [53].

The color-based SBD can be extended to a twin-comparison algorithm [57]
to detect gradual transitions. The twin-comparison algorithm takes a two-
phase detection strategy. As illustrated in Fig. 2, CHD values of all frames
are calculated in the 1st phase and a high threshold Thh is set to detect cut
transition. If the CHDi is less than Thh but higher than an additional low
threshold Thl, frame i is considered as a possible start frame (Fs) of a gradual
transition. During a normal gradual transition, color histogram difference
between the start frame and each of its consecutive frames (usually called
the accumulated color histogram difference, ACHD) will increase gradually.
Hence, in the 2nd phase, we calculate ACHD values to determine the real
start/end frame of a gradual transition. For each possible start frame Fs,
frame i is detected as the end frame if the corresponding ACHD value has
increased to a value larger than Thh, and the value of CHDi+1 is less than
Thl. If the corresponding end frame is not found for a possible start frame,
we just drop this start point and search for another gradual transition.

During a cut or dissolve, new intensity edges (entering edges) appear far
from the location of old edges and old edges (exiting edges) disappear far from
the location of new edges. Hence, the edge-based SBD method [54] employs
the edge change ratio (ECR) to detect transitions. The ECR between frame
i − 1 and frame i can be defined as

ECRi = max(
Ein

i

Ei
,
Eout

i−1

Ei−1
), (2)
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where Ei denotes the number of edge pixels in frame i, Ein
i and Eout

i−1 are
the numbers of entering and exiting edge pixels in frame i and frame i −
1, respectively. Hard cuts, fades, dissolves, and wipes exhibit characteristic
patterns of ECR sequences. Thus we can detect shot boundaries and even
classify different types of transitions by counting and analyzing the spatial
distribution of the entering/exiting edge pixels.

Shot segmentation for compressed video

Considering the time efficiency of SBD, algorithms developed for compressed
videos have been proposed in recent years since MPEG videos contain rich set
of pre-computed features, e.g. DC coefficients and motion vectors. Methods
using DC coefficients require significant decoding of the MPEG-compressed
video and do not work well on both hard cuts and gradual transitions simul-
taneously. With the same idea of using compressed video data, Haoran et
al. [28] proposed an SBD method based on the dissimilarity between I/P/B
frames with respect to various types of macroblocks used for coding.

There are four types of macroblocks (MBs) in an MPEG coding scheme:
intracoded (In), forward predicted (Fw), backward predicted (Bw), and bidi-
rectionally predicted (Bi). The number of each type MB in a frame is relative

Fig. 2. The color-based twin-comparison algorithm. In the 1st phase, a
high threshold is set to detect cut transition, and a low threshold is set to obtain
frame candidates of a gradual transition (Fgt). In the 2nd phase, accumulated
color histogram difference is calculated to determine the start/end of the gradual
transition from all Fgt

′s.
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to the dissimilarity between that frame and its neighboring frames. In [28],
Haoran et al. defined the frame dissimilarity ratio (FDR) as

FDRi =

{
Fwi−1
Bii−1

, for I/P frame.
max(Fwi

Bii
, Bwi

Bii
) , for B-frame.

(3)

If a shot change occurs at a reference frame, most MBs in the previous B-
frame are predicted from the previous reference frame. Therefore, Fw in the
previous frame will be high and resulting in high FDR. Similarly, if a shot
change occurs at a B-frame, all frames between the previous and the following
reference frame will contain much more Fw/Bw MBs than Bi MBs, which
also results in high FDRs. However, the latter case results in successive high
FDRs rather than an exact FDR peak. To determine the exact shot boundary,
a modified frame dissimilarity ratio (MFDR) is defined as

MFDRi = FDRi × DMBCi, (4)

where DMBCi is the dominant MB change for frame i, which is defined by

DMBCi =

⎧⎨⎩
1 , for I/P frame.
0 , for B frame and (Bwi − Fwi)(Bwi−1 − Fwi−1) > 0.
1 , for B frame and (Bwi − Fwi)(Bwi−1 − Fwi−1) ≤ 0.

(5)

Take the frame structure : I1B2B3B4P5B6B7B8P9 as an example, if a shot
change takes place at B3, FDRs of B2, B3 and B4 will be high. On the other
hand, since B2 contains more forward predicted MBs while B3 and B4 contain
more backward predicted MBs, DMBC1, DMBC2, DMBC3 and DMBC4

will be 1, 1, 1 and 0, respectively. The corresponding MFDRs are calculated
and an exact shot boundary can be obtained by finding the first frame of
successively high MFDR frames.

Haoran et al. also applied DMBC defined in Eq.(5) to detect gradual tran-
sitions and proposed a method to further divides the shots into subshots (e.g.
pan, tilt, and zoom shots) by motion vector information in an MPEG stream.
Hence, it is quite appropriate for analyzing videos involving complex shots
and shooting manners, such as basketball and football videos.

2.2 Shot Type Classification

Shots can be categorized into a set of scene types for each kind of sports video
based on cinematic features and object-based features [17], for example, Liu
et al. [35] classified basketball video shots into six scene types including fast
motion court-view, slow motion court-view, penalty, in-court medium, and
bird-view. Considering time efficiency, we can omit extracting object-based
features and simply classify shots into play or break by cinematic features [16].
However, for applications requiring more detailed semantics, object-based
features are indispensable. To develop a generic framework for all kinds of
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Fig. 3. The shot type classification scheme. Shots are classified into five
categories by replay detection, dominant color ratio comparison and court detection.

sports videos, we introduce a hierarchical scheme for shot type classification.
As shown in Fig. 3, replay detection, dominant color ratio comparison, and
court detection are applied to each level, and shots are ultimately classified
into five categories including replay, court view, non-court view (in long view
shots), medium view, and close-up view/others. Among these five shot types,
replays are produced after the occurrence of excellent play skills or exiting
events, while other important game information is embedded in court view
shots; therefore, obtaining replays and court view shots are quite useful for
sports analysis. In this section, we will elaborate the techniques of replay de-
tection and dominant color ratio comparison, while leave the court detection
method to be explained in Sect. 2.3.

Replay Detection

In sports videos, a replay may contain slow motion or non-slow motion or
both. Some works have been proposed to detect slow motion replays via ana-
lyzing motion model of the video sequences [37, 47]. However, these methods
can not be applied to detect non-slow motion replays, and will fail when slow
motion replays are generated by high speed camera. Since a replay is usually
sandwiched in between two identical editing effects (i.e. logo transitions) to
point out the beginning and the end of a replay, the replay detection problem
can be converted to the logo detection one [6, 44].
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Dominant Color Ratio Comparison

In most sports, the playing field is characterized by specific colors. Since
the field often dominate large portion of the frame during a play, detecting
dominant (field) color in the videos is useful for further analysis. The statistics
of the dominant color are learnt in the HSI (hue-saturation-intensity) color
space which depicts the characteristics of human visual perception better than
other color spaces. Some sports fields may comprise more than one dominant
color; hence, we accumulate the HSI histograms of the first K frames and
model the histogram by a Gaussian Mixture Model (GMM) which consists
of M Gaussian densities:

p(ξ|λ) =
∑M

i=1 wibi(ξ), w1 + w2 + · · · + wM = 1. (6)

ξ is the color vector of a pixel and wi is the weight of the i-th mixture
component bi. The parameters (wi and bi) are estimated by the expecta-
tion maximization (EM) algorithm and the dominant colors are determined
by Algorithm 1. Moreover, to develop a robust algorithm adapting to light
variations in the temporal domain, automatically updating the statistics of
dominant colors is essential. The dominant colors are dynamically adjusted
according to the newly decoded video frames.

Algorithm 1 (Dominant Colors Detection)

Given a set of mixture components bi
′s and their corresponding weights wi

′s,
determine the dominant color set Φ.
1: Sort the M mixture components in the descending order according to

their weights and push the corresponding mean color ξi of each ordered
component into a queue Q:(ξ1, ξ2, · · · ξM ).

2: Set the dominant color set Φ as an empty set.
3: for i = 1 : M do
4: Compute the neighboring color set Ψ of ξi.
5: Add Ψ into the set Φ.
6: if p(Φ|λ) > Thdominant

7: break
8: end if
9: end for

10: return Φ

In Algorithm 1, the color distance between ξi and each element in the
neigh-boring color set Ψ should be less than a threshold. Both the chromatic-
ity and the achromaticity channels are taken into consideration to measure
the distance between two colors by robust cylindrical metric [39]. As illus-
trated in Fig. 4, the chroma distance (Dchroma) of two colors C1 and C2 can
be measured by

Dchroma(C1, C2) =
√

(S1)2 + (S2)2 − 2S1S2 cos θ, (7)
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Fig. 4. HSI color cone. The chroma distance of two colors C1 and C2 can be
measured by their saturation values and the angle between their hues.

where S1 and S2 are the corresponding saturation values of C1 and C2, and θ
is the angle between hue values of the two colors. While the intensity distance
(Dintensity) is measured by

Dintensity(C1, C2) = |I1 − I2|. (8)

The color distance of two colors C1 and C2 is then determined by

Dcylindrical(C1, C2) =
√

Dintensity(C1, C2)2 + Dchroma(C1, C2)2. (9)

However, if the saturation and the intensity of the color lie in the achromatic
region, only intensity distance is considered to measure the color distance in
Eq.(9).

A shot type can be determined by a key frame or by a set of frames. For
example, given a video shot, we can compare the ratio of dominant color
pixels in each frame with two thresholds, say Thlong and Thmed, and label
each frame with long view, medium view, or close-up view/others. Then, this
shot is assigned to the major label of all the frames.

2.3 Object Detection and Tracking

For sports videos, detecting specific objects and even obtaining their trajec-
tories makes it easier to understand the semantics of the videos. For example,
a long time appearance of the court usually indicates play-time rather than
break-time, and the ball/player trajectories can reveal occurrence of certain
events. Here we focus on three object types: the court, the ball(s), and the
player(s).
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(a) Soccer Court (b) Tennis Court (c) Basketball Court

(d) Baseball Court (e) Football Court (f) Billiards Table

Fig. 5. Court models of different sports

Court Detection and Tracking

According to the rules of the competition, matches are played on natural
or artificial surfaces with specification. Fig. 5 illustrates the court models
of different sports. The court lines are usually painted with certain color
(e.g. white in soccer/tennis/basketball/baseball court) or set with clear edge
(e.g. the billiards table). Hence, we can detect the court with the aid of
line or edge information. Farin et al. [19, 20] proposed a line-based camera
calibration technique which not only detected the court in the video but also
determined the calibration parameters. In [19, 20], possible court line pixels
are first detected according to color information with constraint to exclude
large white areas or fine textured areas. Based on the detected line pixels,
a RANSAC -like algorithm [19] is applied to extract the dominant line in
each frame, and the line segment boundaries are determined by least square
approximation.
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Fig. 6. Model fitting. We can use four intersection points to compute the ge-
ometric transformation between two planes, and the four points are extracted by
iteratively configuring two horizontal and two vertical lines between the image and
the court model.

To identify which line in the image corresponds to which line in the court
model, a model fitting step is utilized to infer the geometric transformation be-
tween the two planes. The geometric transformation can be written as a 3×3
homography matrix H which maps a point p = (x, y, w)T in the court model
coordinates to a point p′ = (x′, y′, w′)T in the image coordinates. As illus-
trated in Fig. 6, we can use four intersection points to compute the geometric
transformation, and the four points are extracted by iteratively configuring
two horizontal and two vertical lines between the image and the court model.
Since the court position will not change too much in two successive frames of
a shot, we can efficiently estimate and track the court positions in following
frames when the initial court position has been located [20]. This camera
calibration method can be applied to most mainstream sports videos with
little variation. For example, the possible court line pixels in billiards videos
are extracted by edge detection instead of the above-mentioned method [13].

Ball Detection and Tracking

Ball detection/tracking is challenging since the ball is a small object rela-
tive to the frame and it is often blurred because of its fast move. A general
methodology for ball detection/tracking first detects all possible ball can-
didates according to color, motion, shape, and size information (Fig. 7 is
an example of the ball candidate detection procedure), and then applies a
tracking algorithm to identify the real ball positions. Guéziec [24] proposed a
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Fig. 7. A sample process of ball candidate detection. In addition to color,
shape and size in-formation, background subtraction, morphological filtering and a
designed reduction mechanism are utilized to detect ball candidates.

method to extract the trajectory of a baseball from video clips using Kalman
filter [48] which incrementally tracks the ball in the scene based on predic-
tion and pattern matching, while Shum et al. [42] performed a global search
methods based on dynamic programming to find the trajectory of the ball.

Kalman filter is a well known algorithm commonly used for object tracking,
removing measurement errors and estimating a system’s variables. Linear
equations must describe the system and measurement evolutions over time.
Kalman filter provides optimal estimates of the system parameters, such
as position and velocity, given measurements and knowledge of a system’s
behavior. In general, Kalman filter assumes that the following two relations
can describe a system:

xk = Akxk−1 + wk, (10)

zk = Hkxk + vk, (11)

where xk is the state vector, such as a position, velocity, acceleration or
other parameters, while zk is the measurement, such as a position. wk (pro-
cess noise, or process evolution), and vk (measurement noise) are mutually
uncorrelated white noise vectors. Eq.(10) determines the evolution of states
over time, and Eq.(11) relates measurement and state. Once the system is
established, a recursive algorithm is utilized to estimates xk optimally.

Possible ball positions in different frames can be found utilizing the pro-
cedures illustrated in Fig. 7 However, for some sports videos like basketball
videos, ball detection is much more difficult due to the complicated scene
which results in plenty of ball candidates or ball occluded by players. In this
case, ball tracking based on dynamic programming is much more suitable to
find out the correct ball trajectory. Given two frames fi and fj (i < j), the
2D velocity of the ball can be calculated by

V elocityi→j =

√
(Xj − Xi)2 + (Yj − Yi)2

Ti→j
(12)

where (Xi, Yi) and (Xj , Yj) are respectively the positions of the ball candi-
dates in fi and fj, and Ti→j is the time duration between fi and fj . For two
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Fig. 8. Tracking process based on dynamic programming. The X and Y
axes represent 2D coordinates of the ball, and the horizontal axis shows the frame
number of the current candidate. Assume the ball candidates are represented as
nodes, when the velocity of the ball calculated from candidates in fi and fj satis-
fying the velocity constraint, the nodes corresponding to these candidates will be
connected by an edge. After connecting the candidates by edges, a complete route
that represents the trajectory of the ball is searched recursively based on dynamic
programming to maximize a predefined criterion.

nearby frames in a shot, the velocity of the ball will be within a certain range
(velocity constraint). The tracking conception is described in Fig. 8, in which
the X and Y axes represent 2D coordinates of the ball, and the horizon-
tal axis shows the frame number of the current candidate. Assume the ball
candidates are represented as nodes in Fig. 8, when the velocity of the ball
calculated from candidates in fi and fj satisfying the velocity constraint, the
nodes corresponding to these candidates will be connected by an edge. Af-
ter connecting the candidates by edges, a complete route that represents the
trajectory of the ball is searched recursively based on dynamic programming
to maximize a predefined criterion [42].

Player Detection and Tracking

Information of players’ positions is important for semantic analysis. How
players move along the time axis further conveys significant cues for event
detection and tactic analysis. The essential idea of player detection is to find
the region with non-dominant-color pixels, which is surrounded by dominant-
color area. Given a video frame, we can construct a binary map

B(x, y) =

⎧⎨⎩
0, if p(x, y) is in dominant color,
0, if (x, y) is a court line pixel,
1, otherwise,

(13)
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where B(x, y) represents the value of the binary map at a given point (x, y),
and p(x, y) represents the color values of this pixel. A region growing pro-
cedure is then used for player segmentation. If there are only few players
appearing in the video and the players will not seriously occlude with each
other, we can easily track players on the basis of the velocity constraint men-
tioned above. However, for basketball videos or football videos where a player
often move very close to other players, only using velocity constraint usually
incurs bad tracking results. Hence we can derive player trajectory based on
another tracking technique such as Continuously Adaptive Mean Shift Algo-
rithm (CamShift) [2], an adaptation of the Mean Shift algorithm for object
tracking. The CamShift Algorithm is summarized in Algorithm 2.

Algorithm 2 (CamShift Algorithm)

Step1. Set the region of interest (ROI) of the probability distribution image
to the entire image.

Step2. Select an initial location of the Mean Shift search window. The selected
location is the target distribution to be tracked.

Step3. Calculate a color probability distribution of the region centred at the
Mean Shift search window.

Step4. Iterate Mean Shift algorithm to find the centroid of the probability
image. Store the zeroth moment (distribution area) and the centroid
location.

Step5. For the following frame, center the search window at the mean location
found in Step 4 and set the window size to a function of the zeroth

moment. Go to Step 3.

3 Analysis of Audio Information

The audio stream have strong hint for event detection in sports video. For
example, the whistling occurs right after a foul play, and exited commen-
tator speech usually follows a goal event. In this section, we will introduce
techniques of detecting sound effects (whistling, applause, etc.) which are
meaningful for the occurrence of sports events. Sound effects recognition has
been widely studied in recent years [8, 12]. A general procedure of sound ef-
fect detection is depicted in Fig. 9. Audio signals exhibit strong context such
that variables can be predicted from previous values. Hence, low-level audio
features are extracted and Hidden Markov Model (HMM), a well known sta-
tistical model used for temporal pattern recognition, is applied to detect the
specific sound effect.

3.1 Low-Level Audio Feature Extraction

An audio signal is first segmented into basic units (say frames of k millisec-
onds) for feature extraction. For each audio unit, several audio features are
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Fig. 9. The general procedure of audio analysis. Low-level audio features
are extracted and Hidden Markov Model (HMM) is applied to detect the specific
sound effect.

extracted for modeling, including energy, band energy ratio, zero-crossing rate,
frequency centroid, bandwidth, mel-frequency cepstral coefficient (MFCC),
and delta/acceleration which have been shown to be beneficial to sound effects
recognition [8, 12, 35, 55]. We briefly introduce some of the above mentioned
features as follows.

• Energy. Energy is defined by the logarithm (log) of the square sum about
the amplitude of all audio samples within a basic unit, that is

Energy = log
N∑

i=1

Si
2. (14)

• Mel-frequency cepstral coefficient. Mel-frequency cepstrum (MFC)
is a representation of the short-term power spectrum of a sound. The fre-
quency bands in MFC are equally spaced on the mel scale which closely
approximates the human auditory system response. Mel scale can be cal-
culated by Eq.(15), where f is the normal frequency scale.

Mel(f) = 2595 × log10(1 +
f

700
) (15)

Mel-frequency cepstral coefficients (MFCCs) are coefficients that collec-
tively make up an MFC. As depicted in Eq.(16), MFCC are commonly
computed from FFT power coefficients filtered by a triangular bandpass
filter bank, where Sk is the output of the k-th filter bank and N is the
number of samples in a basic unit.

Cn =

√
2
k

K∑
k=1

(log Sk) cos[n(k − 0.5)
π

k
], n = 1, 2, · · ·N (16)

• Delta/Acceleration. Delta (δn) and acceleration (ACCn) are the first
and the second order characteristics of MFCC which can be computed by
Eq.(17) and Eq.(18), respectively.



428 M.-C. Tien, J.-L. Wu, and W.-T. Chu

δn = Cn − Cn−1 (17)

ACCn = δn − δn−1 (18)

3.2 Sound Effect Detection by HMM

Training data sets of k types of sound effects (e.g. ordinary sounds, com-
mentator speech, excited commentator speech, applause/cheer, and racket
hit sound) are collected to model each sound effect using HMM. Parame-
ters of each model λk are adjusted based on the Baum-Welch algorithm [7].
After modeling, how likely an audio sequence belongs to an audio effect is
evaluated. For each audio sequence A = {x1, x2, · · ·xn} containing n audio
basic units, the corresponding audio low-level features of each basic unit form
an observation vector O. The likelihood of each HMM is computed and the
audio sequence A is recognized as sound effect i if p(O|λi) = maxk p(O|λk).

4 Semantic Annotation of Sports Video

With the proliferation of multimedia content, automatic annotation becomes
important for users to retrieve videos. Humans generally use high-level se-
mantic concepts to query videos, while computers only recognize low-level
features such as color, motion, and texture. This semantic gap brings about
challenges of video annotation. Generally speaking, sports video annotation
can be done in the following three perspectives: structure-based annotation,
event-based annotation, and ontology-based annotation. Since sports games
follow specific structure rules, we can annotate sports videos with structure
labels, e.g. a play, a break, a play in the second period of a basketball game. To
a higher level of semantics, event-based annotation matches the user’s inten-
tion more closely. Conventional works utilize visual/audio mid-level features
to annotate events in sports videos. Ontology-based annotation approaches
construct multimedia ontologies by manually assigning external knowledge to
video content, hence it lacks of an automatic mechanism. In this section, we
focus on event-based annotations and introduce three approaches including
rule-based, learning-based, and mining-based event annotation.

In Sect. 2 and Sect. 3, we have respectively introduced how to derive mid-
level visual and audio features from sports videos. From the classification
point of view, mid-level features can be treated as the result of dimension
reduction given video data with low-level features. These mid-level features
more closely describe the way that human comprehend the video content than
low-level features. An intuitive method for event detection is to use a rule-
decision tree which combines both visual and audio mid-level features. With
the aid of machine learning techniques, we can determine how each feature
dominates each kind of event through training stage rather than using a pre-
known decision tree. We can even detect frequent events of sports videos
in the perspective of data mining. To convey the main ideas of these three
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approaches more explicitly, we take tennis video as an example, and one can
apply these approaches to other sports videos with a little modification.

4.1 Events Definition and Mid-level Features Extraction

We first define events for each kind of sports videos, for example, five well-
known events for tennis video are defined as follows.

• Ace or unreturned serve. A player successfully serves, and his/her
opponent fails to return the ball. In the case of ace, the opponent is
not able to touch the ball and therefore fails to return. In the case of
unreturned serve, the opponent barely touches the ball but the returned
ball touches net or is out-of-court.

• Fault. A player fails in his/her first serve, and the camera immediately
switches out of the court view.

• Double fault. A player consecutively fails in two serves. In double fault,
the camera doesn’t switch out of the court view after the first failed serve,
and the player successively fails the second serve.

• Baseline rally. A player successfully serves and his/her opponent suc-
cessfully returns. They then strike around the baseline until one of them
fails to return.

• Net approach. A player successfully serves and his/her opponent suc-
cessfully returns. One or both of them once approach the net to stress
his/her opponent.

To faithfully present the game and amuse the audience at the mean time,
the producer usually uses court view to capture important events in play-
time, while switches to other view type (e.g. replay or close-up view) between
two events or in break-time. Hence, each court view shot carries one events
averagely, which helps us to achieve event-based annotation using the court
view shot as the basic unit. A tennis video is first segmented by the shot
boundary detection method introduced in Sect. 2.1, and court view shots
are extracted using the hierarchical shot classification scheme proposed in
Sect. 2.2. Moreover, we utilize several representative visual/audio mid-level
features to describe a court view shot for tennis video:

• The relative position between the player and the court (Dr).
With the visual object detection technique (cf. Sect. 2.3), we can locate
each player and each court line in video frames, and then find the relative
position between the player and the court. This information is quite useful
since many events are related to or defined by the player’s position. Taking
the bottom part of the tennis court as an instance, we partition the court
into two regions by the court lines as depicted in Fig. 10. For a court view
shot, if a player ever moves to the region one, this shot is likely to involve a
net approach event. The top part of the court is partitioned symmetrically
to the bottom part, and a binary mid-level feature Dr denotes whether a
player steps into the region one.
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Fig. 10. The relative position between the player and the court. Taking
the bottom part of the tennis court as an instance, we partition the court into two
regions by the court lines.

Dr =
{

1, if a player steps into the region one.
0, otherwise. (19)

• Average moving distance of players (Dm). Instead of using relative
position, we can describe how the player exactly moves on the basis of
statistics, e.g. the moving distance of players. For each court view shot,
we accumulate the moving distance of each player (in the real world court
coordinates), and then we can subtly examine whether this shot implies
intense events or not. The mid-level feature Dm is calculated by averaging
the moving distances of two players.

• Time-length of the shot (Dt). Different events will have different time-
lengths, for example, the length a double fault is longer than that of a
single fault. The length of a rally event is more likely longer than that of
an ace. Therefore, we take the time-length, Dt, of a shot as a mid-level
feature for event annotation.

• Applause/cheer sounds effects (Da). Due to sports etiquette, the
audiences only acclaim after some events. For example, in tennis matches,
ace or unreturned serve always brings applause/cheer sounds while fault
or double fault does not. Thus, the occurrence of applause or cheer sounds
significantly provides clues for event annotation. With the applause/cheer
detection technique (cf. Sect. 3), we can use a binary mid-level feature Da

to present whether this kind of audio effect occurs.
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Fig. 11. The rule-based decision tree for tennis video event detection

Da =
{

1, if applause/cheer occurs.
0, otherwise. (20)

• The number of racket hits in a shot (Dn). For racket-sports, the
number of hits is also an indication of event type, e.g. there are more racket
hits in rallies than in aces or unreturned serves. Based on hit detection
technique described in section Sect. 3, we use a mid-level feature Dn to
denote the number of racket hits in a shot.

We can design different mid-level features which represent the real-world
conditions for each kind of sports videos. These mid-level features are signifi-
cantly different from low-level features used in conventional work and provide
more meaningful information for event annotation.

4.2 Rule-Based Event Detection

According to the prior-knowledge of game regulations, broadcasting conven-
tions, and inherent characteristics of events, we can design a rule-based de-
cision tree for event detection based on mid-level features. Taking the tennis
video as an example, we examine each court view shot with the detection
process illustrated in Fig. 11. The tree first judges if any one of the players
ever steps into the region one (the front of the net) according to Dr, and a net
approach event is detected if Dr = 1. This decision is made by net approach’s
definition and intuition from observations. For court view shots where play-
ers never step to region one, the tree then checks whether applause/cheer
sounds occur. If yes (Da = 1), this shot should involve ace/unreturned serve
or baseline rally; otherwise, double fault or fault event is carried in this shot.

Shots containing applause/cheer sounds are further classified into ace /un-
returned serve and baseline rally according to the number of hit and the av-
erage moving distance of the players in a shot. Generally, there is only one
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racket hit in aces and at most two hits in unreturned serves. On the other
hand, a baseline rally event means that players combat with each other for a
longer time such that the average moving distance of players and the num-
ber of racket hits should be large. Similarly, shots without applause/cheer
sounds can be further classified into double fault or fault according to the
time-length of this play since a double fault takes longer time than a fault.

The decision boundaries δm , δn and δt are determined by the Bayesian
decision theory [15]. For example, to decide δt, we first gather some double
faults (Event1) and faults (Event2) respectively, and use a Gaussian distri-
bution for each to model the time-length characteristics. A play with length
δt belongs to a double fault if

λ21p(Event1|Dt) > λ12p(Event2|Dt), (21)

where λij is the cost incurred when Eventj is wrongly classified to Eventi.
By employing Bayes formula, we can replace the posterior probabilities in
Eq.(21) by the product of the prior probabilities and conditional densities:

λ21p(Dt|Event1)p(Event1) > λ12p(Dt|Event2)p(Event2). (22)

Rewrite Eq.(22) and decide the shot to be a double fault if

S(Dt) =
p(Dt|Event1)
p(Dt|Event2)

>
λ12

λ21

p(Event2)
p(Event1)

= δt. (23)

and to be a fault otherwise. The conditional densities p(Dt|Event1) and
p(Dt|Event2) are described by the Gaussian distributions mentioned above.
The prior probabilities p(Event1) and p(Event2) are estimated according to
the formal records reported by the Australian Open. Moreover, the costs λ12

and λ21 could be adjusted to show different preferences in detection.

4.3 Learning-Based Event Detection

The rule-based event detection sequentially makes ”hard decision” by check-
ing visual/audio mid-level features. However, some exceptions or court/player
detection errors would incur erroneous event detection. For example, player
detection/tracking is sometimes annoyed by the superimposed caption or the
ball boys. Once the player’s position is erroneously detected as in the region
one, this play would be rudely detected as a net approach even if all other de-
scriptors present significantly different opinions. Therefore, a learning-based
method which jointly considers all visual/audio mid-level features can be
applied to event detection.

There have been some works endeavoring to detect events based on learn-
ing methods. Leonardi et al. [30] extracted motion information and exploited
HMM to detect ”goal” event in soccer videos. With the aid of color-based
features, Bach et al. [5] exploited multi-stream HMM to characterize baseball
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Table 1. Data transformation: mapping between features and symbols

Features Scale Symbol

Dr
Dr = 0 m
Dr = 1 n

Dm

Short a
Medium b
Long c

Dt

Short d
Medium e
Long f

Da
Da = 0 u
Da = 1 v

Dn

Few x
Moderate y
Plenty z

events, such as homerun, fly out, and base hit. From the perspective of dis-
criminative learning, some studies [46, 52] based on support vector machines
(SVM) were proposed to construct classifiers for event detection. In the case
of tennis event detection, we apply LIBSVM [9] to construct a multi-class
classifier. All mid-level features are concatenated as a vector to describe a
court view shot. In the training stage, all court view shots are manually la-
beled with the ground truth, and statistical characteristics of all events are
then classified by the SVM classifier, which defines the decision boundaries
between different classes. In the detection stage, each court view shot repre-
sented by a feature vector is evaluated with the trained classifier.

4.4 Mining-Based Event Detection

If we view the mid-level features as symbols to represent video sequences,
we can observe that there are some frequent patterns in the symbol stream
since some events frequently take place in sports videos. For example, there
are often a large number of net approach events in a tennis match; therefore,
the symbol which indicates players stepping into the front of the net will
appear frequently. Hence, we can treat the event detection problem as a data
mining problem and utilize mining techniques [25] to find frequent patterns
that describe the characteristics of events [43].

Generating symbolic streams

We take each court view shot in the video as a time unit and transform
the extracted features of each time unit into symbolic streams according to
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Fig. 12. The Examples of symbolic streams. Each court view shot is trans-
formed to a corresponding symbolic stream Si according to the middle-level features.
The mapping between features and symbols is listed in Table 1.

the mapping given in Table 1. As shown in Table 1, each feature D∗ has
its corresponding symbol set; for example, the symbol set of Dm is {a, b, c}.
Fig. 12 shows some examples of symbolic streams. Let Si be the symbolic
stream representing the features derived from a particular time instant (court
view shot) i. Given a video, a series of symbolic streams (denoted as S =
S1, S2, · · · , Sn , where n is the total number of court view shots) can be
obtained.

Mining of frequent patterns

We define a pattern as p = p1p2 · · · pm, where m is the number of symbols
used to represent a symbolic stream Si, and pj is a subset of the underlying
symbol set with respect to feature D∗. If pj matches all the symbols in the
underlying symbol set, we use the ”don’t care” character ∗ to denote pj. Let
|pj | be the number of ”none don’t care” (non-∗) symbols in the set pj . The
length of a pattern p is defined as

∑ |pj | , and a pattern with length k is called
a k− pattern. Moreover, we define subpattern of a pattern p = p1p2 · · · pm as
a pattern p′ = p1

′p2
′ · · · pm

′ such that pj
′ ⊆ pj for every j where pj

′ 
= ∗. Due
to a strong correlation between frequencies of patterns and their subpatterns,
the traditional Apriori-Algorithm [1] may reduce the search space in mining
slowly. Consequently, the Max-subpattern Tree introduced in [26] is adopted
to efficiently find frequent patterns in S.
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Algorithm 3 (Event Mining Algorithm)

Step1. Scan S once to find the set of frequent 1-patterns (F1), by accumulating
the frequent count for each 1-pattern and selecting among them whose
frequent count is no less than the given threshold, Th1. Form the
candidate frequent max-pattern Cmax from F1 and take Cmax as the
root of the Max-subpattern Tree.

Step2. Scan S once. For each symbolic stream Si, insert MS(Si, Cmax) into
the Max-subpattern Tree with its count=1 if it is not already there;
otherwise, increase the count of MS(Si, Cmax) by one. The detail of
the insertion algorithm can be found in [26].

Step3. Obtain the set of frequent k-patterns from the Max-subpattern Tree :
for k=2 to length of Cmax

{
Derive candidate patterns of length k from frequent patterns of
length k-1.
Scan the Max-subpattern Tree to find frequency count of these can-
didate patterns and eliminate the non-frequent ones. The frequency
count of each node is calculated by summing the count values of the
node itself and its ancestor in the Max-subpattern Tree. If the de-
rived frequent k-pattern set is empty, return.

}

Follow the definitions given in [26], let F1 be the set of frequent 1-patterns.
A candidate frequent max-pattern, Cmax, is the maximal pattern which can
be derived from F1. For example, if the frequent 1-pattern set is {m ∗ ∗ ∗
∗, n ∗ ∗ ∗ ∗, ∗a ∗ ∗∗, ∗ ∗ ∗v∗, ∗ ∗ ∗ ∗ z}, Cmax will be {m, n}a ∗ vz. The maximal
subpattern of two patterns p1 and p2 is denoted by MS(p1, p2) and defined as
follows: MS(p1, p2) is a common subpattern of both p1 and p2, in addition,
none of other common subpattern has the length longer than MS(p1, p2). For
example, if p1 = {m, n}a ∗ vz and p2 = maguz, MS(p1, p2) will be ma ∗ ∗z.
Based on the above-mentioned definitions, the mining algorithm is shown in
Algorithm 3.

We go through each frequent pattern derived from the mining algorithm
and manually map all frequent patterns to corresponding events. Frequent
patterns mapped to the same event are merged into a set. Finally, we could
categorize all frequent patterns into several sets and each set represents a
specific event. According to the relationship between patterns and events,
we can achieve event detection for the test videos. In contrast to the rule-
based event detection which has to construct a decision tree based on specific
domain knowledge, mining-based methodology is more general to be applied
to various sports videos.



436 M.-C. Tien, J.-L. Wu, and W.-T. Chu

5 Applications

With the rise in the amount of sports video content, more and more applica-
tions in great demand have been proposed from the viewpoints of the audience,
professional athletes, and advertisers. Applications for different purposes can
be accomplished with the aid of different techniques used for sports video anal-
ysis. We introduce some interesting applications in this section.

5.1 Video Summarization and Highlight Extraction

It usually takes the audience hours to watch a whole sports video and acquire
interesting or splendid events. However, valuable semantics generally occupy
a small portion of the whole video content. A sports news TV program tries
to make a summary of a match and to produce a sequence of highlights
for the audience who have no time to enjoy the whole game. However, the
summary and the highlight might not be the most representative for every
viewer since they are both determined by few or even one producer. For
example, in a basketball game, some viewers want to watch all dunk plays, but
some viewers only want to watch the scoring plays of his/her favorite team.
With techniques of sports video analysis introduced in previous sections, we
can choose a more attractive way to summarize videos or extract highlights
based on user preference. Furthermore, various multimedia-enabled receiving
devices have different capability of storage and transmission speed, which
emphasizes the importance of content adaptation. One perspective of content
adaptation is to transmit different content with different semantics to various
devices. Hence, designing a flexible mechanism of video summarization and
highlight extraction becomes an essential matter.

In Sect. 2.1, we have described how to divide a sports video sequence into
several video clips. For each video clip, we determine if a specific event takes
place in it, as introduced in Sect. 4. The summaries can be generated by
concatenating a set of video clips annotated with predefined events. Simply
concatenating all these clips might result in a long summary, which is still
copious for the viewer. A ranking list indicating the events importance can
be defined according to the viewer’s preference, such that the summary can
select attractive events while leave out the less important ones for the viewer.

5.2 Tactic Analysis and Visualization

For professional players and coaches, collecting possible tactics taken by
the opponent is quite essential since they can find the competitor’s weak-
nesses and practice corresponding strategies before the match. Nowadays,
human have to watch videos of several matches to conclude tactic informa-
tion, which is time-consuming and exhausting. Thus, automatically analyzing
sports videos and proving possible tactics has become a flourishing research
topic. Trajectories of the ball and the players are the most useful cues in the
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video for tactic analysis. For example, Zhu et al. [58] exploited object tra-
jectories and web-casting text to extracted tactic information from the goal
events in broadcast soccer videos. Chen et al. [11] designed a physics-based
algorithm to reconstruct 3D ball trajectory in basketball videos and then ob-
tain shooting location statistics, which helps the defense team to infer which
area has to be guarded with more attention. Moreover, how to visualize the
extracted tactics is another interesting work. For each sport, we can classify
tactics into several categories and take the statistics of each category as an in-
dication that whether a team or a player is used to perform a specific tactic.
Since tactics carried out before goal events provide significant information
for the professional players/coaches, another fascinating way is to show the
trajectories of the ball or a certain player in a period before an ongoing goal
event [13]. If the scene in the video is calibrated with a 3D real-world model,
one can even generate 3D cartoon of a moving object for visualization [32].

5.3 Advertisement/Virtual Content Insertion

The population of sports audience has been amazingly increasing, which leads
the commercial industry to advertise their products along with the game. In
addition to setting billboard around the field/stadium, or inserting commer-
cials during break of the game, another choice is to automatically insert
advertisement into the video content without switch to a stand-along com-
mercial video. Such an advertisement insertion system automatically detects
adequate insertion points in both temporal and spatial domains, and inserts
the advertisement in a reasonable way. The insertion algorithm should con-
sider not only if the advertisement can impress the audience, but also if the
audience is seriously interrupted while watching the game. Chang et al. [10]
took psychology, advertising theory, and computational aesthetics into ac-
count for improving the effectiveness of advertising in tennis videos. Liu et
al. [34] proposed a generic system which can insert virtual content (not only
advertisement, but also other message such as information of the game or the
player) into videos based on visual attention analysis.

6 Conclusions

In this chapter, we comprehensively introduce the state of the art techniques
for sports videos analysis, and propose a generic framework for sports video
annotation. We explicitly elucidate how to extract visual/audio mid-level
features, and practical examples are used for helping the reader easily grasp
the main ideas of how these mid-level features work in different methodologies
for event annotation. Moreover, applications from three viewpoints (i.e. the
audience, professional athletes, and advertisers) are explained to strengthen
the importance of sports video analysis.
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Abstract. Key issues in bridging the semantic gap for content analysis of video 
include flexibility required from the software, real time implementation and cost 
effectiveness. In recent years industry has begun to take a more realistic view of 
what to expect from video content analysis systems in the near future. This chapter 
presents the state-of–the-art trends in semantic video analysis in industry. The key 
challenges in bridging the semantic gap are discussed. It also presents the research 
trends in video analytics.  
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1   Introduction 

Semantic content analysis of video infers high-level concepts in videos from low-
level visual information represented in pixels. A concept of interest could be pres-
ence of an object or certain behavior such as fighting in the video. A video has 
both the static and changing visual information. The analysis of static visual in-
formation is done using image analysis algorithms. In this chapter the focus is on 
issues and methods specific to video i.e. the changing visual information. 

With the proliferation of video data, the need for automatic annotation of video 
for analysis as well as retrieval is being felt by industry. However content under-
standing of video is still rather under-developed and bridging the semantic gap be-
tween low level features and high level semantic representation of video is an 
open challenge. Some of the main issues that limit the real world application of 
semantic analysis are limited flexibility of current content analysis software, 
hardware limitations for real time processing of video signal and cost effective-
ness of solutions.   

In this chapter the need for semantic content analysis and state-of-the-art meth-
ods for extraction of high-level semantic data from low-level features are pre-
sented. The problems and challenges in bridging the semantic gap are discussed 
with real world examples. The research trends in video analytics that have 
emerged over past few years are reviewed.   
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2   Need for Semantic Content Analysis in Real World 
Applications 

In the last decade there has been an explosion in the use of videos, especially for 
security related tasks. Some of the sectors with huge repositories are the World 
Wide Web, broadcasting, security, retail, transport, government, medicine etc. It is 
not humanly possible to annotate or monitor these videos; hence most of this data 
never gets used because it is difficult to locate specific content. For example, 
following the Brixton bombing in 1999, police seized 1097 SVHS video tapes 
containing approximately 26,000 hours of CCTV footage. In order to locate the 
correct video clip, police officers had to manually search through 100 million 
separate frames of recorded video. According to a report only 30% CCTV footage 
remains accessible after 15 minutes. Similarly broadcast houses own millions of 
videos, but it is not possible to search for a news clip with Obama and Clinton 
together in it. For another example consider a security operator in a super-store 
trying to monitor live feed from 16-30 cameras for few hours. It is not humanly 
possible to keep track of what is happening in all the cameras.  To be able to get 
the benefit of this multimedia data it is imperative that the data can be automati-
cally analyzed and described in a way that is simple to understand by a layman. 
The analytics can be post-event or online. For post-event analysis it should be pos-
sible to quickly identify and retrieve the data which meets particular criteria, for 
example a black car that turned right. For online analysis events of interest should 
be automatically highlighted to the operator and video clips annotated for later re-
trieval, for example a person going from car to car in a car park. 

The only data that is generally tagged to the video clip by current generation 
systems is camera id, location and time. The operator some-times manually tags 
other data of interest. There are well-established image processing algorithms, 
which extract color and shape of a moving object. However the low-level image 
processing-based methods (i.e. color and texture) exhibit practical drawbacks and 
most users would prefer to retrieve images and sequences on the basis of higher-
level (i.e. semantic) features.  

3   Semantic Analysis System Architecture 

A typical video system architecture is shown below in figure 1. It comprises of 
video cameras which can be analog, digital or smart cameras. The smart cameras 
and intelligent edge devices have processors (DSP/embedded) and implement  
video processing at source (edge) itself. Intelligent edge devices/smart cameras 
shift the burden of processing from the servers and by transmitting processed data 
e.g. semantic description of video can reduce internet data volume. The video da-
ta, which may be processed or raw, is sent to servers which can be local or central. 
Here processed data means various levels of processing like compression, low 
level feature extraction or semantic feature extraction.   
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Fig. 1. Video system architecture 

Figure 2 shows typical modules of a semantic video analysis system. The raw 
video from cameras is segregated into shots depending on user requirement. Ob-
ject motion features in shots is detected and used for blob shape analysis and mo-
tion tracking. These low-level video features are used by semantic analysis system 
to extract high level human language like description of raw video data. 
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Fig. 2. Block diagram of semantic video analysis system 

4   Problems and Issues in Semantic Analysis of Real World 
Applications 

Video query/analysis by semantic keywords is one of the most difficult problems 
in multimedia data retrieval/analytics. The difficulty lies in the mapping between 
low-level video representation and high-level semantics. For instance the mapping 
of a human blob shape and trajectory to a high level concept such as dancing. This 
problem is referred in the literature as the semantic gap; current algorithms in 
computer vision cannot bridge the semantic gap. Some of the key issues in bridg-
ing the semantic gap are flexibility required from the software, real time process-
ing power required, cost effectiveness and limited availability of concept labeled 
data. These issues are discussed in the following paragraphs. 

4.1   Flexibility  

Video Analytics requires the mapping software to be flexible in how it maps the 
low level features to high-level semantic concepts. For example [26] defines ‘ap-
proach’ as ‘change of state from being far to being near’. Consider an example of 
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a person approaching a store window as shown in figure 3 from the CAVIAR da-
taset [44], the arrow shows the direction of motion. This requires defining ‘far’ 
and ‘near’ in terms of pixels, so if the camera zooms or pans the definition is no 
longer valid. Suppose that the software can somehow automatically acquire ho-
mography mapping and account for change in pan and zoom without manual cali-
bration; even so, a high level descriptor such as  ‘approach window’ in case of 
another window in the same scene or different scene still needs to be redefined. 
Now consider that someone parked a wheel-chair in front of the shop window so 
that it is not possible to go so near the window; this necessitates re-defining of 
‘near window’ state. It must be also noted that the area defined as ‘near’ has to be 
carefully planned, as this definition would miss all cases where a person is already 
near and moves nearer. 
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Fig 3. Trajectory of a person who approaches display window browses the window and 
then goes into the store 

 
 
Even a simple event like approach requires more flexibility from the semantic 

video analysis system than can usually be provided. The software should be able 
to auto calibrate when the camera pans, tilts or zooms as well as automatically 
learn the far and near concept for approach behavior when the environment or 
context changes. 

Consider applying this concept of ‘near’ to the slightly more complex event of 
people ‘walking together’. ‘Walking together’ can be inferred from two concepts 
near each other at same time and moving in same general direction. Here the 
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concept of ‘near’ would depend on the context, for example people walking in an 
open field would be ‘walking together’ even when they are not very near to each 
other. Hence the flexibility demanded from the concept ‘near’ is the flexibility in 
context of location. An inference algorithm for ‘walking together’ is given in [3] 
where a nearest neighbor classification scheme based on non-parametric feature 
vector  classifies walk together events, however for a different location retraining 
with new data would be required.  

From the example above it can be seen that even for inference of simple seman-
tic concepts flexibility or adaptability in terms of location context, event context 
and change in environment is required.  

4.2   Availability of Ground Truth Data 

There are about 20-30 ground truth tagged video repositories which are freely 
available to bench-mark algorithms. [34, 36] emphasize that there is lack of 
ground truth annotated training data to build classifiers to map low level features 
to high level concepts. Lack of suitable ground truth data also restricts benchmark-
ing of algorithms as they can’t be tested under different conditions and different 
locations. [46] lists most of the benchmarking video data repositories which are 
available. Manually annotating video data is time consuming and expensive. Also 
it is difficult to know in advance what ground truth information will be required 
for a future algorithm hence tailored ground truth data is not available. Moreover 
it is generally not easy to adapt existing ground truth data for testing different 
cognitive tasks. [36] mentions that it is not known what to model and where to get 
data to model it. 

4.3   Real Time Implementation 

Meta-data tagging, theft prevention, dangerous event analysis are some of the cas-
es where video analytics has to be online and in real time. Video analytic solutions 
are computation intensive. In order to cope with this, low level algorithms are of-
ten implemented in real time digital signal processors and other smart embedded 
devices. The real time performance and hardware requirements for video analytic 
software is still an unexplored area. A few papers report real time performance of 
content analysis algorithms. [7] presents a metadata tagging algorithm for sports 
videos with real time performance. [4, 21] reports real time performance of a dsp 
based smart camera for video analytic computations. [7] mentions that because 
video analytic algorithms are still in their infancy, optimized real time implemen-
tations have only been recently considered. This paper also stresses the need for 
establishment of performance metrics for evaluation of real time video analytic 
algorithms. 

4.4   Other Issues 

Some of the other issues in deployment of video analytics in real world applica-
tions are high cost, robustness and accuracy. 
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The high cost of video analytic systems comes from both hardware cost for 
computation intensive analytics as well as cost of software development because 
of limited flexibility of analytic software. As video analytics can only detect a few 
types of simple events reliably, the high cost of analytic systems is not usually jus-
tified and prevents large scale deployment of video. 

Robustness of a video analytic algorithm is its performance under adverse con-
ditions. However according to [6] visual analysis of events is a complex task and 
success at one level cannot be predicated upon success at lower levels and defini-
tion of robustness is an open issue.  In real world environments the performance of 
video analytic algorithms can deteriorate rapidly due to changes in weather, envi-
ronmental changes etc.  This results in an increased false positive detection rate 
for an event and limits successful application of video analytics.   

Video Analytics is still an area with many open questions. It is not known to 
what extent the problem of the semantic gap can be solved by having a sufficient 
repository of data and to what extent the solutions will be limited by algorithm’s 
inability to infer the change in environment and the impossibility of having a re-
pository of all possible events. Further [6] mentions that while humans are good at 
certain cognition tasks, for instance detecting unusual behavior, they are poor in 
other tasks like looking for abandoned baggage in a crowded scene.  

5   Real World Applications 

So far there are very few applications in the real world which use video analytics. 
This is because of the difficulty in bridging the semantic-gap. Current video ana-
lytic solutions are not flexible enough for the real world environment, they are ex-
pensive to implement and real world performance of algorithms often deteriorates 
rapidly. The research trails behind what industry requires. However the video ana-
lytic solutions that industry has adopted are a good indication of what works in the 
real world and is cost effective. Some of the state of art solutions in application ar-
eas of broadcast, surveillance, and business intelligence are discussed below. 

5.1   Broadcast  

There is an urgent need for tools to annotate broadcast and internet videos but only 
semi-automatic tools to annotate videos are available. These tools provide auto-
matic low level feature extraction support like shot segmentation and object detec-
tion. High-level concepts are then input manually like object recognition, event 
description etc. 

5.2   Surveillance 

The surveillance industry is now beginning to deploy automatic event analysis 
tools for some specific events like loitering, abandoned baggage, sterile zone mon-
itoring, perimeter crossing, slip and fall events, counting people/vehicles, tailgat-
ing, point of sale fraud detection.  
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Even these few event analysis solutions that are available suffer from a high 
number of false alarms and high cost, and cannot cope with small changes in 
environment. 

5.3   Business Intelligence 

Video analytics in department stores are being used to collect data on shopping pat-
terns. Low-level features like time spent in front of display, facial expression, gaze 
direction, shopper interaction with products, point-of-sale information are used to in-
fer high level concepts. The higher level semantic concepts like a person looked at 
the promotion and made a purchase or did not make a purchase can be inferred.  

6   Research Trends 

This section presents a taxonomy of semantic content analysis peculiar to video 
i.e. analysis of change in the video image frames (motion). It also discusses the re-
search trends based on the taxonomy. It is not a complete survey of research in 
this area. There are two main application areas for motion analytic algorithms – 
for humans and for vehicles. Human motion is complex where-as vehicle motion 
is more constrained. Hence semantic content analysis algorithms have been more 
successful and have matured further for vehicle motion than for human motion. 

Approaches to activity analysis can be broadly classified into two – predefined 
model based approach where the mapping of predefined activity from low level 
image features is learnt or adopting a hierarchical divide-and-conquer approach 
where primitive activities are used to infer a complex activity. In the past few 
years the trend has been to build models of primitive actions and infer complex ac-
tions from primitive actions. A taxonomy of semantic event analysis based on ap-
proaches adopted is shown in figure 4.  

6.1   Model Based Event Analysis 

Model-based semantic event analysis is used to learn predefined activities of in-
terest. Models are learnt using a mapping between low level spatial-temporal fea-
tures and high level semantic concepts. Model based approaches have been most 
widely reported in research papers. Models infer and differentiate between simple 
activities like running, walking, meeting, cars turning at junctions, un-
usual/abnormal activity etc in a constrained environment. Most research has been 
reported on location specific environment. Supervised models are those which 
need classified training data. Unsupervised models use clustering approaches to 
detect unusual activity for unlabelled data.  

6.1.1   Supervised Models 

Supervised models use pattern recognition techniques and state space methods to 
extract semantic descriptions of behavior\action from video data. Crowd monitor-
ing is another area where model based analysis has been reported in the last few 
years.   
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Fig. 4. Taxonomy of semantic event analysis 

Amongst state space models Hidden Markov Models are most popular. HMMs 
have been used for building state space models for prediction and cognition of 
simple or constrained complex actions. HMMs suited to representing complex be-
havior (states) evolving over time. HMM models whose internal states can repre-
sent semantic sub-events/primitive events have been reported. Actions in a room 
like washing dishes, reading, eating, going to a printer, printing, going to a com-
puter, getting the phone have been inferred and explained in terms of sub-behavior 
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in [5, 8, 27]. [11,30] annotates sports videos in terms of sub-behaviors. Nguyen 
et al. propose a hierarchical and therefore scalable Hidden Markov Memory model 
for recognizing complex high-level human behavior, which they tested on office 
activity data [27]. Brand et al. [5] show that observed activity can be organized 
into meaningful semantic states instead of being a black box by entropy minimiza-
tion of joint distribution of an HMM internal state machine. The model was tested 
on office activity and traffic data. Duong et al. propose switching hidden semi-
Markov model for activity classification and abnormality detection, the activities 
are modeled hierarchically [8]. The model was used to infer activities in a room 
like washing dishes, eating breakfast, reading news paper. Robertson and Reid re-
port a methodology for action recognition using HMM to model behavior as a se-
quence of actions [30]. Actions are described by a feature vector comprising both 
trajectory information (position and velocity), and a set of local motion descrip-
tors. Action recognition is achieved via probabilistic search of image feature data-
bases representing previously seen actions. The model was used to annotate tennis 
videos. Gao et al. present a framework using HMM to recognize sports shots 
which are then used as input to a second HMM model to map high-level events 
[11][11]. Optical flow vectors are used to represent motion;  dimension reduction 
of motion feature vector  is achieved by applying general tensor discriminant 
analysis and linear discriminant analysis to optical flow tensors. 

Interactions between people have been recognized by [3][3] and [28] using pat-
tern recognition and state space methods respectively. Oliver et al. present and 
compare two state based models, HMM and Coupled HMM, for recognizing hu-
man behavior with a particular focus on human interactions [25]. Blunsden et al. 
apply nearest neighbor methods on non-parametric video feature representation to 
classify human interaction like walk together, meet, approach etc [3]. 

HMMs have also been used to automatically learn scene models. Makris et al. 
automatically learn scene semantic labels for fixed spatially related entities in the 
scene, semantic regions like entry/exit zones, paths/routes and junctions are learnt, 
using trajectory observations. HMMs interpret the observed activity in terms of 
spatially located scene features [24]. 

Foresti et al. in use long-term change detection algorithm to detect changes in 
the scene, which are then classified by neural networks for abandoned objects 
[10]. Also the trajectory data is used to learn a neural tree to classify usual and un-
usual human actions in a specific location. Nascimento et al.  propose switched 
dynamical models to represent the human trajectories in a specific location. Ac-
tivities like browsing display window, entering shop are then represented in terms 
of dynamical models [25].  [13] presents location independent method based on 
motion models to recognize specific activity such as depositing an object, ex-
changing bags, or removing an object.  

Crowd motion modeling uses flow descriptors rather trajectory tracking to de-
tect unusual activity in crowds and is an active area of research. Andrade et al. use 
optical flow methods instead of tracking statistics for single camera and dense 
crowd conditions to extract information from the crowd video data [2]. The optical 
flow features are encoded with Hidden Markov Models to detect emergency or 
abnormal events in the crowd. To increase the detection sensitivity a local 
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modeling approach is used. The results were reported with simulated crowds. Ke 
et al. [19] use volumetric shape descriptors and flow descriptors of crowded 
scenes with distance matching methods to detect events of interest in a crowded 
scene. The method does not require figure/ground separation and was tested on 
events in cluttered scenes such as waving for a bus, pressing the elevator button, 
bend down to pick up an object. Hoogs et al. [15] propose using relational seman-
tic predicates as constraints on graphs to perform spectral graph analysis to iden-
tify groups participating in an activity. The scheme was tested on crowd gathering 
and dispersal events; the approach puts no constraints on number of participants in 
the activity. 

Biologically inspired pattern recognition models have been explored recently, 
largely for object and scene recognition. Serre et al. present a novel biologically 
inspired model for differentiating between scenes [31], and Huang et al. [14] and 
Song & Dacheng  [37] have shown how the performance of this approach can be 
improved by concentrating on parts of the image that have interesting-looking 
content, and by using feedback to guide the search for models. Jhuang et al. ex-
tend a neurobiological model of motion processing in the visual cortex  for action 
recognition[18]. The model was tested on human behaviour like walking, jogging, 
clapping etc and mice behaviour like drinking, eating, grooming etc. In general 
biologically inspired model approach requires a great deal of annotated training 
data, which as noted above is not generally available for video. 

State space models need to re-learn if new action classes are added, this re-
stricts their usability in real world domains.  Also the state space models rely on 
video clips which have been appropriately segmented for detecting the event they 
have been trained for. Pattern recognition models are simple, can add new behav-
ior classes easily and are practical to implement but they do not allow incorpora-
tion of semantic abstraction in terms of spatial-temporal variations easily.  

6.1.2   Unsupervised Models 

Clustering is one of the earliest approaches adopted to detect unusual data. Its ad-
vantage is that it does not require classified learning data and can learn from 
changes in the environment. Xiang et al. use unlabelled data to cluster similar be-
haviors and abnormal behaviors using clustering [43]. Low level feature vectors 
representing blobs and other shapes are used to infer behavior patterns. Izo et al. 
use a clustering model to detect anomalies in a busy urban scene [16]. Khalid and 
Naftel propose using Fourier transforms of motion trajectories to Self Organizing 
Maps to classify sign language trajectories and human motion trajectories [20]. 

6.2   Hierarchical Event Analysis   

The hierarchical event analysis approach is based on the premise that complex 
events can be described in terms of a few primitive events. This approach is adopted 
with a view to making video event analytics more adaptable in regards to its ability 
to introduce new events which were not predefined at the time of system develop-
ment.  As video events are complex and varied, hierarchical event analysis for a 
large number of video events requires interaction between various development 
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groups. Also for easy reuse the modules need to have standard definitions and inter-
faces. This has prompted researchers to develop ontologies for video events. 

Ersoy et al. present a hierarchical framework based on first order logic, for us-
ing domain independent event primitives to model complex domain specific 
events [9]. Primitive events are mapped from low level trajectory based spatial-
temporal features using hand-crafted rules. The results were tested on simulated 
car park data. Smith et al. present an Ontology framework to describe video events 
[35]. Vrusias et al. propose a framework to learn the domain ontology from text 
annotations, which is then applied to blob and trajectory data using statistical me-
thods to automatically annotate unseen video footage with appropriate keywords 
that have been identified in human annotations of other videos [40]. 

6.3   Combined Model and Hierarchical Event Analysis  

In recent years using a combination of model-based and hierarchical approaches 
has become a research trend. The primitive events models are learnt and complex 
events are defined/learnt in terms of primitive events. Various techniques like 
state-space, pattern–recognition, event calculus as well as approaches similar to 
those used for text mining have been reported in literature.  

Bayesian Networks were used by [22, 29, 39, 41] to build hierarchical event 
models. In recent literature Bayesian networks have been increasingly proposed 
because of their ability to add inferred probabilities to a pre-defined model of the 
event space. Town used ontology to train structure and parameters of Bayesian 
Network for event Recognition [39]. The activities the model was learnt for were 
running walking, browsing, fighting etc. Park and Aggarwal use hierarchical ac-
tion concept to recognize individual activities and interactions amongst entities 
[29]. Body pose is recognized using individual Bayesian network; at the next level 
Dynamic Bayesian Networks are used for recognizing actions and decision trees 
are used to recognize interactions at the highest level. Kwak and Han propose hi-
erarchical model based event analysis using Dynamic Bayesian Networks [22]. 
Dynamic Bayesian networks provide a probabilistic framework to combine lower 
level events and temporal-logical relationships to infer higher level events. The 
framework was tested on ticket office transactions. Wang et al. use hierarchical 
Bayesian model in which atomic activities are modeled as distributions over low-
level visual features, and interactions are modeled as distributions over atomic 
activities [41]. The framework extends existing language models Latent Dirichlet 
Allocation (LDA) and Hierarchical Dirichlet Process (HDP) to model visual fea-
tures and models interactions without supervision. Similar activities are clustered 
together. The activities in an aircraft ramp area were used for testing. 

7   Conclusions 

Semantic video analysis is still rather under-developed, but spurred by prolifera-
tion of video databases it has been an area of active research in recent years. A 
few applications have been used in the real world where environment can be high-
ly constrained. However semantic video analysis environment is essentially 
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unconstrained making semantic analysis an open challenge. Semantic video analy-
sis from low level video features requires flexibility at each level of abstraction in 
terms of environment change, event description and location context. It is not 
known if this flexibility required from the system can be achieved. Other re-
searchers have discussed lack of ground truth tagged video data repositories as 
well as lack of knowledge about what data to model. Also bench marking defini-
tions for semantic video analytic algorithms are an open issue. 
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Abstract. There are still major challenges in the area of automatic indexing and 
retrieval of digital data. The main problem arises from the ever increasing mass of 
digital media and the lack of efficient methods for indexing and retrieval of such 
data based on the semantic content rather than keywords. To enable intelligent 
web interactions or even web filtering, we need to be capable of interpreting the 
information base in an intelligent manner. Research has been ongoing for several 
years in the field of ontological engineering with the aim of using ontologies to 
add knowledge to information. In this chapter we describe the architecture of a 
system designed to semi-automatically and intelligently index huge repositories of 
special effects video clips. The indexing is based on the semantic content of the 
video clips and uses a network of scalable ontologies to represent the semantic 
content to further enable intelligent retrieval. 

1   Introduction 

The advent of the Internet and digital media technologies has led to an enormous 
increase in the production and online availability of digital media assets as well as 
made the retrieval of particular media objects more challenging. Processing of 
digital data, such as text, image and video, has achieved great advances during the 
last few decades.  However, as the well known ‘semantic gap’ [Sme2000] still ex-
ists between the low-level computational representation and the high-level con-
ceptual understanding of the same information, more intelligent semantic-driven 
modelling, multi-modal indexing and retrieval for digital data are needed.  

The DREAM (Dynamic REtrieval Analysis and semantic metadata Manage-
ment) project aims at paving the way towards semi-automatic acquisition of 
knowledge from visual content.  This is being undertaken in collaboration with 
Partners from the UK Film Industry, including Double Negative1, The Foundry2 
                                                           
1 Double Negative, http://www.dneg.com 
2 The Foundry, http://www.the-foundry.co.uk 
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and FilmLight3.  Double Negative is the test partner who provided the test materi-
als and user requirements and evaluated the system prototype.  One of the main 
challenges for the users in this industry is the storage and management of huge re-
positories of multimedia data, in particular, video files, and, having to search 
through distributed repositories to find a particular video shot.  For example, when 
Special Effects Designers need a category of clips containing “fire explosions” 
which they may wish to use in the making of a new special effect, it is a tedious 
and time consuming task for them to search for similar video clips which feature 
specific objects of interest.  The first prototype of DREAM has been evaluated in 
this film post-production application domain and aims to resolve the existing 
problems in indexing and retrieving video clips.  

This chapter presents the DREAM (Dynamic REtrieval Analysis and semantic 
metadata Management) research project which aims to prepare the way for the 
semi-automatic acquisition of knowledge from visual content, and thereby ad-
dressing the above mentioned problems. The chapter shows how Topic Map 
Technology [Pepp2009] [Garshol2002] has been used to model the semantic 
knowledge automatically extracted from video clips to enable efficient indexing 
and retrieval of those clips. The chapter also highlights some related work and 
presents how semi-automatic labelling and knowledge acquisition are carried out 
in the integrated framework. The chapter concludes with an analysis of the results 
of the evaluation of the prototype. 

2   State of the Art – Multimedia Information Indexing and 
Retrieval 

From time to time, researchers have sought to map low-level visual primitives to 
high-level semantic-related conceptual interpretations of a given media content. 
The objective has been to achieve enhanced image and video understanding which 
could further benefit in its subsequent indexing and retrieval.  Early attempts in 
this research area have focussed on extracting high-level visual semantics from 
low-level image content. Typical examples include: discrimination between ‘in-
door’ and ‘outdoor’ scenes [Szummer1998] [Paek1999], ‘city’ vs. ‘landscape’ 
[Gorkani94], ‘natural’ vs. ‘manmade’ [Bradshaw2000], etc.  However, the granu-
larity aspect of those research results is considered to be limited due to the fact 
that only the generic theme of the images can be identified.     

Only recently researchers started to develop methods for automatically annotat-
ing images at object level.  Mori et al [Mori1999] proposed a co-occurrence model 
which formulated the co-occurrency relationships between keywords and sub-
blocks of images. The model had been further improved by Duygulu et al [Duy-
gulu2002] using the Brown et al machine translational model [Brown1993] with 
the assumption that image annotation can be considered as a task of translating 
blobs into a vocabulary of keywords.  Zhou and Huang [Zhou2000] explored how 
keywords and low-level content features can be unified for image retrieval. 

                                                           
3 FilmLight, http://www.filmlight.ltd.uk 
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Westerveld [Westerveld2000] and Cascia et al [Cascia1998] sought to combine 
the visual cues of low-level visual features and textual cues of the collateral texts 
contained in the HTML documents of on-line newspaper archives with photos, to 
enhance the understanding of the visual content. 

Li et al [Wang2003] developed a system for automatic linguistic indexing of 
pictures using a statistical modelling approach.  The 2D multi-resolution Hidden 
Markov Model is used for profiling categories of images, each corresponding to a 
concept.  A dictionary of concepts is built up, which is subsequently used as the 
linguistic indexing source. The system can automatically index images by firstly 
extracting multi-resolution block-based features, then selecting top k categories 
with the highest log likelihood for the given image to the category, and finally de-
termining a small subset of key terms from the vocabulary of those selected cate-
gories stored in the concept dictionary as indexing terms. 

The most recent effort in this area focussed on introducing a knowledge repre-
sentation scheme, such as an ontology, into the process of semantic-based visual 
content tagging [Maillot2004] [Schober2004]. Athansiadis et al [Athanasisa-
dis2007] proposed a framework for simultaneous image segmentation and object 
labelling.  The work focused on a semantic analysis of images, which contributes 
to knowledge-assisted multimedia analysis and bridging the semantic gap. The 
possible semantic labels, formally represented as fuzzy sets, facilitate the decision 
making on handling image regions instead of the traditional visual features. Two 
well known image segmentation algorithms, i.e. watershed and recursive shortest 
spanning tree, were modified in order to stress the independence of the proposed 
method from a specific image segmentation approach.  Meanwhile, an ontology-
based visual context representation and analysis approach, blending global knowl-
edge in interpreting each object locally, had been developed. Fuzzy algebra and 
ontological taxonomic knowledge representation had been combined in order to 
formulate the visual contextual information. The contextual knowledge had then 
been used to re-adjust the labelling of results of the semantic region growing, by 
means of fine-tuning the membership degrees of the detected concepts. 

3   The DREAM Framework 

The DREAM framework can be considered as a knowledge-assisted intelligent 
visual information indexing and retrieval system, which has been particularly tai-
lored to serve the film post-production industry. The main challenge in this re-
search work was to architect an indexing, retrieval and query support framework. 
The proposed framework exploits content, context and search-purpose knowledge 
as well as any other domain related knowledge in order to ensure robust and effi-
cient semantic-based multimedia object labelling, indexing and retrieval. Our cur-
rent framework provides for optional semi-automatic (man-in-the-loop) labelling; 
thus enabling semantically triggered human intervention to support optimal coop-
eration in the semi-automatic labelling of what is currently mostly a manual proc-
ess. This framework is underpinned by a network of scalable ontologies, which 
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grows alongside the ongoing incremental annotation of video content.  To support 
these scalable ontologies, we deployed the Topic Map Technology, which also 
enables transparent and flexible multi-perspective access to the repository and per-
tinent knowledge. 

  

Fig. 1. DREAM Framework for film post-production domain 

Figure 1 shows the architecture of the DREAM framework. In the film post-
production domain, massive repositories of video clips are held in various loca-
tions.  As the size of the repository grows, it becomes a nightmare for people trying 
to find a specific clip for a specific purpose at a specific time. The DREAM 
framework was developed to help overcome this bottleneck between the large vol-
ume of semantically disorganised data and the high-level demand in semantically 
enhanced efficient and robust indexing and retrieval of such data. 
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In deploying the DREAM framework, as illustrated in Figure 1, a User is able to 
query or navigate through the repository of video clips using the Topic Map Visu-
alisation Engine which provides an interface to query the knowledge base or to 
navigate through the connections between the semantic concepts of the video clips. 
To support this query and navigate through the knowledge base, a Topic Map En-
gine has been designed and completed. In order to build the knowledge base, a Col-
laterally-Cued Automatic Labelling Module has been implemented. This reads in 
the video clips and extracts the main objects of interest, in terms of semantic key-
words, from the clips. The User can then confirm those keywords and/or add more 
contextualised or domain-specific information so as to make their own viewpoint-
specific set of keywords, which is then fed into the NLP Engine.  The NLP Engine 
uses external knowledge such as WordNet to add meaning to the captured informa-
tion which enhances the situated knowledge element. The situated knowledge ele-
ment is then in a form that we term as “Semantic Containers”, these are passed to 
the Topic Map Engine, which merges them with the existing knowledge found in 
the DREAM Topic Map Database. This enables intelligent querying and visualisa-
tion of the Semantic Network of concepts which indexes millions of video shots. 

4   Knowledge Representation 

The DREAM framework deploys Topic Map Technology to incorporate both con-
tent and context knowledge e.g. the knowledge of both episodic queries and their 
overall business context including users’ dynamic role-based purposes, and, a priori 
higher level domain concepts (not just key words) that are so-to-speak “mind-
mapped” to suit the users’ relevant  data-views (“i-schemas") for maximally trans-
parent and flexible multi-perspective access to provide information retrieval that is 
context-sensitised, concept-oriented and a priori ontology-network-enabled. 

Topic Maps, as defined in ISO/IEC 13250 [ISO2000], are an international stan-
dard for organising and representing information on the Web. A Topic Map can be 
represented by an XML document in which different element types are used to 
represent topics, occurrences of topics, and associations (or relationships) between 
topics.  The Topic Map model provides a mechanism for representing large quan-
tities of structured and unstructured information and organising it into “topics”. 
The topics can be interrelated by an association and can have occurrences linked 
to them. A Topic Map can thus be referred to as a collection of topics and associa-
tions. The associations are used to navigate through the information in many dif-
ferent ways. The network can be extended as the size of the collection grows, or it 
is merged with other topic maps to provide additional paths through the informa-
tion.  The most important feature of the Topic Map is that it explicitly captures 
additional tacit information. It is this capability that has captured the interest of 
people working on knowledge management issues, identifying Topic Maps as a 
mechanism that can help to capture what could be considered “knowledge” from a 
set of information objects. 

The real benefit of integrating Topic Maps within the DREAM Framework is 
the resulting retrieval gains that in turn confer high-scalability. Normally, the topic 
maps are linked to each other. It is very beneficial for a user to be able to 
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incrementally develop semantically annotated subnets representing part of the me-
dia, and to build this up by linking it with representation of other parts. In this 
way, various contexts can be applied to the maps as they are linked together. Dur-
ing retrieval, it is natural for users to associate various topics in the way that is 
best suited to the formulation of the expected domain queries that serve the objec-
tives of the domain process, in other words, the process logic e.g. editing goals 
that are typically assigned to be completed by the editors.  The natural evolution 
of ideas amongst those engaged in the process may prompt them to re-visit certain 
associations, extend or refine some and add other new associations. Accordingly 
the facility for creating new associations amongst the topics exists. Hence, the 
topic maps are continuously evolving during the entire life of the repository, as 
new content is added, there are always chances of discovering new associations, 
both intra and inter content associations.   

5   Knowledge Acquisition  

This section describes the process of knowledge acquisition through the annota-
tion of video content within the DREAM framework.  Variation of the different 
annotation methods is supported, including automatic annotation and textual anno-
tation, manual annotation, and, visual annotation as shown in Figure 3.   

 

Fig. 2. Video Content Annotation Process in DREAM 
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For each new clip, the user decides which annotation method they wish to use.  
They may choose the automatic annotation process which uses the Automatic La-
belling Engine to process the annotation or they may choose the textual annotation 
process which uses the NLP Engine to process text entered by the user.  The out-
put from the automatic annotation process or textual annotation process can fur-
ther be refined by using the manual annotation and visual annotation, as illustrated 
in Figure 2. The framework also supports batch processing which allows auto-
matic annotation of a range of video clips using the Automatic Labelling Module.  
The process of automatic annotation is further described in section 5.1 and in 
section 5.2 where we cover the process of semi-automatic annotation. 

5.1   Automatic Video Annotation 

The automatic video labelling module [Badii2009] is a fundamental component of 
the DREAM framework. It aims to automatically assign semantic keywords to ob-
jects of interest appearing in the video segment. The module had been imple-
mented to label the raw video data in a fully automated manner. The typical user 
of the system is the video content library manager who will be enabled to use the 
system to facilitate the labelling and indexing of the video data. With this func-
tion, all the objects of interest including moving and still foreground objects will 
be labelled with linguistic keywords.  

 

Fig. 3. Workflow of the Automatic Labelling Module 

Figure 3 shows the typical workflow of the Automatic Labelling Module. The 
module takes the raw video clips and the associative metadata, i.e.  motion vectors 
and mattes, as input whereby the low-level blob-based visual features, i.e. colour, 
texture, shape, edge, motion activity, motion trajectory, can be extracted and 
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encoded as feature vectors.  It is those visual blobs that were compared against the 
visual concepts defined in the visual vocabulary of objects.  These objects consist 
of a set of clusters of visual feature vectors of different types of special effect 
foreground objects such as blood, fire, explosion, smoke, water splashes, rain, 
clouds etc, to find the best matching visual concepts using the K-Nearest 
Neighbour algorithm.  However, those are all traditional methodologies that would 
benefit from appropriate semantic enrichment by way of linkages to latent and col-
lateral associations so as to empower the representation of higher-level context re-
lated visual concepts.  Therefore, we introduced what we refer to as the collateral 
context knowledge, which was formalised by a probabilistic based visual keyword 
co-occurrence matrix, to bias (i.e. appropriately converge) the traditional matching 
process. 

