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Preface

The rapid advances in computing, communication and storage technologies have
heralded a new age of explosive growth in multimedia applications, such as online
image and video repository, mobile TV and IPTV, video on demand, interactive
multimedia game, video blogging, and multimedia based social interaction. These
applications open up new opportunities and present new challenges to the
technologies in the area of multimedia computing architectures, audio/visual
information processing, multimedia analysis and understanding, multimedia
retrieval and mining, multimedia coding, communication and networking. During
the recent years, considerable amounts of research activities in both industry and
academia have been devoted to these topics and a key piece of puzzle is to
develop novel and effective approaches in modeling and analyzing, representing
and understanding, and encoding and distributing multimedia content, all of which
will be the focus of this book.

This edited book provides an excellent forum for experts around the world to
present their newest research results, exchange latest experiences and insights, and
explore future directions in this important and rapidly evolving field. It aims at
increasing the synergy between academic and industry professionals working in
the field. It focuses on the state-of-the-art research in various essential areas
related to emerging technologies, standards and applications on analysis,
processing, computing, and communication of multimedia information.

The target audience of this book will be mainly researchers and engineers as
well as graduate students working in various disciplines linked to multimedia
analysis, processing and communications, e.g., computer vision, pattern
recognition, information technology, image processing, and artificial intelligence.
The book is also meant to a broader audience including practicing professionals
working in image/video applications such as image processing, video surveillance,
multimedia indexing and retrieval, and so on.

Since this book comprises different algorithmic advances and applications, it
has been organized into three parts, as outlined and introduced as follows.

Part I: Image Processing and Analysis

The issues related to image processing and analysis are to be discussed in the first
eight chapters. In particular, image processing is usually referred to as the
mathematical operations on images, generally with digital computers, in order to
make modifications, extract certain information or perform understanding and
retrieval. The earliest techniques, such as medical imaging, character recognition
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and image enhancement, can be traced back to 1960s. Throughout the years, with
the proliferation of digital cameras and the advances of computing hardware, more
and more image processing techniques are developed, and they are attracting the
interests of multiple research communities. Nowadays, people are living with the
surroundings of images and their processing. After capturing a photo, you can
perform many meaningful modifications like segmentation, fusion and matting.
When photos are uploaded to Facebook, face detection and recognition technology
can help to organize these photos. One can also easily finds images or photos he or
she wants via content-based or text-based retrieval techniques. In this part, we
cover image database visualization and browsing, human computer interactions in
image retrieval, image watermarking, and sketch based face recognition, as well as
some low level image processing techniques, e.g., image segmentation and deblur.
In each chapter, appropriate evaluation has been included for the introduced
techniques and their applications in multimedia services.

Part II: Video Processing and Analysis

We then turn to discussion about video processing and analysis in Chapters 9 to
19. Today’s fast developments in digital media processing capabilities and
network speeds have made the dissemination of multimedia data more rapid and
reliable, and attracted significant research attentions to action recognition, event
detection, and video tracking and surveillance. The big improvements in digital
multimedia processing are beneficial to the fast and reliable production,
processing and dissemination of large amounts of digital data. However, this can
easily become a time consuming and cumbersome problem. Therefore, the
automated extraction of high level information (such as when and where activities
occur, or who and what is in a video) using low-level image and video features
(e.g. color, texture, shape, motion) is critical for the future development of
multimedia research. Some specific video processing and analysis techniques like
video frames localization, video shots detection and segmentation, and activity
localization have attracted significant attention. In this part, we focus on the
research works on object detection/tracking in surveillance videos, human action
recognition based on different types of features, 2D and 3D pose recovery, domain
driven video analysis, knowledge extraction with scalable ontological networks
for video retrieval, visual quality assessment, and video recommendation.
Examples in real world applications and computer simulation results are also
presented to give convincing illustrations and help the readers to achieve a deeper
insight in the related topics.

Part III: Communications Related Processing

In present age of information technology, multimedia data are ubiquitous in our
daily life and work. Thus, multimedia research has become one of the central
issues in the relevant research and development. The rapid growth of computer
network and communication technology has pushed forward greatly the overall
advance of multimedia technology. The study on multimedia data compression is
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not only important for theoretical studies but also urgently needed in practice.
Along with the development of digital video equipment, people take photos and
videos with better quality. Moreover, people’s continuously pursuing of better
visual effect and experience promotes the emergence of high definition (HD) TV,
HD video, etc. How to store and transfer these huge data becomes a critical issue
for multimedia research. For example, when people need to share photos on the
internet, they need a proper compression technique to maintain data quality.
Therefore, communication related issues are important for multimedia research. In
this part (Chapters 20 to 26), we introduce techniques related to multimedia signal
coding, evaluation and transmission.

This book project has brought 26 groups of active researchers together in the
areas which we really believe in and with the technology that is expected to have
great impact in our work and life. The preparation of this book has been a long,
arduous and difficult task. We would like to thank all the authors for their great
effort and dedication in preparing their quality contributions. Also, all the
reviewers of this Springer book deserve our utmost gratitude. We have enjoyed
the whole process, and hope that the researchers, engineers, students and other
professionals who read this book would find it informative, useful and
inspirational toward their own work in one way or another.

November 2010 Weisi Lin
Dacheng Tao

Janusz Kacprzyk

Zhu Li

Ebroul Izquierdo

Haohong Wang
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Visualisation and Browsing of Image Databases

William Plant! and Gerald Schaefer?

! School of Engineering and Applied Science

Aston University
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gerald.schaefer@ieee.org

In this chapter we provide a comprehensive overview of the emerging field of
visualising and browsing image databases. We start with a brief introduction
to content-based image retrieval and the traditional query-by-example search
paradigm that many retrieval systems employ. We specify the problems as-
sociated with this type of interface, such as users not being able to formulate
a query due to not having a target image or concept in mind. The idea of
browsing systems is then introduced as a means to combat these issues, har-
nessing the cognitive power of the human mind in order to speed up image
retrieval. We detail common methods in which the often high-dimensional fea-
ture data extracted from images can be used to visualise image databases in
an intuitive way. Systems using dimensionality reduction techniques, such as
multi-dimensional scaling, are reviewed along with those that cluster images
using either divisive or agglomerative techniques as well as graph-based vi-
sualisations. While visualisation of an image collection is useful for providing
an overview of the contained images, it forms only part of an image database
navigation system. We therefore also present various methods provided by
these systems to allow for interactive browsing of these datasets. A further
area we explore are user studies of systems and visualisations where we look
at the different evaluations undertaken in order to test usability and compare
systems, and highlight the key findings from these studies. We conclude the
chapter with several recommendations for future work in this area.

1 Introduction

Nowadays, the majority of people possess some form of digital camera to
use in their everyday lives. Devices range from relatively low quality web
cameras, to medium range cameras integrated into mobile devices, to higher
quality cameras aimed at the average user, on to high-end cameras used

W. Lin et al. (Eds.): Multimedia Analysis, Processing & Communications, SCI 346, pp. 3
springerlink.com © Springer-Verlag Berlin Heidelberg 2011



4 W. Plant and G. Schaefer

by professional photographers. Affordability of devices and storage media
coupled with increased capabilities and the ‘to hand’ availability of camera
equipment has led to a dramatic increase in the number of digital images the
average end user creates and stores.

With the reduction in digital photography costs, a shift in the attitude
towards photo taking can be observed. Users tend to take more images now
than before, particularly of the same objects or scene (e.g. from different
perspectives) [25]. This is certainly a change from the past, where one would
generally be concerned about the number of exposures left on the current
film roll or the cost of developing photographs, whereas a digital camera user
not happy with a photo can simply delete it from the camera’s memory and
images can be printed on home printers.

Personal image collections nowadays are typically in the range of hundreds
to thousands of images. The rapid increase in the number of digital images
taken by individuals has also caused an exponential growth in the number of
images available online. Social networking sites allow users to instantly share
images with friends, family or a wider community of users that also have the
ability to comment and even ‘tag’ who or what may be in an image.

Commercially, professional photography companies may store millions of
digital images in their databases [50]. These are generally manually anno-
tated image collections used by journalists from a variety of publications to
search for images suited to their particular needs. As one can imagine, the
search for any particular image in collections of either personal or commercial
magnitude can be tiresome and exhaustive. Generally, images are arranged in
a one-dimensional linear arrangement, whereby an image has no correlation
to any of its neighbours. Images are usually grouped together in a manually
named folder or on the basis that they were uploaded to the computer at the
same time.

This organisation of images is not ideal for a variety of reasons. Firstly,
the cost of storage media has dramatically decreased whilst storage capacity
has increased. Therefore an average end user may take many photos of many
different events (such as birthdays, holidays etc.) on a camera before upload-
ing them to their computer. If not sorted manually, multiple events may get
grouped together, potentially making it difficult for the user to locate specific
images in the future.

This leads to a second issue of manually annotating folders. If images of
multiple events are stored in the same folder, it is difficult to describe the am-
biguity of the content contained within it using just a folder name. Typically
the date of the camera upload will be chosen, but this could become rather
meaningless after a long period of time. Rodden and Wood [62] demonstrated
in their analysis of digital photograph management that users are generally
unwilling to annotate their images. Another issue is that words chosen to an-
notate an image can be highly subjective, with appropriate keywords chang-
ing between different users which in turn can render keyword-based search
unintuitve and difficult to operate [39].
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1.1 Content-Based Image Retrieval

Since textual annotations are not available for most images, searching for par-
ticular pictures becomes an inherently difficult task. Luckily a lot of research
has been conducted over the last two decades leading to many interesting
methods for content-based image retrieval [75] [IT]. Content-based image re-
trieval (CBIR) does not rely on textual attributes but allows search based
on features that are directly extracted from the images [75]. This however is,
not surprisingly, rather challenging and often relies on the notion of ‘visual
similarity’ between images or parts thereof. While humans are capable of
effortlessly matching similar images or objects, machine vision research still
has a long way to go before it will reach a similar performance for computers.

Smeulders et al. [75] define three primary applications of CBIR systems.
A target search is undertaken when the user has an absolute target in mind,
perhaps of an exact image or images of a specific object or scene. A category
search is undertaken when a user requires an image that best represents some
class of images. Finally, in search by association, users have no initial aim
other than to search for images of interest. This usually leads to an iterative
procedure whereby the search may be focussed on an image which the user
finds interesting.

1.2 Query-By-Example

In the early days of CBIR, the general method used by systems such
QBIC [15], Virage [20], PhotoBook [52] or NeTra [43], to query an image
database was through a query-by-example (QBE) approach. QBE allows a
user to specify a query image to the system in order to retrieve images from
the database that are deemed similar to that query. Each image is charac-
terised by a feature vector (e.g. the bins of a colour histogram as originally
proposed in [76], or a combination of colour, texture and shape features as
in [I5] - see [75] for a detailed review on image features). An equivalent feature
vector is extracted from the query image and compared to all database vec-
tors to arrive at similarity or dissimilarity scores between query and database
images (using metrics such as Ly [76] and Lz [15] norms or the earth mover’s
distance [64]).

Upon comparing the database images to the query, the system will present
the top N similar images according to their distance from the query image.
The presentation of results is typically a one-dimensional linear arrangement,
in order of increasing distance (i.e. decreasing similarity) starting from the
top left hand corner of a grid.

There are two main drawbacks of QBE-based CBIR. The first one is that
users may not deem the images presented by the system as actually being
similar to the query. For example, a user may supply the system with a red
flower. The system will return all images with a large red content, and the
texture and shape similar to a flower. However the user may be searching
either for red flowers, or a particular species of flower that happens to be red
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in their particular picture. This high-level interpretation of an image by the
user cannot be satisfied by the low-level feature calculations performed by
the computer. This problem is of course not specific to QBE-based retrieval
but is common to all similarity-based CBIR approaches and is known as the
‘semantic gap’ [75].

The second shortcoming of QBE is that a user may not actually have an
image to give to the system, thus rendering QBE effectively useless. While
potential solutions such as sketch-by-example [28] [38] have been proposed
in order to overcome this issue, these have limitations of their own and are
hence rarely explored.

1.3 Relevance Feedback

A commonly explored approach to improve the retrieval performance of CBIR
systems, and a partial solution to the first issue presented above, is relevance
feedback (RF) [86]. This mechanism modifies the underlying parameters of
the algorithms of a system in an attempt to learn what a user is searching
for. Upon presentation of the initially retrieved images, the user can specify
whether they deem a retrieved image useful or not. Multiple images can be
selected as either positive or negative examples and these are then used in
order to weight the different features according to the user’s preference, and
update the search results which should now contain more relevant images.
This process can be repeated to further improve the retrieved results. In the
aforementioned example of the red flower, if the user were to select multiple
images of red flowers as positive examples the system is then likely to return
more red flowers, weighing the colour feature more highly than shape or
texture. On the other hand, if the user selects images of the same species of
flower but with varying coloured petals, the system will emphasise shape and
texture more than colour. A variety of RF mechanisms exist [86], the most
common being a relevant or non-relevant selection (as e.g. used in [I5]) or
slide mechanisms allowing the user to specify a continuous score of relevance
(as employed e.g. in [65]).

The user will generally only select a small amount of positive and negative
examples. Therefore, small sample learning methods are required. The most
successful of these methods include discriminant analysis and support vector
machines (SVMs) [77]. In the work of Tao et al. [78], the authors state that
SVM based RF has shown promising results in previous studies due to good
generalisation abilities, but show that incorporating asymmetric bagging and
a random subspace into a SVM, can lead to improved results, while reducing
computational complexity. The authors of [77] experiment with variations of
discriminant analysis for RF, namely LDA (Fisher linear discriminant analy-
sis) and BDA (biased discriminant analysis) and develop an improved method
named directed kernel BDA (DKBDA). The reader is directed to works such
as [86] [77, [78] for further information on these and other RF algorithms.
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Another variation of RF allows the user to manually drag the system
results closer or further away from the query image based on preference [23].
Other browsing-based RF mechanisms are described in Section

1.4 Image Browsing Systems

Image browsing systems attempt to provide the user with a more intuitive
interface, displaying more images at once in order to harness the cognitive
power of the human mind in order to recognise and comprehend an image
in seconds. Interaction with a traditional QBE system can often lead to a
confusing and frustrating user experience. Formulating queries from images
can prove difficult for the user, and the ‘black-box’ state of such approaches
means that users typically cannot derive how the system is retrieving these
results, and are thus unable to modify the query in order to improve the
results returned by the system.

This is confirmed in a user study presented by Rodden and Wood [62]
where the authors provided users with an image retrieval system that offered a
variety of querying facilities, including speech recognition and the traditional
QBE approach. The authors found (by examining usage logs) that most users
did not use the QBE function as the system did not meet their unrealistic
expectations of the current state of CBIR. For example, a user explained how
he had attempted to find all the images of a new blue car by using a query
image, but the images provided were irrelevant. As he had no idea how the
system was providing these results, he could not improve the query and thus
abandoned the search.

Browsing systems give a useful alternative to QBE. Providing an overview
of the database to the user allows for intuitive navigation throughout the
system. This is particularly the case when images are arranged according to
mutual similarity as has been shown in [59], where a random arrangement of
images was compared with a visualisation which positioned images accord-
ing to their visual similarities, i.e. where images that are visually similar to
each other are located close to each other in the visualisation space. It was
discovered that during a target search (i.e. looking for a particular image),
similarity-based visualisation reduced image retrieval time.

QBE systems cannot be used when the user does not have a specific im-
age in mind, as no query image can be provided. Image browsing systems
overcome this problem by showing an overview of the image database. An
overview of the collection will give the user a good indication whether or not
an image or image class they have in mind might actually be present in the
database. In some cases, the entire database will be displayed to the user
on a single display. The user can then focus on regions of the visualisations
that they are attracted to or believe will harbor a particular concept they
have in mind. Browsing such visualisations when arranged according to image
similarity, as shown in [59], can increase the rate of retrieval. These visuali-
sations are usually achieved through dimensionality reduction, whereby the
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relationships between images in a high-dimensional feature space are main-
tained as best possible in a reduced 2D (or 3D) space which is more compre-
hensible to the user.