Table 1. Auto-Labelling accuracy based on the training/test ratio of 9:1, 7:3 and 5:5 

Class label 9:1 7:3 5:5 Class label 9:1 7:3 5:5 

blood and gore; 

blood 75% 94% 83% 

misc; 

welding; 100% 100% 100% 

blood and gore; 

gore; 0% 100% 100% 

muzzle 

flash; 0% 100% 100% 

bullet hits; 

sparks; 75% 100% 100% sparks; 0% 25% 40% 

crowds figures; 100% 100% 100% 

water;bilge 

pumps; 100% 100% 100% 

explosions fire 

smoke;explosion; 100% 92% 75% 

water; 

bilge 

pumps; 100% 100% 80% 

explosions fire 

smoke; fire; 100% 100% 90% 

water; boat 

wakes; 100% 67% 50% 

explosions fire 

smoke; fire burst; 100% 0% 100% 

water; 

bubbles; 0% 0% 0% 

explosions fire 

smoke; flak; 100% 100% 100% 

water; 

cascading 

water; 0% 0% 50% 

explosions fire 

smoke; sheet 

fire; 100% 100% 100% 

water; 

drips; 100% 100% 50% 

explosions fire 

smoke; smoke; 86% 90% 90% 

water; in-

teresting 

water sur-

faces; 0% 50% 67% 

explosions fire 

smoke; steam; 100% 100% 100% 

water; 

rain; 0% 75% 71% 

falling paper; 100% 100% 100% 

water; ri-

vulets; 0% 100% 0% 

Lens flares; 100% 86% 83% 

water; 

splashes; 0% 100% 60% 

Misc; car crash; 0% 0% 0% 

weather; 

clouds; 100% 100% 100% 

Misc; fecal-

matter; 100% 89% 86% 

weather; 

snow; 100% 100% 50% 

Misc; washing 

line; 100% 100% 100% Average 66% 80% 75% 
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Table 1 shows the labelling accuracy for the DREAM auto-labelling module, 
including both content and context related labels, based on the training-test ratio 
of 9:1, 7:3 and 5:5 respectively.  Among the 3 different experimental setups, the 
training-test ratio of 7:3 achieved the superior performance with an average accu-
racy of 80% followed by 75% for 5:5 and 66% for 9:1.  Despite poor performance 
for several categories, many other categories achieved a very high labelling accu-
racy percentage; including some at 100%. 

5.2   Semi-automatic Video Annotation 

In DREAM, we automatically construct Topic Maps for each new video clip. The 
output from the Automatic Labelling Engine is updated by the User and the result-
ing unstructured natural text is processed by the NLP Engine, as illustrated in 
Figure 4. The NLP Engine creates a structured description of the semantic content 
of the clips. These structured descriptions are termed as Semantic Containers and 
are further described in [Badii2008]. These semantic containers allow the repre-
sentation of both simple sentences and complex sentences in terms of entities and 
actions, which are used by the DREAM Topic Map Engine to generate Topic 
Maps automatically. A semantic container may contain other semantic containers, 
enabling representation of complex sentences. This enables an entity (topic) to be 
linked to a group of entities (topics) [Badii2008]. As a result, complex sentences 
are represented by a single semantic container, with a number of “inner” semantic 
containers detailing the semantic information processed by the NLP Engine. The 
Topic Map Engine reads those containers and creates a list of topics and associa-
tions, which are merged with existing topics and associations in the DREAM 
Topic Map Database. The new topics are assigned occurrences which index the 
new clips.  The semantic merging of new topics with existing topics creates a net-
work of ontologies which eventually grows each time new clips are indexed. 

 

Fig. 4. Semi-automatic labelling process in the DREAM framework 
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The key to the evolution of the Knowledge Base, as new semantically-defined 
Topics are added, is the process of adding the synonyms and semantic ancestries, 
of the concept being added, utilising the WordNet lexical database. This defines 
the topic in a detailed and robust manner, enabling the linkage to the existing on-
tology, while ensuring that concepts are stored in the Knowledge Base by their 
meaning, rather than by word(s) representing the concept. This allows for seam-
less semantic merging of concepts, and a Knowledge Base that is well-tuned to-
wards retrieval, and visual exploration. 

6   Knowledge Retrieval 

The Topic Map allows casual browsing of the knowledge base with a richly cross-
linked structure over the repository content. Topic occurrences create ‘sibling’ re-
lationships between repository objects and the video shots. A single resource may 
be the occurrence of one or more topics, each of which may have many other oc-
currences. When a user finds/browses to a given resource, this sibling relationship 
enables them to rapidly determine where the other related resources are to be 
found. Topic associations create ‘lateral’ relationships between subjects, the 
movie concepts – allowing a user to see which other concepts covered by the re-
pository are related to the subject of current interest and to easily browse these 
concepts. Associative browsing allows an interested data consumer to wander 
through a repository in a directed manner. A user entering the repository via a 
query might also find associative browsing useful in increasing the chance of un-
foreseen discovery of relevant information. A DREAM Topic Map Visualisation, 
as shown in the Framework diagram [Figure 1] has been implemented to provide 
such interactive visual browsing of the DREAM Knowledge Base. 

Efficient retrieval of desired media is the end goal of the DREAM framework. 
With the DREAM Knowledge Base built and ever-evolving with newly annotated 
media being merged into it, the requirement remains for interfaces to be able to 
achieve this goal.  In DREAM, two such interfaces were developed, these being a 
Visualisation for exploring the Knowledge Base itself, through which media can 
be retrieved, and a Query Interface that allows directed querying of the Knowl-
edge Base. 

6.1   Retrieval Visualisation 

The Retrieval Visualisation utilises the DREAM Visualisation Engine to create an 
interface enabling the user to explore the Knowledge base for concepts, and re-
trieving the Occurrences (Media) attached to them. This operation can range from 
being rather simple, to allowing for more complicated searching, so that dynamic 
visual semantic searches become a reality. 

The initial entry-point into a search is a simple text search through the Knowl-
edge Base, returning all concepts that match it. This includes searching through 
the synonyms of each concept, such that any Topic that contains the search string 
in its synonyms will also be returned, albeit with that specifically matched 
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synonym shown as its display name, for convenience. With the simple search re-
sults presented, the user can then choose the path down which they would wish to 
explore the map further, by clicking on the appropriate Topic that represents the 
meaning of the word for which they were searching. This process disregards all 
other search results, and sets the focus upon the selected Topic, whereupon all re-
lated Topics are brought into the focus of the visualisation, thus connected to the 
Topic itself, with the association descriptions labelled on the edge between the 
nodes. 

Colour-coding is used to visually distinguish the different types of association 
and Topic relevance. Topics with attached Occurrences are coloured orange, 
whereas empty Topics are coloured Yellow. Currently Selected Topics are 
enlarged, and coloured Red.  Additionally, associations related to Topic definition 
(typically this ‘is a kind of’ relationship) are coloured Blue, whereas associations 
representing a tagged relationship between two Topics (such as “a car crashing 
into a wall”) are coloured Green.   

The criteria for the data to be visualised can be modified using a variety of fil-
ters, which can be deployed by the user to further direct their search. The first of 
these filters is a “distance filter”, that allows the user to specify the distance from 
the selected Topic for as far as can be appropriated within the scope of the visuali-
sation of nodes.  For example, with a distance of 1, only the immediately associ-
ated Topics are shown, whereas, if the distance were 2, all Topics that are within 
two ‘hops’, “degrees of separation” from the selected Topic are visualised.  This is 
useful to see an overview of the associations of the Topic as it is situated within 
the ontological structure, as well as to reduce on-screen Topic clutter, if the se-
lected Topic is one that has a large number of associated Topics.  Other filters let 
the user specify which types of associations they are interested in seeing in the 
visualisation, depending on the type of search that they may be conducting. For 
example, showing the homonyms of a Topic would just serve to provide unneces-
sary clutter, unless the user believes that they may be exploring the wrong route 
through the semantic associations of a word, thus wishing to have all possible as-
sociations depicted on the screen together.  Enabling homonym associations then 
gives the user instant access to jump to a completely different area of the Knowl-
edge Base, with ease, and in a visually relevant manner.   

When selecting a Topic, while browsing through the Topic Map, the Occur-
rences attached to the selected Topic are presented to the user, (as can be seen in 
Figure 5), in a tree structure mapping out the properties of the selected Topic(s). 
The Occurrences are represented here by the clip name, which when clicked dis-
plays the key frame for that Clip. The key frames were originally used in the 
Automatic Labelling process, but also provide an easy visual trigger for user in 
browsing through. 

Additional retrieval techniques can be utilised through this interface, by select-
ing multiple Topics, with only the common occurrences between selected Topics 
being returned. This allows for a much finer query into the Knowledge Base, to re-
trieve very specifically tagged clips. The hierarchical semantic structure of the 
Knowledge Base is also used to aid the retrieval, by exploring the children of a se-
lected Topic as well, for occurrences.  For example, if there was a clip featuring a  
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Fig. 5. Retrieval Visualisation Interface 
 
 

“car” crashing into a “wall”, the user could select the Topics “motor vehicle” and 
“wall”, and the clip would be returned, as “car” is a child of “motor vehicle”. 

7   User Evaluation of the DREAM Framework 

The evaluation of the performance of the DREAM System is a critical task, even 
more so when the annotations of the video clips are the output of a semi-automatic 
labelling framework, rather than the result of a concept sorting effort by a team of 
film post-production domain specialists.  The user partner Double Negative exam-
ined 145 clips and for each clip the tester at Double Negative gave a score of rele-
vancy from 1 to 5 for each tag as automatically generated by DREAM.  Addition-
ally the users commented on the various aspects of the functionality of DREAM 
and appeared to be able to use its features with ease after some initial training.  
The usability of the system was ranked as fairly high overall.  The users found the 
visualisation engine with personalise-able colour coding of topics as particularly 
helpful in navigating the topics of interest from a viewpoint-specific basis.  This 
feature enabled them to avoid cognitive overload when having to consider multi-
faceted selection criteria. 
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Table 2. User Evaluation Results 

Category Names Number of 

Samples 

Avg. User Score 

(Low 1 – 5 High) 

Blood and gore; blood;  12 5 

Blood and gore; gore; 4 1 

Bullet hits; sparks; 4 3.3 

crowds figures; 3 3 

explosions fire smoke; explosion; 50 4.7 

explosions fire smoke; fire;  16 3.6 

explosions fire smoke; fire burst;  2 5 

explosions fire smoke; smoke; 7 4.4 

explosions fire smoke; steam; 5 5 

lens flares; 7 4.2 

misc; car crash; 1 5 

misc; poo; 12 5 

misc; washing line; 5 5 

misc; welding; 1 1 

muzzle flash; 4 1 

sparks; 2 1 

water; bilge pumps; 2 5 

water; boat wakes; 6 5 

water; cascading water; 3 5 

water; drips; 3 4 

water; interesting water surfaces; 5 5 

water; rain; 6 5 

water; rivulets; 1 5 

water; splashes; 3 4.8 

water; spray; 3 5 

weather; clouds; 4 5 

weather; snow; 5 5  
Double Negative evaluated the results of processing a sub-set of their library 

through the DREAM system with the film editing staff (i.e. practitioner users) 
ranking the accuracy of the Topic Map generated for each clip. As Table 2 shows, 
the scores given by the practitioner users were generally very high, but with con-
sistent low scores in certain categories, giving an average overall score of 4.4/5.  
These scores, along with other evaluation results, indicate the success of the sys-
tem, but also highlight the areas where performance could be improved. For ex-
ample, the system had difficulty in identifying clips with very brief exposure of a 
single indicative feature that constituted the main essence of the clip category for 
example as in video clips of sparks and flashes whereby the feature to be identi-
fied (i.e. the spark or flash) is shown very briefly in the clip. 

8   Conclusion 

In this chapter, we have presented the DREAM Framework and discussed how it 
semi-automatically indexes video clips and creates a network of semantic labels, 
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exploiting the Topic Map Technology to enable efficient retrieval. The framework 
architecture, which has been presented in the context of film post-production, as a 
challenging proving ground, has responded well to the high expectations of users 
in this application domain which demands efficient semantic-cooperative retrieval.  
We have described how the DREAM framework has also leveraged the advances 
in NLP to perform the automatic creation and population of Topic Maps within a 
self-evolving semantic network for any media repositories, by defining the topics 
(concepts) and relationships between the topics.  We also briefly discussed how 
this framework architecture handles collaborative labelling through its Automatic 
Labelling Engine.  The first DREAM prototype has already been implemented and 
evaluated by its practitioner users in the film post-production application domain.  
The results confirm that the DREAM architecture and implementation has proven 
to be successful.  Double Negative have the DREAM system trained with only 
400 video clips and deployed within their routine film (post)production processes 
to achieve a satisfactory performance in labelling and retrieving clips from a re-
pository holding a collection of several thousand clips.   

The DREAM paradigm can in future be extended to further domains, including 
the Web, where any digital media can go through an offline process of 
(semi)automatic-labelling before being published. The publishing agent will use 
the semantic labels to create a network of connected concepts, using Topic Maps, 
and this can be merged with existing concepts on the web space.  This will even-
tually enable more intelligent web interaction, information filtering and retrieval, 
using semantic concepts as the query parameters rather than keywords. The 
DREAM Project Team is currently engaged in extending the functionality of the 
prototype to increase its scalability and ensure a wider uptake across a whole 
range of application domains particularly in supporting collaborative creative 
processes in the film, media publishing, advertising, training and educational sec-
tors through our test partners worldwide.   
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Abstract. In this chapter, an interactive framework is developed to enable person-
alized news video recommendation and allow news seekers to access large-scale
news videos more effectively. First, multiple information sources (audio, video and
closed captions) are seamlessly integrated and synchronized to achieve more reli-
able news topic detection, and the inter-topic contextual relationships are extracted
automatically for characterizing the interestingness of the news topics more effec-
tively. Second, topic network (i.e., news topics and their inter-topic contextual re-
lationships) and hyperbolic visualization are seamlessly integrated to achieve more
effective navigation and exploration of large-scale news videos at the topic level,
so that news seekers can have a good global overview of large-scale collections of
news videos at the first glance. Through a hyperbolic approach for interactive topic
network visualization and navigation, large amounts of news topics and their con-
textual relationships are visible on the display screen, and thus news seekers can
obtain the news topics of interest interactively, build up their mental search models
easily and make better search decisions by selecting the visible news topics directly.
Our system can also capture the search intentions of news seekers implicitly and fur-
ther recommend the most relevant news videos according to their importance and
representativeness scores. Our experiments on large-scale news videos (10 TV news
programs for more than 3 months) have provided very positive results.

1 Introduction

According to the CIA world factbook, there are more than 30,000 television sta-
tions in the world. These stations broadcast a large number of TV news programs
(news videos) every day. Different organizations and individuals utilize these broad-
cast news videos for different purposes, such as presidential candidates’ debat for
public assessment, economic performance analysis and prediction, sports and crime
reports. People watch the news videos (TV news programs) to understand what is
happening now and predict what might happen in the near future, so that they can
make better daily decisions.

Due to the large number of broadcast channels and TV news programs, finding
news videos of interest is not a trivial task: (a) Most existing content-based video
retrieval (CBVR) systems assume that news seekers can formulate their information
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needs precisely either in terms of keywords or example videos. Unfortunately, news
seekers may not be able to know what is happening now (i.e., if they know it, it is
not a news), thus it is very hard for them to find the suitable keywords or example
videos to formulate their news needs precisely without obtaining sufficient knowl-
edge of the available news topics of interest. Thus there is an urgent need to develop
new techniques for detecting news topics of interest from large-scale news videos to
assist news seekers on finding news videos of interest more effectively. (b) Because
the same news topic can be discussed in many TV channels and news programs,
topic-based news search may return large amounts of news videos and thus simple
news search via keyword matching of news topics may bring the serious problem
of information overload to news seekers. (c) Most existing CBVR systems treat all
the news seekers equally while completely ignoring the diversity and rapid change
of their search interests. Besides the rapid growth of broadcast TV channels and
news programs, we have also observed different scenarios of news needs from dif-
ferent people, thus it is very difficult to come up with a one size fits all approach for
accessing large-scale news videos. (d) The keywords for news topic interpretation
may not be expressive enough for describing the rich details of video content pre-
cisely and using only the keywords may not be able to capture the search intentions
of news seekers effectively. Thus visualization is becoming a critical component of
personalized news video recommendation system [1-2, 9-12]. (e) The objectives for
personalized video recommendation and content-based video retrieval are very dif-
ferent, which make it unsuitable to directly apply the existing CBVR techniques for
supporting personalized video recommendation. Thus supporting personalized news
video recommendation is becoming one important feature of news services [3-4].

There are some existing approaches to support personalized video recommen-
dation by using only the associated text terms such as the titles, tags, and com-
ments [3-4], and the relevant videos are recommended according to the matching
between the associated text terms for video content description and the users’ pro-
files. Unfortunately, the text terms, which are associated with the videos, may not
have exact correspondence with the underlying video content. In addition, a suffi-
cient collection of users’ profiles may not be available for recommendation purpose.
Thus there is an urgent need to develop new frameworks for supporting personal-
ized news video recommendation, which may not completely depend on the users’
profiles and the associated texts for video content description.

Context between the news topics is also very important for people to make better
search decisions, especially when they are not familiar with the available news top-
ics and their search goals or ideas are still fuzzy. The inter-topic context can give a
good approximation of the interestingness of the news topics (i.e., like PageRank for
characterizing the importance of web pages [17]). Thus it is very attractive to inte-
grate topic network (i.e., news topics and their inter-topic contextual relationships)
for characterizing the interestingness of the news topics, assisting news seekers on
making better search decisions and suggesting the future search directions.

To incorporate topic network for supporting user-adaptive topic recommenda-
tion, it is very important to develop new algorithm for large-scale topic network
visualization, which is able to provide a good balance between the local detail and
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the global context. The local detail is used to help news seekers focus on the news
topics of interest in current focus. The global context is needed to tell news seekers
where the other news topics are and their contextual relationships with the news
topics in current focus, such global context can effectively suggest the new search
directions to news seekers. Thus supporting visualization and interactive navigation
of the topic network is becoming a complementary and necessary component for
personalized news video recommendation system and it may lead to the discovery
of unexpected news videos and guide the future search directions effectively.

On the other hand, the search criteria are often poorly defined or depend on the
personal preferences of news seekers. Thus supporting interactive visualization, ex-
ploration and assessment of the search results are very important for allowing news
seekers to find the news videos of interest according to their personal preferences.
Information retrieval community has also recognized that designing more intuitive
system interface for search result display may have significant effects on assisting
users to understand and assess the search results more effectively [13]. To incor-
porate visualization for improving news search, effective techniques for intelligemt
news video analysis should be developed to discover the meaningful knowledge
from large-scale news videos.

Several researchers have used the ontology (i.e., video concepts and their simple
inter-topic contextual relationships such as “IS-A" and “part-of") to assistant visual
content anslysis and retrieval [23-24]. Because the news content are highly dynamic,
the inter-topic contextual relationships cannot simply be characterized by using “IS-
A" or “part-of", which are used for ontology construction. Thus it is unacceptable
to incorporate the ontology for supporting personalized news video recommenda-
tion. On the other hand, automatic video understanding is still an open problem for
computer vision community [25-31].

In this chapter, an interactive approach is developed to enable personalized news
video recommendation, and our approach has significant differences from other
existing work: (a) Rather than performing semantic video classification for auto-
matic news video understanding, we have integrated multiple information sources
to achieve more reliable news topic detection. (b) The associations among the news
topics (i.e., inter-topic contextual relationships) are determined automatically and
an interestingness score is automatically assigned to each news topic via statistical
analysis, and such interestingness scores are further used to select the news topics
of interest and filter out the less interesting news topics automatically. (c) A hyper-
bolic visualization tool is incorporated to inform news seekers with a better global
overview of large-scale news videos, so that they can make better search decisions
and find the most relevant news videos more effectively. (d) A novel video ranking
algorithm is developed for recommending the most relevant news videos according
to their importance and representativeness scores.

The chapter is organized as follows. Section 2 briefly reviews some related work
on news topic detection and personalized information recommendation; Section 3
introduces our work on integrating topic network and hyperbolic visualization to
enable user-adaptive topic recommendation; Section 4 introduces our new scheme
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on news video ranking for supporting personalized news video recommendation;
Section 5 summarizes our work on algorithm and system evaluation; We conclude
in Section 6.

2 Related Work

To enable personalized news video recommendation, one of the most important
problems is to extract news topics of interest automatically from large-scale news
videos. This problem is becoming very critical because of the following reasons:
(a) The amount of news topics could be very large; (b) Different news topics may
have different importance and interestingness scores, such importance and interest-
ingness scores may also depend on the personal preferences of news seekers. In this
section, we have provided a brief review of some existing work which are critical for
developing personalized news video recommendation system: (1) automatic news
topic detection; (2) news visualization; (3) personalized video recommendation.

Topic extraction refers to the identification of individual stories or topics within
a broadcast news video by detecting the boundaries where the topic of discussion
changes. News topics may be of any length and consist of complete and cohesive
news report on one particular topic. Each broadcast channel has its own peculiari-
ties in terms of program structures and styles, which can be integrated for achieving
more accurate detection of news topics and their boundaries [11-12]. News topics
can also be detected by using some existing techniques for named-entity extrac-
tion [5-6].

There are two well-accepted approaches for supporting personalized informa-
tion retrieval [20-22]: content-based filtering and collaborative filtering. Because
the profiles for new users are not available, both the collaborative filtering approach
and the content-based filtering approach cannot support new users effectively. Thus
there is an urgent need to develop more effective frameworks for supporting person-
alized news video recommendation.

Visualization is widely used to help the users explore large amount of informa-
tion and find interesting parts interactively [9-12]. Rather than recommending the
most interesting news topics to news seekers, all of these existing news visualiza-
tion systems disclose all the available news topics to them, and thus news seekers
have to dig out the news topics of interest by themselves. When large-scale news
collections come into view, the number of the available news topics could be very
large and displaying all of them to news seekers may mislead them. Thus it is very
important to develop new algorithms for characterizing the interestingness of news
topics and reducing the number of news topics to enable more effective visualization
and exploration of large-scale news videos.

3 User-Adaptive News Topic Recommendation

In this chapter, a novel scheme is developed by incorporating topic network and hy-
perbolic visualization to recommend the news topics of interest for assisting news
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seekers on accessing large-scale news videos more effectively. To do this, an au-
tomatic scheme is developed to construct the topic network for representing and
interpreting large-scale news videos at the topic level. In addition, a hyperbolic
visualization technique is developed to enable interactive topic network naviga-
tion and recommend the news topics of interest according to the personal prefer-
ences and timely observations of news seekers, so that they can make better search
decisions.

Fig. 1. The flowchart for synchronizing multiple sources for news topic detection, where
automatic speech recognition (ASR), natural language processing (NLP), and semantic video
classification are seamlessly integrated

3.1 News Topic Detection

For TV news programs, there are three major information sources (audio, video and
closed captions) that can be integrated and synchronized to enable more reliable
news topic detection. We have developed a new scheme for automatic news topic
detection by taking the advantage of multiple information sources (cross-media) as
shown in Fig. 1. First, automatic speech recognition (ASR), natural language pro-
cessing (NLP), and semantic video classification are performed on these three in-
formation sources parallelly to determime the keywords for news topic description
from both the audio channel and the closed captions and detect the video concepts
from the video channel. Second, the audio channel is synchronized with the closed
caption channel, and the video channel is further synchronized with the audio chan-
nel and the closed caption channel. Finally, the detection results of news topics from
these three information sources are integrated to boost the performance of our news
topic detection algorithm.
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The closed captions of news videos can provide abundant information and such
information can be used to detect the news topics of interest and their semantic inter-
pretations with high accuracy. To do this, the closed captions are first segmented into
a set of sentences, and each sentence is further segmented into a set of keywords.
In news videos, some special text sentences, such as “somebody, CNN, somewhere”
and “ABC’s somebody reports from somewhere”, need to be processed separately.
The names for news reporters in those text sentences are generally not the content
of news report. Therefore, they are not appropriate for news semantics interpreta-
tion and should be removed. Because there have some clear and fixed patterns for
these specific sentences, we have designed a context-free syntax parser to detect and
mark this information. By incorporating 10-15 syntax rules, our parser can detect
and mark such specific sentences in high accuracy. Standard text processing tech-
niques are used to remove the stop words automatically.

Most named entity detectors may fail in processing all-capital strings because
initial capitalization is very important to achieve accurate named entity recognition.
One way to resolve this problem is to train a detector with ground truth from the text
documents of closed captions. However, it’s very expensive to obtain the manually
marked text material. Because English has relatively strict grammar, it’s possible
to parse the sentences and recover the most capital information by using part-of-
speech (POS) and lemma information. TreeTagger [7] is used to perform the part-
of-speech tagging. Capital information can be recovered automatically by using the
TreeTagger parsing results.

After such specific sentences are marked and the capital information is recovered,
an open source text analysis package LingPipe [8] is used to perform the named en-
tity detection and resolve co-reference of the named entities. The named entities re-
ferring to the same entity are normalized to the most representative format to enable
statistical analysis, where the news model of LingPipe is used and all the parameters
are set to default value. Finally, the normalized results are parsed again by TreeTag-
ger to extract the POS information and resolve the words to their original formats.
For example, TreeTagger can resolve “better” to “well” or “good” according to its
POS tag.

We have defined a set of over 4000 elemental topics, each keyword represents
an elemental topic, and all these detected news stories that consist of one particular

Fig. 2. Integrating confidence map for salient object detection: (a) original images and the
detected salient objects; (b) confidence maps for the salient objects
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keyword are assigned to the corresponding cluster of news topic. Our multi-task
learning algorithm is performed to learn the topic detectors from a given corpus by
exploiting the inter-topic correlation [25-27]. Once we have a set of topic detectors,
they are used to determine the most topic-similar clusters for the new piece of news
videos.

For TV news videos, the video shots are the basic units for video content repre-
sentation, and thus they can be treated as one of the semantic items for news topic
detection. Unlike the keywords in text documents, the re-appearance of video shots
cannot be detected automatically via simple comparison of their visual properties.
For news videos, video objects, such as text areas and human faces, may provide
important clues about news stories of interest. Text lines and human faces in news
videos can be detected automatically by using suitable computer vision techniques
[28]. Obviously, these automatic detection functions may fail in some cases. Thus
the results that are detected by using a single video frame may not be reliable. To
address this problem, the detection results on all the video frames within the same
video shot are integrated and the corresponding confidence maps for the detection
results are calculated as shown in Fig. 2 [27]. The video concepts associated with
the video shots can provide valuable information to enable more accurate news topic
detection, and semantic video classification is one potential solution to detect such
video concepts [27]. To detect the video concepts automatically, we have adopted
our previous work reported in [25-28].

Unfortunately, the closed captions may not synchronize with the video channel
accurately and have a delay of a few seconds in general. Thus the news topics that
are detected from the closed captions cannot directly be synchronized with the video
concepts that are detected from the news videos. On the other hand, the closed cap-
tions have good synchronization with the relevant audios. Therefore, they can be
integrated to take advantage of cross-media to clarify the video content and re-
move the redundant information. Even the audio channel generally synchronizes
very well with the video channel, the accuracy of most existing techniques for auto-
matic speech recognition (ASR) is still low. By integrating the results for automatic
speech recognition with the topic detection results from the closed captions, we can
synchronize the closed captions with the video content in higher accuracy. After
the closed captions are synchronized with the news videos, we can assign the video
shots to the most relevant news topics that are accurately detected from the closed
captions. Thus all the video shots, which locate between the start time and the end
time of a given new topic that has been detected from the closed captions, are as-
signed to the given news topic automatically.

3.2 Topic Association Extraction

The contextual relationships among these significant news topics are obtained au-
tomatically, where both the semantic similarity and the co-occurrence probability
for the relevant news topics are used to define a new measurement for determining
the inter-topic associations effectively. The inter-topic association (i.e., inter-topic
contextual relationship) φ(Ci, Cj) is determined by:
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φ(Ci, Cj) = −α · log
d(Ci, Cj)

2L
+ β · ψ(Ci, Cj)

log ψ(Ci, Cj)
, α + β = 1 (1)

where the first part denotes the semantic similarity between the news topics Cj

and Ci, the second part indicates their co-occurrence probability, α and β are the
weighting parameters, d(Ci, Cj) is the length of the shortest path between the news
topics Ci and Cj by searching the relevant keywords for news topic interpretation
from WordNet [23], L is the maximum depth of WordNet, ψ(Ci, Cj) is the co-
ocurrence probability between the relevant news topics. The co-occurrence proba-
bility ψ(Ci, Cj), between two news topics Cj and Ci, is obtained in the news topic
detection process. Obviously, the value of the inter-topic association φ(Ci, Cj) in-
creases with the strength of the contextual relationship between the news topics
Ci and Cj .

Thus each news topic is automatically linked with multiple relevant news topics
with the higher values of the associations φ(·, ·). One portion of our large-scale
topic network is given in Fig. 3, where the news topics are connected and organized
according to the strength of their associations, φ(·, ·). One can observe that such a
topic network can provide a good global overview of large-scale news videos and
can precisely characterize the interestingness of the relevant news topics, and thus
it can be used to assist news seekers on making better search decisions.

To integrate the topic network for supporting user-adaptive topic recommenda-
tion, it is very attractive to achieve graphical representation and visualization of the
topic network, so that news seekers can obtain a good global overview of large-
scale news videos at the first glance and make better search decisions in the process
of interactive topic network exploration and navigation. Unfortunately, visualizing
large-scale topic network in a 2D system interface with a limited screen size is not a
trivial task. To achieve more effective visualization of large-scale topic network, we
have developed multiple innovative techniques: (a) highlighting the news topics ac-
cording to their interestingness scores for allowing news seekers to obtain the most

Fig. 3. One portion of our topic network for organizing large-scale news videos
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important insights at the first glance; (b) integrating hyperbolic geometry to create
more space for large-scale topic network visualization and exploration.

3.3 Interestingness Scores of News Topics

We have integrated both the popularity of the news topics and the importance of
the news topics to determine their interestingness scores. The popularity of a given
news topic is related to the number of TV channels or news programs which have
discussed or reported the given news topic. If one news topic is discussed or re-
ported by more TV channels or news programs, it tends to be more interesting. The
importance of a given news topic is also related to its linkage structure with other
news topics on the topic network. If one news topic is related to more news topics on
the topic network, it tends to be more interesting [17]. For example, the news topic
for “roadside bond in Iraq" may relate to the news topics of “gap price increase" and
“stock decrease". Thus the interestingness score ρ(Ci) for a given news topic Ci is
defined as:

ρ(C) = λ·log(m(Ci)+
√

m2(Ci) + 1)+γ ·log(k(Ci)+
√

k2(Ci) + 1), λ+γ = 1
(2)

where m(ci) is the number of TV channels or news programs which have discussed
or reported the given news topic Ci, k(ci) is the number of news topics linked with
the given news topic Ci on the topic network. Thus the interestingness score for a
given news topic increases adaptively with both the number of the relevant TV chan-
nels or news programs and the number of the linked news topics. Such interesting-
ness scores can be used to highlight the most interesting news topics and eliminate
the less interesting news topics for reducing the visual complexity for large-scale
topic network visualization and exploration.

Fig. 4. One view of hyperbolic visualization of our topic network
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3.4 Hyperbolic Topic Network Visualization

Supporting graphical representation and visualization of the topic network can pro-
vide an effective solution for exploring large-scale news videos at the topic level and
recommend the news topics of interest interactively for assisting news seekers to make
better search decisions. However, visualizing large-scale topic network in a 2D sys-
tem interface with a limited screen size is a challenging task. We have investigated
multiple solutions to tackle this challenge task: (a) A string-based approach is incor-
porated to visualize the topic network with a nested view, where each news topic node
is displayed closely with the most relevant news topic nodes according to the values
of their associations. The underlying inter-topic contextual relationships are repre-
sented as the linkage strings. (b) The geometric closeness of the news topic nodes is
related to the strength of their inter-topic contextual relationships, so that such graph-
ical representation of the topic network can reveal a great deal about how these news
topics are connected. (c) Both geometric zooming and semantic zooming are inte-
grated to adjust the levels of visible details automatically according to the discerning
constraint on the number of news topic nodes that can be displayed per view.

Our approach for topic network visualization exploits hyperbolic geometry
[14-16]. The hyperbolic geometry is particularly well suited for achieving graph-
based layout of the topic network, and it has “more space" than Euclidean geome-
try. The essence of our approach is to project the topic network onto a hyperbolic
plane according to the inter-topic contextual relationships, and layout the topic net-
work by mapping the relevant news topic nodes onto a circular display region. Thus
our topic network visualization scheme takes the following steps: (a) The news
topic nodes on the topic network are projected onto a hyperbolic plane according
to their inter-topic contextual relationships, and such projection can usually pre-
serve the original contextual relationships between the news topic nodes. (b) After
such context-preserving projection of the news topic nodes is obtained, Poincaré
disk model [14-16] is used to map the news topic nodes on the hyperbolic plane to a

Fig. 5. Another view of hyperbolic visualization of our topic network
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2D display coordinate. Poincaré disk model maps the entire hyperbolic space onto
an open unit circle, and produces a non-uniform mapping of the news topic nodes
to the 2D display coordinate.

Our approach for topic network visualization relies on the representation of the
hyperbolic plane, rigid transformations of the hyperbolic plane and mappings of
the news topic nodes from the hyperbolic plane to the unit disk. Internally, each
news topic node on the graph is assigned a location z = (x, y) within the unit disk,
which represents its Poincaré coordinates. By treating the location of the news topic
node as a complex number, we can define such a mapping as the linear fractional
transformation [14-16]:

zt =
θz + P

1 + P̄ θz
(4)

where P and θ are the complex numbers, |P | < 1 and |θ| = 1, and P̄ is the com-
plex conjugate of P . This transformation indicates a rotation by θ around the origin
following by moving the origin to P (and −P to the origin).

To incorporate such transformation for topic network visualization, the layout
routine is structured as a recursion that takes a news topic node and a wedge in
which to lay out the news topic node and its relevant news topic nodes. It places
the news topic node at the vertex of the wedge, computes a wedge for each relevant
news topic node and recursively calls itself on each relevant news topic node. The
relevant news topic nodes are placed in the middle of their subwedges at a distance
computed by the formula:

d =

√(
(1 − s2)sin(a)

2s

)2

+ 1 − (1 − s2)sin(a)
2s

(5)

where a is the angle between the midline and the edge of the subwedge and s is the
desired distance between a relevant news topic node and the edge of its subwedge. In
our current implementation, we set s = 0.18. The result, d, is the necessary distance
from current news topic node to its relevant news topic node. If the value of d is less
than that of s, we set d to s for maintaining a minimum space between the current
news topic node and the relevant news topic node. Both s and d are represented as
the hyperbolic tangent of the distance in the hyperbolic plane.

3.5 Personalized Topic Network Generation

After the hyperbolic visualization of the topic network is available, it can be used
to enable interactive exploration and navigation of large-scale news videos at the
topic level via change of focus. The change of focus is implemented by changing
the mapping of the news topic nodes from the hyperbolic plane to the unit disk for
display, and the positions of the news topic nodes in the hyperbolic plane need not
to be altered during the focus manipulation. As shown in Fig. 4 and Fig. 5, news
seekers can change their focuses of the news topics by clicking on any visible news
topic node to bring it into the focus at the screen center, or by dragging any vis-
ible news topic node interactively to any other screen location without losing the
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Fig. 6. The most relevant news topics for interestingness propagation

contextual relationships between the news topics, where the rest of the layout of the
topic network transforms appropriately. In such interactive topic network navigation
and exploration process, news seekers can obtain the news topics of interest inter-
actively, build up their mental search models easily and make better search decision
effectively by selecting the visible news topics directly. Because our hyperbolic vi-
sualization framework can assign more spaces for the news topic node in current
focus and ignore the details for the residual news topic nodes on the topic network,
it can theoretically avoid the overlapping problem by supporting change of focus
and thus it can spporting large-scale topic network visualization and navigation.

On the other hand, such interactive topic network exploration process has also
provided a novel approach for capturing the search interests of news seekers au-
tomatically. We have developed a new algorithm for generating personalized topic
network automatically from the current search actions of news seeker while the new
seeker navigates the topic network. Thus the personalized interestingness score for
a given news topic Ci on the topic network is defined as:

ρ(Ci) = ρorg(Ci) + ρorg(Ci)

{
α

ev(Ci) − e−v(Ci)

ev(Ci) + e−v(Ci)
+ β

es(Ci) − e−s(Ci)

es(Ci) + e−s(Ci)
+ δ

ed(Ci) − e−d(Ci)

ed(Ci) + e−d(Ci)

}
(6)

where α + β + δ = 1, ρorg(Ci) is the original interestingness score for the given
news topic Ci as defined in Eq. (2), v(Ci) is the visiting times of the given news
topic Ci from the particular news seeker, s(Ci) is the staying seconds on the given
news topic Ci from the particular news seeker, d(Ci) is the interaction depth for
the particular user to interact with the news topic Ci and the relevant news videos
which are relevant to the given news topic Ci, α, β and δ are the weighting factors.
The visiting times v(Ci), the staying seconds s(Ci), and the interaction depth d(Ci)
can be captured automatically in the user-system interaction procedure. Thus the
personalized interestingness scores of the news topics are determined immediately
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when such user-system interaction happens, and they will increase adaptively with
the visiting times v(Ci), the staying seconds s(Ci), and the interaction depth d(Ci).

After the personalized interestingness scores for all these news topics are learned
from the current search actions of news seeker, they can further be used to weight
the news topics for generating a personalized topic network to represent the user
profiles (i.e., search preferences of news seeker) precisely. Thus the news topics
with smaller values of the personalized interestingness scores can be eliminated
automatically from the topic network, so that each news seeker can be informed by
the most interesting news topics according to his/her personal preferences.

The search interests of news seeker may be changed according to his/her timely
observations of news topics, and one major problem for integrating the user’s pro-
files for topic recommendation is that the user’s profiles may over-specify the search
interests of news seeker and thus they may hinder news seeker to search other inter-
esting news topics on the topic network. Based on this observation, we have devel-
oped a novel algorithm for propagating the search preferences of news seeker over
other relevant news topics on the topic network, i.e., the news topics which have
stronger correlations with the news topics which have been accessed by the partic-
ular news seeker. Thus the personalized interestingness score υ(Cj) for the news
topic Cj to be propagated is determined as:

χ(Cj) = ρ(Cj)φ̄(Cj), φ̄(Cj) =
∑
l∈Ω

φ(Cl, Cj) (7)

where Ω is the set of the accessed news topics linked with the news topic Cj to be
propagated as shown in Fig. 6 and Fig. 7, φ(Cl, Cj) is the inter-topic association
between the news topic Cj and the news topic Cl which is linked with Cj and has

Fig. 7. The most relevant news topics for interestingness propagation
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been accessed by the particular news seeker, and ρ(Cj) is the interestingness score
for the news topic Cj to be propagated. Thus the news topics, which have larger
values of the personalized interestingness scores χ(·) (strongly linked with some
accessed news topics on the topic network), can be propagated adaptively.

By integrating the inter-topic correlations for automatic propagation of the pref-
erences of news seeker, our proposed framework can precisely predict his/her hid-
den preferences (i.e., search intentions) from his/her current actions. Thus the user’s
profiles can be represented precisely by using the personalized topic network, where
the interesting news topics can be highlighted according to their personalized inter-
estingness scores as shown in Fig. 6 and Fig. 7. Such personalized topic network
can further be used to recommend the news topics of interest for news seekers to
make better future search decisions.

4 Personalized News Video Recommendation

Because the same news topic may be discussed many times in the same TV news
program or be discussed simultaneously by multiple TV news programs, the amount
of news videos under the same topic could be very large. Thus topic-based news
search via keyword matching may return large amount of news videos which are
relevant to the same news topic. To reduce the information overload, it is very im-
portant to develop new algorithms for ranking the news videos under the same news
topic and recommending the most relevant news videos according to their impor-
tance and representativeness scores [18-19].

The news videos, which are relevant to the given news topic Cj , are ranked ac-
cording to their importance and representiveness scores. For the given news topic

Fig. 8. Our system interface for supporting multi-modal news recommendation
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Cj , the importance and representativeness score �(x|Cj) for one particular news
video x is defined as:

�(x|Cj) = αe−Δt + (1 − α)
{

β
ev(x|Cj) − e−v(x|Cj)

ev(x|Cj) + e−v(x|Cj)
+ γ

er(x|Cj) − e−r(x|Cj)

er(x|Cj) + e−r(x|Cj)

+η
eq(x|Cj) − e−q(x|Cj)

eq(x|Cj) + e−q(x|Cj)

}
(8)

where β + λ + η = 1, Δt is the time difference between the time for the TV news
programs to discuss and report the given news topic Cj and the time for the news
seeker to submit their searches, v(x|Cj) is the visiting times of the given news video
x from all the news seekers, r(x|Cj) is the rating score of the given news video x
from all the news seekers, q(x|Cj) is the quality of the given news video.

We separate the time factor from other factors for news video ranking because
the time factor is more important than other factors for news video ranking (i.e., one
topic can be treated as the news because it is new and tell people what is happening
now or what is discussing now). The quality q(x|Cj) is simply defined as the frame
resolution and the length of the given news video x. If a news video has higher
frame resolution and longer length (be discussed for longer time), it should be more
important and representative for the given news topic.

After the search goals pf news seekers (i.e., which are represented by the accessed
news topics) are captured interactively, our personalized news video recommenda-
tion system can: (a) recommend top 5 news videos according to their importance
and representative scores; (b) recommend the news topics of interest on the topic
network which are most relevant to the accessed news topic and suggest them as the
future search directions according to the current preferences of news seekers, where
the accessed news topic is set as the current focus (i.e., center of the topic network);
(c) recommend the most relevant online text news which are relevant with the ac-
cessed news topic, so that news seekers can also read the most relevant online web
news; (d) record the search history and preferences of news seekers for generating

Fig. 9. Two examples for supporting multi-modal news recommendation



490 H. Luo and J. Fan

Fig. 10. Our system for supporting online news recommendation: (a) topic network for March
13; (b) topic network for March 14

Fig. 11. Our system for supporting online news recommendation: personalized topic network
and the relevant online news sources

more reliable personalized topic network to make better recommendation in the fu-
ture. Some experimental results are given in Fig. 8 and Fig. 9, one can conclude
that our personalized news video recommendation system can effectively support
multi-modal news recommendation from large-scale collections of news videos.

We have also extended our multi-modal news analysis tools to support person-
alized online news recommendation. First, the news topics of interest are extracted
from large-scale online news collections and the inter-topic similarity contexts are
determined for topic network generation as shown in Fig. 10, one can observe that
such the topic network can represent the news topics of interest and their inter-topic
similarity contexts effectively. By incorporating the inputs of news seekers for on-
line news recommendation, the accessed news topic is set as the current focus and
the most relevant news sources are recommended as shown in Fig. 11.

5 Algorithm Evaluation

We carry out our experimental studies by using large-scale news videos. The topic
network which consists of 4000 most popular news topics is learned automatically
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from large-scale news videos. Our work on algorithm evaluation focus on: (1) eval-
uating the performance of our news topic detection algorithm and assessing the ad-
vantages for integrating multiple information sources for news topic detection; (2)
evaluating the response time for supporting change of focus in our system, which is
critical for supporting interactive navigation and exploration of large-scale topic net-
work to enable user-adaptive topic recommendation; (3) evaluating the performance
(efficiency and accuracy) of our system for allowing news seekers to look for some
particular news videos of interest (i.e., personalized news video recommendation).

Automatic news topic detection plays an important role in our personalized news
video recommendation system. However, automatic topic detection is still an open
problem in natural language processing community. On the other hand, automatic
video understanding via semantic classification is also an open issue in computer
vision community. In this chapter, we have integrated multiple information sources
(audio, video and closed captions) to exploit the cross-media advantages for achiev-
ing more reliable news topic detection.

Based on this observation, our algorithm evaluation for our automatic news topic
detection algorithm focuses on comparing its performance difference by combining
different information sources for news topic detection. We have compared three
combination scenarios for news topic detection: (a) only the closed captions are
used for news topic detection; (b) the closed captions and the audio channel are
integrated and synchronized for news topic detection; (c) the closed captions, the
audio channel and the video channel are seamlessly integrated and synchronized for
news topic detection. As shown in Fig. 12, integrating multiple information sources
for news topic detection can enhance the performance of our algorithm significantly.

Fig. 12. The comparision results of our automatic news topic detection algorithm by integrat-
ing different sources
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Fig. 13. The empirical relationship between the computational time T1 (seconds) and the
number of news topic nodes

One critical issue for evaluating our personalized news video recommendation
system is the response time for supporting change of focus to enable interactive topic
network navigation and exploration, which is critical for supporting user-adaptive
topic recommendation. In our system, the change of focus is used for achieving
interactive exploration and navigation of large-scale topic network. The change of
focus is implemented by changing the Poincaré mapping of the news topic nodes
from the hyperbolic plane to the display unit disk, and the positions of the news
topic nodes in the hyerbolic plane need not to be altered during the focus manip-
ulation. Thus the response time for supporting change of focus depends on two
components: (a) The computational time T1 for re-calculating the new Poincaré
mapping of large-scale topic network from a hyperbolic plane to a 2D display unit
disk, i.e., re-calculating the Poincaré position for each news topic node; (b) The vi-
sualization time T2 for re-layouting and re-visualizing the new Poincaré mapping of
large-scale topic network on the display disk unit. As shown in Fig. 13, one can find
that the computational time T1 is not sensitive to the number of news topics, and
thus re-calculating the Poincaré mapping for large-scale topic network can almost
be achieved in real time. We have also evaluated the empirical relationship between
the visualization time T2 and the number of news topic nodes. In our experiments,
we have found that re-visualization of large-scale topic network is not sensitive
to the number of news topics, and thus our system can support re-visualization of
large-scale topic network in real time.

When the news topics of interest are recommended, our system can further allow
news seekers to look for the most relevant news videos according to their importance
and representative scores. For evaluating the effeciency and the accuracy of our
personalized news video recommendation system, the benchmark metric includes
precision P and recall R. The precision P is used to characterize the accuracy of
our system for finding the particular news videos of interest, and the recall R is used
to characterize the efficiency of our system for finding the particular news videos of
interest. They are defined as:

P =
TP

TP + FP
, R =

TP

TP + TN
(9)

where TP is the set of true positive news videos that are relevant to the need of
news seeker and are recommended correctly, FP is the set of fause positive news
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Table 1. The precision and recall for supporting personalized news video recommendation

news topics policy pentagon change insult
precision/recall 95.6% /97.3% 98.5% /98.9% 100% /99.2% 92.8% /93.6%

news topics implant wedding haggard bob
precision/recall 90.2% /93.5% 96.3% /94.5% 96.5% /92.8% 90.3% /97.4%

news topics gate steny hoyer democrat urtha
precision/recall 95.9% /96.8% 96.5% /96.2% 96.3% /97.1% 93.6% /94.3%

news topics majority leader confirmation defence
precision/recall 99.2% /98.6% 93.8% /99.3% 94.5% /93.8% 100% /99.6%

news topics secretary veterm ceremony service
precision/recall 100% /98.8% 99.8% /99.2% 99.3% /96.6% 91.2% /93.2%

news topics honor vietnam lesson submit
precision/recall 91.2% /93.5% 98.8% /96.7% 90.3% /91.6% 91.2% /91.5%

news topics minority indonesia president trent lott
precision/recall 100% /99.6% 96.8% /97.7% 100% /96.8% 92.5% /92.3%

news topics o.j. sinpson trial money book
precision/recall 95.6% /99.4% 90.5% /90.3% 100% /90.6% 96.8% /93.6%

news topics john kerry military race mandate
precision/recall 100% /96.5% 100% /93.2% 100% /97.8% 92.6% /92.5%

news topics election leadship school gun shoot execution
precision/recall 100% /95.5% 92.8% /90.3% 100% /96.7% 90.6% /91.3%

news topics responsibility sex message congress
precision/recall 92.1% /91.5% 97.5% /98.2% 88.3% /87.6% 100% /96.3%

news topics north korea japan china white house
precision/recall 100% /99.3% 98.5% /95.6% 97.3% /95.2% 100% /94.8%

news topics nuclear test republican amish gun shoot
precision/recall 100% /97.6% 91.6% /92.8% 99.5% /91.6% 100% /99.8%

news topics teacher conduct program olmypic 2008
precision/recall 93.8% /94.5% 87.92% /88.3% 83.5% /90.2% 100% /99.3%

news topics beijing child tax reduction shooting
precision/recall 99.2% /97.3% 91.3% /91.5% 98.5% /96.9% 99.6% /98.4%

news topics safety investigation ethic committee
precision/recall 94.5% /94.8% 93.3% /96.5% 93.3% /95.6% 91.8% /95.2%

news topics scandal dennis hastert preseident candidates matter
precision/recall 96.6% /97.3% 95.3% /88.3% 98.5% /97.3% 85.2% /85.3%

videos that are relevant to the need of news seeker and are not recommended,
and TN is the set of true negative news videos that are relevant but are recom-
mended incorrectly. Table 1 gives the precision and recall of our personalized news
video recommendation system. From these experimental results, one can observe
that our system can support personalized news video recommendation effectively,
thus news seekers are allowed to search for some particular news videos of interest
effectively.
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6 Conclusions

In this chapter, we have developed an interactive framework to support personal-
ized news video recommendation and allow news seekers to access large-scale news
videos more effectively. To allow news seekers to obtain a good global overview of
large-scale news videos at the topic level, topic network and hyperbolic visualiza-
tion are seamlessly integrated to achieve user-adaptive topic recommendation. Thus
news seekers can obtain the news topics of interest interactively, build up their men-
tal search models easily and make better search decisions by selecting the visible
news topics directly. Our system can also capture the search intentions of news
seekers implicitly and further recommend the most relevant news videos according
to their importance and representativeness scores. Our experiments on large-scale
news videos have provided very positive results.
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Visual Quality Evaluation for Images and Videos 

Songnan Li, Lawrence Chun-Man Mak, and King Ngi Ngan 

The Chinese University of Hong Kong 

1   Introduction 

Information is exploding with technology progress. Compared with text and audio, 
image and video can represent information more vividly, which makes visual 
quality one of the most important aspects in determining user experience. A good 
visual quality evaluation method can assist in monitoring the quality of multime-
dia services and boosting user experience. 

Visual quality evaluation plays its role in different stages of the visual informa-
tion distribution chain, e.g., camera filter design for visual signal acquisition [51], 
quality monitoring during signal relaying [36], representation at the user site by 
display [39], printer [19], etc. In addition, the success of visual quality evaluation 
will provide guidance to a large number of image and video processing algo-
rithms, e.g., compression, watermarking, image fusion, error protection, feature 
enhancement and detection, restoration, retrieval, graphic illumination, and so on. 
Due to its fundamental role, works on visual quality metrics can date back to half 
a century ago, and a vast number of objective quality metrics have been proposed 
over time. 

Since pixel-based metrics, such as Mean Square Error (MSE), Signal-to-Noise 
Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR), are simple to calculate and 
easy to be incorporated into optimization process, they have been widely used in 
most visual-related products and services. However, it has been well acknowl-
edged that these pixel-based difference measures do not correlate well with the 
Human Visual System’s perception [18]. Distortions perceived by the human be-
ing are not always captured by MSE/SNR/PSNR, because these metrics operate on 
a pixel-by-pixel basis without considering the signal content, the viewing condi-
tion and the characteristics of the Human Visual System (HVS). These problems 
make the design of a better objective quality metric necessary, and progresses in 
recent vision research provide us with guidance to achieve this goal. 

Different from objective quality metrics which work automatically without hu-
man intervention, subjective quality evaluation acquires quality judgment from the 
human observers in an off-line manner, and as a matter of course is considered to 
be the most accurate approach to measure visual quality. Although subjective 
quality evaluation is time-consuming and not feasible for on-line manipulation, its 
role in objective quality metric design is still irreplaceable: the perceptual visual 
quality derived from subjective evaluation can serve as a benchmark for the per-
formance evaluation of different objective quality assessment algorithms, and can 
even direct the algorithm design. More and more subjectively-rated image and 
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video database become publicly available [59, 8, 20, 56, 10], which will speed up 
the advent of better objective quality metrics. 

The goal of this chapter is to review both the objective and subjective visual 
quality evaluation methods, with Section 2 dedicated to the former and Sections 3 
and 4 dedicated to the latter. In Section 2, objective visual quality metrics are re-
viewed on the basis of two distinct design approaches: HVS modeling approach 
and engineering based approach. Metrics for images and for videos are presented 
without clear partition due to their great similarities. Section 3 briefly describes 
the different aspects of a typical subjective evaluation procedure, while Section 4 
presents an application of the subjective quality evaluation carried out recently by 
the authors: a performance comparison between two video coding standards — 
H.264 and AVS. 

2   Objective Visual Quality Metrics 

2.1   Classification 

Objective visual quality metrics can be classified into Full-Reference (FR), Re-
duced-Reference (RR), and No-Reference (NR) metrics according to the availabil-
ity of the reference information. For FR metrics, the original image or video 
sequence is fully available as the reference, and is considered to be of perfect qual-
ity. The distorted visual signal is compared against the reference and their similar-
ity is measured so as to determine the quality of the distorted signal. FR metrics can 
be adopted in many image and video processing algorithms such as compression, 
watermarking, contrast enhancement, etc. However, in many practical applications, 
e.g., quality monitoring during transmission or at the user site, it is impossible to 
access the entire reference. RR and NR can fit in these situations. RR metrics only 
need partial reference signal. Features are extracted from the reference signal and 
transmitted in an ancillary channel for comparison against the corresponding fea-
tures of the distorted signal extracted at the monitoring site. Compared with FR 
metrics, RR metrics are more flexible (weaker requirement on registration) and less 
expensive in terms of bandwidth requirement. NR metrics gauge quality without 
any reference information at all. They are free of registration requirement, and ap-
plicable to a wide range of applications. However, although human observers are 
good at NR quality evaluation, NR metric development turns out to be a difficult 
task, and only limited successes have been achieved so far. 

From the design viewpoint, many classification methods have been proposed in 
literature: metrics designed by psychophysical approaches and by engineering ap-
proaches [89]; error sensitivity and structural sensitivity metrics [77]; bottom-up 
and top-down metrics [37], etc. Winkler et al. [90] proposed a comprehensive 
classification method which groups metrics into three categories: Data metrics, 
Picture metrics, Packet- and Bitstream-based metrics. Data metrics measure the fi-
delity of the signal without considering its content. The representatives are 
MSE/SNR/PSNR and their close families [15]. On the other hand, Picture metrics 
treat the visual data as the visual information that it contains. They may take the 
viewing conditions (viewing distance, ambient illumination, display properties, 
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etc.), the HVS characteristics, and the signal content into consideration. Picture 
metrics can be further distinguished into two groups: metrics designed by vision 
modeling approaches (HVS-model-based metrics) and metrics designed by engi-
neering approaches (engineering-based metrics). In this section, objective visual 
quality metrics will be separated into these two categories for a more detailed in-
troduction. Packet- and Bitstream-based metrics [66, 30] are used in applications 
like internet streaming or IPTV. They measure the impact of network losses on 
visual signal quality. Different from traditional methods like bit error rate or pack-
et loss rate, Packet- and Bitstream-based metrics distinguish the importance of the 
lost information to visual quality by checking the packet header and the encoded 
bitstream. 

2.2   HVS-Model-Based Metrics 

HVS-model-based metrics incorporate characteristics of the HVS which are ob-
tained from psychophysical experiments of vision research. Although anatomy 
provides us with detailed physiological evidences about the front-end of the HVS 
(optics, retina, LGN etc.), a thorough understanding of the latter stages of the visual 
pathway (visual cortex, etc.) in charge of higher-level perception is still unachiev-
able, which makes the construction of a complete physiological HVS model impos-
sible. Consequently HVS models used by visual quality metrics are mostly based 
on psychophysical studies and only account for lower-level perception. Physiologi-
cal and psychophysical factors typically incorporated into the HVS model include 
color perception, luminance adaptation, multi-channel decomposition, contrast sen-
sitivity function (CSF), masking, pooling, etc., as shown in Fig. 1. 

Color 

Perception

Luminance 

Adaptation

Multi-channel 

Decomposition
CSF Masking

 

Fig. 1. A typical HVS model 

Each of the perceptual factors listed above will be explained in detail in this 
section. But before that, it should be noted that visual quality metrics will also 
model different transformations of the visual signal, before it is perceived by the 
human eyes. For example, at the very beginning, visual signal usually is repre-
sented by pixel values. When displayed on a Cathode Ray Tube (CRT) or Liquid 
Crystal Display (LCD) monitor, these pixel values will be transformed into light 
intensities, which have a non-linear relationship with their corresponding pixel 
values. This non-linear relationship is determined by the gamma value of the dis-
play1 and may be slightly different for the R, G, and B channels which will be in-
troduced below. 

                                                           
1 An excellent explanation on “gamma” can be found in [57]. 
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2.2.1   Components of the HVS Model 

• Color perception 

R, G, and B stands for the three primary colors Red, Green, and Blue, which can 
be combined to create most of the visible colors. RGB color space is commonly 
employed by camera sensors and in computer graphics. There are physiological 
evidences that justify the use of this color space. When lights pass through the op-
tics of the eye and arrive at the retina, they will be sampled and converted by two 
different types of photoreceptors: rods and cones. Rods and cones are responsible 
for vision at low light level and high light level, respectively. In addition, cones 
contribute in color perception. There are three types of cones: S cones, M cones, 
and L cones, which are sensitive to short, median, and long wavelengths, respec-
tively, as shown in Fig. 2. They are often depicted as blue, green, and red recep-
tors, although as a matter of fact they do not accurately correspond to these colors. 
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Fig. 2. Normalized response spectra of human cones, S, M, and L types, with wavelength 
given in nanometers [85] 

Responses of the cones need to be further processed at a higher stage of the HVS 
for the purpose of “decorrelation”. RGB channels are highly correlated with each 
other: by viewing the R, G, and B channels of a given image independently, you 
can find that each channel contains the entire image. Their correlations can also be 
seen from Fig. 2 where the three types of cones overlap in their sensitivities to the 
light wavelengths. Possibly for coding efficiency, HVS records the differences be-
tween the responses of the cones, rather than each type of cone’s individual re-
sponse. This is referred to as the opponent processing theory of color perception. 
According to this theory, there are three opponent channels: Black-White (B-W) 
channel, Red-Green (R-G) channel, and Blue-Yellow (B-Y) channel. Neural re-
sponse to one color of an opponent channel is antagonistic to the other color in the 
same channel. This explains a number of perceptual phenomena, e.g., you can 
perceive a reddish yellow (orange) but you never perceive a reddish green. Physio-
logical evidences support the existence of opponent channels: bipolar cells and gan-
glion cells of the retina may be involved in opponent color processing [88]. 
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Besides the above mentioned RGB and B-W/R-G/B-Y, many other color spac-
es are developed for different purposes, e.g., CIELAB, HSL, YIQ, and so on. 
Most of these share the common characteristic that they treat visual information as 
a combination of luminance and chrominance components. Chrominance compo-
nent is represented by two descriptors which usually have different physical mean-
ings for different color spaces, such as a* (red-green balance) and b* (green-blue 
balance) for CIE L* a* b*, H (hue) and S (saturation) for HSL, and I (blue-green-
orange balance) and Q (yellow-green-magenta balance) for YIQ. Luminance com-
ponent on the other hand is more or less the same which is to simulate the B-W 
opponent channel of the HVS. Since B-W channel carries most of the visual in-
formation, many visual quality metrics only make use of luminance information 
for quality assessment. According to the performance comparison of different col-
or spaces in visual quality metrics [86], there is only a slight performance loss due 
to abandoning the use of chrominance components, and on the other hand, the 
computational complexity can be reduced by a great amount. 

• Luminance adaptation 

It is well known that our perception is sensitive to luminance contrast rather than 
the luminance intensity. Given an image with a uniform background luminance I 
and a square at the center with a different luminance l + dl, if dl is the threshold 
value at which the central square can be distinguished from the background, then 
according to the Weber’s law the ratio of dl divided by l is a constant for a wide 
range of luminance l. This implies that our sensitivity to luminance variation is 
dependent to the local mean luminance. In other words, the local mean luminance 
masks the luminance variation: the higher the local mean luminance, the stronger 
is the masking effect. That is the reason why the term “luminance masking” is pre-
ferred by some authors rather than “luminance adaptation”. In practical implemen-
tations, the luminance of the original signal may serve as the masker to mask the 
luminance variation due to distortion.  

If the ratio of dl to l is used to represent the differential change of the lumi-
nance contrast dc, 

l

dlK
dc

×= , (1) 

where K is a constant, then the following equation 

ClKc +×= log , (2) 

can be obtained, which describes the relationship between the luminance contrast 
c and the luminance intensity l. Constants K and C can be determined experimen-
tally. According to equation (2), the perceived luminance contrast is a non-linear 
function of the luminance intensity. For visual quality metrics, one approach to 
model luminance adaptation is by applying such a logarithmic function or other al-
ternatives e.g., cube root, or square root function [13] before multi-channel 
decomposition. 

Another way to simulate luminance adaptation is to convert the luminance in-
tensity to the luminance contrast right after (rather than before) multi-channel 
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decomposition, as shown in Fig. 3. Peli E. in [54] defines a local band limited con-
trast measure for complex images, which assigns a local contrast at every point of 
an image and at every frequency channel. Multi-channel decomposition creates a 
series of bandpass-filtered images and lowpass-filtered images. For bandpass-
filtered image ak(x,y) and its corresponding lowpass-filtered image lk-1(x,y), the 
contrast at frequency subband k is expressed as a two-dimensional array ck(x,y): 

),(

),(
),(

1 yxl

yxa
yxc

k

k
k

−
= . (3) 

This is one of the many attempts to define luminance contrast in complex images, 
and it has been adopted in visual quality metrics such as [39, 44] with some modi-
fications. 

Color 

Perception
CSF Masking

Contrast 

Computation

Multi-channel 

Decomposition

 

Fig. 3. HVS model using contrast computation 

Other approaches to implement luminance adaptation can be found in Just No-
ticeable Difference (JND) modeling [35], which is closely related to visual quality 
assessment. In spatial domain JND, the visibility threshold of luminance variation 
can be obtained as a function of the background luminance, as shown in Fig. 4. In 
frequency domain JND, luminance adaptation effect is often implemented as a 
modification to the baseline threshold derived from the contrast sensitivity func-
tion, which will be introduced later. 
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Fig. 4. Luminance adaption: visibility threshold versus background luminance [12] 

• Multi-channel decomposition 

Instead of employing just one channel as in the early works [41, 40], multi-channel 
decomposition has been widely used for HVS modeling nowadays. Multi-channel 
decomposition is justified by the discovery of the spatial frequency selectivity and 
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orientation selectivity of the simple cells in the primary visual cortex. It can also be 
successfully used to explain empirical data from masking experiments. 

Both temporal and spatial multi-channel decomposition mechanisms of the 
HVS have been investigated over time, with more efforts paid to the spatial one. 
For spatial multi-channel decomposition, most studies suggest that there exists 
several octave spacing radial frequency channels, each of which is further tuned 
by orientations with roughly 30 degree spacing [50]. Fig. 5 shows a typical de-
composition scheme which is employed in [84] and is generated by cortex trans-
form [79]. Many other decomposition algorithms serving this purpose exist, e.g., 
steerable pyramid transform [64], QMF (Quadrature Mirror Filters) transform 
[65], wavelet transform [31], DCT transform [80], etc. Some of these aim at accu-
rately modeling the decomposition mechanism, while others are used due to their 
suitability for particular applications, e.g., compression [80]. A detailed compari-
son of these decomposition algorithms can be found in [85]. 

vvv

fy

fx

 

Fig. 5. Illustration of the partitioning of the spatial frequency plane by the steerable pyra-
mid transform [31] 

For temporal decomposition, it is generally believed that there exist two chan-
nels: one low-pass channel, namely sustained channel, and one band-pass channel, 
namely transient channel. Since most visual detailed information is carried in sus-
tained channel, HVS models employed by some video quality metrics like those in 
[44, 94] only use a single low pass temporal filter to isolate the sustained channel, 
while the transient channel is disregarded. Temporal filters can be implemented as 
either Finite Impulse Response (FIR) filters [44] or Infinite Impulse Response 
(IIR) filters [32], either before [44] or after spatial decomposition [83]. 

• Contrast sensitivity function 

Contrast sensitivity is the inverse of the contrast threshold – the minimum contrast 
value for an observer to detect a stimulus. These contrast thresholds are derived 
from psychophysical experiments using simple stimuli, like sine-wave gratings or 
Gabor patches. In these experiments, the stimulus is presented to an observer with 
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its contrast increasing gradually. The contrast threshold is determined at the point 
where the observer can just detect the stimulus.  

It has been proved by many psychophysical experiments that the HVS’s con-
trast sensitivity depends on the characteristics of the visual stimulus: its spatial 
frequency, temporal frequency, color, and orientation, etc. Contrast sensitivity 
function (CSF) can be used to describe these dependences. Fig. 6 shows a typical 
CSF quantifying the dependency of contrast sensitivity on spatial frequency. The 
decreasing sensitivity for higher spatial frequency is a very important HVS prop-
erty which has been widely applied in image and video compression: because the 
HVS is not sensitive to signals with higher spatial frequencies, larger quantization 
can be applied to them without introducing visible distortions. On the other hand, 
the decreasing sensitivity for lower frequencies is less crucial, and in many cases it 
has been neglected intentionally resulting in a low-pass version of the CSF [1]. 
CSF is more complex when the influences of other factors like temporal frequency 
or color are considered in conjunction with the spatial frequency [87]. 
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Fig. 6. A typical spatial CSF function 

It should be noted that spatial frequency of a visual signal is a function of view-
ing distance. When the observer moves closer to the display or away from it, the 
spatial frequency of the visual signal will be changed. As a result, in order to make 
use of the CSF in the correct way, either viewing distance needs to be taken as a 
parameter for spatial frequency calculation, or the viewing distance should be 
fixed, e.g., 6 times image height for SDTV and 3 times image height for HDTV. 

To incorporate it into the HVS model, CSF can be implemented either before or 
after the multi-channel decomposition. In the former case, CSF is implemented as 
linear filters with frequency response close to the CSF’s. In the latter case, since 
visual signal has already been decomposed into different frequencies, CSF filter-
ing can be approximated by multiplying each subband with a proper value. In JND 
models, CSF is often used to obtain the baseline contrast threshold, which will be 
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further adjusted to account for luminance adaptation and the masking effect intro-
duced below. 

• Masking 

Masking effect refers to the visibility threshold elevation of a target signal (the 
maskee) caused by the presence of a masker signal. It can be further divided into 
spatial masking and temporal masking. 

In most spatial masking experiments, the target and masker stimuli are sine-
waves or Gabor patches. The target stimulus is superposed onto the masker stim-
uli, and contrast threshold of the target stimulus are recorded, together with the 
masker information, including its contrast, spatial frequency, orientation, phase, 
etc. Many of these experiments verify that the threshold contrast of the target de-
pends on the masking contrast, and also the other characteristics of the masker. 
Generally higher masking contrast and larger similarity between the masker and 
the target in their spatial frequencies, orientations, and phases will lead to higher 
masking effect, which is known as the contrast masking effect. Fig. 7 shows part 
of the contrast masking data from [33] describing the relationship between thresh-
old contrast and the masking contrast. With the increase of the masking contrast, 
the threshold contrast reduces first and then increases, consistently for the three 
viewers. The threshold contrast reduction, referred to as facilitation, is often ne-
glected in spatial masking models, resulting in a monotone increasing curve simi-
lar to Fig. 8. 

One way to implement contrast masking is to make the original visual content 
act as the masker and the distortion as the target [13, 18]. In this case, usually con-
trast masking is assumed to occur only between stimuli located in the same 
channel (intra-channel masking) characterized by its unique combination of spatial 
frequency, orientation, phase, etc. The output of contrast masking function will 
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Fig. 7 Experimental data for contrast masking from [33]. WWL, SH, JMF represent three 
subjects. 
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Fig. 8. Contrast masking function from [80], describing the masked threshold mijk as a func-
tion of DCT coefficient cijk. 

 
 

be multiplied to the CSF baseline threshold to account for the contrast threshold 
elevation caused by contrast masking. In another type of contrast masking model, 
original visual content will no longer serve as the masker. Instead, the original and 
the distorted signals pass through the masking model separately. The outputs of 
the masking model simulate the response of cortical visual neurons to these visual 
contents, which will be compared directly in the next stage (pooling). The re-
sponse of visual neuron can be modeled either by a saturating nonlinear transducer 
function [33] or by a contrast gain control process [65, 17, 81]. As an example of 
the latter case, Watson and Solomon integrate a variety of channel interactions in-
to their model [81] (inter-channel masking), which is achieved by division of the 
excitatory signal from each neuron of one channel by an inhibitory signal that is a 
linear combination of responses of neurons within neighboring channels. 

The sine-wave gratings or Gabor patches used to derive the above contrast 
masking models are oversimplifications with respect to natural images. Efforts 
have been made towards masking measurements with more realistic targets, e.g., 
quantization errors [47], and maskers, e.g., random noises, bandpass noises, and 
even natural images [82]. To emphasize their differences with the traditional con-
trast masking, different terms were used, such as noise masking, texture masking, 
or entropy masking, etc. 

Compared with spatial masking, temporal masking has received less attention 
and is of less variety. In most of its implementations in video quality assessment, 
temporal masking strength is modeled as a function of temporal discontinuity in 
intensity: the higher the inter-frame difference, the stronger is the temporal mask-
ing effect. Particularly, the masking abilities of scene cut have been investigated in 
many experiments, with both of its “forward masking” and “backward masking” 
effects identified [2]. 

• Pooling 

In vision system, pooling refers to the process of integrating information of differ-
ent channels, which is believed to happen at the latter stages of the visual pathway. 
In visual quality assessment, pooling is used to term the error summation process 
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which combines errors measured in different channels into a quality map or a single 
quality score. For image quality assessment, most approaches perform error sum-
mation across frequency and orientation channels first to produce a 2-D quality 
map, and then perform it across spaces to obtain a single score indicating the qual-
ity of the entire image. For video quality assessment, one more step is performed to 
combine quality scores for frames into a quality score for the video sequence. 

Minkowski summation, as shown below, is the most popular approach to im-
plement the error pooling process: 

ββ
1

)||(∑=
i

ieE . (4) 

In the above equation, ei represents error measured at channel/position/frame i; E 
is the integrated error; and β is the summation parameter which is assigned a value 
between 2 to 5 in most works. With a higher value of β, E will depend more on the 
larger eis, which is consistent with the reality that visual quality is mostly deter-
mined by the stronger distortions.  

In image quality metrics, higher-level characteristics of the vision system can 
be applied into quality metric by using spatial weighted pooling [74]: 
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where wi is the weight given to the error ei at spatial position i. It represents the sig-
nificance of ei to the visual quality of the image, and can be determined by cogni-
tive behaviors of the vision system, such as visual attention [46]. In video quality 
metrics, temporal pooling can also integrate cognitive factors, such as the asymmet-
ric behavior with respect to quality changes from bad to good and reverse [63]. 

2.2.2   Frameworks 

Fig. 9 shows two different frameworks of HVS-model-based quality metrics. It 
should be noted that most HVS-model-based metrics are FR metrics, so their in-
puts include both the original and distorted visual signals. 

In the first framework shown in Fig. 9 (a), the original and distorted signals 
pass through each of the HVS components separately, where the representations of 
the visual signals are changed sequentially simulating the processing of the HVS, 
until their differences are calculated and summed in the error pooling process. The 
summed error can be further converted to detection probability by using the prob-
ability summation rule as in [13], or converted to a quality score by using non-
linear regression as in [60]. 

In the second framework, JNDs need to be calculated in the domain where the 
original and the distorted signals are compared. JND is the short form for Just No-
ticeable Distortion which refers to the maximum distortion under the perceivable 
level. As shown in Fig. 9 (b), generally JND will be calculated as the product of  
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Fig. 9. Two frameworks of HVS-model-based quality metrics 

 
the baseline contrast threshold obtained from the CSF and some adjustments ob-
tained from luminance adaptation and various masking effects, such as contrast 
masking, temporal masking, and so on, which have been introduced in the last sec-
tion. The errors of the distorted signal will be normalized (divided) by their corre-
sponding JND values before they are combined in the error pooling process. 

Frameworks different from the above mentioned exist, but often have slight dif-
ferences. For example, the framework of DVQ [83] may be simplified as shown in 
Fig. 10, where the local contrast computation is added after multi-channel decom-
position, and the luminance adaptation is removed compared with Fig. 9 (b).  
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Fig. 10. DVQ’s framework 

2.2.3   Shortcomings 

As stated above, the foundation of the HVS model mostly grounds on psychophysi-
cal experiments which use simple visual stimuli and target at contrast threshold 
evaluation. This leads to two major problems to visual quality metric that employs 
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HVS model as its kernel. Firstly, a natural image usually is a superposition of a large 
number of simple stimuli. Their interactions cannot be fully described by a model 
which is based on experimental data of only one or two simple stimuli. Secondly, 
there is no justification for the use of experimental data of contrast threshold evalua-
tion in gauging visual quality, especially for images with supra-threshold distortions. 
For visual quality evaluation, it should be helpful to take higher-level behaviors of 
the vision system into consideration, but in most HVS models which target at con-
trast threshold prediction, only low-level perceptual factors are simulated. Besides 
the problems mentioned above, the high computational complexity is another disad-
vantage of the HVS-model-based quality metrics especially for video quality 
assessment. 

2.3   Engineering-Based Metrics 

To overcome these shortcomings brought by the vision model, recently many new 
visual quality metrics were designed by engineering approaches. Instead of found-
ing on accurate experimental data from subjective viewing tests, these engineering-
based quality metrics are based on (a) assumptions about, e.g., visual features that 
are closely related to visual quality; (b) prior knowledge about, e.g., the distortion 
properties or the statistics of the natural scenes. Since these features and prior 
knowledge are considered to be higher-level perceptual factors compared with 
lower-level ones used in the vision model, engineering-based quality metrics are 
also referred to as top-down quality metrics, and are considered to have the poten-
tial to better deal with supra-threshold distortions. In [27], International Telecom-
munication Union (ITU) recommends four video quality metrics after VQEG’s 
FRTV Phase II tests [67], all of which belong to this category. This may serve as 
the evidence for the promising future of engineering-based quality metrics. 

Unlike HVS-model-based metrics, most of which are FR, there are also many 
RR and NR engineering-based quality metrics. Since FR and RR metrics share 
great similarities in their processing routines, they will be reviewed together be-
low, followed by the introduction of NR metrics. 

2.3.1   FR and RR Metrics 

Viewed conceptually, most engineering-based FR and RR quality metrics consist of 
three processing steps: (a) feature extraction; (b) feature comparison; and (c) quality 
determination, as shown in Fig. 11. The extracted features characterize the quality 
metric and determine its performance. These features may be either scalar ones or 
vectors, and their differences can be obtained in various ways, such as the absolute 
distance, the Euclidean distance, etc. In most quality metrics, the feature differences 
can quantify video distortions locally, by using one or several 2-D distortion maps. 
And these distortion maps will be combined together to generate a single quality 
score. Two methods are commonly used for the last step: in Fig. 12 (a), spa-
tial/temporal pooling are performed first to generate several distortion factors each 
representing the intensity of a particular distortion type, and then these distortion 
factors will be combined at the end to generate a signal quality score for the entire 
image or video sequence; in Fig. 12 (b), distortions of different types are combined  
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together first to generate a quality map, and then spatial pooling is performed on this 
quality map to compute a single quality score. 

In this section, four classic engineering-based image or video quality metrics 
will be briefly explained, with focus on their implementations of the three process-
ing steps. 

• Picture Quality Scale (PQS) 

PQS [45] is a hybrid image quality metric employing both the HVS model and the 
engineering design approaches. Among the five distortion factors measured, three 
of them are obtained basically by using HVS models. Involved perceptual factors 
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include luminance adaptation, CSF, and texture masking. The other two engineer-
ing-based distortion factors measure blockiness and error correlations. 

To fit in the three processing steps introduced above, in PQS, non-linear mapped 
luminance values (to account for the luminance adaptation effect) are used as fea-
tures, and feature comparison is implemented by direct subtraction. These feature 
differences are further processed by the CSF and by using prior knowledge about the 
locations of the distortions to produce two distortion maps measuring blockiness and 
local error correlations, respectively. In the last step, spatial pooling is performed 
separately on each of the two distortion maps, generating two engineering-based dis-
tortion factors. Together with the three HVS-model-based distortion factors, they are 
de-correlated by singular value decomposition and linearly combined to generate the 
PQS quality score. 

Compared with the metrics that we will introduce below, the features and the 
comparison method used in PQS are very simple. In fact, it is not the features but 
the prior knowledge used, i.e., the locations of the distortions, that represents the 
idea of the engineering design approach. 

• Video Quality Model (VQM) 

VQM [55] is one of the best proponents of the VQEG FRTV Phase II tests [67]. 
For a video sequence, VQM generates seven distortion factors to measure the per-
ceptual effects of a wide range of impairments, such as blurring, blockiness, jerky 
motion, noise and error blocks, etc. Viewed conceptually, VQM’s distortion factors 
are all calculated in the same steps. Firstly, the video streams are divided into 3D 
Spatial-Temporal (S-T) sub-regions typically sized by 8 pixel × 8 lines × 0.2 sec-
ond; then feature values will be extracted from each of these 3D S-T regions by us-
ing, e.g., statistics (mean, standard deviation, etc.) of the gradients obtained by a 
13-coefficient spatial filter, and these feature values will be clipped to prevent them 
from measuring unperceivable distortions; Finally these feature values will be 
compared and their differences will be combined together for quality prediction. 

Three feature comparison methods used by VQM are Euclidean distance, ratio 
comparison, and log comparison, as shown by equation (6), (7), (8), respectively, 
where fo and fo2 are original feature values, and fp and fp2 are the corresponding 
processed feature values. Euclidean distance is applied to 2D features (CB-CR vec-
tors), and the other two are applied to scalar features (luminance values). The fea-
ture differences are integrated by spatial and temporal pooling first, generating 
seven distortion factors, which are then linearly combined at the last to yield the 
final VQM quality score. 
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• Structural Similarity Index (SSIM) 

SSIM was first proposed in [77, 73] as a FR image quality metric. It has been ex-
tended to video quality metrics [78, 58] and applied to numerous vision-related 
applications.  

The basic assumption of SSIM is that the HVS is highly adapted to extract 
structural information from the viewing field. SSIM divides the input images into 
overlapping image patches (e.g., 8×8 pixel blocks), and from each image patch 
three features were extracted. The first two scalar features are the mean μ and 
standard deviation σ of the luminance values of the image patch. The third feature 
can be regarded as a vector with its elements being luminance values normalized 
by σ. The extracted features from the reference image patch x and the distorted 
image patch y are compared by using the following equations2: 
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where l(x,y), c(x,y) and s(x,y) are termed as the luminance similarity, the contrast 
similarity and the structural similarity, respectively, and constants C1, C2 and C3 
are used to avoid division by zero. Different from PQS and VQM, SSIM adopts 
the quality determination method shown in Fig. 12 (b): the three similarity factors 
were combined first before the spatial pooling was performed. This makes SSIM 
being able to produce a spatially varying quality map which indicates quality 
variations across the image. 

• Visual Information Fidelity (VIF) 

VIF [60] is a FR image quality metric grounding on the assumption that visual 
quality is related to the amount of information that the HVS can extract from an 
image. Briefly, VIF works in the wavelet domain and uses three models to model 
the original natural image, the distortions, and the HVS, respectively. As shown in 
Fig. 13, C, D, E and F are the modeling results for the original image, the distorted 
image, the perceived original image, and the perceived distorted image, respec-
tively. Each of them is represented by a set of random fields, in such a way that 
the mutual information between any two of them is measurable. The mutual in-
formation between C and E, I(C,E), quantifies the information that the HVS can 
extract from the original image, whereas the mutual information between C and F, 

                                                           
2 According to the explanations about the features used by SSIM, equation (11) actually in-

volves both extraction and comparison of the third feature. 
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I(C,F), quantifies the information that can be extracted from the distorted image. 
The VIF quality score is given by equation (12). Viewed conceptually, the only 
feature used by VIF is the visual information. For implementation, the mutual 
visual information I(C,E) and I(C,F) are measured locally within each wavelet 
subband. Pooling over spaces and wavelet subbands is performed to obtain the 
numerator and the denominator of equation (12). 
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Fig. 13 Block-diagram of VIF from [60] 

2.3.2   NR Metrics 

As mentioned before, although human observers can easily assess quality without 
reference information, NR metric design is by no means an easy task. By contrary, 
NR quality assessment is so difficult that their applications are often limited to the 
cases where the prior knowledge about the distortion type is available. The distor-
tion types that NR metrics often deal with include blocking, blurring, ringing, and 
jerky/jitter motion, etc., caused by signal acquisition, compression, or transmission. 
Another prior knowledge used by some NR metrics asserts that natural images be-
long to a small set in the space of all possible signals, and they can be described by 
statistical models fairly well. However, distortions may cause the modeling’s inac-
curacy, which in turn can be used as an indication of the distortion strength. 

• Blocking 

Blocking artifacts arise from block-based compression algorithms, like JPEG, 
MPEG1/2, H.26x, etc., running at low bit rates. Due to the fixed block structure 
commonly used, blockiness often appears as periodic horizontal and vertical edges 
whose positions are fixed on block boundaries. Most NR quality metrics detect and 
quantify blockiness in the spatial domain, by directly measuring differences of the 
boundary pixels. And in some NR metrics [91, 5, 95] these boundary differences 
are further adjusted to account for the luminance and texture masking effects. On 
the other hand, a handful of NR metrics detect blockiness in frequency domain. For 
example in [76], 1-D FFT is applied to the differences of adjacent rows or columns 
of the image. Periodic peaks caused by blockiness are identified in the resultant 
power spectrum and are used to assess blockiness. In [71], eight sub-images are 
constructed from the distorted image. Their similarities are measured in the Fourier 
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transform domain to obtain two values describing inter-block similarity and intra-
block similarity, respectively, with the former being closely related to the blocki-
ness strength. The inter-block similarity is normalized by the intra-block similarity 
to yield the final blockiness measure. 

• Blurring 

Blurring artifacts can be caused by camera out-of-focus, fast camera motion, data 
compression, and so on. Unlike blockiness which can be easily localized, blurring 
is more image content dependent. Since blur affects edges most conspicuously, 
many spatial-domain blur metrics make use of this, by detecting step edges and 
then estimating the edge spread in the perpendicular direction [43, 49]. Also there 
are blur metrics that work in the frequency domain. For example in [42], the au-
thors proposed a blur determination technique based on histograms of non-zero 
DCT coefficients of the JPEG or MPEG compressed signals. In [9], a blur metric 
was developed based on local frequency spectrum measurement, i.e., 2D kurtosis, 
around the edge regions. 

• Ringing 

Ringing is another common compression artifact caused by high frequency quanti-
zation. Analogous to the Gibbs phenomenon, ringing artifact manifests itself in the 
form of spurious oscillations, and appears most prominently in the smooth regions 
around the edges. Compared with blocking metrics or blurring metrics, ringing NR 
metrics are less investigated, and most existing ones [48, 11] follow a similar con-
ceptual routine: identifying strong edges first and then detecting activities around 
them as the indication of the ringing artifact intensity. In an alternative approach 
[34], ringing strength is quantified by measuring the noise spectrum that is filtered 
out by anisotropic diffusion. 

It should be noted that since ringing artifacts often coexist with other compres-
sion artifacts, e.g., blockiness or blur, and appear to be less annoying compara-
tively, quality metrics rarely aim at quantifying ringing artifact only. Instead most 
NR metrics that measure ringing artifacts will also consider other distortion types, 
and will balance their contributions to the final quality prediction. 

• Jerky/jitter motion 

In videos, besides the above mentioned spatial artifacts, temporal impairments like 
jerky or jitter motion may arise. Jerkiness is often used to describe the “regular” 
frame freezing followed by a discontinuous motion. Generally it is caused by consis-
tent frame dropping on the encoder side (transcoder) serving as a bit rate or terminal 
capability adaptation strategy. On the other hand, jitter often describes “irregular” 
frame dropping due to packet loss during signal transmission. The influences of 
these motion fluidity impairments to visual quality have been investigated in 
[52, 38] by subjective viewing tests. Usually NR metrics quantifying motion im-
pairments [53, 92] will consider the following factors: the frame dropping duration 
(the shorter the better for visual quality), the frame dropping density (with the same 
amount of frame loss, the more scattered the better), and the motion activity (the 
lower the better). Compared with spatial distortion NR metrics, temporal distortion 
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NR metrics can provide better quality prediction that is more consistent with the 
judgments of the human observers. 

• Statistics of natural images 

Different from texts, cartoons, computer graphics, x-ray images, CAT scans, etc., 
natural images and videos possess their unique statistical characteristics, which has 
led to the development of many NSS (Natural Scene Statistics) models to capture 
them. As argued in [61], since distortions may disturb the statistics of natural scenes, 
a deviation of a distorted signal from the expected natural statistics can be used to 
quantify the distortion intensity. NR metrics based on this philosophy are few but 
very enlightening. For example in [61], this philosophy was clearly stated for the 
first time, and a NR metric was developed for JPEG2000 coded images, in which a 
NSS model [7] was employed to capture the non-linear dependencies of wavelet co-
efficients across scales and orientations. In [75], the authors proposed a technique 
for coarse-to-fine phase prediction of wavelet coefficients. It was observed that the 
proposed phase prediction is highly effective in natural images and it can be used to 
measure blurring artifacts that will disrupt this phase coherence relationship. 

3   Subjective Evaluation Standard 

Objective quality metrics are developed to approximate human perceptions, but up 
to this moment, no single metric can completely represent human response in vis-
ual quality assessment. As a result, subjective evaluation is still the only mean to 
fully characterize the performance of different systems.  A standard procedure is 
therefore needed for fair and reliable evaluations. 

Several international standards are proposed for subjective video quality evalu-
ation for different applications. The most commonly referenced standard is the 
ITU-R BT.500 defined by International Telecommunication Union (ITU) [26]. 
ITU-R BT.710 [25] is an extension of BT.500 dedicated for high-definition TV. 
ITU-T P.910 [29] is another standard which defines the standard procedure of dig-
ital video quality assessment with transmission rate below 1.5Mbit/s. These stan-
dards provide guidelines for various aspects of subjective evaluations, such as 
viewing condition, test sequence selection, assessment procedures, and statistical 
analysis of the results. The Video Quality Expert Group (VQEG) also proposed 
several subjective evaluation procedures to evaluate the performance of different 
objective quality metrics [68, 69, 70]. These proposed methods share many simi-
larities to the BT.500 and P.910 standards. 

A brief description of various aspects of the subjective evaluation standards 
will be discussed in this section. This includes the general viewing condition, ob-
server selection, test sequence selection, test session structure, test procedure, and 
post-processing of scores. 

3.1   Viewing Condition 

The general viewing condition defines a viewing environment that is most suitable 
for visual quality assessment. It minimizes the environment’s effect on the quality 
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of the image or video under assessment. In BT.500, two environments (laboratory 
environment and home environment) are defined. Laboratory viewing environ-
ments is intended for system evaluation in critical conditions. Home viewing envi-
ronment, on the other hand, is intended for quality evaluation at the consumer side 
of the TV chain. The viewing conditions are designed to represent a general home 
environment. Table 1 tabulates some parameters of viewing conditions used in dif-
ferent standards. 

Table 1. General Viewing Conditions 

 Condition BT.710 
BT.500 

(lab env) 

BT.500 

(home env) 
P.910 

a 
Ratio of viewing distance to 
picture height 

3 - 
Function of screen 
height 

1-8H 

b 
Peak luminance on the 
screen (cd/m2) 

150-250 - 200 100-200 

c 
Ratio of luminance of inac-
tive screen to peak lumi-
nance 

≤0.02 ≤0.02 ≤0.02 ≤0.05 

d 

Ratio of luminance on the 
screen when displaying only 
black level in a completely 
dark room, to that corre-
sponding to peak white 

Approx. 0.01 Approx. 0.01 - ≤0.1 

e 

Ratio of luminance of back-
ground behind picture moni-
tor to peak luminance of pic-
ture 

Approx. 0.15 Approx. 0.15 - ≤0.2 

f 
Illumination from other 
sources 

low low 200lux ≤20lux 

g Chromaticity of background D65 D65 - D65 

h Arrangement of observers 

Within ±30o ho-
rizontally from 
the center of the 
display. The 
vertical limit is 
under study 

Within ±30o rela-
tive to the normal 
(only apply to 
CRT, other dis-
play are under 
study) 

Within ±30o rela-
tive to the normal 
(only apply to 
CRT, other dis-
play are under 
study) 

- 

i Display size 1.4m (55 in) - - - 

j 
Display brightness and con-
trast 

- 
Setup via PLUGE 
[28, 24] 

Setup via PLUGE 
[28, 24] 

- 

3.2   Candidate Observer Selection 

To obtain reliable assessments from observers, certain requirements on the selec-
tion of observers must be met. Firstly, their eyesight should be either normal or 
has been corrected to normal by spectacles. Prior to the test session, observer must 
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be screened for normal eyesight, which includes normal visual acuity and normal 
color vision. Normal visual acuity can be checked by the Snellen or Landolt chart. 
A person is said to have normal acuity when he/she can correctly recognize the 
symbols on the standard sized Snellen chart 20/20 line when standing 20 feet from 
the chart. At 20 feet, the symbols on the 20/20 line subtend five minutes of arc to 
the observers, and the thickness of the lines and spaces between lines subtends one 
minute of arc. Normal color vision can be checked by specially designed charts, 
for instance, the Ishihara charts. Numbers or patterns of different colors are 
printed on plates with colored background. A person with color deficiency will see 
numbers or patterns different from the person with normal color vision. The ob-
server is classified as having normal vision if he/she has no more than a certain 
number of miss-identification of the patterns. In [29], it is required that observers 
cannot make more than 2 mistakes out of 12 test plates.  

Another requirement to the observers is that they should be familiar with the 
language used in the test. The observer must be able to understand the instruction 
and provide valid response with semantic judgment terms expressed in that 
language.  

In a formal subjective evaluation experiment, the observers should be non-
experts, i.e., they should not be directly involved in video quality assessment as 
part of their works, and should not be experienced assessors. At least 15 observers 
should be used to provide statistically reliable results. However, in early phase of 
the development stage, an informal subjective evaluation with 4 to 8 expert ob-
servers can provide indicative results. 

3.3   Test Sequence Selection 

No single set of test material can satisfy all kinds of assessment problems. Particular 
types of test material should be chosen for particular assessment problems. For ex-
ample, in a study of the overall performances of two video coding systems for digital 
TV broadcast, sequences with a broad range of contents and characteristics should 
be used. On the other hand, if the systems being assessed are targeted for video con-
ference on mobile network, head-and-shoulder sequences should be chosen. 

For general purpose video system assessment, a broad range of contents should 
be chosen. Video sequences from movies, sports, music videos, advertisements, 
animations, broadcasting news, home videos, documentaries, etc., can be included 
in the test set. Different characteristics of the test sequences should also be consid-
ered. The test set should have different levels of color, luminance, motion, spatial 
details, scene cuts, etc.   

When impairment evaluation is performed, the sequences with different levels 
of impairment should be produced in order to generate tractable results for per-
formance analysis. 

3.3.1   Spatial and Temporal Information 

Sequences with different levels of spatial and temporal information should be cho-
sen for general purpose assessment. The P.910 standard defined a method to 
measure these kinds of information in a video sequence. 
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The spatial information (SI) is a simple measure of the spatial complexity in the 
sequence. Each luminance plane Fn in a video frame at time n is first filtered with 
the Sobel filter to obtain a filter output Sobel(Fn). The standard deviation over all 
pixels in the frame, stdspace[Sobel(Fn)], is then computed. This operation is re-
peated for every frame in the sequence. The SI is defined as the maximum stan-
dard deviation of all frames, i.e.,  

SI = maxtime{stdspace[Sobel(Fn)]}. (13) 

The temporal information (TI) measures the change of intensity of the frames over 
time. Intensity change can be caused by motions of objects or background, change 
of lighting conditions, camera noises, etc. To compute TI, first we compute 
Mn(i,j), the difference between pixel values of the luminance plane at the same lo-
cation but in successive frames, i.e., 

Mn(i,j) = Fn(i,j)- Fn-1(i,j), (14) 

where Fn (i,j) is the pixel value at ith row and jth column in the frame at time n. TI 
is then defined as 

TI = maxtime{stdspace[Mn(i,j)]}. (15) 

If there are scene cuts in the sequence, two values of TI may be computed, one for se-
quence with scene cut, and one for sequence without scene cut. In addition, scenes 
with high SI are generally associated with relatively high TI, since motion in complex 
scenes usually results in large differences in intensity in successive frames. 

3.4   Structure of Test Session 

The maximum duration of a single test session is 30 minutes. A break of a few 
minutes should be given to the observer before the next test session starts. At the 
beginning of the first test session, about five stabilizing presentations should be in-
troduced to stabilize assessor’s opinions. Scores obtained from these presentations 
should not be taken into account. For subsequent sessions, about three stabilizing 
sequences should be presented at the beginning of each session. In addition, sev-
eral training sequences should be introduced before the first session starts in order 
to familiarize the observers with the assessment procedure. The observers can ask 
questions regarding the assessment after the training sequences. The whole proc-
ess is illustrated in Fig. 14. 
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Fig. 14. Test session structure 
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A pseudo random order of the sequences should be used for each assessor. The 
order can be derived from Graeco-Latin squares or other means. This can reduce 
the effects of tiredness or adaptation on the grading process. Also, the same pic-
ture or sequence should not be used for consecutive presentations, even with dif-
ferent levels of distortions, to prevent ambiguity. 

3.5   Assessment Procedure 

There are numerous Full-Reference and No-Reference assessment procedures tar-
geted for different problems. In the full-reference case, the two commonly used 
evaluation procedures are double-stimulus impairment scale (DSIS) and double-
stimulus continuous quality-scale (DSCQS). DSIS is used for failure characteriza-
tion, e.g., identifying the effect of certain impairment introduced in the video 
encoding or transmitting process. DSCQS is used when an overall system evalua-
tion is need. No-Reference assessment can be performed using the single stimulus 
(SS) method. These three assessment procedures will be briefly described in this 
section. Readers should refer to [26] for more detailed descriptions of different as-
sessment procedures. 

3.5.1   Double-Stimulus Impairment Scale 

DSIS method is a cyclic assessment procedure. An unimpaired reference image or 
sequence is presented to the observer first, followed by the same signal with im-
pairments added by the system under test. The observer is asked to vote on the 
impaired one while keeping in mind the reference. 

The structure of presentations is shown in Fig. 15. There are two variants of the 
structure. In variant I, the reference and the impaired picture or sequence are pre-
sented only once. In variant II, the reference and impaired material are presented  

 
T1 T2 T3 T4

Vote

Variant I

T1 T2 T3 T4

Vote

Variant II

T1  = 10s Reference sequence

T2  = 3s Mid-grey 

T3  = 10s Test condition

T4  = 5-11s Mid-grey

T2 T1 T2 T3

 

Fig. 15. Presentation structure of DSIS 
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twice. When the impairment is very small or when the presented material is a 
video sequence, variant II is preferred though it is more time consuming. The ob-
servers should be asked to look at the reference and impaired material for the 
whole duration of T1 and T3, respectively. A mid-gray screen (T2) is shown 
between T1 and T3 for a duration of about 3 seconds. If variant I is used, voting 
period starts immediately after the impaired material is presented. If variant II is 
used, voting period starts when the pair of reference and impaired material is 
shown at the second time. In either variant, a 5 to 11 seconds mid-gray (T4) is dis-
played before the next presentation. 

The scores are recorded by using the five-grade impairment scale. The five 
grades and their distortion level descriptions are as follow: 

5 imperceptible 
4 perceptible, but not annoying 
3 slightly annoying 
2 annoying 
1 very annoying 

A form with clearly defined scale, numbered boxes or some other means to record 
the grading should be provided to the observers for score recording. 

The impairments of the test material should have a broad range so that all five 
grades in the grading scale should be chosen by the majority of observers, and the 
impairments should be evenly distributed among the five grading levels. 

3.5.2   Double-Stimulus Continuous Quality Scale 

The double stimulus continuous quality scale (DSCQS) method is an effective 
evaluation method for overall system performance. The structure of the presenta-
tion is somewhat similar to that of DSIS, except that the pair of reference and im-
paired material is presented in random order. The observer does not have the 
knowledge of the display order, and he/she will give scores for both reference and 
impaired images or sequences. 

There are two variants of the DSCQS presentation structure. In variant I, only 
one observer participates in a test session. The observer is free to switch between 
signal A and B until he/she is able to determine a quality score for each signal. 
This process may be performed two or three times for duration of up to 10 sec-
onds. In variant II, at most three observers can assess the material simultaneously. 
If the material is a still picture, each picture will be displayed for 3 to 4 seconds 
with five repetitions. For video sequences, the duration of each sequence is about 
10 seconds with two repetitions. This presentation structure is illustrated in Fig.16. 

The observers are asked to assess the overall picture quality of each presenta-
tion by inserting a mark on a vertical scale. An example is shown in Fig. 17. The 
vertical scales are printed in pairs since both the reference and the impaired se-
quence must be assessed. The scales provide a continuous rating system for score 
from 0 to 100, which is different from the five-grade scale used in DSIS. They are 
divided into five equal lengths and associated descriptive terms are printed on the 
left of the first scale as general guidance to the observer. To avoid confusion, the  
 



Visual Quality Evaluation for Images and Videos 521
 

T1 T2 T3 T4

Vote

T1  = 10s Sequence A

T2  = 3s Mid-grey 

T3  = 10s Sequence B

T4  = 5-11s Mid-grey

T2 T1 T2 T3

 

Fig. 16. Presentation structure of DSCQS 

A B A B

11 12Sequence

Excellent

Good

Fair

Poor

Bad

 

Fig. 17. Grading scale score sheet for DSCQS 

observer should use pen with color different from the printed scale. Electronic 
scoring tools can be used only if its display does not compromise the viewing 
conditions listed in Table 1. 

3.5.3   Single Stimulus Methods 

In single stimulus methods, the image or sequence is assessed without the reference 
source, and a presentation consists of three parts: a mid-gray adaptation field, a 
stimulus, i.e., the image or sequence being assessed, and a mid-gray post-exposure 
field. The durations of these parts are 3, 10, and 10 seconds, respectively. The vot-
ing of the stimulus can be performed during the display of the post-exposure field. 
The overall structure is illustrated in Fig. 18. 

Depending on the applications, grading can be recorded by the 5-point impair-
ment scale used in DSIS, an 11-grade numerical categorical scale described in 
ITU-R BT.1082 [23], or the continuous scale used in DSCQS. 

Another variant of SS is that the whole set of test stimuli are presented three 
times, which means that a test session consists of three presentations. Each of  
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T1 T2 T3

Vote

T1  = 3s Mid-gray adaptation

T2  = 10s    Stimulus 

T3  = 10s    Mid-gray post-exposure 

Fig. 18. Presentation structure of SS 

 
them includes all the images or sequences to be tested only once. The first presen-
tation serves as a stabilizing presentation. The scores obtained from this presenta-
tion will not be taken into account. The score of each image or sequence is the 
mean score obtained from the second and third presentation. The display orders of 
the images or sequences are randomized for all three presentations. 

3.6   Post-Processing of Scores 

After obtaining the scores from the observers, these data must be statistically 
summarized into meaningful form for analysis. In addition, observers should be 
screened and statistically unreasonable results should be discarded. A relationship 
between an objective measurement of the picture quality and the subjective score 
can also be deduced from the data obtained.  

The following analysis is applicable to the results from the DSIS, DSCQS, and 
other methods which use numerical scales for grading. In the first case, the im-
pairment is rated on a five-point or multi-point scale and the score range is from 1 
to 5. In the second case, continuous rating scales are used and the results have in-
teger values between 0 and 100. 

3.6.1   Mean Scores and Confidence Interval Calculation 

The common representation of the scores is the mean score and confidence interval. 
Let L be the number of presentations in the test, J be the number of test conditions 
applied to a picture or sequence, K be the number of test images or sequences, R be 
the number of repetitions of a test condition applied on a test picture or sequence. 
The mean score, jkru , for each of the presentations is defined as 

∑
=

=
N

i
ijkrjkr u

N
u

1

1
, (16) 

where uijkr is the score of observer i for test condition j, sequence/image k, repeti-
tion r; and N is the number of observers. The overall mean scores, ju  and ku , 
could be calculated for each test condition and each test image or sequence in a 
similar manner. 
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The confidence intervals should be presented in addition to the mean scores to 
provide more information about the variability of the results. The confidence in-
terval is derived from the standard deviation and sample size. [26] proposed to use 
the 95% confidence interval, which is defined as [ ]jkrjkrjkrjkr uu δδ +− ,  where: 

N

S jkr
jkr 96.1=δ , (17) 

and the standard deviation for each presentation, Sjkr, is defined as: 

( )
( )∑

= −
−

=
N

i

ijkrjkr
jkr N

uu
S

1

2

1
. (18) 

The 95% confidence interval indicates that with a probability of 95%, the mean 
score will be within the interval if the experiment is repeated for a large number of 
times. As more samples are available, the confidence interval range gets smaller 
and the mean score becomes more reliable. 

3.6.2   Screening of Observers 

Sometimes scores obtained from certain observers may deviate from the distribu-
tion of the normal scores significantly. This kind of observers must be identified 
and their scores discarded from the test. The β2 test is suggested in BT.500 to ac-
complish such task. 

For each test presentation, we first compute the mean, jkru , standard deviation, 

Sjkr, and kurtosis coefficient, β2jkr, where β2jkr is given by: 

( )2
2

4
2

m

m
jkr =β  with 
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x

∑
=

−
= 1 . 

(19) 

If β2jkr  is between 2 and 4, the distribution of the score can be assumed to be nor-
mal. Now for each observer, i, we need to find the number of score entries that lie 
outside of the score distribution of each test presentation. The valid range of dis-
tribution of each test presentation is defined as jkrjkr Su 2±  if the distribution is 
normal. For non-normal distribution, the valid range is defined as jkrjkr Su 20± . 
Let Pi and Qi be the number of times that the score from observer i is above and 
below the valid range, respectively. Pi and Qi can be computed by the following 
procedure: 

 
for j, k, r =1, 1, 1 to J, K, R 

if  2 ≤ β2jkr ≤ 4, then: 
if jkrjkrijkr Suu 2+≥  then Pi = Pi+1 
if jkrjkrijkr Suu 2−≤  then Qi = Qi+1 
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else: 
if jkrjkrijkr Suu 20+≥  then Pi = Pi+1 
if jkrjkrijkr Suu 20−≤  then Qi = Qi+1 

 
where J, K, and R have the same meaning as in Section 3.6.1. After computing Pi 
and Qi  for observer i, if the following two conditions are met, then observer i will 
be rejected. 

Condition 1:  05.0>
⋅⋅

+
RKJ

QP ii  

Condition 2: 3.0<
+
−

ii

ii

QP

QP
 

The observer screening procedure should not be applied to the results of a given 
experiment more than once. In addition, it should be restricted to the experiment 
when there are relatively few observers (e.g., fewer than 20) participating the ex-
periment and all of them are non-experts. 

3.6.3   Relationship between the Mean Score and the Objective Measure of a 
Picture Distortion 

When evaluating a relationship between the mean scores and a type of impairment 
at different levels, or between the mean scores and some objective measurements 
of distortion, it will be useful if the relationship can be represented by a simple 
continuous function with the mean score as the dependent variable. 

In [26], the symmetric logistic function and a non-symmetric function are in-
troduced to approximate the relationship. For both cases, the mean score u must 
first be normalized by taking a continuous variable p so that 

( )
( )minmax

min

uu

uu
p

−
−= , (20) 

where umin is the minimum score available on the u-scale for the worst quality; and 
umax is the maximum score available on the u-scale for the best quality. The nor-
malized mean score p can be estimated by a symmetric logistic function. Let p̂ be 
the estimate of p. The function ( )Dfp =ˆ , where D is the distortion parameter, can 
now be approximated by a judiciously chosen logistic function, as given by the 
general relation 

( ) ( ) GDD Me
Dfp ⋅−+

==
1

1
ˆ , (21) 

where DM and G are constants and G may be positive or negative. To solve for DM 
and G, we define 
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1
1 −=
p

I , (22) 

and its estimate 

1
ˆ
1ˆ −=
p

I . (23) 

Combining (1.21) and (1.23), we obtained 

( ) GDD MeI ⋅−=ˆ . (24) 

Let J be the natural log of I, and Ĵ be the natural log of Î , i.e., 

( ) GDDIJ Me ⋅−== logˆ . (25) 

A linear relationship between Ĵ  and D is established. DM and G can then be found 
by minimizing ε, the mean squared estimation error between Ĵ  and J, which is 
defined as 

( )∑
=

−=
N

i
ii JJ

N
1

2ˆ1ε . (26) 

The simple least square method can be used to find the optimal DM and G. 
The symmetrical logistic function is particularly useful when the distortion 

parameter D can be measured in a related unit, e.g., the S/N (dB). If the distortion 
parameter was measured in a physical unit d, e.g., a time delay (ms), then the rela-
tionship between p̂  and d can be defined as 

( ) G
Mdd

p
/1/1

1
ˆ

+
= . (27) 

This is a non-symmetric approximation of the logistic function. Similar to the case 

of logistic function, we define Î  as 

1
ˆ
1ˆ −=
p

I , (28) 

and the estimated Ĵ  is 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

Md

d

G
IJ log

1ˆlogˆ . (29) 

The optimal values of dM and G can be solved by minimizing the mean squared er-
ror ε defined in (26) using the Levenberg-Marquardt algorithm. 
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4   An Application of Quality Comparison: AVS versus H.264 

4.1   Background 

One important application of subjective quality evaluation is to compare the per-
formance of two video encoding systems. Since human observers are the final 
judge of the quality of the encoded video, a subjective evaluation process is neces-
sary to obtain a comprehensive understanding of the performance of the systems 
being tested. 

In this section, we describe a comparison between two encoding systems, 
namely, the H.264/Advanced Video Coding (AVC) and the Audio and Video 
Coding Standard (AVS), based on objective distorion measurements and subjec-
tive evaluation. H.264/AVC is the most recent video coding standard jointly de-
veloped by the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC 
Moving Picture Experts Group (MPEG) [21]. Various profiles are defined in the 
standard to suite different applications. For example, simple baseline profile pro-
vides the basic tools for video conferencing and mobile applications that run on 
low-cost embedded systems, while the main profile is used in general applications. 
More complex High, High 10, and High 4:2:2 profiles are introduced in the Fidel-
ity Range Extension (FRext) of H.264 to further improve the coding efficiency for 
high-definition (HD) video and studio quality video encoding [62]. New coding 
tools, e.g., 8×8 block size transform, support of different chroma format, and pre-
cision higher than 8 bits, are utilized in these profiles.  

AVS is a new compression standard developed by AVS Workgroup of China 
[3, 4, 22]. AVS Part 2 (AVS-P2) is designed for high-definition digital video 
broadcasting and high-density storage media. It is published as the national stan-
dard of China in February, 2006. Similar to the H.264/AVC, AVS is a hybrid 
DPCM-DCT coding system with compression tools like spatial and temporal pre-
diction, integer transform, in-loop deblocking filter, entropy coding, etc [93]. The 
target applications of AVS include HD-DVD and satellite broadcast in China. 
AVS-P2 also introduced the X profile, which is designed for high quality video 
encoding. Several new tools are introduced: Macroblock-level adaptive 
frame/field coding (MBAFF), adaptive weighting quantization, adaptive scan or-
der of transform coefficients, and arithmetic coding of most syntax elements. 

In general, the structure of AVS and H.264 are very similar. The major difference 
is that many components in the AVS are less complex than the H.264 counterpart. 
For example, AVS utilizes only 4 different block sizes in motion estimation, while 
H.264 uses 7 block sizes. AVS has only 5 luminance block intra-prediction modes, 
compared to 13 modes in H.264. In addition, AVS utilizes a simpler in-loop de-
blocking filter, shorter tap filter for sub-pixel motion estimation, and other tech-
niques to reduce the complexity of the encoder. The AVS encoder requires only 
about 30% of the computation load of H.264 for encoding, but it is able to achieve 
similar coding efficiency. 

Objective comparisons between H.264-main profile and AVS-base profile were 
reported in several articles, e.g., in [93, 16, 72]. The results generally show that for 
smaller frame sized sequences, such as QCIF, and CIF, H.264 has a slight advantage 
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over AVS. For SD and HD video, AVS and H.264 are similar in their rate distortion 
performance. However, no comparison has been made between the AVS-X profile 
and the H.264-High profile. In this section, the results of the objective and subjective 
performance comparisons between these two profiles will be presented. Section 4.2 
describes the setup of the experiment. Objective and subjective evaluation results are 
presented in Section 4.3 and 4.4, respectively. In Section 4.5, we compare the accu-
racy of PSNR, and two other objective quality metrics that correlate better to human 
perception than PSNR, i.e., the Structural Similarity (SSIM) index and the Video 
Quality Metric (VQM), using the results obtained from subjective evaluation. 

4.2   Test Setup 

The performance comparison of AVS-X profile and H.264-high profile is divided 
into two parts: objective comparison and subjective comparison. In objective 
comparison, rate-distortion performance in terms of PSNR and bit rates is first 
used as the evaluation metric. Subjective evaluation of visual quality is also per-
formed to compare their coding performances as perceived by human observers. 

4.2.1   Sequence Information 

Table 2 shows all the video sequences used in this comparison. Since the target of 
this comparison is for high-fidelity video, only HD video sequences were used in 
the test. For 1280×720 progressive (720p) sequences, the target bit rates used for 
the test were 4, 8, 10, and 15 Mbps, and the frame rate was 60Hz. Both 
1920×1080 progressive (1080p) and 1920×1080 interlace (1080i) sequences were 
encoded at target bit rates of 6, 10, 15, and 20 Mbps, and at a frame rate of 25Hz. 

Table 2. Test Sequences Used in Test 

720p 1080p 1080i 

City PedestrianArea NewMobileCalendar 

Crew Riverbed Parkrun 

Harbour Rushhour Shields 

ShuttleStart Sunflower StockholmPan 

SpinCalendar ToysCalendar VintageCar 

4.2.2   Encoder Setting 

The JM 14.0 reference H.264/AVC encoder and the rm6.2h reference AVS en-
coder are used to encode the test video sequences. The IBBPBBPBBP… GOP 
structure was used, with intra-frames inserted in every 0.5 sec, i.e., one intra-frame 
in every 30 frames for 720p, and in every 12 frames for 1080p and 1080i. Table 3 
shows the general settings of the encoders. Note that due to memory limitation, 
only 2 reference frames were used when interlace videos are encoded with the 
H.264 encoder. 
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Table 3. Encoder Parameter Settings 

Setting H.264 AVS-P2 

Encoder version JM 14.0 rm6.2h 

Profile high X 

Number of reference frame 4  (2 for 1080i) 2 

Block size 16×16, 16×8, 8×16, 8×8, 8×4, 4×8, 
4×4 

16×16, 16×8,  8×16, 8×8 

Fast ME Enabled Enabled 

ME search range 32 32 

RD Optimization Enabled Enabled 

Interlace mode PAFF PAFF 

Loop filter Enabled Enabled 

Adaptive scan - Enabled 

Adaptive filter - Disabled 

4.2.3   Subjective Test Setup 

The subjective assessment was performed in a studio room with lighting condition 
satisfying the lab environment requirement of the ITU-R BT.500 standard, which 
is also briefly described in Section 3. The display monitor is a 65” Panasonic 
plasma display (TH-65PF9WK) and the viewing distance is 3 times the picture 
height. Background illumination has a D65 chromaticity.  

Thirty-five non-expert observers participated in the subjective test, and about 
half of them were male. All of them did not work in video processing related jobs, 
and were not involved in any video quality assessment within the past four 
months. Their eyesight was either normal or had been corrected to be normal with 
spectacles. 

Each observer compared 39 pairs of “reference” (H.264) and “processed” 
(AVS) sequences (13 pairs each for 720p, 1080p, and 1080i). The double-stimulus 
continuous quality scale (DSCQS) test method as described in Section 3.5.2 was 
used for this subjective test. 

Note that the uncompressed sequences are not used as the references as in nor-
mal practice because we want to compare the visual quality of H.264 and AVS se-
quences directly. Direct comparison allows the observers to immediately identify 
the small differences in visual quality and record the scores. 

4.3   Rate-Distortion Performance Comparisons Using PSNR, Bitrates  

The average PSNR change (ΔPSNR) and bit rate change (ΔBitrate) computed by 
the method described in [6] are used to measure the objective performance of the 
two coding systems. The ΔPSNR is a measure of the difference in PSNR of the 
target and reference systems under the same bit rate range. Similarly, ΔBitrate 
measures the difference of bit rates under the same PSNR range. A sequence is 
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encoded at four different bit rates by both the “reference” and the “target” sys-
tems, then ΔPSNR and ΔBitrate of the target system are computed from these 
rate-distortion points as illustrated in Fig. 19. In general, a ΔPSNR of 0.3dB is 
equivalent to a ΔBitrate of approximately 5%.  

compute 

ΔBitrate 

from this 

distortion 

range

PSNR

Bitrate

compute ΔPSNR from this 

bitrate range

RD curve of system 1

RD curve of system 2

 

Fig. 19. Illustration of RD performance evaluation by ΔPSNR and ΔBitrate 

The advantage of using this performance evaluation method is that it evaluates 
the performance of a system at multiple bit rates, so that a better understanding of 
the system under different bit rates can be acquired. In addition, both bit rate and 
the PSNR of encoded video sequences can be computed easily. Because of these 
advantages, this method is commonly used in encoding system performance com-
parison. In our experiment, sequences in H.264 format are defined as the refer-
ence. The ΔPSNR and ΔBitrate of all the test sequences encoded by AVS are 
shown in Table 4. 

For the 720p sequences, the average ΔBitrate of all sequences is 0.71%, which 
implies that the overall coding efficiency of AVS and H.264 is very similar. How-
ever, the ΔBitrate fluctuates from -8.98% (Crew) to 10.72% (SpinCalendar). The 
coding efficiency of AVS depends quite heavily on the content of the sequence. 
For the 1080p sequences, the average ΔBitrate is -2.31%. AVS seems to have a 
slight advantage in encoding these sequences. The range of ΔBitrate varies only 
from -7.81% to 0.78%. The variation is less than that for 720p sequences. On the 
contrary, AVS has an average ΔBitrate of 5.48% for 1080i sequences, which 
means the coding efficiency is lower than that of H.264. In addition, a large varia-
tion in ΔBitrate is observed, with a range from -4.56% to 19.77%. The rate-
distortion (RD) curves of several sequences are shown in Fig 20. The RD 
performance we obtained is similar to those reported in [16]. Although they were 
using older reference encoders, they also reported that AVS performs slightly 
worse on sequences like City and SpinCalendar, and slightly better on sequences 
like Harbour and Crew. 



530 S. Li, L. Chun-Man Mak, and K.N. Ngan
 

Table 4. ΔPSNR and ΔBit rate for all test sequences 

Size Sequence ΔPSNR ΔBitrate SI 

City -0.247 10.45% 77.41 

Crew 0.220 -8.98% 72.21 

Harbour 0.109 -3.60% 92.3 

ShuttleStart 0.092 -5.01% 35.21 

SpinCalendar -0.205 10.72% 103.27

720p 

Average -0.006 0.71% - 

PedestrianArea 0.016 -1.10% 37.11 

Riverbed 0.402 -7.81% 39.46 

Rushhour -0.040 -2.16% 26.74 

Sunflower 0.005 0.78% 39.39 

ToysCalendar 0.001 -1.26% 54.7 

1080p 

Average 0.077 -2.31% - 

NewMobileCalendar -0.398 19.77% 73.44 

Parkrun -0.194 5.18% 123.01

Shields -0.188 10.08% 60.02 

StockholmPan 0.044 -3.08% 73.95 

VintageCar 0.090 -4.56% 58.3 

1080i 

Average -0.129 5.48% - 

 Overall Average -0.019 1.29% - 

 
The RD performance shows that the content of the sequence has certain impact 

on the coding efficiency. It seems that H.264 performs better in sequences with 
lots of textures, such as City, SpinCalendar, NewMobileCalendar, and Shields. 
ΔBitrate of AVS are more than 10% in these sequences. The right-most column in 
Table 4 shows the spatial information (SI) of all sequences. SI is a simple measure 
of spatial texture introduced in section 3.3. Fig. 21 shows the relationship between 
ΔBitrate and SI for different sequences. Although there is no linear relationship 
between bitrate and SI, we can still see that positive ΔBitrate appears more fre-
quently on sequences with high SI, i.e., highly textured sequences. In addition, the 
Pearson’s correlation coefficient between ΔBitrate and SI is 0.402, suggesting that 
there is a positive relationship between SI and ΔBitrate. For other types of video, 
AVS is able to achieve a higher efficiency than H.264, e.g., Crew and Riverbed. 
The usage of more than 2 reference frames and more complex interpolation filter 
in H.264 does not seem to give a significant improvement in coding efficiency for 
these sequences. The simpler coding tools in AVS are sufficient to give similar ef-
ficiency compared with H.264. 
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Fig. 20. RD Curves of some 720p, 1080p, and 1080i sequences 
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Fig. 21. ΔBitrate and SI relationship for different sequences 

4.4   Subjective Evaluation Results  

The scores given by the observers in the subjective test are used to evaluate the 
subjective quality of the sequences. The mean opinion score (MOS) of each se-
quence is first computed. Then the difference mean opinion score (DMOS), i.e., 
the difference in MOS between the AVS and the H.264 sequences, is used to 
compare the subjective quality of H.264 and AVS. A positive DMOS implies 
AVS has a better subjective quality than H.264. The DMOS for the all sequences, 
along with the 95% confidence level, are shown in Fig. 22. 

The average DMOS of all sequences is 0.13 with standard deviation of 2.26. 
Note that the full range of the score is 100. This indicates that the overall visual 
quality of AVS and H.264 are very similar in many sequences. Fig. 23 shows the 
average DMOS of each sequence for the four bit rates used. The magnitudes of 
the average DMOS are all less than 3, which is also very small. We also computed 
the average DMOS of sequences with the same bit per pixel. The results are 
shown in Fig. 24. It is clear that on the average, AVS and H.264 have very similar 
performance in visual quality at different bit rates. 

For 720p sequences, most of the sequences encoded by AVS have visual qual-
ity similar to those encoded by H.264. The DMOS scores range only from -5 to 5 
except for one sequence: Harbour at 4 Mbps, which has a DMOS of -6.29. Al-
though the PSNR of the AVS encoded sequence is only 0.17dB lower than the one 
encoded by H.264, the distortion is more obvious than other sequences. In fact, for 
City at 8 Mbps, the PSNR of AVS encoded sequence is 0.33 dB lower than H.264, 
but the DMOS is 3.24. As mentioned in Section 1.4.3, AVS performs worse in 
terms of RD performance for sequences containing highly-textured area. 
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Fig. 22. DMOS for sequences in different frame sizes 
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Fig. 23. Average DMOS of each sequence 

 

Fig. 24 Average DMOS of sequences with the same BPP 
 
 

However, the subjective test results show that the visual quality is not affected by 
the reduction in coding efficiency. The DMOS for textured sequences, such as 
City and SpinCalendar, are all close to zero, even when their ΔBitrate are over 
10%.  

The DMOS obtained for 1080p and 1080i sequences have similar trend to that 
of 720p sequences. Although all sequences have non-zero DMOS, the magnitudes 
are all smaller than 5. No obvious difference in visual quality was observed from 
these sequences. Again, textured sequences such as NewMobileCalendar and 
Shields have DMOS close to zero. The ΔBitrate for NewMobileCalendar is close 
to 20% but the difference is visually unobservable. This phenomenon can be ex-
plained by the properties of the HVS. The spatial-temporal contrast sensitivity 
function of human eyes exhibits a non-separable band-pass characteristic with a 
low sensitivity at high spatial or temporal frequency [14]. Distortions in textured 
area, especially in moving regions, are less visible to human eyes than those in 
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smooth and slow moving regions. As a result, even when ΔBitrate are over 10% 
for many sequences, the DMOS for them are all close to zero and the visual 
qualities are the same. The results clearly show that the commonly used RD per-
formance based on PSNR and bit rates is not a good visual quality performance 
indicator for video coding systems. 

4.5   The Use of PSNR, SSIM, and VQM in Quality Assessment 

As discussed in Section 2, numerous objective quality metrics have been proposed 
to measure the visual quality of images or videos. Compared with PSNR, these 
metrics generally have a higher correlation with the subjective evaluation results. 
If an objective quality metric can accurately predict the perceived visual quality, 
then the difference of metric scores should be able to predict the visual difference 
of two sequences encoded by different systems. This can be illustrated in Fig. 25. 
Let Dref and Dtar be the full-reference distortions computed for sequences encoded 
by the reference and target systems, respectively. The difference between Dref and 
Dtar, denoted by Dsys, should also have a high correlation to the DMOS obtained 
from subjective evaluation. In this section, two popular metrics, SSIM and VQM, 
are tested to see if they can model human perception of distortion better than  
the conventional PSNR. Since SSIM is a metric designed for image, the average 
SSIM of all frames of the encoded sequence is used in our experiment. 

Original 

Sequence

Sequence 

encoded by 

reference 

system

Sequence 

encoded by 

target system

Dref Dtar

Dsys

DMOS  

Fig. 25. Illustration of relationship of original sequence and sequence encoded by reference 
and target systems 

The performance of an objective quality metric can be evaluated by its correla-
tion to the MOS from subjective evaluation. Three measurements of correlation: 
Pearson’s correlation coefficient (PCC), root mean square error (RMSE), and 
Spearman’s rank order correlation coefficient (SROCC) are used for our evalua-
tion. The PCC between two data sets, X and Y, is defined as 
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The RMSE between X and Y can be given as 
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For the two sets of data X and Y, element Xi and Yi are converted to rankings xi and 
yi, and SROCC is defined as the PCC of the ranks of X and Y. 

A nonlinear mapping between the objective and subjective scores can be ap-
plied so that the objective metric can better predict the subjective quality. In both 
VQEG Phase-I and Phase-II testing and validation, nonlinear mapping is allowed, 
and the performance of the objective metric is computed after the mapping [60]. 
The mapping of an objective quality score x is mapped to Q(x) by (32) and (33). 

( ) ( )( ) 54321 ,logistic βββββ +⋅+−⋅= xxxQ  (32) 
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1

1

2

1
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The parameters {β1, β2, β3, β4, β5} can be found by minimizing the sum of squared 
difference between the mapped score Q(x) and the corresponding MOS or DMOS. 
An illustration of the effect of this nonlinear mapping is shown in Fig 26. 
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Fig. 26. Illustration of the effect of nonlinear mapping 
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The PSNR, SSIM, and VQM scores are first computed for all the H.264 and 
AVS encoded sequences. Then the score differences for the corresponding se-
quence pairs (that have the same content but encoded by different standards) de-
noted by DPSNR, DSSIM, and DVQM, are computed. Finally, the PCC, RMSE, 
and SROCC which measure the correlation between subjective quality scores 
DMOS and the nonlinearly mapped DPSNR, DSSIM and DVQM are computed. 
The results are shown in Table 5. VQM generates the highest PCC and SROCC, 
and the smallest RMSE, which indicates that VQM’s correlation to the DMOS is 
the highest among the three quality metrics. SSIM outperforms PSNR in PCC and 
RMSE, but its SROCC is slightly lower than that of PSNR. 

Table 5. PCC, RMSE, SROCC of three objective distortion metrics 

 PCC RMSE SROCC 

PSNR 0.1396 2.477 0.1718 

SSIM 0.3421 2.350 0.1206 

VQM 0.4428 2.243 0.1842 

 
 
The nonlinearly mapped quality scores and the DMOS are plotted in Fig. 27 to 

Fig. 29. Even after the nonlinear mapping, we still cannot observe strong correla-
tion between DMOS and the objective quality scores. The PCC and SROCC of all 
distortion metrics are relatively small, to be precise, below 0.5 and 0.2, respec-
tively. This is quite different from the experimental results of other related works, 
e.g., [55, 77] where the correlation values are above 0.8 typically. The small corre-
lation values are mainly due to the unperceivable differences between the H.264 
and AVS encoded sequences. For many sequences, the DMOS is zero while the 
differences in the objective metrics, i.e., DPSNR, DSSIM, and DVQM, are non-
zero. This is different from the experiments in [55, 77], where the visual quality 
differences between the reference and the distorted images or videos are much 
more obvious, and therefore the DMOS are usually non-zero. The large number of 
zero DMOS results in the bad performances of the tested objective quality metrics. 
Although VQM has comparably better performance, it still cannot accurately pre-
dict the DMOS which correspond to nearly unperceivable differences. Therefore 
for comparing two systems with similar performances, subjective evaluation is 
still a valuable tool. 
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Fig. 27. DPSNR and nonlinear mapped DPSNR vs DMOS 

 

Fig. 28. DSSIM and nonlinear mapped DSSIM vs DMOS 

 

Fig. 29. DVQM and nonlinear mapped DVQM vs DMOS 
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5   Conclusions 

Subjective evaluation is the most accurate method for measuring perceptual visual 
quality; however, it is time and money consuming, and is not applicable to most 
real-world applications. Therefore, objective visual quality metrics are developed, 
and many of them are discussed in this chapter. We categorized the objective vis-
ual quality metrics into two categories, i.e., the HVS-model-based metrics and en-
gineering-based metrics, and introduced them separately. The HVS-model-based 
metrics account for various low-level characteristics of the HVS, such as 
luminance adaptation, CSF, contrast masking, etc., which are derived from 
physiological or psychophysical studies. These perceptual factors and also their 
implementations in visual quality metrics were discussed in detail. Two quality 
metric frameworks are presented to illustrate how these perceptual factors cooper-
ate. Different from HVS-model-based quality metrics, engineering-based quality 
metrics are generally based on assumptions and prior knowledge, e.g., assump-
tions about the features which the HVS most likely correlate with visual quality, 
and the prior knowledge about the distortion properties. A conceptual framework 
was presented for FR and RR metrics, and four classic FR or RR visual quality 
metrics were summarized by fitting them into this framework. NR metrics were 
reviewed on the basis of the prior knowledge that they used, including the differ-
ent distortion types and the statistics of the natural scenes. 

An overview of standard subjective evaluation procedure is then presented. 
Specifically, we described the standard evaluation procedure ITU-R BT.500, 
which is one of the most commonly used procedures for subjective evaluation. 
The viewing environment, observer selection, test sequence selection, test proce-
dure and score analysis, which are all important factors that affect the reliability 
and generality of the evaluation results, are discussed.  

We also described an application of subjective video quality evaluation. Two 
recently developed video coding standards, H.264/AVC and AVS, are compared. 
Standard objective comparison method utilizing the rate-distortion performance 
shows that AVS has comparable performance to the H.264/AVC, except in some 
video sequences that have more complex textures. However, subjective evaluation 
shows that even on these sequences, the performance of the two systems are about 
the same. This demonstrates that the commonly used rate-distortion performance 
is not an accurate performance evaluation method. Two objective metrics, SSIM 
and VQM, are then utilized as the distortion measures and compared with PSNR. 
The results show that they are more correlated to the subjective evaluation results, 
but still cannot completely reflect the HVS perception. 

With more knowledge on the psychophysical model of HVS, more accurate ob-
jective quality metrics can be developed in the future. However, modeling the ex-
tremely complex HVS is a challenging task. Until a thorough understanding of the 
human perception can be established, subjective evaluation will remain to be the 
most reliable method we can use for visual quality evaluation. 
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Abstract. Scalable video coding provides an efficient solution when video is de-
livered through heterogeneous networks to terminals with different computational 
and display capabilities. Scalable video bitstream can easily be adapted to required 
spatio-temporal resolution and quality, according to the transmission require-
ments. In this chapter, the Wavelet-based Scalable Video Coding (W-SVC) archi-
tecture is presented in detail. The W-SVC framework is based on wavelet based 
motion compensated approaches. The practical capabilities of the W-SVC are also 
demonstrated by using the error resilient transmission and surveillance applica-
tions. The experimental result shows that the W-SVC framework produces im-
proved performance than existing method and provides full flexible architecture 
with respect to different application scenarios. 

1   Introduction 

Advances in video coding technology along with the rapid development in network 
infrastructure, storage capacity, and computing power are enabling an increasing 
number of video applications. In advanced communication systems, users may ac-
cess and interact with multimedia content from different terminals and via different 
networks such as: video transmission and access over the Internet and handheld de-
vices like mobile telephones and Personnel Digital Assistants (PDAs); multimedia 
broadcasting; and video services over wireless channels. In the scenario depicted in 
Fig.1, the video server requires video contents of different fidelities, such as high 
quality material for storage and future editing and lower bit-rate content for distri-
bution. In traditional video communications over heterogeneous channels, the video 
is usually processed offline. Compression and storage are tailored to the targeted 
application according to the available bandwidth and potential end-user receiver or 
display characteristics. However, this process requires either transcoding of com-
pressed content or storage of several different versions of the encoded video. 

None of these alternatives represent an efficient solution. Furthermore, video 
delivery over error-prone heterogeneous channels meets additional challenges 
such as bit errors, packet loss and error propagation in both spatial and temporal 
domains. This has a significant impact on the decoded video quality after trans-
mission and in some cases renders useless the received content. Consequently, 
concepts such as scalability, robustness and error resilience need to be re-assessed 
to allow for both efficiency and adaptability according to individual transmission 
bandwidth, user preferences and terminals.  
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Scalable Video Coding (SVC) promises to partially solve this problem by “en-
coding once and decoding many”. SVC enables content organization in a hierar-
chical manner to allow decoding and interactivity at several granularity levels. 
That is, scalable coded bitstreams can efficiently adapt to the application require-
ments. The scenario shown in Fig. 1 can truncate the SVC encoded bitstream at 
different points and decode it. The truncated bitstream can be further truncated to 
some lower resolution, frame rate or quality. Thus, it is important to tackle the 
problems inherent to the diversity of bandwidth in heterogeneous networks and in 
order to provide an improved quality of services. Wavelet-based SVC provides a 
natural solution for error-prone transmissions with a truncateable bitstream. 

 

Fig. 1. Scalable video transmission: one video bitstream serves to different clients 

The notion of extractor is the key in SVC. The extractor, as the name implies, 
extracts an adapted encoded video from the main encoded video. In this chapter, 
the wavelet-based SVC [ 1] framework is utilized and named as W-SVC. It is 
based on the wavelet transform performed in temporal and spatial domain. In this 
framework, the temporal and spatial scalability has been achieved by applying 
through Motion Compensated Temporal Filtering (MCTF) [ 2] in temporal domain 
and 2D Discrete Wavelet Transform (DWT) [ 3] in spatial domain respectively. 
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The MCTF results in motion information and wavelet coefficients that represent 
the texture of transformed frames. These wavelet coefficients are then bit-plane 
encoded [ 4,  5,  6] to achieve quality scalability.  

In W-SVC, the video is divided into Group of Pictures (GOP). However, the 
GOP’s of the video are interlinked, rendering dependency of following GOP on 
the proceeding GOP. In different applications, each GOP needs to be extracted 
with different scalability level according to requirement. 

This flexible structure of SVC can be exploited in different application scenar-
ios like Joint Source Channel Coding (JSCC) [ 7,  8] and event-based video coding 
in surveillance scenario [ 9].  

The objective of JSCC is to jointly optimize the overall system performance 
subject to a constraint on the overall transmission bit-rate budget. As mentioned 
before, a more effective error resilient video transmission can be achieved if dif-
ferent channel coding rates are applied to different bit-stream layers, i.e., quality 
layers generated by the SVC encoding process. Furthermore, the parameters for 
Forward Error Correction (FEC) should be jointly optimized taking into account 
available and relevant source coding information. 

In surveillance application, the surveillance videos are being processed using 
conventional video codecs which are designed to process videos regardless of the 
content of the video. However in many surveillance situations where the scene 
remains essentially static for seconds and even minutes in some cases. During 
these periods of time nothing interesting happens from the surveillance standpoint, 
and the video resembles a still picture for long periods of time with no other activ-
ity than random environmental motion. An alternative approach to reduce the 
bit-rate of the encoded video segments that are irrelevant from the surveillance 
standpoint are discussed in this chapter. This approach combines background sub-
traction and W-SVC. This produces a single scalable bit-stream that contains seg-
ments of video encoded at different qualities and / or spatio temporal resolutions. 
The irrelevant segments are encoded using low resolution / quality while the rele-
vant segments are encoded at high resolution / quality. Additionally, the produced 
scalable bit-stream can easily be adapted for transmission purposes, without the 
need for computationally expensive transcoding. 

This chapter is organized as follows: Section 2 explains the functionality of 
scalable coder and the scalability features used in existing standards. The architec-
ture of W-SVC and used tools are described in Section 3. The performance evi-
dence of W-SVC and its application in different scenario is demonstrated in 
Section 4. Section 5 concludes the chapter. 

2   Scalability Functionality 

Fundamental types of scalability are: temporal (frame rate); quality (SNR); and 
Spatial (resolution scalability).  The main intend of SVC development was to meet 
the requirements for these basic types of scalability. Normally, the scalable bit-
stream is organized progressively as the extraction/adaptation of the scalable bit-
stream can be performed in a low complexity manner to achieve basic types of 
scalability. In temporal scalability mode, the scalable encoded bitstream can be 
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extracted to one half of the frame rate, e.g from 50 fps (frames per second) to 25 
fps. Similarly in spatial domain, the bitstream can be extracted to different resolu-
tion e.g. if the original sequence is of High Definition (HD) (1280x720 pixels) 
resolution, then one level lower resolution is HDS1 (640x360 pixels) and two lev-
els lower resolution is HDS2 (320x180). An example of the original sequence and 
scaled sequences is shown in Fig. 2. 

 

Fig. 2. Examples of basic scalabilities 

Scalability features in existing standards: Some sort of scalability features are 
provided by different standards as shown in Table 1, however the full scalability 
features are provided by the emerging scalable extension of H.264/AVC or Wave-
let-based SVC.  

Table 1. Scalability features in existing video coding standards 

Video 
codec 

Scalability features 

MPEG-1 No support 
MPEG-2 Layered scalability (spatial, 

temporal, SNR) 
MPEG-4 Layered and fine granular 

scalability (spatial, temporal, 
SNR) 

H.264/A
VC 

Fully scalable extension 

W-SVC Fully scalable  
 

Here, the detailed explanation of the wavelet-based SVC (W-SVC) is presented 
in next section. 
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3   Architectural Design of W-SVC 

3.1   Main Modules of SVC 

The W-SVC consists of three main modules: 

Encoder: the input video is encoded by the W-SVC encoder, producing the bit-
stream of the maximum required quality which, if the application requires, can 
be up to quasi-lossless (resulting in imperceptible quality loss). 
Extractor: the main aim of the W-SVC extractor is to truncate the scalable bit-
stream according to the scaling requirements and to generate the adapted bit-
stream and its description. The adapted bitstream is also scalable and can be fed 
back into the extractor for another stage of adaptation. This scenario corre-
sponds to the situation of multiple-point adaptation where the adapted bitstream 
is sent to the next network node and is adapted by another extractor. 
Decoder: W-SVC decoder is capable of decoding any adapted bitstream by 
W-SVC extractor or encoded by W-SVC encoder. 

3.2   W-SVC Architecture 

Most of the SVC frameworks consist of temporal decomposition using MCTF and 
spatial wavelet transform based on wavelets, producing a set of spatio-temporal 
sub-bands. In W-SVC high coding efficiency is achieved by using combinations 
of spatio-temporal transform techniques and 3D bit-plane coding. The Multi-
Resolution (MR) structure resulting from MCTF and 2D sub-band decomposition 
enables temporal and spatial resolution scalabilities, respectively. Quality or SNR 
scalability is achieved by bit-plane coding.  

 

Fig. 3. t+2D W-SVC architecture 

The order in which the spatial and temporal decompositions are performed is of 
crucial importance. Regarding the order in which these are applied, there are gen-
erally two basic types of non-redundant SVC architectures: 
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• t + 2D – temporal transform followed by the spatial transform, 
• 2D + t – spatial transform followed by the temporal transform. 

The t + 2D architecture provides higher compression performance but offers spa-
tio-temporal mismatch [ 5] at lower resolution. Although the 2D+t architecture 
solves this problem at low resolution, it introduces shift variance in wavelet trans-
forms that reduces the compression performance. Schemes that try to overcome 
limitations of these two architectures combine both approaches by performing 
several levels of down sampling, and are commonly known as 2D + t +2D archi-
tectures. On the other hand, Adami et al. [ 5] proposed an architecture that drops 
the requirement for the perfect reconstruction property in order to improve the 
spatial scalability performance. An example of the t+2D architecture is shown in 
Fig. 3. First, motion estimation is performed on the input frames and then tempo-
ral filtering is applied in the direction of motion vectors. Temporally decomposed 
frames are subjected to spatial decomposition based on 2D DWT. Since wavelet 
coefficients resulting from spatio-temporal transform are correlated, it is useful to 
apply some kind of compression scheme in combination with bit-plane coding of 
wavelet coefficients.  

3.3   W-SVC Bitstream Organization 

The input video is initially encoded with the maximum required quality. The com-
pressed bitstream features a highly scalable yet simple structure. The smallest en-
tity in the compressed bitstream is called an atom, which can be added or removed 
from the bitstream. The bitstream is divided into GOPs as shown in Fig. 4. Each 
GOP is composed of a GOP header, the atoms and an allocation table of all atoms. 
Each atom contains the atom header, motion vectors data (some atoms do not con-
tain motion vector data) and texture data of a certain sub-band. Each atom can be 
represented in a 3D space with coordinates Q = quality, T = temporal resolution 
and S = spatial resolution. There exists a base atom in each domain that is called 
the 0-th atom and cannot be removed from the bitstream. 

 

Fig. 4. Detailed description of used scalable bitstream 
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There are several progression orders for a multi-domain scalable bitstream, spe-
cifically for our case of quality, temporal and spatial scalability there are 3! = 6 
orders. These are: QTS, QST, TQS, TSQ, SQT, STQ, where the convention is that 
the first letter refers to the domain which progresses most slowly, while the last re-
fers to the one which progresses most quickly. 

This flexible structure of scalable bitstream provides facilitation in different 
multimedia applications. 

4   Applications 

There are number of multimedia applications where SVC helps to reduce the 
complexity and provides natural solution of the problem. 

4.1   Joint Source Channel Coding for Scalable Video 

The progressive nature of scalable bitstream facilitates to apply the Unequal Error 
Protection (UEP) in the JSCC [ 10- 12]. The JSCC consists of two main modules as 
shown in Fig. 5: scalable video encoding and channel encoding. At the sender 
side, the input video is coded using the W-SVC coder. The resulting bitstream is 
adapted according to channel capacities. The adaptation can also be driven by 
terminal or user requirements when this information is available. The adapted vid-
eo stream is then passed to the channel encoding module where it is protected 
against channel errors. The channel coding module performs paketization, addi-
tion of CRC bits, and the channel error correction coding using a rate-distortion 
(R-D) optimization. After modulation, the video signal is transmitted over a lossy 
channel. At the receiver side, the inverse process is carried out. The main process-
ing steps of the decoding are outlined in Fig. 5. Normally additive white Gaussian 
noise (AWGN) and Rayleigh fading channels are considered for research 
proposes. 
 
Channel Coding: The main purpose of channel coding is to increase the reliabil-
ity of data transmission. In channel coding, we normally add redundancy to the in-
formation data in order to provide error detection and correction capabilities at the 
receiver. Channel codes could be classified into two major categories: linear block 
codes; and convolutional codes. The encoder of the block code (n, k) divides the 
information data into blocks of k bits each and operates on them independently. It 
adds n-k redundant bits that are algebraically related to the k messages, thereby 
producing an overall encoded block of n bits called codeword with n>k, and R = 
k/n is called a code rate. The Reed-solomon and LDPC codes are the good exam-
ple of block code. In contrast to block codes, convolutional codes have memory 
mr. An (n, k) convolutional encoder converts k information symbols into a code-
word of length, which depend not only the k information symbols but also on the 
previous mr symbols. Nowadays, TCs [13] are one of the best practical channel 
codes because of their exceptional performance at low Signal to Noise Ratio 
(SNR). It is based on two convolutional encoders that are separated by an inter-
leaver of length k. One reason for their better performance is that turbo codes 
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Fig. 5. Communication chain for video transmission 
 
 
produce high weight codewords. Double binary TCs were introduced in the do-
main of TCs by Doulliard et al. [ 14]. These codes consist of two binary Recursive 
Systematic Convolutional (RSC) encoders of rate 2/3  and an interleaver of length 
k. Each binary RSC encoder encodes a pair of data bits and produces one redun-
dancy bit, so the desired rate 1/2 is the natural rate of the double binary TCs.   

Let us know formally state the problem, the R-D optimisation can be formu-
lated as:  

min s cD +  subject to maxs cR R+ ≤  (1) 

or 

( )max
s c

PSNR
+

 subject to maxs cR R+ ≤  
(2) 

 

for 

/s c s cR R R+ = , (3) 

where s cD +  is the expected distortion at decoder, s cR +  is the overall system rate, 

sR  is the rate of the SVC bitstream, cR  is the channel coder rate and maxR  is the 

given channel capacity. Here the index notation s c+  stands for combined 
source-channel information. The constrained optimization problem (1)-(3) can be 
solved by applying unconstrained Lagrangian optimization. Accordingly, JSCC 
aims at minimizing the following Lagrangian cost function s cJ + : 

s c s c s cJ D Rλ+ + += + ⋅ , (4) 
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Hence, the overall distortion can be explained by:  

, 1
0

Q

s c i s i
i

D p D+ −
=

= ⋅∑ , (5) 

where ip  is the probability that the i-th quality layer is corrupted or lost, while the 

j-th layers are all correctly received for 0,1,2,..., 1j i= − . Finally, ip can be formu-

lated as: 

                                               ( )
1

0

1
i

i j i
j

p pl pl
−

=

⎛ ⎞
= − ⋅⎜ ⎟⎜ ⎟
⎝ ⎠
∏ ,                                         (6) 

where ipl  is the probability of the i-th quality layer being corrupted or lost. ipl  

can be regarded as the layer loss rate. 
According to (6) the performance of the system depends on the layer loss rate, 

which in turn depends on the cR . cR  depends upon how effectively the channel 

coding rate allocates the bit-rates to meet the channel capacity.  
Now the problem converges to find the Optimal Protection Scheme (OPS) for 

channel encoding. There are number of methods [ 8,  11] are proposed to find the OPS.  
An algorithm [ 8] is proposed to find the OPS efficiently. Initially, the optimal 

Equal Error Protection (EEP) is found and then protection is iteratively increased 
from the lowest quality layers and decreased from the highest quality layer. Hence 
the protection scheme converges to an OPS in this iterative process. In short, more 
protection is applied to the important part of the bitstream and a higher channel 
code rate is set for data with lower priority in the OPS. The lowest quality layer 
which contains the most important data (header, motion vectors and allocation ta-
bles) is protected with the lowest channel code rate and vice versa.  

At the decoder side, if a packet is error-corrupted, the CRC fails after channel 
decoding. We then point out the corresponding atom in the SVC bitstream. If an 
atom ( , ,i i iq t s ) is corrupted after channel decoding or fails to qualify the CRC 

checks, then all the atoms which have higher index than i are removed by the error 
driven adaptation module. Finally, SVC decoding is performed to evaluate the 
overall performance of the system.  

The performance of the JSCC framework has been extensively evaluated using 
the W-SVC codec. The JSCC proposed in [ 8], UEP optimal channel rate, packet 
size and interleaver for DBTC were estimated and used. The proposed technique 
is denoted as “ODBTC”.  

Two other advanced JSCC techniques were integrated into the same W-SVC 
codec for comparison. The first technique used serial concatenated convolutional 
codes of fixed packet size of 768 bytes and pseudo random interleaver [ 12]. It is 
denoted as “SCTC”. Since product code was regarded as one of the most advanced 
in JSCC, the technique using product code proposed in [ 11] was used for the sec-
ond comparison. This product code used Reed Solomon code as outer code and 
Turbo codes as inner code , so it is denoted by “RS+TC”. A summary of PSNR re-
sults is shown in Fig. 6 and Fig. 7. These results show that the proposed UEP  
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Fig. 6. Average PSNR for City QCIF sequence at 15 fps at different signal to noise ratio 
(Eb/No) for AWGN channel 
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Fig. 7. Average PSNR for City QCIF sequence at 15 fps at different signal to noise ratio 
(Eb/No) for Rayleigh fading channel 

ODBTC consistently outperforms SCTC and achieves PSNR gains at all signal- 
to-noise ratios (Eb/No) for both AWGN and Rayleigh fading channels.  