In case image collections are too large to fit to a single display, images can
be grouped according to similarity through the application of a clustering
procedure. The user is then able to navigate through these clustered groups
of images in order to browse the collection. An overview of the database is
provided by initially presenting the user with a representative image for each
cluster. Clustering can also be performed in a hierarchical manner which in
turn allows for visualisation of very large datasets.

Another way in which image databases can be displayed is through graph-
based visualisations. In these approaches, links are formed between images
that are deemed similar or that share a common concept, while the images
themselves form the nodes of the graph. The whole connected graph, or part
thereof, is then displayed to the user for visualisation and navigation.

Similarity-based visualisation is not the only useful form of arranging im-
age databases. In particular for personal collections, grouping according to
the time images were created has shown to be useful. This approach can be
adopted to automatically cluster event images. In cases where time informa-
tion is not always available or not necessarily reliable, this approach can be
combined with similarity-based systems.

The fundamental issue with the development of a browsing system is how
to present the user with the images in a database. With image collections
ranging in the size of millions, any browsing system needs to utilise the limited
screen space provided by a typical computer monitor in a manner which is
intuitive and easily navigable by the common user. Immersive environments
and virtual reality allow for a completely new way of visualising information
with a unique user experience. It is only natural that this approach has also
been adopted for visualising image databases. The user is immersed into the
actual database, while the addition of a third dimension coupled with the
larger visualisation space can lead to a more effective approach of navigation.

While a visualisation of an image collection is useful for providing an
overview of the contained images, it provides only part of a useable im-
age database navigation system. Once a collection is visualised, users should
have the ability to interact with it in order to arrive at the image(s) they
are looking for. Typical operations here include panning and zooming which
allow the user to focus on images in a different part of the visualisation space,
respectively on images which were previously hidden.

With regards to the three primary CBIR applications of [75], browsing
interfaces clearly allow for better search by association (searching with no
specified target) than QBE approaches. As for target search (looking for a
particular image), QBE interfaces may provide quicker retrieval times com-
pared to a browsing interface, but of course need a query image to start with.
For category search, arranging images by similarity creates intuitive group-
ings of images relating to the same category. On the other hand, formulating
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a single query image of a category for QBE could prove difficult. For example,
suppose a user wanted to enrich a travel article of Australia with a handful
of pictures. It is not clear which images in the database would be best suited,
without seeing all the Australia related pictures in the database. QBE could
only work in this instance if the user knows exactly which aspect of Australia
they require (e.g. an image of a kangaroo or the Sydney Opera House). In
contrast, allowing the user to browse the database can help cross the ‘seman-
tic gap’ by allowing the user’s cognitive system to play a more active role
during image selection.

Browsing systems can provide users with a much less constrained, con-
tinuous interface in order to explore an image database. In this chapter, we
review a variety of methods used by different researchers in order to arrange
and visualise image databases to support intuitive image database naviga-
tion. The rest of the chapter is organised as follows: Section Bl focusses on
how these databases can be visualised, explaining approaches based on di-
mensionality reduction, clustering, and graph-based visualisations. Section [3]
describes different tools implemented by researchers in order to enable users
to browse these visualisations. Section H] highlights user studies undertaken
in the field, how they are performed and what discoveries such studies have
found. In each section we provide a critical discussion of the various ap-
proaches proposed in the literature. Our observations are summarised and
future directions identified in Section Bl

2 Visualisation of Image Databases

In order to browse an image database, the users need to be presented with
thumbnails of the images so that they may intuitively navigate the database.
The primary issue associated with visualisation is how to best display the
images within the limited space of (typically) a 2D screen. A variety of meth-
ods have been devised in order to visualise images, whether it be the entire
database or a subset of images. In this section we look at the different tech-
niques used in order to visualise image databases for browsing.

2.1 Mapping-Based Visualisation

CBIR systems typically employ high-dimensional features to represent im-
ages. Clearly, it is impossible for the human mind to perceive a feature space
of this magnitude, and based on the raw data, we are therefore unable to
recognise potential relationships within the dataset. In order to visualise this
high-dimensional data, various techniques exist which describe the feature
space layout within a low-dimensional model which the human mind can
more readily understand. For image database browsing, this mapping is typ-
ically down to just two dimensions, namely the z and y co-ordinates of a
2D computer display. The main problem is obviously how to perform this
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mapping so that the relationships of the original data are maintained. In
the following, we discuss various approaches that have been employed to this
effect.

Principal Component Analysis (PCA)

Principal component analysis (PCA) is the simplest dimensionality reduction
approach, working in a linear manner. The starting point for PCA is the sym-
metric covariance matrix of the feature data from which the eigenvectors and
their respective eigenvalues are calculated and ranked in descending order of
eigenvalues. The principal components are selected from the top eigenvectors
according to the number of dimensions required (i.e. for 2D the top two eigen-
vectors are selected). These eigenvectors are then used to plot the original
data where image thumbnails are plotted at the co-ordinates derived through
projection of the orginal feature data into the low-dimensional space. PCA
has the advantage that it is relatively simple. However, since it maximises
the variance of the captured data it does not necessarily best preserve the
mutual relations between the individual data items (this is only the case if
the underlying metric in the original feature space is the Ly norm).

The Personal Digital Historian (PDH) project developed by Mitsubishi
Electronics Research Lab (MERL) [45] uses PCA splats in order to visualise
images. PDH attempts to bring photo sharing to a round table top, with the
system being projected down from above. The authors use colour, texture,
and shape features which are then projected, using PCA, to a 2D format
whereby similar images appear close together. Keller et al. also use a PCA
visualisation to present images in a virtual 3D interface based on texture
features [31].

Multi-Dimensional Scaling (MDS)

In contrast to PCA, multi-dimensional scaling (MDS) [36] attempts to pre-
serve the original relationships (i.e. distances) of the high dimensional space,
as best possible in the low-dimensional projection. MDS starts with a simi-
larity matrix which describes all pair-wise distances between objects in the
original, high-dimensional space. The goal is then to best maintain these dis-
tances which in turn can be formulated as minimizing a ‘stress’ measure,
often defined as [36]
2200 — 0i5)? B
2
203 9%

where ;5 is the original distance between objects ¢ and j, and &j is the
distance in the low-dimensional space. Starting from either a random initial
configuration, or from the co-ordinates after applying PCA, the algorithm
continues to reposition the images in order to reduce the overall stress, until

STRESS =
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a termination condition has been reached (for example a maximum number
of iterations or threshold stress value).

MDS was employed by Rubner et al. [64] who suggested using it for brows-
ing image collections. Based on colour signatures of images and the earth
mover’s distance (EMD) [64], the authors were able to create a representation
of the high-dimensional feature space using MDS, placing image thumbnails
at the co-ordinates derived by the algorithm. Figure [[l shows an example of
a MDS visualisation of an image database.

Fig. 1. An MDS visualisation of the UCID image database [74]

MDS provides a more accurate representation of the relationships between
images in the feature space compared to PCA. The work of [64] also suggested
that MDS can be used for both image query results (local MDS) and to give
an overview of a collection of images, providing the user with a general scope
of images contained within the database (global MDS). However, MDS comes
at the cost of more expensive computation compared with PCA, working in
quadratic time. This suggests that image co-ordinates cannot be calculated
interactively, and thus that MDS is not well suited to present query results.
For global MDS, though image co-ordinates may be calculated off-line in order
to browse the data set interactively. Additional difficulties arise when adding
images to a collection visualised through MDS, as this typically requires
recalculation of the whole dataset and the relocation of image thumbnails in
the visualisation.

Rodden et al. have investigated the use of MDS for image database vi-
sualisation based on the evalution of several user studies [59, (60} [61], [62].
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In [59], they compare two approaches, one based on random assortment of
images, and one using a similarity-based MDS interface, and conclude that
the MDS-based system is faster for locating specific images.

MDS has also been used to measure the effectiveness of particular fea-
ture vectors for conveying similarity within a CBIR system. In [40], MDS is
employed to manually inspect the similarity derived by using the MPEG-7
texture retrieval descriptor (TRD) and texture browsing descriptor (TBD).
They conclude that using the TRD with either the L; norm or EMD distances
provides more suitable MDS layouts. Besides visual inspection, they also used
spatial precision and recall in order to arrive at quantitative conclusions.

These accuracy measures, which are adaptations of the classical precision
and recall measures used in information retrieval, were first proposed in [58],
where a quantitative comparison between different distance measures is un-
dertaken to examine which provides the best MDS visualisation according
to similarity perceived by humans. In order to calculate the average spatial
precision and recall, each image in the database is treated as a query image.
In Figure 2] the dashed circles represent the increasing levels of recall from
the query image (coloured dark gray). The levels of recall are set based on the
next closest relevant image (coloured light gray) to the query. The number
of relevant images within a circle is divided by the total number of images in
that recall circle to calculate spatial precision. This is then averaged for all
the recall circles, giving an average level of precision.
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Fig. 2. Illustration of the spatial precision and recall measures used in [5§]

Using these measures, [58] examines the quality of visualisations when us-
ing different indexing methods and distance measures. They evaluated feature
vectors consisting of averages of hue, saturation and value, localised average
hue, saturation and value features (where the image is partitioned into 9 reg-
ular grid cells), and colour signatures as used in [64], HSV histograms using
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the x? (chi-squared) and Jeffery Divergence measures, and finally a scheme
named IRIS, which is a fairly complex index introduced in the paper. The au-
thors first compared the indexing techniques using a standard QBE system,
where results show that the more complex IRIS indexing method achieves the
best precision and recall. They then explored how these indexing techniques
compare in terms of average spatial recall and precision for an MDS visu-
alisation. Interestingly, they found that here the simplest measure, namely
average HSV values, is able to retain roughly 85% of the accuracy, whilst IRIS
achieves only around 52%. The authors conclude that, in a reduced dimen-
sionality space, an average HSV MDS visualisation is comparable with a more
complex indexing technique, such as IRIS, yet much more simple to compute.
They furthermore investigate the computational complexity in more detail
and report that the most time consuming indexing technique is the colour sig-
nature/EMD method of [64] which takes about 230 times longer to compute
a full similarity matrix compared to the average HSV computation.

FastMap

FastMap is an alternative dimensionality reduction technique devised by
Faloutsos and Lin [I6]. FastMap is able to reduce high-dimensional spaces
down to a linear 2D or 3D space. The algorithm selects two pivot objects, an
arbitrary image and its furthest possible neighbour. All points are mapped
to the line that connects the two pivot points using a hyper-plane located
perpendicular to the line that connects the two pivots. The co-ordinates
where images appear on the hyper-plane can be used to display the im-
ages on the screen, maintaining the relationships which occur in the high-
dimensional space. As with MDS, a distance matrix is required as input for
the algorithm.

The advantage of FastMap is that it requires less computation compared to
MDS, having a linear O(kn) complexity, where n is the number of images and
k is the number of dimensions to reduce the data to. In their experiments, the
authors tested FastMap against MDS, showing more than comparable results
in much shorter times. This suggests that FastMap could potentially be used
for computing visualisations ‘on-the-fly’, for example to visualise results of
QBE searches. The resultant visualisation however, is not always as accurate
as those created by MDS.

FastMap is also employed in the virtual reality system 3D MARS [47]
to map images to a 3-dimensional space in which users can virtually nav-
igate themselves around the image database through query selection (see
Section [2:4] for more details on virtual reality visualisation systems).

Self-Organising Maps

A self-organising map (SOM) [33] is a neural network which is trained to
perform feature extraction and visualisation from the input of raw data.
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Using an input layer of neurons, the feature vector of a sample is computed
and assigned to a best matching unit (BMU) on a 2D map. Each unit has an
associated weight vector, with the same dimensionality of the feature vectors
computed from each of the samples in the dataset. A learning rule, typically
defined as

wi(t + 1) = wi(t) +y(E)hs,i(t)[2(t) — wi(t)] (2)

where w; (t) is the weight vector of node 4, v(t) is the learning rate and hy, ; is
a function modifying the weights around the BMU, is then applied to update
the weight vectors.

Applied to image databases, employing SOMs leads to similar images being
located closer together on the resulting 2D map than less similar images [12].
To avoid a time consuming linear search of what could be an extremely large
map (according to the size of the database), hierarchical self-organising maps
(HSOMsS) can be constructed where only root BMUs need to be compared to
the input vector during mapping [12].

An earlier use of SOMs for image database visualisation is the PicSOM
system [37]. PicSOM uses layers of parallel SOMs to form a hierarchy, in
particular a tree-structured self-organising map (TS-SOM) [34]. Here also, a
linear search of all units in the map for the BMU of a given feature vector
(constructed in PicSOM using MPEG-7 descriptors for colour, texure and
shape) is avoided, by restricting the search for a BMU to a 10 x 10 unit search
below the BMU of the previous level. This reduces the overall BMU search
complexity from O(n) to O(log(n)). After training has been implemented on
each of the TS-SOM levels (using each image in the test set 100 times), each
node is assigned the image most similar from the database. This results in
similar images being mapped closer together than dissimilar images on the
2D map. These representative images may then be browsed by the user in a
hierarchical manner (see Section [3.2).

While the work of Zhang and Zhong [85] focusses on the development of
a content-based HSOM as an indexing structure, Deng et al. [I2] and Eiden-
berger [14] implement visualisations that facilitate the browsing of the images
in the database. Deng et al. [12] train a HSOM using Sammon mapping [67],
an MDS variant. The low-level features extracted from the images were re-
gional CIEL*u*v* colour averages, an edge density histogram and texture
features extracted through Gabor filters. In their experiments, the system
was used to visualise a collection of 3,000 images.

Eidenberger [14] describes a system where HSOMs of video stills are cre-
ated based on a variety of MPEG-7 descriptors. Each input vector is com-
pared with a BMU representing a cluster of images. When these clusters
of images are visualised by the HSOM, a representative image (closest to
the BMU weight vector) is displayed. Furthermore, an HSOM is employed
for time-based visualisation. Here, each node is required to be visualised by
exactly one image, rather than a cluster as with similarity-based visualisa-
tion. This is achieved by using the weight vector of each node in the map and
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assigning it with the closest image feature vector available in the database.
The output maps were computed on a hexagonal layout, and images cropped
to hexagons.

Other Mapping-based Techniques

A range of more recent techniques for visualising high-dimensional data are
investigated by Nguyen and Worring [49]. The three non-linear embedding al-
gorithms employed are ISOMAP (isometric mapping), SNE (stochastic neigh-
bour embedding) and LLE (local linear embedding). In ISOMAP [79], nearest
neighbour graphs are formed within the data, and the shortest path between
every pair of points is calculated, with the length of the path being used in
a distance matrix for MDS. SNE [26] calculates the probability that any two
points take each other as nearest neighbours in both the high- and reduced-
dimensional space, and attempts to match the two probability distributions.
LLE [63] can be seen as an approximation of SNE. The authors further pro-
pose to merge ISOMAP with SNE and LLE to form two new techniques,
ISOSNE and ISOLLE. In ISOSNE, the distances found through ISOMAP
are used to form the probabilities used by SNE, rather than using MDS, and
ISOLLE is derived in an analogous way.

In their evaluation they found that both ISOSNE and ISOLLE perform
better than MDS. Although ISOSNE performed best, the computation time
was reported at being around 10 times that of ISOLLE. The authors therefore
concluded that if off-line calculations can be performed, ISOSNE can be used,
while for faster visualisations, ISOLLE should be the method of choice.

Milanese et al. [44] describe the use of correspondence analysis [30] as a
dimensionality reducing mapping technique. Using a data table, a mathemat-
ical function is applied in order to create an observation matrix, which can be
be used with the eigenvectors of a covariance matrix in order to project the
data table into the 2D space. This formulation allows both images and fea-
tures to be projected onto a common space, and to distinguish which features
are closer to a particular cluster of images.

Handling Overlap in Visualisations

Rodden et al. [59] observed that the vast majority of users do not like the
overlapping and occlusion effects occurring in MDS displays due to images be-
ing located too close to each other (see also Figure[l]). This issue with partial
or even total occlusion is of course not exclusive to MDS, but also occurs in
other visualisations such as PCA splats. Co-ordinates that are close together
in the feature space will inevitably become even closer in a 2D representation
generated through mapping. When image thumbnails are overlaid at these
co-ordinates, parts of or indeed entire images are hidden from the user.