4.2   Event-Based Scalable Coding of Surveillance Video 

The basic principle behind the event-based scalable coding is to use different en-
coding settings for time segments representing different events in a surveillance 
video. For this purpose we classify temporal segments of the surveillance video 
into two types: 
 

• temporal segments representing an essentially static scene (e.g. only ran-
dom environmental motion is present – swaying trees, flags moving on 
the wind, etc.) 

• temporal segments containing non-randomised motion activity (e.g. a ve-
hicle is moving in a forbidden area).  
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To enable this classification, background subtraction and tracking module from 
[ 15] is used as Video Content Analysis (VCA). The output of this module defines 
parameters of compressed video. For actual encoding the W-SVC is employed.  

VCA: Video background subtraction module based on Gaussian mixture model 
[ 15] is used as VCA. This module is able to deal robustly with light changes, bi-
modal background like swaying trees and introduction or removal of objects from 
the scene. Value of each pixel is matched against weighted Gaussians of mixture. 
Pixels whose value is not within 2.5 standard deviations of the Gaussians repre-
senting background are declared as foreground.  

 

Fig. 8. Event-based scalable video encoding framework 

At each time instance the W-SVC encoder communicates with the VCA mod-
ule (background subtraction and tracking). When the input video is essentially 
static the output of the background subtraction does not contain foreground re-
gions. This can be used to signal to the W-SVC encoder to adapt captured video at 
low spatio-temporal resolution and quality, as shown in Fig. 8. This allows, for in-
stance, storing and/or transmitting the portions of the video containing long, bor-
ing, static scenes using low quality frame-rate and spatial resolution. On the other 
hand, when some activity in the captured video is detected, the VCA module noti-
fies the W-SVC encoder to automatically switch its output to a desired much 
higher spatio-temporal resolution and quality video. Therefore, decoding and use 
of the video at different spatio-temporal resolutions and qualities corresponding to 
different events is achieved from a single bitstream, without multicasting or com-
plex transcoding. Moreover, additional optional adaptation to lower bit-rate is also 
possible without re-encoding the video. This is, for instance, very useful in cases 
where video has to be delivered to a device with a low display capability. Using 
this approach, the bit-rate of video portions that are of low interest is kept low 
while the bit-rate of important parts is kept high. Since in many realistic applica-
tions it can be expected that large portions of the captured video have no events of 
interest, the proposed model leads to significant reduction of resources without 
jeopardizing the quality of any off-line event detection module that may be present 
at the decoder. 

Subjective results of the event-based scalable encoding module are presented in 
Fig. 9. The top-left shows original frames in Fig 9a and Fig 9b. The top-right 
represents the output of the background subtraction module. The bottom row of 
Fig. 9a shows the reconstructed sequence whose essentially static segments (no 
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event) were encoded at lower spatial resolution (bottom-left); at lower quality 
(bottom-right) and motion activities (event occurs) are encoded at higher spatial 
resolution (bottom-left); at higher quality (bottom-right) as shown in Fig. 9b.  

 

 

Fig. 9. Subjective result of event-based scalable encoding 
a. there is no event in the video sequence. b. the event occurs in the video sequence. 

5   Conclusions 

This chapter has provided an overview of the different tools used in W-SVC. The 
architecture of W-SVC has presented in detail. Ffunctionality of scalable coder 
and the scalability features used in existing standards has explained in detail. The 
practical implementation of the flexible structure of W-SVC framework has dem-
onstrated in surveillance application and error resilient transmission. 
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With the recent rapid growth of communication, networking, and video com-
pression technology, the real-time video streaming applications have evolved
from traditional single-stream along simple transmitter-to-receiver path to
complex multiple streams through advanced full-fledged cooperative net-
works. In this chapter, three major emerging advanced concepts are intro-
duced: cooperative transmission, distributed source coding (DSC), and share
auction based resource allocation. Cooperative transmission has been demon-
strated as an effective transmission scheme to form virtual multiple-input
and multiple-output (MIMO) system and provide diversity gains. Distributed
source coding brings a new coding paradigm by letting the receiver jointly
exploit the statistical dependencies among multiple streams sent from differ-
ent sources without coding rate penalty. Share auction brings efficient way to
allocate system resources in a distributed and collaborated manner to alle-
viate computation complexity. Based on these advanced concepts along with
the advanced video processing ability for side information generation, a wire-
less multi-stream video transmission framework over full-fledged cooperative
networks is presented.

1 Introduction

The concept of cooperative video communication [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14] has attracted significant attention lately. The basic idea
is to efficiently take advantage of the broadcast nature of wireless networks,
and to enable the relay nodes to play more intelligent and active roles in
processing, transcoding, or re-adapting the received media information be-
fore transmitting to the next node. In addition, all the nodes in the network
can serve at different roles simultaneously, as a transmitter, relay or receiver.
The key benefit of such concept is to let nodes in a wireless network share
information and transmit data cooperatively as a virtual antenna array to

W. Lin et al. (Eds.): Multimedia Analysis, Processing & Communications, SCI 346, pp. 561–583.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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improve the overall system performance. In [15], the authors bring together
the unequal error protection (UEP) technique and the cooperative communi-
cations for layered video communication via the cross-layer design approach.
The proposed layered-cooperation protects the base layer from channel errors
through cooperation transmission to achieve higher error protection; while
the enhancement layer is transmitted directly.

Distributed source coding (e.g. Slepian-Wolf coding for lossless compres-
sion and Wyner-Ziv coding for lossy compression) has been discussed in
the literature for more than decades. Until recently, researchers start to
incorporate the idea of distributed source coding into video transmission
applications[16, 17]. Unlike the traditional source coding, where the whole
source information is only observed and compressed by a single encoder,
DSC investigates the problem that source information are observed by multi-
ple locations and each observed signal is encoded individually in a distributed
fashion. The decoder side will jointly reconstruct the original source accord-
ing to all received compressed observations. By applying the DSC concept
to the cooperative transmission scenario, the relay receives the broadcasted
video stream from the source node and then performs video processing, such
as transcoding, based on the received video packets to construct other obser-
vation of the video contents. The processed video stream at the relay node
serves as additional side information at the destination to improve the de-
coded video quality. Combining the directly transmitted video stream and the
side information from the relay, the destination can explore the source diver-
sity to improve the reconstructed video quality. In this chapter, we present an
integrated wireless video cooperative transmission framework that leveraging
the benefits of both cooperative transmission and the idea of DSC.

When there are multiple users involved in the resource-limited full-fledged
cooperative network, each user intents to compete the resources to maximize
his/her own benefit [18, 19]. Note that the relay node can help improve video
quality but its spectrum resource is also limited. The main issue is how to
conduct resource allocation to utilize relay’s resources. More specifically, each
relay helps to connect a group of transmitters with a number of receivers.
During the resource allocation process, the spectrum resources are first al-
located for the transmitters which broadcast video packets to the relay and
destination, and then for the relay nodes to transmit side information gener-
ated from the received packets to the destination. Thus, the resources used
by the relays for each source are very critical for the overall network per-
formance. In fact, we could adopt auction theory in our considered scenario.
Auction theory is a subfield of the game theory attempting to mathematically
capture behavior in strategic situations, in which an individual’s success in
making choices depends on the choices of others. The auction theory based
solution has been successfully applied to the general cooperative data commu-
nications [5, 20] and gained attention for video communication applications
via Vickrey-Clarke-Groves (VCG) auction [21, 22]. However, the computa-
tion complexity and communication overhead for VCG-based real-time video
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communication is very high. In this article, we propose a quasi-share auction
based approach, which explores the concept of share auction into this new
domain.

This article is organized as follows: In Section 2, the basics of cooperative
transmission are studied, and the channel model and coding scheme are dis-
cussed. In Section 3, the cooperative video transmission protocol with DSC
for one single transmitter-receiver pair is proposed and analyzed. In Section
4, the proposed resource allocation using quasi-share auction is demonstrated
and analyzed for multiuser case. A performance upper bound is also presented
to evaluate the proposed scheme. Simulations results are shown in Section 5
and conclusions are drawn in Section 6.

2 Background on Cooperative Communication
Protocols

In this section, we use a single source-relay-destination case to review three
traditional cooperative communication protocols; namely, direct transmis-
sion, amplify-and-forward, and decode-and-forward. Then we present the
adopted channel model and forward error coding (FEC) code. The corre-
sponding final coded bit error rate is discussed at the end of this section.

2.1 Cooperative Communication Protocols

We consider a single source-relay-destination cooperative communication en-
vironment as shown in Figure 1. In the considered environment, there are one
source node s, one relay node r, and one destination node d. The cooperative
transmission consists of two phases. In the first phase, source s broadcasts
its information to both destination node d and relay node r. The received
signals Ys,d and Ys,r at destination d and relay r can be expressed as

Fig. 1. Single source-relay-destination cooperative communication environment
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Ys,d =
√

PsGs,dXs,d + nd, (1)

and
Ys,r =

√
PsGs,rXs,d + nr, (2)

respectively, where Ps represents the transmit power to the destination from
the source, Xs,d is the transmitted information symbol with unit energy at
Phase one at the source, Gs,d and Gs,r are the channel gains from s to d and r
respectively, and nd and nr are the additive white Gaussian noises (AWGN).
Without loss of generality, we assume that the noise power is the same for all
the links, denoted by σ2. We also assume the channels are stable over each
transmission time frame.

For direct transmission (DT), without the relay node’s help, the signal-to-
noise ratio (SNR) that results from s to d can be expressed by

Γ DT =
PsGs,d

σ2
. (3)

For the amplify-and-forward (AF) cooperation transmission, in Phase two,
the relay amplifies Ys,r and forwards it to the destination with transmitted
power Pr. The received signal at the destination is

Yr,d =
√

PrGr,dXr,d + n′
d, (4)

where
Xr,d =

Ys,r

|Ys,r| (5)

is the energy-normalized transmitted signal from the source to the destination
at Phase one, Gr,d is the channel gain from the relay to the destination, and
n′

d is the received noise at Phase two. Substituting (2) into (5), (4) can be
rewritten as

Yr,d =

√
PrGr,d(

√
PsGs,rXs,d + nr)√

PsGs,r + σ2
+ n′

d. (6)

Using (6), the relayed SNR at the destination for the source can be obtained
by

Γ AF
s,r,d =

PrPsGr,dGs,r

σ2(PrGr,d + PsGs,r + σ2)
. (7)

Therefore, by (3) and (7), we have the combined SNR at the output of max-
imal ratio combining (MRC) as

Γ AF = Γ DT + Γ AF
s,r,d. (8)

Notice that even though the SNR is improved, the bandwidth efficiency is
reduced to half due to the half duplex of source transmission and relay trans-
mission.

In the decode-and-forward (DF) cooperation transmission protocol, the
relay decodes the source information transmitted in Phase one, re-encodes
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it, and retransmits the decoded information to the destination in Phase two.
The destination combines the direct transmission information and re-encoded
information together. We can express the SNR as

Γ DF = max
0≤ρ≤1

min{(1 − ρ2)
PsGs,r

σ2
,
PsGs,d

σ2
+

PrGr,d

σ2
+

2ρ
√

PsGs,dPrGr,d

σ2
.}

(9)

2.2 Channel Model and Forward Error Coding

In this article, we assume Rayleigh fading scenario. The bit error rate for a
packet can be written as [23]

pr =
1
2
− 1

2

√
Γ

1 + Γ
, (10)

where Γ is either Γ DT in (3), Γ AF in (7), or Γ DF in (9), depending on the
transmission protocol. If each packet has the length of L bits, the packet
dropping rate is 1 − (1 − pr)L.

Reed-Solomon (RS) code is an important subclass of the non-binary BCH
error-correcting code in which the encoder operates on multiple bits rather
than individual bits. An RS code is specified as RS(N, M). This means that
the encoder takes M data symbols and adds parity symbols to make an
N -symbol codeword. There are N − M parity symbols. An RS decoder can
correct up to t symbols that contain errors in a codeword, where 2t = N−M .
So by adapting t, we can have different level of channel protections. The coded
bit error rate (BER) can be closely bounded by [23]

pRS
r ≤ 1

2

[
1 −

t∑
i=0

(
N
i

)
(pr)i(1 − pr)(N−i)

]
. (11)

Here we assume the BER is equal to 0.5 if the number of errors is greater than
t. RS code can also be shortened to fit different coding length requirements.

3 Cooperative Wireless Video Transmission

In this section, we first present the proposed cooperative wireless video trans-
mission framework for a single user scenario. Then a generic problem formula-
tion for the proposed framework is shown in Section 3.2. With the background
discussed in Section 2, we analyze the performance of different cooperative
approaches adopted in the proposed framework in Section 3.3.

3.1 Framework of Cooperative Video Transmission

Compressed video exhibits many different characteristics from generic data,
such as decoding dependency and delay constraint. For example, the visual
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quality depends on not only the transmission rate but also the video content,
including the motion activity and complexity of texture. In addition, video
frames can be further processed to adjust the quality or bit rate and still
convey the main context of the delivered content. The proposed framework
takes the aforementioned unique features of compressed video into consid-
eration and integrates them into the proposed cooperative wireless video
transmission framework.

We use Figure 2 to illustrate the proposed cooperative video transmission
framework. We assume a control channel is available such that the desti-
nation knows the processing settings chosen by the relay node. The whole
video capture-compression-transmission procedure is capsulated into two-
stage pipeline for real-time streaming based on group of pictures (GOP).
Denote the video refresh rate as F frames per second and number of frames
in one GOP as G. Within the period to capture/compress one GOP video in
the front-end video capture/compression component, the back-end transmis-
sion module delivers the compressed stream of previous GOP through the
wireless channel.

There are two fundamental transmission phases for transmitting each
GOP. In the first phase, the source broadcasts the video to the destination.
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Because of the nature of broadcast, the source information is also delivered
to the relay without any cost. To further take advantages of video unique
characteristics, the relay node could own extra video processing tools, such as
transcoder, and can convert the received image into a lower-resolution and/or
lower-quality version. The processed version is then packed into packets and
transmitted to the destination in the second phase. Note that although the
source distortion induced along the source-relay-destination path is higher
owing to transcoding, the end-to-end channel condition encountered may be
better than the direct path along source to destination. The destination node
will have two correlated video sources and have potential to further improve
the video quality.

Based on the proposed framework, the relay can deploy different strategies:

1. For an embedded video stream whose main features consist of (1) any
truncated segment of the stream can be decoded, and (2) the received
quality is higher when more bits are received at the decoder, the relay can
use AF or DF to relay the packets of first portion of the video stream. The
destination combines the information from direct transmission and relay
transmission to improve the quality of the received video. Note that by
doing so, an unequal error protection scheme is constructed: first portion
of stream is more important and a cooperative transmission protocol is
adopted to provide better bit error rate for the first portion.

2. For both embedded and non-embedded video streams, the relay can de-
ploy video processing, such as transcoding the received video to a coarse-
quality video, and then encode the coarse-quality video using a systematic
Reed-Solomon code. Only the parity bits are transmitted to the destina-
tion. The destination decodes the video transmitted in the first stage and
transcodes it using the same coding parameters used by the relay node
to construct the coarse-quality video. This coarse-quality video will be
combined with the parity check bits sent from the relay to ensure the
reconstructed coarse-quality video which will be utilized for error con-
cealment. Notice that the relay might receive corrupted video packets.
As a result, the relay might generate wrong parity bits and the perfor-
mance at the destination can be impaired. To overcome this problem, a
joint source-FEC-path optimization design can be deployed to protect the
video stream in both transmission paths to maximize the final displayed
video quality.

We can see that the proposed framework explores not only the inherited
spatial diversity and multi-path diversity from cooperative transmission, but
also the source diversity from the idea of DSC. Moreover, the proposed scheme
is backward compatible, in the sense that the source-to-destination link is
not modified. The current existing direct transmission scheme can coexist
with the proposed scheme. This compatibility facilities the deployment of
the proposed cooperative video transmission.



568 G.-M. Su and Z. Han

3.2 Generic Problem Formulation

In this article, we use 3D-SPIHT [24] as the video encoder, due to its advan-
tage that SPIHT produces an embedded bitstream. Notice that if embedded
video codecs are employed, the head segment of successful received packets
serves as the coarse-quality version of the original video. Other video encoders
can be implemented in a similar way.

Let us define Dmax as the distortion without receiving any packets, η = M
N

as RS coding rate, ΔDk(η) as the distortion reduction when receiving packet k
after successfully receiving packet 1, 2, . . . k−1, and p

(X)
k (η) as the probability

that receiving all packets from packet 1 to k successfully using protocol X .
The estimated distortion can be written as

E[D(X)(η)] = Dmax −
K∑

k=1

ΔDk(η)p(X)
k (η), (12)

where K is the maximal number of packets constrained by the bandwidth
and tolerant delay. Notice that in order to decode the kth packet, packet 1
to packet k − 1 must be correctly decoded.

The problem is to minimize the expected received video distortion by turn-
ing the power and bandwidth usage at the relay node under the system band-
width, transmission time delay, and overall power constraints. For the power
constraint, we assume the overall power Ps + Pr is bounded by P0. For the
delay constraint, we consider one GOP delay, i.e., G/F seconds, to cope with
the intrinsic coding structure of 3D-SPIHT. For the bandwidth constraint, we
suppose the source and relay share the same channel. For facilitate the dis-
cussion, we could further convert both the delay and bandwidth constraints
to the total amount of packet constraint which limits the maximal number
of packets, say K, to transmit if a fixed length of packet L is used. When
the relay sends a total of k̄ < K packets to the destination, the direct trans-
mission has only K − k̄ packets for transmission instead due to the total
amount of packet constraint. By given a value of K, we are interested in how
to assign the portion of packets for the direct transmission path and the relay
transmission path. We further define a packet assignment parameter as

θ =
k̄

K
. (13)

The whole cooperative video transmission problem can be formulated as

min
θ,Ps,Pr ,η

E[D] (14)

s.t.

⎧⎨⎩
packet assignment constraint: 0 ≤ θ < 1,
power constraint: Ps + Pr ≤ P0,
RS constraint: 0 < η ≤ 1.

The problem in (14) is a constrained optimization problem. The objective
function E[D] will be explained in the following subsection depending on
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the operation adopted in the relay node. Note that problem (14) is a non-
linear optimization problem owing to the non-linear nature of video R-D
function and coded BER function. Some standard nonlinear approaches such
as interior-point-method [25] can be employed to solve the problem.

3.3 Performance Analysis

In this subsection, we study the details of different transmission protocols: di-
rect transmission, relay transmission without combined decoding, relay trans-
mission with combined decoding using AF/DF, and relay transmission with
DSC. To overcome the strong decoding dependency exhibited in the video
stream, all transmitted packets are protected by forward error coding. More
specifically, the first three protocols are applied with RS(L, M1), where L is
the packet length and M1 is the message length. We will also address the
error protection scheme for the forth transmission protocol when we discuss
the details.

Direct transmission

In the direct transmission, all the packet and power budget are allocated
to the source-destination path. Thus θ = 0 and Ps = P0. The successful
transmission probability for receiving all correct packet 1 to packet k can be
written as

p
(DT )
k (η) = (1 − ps,d(η))k, (15)

where ps,d(η) is the packet loss rate for sending a packet from the source
node to destination node. ps,d(η) can be calculated from (3), (10), and (11).
The distortion is

E[D(DT )(η)] = Dmax −
K∑

k=1

ΔDk(η)p(DT )
k (η). (16)

Relay transmission without combined decoding

We use equal power for the source and relay in this scenario. Thus, Ps =
Pr = P0/2. Using this protocol, the relay simply forwards the received pack-
ets broadcast from the source and the destination node will not perform
combined decoding (such as AF/DF) but have one extra copy from the re-
lay besides the one from the direct path. A packet is lost if both the direct
transmission and relay transmission fail. Thus,

p
(RT )
k (η) =

{
(1 − ps,d(η)(1 − (1 − ps,r(η))(1 − pr,d(η)))k, k ≤ k̄ = θK;
pRT

k̄
(η)(1 − ps,d(η))k−k̄, K − k̄ ≥ k > k̄;

(17)
where ps,r(η) is the packet loss rate for sending a packet from source node to
relay node and can be calculated from Γs,r = PsGs,r

σ2 and (10); and pr,d(η) is
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the packet loss rate for sending a packet from the relay node to destination
node and can be calculated from Γr,d = PrGr,d

σ2 and (10).
In the aforementioned equation, the first case represents the situation

where the relay retransmits the packets, while the second case represents
the direct transmission only. The total number of transmitted packets from
the source is reduced to K − k̄, due to the relay transmission.

Then, the objective function becomes to minimize the expected distortion:

E[D(RT )(θ, η)] = Dmax −
K−k̄∑
k=1

ΔDk(η)p(RT )
k (η). (18)

Relay transmission with combined decoding using AF/DF

It can be proved that the power constraint and bandwidth constraint in (14)
can be decoupled without loss of optimality. Due to the page limitation, we
omit the proof. We assume the power is optimally allocated in this case.
Under this protocol, the destination node will perform combined decoding if
a packet is received from both direct path and relay forward path. Similarly
to the previous case, we can write the expected distortion as

p
(CD)
k (η) =

{
(1 − pcomb(η))k, k ≤ k̄ = θK;
p
(CD)

k̄
(η)(1 − ps,d(η))k−k̄, K − k̄ ≥ k > k̄;

(19)

For AF, pcomb(η) can be calculated by (8), (10), and (11). For DF, pcomb(η)
can be calculated by (9), (10), and (11).

The first case and second case have the similar physical meaning as (17).
Similar to (18), we can also write

E[D(CD)(θ, η)] = Dmax −
K−k̄∑
k=1

ΔDk(η)p(CD)
k (η). (20)

Relay transmission with DSC

In the proposed DSC protocol, the packets received at the relay have length
M2 bits and are encoded as RS(M2, M1). The relay encodes the received
packets with another layer of RS code with parameter RS(L, M2), and sends
the parity bits with length of L−M2 only. The destination combines (1) M2

bits from the direct source-to-destination transmission part, and (2) L−M2

parity bits from the relay-to-destination transmission bits to improve the link
quality. In this case, the packet assignment parameter becomes θ = L−M2

L .
Denote ϕm = M1

M2
as the inner RS coding rate and ϕn = M2

L as the outer RS
coding rate. Note that θ = 1 − ϕn. Assuming the equal power allocation for
the source and relay, the successful transmission probability for receiving all
correct packet 1 to packet k can be written as



Cooperative Wireless Video Transmission 571

p
(DSC)
k (ϕm, ϕn) = (1 − pDSC(ϕm, ϕn))k, (21)

where the packet error rate is the product of the successful packet transmis-
sion rate along source-to-relay path and the successful packet transmission
rate after RS(L, M2) decoding from the source to the destination, i.e.,

pDSC(ϕm, ϕn) = 1 − (1 − ps,r(ϕm))(1 − pRS
s,r,d(ϕ

n))L. (22)

Define t′ = L−M2
2 . We have the BER after the decoding of RS(L, M2) code

for both direct transmission and relay transmission as

pRS
s,r,d(ϕ

n) ≤ 1
2

⎡⎣1 −
t′∑

j=0

t′−j∑
i=0

(
M2

j

)
(ps,d)j(1 − ps,d)(M2−j)

(
L − M2

i

)
(pr,d)i(1 − pr,d)(L−M2−i)

]
. (23)

We use the fact that the RS code can decode up to t′ errors in either di-
rect transmission part or the relay transmission part in (23). The expected
distortion with DSC can be expressed as

E[D(DSC)(ϕm, ϕn)] = Dmax −
K∑

k=1

ΔDk(ϕm)p(DSC)
k (ϕm, ϕn). (24)

4 Quasi-share Auction Schemes for Multiple Sources

In the previous section, we study the single source-relay-destination case in
which one relay tries to help one source-destination pair for the received video
quality. In this section, based on the proposed cooperative video transmission
scheme, we investigate multiuser case in which one relay tries to help a group
of source-destination pairs to achieve the social optimum, i.e., the overall
video quality. We first formulate the multiuser resource allocation problem in
Section 4.1. Then, the quasi-share auction solution is proposed and analyzed
in Section 4.2. To evaluate the optimality of the proposed solution, we discuss
one existing approach in the literature to serve as one performance bound in
Section 4.3.

4.1 Multiuser Resource Allocation for Relay Node

We consider the full-fledged cooperative network, in which each node can
serve as transmitter, relay, or receiver. To make problem a bit simpler, we
assume the nodes that play relay functions have been pre-determined (so the
relay node determination problem is not in the scope of this article), so that
each relay helps to connect a group of transmitters with a number of receivers
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Fig. 3. Multiple User Resource Allocation in Relay

as shown in Figure 3. In this article, we suppose the cooperative transmission
system has source node si, one relay node r and destination node di.

Denote set I as I source-destination pairs accessing one particular relay
node in the network. To achieve real-time transmission, the overall allocated
transmission time slots for all nodes to transmit I GOPs is set to the required
time to playback one GOP. We reserve t% of time slots for relay node. The
rest of time slots are allocated to each source-destination pair equally. Due
to the distributed location of the nodes, each source-destination pair experi-
ences different channel conditions in both direct and cooperative transmission
path. Besides, since different sources transmit different video sequences and
the contents are changing over time, the relay needs to dynamically adjust
rate allocation to provide optimal video quality. The main issue is how to
assign relay’s time slots to each source-destination pair for delivering side
information to achieve overall optimal video quality.

In this section, we take the relay transmission with DSC protocol as an
example (which will be demonstrated in Section 5 to have best video quality
among all protocols in most cases ). Nevertheless, other protocols can be
applied in a similar fashion. Define αi as the fraction of relay’s time slots
assigned to source-destination pair i (including both source-relay and source-
destination path). ϕm

i and ϕn
i are the inner and outer RS channel coding rate

selected by the source i. We can formulate the considered network within each
GOP time scale as

min
αi,ϕm

i ,ϕn
i

∑
i∈I

E[Di(αi, ϕ
m
i , ϕn

i )] (25)
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s.t.

⎧⎨⎩
∑

i∈I αi ≤ 1,
0 < ϕm

i ≤ 1, ∀i ∈ I,
0 < ϕn

i ≤ 1, ∀i ∈ I.

By a given αi, the minimal achievable distortion for received video at desti-
nation i can be calculated as follows

EDsi,r,di(αi) = min
ϕm

i ,ϕn
i

E[Di(αi, ϕ
m
i , ϕn

i )]. (26)

The problem in (26) can be solved locally in each source.
For the relay, the resource allocation problem is to optimize the overall

distortion by dividing the relay’s resources, which are the time slots. The
problem can be formulated as

min
αi

∑
i∈I

EDsi,r,di(αi) (27)

s.t.
∑
i∈I

αi ≤ 1.

In the next two subsections, we present the proposed solution to solve the
problem in (27) and its corresponding performance bound.

4.2 Proposed Quasi-Share Auction

Theoretically, problem (27) can be solved in a centralized fashion by col-
lecting all values of (26) from all users and performing optimization in one
node with high computation ability. Note that when the bandwidth and delay
increases, to gain the optimum of problem problem (27), the required infor-
mation transmitting between source nodes to the managing node for function
(26) becomes prohibitively high to consider every possible αi. This leads us
to investigate a distributed method to alleviate the information exchange.

In this subsection, we find a distributed solution to solve problem (27). Due
to the distributed nature, different source-destination pairs try to optimize
their own performances in a non-collaborate way. An auction is a decentral-
ized market mechanism for allocating resources. The required information
exchange between the user node and the moderator node will be limited to
the bids sent from user and the bidding results. Note that although the auc-
tion can have several iterations with updated bid information; the overall
consumed bandwidth is much less than the centralized scheme. Motivated
by share auction, we propose a quasi-share auction that takes advantage of
setting for cooperative video transmission. We will explain the differences be-
tween the shared auction and proposed quasi-share auction later. The rules
of the quasi-share auctions are described below.

• Information: Public available information includes noise density σ2 and
maximal packet number K. The relay also announces a positive reserve
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bid (or reserve price in some literature) β > 0 and a price π > 0 to
all sources. Each source i also knows the channel gains along direct and
cooperative transmission path, namely, Gsi,di , Gsi,r, and Gr,di .

• Bids : Source i submits bi ≥ 0 to the relay.
• Allocation: Relay allocates proportions of time slot for source-destination

pair i according to

αi =
bi∑

j∈I bj + β
. (28)

• Payments : In our case, source i pays the relay Ci = παi.

A bidding profile is defined as the vector containing the sources’ bids, b =
(b1, ..., bI). The bidding profile of source i’s opponents is defined as b−i =
(b1, ..., bi−1,bi+1, ..., bI), so that b = (bi; b−i) . Each source i chooses bid bi to
maximize its payoff

Si (bi; b−i, π) = �E[Dsi,r,di (αi (bi; b−i))] − Ci (bi; b−i, π) , (29)

where

� E[Dsi,r,di (αi (bi; b−i))] = E[Dsi,r,di(0)] − E[Dsi,r,di(αi (bi; b−i))]. (30)

Since each source chooses its bid to maximize its payoff function in (29), from
(28), the relay allocates more time slots to this user with higher bid to achieve
better video quality. However, the cost Ci also increases. Consequently, if the
other users do not change their bids, there is an optimal point to set the
price.

Although video’s rate-distortion (R-D) curve is often a convex decreasing
function; however, (30) is generally not a concave increasing function owing
to applying optimization over all possible channel coding rates for each αi in
(26). Notice that above payoff function for the quasi-share auction is similar
to the soul of “Pricing Anarchy”, in which the users pay the tax for their
usage for the system resources.

Here, we omit the dependency on β. If the reserve bid β = 0, then the
resource allocation in (28) only depends on the ratio of the bids. In other
words, a bidding profile kb for any k > 0 leads to the same resource allocation,
which is not desirable in practice. That is why we need a positive reserve bid.
However, the value of β is not important as long as it is positive. For example,
if we increase β to kβ, then sources can just scale b to kb, which results in
the same resource allocation. For simplicity, we can simply choose β = 1 in
the practice.

In (29), if the others’ bids b−i are fixed, source i can increase its time
slot αi in (28) by increasing bi. As a result, the distortion is reduced and
ΔE[Di] is improved. However, the payoff faction needs to pay the price for
αi. Depending one different price per unit π announced by the relay, there
are three different scenarios:
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1. If π is too small, the payoff function Si in (29) is still an increasing
function. As a result, the source tries to maximize its own benefit by
setting price high. Consequently, bi → ∞.

2. If π is too large, the payoff function Si is a decreasing function. As a
result, the source would not participate in the bidding by setting bi = 0.

3. If π is set to the right value, the payoff function Si is a quasi-concave
shape function, i.e., it increases first and then decreases within the feasible
region. Consequently, there is an optimal bi for the source to optimize its
performance.

Based on the observation above, the quasi-share auction algorithm is shown
as follows. The relay conducts line search for π from the situation in which
bi = 0, ∀i to the situation in which bi = ∞, ∀i. For each π, different sources set
bids to optimize their own performances and report the expected distortion
to the relay. By doing so, the computation is distributed to each source node.
Among all π s’, the relay selects the solution with the best overall system
performance and announces the final αi to each source i.

Compared with the share auction and the proposed quasi-share auction,
the final results are the same if the bid update for share auction can be ob-
tained and ΔE[Di] is a concave increasing function. For data communication,
the bids can be updated in a close form. However, due to the complexity to
express the cooperative video end-to-end distortion, the close form update
function cannot be obtained. As a result, we can only apply the quasi-share
auction for the video cooperative transmission.

4.3 Performance Upper Bound

In this subsection, we investigate a performance upper bound similar to
the VCG auction [26, 27, 28] proposed in the literature and compared with
our proposed approach. In the performance upper bound, the relay asks all
sources to reveal their evaluations of the relay’s time slots, upon which the
relay calculates the optimal resource allocation and allocates accordingly. A
source pays the “performance loss” of other sources induced by its own par-
ticipation of the auction. In the context of cooperative video transmissions,
the performance upper bound can be described as follows:

• Information: Public available information includes noise density σ2 and
bandwidth W . Source si knows channel gain Gsi,di . The relay knows
channel gains Gr,di for all i, and can estimate the channel gains Gsi,r for
all i when it receives bids from the sources.

• Bids : source si submits the function Qi (αi, Gsi,r, Gr,di) to the relay, which
represents the distortion decrease as a function of the relay parameter αi

and channel gains Gsi,r and Gr,di .
• Allocation: the relay determines the time slot allocation by solving the

following problem (for notational simplicity we omit the dependence on
Gsi,r and Gr,di),
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α∗ = argmax
α

∑
j∈I

Qj (αj) . (31)

• Payments : For each source i, the relay solves the following problem

α∗/i = arg max
α,αi=0

∑
j

Qj (αj) , (32)

i.e, the total distortion decreases without allocating resource to source i.
The payment of source i is then

Ci =
∑

j �=i,j∈I
Qj

(
α
∗/i
j

)
−

∑
j �=i,j∈I

Qj

(
α∗

j

)
, (33)

i.e., the performance loss of all other sources because of including source
i in the allocation.

Source i in the performance upper bound obtains the payoff function as

Yi = �E[Dsi,r,di (αi)] − Ci, (34)

where
E[Dsi,r,di (αi)] = E[Dsi,r,di (0)] − E[Dsi,r,di (αi)]. (35)

Although a source can submit any function it wants, it has been shown that
[26] that it is a (weakly) dominant strategy to bid truthfully, i.e., revealing
the true function form of its distortion decrease

Qi (αi) = max {E[Dsi,r,di (0)] − E[Dsi,r,di (αi)], 0} . (36)

As a result, the resource allocation of the performance upper bound as cal-
culated in (31) achieves the efficient allocation [26].

Note that the sources do not need to know global network information, i.e.,
no need of knowing the channel gains related to other sources in the network.
The auction can achieve the efficient allocation in one shot, by allowing the
relay to gather a lot of information and perform heavy but local computation.

Although the performance upper bound has the desirable social optimal,
it is usually computationally expensive for the relay to solve I + 1 noncon-
vex optimization problems. To solve a nonconvex optimization, the common
solution like interior point method needs a complexity of O(I2). As the re-
sult, the overall complexity for the performance upper bound is O(I3), while
the proposed quasi-share auction has linear complexity. Furthermore, there
is a significant communication overhead to submit Qi (αi) for each source i,
which is proportional to the number of source nodes and reserved time slot for
relay node. In the proposed scheme, the bids and the corresponding resource
allocation are iteratively updated. This is similar to the distributed power
control case, where the signal-to-interference-noise ratio and power update
are iteratively obtained. As a result, the overall signalling can be reduced.
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5 Simulation Results

In this section, we show the simulation results of the proposed framework.
We first demonstrate the superior performance of the proposed cooperative
video transmission in the single source-destination pair scenario. Then, we
investigate the multiuser case for the proposed resource allocation using quasi
share auction theory.

5.1 Single Source-Destination Pair Scenario

The simulation environment is set up as follows: The overall power P0 = 0.2
Watt, the noise power is -100dbmw, and the propagation factor is 3. The
source is located at the origin and the destination is located at (1000m, 0m).
The relay is moved from the (100m, 400m) to (900m, 400m). The packet
length is L = 255. The tested video stream is Foreman in QCIF resolution
(176x144) with refresh rate 30 frames per second.

In Figure 4, we show the peak-to-noise ratio (PSNR) as a function of the
relay location for video Foreman. Here we normalize the relay location in
x-axis over the distance from the source to the destination. From the figures,
we can see that the direct transmission has the worst performance and pro-
vides unacceptable reconstructed video quality. The cooperative transmission
without combined decoding at the receiver has the best performance when
the relay is located at the middle of the source node and the destination
node. For the AF protocol, the best performance is achieved when the relay
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is relatively close to the destination; for the DF protocol, the optimal relay
location is obtained toward the source node, and the DF protocol has better
performance than the AF protocol when the relay node is close to the source
node. These facts are very different from the generic-data domain cooperative
transmission. Finally, the relay transmission with parity check bits (shown
as coded coop) has superior performance (about 4dB gain) than the other
protocols when the source node and relay node are close. However, when the
relay node is far away from the source node, its performance degrades fast.
This is because the performance is impaired by the source-relay link. On the
whole, the proposed cooperative protocols can achieve better performances
than direct transmission, and the characteristics of the performance improve-
ment for video applications are very different from the ones from generic-data
domain cooperative protocols.

Notice that the proposed cooperative framework will not always perform
well in every relay location. The location of relay node needs to be close to
the source-destination link. Otherwise, the cooperative transmission will not
work, in the sense that the optimization in (14) degrades to traditional direct
transmission with θ = 0.

We are also interested in which protocol performs best under each partic-
ular scenario. For the AF/DF protocol, the received SNR can be significantly
increased. This is especially true for low SNR case. However, the signal needs
to be stored in the receiver for combining at the second state. This increases
the implementation cost. For the relay transmission without combined de-
coding, the implementation cost is minor, but it has inferior performance
when the SNR is low. The proposed scheme with parity check bits provides
an improvement over the relay transmission without combined decoding in a
cost effective manner. However, the relay needs to be close to the source to
ensure a the good source-relay channel.

5.2 Multiple Source-Destination Pairs Scenario

For multiple user case, the simulations are setup as follows. The power for
all source nodes and relay node is 0.1 Watt, the noise power is 5 ∗ 10−10

Watt, and the propagation factor is 3. Source node 1 to node 3 are located
at (-400m, 0m), (-300m, 50m), and (-200m, -20m), respectively. The corre-
sponding destination node 1 to 3 are located at (200m, 0m), (400m, 100m),
and (300m, 30m), respectively. The relay is located at the origin. We reserve
30% of bandwidth for relay to transmit the parity check bits. The packet
length is L = 255. Again, we adopt 3D-SPIHT [24] codec as an example to
compress video sequence in QCIF resolution (176x144) with refresh rate 30
frames per second. The GOP is set to 16 and each source node will trans-
mit 10 GOPs to its corresponding destination node. To evaluate the perfor-
mance under different video content and different level of motion activity in
the video sequence, we compare three different sets of video sequences. The
first set consists of low motion video sequences: news, grandma, and akiyo.
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The second set contains stefan, foreman, and coastguard. The third set contains
mixed level of motion video sequences, including silent, foreman, and news.

To demonstrate that the proposed framework can utilize the relay’s band-
width effectively to achieve better perceptual quality, we compare the con-
stant bit rate (CBR) scheme which allocates equal amount of time slots for
relay node to transmit parity check bits for each video source. In Figure 5, we
show the average PSNR gain when we compare the proposed scheme and the
CBR scheme for all three video sets. As we can see, the proposed scheme can
have PSNR gain between 0.8dB and 1.3dB when the received video quality
is between 30dB and 40dB, which is a noticeable quality improvement. The
performance gain achieved by the proposed scheme is mainly contributed by
jointly leveraging the diversity of different video source R-D characteristics
and nodes’ channel conditions; and dynamically allocating suitable amount
of time slots to each video source. To further assess the impact of different
level of motion activities, we show the PSNR performance for three different
video sets in Figure 6. As revealed, the performance gain is consistent for all
levels of motion activities owing to the dynamic resource allocation.

To evaluate how close the performance of the proposed scheme can ap-
proach to the optimal solution, we list the PSNR difference between the
proposed scheme and the optimal solution in Table 1, 2, and 3. As shown
in these three tables, the performance loss is only between 0.1dB and 0.3dB.
Note that the computation complexity and the communication overhead to
obtain the optimal solution are extremely high. The proposed distributed

Table 1. Performance gap: Low Motion

Bandwidth (kbps) 95.63 191.25 286.88 382.50 478.12

Optimal (dB) 30.36 34.29 36.83 38.82 40.44

Proposed (dB) 30.16 34.12 36.52 38.61 40.22

Gap (dB) 0.2 0.17 0.31 0.21 0.22

Table 2. Performance gap: High Motion

Bandwidth (kbps) 765 956.2 1530 1912.5 2677.5

Optimal (dB) 30.16 31.18 33.73 35.17 37.68

Proposed (dB) 30.01 31.02 33.59 34.92 37.37

Gap (dB) 0.15 0.16 0.14 0.15 0.31

Table 3. Performance gap: Mixed Motion

Bandwidth (kbps) 191.25 478.12 573.75 765.00 956.25

Optimal (dB) 30.65 34.34 36.89 38.89 40.54

Proposed (dB) 30.49 34.17 36.61 38.62 40.30

Gap (dB) 0.16 0.17 0.28 0.27 0.24
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scheme can achieve similar video quality by requiring much lower computa-
tion and communication overhead.

6 Conclusions

In this article, we briefly introduce the concepts of cooperative communi-
cation, distributed source coding, and auction theory. We then present the
proposed cooperative wireless video transmission protocols with distributed
source coding using auction theory. The considered framework is formulated
as an optimization problem to minimize the estimated distortion under the
power and bandwidth constraints. We also evaluate four different cooperative
schemes for the performance improvement over different scenarios. The pro-
posed cooperative video transmission scheme has the best performance among
all schemes, as long as the source and relay are closely located together. We
further propose a quasi-auction based resource allocation for multi-user sce-
nario. Compared to the performance upper bound which is complicated and
unpractical, the proposed quasi-share auction can reduce the computation
complexity, while the performance gap is only 0.1dB to 0.3dB. The future
works include the extended study of multiple relays involved in the whole
networks and comprehensive research on distributed protocols to handle the
full-fledged cooperative networks where each node can serve as source, relay,
and destination node simultaneously.
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Summary. Emerging markets are increasingly competitive under the heading
of convergence and substitution, including device convergence, fixed-mobile
convergence, fixed-mobile substitution, service convergence, VoIP (Voice over
Internet Protocol) telephony substituting for circuit switched voice telephony,
bundled offers of mobile, fixed, broadband and TV and, finally, truly unified
communications and digital media services that are delivered irrespective of
anytime, anywhere, and anyhow. With the increasing use of wireless net-
working, convergence technology combined with user mobility is expected to
introduce a significant change in how and when people communicate, using a
variety of new applications on ubiquitous wireless devices. This chapter aims
to discuss VoIP over enterprise fixed mobile converged networks (FMCN) and
points out some open issues. We first review VoIP basics including transport
and signalling protocols, speech coding, and VoIP quality assessment model,
followed by introducing enterprise FMCN architecture and service charac-
teristics. Then we review the performance of VoIP over enterprise wireless
networks and discuss voice over enterprise unified communications. Finally,
several future directions including VoIP over femtocell, location/presence-
enriched enterprise VoIP, and admission control in enterprise wireless network
are briefly listed.

1 Voice Communication Networks

We have witnessed that voice services have been migrating from traditional
circuit-based plain old telephone service (POTS) or public switched telephone
networks (PSTN) telephony, and cellular telephony to recently emerging IP
telephony or voice over IP (VoIP) for reasons including cost-efficiency and
flexibility improvement, etc. POTS/PSTN and cellular networks1 use circuit-
switching technique, under which network resources are first allocated to
establish a circuit from the sender to receiver before the start of communi-
cations. The allocated resources remain dedicated to the established circuit
1 It’s worth noting that future all-IP cellular networks use packet-switching tech-

nology to support voice services.

W. Lin et al. (Eds.): Multimedia Analysis, Processing & Communications, SCI 346, pp. 585–621.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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during the entire voice call: circuit-switched network. In packet-switched net-
works, each message is broken into and contained in smaller packets, each
of which can take a different route to the destination where the packets are
reassembled into the original message. Each packet consists of a portion of
user data plus some control information in the form of header and/or tailer
such as information for addressing and error correction: packet switched net-
work. Voice calls over a traditional circuit-switched PSTN network are first
digitized from analog voice signal, transmitted across thousands of miles, and
finally converted back to analog once they get to the final destination (a home
or office phone, for instance). During the transmission, several interconnected
switches along the connected line remain open and occupied even while there
is dead air and no conversation is taking place. The circuit is even open in
both directions even if only one party is talking and the other is listening.
This transmission method is very inefficient because it does not fully utilize
the data transmission capacity of the dedicated line because of silence period
in voice communications. Also it takes time to set up the connection. On the
other hand, VoIP which relies on IP packet-switched data networks works dif-
ferently. Rather than circuit switching, data packet switching used in VoIP
sends and receives small chunks of voice data, called a packet, only when
you need it - instead of in a constant stream. It also sends the data packets
along whatever open Internet circuits that are available, which is much more
efficient than using a dedicated line.

1.1 Diversified Communication Networks

Although POTS/PSTN telephony, cellular telephony, and IP telephony ser-
vices have possessed their own territories and considered as a separate market
respectively, people who subscribe and use those services with different voice
terminal equipments should be able to communicate with each other even
over different access networks and technologies such as POTS/PSTN net-
works, cellular networks, and IP networks. The same story applies for the
same technology with the different service providers. As the wireless tech-
nologies advance shown in Figure 1, different systems in network design,
architecture, standards, services, and terminals are developed and deployed
especially in wireless world: from 1G to 4G including Time Division Multiple
Access (TDMA), Code Division Multiple Access (CDMA), Orthogonal Fre-
quency Division Multiple Access (OFDMA), Carrier Sensing Multiple Access
(CSMA), satellite communication, sensor communication etc. In this situa-
tion, people have long sought out products and services that make their lives
more convenient and simpler, give them access to new services while access-
ing multiple access technologies with a single device, and most importantly
give them convenience as well as saving them money. Current network us-
age and device sales demonstrate the truth behind each consumer objective,
like people’s preference on hyper-converged mobile phones in Figure 2 that
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Fig. 1. Heterogenous networking technologies are merged into one platform: Fixed-
Mobile Converged Network. Diversified communication tools/applications are inte-
grated into one architecture: Unified Communications. Now these two architectures
can be unified into Mobile Unified Communications in enterprise environment.

have a built-in camera, GPS, TV, music player, game player, projector, health
inspector, wireless interfaces, and can manage your office documents. Device
convergence is one of the most significant trends in current technology to
substitute other computing and consumer electronics devices by integrat-
ing the functionalities of these devices into the phone platform. Especially
these mobile phones are being equipped with various wireless interfaces from
short-range communication technologies including infrared, Wi-Fi [1], UWB
(Ultra-WideBand), Bluetooth, RFID (Radio-Frequency IDentification) [2] to
long-range access networks, such as WiMAX (Worldwide Interoperability for
Microwave Access) [3]. These technologies enable the phone to become a per-
sonal data gateway interacting with mobile networks in numerous ways. In
this heterogeneous wireless access networking environment shown in Figure
3, convergence can be an attractive service to the customers who are suffered
from selection of the best access network and poor quality of service due
to his/her movement. Today, we view convergence as the migration of voice,
data, and video services to a single consolidated network infrastructure which
is based on both wired and wireless networks, of which network infrastructure
is referred to as fixed-mobile converged networks (FMCN) [4].
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Fig. 2. Various multimedia functions converged into a single mobile device (Device
Convergence), which is always with you and behaving as a personal assistant

1.2 Unification: Carrier-Centered vs. Enterprise-Centric

The aim of the FMCN is to provide the seamless transition of calls or
communications in progress between outside cellular network and inside
wired/wireless networks on a single-mode or multi-mode handset. The path
of a call transits between outside networks and inside networks reaching to
the cellular service provider over the subscribers’ broadband network. To
support communication continuity, there needs a mobility controller to han-
dle the handover seamlessly over the path. This mobility controller can be
located at and operated by either the service carrier or the enterprise. If
it is in the service provider, it is called carrier-centric convergence and the
seamless mobility can be supported through either unlicensed mobile ac-
cess/generic access network (UMA/GAN) method or the voice call continu-
ity (VCC) [5] technology of the IP multimedia subsystem (IMS) specification
[6]. The UMA technology [7] encapsulates and transports the cellular pack-
ets over the broadband IP network, of which handset should implement the
cellular protocol stack over the attached wireless networks. The carrier-based
approach mainly aims at the consumer market because the subscriber doesn’t
need managing a call to control. The main requirements of the consumer are
convenience and cheap. However the enterprise considers managing and con-
trolling the communications as the most important features and does not
allow its information to be processed and possessed by the service provider.
Thus, the mobility controller should be located in the enterprise and enter-
prise IP-PBX can be an anchor point to support seamless continuity. Mobility
aware IP-PBX extends the existing features and functionalities of the enter-
prise IP-PBX out to support mobile phones making them to behave like an
extension over inside wireless network and this approach is called enterprise-
centric convergence.
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Fig. 3. Many customers may have no idea on which access technology is the best
at the place. Convergence represents the coming together of all networks and man-
agement creating a unified network with call continuity with best access quality at
anyplace, anytime, and anydevice.

UMA vs. VCC

The basic promise of convergence service is to enable subscribers using new
dual-mode handsets or femtocell-aware single mode handset to automati-
cally transition between outdoor mobile networks and indoor enterprise Wi-
Fi/femtocell networks. Expanding coverage for better in-building usage is re-
garded as the most important reason for cellular operators to embrace these
multi-mode handsets. One cannot expect a mobile subscriber to start a call
in a Wi-Fi environment and hang up and re-initiate the call when they move
outside into the cellular network from inside networks. Here it comes the need
for seamless mobility and there are two approaches, mobile-centric UMA and
fixed-centric VCC, to support service continuity [8].

UMA/GAN is a 3GPP standard defined by the mobile community to ex-
tend voice, data, and IMS services over IP access networks while having
minimal impact on operators’ core networks already in place. It allows mo-
bile operators to leverage the cost and performance advantages of IP access
technologies when delivering high-quality, low-cost mobile voice and data ser-
vices in the location where subscribers are stationary such as in home, office or
public hotspot. The underlying architecture is one in which the GSM/UMTS
signalling and media streams are tunneled over an IP transport in attached
wireless network which is non-cellular network. This is accomplished by the
client establishing an IP link with a corresponding UMA point-of-presence
network element called a UMA network controller (UNC) through encap-
sulating voice packet with cellular protocol. To the cellular network, such
devices appear to be functionally identical to a standard cellular phone. Be-
cause of speaking cellular protocol between the UNC and the handset client,
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the functions supported at the handset are identical, regardless of whether
they are in cellular or 802.11 coverage.

VCC is a 3GPP-defined specification defined by the fixed community that
describes how an existing voice call continues even as a mobile phone moves
between circuit-switched system (GSM/UMTS) and packet-switched radio
domains including Wi-Fi, UMTS PS (packet-switched) network and vice
versa with complete transparency and seamlessness from an end-user point
of view. As with UMA, VCC is defined to take advantage of broadband and
802.11 networks in homes and businesses. It is the same as UMA that the call
is anchored in the cellular network, but the major difference is that the VCC
client is based on the SIP (Session Initiation Protocol) standard and not a
cellular phone emulation model like UMA. This approach has advantages in
its compatibility with enterprise IP-PBX solutions and IMS networks, since
most of these products use SIP protocol as a controlling protocol. When the
phone detects as available 802.11 signal or other wireless networks inside, it
will use SIP to create the new session over the 802.11 broadband IP network.
Thus, VCC differs from UMA in that VCC is a SIP-centric approach to the
convergence.

1.3 Unifying Diverse Applications

Desktop and smart mobile phones are equipped with broad rage of appli-
cations to support communications: e-mail, voice mail, instant messaging
(IM) and social networking, conferencing, video, and web which are shown
in Figure 1. These applications are offering suitable capabilities to the right
places and right time with their own communication platform like different
methods and devices. However, it is challenging to find the best way at right
place and time and even retrieve the messages from the different applications.
Thus, people have sought a way where calls and messages would reach each
user regardless of location or means of access technologies, allowing them to
use the best communication method and to retrieve e-mail, instant messages,
or voice mail from a common storage at any location. This is a promise of
Unified Communications (UC).

1.4 Unifying Network and Application Diversity

Mobile unified communications (MUC) removes the barriers between fixed
mobile network convergence and unified communications by unifying them
into one architecture: voice, email, conferencing, video instant messaging,
mobility, and location/presence services, allowing people to connect, commu-
nicate and collaborate from multiple locations with their available devices in
Figure 1. By providing the tools to inside/outside employees to keep staying
available and productive no matter where they are and no matter how they
can be accessed, MUC is increasingly deployed into enterprise communica-
tion platform by integrating into enterprise communication controller, such
as IP-PBX.
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There are some proposals about FMCN architecture and unified commu-
nications in literature, but what’s the impact of FMCN on services especially
VoIP and how VoIP could be supported better in such emerging FMCN are
not well understood yet, especially for enterprise VoIP. This chapter aims
to discuss enterprise VoIP in FMCN. Some background knowledge about
VoIP is introduced in Section 2. Enterprise FMCN architecture is described
in Section 3, where wireless networks play an important role in the full pic-
ture. VoIP over specific wireless networks and enterprise MUC (EMUC) are
explained respectively in Sections 4 and 5. Finally, Section 6 concludes the
whole chapter and lists several future directions.

2 Voice over IP (VoIP)

VoIP [9] is the transmission technology for voice communications over IP
networks. It employs session control protocols to handle session establish-
ment, termination, and negotiate session parameters, such as audio codecs
which is responsible for converting analog voice signal to and from digitized
voice bits. Voice packets are transmitted using Real-time Transport Protocol
(RTP) and User Datagram Protocol (UDP). Figure 4 illustrates a typical
VoIP systems. VoIP traffic is different from data traffic and has the following
unique characteristics:

• Low Bandwidth: VoIP packet consumes very little bandwidth, for ex-
ample 20 bytes voice payload for G.729a.

• Large Overhead: Compared to the voice payload, the header overhead
for IP/UDP/RTP consumes the larger part of the bandwidth, i.e. 40 bytes.

• Delay Sensitivity: Non real-time data, even data streaming, can tolerate
delays of a few seconds or more without impacting user experience. In
contrast, VoIP traffic can only allow an end-to-end delay of 150 to 400 ms.
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• Jitter Sensitivity: Jitter is defined as a statistical variance of the RTP
data packet inter-arrival time and is one of the three most common VoIP
problems, which are delay, jitter, and packet loss. If the jitter is so large
that it causes packets to be received out of the range of the playout time
and these packets are discarded, it causes the perceived voice quality to
degrade.

• Loss Sensitivity: VoIP traffic is sensitive to frame loss rate due to no
end-to-end retransmissions allowed and there is a threshold on delay vs.
loss ratio to support the perceived voice quality. Although some codecs
include the information to correct the error and can tolerate higher losses,
common protocols such as G.711 or G.729 can only operate if the loss rate
is within certain amount of threshold.

• Uniform and Smooth Traffic: VoIP produces the payload usually every
fixed amount of time and needs regularity in the network delay and a low
loss rate. This continuity should be kept in the receiver side while bursty
data traffic interferes on-time transfer.

Playout/Jitter buffer: The network delivers voice packets in best way with
variable delays. To be able to play the audio stream with reasonable quality,
the receiving endpoint needs to make the variable delays into constant delays.
This can be done by using a jitter or playout buffer. The jitter buffer places
the voice packets to the queue to hold, not playing out as soon as it receives
the voice packets. The delayed packets starts to play out after the buffer reach
to the threshold, for example 60 or 100 ms. We can increase the size of jitter
buffer to reduce buffer overflow or underflow, it simultaneously increases the
end-to-end delay.

VoIP is susceptible to network conditions (delay, jitter and packet loss),
which can degrade the voice quality to the point of being unacceptable to
the average user. Managing voice quality over both IP-based wired and wire-
less networks has become a challenge, especially in a heterogeneous network
environment. For a VoIP system the most significant influences on a user’s
perception of quality are a function of many factors that include the perfor-
mance of codec system, errors and frame loss, echo cancelation, and delay.
For example, a proper selection of the VoIP codecs allows the system to react
to the random variations in capacity due to transmission rate changes, which
are motivated by the wireless channel and the movement of users. There are
several issues that need to be addressed in order to provide a toll-quality,
PSTN equivalent end-to-end VoIP network. These include:

• Quality of Service (QoS): One of the key requirements for the
widespread deployment of VoIP is the ability to offer a toll quality service
equivalent to the existing PSTN. Perceived voice quality is very sensitive
to three key performance criteria in a packet network: delay, jitter and
packet loss. The followings are a set of minimal requirements for VoIP
applications set by WiMAX Forum: a) Typical Data Rate: 4-384 Kbps;
b) Delay: < 150 ms; c) Jitter: < 50 ms; d) Packet Loss: < 1.0 %.
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• Signalling Protocols: Numerous different signaling protocols have been
developed that are applicable to a VoIP solution, such as H.248, H.323,
Media Gateway Control Protocol (MGCP), Session Initiation Protocol
(SIP), etc.

• Speech Coding Schemes: Different voice codecs adapt to different net-
work and application environments and lead to different voice quality.

• Security: PSTN has been very resistant to security attacks and have
not suffered from significant problems since the introduction of SS7 out-
of-band signaling. A VoIP network is much more susceptible to security
attacks and must address the security issues including, denial of service,
theft of service, and invasion of privacy.

2.1 VoIP Protocols

VoIP consists of a set of supporting protocols. As there are drivers to deploy
VoIP in many different ways, it can be difficult to define a dominant VoIP
signaling or encoding method. However, for the scope of this book chapter,
we shall focus mainly on the signaling and media transport protocols used in
the IETF, ITU-T, and 3GPP standards such as SIP and H.323 for signaling
and RTP for media transportation.

Figure 5 shows the protocol suites to support VoIP. Two main types of traffic
carrier upon IP are UDP and Transmission Control Protocol (TCP). In gen-
eral, TCP is used when a reliable connection is required and UDP on simplicity.
Due to the time-sensitive nature of voice traffic, UDP/IP is the logical choice
to carry voice for media transport as well as signaling protocol. VoIP signaling
protocols are used to set up and tear down calls, carry information required
to locate users and negotiate capabilities. There are a few VoIP architectures,
derived by various standard bodies and vendors, that are based on a few sig-
naling protocol stacks, namely H.323 and SIP representatively. In the following
section, the main characters of H.323 and SIP are explained.
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RTP

RTP [10] was developed to enable the transport of real-time packets con-
taining voice, video, or other information over IP. RTP is defined by IETF
Proposed Standard RFC 3550. RTP does not provide any quality of service
over IP network. RTP packets are handled the same as all other packets
in an IP network. However, RTP allows for the detection of some of the
impairments introduced by an IP network, such as packet loss and out of
sequence packet arrival with sequence number, variable transport delay with
time stamp.

H.323

H323 [11] is an ITU-T umbrella standard released in 1996, which consists of
signaling and transport and coding protocols. H323 is a multimedia confer-
encing standard and mainly used in professional video conferencing systems,
but also used for pure VoIP applications. Part of the design is to specifically
tackle the interconnection with PSTN by means of a gateway.

SIP

SIP [11] is an application-layer signalling protocol that can be carried over
UDP or TCP. As an application protocol, SIP operates independently of the
network layer and requires only packet delivery service from the accessed net-
work. The basic function of SIP is to locate the person, to ring the terminal,
and to establish a connection which is already negotiated with the necessary
parameters for media transport protocol. SIP has been designed with easy
implementation, good scalability, and flexibility in mind. SIP endpoints are
called user agents (UAs). Thus the user agent client (UAC) is the calling
party, and the user agent server (UAS) is the called party. Except user agent,
there are server components in SIP architecture. SIP servers are intermediary
components that are located within the SIP-enabled network and assist user
agents in session establishment and other functions. There are three types of
SIP servers:

• SIP Proxy Server: it receives SIP request from a user agent or another
proxy and forwards or proxies the request to another location.

• SIP Redirect Server: it receives a request from a user agent or proxy
and returns a redirection response, indicating where the request should
be redirected.

• SIP Registrar Server: it receives SIP registration requests and updates
the user agent’s information into a storage for location service.

SIP is not limited to establish a signaling path for voice communications
and can in fact be used to set up video, text (for instant messaging), and
other types of media sessions. The exact media components in the multime-
dia session are described using a Session Description Protocol (SDP) [12],
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which provides the two endpoints with information about media, such as the
format of the media (G.711, Adaptive Multirate-AMR, etc.), the type of me-
dia (video, audio, etc.), and the transport protocol (RTP, etc.). Opposed to
H.323 which is an umbrella standard, the purpose of SIP is just to make the
communication possible. The communication itself must be achieved by other
means and protocols/standards. SIP has been designed in conformance with
the Internet model. It is an end-to-end-oriented signalling protocol which
means that all the logic is stored in end-devices (except routing of SIP
messages).

2.2 Speech Coding

VoIP works by taking analog audio signals and turns them into digital data
which can then be transmitted over the Internet. The well-known principle of
a digital modulation is to modulate an analogue signal with a digital sequence
in order to transport this digital sequence over a given medium: fibre, radio
link etc. This has great advantages with regard to classical analogue modula-
tion: better resistance to noise, use of high-performance digital communica-
tion and coding algorithms etc. To digitize analog speech, an analog-digital
converter (Coder) [13] samples the value of the analog signal repeatedly and
encodes each result in a set of bits. Another identical codec (Decoder) at
the far end of the communication converts the digital bitstream back into an
analog signal. Most domestic PSTN networks operate with speech sampled
at 8 kHz and an 8-bit nonlinear quantization according to ITU-T G.711. This
encodes at 64 kbit/s and introduces little audible distortion for most types
of signal. In a number of applications, however a much lower bit rate is de-
sirable either because capacity is limited, i.e. wireless/mobile environment,
or to maximize the amount of traffic or calls that can be supported under a
limited bandwidth. Some popular codecs for VoIP are listed below2.

G.711

G.711 is a high bit rate (64 kbit/s) ITU standard codec. It is the native lan-
guage of the modern digital telephone network. The codec has two variants:
A-law and U-law. It works best in local area networks where we have a lot of
bandwidth available with the large size of the payload and low packet error
rate. Its benefits include simple implementation which does not need much
CPU power and a very good perceived audio quality. The downside is that
it takes more bandwidth then other codecs, up to 84 Kbit/s including all
UDP/IP overhead. G.711 is supported by most VoIP providers - the MOS
value is 4.2.
2 In addition, ITU recommendation G.718 is an embedded codec which provides

variable rates at 8 kbit/s and 32 kbit/s for 8 and 16 kHz sampled speech and audio
signals. ITU G.719 codec is a recently approved ITU standard for high-quality
conversational fullband audio coding while introducing very low complexity and
being hight practical.
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G.729

G.729 is a popular codec that significantly reduces the bandwidth require-
ments for a IP voice signal but still provides good audio quality (MOS = 3.9)
- from the standard payload size of 64 kbit/s of G.711 down to 8 kbit/s. There
are various versions of G.729 (sometimes called G.729a, G.729b or G.729ab)
that further reduce the voice payload size to 6.4 kbit/s or less. The codec
algorithm encodes each frame to 10 bytes per 10 ms, so the resulting bitrate
is 8 kbit/s for one direction. When used in VoIP, it usually sends 3-6 G.729
frames in each packet to reduce the overhead of packet headers. G.729 is the
most widely used low bitrate codec and is universally supported by the major
VoIP equipment manufacturers.

G.723.1

G.723.1 allows calls over 28.8 and 33 kbit/s modem links. It operates on
audio frames of 30 milliseconds (i.e. 240 samples), its bitrate is 5.3 kbit/s
with MOS=3.7.

GSM 06.10

GSM 06.10 is also known as GSM Full Rate and operates on audio frames
20 milliseconds long (i.e. 160 samples) and it compresses each frame to 33
bytes, so the resulting bitrate is 13 kbit/s with MOS=3.7.

Speex

Speex is an open source patent-free codec designed by the Xiph.org Founda-
tion. It is designed to work with sampling rates of 8 kHz, 16 kHz, and 32 kHz
and can compress audio signal to bitrates between 2 and 44 kbit/s. For use
in VoIP telephony, the most usual choice is the 8 kHz (narrow band) variant.

iLBC (internet Low Bit Rate Codec)

iLBC is a free codec developed by Global IP Solutions. The codec is defined
in RF C3951. With iLBC, you can choose to use either 20 ms or 30 ms frames
and the resulting bitrate is 15.2 kbit/s and 13.33 kbit/s respectively. Much
like Speex and GSM 06.10, you will find iLBC in many open source VoIP
applications.

2.3 VoIP Quality Assessment: E-Model [14]

A VoIP system shown in Figure 4 consists of an encoder-decoder pair and an
IP transport network. The choice of vocoder is important because it has to
fit the particularities of the transport network (loss and delay). One of the
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Fig. 6. R-score for 60ms jitter buffer [15]

popular voice encoders is G.729, which uses 10ms or 20ms frames. It is used
by some available 802.11 VoIP phones. VoIP application with G.729 codec
sends 50 packets per second, of 20 bytes each. Although a 30% utilization
increase is generally expected when accounting for periods of silence when no
packets are sent, we do not consider silence periods in this book chapter. To
measure the quality of a call, we use a metric called E-Model, which takes into
account mouth to ear delay, loss rate, and the type of the encoder. Quality
is defined by the R-score (a scalar measure that ranges from 0 (poor) to 100
(excellent)), which for medium quality should provide a value above 70:

R = 94.2 − 0.024d

− 0.11(d− 177.3)H(d− 177.3)
− 11 − 40log(1 + 10e)

where:

• d = 25+djitter buffer+dnetwork is the total ear to mouth delay comprising
25 ms vocoder delay, delay in the de-jitter buffer, and network delay

• e = enetwork + (1− enetwork)ejitter is the total loss including network and
jitter losses

• H(x) = 1 if x > 0; 0 otherwise is the Heaviside function
• the parameters used are specific to the G.729a encoder with uniformly

distributed loss

The constants consider the delay introduced by the encoder for its lookahead
buffer, and the delay introduced by the jitter buffer, which has two contra-
dictory effects: it increases end to end delay, therefore degrading the quality,
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but it also reduces the delay variance - jitter, which has an overall better
effect. The R-score is finally computed only from the loss and the delay in
the network, which can be measured directly. Loss in the jitter buffer is con-
sidered as the fraction of packets which do not meet their deadlines. In order
to compute loss probabilities and average delay in the network, all packets
from all flows in a tested network are considered together.

Figure 6 shows the values of the R-score with respect to network delay and
total loss for 60 ms jitter buffer and 25 ms vocoder delay. The interpretation
of the iso-R-score curves is that for example to obtain an R-score of 70, the
network has to deliver all packets in less than 160 ms, or deliver 98% in less
than 104 ms [16]. From the figure we can see that the quality is sensitive to
even a couple of percents of loss, whereas the delay tolerates differences in tens
of milliseconds. For example, in wireless network, loss has a high variance, as
it depends on the quality of the channels and the interface cards, and on the
interference from external or internal sources. In the FMCN scenario, end to
end loss is difficult to control and needs to be maintained under 2%. However,
using the retry mechanism of lower layer within the delay budget, this loss
can be reduced at the cost of increasing delay.

3 Enterprise FMCN

Modern automated offices of SOHO (Small Office, Home Office) or enterprise
may contain desk phones, fax machines, PCs surely with Internet connections
(DSL, Cable, or Fiber), PDAs (Personal Device Assistants), smartphones,
laptops with broadband wireless access (WiMAX or Long Term Evolution
(LTE) [17]), and wireless cellular telephones (and in the drawer, more than
one cellular phones for international trip for business): multiple devices and
heterogeneous access networks. Here people hardly consider the desk phones
as the analog telephones, but VoIP telephones or even video telephone. Cur-
rently, the users or subscribers depend on their intelligence to choose the right
devices after checking out what access technologies are available at the place.
There is no other choice for the users: all intelligence to choose the right access
network is on users or subscribers. Then, given the proliferation of advanced
technologies and devices, there is no surprise that people are now looking for
ways to unify and converge these devices, wireless/wired services, communi-
cation technologies and access networks in enterprise environment. The user
brings just one device which handles all sophisticated process to locate the
best access network at the right place and establish the communication at
the best quality. This convenience helps the business process their work easily
while eliminating several devices to bring as well as providing always being
connected to the access network at the right time: the access network collabo-
rates with the device to provide the best network, while hiding all details from
the user. This is why Enterprise FMCN is getting attention and VoIP over
FMCN is becoming a viable solution for mainstream consumers - both busi-
nesses and individuals. For subscriber, this service provides a single wireless
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phone and a personal number while increasing mobile convenience. In the of-
fice, people uses Wi-Fi or small size base station, Femtocell [18], to connect to
a broadband service, such as Internet and hands over from/to outside cellu-
lar networks. Here are the benefits. First, easy access to communication and
Internet services everywhere: convenience, second, quick, seamless sharing of
work, information and experiences within enterprise: higher performance for
employees and better management and control with additional features, then
a single bill from one trusted service provider that offers the whole range
of preferred communication and Internet services in both fixed and mobile
environment: saving money.

3.1 Convergence of Fixed and Mobile Services/Networks

FMCN aims to provide seamless connectivity between fixed and wireless
telecommunications networks. Here, ”Fixed” and ”Mobile” are service
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viewpoint, while wireline and wireless are technology viewpoint. The techno-
logical convergence of wireline and wireless offers a way to connect a mobile
phone to a fixed line infrastructure so that operators can provide services
to their users irrespective of their location, access technology and terminal:
network-level convergence. Fixed refers to communication that requires the
user to maintain its physical location relatively constant. Mobile communica-
tions assume it is possible for a mobile user to maintain seamless connectivity
to a network or a communication peer, or continue using communication ser-
vices while changing location. With the converged services across fixed and
mobile environments, a mobile user would stay connected and oblivious to
changing conditions as if these events were not happening and that user were
not moving at all across fixed and mobile networks while accessing the ser-
vices: service-level convergence.

For fixed operator, FMCN provides acquisition of new subscribers by new
services, mainly with existing infrastructure or partly shared infrastructure.
For example, cable operators can acquire new voice subscribers and offer
new broadband services by exploiting unlicensed wireless access (Wi-Fi) and
existing fixed broadband lines into homes and businesses. Thus, fixed operator
can sell mobility in fixed network with dual-mode handset. Mobile operator
reaches home or enterprise in mobile network. FMCN allows mobile operator
to replace the wireline device without causing wireless network congestion
with mobile handset. The handset uses the wireline broadband for in-home
or in-building calls with small-size femtocell station.

FMCN first offers the fixed and mobile operators to retain their customers
and increase revenues with easy-to-use services accessible via any network,
any device and any place, secondly reduce investment and operation costs,
taking advantage of common networks and central maintenance. Handsets
have become multifunction devices built-in cameras, with location with GPS,
MP3 players, voice recognition, and high-quality video displays, while func-
tioning as a personal secretary. Nowadays, the mobile device and wireless
network have become central to the converged lifestyle communications of to-
day’s people. Undoubtedly, FMCN has become catching the latest all terms to
refer to the concept of merging the cellular network to a non cellular network,
such as Wi-Fi and the next big step in the evolution in telecommunication
networks.

FMCN enables subscribers to use resources from the mobile and fixed
network transparently to the users as well as allow to move active voice
calls seamlessly between fixed and mobile networks. FMCN has only recently
begun to gain attraction as a viable service offering, driven by the interaction
of three industry trends:

• Mobile Phone Everywhere: According to U.N. figures published at
2009, more people are using cell phones and other mobile devices for
calls and high-speed data service than that for fixed network and this
trends will continue to increase over time. Mobile phones offer more than
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just mobility; they serve the role of a general-purpose communications
device.

• Wireless Everywhere: Wi-Fi and femtocell have become a common ap-
proach for connecting mobile phones, PCs and other devices to broadband
communications resources, both in homes and enterprises.

• VoIP Everywhere: With the tremendous growth of the Internet and
private data networks, service providers realized that it is more cost-
effective to carry all of their traffic, including voice, over packet-based IP
networks than carrying them over circuit switches. The trend toward VoIP
started in the core voice infrastructure but is now spreading to the edge
and becoming a popular choice for residential and enterprise telephone
service. Eventually, even mobile phones are expected to become VoIP
endpoints.

Given these trends, many service providers are looking forward to a conver-
gence of fixed and mobile wireless communication, i.e. FMCN. The benefits
they hope to attain include:

• Wider Coverage: Wireless access to a fixed network, via Wi-Fi, fem-
tocell, or other technology, can provide connectivity when the handset is
out of the range of a conventional macro cellular signal, i.e. inside the
building or underground.

• Better Voice Quality: A number of factors, such as being inside a
building, can degrade cellular signals and compromise voice quality. Wi-
Fi and femtocell can deliver a cleaner signal for a superior subscriber
experience.

• Optimized Cost and Control: Many enterprises already support wire-
less access to the corporate backbone in their plants and offices. Such
companies can reduce their communication costs and gain greater control
over usage if their employees send voice traffic over the internal network
when at work or on traveling. Moreover, with VoIP, enterprises can ex-
ploit low-cost public IP networks, including the Internet, to further reduce
their phone bills.

• Conservation of Scarce Resources: The radio spectrum available for
mobile networks is limited. Steering calls to/from a stationary subscriber
over a fixed network frees up precious bandwidth for other subscribers
and services on the move.

These factors, as well as the rapid industry-wide acceptance of all IP-based
networking system, have sparked interest in FMCN. The internationally rec-
ognized all IP-based communication standard (IP Multimedia Subsystem,
IMS) was originally specified by the 3GPP, but has since been extended to
all fixed and mobile networks and has been accepted by many other standards
bodies including 3GPP2, ETSI and CableLabs. Indeed, IMS is increasingly
being viewed as the core of all next-generation network architecture.
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3.2 Service Characteristics in FMCN

While characteristics of convergence services vary among operators and ven-
dors, a viable FMCN service must have three major features:

• One Unique Number with single voicemail: The subscriber must be
reachable with a single phone number regardless of the network the hand-
set is connected to at the time. Subscriber benefits from the convenience
of single-number and single-voicemail service coupled with the freedom to
control call handling depending on context (work, home, mobile).

• Service Continuity: An active call must continue without interruption
as a subscriber moves between fixed and mobile networks.

• Service Consistence: Most or all services should present a common user
experience across fixed and mobile networks.

4 Voice over Enterprise Wireless Networks

4.1 Challenges of VoIP over Wireless Networks

Although VoIP has become very popular and successful in wireline systems,
it is still in its infancy in the wireless system, and many technical challenges
remain. Under the environment which requires good perceived voice quality
and guaranteed QoS like enterprise, it still has many challenging issues to
solve.

• Loss, Delay, and Jitter Control: In wireline systems, channels are
typically clean and end-to-end transmission can be almost error-free in
case of no congestion, requiring no retransmissions. However, a wireless
channel could be lossy, resulting in bit errors and corrupted/lost packets.
Packets may have to be retransmitted multiple times to ensure successful
reception at the lower layer, i.e. link layer, and the number of retrans-
missions depends on the wireless link condition. This could introduce sig-
nificant delay and large delay variations which cause the perceived voice
quality to be deteriorated. Further, unlike the circuit channels, which has
a dedicated fixed bandwidth for continuous transmission, packet trans-
missions are typically bursty and share a common channel that allows
multiplexing for efficient channel utilization. This operation also results
in load-dependent delay and jitter.

• Spectral Efficiency: In a wireline VoIP system, bandwidth is abundant,
and it is often used to trade-off a shorter delay. In fact, more bandwidth-
guaranteed circuit-switched transmissions have been abandoned in favor
of the flexibility of packet-switched transmissions, even though packet
transmissions incur extra overheads. In wireless systems, however, the
spectrum resource is generally regarded as the most expensive resource in
the network, and high-spectral efficiency is vitally important for service
providers or network operators. Therefore, mobile VoIP systems must be
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designed such that they can control delay and jitter without sacrificing
spectral efficiency. Packet transmission overheads must also be kept to a
minimum over the air interface.

• Mobility Management: In many packet-based transmission systems,
mobility management has been designed mainly for data applications.
When mobile users move among cell sites, the handover procedure fol-
lows either the break-before-make or the make-before-break principle. The
make-before-break provides better performance while requiring more re-
sources. The break-before-make method leads to a larger transmission
gap when the mobile is being handed over from one cell site to another.
While a transmission gap is often acceptable in data applications, it can
be unacceptable for real-time applications like voice. To support VoIP ap-
plications, the handoff design must be optimized so that the transmission
gap during the handoff is minimized and does not impact perceived voice
quality [19] [20].

4.2 VoIP over IEEE 802.11-Based Wi-Fi Networks

Wi-Fi/WLAN network has been one of the most successful technologies in
the recent years. It is a fact that it has been deployed everywhere: com-
panies, educational institutions, airports, cafeterias, homes, and especially
enterprises. Also, it is frequently reported that the government of a city is to
commence a project to offer public Internet access, i.e. hotspots, by using Wi-
Fi technology. Two kinds of WLAN architectures or operation modes exist:
Infrastructure mode, which is the most common mode and uses a centralized
coordination station, usually called an Access Point (AP), for the scheduling
of transmissions. All traffic goes via the AP. As another operating mode, an
ad hoc mode network works without this centralized element and therefore
it needs a routing protocol and special coordination method to provide re-
liable end-to-end communications between users, which is used for wireless
multihop network. In this book chapter, we use the term Wi-Fi and WLAN
interchangeably.

VoIP Capacity

As a base protocol in 802.11 networks, 802.11b is the first of the Wi-Fi stan-
dards to become popular and is being used for the testbed in this chapter.
Intuitively an 802.11b 11 Mbit/s channel should be able to support up to 85
G.711 VoIP calls: Half of the bandwidth: 5.5 Mbit/s / 1 unidirectional G.711:
64 kbit/s � 85 flows. However, in reality, only 6 calls are supported and this
means some overhead consumes the large part of bandwidth in Wi-Fi net-
work. The reason is that the 802.11 MAC protocol overhead (protocol proce-
dure overhead + MAC header overhead) consumes large portion of available
bandwidth [21].
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Fig. 8. Basic Operation of 802.11 DCF

VoIP Overhead

The 802.11 MAC Layer defines two different access methods, the manda-
tory contention-based Distributed Coordination Function (DCF) and the op-
tional polling-based Point Coordination Function (PCF). At present, DCF
is the dominant MAC mechanism implemented by IEEE 802.11-compliant
products. Furthermore, PCF is basically considered unsuitable for wider de-
ployment, because of the lack of centralized control and the requirement of
global time synchronization. Therefore, in this book chapter, we consider on
DCF access method only, of which basic access mechanism is a Carrier Sense
Multiple Access with Collision Avoidance mechanism (CSMA/CA). While
operating in distributed way, CSMA/CA protocol intrinsically has compar-
ative overhead to send a packet. The current IEEE 802.11b standard can
support date rates up to 11 Mbps. A VoIP flows, when G.729a codec is used,
requires 8 kbit/s. Ideally, the number of simultaneous VoIP flows that can
be supported by an 802.11b WLAN is around (11Mbit/s)/(8Kbit/s) = 1375,
which corresponds to about 687 calls, each with two VoIP flows. However,
it turns out that the current WLAN can support only a few VoIP sessions.
For example the maximum number of VoIP calls with G.729a in 11 Mbit/s
is around 12, a far apart from the estimate. This result is mainly due to the
added packet-header overheads as the short VoIP packets traverse the vari-
ous layers of the standard protocol stack, as well as in the inefficiency of the
802.11 MAC protocol.

As most vocoders use samples of 10-100 ms, a node is expected to get a
large volume of small packet traffic. However, 802.11 networks incur a high
overhead to transfer one packet, therefore small sizes of packets reduce the
network utilization. The problem with small payloads is that most of the
time spent by the 802.11 MAC is for sending headers and acknowledgments,
waiting for separation DIFS and SIFS, and contending for the medium. With
the basic understanding of Wi-Fi, we calculate 802.11b protocol overhead
needed for transferring one VoIP packet. Let us assume a VoIP packet consists
of 40 byte IP/UDP/RTP headers (20+8+12) and a payload 20 bytes per 20
ms when using G.729a codec. The IEEE 802.11/802.11b standard defines
SIFS to be 10 usec. A slot time is 20 usec and the value of DIFS is defined
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to be the value of SIFS plus two slot times which is 50 usec. The size of an
acknowledgment frame is 14 bytes which take about 10 usec to transmit at
11 Mbit/s. However, each transmitted frame also needs some physical layer
overhead (PLCP header of 48 usec and a preamble of 144 usec) which is
about 192 usec. Thus, the total time to transmit an acknowledgment is 203
usec. The IEEE 802.11b standard defines CWmin to be 31. Therefore, in
the scenario of a single node constantly transmitting, the average random
back-off time is 15.5 slots which equals 310 usec. For the actual data frame
we have an overhead of 34 bytes for the 802.11 MAC header, 20 bytes of IP
header, 8 bytes of UDP header and 12 bytes of RTP header totaling 74 bytes
which take about 54 usec to transmit at 11 Mbit/s. Together with the 192
usec physical layer overhead this amounts to 246 usec. Summing up these
values, the time needed per VoIP frame as illustrated in Figure 8 can be
calculated as 50 + 310 + 192 + 53 + (data/11Mbps) + 10 + 192 + 11 = 818
+ payload/11Mbps usec. If G.729a codec is used for the payload (20bytes per
packet = 20 x 8 / 11,000,000 = 14.5 usec) and 50 packets in one second, the
maximum VoIP capacity in one hop is 12 calls (1 second / 832.5 usec x 50 x 2
= 12.01 12 calls). Capacity of Wi-Fi system is dependent on many factors,
and one of factors is the header overhead associated with small packet sizes.
The per frame overhead in the IEEE 802.11 WLAN standard significantly
limits capacity on the network. At 2Mbit/s, a similar computation leads to 8
calls. When sending x byte voice samples, the overhead incurred is given by:

• RTP/UDP/IP 12+8+20=40 bytes
• MAC header + ACK = 38 bytes
• MAC/PHY procedure overhead = 754μs

– DIFS(50μs), SIFS(10μs)
– preamble + PLCP (192μs) for data and ACK
– contention (approx 310μs)

The throughput in Mbps is given by the relation

T (x) =
8x

754 + (78 + x) 8
B

where x is the payload size in bytes, and B is the raw bandwidth of the
channel (1,2,5.5, or 11). When using 20 byte voice payload in a 2 Mbps
network, the capacity of the network is only 10% of the maximum possible.

4.3 VoIP over IEEE 802.11-Based Multihop Networks

Providing VoIP users with true mobile phone services having the freedom of
roaming requires wide area wireless coverage, and IEEE 802.11-based multi-
hop wireless mesh networks have been considered a practical solution for the
enterprise. The benefits of mesh network compared to wired LAN connecting
Wi-Fi access points are: i) ease of deployment and expansion; ii) better cov-
erage; iii) resilience to node failure; iv) reduced cost of maintenance. Such a
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Fig. 9. In a linear topology, capacity degrades with the number of hops [15]

mesh network has the potential of creating an enterprise-scale or community-
scale wireless backbone supporting multiple users while driving these users
from using fixed phones to wireless VoIP phones shown in Figure 7. Each
mesh nodes have more than two interfaces, one for the VoIP clients operat-
ing as a Wi-Fi access point, others to connect the mesh nodes behaving as an
intermediate nodes. As a backbone network, wireless mesh network transfers
the voice packets from APs to the IP-PBX which inter-connects with PSTN
or operates with the Internet directly through SIP/RTP protocol suites.

However, supporting delay sensitive realtime applications such as VoIP
over wireless mesh networks is challenging. The problems to support voice
service over Wi-Fi which are pointed out at the previous section become
even more severe when supporting VoIP over multihop mesh networks. In a
multihop wireless network operating on a single channel, the UDP throughput
decreases with number of hops for properly spaced nodes and is shown to be
between 1/4 and 1/7 that of single hop capacity. This phenomenon of self
interference is produced by different packets of the same flow competing for
medium access at different nodes. When all nodes are within interference
range, the UDP throughput in a linear topology can degrade to 1

n , where n
is the number of hops.

As shown in Figure 9, our experiment on a real mesh testbed with G.729
encoded VoIP calls indicates that the number of supported medium quality
calls decreases with the number of hops for a simple linear topology. In a
mesh network with 2Mbps link speed, the number of supported calls reduces
from 8 calls in single hop to one call after 5 hops. This significant reduction
in the number of supported calls can be attributed to following factors: a)
decrease in the UDP throughput because of self interference; b) packet loss
over multiple hops and c) high protocol overhead for small VoIP packets.
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Channel 1 Channel 6 Channel 11

Fig. 10. Each node with two 802.11b interface. case A: two non overlapping chan-
nels for forward and reverse direction; case B: three channels used with reduced self
interference [15].

Voice services over wireless mesh network faces a number of technical prob-
lems: a) providing QoS sensitive VoIP traffic b) packet loss due to channel in-
terference and c) high overhead of the protocol stack - 802.11/IP/UDP/RTP
for each VoIP packet with small payload. The above problems become even
more severe when supporting VoIP over multihop mesh networks. In a mul-
tihop wireless network, the UDP throughput decreases with number of hops
for properly spaced nodes and is shown to be between 1/4 and 1/7 that of
single hop capacity. However, when nodes are interfering, the UDP through-
put along a multihop string can degrade up to 1

n , where n is the number
of hops. Our experiment on a real mesh testbed with G.729a encoded VoIP
calls indicates: a) the number of supported medium quality calls decreases
with the number of hops for a simple linear topology; b) in a mesh network
with 2Mbps link speed, the number of supported calls reduces from 8 calls in
single hop to one call after 4 hops. This significant reduction in the number
of supported calls can be attributed to following factors: a) decrease in the
UDP throughput because of self interference; b) packet loss over multiple
hops and c) high protocol overhead for small VoIP packets. But, VoIP ca-
pacity over multi-hop wireless networks can be improved using the following
techniques.

Multiple Radio Interfaces

Referring back to Figure 9, we see that the main problem in a multihop net-
work is performance degradation with increasing number of hops. A simple
idea for improvement would be to just increase the number of interfaces in
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each node. A naive use of multiple interfaces in a string would be to use one
interface on a channel for the forward traffic and a second interface on a sec-
ond channel for the reverse traffic, which should provide double capacity [15].

We verified this in our testbed on a string of six hops. However, for each
of these flows, the same behavior as in Figure 9 is created by interference
with neighbors which have cards on the same channel. An alternate method
is to use more independent channels as shown in Figure 10. However, using
802.11b, only three channels are available to avoid interference, which limits
the achievable improvement. Operating with only two backhaul interfaces and
only three independent channels offered by 802.11b, we evaluated the following
situations. Case A: two independent channels for forward and reverse traffic:
(1,6)-(1,6)-(1,6)-(1,6)-(1,6)-(1,6)-(1,6). Case B: reduced self interference chan-
nel allocation: (1)-(1,6)-(6,11)-(11,1)-(1,6)-(6,11)-(11). The two solutions pro-
duce notable improvements, especially for longer paths (Figure 11). The lack
of improvement for shorter paths is explained by a shortcoming of our testbed
node, which only supports a limited number of interrupts per second. Using a
better architecture, roughly a doubling of performance is expected with the ad-
dition of a second card, at least for the solution A. Solution B has even greater
potential of improvement when more independent channels are available. If
more channels were available, like in 802.11a, interference may be completely
eliminated in a string, because a channel can be reused after 11 hops, which in
most cases will be out of the interference range.
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Fig. 12. Aggregating multiple packets [22]

Packet Aggregation

One way to improve throughput of the network, for example a network for
VoIP applications, with small packets is to use packet aggregation as shown
in Figure 12.

Aggregation of small packets has been researched and several algorithms,
such as end-to-end packet aggregation, hop-by-hop packet aggregation, and
node-to-end packet aggregation were proposed for general Internet and 802.11
networks as well [22].

These algorithms can provide good network utilization with the creation
of larger aggregation packets while increasing the number of VoIP calls a
lot, however it also requires the computational complexity and hardware re-
sources, such as CPU power, battery usage etc, because every packet is ag-
gregated at one node and deaggregated at the next intermediate node until
the packets arrive at the destination. Also, this technique must define how
long aggregation should be delayed at every node, which is hard to obtain in
wireless mesh network. Also header compression with aggregation over the
wireless mesh network can support much higher throughput [23].

5 Mobile Unified Communications in Enterprise

5.1 What Is Unified Communications

Inside and outside the office, a communications system must connect employ-
ees, mobile workers, remote workers, departmental workgroups and branch
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locations to make the enterprise a seamless one. Thereafter, business commu-
nications must unify calls, e-mails, chats, messaging, applications and even
management. Thus, a new complete enterprise communications solution is
required to allow communication to be managed more intelligently: heteroge-
neous communication tools into all-in-one tool.

With these requirements, Unified Communications (UC) becomes a promis-
ing technology architecture where communication tools are integrated so that
both businesses and individuals can manage all their communications in one
entity instead of separately. The integration of voice, video, data communi-
cation, multiple devices, and the services on a shared IP-based infrastructure
must offer organizations significant gains in business productivity by remov-
ing latency in communications between customers and service providers, be-
tween team members, and with partners and consultants.

5.2 Benefits of Unified Communications

Unified Communications intends to help businesses to streamline information
delivery and ensure ease of use. Through business-optimized Unified Commu-
nications, human latency in business processes are minimized or eliminated,
resulting in better, faster interaction and service-delivery for the customer,
and cost savings for the business. UC also allows for easier, more direct col-
laboration between co-workers and suppliers and clients, even if they are not
physically on the same site. This allows for possible reductions in business
travel, especially with multi-party video communications, reducing an or-
ganization’s budget and time for traveling. Given the sophistication of UC
technology, its uses are myriad for businesses.

5.3 Mobile Unified Communications

As more people own multiple devices, ranging from laptop computers to mo-
bile phones to mobile e-mail devices, they spend more time managing their
communications across different phone numbers, voice mailboxes, and e-mail
accounts, limiting their ability to accomplish work efficiently. A few years
ago, the demand for mobility might have applied only to a few employees
such as highly mobile workers who needed access to resources wherever they
were. Today, the demand for mobile and wireless technologies in business
is pervasive. In enterprise, as landline voice traffic continues its migration
to wireless/mobile phones - at any given time, 35% of all workers are only
available by mobile - enterprise communications infrastructure should be pro-
visioned to provide the same services to the mobile devices.

Business sectors across the globe, from retail businesses to warehouses to
field service technicians, have embraced mobile phones, smartphones, personal
digital assistants (PDAs), wireless-equipped laptop computers, and other
devices for their convenience, portability, and efficiency. While mobility ap-
plications are rapidly deployed into the business area, UC is still in its early-
adoption stage. Mobility will play an important role in leveraging the value of
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all UC applications. Thus, when making a business case for UC, applications
with ubiquitous devices that facilitate location-awareness with mobility, such
as softphones, smartphones, fixed-wireless dual-mobility devices and mobility
clients, definitely contribute the most significant benefits to achieve.

Now, Enterprise Mobile Unified Communication (EMUC) is more than
Fixed and Mobile Convergence, which only focuses on enabling voice call
continuity between wired and wireless devices. EMUC anchors and integrates
services within the enterprise and extends the power of enterprise-based uni-
fied communication into the mobile world with the additional functionality
such as location/presence enriched services.

With the extension of location/presence enriched services, it enables users
to know where their colleagues are physically located (say, their car or home
office). They also have the ability to see which mode of communication the
recipient prefers to use at any given time (perhaps their cell phone, or email,
or instant messaging). A user could seamlessly set up a real-time collaboration
on a document they are producing with co-workers, or in a retail setting, a
worker might do a price-check on a product using a hand-held device and
need to consult with a co-worker based on a customer inquiry.

5.4 IP-PBX Extension to Mobile Unified Communications

As the heart and brains of an enterprise communications network, the
IP-PBX (Internet Protocol - Private Branch Exchange) can be the vital link
that interfaces businesses and their customers. An IP-PBX system is a business
telephone system designed to deliver voice, video and data over a communica-
tion network, such as LAN, and inter-operate with the normal PSTN network,
while providing many additional functionalities, such as the ability to confer-
ence, call transfer, Interactive Voice Response (IVR), etc. In case of PSTN net-
work and Internet together, if you want to initiate a call from a circuit-switched
network, i.e. PSTN, to a peer in Internet or vice versa, a media gateway should
come in the middle of the call path. The media gateway operates to connect
different types of networks, one of its main furcation is to convert between dif-
ferent transmission and coding techniques. In enterprise, IP-PBX performs the
conversion between PSTN voice to a media streaming protocol, such as RTP,
as well as a signalling protocol used in the VoIP system. While mainly con-
trolling VoIP systems in enterprise, IP-PBX performs advanced functions in-
cluding IVR, audio/video conferencing, click-to-call, and call logging/tracking,
presence services etc. Also it includes mobility support while merging the fixed
communication system and mobile world into all-in-one system.

Asterisk [24] is a complete open source software PBX system created by
Digium. It runs on Linux operating system and transfers voice and data
among the peers, with or without requiring additional hardware for VoIP. In
case of allowing a voice call with PSTN, it should be equipped with asterisk-
compatible hardware which bridges conventional telephone networks to VoIP
telephone networks. It supports PBX switching, codec translation, voicemail,
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conferencing bridging, IVR, and video telephony. Asterisk can be functioning
in enterprise as:

• As an IP-PBX: while switching calls, managing call routes, enabling
additional features, and connecting callers over analog or digital connec-
tions. Its intelligence can be extended to understand an enterprise wireless
networks with location over the building inside or outside and call capac-
ity over the accessed wireless network on the user.

• As a Gateway: while bridging two parties having different codecs and
the communication systems, such as between PSTN and Internet callers or
Internet calls having two different codecs. The wireless intrinsic capacity
limitation lets the gateway to decide the optimum codec to choose at the
point over the network on the call connection or even while talking on the
phone: Wireless-aware IPPBX.

5.5 IP-PBX as a B2BUA

A SIP proxy server located at the enterprise is an intermediary entity that
mainly plays the role of routing. A SIP Proxy server may not be allowed to
alter SIP message and changes message headers or body even in case of being
required by enterprise management system. Additionally, a SIP proxy server
may not initiate or disconnect a call between both SIP user agents in mid-
call. Thus, this basic SIP proxy server may not satisfy the requirement of the
enterprise which wants to control and manage all conversation. A SIP Back-
To-Back User Agent (B2BUA) behaves both a standard SIP entity running
as a SIP server and a SIP user agent simultaneously, however manipulates
the communication path and call parameters, which is operating under en-
terprise’s control. The B2BUA enables enterprise to manage and track a call
from beginning to end, integrate and offer new additional features. It resides
between both end points of a call and separates the communication session
into two call legs (one for one end user and B2BUA and the other for B2BUA
and the other user end point) and bridges all SIP signalling or audio/video
media streams between both ends of the call, while hiding the call leg in
the enterprise side from the outside caller. A B2BUA provides the following
features:

• Call control and management: call tracking and logging, admission control
etc.

• Protocol/capacity conversion: codec conversion, protocol conversion, wire-
less bandwidth management etc.

• Protecting the internal network: hiding the details of the enterprise net-
work architecture, etc.

Since B2BUA gives the enterprise with a flexible tool to control and manage
VoIP system with IP-PBX system, SIP B2BUA server is a natural choice for
the enterprise communication platform.
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Fig. 13. Call Setup using SIP

5.6 Call Setup Using Enterprise IP-PBX

Let’s assume User A and User B are on different networks or companies
and that the two networks are connected by a router. Each network has
a SIP server on the local LAN in the scenario shown in Figure 13. Let’s
assume the SIP server managing User A as a SIP B2BUA, which divides
the communication session into two call legs. In the originating call leg the
B2BUA acts as a user agent server (UAS) for User A and processes the
request, generates the new requests (INVITE, BYE etc.) as a user agent
client (UAC) to the destination end User B, handling the signaling back-to-
back between end points.

• #1: When Ua and Ub turn on their terminals, the user agent software on
each terminals registers them with their local SIP registrar server (REG-
ISTER), such as their IP addresses.

• #2: Ua initiates the call, and the user agent on his terminal transmits an
invitation message (INVITE) to B2BUA server, which acts as a user agent
server. This invitation contains the session description information with
SDP body, such as media capability (audio/video), the codec information
etc.

• #3: B2BUA initiates the call (INVITE) on the behalf of Ua behaving a
user agent client, B2Bua, while forwarding the invitation to every SIP
server it knows how to reach to Ub.

• #4, #5, #6, #7: SIP server which Ub registered her location forwards the
invitation message to Ub. Ub answers the call (200 OK), which returns
acknowledgement with her media capability in SDP over the same path
the invitation traveled.

• Now they have exchanged the media capability with SDP message, so
they have the IP address and port information to contact the other party
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and now can transmit RTP media directly each other. Contrary to normal
SIP server’s operation, B2BUA is in the middle of the session, providing
media conversion and translation if needed.

5.7 Wireless-Aware IP-PBX

By integrating the management of desktop and Wi-Fi phones at the enter-
prise and cellular communication that is currently managed by a cellular
provider into the enterprise IP-PBX, business communications can be man-
aged more efficiently. Employees and workgroup users are more efficient when
they are able to manage incoming and outgoing calls, chats and e-mails using
one interface. They also become more collaborative and responsive when the
same interface gives them real-time presence management controls, corporate
and workgroup directories and conferencing. Whether a mobile employee is
using a laptop or smartphone at the airport or a home PC, Enterprise UC en-
ables the employee to connect to the corporate system to handle calls, chats
and e-mails, and access the customer and business data he/she needs while
providing the same interface: one interface for all applications.

One-number Follow-me and Find-me keeps mobile users connected to cus-
tomers and colleagues, while remote speech-enabled messaging lets them easily
access and conveniently manage e-mails, voice mails, and corporate directories
and status setting. The service upgrade for the unified applications can easily
be controlled by a single entity, the enterprise IP-PBX. With this architecture,
a handoff of a call from the cellular network to the private network within an
enterprise or vice versa can be controlled by enterprise mobile IP-PBX.

This vision comes true with Mobile UC-enabled IP-PBX. The mobile UC
enhanced IP-PBX system architecture to support and manage business com-
munications allowing users to make and receive calls using both the enterprise
business cellular number and the desktop phone is shown in Figure 14 and 15.
This architecture allows the IT department within an enterprise to control
all calls from/to the employees with the single/dual mode mobile handsets
in the enterprise including handover between the Wi-Fi and the 3G network.
In Figure 14, the dual-mode handset is on an active call established with a
peer using WLAN. When it roams to the edge of WLAN coverage, WLAN
infrastructure instructs enterprise IP-PBX and mobility controller to initiate
handover. IP-PBX initiates a new call leg to the cellular network and bridges
the new leg to include the active call and releases the WLAN connection. A
new call path is thus established and the end user manually or automatically
answers the call.

Figure 15 shows roaming from 3G to WLAN while a call is active over 3G.
At first, the dual-mode mobile device requests a call establishment to the
enterprise IP-PBX by transmitting a phone number of the peer. The Enter-
prise IP-PBX establishes the new call leg to the PSTN network and bridges
the new leg to the dual-mode device waiting for the call to be established.
When the user moves into the Wi-Fi coverage of the enterprise, the WLAN



Enterprise VoIP in Fixed Mobile Converged Networks 615

Internet

Cellular 
NetworkPSTN

UC-enriched
IPPBX Enterprise Mobility 

Gateway

In
tra

ne
t

WLAN networks

Dual-mode
Phone

Legacy
Phone

Dual-mode
Phone

VoIP Phone

Cellular 
Phone

1

2

3

4

5

6

Mesh AP
Mesh AP

Mesh AP

Femtocell

Fig. 14. Roaming from 802.11 to 3G networks

infrastructure monitors and instructs IP-PBX and mobility controller to ini-
tiate handover. IP-PBX initiates a new call leg to the Wi-Fi network and
bridges the new leg to activate the call over WLAN and release the cellular
connection.

5.8 Inside Wi-Fi (FMC) vs. Inside Cellular (FMS)

In FMCN, you can walk into your office talking on a cellular phone, sit
down, and continue the conversation on the same call, while using enterprise
wired/wireless networks inside instead of outside cellular service. With the
development and deployment of new wireless technologies, several alterna-
tives can be supported to enable seamless call continuity.

Fixed-Mobile Substitution

If the wireless connection remains cellular - Fixed-Mobile Substitution: this
is a big saving for the user (no need fixed line), however a big losing for the
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fixed operator. A femtocell allows service providers to extend service coverage
indoors, especially where access would be limited or unavailable.

Fixed-Mobile Convergence

If it seamlessly transitions to Wi-Fi or Bluetooth, and stops using cellular
minutes and transferring the call over the wireline - Fixed-Mobile Conver-
gence: this is a cost-saving for the user (no need for cellular service) while
utilizing the existing fixed broadband service, however can be a primary fac-
tor of the subscriber loss for the mobile operator.

Enterprise Viewpoint

Enterprises have been waiting the arrival of dual-mode (Wi-Fi and cellular)
or single mode (femtocell-aware) handsets, convergence-aware handset that
can potentially replace the traditional PBX phone. These convergence-aware
handsets can make voice calls over Wi-Fi or femtocell, while retaining the
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functions and benefits of a traditional cellular phone. With these convergence-
aware handsets, workers only need one device with a single number.

What enterprise wants from FMCN is to have the ability for an IP-PBX
to treat a cellular phone as an extension, and the ability for a cellular phone
to behave like a IP-PBX extension phone. Extension to cellular phone means
that the system seamlessly bridges office phone services to mobile devices,
enabling the user of one phone number and one voice mailbox. The most
important things to enterprise is whether the convergence services can be
integrated into the enterprise calling system while acquiring the control and
management of the communications. To enable this service, there are some
requirements to provide:

• Session Continuity: is moving a call in progress from outside call to
inside call or vice versa, as much the same way as you might transfer a
call from one extension to another. Dual-model handset or a single-mode
cellular phone can completely hide the session handover. Depending on
the deployed architecture, you might control the process with the help
of IP-PBX or give all control to cellular operator. To provide additional
services in enterprise FMCN, IP-PBX should can play an important role
more than moving the calls from outside to inside or the other way around.

• Mobile IP-PBX: treats the cellular phone as the PSTN extension and
allows the employee to invoke IP-PBX features.

• Mobility Controller: session continuity requires a component in the
network that routes and reroutes the call over either the enterprise net-
work or cellular network as needed while keeping track of the call. This
component can collaborate with IP-PBX to support seamless session
continuity.

6 Conclusion and Future Directions

This chapter discussed VoIP in enterprise fixed mobile converged networks.
First, VoIP basics including VoIP related transport and signal protocols,
speech coding schemes, and VoIP quality assessment model were introduced.
Then enterprise fixed mobile converged networks were explained with focuses
on the system architecture and service characteristics. Challenges and perfor-
mance of VoIP over enterprise fixed mobile converged networks were reviewed.
Mobile Unified Communications with voice supporting over enterprise fixed
mobile converged networks were also detailed by utilizing the principles of
enterprise IP-PBX.

Several future directions are listed below.

• VoIP over Femtocell: Femtocells are small cellular base stations in-
tended to extend service coverage and offload the mobile macro network
to home, small office, and enterprise environments. When someone is in
the home or enterprise covered by femtocell, people would be able to make
phone calls directly through their own femtocell instead of the overlaying
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marcocell. It results in a significantly improved signal quality - close base
station and substantial cost savings - without using macro cellular net-
work. Femtocells are self-installing, self-optimizing, self-healing, and plug-
and-play devices deployed by users similar to Wi-Fi access points and use
IP broadband connections for backhaul to cellular networks. One of the
main challenges of the femtocell is to mitigate the interference between
marcocell and femtocell, or even among femtocells, allocating intelligently
the spectrum to the femtocell under the control of the service provider. In
a conventional network the radio resource is centrally managed; however
this will not be the case for the femtocells which are much more au-
tonomous. Hence, on the deployment, the femtocell should be equipped
with the certain requirements. For example, femtocell will need to have
not only zero-touch configuration, remote management, software upgrades
and remote debugging, but also the intelligent monitoring capabilities for
location determination, automatic topology discovery, and neighborhood
watch. Another challenging issue consists of sharing the radio resource
between femtocells. This problem is likely to happen in an environment
where femtocells are densely deployed such as in big residential building
containing large number of residential or enterprise building consisting of
large number of femtocell base station to cover the whole area.

Currently femtocell is based mainly on 2G or 3G technology, however
in near future, 4G-based femtocell offering higher throughput is expected
to deploy in enterprise. Even though 4G networks such as LTE are ex-
pected to provide much higher speed than 2G and 3G and pave the way
for data applications, voice services will still be the major application
in the sense of contributing primary revenue in an perspective of tele-
com operators. However since 4G networks are all-IP designed, there is
no circuit-switching any more. The question for the operators is how to
guarantee circuit-like carrier-level VoIP quality over LTE networks. Some
approaches like “Circuit Switched (CS) Fallback”, “Voice over LTE via
Generic Access (VoLGA)” and “IP Multimedia Subsystem” are possible
solutions; however, they either need to rely on existing circuit voice net-
works or require long-term evolution.

• Location-Aware Enterprise VoIP: Enterprise mobility becomes an
emerging but essential reality. An essential prerequisite to mobile Unified
Communications is the ability to gather information about the current
location or position of users and their mobile devices. As the efforts of en-
abling mobility in enterprise, considerable interest has recently emerged in
indoor location based services (LBS). LBS requires reliable information
about user position and her environment; such information is available
from an indoor location system. Indoor positioning requires the deploy-
ment of specialized equipment or product that integrates with enterprise
communication networks. A desirable indoor location system should be
characterized by high accuracy, short training phase, cost-effectiveness,
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Fig. 16. Enterprise Mobile Unified Communications are the integration of numer-
ous applications including collaboration, conferencing, unified messaging, contact
center, “mobility” and location-aware presence. Enterprise UC with wireless mo-
bility has the pervasive capabilities for where and how people work.

and robustness in the face of unexpected situation. Combining informa-
tion about the availability and the preferable means of quick communi-
cation using text, audio and video at one’s location provides an impor-
tant advantage for users in addition to traditional communication media
such as the phone or e-mail. There are two different approaches on pur-
suing indoor positioning and localization research exploiting 1) a single
RF technology using the Wi-Fi enabled phone, 2) the heterogeneity of
ubiquitous computing infrastructures, sensor assisted RF-based indoor
positioning system. The system can be designed to utilize mobile phones
carried by people in their everyday lives as mobile sensors to track mobile
events. The sensor-enabled mobile phones are best suited to deliver sens-
ing services, such as tracking in enterprise building, than more traditional
solutions like tag based positioning systems, which are limited in scale,
deployment, and cost. Now, far more than a single technology or plat-
form, mobile UC equipped with location and presence features is rather
an architecture approach to seamless collaboration and communication
across all media and places - desktop, business and office applications,
fixed and mobile voice, video as well as messaging, desk-sharing and con-
ferencing of all kinds shown in Figure 16. Two important components in
the figure which enable and empower mobile UC is mobility extension for
business support and location-aware enriched presence. This architecture
makes it possible to select the most cost-effective service according to the
location-aware presence information (anywhere, anytime and anymedia).

• Admission Control: The traditional telephones control the user access
via call admission control. However, most of the current IP telephony
system has no admission control and can only offer best effort service with
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the assumption of sufficient bandwidth in wired network. However it can
allow a new traffic to keep entering the network even beyond the network
capacity limitation; consequently causing both the existing and the new
flows to degrade their call quality due to packet delay and loss. Normally
because the enterprise network is deployed with the large capacity of its
network, the call quality degradation due to no admission control happens
rarely. However, VoIP over enterprise wired/wireless converged network,
which has limited bandwidth, should be provided to prevent perceived
call quality degradation, thus admission control mechanism should be at
place.
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Speech Quality Assessment 
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Abstract. This chapter provides an overview of the various methods and tech-
niques used for assessment of speech quality. A summary is given of some of the 
most commonly used listening tests designed to obtain reliable ratings of the qual-
ity of processed speech from human listeners. Considerations for conducting suc-
cessful subjective listening tests are given along with cautions that need to be  
exercised. While the listening tests are considered the gold standard in terms of as-
sessment of speech quality, they can be costly and time consuming. For that  
reason, much research effort has been placed on devising objective measures that 
correlate highly with subjective rating scores. An overview of some of the most 
commonly used objective measures is provided along with a discussion on how 
well they correlate with subjective listening tests. 

The rapid increase in usage of speech processing algorithms in multi-media and 
telecommunications applications raises the need for speech quality evaluation. 
Accurate and reliable assessment of speech quality is thus becoming vital for the 
satisfaction of the end-user or customer of the deployed speech processing sys-
tems (e.g., cell phone, speech synthesis system, etc.). 

Assessment of speech quality can be done using subjective listening tests or us-
ing objective quality measures. Subjective evaluation involves comparisons of 
original and processed speech signals by a group of listeners who are asked to rate 
the quality of speech along a pre-determined scale.  Objective evaluation involves 
a mathematical comparison of the original and processed speech signals. Objec-
tive measures quantify quality by measuring the numerical “distance” between the 
original and processed signals. Clearly, for the objective measure to be valid, it 
needs to correlate well with subjective listening tests, and for that reason, much 
research has been focused on developing objective measures that modeled various 
aspects of the auditory system. This Chapter provides an overview of the various 
subjective and objective measures proposed in the literature [1] [2, Ch. 10] for as-
sessing the quality of processed speech. 

Quality is only one of many attributes of the speech signal. Intelligibility is a 
different attribute and the two are not equivalent. For that reason, different as-
sessment methods are used to evaluate quality and intelligibility of processed 
speech. Quality is highly subjective in nature and it is difficult to evaluate reliably. 
This is partly because individual listeners have different internal standards of what 
constitutes “good” or “poor” quality, resulting in large variability in rating scores 
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among listeners. Quality measures assess “how” a speaker produces an utterance, 
and includes attributes such as “natural”, “raspy”, “hoarse”, “scratchy”, and so on. 
Quality is known to possess many dimensions, encompassing many attributes of 
the processed signal such as “naturalness”, “clarity”, “pleasantness”, “brightness”, 
etc. For practical purposes we typically restrict ourselves to only a few dimensions 
of speech quality depending on the application. Intelligibility measures assess 
“what” the speaker said, i.e., the meaning or the content of the spoken words. In 
brief, speech quality and speech intelligibility are not synonymous terms, hence 
different methods need to be used to assess the quality and intelligibility of proc-
essed speech. 

The present Chapter focuses on assessment of speech quality, as affected by 
distortions introduced by speech codecs, background noise, noise-suppression al-
gorithms and packet loss in telecommunication systems. 

1   Factors Influencing Speech Quality 

There is a host of factors that can influence speech quality. These factors depend 
largely on the application at hand and can affect to some degree listening and talk-
ing difficulty. In telecommunication applications, for instance, degradation factors 
that can cause a decrease in speech quality and subsequently increase listening dif-
ficulty include distortions due to speech codecs, packet loss, speech clipping and 
listener echo [3]. The distortions alone introduced by speech codecs vary widely 
depending on the coding rate [1, Ch. 4]. The distortions introduced, for instance, 
by waveform coders (e.g., ADPCM) operating at high bit rates (e.g., 16 kbps) dif-
fer from those introduced by linear-predictive based coders (e.g., CELP) operating 
at relatively lower bit rates (4-8 kbps). 

The distortions introduced by hearing aids include peak and center clipping, 
Automatic Gain Control (AGC), and output limiting. The AGC circuit itself intro-
duces non-linear distortions dictated primarily by the values of attack and release 
time constants. Finally, the distortions introduced by the majority of speech-
enhancement algorithms depend on the background noise and the suppression 
function used (note that some enhancement algorithms can not be expressed in 
terms of a suppression function). The choice of the suppression function can affect 
both the background noise and speech signal itself, leading to background and 
speech distortions. The suppression function of spectral-subtractive type of algo-
rithms, for instance, is known to introduce “musical noise” distortion [4]. 

In summary, there are many factors influencing speech quality and the source 
of those factors depends on the application. Hence, caution needs to be exercised 
when choosing subjective or objective measures to evaluate speech quality. 

2   Subjective Listening Tests 

Several methods for evaluating speech quality have been proposed in the literature 
[1]. These methods can be broadly classified into two categories: those that  
are based on relative preference tasks and those that are based on assigning a  
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numerical value on the quality of the speech stimuli, i.e., based on quality ratings. 
In the relative preference tests, listeners are presented with a pair of speech stimuli 
consisting of the test stimuli and the reference stimuli. The reference stimuli are 
typically constructed by degrading the original speech signal in a systematic fash-
ion, either by filtering or by adding noise. Listeners are asked to select the stimuli 
they prefer the most. In the rating tests, listeners are presented with the test speech 
stimuli and asked to rate the quality of the stimuli on a numerical scale, typically a 
5-point scale with one indicating poor quality and a five indicating excellent qual-
ity. No reference stimuli are needed in the rating tests. As we will see next, these 
tests have their strengths and weaknesses, and in practice, the best test might de-
pend on the application at hand. In the following sections, we describe in more de-
tail the relative preference and quality rating tests which can be used to assess the 
quality of degraded speech.  

2.1   Relative Preference Methods   

Perhaps the simplest form of paired comparison test is the forced-choice paired 
comparison test. In this test, listeners are presented with pairs of signals produced 
by systems A and B, and asked to indicate which of the two signals they prefer. 
The same signal is processed by both systems A and B. Results are reported in 
terms of percent of time system A is preferred over system B.   Such a method is 
typically used when interested in evaluating the preference of system A over other 
systems. The main drawback of this simple method is that it is not easy to com-
pare the performance of system A with the performance of other systems obtained 
in other labs. 

While the above AB preference test tells us whether system A is preferred over 
system B, it does not tell us by how much. That is, the magnitude of the difference 
in preference is not quantified. The comparison category rating (CCR) test is de-
signed to quantify the magnitude of the preference difference on a 4-point scale 
with the rating of 0 indicating no difference, 1 indicating small difference, 2 indi-
cating a large difference and 3 indicating a very large difference. Table 1 shows 
the category ratings [5,6]. This scale is also referred to as the comparison mean 
opinion score (CMOS). Positive and negative numbers are used to account for 
both directions of preference. 

2.2   Absolute Category Rating Methods  

Preference tests typically answer the question: “How well does an average listener 
like a particular test signal over another signal or over a reference signal which 
can be easily reproduced?” Listeners must choose between two sequentially pre-
sented signals, but do not need to indicate the magnitude of their preference  
(except in the CCR test, Table 1) or the reason(s) for their decision. In some appli-
cations, however, knowing the reason why a particular signal is preferred over an-
other is more important that the preference score itself. Another shortcoming of 
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the preference methods is that the reference signals do not always allow for a wide 
range of distortions as they only capture a limited scope of speech distortions that 
could be encountered. This could potentially result in most of the test signals be-
ing preferred (or disliked) over the reference signals, thereby introducing a bias in 
the quality evaluation.  Lastly, most preference tests produce a relative measure of 
quality (e.g., relative to a reference signal) rather than an absolute measure. As 
such, it is difficult to compare preference scores obtained in different labs without 
having access to the same reference signals. The above shortcomings of the pref-
erence tests can be addressed by the use of absolute judgment quality tests in 
which judgments of overall quality are solicited from the listeners without the 
need for reference comparisons. These tests are described next. 

Table 1. Comparison category ratings used in the comparison mean opinion score (CMOS) 
test 

Rating Quality of second stimulus com-
pared to the first is: 

3 Much better 
2 Better 
1 Slightly better 
0 About the same 
-1 Slightly worse 
-2 Worse 
-3 Much worse 

2.2.1   Mean Opinion Scores (MOS) 

The most widely used direct method of subjective quality evaluation is the cate-
gory judgment method in which listeners rate the quality of the test signal using a 
five-point numerical scale  (see Table 2), with 5 indicating “excellent” quality and 
1 indicating “unsatisfactory” or “bad” quality. This method is one of the methods 
recommended by the IEEE Subcommittee on Subjective Methods [7] as well as by 
ITU [6,8]. The measured quality of the test signal is obtained by averaging the 
scores obtained from all listeners. This average score is commonly referred to as 
the Mean Opinion Score (MOS).  

The MOS test is administered in two phases: training and evaluation. In the 
training phase, listeners hear a set of reference signals that exemplify the high (ex-
cellent), the low (bad) and the middle judgment categories. This phase, also 
known as “anchoring phase”, is very important as it is needed to equalize the sub-
jective range of quality ratings of all listeners. That is, the training phase should in 
principle equalize the “goodness” scales of all listeners to ensure, to the extent 
possible, that what is perceived “good” by one listener is perceived “good” by the 
other listeners. A standard set of reference signals need to be used and described 
when reporting the MOS scores [9]. In the evaluation phase, subjects listen to the 
test signal and rate the quality of the signal in terms of the five quality categories 
(1-5) shown in Table Table 2.  
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Table 2. MOS rating scale 

Rating Speech quality Level of distortion 
5 Excellent Imperceptible 
4 Good Just perceptible, but not annoying 
3 Fair Perceptible and slightly annoying 
2 Poor Annoying, but not objectionable 
1 Bad Very annoying and objectionable 

 
Detailed guidelines and recommendations for administering the MOS test can 

be found in the ITU-R BS.562-3 standard [6] and include: 

1. Selection of listening crew: Different number of listeners is recom-
mended depending on whether the listeners had extensive experience 
in assessing sound quality. Minimum number of non-expert listeners 
should be 20 and minimum number of expert listeners should be 10. 
The listeners need to be native speakers of the language of the speech 
materials tested, and should not have any hearing impairments. 

2. Test procedure and duration: Speech material (original and de-
graded) should be presented in random order to subjects, and the test 
session should not last more than 20 minutes without interruption. This 
step is necessary to reduce listening fatigue. 

3. Choice of reproduction device: Headphones are recommended over 
loudspeakers, since headphone reproduction is independent of the 
geometric and acoustic properties of the test room. If loudspeakers are 
used, the dimensions and reverberation time of the room need to be re-
ported.  

Further guidelines pertaining the choice of speech input levels, noise and reference 
conditions, etc. for proper evaluation of the quality of narrow- and wide-band 
speech codecs can be found in the ITU standard [5] as well as in [10]. 

Reference signals can be used to better facilitate comparisons between  MOS 
tests conducted at different times, different laboratories and different languages 
[11]. MOS scores can be obtained, for instance, using different Modulated Noise 
Reference Unit (MNRU) reference signals1 for various values of Q (S/N) ranging 
from 5 to 35 [5,11]. A plot of MOS scores as a function of Q can be constructed to 
transform the raw MOS scores to an equivalent Q value. The Q equivalent values 
can then be used to compare performance among systems in different labs. 

The MOS test is based on a five-category rating of the speech quality (Table 2). 
The quality scale is in a way quantized into five discrete steps, one for each cate-
gory. Listeners are therefore forced to describe the complex impressions of speech 

                                                           
1 The MNRU reference signals are generated by adding to the input signal random noise 

with amplitude proportional to the instantaneous signal amplitude as follows: 
/20( ) ( ) 1 10 ( )Qr n x n d n−= +⎡ ⎤

⎢ ⎥⎣ ⎦  where  x(n) is the input speech signal, d(n) is the random 

noise and Q is the desired SNR.  
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quality in terms of the five categories. It is implicitly assumed that these five steps 
(categories) are uniformly spaced, i.e., that they equidistant from each other. This 
assumption, however, might not be true, in general. For these reasons, some have 
suggested modifying the above test to ask the listeners to evaluate the test signals 
in terms of real numbers from 0 to 10, where zero indicates “bad” quality and 10 
indicates “excellent” quality [12]. In this test, no quantization of the quality scale 
is done since the listeners are allowed to use fractions between integers, if they so 
desire. 

A variant of the MOS test that addresses to some degree the low resolution is-
sue stated above, is the degradation mean opinion score (DMOS) test [13]. In this 
test, the listeners are presented with both the unprocessed signal (which is used as 
a reference) and the processed signal. Listeners are asked to rate the perceived 
degradation of the processed signal relative to the unprocessed signal on a 5-point 
scale (Table 3). This test is suitable for situations in which the signal degradations 
or impairments are small. 

Table 3. Degradation rating scales 

Rating Degradation 
1 Very annoying 
2 Annoying 
3 Slightly annoying 
4 Audible but not annoying 
5 Inaudible 

2.2.2   Diagnostic Acceptability Measure  

The absolute category judgment method (e.g., MOS test) is based on ratings of the 
overall quality of the test speech signal. These ratings, however, do not convey 
any information about the listeners’ bases for judgment of quality. Two different 
listeners, for instance, may base their ratings on different attributes of the signal, 
and still give identical overall quality rating. Similarly, a listener might give the 
same rating for two signals produced by two different algorithms, but base his 
judgments on different attributes of each signal. In brief, the MOS score alone 
does not tell us which attribute of the signal affected the rating. The MOS test is 
therefore considered to be a single-dimensional approach to quality evaluation, 
and as such it can not be used as a diagnostic tool to improve the quality of speech 
enhancement or speech coding algorithms. 

A multi-dimensional approach to quality evaluation was proposed by Voiers 
[14] based on the Diagnostic Acceptability Measure (DAM). The DAM test 
evaluates the speech quality on three different scales classified as parametric, 
metametric and isometric [1,15]. These three scales yield a total of 16 measure-
ments on speech quality covering several attributes of the signal and background. 
The metametric and isometric scales represent the conventional category judgment 
approach where speech is rated relative to “intelligibility”, “pleasantness” and 
“acceptability”. The parametric scale provides fine-grained measurements of the 
signal and background distortions. Listeners are asked to rate the signal distortion 
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on six different dimensions and the background distortion on four dimensions. 
Listeners are asked for instance to rate on a scale of 0 to 100 how muffled or how 
nasal the signal sounds ignoring any other signal or background distortions pre-
sent. Listeners are also asked to rate separately on a scale of 0 to 100 the amount 
of hissing, buzzing, chirping or rumbling present in the background. The compos-
ite acceptability measure summarizes all the information gathered from all the 
scales into a single number, and is computed as a weighted average of the individ-
ual scales. 

The parametric portion of the DAM test relies on the listeners’ ability to detect, 
perhaps more reliably, specific distortions present in the signal or in the back-
ground rather than providing preference judgments of these distortions.  It there-
fore relies on the assumption that people tend to agree better on what they hear 
rather than on how well they like it [15]. To borrow an example from daily life, it 
is easier to get people to agree on the color of a car than how much they like it. As 
argued in [15], the parametric approach tends to give more accurate – more reli-
able – scores of speech quality as it avoids the individual listener’s “taste” or pref-
erence for specific attributes of the signal from entering the subjective quality 
evaluation. 

Compared to the MOS test, the DAM test is time consuming and requires care-
fully trained listeners. Prior to each listening session, listeners are asked to rate 
two “anchor” and four “probe” signals.  The “anchors” consist of examples of 
high and low quality speech and give the listeners a frame of reference.  The 
“probes” are used to detect any coincidental errors which may affect the results in 
a particular session. In addition to the presentation of “anchors” and “probes”, lis-
teners are selected on the basis that they give consistent ratings over time and have 
a moderately high correlation to the listening crew’s historical average rating [1].  
The selected listeners are calibrated prior to the testing session so as to determine 
their own subjective origin or reference relative to the historical average listener’s 
ratings. 

2.2.3   The ITU-T P.835 Standard for Evaluating Noise-Suppression 
Algorithms 

The above subjective listening tests (DAM and MOS) were designed primarily for 
the evaluation of speech coders. The speech coders, however, are evaluated 
mainly in quiet and generally introduce different types of distortion than those en-
countered in noise suppression algorithms. Speech enhancement algorithms typi-
cally degrade the speech signal component while suppressing the background 
noise, particularly in low SNR conditions. That is, while the background noise 
may be suppressed, and in some cases rendered inaudible, the speech signal may 
get degraded in the process. This situation complicates the subjective evaluation of 
speech enhancement algorithms since it is not clear as to whether listeners base 
their overall quality judgments on the signal distortion component, noise distortion 
component or both. This uncertainty regarding the different weight individual lis-
teners place on the signal and noise distortion components introduces additional 
error variance in the subjects’ ratings of overall quality resulting and consequently 
decreases the reliability of the ratings. These concerns were addressed by the  
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ITU-T standard (P. 835) [16] that was designed to lead the listeners to integrate 
the effects of both signal and background distortion in making their ratings of 
overall quality. 

The methodology proposed in [16] reduces the listener’s uncertainty by re-
quiring him/her to successively attend to and rate the waveform on: the speech 
signal alone, the background noise alone, and the overall effect of speech and 
noise on quality. More precisely, the ITU-T P.835 method instructs the listener to 
successively attend to and rate the enhanced speech signal on: 

1. the speech signal alone using a five-point scale of signal distortion (SIG) 
– see Table 4. 

2. the background noise alone using a five-point scale of background intru-
siveness (BAK) – see Table 5, 

3. the overall (OVL) effect using the scale of the Mean Opinion Score  - 
[1=bad, 2=poor, 3=fair, 4=good, 5=excellent]. 

Table 4. Scale of signal distortion (SIG) 

Rating Description 
5 Very natural, no degradation 
4 Fairly natural, little degradation 
3 Somewhat natural, somewhat degraded 
2 Fairly unnatural, fairly degraded 
1 Very unnatural, very degraded 

Table 5. Scale of background intrusiveness (BAK) 

Rating Description 
5 Not noticeable 
4 Somewhat noticeable 
3 Noticeable but not intrusive 
2 Fairly conspicuous, somewhat intrusive 
1 Very conspicuous, very intrusive 

 

Each trial contains a three-sentence sample of speech laid out in the format shown 
in  Figure 1. Each sample of speech is followed by a silent period during which 
the listener rates the signal according to the SIG, BAK or OVL scales. In the ex-
ample shown in the figure, each sample of speech is approximately four seconds 
in duration and includes: one second of preceding background noise alone, two 
seconds of noisy speech (roughly the duration of a single sentence), and one sec-
ond of background noise alone. Each sample of speech is followed by an appro-
priate silent interval for rating.  For the first two samples, listeners rate either the 
signal or the background depending on the rating scale order specified for that 
trial. For the signal distortion rating, for instance, subjects are instructed to attend 
only to the speech signal and rate the speech on the five-category distortion scale 
shown in Table 4. For the background distortion rating, subjects are instructed to 
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attend only to the background and rate the background on the five-category intru-
siveness scale shown in Table 5. Finally, for the third sample in each trial, subjects 
are instructed to listen to the noisy speech signal and rate it on the five-category 
overall quality scale used in MOS tests (Table 2). To control for the effects of rat-
ing scale order, the order of the rating scales needs to be balanced. That is, the 
scale order should be “Signal, Background, Overall Effect” for half of the trials, 
and “Background, Signal, Overall Effect” for the other half.  The ITU-T P.835 
standard was used in [17] to evaluate and compare the performance of 13 different 
speech enhancement algorithms. 

 

Fig. 1. Stimulus presentation format for the listening tests conducted according to the  
ITU-T P.835 standard 

2.3   Considerations in Subjective Listening Tests 

2.3.1   Evaluating the Reliability of Quality Judgments: Recommended 
Practice 

In the above subjective tests, listeners rate the quality of the processed speech on a 
5-point discrete scale (MOS test) or on a 0-100 continuous scale (DAM test). For 
the ratings to be meaningful, however, listeners must use the scales consistently. A 
given listener must rate a specific speech sample the same way every time he or 
she hears it. That is, we would like the intra-rater reliability of quality judgments 
to be high. Listeners need, in other words, to be self-consistent in their assessment 
of quality. Various statistics have been used to evaluate intra-rater reliability 
[18,19]. The two most common statistics are the Pearson’s correlation coefficient 
between the first and second ratings, and the test-retest percent agreement.   

Additionally, all listeners must rate a given speech sample in a similar way. We 
would thus like the inter-rater reliability of quality judgments to be high. A num-
ber of inter-rater reliability measures have been used [18] and include among oth-
ers the Cronbach’s alpha [20], Kendall’s coefficient of Concordance [21] and the 
intraclass correlation coefficient [22,23].  

The measurements of intra- and inter-rater reliability are critically important as 
they indirectly indicate the confidence we place on the listeners’ (i.e., the raters) 
quality judgments. High values of inter-rater reliability, for instance, would sug-
gest that another sample of listeners would produce the same mean rating score for 
the same speech material. In other words, high inter-rater reliability implies high 
reproducibility of results. In contrast, a low value of inter-rater reliability would 
suggest that the listeners were not consistent in their quality judgments. 
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The efficacy of reliability measures has been studied extensively in behavioral 
sciences (see reviews in [19,24]) as well as in voice research where pathological 
voices are rated by clinicians in terms of breathiness or roughness [18,25,26].  
More detailed description about the intra- and inter-rater reliability measures can 
be found in [2, Chap. 10]. 

2.3.2   Using Statistical Tests to Assess Significant Differences: Required 
Practice 

After conducting subjective quality tests and collecting the ratings from all sub-
jects, we often want to compare the performance of various algorithms. At the 
very least, we are interested in knowing whether a specific algorithm improves the 
speech quality over the baseline condition (i.e., un-processed speech).  Consider 
for instance the MOS ratings scores obtained by 10 listeners in Table 6 when pre-
sented with speech processed by different algorithms. The mean MOS score for 
speech processed by algorithm A was 3.24, and the mean rating score for speech 
processed by algorithm B was 3.76. For this example, can we safely say with con-
fidence that algorithm B improved the subjective speech quality relative to algo-
rithm A?  The answer is no, as it depends largely on the inter-rater reliability of 
quality judgments or grossly on the variance of the rating scores. Consider the Ex-
ample 2 in Table 6 contrasting the rating scores of speech processed by say two 
different algorithms, C and D. The mean rating scores are identical to those ob-
tained by algorithms A and B, however, the variance of the rating scores is high, 
suggesting that the inter-rater reliability in Example 2 was low (i.e., subjects were 
not consistent with each other when making quality judgments).  In brief, we can 
not reach a conclusion, based solely on the mean rating scores, as to which algo-
rithm performs better without first performing the appropriate statistical test. 

Table 6. Example MOS ratings of 10 listeners for speech processed by algorithms A-D 

 Example 1 Example 2 
Subjects Alg. A Alg. B Alg. C  Alg. D 

1 3.10 3.60 1.80 1.80 
2 3.20 3.70 2.60 1.50 
3 3.50 4.00 3.50 4.00 
4 3.30 3.80 4.50 4.90 
5 3.40 3.90 2.50 3.70 
6 3.20 3.70 3.50 3.90 
7 3.50 4.00 4.10 4.50 
8 3.10 3.60 4.60 5.00 
9 3.00 3.50 2.10 4.60 

10 3.10 3.80 3.20 3.70 

Mean 3.24 3.76 3.24 3.76 
Variance 0.03 0.03 0.96 1.46 
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Statistical techniques [27, ch. 4] can be used to draw inferences about the 
means of two populations, which in our case correspond to the ratings of proc-
essed and un-processed speech or more generally to ratings obtained using two 
different algorithms. The t-statistic can often be used to test two hypothesis, the 
null hypothesis  that the means are equal, and the alternate hypothesis that the 
means are different. The computed value of t will determine if we will accept or 
reject the null hypotheses. If the value of t is found to be greater than a critical 
value (found in statistics tables), then we reject the null hypothesis and therefore 
conclude that the means of the two populations are different. For the example in 
Table 6, if t is found to be larger than the critical value, we conclude that there is a 
statistically significant difference in quality and that algorithm B produced better 
speech quality than algorithm A. If the value of t is found to be smaller than the 
critical value, then we accept the null hypothesis and conclude that the means of 
the two populations do not differ, i.e., performance (quality) of algorithm A is as 
good as performance of algorithm B. For the Example 1 in Table 6, t-tests re-
vealed that the rating scores of algorithm B are significantly higher than the rat-
ings of algorithm A, i.e., algorithm B performed better than algorithm A. For the 
Example 2 in Table 6, however, t-tests revealed non-significant differences be-
tween the ratings of algorithms C and D. In other words, algorithm D did not im-
prove speech quality relative to algorithm C. As the examples in Table 6 illustrate, 
we can not draw conclusions as to which algorithm improves quality based  
solely on the mean rating scores (the mean scores were identical in examples  
1 and 2). 

The above t-test applies only when we want to compare the means of two popu-
lations. It is tempting to run pair-wise comparisons of the population means using 
multiple t-tests to answer the above questions. However, the probability of falsely 
rejecting at least one of the hypotheses increases as the number of t tests in-
creases. That is, although we may set the probability of Type I error at the 

0.05α =  level for each individual test, the probability of falsely rejecting at least 
one of those tests might be much larger than 0.05. For the above reason, multiple 
pairwise comparisons are recommended with Bonferroni correction. The Bon-
ferroni test is based on Student’s t statistic and adjusts the observed significance 
level based on the fact that multiple comparisons are made. This is simply done by 
multiplying the observed significance level by the number of comparisons  
made. Alternate statistical tests, including the analysis of variance, are described 
in [2, Ch. 10]. 

For the relative preference listening tests, one-sided t-tests need to be run to as-
sess whether algorithm A is preferred over algorithm B beyond the chance level, 
which is 50%. 

In summary, no reliable conclusions can be drawn based solely on the mean 
rating scores collected from subjective listening tests. The appropriate statistical 
test needs to be run to truly assess whether a particular algorithm improved (or 
not) speech quality. 
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3   Objective Quality Measures 

Subjective listening tests provide perhaps the most reliable method for assessment 
of speech quality.   These tests, however, can be time consuming requiring in most 
cases access to trained listeners. For these reasons, several researchers have inves-
tigated the possibility of devising objective, rather than subjective, measures of 
speech quality [1, ch. 2]. Ideally, the objective measure should be able to assess 
the quality of the processed speech without needing access to the original speech 
signal. The objective measure should incorporate knowledge from different levels 
of processing including low-level processing (e.g., psychoacoustics) and higher 
level processing such as prosodics, semantics, linguistics and pragmatics. The 
ideal measure should predict with high accuracy the results obtained from subjec-
tive listening tests with normal-hearing listeners.  In addition, it should take into 
account inherent differences between languages (e.g., Western languages vs. tonal 
languages) [28]. 

Much progress has been done in developing such an objective measure [1]. In 
fact, one such measure has been standardized [29]. Current objective measures are 
limited in that most require access to the original speech signal, and some can only 
model the low-level processing (e.g., masking effects) of the auditory system. Yet, 
despite these limitations some of these objective measures have been found to corre-
late well with subjective listening tests (e.g., MOS scores). A different class of 
measures, known as non-intrusive measures, does not require access to the original 
signal. Figure 2 shows how the conventional (also referred to as intrusive) measures 
and the non-intrusive measures are computed. This Chapter will focus primarily on 
the intrusive measures, as those measures have been studied the most. A brief intro-
duction and literature review on non-intrusive measures will also be given. 

System to
be tested

Non-intrusive
Evaluation

Intrusive
Evaluation

Predicted quality

Input
signal

Degraded
signal

 

Fig. 2. Computation of intrusive and non-intrusive objective measures 

Most objective measures of speech quality are implemented by first segmenting 
the speech signal into 10-30 ms frames, and then computing a distortion measure 
between the original and processed signals. A single, global measure of speech 
distortion is computed by averaging the distortion measures of each speech frame. 
More sophisticated objective measures [30,31] deviate from the above short-time 
frame-processing framework and also involve a time-delay estimation block for 
aligning the two signals prior to the distortion measure computation. As we  
will see shortly, the distortion measure computation can be done either in the time 
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domain (e.g., signal-to-noise ratio measures) or in the frequency domain (e.g., 
LPC spectral distance measures). For the frequency-domain measures, it is as-
sumed that any distortions or differences detected in the magnitude spectra are 
correlated with speech quality. Note that the distortion measures are not distance 
measures in the strict sense, as they do not obey all properties of a distance metric. 
For one, these measures are not necessarily symmetric and some (e.g., log spectral 
distance measure) yield negative values. Psychoacoustic experiments [32] suggest 
that the distance measures should not be symmetric [33]. 

A large number of objective measures has been evaluated, particularly  
for speech coding [1] and speech enhancement [34] applications. Reviews of ob-
jective measures can be found in [35-38]. Next, we focus on a subset of those 
measures.  

3.1   Time and Frequency Signal-to-Noise Ratio Measures 

The segmental signal-to-noise ratio can be evaluated either in the time or fre-
quency domain. The time-domain measure is perhaps one of the simplest objective 
measures used to evaluate speech enhancement or speech coding algorithms.  For 
this measure to be meaningful it is important that the original and processed sig-
nals be aligned in time and that any phase errors present be corrected.   The seg-
mental signal-to-noise (SNRseg) is defined as:  

1
2

1

10 1
20

( )
10

SNRseg= log
ˆ( ( ) ( ))

Nm N

M
n Nm

Nm N
m

n Nm

x n

M
x n x n

+ −

−
=

+ −
=

=

−

∑
∑

∑
                       

(1) 

where ( )x n  is the original (clean) signal, ˆ( )x n  is the enhanced signal, N is the 

frame length (typically chosen to be 15-20 msecs), and M is the number of frames 
in the signal.  

One potential problem with the estimation of SNRseg is that the signal energy 
during intervals of silence in the speech signal (which are abundant in conversa-
tional speech) will be very small resulting in large negative SNRseg values, which 
will bias the overall measure. One way to remedy this is to exclude the silent 
frames from the sum in Eq. (1) by comparing short-time energy measurements 
against a threshold or by flooring the SNRseg values to a small value. In [39], the 
SNRseg values were limited in the range of [-10 dB, 35 dB] thereby avoiding the 
need for a speech/silence detector.  

The segmental SNR can be extended in the frequency domain to produce the 
frequency-weighted segmental SNR (fwSNRseg) [40]:  
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where jB  is the weight placed on the j th frequency band, K is the number of 

bands, M is the total number of frames in the signal, ( , )F m j  is the filter-bank am-

plitude (excitation spectrum) of the clean signal in the j th frequency band at the 

mth frame, and  ˆ ( , )F m j  is the filter-bank amplitude of the enhanced signal in the 

same band. The main advantage in using the frequency-based segmental SNR over 
the time-domain SNRseg (Eq. (1)) is the added flexibility to place different weights 
for different frequency bands of the spectrum. There is also the flexibility in choos-
ing perceptually-motivated frequency spacing such as critical-band spacing.  

Various forms of weighting functions jB  were suggested in [1,40].  One possi-

bility is to choose the weights jB  based on articulation index studies [41].  Such 

an approach was suggested in [1] with the summation in Eq. (2) taken over 16 ar-
ticulation bands spanning the telephone bandwidth (300-3400 Hz).  

3.2   Spectral Distance Measures Based on LPC 

Several objective measures were proposed based on the dissimilarity between all-
pole models of the clean and enhanced speech signals [1]. These measures assume 
that over short-time intervals speech can be represented by a pth order all-pole 
model of the form:  
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where ( )xa i  are the coefficients of the all-pole filter (determined using linear pre-

diction techniques), xG is the filter gain and ( )u n  is a unit variance white noise 

excitation. Perhaps two of the most common all-pole based measures used to 
evaluate speech-enhancement algorithms are the log likelihood ratio and Itakura-
Saito measures. Cepstral distance measures derived from the LPC coefficients 
were also used. 

The log-likelihood ratio (LLR) measure is defined as:  
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the enhanced signal, and xR  is the ( 1) ( 1)p p+ × +  autocorrelation matrix (Toe-

plitz) of the clean signal.  This measure penalizes differences in formant peak lo-
cations.  

The Itakura-Saito (IS) measure is defined as follows: 
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where xG and x̂G are the all-pole gains of the clean and enhanced signals respec-

tively. Note that unlike the LLR measure, the IS measure penalizes differences in 
all-pole gains, i.e., differences in overall spectral levels of the clean and enhanced 
signals. This can be considered as a drawback of the IS measure, since psycho-
acoustic studies [42] have shown that differences in spectral level have minimal 
effect on quality. 

A gain-normalized spectral distortion (SD) measure is often used to assess the 
quality of coded speech spectra.  The SD measure evaluates the similarity of the 
LPC spectra of the clean and processed signals [3,33].  
   The LPC coefficients can also be used to derive a distance measure based on 
cepstrum coefficients. This distance provides an estimate of the log spectral dis-
tance between two spectra. The cepstrum coefficients can be obtained recursively 
from the LPC coefficients { }ja  using the following expression [43, p. 442]: 
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where p is the order of the LPC analysis (Eq. (3)). A measure based on cepstrum 
coefficients can be computed as follows [44]: 
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where ( )xc k  and ˆ ( )xc k  are the cepstrum coefficients of the clean and enhanced 

signals respectively.  

3.3   Perceptually-Motivated Measures 

The above objective measures are attractive in that they are simple to implement 
and easy to evaluate. However, their ability to predict subjective quality is limited 
as they do not closely emulate the signal processing involved at the auditory pe-
riphery. For one, the normal-hearing frequency selectivity as well as the perceived 
loudness were not explicitly modeled or incorporated in the measures. Much re-
search [42,45-50] has been done to develop objective measures based on models 
of human auditory speech perception, and in this section we describe some of 
these perceptually-motivated measures.  

3.3.1   Bark Distortion Measures 

Much progress has been made on modeling several stages of the auditory process-
ing, based on existing knowledge from psychoacoustics about how human listen-
ers process tones and bands of noise [51, ch. 3]. Specifically, these new objective 
measures take into account the fact that: 
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1. The ear’s frequency resolution is not uniform,  i.e., the frequency 
analysis of acoustic signals is not based on a linear frequency scale. 
This can be modeled by pre-processing the signal through a bank of 
bandpass filters with center frequencies and bandwidths increasing with 
frequency. These filters have come be known in the psychoacoustics 
literature as critical-band filters and the corresponding frequency spac-
ing as critical-band spacing. 

2. Loudness is related to signal intensity in a nonlinear fashion. This takes 
into account the fact that the perceived loudness varies with frequency 
[52,53]. 

One such measure that takes the above into account is the Bark distortion measure 
(BSD). The BSD measure for frame k is based on the difference between the 
loudness spectra and is computed as follows: 
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where ( ) and ( )k kS b S b  are the loudness spectra of the clean and enhanced signals 

respectively and bN  is the number of critical bands. The mean BSD measure is 

finally computed by averaging the frame BSD measures across the sentence. Ex-
periments in [46] indicated that the BSD measure yields large values for the low-
energy (unvoiced) segments of speech. This problem can be avoided by excluding 
the low-energy segments of speech from the BSD computation using a 
voiced/unvoiced detector. Improvements to the BSD measure were reported in 
[47,54,55] leading to the modified BSD measure (MBSD). Experiments in [46,47] 
indicated that both BSD and MBSD measures yielded a high correlation ( 0.9ρ > ) 

with MOS scores. Further improvements to the MBSD measure were proposed in 
[54,56]. 

3.3.2   Perceptual Evaluation of Speech Quality (PESQ) Measure 

Most of the above objective measures have been found to be suitable for assessing 
only a limited range of distortions which do not include distortions commonly en-
countered when speech goes through telecommunication networks. Packet loss, 
for instance, signal delays and codec distortions would cause most objective 
measures to produce inaccurate predictions of speech quality. A number of objec-
tive measures were proposed in the 1990s focusing on this type of distortions as 
well as filtering effects and variable signal delays [31,57,58]. 

A competition was held in 2000 by the ITU-T study group 12 to select a new 
objective measure capable of performing reliably across a wide range of codec and 
network conditions. The perceptual evaluation of speech quality (PESQ) measure,  
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described in [30], was selected as the ITU-T recommendation P.862 [29] replacing 
the old P.861 recommendation [59]. The latter recommendation proposed a quality 
assessment algorithm called perceptual speech quality measure (PSQM). The 
scope of PSQM is limited to assessing distortions introduced by higher-bit speech 
codecs operating over error-free channels. 

The structure of the PESQ measure is shown in Figure 3. The original (clean) 
and degraded  signals are first level equalized to a standard listening level, and fil-
tered by a filter with response similar to a standard telephone handset. The signals 
are aligned in time to correct for time delays, and then processed through an audi-
tory transform, similar to that of BSD, to obtain the loudness spectra. The absolute 
difference between the degraded and original loudness spectra is used as a meas-
ure of audible error in the next stage of PESQ computation. Note that unlike most 
objective measures (e.g., the BSD measure) which treat positive and negative 
loudness differences the same (by squaring the difference), the PESQ measure 
treats these differences differently. This is because positive and negative loudness 
differences affect the perceived quality differently. A positive difference would 
indicate that a component, such as noise, has been added to the spectrum, while a 
negative difference would indicate that a spectral component has been omitted or 
heavily attenuated. Compared to additive components, the omitted components are 
not as easily perceived due to masking effects, leading to a less objectionable form 
of distortion. Consequently, different weights are applied to positive and negative 
differences. The differences, termed the disturbances, between the loudness spec-
tra is computed and averaged over time and frequency to produce the prediction of 
subjective MOS score. The final PESQ score is computed as a linear combination 
of the average disturbance value symd  and the average asymmetrical disturbance 
value asymd  as follows:  

0 1 2sym asymPESQ a a d a d= + ⋅ + ⋅                        (9) 

where 
0 1 2

4.5,  0.1 and 0.0309a a a= = − = − . The range of the PESQ score is –0.5 to 4.5, 
although for most cases the output range will be a MOS-like score, i.e., a score be-
tween 1.0 and 4.5. High correlations (ρ > 0.92) with subjective listening tests were 
reported in [30] using the above PESQ measure for a large number of testing con-
ditions taken from mobile, fixed and voice over IP (VoIP) applications. The PESQ 
can be used reliably to predict the subjective speech quality of codecs (waveform 
and CELP-type coders) in situations where there are transmission channel errors, 
packet loss or varying delays in the signal. It should be noted that the PESQ meas-
ure does not provide a comprehensive evaluation of telephone transmission qual-
ity, as it only reflects the effects of one-way speech or noise distortion perceived 
by the end-user. Effects such as loudness loss, sidetone and talker echo are not re-
flected in the PESQ scores. More details regarding the PESQ computation can be 
found in [2, Ch. 10]. 
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Fig. 3. Block diagram of the PESQ measure computation 

3.4   Composite Measures 

In addition to the above measures, one can form the so called composite measures 
[1, Ch. 9] by combining multiple objective measures. The rational behind the use 
of composite measures is that different objective measures capture different char-
acteristics of the distorted signal, and therefore combining them in a linear or non-
linear fashion can potentially yield significant gains in correlations. Regression 
analysis can be used to compute the optimum combination of objective measures 
for maximum correlation. One possibility is to use the following linear regression 
model:  
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(10) 

where ( )f x  is the mapping function presumed to be linear, P is the number of 

objective measures involved, 1{ }N
i iy =  are the dependent variables corresponding to 

the subjective ratings of N samples of degraded speech, ijx  is the independent 

(predictor) variable corresponding to the jth objective measure computed for the 
ith observation (degraded sample or condition), and iε  is a random error associ-

ated with each observation. The regression coefficients iα  can be estimated to 

provide the best fit with the data using a least-squares approach [1, p. 184]. The P 
objective measures considered in (10) may include, among other measures, the 
LPC-based measures (e.g., IS, LLR), segmental SNR measures (e.g., SNRseg) or 
the PESQ measure. The selection of objective measures to include in the compos-
ite measure is not straightforward and in some cases it is based solely on experi-
mental evidence (trial and error) and intuition. Ideally, we would like to include 
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objective measures that capture complementary information about the underlying 
distortions present in the degraded signal. 