In order to combat this, various systems invoke some mechanism which
adapts the layout in order to reduce the amount of overlap occurring be-
tween images. Much work here has focussed on mapping the visualisation to
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a regular grid structure. Gomi et al. [18] used MDS “as a template” in order
to locate images within rectangular regions representing a cluster. Rodden et
al. [59] developed a method for spreading the images around a grid. First the
co-ordinates are used to locate the ideal grid cell for an image. Should this
cell be already occupied, a spiral search emanating from the selected cell is
performed in order to locate the closest free cell (see Figure Blon the left). In
addition to this basic strategy, where the image is simply mapped to the next
closest free cell, a further swap strategy was also proposed. Here, an image
is moved to the next closest cell, and the new image is placed in the optimal
cell. Finally, in a bump strategy, the images in the line of cells between the
optimum cell and the next closest cell are all moved outwards (from the opti-
mum centre cell) by one cell, with the new image being placed at the centre
optimum cell. From experiments it was found that the bump strategy pro-
duces the lowest average error (i.e. lowest average distance an image is from
its optimal cell). The complexity of the algorithm is O(m?)+ O(n?) where m
is the size of the grid and n is the number of images to be located. The three
strategies are presented visually in Figure[3lon the right. This technique was
also adopted by Schaefer and Ruszala in [73] and [71] to spread out images
on an MDS plot and a spherical visualisation space respectively.
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Fig. 3. The spreading strategies proposed in [59]

Liu et al. [42] developed two different approaches for overlap reduction in
order to present web search engine results. Their first technique also fitted the
visualisation to a grid structure, but they comment that the bump strategy
of [59] works in quadratic time, and is thus not suitable for real-time use.
Their method creates an ordered data set, optimised in one dimension while
sub-optimising the other and has a complexity of O(2nlog(n) — nlog(m))
where m is the number of columns or rows and n is the number of images.
Their second technique allows the user to dynamically set the amount of
overlap through use of a slider bar. Image co-ordinates are established by

P'rlzew - Vpézm + (1 - V)Pémd (3)
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where P%, —and Pg, ., represent the locations of the image in the similarity-
based and grid-based visualisations respectively, and «y is the overlap ratio
controlled through the slider bar.

Nguyen and Worring [49] specify two requirements with regards to dimen-
sionality reduced visualisations, a structure preservation requirement and an
1mage visibility requirement. The first requirement states that the structure
of the relationships between images in the feature space should be retained,
while the second demands that images should be visible enough so that the
content of the image is distinguishable. It is clear that these two are intrin-
sically linked. Moving an image in order to make it more visible will detract
from the original structure, while maintaining the structure could cause a
loss of visibility in certain images.

As a solution to this, Nguyen and Worrring define a cost function which
considers both image overlap and structure preservation. In order to detect
overlap, a circle is placed about the centre of the image, as it is assumed
that an object of focus will be about the centre of an image. If the circles of
two images overlap, the position of the images will be modified according to
values derived from the cost function. A similar cost function is also used to
modify the PCA visualisations in the PDH system of Moghaddam et al. [45].

Discussion

From the various works that have employed mapping-based techniques, it
is clearly difficult to formulate a direct comparison of which is best. Each
individual approach uses a different image database and different underlying
features and distance measures to quantify the similarity between images.
Ruszala and Schaefer [66] attempt to compare PCA, MDS and FastMap by
considering the complexity of the algorithms required. They conclude that
if accuracy is of importance then MDS should be used, otherwise FastMap
should be implemented when faster visualisation generations are required.
However this study does not include the more recent use of local linear em-
bedding algorithms detailed in [49], shown to be faster and as accurate as
MDS. Future work could aim at comparing a variety of dimensionality re-
duction visualisations using the spatial precision and recall measure defined
in [60, 58]. The use of approximation algorithms such as FastMap and LLE,
operating at lower complexity than more accurate algorithms such as MDS,
offers the possibility of visualising dynamically produced data sets such as
query results.

From works such as [59, 42, 49] it is clear, that image overlap is an un-
deniable problem for users who prefer to see images in their entirety. Much
research has been undertaken into how is best to resolve this problem. Moving
images too far from their mapped location can cause the relationships in the
full-dimensional feature space to be distorted, and hence there is a trade-off
between image clarity and maintaining the overall structure of the relation-
ships [49]. The placement of images within a grid structure is a visualisation
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which the general user is familiar with. Hence, arranging images within a
grid according to their mutual similarities will typically enhance the general
user’s browsing experience.

2.2 Clustering-Based Visualisation

Dimensionality reduction techniques applied to image database visualisation
are fundamentally limited by the number of pixels displayed on a computer
monitor, as this will directly determine the number of images that can be
displayed on the screen. Much work has been undertaken in order to reduce
the number of images to be displayed to the user at any one time. This
is usually achieved by clustering groups of similar images together, so that
only a single image for each group is displayed to the user, hence freeing
up visualisation space. In this section we describe the principle methods in
which images can be grouped automatically for the purpose of image database
visualisation, and how each group can be portrayed by representative images.

Content-based Clustering

Content-based clustering uses extracted feature vectors in order to group
perceptually similar images together. The advantage of this approach is that
no metadata or prior annotation is required in order to arrange images in this
manner, although image features or similarity measures which do not model
human perception well, can create groupings that may potentially make it
difficult for a user to intuitively browse an image database.

Krischnamachari and Abdel-Mottaleb [35] were among the first to propose
clustering images by image content. Local colour histograms (extracted from
image sub-regions) were used to cluster similar images and each cluster was
visualised using a representative image. Schaefer and Ruszala [72] also cluster
images based on colour descriptors (the average hue and value in HSV colour
space).

Hilliges et al. [25] use a combination of colour, texture and roughness fea-
tures. These are extracted based on a YUV colour histogram, some Haralick
texture features and the first four roughness moments of the image. The
resulting clustering is utilised in conjunction with an image quality classifi-
cation technique. The work by Borth et al. [5] represents another example of
content-based clustering using colour and texture features.

K-means clustering is one of the most commonly used clustering techniques
which iteratively approximates cluster centres. Image database navigation
approaches that employ k-means include the works by Abdel-Mottaleb et
al. [1] and Pecenovic et al. [51]. Hilliges et al. [25] use a variant of k-means
named X-means. In their approach, images are first clustered using colour
histograms comprised of the u* and v* values of the images in CIEL*u*v*
colour space. This way, the system is able to detect series of multiple similar
images, which are then classified based on image quality in order for users to
only keep their best photographs.
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Metadata-based Clustering

Despite the difficulties of manually annotating images, work has been under-
taken to visualise images according to this associated metadata. The intro-
duction of systems such as ALIPR (Automatic Linguistic Indexing of Pictures
- Real Time) [39] demonstrates that images can be automatically annotated.
However, this assignment of high-level semantic meaning by machines is still
in its infancy and often not very reliable. Systems such as ImageGrouper [4§]
and EGO (Effective Group Organisation) [81] allow the user to manually ar-
range images into clusters and perform the bulk annotation of the contained
images.

CAT (Clustered Album Thumbnail) by Gomi et al. [I8] uses a combination
of keyword and content-based clustering. At the top level of the clustered
hierarchy, images are clustered by keywords. The user is presented with a list
of keywords, of which they can select one or more. Upon keyword selection, all
images in the database associated with the chosen keyword(s) are clustered
by localised average colour content (average CIEL*u*v* values from grid cells
placed over the image) and image texture (calculated through a Daubechies 4
wavelet transform). Each cluster takes a representative image, which in higher
levels is sized dependent on the proportion of images from the database that
are located in that particular cluster. At lower levels of the structure, images
are arranged more uniformly in a grid-like structure using MDS and PCA
templates.

The rectangular boxing of clusters employed is similar to that used in
PhotoMesa. PhotoMesa [4] has the ability to arrange images in quantum
treemaps or bubblemaps. Quantum treemaps are designed to display images
of indivisible size regularly, whereas bubblemaps fill the space with indivisable
items but generate irregular shaped groups. Images with a shared metadata
attribute (e.g. directory, time taken, or keyword) are grouped together. When
an image is first loaded into the database, multiple sized thumbnails of the
same image are stored in a filesystem and dynamically loaded based on the
size of the rectangular sections.

For the quantum treemap algorithm, the input is a list of numbers specify-
ing the size of the rectangles, and the display space. The output is the layout
of the rectangles. The algorithm generates rectangles with integer multiples
of a given element size, where all the grids of elements align perfectly. When
images are assigned to their groups, an evening algorithm is run to re-arrange
the images in the boxes. The authors note that a relatively large amount of
wasted space may occur on the screen, particulary when the number of images
in a group is small. PhotoMesa has three different grid arranging mechanisms
in order to irradicate irregular layouts. The size of the rectangle is dependent
on the proportion of images from the database that cluster contains. Figure @
shows an example of a regular layout of images in PhotoMesa.

In an attempt to remove unused space, [4] also introduces the idea of using
bubblemaps in order to visualise the database. In this approach, images are
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Fig. 4. Clustered images, taken from the UCID dataset [74], visualised as a quan-
tum treemap in PhotoMesa [4]

still displayed on a regular grid, but the surrounding area can be arbitrary
in shape.

Time-based and Combined Time/Content-based Clustering

Time-based clustering uses time stamp information associated with an image
in order to group images within a collection. This time data may have been
provided either by the digital camera when the photograph was taken, or
by an operating system when the image was euploaded from the camera or
downloaded from the internet, or set manually by the user. The possible
ambiguity of when a time stamp may have been attached to an image can
indeed be the downfall of this particular method of grouping. Furthermore,
some images may contain no time stamp information at all [55].

It has been demonstrated by Rodden and Wood [62] that users find brows-
ing through time-ordered images more intuitive than content-based browsing
(see also Section [B4] for more discussion on this). Graham et al. [19] justify
their approach of grouping and visualising images according to time with the
observation that “people tend to take personal photographs in bursts”. Based
on this premise, images are clustered according to the time difference between
time stamps with images first being clustered by year, then month, day then
hour. The authors give an analogy of a birthday party in order to explain
sub-clusters in their approach. The event itself will take up an entire day, but
different parts of the day may contain different bursts of images, for example
blowing out the candles on the cake may have several images attributed to it.

The time-based clustering algorithm employed in Calendar Browser [19] is
based on Platt et al.’s PhotoTOC system. PhotoTOC (Photo Table of Con-
tents) [55] visualises images in two panes: overview and detail. In the overview
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pane, a grid of representative images is presented to the user, arranged by
month and year, where each image corresponds to a particular time cluster.
Images are arranged in a sequential list and new events can be detected by

d
1
log(gn) = K + 90+ 1 ,‘Zdlog(gzvﬂ) (4)

Assuming g; is the time gap between image ¢ and image i+ 1, gn is considered
a gap if it is much longer than the average gap. K is an empirically selected
threshold value and d is the window size.

The main difference between the approach by Graham et al. and Photo-
TOC is how identified events are sub-clustered. In [19], medium sized clusters
are first created by a pre-defined time gap. These new clusters are then sub-
clustered by the rate at which images are taken for that cluster. This rate
can then be matched with the other intra-cluster rates to split and merge
clusters. Parent clusters are developed through fixed measurements of time,
i.e. events that occurred in the same day, week, month and year. In con-
trast, PhotoTOC sub-cluster events based on colour content, therefore not
completely relying on time stamp information. This approach is hence also
applicable to image sets which are only partially time-stamped.

Another approach using a combination of time- and content-based clus-
tering is the PhotoSim system [8]. PhotoSim uses k-means to cluster images
already clustered via time, enabling the system to derive clusters that model
human perception. For this, they utilise colour histograms based on the U and
V components of the YUV colour space. In the example shown in Figure [B]
the images in the cluster have been separated into portraits and pictures of
buildings taken at either night or day.

Hierarchical Clustering

Hierarchical clustering can be seen as analogous to file structures found in
common operating systems with clusters of images corresponding to folders
and individual images being mapped to files. Indeed, this is often how users
organise their personal collections. The majority of systems that cluster im-
ages, arrange clusters in a hierarchical manner. Examples of this can be found
in [55] 8 18, H].

Hierarchical clustering algorithms are typically divided into agglomerative
and divisive methods [29]. Agglomerative, or bottom-up clustering, begins
with treating each individual sample as an individual cluster. Using a form
of similarity, clusters are merged with their most similar neighbours and
this process is repeated until a pre-defined number of clusters remain. These
clusters then form the top layer of the generated tree. In contrast, divisive,
or top-down, clustering begins with all samples starting as a single large
cluster which is then iteratively split into smaller clusters until a termination
criterion is met (such as all clusters corresponding to individual samples). In
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Fig. 5. Images from a cluster in PhotoSim [8] further clustered into portraits,
buildings at night and buildings in the day

terms of image database visualisation, the leaf nodes of the tree correspond
to the individual images, while the nodes at different levels of the tree form
the various image clusters.

Despite being computationally more expensive than partional methods
such as k-means clustering, it has been shown that approaches based on ag-
glomerative clustering afford better retrieval accuracy [I]. Krischnamachari
and Abdel-Mottaleb [35] use local colour histograms to form a hierarchical
structure of images. First, each image is treated as its own cluster, and rep-
resents a leaf node of the tree. From all the clusters, the two with the most
similar average colour histograms are merged together to form a parent clus-
ter. Consequently each parent node has exactly two child nodes, forming a
binary tree.

The CAT system in [I8] first uses agglomerative clustering to group images
initially by the keywords associated with them, and then creates internal
clusters based on colour and texture features, again through the application
of agglomerative clustering. Borth et al. [5] also use agglomerative clustering
for their Navidgator system, which allows browsing through a dataset of video
stills.

Pecenovic et al. [5I] employ a hierarchical form of k-means clustering,
where nodes are successively split as proposed in the LBG algorithm [41] to
form a tree structure that can be visualised and browsed.

A hierarchical structure can also be derived without the application of an
actual clustering algorithm. This is demonstrated by Schaefer and Ruszala



Visualisation and Browsing of Image Databases 23

in [73] and [72] who perform a uniform quantisation type clustering based
on the definition of a grid structure for visualisation. Once the grid is de-
fined, each image in the dataset will fall into one of the grid cells. Each grid
cell hence corresponds to an image cluster. A spreading algorithm as in [59]
is applied to reduce the number of unused cells and the number of images
assigned to one partiular cell. When multiple images are mapped to a par-
ticular cell, a tree structure is formed by subdividing each cell into further
uniform partitions with the spreading algorithm being applied to the root
grid and all child grids in order to prevent the addition of unnecessary levels
in the hierarchy. Based on this structure, using a grid of 24 x 30 cells and
an assumption that 40% of the cells are assigned images, the system could
visualise ((24 x 30) x 0.4)3, i.e. over 23 million images.

Selection of Representative Images

For visualisation purposes, each clustered group of images needs to be rep-
resented either by a single image or perhaps a small group of images. The
manner in which these representative images are selected can vary between
systems. In many approaches (such as the one in [72]), the centroid image of
the cluster is selected. Formally, this is the image with the minimal cumulative
distance from all other images in the database. Alternatively, other systems
such as CAT [I8] select the image closest the the centroid of the cluster in
the feature space. A similar approach is adopted in PhotoTOC [55]. Here,
to derive the most representative image of a cluster, the Kullback-Leibler
divergence between every image histogram in the cluster and the average his-
togram for all images in the cluster is measured. The image with the colour
histogram closest to the average histogram of the cluster is selected to be the
representative image.

A cluster may also be visualised using more than one representative im-
age. For example, the clustered visualisation of web search engine results
generated by Liu et al. [42] displays a cluster preview of 4 images. Another
content-based representative image selection scheme with the ability to dis-
play several representative images is that of Krischnamachari and Abdel-
Mottaleb [35]. Based on a user-defined number of representative images R, a
set of representative images R,, is formed. If R = 1, then the representative
image is the leaf node of the sub-tree with the feature vector closest to the
average feature of all images in a conjoined set Ry. When R > 1, image se-
lection is taken from several subsets of images. Referring to Figure [6 if the
user requires R = 2 representative images for cluster 14, the subsets will be
Ry =1,2,3,4 and R; = 5. The image most similar to the average of Ry will
be selected, together with the sole image from R;.