A linear function ( )f x  was assumed in (10) for mapping P objective measures 

to the observed subjective ratings, 1{ }N
i iy = . Such a model is accurate only when the 

true form of the underlying function is linear.  If it is not, then the modeling error 
will likely be large and the fit will be poor. Non-parametric models which make 
no assumptions about the form of the mapping function can alternatively be used.  
More specifically, models based on multivariate adaptive regression splines 
(MARS) have been found to yield better performance for arbitrary data sets [60]. 
Unlike linear and polynomial regression analysis, the MARS modeling technique 
is data driven and derives the functional form from the data. The basic idea of the 
MARS modeling technique is to recursively partition the domain into smaller sub-
regions and use spline functions to locally fit the data in each region. The number 
of splines used in each sub-region is automatically determined from the data. The 
MARS model has the following form:   
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where  ( )jB x  are the basis functions and M is the number of basis functions 

which are automatically determined from the data (note that M could be larger 
than the number of objective measures). The MARS technique has been success-
fully applied to speech quality evaluation in [34,61]. Radial basis functions were 
used in [49,50] for ( )jB x . Good correlations were obtained in [50] in terms of 

predicting the quality of noise-suppressed speech.  
While the composite measures always improve the correlation, caution needs to 

be exercised in as far using these measures with test speech materials and distor-
tions other than the ones that have been validated. The reason for this is that the 
composite measures need to be cross-validated with conditions not included in the 
training stage, hence they will perform the best when tested with the same speech 
materials containing processed speech with similar distortions. 

3.5   Non-intrusive Objective Quality Measures 

The above objective measures for evaluating speech quality are “intrusive” in na-
ture as they require access to the input (clean) signal. These measures predict 
speech quality by estimating the “distortion” between the input (clean) and output 
(processed) signals and then mapping the estimated “distortion” value to a quality 
metric.  In some applications, however, the input (clean) signal is not readily 
available and therefore the above objective measures are not practical or useful.  
In VoIP applications, for instance, where we are interested in monitoring continu-
ously the performance of telecommunication networks (in terms of speech  
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quality), we only have access to the output signal. In such cases, a non-intrusive  
objective measure of speech quality would be highly desirable for continuous 
monitoring of quality of speech delivered to a customer or to a particular point in 
the network. Based on such quality assessment, network traffic can be routed, for 
instance, through less congested parts of the network and therefore improve the 
quality of service. 

A fundamentally different approach is required to analyze a processed signal 
when the clean (reference) input signal is not available, and several non-intrusive 
measures have been proposed in the literature [61-67]. Some methods are based 
on comparing the output signal to an artificial reference signal derived from an 
appropriate codebook [65,66].  Other methods use vocal-tract models to identify 
distortions [63]. This latter method [63] first extracts a set of vocal-tract shape pa-
rameters (e.g., area functions, cavity size) from the signal, and then evaluates 
these parameters for physical production violations, i.e., whether the parameters 
could have been generated by the human speech-production system. Distortions 
are identified when the vocal-tract parameters yield implausible shape and cavity 
sizes. A variant of the vocal-tract method was adopted as the ITU-T P.563 [68] 
standard for non-intrusive evaluation of speech quality. More information on non-
intrusive methods can be found in [62]. 

3.6   Evaluation of Objective Quality Measures 

So far we have not yet discussed what makes a certain objective measure better 
than other. Some objective measures are “optimized” for a particular type of dis-
tortion and may not be meaningful for another type of distortion. The task of 
evaluating the validity of objective measures over a wide range of distortions is 
immense [1]. A suggested process to follow is to create a large database of speech 
distorted in various ways and evaluate the objective measure for each file in the 
database and for each type of distortion [1, ch 1]. At the same time, the distorted 
database needs to be evaluated by human listeners using one of the subjective lis-
tening tests (e.g., MOS test) described above. Statistical analysis needs to be used 
to assess the correlation between subjective scores and the values of the objective 
measures. For the objective measure to be valid and useful, it needs to correlate 
well with subjective listening tests. A discussion is given next on how to assess 
the predictive power of objective measures followed by a presentation of some of 
the measures that have been found to correlate well with listening tests. 

3.6.1   Figures of Merit 

The correlation between subjective listening scores and objective measures can be 
obtained using the Pearson’s correlation coefficient which is computed as follows:  

2 1/2 2 1/2

( )( )

[ ( ) ] [ ( ) ]
d d d dd

d d d dd d
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S S O O
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− −
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− −
∑
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where dS are the subjective quality ratings, dO  are the values of the objective 

measure, and dS  and dO  are the mean values of dS  and dO  respectively. This 

correlation coefficient ρ  can be used to predict the subjective results based on the 

values of the objectives measures as follows: 

( )P
k k

O

P P O O
σρ
σ

= + −
                           

(13) 

where kO denotes the value of the objective measure obtained for the kth speech 

file in the database, kP  denotes the predicted subjective listening score, Pσ  and 

Oσ  denote the standard deviations of the subjective and objective scores respec-

tively,  P  and O  denote the mean values of the subjective and objective scores 
respectively. Note that Eq. (13) is based on first-order linear regression analysis 
assuming a single objective measurement. Higher order polynomial regression 
analysis could also be used if the objective measure is composed of multiple 
measurements  [1, ch. 4.5].  

A second figure-of-merit is an estimate of the standard deviation of the predic-
tion error obtained by using the objective measures to predict the subjective listen-
ing scores. This figure-of-merit is computed as:  

21e Pσ σ ρ= −                                    (14) 

where eσ  is the standard error of the estimate. The standard error of the estimate 

of the subjective scores provides a measure of variability of the subjective scores 
about the regression line, averaged over all objective scores. For good predictabil-
ity of the subjective scores, we would like the objective measure to yield a small 
value of eσ . Both figures of merit, i.e., correlation coefficient and standard error 

of the estimate eσ , need to be reported when evaluating objective measures.  In 

some cases, histograms of the absolute residual errors, computed as the difference 
between the predicted and actual scores, can provide valuable information similar 
to that provided by eσ . Such histograms can provide a good view of how fre-

quently errors of different magnitudes occur. 
An alternative figure-of-merit to eσ  is the root-mean-square error (RMSE) be-

tween the per condition averaged objective measure and subjective ratings com-
puted over all conditions: 
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where iS indicates the averaged subjective score in ith condition, iO indicates the 

averaged objective score in ith condition and M is the total number of conditions. 
The above analysis assumes that the objective and subjective scores are linearly 

related (see Eq. (13)). This is not always the case, however, and in practice, it is 
not easy to uncover the best-fitting function or the true relationship between  
the objective and subjective measurements. Scatter plots of the rating scores vs. 
objective scores can provide valuable insights in terms of unveiling the relation-
ship between the objective and subjective measurements. Some found a better fit 
with a quadratic relationship [44,46] while others found a good fit with a logistic 
function [69]. Kitawaki et al .[44], for instance, derived a quadratic expression for 
predicting MOS scores from cepstral distance measures for Japanese speech. Non-
parametric regression techniques, such as the MARS technique [60] can alterna-
tively be used to uncover the mapping function between (multiple) objective 
measures and subjective ratings (see Section 3.4).  

3.6.2   Correlations of Objective Measures with Subjective Listening Tests 

Objective measures need to be validated with ratings obtained in subjective listen-
ing tests with human listeners. The choice of objective measures needs to be made 
carefully depending on the application, language and type of distortions present in 
the processed speech.  

For distortions introduced by speech coders, for instance, the objective meas-
ures investigated in [1] are appropriate. High correlations (ρ >0.9) were obtained 
primarily with composite and frequency-variant measures. The LPC-based meas-
ures performed modestly well ( 0.62ρ < ). The SNRseg measure performed well, 
but only for distortions introduced by waveform speech coders (e.g., ADPCM). 
This suggests that the SNRseg measure is only appropriate for evaluating speech 
processed via waveform coders. For distortions, such as clipping,  introduced by 
hearing aids the coherence-based measures reported in [70,71] are appropriate. 

For distortions introduced by speech-enhancement algorithms, the objective 
measures discussed and evaluated in [34] are appropriate. These measures were 
evaluated using the publicly available noisy speech corpus (NOIZEUS2), which 
was used in a comprehensive subjective quality evaluation [72] of 13 different 
speech enhancement algorithms encompassing four different classes of algo-
rithms: spectral subtractive, subspace, statistical-model based and Wiener-filtering 
type algorithms. The enhanced speech files were sent to Dynastat, Inc (Austin, 
TX) for subjective evaluation using the standardized methodology for evaluating 
noise suppression algorithms based on ITU-T P.835 [16]. The use of ITU-T P.835 
methodology yielded three rating scores for each algorithm: an overall quality rat-
ing, a signal distortion rating and a background distortion rating. A summary of 
the resulting correlations is given in Table 7 for a subset of the objective measures 
tested. 

                                                           
2 Available at: http://www.utdallas.edu/~loizou/speech/noizeus/  
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Table 7. Estimated correlation coefficients ( | |ρ ) of objective measures with overall qual-

ity, signal distortion and background noise distortion [34] 

Objective measure Overall  
quality 

Signal  
distortion 

Background 
distortion 

SegSNR 0.36 0.22 0.56 

Weighted spectral slope 
(WSS) [87] 

0.64 0.59 0.62 

PESQ 0.89 0.81 0.76 

Log-likelihood ratio (LLR) 0.85 0.88 0.51 

Itakura-Saito distance (IS) 0.60 0.73 0.09 

Cepstrum distance (CEP) 0.79 0.84 0.41 

fwSNRseg  0.85 0.87 0.59 

Modified PESQ  0.92 0.89 0.76 
 

In addition to several conventional objective measures (most of which were de-
scribed in this Section), modifications to the PESQ measure were also considered 
in [34].  As it was not expected that the PESQ measure would correlate highly 
with all three rating scores (speech distortion, noise distortion and overall quality), 
the PESQ measure was optimized for each of the three rating scales by choosing a 
different set of parameters ( 0 1 2, ,a a a ) in Eq. (9) for each rating scale. Multiple lin-

ear regression analysis was used to determine the values of the  parameters 

0 1 2, ,a a a . Of the seven basic objective measures tested, the PESQ measure yielded 

the highest correlation ( 0.89ρ = ) on overall quality, followed by the fwSNRseg 

and LLR  measures ( 0.85ρ = ). Even higher correlation with overall quality was 

obtained with the modified PESQ measure ( 0.92ρ = ). The majority of the basic 

objective measures predicted equally well signal distortion and overall quality, but 
not background distortion. This was not surprising given that most measures take 
into account both speech-active and speech-absent segments in their computation. 
Measures that would place more emphasis on the speech-absent segments would 
be more appropriate and likely more successful in predicting noise distortion. The 
SNRseg measure, which is widely used for evaluating the performance of speech 
enhancement algorithms, yielded a very poor correlation coefficient ( 0.31ρ = ) 

with overall quality. This outcome suggests that the SNRseg measure is unsuitable 
for evaluating the performance of enhancement algorithms.  

In summary, the PESQ measure has proved to be the most reliable measure for 
assessing speech quality. Consistently high correlations were noted for speech 
processed by speech codecs and telephone networks [30] as well as for noisy  
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speech processed by speech-enhancement algorithms [34]. High correlations were 
also obtained with the PESQ measure in Mandarin Chinese speech processed 
through various speech codecs [73]. Although not designed to predict speech intel-
ligibility, the PESQ measure has also yielded a modestly high correlation 
( 0.79ρ = ) with intelligibility scores [74], at least when tested with English 

speech. Modifications of the PESQ measure for Mandarin Chinese were reported 
in [28]. High correlation with speech intelligibility was also obtained with the 
fwSNRseg measure (Eq. (2)). 

4   Challenges and Future Directions in Objective Quality 
Evaluation 

Presently, there is no single objective measure that correlates well with subjective 
listening evaluations for a wide range of speech distortions. Most measures have 
been validated for a specific type of distortion and for a specific language. Some 
measures correlate well with distortions introduced by speech coders while others 
(e.g., PESQ measure) correlate well with distortions introduced by telecommuni-
cation networks and speech-enhancement algorithms. While the PESQ measure 
has been shown to be a robust objective measure, it is computationally demanding 
and requires access to the whole utterance. In some applications, this might not be 
acceptable. Ideally, the objective measure should predict the quality of speech in-
dependent of the type of distortions introduced by the system whether be a net-
work, a speech coder or a speech enhancement algorithm. This is extremely chal-
lenging and would require a deeper understanding of the human perceptual 
processes involved in quality assessment. 

For one, little is known as to how we should best integrate or somehow com-
bine the frame computed distance measures to a single global distortion value. The 
simplest approach used in most objective measures is to compute the arithmetic 
mean of the distortions computed in each frame, i.e.,  

1

0

1
( , )

M

k k
k

D d
M

−

=

= ∑ x x
                           

(15) 

where M is the total number of frames, D denotes the global (aggregate) distor-
tion, and ( , )k kd x x  denotes the distance between the clean and processed signals 

in the kth frame. This distance measure could take, for instance, the form of either 
(4), (5), or (8). The averaging in Eq. (15) implicitly assumes that all frames 
(voiced, unvoiced and silence) should be weighted equally, but this is not neces-
sarily consistent with quality judgments. For one, the above averaging does not 
take into account temporal (forward or backward) masking effects.  

 Alternatively, we can consider using a time-weighted averaging approach to 
estimate the global distortion, i.e., 
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where ( )w k  represents the weighting applied to the kth frame. Computing the 

frame weights, ( )w k , however, is not straightforward and no optimal methods (at 

least in the perceptual sense) exist to do that.  
Accurate computation of ( )w k would require a deeper understanding of the fac-

tors influencing quality judgments at least at two conceptual levels: the supraseg-
mental (spanning syllables or sentences) and the segmental (spanning a single 
phoneme) levels. At the suprasegmental level we need to know how humans inte-
grate information across time, considering at the very least temporal (non-
simultaneous) masking effects such as forward and backward masking. Forward 
masking is an auditory phenomenon which occurs when large energy stimuli 
(maskers) precede in time, and suppress (i.e., mask) later arriving and lower  
energy stimuli from detection. In the context of speech enhancement, this means 
that the distortion introduced by the noise-reduction algorithm may be detectable 
beyond the time window in which the signal and distortion are simultaneously pre-
sent. Masking may also occur before the masker onset and the corresponding ef-
fect is called backward masking [75,ch. 4]. Back-ward masking effects are rela-
tively short (less than 20ms), but forward-masking effects can last longer than 100 
msecs [75, ch. 4.4] and its effects are more dominant. Attempts to model forward 
masking effects were reported in [1, p. 265,45,55].  

At the segmental (phoneme) level, we need to know which spectral characteris-
tics (e.g., formants, spectral tilt, etc) of the signal affect quality judgments the 
most.  These characteristics might also be language dependent [76], and the objec-
tive measure needs to take that into account (e.g., [28]). We know much about the 
effect of spectral manipulations on perceived vowel quality but comparatively lit-
tle on consonant quality [42,77]. Klatt [42] demonstrated that of all spectral  
manipulations (e.g., low-pass filtering, notch filtering, spectral tilt) applied to 
vowels, the formant frequency changes had the largest effect on quality judg-
ments. His findings, however, were only applicable to vowels and not necessarily 
to stop consonants or any other sound class.  For one, Klatt concluded that spectral 
tilt is unimportant in vowel perception [42], but that is not the case however in 
stop-consonant perception. We know from the speech perception literature that 
spectral tilt is a major cue to stop place of articulation [78, ch. 6,79].  Some [79] 
explored the idea of constructing a spectral template that could be associated with 
each place of stop articulation, and used those templates to classify stops. In brief, 
the stop consonants, and possibly the other consonants, need to be treated differ-
ently than vowels, since different cues are used to perceive consonants.   

There has been a limited number of proposals in the literature on how to esti-
mate the weights ( )w k in (16) or how to best combine the local distortions to a 

single global distortion value [1,1, ch. 7,45,69,80,81]. In [80,82], the weights 
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( )w k  were set proportional to the frame energy (raised to a power) thereby plac-

ing more emphasis on voiced segments. This approach, however, did not yield any 
significant benefits as far as obtaining a better correlation with subjective listening 
tests [1, p. 221,82]. A more successful approach was taken in [83] for assessing 
distortions introduced by hearing aids. Individual frames were classified into three 
regions relative to the overall RMS level of the utterance, and the objective meas-
ure was computed separately for each region. The high-level region consisted of 
segments at or above the overall RMS level of the whole utterance. The mid-level 
region consisted of segments ranging from the overall RMS level to 10 dB below, 
and the low-level region consisted of segments ranging from RMS-10 dB to RMS-
30 dB. A similar approach was also proposed in [84]. 

Rather than focusing on finding suitable weights for Eq. (16), some have pro-
posed alternative methods to combine the local distortions into a single global dis-
tortion value. In [80], a classifier was used to divide the speech frames into four 
distinct phonemic categories: vocalic, nasal, fricative and silence. A separate dis-
tortion measure was used for each phonemic class and the global distortion was 
constructed by linearly combining the distortions of the four classes. A similar ap-
proach was also proposed in [81] based on statistical pattern-recognition princi-
ples.  The underlying assumption in these segmentation-based methods is that the 
distortion in various classes of sounds is perceived differently, and therefore a dif-
ferent weight ought to be placed to each class. It is not yet clear what those 
weights should be, and further research based on psychoacoustic experiments is 
needed to determine that. 

A different approach for combining local distortions was proposed in [69] 
based on the assumption that the overall perceived distortion consists of two com-
ponents. The first component takes the average distortion into account by treating 
all segments (frames) and all frequencies equally. The second component takes 
into account the distribution of the distortion over time and frequency. That is, it 
takes into consideration the possibility that the distortion might not be uniformly 
distributed across time/frequency but concentrated into a local time or frequency 
region. The latter distortion is computed using an information-theoretic measure 
borrowed from the video coding literature [85]. This measure, which is based on 
entropy, quantifies roughly the amount of information contained in each time-
frequency cell and assigns the appropriate weight accordingly. The measuring 
normalizing blocks (MNB) algorithm [31] utilizes a simple perceptual transform, 
and a hierarchical structure of integration of distance measurements over a range 
of time and frequency intervals. 

In most objective quality measures, the distortion is computed as the difference 
between the auditory spectra of the clean and processed signals or as the differ-
ence of their all-pole spectra (e.g., LPC) representations. This difference is com-
monly squared to ensure positivity of the distance measure. Squaring this differ-
ence, however, assumes that the positive and negative differences contribute 
equally to the perceived quality. But as mentioned earlier, that is not the case.  
A positive difference might sometimes be perceived more harshly and therefore  
be more objectionable than a negative difference. This is because the omitted  
components (produced by a negative difference) might sometimes be masked and 
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therefore become inaudible. Objective measures should therefore treat positive 
and negative distortions differently. Yet, only a few objective measures take into 
account this asymmetrical effect of auditory spectra differences on quality judg-
ments [30,31,86].  

To summarize, further research is needed to address the following issues and 
questions for better objective quality evaluation: 

1. At the suprasegmental level, we need a perceptually meaningful way 
to compute the weights ( )w k  in (16), modeling at the very least 

temporal (forward) masking effects. 
2. At the segmental (phoneme) level, we need to treat consonants dif-

ferently than vowels since perceptually we use different cues to iden-
tify consonants and vowels. Certain spectral characteristics of the 
consonants and vowels need to be emphasized or deemphasized in 
the distortion calculation, and these characteristics will likely be dif-
ferent.  

3. A different weight needs to be placed on positive and negative dif-
ferences of the auditory spectral representation of the clean and 
processed signals. 

To address the above issues, it will require a better understanding of the factors in-
fluencing human listeners in making quality judgments. For that, perception ex-
periments similar to those reported in [42,45,77]  need to be conducted.  

5   Summary 

This Chapter presented an overview of the various techniques and procedures  
that have been used to evaluate the quality of processed speech. A number of  
subjective listening tests were described for evaluating speech quality. These tests 
included relative preference methods and absolute category rating methods (e.g., 
MOS, DAM). The ITU-T P.835 standard established for evaluating quality  
of speech processed by noise-reduction algorithms was also described. Lastly,  
a description of common objective quality measures was provided. This  
included segmental SNR measures, spectral distance measures based on LPC  
(e.g., Itakura-Saito measure) and perceptually motivated measures (e.g., bark dis-
tortion measure, PESQ measure). The segmental SNR measure, which is often 
used to assess speech quality, was not found to correlate well with subjective  
rating scores obtained by human listeners, and should not be used. The  
PESQ measure has been proven to be the most reliable objective measure for as-
sessment of speech quality [30,34], and to some degree, speech intelligibility [74]. 
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Abstract. Sentence ranking is the issue of most concern in document 
summarization. In recent years, graph-based summarization models and sentence 
ranking algorithms have drawn considerable attention from the extractive 
summarization community due to their capability of recursively calculating sentence 
significance from the entire text graph that links sentences together rather than 
relying on single sentence alone. However, when dealing with multi-document 
summarization, existing sentence ranking algorithms often assemble a set of 
documents into one large file. The document dimension is ignored. In this work, we 
develop two alternative models to integrate the document dimension into existing 
sentence ranking algorithms. They are the one-layer (i.e. sentence layer) document-
sensitive model and the two-layer (i.e. document and sentence layers) mutual 
reinforcement model. While the former implicitly incorporates the document’s 
influence in sentence ranking, the latter explicitly formulates the mutual 
reinforcement among sentence and document during ranking. The effectiveness of 
the proposed models and algorithms are examined on the DUC query-oriented 
multi-document summarization data sets. 

Keywords: Query-oriented multi-document summarization, document-sensitive 
sentence ranking, mutual-reinforcement sentence ranking. 

1   Introduction 

The explosion of the WWW has brought with it a vast board of information. It has 
become virtually impossible for anyone to read and understand large numbers of 
individual documents that are abundantly available. Automatic document 
summarization [17] [7] provides an effective means to manage such an 
exponentially increased collection of information and to support information seeking 
and condensing goals. The main evaluation forum providing benchmarks for 
researchers who work on document summarization to exchange their ideas and 
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experiences is the Document Understanding Conferences (DUC [3] [7]). The goals 
of the DUC are to enable researchers to participate in large-scale experiments upon 
the standard benchmark and to increase the availability of appropriate evaluation 
techniques. Over the past years, the DUC evaluations have gradually evolved from 
single-document summarization to multi-document summarization and from generic 
summarization to query-oriented summarization [20].  

Up to the present, the dominant approaches in document summarization 
regardless of the nature and the goals of the tasks have still been built upon the 
sentence extraction framework. Under this framework, sentence ranking is the issue 
of most concern. It computes sentence significance based on certain criteria and 
ranks the sentences according to significance. Most previous work in the literature 
addresses the ranking issue by examining the features of each individual sentence, 
such as its content, its grammatical structure and etc. Recently, the relations among 
the sentences have been emphasized in the graph-based models that represent a 
document or a set of documents as a text graph. The text graph is normally 
constructed by taking a sentence as a node, and the similarity between the two 
sentences as edges. The significance of a node in the graph is then estimated by the 
graph-based ranking algorithms that normally take into account the global 
information recursively computed from the entire graph rather than merely relying 
on the local information within a single sentence. So far, the most popular graph-
based ranking algorithms applied in document summarization are Google’s 
PageRank [2] and its variations. LexRank [5] developed for generic summarization 
is one example of the PageRank-like algorithms. LexRank has also been extended 
to its topic-sensitive version [18] to accommodate the new challenge of query-
oriented summarization, which is initiated by the DUC in 2005. 

In general, existing PageRank-like algorithms can well model the phenomena 
that a sentence is important if it is linked by other important sentences. Or to say, 
they are capable of modeling the reinforcement among the sentences in a text 
graph. However, when dealing with multi-document summarization, these 
algorithms often assemble a set of documents into one large file and ignore the 
intrinsic difference between single document summarization and multi-document 
summarization. Or to say, the information carried by the document dimension is 
totally ignored in sentence ranking. We argue that since text is always organized 
and structured in a certain way to deliver information, sentence and document are 
not independent. A document carries global and contextual information necessary 
for understanding the sentences in that document. Consequently, the document 
dimension will (and should) influence sentence ranking. How to effectively 
integrate document dimension in sentence ranking is our major concern in this 
work. We explore two alternative models to integrate the document dimension 
into existing sentence ranking algorithms. The first one is a document-sensitive 
graph model which is developed to emphasize the difference among documents 
and the influence of global document set information on local sentence ranking. In 
this model, a document is implicit in a one-layer graph that links sentences 
together. The second one is a mutual reinforcement model, which is a two-layer 
graph with two layers corresponding to the documents and the sentences, 
respectively. In this model, a document is explicit in the graph. Sentence ranking 
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and document ranking are simultaneous. Later we will show that sentence ranking 
indeed benefits from document ranking. We evaluate the effectiveness of the 
proposed models and algorithms in the context of DUC query-oriented multi-
document summarization task, which aims to produce a short and concise 
summary for a set of relevant documents according to a given query that describes 
a user’s information need. Significant results are achieved. 

The remainder of this paper is organized as follows. Section 2 reviews existing 
graph-based ranking approaches applied in document summarization. Next, 
Section 3 and Section 4 introduce document-sensitive graph model and document-
sentence mutual reinforcement graph model, respectively, as well as their 
applications in query-oriented multi-document summarization. Then, Section 5 
presents evaluations and discussions. Finally, Section 6 concludes the paper.  

2   Related Work 

Sentence ranking is the issue of most concern under the framework of extractive 
summarization. Traditional feature-based approaches evaluated sentence 
significance and ranked the sentences relying on the features that were elaborately 
designed to characterize the different aspects of the sentences. A variety of 
statistical and linguistic features, such as term frequency (distribution), sentence 
dependency structure, sentence position, query relevance and etc., have been 
extensively investigated in the past due to their easy implementation and the 
ability to achieve promising ROUGE (i.e. DUC automatic) evaluation results. 
Among them, centroid introduced by [22] and signature term introduced by [11] 
are most remarkable. As for query-oriented summarization, the query term feature 
has been proved to be extremely useful. Besides, certain kinds of clustering 
techniques were also involved to expand the topic title and query keywords. As a 
matter of fact, feature-based approaches have been most widely used in the top 
five participating systems in DUC 2005-2007. Please refer to the online DUC 
reports for more details [4].  

The features were often linearly combined and the weights of them were either 
experimentally tuned or automatically derived by applying certain learning-based 
mechanism [19] [28]. Learning-based approaches were popular in recent DUC 
competitions, such as the discriminative training model used to learn weights for a 
variety of sentence level features, the Support Vector Regression (SVR) model 
used for automatic feature weight selection and the log-linear model by 
maximizing metrics of sentence goodness, etc. [4]. Learning-based systems have 
achieved encouraging results in DUC 2007. 

Newly emerged graph-based approaches like LexRank [5] and TextRank [14] 
[15] modeled a document or a set of documents as a weighed text graph. Different 
from feature-based approaches, graph-based approaches took into account the 
global information and recursively calculated sentence significance from the entire 
text graph rather than only relying on unconnected individual sentences. These 
approaches were actually inspired by PageRank [2], which has been successfully 
used for ranking web pages in the Web graph. The effectiveness of the PageRank-
like approaches came from the advantage of making use of the link structure 
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information. It further promoted the use of topic-sensitive PageRank [6], an 
extension of PageRank, in query-oriented summarization [18] [24] [13].  

While the PageRank-like approaches normally considered the similarity or the 
association of the sentences, Zha [30], in contrast, proposed a mutual 
reinforcement principle that is capable of extracting significant sentences and key 
phrases at the same time. In his work, a weighted bipartite document graph was 
built by linking together the sentences in a document and the terms appearing in 
those sentences. Zha argued that a term should have a high salience score if it 
appears in many sentences with high salience scores while a sentence should have 
a high salience score if it contains many terms with high salience scores. This 
mutual reinforcement principle was reduced to a solution for the singular vectors 
of the transition matrix of the bipartite graph. In fact, as early in 1998, the similar 
idea has been used in HITS algorithm [16] to identify hub and authority web pages 
in a small subset of the web graph. Zha’s work was later advanced by Wan et al 
[25] who additionally calculated the links among the sentences and the links 
among the terms. Zha’s and Wan’s works are the ones most relevant to our studies 
presented in this paper. But they all concentrated on single-document generic 
summarization. Later, we [27] integrated the notion of mutual reinforcement into 
PageRank-like algorithms. They introduce a unified mutual reinforcement chain, 
where reinforcement among terms, sentences and documents are considered 
simultaneously. 

The use of the PageRank family was also very popular in event-based 
summarization approaches [9] [23] [29] [10]. In contrast to conventional sentence-
based approaches, event-based approaches took event terms, such as verbs and 
action nouns and their associated named entities as graph nodes, and connected 
nodes according to their co-occurrence information or semantic dependency 
relations. They were able to provide finer text representation and thus could be in 
favor of sentence compression which was targeted to include more informative 
contents in a fixed-length summary. Nevertheless, these advantages largely lied on 
appropriately defining and selecting event terms. 

3   Document-Sensitive Graph-Based Model 

3.1   Introduction 

It is worth noting that the sentence edges can be naturally differentiated into the 
edges linking the inter-document sentences (i.e. the sentences within the same 
documents) or the edges linking the intra-document sentences (i.e. the sentences in 
the different documents) by considering document in a conventional text graph 
that links sentences together. Such a distinction is meaningful. When evaluating 
sentence significance for multi-document summarization, as already observed, the 
sentences from many other documents can contain more useful and globally 
informative information than the other sentences within the same document, and 
therefore the recommendations of them are supposed to be more important. This is 
determined by the nature of multi-document summarization which requires the 
information included in the summary to be globally important on the whole 
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document set. We further argue that the recommendations of the sentences from 
the documents on very similar topics are more reliable than the recommendations 
of the sentences from the documents telling of quite different stories. In addition, 
the document/sentence inclusion relation also allows for the impact from 
documents on sentences to be integrated in the ranking algorithms by imposing the 
document global information to the local sentence evaluation. Unfortunately, the 
above-mentioned document-level effects are neglected by almost all the previous 
graph-based ranking algorithms in the summarization literature. These 
observations motivate us to study how to make better use of the information 
provided in the whole text graph for the task of query-oriented multi-document 
summarization. 

In our document-sensitive graph model, a set of document D is represented as a 

text similarity graph ( )ϕφβα ,,,,,,, CV EECVG = , where V and C represent the 

sentence vertex set and the document vertex set, respectively. VVEV ×⊆  and 

CCE C ×⊆  are the sentence edge set and the document edge set. ∗
+ℜ→V:α , 

∗
+ℜ→C:β  are two functions defined to label the sentence vertices and document 

vertices, while ∗
+ℜ→VE:φ  and ∗

+ℜ→CE:ϕ  are two functions defined to label 

sentence edges and the document edges. When we add the document information 
into the conventional graph model, the document-level relations that have been 
ignored in the past become visible and their influence on the sentence evaluation 
can then be used to enhance the existing PageRank-like algorithms.  

In the previous work [5], the document set D={ Nddd ,..., 21 } (N is the total 

number of the documents to be summarized) is represented as a simple weighted 
undirected text graph G by taking sentences in D as vertices and adding a edge to 
connect the two vertices if the two sentences concerned are similar enough. There 
is only one kind of objects (i.e. sentences) and one kind of object relations (i.e. 
sentence similarity relations) in this graph. Sentences from the same or the 
different documents are treated equally. When the concept of document is 
emphasized, one more kind of objects (i.e. documents) is added into the graph. 
One can then easily obtain the following three important but previously ignored 
information: (1) the inclusion relation between sentences and the document they 
belong to; (2) the similarity relation among documents; and (3) what’s more, the 
sentence-sentence similarity relations are divided into two categories, i.e. the one 
within the document (called intra-document relation) and the one cross over two 
documents (called inter-document relation). As for Query-oriented multi-
document summarization, an additional kind of object (i.e. queries) is involved. 
Alike, the document-query relevance and the sentence-query relevance can be 
formulated separately so that the impact of the document-query relevance on the 
sentence-query relevance can be taken into account. 

3.2   Existing PageRank-Like Algorithms in Document Summarization 

PageRank [2] has been adapted to rank the undirected graphs in the community of 
document summarization. For instance, Erkan and Radev [5] proposed the 
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LexRank algorithm for generic summarization. Let R denote the ranking vector of 
N sentences in the similarity graph G, M denote the normalized affinity matrix of 
G and p  denote the preference probability vector where each element is positive 

and the sum of all the elements equals to 1. The PageRank ranking scheme is 
defined as: 

( ) pdRMdR ⋅−+•⋅= 1  (1)

where d  is the damping factor between 0 and 1. There are many variations of the 
PageRank algorithm that follow the same ranking scheme presented in Equation 
(1). The difference among those algorithms lies in their different use of M and p . 

PageRank can be determined by the stationary solution of the Markov Chain 
with P as the transition matrix, or found by the eigenvector problem. 

RRP ⋅=• λ , and ( ) TpdMdP 11 •⋅−+⋅=  (2)

where 1 denotes a 1×N  vector of all 1’s. It is obvious that P is both columns 
stochastic and irreducible. Meanwhile, P is primitive because all the elements in P 
are positive. As a result, based on Perron’s Theorem [8], the dominant eigenvector 
of P is unique with 1 as the eigenvalue. Moreover, the power iteration method 
applied to P in Equation (2) will converge to its dominant eigenvector. We can use 
the power method to compute the PageRank vector. 

Following the spirit of topic-sensitive PageRank introduced in Haveliwala [6], 
Otterbacher et al. [18] proposed the query-sensitive version of LexRank (i.e. 
Q-LexRank), which is then followed by Wan et al. [25]. Let qp  denote a 1×N  

vector such that ( ) ( )iq sip α= , we summarize the existing PageRank-like 

algorithms in document summarization as follows. The difference between the 
LexRank and its query-sensitive version (we call it Q-LexRank) is that they used 
different preference vector. The algorithms used in [25] were analogous to 
Q-LexRank and LexRank. Wan et al. used the inter-document links and the intra-
document links to construct two separated graph independently, and then 
combined the calculated PageRank values by a simple linear combination 
function. 

3.3   Graph-Based Document-Sensitive Ranking Algorithm (DsR) 

The idea of the document-sensitive ranking algorithm is inspired by the work of 
[31], where a weighted inter-cluster edge ranking (WICER) was proposed for the 
clustered graphs. The major contributions of their work are to weight the edges 
according to whether they are the inter-cluster or the intra-cluster edges and to 
weight the vertices based on the number of clusters they connect. WICER 
computes the graph with its internal relations and structures but does not concern 
how the external factors cause the change of graph computing. Also, there is no 
mathematical analysis on WICER and the algorithm is not guaranteed to converge. 
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We borrow the spirit of it and develop a new ranking algorithm in our 
summarization model. We also prove the convergence of the solution.  

We emphasize the document dimension in the PageRank-like algorithm in the 
following two ways. One is on the sentence affinity matrix and the other is on the 
preference vector. 

To reflect the impact of the document dimension on the sentence affinity 
matrix, different sentence edges are differentiated corresponding to the fact that 
the recommendations exist in two familiar communities are more credible. So the 
sentence edges are additionally weighted by the similarity between the two 
documents they connect. Let N denotes the number of the documents involved, 
then we compare two sentence affinity matrices, 
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The block matrix Mii denotes the affinity matrix of the sentences in document i, 
Mij (i≠j) denotes the cross-document (i and j) affinity matrix, and so on. Notice 
that Mo corresponds to the original sentence affinity matrix (i.e. the sentence 
similarity matrix) used in LexRank and Q-LexRank. The key to encode the 
document dimension into the affinity matrix is to emphasize the document 
influence on the sentence edges that connect different documents, as illustrated in 

M. The weight matrix 
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 is used to discriminate the 

cross-document sentence edges. Typically, the diagonal elements in W are set to 1, 
which denotes the relative weight of the intra-document sentence edges.  
On the contrary, the non-diagonal elements are determined by the relations 
between the two corresponding documents. In our work, W is defined as 

( ) ( ) ( )( )ji sdsdjiW ,1, ϕ+= , where ( )isd  denotes the document that contains the 

sentence si. 
To reflect the impact of the document dimension on the preference vector p , 

we believe that a sentence from the document with higher significance should be 
ranked higher. This can be explained as that a recommendation from a reputable 
person should be more important. Accordingly, the centroid-based weight of the 
document in generic summarization, or the relevance of the document to the query  
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in query-oriented summarization, is taken as the weight on the preference vector 
p . See the two preference vectors,  
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where ip  denotes the sub-preference vector of the sentences from the document i. 

The weight matrix 
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bias to sentences from different documents. This weight matrix is determined with 
respect to the documents. In this work, it is defined as ( ) ( )( )ip sdiW β+= 1 .  

To guarantee the solution of our newly designed algorithm, we should first 
make p  a preference probability vector. 

Lemma 1. p  is a preference probability vector, if Wp is positive and the diagonal 

elements in Wp sum to 1. 

Proof: Since ip  is a probability vector, we have 1=ip . Then, 

( ) 1

21112111
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⋅++⋅+⋅=⋅++⋅+⋅=

∑i P

NNNN

iW

pwpwpwpwpwpwp
.    

Second, we should make the matrix M column stochastic and irreducible. To make 
M column stochastic, we force each of the block matrices (i.e. Mij) column 
stochastic. They are normalized by columns such that any column in these 
matrices sums to 1. There may be zero columns in these matrices. In these cases, 
we replace the zero columns, as in PageRank, with the preference vector p .  

Lemma 2. M is column stochastic, provided that the weight matrix W is column 
stochastic.  

Proof: Let M1k, M2k, …, MNk( [ ]Nk ,1∈ ) denote the block matrices of the k-th 

column M, then 
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To make M irreducible, we make the block matrices in M irreducible by adding 
additional links between any two sentences, which is also adopted in PageRank. 
Then we have,  

Lemma 3. M is irreducible. 

Proof: Since the graphs corresponding to the diagonal block matrices in M are 
strongly connected (i.e. they are irreducible) and the edges connecting the graphs 
are bidirectional, the graph corresponding to M is obviously strongly connected. 
Thus M must be also irreducible.  

Finally, we obtain ( ) TpdMdP 11 •⋅−+⋅= . Obviously, P is stochastic, 

irreducible and primitive. As a result, we can compute the unique dominant vector 
(with 1 as the eigenvalue) of P. It is well known that the power iteration method 
applied to P converges to R.  

Until now, the document dimension has been integrated into the existing 
PageRank-like algorithms with a solid mathematical foundation. Let DsR denote 
the algorithm designed for query-oriented summarization, we summarize the 
labeling functions involved in the following table.  
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4   Mutual Reinforcement Graph-Based Model 

4.1   Introduction 

In many text processing applications, such as information retrieval, question answering 
and document summarization, the text people often manipulate and evaluate is of two 
different granularities. They are document and sentence. While document ranking is 
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indispensable to information retrieval, sentence ranking is one of the most fundamental 
issues in document summarization. Comparatively speaking, sentence ranking is more 
challenging than document ranking since a sentence carries much less information 
than a document for measuring the similarity of text. However, the sentence does not 
stand alone in the text without the context. 

It is an unarguable fact that the text is always organized and structured in a 
certain way so that the core information would be easily identified. The 
assumption that document and sentence are independent of each other in 
delivering meanings is untenable. Therefore, even when the sentence ranking 
result is the only concern in summarization, the mutual constraints and the 
influences between document and sentence could not be ignored. In this section, 
we propose a new sentence ranking algorithm based on the Mutual Reinforcement 
(MR) of Document (D) and Sentence (S). We define the reinforcement between 
document and sentence as the external reinforcement. 

In addition to the external reinforcement, the proposed sentence ranking 
algorithm also supports the calculation of the internal reinforcement within a set of 
documents or a set of sentences, i.e. the document-level reinforcement and the 
sentence-level reinforcement. The existing PageRank-like algorithms employed in 
summarization can be viewed as sentence-level reinforcement instances. In the 
past, the importance of sentence relations have been stressed in graph-based 
summarization models and their contribution to the performance improvement has 
been recognized [5]. We put them forward to the relations at both the document 
level and the sentence level and move towards a more unified reinforcement 
model. To sum up, the external and the internal reinforcement together form a 
complete two-level document and sentence mutual reinforcement (D-S MR or MR 
for short) framework. 

The mutual reinforcement framework is developed with an attempt to capture 
the following intuitions: 1. A document is important if (1) it correlates to 
important sentences; (2) it associates to other important documents; 2. A sentence 
is important if (1) it correlates to importance documents; (2) it associates to other 
important sentences. Then, the ranking of documents and sentences can be 
iteratively derived from the D-S MR. Let RD and RS denote the ranking scores of 
the document set D and the sentence set S, respectively, the iterative ranking can 
be formulated as follows: 

⎪⎩

⎪
⎨
⎧

⋅⋅+⋅⋅=

⋅⋅+⋅⋅=
+

+

)(
2

)(
2

)1(

)(
1

)(
1

)1(

k
SS

k
D

k
S

k
S

k
D

k

RSRSR

RDRDR

D

SDD

αβ

βα
 (4)

where DD denotes the D-D affinity matrix, DS denotes the D-S affinity matrix, and 
so on. The calculation of the four affinity matrices in Equation (1) will be detailed 

later in Section 4. ⎥
⎦

⎤
⎢
⎣

⎡
=

22

11

αβ
βα

W  is the weight matrix used to balance the relative 

weights of document and sentence in D-S MR. The coefficients in Equation (1) 
corresponds to a block matrix. 
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⎥
⎦

⎤
⎢
⎣

⎡
=

SD

SD

SS

DD
M

22

11

αβ
βα

 (4’)

Let ⎥
⎦

⎤
⎢
⎣

⎡
=

S

D

R

R
R , then R can be computed as the dominant eigenvector of M, i.e. 

RRM ⋅=⋅ λ  (5)

Given that the corresponding graph of M is not bipartite, we must force M 
stochastic, irreducible and primitive1 in order to guarantee a unique solution of R. 
On this account, the necessary matrix transformation explained below must be 
performed. We will prove to readers that the new transformed M is stochastic, 
irreducible, and more strictly, primitive for certain. 

A sufficient condition for a stochastic M is to make the four affinity block 
matrices in M column stochastic. For the sake of simplicity, we let X be either of 
the two diagonal block matrices (i.e. DD and SS) and Y be either of the remaining 
two block matrices (i.e. SD and DS).  

We first delete the rows and the columns that do not contain any non-zero 
element in X. This manipulation is analogous to the strategy used in PageRank to 
cope with the dangling pages in the Web graph that do not have outgoing links. 
Since X is symmetric, if the out-degree of a document or a sentence node is zero, 
its in-degree must be zero as well. Such a node is actually an isolated node in a 
text graph. Therefore, the ranking results will not be influenced when the isolated 
nodes are removed. On the other hand, it is noted that there are no zero columns in 
Y. Let us take SD for example. The affinity of the sentence s and the document d is 
at least greater than zero if d contains s. Now, we are ready to normalize both X 
and Y by columns to their column stochastic versions X  and Y . We replace X 
and Y with X  and Y  in M, and denote the new matrix as M . 

Next, we manage to make M  irreducible. Let X  denote either of the two new 
diagonal block matrices in M . Similar to the treatment used in PageRank 

calculation, we make the graph corresponding to X  strongly connected by adding 
(artificial) links for every pair of nodes with a probability vector p . After such an 

adjustment, the revised X  becomes 

( )EdXdX −+⋅= 1  and [ ] kpE ××= 11  (6)

where 10 << d , d  is usually set to 0.85 according to PageRank. k is the order of 

X . The probability vector p  can be defined in many different ways. A typical 

definition is to assume a uniform distribution over all elements, i.e. [ ] 1
1

×= kkp . By 

                                                           
1 A matrix is irreducible if its graph shows that every node is reachable from every other 

node. A non-negative, irreducible matrix is primitive if it has one eigenvalue on its 
spectral circle. An irreducible Markov chain with a primitive transition matrix is called an 
aperiodic chain. Please refer to [8] for more details. 
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doing so, X  becomes both stochastic and irreducible. We finally replace X  with 

X  in M , and let M  denote the latest matrix. 
After the above-mentioned transformations on the matrices, we now can prove 

that the final M  is column stochastic, irreducible and primitive. For the sake of 

simplicity, we re-write M  as ⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅
⋅⋅

=
222212

121111

PP

PP
P

αβ
βα

 and let ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

PP

PP
P  and 

⎥
⎦

⎤
⎢
⎣

⎡
=

22

11

αβ
βα

W . From the previous analysis, we have, 

 
(1) ( ) 011 >× mmP , ( ) 022 >× mmP , ( ) 012 ≥× nmP , ( ) 021 ≥× mnP ;  

(2) 11P , 12P , 21P  and 22P  are column stochastic; 

(3) [ ]ni ,1∈∀  and [ ]mj ,1∈∃  such that ( ) 0,12 >ijP 2; 

(4) 12P  and 21P  satisfy ( ) ( ) 0,0, 2112 >⇔> ijPjiP  and 

( ) ( ) 0,0, 2112 =⇔= ijPjiP ; and 

(5) It is easy to ensure 0>W  and make W column stochastic. 
 
Lemma 1. P  is also column stochastic if the weight matrix W is column 
stochastic.  

Proof: Let A and B denote the two block matrices in any column of P  under 
concern, α  and β  the corresponding weight coefficient with respect to A and B, 

then ∑+∑=∑ i iji iji ij BAP βα  = βα +  = 1.                                                            □ 

Lemma 2. P  is irreducible. 

Proof: Since the two graphs corresponding to the two diagonal block matrices in 

P  are strongly connected (i.e. they are irreducible) and the links connecting the 
two graphs are bidirectional, obviously the graph corresponding to P  is also 
strongly connected. Thus, P  must be irreducible.                                                  □ 

Now the matrix P  is both stochastic and irreducible. More strictly, we have 

Lemma 3. P  is primitive.  

Proof: Considering ⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅
⋅⋅

•⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅
⋅⋅

=
222212

121111

222212

1211112

PP

PP

PP

PP
P

αβ
βα

αβ
βα

 

            = ⎥
⎦

⎤
⎢
⎣

⎡

⋅+•⋅•⋅+•⋅
•⋅+•⋅•⋅+⋅
2

22
2
2122112212221112121

221212121111211221
2

11
2
1

PPPPPPP

PPPPPPP

αβαββαα
βαβαββα

 

                                                           
2 For each sentence, there exists at least one document that contain that sentence such that 

the element in the affinity matrix is a positive value because the affinity between them is 
positive, and vice versa. 
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we have 
 

(1) 0211121
2

11
2
1 >•⋅+⋅ PPP ββα   ( 02

11 >P ) 

(2) 02
22

2
2122112 >⋅+•⋅ PPP αβα   ( 02

22 >P ) 

(3) 0221212121111 >•⋅+•⋅ PPPP βαβα  ( 01211 >• PP ) 

(4) 0212221112121 >•⋅+•⋅ PPPP ββαα  ( 02122 >• PP ) 

It is easy to deduce that 0
2

>P  and P  is primitive.                                          □ 
 

The above proof can be understood from the perspective of graph. Let G1 denote 
the graph corresponding to the matrix P11, G2 denote the graph corresponding to 
the matrix P22, and G denote the graph corresponding to the matrix P . P12 and P21 
can be viewed as the links connecting the nodes between G1 and G2. Notice that 
any two nodes in G1 or G2 are connected and there is at least one link from the 
nodes in G1 to G2, and vice versa. The nodes in G have been divided into two sets, 
i.e. G1 and G2. There is no question that any two nodes in the same set (i.e. within 
G1 or within G2) are able to reach each other in exact two steps. We then consider 
the case that a node n1i in G1 links to a node n2j in G2. There exists at least one 
node, say n1k for example, in G1 such that there is a direct path from n1k. to n2j. 
Therefore, n1i is also able to reach n2j in exact two steps given that n1i and n1k are 
connected in G1. This conclusion also holds for the case that a node in G2 links to 
a node in G1 because the paths are reversible in G. In conclusion, any two nodes in 

G are able to reach each other in exact two steps, which means the matrix 0
2

>P . 
As a result, we can compute the unique dominant eigenvector (with 1 as the 

eigenvalue) of M . It is well-known that the power method applied to M  will 
converge to R. 

RRM ⋅=⋅ λ . (7)

Eventually, we can develop an iterative algorithm to solve Equation (1). 

4.2   Weight Matrix Design 

A critical issue in implementing Equation (1) is to design the appropriate weight 
matrix W. Essentially a positive column stochastic matrix is expected. We design a 

symmetric weight matrix, i.e. ⎥
⎦

⎤
⎢
⎣

⎡
=

αβ
βα

W . Although W is necessary to be 

column stochastic and positive in our previous analysis, we use the weight matrix 
before it is normalized to be column stochastic for the ease of illustration and 
explanation. Generally speaking, α  (set to 1 as reference) indicates the weight of 
the internal reinforcement and β  (≤ α ) the external reinforcement. The 

motivation of this design is straightforward. It is reasonable to assume that the 
internal reinforcement is more important than the external reinforcement. But it 
seems unnecessary to further distinguish the weights of different kinds of internal 
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reinforcement (i.e. documents-to-document and sentence-to-sentence 
reinforcement) or external reinforcement (i.e. documents-to-sentence and 
sentence-to-document reinforcement).  

By designing such a symmetric weight matrix, we come up with the following 
interesting and important significance conservation property of the ranking 
solution in Algorithm 1. 

Proposition 1. The significance is re-distributed within the scope of document set 
or sentence set in each iteration. However, the sum of the scores in each set 
remains the same during the ranking iterations. In other words, sentences (or 
documents) compete with one another for a higher significance, but they will not 
jump across the set boundary to grab the significance from documents (or 

sentences). Formally, let ][ )0(
2

)0(
1

)0( RRR = , we have γ== )(
2

)(
1

nn RR  if 

γ== )0(
2

)0(
1 RR . γ  can be any arbitrary positive value. Later in the experiments, 

we set it to 1/2 so as to ensure 1)0( =R . 

Proof. We complete the proof by mathematical induction.  

(1) Given that, γ=)0(
1R  and γ=)0(

2R ; 

(2) Assume γ=)(
1

kR  and γ=)(
1

kR  when n=k, then,  

( ) γγβαβα =⋅+=⋅⋅+⋅⋅=+ )(
212

)(
111

)1(
1

kkk RPRPR , and  

( ) γγβααβ =⋅+=⋅⋅+⋅⋅=+ )(
222

)(
121

)1(
2

kkk RPRPR .  

It means that the conservation of total significance in a document set or a sentence 
set also holds at n=k+1 if it holds at n=k. Therefore, Proposition 1 is true.                    □ 

This proposition is meaningful in the context. Given the initial individual 
significance of a sentence (or a document) and the accumulated total significance 
of all the sentences (or the documents), the ranking Algorithm 1 can be viewed as 
iteratively re-distributing the total significance among the sentences (or the 
documents) by the mutual reinforcement of document and sentence (including 
both external and internal) according to the link structure (i.e. the affinity graph) 
of them. We believe that the documents influence the ranking of sentences, and 
vice versa. In other words, the external reinforcement from the documents 
provides useful hints to guide the sentence internal rank competition, and the other 
way around. However, this does not mean that the total significance of the 
sentences (or the documents) would change during ranking iterations. The re-
distribution of the total significance should not cross over the set boundary of the 
sentences (or the documents). In short, document and sentence are interactive 
during ranking iterations but they still have certain independence. It is 
meaningless for the text with different granularities to compete with each other for 
a higher significance. Significance of a document and a sentence are not 
comparable. 
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Another advantage of using the symmetric weight matrix is that we only need to 
tune and fix one parameter when we design the weight matrix. In this context, we only 
need to determine the proportion of the internal-reinforcement and the external-
reinforcement weight. We will discuss the parameter issues later in Section 5.2.3. 

4.3   Query-Sensitive D-S MR (Qs-MR) 

In the previously introduced D-S MR framework, the reinforcement of document 
and sentence is query-unaware. That is only the content of the text is concerned. 
However, for the tasks like query-oriented summarization, how the reinforcement 
is biased to an external context (such as a user’s query) is often of great interest.  

A general way to incorporate the query information into the general D-S MR 
framework is to impose the influence of a user’s query on each text unit 
(document or sentence) such that it works in the internal reinforcement. This 
somewhat can be viewed as a topic-sensitive PageRank [6] at each level of text 
granularity. The key to make ranking biased towards the query rests with the 
definition of the query-sensitive probability vector p . A simple yet effective 

solution is to define p  as 

( ) ( )
⎩
⎨
⎧ ≠

=
otherwise                  

0|if      |

θ
qtrelqtrel

p ii
i  (8)

where it  can be either a document or a sentence, ( )qtrel i |  denotes the relevance of 

it  to q and can be calculated by cosine similarity, which is widely used in 

information retrieval [1]. θ  is an extremely small real number to avoid zero 
elements in p . p  is further normalized to 1 in order for it to be a probability vector. 

Existing query-oriented summarization approaches basically follow the same 
processes: (1) first calculate the significance of the sentences with reference to the 
given query from different perspectives with/without using some sorts of sentence 
relations; (2) then rank the sentences according to certain criteria and measures; 
(3) finally extract the top-ranked but non-redundant sentences from the original 
documents to produce a summary. Under this extractive framework, undoubtedly 
the two critical processes involved are sentence ranking and sentence selection. 
We summarize the sentence ranking algorithm in Algorithm 2 and present the 
sentence selection strategy in Section 4.5. 

Algorithm 2: RankSentence(D, S, q) 
Input: The document set D, the sentence set S, and the query q. 
Output: The ranking vectors of RD and RS. 
1: Construct the affinity matrices DD, DS, SD and SS; 
2: Transform the four block matrices as mentioned in Section 4.1; 
3: Design the symmetric weight matrix W; 

3: Choose (randomly) the initial non-negative vectors )0(
DR  and )0(

SR , such that 

)0(
DR =1/2 and )0(

SR =1/2; 

4: Return Rank(DD, DS, SD, SS, W, R(0)). 
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4.4   Sentence Selection by Removing Redundancy 

In multi-document summarization, the number of the documents to be 
summarized can be very large. This makes information redundancy problem 
appear to be more serious in multi-document summarization than in single-
document summarization. Redundancy removal becomes an inevitable process. 
Since our focus in this study is the design of effective (sentence) ranking 
algorithm, we apply the following straightforward yet effective sentence selection 
principle. We incrementally add into the summary the highest ranked sentence of 
concern if it doesn’t significantly repeat the information already included in the 
summary until the word limitation of the summary is reached3. 

5   Experiments 

5.1   Experiment Set-Up 

We conduct the experiments on the DUC 2005 and DUC 2006 data sets. Table 1 
shows the basic statistics of the data sets. Each set of documents is accompanied 
with a query description representing a user’s information need. The query usually 
consists of one or more interrogative and/or narrative sentences. Here is a query 
example from the DUC 2005 document set “d331f”.  

<topic> 
<num> d331f </num> 
<title> World Bank criticism and response </title> 
<narrative> 
Who has criticized the World Bank and what criticisms have they made of 
World Bank policies, activities or personnel. What has the Bank done to 
respond to the criticisms? 
</narrative> 
<granularity> specific </granularity> 
</topic>  

According to the task definitions, system-generated summaries are strictly 
limited to 250 words in length. 

Table 1. Basic Statistics of the DUC Data Sets 

 Total Number of 
Document Sets  

Average Number of 
Documents per Set 

Average Number of 
Sentences per Set  

DUC 2005 50 31.86 1002.54 
DUC 2006 50 25 815.22 

 
 

                                                           
3 A sentence is discarded if the cosine similarity of it to any sentence already selected into 

the summary is greater than 0.9. 
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As for the evaluation metric, it is difficult to come up with a universally 
accepted method to measure the quality of machine-generated summaries. In fact, 
summary evaluation methods themselves are still an ongoing research in the 
summarization community. Many literatures have addressed different methods for 
automatic evaluations other than human judges. Among them, ROUGE [12] is 
supposed to produce the most reliable scores in correspondence with human 
evaluations. More important, it offers the advantage of being readily applied to 
compare the performance of different approaches on the same data set. Given the 
fact that judgments by humans are time-consuming and labor-intensive and 
ROUGE has been officially adopted by the DUC for automatic evaluations since 
2005, like the other researchers, we also use it as the evaluation criteria in this 
paper. 

Documents and queries are pre-processed by segmenting sentences and 
splitting words. Stop-words are then removed 4  and the remaining words are 
stemmed with Porter Stemmer [21]. In all the following experiments, both text 
units (i.e. documents or sentences) and queries are represented as the vectors of 
terms. Notice that the term weights are normally measured in summarization 
models by the TF*IDF scheme as in conventional vector space models (VSM). 
However, we argue that it would be more reasonable to use the sentence-level 
inverse sentence frequency (ISF) instead of the document-level IDF when dealing 
with a sentence-level text processing application. This has been verified in our 
early study [26]. We define ( )ww sfNisf log=  where N is the total number of the 
sentences in the document set, and wsf  is the number of the sentences where the 
word w appears. Then, the weight of w is computed as ww isftf ⋅ . θ  in Equation 
(6) is assigned to 20% of the minimum value of the relevance of the documents 
(or the sentences) to the query in a document set. 

5.2   Evaluation on One-Layer Graph-based Model 

In the proposed document sensitive graph model, two new components are 
introduced. They are the relevance of documents (denoted by A in Tables 2), the 
different weigh treatment for the edges combining the different documents 
(denoted by B). The aim of this first set of experiments is to examine the 
individual or combined contributions of these two new components (i.e. A and B). 
Table 2 below shows the results of the average recall scores of ROUGE-1, 
ROUGE-2 and ROUGE-SU4, along with the 95% confidential intervals within the 
square brackets on the DUC 2005 data set. Let Q-LexRank denotes the query 
sensitive LexRank [18].  
 
 

                                                           
4 A list of 199 words is used to filter stop words 
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Table 2. Model selection on DUC 2005 data set 

 ROUGE-1 ROUGE-2 ROUGE-SU4 

Q-LexRank 
0.3702 

[0.3672,0.3772] 
0.0725 

[0.0704,0.0766] 
0.1306 

[0.1274,0.1341] 

A 
0.3736 

[0.3686,0.3784] 
0.0756 

[0.0726,0.0788] 
0.1308 

[0.1278,0.1337] 

B 
0.3751 

[0.3695,0.3804] 
0.0745 

[0.0712,0.0777] 
0.1308 

[0.1277,0.1339] 

A∪B / DsR 0.3785 
[0.3731,0.3840] 

0.0771 
[0.0734,0.0808] 

0.1337 
[0.1303,0.1373] 

 
 
As shown in the Table 2, Q-LexRank can already achieve considerable results 

on the DUC 2005 evaluation. However, it is encouraging to see that there are still 
improvements when the two new components are added. The best results are 
achieved when both of them are considered. DsR improves ROUGE performance 
over Q-LexRank noticeably. It is 2.24% increase in ROUGE-1, 6.34% increase in 
ROUGE-2 and 2.37% increase in ROUGE-SU4. These results demonstrate the 
effectiveness of our extensions to the document-sensitive graph model and the 
corresponding ranking algorithm. 

The aim of the second set of experiments is to examine our proposed model and 
ranking algorithm on the different summarization tasks. We use the same 
configuration as the one in the above section. Tables 3 below show the results for 
the DUC 2006 data sets. 

Table 3.  Model evaluation on DUC 2006 data set 

 ROUGE-1 ROUGE-2 ROUGE-SU4 

Q-LexRank 
0.3899 

[0.3833,0.3964] 
0.0856 

[0.0813,0.0899] 
0.1394 

[0.1353,0.1438] 

DsR 
0.3955 

[0.3897,0.4012] 
0.0899 

[0.0857,0.0943] 
0.1427 

[0.1391,0.1464] 

Table 4. Summary of improvements by DSR on DUC data set 

 ROUGE-1 ROUGE-2 ROUGE-SU4 
DUC 2005 +2.24% +6.34% +2.37% 
DUC 2006 +1.44% +5.02% +2.37% 

5.3   Evaluation on Two-Layer Graph-based Model 

As for the two-layer graph based model, the aim of the following experiments is to 
examine and fix the involved parameters on the DUC 2005 data set. There are three 
parameters in our algorithm. According to [32], we set the damping factor to 0.75 
used in the internal reinforcement. Meanwhile, to avoid to link-by-chance 
phenomena, we only insert edges to the text graph when the similarity between the 
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two nodes (i.e. sentences) is greater than 0.03. We focus on examining the weight 
matrix parameters α  and β  for balancing the internal and external reinforcement. 

The aim of the following set of experiments is to examine the weight matrix. 
For the simplicity of illustration, we use the weight matrix before it is normalized 
to be stochastic for presentation in this section. In our implementation, the 
corresponding normalized version is utilized. Recall that the weight matrix W we 
design is symmetric, where parameters α  and β  reflect the relative importance 

of the internal reinforcement and the external reinforcement. We let α =1 and 
then tune the values of β . In these experiments, the damping factor d is set to 

0.75 and similarity threshold is set to 0.03. Table 5 shows the results of the 
average recall scores of ROUGE-1, ROUGE-2 and ROUGE-SU4 along with their 
95% confidence intervals included within square brackets. 

We can see from Table 5 that the ranking algorithm can produce stable and 
promising results in the range of 0.4-0.7 for β . We also test the cases that the 

external reinforcement is considered more important than the internal  

 
Table 5. Experiments on Weight Matrix 

β  ROUGE-1 ROUGE-2 ROUGE-SU4 

0.1 
0.3805 

[0.3744, 0.3863] 
0.0777 

[0.0739, 0.0815] 
0.1344 

[0.1309, 0.1381] 

0.2 
0.3831 

[0.3772,0.3891] 
0.0786 

[0.0748,0.0825] 
0.1355 

[0.1319,0.1391] 

0.3 
0.3835 

[0.3772, 0.3899] 
0.0797 

[0.0757, 0.0840] 
0.1361 

[0.1322, 0.1400] 

0.4 
0.3840 

[0.3774, 0.3902] 
0.0803 

[0.0762, 0.0846] 
0.1368 

[0.1327, 0.1411] 

0.5 0.3861 
[0.3797, 0.3924] 

0.0814 
[0.0774, 0.0857] 

0.1384 
[0.1344, 0.1426] 

0.6 
0.3868 

[0.3806, 0.3932] 
0.0806 

[0.0767, 0.0848] 
0.1384 

[0.1346, 0.1424] 

0.7 
0.3860 

[0.3797, 0.3925] 
0.0800 

[0.0761, 0.0841] 
0.1378 

[0.1339, 0.1417] 

0.8 
0.3855 

[0.3793, 0.3918] 
0.0797 

[0.0758, 0.0836] 
0.1376 

[0.1339, 0.1416] 

0.9 
0.3851 

[0.3788, 0.3914] 
0.0792 

[0.0753, 0.0832] 
0.1373 

[0.1335, 0.1413] 

1.0 
0.3859 

[0.3796, 0.3923] 
0.0786 

[0.0747, 0.0826] 
0.1372 

[0.1335, 0.1412] 

2.0 
0.3859 

[0.3797, 0.3921] 
0.0793 

[0.0752, 0.0835] 
0.1370 

[0.1332, 0.1411] 

3.0 
0.3817 

[0.3756, 0.3877] 
0.0772 

[0.0735, 0.0807] 
0.1338 

[0.1302, 0.1373] 

4.0 
0.3796 

[0.3736, 0.3858] 
0.0764 

[0.0728, 0.0798] 
0.1329 

[0.1294, 0.1363] 

5.0 
0.3787 

[0.3727, 0.3846] 
0.0758 

[0.0724, 0.0793] 
0.1324 

[0.1290, 0.1359] 
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reinforcement (i.e. 1>β ). Also from the following Table 5, the trend decline of 

the ROUGE results is observed when β  gets bigger and bigger. It suggests 

1<β  is a better choice than 1>β . This observation supports the common 

sense that the internal reinforcement should be more important than the external 
reinforcement in our D-S MR framework. 

We are also interested to know the difference between the symmetric and the 

asymmetric versions of the weight matrix W.  Now let ⎥
⎦

⎤
⎢
⎣

⎡
=

αβ
μα

W denote the 

weight matrix before normalization as before. We set α =1 and 5.0=β  

according to results from the previous experiments (see Table 5) and then re-run 
the algorithm by setting the range of μ  to 0.1 and 1.0 and the step size to 0. 1. 

We fix β  (i.e. the weight of external reinforcement from sentence to document) 

in these experiments because the focus here is to rank the sentences for query-
oriented multi-document summarization. The following Table 8 shows the 
ROUGE results. 

Table 6. Experiments on Weight Matrix 

μ  ROUGE-1 ROUGE-2 ROUGE-SU4 

0.1 
0.3805 

[0.3745, 0.3864] 
0.0777 

[0.0738, 0.0816] 
0.1346 

[0.1310, 0.1383] 

0.2 
0.3831 

[0.3772, 0.3892] 
0.0786 

[0.0749, 0.0825] 
0.1355 

[0.1319, 0.1391] 

0.3 
0.3835 

[0.3772, 0.3899] 
0.0798 

[0.0758, 0.0840] 
0.1361 

[0.1322, 0.1401] 

0.4 
0.3840 

[0.3774, 0.3902] 
0.0803 

[0.0762, 0.0846] 
0.1368 

[0.1327, 0.1411] 

0.5 0.3861 
[0.3797, 0.3924] 

0.0814 
[0.0774, 0.0857] 

0.1384 
[0.1344, 0.1426] 

0.6 
0.3860 

[0.3796, 0.3922] 
0.0806 

[0.0767, 0.0847] 
0.1381 

[0.1342, 0.1425] 

0.7 
0.3859 

[0.3795, 0.3925] 
0.0800 

[0.0760, 0.0841] 
0.1378 

[0.1340, 0.1418] 

0.8 
0.3856 

[0.3795, 0.3920] 
0.0795 

[0.0756, 0.0836] 
0.1376 

[0.1338, 0.1415] 

0.9 
0.3854 

[0.3791, 0.3916] 
0.0791 

[0.0752, 0.0831] 
0.1375 

[0.1337, 0.1414] 

1.0 
0.3859 

[0.3797, 0.3922] 
0.0787 

[0.0748, 0.0826] 
0.1375 

[0.1337, 0.1415] 

 
As shown, the best performance is achieved at μ =0.5 when W is a symmetric 

matrix. The experiments here demonstrate the effectiveness of the symmetric 
weight matrix from the empirical perspective, while the mathematical analysis in 
Section 4.2 provides important properties of the symmetric weight matrix from the 
theoretical perspective. 



Graph Models for Query-Oriented Multi-document Summarization 675
 

In this section, we examine the effectiveness of the proposed Qs-MR based 
ranking algorithm for the task of query-oriented multi-document summarization. 
For comparison purpose, we also implement another two widely-used and well-
performed ranking strategies. One is to rank the sentences according to their 
relevance to the query (denoted by QR). The other one is the PageRank deduced 
iterative ranking algorithm introduced in [18] (denoted by Q-LexRank). In the 
following experiments, we use the parameter setting obtained from the previous 
experiments, i.e. 0.75 for the damping factor d, 0.03 for the similarity threshold 

and the normalized version of ⎥
⎦

⎤
⎢
⎣

⎡
15.0

5.01
 for the weight matrix. Table 7 shows 

the ROUGE evaluation results on DUC 2005 and DUC 2006 data sets, 
respectively. 

Table 7. Comparison of Ranking Strategies 

 ROUGE-1 ROUGE-2 ROUGE-SU4 
Experiments on DUC 2005 data set 

Qs-MR 
0.3861 

[0.3797, 0.3924] 
0.0814 

[0.0774, 0.0857] 
0.1384 

[0.1344, 0.1426] 

Q-LexRank 
0.3702 

[0.3672,0.3772] 
0.0725 

[0.0704,0.0766] 
0.1306 

[0.1274,0.1341] 

QR 
0.3579 

[0.3540, 0.3654] 
0.0664 

[0.0630, 0.0697] 
0.1229 

[0.1196, 0.1261] 
Experiments on DUC 2006 data set 

Qs-MR 
0.4012 

[0.3954, 0.4069] 
0.0914 

[0.0873, 0.0956] 
0.1444 

[0.1409, 0.1479] 

Q-LexRank 
0.3899 

[0.3833,0.3964] 
0.0856 

[0.0813,0.0899] 
0.1394 

[0.1353,0.1438] 

QR 
0.3805 

[0.3751, 0.3860] 
0.0781 

[0.0743, 0.0817] 
0.1326 

[0.1292, 0.1359] 

 
As seen from Table 7, our proposed algorithm outperforms the QR algorithm 

significantly. Meanwhile, it can also outperform the traditional graph-based 
ranking algorithm (i.e. Q-LexRank). We summarize the improvements as follows 
in Table 8. 

Table 8. Summary of improvements by DSR on DUC data set 

 ROUGE-1 ROUGE-2 ROUGE-SU4 
Improvements over QR 

DUC 2005 +7.88% +22.59% +12.61% 
DUC 2006 +5.44% +17.03% +8.90% 

Improvements over Q-LexRank 
DUC 2005 +4.29% +12.28% +5.97% 
DUC 2006 +2.90% +6.78% +3.59% 
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5.4   Comparison with DUC Systems 

We then compare our results with the DUC participating systems. To provide a 
global picture, we present the following representative ROUGE results of (1) the 
worst-scoring human summary (denoted by H), which reflects the margin between 
the machine-generated summaries and the human summaries; (2) the top five and 
worst participating systems according to their ROUGE-2 scores (e.g. S15, S17 
etc.); and (3) the NIST baseline which simply selects the first sentences as 
summaries from the documents until the summary length is achieved. We can then 
easily locate the positions of our system developed based on Qs-MR among them. 
Notice that the ROUGE-1 scores are not officially released by the DUC. 