While the works of [I8] 53] [72] use content-based analysis in order to select
a representative image for the cluster, the Calendar Browser in [I9] chooses
representative image(s) based on time. The system displays a summary of 25
images at any granularity (i.e. year, month or day). This 25 image summary
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Fig. 6. Example of the hierarchically clustered image database arranged as a binary
tree in [35] (© 2009 IEEE)

is created using a two step process. The first step is screen space assignment,
where one space is assigned to each cluster. If there are too many clusters,
priority is given to large clusters. Any remaining spaces after the allocation
of a single space to each cluster are divided amongst the clusters according to
their size. This creates a target number of photos for the second step, which
performs the actual selection of representative images. The first criteria for
selection is based on consecutive images with the smallest time difference,
since it is likely that images taken close together describe the same event.
One of these two consecutive images is then selected as the representative.
If from the first step more than one representative images are required, the
largest time difference between images is used, which will typically signify a
new event and the second image in this pair will be selected.

Discussion

Clustering-based visualisations have the advantage that a user is given an
overview of all images contained within the database at the top level of the hi-
erarchy without displaying each individual image. This gives a good summary
of the database. In addition, clustering can be performed in a hierarchical way
leading typically to a tree structure representation of the database. As the
user traverses this tree, the images become more similar to each other, and
hopefully also more suited to the type of image the user is browsing for [5].
One downside of this approach is that if an image is erroneously clustered by
the system (i.e. is assigned to a cluster of images that are not very similar
to it), it will make that particular image very difficult for the user to locate,
effectively making it lost. An example of this would be searching for an image
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of children playing football in a park, in a database that clusters based on
colour similarity. In such a system the image in question might be clustered
together with images of plants due to the green colour of the grass the children
are playing on. If the chosen representative image is then also one of a plant,
intuitively the user may not think to navigate into that cluster.

2.3 Graph-Based Visualisation

Graph-based visualisations utilise links between images to construct a graph
where the nodes of the graph are the images, and the edges form the links
between similar images. Links can be established through a variety of means
including visual similarity between images, or shared keyword annotations.
Once a graph has been constructed, it needs to be presented to the user in a
visualisation that allows for intuitive browsing of the database.

Mass Spring Visualisation

Dontcheva et al. [I3] use a mass spring model to generate the visualisation.
A spring is formed between two images if they share an associated keyword.
The length of the spring is assigned based on the number of images sharing
the same keyword and a constant used to control the density of the layout.
To generate the layout, the visualisation is evolved using the Runge-Kutta
algorithm [3]. The authors conclude that this technique is only suitable for
relatively small databases of a few hundred images due to the time required to
stablise the arrangement. Worring et al. [83] also created a mass spring visu-
alisation [6] based on keyword similarity (the number of keywords a given pair
of images have in common). A k-nearest neighbour network is then formed
based on this similarity measure. In order to visualise this high-dimensional
structure in 2D, connected images are placed closer together while uncon-
nected images are moved further apart. This is achieved by applying attrac-
tive or repulsive forces respectively between the images. The authors claim
that this visualisation technique aids particularly when implementing a cat-
egory search (i.e. searching for an image of a particular class), due to the
fact that an image selected by the user will have nearest neighbours most
relevant based on keyword. For example, selecting a picture of a cat with an
associated keyword “pet” could present the user with images of dogs, cats
or any other domesticated animal. A set of user interactions are available,
designed to reduce the amount of effort required to form a subset of purely
relevant images (see Section B.l). User simulated tests were performed using
only relatively small visualisations of up to 300 images. The main difference
between the visualisations of [I3] and [83] is that in the system of Worring
et al., the links between images are explicitly displayed whilst Dontcheva et
al. do not display such links.
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Pathfinder Networks

The use of Pathfinder networks [6] for image browsing was introduced in [7].
The interface, fronting an image database named InfoViz, was used in con-
junction with QBIC [15], allowing the user to query and browse the database.
Pathfinder networks were originally used to analyse proximity data in psy-
chology, although many other types of high-dimensional data can also be rep-
resented using this technique [6]. The underlying theory behind Pathfinder
networks is that a link between two items exists if it is the shortest possible
link. The Pathfinder algorithm removes all but the shortest links by test-
ing for triangle inequality. In the case that this does not hold, the path is
considered redundant and is removed from the network.

For the layout of the network, images with many links between them are
considered similar and therefore placed closer together, while images with
fewer links are generally located further away. Chen et al. inspect the visual-
isations produced using colour, texture and layout features from the images
and state that colour (through use of a colour histogram) provides the best
visualisation, achieved using a spring-embedder node placement model. Fig-
ure [1 shows an image database visualised using colour histograms in such a
Pathfinder network, where images with similar colour histograms form clus-
ters. The experiments in [7] were implemented on a database containing 279
images. With such a small image collection, it is difficult to predict how well
Pathfinder network visualisations may scale to larger image database sizes.

Fig. 7. An image database visualised using a Pathfinder network based on colour
histograms [7]
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NN* Networks

NN* networks, where NN stands for nearest neighbour and k describes a
set of different features, were proposed by Heesch and Riieger [22] to browse
through an image database. The basic principle is that a directed graph is
formed between every image and its nearest neighbours if there exists at least
one possible combination of features for which the image is the top ranked of
the other. Seven different features were extracted, including an HSV colour
histogram, a colour structure descriptor (for detailing spatial formation of
colour), a thumbnail feature (where the image is scaled down and gray values
calculated), three texture features and a ‘bag of words’ (stemmed words taken
from text attributted to images) feature.

A weight space is used which is a pre-defined set of weights for each of
the features. The number of weight sets for which an image is top ranked,
forms the similarity measure between images. For example, assuming that
three weight sets are defined together with a query image @, then if image A
is ranked top in the first image set, but image B top in the second and third
weight sets, image B will take a higher proportion of the weight space and
therefore is deemed more similar to () than image A.

Each image in the network stores its nearest neighbours, along with the
proportion of the weight space for which the image is ranked top. Given a
query image, a user-defined number of nearest neighbours will be displayed
to the user, as well as links between the neighbours. Images with a higher
similarity (i.e. a higher proportion of weight space) are displayed closer to
the query which is centralised on the display. The initial display to the user
is an overview of the database, generated by clustering the images and dis-
playing the most representative thumbnail from that cluster (as described
in Section [Z2)). Figure [§ shows an example of how the network is visualised
after an image has been selected as a query. In their experiments, the authors
used a database containing 34,000 video stills.

Heesch and Riieger [23] also describe their system’s ability to query
a database through keywords. In the example of Figure [ searching the
database with the query “airplane taking off” returns a variety of results.
The top matching image is placed at the centre of the interface, with the
nearest neighbors placed along an Archimedean spiral according to the pro-
portion of the weight space they possess in terms of the query image. Images
closer to the centre of the image are larger in size than those on the periph-
ery of the spiral. The user can drag these smaller images closer to the centre
where they are dynamically resized and can be inspected more closely by the
user. They may then select multiple images to further the query.

Discussion

The use of graph-based visualisations appears to be less common than either
mapping-based or clustering-based visualisations. Graph-based visualisations
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Fig. 8. An example of a an NN* query selection taken from [22]
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Fig. 9. An example of a query for “airplane taking off” in the interface devised

in [23]
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are typically quadratic in complexity, and therefore can only be computed off-
line in order to allow for real-time browsing. Generating query results ‘on the
fly’ is not particularly suited to this style of visualisation. As with dimen-
sionality reduced or clustered visualisations, the introduction of additional
images in the database often requires re-calculation of the entire structure.

The major approaches in graph-based visualisations use contrasting vi-
sualisation methods. While mass-spring models and the Pathfinder network
present a global visualisation similar in form to that of mapping-based tech-
niques, NN* visualisations present images one by one, allowing users to make
an interactive choice on the next image to pursue. This is closer to traditional
QBE methods, although the implementation of similarity by proximity should
aid the user more than a linear format. Whilst NN* networks can have a vast
number of links (dependent on the size of k), Pathfinder networks attempt
to minimise the number of links between images. So far, no study has been
undertaken to explore which graph would allow for faster retrieval through
browsing. It would also be of interest to see how well Pathfinder and Mass
Spring networks are able to visualise larger databases, such as that used for
testing the NN* network.

2.4 Virtual Reality-Based Visualisation

The development of image browsing interfaces has also produced some in-
teresting approaches based on the use of virtual reality (VR) equipment and
software. Rather than limiting the user to traditional input hardware such as
mouse and keyboard, work has been conducted using more interactive devices
such as head tracking equipment [82] and the use of input wands [82, [47].
In general we can divide VR-based image visualisation techniques into two
classes: immersive and non-immersive visualisations.

The 3D Mars system [47] visualises an image database in 3 dimensions.
Images are projected onto four walls (left, right, front and floor) of a CAVE
environment [I0] around a user wearing shutter glasses. The interaction with
the system begins with a random assortment of images from the database.
As the user moves between the walls, the images rotate to face the user in
order to prevent images being hidden. A virtual compass is provided on the
floor allowing the user to ‘fly’ through the 3D space. The user can select a
starting query image from the random assortment via use of an interactive
wand. Each of the dimensions in the display represents either colour, texture
or structure features. The query image selected by the user is placed at the
origin of the axis, and all similar images are visualised in the space depen-
dent on their distance from the query image. This visualisation is generated
through the application of FastMap, as described in Section 21l The nov-
elty of the system is that it makes interaction much more interesting for the
user. However, unfortunately the system does not have the functionality to
visualise an overview of the entire database.
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In [82] the authors present their system StripBrowser. Images are arranged
upon filmstrips and can be ordered using colour content along a rainbow scale
or from light to dark. A user can navigate along each filmstrip using a head-
tracking device (see also Section B]). An issue with projecting all images
along one dimension is that the user must browse each image sequentially.
This will require more user interactions compared with various approaches
that use a 2D or 3D visualisation space.

Non-immersive VR image browsing systems create a virtual environment
for users to navigate around in order to view the images in the database.
Tian and Taylor [80] use MDS to plot 80 coloured texture images in a 3D
space. The images are wrapped to spheres and plotted at the locations derived
by MDS based on features vectors comprising a PCA projection of a colour
and texture histogram. The user can navigate through the 3D space using a
control panel located at the bottom of the screen. An issue not tackled by this
system though is the potential overlap of spheres, presumably not occurring
within the small database used for testing.

A different non-immersive VR image browsing system is presented by Ass-
falg et al. in [2]. Here, a graphical environment allows the user to move
around a virtual world taking photographs of scenes in order to query the
database. Upon loading the environment, pre-defined shapes are randomly
placed within the scene. The user can ‘walk’ through the environment us-
ing navigation icons located on a panel on screen. The user may then edit
the objects in the environment, having the ability to add new pre-defined
shapes to the current scenery, and to texture and colour the shapes as de-
sired. Shapes in the prototype system presented include a variety of tree like
structures, statues and buildings. The user can select a rectangle over the
current view in order to take a photograph, something the authors state as
an intuitive metaphor for the user. The selected portion of the scene within
the rectangle is used as a starting point for an adjoined QBE system, which
retrieves all similar images from the database. Textures can be taken from
results retrieved through QBE and applied to the environment in order to
achieve modified results. Figure [I0 shows a set of possible interactions a user
may have with the browser.

3 Browsing Image Databases

In the previous section of this chapter we looked at how the often large im-
age databases can be visualised and presented to the user. Although usually
closely related, browsing the database is not the same as visualising it; Web-
ster’s dictionary defines browsing as “to look over casually” and visualisation
as “putting into visible form”. A variety of tools have been developed which
aid the user in order to interactively browse the images in a database. In this
section we review common tools included within image database navigation
systems to aid in the task of ultimately arriving at images of interest in an
effective and efficient manner. We divide browsing methods into horizontal
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(a) Query

Fig. 10. Interactions available in the VR browsing environment presented of [2]

browsing, which presents images on the same level of a visualisation to the
user, and vertical browsing, which can be used to navigate to a different
level of the collection. Graph-based visualisations are typically browsed by
following the links between images. For systems that organise images based
on time stamps, browsing methods should also take this information into ac-
count. Finally, browsing can also be usefully employed in relevance feedback
mechanisms.

3.1 Horizontal Browsing

We can define horizontal browsing as the navigation within a single plane
of visualised images. This type of browsing is often useful when an image
database has been visualised either through a mapping scheme (as described
in Section 1)), a single cluster of images (Section [Z2]) or through a graph-
based visualisation (Section [Z3]). Several tools have been developed in order
to support this browsing experience.
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Panning

If the entire visualised image collection cannot be displayed simultaneously
on screen, a panning function is required in order to move around the vi-
sualisation. There are a variety of different ways in which panning can be
implemented within browsing interfaces. The simplest manner in which a
user can pan through an image collection is through the use of traditional
scroll bars. This is particularly the case when images are arranged in a regular
grid format, such as in the QBIC interface [15]. If possible, scrolling should
be limited to one direction only in order to reduce the number of actions re-
quired by the user to browse the entire collection [54]. An alternative to scroll
bars is the use of a control panel for panning (and zooming) as implemented
in various approaches. The systems described in [, [72], [80] all provide such
a navigational toolbar enabling the user to browse through the visualisation
space.

The hue sphere system by Schaefer and Ruszala [(2] allows for intuitive
panning by the user, as it uses the metaphor of a globe in order for users to
browse the images in the collection. Images are plotted along the latitude of
the globe according to the average hue of the image, whilst the average value
is used to plot the image upon the longitude of the globe. The user is able
to spin the globe about either horizontal or vertical axes, in order to bring
images into view. This is illustrated in Figure[I] showing an image collection
after various rotation/panning operations by the user.

StripBrowser [82] also allows for intuitive panning using a head tracking
device. As the user looks to the right side, images are being scrolled to the
left, while looking to the left causes the scrolling of images to the right. The
greater the angle at which a user moves, the faster the scroll motion will be.
Scrolling only occurs when the angle reaches a threshold value, otherwise the
strip remains stationary. The 3D Mars system [47] allows users to pan the
generated visualisation by walking around the 3D space projected on the four
CAVE walls.

Zooming

When presenting many images on a single 2D plane, the thumbnail repre-
sentations of images often have to be reduced to small rectangles which are
difficult to distinguish on the screen. This can be seen in the MDS plot in
Figure[Il There, although it is possible to see that the images vary in colour,
it is not possible to depict the content of each individual image. It would
therefore be useful to have a facility to zoom into an area of interest.

For dimensionality reduced visualisations, Rubner et al. proposed zoom
operations on a global MDS visualisation, using of a joystick in order to
“get closer to the area of interest” [64]. Another example of a dimensionality
reduced visualisation with a browsing interface facilitating zooming is the
CIRCUS system presented in [51]. CIRCUS uses multi-dimensional scaling,
in particular Sammon mapping [67], in order to present representative images
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Fig. 11. Browsing through UCID images [74] of different hues in the system pro-
posed in [72]

at each level of the hierarchically clustered database (where clustering is based
on content). By selecting a ‘Browse Collection’ tab, users are presented with
a browsing window which, at the minimum zoom factor (i.e. zoomed out as
far as possible), shows the Sammon mapping layout of all images at that level
of the database.

To reduce the amount of computation required, and to allow the user to
browse the database interactively, CIRCUS displays images at the minimum
zoom factor simply as dots. This maintains the user’s understanding of the
relationships between the representative images at this level of the database,
while reducing the amount of processing time required by the system. As the
user zooms into an area of interest, thumbnails are rendered. When the user
focusses on a single image, metadata associated with that image is also pre-
sented. Further zooming on a particular image causes CIRCUS to present the
next level of images in the hierarchy and hence implements vertical browsing
(see Section [3.2).

CIRCUS also implements what is described as a “fixed small overview”,
preventing the user from becoming lost in a 2D space larger than that of
the display area. A detail view is provided, where the images are shown
together with an overview displaying a map of the overall visualisation (with
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Buiding LOCOND

Fig. 12. A screenshot of the CIRCUS browsing interface presented in [51]

the current area of focus highlighted). This is presented to the user in the
left hand pane of the CIRCUS browser, shown in Figure

Another system using a similar overview approach is the Photosim system
presented in [§], allowing users to view and modify multiple clusters (de-
scribed in more detail in Section B3]). A zooming tool is also implemented in
the hue sphere system devised by Schaefer and Ruszala [72].

While most zooming interfaces require the use of a computer mouse, a
more novel approach to zooming is adopted in the StripBrowser system [82].
Zooming in and out is achieved by moving closer and further away respec-
tively from the screen. The authors note that this is an ideal metaphor for
users, as generally to inspect an item in the real world a person will move
closer to it. Another implementation of this metaphor is provided in the fully
immersive 3D Mars system [47], where the user can zoom in on an image by
physically moving closer to the wall on which it is projected.

Hilliges et al. [25] provide a clustered visualisation with a zoomable in-
terface. The user may zoom into particular clusters to examine the images
within them more closely. In the graph-based system by Chen et al. [7] a con-
trol panel located at the bottom of browser window has two control buttons
allowing the user to zoom the current view in the detail pane in or out. A
very similar interface is also implemented by Tian and Taylor [80], allowing
the user to zoom in and out of a 3D MDS visualisation of textured images.

Magnification

Although similar to zooming, magnification usually occurs when a cursor is
placed over an image. This maintains the overall structure of the visualisation
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by rendering only small thumbnails for each image in the database at first,
while higher resolution images are loaded only when required. An example
of a system using mouse over magnification in order to dynamically display
a higher resolution image is PhotoMesa [4], illustrated in Figure @l

The hexagonal browsing system by Eidenberger [14] also provides a high
resolution preview image when the mouse cursor is moved over any of the
images in the visualisation. For the system created for the user studies con-
ducted by Rodden et al. [61], a 3x magnification of an image occurs when the
cursor is placed over an area of the MDS visualisation.

Another form of image magnification that can be used for examining im-
age database visualisations is the application of a fisheye lens [69]. Using this
magnification mechanism, images located at the centre of the lens are magni-
fied whilst those immediately around the focused image(s) are distorted [54].
Figure [[3 shows an example of how a fisheye lens could effect a collection of
images fitted to a regular grid.

Fig. 13. Example of a fisheye lens browsing over images from the UCID dataset [74]

Scaling

Some browsing systems use scaling, rather than zooming, allowing users to
view a particular image in more detail. In the EIB (Elastic Image Browser)
system [57], the user may use two slider tools in order to dynamically resize
images both horizontally or vertically. This enables the user to display more
images in the browser, at the expense of image clarity. Images can also be por-
trayed as lines, with the colours in the lines becoming the only distinguishing
feature between images. The author claims that this could potentially speed
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up browsing. However, in the EIB visualisation, images are not arranged by
mutual similarities; rather they are placed randomly within the grid visuali-
sation leading to a negative effect in terms of the user’s browsing experience.

The PDH system [45] also includes a slider tool so that the user may
dynamically resize images, whilst maintaining the 2D spatial relationships
between images achieved through PCA.

3.2 Vertical Browsing

In visualisation approaches that are based on a hierarchical structure, the
contained images can also be navigated using vertical browsing methods. As
discussed in Section[2.2] clusters of images are typically visualised through the
use of representative images. These images are crucial for vertical browsing
as they are typically the reason for which a vertical browsing step into the
next level of the hierarchy is initiated by the user.

In the quantum treemap visualisation of image clusters provided in Pho-
toMesa [4] (shown in Figure M), the user may click on a highlighted image in
order to invoke a smooth zoom into that group of images. The box around
the selected cluster remains highlighted to prevent user confusion. Zooming
may continue until a single image is displayed at full resolution. The CAT
system [I8] provides a functionality similar to this.

In systems using a regular grid structure at different levels, such as the hi-
erarchical hue sphere by Schaefer and Ruszala [72], or the hexagonal browsing
system by Eidenberger [14], selecting a representative image at a given layer
of the hierarchy will present the user with the subsequent layer of the sub-
tree, for which the selected image acts as the root. The user may traverse all
layers of the tree. The hue sphere system also displays a visual history of the
followed browsing path, while in the hexagonal browsing system, the user is
presented with a view of both the previous layer and a preview of the layer
described by the currently selected cell. A similar combination of history and
preview is included in the PhotoMesa system [4].

A navigational history is also provided in the Navidgator video browsing
system [B] shown in Figure [[4 Here, the user’s most recent image selec-
tions are displayed in the top right hand corner of the interface, and may
be revisited by selecting one of the thumbnails. The representative images
at each level are displayed in the lower portion of the screen. Selecting an
image creates a larger preview just above the layer viewing portion of the
interface, and also adds a thumbnail of the image to the history. The user
may then zoom in or out of the levels in the database using arrow buttons.
Single arrows move the user up or down a single layer of the database (up
to the previous layer, or down to the first layer of the sub-tree for which the
currently selected representative image acts as the root) while double arrows
enable the user to perform a multi-level zoom, whereby every third layer of
the tree is displayed. A max zoom function is also included which allows the
user to navigate directly to the bottom or top layers of the tree.
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Fig. 14. A screen shot of the Navidgator system detailed in [5]

A different vertical browsing function is implemented in the CIRCUS sys-
tem [5I]. The authors introduce a semantic zoom facility which allows users
to zoom into areas of interest. As the user zooms into a representative image
beyond a certain zoom factor, the sub-clusters associated with the cluster of
interest are automatically displayed.

3.3 Graph-Based Browsing

Operations such as panning and zooming can also be applied to graph-based
visualisations. For example, in the Pathfinder network approach by Chen et
al. [7], a global view of the network is presented (as shown in Figure [0).
Displaying this global representation of the structure bears some similarity
with some of the mapping-based visualisations of image databases from Sec-
tion Il In the Pathfinder system, a toolbar is displayed at the bottom of
the browsing window, which the user can use to zoom into areas of interest
or to pan around the collection. Images found through browsing may then be
selected in the interface to be used as a query for the QBIC system [15].
The structure of the graph itself however also allows for different methods
to browse from image to image. This is realised in the NN* network approach
by Heesch and Rileger [22] which exploits the links between images in the
graph. First, the user is presented with an overview of the database through
representative images of clusters formed through a Markov chain clustering.
The user can then select one of these images as a query image. As shown in
Figure B the selected image is placed at the centre of the screen and a user
defined number of nearest neighbours are placed around it based on their
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similarity to the query image. Furthermore, links between these neighbours
are also displayed. Selecting a neighbour will put it as the query image in
the centre, with its nearest neighbours then presented in a similar fashion.
This process can then be repeated until a required image has been found.
The user also has the ability to zoom in or out of the visualisation. As with a
typical web browsing interface, a ‘Back’ button is provided so that the user
may return to the previous query, should the newly selected image provide
no images of interest.

Browsing the graph-based visualisation developed by Worring et al. [83]
lies somewhere between the two browsing methods of the NN* and Pathfinder
visualisation styles. While the overview of the database is presented, the user
may invoke one of five different actions in order to select a subset of images
that are deemed relevant. A user may select a single image, as well as se-
lecting the single image and all of the linked neighbours in the network in a
single action. The opposite two actions are also available, whereby the user
can deselect a single image (and disable it from future automatic selections)
or an image and the associated neighbours. Another action available to the
user is the ability to expand the current selection of images by automatically
selecting all connected neighbours. A simulated user test showed that the
provided interactions can reduce the amount of effort required to select all
possible relevant images (compared with selecting images one-by-one). Wor-
ring et al. conclude that using the functionality of selecting an image and all
the nearest neighbours, followed by deselecting all images deemed irrelevant,
a higher recall and precision measure can be achieved whilst maintaining the
same interaction effort required for a one-by-one selection technique.

3.4 Time-Based Browsing

As described in Section 222 time stamp information attached to images can
be used to cluster and visualise image collections. Clearly, if a collection is
visualised based on temporal concepts, browsing should also be possible in
a time-based manner. One of the earliest time-based image browsing sys-
tems is the AutoAlbum system introduced in [50] further developed into the
PhotoTOC system [55]. Here, a two-level hierarchy based on time is utilised.
As can be seen in Figure [I1], dates, in monthly intervals, are shown in the
overview pane on the left hand side of the interface, with the representative
images of the clusters falling into that date also being displayed. Selecting a
representative image displays the contents of that cluster in the detail pane,
located to the right of the interface.

Whilst AutoAlbum and PhotoTOC restrict the user to monthly intervals,
the Calendar Browser in [19] allows the user to ‘zoom in’ to other time in-
tervals by selecting one of the representative images. At the year level, two
controls located at the top of the interface provide a summary of the previ-
ous year and next year respectively. This approach is also adapted for the case
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Fig. 15. The PhotoTOC [55] interface. The user has selected the image bottom
and centre of the overview pane (left). This image has been highlighted in the detail
pane(right), and is amongst visually similar images.

when viewing images at a monthly granularity (i.e. summaries of the previous
and next month are displayed). When viewing images with a time stamp
attributed to a particular day, images maybe browsed 25 at a time. Selecting
an image at this level places it in the centre of the interface, with the images
taken immediately before or after displayed around the selected image.

In [19], a modification of the Calendar Browser is also implemented and
tested. In the modified interface Hierarchical Browser, a pane located on the
left hand side displays a hierarchy of dates. Starting at root nodes represent-
ing years, these can be expanded to display monthly nodes, followed by dates
and time intervals. Selecting a node from this pane displays the representa-
tive images in the detail pane located on the right side of the interface. This
is similar to the approach of PhotoTOC [55]. User testing suggested that
users could use the Calendar Browser more quickly, but the number of task
failures occurring was lower in the Hierarchical Browser.

A different approach to time browsing is presented in the PhotoHelix sys-
tem [24]. An interactive touch screen table top is used with an interactive
pen and a specially developed piece of hardware created using the workings
of an optical mouse and an egg timer. By placing the hardware on the in-
teractive screen, a virtual helix is created at the location of the hardware.
Images are arranged on the helix according to time, with newer images being
located closer to the outside of the spiral. Grouped images, known as piles,
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are magnified when the spiral is rotated under a fixed lens. The magnified
group can then be manipulated by the user through use of an interactive pen.
New groups can be formed or individual images scaled, rotated and moved
freely around the interactive screen.

The table top PDH system [45] also allows users to browse images accord-
ing to time. By selecting a ‘Calendar’ button, images are sorted along a linear
timeline.

The hexagonal browsing system of Eidenberger [14] allows users to swap
between a content-based and a time-based tree structure. As the time-indexed
tree has all the key frames of the collection visualised (as described in Sec-
tion [ZT]), any cell selected in the content-based tree will have a corresepond-
ing cell in the time-based tree. However in the content-based tree, images
may only occur as leaf nodes if they have not been selected as representa-
tive images for clusters. Therefore, when switching between an image in the
time-based tree to the content-based tree, the leaf node of the corresponding
cell is selected and a message is displayed to the user in order to minimise
confusion.

3.5 Browsing-Based Relevance Feedback

As described in Section [[.3] many CBIR systems use some form of relevance
feedback (RF) in order to tailor the search towards the current user’s needs.
The most common mechanisms are the standard relevant/non-relevant clas-
sifier, used in QBIC [I5], and a slider tool whereby images can be given
a continuous score of relevance by the user, as demonstrated by the MARS
system [65]. However, the introduction of novel image database visualisations
have also led to the development of new RF mechanisms.

In the PDH [45] and the El Nino [68] systems, the intrinsic weightings of
feature vectors are modified by allowing the user to manually specify where
images should reside in the visualisation. PDH provides the user with a small
subset of images to be placed as they wish on a “user guided display”. Based
on the user layout, PDH uses the location of images in order to estimate
feature weights for colour, texture and structure. Using these weightings, a
larger image collection is then presented based upon their provided layout.
Figure [16l shows a user guided layout on the left, and an automatic layout of
a larger set on the right.

The El Nifio system [68] allows users to manipulate the entire visualisation,
rather than just a subset as in PDH. Images presented to the user may be
moved to modify the internal weightings of the system. Each image manually
relocated by the user is considered an anchor. The distances between anchors
are then used to modify the colour, texture and shape feature weights. The
visualisation is then updated based on the new similarity measure. As only
a subset of images is shown to the user (typically 100-300), the updated
visualisation may lose images which were not selected as anchors by the
user. A possible issue with these systems is it may not be clear to the user
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Fig. 16. A user guided layout of UCID images [(4] in PDH (Personal Digital
Historian) [45]

how far relocate images in order to modify the system to meet their search
requirements [48].

Another category of mapping-based visualisations with an example of an
RF implementation is the self-organising map based system PicSOM [37]
(described in Section 2XT). Here, the user selects images as either relevant or
irrelevant. The images, and their user determined relevance, are projected to
SOM surfaces in order to find regions of relevant or irrelevant images. A low-
pass filtering system is used to expand the regions of relevance on the map. A
qualification value is assigned to each image based upon the relevance of the
image and surrounding images. Each SOM is searched for the top 100 images
with the highest qualification value. The top 20 images from the combined set
are returned to the user, from which the process can be repeated if necessary.

While the above systems use RF within a dimensionality reduced visu-
alisation, there have also been clustered visualisations with integrated RF
mechanisms. An example of this is Photosim [8], shown in Figure [l Whilst
higher level clusters are created based on time, images within the same time
period are clustered on content. Photosim allows users to transfer images
between clusters manually, if they are not satisfied with the automatically
formed groupings. Furthermore, the user also has the ability to create entirely
new clusters. Using a slider tool, the user can alter the degree of similarity in
which images are automatically added to the new cluster. Setting the slider
to zero creates a cluster with just a single image, dragged from an existing
cluster. The higher the threshold value, the degree of similarity required in
order to add new images to the cluster is lowered.

Similar approaches with solely manual clustering occurs in the EGO [§T]
and ImageGrouper [48] systems. In EGO (Effective Group Organisation), a
manually created grouping of images retrieved through some search (such
as QBE, or keyword-based search) can be defined. EGO then recommends
other images in the system by treating each image in the group as a positive
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training example, and modifying the feature weights to find similar images
in the database. ImageGrouper adopts a different approach in that manually
created groups can be selected as positive, negative, or neutral examples. The
system will then return images based on the positive examples given by the
user. Sub-groups can be made within groups in order to narrow the search.
For example within a group of car images, the user may narrow the search by
selecting only the red cars in the group as positive. The manual groupings in
these two systems allow for bulk annotation. Instead of labelling each image
individually, the user may simply annotate the entire group with keywords,
in order to facilitate future keyword searches.

The fully immersive 3D Mars system [47] also has a RF mechanism in-
corporated, allowing the user to choose positive or negative examples using
an interactive wand. The system then modifies the weightings of the features
used to query the remainder of images in the database.

3.6 Discussion

The browsing tools described in this section aim to aid the user during the
navigation of an image database. While horizontal browsing can be applied
to all visualisations where either a selection or all images in the database
are displayed to the user on a single plane, vertical browsing is limited to
hierarchically organised visualisations. The user is able to select a represen-
tative image to view a collection of images similar to their selected image. In
this way, the user is presented with a subset of more similar images relating
to their intended target. However, unlike horizontal browsing, once the user
traverses down a particular path of representative images they can lose the
overview of the database. Therefore, to reduce the user’s cognitive load and to
minimise confusion, systems will often give the user some indication of their
current position within the database. An example of this is implemented in
the Navidgator system [5], whereby a textual description includes the cur-
rent level of the database being displayed and the total number of images in
the current layer. A potential improvement to this would be a visual map,
displaying the user’s current location in the database.