Table 9. Comparison with DUC Participating Systems in the DUC 2005 

 ROUGE-1 ROUGE-2 ROUGE-SU4 
H - 0.0897 0.1510 

Qs-MR - 0.0814 0.1384 
DsR - 0.0771 0.1337 
S15 - 0.0725 0.1316 
S17 - 0.0717 0.1297 
S10 - 0.0698 0.1253 
S8  0.0696 0.1279 
S4  0.0686 0.1277 

    
NIST Baseline - 0.0403 0.0872 

Table 10. Comparison with DUC Participating Systems in the DUC 2006 

 ROUGE-1 ROUGE-2 ROUGE-SU4 
H - 0.1036 0.1683 

S24 - 0.0956 0.1553 
Qs-MR - 0.0914 0.1444 

S15 - 0.0910 0.1473 
DsR - 0.0899 0.1427 
S12 - 0.0898 0.1476 
S8  0.0895 0.1460 

S23  0.0879 0.1449 
    

NIST Baseline - 0.0495 0.0979 

 
 
As shown in Table 9 and 10, we can conclude that both Qs-MR and DsR 

outperform or are comparable to the top participating systems in both DUC 2005 
and 2006 evaluations.  
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6   Conclusion 

In this paper, we propose two alternative models to integrate the document 
dimension into existing sentence ranking algorithms, namely, the one-layer (i.e. 
sentence layer) document-sensitive model and the two-layer (i.e. document and 
sentence layers) mutual reinforcement model. While the former implicitly 
incorporates the document’s influence in sentence ranking, the latter explicitly 
formulates the mutual reinforcement among sentence and document during 
ranking. When evaluated on the DUC 2005 and 2006 query-oriented multi-
document summarization data sets, promising results are achieved. 
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Visual concept analysis and measurements consist of low level visual analysis
(image representation), image distance measurements (inter-image represen-
tation), semantic level concept modeling (concept representation) and con-
cept distance measurements (inter-concept representation), which are four
aspects of the fundamental visual concept analysis techniques. In the low
level visual analysis, we discuss the visual feature, visual words, and image
representations, based on which, we further discuss the image distance mea-
surement. Beyond the low level analysis is the semantic level analysis, where
we focus on the concept modeling and concept distance measurements. The
methods for semantic level concept modeling can be roughly divided into
generative model and discriminative models. In order to facilitate the follow-
ing discussion on concept distance measurements, we mainly emphasize the
generative models, such as bag-of-words model, 2D hidden markov model, vi-
sual language model. These models have been applied to the large scale real
world Web image annotation and tagging tasks, and all of them represent
the concepts in the form of distributions, so that they can be directly applied
to the state of the art concept distance measurements, i.e. Flickr distance.
These models and measurements are useful in numerous applications, i.e.
image clustering, similarity search, object retrieval, annotation, tagging rec-
ommendation, indexing, etc. Some related applications are given to illustrate
the usage of these measurements in real world problems.

1 Preliminary

In recent years, the success of information retrieval techniques in text analysis
has aroused much interest in applying them to image retrieval tasks. One
of the most successful models in text mining is the “bag of words” model
(BoW), which greatly facilitates the document representation and makes the
large scale indexing practical in text domain.

Much effort has been made to apply this model in visual domain, however
there are several difficulties. The first challenge is the image representation.
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Different from a text document, an image does not consist of the semantic
units, i.e. the “words”, but of low level pixels. To imitate the expression of
text document, a concept named “visual word” is proposed as the semantic
unit in visual domain.

There are quite a few approaches to generate the visual words. Although
they may adopt different techniques to detect and represent the visual words,
the general processes are similar. An image is firstly represented by sets
of local appearance features or shape descriptors [37], [40], [3], [57], which
are extracted either densely, at random, or sparsely according to some lo-
cal salience criteria from images [42]. Then these features and descriptors
are quantized or clustered into a collection of compact vectors, called “visual
words”. Each feature corresponds to one visual word, and all the visual words
form a vocabulary named “codebook”. With each visual word drawn from a
fixed codebook, an image can then be viewed as a “bag-of-visual-words” rep-
resentation. For simplicity, in this book, we also use “BoW” as abbreviation
for the “bag-of-visual-word” model.

The BoW representation allows the leverage of text data mining tech-
niques in visual domain including two typical topic detection techniques, i.e.
the probabilistic Latent Semantic Analysis (pLSA) of Hoffmann [23], and the
Latent Dirichlet Allocation (LDA) of Blei et al [8]. Recently, both methods
have been exploited for visual categorization [10], [15], [17], [50], [53]. How-
ever, a desirable property of these topic detection techniques is that it is
possible to achieve object localization or segmentation by investigating the
topic posteriors of the visual words as shown in [10]. This requires that each
semantic unit should correspond to certain semantic meaning as ordinary
words do in text domain. Although much effort has been made on generating
informative visual words, these visual semantic units still can not correspond
to semantic concepts in nature language. This casts a big question on whether
the direct application of these topic detection techniques on the meaningless
visual words makes any sense, also known as the “semantic gap” problem.

Each visual word may not contain constant semantic meaning, while a
group of related visual words may be more meaningful. This belief leads to
the research on the correlation between visual words in an image. Although
visual words do not contain specific meaning comparing with the ordinary
words, there is one advantage for visual words, that is the informative spatial
correlation. Comparing with words in text document, which have order in one
dimension, visual words have spatial correlation with their neighbors in more
dimensions. These “bag-of-visual-words” models [53], however, assume that
the local appearance descriptors are independent with each other conditioned
on the object class or the latent topic. Although this assumption greatly
simplifies the computations, the ignorance of the spatial co-occurrence of local
features may reduce the performance of the algorithms. Objects with different
appearance but similar statistics of visual words tend to be confused. This
motivates the research on exploring the complex spatial correlation between
visual words into a uniform statistical language model.
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Some related work has considered the co-occurrence of local descriptors,
such as co-occurrence of pairs of visual words[31],“doublets”[53], correlograms
of pixels [51], co-occurrence of multiple (more than two) neighboring descrip-
tors [1], visual phrases [65], two-dimensional multi-resolution hidden Markov
models (2-D MHMM) [33], Markov random fields (MRF) [34], conditional
random fields (CRF) [29], and recently the efficient visual language model
(VLM), which systematically incorporated the neighboring correlation of vi-
sual features into the BoW model. To handle the object scaling and views,
scale invariant visual language model[59] and latent topic visual language
model[60] are proposed.

Based on these efficient models, the relations between concepts can be well
captured, which is known as the concept distance. Further we discuss several
concept distance measurements, such as WordNet, Google distance, Flickr
distance, and their applications to multimedia.

2 Low Level Visual Analysis

Low level visual analysis aims to calculate the visual property of certain
regions in an image by the pixel level operations. It is the basic of the visual
concept analysis, which aims to generate the statistical models from these
region based visual properties.

Image consists of pixels, while each single pixel does not provide much
information about the content of the image. A group of related pixels form
a region in an image. The property of the regions provides some useful in-
formation about the image. Measuring the property of these regions is the
so called low level visual analysis. This section discusses the low level image
analysis, including visual features, visual words, and image representation.

2.1 Visual Features

Visual feature is defined as the global or local operations applied to an image
to generate certain quantitative measurements, which are helpful for solving
the computational tasks. According to the types of operations, the visual
feature can be categorized into global feature and local feature. Global feature
measures the property of the whole image, and local feature measures the
property of local regions in the image.

Some commonly used global features include mean gray, gray histogram,
image moment, texture histogram, etc. Each global feature can also be
deemed as an operator L on the image I, denoted as L(I). For example,
let L1 be the mean operator, and L2 denotes the gray histogram, the mean
gray and gray histogram features of given image I are represented by L1(I)
and L2(I) respectively. These operators can nest, i.e. mean of gray histogram
of image I is represented by (L1 ∗L2)(I). Lots of types of global features can
be derived by nesting different operators.
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If these operators are applied to the regions of the image, the local feature
can be generated. For example, let ri, i = 1, · · · , n be a series of regions in
image I. The operator L on each of the regions L(ri) will be the local fea-
tures. However, the main difference of local feature from global feature does
not lie on the descriptor, but on the localization and segmentation of these
local regions, which are called feature detection. The process specializes the
informative regions, such as lines, edges, angle, and movements etc. Some
most commonly used feature detection methods include Moravec corner de-
tection [45], Harris and Stephens corner detection [22], multi-scale Harris
operator [6], level curve curvature approach[9], Laplacian of Gaussian (LoG)
[35], difference of Gaussians approach (DoG) [43], determinant of the Hessian
(DoH) feature detection[7], hybrid Laplacian and determinant of the Hessian
operator (Hessian-Laplace)[43], Wang and Brady corner detection[21], SU-
SAN corner detector [54], Maximally stable extremum regions (MSER)[41],
Affine-adapted interest point operator[43] etc. The well-known scale-invariant
feature transform (SIFT) feature [38] is based on the DoG detection, with
additional noise depression process and multi-scale keypoint descriptor.

In the following, we divide the visual features in two categories, global
features and local features.

Global features
Mean Gray
The mean gray feature calculates the average gray level of the image or region.
Given an image I, let Ixy be the pixel in the x-th column and y-th row in
the image. The mean gray feature is defined as follows.

LMG(I) =
1

mn

∑
x,y

Ixy

where m × n is the size of the image.
Image Moment
The image moment calculates the average pixel intensity by a particular
weighting.

LMij (I) =
∑

x

∑
y

xiyjIxy

where i, j = 0, 1, · · · and the moment sequence is uniquely determined by the
image I.
Texture Histogram
A commonly used texture histogram is the 8-bin histogram. It divides the 2D
space into 8 phases as shown in Fig. 1, denoted as B1, · · · , , B8. The angle
of each direction phase is set to be 45o. Then it calculates the direction of
texture d at each pixel by Eq. (1)

dxy = arctan
dyxy

dxxy
; x = 1, · · · , m; y = 1, · · · , n (1)
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Fig. 1. 8-bin texture histogram

dxxy = Ixy − Ix+1,y (2)

dyxy = Ixy − Ix,y+1 (3)

If the textural direction lies inside any of the 8 phases, the pixel is put into
the corresponding bin, i.e. if dxy ∈ Bk, then δ(Ixy , Bk) = 1.

δ(Ixy , Bk) =
{

1, dxy ∈ Bk;
0, otherwise.

Finally, the texture histogram H = [h1, · · · , h8] of the image is formed by
calculating the number of pixels in each of the bins.

hk =
∑
xy

δ(Ixy, Bk)

The above texture histogram does not consider the gradient magnitude of
the texture. An improvement is to weight the texture histogram by gradient
magnitude mxy of each pixel ( Eq. (4)). The magnitude is calculated in
Eq.(5).

hk =
∑

Ixy∈Bk

mxy (4)

mxy =
√

(dxxy)2 + (dyxy)2 (5)

Rotation Invariant Texture Histogram[62]
Comparing with mean gray and gray histogram, texture histogram contains
more structural information. Since most objects and informative regions are
lying on edges or corners, this feature is more discriminative for describing
informative regions. However, it is sensitive to rotation. Suppose an object is
rotated a little in the image, the texture histogram may be altered dramati-
cally. For this reason the rotation invariant texture histogram is used.

In order to make the texture histogram resistant to rotation variance, the
average textural direction D of an image is firstly calculated.
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D = arctan

∑
xy dyxy∑
xy dxxy

(6)

dxxy = Ixy − Ix+1,y (7)

dyxy = Ixy − Ix,y+1 (8)

Then the patch is rotated to make the average textural direction vertical
pointing to the top. Starting from the average direction, eight direction phases
are defined as [B1, B2, · · · , B8]. The angle of each direction phase is set to be
45o. Then the texture at each pixel is calculated and quantized into each bin
by the same means as discussed previously.

Local Features
Scale-Invariant Feature Transform (SIFT) [38]
The Scale-Invariant Feature Transform (SIFT) is one of the widely used local
features. It is believed to be invariant to both image scaling and rotation.
There are several steps to generate the SIFT feature.

First step is keypoint detection. The SIFT feature adopts the Difference of
Gaussian (DoG) method to help detect the keypoints. DoG actually calculates
the difference of the Gaussian-blurred images LG at scales kiσ and kjσ. The
difference between the Gaussian-blurred images is defined as the DoG image,
denoted LDoG.

LDoG(x, y, σ) = LG(x, y, kiσ) − LG(x, y, kjσ)

LG(x, y, kσ) = G(x, y, kσ) × I(x, y)

where G(x, y, kσ) is the Gaussian blur at scale kσ. Based on the DoG image,
scale-space extrema detection [35] is used to locate the keypoints. This algo-
rithm defines a local region of nearest 26 neighbors in a discrete scale-space
volume, and finds the points that are local extrema with respect to both
space and scale.

Second step is noisy point filtering. The noisy points are categorized into
two folds. One fold contains points that lie on some low contrast regions.
The other fold contains points which are poorly located but have high edge
responses. To remove the first type of noise, the method filters the scale-space
extremas by contrast, and points in high contrast regions are preserved. To
handle the second type of noise, it filters the extremas by principal curvature.
The points located along edges with large curvature is preserved.

Third step is the orientation assignment. In order to achieve invariance to
rotation, each keypoint is assigned an orientation relative to the neighboring
region. Under each scale kσ, the gradient magnitude mxy and orientation
D(x, y) with 36-bins are calculated at each keypoint. Then within a neigh-
boring region around each keypoint, a histogram of 36-bin orientations is
formed and weighted by gradient magnitude. The highest peak is assigned to
the keypoint as its orientation.
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Final step is the feature descriptor. Each keypoint corresponds to a fea-
ture descriptor, which contains 4 × 4 array of 8-bin histogram around each
keypoint. So the descriptor is of 128 dimensions.

2.2 From Visual Feature to Visual Word

Previously we have introduced several types of well-known visual features.
These visual features capture the low level property of the image, however,
some of the visual features are in high dimensional space, which are hard to
store and calculate. High dimensional features often confront the sparseness
problem and the noisy problem. In this section we discuss the mapping from
high dimensional visual feature to the lower dimensional form which is called
visual word. By the dimension reduction and coding technology, visual words
are easy to store and efficient for indexing and calculation.

Generally there are several methods to map the visual feature into visual
words, such as the principle component analysis, clustering, hash coding, etc.
We will discuss each of the methods in the following.

Mapping by PCA

Principle component analysis (PCA) can be used to map the high dimensional
feature into low dimensional visual words. The basic assumption of using PCA
for the mapping is that high dimensions are correlated to each other. The
intuitive explanation is there are much redundant in the feature dimensions,
and removing certain dimensions will not loss much information. PCA is
able to transform a number of possibly correlated dimensions into a smaller
number of uncorrelated dimensions, which are called principal dimensions.

Given a feature matrix X = [x1, · · · ,xn] of size m×n, the target is to find
a mapping W

X = WΣV�

where the diagonal entries of Σ are known as the singular values of X, and
W = [w1,w2, · · · ,wm] is an m×m unitary matrix. The solve of the problem
is equivalent to finding the singular value decomposition of the data matrix
X.

From another perspective, the mapping by PCA method can be interpreted
by the following iterative optimization process. Firstly, the method will try
to find a principle dimension w1 to maximizing the variances between dimen-
sions.

w1 = arg max
‖w‖=1

var
{
w�X

}
Then the method will try to find the second principle dimension w2 to
maximizing the variance between data subtracting the previous principle
dimensions.

w2 = arg max
‖w‖=1

var
{
w�X̂1

}
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X̂1 = X− w�
1 X

So the k-th principle dimension wk can be calculated as follows.

wk = arg max
‖w‖=1

var
{
w�X̂k−1

}

X̂k−1 = X −
k−1∑
i=1

w�
i X̂i−1

Given the visual feature xi, the final visual word wL(xi) = W�
Lxi, where L

is the dimension of the visual word space, and WL = [w1, · · · ,wL].

Mapping by Clustering

Another method for the feature-word mapping is by clustering. The assump-
tion of using the clustering method is that the features in a cluster has similar
meaning. In other words, the nearby features in the space are redundant and
can be represented by only one feature at the center. However, in some cases,
the assumption does not hold, and the mapping by clustering may lead to
semantic loss, which means the visual word may not be as discriminative as
the visual features. Besides, the number of visual words is hard to choose.
So clustering the visual features in the high dimensional feature space is a
simple but far from an ideal way to generate the visual words.
K-means Clustering
K-means is a commonly used method for clustering the visual features into
visual words, i.e. the well-known bag-of-words model adopts this approach.
It aims to partition n observations (features) into k clusters (visual words
as cluster centers (w1, · · · , wk) where each observation belongs to the cluster
with the nearest visual words. Given a set of visual features (x1, · · · , xn),
where each feature is represented as a d dimensional vector. The algorithm
aims to partition the set into k clusters S = (S1, · · · , Sk) so that the within-
cluster sum of square is minimized.

S∗ = arg min
S

k∑
i=1

n∑
j=1

γji‖xj − wi‖2

where γjk indicates whether the j-th feature belongs to the k-th cluster.
An EM like iterative process is used to solve the clustering. Firstly some

initial values for wi is randomly chosen. In the E (expectation) process, we
fix the visual words wi, and minimize the object function with respect to γji,
which is calculated by Eq. (1).

γjk =
{

1, wk = argminwi ‖xj − wi‖2;
0, otherwise. (9)

In the M (maximization) process, we fix parameter γji, and minimize the
object function with respect to wi, which obtains the updating equation 2.
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wi =

∑
j γjixj∑

j γji
(10)

The E step and M step will perform iteratively until convergence.
Gaussian Mixture Models
Another commonly used method for clustering the visual features is the Gaus-
sian mixture model, the discussion of which will provide deeper insight into
the clustering based mapping methods. Rather than the single Gaussian den-
sity assumption, the Gaussian mixture model assumes that the visual features
are distributed in multiple Gaussian densities, which is written as

p(xi) =
K∑

k=1

φkN (xi|wk, σk).

where p(xi) is the density function of visual feature xi. Each visual word wk

is the mean of a Gaussian distribution N (xi|wk, σk), and σk is the variance
of the k-th Gaussian. φk is the mixture coefficient which determines the
contribution of each Gaussian distribution to the visual feature density. And
the mixture coefficient φk should meet the following conditions:

0 ≤ φk ≤ 1

and
K∑

k=1

φk = 1

If we consider each Gaussian is a state zk of the visual feature, p(zk) =
φk represents the prior that the state zk appears, and p(xi|zk)N (xi|wk, σk)
denotes the posterior of the visual feature given that k-th visual word. The
probability of assigning the visual feature xi to the visual word wk is

p(zk|xi) =
φkN (xi|wk, σk)∑
j φjN (xi|wj , σj)

.

The Gaussian mixture model can also be formulated as a maximization
problem.

w∗ = arg max
w,σ,φ

p(X|φ, w, σ) = arg max
w,σ,φ

N∑
i=1

ln

{
K∑

k=1

φkN (xi|wk, σk)

}

This problem can also be solved by the EM algorithm. We obtain,

wk =
∑N

i=1 p(zk|xi)xi∑N
i=1 p(zk|xi)

(11)



688 L. Wu and X.-S. Hua

σk =
∑N

i=1 p(zk|xi)(xi − wk)(xi − wk)�∑N
i=1 p(zk|xi)

φk =
∑N

i=1 p(zk|xi)
N

Comparing the result of k-means (Eq.(2)) and the result of Gaussian mix-
ture model (Eq.(3)), we find that the k-means clustering is in fact the “hard”
version of the Gaussian mixture model. In k-means, the weight γjk is a bi-
nary indicator, while in Gaussian mixture model, the weight p(zk|xi) is a
continuous probability.

Besides these unsupervised clustering methods, there are also some semi-
supervised clustering methods that may be helpful in generating the visual
words. However, as the label information for the visual features is hard to
obtain, currently most models adopt the unsupervised clustering methods.
Further study on adopting semi-supervised clustering to handle this problem
would be an interesting research topic.

Mapping by Hash Coding

Hash coding method will transform the high dimensional visual feature into
a brief datum or a simple integer to help index the features into an array.
The mapping is generally performed by a well-defined hash function, which
takes a visual feature as input, and outputs an integer naming hash code or
visual word. Hash functions are widely used in indexing and data compressing.
This method is very efficient and suitable for large scale dataset, however,
the hash function may map different visual features into one visual word.
In other words, the hash coding method will lose information during the
mapping procedure. In the following, we will discuss two of the well-known
hash coding methods.
Binary code
The binary code represents each dimension of the visual feature into a binary
bit (0 or 1) based on a threshold. It is usually used in indexing the text
documents. Here we show its usage in representing the visual features.

Given a set of visual feature {fi}n
i=1, where fi is a d-dimensional vector

fi = [fi(1), · · · , fi(d)]. The hashing function is defined in the follows.

hi(k) =
{

1, fi(k) > meanj(fj(k));
0, otherwise.

Here we set the threshold as the mean value of this dimension. If the feature
intensity is above the average level, this dimension is coded 1; otherwise coded
0. Then put all the d bits together to form a integer h = [hi(1) · · ·hi(d)]. In
this way the high dimensional visual feature can be coded into a short integer
for indexing.
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Locality-Sensitive Hashing (LSH)
Locality-Sensitive Hashing (LSH)[20] aims to map the visual features into
some buckets, so that the similar visual features are in the same buckets with
high probability. The LSH method defines a hash function family H and a
similarity function φ. For any two features fi, fj in the feature space F , the
hash function hk ∈ H is chosen according to certain distribution P , which
satisfies the property that

P [hk(fi) = hk(fj)] = φ(fi, fj)

In some cases, we define a threshold on the distance between features to
generate a simple representation of the LSH method. Suppose we define a
threshold R, a family H is called (R, cR, p1, p2)-sensitive if for any features
fi, fj ∈ F

PH[hk(fi) = hk(fj)]
{≥ p1, ‖fi − fj‖ < R;
≤ p2, ‖fi − fj‖ > cR.

where p1 and p2 are two probabilities, p1 > p2 to ensure the LSH family
useful.

One of the easiest ways to construct an LSH family is by bit sampling [25].
Given a visual feature fi, the hash function h(fi) = fi(k), where fi(k) is the
k-th dimension of the visual feature. The random hash function h actually
maps the feature to one of its dimensions. This LSH family has the following
parameters.

p1 = 1 − R/d; p2 = 1 − cR/d

There are also many other approaches to construct the LSH family which are
beyond the discussion of this book. Please refer to [20] for further reading.

Mapping by Multiple Methods

Multiple mapping methods can be combined to generate the visual words.
For example in [56], the authors combines PCA with binary hashing methods
to map a visual feature into a visual word.

2.3 Image Representation

Image representation is to depict an image by its intrinsic characteristics. It
is used to index and search images, discern an image after modification, or
differentiate an image from different ones. There are several types of image
representations, such as pixel level representation, global feature representa-
tion, and local feature representation.

The easiest approach to represent an image is by recording the RGB infor-
mation of its pixels. Given an image I of size n×m, the pixel level represen-
tation is an n×m×3 dimensional vector, recording the RGB of each pixel in
the image. This kind of representation is simple but have several drawbacks.
Firstly, it is a high dimensional vector. If an image of size 640 × 480, the
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representation consists of 921,600 dimensions. The high dimensional repre-
sentation is hard to store as well as calculation. Secondly, this representation
is sensitive to noise. All the backgrounds pixels, which may not be relevant
to the topic of the image, are recorded in the vector. Thirdly, it is sensitive
to illumination changes, scaling, rotation, etc. Regulation of the color, light
and contrast will alter the vector dramatically.

To reduce the dimensionality of the image representation, global feature
representation is proposed. The global feature represents an image by certain
statistical measurements, which can both depress the noise and also reduce
the dimensionality. Some of the common global features are discussed in Sec-
tion 2. The dimension of the representation is determined by the dimension
of the global features. This kind of global representation is compact and
efficient, but they ignore much information of the image. This rough repre-
sentation is not capable to describe the objects, which only exists in some
local regions inside the image.

To improve the discrimination of the representation so that the objects
can be detected in the images, local representation is proposed. Different
from the global representation, the local representation focuses on not only
describing the statistical characteristics of the image but also locating the
meaningful objects inside the image. So the main challenging problem with
local representation is the region localization and segmentation. There are
generally four types of methods to localize the regions.

Uniform patch

One easy way to divide an image into regions is by uniform patches. Given
an image of size n × m, the local patch size is defined as k × l, then the
image can be divided into n

k × m
l equal-sized non-overlapping patches. The

advantage of this scheme is its usage of all the information in the image.
The disadvantage is its sensitivity to object motion, rotation and scaling.
This approach is tested effective and reported performing not worse than the
complex regions of interest (ROI) method [16] in object recognition.

Random windows

In some application, such as the near duplicate image detection, the image
may be cropped in one dimension or scaled. Although it is modified a little,
this modified image should be considered near-duplicate with the original
image. However, as this modification will completely change the patches if
we use the fixed sized patch, these near-duplicates may be taken as different
images. To avoid this from happening, random windows scheme is used. The
random windows scheme will generate a series of subregions with random
location and random size. When the number of random windows is large,
this seemly chaos representation can be robust to such modifications as scal-
ing, cropping, motion, etc. However, the problem with the random windows
scheme is that there should be a large number of windows. It is generally
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impractical for large scale dataset; otherwise, the random windows may bring
great noise, i.e. background and meaningless regions, to represent the image.

Segmentation

To avoid bringing irrelevant regions into the image representation, segmen-
tation is necessary. Image segmentation will segment the image into regions
by the boundaries and edges. The image segmentation provides possibility to
focus only on the meaningful regions, and somewhat prevents the semantic
integrated regions from broken. However, it is a time consuming process, and
current image segmentation does not provide reliable results.

Regions of Interest

The region of interest scheme will find the informative regions which con-
tain interesting features, such as edges, corners, blobs, Ridges, etc. ROI is
widely used in local feature detection. With complex region detectors, such
as Laplacian of Gaussian (LoG) [35], difference of Gaussians approach (DoG)
[43], determinant of the Hessian (DoH) feature detection[7], hybrid Laplacian
and determinant of the Hessian operator (Hessian-Laplace)[43], the ROI rep-
resentation can focus on the object regions, but it may also loss some context
information. This representation is especially suitable for BoW model, but
not suitable for context model, since the spacial relation between the regions
is hard to retrieve.

3 Image Distance Measurement

In the previous section, we discussed low level visual analysis, which extract
information from pixels within an image. Now, we can proceed to calculate
the relationship between images by measuring the image distance.

Given an image I, which is represented as a d-dimensional vector, the image
distance measures the difference between this image vectors. According to the
choice of metric space, the image distance measurement can be divided into
static distance and dynamic distance. Static distance measurement measures
the image distance in a fixed metric space. For example, Euclidian distance
measures the image distance in a unique euclidian space, Mahalanobis dis-
tance project the feature by a Mahalanobis matrix and then measure the
distance in the fixed space. Dynamic distance measurement measures the im-
age distance in different metric spaces. The method will adaptively choose one
of the subspaces to define the distance metric. In some cases, the algorithm
may also measure the image distances in multiple subspaces iteratively.

3.1 Static Distance Measurement

One of the simplest way to calculate the image distance is to calculate the
L2 distance between image vectors, which is also called Euclidian distance.
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Let vi and vj be the vectors for the i, j-th images, the Euclidian distance
between the two images is:

DL2 =
√
‖vi − vj‖2

Sometimes, the Euclidian distance does not truly reflect the semantic distance
between two images. The distance should be measured in a warped space so
that the semantically similar images are close to each other and irrelevant
images are alienated. To meet this demand, Mahalanobis distance is proposed.
The basic idea of Mahalanobis distance is to take into account the correlation
of the data set and is scale-invariant, i.e. independent on the scale of the
measurement.

DM (vi, vj) =
√

(vi − vj)�M(vi − vj)

where M is the covariance matrix of the dataset.
Due to the semantic gap, the covariance matrix of the low level features

in the Mahalanobis distance does not reflect the relation between semantic
objects. This kind of Mahalanobis distance only measures the distance of the
low level features and the sematic relations are not well measured. To pro-
vide more meaningful distance measure for semantic images, researchers work
hard on learning a Mahalanobis distance with side information to bridge the
semantic gap. The main idea is to incorporate the label information into the
distance measurement. This label information indicates which pair of images
contain similar objects and are considered as positive constraint, and which
pair of images are irrelevant and are considered as negative constraints. Then
the method try to learn such a covariance matrix M , so that the distance
between images with positive constraints are minimized and the distance
between images with negative constraints are maximized.

This work is also called distance metric learning (DML). Some of the
successful DML methods include PDGM[63], NCA[26], RCA[5], DCA[24],
LMNN[58], ITML[13], DistBoost[55], etc. Please refer to the respective pa-
pers for further readings.

3.2 Dynamic Distance Measurement

The previously discussed image distance measurements only measure the dis-
tances in fixed warped space, i.e. given the dataset and constraints, the co-
variant matrix M is fixed for any pair of images. In certain cases we need
to measure distance between two images in multiple spaces or adaptively
choose a space for distance measurement with respect to the property of
the test images. This leads to the research on the dynamic image similarity
measurement.

One of the well known method for dynamic distance measurement is the
query oriented subspace shifting algorithm (QOSS)[62]. The basic assump-
tion of the QOSS algorithm is that if two images are near-duplicate to each
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other they should be similar in multiple subspaces; if two images are not
near-duplicate they are only similar in certain subspaces. So measuring the
distance in multiple subspaces is more robust than distance measurement
in only one subspace. The challenging problem with dynamic distance mea-
surement is how to choose the subspaces. Apparently, we can not try every
subspace, since the number of subspaces may be infinite.

QOSS firstly measures the distance in the subspace where data are mostly
separated. Then it removes the irrelevant data by a threshold on the distance
and keep the related data in the loop. In the next iteration, it measures the
distance in the subspace where the related data are mostly separated. This
process goes on until convergence. It uses the maximum distance between
two images in all iterations to measure their distance. This dynamic distance
measurement can detach the irrelevant images from each other, and keep low
distance between highly relevant images.

This scheme is presented in details as follows.

Step 1: Calculate the closeness threshold ε in the subspace κ by the same
means in rough filtering;

Step 2: Select the query surrounding samples and update the Qs;

Qs = {Ij |‖PQ − PIj‖κ < ε} (12)

where P is the projection matrix.
Step 3: Update the projection matrix P based on the query surrounding

collection;
Pi ← eigenvector(cov(Qs), i) (13)

P = [P0, P1, · · · , Pd] (14)

where eigenvector(cov(Qs), i) is the ith sorted eigenvector of the covariance
matrix for query surrounding collection, and d is the dimension of the low
dimensional space.

Step 4: Repeat Step 1 and 3, until the query surrounding collection Qs

does not change. So far, we believe all the non-duplicates surrounding the
query image are filtered, and the algorithm finishes.

4 Semantic Level Concept Modeling

In the previous sections, we have discussed low level visual analysis and image
distance measurement. Low level visual analysis only deal with the represen-
tation of an image, and image distance measures the relation between images.
However, in many tasks, we not only need image representation and their pair-
wise relationship, but also have to deal with the representation of a group of
semantically related images. Here “semantically related images” denotes that
these images contains same objects or related to the same topic. We call the
representation of these semantically related images as “concept modeling”,
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which is quite useful in object detection, classification, annotation, tagging,
etc. Different from the low level analysis which analyze the property within
one image, the concept modeling analyzes the statistical property of visual
words over a collection of images. In the following, we will start with the
concept definition, and discuss several state of the art generative modeling
methods.

Here we only focus on three of the generative modeling methods, because
they are related to the following section on concept distance measurement.
There are also many other modeling methods, including correlative model
[49], transfer model [30], Max-Margin Hough Transform [39], Multiple In-
stance model [4], discriminative model [14], kernel methods [64], Hierarchical
Representations [47] among others. These models are out of the scope of this
section, interested readers may refer to the references for further reading.

4.1 Concept Definition

According to contemporary philosophy, a concept is a cognitive unit of mean-
ing, which is divided into objects and abstract objects. Generally, an object
is an entity that could be perceived by human sensors, like sense of sight
or tactile organ. Abstract objects are abstract ideas or mental symbols also
named as the “unit of knowledge”. Here the concept only refers to the objects,
such as concrete objects, events, scenes, or motions. Since these concepts are
frequently appeared and can be recorded by photos. Only the recordable
concepts can be modeled and measured by our technology.

Each concept is related to some of the other concepts. For example, when
talking about the concept “airplane”, people always think about the “air-
port”, or when we think of a “dog” and often can imagine the “head” and
the “legs”. This conceptual relationship enbodies the distance between con-
cepts in the semantic space, where semantically related concepts are closer to
each other, i.e. “airplane” and “airport” is closer than “airplane” and “dog”.

Concept is a semantic element in human cognition, and the distance be-
tween concepts is also a measurement in human cognition. It is difficult to
calculate it directly. One of the possible means to measure this distance is to
simulate the human cognition. The cognition is formed based on multiple in-
formation sources, such as from reading text documents, photos, videos, and
verbal communications. The basic idea of measuring the conceptual distance
is by data mining from a large pool of these multimedia knowledges.

4.2 Bag of Words Model (BoW)

A concept can be represented in many forms. Here we refer to the represen-
tation of a concept from its visual characteristics. Specifically, we focus on
two of well-known models, the bag of words model (BoW) and the visual
language model (VLM).

The bag of words model is a simple assumption firstly used on nature lan-
guage processing and information retrieval. In this model, each document is
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considered as a “bag”. The words in the document are considered indepen-
dent to each other, and thus the order of words is ignored. The model assumes
that a document (text) can be well represented by a collection of words, ig-
noring their orders and grammar. This simple assumption makes the model
easy to be adopted into both the Näıve Bayes framework and the Hierarchical
Bayes framework. Since the order of words is ignored, this assumption leads
to a simple conditional independence Bayes model.

Näıve Bayes framework

A general classification task can be performed by maximizing the likelihood
function as follows.

p(C|I) =
p(I|C)p(C)

P (I)
∝

∏
i

p(wi|C)p(C)

where wi is the i-th word in the document I, and C is the concept (category).
The model calculates the likelihood for each of the concepts and choose the
concept that maximizes the likelihood function as the optimal concept. This
generative model is very efficient in dealing with the large scale text data.

Hierarchical Bayes framework

To better analysis and detect multiple unknown objects in one image, i.e. a
scene containing people, building, cars, dogs, the hierarchical Bayes model can
be used. Here we introduce two commonly used hierarchical Bayes models,
probabilistic latent semantic analysis (pLSA) and latent dirichlet analysis
(LDA) model.

Fig. 2. The graphical model for pLSA

The pLSA model[23] was first introduced in 1999 by Jan Puzicha and
Thomas Hofmann. pLSA is one of the well known topic models, which is
commonly used in the information retrieval and object recognition. It as-
sumes there are fixed number of latent topics in each document. Both the
distribution of words and the distribution of documents are conditioned on
these latent topics, as shown in Figure 2. The model takes each word in the
document as a sample from a mixture model, whose parameters are multi-
nomial variables, which is also deemed as the representation of the “topics”.
Given the observation of co-occurrence of words and documents, the pLSA
models the probability of each co-occurrence as a mixture of conditionally
independent multinomial distributions:
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p(w, I) =
∑

z

p(w|z)p(I|z)p(z) = p(I)
∑

z

p(w|z)p(z|I)

where z represents the latent topic. The first formulation is the symmetric
formulation, which assumes given the latent topic z, the words and documents
are independent, and word w and document I are both conditioned on the
latent topic z. The second formulation is the asymmetric formulation, where
the topic z is dependent on the document, and the words are generated
according to p(w|z). Thus each word generates from one topic, and different
words in a document can generate from different topics from a topic collection
of fixed size. In this way, each document is represented as a list of mixing
proportions of a fixed set of latent topics.

This form has reduced the description of a document, however there are
several drawbacks with pLSA model. Firstly, there is no generative proba-
bilistic model for the mixing proportions, i.e. it is unknown how to assign
mixing proportions or topic distributions to document outside the training
set. Secondly, the number of parameters grows linearly with the size of the
corpus as well as the number of documents, which leads to a serious problem
of overfitting.

To calculate the parameters p(w|z) and p(z|I) for this model, an EM al-
gorithm is used, which iteratively update each parameter to maximizing the
likelihood.

Fig. 3. The graphical model for LDA

LDA model is a three layer hierarchical Bayes model, which is proposed
to handle the overfitting problem by adding a Dirichlet prior on the per-
document topic distribution. In LDA, each document is also assumed a mix-
ture of multiple latent topics, which is similar to the pLSA model except that
LDA further assumes a Dirichlet prior on the topic distribution, the graph-
ical model of which is shown in Figure 3, where α is the parameter of the
uniform Dirichlet prior on the per-document topic distributions, and β is the
parameter of the uniform Dirichlet prior on the per-topic word distribution.
θi is the topic distribution for document i. zij is the topic for the j-th word
in document i. The only observations in the model are the words wij .

BoW model for object recognition

Later, Fei-Fei et al. applied the BoW model and related hierarchical Bayes
models to object recognition, where the latent topics are considered as the
semantic objects in the image, the words correspond to the visual words
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in the documents, and the documents are the images. This model achieves
success on the Caltech dataset, but it is also reported that pLSA has severe
overfitting problems [8]. The number of parameters grows linearly with the
number of documents. In addition, although pLSA is a generative model of
the documents in the collection it is estimated on, it is not a generative model
of new documents.

4.3 2D Hidden Markov Model

In the hidden markov model (HMM) (Fig. 4), There are states and observa-
tions. The states can transfer between each other with certain probability but
these states are invisible (hidden), and only the observations are visible. Each
state has a probability distribution over the possible observations. Thus given
a sequence of observations, the possible sequence of states can be estimated.
Jia et al. [32] firstly adopted the 2D HMM model for image segmentation
and region classification. With some modification, this approach can also be
used to represent a concept.

Fig. 4. The illustration of Hidden Markov Model

To model a concept, it firstly divides the image into non-overlapping
blocks, each of which is further represented by the Wavelet feature xij , where
i, j indicate the vertical and horizontal location of the block. It defines xi′j′

is previous of xij , if i′ ≤ i, j′ < j, which is also denoted (i′, j′) < (i, j). This
model takes these feature vectors as observations, and assume that there are
M possible states for each block, denoted as sij .

There are three assumptions to simplify the calculation of the 2D HMM
model.

Firstly, it assumes that the state for each block is conditioned on the states
and features of the immediate previous blocks.

P (sij |I) = P (sij |si′,j′ , ui′,j′ , (i′, j′) < (i, j)) = amnl, (15)
m = si−1,j , n = si,j−1, l = sij (16)

where I is an given image, and P represents a probability of an event. amnl is
the transitional probability from immediate previous state si−1,j and si,j−1
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to current state sij . The class for each block cij is uniquely determined once
the states are known. In other words, the state of each block indicates the
concept it belongs to.

Secondly, it assumes that given the state of a block sij , the feature vector
xij is independent to those of other blocks.

P (xij , (i, j) ∈ N|sij , (i, j) ∈ N ) =
∏

(i,j)∈N
P (xij |sij)

where N = {(i, j), 0 ≤ i < nx, 0 ≤ j < ny} denotes the collection of all blocks
in an image.

Thirdly, it assumes that once the state of a patch is known sij , the feature
vector follows the Gaussian distribution.

P (xij |sij) =
1√

(2π)n‖∑sij
‖
e
− 1

2 (xij−usij
)�

∑−1
sij

(xij−usij
)

where
∑

sij
is the covariance matrix and usij is the mean vector.

According to these assumptions, the calculation of P (sij , xij , (i, j) ∈ N )
can be calculated as:

P (sijxij , (i, j) ∈ N ) = P (sij , (i, j) ∈ N )
∏

(i,j)∈N
P (xij |sij) (17)

The probability of a state sequence of the image can be estimated by:

P (sij , (i, j) ∈ ) = P (T0)P (T1|T0)P (T2|T1) · · ·P (Tnx+ny−2|Tnx+ny−3)

where Ti denotes the sequence of states for blocks lying on i-th diagonal as
shown in Fig. 5.

Fig. 5. Sequence of blocks lying on diagonals.

Finally, concepts can be represented as a joint distribution of states (con-
cepts) and their local features in the image in Eq.(17).
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4.4 Visual Language Model (VLM)

The visual language model [61] adopts the uniformly distributed equal-sized
patches to represent an image (Fig. 6). This representation will facilitate cal-
culate of conditional probability in VLM. The model assumes the patches
are generated from top to bottom, and from left to right. Each patch is re-
lated to its previous patches. In this assumption, the spatial dependence
between image patches are modeled in the form of patches’ conditional
probability.

The training process will model the following conditional probability

p(wij |w00w01 · · ·wmn) = p(wij |w00w01 · · ·wi,j−1) (18)

The calculation of this conditional probability is still not efficient enough.
Inspired by 2D HMM [46] used in face recognition, the model assumes that
each patch depends only on its immediate vertical and horizontal neighbors.
Although there may be some statistical dependency on visual words with
larger interval, the description of this dependency will make the model too
complex to implement. This model ignores this kind of dependency, just as
the language model does for text classification.

According to how much dependency information is considered in the
model, there are three kinds of visual language models, i.e. unigram, bigram
and trigram. In unigram model, the visual words in an image are regarded
independent with each other. In bigram model, the dependency between two
neighboring words is considered. And in trigram model a word is assumed to
depend on both the word on the left and the word above it.

These three models are expressed in Eq. (19)-(21) respectively.

Fig. 6. Process of trigram language model training



700 L. Wu and X.-S. Hua

p(wij |w00w01 · · ·wmn) = p(wij) (19)

p(wij |w00w01 · · ·wmn) = p(wij |wi−1,j) (20)

p(wij |w00w01 · · ·wmn) = p(wij |wi−1,jwi,j−1) (21)

Where wij represents the visual word at Row i, Column j in the word matrix.
In the following, we will discuss in details about the training process for the
three models.

Unigram Model
For each concept, a unigram model characterizes the distribution of individual
visual words under the concept. In the training process, we calculate p(wi|Ck)
using

p(wi|Ck) =
FN (wi|Ck)∑

w∈V FN (w|Ck)
, k = 1, 2, . . . , K (22)

To avoid zero probability which would cause the classifier to fail, we assign a
small prior probability to each unseen word in the concept. Accordingly, the
amount of this prior probability should be discounted from the probabilities
of the words appearing in the concept, so that the sum of probabilities is 1.
The smoothed words distribution is represented by Eq. (23).

p(wi|Ck) =

{
FN (wi|Ck)×(1− 1

N )∑
w∈V FN (w|Ck) , FN (wi|Ck) > 0;

1
NR , otherwise.

(23)

where N is the total number of words in the training set and R is the number
of words that do not appear in class Ck. This probabilistic model tells how
likely a word appears in an image belonging to that concept.

Bigram Model

Unlike the unigram model, a bigram model assumes that each visual word
is conditionally dependent on its left neighbor. So the training process is to
learn the conditional probability by Eq. (24).

p(wij |wi,j−1, Ck) =
FN (wi,j−1, wij |Ck)

FN (wi,j−1|Ck)
(24)

wi,j−1 is the left neighbor of wi,j in the visual words matrix. However, the
bigrams are usually quite sparse in the probability space. The maximum like-
lihood estimation is usually biased higher for observed samples and biased
lower for unobserved samples. Thus smoothing technique is needed to provide
better estimation of the infrequent or unseen bigrams. Instead of just assign-
ing a small constant prior probability, we adopt more accurate smoothing
method [12], which combines back-off and discounting [27].
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p(wij |wi,j−1, Ck) ={
β(wi,j−1) × p(wij |Ck), FN (wi,j−1wij |Ck) = 0;
p̂(wij |wi,j−1, Ck), otherwise.

(25)

β(wi,j−1) =
1 −∑

FN (wi,j−1w)>0 p̂(w|wi,j−1, Ck)

1 −∑
FN (wi,j−1w)>0 p(w|Ck)

(26)

p̂(wij |wi,j−1, Ck) = dr × FN (wi,j−1wij |Ck)
FN (wi,j−1|Ck)

(27)

Back-off method is represented in Eq. (25) (26), and discounting is repre-
sented in Eq. (27). If a bigram does not appear in the concept, back-off
method is applied to calculate the bigram model from the unigram model.
β(wi,j−1) is called back-off factor. If bigram wi,j−1wij ∈ V appears in con-
cept Ck, the discounting method is used to depress the estimation of its
conditional probability. dr is called the discounting coefficient.

dr =
r − b

r
(28)

b =
n1

n1 + 2n2
(29)

r is the number of times a bigram appears; and ni is the number of visual
words that appear i times in the concept.

Trigram Model

The above two modeling processes are almost the same as the statistical
language models used in text classification, However, the trigram model for
visual language is different from that for natural language processing. In text
analysis, trigram is a sequence of three words < wi−2, wi−1, wi >, while in
visual document, which is a two dimensional matrix, we assume each word is
conditionally dependent on its left neighbor and the word above it. So these
three words form a trigram < wi−1,j , wi,j−1, wij >. The training process of a
trigram model is illustrated in the following equation.

p(wij |wi−1,j , wi,j−1, Ck) =
FN (wi−1,jwi,j−1wij |Ck)

FN (wi−1,jwi,j−1|Ck)
(30)

For the same reason with bigram model, discounting and back-off methods
are also introduced for trigram model.

p(wij |wi−1,jwi,j−1, Ck)=
{

β(wi−1,jwi,j−1)p(wij |wi,j−1, Ck), FN (w3
ij |Ck)=0;

p̂(wij |wi−1,jwi,j−1, Ck), otherwise.

(31)
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β(wi−1,jwi,j−1) =
1 −∑

FN (wi−1,jwi,j−1w)>0 p̂(w|wi−1,jwi,j−1, Ck)

1 −∑
FN (wi−1,jwi,j−1w)>0 p̂(w|wi,j−1 , Ck)

(32)

p̂(wij |wi−1,jwi,j−1, Ck) = dr × FN (wi−1,jwi,j−1wij |Ck)
FN (wi−1,jwi,j−1|Ck)

(33)

w3
ij represents the trigram < wi−1,jwi,j−1wij >. The spatial correlation be-

tween visual words is captured by the conditional probabilities of trigrams.
In summary, the training procedure is as follows:

a. Divide each training image into patches;
b. Generate a hash code for each patch to form a visual document;
c. Build visual language models for each concept by calculating the condi-

tional distribution of unigram, bigram and trigram.

The process of building trigram visual language model is illustrated in Fig.
6. It is worth noting that not all visual words are useful for classification.
Therefore, we introduce a feature selection process during visual language
training. Words are selected according to their term frequency (TF) and
inverse document frequency (IDF).

tfk
i =

ni∑
j nj

(34)

idfi = log
|V |

|d : wi ∈ d| (35)

where tfk
i measures the frequency a word wi appears in images belonging

to concept Ck and idfi reflects the frequency of word wi in the dataset.
The tf − idf weight tfk

i × idfi evaluates how important the word wi is to
concept Ck. For each concept, we select the words with tf − idf weight bigger
than a threshold. And the words from different concepts are combined. This
approach can depress the influence of random background and reduce the
size of vocabulary.

4.5 Scale Invarient Visual Language Model (m-VLM)

The VLM has efficiently captured the spatial dependence information, how-
ever it has some drawbacks. One of the biggest problems of the previous visual
language model is the object scaling problem. The same object or scene with
different scales may generate completely different visual matrixes. To make
the model more resistant to scale variation of objects, multi-layer extension
is introduced to the visual language model, denoted as scale invarient visual
language model (m-VLM)[59]. Instead of extracting image patches of a single
size, the model extract different sizes of patches from an image, which could
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(a) The object scaling prob-
lem.

(b) Image represen-
tation.

Fig. 7. Scaling problem and Multi-layer image representation

catch object characters in different scales. The visual language model built
on these patches models the spatial co-occurrence relationship between them.

The basic idea of scale invariant modeling method is to train the language
model based on various scales of patches; so that given any image, the words
conditional distribution of the object region can be best matched. For a multi-
layer patch representation, the patches on the same layer are of the same size,
while those on a higher layer are twice of the size. For example, we use 8× 8
for the first layer, 16 × 16 for the next, and so on. The first layer is called
the base layer. Other layers are called extended layers as shown in Fig. 7. All
these patches are transformed into the visual words in the same way as the
monolayer language model training process.

For multi-layer visual language modeling method, three assumptions are
made corresponding to multi-layer unigram model (m-unigram), multi-layer
bigram model (m-bigram) and multi-layer trigram model (m-trigram)
respectively.

Assumption 1. In m-unigram model, visual words on different layers are
independent with each other.

Assumption 2. In m-bigram model, each visual word only depends on its
left neighbor in the same layer.

Assumption 3. In the m-trigram model, each visual word depends on its
left neighbor and the word above it in the same layer.

The training processes of these three models are formulated as the following
three equations correspondingly. For Multi-layer unigram model,

p(w1|Ck) =

{ ∑m−1
l=0 FN (w1|Ll,Ck)×(1− 1

R )∑
w∈V

∑m−1
l=0 FN (w|Ll,Ck)

, FN (w1|Ck) > 0;
1

NR , otherwise.
(36)

For Multi-layer bigram model,

p(w2|w1, Ck) =
{

β(w1) × p(w1|Ck), FN (w1w2|Ck) > 0;
p̂(w2|w1, Ck), otherwise.

(37)

p̂(w2|w1, Ck) = dr ×
∑m−1

l=0 FN (w1w2|Ll, Ck)∑m−1
l=0 FN (w1|Ll, Ck)

(38)
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For Multi-layer trigram model,

p(w3|w1w2, Ck) =
{

β(w1w2)p(w2|w1, Ck), FN (w1w2w3|Ck) > 0;
p̂(w3|w1w2, Ck), otherwise.

(39)

p̂(w3|w1w2, Ck) = dr ×
∑m−1

l=0 FN (w1w2w3|Ll, Ck)∑m−1
l=0 FN (w1w2|Ll, Ck)

(40)

w1, w2, w3 represent any three words in the vocabulary. Ll is the lth layer.
β(·) and dr are the same definition as in monolayer VLM. m is the number
of layers. For each document D in concept C, we divide it into m layers, and
count n-grams on all layers. The parameter m is determined experimentally.

The multi-layer visual language modeling method has brought many fa-
vorable properties to VLM. Since the patches are of various sizes, the object
scaling is no longer a problem with VLM. Moreover, m-VLM does not increase
the computational time in classification phase. Since all additional computa-
tional cost are introduced in the training process, the classification process
takes the same time as the monolayer VLM. During training, the models
are built under various scales, however, we only need to extract mono-scale
patches from a test image. So the classification process is exactly the same
as the monolayer VLM classifier.

5 Conceptual Distance Measurement

In the previous section, we discussed the semantic level concept modeling
methods. These modeling methods only can handle the representation of each
single concept, however, in certain cases the relationship between concepts
are also quite useful. In this section, we will further discuss a general concept
relationship measurement, named conceptual distance measurement.

Here conceptual distance should measure four kinds of common concep-
tual correlations, synonym, similarity, meronymy and concurrence. Synonym
denotes the same object with different names, like football and soccer. Sim-
ilarity denotes that two concepts are visually similar, i.e. horse and donkey.
Meronymy represents one concept is part of another, i.e. wheel and car. Con-
currence denotes situations when two concepts appear simultaneously in daily
life.

As far as we know, there are currently four kinds of conceptual distance
measurements. Conceptual distance generation based on human labor, i.e.
WordNet distance; conceptual distance based on Web textual information,
i.e. Google distance; conceptual distance based on Web tag information, i.e.
tag concurrence distance; and concept distance based on visual information,
i.e. Flickr distance.

5.1 WordNet Distance

The first kind of conceptual distance is generated by human experts, such as
the WordNet Distance [44], which was developed by the Cognitive Science
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Laboratory of Princeton University. It is widely used to exploit semantic re-
lationship of common concepts. Since WordNet is defined by human experts,
the semantic distance based on WordNet is very close to human perception.
However, it can only support a relatively limited number of concepts (around
150,000) comparing to the overall concepts on the Web. Also it is very expen-
sive to extend the corpus in WordNet. For example, there are 109 different
online tags on the photo sharing website like Flickr, and this number is still
increasing every day. Since it is expensive to update the conceptual relations
in database manually, WordNet can hardly catch up with the proliferation of
concepts on the web.

5.2 Google Distance

The second kind conceptual distance is generated by Web textual informa-
tion, such as Normalized Google Distance (NGD)[11]. NGD was proposed by
Cilibrasi and Vitányi to measure the conceptual distance by the Google page
counts when querying both concepts to the Google search engine. It actually
reflects how often two concepts will co-occur in same web-pages. This dis-
tance costs little human effort and covers almost any concept on the Web.

NGD(x, y) =
max(log f(x), log f(y)) − log f(x, y)

log N − min(log f(x), log f(y))
(41)

where NGD(x, y) represents the Normalized Google distance between con-
cepts x and y. f(x), f(y), and f(x, y) denotes the number of pages containing
x, y, both x and y. N is the total number of web pages indexed by Google.
However, NGD assumes the conceptual relationship only depends on the co-
occurrence of these concepts among online textual documents. This assump-
tion is simple, and cannot cover the cases of meronymy and concurrence, as
shown in Table 1.

5.3 Tag Concurrence Distance

The Tag Concurrence Distance (TCD)[36] directly applies the idea of Google
distance to the tags. It treats the tag list of each image as a document, and
calculates the TCD distance the same way as Google distance. This is a
very intuitive way to measure the conceptual distance based on tags. The
inverse of the mutual information between two tags can be further calculated
as a distance of two different tags according to their association with the
images. This distance reflects the frequency of two tags occurring in the same
image. However, there is the sparseness problem that many correlations are
missing due to the incompleteness of tags. In Flickr, there are less than 10
tags per image. It is far less than the number of words in a typical web
document. Therefore, many semantic relations may not be covered by this
Tag Concurrent Distance.
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5.4 Flickr Distance

The fourth kind distance measurement is generated from the visual corre-
lation, such as the proposed Flickr Distance (FD) [60], which generates the
latent topic visual language model (LTVLM) to represent each tag by ana-
lyzing the visual words correlation to its related images.

To simulate the concurrence of concepts in human cognition, the calcula-
tion of conceptual correlation should be performed in daily life environment.
To achieve this, FD try to mine the statistical semantic relations between
concepts from a large pool of the daily life photos. To obtain a less biased
estimation, the image pool should be very large and the source of the im-
ages should be independent. Luckily, the on-line photo sharing website Flickr
meets both conditions. There are more than 109 photos on Flickr, and these
photos are uploaded by independent users. Besides, each photo is manually
tagged by the users, which provides well connections between the photos and
the semantic concepts (tags), which makes Flickr images an ideal dataset
for learning the visual conceptual relations. That is the reason for the name
“Flickr distance”.

The basic idea of Flickr distance is to calculate the concept distance by
the divergence between the LTVLMs of the concepts. Each concept corre-
sponds to a visual language model, which consists of the trigram conditional
distributions under different latent topics. Kullback-Leibler divergence (KL
divergence) is a common measurement of the difference between two proba-
bility distributions. However, as it does not meet the constraint of triangular
inequality, it is in fact not a strict metric. Based on KL divergence, a more
strict metric Jensen-Shannon (JS) divergence is defined. This divergence is
symmetric and its square root is demonstrated a strict metric. The visual cor-
relation is defined as the inverse of average square root of the JS divergence
between the latent topic VLMs.

Let P
z

C1
i

and P
z

C2
j

be the trigram distributions under latent topic zC1
i and

zC2
j respectively. zC1

i represents the ith latent topic of concept C1. The K-L
divergence between them is defined to be

DKL(P
z

C1
i

||P
z

C2
j

) =
∑
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z

C1
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(l) log
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z
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(l)

P
z

C2
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(l)
(42)

where P
z

C1
i

(l),P
z

C2
j

(l) correspond to the probability density of the lth trigram
in these two distributions respectively. In the view of information theory, the
KL divergency is in fact a measurement of the mutual entropy between the
two visual language models.
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)

(43)



Elements of Visual Concept Analysis 707

where H(P
z

C1
i

, P
z

C2
j

) is the cross entropy of the two distributions,

and H(P
z

C1
i

) is the entropy of PzC1
i

. According to the Gibbs’ inequality,
DKL(P

z
C1
i

||P
z

C2
j

) ≥ 0. It is zero if and only if P
z

C1
i

equals P
z

C2
j

.
JS divergence is defined based on KL divergence to measure the distance

metric between these visual language models (Eq. (44)).

DJS(PzC1
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||PzC2
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DKL(P
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2
DKL(P
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||M) (44)
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+ P
z

C2
j

) (45)

where M is the average of P
z

C1
i

and P
z

C2
j

. It is demonstrated that the square
root of the Jensen-Shannon divergence is a metric. Thus the Flickr distance
between two concepts C1 and C2 is calculated as the average square root of
the JS divergence between the latent topic VLM of concept C1 and that of
concept C2.

DFlickr(C1, C2) =

√√√√ K∑
i=1

K∑
j=1

1
K2

DJS(P
z

C1
i

||P
z

C2
j

) (46)

More generally, the conditional distribution of topics within each concept can
be used to weight the distance. This topic distribution is generated by the
LTVLM.

DFlickr(C1, C2) =√√√√ K∑
i=1

K∑
j=1

P (zC1
i |C1)P (zC2

j |C2)DJS(P
z

C1
i

||P
z

C2
j

)
(47)

Thus the visual correlation (VC) between two concepts C1 and C2 is inverse
to the Flickr distance as Eq.(48), where δ is a very small constant.

V C(C1, C2) =
1

δ +
√

DFlickr(C1, C2)
(48)

6 Applications

Previously, we have discussed the low level visual analysis (image represen-
tation), image distance measurement (inter-image representation), seman-
tic level concept modeling (concept representation), and conceptual distance
measurement (inter-concept representation). In this section, we will discuss
the utility of these models and measurements in real world applications.
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Table 1. Illustration of NGD, TCD and FD. The first column shows the conceptual
relationship. The second column listed some conceptual pairs. The third to the fifth
columns are the conceptual distance under different measurements. Improper scores
are marked in bold.

Relationship Conceptual pair NGD TCD FD

None Airplane–dog 0.2562 0.8532 0.5151

Synonym Football–soccer 0.1905 0.1739 0.0315

Similarity Horse–donkey 0.2147 0.4513 0.4231

Concurrence Airplane–airport 0.3094 0.1833 0.0576

Meronymy Car–wheel 0.3146 0.9617 0.0708

6.1 Near Duplicate Image Detection

Visual distance measurement can be widely used in multiple applications.
One of its most common usages is the near duplicate image detection. In this
subsection, we focus on applying both the static image distance measurement
and the dynamic image distance measurement to the near-duplicate detection
task. We take Bin’s method [56] as an example to illustrate the static image
distance measurement, and take QOSS [62] as an example to illustrate the
usage of dynamic image distance measurement.

With the advances of web technology, the diffusion of web images has
increased exponentially. This greatly aggravates the problem of image copy-
right infringement. Although watermark schemes have been proposed [19] to
protect the copyrighted images and trademarks, this kind of protection will
become inefficacy when the content of the copyrighted image is slightly mod-
ified and then republished. To detect these slightly modified images, which
is also called near-duplicates, the content-based image replica recognition
scheme is proposed [48]. Given a copyrighted image as a query, the task is to
find all the accessible duplicates and near-duplicates on the web.

The main issues with the near-duplicates detection focus on two aspects, ef-
ficient image features and similarity measurement. Considering the efficiency,
most features used in the large-scale near-duplicates detection task are sim-
ple, such as mean gray, color histogram, texture histogram etc. To measure
the similarity, many distance functions are proposed, i.e. Minkowski-like met-
rics, Histogram Cosine distance, Fuzzy logic etc. However, these methods fre-
quently overlook the near-duplicate images. Later, some advanced methods
are proposed, such as [28, 66]. Although these methods are reasonable, they
are not efficient enough for large-scale near-duplicates detection.

Static distance for near duplicate detection

Recently, Bin et al. [56] proposed a large-scale duplicates detection algorithm.
This method divides the image into patches, and uses the mean gray of each
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patch as the feature. The hash code is generated from the most distinguishing
feature dimensions picked by principle component analysis (PCA) to facili-
tate fast similarity comparison. Hamming distance is adopted for similarity
measurement. This algorithm is reported efficient and still capable to main-
tain high precision. Yet, as the distinguishing features picked by PCA only
characterize the whole dataset, the specific property of the query image is
not well utilized.

Dynamic distance for near duplicate detection

Considering both the efficiency and effectiveness, the whole approach consists
of two phases, offline indexing and online detection. In the offline indexing
phase, the main objective is to provide efficient index of the whole dataset. To
achieve this, we transform each image in the database into a low dimensional
feature vector, which can be further represented as a compact hash code.
The PCA projection matrix for feature dimension reduction is generated in
advance from a static sufficiently large image collection. In the online detec-
tion phase, we aim at improving the effectiveness of the method without too
much cost of efficiency. For this reason, firstly a rough filtering is performed
based on the fast hash code matching to remove the major proportion of non-
duplicates. Then on the relatively small remaining set, the proposed iterative
subspace shifting algorithm is used to refine the roughly filter.

Suppose the query image is q ∈ Rn. An image Ij is believed relevant to
the query image if and only if

‖H(Pq) − H(PIj)‖‖ < ε

where P is the static projection matrix. H(•) is the hash coding function. κ
represents the corresponding subspace, and ε is the threshold to determine
whether the image is close to the query or not in the subspace. The set of
samples which are close to the query are called query surrounding samples.
All the query surrounding images form the query surrounding collection Qs.

In order to determine the loose threshold ε for rough filtering, several ran-
dom transformations are generated from each query image and represented
in hash code in the same subspace projected with the static PCA matrix.
The largest Hamming distance between the query and its transformations is
set as the threshold.

ε = max
l

‖Pqj − Pq
(l)
j ‖κ (49)

where q
(l)
j is the lth random transformation of the query image qj .

Since the hash code matching has provided a much smaller query surround-
ing collection, we can use an iterative scheme to detect the near-duplicates
from this collection. For each iteration, PCA eigenspace of the query sur-
rounding samples is selected as the optimal subspace for measuring the sim-
ilarity among the query surrounding samples. This subspace keeps as much
of the variance of the collection as possible. The remote samples will then be
excluded from the query surrounding collection. As the collection is updated,
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the eigenspace will of course shift. So in the next iteration, the similarity mea-
surement will be performed in another eigenspace. It is more probably that
the near-duplicates would remain close to the query after the subspace has
shifted, while non-duplicated images which may form a cluster in a previous
subspace will scatter in the subsequent spaces.

Comparison between static and dynamic distances

In order to facilitate the comparison, we compare QOSS with the following
methods. G-HC represents Bin’s hash coding approach [56] with gray feature.
T-HC denotes Bin’s approach using the texture histogram feature. QOSS
is the query oriented subspace shifting algorithm with texture histogram
feature. The results are given in Table 2.

Table 2. Near-duplicates detection performance

Methods G-HC T-HC QOSS

Precision 96.57 96.82 96.85

Recall 69.97 73.15 90.34

Table 2 shows that comparing with static distance metric (Bin’s method),
the QOSS method has greatly improved the recall while keeps similar preci-
sion. For Bin’s method, the similarity measure is done in a single subspace. In
order to keep relatively high precision, the near-duplicate criterion should be
strict. Even some near-duplicates may not follow. For the proposed method,
the similarity is measured on multiple subspaces iteratively, and in each sub-
space the criterion may not necessarily be strict to maintain high precision.

6.2 Conceptual Clustering

In this application scenario, we apply the Flickr distance based visual corre-
lation on conceptual clustering. Conceptual clustering is widely used for topic
detection and summarization. Since there are lots of tags and descriptions
associated with web images, we are able to use conceptual clustering to detect
the main topic of these images. However, the focus of the topic summariza-
tion in image may not be the same with that for the text. For example, the
image is more likely to focus on the main object or scene, while in the text
document it focuses more on the story or point of view of the author. Thus an
applicable conceptual distance measurement for textual domain, i.e. Google
distance, may not perform as well as the specific distance measurement for
visual domain. Here we compare the conceptual clustering results of NGD,
TCD, and FD.

Three groups of concepts are selected: Space related terms (4 concepts),
Ball games (10 concepts), and Animals (9 concepts). We choose these con-
cepts because all users agree that these concepts are grouped without am-
biguous in the user study. In total there are 23 concepts in the experiment.
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The task is to group these concepts into clusters automatically. One of the
key issues with conceptual clustering is the conceptual distance measurement.
In most cases, WordNet is used to measure the conceptual distances. How-
ever, due to the limitation of WordNet lexicon, a large portion of concepts,
i.e. famous movies, brand, game, sport star, singer, etc. are inextricable. In
this experiment, we build two different networks between these concepts with
Google distance and Flickr distance separately. Based on these two conceptual
networks, spectral clustering is adopted to generate the conceptual clusters.
We adopt spectral clustering rather than the commonly used K-means algo-
rithm, because it is hard to calculate the cluster centers of these concepts
in K-means algorithm, while the spectral clustering only use the relationship
between the samples. The results of the conceptual clusters are shown in
Table 3.

Table 3. Result of conceptual clustering. The bold font denotes the miss-clustered
concepts.

Clustering by NGD Clustering by TCD Clustering by FD

bears bowling baseball moon baseballbasketball moon bears baseball

horses dolphin basketball space donkey bears saturndolphinbasketball

moon donkey football Venus softball bowling space donkey football

space saturn golf whale wolf dolphin venus golf snake

- sharks soccer - - football - horses soccer

- snake tennis - - golf - sharks bowling

- softball volleyball - - horses - spiders softball

- spiders - - - Saturn - tennis volleyball

- turtle - - - sharks - turtle -

- venus - - - soccer - whale -

- whale - - - spiders - wolf -

- wolf - - - tennis - - -

- - - - - turtle - - -

- - - - - volleyball - - -

Table 3 shows that the Flickr distance based spectral clustering can effec-
tively generate the conceptual clusters. After the conceptual clustering, we
know the three categories of images are about space, animals, and ball games.
The errors are marked in bold in Table 3. 6 out of the 23 total concepts are
mistakenly clustered by NGD; 9 errors for TCD; and 3 errors in the result
of FD. Comparing with the clustering results based on NGD and TCD, the
results by FD is more promising.
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6.3 Social Tagging Recommendation

Recently, social tagging is one of the most promising approaches for web
image annotation and indexing. Social tagging requires all the users in social
network label the web resources with their own keywords and share with
others. This labeling operation is named “tagging”. Different from ontology
based annotation; there is no pre-defined ontology or taxonomy in social
tagging. Thus this task is more convenient for ordinary users.

Although social tagging is easy to perform, the user created tags contain
much noise, such as ambiguous tags, misspelling tags, improper tag, due to
the lack of effective recommendation. Tag recommendation will provide the
related or more proper tags for the users to choose in tagging an image.
The quality of tag recommendation is quite important [2] to final quality of
tagging, since one reason users do not tag properly is because they cannot
think of any proper tags [52].

One of the critical problems in social tagging recommendation is the corre-
lation measurement between the tags. Current recommendation is only based
on the tag co-occurrence, while visual correlation is ignored in the recom-
mendation process. In this experiment, we would like to demonstrate the
usefulness of Flickr distance in the tag recommendation task.

Given the image and some of its initial user created tags, we would like to
recommend a list of related tags which may be also applicable to the image.
We denote the set of initial tags as OT , and the set of remaining tags as UT .
The relevance of the tags is represented in two domains. The average tag co-
occurrence in Flickr dataset is deemed as text domain correlation, and the
Flickr distance between tags is deemed as a measurement of visual domain
correlation. Then for these domains, we generate several ranking features
{fl}3n

l=1 (n is the number of initial tags). The first n ranking features are
based on NGD, and the following n by TCD, and the last n features by FD.

fl(ti, tl) = W s
NGD(ti, tl), tl ∈ OT , ti ∈ UT , l = 1, · · · , n (50)

fn+l(ti, tl) = W s
TCD(ti, tl), tl ∈ OT , ti ∈ UT , l = 1, · · · , n (51)

f2n+l(ti, tl) = W s
FD(ti, tl), tl ∈ OT , ti ∈ UT , l = 1, · · · , n (52)

where W s
NGD, W s

TCD, W s
FD are the weights of ti, tl in the corresponding

conceptual network. These ranking features of multi-domains are firstly used
separately and then combined in the Rankboost framework [18], which con-
siders only the order of instances and not scores, to generate the most related
keywords for social tagging. Performance under different correlation features
and their combinations are shown in Fig.8.

We randomly select 10,000 images and associated 5,000 tags from Flickr as
the test data, and the rest images and associated tags are used as the train-
ing data. To train the tag co-occurrence model, we count the co-occurrence
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frequency between every pair of tags from the collection, and then normalize
them to [0, 1]. In the visual domain, we generate the ranking features based on
Flickr distance. Then we combine these weak rankers form different domains
using the Rankboost algorithm.

Each recommendation approach will generate an ordered list of relevant
tags for each image. Then a group of volunteers are required to evaluate
these recommended tags. If a tag is relevant to the image, it will be marked
true; otherwise false. The average precision of the top 10 recommendations
and the coverage over all correct recommendations are adopted to measure
the performance of each recommendation method. The coverage is defined
as the proportion of correct tags (including all correct tags by both methods
and initial tags) that are recommended by the specific method. We adopt
the coverage rather than the recall, because the recall is inapplicable for the
recommendation task.

Coverage(mi) =
#correct tags by methodmi

#correct tags in total
(53)

Figure 8 compares the performance of the three methods. In Figure 8,
“AP@10” is the average precision at top 10 recommendations, and “AC@10”
is the average coverage at top 10 recommendations. We find FD outperforms
NGD by 13.46% in precision and 19.24% in coverage, and outperforms TCD
by 9.83 in precision and 11.43 in coverage. These results demonstrate the
effectiveness of the Flickr distance in tag recommendation task.

NGD TCD FD Combination
AP@10 0.67 0.69 0.76 0.82
AC@10 0.57 0.61 0.68 0.71

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tag Recommendation

Fig. 8. Performance of the tag recommendation. The Flickr distance based tag
recommendation outperforms Google distance based recommendation by 16% and
outperforms tag concurrence based recommendation by 14%.

7 Summary

In this chapter, we focus on four aspects of visual concept analysis, low level
visual analysis (image representation), image distance measurement (inter-
image representation), semantic level concept modeling (concept representa-
tion), and conceptual distance measurement (inter-concept representation).
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These four aspects also forms two layer of analysis. The first layer is the
visual layer, which focuses on image representation and image distance mea-
surements. The second layer is the concept layer, which focuses on the concept
representation and concept distance measurement. In the first layer, we dis-
cussed the visual feature, visual words, visual similarity measurements. In the
second layer, we concentrate on the semantic level concept modeling methods,
such as BoW model, 2D HMM model, and VLM. Based on these models, we
further investigate several concept distance measurements, including Word-
Net distance, Google distance, tag concurrence distance, and Flickr distance.
Various applications related to multimedia research have shown the usage of
these analysis methods, models and distance measurements.
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Summary. The highly complex prediction dependency structure employed
in current video coding algorithms makes the resulting compressed bitstreams
highly susceptible to data loss or corruption. Caused by transmission over im-
perfect communication channels or faulty storage devices these errors prop-
agate then into other segments of the video bitstream thereby causing wild
variations in quality of the reconstructed content. This chapter reviews the
state-of-the-art in modeling the above error propagation phenomenon in pre-
dictive video coding and the resulting increase in video distortion across the
affected media presentation. We focus in greater detail on the most impor-
tant recent advances in packet-based distortion estimation techniques and
examine some of the most interesting related discoveries. We show that video
distortion is not only affected by the amount of data lost but also by the
spatio-temporal distribution of the affected data segments. Furthermore, we
illustrate cases where contrary to common belief subsequent packet loss actu-
ally leads to a reduction in video distortion and where surprisingly increased
burstiness of the loss process again contributes to a smaller drop in video
quality.

Keywords: error propagation, distortion modeling, video coding, lossy
transmission, packet loss, burst packet loss errors, Markov models.

1 Introduction

Video compression has enabled a plethora of novel multimedia applications.
From entertainment (DVD, IPTV, VoD), to video monitoring and surveil-
lance for commercial and scientific applications, to video conferencing and
telecommuting, they have all benefited man and society in numerous ways.
In fact, many aspects of our personal and professional lives have been pro-
foundly affected by the proliferation of digital content made possible by video
coding.

The continuous demand for ever more efficient video compression has been
matched by a consistent increase in complexity and computational capability
of the related algorithms introduced to deliver it [1–7]. However, as the num-
ber of redundant bits removed from the multimedia data has been steadily
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growing so has the amount of interdependency between the segments com-
prising the thereby created compressed content. This can be attributed in
major part to data prediction techniques that every subsequent video coding
standard has been increasingly taking advantage of.

In particular, as early as 1929 [8] it has been recognized that substan-
tial compression gains can be achieved if a video picture1 is differentially
encoded2 relative to its nearest temporal predecessor. The modern video
coding community has generalized this concept by introducing the notion
of a macroblock, a square region of a video frame, that is differentially en-
coded with respect to its most similar3 companion macroblock in the previous
video frame. This approach has been known under the joint name of motion
estimation and motion compensation in video compression parlance [9, 10]
referring to the fact that it accounts for the motion of an image segment
between two successive video frames. Further compression efficiency can be
achieved by simultaneously employing multiple reference macroblocks in pre-
vious and subsequent pictures for the macroblock being currently encoded in
the present picture. The term multi-hypothesis motion compensation [11] has
been coined for this generalization of the technique. Finally, a macroblock can
also be differentially encoded relative to similar macroblocks within the same
picture, a technique denoted intra-prediction and introduced in the latest
video compression standard H.264 AVC [6].