The two contrasting styles of graph-based visualisations are providing an
overview of the collection (as in the Pathfinder network of Chen et al. [7]
or the approach by Worring et al. [83]) or presenting singular images in the
database and their linked neighbours (as implemented in the NN* network of
Heesch and Riieger [22]). Whilst such an overview may be explored in a similar
manner to mapping-based visualisations, the NN* implementation presents a
selected image as a query centralised on the display, with its nearest neigh-
bours displayed around it at distances based on similarity. Unfortuntately,
this technique suffers from a drawback similar to that of vertical browsing.
Once users enter the database (from selection of an initial query image from
an overview formed of representative images of clusters from the database),
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they may become lost in the network. The only option available to the user is
to use a ‘Back’ button to return to previous query selections or to the initial
overview. Presenting the user with the entire network visualisation prevents
this problem. The user interactions presented by Worring et al. [83] show that
such browsing techniques can reduce the amount of user effort required to
create a subset of solely relevant images. However, such visualisations have
only been tested with up to 300 images and it is not clear how well they
would scale for larger datasets.

Time-based browsing as implemented in a variety of systems, such as Cal-
endar Browser [19] or PhotoTOC [55], are typically aimed at personal users,
as they can recall the event at which an image was taken in relation to other
events in the collection [62]. Browsing such systems assumes that the images
in the database are correctly time stamped, which may not be the case for
all image collections.

The development of browsing systems has also resulted in some interesting
relevance feedback mechanisms in which the user can dynamically update
the intrinsic similarity measure by moving the position of the image directly
in the visualisation space. However, it is not clear to the user how much
effect a particular movement may have upon the system [48]. The EGO [81]
and ImageGrouper [48] systems require the user to manually form groups
before suggesting to the user possible matches. The approach undertaken in
Photosim [8] automatically creates initial clusters before allowing the user to
modify them, an approach that typically requires less user effort.

4 User Evaluation of Image Database Navigation
Approaches

As is apparent from the previous sections, a lot of research has been con-
ducted aimed at providing intuitive navigation interfaces for users of image
collections. Unfortunately, the systems most widely used in practise do not
offer any of these approaches. Most users rely solely on a graphical interface of
file structure browsers included in common operating systems, whilst others
use commercial software such as Apple’s iPhoto [27] or Google’s Picasa [53]
in order to display their personal photos. Professional photography agencies
employ staff whose sole responsibility is to manually annotate images with
keywords or free text, yet they also do not employ any of the techniques
reviewed in this chapter. The low uptake of browsing systems is further hin-
dered by the fact that traditionally only few examples of image management
software invoke some use of CBIR techniques, and that CBIR itself still has
major challenges to overcome. In this section we explore in more detail the
various tasks for which image database navigation systems are particularly
useful, reducing the time required to perform them, and review various user
evaluation studies that support this argumentation.
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4.1 User Tasks

Image browsing systems can be used for a variety of tasks and tests which we
will highlight in the following. Typically, different approaches are more suited
to particular tasks. For each task, specific data can be extracted in order to
measure the performance of a developed system. In addition, the subjective
opinion of users can also be measured.

Target Search

Target search [75] is the most commonly employed and tested task in browsing
systems, and used in works such as [9, 59, 55l 19, 18]. It is also often used
as a method of testing traditional CBIR systems [46]. In target search, the
user is shown an image and asked to browse the system in order to locate
this target image. When the user has found the image, they perform some
test termination action (e.g. click on the target image in the system). The
time taken for the user to locate the image can then be recorded for further
analysis. A timeout is also often implemented (i.e. when a user is unable to
find the image within a specified time limit). Clearly, the gathered timing
information can be used to a compare different systems, or to compare some
system against a traditional search through a linear list of images.

A variation of this task was used in [48] where users were shown a target
image as before, but rather than locating that particular image, were asked
to select 10 semantically relevant images from the collection. Apart from the
timing information, another measure that can be derived in this test is the
error rate, which counts the number of images incorrectly selected by users.

The advantage of a target search task is that it is relatively easy to conduct,
and enables a quantitative comparative analysis of two or more systems. It
is also more likely to model the more general use of a system, e.g. browsing
personal photographs.

Journalistic Task

As outlined in [75], a common use of image retrieval systems for journalistic
purposes are “searches to illustrate a document”. To replicate this within a
user study, participants can be given a short piece of text in which they are
instructed to find a set of images from the database which best represent
the topic of the text. In the experiments conducted by Rodden et al. [61],
ten graphic design students were asked to compare an interface with im-
ages arranged according to their visual similarity through MDS assigned to
a grid structure, and an interface which grouped images according to key-
words, namely the geographical location of where the image was taken. Users
were issued a travel article based upon some tourist destination (such as New
York) and were instructed to browse 100 images from that location and se-
lect three that they deemed the most appropriate to accompany the article.
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Another study by Rodden et al. [61] compared a similarity-based approach
with a randomly arranged image set, employing a test population of average
computer users. The creators of EGO [8I] conducted a similar study with
general users.

Graham et al. [19] employed a modified version of the journalistic task,
providing users with a textual description and 3 minutes to locate as many
images in the database relevant to the description. While comparing presen-
tation of image from web search engines in [42], the authors asked the users
in the study to find those images out of the top 200 image results that best
represent the query terms.

The journalistic task, models a true requirement of a retrieval system. An
issue with this test however is, that is difficult to recruit users that would
actually employ such a system in the real world (e.g. journalists) and evalua-
tion is hence often performed upon general users who may undertake different
search patterns to browse through image collections.

Annotation Task

Rodden and Wood [62] observed that users rarely manually annotate each
individual image in a collection (or indeed do not annotate any images at all).
One obvious reason for this is the amount of effort required for annotation.
Systems such as ImageGrouper [48] and EGO [81] have hence been devised
in order to simplify and speed up the annotation of images in a database.
Nguyen and Worring [49] run a simulated user study, measuring the num-
ber of total interactions required by a user in order to annotate the entire
database. They used this method to evaluate a mapping-based visualisation.
The baseline number of annotations used is that of a standard linear visuali-
sation which equals the number of images in the database (i.e. one interaction
per image). It was shown that the mapping-based visualisation can reduce
the number of interactions needed for annotation by up to 94% (dependent
on the categories of images in the database and the features used to define
similarity). Such a test would obviously be simple to implement in practice,
asking users to annotate each image in the database with a keyword from a
preset list while measuring the number of interactions or the time spent on
the task. In addition, if a ground truth of correct annotations is available,
the error rate can also be measured.

Clustering Study

A novel way of measuring the quality of image clustering is presented by
Platt [56]. Two users each used their own personal collections (one of which
had corrupt time stamps), and were asked to manually cluster the images into
albums which acted as the ground truth for database. Each of the personal
collections were then automatically clustered by either time, content, or a
combination of the two (as well as a control of equally sized clusters). Each
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image in the database was used as a query, and based on that the automatic
clusterings were compared with the ground-truth (i.e. user-based clusterings),
using the number of true positives, false positives and false negatives. These
were averaged for all the images in the database to generate a percentage
known as the F'1 metric. It was found that a combination of time and content-
based clustering achieved the highest F'1 score for both the corrupt and non-
corrupt image collections.

This approach provides an interesting measurement of the quality of auto-
matic clustering algorithms since it directly compares the results of automatic
techniques with those derived manually by a user. The drawback is of course,
the time involved to generate the ground truth clustering. In [56] the image
collections consisted of 294 and 405 images respectively, whereas for collec-
tions of 1,000s of images the task will become not only infeasible, but also
prone to human error.

User Opinion

After a user study has been conducted, researchers will generally issue the
users with a questionnaire in order to gauge their opinions on the different
aspects of the system and its user interface. The results of these questionnaires
can then be used to modify the system as was done by Rodden et al. where
the general dislike of users towards image overlapping in MDS visualisations
caused the authors to consider fitting the images to a more regular grid
structure. When this type of user questioning is included with some other
task such as those listed above, it allows to gain an impression on how such
a system could be applied in the real world. However, if used without a test
such as those listed above, the lack of quantitative statistical data prevents
drawing full conclusions upon the true quality of the approach.

4.2 Key Findings from User Studies

User evaluations attempt to prove that the system proposed by the authors
improves upon methodologies currently used in the field. Sometimes these
studies provide interesting insights into how general users gauge these novel
browsing systems and additional functions. Perhaps the most significant user
studies have been conducted by Rodden et al. In [59], a user study was
conducted using target search on a randomly assorted grid of images and an
MDS visualisation based on image similarity. The authors were able to show:

e Image retrieval is faster when images are arranged by their mutual simi-
larity.
Users prefer visualisations that do not overlap.
More distinct images (i.e. images that are on average less similar to all
other images in the database) are easier to find.

e Images located closer to the centre of the screen are retrieved faster than
those located closer to the edge.
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In a later work of Rodden et al. [61], an MDS visualisation fitted to a grid
is compared first to a system organising images in groups through keywords,
and then with a grid arrangement whereby the images are randomly sorted.
The users were asked to perform a journalistic task. The key findings from
this work were:

o Users prefer the MDS grid visualisation to one arranged through key-
words.

e Users are slower at selecting preferred images within the MDS grid visu-
alisation than the randomly assorted grid.

The authors were surprised that users took longer to select images for a travel
article using the MDS grid visualisation rather than the randomly assorted
grid of images. As a possible reason, they argue that when images are ar-
ranged randomly, images appear to be more distinct as it is unlikely that
it will be similar to all of their neighbours. However, the authors state that
judging from post-test questionnaires, it appeared that users were generally
more satisfied with their image selections when using the MDS based inter-
face. This may be because they have selected an image they were looking for
in particular, rather than settling for a related image found quickly using the
random arrangement.

Rodden and Wood [62] also explored how users manage their digital pho-
tographs. Subjects were supplied with a digital camera and a system called
Shoebox, an image browsing system arranging images in folders according to
the time they were created. Shoebox also has the added functionality of a
QBE search facility and a voice annotation system. Findings from this work
include:

e The general user has unrealistic expectations of a QBE system, and can
find it difficult to improve a query.

e Users are fairly reluctant to manually annotate images, even when pro-
vided with a voice annotated system. Only a small percentage of users in
the study changed the title of any image in the system.

e Sorting images according to the time at which they were taken allows users
to browse the collection by recalling which particular event the image
required is from.

e Displaying many image thumbnails at a time decreases the time required
for image retrieval.

The work of Rodden et al. has looked at arranging images by similarity as
well as time; one of the fundamental conclusions from [62] is that displaying
as many images as possible to the user improves retrieval time. However an
issue with displaying too many image thumbnails is that the user needs to
be able to comprehend what is actually depicted within the image.

A zoom facility as described in Section Bl allows thumbnails to be dis-
played within an overview at a fairly low resolution and zoomed into at the
user’s discretion. A study by Combs and Bederson [9] investigates solely the
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effect zooming has on improving the user’s browsing experience. A Zoomable
Image Browser (ZIB) is compared with a traditional image browsing sys-
tem, whereby image folders can be selected from the left hand pane, and the
contents of the folder are displayed in the right hand pane. Enlargement of
images can only be performed by opening a new window. The ZIB system
provides a keyword search in a top pane, while the results of the search are
displayed in a pane located below. The user has the facility to zoom into the
search query results. Despite showing that a target search test was faster us-
ing ZIB, this was shown not to be statistically significant. The authors of the
study also comment that of the 30 users tested, only 50% actually invoked
the zoom facility. Combs and Bederson suggest that the number of query re-
sults shown at any time was not enough to warrant a zoom facility, as images
were displayed at a resolution distinguishable without the zoom requirement.
They conclude that a study into the maximum number of images that can
be displayed without zoom should be investigated in future work.

Interesting user studies have also been conducted by the developers of the
RF browsing systems EGO [81] and ImageGrouper [48]. Both systems are
relatively similar, allowing a user to first query the database, then group the
images presented in the results in order to modify the feature weights of the
internal similarity measure. A target search was performed, asking the user to
select ten semantically relevant images to the target. EGO and ImageGrouper
were compared with a slider based and a selection based RF system. The key
finding from these studies was:

e Image retrieval took longer using the grouping systems rather than the
simple relevant or non-relevant selection system.

The authors attributed this to the fact that the drag-and-drop interfaces
require more user actions than a simple selection interface.

In clustering-based visualisations, image groups can be displayed to the
user in the form of representative images (as discussed in Section [22). In [18],
the subjective opinion of users was measured for varying forms of the CAT
interface. The authors found that:

e Users preferred the CAT interface when representative images were used
rather than when representative images were not included.

Unfortunately the evaluation was performed only with 10 users, making it
difficult to conclusively state that representative images indeed do improve a
user’s browsing experience. Future work could use quantitative tests in order
to provide a better insight into the effectiveness of representative images as
a tool for browsing.

While the CAT interface is an example of a system invoking hierarchical
clustering, user studies conducted by Rodden et al. were designed to test the
effectiveness of dimensionality reduced visualisations. Relatively little work
has been conducted into testing which of these different approaches might
perform better in terms of image retrieval. Liu et al. [42] however do offer
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some comparison between a clustered and dimensionality reduced approach.
The authors were interested to discover how the results from a web image
search engine query can be visualised in order to improve the user’s browsing
experience. Nine users participated using the standard ranked list interface
provided by Google image search, an MDS visualisation that could be man-
ually adjusted to fit images to a grid (as described in Section 2]) and a
clustering-based approach which creates five groups of images based on con-
tent. Clusters are represented in a left hand pane through a set of the four
most representative images in that group. Should the user select the clus-
ter preview thumbnail, all the images from that cluster are displayed in the
right hand pane of the browser. 17 queries were performed in which the top
200 images were displayed on each of the interfaces. Users were instructed to
browse the results in order to find the images they deemed most relevant to
the query terms. Liu et al. found that:

e Both the MDS and the clustering-based visualisations clearly outperform
the standard ranked list results.

e Although search times were similar between the MDS and cluster visual-
isations, users clearly preferred the layout of MDS plots characterising it
as “more intuitive and interesting, also convenient for comparing similar
images”.

4.3 Discussion

Evaluation of image database navigation systems, more often than not, tends
to compare the newly proposed browsing system with a more traditional
approach. Various studies have confirmed that image databases visualised,
as described earlier in this chapter, do indeed allow for faster retrieval than
traditional linear approaches [19} 42}, [59].

What the majority of user studies have not been able to show is how their
browsing system can perform against other browsing systems discussed in
this chapter. For example, little work exists in comparing a hierarchically
clustered visualisation of a database against the same database visualised
using MDS. While the study of Liu et al. [42] does offer such a comparison
based on a target search scenario, the results were too close to conclude which
of the two paradigms offers a more efficient way of searching.

Analysis of questionnaires returned by users after testing allows the collec-
tion of personal preferences. However, unlike e.g. the time required to perform
a test which can be statistically analysed, user opinion is highly subjective
and is often linked to the background and environment of the test population.
In addition, the majority of user studies conducted are based on a relatively
small number of participants, often no more than ten. Clearly, drawing statis-
tically relevant conclusions from such a small sample size is difficult, both for
quantitive measures such as search time and for subjective opinions collected
through questionnaires (including those where subjects are asked to assign
scores on an ordinal scale).
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Future work should focus on developing a standardised benchmark that
could be used within the browsing community in order to fully gauge the
quality of a newly developed system. This benchmark could comprise both
specific search tasks (such as target search) and annotation tasks (similar
to the one adopted in [49]) which can be applied to any image database
navigation system. Such a benchmark would of course require an underlying
dataset with a ground truth (e.g. manual annotations) which in itself is not
straightforward to obtain due to the work involved and other factors such as
copyright issues.

5 Conclusions

In this chapter we have investigated, in detail, the current state-of-the-art
of image retrieval systems that allow a user to visually navigate through an
image collection. We first looked at similarity-based methods providing an
intuitive visualisation of an image collection and identified three main ap-
proaches. Mapping-based visualisations maintain the relationships between
images in the database in the high-dimensional feature space. Projection into
the (typically 2-dimensional) visualisation space is achieved through appli-
cation of dimensionality reduction techniques such as PCA or MDS. This
type of visualisation has also been adopted in systems that employ virtual
reality concepts to provide a more immersive browsing experience. However,
the costs associated with the necessary equipment will prevent wide-spread
adoption of this approach. Clustering-based methods employ, as the name
implies, a clustering algorithm to organise images in a collection. Clustering
the images into smaller groups of similar images allows the user to browse
down a hierarchy, whereby the further down the tree they delve, the more
similar images become. Graph-based visualisations express relationships be-
tween images (such as visual similarity or common keyword annotation) as
links of a graph structure that is visualised to the user. Image collections can
also be displayed based on time stamp information which can prove useful to
identify distinct events and display relevant pictures.

Mapping-based visualisations aim to maintain the relationships between
images occurring in the high-dimensional feature space, and display them
usually within the 2D constraints of a computer display or a 3D virtual en-
vironment. It has been shown in [59] that arranging images according to
visual similarity can reduce the time required for image retrieval. These vi-
sualisations harness the power of the human cognitive system, passing a vast
quantity of data processing subconsciously to the user’s mind. However, one
of the drawbacks of this type of visualisation is that the limited space of-
ten causes images to overlap or to occlude each other. Ways to address this
issue and reduce overlap include the fitting of images to a regular grid struc-
ture or slight adjustments of the visual arrangement in order to preserve the
structure. Another problem with mapping-based visualisations is that they
are computationally expensive to generate, and are hence rarely suitable for
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computing ‘on-the-fly’ visualisations of a large number of query results. Fur-
thermore, the addition of images to the collection typically requires these
visualisations to be recalculated in their entirety.

Clustering-based visualisations have the advantage that by dividing the
database into smaller entities, only a small subset of images needs to be
visualised. This ultimately leads to less processing for both the system and
the user. The system needs only to load a section of the database when the
user has accessed a particular cluster of images, rather than loading all images
as is the case with global mapping-based visualisations. The cognitive load
on the user is also reduced as the number of distinct images to be inspected
is much lower. However, a disadvantage of clustered visualisations is that the
user can become ‘trapped’ in a subset of the database. This can occur when
representative images used at higher levels of the tree either do not represent
the images in that subtree well enough, or are not distinct enough from other
representative images at the same level. Both scenarios can lead to the user
traversing nodes of the structure in vain, leading to excessive time required
for retrieval and added frustration to the user. It should be noted that this
is not so much a flaw of the visualisation itself but is rather caused by the
underlying similarity measure employed, the best of which are still incapable
of modeling human perception appropriately.

Indeed, this problem applies to all forms of visualisations including graph-
based approaches. If the features extracted and similarity measures do not
model human perception well, the links formed between images may impede
rather than support the browsing experience. Creating links to multiple im-
ages based on a variety of features, as implemented in NN* networks [22],
allows the user to browse through images in the database based upon a partic-
ular feature such as colour or texture. However, the user may need to adjust
the number of neighbours displayed as an excessive number of links between
images will make the visualisation more complex and less intuitive.

The variety of browsing tools available to the user are usually common to
all visualisations. Being able to zoom into areas of interest can be applied to
any visualisation, although vertical zooming is available only in hierarchically
organised visualisations. These structures often come with some overview of
the underlying tree and the user’s current location within the system in order
to help with the navigation task. This kind of overview can also be applied
to mapping-based and graph-based visualisations, particularly when the user
has increased the zoom factor so that not all of the visualisation is visible
within the screen area. In this case a panning function is required to allow
the user to navigate the structure without having to zoom out again. Manual
scaling of images and magnified previews of images can further enhance the
user’s browsing experience.

Relatively little work has been performed into investigating which visual-
isation paradigm may be the most useful, although a variety of user stud-
ies have shown that organising image databases in the ways presented in
this chapter can reduce the retrieval time when compared with traditional
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approaches. What is currently missing is a standard benchmark for assessing
the effectiveness and efficiency of browsing systems. Such a benchmark would
be based on a standardised image set (or several collections of different mag-
nitudes in order to be able to judge scalability) together with a ground truth
and a number of pre-defined tasks. One such task which seems particularly
interesting is the annotation task defined in [49], a ‘real world’ task which can
be quantitatively measured in order to compare systems. A large, copyright-
free image database however is still an issue, although systems such as those
presented in [I3] BI] use the online image resource Flickr [I7] to obtain im-
ages. Defining a ground truth is an even bigger challenge (as can e.g. be seen
immediately by inspecting the annotations that are given on Flickr).

In addition to advancements in the evaluation of image database naviga-
tion systems, further research and new browsing paradigms are likely to be
required to harness the true potential of image browsing. One of the com-
ing challenges for browsing systems is the decreasing screen resolution and
reduced processing available, that have come as a consequence of mobile
computing. More and more people use their mobile phones to explore the
internet, and require access to the millions of images available online. Nowa-
days, mobile phones also act as a primary source of image capture for many.
Photographs are often uploaded to the web to either share on social network-
ing sites, or uploaded to a ‘cloud’ (or server) whereby the user can access
their images from any device. Works such as [21, [70, [84] have looked at de-
veloping traditional QBE CBIR systems for mobile devices, whilst [32] does
briefly look at browsing on a mobile device. With the increasing graphical
and processing ability of handheld devices, coupled with the increasing num-
ber of images stored locally and online, browsing large image databases in
the palm of the users hand will almost certainly be a future requirement.
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Abstract. We investigate models for content-based image retrieval with relevance
feedback, in particular focusing on the exploration-exploitation dilemma. We pro-
pose quantitative models for the user behavior and investigate implications of these
models. Three search algorithms for efficient searches based on the user models are
proposed and evaluated. In the first model a user queries a database for the most (or
a sufficiently) relevant image. The user gives feedback to the system by selecting
the most relevant image from a number of images presented by the system. In the
second model we consider a filtering task where relevant images should be extracted
from a database and presented to the user. The feedback of the user is a binary clas-
sification of each presented image as relevant or irrelevant. While these models are
related, they differ significantly in the kind of feedback provided by the user. This
requires very different mechanisms to trade off exploration (finding out what the
user wants) and exploitation (serving images which the system believes relevant for
the user).

1 Introduction

In this section we introduce the exploration-exploitation dilemma in the context of
content-based image retrieval by giving two examples of exploration-exploitation
dilemmas a search engine might face.

Assume that a user is looking for an image of a tiger, and the first images pre-
sented to the user are of a dog, a car, and a tree. The user might select the dog as most
relevant to her query. From this feedback the search engine might conclude that the
user is searching for a specific dog, and continues by presenting images of dogs.
Thus narrowing the search space too much in response to the user’s feedback, might
hinder an efficient search. But another user — giving the same feedback — might
indeed be looking for a poodle, such that narrowing the search space is appropriate
and efficient.

Another example is a user interested in dogs and hunting. Given images of a dog,
a car, and a tree, he might classify only the dog as relevant. If the search engine con-
tinues to present images of dogs, images of hunting will rarely be presented. Again,
the search space is narrowed too much. But also in this case the user might indeed
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be interested only in dogs, and exploring other topics will results in a significant
number of irrelevant images presented to the user.

These examples show that a search engine needs to trade off between selecting
images which are close to the images a user has selected so far, and selecting images
which reveal more about the implicit query of the user.

In Section 2] we review some prior work in content-based image retrieval with
relevance feedback. Our first model, the comparative feedback model, is presented
in Section Bl where we propose also some algorithms for this model and present
experimental results. Our second model, the binary feedback model, is considered
in Section[land some previous results are reviewed.

2 Relation to Previous Work

Content-based image retrieval with relevance feedback can be divided into two sub-
problems: 1.) how we can conduct a specific search to find a suitable image in as few
iterations as possible, and 2.) how we can learn a good similarity measure among
images based on long-term user feedback from a large number of user search ses-
sions or user labels from datasets.

In previous work [29] 26} [10, 3]}, active learning has been used to select images
around the decision boundary for user feedback, for speeding up the search process
and to boost the amount of information which can be obtained from user feedback.
However, images around the decision boundary are usually difficult to label. A user
might find it hard to label images in between two categories. Such difficulties and
noise from user feedback is not explicitly modeled or taken into account in most
previous work.

While active learning tries to boost the amount of information which can be ob-
tained from user feedback — mostly by asking the user about examples which are
hard to distinguish — this approach ignores that (a) the user typically is not inter-
ested in borderline cases, and (b) the user himself might find it difficult to distinguish
between difficult examples, such that the user feedback might be quite noisy. These
issues and the noise from user feedback has not been explicitly modeled or taken
into account in most previous work. In contrast, we explicitly model the noisy user
feedback and select images for presentation to the user, such that — after obtain-
ing the user feedback — the algorithm can efficiently search for suitable images by
eliminating images not matching the user’s query.

To solve the second of the two sub-problems, i.e. how we can learn a good simi-
larity measure among images, it is necessary to find a reasonable similarity measure
among the images. In this paper, we do not address this problem. But, we note
that recently user labels are easily obtainable because of the technological advances
of the Internet. Large amounts of data for high-level features can be found from
databases with user labels, often called image tags, such as Flickr, Facebook and
Pbase. The popularity of these databases enhances the accuracies of image search
engines. For example, the Yahoo image search engine is using tags from images on
Flickr. Thus we will consider a combination low-level visual features and high-level
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features obtained from user labels, and we assume that a reasonably good similarity
measure among images can be defined using this features. In our experiments we
will use a similarity measure based on the 2-norm. A combination of keywords and
visual features has also be used in [12] and [30].

Traditionally, content-based image retrieval with user feedback is considered a
learning problem using data from user feedback and, with visual features most
previous work assumes that no label describing images in datasets is available,
[26l 4, 24} 23]]. Metric functions measuring similarity based on low-level visual
features are obtained by discriminative methods. Long-term learning is used with
training datasets from the feedback of different users [11, 9,16} [14} 19,18 28| 22]].
However, because of different perceptions about the same object, different users
may give different kinds of feedback for the same query target. Short-term learning
using feedback from a single user in a single search session can be used to deal with
the different perceptions of objects. Weighting the importance of different low-level
features is often used for short-term learning (e.g. PicSOM [[15]]).

The use of user feedback as training data has played an important role in most
recent work [27, 25| 151 [17) [7]. Feedback is used as positive or negative labels for
training. But as the user chooses the most relevant images in any iteration, such an
image may be chosen even if the image is rather dissimilar to any suitable image.
Furthermore, images predicted to be positive examples by discriminative methods
are traditionally selected for presentation in each round. Thus, mistakes of the dis-
criminative method might hinder progress in the search significantly — by ignoring
part of the search space with images which are incorrectly predicted as negative.

3 Comparative Feedback

In this section we consider a model in which the search engine supports the user in
finding an image which matches her query sufficiently well. In each iteration of the
search, the search engine presents a set of images to the user and the user selects
the most relevant image from this set. We assume a given database & of images x,
and in each iteration a fixed number k of images is presented to the user. The formal
search protocol is as follows:

e Foreach iterationi = 1,2,... of the search:

— The search engine calculates a set of images x; 1,...,X;x € ¢ and presents
the images to the user.

— If one of the presented images matches the user’s query sufficiently well,
then the user selects this image and the search terminates.

— Otherwise the user chooses one of the image x} as most relevant, according
to a distribution D {x:‘ =X jlxi1,. .. ,xi7k;t} where ¢ denotes the ideal target
image for the user’s query.

The crucial element of this model is the distribution D assumed for the user’s feed-
back, and how it can be used for an effective search algorithm.
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3.1 A Possible User Model

Instead of expecting that the user deterministically chooses the presented image
which is most relevant to her query, we assume that this choice is a random process
where more relevant images are just more likely to be chosen. This models some
sources of noise in the user’s choice, in particular it might be difficult for the user
to distinguish between images of similar relevance. We assume a similarity measure
S(x1,x2) between images x1,xp, which also measures the relevance of an image
x compared to an ideal target image ¢ by S(x,t). Formally, let 0 < ¢ < 1 be the
uniform noise in the user’s choices and we assume that the probability of choosing
image x; ; is given by

S(x,-‘,j,t) o

D{x{ =xijlxi1,. ... xipst} = (1— o) :
' ' i Sijet) K

Assuming a distance function d(-,-) on the images, two possible choices for the
similarity measure S(-,-) are

S(x,t) = exp{—ad(x,1)} (1

and
S(x,t) =d(x,t)"¢ (2

with a parameter a > 0. We note that these two similarity measures predict the user
behavior in a subtly but significantly different way: Considering only the case k =2,
we find for the polynomial similarity measure (2)) that

D{x] =x1|x;1,xi 25t} = D{X? :xi’,1|xi’,1>xi’,2;[}
if
d(xii,1) _ dlxi 1)
d(x,'_rz,[) d(xi/,2>[)

In contrast, for the exponential similarity measure (1)) we find
* . _ ko .
D {xi = X1 |xi71 ,xi72,t} =D {xi = xi’,l |xi/_’1 7xl~/_’2,t}

only if
d(x,'J,I) —d(x,-‘yg,t) = d(xi/’],t) —d(xi/’z,l‘).

Thus for the polynomial similarity measure the user’s response depends on the rela-
tive size of the distances to the ideal target image, while for the exponential similar-
ity measure it depends on the absolute difference of the distances. As a consequence,
the accuracy of the user’s response will remain high for the polynomial similarity
measure even when all presented images are close to the ideal target image, while
the accuracy will significantly deteriorate for the exponential similarity measure. At
the current stage it is not clear which model of user behavior is more adequate.

In all the following we use the squared Euclidean norm d(x,t) = ||x —¢t||* as
distance measure between image x and the ideal target image ¢.
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3.2 Algorithms

In this model the goal of a search algorithm is to present a sufficiently relevant im-
age in as few as possible search iterations. Such a search algorithm will need to
continue exploring, since the images which are chosen by the user as most relevant
among the presented images, might still be rather irrelevant to the user’s query. If
the user chooses an image of a dog in the first iteration, the algorithm should not
present only images of dogs in the following iterations. Such a greedy exploita-
tion approach where only images close to the already chosen images are presented
to the user, is likely to lead to search failures (as the user might be looking for
another kind of animals instead). Presenting the images closest to the already cho-
sen images also limits the amount of information obtained from feedback because
the presented images are largely similar. Thus, some exploration strategy has to be
adopted.

In the following we describe three exploration strategies which serve as early
attempts to solve the search problem and which are evaluated in some initial exper-
iments. All three algorithms maintain weights w(x) on the images x in the database
2 and calculate images to be presented to the user according to these weights. The
first algorithm selects images at random according to their weights. This algorithm
is used in the PicSOM system [[15]. The second algorithm performs weighted clus-
tering of the images in the database and selects the cluster centers for presentation
to the user. The third algorithm is motivated by noise robust binary search algo-
rithms [[13| 21]]. Our approximate binary search algorithm presents to the user im-
ages which divide the search space into two parts of equal weight such that either
response of the user will lead to discounting half of the weights.

3.2.1 Weighting Images

All three algorithms described in this section maintain the weights on the images in
the database in the same way. Let w;(x), x € 2, be the weights of the images which
are used to calculate the images x; 1, . .. ,x;x presented to the user in the i-th iteration
of the search. Assuming no a priori information about the relevance of images, the
weights are initialized as wy(x) = 1 for all x € Z. If the user model were known,
e.g. (I) or @) with known parameter a, then in the i-th iteration the weights w;(x)
could represent the a posteriori likelihood of the images according to their relevance.
But in this initial report we do not want to rely too much on a specific user model.
Instead, the only information we take from the user feedback is that some images
are more likely to be relevant than others, without quantifying how much more
likely that would be. This leads to the following weighting scheme which demotes
all apparently less relevant images by a constant discount factor 0 < 8 < 1: Let
x; € {xi1,...,xi} be the image chosen by the user as most relevant. If the search
has not terminated, then all images x; 1, ...,x; ¢ are not sufficiently relevant and thus
their weights are set to 0. All images x € & which are closer to some x; ; than to x}
are demoted by the discount factor 3. Formally, we use the following update of the
weights:
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e Initialize wi (x) = 1 forall x € 2.
e For each iteration i = 1,2,... of the search:
— Forall x € Z set

‘ B wi(x) if d(xf,x) = min;d(x; j,x)
Wig1 (x) = { B - wi(x) otherwise .

- Setwiti(xi;)=0forall j=1,... k.