Though the techniques highlighted above provide significant performance
advances by taking advantage of the spatio-temporal correlation of the video
content at the same time they make the compressed bitstream vulnerable to
data loss or corruption4. In particular, the complex set of data dependen-
cies that these techniques employ impose a strict decoding order that must
be followed when reconstructing the content. In other words, the bitstream
corresponding to a macroblock cannot be decoded unless all of its reference
macroblocks in the data prediction technique have been decoded previously.
Therefore, an error introduced in a decoded macroblock5 can propagate to
all other macroblocks that will be subsequently decoded and that have used
this macroblock as a reference at compression. This error propagation phe-
nomenon can strongly degrade the video quality of the thereby reconstructed
content causing erratic fluctuations of its value over long periods of time.

Consider for example the illustration in Figure 1 showing a generic de-
pendency graph between the data units (packets) comprising the compressed

1 A video frame in video coding terminology.
2 Simply described, rather than compressing the signals associated with the two

pictures independently, we encode instead the first signal and its difference rel-
ative to the second one.

3 According to some similarity metric.
4 Caused by transmission over imperfect channels or faulty storage devices.
5 Caused either by the loss of the original macroblock and its subsequent conceal-

ment by another already decoded macroblock or by erroneously reconstructing
the original macroblock due to corrupted content.
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Fig. 1. Dependency graph for data units of a media presentation

representation of a video content. These units can correspond to the indi-
vidual compressed macroblocks in the bitstream, to groups of compressed
macroblocks (in compression terms denoted as slices), or to the compressed
data of the individual video frames. Each node in the graph represents a
data unit, and an arrow from data unit l to data unit l′ in the graph signi-
fies that for decoding data unit l, data unit l′ must be decoded first. Then,
for instance, an error affecting the first B-packet, denoted in shaded gray in
Figure 1, will propagate to all its descendants in the graph, also denoted in
shaded gray in the figure.

Now, computing the additional distortion affecting a predictively encoded
content in the case of packet loss is a challenging task. First, the extensive use
of differential encoding, as described earlier, makes tracking the propagation
of error very difficult. In addition, there are other non-linearities involved in
the process of compressing and decoding the content, such as quantization
and filtering, that augment the complexity of the task even further. Finally,
error concealment, the process of replacing data missing at reconstruction
with other already available data, also needs to be carefully taken into con-
sideration as it substantially impacts the distortion assessment.

Still, having an accurate estimate of packet-loss induced video distortion is
very important as we increasingly send multimedia content over our data net-
works. In particular, it is estimated that online video accounts for 33% of the
network traffic today. Furthermore, the networked video portion is expected
to skyrocket to 90% by year 2012 [12]. Therefore, it is crucial for network
operators and content providers to be able to assess the video quality of the
content that they deliver over their networks without any involvement on the
consumer side. That is because a solution involving measurements on the cus-
tomer’s premises is impractical from several aspects: (i) The original content
needs to be present and compared to what the client is actually receiving,
(ii) Some customers may not be willing for such an arrangement, seeing it as
interference with their privacy, and (iii) The scalability of this approach can
be an issue as well. Hence, content and service providers would strongly pre-
fer to have a method of determining video quality of the content they serve
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either on the sending end or within the network, as a function of network
quality parameters, such as packet loss. An accurate video quality estimation
technique would help them determine the appropriate course of action with
respect to their network management operations in order to provide a consis-
tent content quality to their customers. Similarly, accurate distortion models
are at the root of every efficient technique for video communication, e.g.,
[13–17]. Having such models improves the error resilience of such schemes
while simultaneously allowing them to compute effective resource allocation
decisions.

Early works on video distortion modeling considered that in the case of
transmission over packet lossy networks the effects of the individual losses on
the resulting degradation of the video content are additive [18, 19]. In partic-
ular, each packet loss during transmission contributes independently to the
overall video distortion affecting the reconstructed stream. Though simple
and computationally easily tractable, such models do not take into account
the complex interaction between the error processes associated with the in-
dividual lost packets. Due to the many non-linearities involved in creating
the compressed content, as described earlier, these loss processes exhibit a
very complex set of interdependencies that are impossible to capture with an
additive model.

Consider for example the propagation of additional distortion into subse-
quent frames by the loss of video frame k of an encoding created by pre-
dictively encoding every frame only with reference to its nearest temporal
predecessor. As illustrated in Figure 2a, the increase in distortion associated
with frame k is the largest since this is the content that will be replaced
(concealed) by frame k − 1 by the decoder at reconstruction. The decoder
then proceeds by decoding the subsequent frames that have been correctly
received. However, due to the predictive encoding of these frames, with ref-
erence to the lost frame k, they cannot be decoded error-free as the decoder
is using a different reference (k − 1) now. This propagation of error due to
incorrect reference frame manifests itself as additional distortion affecting
frames k + 1, k + 2, . . . , as illustrated in Figure 2a. The reasons why the ad-
ditional distortion decays as we move further away from the lost frame k will
be explained later on and are irrelevant for the discussion here.

Now, let the total increase in distortion affecting the video stream associ-
ated with the loss of frame k be denoted as D(k). Consider next the case of
losing two video frames k1 and k2. The resulting increase in video distortion
per video frame of the reconstructed content is illustrated in Figure 2b. Here,
the loss of frame k1 is concealed by frame k1 − 1 by the decoder who then
proceeds reconstructing the content. The decoder then encounters another
lost frame, k2 > k1, and replaces this missing content with the previously
reconstructed frame k2 − 1. Note that the content corresponding to the orig-
inal frame k2 − 1 is not the same now, as the frame indexed with k2 − 1 at
the decoder has been reconstructed using an incorrect reference in the past,
i.e., frame k1 has been replaced with frame k1 − 1. Hence, in the case of
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Frame1 Lk

Frame1 Lk
1

k
2

Fig. 2. (a) Loss of single frame k induces distortion in later frames. D(k) is the
total distortion summed over all affected frames. (b) D(k1, k2) is total distortion
summed over all frames caused by losing frames k1 and k2.

frames k2, k2 + 1, . . . we have the influence of two error events at frames k1

and k2 combining together, as illustrated in Figure 2b. Therefore, the over-
all increase in distortion D(k1, k2) associated with the loss of the pair k1, k2

cannot be written as the sum of the contributions of the individual losses,
i.e., D(k1) + D(k2).

To the best of our knowledge, the first work that ventured to explore be-
yond superposition or linear video distortion models of the type described
earlier is [20]. In particular, the authors recognized that the packet loss pat-
tern and the loss burst length are important for an accurate estimation of
video distortion in communication over lossy packet networks. The authors
develop a distortion model describing the cross-correlation between differ-
ent error events as a function of a few system parameters. Subsequently, the
work in [21] proposed an alternative characterization of the video distortion
as a function of the underlying packet loss process. Specifically, the authors
develop a distortion model inspired by the concept of Markov Chains from
statistics that captures the memory phenomenon of the distortion-loss pro-
cess associated with lossy video transmission. Finally, [22] is the most recent
relevant contribution to the field of non-linear video distortion modeling. The
authors in this work employ a trellis model in order to account not only for
the effect of error propagation but also for the fact that different packet loss
events will typically have different likelihoods of occurrence. The expected
video distortion can then be accurately synthesized by traversing the trellis
in a left-to-right manner generating along the way the different prospective
error patterns and their associated probabilities.

The works cited above provided some very interesting discoveries and in-
sights that were not apparent before through the additive models. Therefore,
in the subsequent three sections of this chapter we will respectively examine
each one of them in greater detail. In particular, we will investigate their main
characteristics of operation examining along the way their performance ad-
vantages and respective weaknesses. Implementation aspects and complexity
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will also be taken into consideration in the analysis. Then, in Section 5 we will
provide a comprehensive and in greater depth discussion of related work, cov-
ering both linear and non-linear distortion models. Finally, a set of concluding
remarks and a summary of all exciting challenges in distortion modeling that
still remain open are included at the end in Section 6. We believe that the three
important works covered in major part here will pave the way for subsequent
new investigations that could help us explore further the complex interaction
between video compression and packet loss.

2 Does Burst-Length Matter?

As mentioned earlier, the work in [20, 23] was the first to recognize the impor-
tance of characterizing the correlation between the error processes associated
with individual packet losses. In order to describe the modeling framework
proposed by the authors, we need to introduce some preliminaries and nota-
tion first.

The authors consider the case where each video frame is predictively en-
coded (P-frame) relative to its nearest temporal predecessor save for the very
first frame in the content that is independently encoded (I-frame). For in-
creased error-resilience it is assumed that a number of macroblocks is intra-
encoded in every consecutive P-frame. Let the corresponding intra-refresh
period be denoted as N6. It is assumed further that every P − frame is
mapped to a single transmission packet. Therefore, a loss of a packet corre-
sponds to the loss of an entire frame.

For convenience, the video signal associated with a frame is considered as
a 1-D vector of size M = M1 ×M2 pixels, where M1 and M2 are the number
of rows and columns, respectively, of the pixel image matrix associated with
a video frame. Now, let f [k], f̂ [k], g[k] denote respectively the original video
signal of frame k, its error free reconstruction, and its reconstructed value at
the decoder in the case of loss concealment. The initial error frame caused
by the loss of frame k is defined as

e[k] = g[k] − f̂ [k] .

Assuming that e[k] is a zero-mean random process its variance is then equal
to the Mean Square Error (MSE) associated with the loss of frame k, i.e.,

σ2[k] = eT[k] · e[k] / M .

The authors measure the quantities described above for every video frame
by simulating the corresponding error events at the encoder employing the
6 This is the number of subsequent frames after which the video signal will be

completely intra-refreshed. For example, for QCIF video if subsequent rows of
macroblocks are respectively intra coded in every consecutive frame, then after
nine frames the whole image associated with a video frame will be intra-refreshed.
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same error concealment strategy that the decoder would employ to replace
a missing frame. In this particular case, copy previous frame concealment is
considered, i.e., g[k]−f̂ [k−1]. For the rest of the exposition in this section, let
the initial error frame and the corresponding MSE associated with the single
loss of frame k be denoted as eS [k] and σ2

S [k], respectively. We will employ
e[k] and σ2[k] for the more general case of multiple losses. Similarly, let D
denote the total additional distortion affecting the video content in the case
of a general packet loss pattern, while DS will represent the corresponding
quantity for the case of a single frame loss.

Now, in order to calculate DS [k] we need a model that describes how the
error power due to the loss of frame k propagates into subsequent frames.
To this end, inspired by the approach in [18] the authors characterize the
propagated error power at frame k + l as

σ2[k + l] =
{

σ2
S [k] · rl · (1 − l/N) : 0 ≤ l ≤ N,

0 : otherwise, (1)

where N is the intra update period (in number of frames) introduced earlier
and r < 1 is the attenuation factor that accounts for the effect of spatial fil-
tering employed in the prediction loop of a video encoder. Here, it is assumed
that the error is completely removed by intra update after N frames. The
reduction in error power due to spatial filtering is actually dependent on the
strength of the loop filter and the actual error signal. However, for simplicity
the authors assume r to be constant for a given burst length. Then, the total
distortion DS [k] can be computed as

DS [k] =
∞∑

i=k

σ2[i] =
N−1∑
i=0

σ2
S [k] · ri · (1 − i/N) = α · σ2

S [k] (2)

where α = DS [k]/σ2
S [k] captures the amount of error power propagated

through the stream due to the single loss at k.
The main idea of the authors is to employ the single loss values described

thus far, as measured and computed at the encoder, to synthesize the more
general error frame and distortion quantities in the case of multiple losses.
We will describe the approach that they take to this end next.

2.1 Burst Losses of Length Two

Let two consecutive losses of frames k and k − 1 be experienced. The corre-
sponding single loss error frames are given by

eS [k − 1] = g[k − 1] − f̂ [k − 1] = f̂ [k − 2] − f̂ [k − 2] ,

eS [k] = g[k] − f̂ [k] = f̂ [k − 1] − f̂ [k] .
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Therefore, a burst loss of length two affecting frames k− 1 and k contributes
to a residual error frame k given by

e[k] = g[k] − f̂ [k] = f̂ [k − 2] − f̂ [k]
= eS [k − 1] + eS[k] .

Furthermore, the corresponding increase7 in MSE associated with frame k in
this case can be computed as

σ2[k] = σ2
S [k − 1] + σ2

S [k] + 2ρk−1,k · σS [k − 1] · σS [k] , (3)

where

ρk−1,k =
eS

T[k − 1] · eS[k] / M

σS [k − 1] · σS [k]

represents the correlation coefficient between error frames k − 1 and k. As
evident from (3), the loss-inflicted error affecting frame k is not any longer
a sum of the individual loss contributions, as assumed in previous additive
models. The third term in (3) captures the influence of the cross-correlation
between the two loss events on the resulting distortion affecting frame k.

Finally, following an analogy with DS [k] the total distortion associated
with the two losses at k − 1 and k can be computed as

D[k − 1, k] =
∞∑

i=k−1

σ2[i] = σ2
S [k − 1] + α · σ2[k]

= σ2
S [k − 1] + DS [k − 1] + DS [k] + 2ρk−1,k ·

√
DS [k − 1] · DS[k] ,

where again (1) was employed to model the propagation of error into sub-
sequent frames that have been successfully received. However, in this case
we replaced σ2

S [k] with σ2[k] in (1). Similarly to the case of σ2[k] in (3),
the expression for D[k − 1, k] above also contains terms that have not been
accounted for in previous additive models. In particular, these earlier tech-
niques compute D[k − 1, k] solely as the addition of the two terms DS [k − 1]
and DS [k]. Therefore, the important cross-correlation influence of the two
error events at frames k and k − 1 is missed.

2.2 Burst Losses of Length B

The authors then extend the approach from Section 2.1 to the general case
of burst length B > 2. In particular, let B consecutive frames from k−B +1
to k be lost. Following an analogy with (3), an expression for the MSE at
frame k is proposed as follows
7 To emphasize the fact that quantization error that is already present in the

compressed content is not part of the analysis.
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σ2[k] =
k∑

i=k−B+1

σ2
S [i] + 2

k∑
i=k−B+1

k∑
j=i+1

ρi,j · σS [i] · σS [j] . (4)

Furthermore, the total distortion is computed using

D[k − B + 1, . . . , k] =
k−1∑

i=k−B+1

σ2[i] + α(B) · σ2[k] . (5)

Note that in (1) it was assumed that r is constant across the video frames.
Therefore, the multiplicative factor α that is computed through r was also
considered to be constant. In reality, r can exhibit certain variation over the
individual frames and even more importantly it is strongly affected by the
power spectrum density (PSD) of the error signal. The work in [18] modeled r
as the fraction of error power not removed by the prediction loop filtering. As
the number of loss events increases the PSD of the error signal shifts its spec-
trum toward lower frequencies that are not removed by the filtering. Hence,
r is a function of the burst length. To account for this, the authors corrected
α in (5) by modeling it as a linear function of B. According to their empirical
measurements, this simple model provided a satisfactory performance.

2.3 Two Losses Separated by a Short Lag

Finally, the author derive an expression describing the overall distortion for
the case of two non-consecutive packet losses separated by a certain lag l.
It is important to have such a characterization in order to study the video
distortion caused by an arbitrary loss pattern where the the individual loss
events are not necessarily consecutive. It is only necessary to study the case
when l ≤ N as otherwise the two losses can be considered independent and
therefore the total distortion will be additive.

Now, let two separate losses at frames k− l and k occur, where 2 ≤ l ≤ N .
Then, using the exposition presented thus far the total distortion can be
derived and written as

D[k − l, k] = β(N, l, r)DS [k − l] +
σ2[k]
σ2

S [k]
DS [k] (6)

where the expression for β(N, l, r) can be obtained in a similar fashion as α
was derived in (2). Again, compared to an additive model, where the contri-
butions of the two loss events DS [k−l] and DS [k] would be simply summed up
(equally), here we can see that their overall contribution is rather represented
as a weighted sum of the two individual terms.

2.4 Empirical Evaluation

Armed with the modeling machinery derived thus far, we study now its pre-
diction accuracy by applying packet loss patterns to actual video sequences.
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The content employed in the experiments comprises four standard test se-
quences in QCIF format, Foreman, Mother-Daughter, Salesman, and Claire.
For each sequence, 280 frames are encoded using JM 2.0 of the H.264 standard
[6] at 30 fps and with a constant quantization level for an average luminance
PSNR of about 36 dB. The first frame of a sequence is intra-coded, followed by
P-frames. Every 4 frames a slice is intra updated to improve error-resilience
by reducing error propagation (as recommended in JM 2.0), corresponding
to an intra-frame update period of N = 4 × 9 = 36 frames.

In addition to the full-blown model proposed by the authors, and denoted
henceforth local estimation (LE) they also examined the performance of a
sub-sampled version of it, denoted henceforth global estimation (GE). In par-
ticular, to collect the parameters for the LE model the authors run in total
L×N decodings at the encoder simulating various single or double loss events
at every decoding. From these measurements, the parameters σS [k], D[k, l]8,
and α are obtained, for k = 0, 1, . . . , L − 1 and l = 1, 2, . . . , N , where L is
the length of the sequence in frames. In addition, for the case of burst loss
B > 2 additional L × 2 decodings are run in order to fit the linear model
for α(B). The two parameters of the model are then stored for use in the
subsequent experiments. Finally, for the GE model, sub-sampled versions
of the above measurement procedures are run in order to reduce the com-
plexity of the related simulations and the amount of data that needs to be
stored as parameters. Specifically, for the index of the first loss event only
k = 10, 20, 30, . . . is employed and the stored parameters represent instead
average values over all possible choices for k.
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Fig. 3. Measured versus estimated total distortion as a function of burst loss length,
normalized by total distortion for a single loss. (left) Foreman, (right) Claire.

In Figure 3, we examine the prediction performance of the proposed GE
and LE models against the actual measured distortion and the conventional
additive model as a function of the burst length (in frames). It can be seen

8 Precisely, it is in fact the MSE σ2[k] for the second loss in (3) and (6) that is
measured and stored.
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that in the case of both, Foreman and Claire, the two proposed models provide
accurate estimates of the overall distortion afflicting the video stream as the
burst length increases. Contrarily, we can see from Figure 3 that the additive
model provides a distortion estimate that is consistently below the actual
value. By not taking into account the cross-correlation between the individual
loss events, as explained earlier, this model omits to account for a significant
portion of the error process arising in such situations.

Next, in Figure 4 we examine the performance of the GE and LE models
in the case of two losses separate by a lag as a function of the lag size (in
frames). It can be seen that again in the case of both, Mother-Daughter and
Salesman, the proposed models outperform the additive model by providing
a more accurate estimate of the actual distortion especially for shorter lag
lengths. This is expected as for longer temporal separation between the two
loss events their influence becomes less correlated, i.e., they become more
independent, as argued earlier.

In summary, it can be seen that accounting for the interaction between
individual loss events can provide significant benefits in terms of distortion
prediction accuracy. However, the authors did not examine how their models
would perform for arbitrary loss patterns comprising prospectively multi-
ple burst loss and individual loss events separated with different lag values.
Moreover, the performance results presented in [20, 23] and included here in
Figure 3 describe only the average performance of the models. In particu-
lar, the reported distortion estimate associated with a model is obtained as
the average predicted distortion across different loss realizations of the same
burst length normalized with the corresponding average distortion for a sin-
gle loss event. Therefore, it is difficult to assess the variations in prediction
accuracy and the distribution of prediction error for a given model and burst
length. Finally, the findings presented here imply that overall distortion al-
ways increases with burst length. However, as shown later on in Section 4
this is in fact not always true and is content dependent.

Fig. 4. Measured versus estimated total distortion for two losses separated by a
lag. (left) MotherDaughter, (right) Salesman.
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3 Distortion Chains

The approach presented here formalizes the concept of distortion memory in
lossy video communication. It provides a modeling framework that general-
izes to higher-order terms the notion of distortion cross-correlation between
packet loss events. In particular, the key idea of the Distortion Chains frame-
work [21, 24] is to model the additional distortion associated with the loss
of a present packet as dependent on the k nearest previous losses where k
denotes the order of the chain. When describing this model subsequently, we
will take advantage of the notation already introduced earlier in Section 2.

Let L be the length of a video sequence in frames and let k=(k1, k2, . . . , kN )
denote a loss pattern of length N , i.e., N frames are lost during transmission
where ki < kj , for i < j, are the indices of the lost frames. Then, the total
distortion, denoted by D(k), due to the loss pattern is the sum of the MSEs
over all the frames affected by the loss pattern k, i.e.,

D(k) =
L∑

l=1

σ2[l] =
L∑

l=k1

σ2[l] . (7)

For example, D(k) and D(k1, k2) would correspond to the total distortion
values associated with the loss of frame k and frames k1, k2, respectively,
mentioned in the context of Figure 2. Then, D(kN+1|k) is defined as the
additional increase in distortion due to losing frame kN+1 > kN given that
frames k1, . . . , kN are already lost, i.e.,

D(kN+1|k) = D(k1, . . . , kN+1) − D(k1, . . . , kN ). (8)

A Distortion Chain model of order N (denoted DCN henceforth) comprises
the distortion values D(k) for every loss pattern k of length N satisfying
ki < kj , for i < j, and the conditional distortions D(kN+1|k) for every loss
pattern (k, kN+1) of length N + 1 satisfying kN < kN+1. Using DCN an
estimate, D̃(k), of the total distortion associated with an arbitrary packet
loss pattern k = (k1, . . . , kP ) with P losses, where N < P ≤ L, can be
computed as

D̃(k) = D(k1, . . . , kN ) +
P−1∑
i=N

D(ki+1|ki−N+1, . . . , ki) . (9)

3.1 Complexity and Implementation

As in the case of the framework from Section 2, the distortion quantities com-
prising a Distortion Chain can be generated at the encoder by simulating the
corresponding loss events, decoding the video sequence, and then computing
the resulting distortions. Though this may be impractical for large N , the
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authors have established that good prediction accuracy can still be obtained
even with Distortion Chains of small order. Moreover, when packet losses are
spaced far apart (farther than the intra refresh period of the encoded video
sequence), they become decoupled since their effects are independent, as dis-
cussed earlier. This reduces the complexity of the algorithm associated with
generating the model, as explained next.

For instance, for the Distortion Chain DC1 one needs to store the dis-
tortion values D(k) associated with losing frame k = 1, . . . , L, illustrated in
Figure 2(a). In addition, one also needs to store the quantities D(j|k) from
(8), which represent the additional increase in distortion when frame j is
lost, given that frame k is already lost, for 1 ≤ k < j ≤ L. Note that storing
D(j|k) is equivalent to storing D(k, j) as apparent from (8), where D(k, j)
is the total distortion associated with losing frames k and j, illustrated in
Figure 2(b). Now, if D(k, j) was stored for every possible pair (k, j), then
the total storage cost would be quadratic in L since there are L isolated
losses contributing to D(k) and L(L − 1)/2 distinct D(k1, k2) values. How-
ever, since the distortion coupling between dropped packets decreases as the
distance between the packets increases, one practical simplification is to rec-
ognize that D(k, j) = D(k) + D(j) for |j − k| > M + 1, where M depends
on the compression. For example, for a video encoding with a Group Of Pic-
tures (GOP) structure, M is at most the number of packets in the GOP. On
the other hand, if all frames are predictively encoded, M corresponds then
to the intra refresh period of the encoding. This simplification reduces the
required storage and computation for DC1 to being linear in L, precisely
(L − M − 1)(M + 1) + M(M − 1)/2.

3.2 Performance Assessment

Here, we investigate the distortion prediction performance of the Distortion
Chains framework by simulating different packet loss patterns on actual com-
pressed video content. We compare the measured total distortion for each
pattern with that predicted by Distortion Chain models of different order
N = 0, 1, 2. The video sequences used in the experiments are coded using
JM 2.1 of the JVT/H.264 video compression standard [6], using coding tools
of the Main profile. Two standard test sequences in QCIF format are used,
Foreman and Carphone. Each has at least 300 frames at 30 fps, and is coded
with a constant quantization level at an average luminance (Y) PSNR of
about 36 dB. The first frame of each sequence is intra-coded, followed by all
P-frames. Every 4 frames a slice is intra updated to improve error-resilience
by reducing error propagation (as recommended in JM 2.1), corresponding
to an intra-frame update period of M = 4 × 9 = 36 frames.

First, in Figure 5 we show the distortion values D(k), for k = 1, . . . , L,
comprising the Distortion Chain DC0 for the video sequences Foreman and
Carphone. Notice the huge variability in total distortion that results from
losing different frames in the sequence. In Figure 5 only the first 300 frames,
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Fig. 5. Example of DC0 for Foreman and Carphone video sequences. Each sample
point in the graphs identifies the total distortion D(k) associated with the loss of
a single frame k.

out of a 350 frame video sequence, are considered as possible candidates to
be lost in order to properly account for the error propagation effect.

This variability is quantified in Table 1 where we see that there exists
significant variation in the total distortion produced by the loss of different
P-frames.

Table 1. Mean of the total MSE distortion D(k), and mean-normalized versions
respectively of the minimum, median, 95-percentile, and maximum values of D(k)
for DC0 for different sequences.

Sequence Mean Min Median 95% Max

Foreman 5615.88 0.04 0.49 3.18 16.64

Mother & Daughter 247.77 0.06 0.61 3.71 6.92

Carphone 2254.80 0.10 0.60 3.33 11.19

Salesman 284.38 0.06 0.61 3.35 5.86

Then, in Figure 6 we examine the conditional distortion values employed by
the Distortion Chain model DC1. Notice that there are some values of D(j|k)
which are negative. This is an interesting phenomenon that has not been
reported earlier in works on distortion modelling, save for the study on burst
losses [20] examined in Section 2. The authors of this earlier work reported
that negative correlation was identified to sometimes exist in neighboring
lost frames. Having negative conditional distortions leads to the surprising
result that sometimes it is better to drop two frames instead of dropping
only one frame. For example, sometimes it is better to drop the two frames
k and j together, instead of only dropping the single frame k, since the total
distortion for dropping both frames k and j is less than that for dropping
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Fig. 6. Example of DC1 information for the Foreman video sequence. Each sample
point in the graph is D(j|k) which corresponds to the increase in total distortion
due to the loss of frame j given that frame k < j is already lost. Notice that
there are a number of D(j|k) which are negative, for example D(290|279). In these
cases, instead of only dropping one frame (e.g. 279), it is better to drop two frames
(e.g. 279 and 290) since that will produce a smaller total distortion.

frame k only. Having this knowledge can be very useful for adaptive video
streaming.

This section proceeds by examining the prediction accuracy of the Distor-
tion Chain models DC0, DC1, and DC2. In the investigation, we also explore
the performance of a liner model as considered in early works on distortion
modeling [18, 19]. In particular, these works model the total distortion afflict-
ing the video sequence as being proportional to the number of lost packets
that occur, as described earlier. Then, with this stationary linear model, the
expected total distortion (DLinear) is computed as

DLinear = #Losses · 1
L

L∑
l=1

D(l), (10)

where D(l) is the total distortion that is associated with the loss of packet l
(assuming that all other packets are correctly received), L is the total number
of packets in the video sequence, and (1/L)

∑L
l=1 D(l) is the average single

packet loss total distortion. Finally, given that the total number of losses is
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linearly (hence the name of the model) related to the average packet loss rate
(PLR), i.e., #Losses = PLR · L (for PLR ≤ 1) we can write (10) as

DLinear = PLR ·
L∑

l=1

D(l). (11)

In the first set of experiments, conducted using the Foreman sequence, the
prediction performance is examined across the range of packet loss rates
(PLR) 3 - 10%. Note that for lower PLRs the distortion chain framework can
often perfectly predict the distortion since it can typically exactly account for
the lost packets at the low PLRs. For each packet loss rate a corresponding
set of 50,000 random packet loss patterns is generated. For each loss pattern
k = (k1, k2, . . .) the video is decoded and the resulting total MSE distor-
tion D(k) of the luminance component of the video is recorded. At the same
time, we generate predictions of D(k) using respectively the Linear model (as
defined in Equation (11) above) and the proposed Distortion Chains DC0,
DC1, and DC2. The predicted distortion values are denoted D̃(k), as in-
troduced earlier . Finally, we compute the PSNR of these quantities using
10 log10

2552

D/NF
, where D is either D(k) or D̃(k) and NF is the number of

frames in the video sequence.
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Fig. 7. PSNR of the actual and predicted total MSE distortions for Foreman.

In Figure 7, we show these PSNR values, averaged over all 50,000 loss
patterns that correspond to a particular loss rate, as a function of the PLR.
There are a few observations that follow from Figure 7. First, all of the
Distortion Chains provide better predictions of the expected distortion than
the Linear model. Second, on average DC1 and DC2 underestimate the Y-
PSNR as computed above, while DC0 overestimates it, i.e., on average DC1

and DC2 overestimate the actual distortion, while DC0 underestimates it.
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Note that the performance difference between Linear and the Distortion
Chain models is larger for low packet loss rates and it gradually decreases as
the packet loss rate increases. Specifically, at PLR = 3% the Distortion Chain
models provide a performance gain of roughly 3.5 dB, while at PLR = 10%
the gain is practically negligible. In essence, this is due to the large variabil-
ity in total distortion produced as a function of the specific packet that is
lost (see Figure 5). For example, let us assume that we lose only one packet
in the sequence. Then, based on the specific lost packet l, for some l the
total distortion will be much larger than the average single packet loss to-
tal distortion, (1/L)

∑L
l=1 D(l), while for other l the total distortion will be

much less than the average. Hence, a Distortion Chain allows us to explicitly
capture this variability as a function of l, while the Linear model does not
provide that. On the other hand, as the number of losses increases (assuming
for simplicity that the loss effects are independent) the resulting total dis-
tortion will approach #Losses · (1/L)

∑L
l=1 D(l), since more averaging (over

the lost packets) occurs and therefore the penalty that the Linear model pays
decreases.

Next, we define ΔD(k) = |D(k)−D̃(k)|
D(k) to be the relative error of a predicted

distortion D̃(k) for a packet loss pattern k. In essence, the relative error
informs us how big the prediction error of D̃(k) is relative to the actual value
D(k) for a given loss pattern k. We next examine the distribution of the
relative error ΔD(k) over the 50,000 packet loss patterns k that correspond
to a given PLR. Figure 8 shows the Cumulative Density Functions (CDFs)
of the relative errors for all four distortion models considered here, for both
PLR = 3% and 8%. The first observation is that all of the distortion chain
models perform significantly better than the linear model. In addition, for
PLR = 3% we see that DC0, DC1, and DC2 provide estimates that are
within a 10% error bound 40%, 75%, and 95% of the time, respectively, while
the linear model achieves this less than 10% of the time. Similarly, DC0,
DC1, DC2 provide estimates that are within a 20% error bound 74%, 93%,
and 99% of the time, respectively, while the linear model does that only 5%
of the time. Figure 8 also shows that the distortion chain models provide
improved accuracy as compared to the linear model at 8% PLR, though the
improvement is lower due to the reduced accuracy as a result of the higher
packet loss rate.

In conclusion, the Distortion Chains framework provides improved pre-
diction accuracy relative to prior linear models. The framework extends the
concept of distortion-loss correlation to higher order terms, when compared
to the burst loss model from Section 2 that only considers the first order
terms. In addition, the present study raised the awareness of the interesting
phenomenon of negative distortion values observed in certain specific cases
of packet loss. Still, no formal analysis of this phenomenon has been car-
ried out within the modeling framework of Distortion Chains. Moreover, the
two distortion studies presented thus far do not consider the influence of
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Fig. 8. CDF of ΔD(k) for PLR = 3 % (left) and PLR = 8 % (right).

correlated packet loss probabilities prospectively experienced during trans-
mission. Having such a state-based channel model would certainly alter the
contributions of certain packet loss patterns relative to others to the over-
all expected distortion experienced by the transmitted content. The work
presented in the next section overcomes these shortcomings by developing
a framework that incorporates models for both missing aspects described
above.

4 Distortion Trellis

The work in [22] addresses the problem of distortion modeling for video trans-
mission over burst-loss channels characterized by a finite state Markov chain.
Based on a detailed analysis of the error propagation and the bursty losses, a
Distortion Trellis model is proposed, enabling estimating at both frame level
and sequence level the expected mean-square error (MSE) distortion caused
by Markov-model bursty packet losses. The model takes into account the tem-
poral dependencies induced by both the motion compensated coding scheme
and the Markov-model channel losses. The model is applicable to most block-
based motion compensated encoders, and most Markov-model lossy channels
as long as the loss pattern probabilities for that channel are computable. In
addition, based on the study of the decaying behavior of the error propaga-
tion, a sliding window algorithm is developed to perform the MSE estimation
with low complexity. In order to describe the proposed modeling framework
in greater detail, some preliminaries need to be covered first.

4.1 Preliminaries

General assumptions

It is assumed that the encoder compresses a raw video sequence into groups
of pictures (GOPs) each comprising an I-frame followed by subsequent
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Fig. 9. Gilbert channel model

P-frames. In a P-frame, macroblock (MB) intra-refreshing can be used for
either coding efficiency or error resilience. All MBs in a frame are grouped
into one slice and each slice is coded into one network packet. At the decoder,
a certain temporal error concealment strategy is applied whenever a frame
is lost. Motivated by the presence of temporal memory and correlation in
packet losses in wired/wireless Internet the authors employ a Gilbert model
[25] to describe the long-term network packet loss. In this model, the channel
switches between an error state and an error-free state. When the channel is
in the error state, the transmitted packet is always lost while in the error-
free state the packet is always correctly received. Let State 0 and State 1
respectively denote the error-free and the error states. As shown in Figure 9,
the parameter p is the transition probability from State 0 to State 1, and
q denotes the probability of the opposite transition. Normally p + q < 1. If
p + q = 1, the Gilbert model reduces to a Bernoulli model. From the defini-
tion, the stationary probability for State 0 and 1, denoted by π0 and π1, can
be computed as π0 = q/(p + q) and π1 = p/(p + q), respectively. Then, the
mean packet loss ratio PLR equals π1, and the average burst length ABL is
given by 1/q.

Problem formulation

Let xi
n and yi

n denote the reconstructed pixel values for frame n and pixel
i at the encoder and at the decoder, respectively. Then, the average MSE
distortion for frame n for channel realization c can be calculated as

dc
n = Ei

{(
xi

n − yi
n

)2
}

=
1

XY

XY∑
i=1

(
xi

n − yi
n

)2
, (12)

where Ei{·} denotes the computation of the average MSE over all pixels in
frame n, X and Y respectively denote the frame width and height in pixels.
Finally, the expected distortion of frame n can be defined as

dn = Ec {dc
n} = Ec

{
Ei

{(
xi

n − yi
n

)2
}}

, (13)

where Ec{·} denotes the expectation taken over all possible channel realiza-
tions. Note that the definition of dn is generic and hence applies to most
existing coding technologies and channel realizations.
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When calculating dn for a Bernoulli channel9, an important problem is
to model the error propagation due to decoding dependencies between tem-
porally adjacent frames. In the case of a Gilbert channel, the packet losses
also exhibit temporal dependencies. Hence, when calculating dn for a Gilbert
channel, the decoding dependencies and the loss dependencies should both be
considered (jointly). Therefore, it is more complex to model dn in the latter
case.

4.2 Framework of the Distortion Trellis model

In motion compensated video coding, decoding error in a previous frame may
propagate into the current frame. In such a case, the distortion of the current
frame is affected not only by the transmission state (“Lost” and “Received”)
of the current frame, but also by the transmission states of all previous frames
in the same GOP. In other words, it is affected by the loss patterns of all
transmitted frames in the same GOP (including the current frame). For a
frame sequence of length n, the total number of all possible loss patterns is
2n. Thus, theoretically, after decoding the n-th frame in a GOP, the total
number of all possible distortion values of the n-th frame at the decoder is
also 2n.

In a Bernoulli channel, a packet is either lost with a probability PLR or
received with a probability 1−PLR, independently of other loss events. Thus,
when calculating dn, we do not need to calculate all 2n possible distortions.
Instead, most existing models define another two distortions, dL

n and dR
n . The

former is the expected distortion given that frame n is lost, while the latter
denotes the expected distortion for the case when frame n is received. Often,
dL

n and dR
n are calculated in a recursive approach to account for the error

propagation. In such a case, we only need to calculate two distortion values
for each frame. Finally, dn is calculated as

dn = Ec {dc
n} = PLR · dL

n + (1 − PLR) · dR
n , (14)

In a Gilbert channel, packet losses are no more i.i.d. but exhibit dependencies
over time. Observed from the sender the loss process of all P-frames in a GOP
is a two-state Markov process10. In such a case, when calculating dn, we need
to consider all 2n cases for frame n, which adumbrates a rather elaborate
calculation process.

Now, consider the impairments for a transmitted packet (frame) sequence
of length n as an n-bit binary random variable Kn = {Bj}n

j=1. The random
variable Bj is over the binary alphabet {0, 1}. Bj = 1 indicates that the
j-th frame is lost. Then, the total number of all possible values of Kn is 2n.
Define moreover an ordered set In = {kr

n}, r = 1, . . . , 2n, where kr
n is an n-bit

9 That is in the case of independent packet losses as assumed in the two previous
studies on distortion modeling presented in this chapter.

10 A correct reception of the I-frame is assumed to be guaranteed.
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Fig. 10. Statistical dependencies {dr
n, n = 1, 2, . . .}

binary number and k1
n =

nbits︷ ︸︸ ︷
0 . . . 0, kr

n = 1 + kr−1
n , r = 2, . . . , 2n. Furthermore,

we assume that the r-th value of Kn is kr
n, the r-th element in In. Note that

in the present analysis this is an important assumption, based on which we
can recursively derive In from In−1 in a simple way. Hereafter, we refer to kr

n

as the r-th loss pattern of a frame sequence of length n.
Let P (kr

n) denote the probability that loss pattern kr
n occurs, i.e. P (kr

n) =
Pr(Kn = kr

n). Note that different loss patterns lead to different distortion
values. Let dr

n be the decoder distortion of the n-th frame in a frame sequence
of length n under loss pattern kr

n. Then, dr
n can be defined as

dr
n = Ei

{(
xi

n − yi
n,r

)2
}

, (15)

where yi
n,r denotes the decoder reconstructed value of pixel i in the n-th

frame for an n-length frame sequence under loss pattern kr
n. Thus, from the

definition of dr
n, we can obtain an important probability relation as follows:

Pr(at the decoder the distortion of frame n is dr
n)= P (kr

n).
In essence, the definitions of kr

n and dr
n lay a foundation for the pro-

posed model. First, they establish the relation between various loss pat-
terns and their corresponding decoding distortions. Second, they enable us
to recursively analyze the loss dependencies and decoding dependencies.
Figure 10 illustrates the statistical dependencies between the elements of
the set {dr

n, n = 1, 2, . . .}. Since the packet loss dependencies of the channel
loss process and the distortion/decoding dependencies of the video frames
can both be depicted by a trellis graph, we refer to the proposed distortion
estimation method as the Distortion Trellis model.

Then, we can calculate the expected distortion of frame n by taking an
expectation over all possible decoder distortion values for frame n,
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Fig. 11. Computation of the loss pattern probabilities {P (kr
n), n = 1, 2, . . .}

dn = Ec{dc
n} =

2n∑
r=1

dr
n · Pr (distortion of frame n is dr

n)

=
2n∑

r=1

dr
n · P (kr

n) , n = 1, 2, . . .

(16)

The formula in (16) is the general form of the proposed Distortion Trellis
model. From (16), it is clear that the computation of dn necessitates knowl-
edge of both dr

n and P (kr
n) , r = 1, . . . , 2n. We must emphasize that (16) is

applicable to most channel models and hence is general. For different chan-
nel models, the only difference in using the Distortion Trellis model is the
computation of P (kr

n), because generally the same loss pattern occurs with
different probabilities in different channels. On the other hand, dr

n is uncorre-
lated with a specific channel model but only depends on the video sequence.
That is why the Distortion Trellis model can be easily extended any arbi-
trary finite state Markov loss model. For a Gilbert channel, P (kr

n) can be
derived recursively as follows. From the definition of {kr

n}, it is clear that
given P

(
kt

n−1

)
, t = 1, . . . , 2n−1, the loss pattern probabilities can be written

as ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P

(
k4r−3

n

)
= (1 − p) · P (

k2r−1
n−1

)
P

(
k4r−2

n

)
= p · P (

k2r−1
n−1

)
P

(
k4r−1

n

)
= q · P (

k2r
n−1

)
P

(
k4r

n

)
= (1 − q) · P (

k2r
n−1

)
, r = 1, . . . , 2n−2.

(17)

The computation of the loss pattern probabilities is illustrated in Fig. 11,
which reveals the loss dependencies in the case of a Gilbert channel. The
remaining task is how to calculate dr

n.
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Recursive computation of dr
n

From the definition of kr
n, it can be observed that for loss pattern k2r−1

n ,
the n-th packet is received, while for loss pattern k2r

n , the n-th packet is
lost, where r = 1, , 2n−1. Thus, given that the loss pattern of the previous
n − 1 frames is kr

n−1, d2r−1
n is the frame-average distortion if the n-th frame

is received while d2r
n denotes the same quantity for the case when the n-th

frame is lost. Next, we separately consider computing d2r−1
n and d2r

n .

(i) Computation of d2r
n

If a frame is lost, all MBs in this frame are recovered using some temporal er-
ror concealment strategy, regardless whether they are coded in inter or intra
mode. Let fl(i) denote the index of the l-th pixel in frame n− 1 that is used
to estimate pixel i in frame n. Then the final concealed value of yi

n,2r can be

expressed as Φl

(
y

fl(i)
n−1,r

)
, where Φl represents the pixel operation on y

fl(i)
n−1,r

for all l used in obtaining the final concealed value of yi
n,2r. For example,

in video coders using sub-pixel motion estimation, Φl denotes the interpola-
tion operation. For another example, in video coders using deblocking filters,
Φl denotes the deblocking operation. For previous frame copy concealment,
Φl

(
y

fl(i)
n−1,r

)
= yi

n−1,r. Φl could also denote weighted prediction and so on. It
is a reasonable assumption that Φl is a linear pixel filtering operation and
can be considered the same for different frames. Then, d2r

n can be derived as
follows:

d2r
n = Ei

{(
xi

n − Φl

(
y

fl(i)
n−1,r

))2
}

= Ei

{(
xi

n − Φl

(
x

fl(i)
n−1

)
+ Φl

(
x

fl(i)
n−1

)
− Φl

(
y

fl(i)
n−1,r

))2
}

= Ei

{(
xi

n − Φl

(
x

fl(i)
n−1

))2
}

+ Ei

{(
Φl

(
x

fl(i)
n−1

)
− Φl

(
y

fl(i)
n−1,r

))2
}

= ECDn + Ei

{(
Φl

(
x

fl(i)
n−1 − y

fl(i)
n−1,r

))2
}

, r = 1, . . . , 2n−1,

(18)

where ECDn = Ei

{(
xi

n − Φl

(
x

fl(i)
n−1

))2
}

. Note that ECDn is the average

error concealment distortion of frame n. Given a specific coding scheme and
error concealment strategy, Φl and fl(i) are determined and then ECDn is
determined. It is worth noticing that ECDn is the new added distortion

if frame n is lost. Ei

{(
Φl

(
x

fl(i)
n−1 − y

fl(i)
n−1,r

))2
}

is the temporal propagation

distortion from frame n−1. Note that the third identity in (18) is based on the
assumption that the concealment error xi

n −Φl

(
x

fl(i)
n−1

)
and the propagation

error Φl

(
x

fl(i)
n−1

)
− Φl

(
y

fl(i)
n−1,r

)
are uncorrelated [26, 27]. The fourth identity
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is based on the assumption that Φl is linear which is quite reasonable in most
cases.

Furthermore, as explained earlier in this chapter error propagation into
subsequent frames is typically attenuated by the adoption of some coding
schemes such as de-blocking filtering and sub-pixel motion estimation [28],
whose effect can be regarded as a spatial filter or more precisely as an error
attenuator. Therefore, the propagated distortion in a present frame can be
considered as the filtered output of the distortion in its temporal predecessor.

Following this reasoning, the term Ei

{(
Φl

(
x

fl(i)
n−1 − y

fl(i)
n−1,r

))2
}

in (18) can

be approximated as

Ei

{(
Φl

(
x

fl(i)
n−1 − y

fl(i)
n−1,r

))2
}

= u · Ei

{(
xi

n−1 − yi
n−1,r

)2
}

= u · dr
n−1. (19)

Then (18) can be rewritten as

d2r
n = ECDn + u · dr

n−1, r = 1, . . . , 2n−1, (20)

where u is the error attenuation factor for a lost frame.
Therefore, d2r

n can be estimated as a sum of two separate parts. One part is
the average concealment distortion ECDn, which can be directly calculated
at the encoder just after encoding frame n. The second term in (20) denotes
the temporal distortion propagation and indicates the relation between d2r

n

and dr
n−1. In particular, this term reveals the numerical relationship between

the distortions of frame n − 1 and n when frame n is lost. For a practical
application, the parameter u has to be estimated for the specific video coder
and content that are employed.

(ii) Computation of d2r−1
n

We now turn to computing d2r−1
n . As is well known, a received frame may

still contain distortion due to error propagation from an impaired previous
frame. In such a case, the coding modes should be considered because the
distortions in received inter-coded MBs and intra-coded MBs are different.
We first consider the case when all MBs are coded in inter mode and then
we will extend our result to the more general case of having mixed MB
coding modes in a frame. Let gl(i) denote the index of the l-th pixel in frame
n − 1 that is used to estimate pixel i in frame n. Note that gl(i) may differ
from fl(i). Then, at the encoder, the predicted value of xi

n can be expressed
as Ψl

(
x

gl(i)
n−1

)
, where Ψl represents the pixel operation on all x

gl(i)
n−1 used for

obtaining the predicted value of xi
n, such as when performing interpolation or

deblocking filtering. We also assume that Ψl is linear and has the same form
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for different frames. Similarly, at the decoder, the predicted value of yi
n,2r−1

is Ψl

(
y

gl(i)
n−1,r

)
. Then, d2r−1

n can be derived as follows:

d2r−1
n = Ei

{(
Ψl

(
x

gl(i)
n−1

)
− Ψl

(
y

gl(i)
n−1,r

))2
}

= Ei

{(
Ψl

(
x

gl(i)
n−1 − y

gl(i)
n−1,r

))2
}

, r = 1, . . . , 2n−1. (21)

As in the case of d2r
n , the operator Ψl can be regarded as a spatial filter that

will attenuate the error propagation. Hence, we similarly employ v0 · dr
n−1 to

approximate Ei

{(
Ψl

(
x

gl(i)
n−1 − y

gl(i)
n−1,r

))2
}

and therefore we can rewrite (21)
as

d2r−1
n = v0 · dr

n−1, r = 1, . . . , 2n−1, (22)

where v0 is the error attenuation factor for a received frame, in which all
MBs are coded in inter mode.

The development of (22) assumes that all MBs in a P-frame are coded in
an inter mode. However, a P-frame often contains intra-coded MBs, which
will effectively attenuate the error propagation, as explained earlier in this
chapter. Therefore, to take this into account we introduce a new constant λ
and rewrite (22) as

d2r−1
n = v · dr

n−1, r = 1, . . . , 2n−1, (23)

where v = λ · v0.
In essence, (23) describes the numerical relationship between the distor-

tions of frame n− 1 and n when frame n is received. As in the case of u from
(20), the parameter v needs to be estimated as well.

Recursive computation of dn and further analysis

Based on (20) and (23), we can recursively obtain the distortion dr
n, for r =

1, . . . , 2n. The loss pattern probability P (kr
n) can be recursively calculated

with (17). Then, using (16), the expected distortion dn for Gilbert channel
packet losses can be estimated as

dn =
2n∑
t=1

dt
n · P (

kt
n

)
=

2n−2∑
r=1

[
P

(
k4r−3

n

)
d4r−3

n + P
(
k4r−2

n

)
d4r−2

n

+P
(
k4r−1

n

)
d4r−1

n + P
(
k4r

n

)
d4r

n

]
, (24)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P
(
k4r−3

n

)
= (1 − p)P

(
k2r−1

n−1

)
, d4r−3

n = v · d2r−1
n−1

P
(
k4r−2

n

)
= p · P (

k2r−1
n−1

)
, d4r−2

n = ECDn + u · d2r−1
n−1

P
(
k4r−1

n

)
= q · P (

k2r
n−1

)
, d4r−1

n = v · d2r
n−1

P
(
k4r

n

)
= (1 − q) P

(
k2r

n−1

)
, d4r

n = ECDn + u · d2r
n−1

r = 1, . . . , 2n−2.

(25)

It can be seen that dn depends on u, v, ECDn, p, and q. The former three
parameters depend on the video sequence. The parameter pair p and q is used
to describe the Gilbert channel and is equivalent to another parameter pair,
PLR and ABL, which are more commonly used. Then, for video transmission
over a Gilbert channel, given the average packet loss ratio PLR, the average
burst length ABL, the initial probability distribution P (k1

1) and P (k2
1), and

the initial distortion distribution d1
1 and d2

1, the expected distortion of each
frame in a GOP can be estimated via a frame recursion approach using (24)
and (25).

Next, the cumulative expected distortion over the entire GOP DN can be
defined as DN =

∑N
n=1 dn. Note that the sequence level expected distortion

DN can be used as an objective metric to assess the average video quality.
Using the proposed method, DN can be directly derived as explained next.
We define D(kr

n) as the total distortion of a sequence from the first P-frame
to the n-th P-frame, for a given loss pattern kr

n. Hence, DN can be estimated
by taking an expectation over all possible loss patterns as follows:

DN =
2N∑
r=1

D (kr
N ) · P (Kr

N) . (26)

With the help of the distortion model in (20) and (23), D(kr
n) can be calcu-

lated as follows,{
D

(
k2r

n

)
= D

(
kr

n−1

)
+ d2r

n ,

D
(
k2r−1

n

)
= D

(
kr

n−1

)
+ d2r−1

n , for r = 1, 2, . . . , 2N−1.
(27)

where P (kr
N ) in (26) and d2r

n , d2r−1
n in (27) can be calculated using (25).

Then, using (27), the total distortion for an arbitrary loss pattern can be
calculated. The formula in (26) provides a way to estimate and analyze the
impact of the bursty loss behavior on the average video quality.

Using the Distortion Trellis model, one can estimate the expected dis-
tortion dn caused by Markov-model bursty losses, at the encoder/sender.
However, the model often fails to compute dn within acceptable time. In par-
ticular, when calculating dn, one needs to compute the terms dr

n and P (kr
n)

associated with r = 1, . . . , 2n. Consequently, the complexity for calculating
dn is O(2n) while that for calculating DN is O(N2n). Thus, it is desirable
to develop a low-complexity algorithm for distortion estimation which is de-
scribed next.
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4.3 Sliding Window Algorithm

The Distortion Trellis model considers that all previous frames in the same
GOP could affect the distortion of the current frame due to error propaga-
tion. However, the propagation of error typically decays in magnitude over
the subsequent frames due to the effects of intra refreshing and spatial fil-
tering. Therefore, it is a reasonable assumption that the distortion of frame
n is independent of the transmission state of frame m, when |m − n| > W ,
where W is an integer constant, as argued and verified throughout this chap-
ter. Based on this assumption, the authors propose a sliding window (SW)
algorithm to calculate dn for n > W with low complexity. For n ≤ W , we
employ the same approach described previously to calculate dn.

In the spirit described above, for every frame n, for n > W , the SW al-
gorithm associates a corresponding sequence segment, or a window W , com-
prising frames n−W +1 to n, which loss patterns are exclusively considered
for calculating the corresponding distortion dn. Specifically, we assume that
the first frame in the segment n − W + 1 is either received with probability
P (k1

1) or lost with probability P (k2
1), independently of any frame prior to it,

and the corresponding distortion is d1
1 and d2

1, respectively. The loss process
of the frames within W is also considered to be a two-state Markov process,
or a Gilbert process. In such a case, there are in total 2W loss patterns that
should be considered for each frame n > W . This means that when calcu-
lating dn using (16), we only need to calculate 2W corresponding decoder
distortion values rather than 2n. The window slides ahead one frame at a
time, and the expected distortion dn for all n > W can be obtained in this
manner. It can be seen that, instead of considering the loss process of all
P-frames in a GOP as Markovian, the SW algorithm limits the Markov loss
process within each window W and ignores the frames outside the window.
The overall SW algorithm is summarized in Algorithm 1 below.

Algorithm 1: SW for calculating dn for n = 1, . . . , N

1: Input: PLR, ABL, u, v, W, N, {ECDn, n = 1, . . . , N};
2: Output: the expected distortion dn for n = 1, . . . , N ;
3: Procedure:
4: Initialization: d1

1 = 0, d2
1 = ECD1, P (k1

1) = 1 − PLR,
P (k2

1) = PLR, p = PLR/(ABL(1 − PLR)), q = 1/ABL;
5: for n = 1 to N do
6: if n ≤ W then
6: Compute dn using (24) and (25), note that when

n = W, P (kj
W ), j = 1, . . . , 2W are obtained;

7: else
7: Reset the initial distortion values: d1

1 = 0,
d2
1 = ECDn−W+1;

8: for i = 2 to W do
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9: for j = 1 to 2i−1 do
9: d2j−1

i = vdj
i−1, d

2j
i = ECDn−W+i + udj

i−1;
10: end for
11: end for
11: After the two for loops, dj

W , j = 1, . . . , 2W

are obtained, then the output is
dn =

∑2W

j=1 P
(
kj

W

)
dj

W ;
12: end if
13: end for

The window length W is an important parameter of the SW algorithm.
Generally, a big W leads to more accurate prediction but increases the algo-
rithm’s complexity. An appropriate W implies that the tradeoff between the
estimation accuracy and the computation complexity is achieved. From (20)
and (23), we can see that parameters u and v determine the distortion fading
speed over consecutive frames, which can be considered when selecting the
appropriate W . Generally, a small to middle u and v indicate quick fading,
in which case a relatively small W may be acceptable.

The SW algorithm provides an efficient way to calculate dn. To obtain dn

for n > W based on the SW algorithm, only the quantities dr
n and P (kr

n)
associated with r = 1, . . . , 2W need to be computed. Together with (26) and
(27), the GOP level expected distortion can also be calculated. In [22] the
authors establish that a window size W ≤ 16 is sufficient to achieve acceptable
prediction accuracy for most examined cases. Hence, the computation cost
is reduced significantly compared to the original Distortion Trellis model.
For example, when the SW algorithm with W = 15 is used to calculate
dn, n = 1, . . . , N for a GOP with N = 36, the number of iteration cycles
that need to be run reduces from

∑36
n=1 2n to

∑15
n=1 2n + (36− 15) · 215. This

translates to a more than 90% reduction in computational complexity.

4.4 Performance Evaluation

Here, we conduct a series of comprehensive simulation experiments in order
to asses the prediction performance of the Distortion Trellis framework as a
function of various systems parameters and for different video contents. The
performance of the low-complexity alternative is also carefully examined.

Simulation Setup

The H.264 reference software encoder JM12.2 [29] with the Baseline profile
is used to encode the test sequences used in these experiments. Four QCIF
sequences are used, the low motion sequence “News”, the moderate motion
sequence “Foreman”, and the high motion sequences “Stefan” and “Football”.
The former three are encoded at 15 fps while the sequence “Football” is coded
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at 30 fps. All sequences are encoded with a constant QP=28. The first frame
is encoded as an I-frame, while the remaining frames are coded as P-frames
with a forced intra refresh rate of 9/99 (every nine frames a row of MBs is
intra refreshed in a round-robin fashion). Intra prediction and 1/4-pel motion
estimation are enabled. We use one slice per frame and one frame per packet.
At the decoder, the simple frame-copy scheme is used for concealment, so
that the factor ECDn in (20) can be easily pre-measured using ECDn =

1
XY

∑XY
i=1

(
xi

n − xi
n−1

)
, where X and Y once again respectively denote the

width and the height of frame n in pixels. The concealment frame is displayed
instead of the missing frame, and is also stored in the reference frame buffer
for decoding subsequent frames.

In the experiments, a range of values for the average packet loss rate is
examined from 3% to 10%, and similarly the average burst length is varied
in the range 1, 1.5, 2,. . . , 5. Each pair of PLR and ABL values is translated
into the corresponding p and q values for the Gilbert channel. Then, with
each pair of p and q we simulate a Gilbert packet loss process and generate
50,000 to 90,000 loss traces with random loss patterns. For each loss trace, we
decode the video and calculate the MSE distortion between each transmitted
and received P-frame. The expected distortion for each frame is then obtained
by averaging the distortion of that frame over all traces. The GOP size for
each sequence used is 390 for “Foreman”, 240 for “Football” and 200 for both
“News” and “Stefan”. Finally, to estimate the model parameters u and v, in
(20) and (23), respectively, we use a least square fitting method applied on
the compressed video data.

Simulation results and analysis

In the first set of experiments, the measured average MSE distortion, the es-
timate using the original Distortion Trellis model, and the estimate based on
the SW algorithm are all compared. Figure 12a plots the average expected
distortion for PLR values from 3% to 10% at ABL = 2. Due to the high
complexity of the original Distortion Trellis model, which is used as the per-
formance benchmark here, we test the model over short sequence segments in
this simulation. Particularly, we encode 20-frame segment starting at differ-
ent positions in the original sequence. For each tested PLR and ABL pair, we
generate 50,000 loss traces for each segment. The average expected distortion
is then obtained by averaging over all segments and loss traces.

It can be seen that the original Distortion Trellis model provides better
prediction of the expected distortion than the SW algorithm along the whole
tested PLR range. Nonetheless, although the SW algorithm is less accurate,
it still matches the measured expected distortion quite well. As expected, we
see that the estimation curve using the SW algorithm is always under the
experimental curve and that its performance improves as the window length
increases. These plots indicate that the SW algorithm could be used as a
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Fig. 12. (a) Average distortion comparison; (b) average expected distortion over
all P-frames of “Foreman” versus window length

very good approximation of the original model, especially at larger window
lengths.

To examine the influence of the window length on the accuracy of the SW
algorithm, Figure 12b plots the average expected distortion over all P-frames
of “Foreman” versus the window lengths from 12 to 19 at PLR = 5% and
ABL = 2, based on the same simulation data set as used in Figure 12a.
We clearly see that the SW algorithm generally underestimates the expected
distortion. This is because when calculating the expected distortion of the
current frame, the distortion from frames outside the sliding window is ig-
nored by the SW algorithm. In particular, we observe that smaller window
lengths lead to larger estimation error values, because a smaller window ig-
nores more distortion components from the past. We also observe that with
the increase of the window length W from 12 to 16, the performance of the
SW algorithm increases gradually, as discussed in Section 4.3. However, in-
creasing the window length further does not bring as much performance gain.
We believe that this is because the fading behavior of the impulse channel
distortion often follows an exponential decay curve [30], or at least follows
a similar degrading trend. That is why the SW algorithm performance does
not increase linearly with the window length. In the experiments, the SW
algorithm with W ≤ 16 provides a fairly good performance for most of the
examined cases. In addition, for some fast decaying an sequences even smaller
W also provides acceptable results. Therefore, only the SW algorithm will be
employed for estimating the expected distortion in the rest of the experiments
considered in this section.

Next, the average expected distortion over all P-frames (i.e., the quantity
DN/N) versus PLR from 3% to 10%, for both ABL=2 and 5 is plotted
in Figure 13. The tested sequences include “Foreman” and “Football”. For
“Foreman” the first 390 frames are coded while for “Football” the first 240
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Fig. 13. Average distortion versus PLR: (left) Foreman and (right) Football. Cor-
responding distortions for a Bernoulli channel are also shown.

frames are coded. For each tested PLR and ABL pair, we simulate a Gilbert
loss process and generate 90,000 random loss patterns. For each loss pattern,
the distortion model in (27) is used to predict the decoder distortion. The
window length used in the SW algorithm is 16 for “Foreman” and 15 for
“Football”. The average expected distortion for the case of a Bernoulli chan-
nel at the same loss rate is also plotted in the same figure for comparison,
where 1000 loss traces are generated at each loss rate for this channel model.

We can see that the SW algorithm accurately estimates the average ex-
pected distortion over most of the range of the average loss rate. At high
loss rate, the SW is less accurate, but still well matches the actual distortion
curve. The good match between the theoretical data and the measured data
tells us that the proposed model can be used to estimate and analyze the
impact of bursty losses on the average video quality. Moreover, we see that
though the window length used for “Football” is smaller than that for “Fore-
man”, the accuracy of the SW algorithm is similar. We will discuss this later.
From both figures, we also see that at the same ABL, the average distortion
increases linearly with the PLR.

Interestingly, we observe from Figure 13 that for the same average loss
rate the expected distortion for the Gilbert channel can be smaller or larger
than that for the Bernoulli channel depending on the video content. Specif-
ically, for the “Foreman” sequence the former is larger while for the “Foot-
ball” sequence the opposite is true. Even more interestingly, we observe that
increasing the average burst length does not always contribute to a larger
expected distortion, for a given average loss rate. For example, in the case of
“Foreman” a larger ABL leads to a larger expected distortion, for the same
PLR, as seen from Figure 13 (left). However, the opposite holds true in the
case of “Football”, as seen from Figure 13 (right). To the best of our knowl-
edge, the aforementioned experimental results has been reported for the first
time in the present work. Notice that the latter result in fact contrasts the
earlier finding reported in the context of the first distortion model reviewed
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(b) News: PLR = 8%
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Fig. 14. Average expected distortion versus ABL for PLR = 3% or 8%

in Section 2 that video distortion always increases as a function of the burst
length. Still, the results presented in Figure 13 prove again that burst length
does matter, i.e., it does affect video quality, as also corroborated by this
earlier model [20, 23].

To study further the impact of the average burst length on the average
video quality, in Fig. 14 we show the average expected distortion over all
P-frames (DN/N) versus burst length of 1, 1.5,. . . ,5 for a given packet loss
rate (3% or 8%). The tested sequences comprise “News” and “Stefan”11. For
each sequence the first 200 frames are coded. The examined loss rates in-
clude 3% and 8%. For each tested PLR and ABL pair, 60,000 loss traces
are generated. It can be seen from Fig. 14 that the estimated average distor-
tion matches the measured data well along the whole range of tested burst
length values and for the two packet loss rates. In addition, we can clearly
observe that the average expected distortion DN/N does NOT always in-
crease as the average burst length increases for a given average packet loss
rate. Specifically, in the case of “Stefan” increasing the average burst length
reduces DN/N , while for “News” the opposite is true. These results confirm

11 Due to space constraints, the corresponding results for “Foreman” and “Football”
are not included. Still, they only confirm the findings reported here.
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the earlier findings from Fig. 13 that for the same average loss rate, a larger
average burst length does not always lead to a larger distortion in the case
of a Gilbert channel.

As mentioned earlier, the preceding observations seem different from those
reported in [20, 23], where it was found that ”longer burst length always
causes larger MSE distortion”. We believe that this is due to a difference in
the experimental setup. In particular, the work in [20, 23] aims to test if burst
length matters, and therefore it measures the total distortion at the decoder
versus varying burst lengths, implying that the average loss rates that are
used are proportional to each burst length. While in the present experiments
the authors considered how the average burst length affects the expected
distortion if the average loss rate remains constant. In particular, from the
Gilbert channel model shown in Fig. 9, we can see that increasing ABL while
keeping PLR constant implies at the same time reducing the parameters q
and p proportionally (recall that ABL = 1/q and PLR = p/(p + q)).

In the following, we employ distortion component analysis to study further
this last set of results. In particular, from (26), it is clear that DN is the sum
of 2N components, i.e., DN =

∑2N

r=1 D (kr
N ) · P (hr

N). Define Dr = P (kr
N ) ·

D (kr
N ) as the r-th component. We observe that several components are much

larger than almost all the other components. For the DN versus ABL curve,
these large components will determine its trend. Many other components are
relatively small and thus make less contribution to DN , though they may
still affect the shape of the DN versus ABL curve.

We first try to explain why DN/N is an increasing function of ABL for
“Foreman” and “News”. Specifically, we employ multiple 10-frame segments
taken at different positions in the “Foreman” sequence to calculate an “aver-
age D10” and plot all components of the average D10 versus ABL in Fig. 15.
We discover that some relatively large components monotonically increase
with ABL, which makes D10 an increasing function of ABL. Although many
other components decrease with ABL, they are relatively small and thus
cannot influence the overall trend of DN as a function of ABL. Note that
the component D210 (the red curve in Fig. 15 increases quite quickly and be-
comes much larger than all the others starting from ABL = 3.5. The quantity
D10 −D210 is also plotted with a dashed line. We can see that without D210 ,
the total distortion becomes a decreasing function of ABL for ABL ≥ 4.
This implies that the single component D2N contributes the most to make
DN increase with ABL at high average burst lengths. Additionally, note that
D1+29 (plotted in yellow) is the main decreasing component. The same anal-
ysis applies to the “News” sequence. These results are not included here to
conserve space.

Furthermore, it is an interesting observation from Figs. 14(a-b) that the
rate of increase of the average distortion DN/N gradually decreases as ABL
increases. We believe that this is because there are still many components of
DN decreasing with ABL, as shown in Fig. 15. Though these components are
too small to make the trend of DN versus ABL curve change from upward
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Fig. 15. Distortion components Dr, r = 1, . . . , 210 of D10 versus ABL. The red
curve is D210 . The green solid curve is D10. The green dash curve is D10 − D210 .
The yellow curve is D1+29 .
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Fig. 16. Distortion components Dr, r = 1, . . . , 210 of D10 versus ABL. The red
curve is D210 . The green solid curve is D10. The yellow curve is D1+29 .

to downward, they still slow down the increasing rate of DN as a function
of ABL. In other words, they gradually decrease the slope of the DN versus
ABL curve.

Next, we apply the same analysis to explain why DN/N is a decreasing
function of ABL for “Stefan” and “Football”. Using the same approach for
creating Fig. 15, we compute the 10-frame average D10 for the “Football”
sequence and plot in Fig. 16 all components of D10 for ABL from 1.5 to 5 at
PLR = 3%. Compared to the corresponding graphs from Fig. 15 it can be
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seen that now many distortion components in Fig. 16 have a similar shape,
however exhibit different relative magnitudes. For example, the component
D210 (the red curve in Fig. 16) is not that large now while D1+29 becomes
a large and important component. Finally, from Figs. 14(c-d)12 we can see
that the rate of decrease of the average distortion DN/N reduces as ABL
increases. This is due to the fact that many small but increasing components
slow down the decreasing rate of DN as a function of ABL, as shown in
Fig. 16. The results for “Stefan” can be explained in a similar fashion and
are not included here for space considerations.
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Fig. 17. Expected distortion versus frame number for ABL = 3 and PLR = 8% in
the case of Foreman (left) and Football (right).

Finally, Fig. 17 shows the expected distortion versus frame number for
“Foreman” and “Football” at PLR = 8% and ABL = 3. For each sequence
the first 100 frames are coded. We can see that the estimated distortion using
the SW algorithm with W = 16 fits the measured distortion values well.
This tells us that the proposed model predicts well the frame level expected
distortion and therefore can be employed to design efficient frame-based error
resilient techniques for video transmission over burst loss channels.

In summary, it can be seen that the distortion trellis framework provides
an accurate description of the loss-induced MSE affecting a transmitted video
content, both at the frame-level as well as overall on a sequence level. Further-
more, we saw that through this framework we can analytically relate some
very interesting discoveries observed in the simulation experiments such as in-
creasing or decreasing video distortion as a function of burst loss length. The
authors in [22] provided further experimental evidence supporting the find-
ings included here. In addition, they extended their framework to the more
general case of a finite-state Markov model and demonstrated its improved
accuracy for distortion prediction in actual Internet experiments. These last
two sets of results are not included here due to space constraints.
12 The distortion vs. ABL curves are analogous for “Football” and “Stefan”.
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5 Related Work

Depending on the content level (pixel, macro-block, frame/slice/packet, or
GOP) at which a model performs its computations, all related work on error
propagation and distortion modeling in lossy video communication can be
broadly classified into four categories. From the pixel-based approaches, we
cite here the recursive optimal per-pixel estimation (ROPE) method intro-
duced in [31] and its extensions [32–35]. The model proposes to compute the
frame-level and sequence-level distortion values based on recursive per-pixel
estimates of the expected reconstruction MSE affecting the video content in
the event of packet loss. Similarly, [36, 37] employ the same recursive prin-
ciple to compute and track the average distortion at each macro-block of a
video frame. However, no consideration is given to the specific packet loss
pattern nor to the statistical dependency of the individual losses that the
transmitted video content experiences in any of the works above13.

As mentioned throughout the chapter, most of the packet-level distortion
estimation techniques proposed to date consider a linear model. That is the
overall distortion affecting the reconstructed sequences is proportional to the
number of packet losses experienced during transmission, i.e., the average
packet loss rate. For instance, [18, 38] model the influence of intra-refresh
rate and spatial filtering on the error propagation associated with a single
packet loss. Then, linearity and superposition are assumed to synthesize the
distortion associated with multiple losses. Similarly, the work in [19] employs
such a liner superposition model in the context of wireless video streaming.
In the spirit of [31], the works in [26, 27] propose frame-based recursive tech-
niques for distortion estimation. However, again only the average packet loss
rate is considered in the analysis disregarding therefore the influence of spe-
cific packet loss patterns and the statistical correlation of the channel induced
packet loss. Finally, the studies in [39, 40] design methods for computing the
GOP-level transmission-induced distortion in mobile video streaming.

Works where distortion models have been employed for other applications
include [41] that employs a linear model for in-network monitoring of video
quality of compressed streams subject to packet loss. In particular, content
specific information and the effect of error propagation are directly assessed
from the compressed stream. This information is then mapped to a specific
video quality level using a linear distortion model that only takes into ac-
count the overall loss rate, as explained earlier. Similarly, the work in [42]
develops a novel perceptually-driven video quality metric that again takes
into account the effect of multiple losses through a linear additive relation-
ship. Still, the effect of inter-packet loss separation is taken into consideration
by augmenting the metric with a heuristic multiplying factor denoted clus-
ter degree. Though no formal analysis is provided, from their experiments,
13 It should be mentioned that [34] is the only work reviewed here that consid-

ers correlated packet loses. However, the employed recursive computation still
prevents differentiating the impact of various loss patterns.
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the authors observe that closely grouped losses have a stronger influence on
perceptual quality, which confirms the analytical and simulation findings of
the studies covered in depth in this chapter. Finally, distortion models that
circumvent the effect of error-propagation by assuming frame-freeze conceal-
ment at the decoder14 have been considered, e.g., in [43–45] in the context
of rate-distortion optimized video streaming.

6 Conclusions and Open Challenges

The distortion models studied in this chapter have substantially advanced
the state-of-the-art in characterizing the impact of data loss on reconstructed
video quality. Some of their most important discoveries include accounting
for the effect of burst loss patterns, demonstrating the existence of negative
distortion in the event of further packet loss, and characterizing the impact
of the statistical dependencies of the communication channel. By captur-
ing many subtle effects related to video compression, packet loss processes,
and their interplay these advanced models have been able to provide a more
accurate prediction performance and a deeper understanding of many com-
plexities that arise when predictively encoded content is transmitted over an
unreliable channel. Still, there are a few important challenges that remain to
be tackled.

For instance, in high data rate video a single frame may be broken down
into multiple packets before transmission. This reduces the impact of burst
loss dramatically as recognized, e.g., in [41, 46] since the multiple packets
lost in a row may still belong to the same video frame. Therefore, from the
perspective of the compressed content such losses will be analogous to the
loss of a single frame. Similarly, video content is frequently transmitted pro-
tectively encoded, i.e., in concert with forward-error correction (FEC) data
in order to alleviate the effect of channel-induced packet loss. Therefore, an
interesting direction of further research in distortion modeling would be to
extend the present models to capture the impact of FEC. As in the case of
high date-rate video, adding such protective layers of data would reduce the
level of end-to-end burstiness in terms of packet loss that the video decoder
observes on the receiving end. Yet another relevant issue that would need
to be carefully addressed is the fact that different video codecs employ at
present different error concealment techniques. Specifically, in the event of
loss of some slices of a frame MPEG-2 [2] conceals the whole frame with its
reconstructed predecessor. In contrast, H.264 [6] still employs the correctly
received slices to reconstruct the present picture where the missing data is
interpolated from the these slices and suitably selected content from the pre-
vious frame. Clearly, these two different concealment strategies will result
14 The first loss-affected frame is concealed with its temporally nearest predecessor

that is already decoded. This content remains displayed, i.e., frozen (hence the
name) until the successful decoding of a subsequent intra-coded frame.
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in two different distortion-loss dependencies that will need to be individu-
ally recognized. Finally, the advent of multi-view imaging opens up another
prospective avenue of interesting research on distortion modeling. In such
a setting, it is crucial to account for the additional inter-view dependencies
that arise if an accurate assessment of the reconstruction quality in the event
of data loss is desired.
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