Exponential discounting has been proven to be very useful in various learning sce-
nario. An algorithm which uses the very same discounting scheme as above is the
weighted majority algorithm [20]. This is an algorithm for online prediction where
in each iteration a binary prediction is to be made by the algorithm. After making
its prediction the algorithm receives as feedback whether the prediction was correct
or not. The weighted majority algorithm relies on a set of hypotheses H where all
hypotheses & € H make binary predictions which are combined into the algorithm’s
prediction. For this combination the algorithm maintains weights on the hypotheses
which are discounted if the prediction of a hypothesis is incorrect. The assumption
is that at least one of the hypotheses gives good predictions. In the search scenario
with relevance feedback the possible target images can be seen as the set of hy-
potheses, and the user feedback can be used to discount images which are likely to
be less relevant.

More directly related to the proposed weighting scheme are noisy binary search
algorithms [[13} [21]]. Such binary search algorithms tolerate a certain amount of in-
correct information about the target value given to them during the search. In Sec-
tion [3.2.4] we propose such an approximate binary search algorithm for the search
with relevance feedback.

3.2.2 The Random Sampling Algorithm

The random sampling algorithm is the simplest algorithm of the algorithms we de-
scribe in this section for calculating the sets of images presented to the user in each
search iteration. This algorithm randomly selects (without repetition) images from
the dataset according to their weights. The rational of this approach — besides it
simplicity and efficiency — is that images with higher weights, which are more
likely to be relevant, are included in the set presented to the user with a larger prob-
ability. Further, this random selection will spread the selected images well across
the database, such that a suitable amount of exploration takes place. This algorithm
is implemented in the current version of the PicSOM system [[15].

3.2.3 The Weighted Clustering Algorithm

The intuition for this algorithm is that various parts of the search space should be
represented by the images presented to the user. To calculate k such representatives
we use k-means weighted clustering, where the weight of each image gives its in-
fluence on the cluster center: the objective is to find cluster centers y;,...,yx €
which minimize
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The cluster centers calculated by the clustering algorithm are presented to the user.

3.2.4 The Approximate Binary Search Algorithm

In this section we present a search algorithm which is based on robust binary
search [13} [21]. For an easy simulation of the binary search we describe our algo-
rithm only for the case of k = 2 images presented to the user in each search iteration.
The main idea of the algorithm is to present images x; ; and x; » to the user such that
the sum of weights of the images closer to x; 1 is about equal to the sum of weights
of the images closer to x;». Thus, whether x; | or x;> is more relevant, half of the
weights will be discounted in response to the user’s feedback.

An important difference between binary search and search with relevance feed-
back is that in search with relevance feedback the noise of the user feedback depends
on the images presented to the user: even if the pairs x; ,x;» and x; ,x/, give the
same partition of the search space, the noise of the user feedback might be quite
different, depending on the distance of the presented images (and also depending
on the target image). To illustrate this, we consider a 1-dimensional search prob-
lem for a target ¢ € [—1,41] with either the pair of examples (x1,x2), x; = —1/2,
x = +1/2, presented to the user, or xX; = —1/4, x, = +1/4, presented to the user.
Both pairs split the search space at 0, but Figure [T] shows that the noise in the user
model behaves quite differently for the two pairs: for a target distant from 0, the
pair (—1/2,+41/2) delivers reliable feedback, but for a target close to 0, the pair

Prob. of correct feedback

— X, =112, %, = +112
wenX, = 114, x,= +1/4

. .
0'§1 -0.5 0 0.5 1

Target t

Fig. 1. Probability of correct feedback for different pairs of examples (x;,x;) presented to
the user, depending on the target t. The feedback is correct if the example closer to the target
is chosen by the user.
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(=1/4,+1/4) is more reliabld]. Thus it is important to not only calculate an ap-
propriate partition of the search space but also to present images — inducing this
partition — which result in relatively low noise in the user feedback.

Since we are using the squared Euclidean norm ||x —¢||? to measure the distance
between images x and ¢, the partition of the search space induced by presented im-
ages x;| and x;» is given by a hyperplane. For efficient computation we use the
following heuristic to find a hyperplane which partitions the search space into parts
of approximately equal weight: for a random hyperplane through the centroid of all
weighted images, two images are calculated for this hyperplane with about distance
0;A from the hyperplane. Here Giz is the average weighted distance of all images to
the centroid (where distance is measured by the squared Euclidean norm), and A is
a parameter of the algorithm which we call the gap parameter. Essentially the gap
parameter measures the closeness of the presented images and thus influences the
amount of noise in the user feedback.

3.3 Experiments

The three search algorithms for content-based image retrieval with user feedback
are evaluated with Monte Carlo simulations where randomness is introduced by
the user model, the algorithms, and the data themselves, in particular through the
randomly selected ideal target of a search. In all experiments the ideal target was an
image from the database, and the search terminated as soon as the target image was
selected for presentation to the user. In a more realistic scenario it can be expected
that searches will terminate earlier since the user will be satisfied with a sufficiently
similar image.

In all experiments we use the exponential user model (). We investigate the in-
fluence of the relevant parameters on the number of search iterations. These param-
eters are the uniform noise rate ¢, the parameter a of the user model, the discount
factor f of the weighting scheme, and for the approximate binary search algorithm
also the gap parameter A. To reduce statistical fluctuations, each reported plot is
averaged over ten repeated experiments with the same set of parameters.

In the first set of experiments we use synthesized data for which the distribution
is known such that the experiments are easier to analyze. Very surprisingly, we find
in these experiments that the simple random sampling algorithm performs best for
a wide range of reasonable parameter settings. We discuss this result in Section 3.4
below. Before we compare the three algorithms in Figures OHIT] we investigate the
behavior of the algorithms separately in Figures 2H8l

In a second set of experiments we have simulated actual searches on the VOC2007
dataset [8], and we report qualitative results.

3.3.1 Experiments on Synthetic Data

For this data an image is generated as a 23-dimensional vector with each element
uniformly distributed between 0 and 1. The synthetic database contains 10,000 such

! Here we used model @) with the absolute distance and parameters a = 2 and o = 0.1.



Relevance Feedback Models for Content-Based Image Retrieval 67

images. The dimensionality and number of data were chosen to match the VOC2007
dataset [8] which contains about 10,000 images from 23 categories. Using the cate-
gories as high level features gives image descriptions of the same dimension.

For an easier analysis we set k = 2 in these experiments, such that only 2 images
are presented to the user in each search iteration. The number of search iterations is
expected to be significantly reduced for larger k. All reported results are averaged
over 10 searches for randomly selected target images from the dataset.

We first investigate the influence of the user model parameter a and the algo-
rithms’ parameters on the number of search iterations. For this, we keep the uniform
noise at o = 0.1 and vary the user model parameter a and the discount factor 3. For
the approximate binary search algorithm we report also results for fixed 8 = 0.5 and
varying a and varying gap parameter A.

For the user model parameter a we consider the range 2 <a < 16and 0.1 < o <
0.3. This gives an overall noise rate of about 5% to 16% in early search iterations
and 17% to 45% close to the end of the search.

Figures[2]and[3lshow the performance of the random sampling algorithm and the
weighted clustering algorithm for varying a and 8. Figure @] shows the performance
of the approximate binary search algorithm for fixed gap parameter A and varying
a and B, Figure[3 shows the performance for fixed 8 and varying a and A.

In Figures[@l [7] and [§ we investigate the influence of the discount factor 8 for
various uniform noise rates ¢ and fixed user model parameter a = 8. For the approx-
imate binary search algorithm we set the gap parameter A = 2, which is a reasonable
choice given Figure[3

Average Number of Iterations

0.2 0.4 0.6 0.8

Fig. 2. Average number of search iterations on synthetic data for the random sampling
algorithm with oo = 0.1 and varying a and 8
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Average Number of Iterations

Fig. 3. Average number of search iterations on synthetic data for the weighted clustering
algorithm with oo = 0.1 and varying a and 8

Average Number of Iterations

Fig. 4. Average number of search iterations on synthetic data for the approximate binary
search algorithm with ¢ = 0.1, A = 2, and varying a and 3
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Average Number of Iterations

o

Fig. 5. Average number of search iterations on synthetic data for the approximate binary
search algorithm with o = 0.1, § = 0.5, and varying a and A
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Fig. 6. Average number of search iterations on synthetic data for the random sampling
algorithm with @ = 8 and varying o and 3
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Fig. 7. Average number of search iterations on synthetic data for the weighted clustering
algorithm with ¢ = 8 and varying o and 3
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Fig. 8. Average number of search iterations on synthetic data for the approximate binary
search algorithm with a = 8, A =2, and varying o and 3
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We find that with increasing uniform noise and increasing noise from the user
model (i.e. decreasing user model parameter a) the number of search iterations in-
creases as expected. More interestingly, we find that the performance of the algo-
rithms is relatively insensitive in respect to the choice of the discount factor 3. For
a reasonable range around 3 = 0.5 the number of iterations is quite stable. Never-
theless, the number of search iterations can be reduced by an optimal choice of the
discount factor. Finally, it seems that a large gap parameter A for the approximate
binary search algorithm seems advantageous, see also the discussion in Section[3.4]

Finally, we compare the three algorithms for some parameter settings. In Figure[0]
we vary the user model parameter a and fix the uniform noise rate & = 0.1 and the
discount rate 3 = 0.5, in Figure [[0l we vary the uniform noise rate ¢ and fix a = 8
and 8 = 0.5, and in Figure [[1] we vary the discount factor 8 and fix & = 0.1 and
a = 8. For the approximate binary search algorithm we set the gap parameter A = 2.
We find that the simple random sampling algorithm performs best for a wide range
of reasonable parameter settings. We discuss this result in Section [3.4] below.
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Fig. 9. Average number of search iterations on synthetic data for the three algorithms with
o =0.1,3=0.5,A =2 and varying a

3.3.2 Results on the VOC2007 Dataset

For the experiments on realistic data we use the VOC2007 dataset with 23 categories
and 9963 images. This dataset has been built for the PASCAL Visual Object Classes
Challenge 2007 [8]]. The goal of the challenge was to recognize objects from several
classes in realistic scenes. The 23 object (sub-)classes are Person (person, foot, hand,
head), Animal (bird, cat, cow, dog, horse, sheep), Vehicle (aeroplane, bicycle, boat,
bus, car, motorbike, train), and Indoor (bottle, chair, dining table, potted plant, sofa,
tv/monitor). Each of the 9963 images in the dataset is annotated by a bounding box
and class label for each object from the 23 classes which is present in the image.
Multiple objects from multiple classes may be present in an image.
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Fig. 10. Average number of search iterations on synthetic data for the three algorithms with
a=38,B =0.5, A =2, and varying uniform noise rate o
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Fig. 11. Average number of search iterations on synthetic data for the three algorithms with
o =0.1,a=38, A =2, and varying discount factor 3
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In our experiments we use 23 high-level features, one feature for each object class,
to describe the images. For an image the feature value for an object class is the size (as
calculated from the bounding box) of the largest object from this class in the image.
If no object from the class is present in the image, then the feature value is O.

We first replicate an experiment of the previous section: We use the weighted
clustering algorithm to search for a target image in the dataset. The results
(Figure [[2) are quite comparable with the experiments on the synthetic data
(Figure [7). Since the results in Figure [[2] are averages of only 3 random searches,
the fluctuation of the results for the VOC2007 dataset is higher.

In the last set of experiments we perform two realistic searches on the VOC2007
dataset, with a human selecting the most relevant image in each search iteration. In
each search iteration 20 images are presented to the user, which are calculated by
the weighted clustering algorithm. In addition to the high-level features described
above we use also the low-level visual features (color, texture, and edge orientations)
calculated by the PICSOM system [15]. This results in a 761-dimensional feature
vector with 23 high-level features and 738 low level features.

The first search was for a car on grass. Figures[I3] and [[4 show the images pre-
sented in the first and second iteration of the search and the images chosen by the
user as most relevant in these iterations. Figure[13]shows images chosen by the user
as most relevant in subsequent iterations. The second search was for a motorbike on
grass, and the images chosen by the user as most relevant are shown in Figure
For both searches a good image was found within 10 search iterations.
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2004 —a=02
«=0.3

180

150_- /
140 ~ /
120
1004 ]

80

Average Number of Iterations

60

40 -

20 T T T T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 12. Average number of search iterations on the VOC2007 dataset for the weighted
clustering algorithm with varying ¢ and 3
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Fig. 13. Search for a car on grass in the VOC2007 dataset by a real user: Iteration 1
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Fig. 14. Search for a car on grass in the VOC2007 dataset by a real user: Iteration 2
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Fig. 15. Search for a car on grass in the VOC2007 dataset by a real user: Most relevant
images in iterations 3, 4, 5, and 8

Fig. 16. Search for a motorbike on grass in the VOC2007 dataset by a real user: Most relevant
images in iterations 1, 2, 3,4, 5,6, 9, and 10

3.4 Discussion

The surprising result of our preliminary experiments is that the simple random sam-
pling algorithm performs significantly better than the algorithms specifically de-
signed for the search task. We are currently investigating possible reasons for this
result and we offer a first hypothesis about this below.

As far as the approximate binary search algorithm is concerned, it seems best to
present images to the user which are as far as possible from the separating hyper-
plane, cf. Figure[3l This is plausible given the exponential user model (I)) which pre-
dicts high noise if the presented images are close. To some extend this observation
might explain also the rather poor behavior of the weighted clustering algorithm: the
clustering algorithm selects the centroids for presentation to the user while extreme
points at the (opposite) boundaries of the clusters might give better performance. By
the construction of our 23-dimensional synthetic data, the squared length of most of
the random feature vectors is close to the average squared length 233. Thus most of
the points are rather extreme points and the sampling algorithm is quite likely to
choose such points.

The experiments on the synthetic data show that even with only two images pre-
sented to the user a relatively fast search is possible. Presenting 10-20 images should
reduce the number of search iterations considerably. This will be verified in further
experiments. Initial experiments on the realistic VOC2007 dataset with high-level
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features already confirm that around 10 search iterations are sufficient for finding a
suitable image. Naturally, the search performance depends on appropriate features,
and this relation needs also to be investigated further.

4 Binary Feedback

In our second feedback model we are considering a filtering task, where relevant
images shall be presented to the user. The user gives a binary classification to each
presented image as either relevant or irrelevant. The goal of the search engine in this
model is to present mostly relevant images to the user, and only a small number of
irrelevant images.

We distinguish two scenarios for this binary feedback model. In the first scenario,
in each iteration a set of k images becomes available and the search engine has to
decide, which single image out of the k available images should be presented to
the user. In the second scenario, the search engine needs to select relevant images
x € Z from a database 2. We will argue that the difference between these scenarios
is rather minor.

We assume that an image x is represented by a normalized vector of non-negative
features, x € R, ||x|| = 1. Furthermore, we assume that the probability of an image
x being relevant is given by the inner product x - # with an ideal target image r € R%,
[|lt|]| = 1. By using appropriate features — possibly given implicitly by a kernel
function — these are reasonable assumptions.

4.1 Selecting a Relevant Image from & Images

The formal search protocol considered in this section is the following:

e The user has an ideal target image ¢ in mind.
e Ineachiterationi=1,2,...:

— There are k images x; 1, ..., X; given to the search engine.
— The search engine selects an image x; € {x;,...,x;x} and presents it to the
user.

— The user’s feedback is y; = 41 with probability x; - ¢ (the image is relevant
to the user), or y; = 0 otherwise.

The goal of the search engine is to maximize the number of relevant images, > ; y;.
The exploitation-exploration trade-off in this model is more pronounced than in the
model discussed in Section 3t Based on the presented images and the received user
feedback in previous iterations < i, the search engine can calculate an estimate f; for
the unknown ideal target image. From a new set of images x; 1,...,X;, the search
engine might select the image which maximizes the estimated probability x; ; - ; of
being relevant. But since the estimate #; might be inaccurate, this exploitative choice
might be suboptimal. Thus, alternatively, the search engine might exploratively se-
lect an image for which the user feedback improves the accuracy of the estimate 7;
the most.
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This model has been analyzed by Auer in [, Section 4], and an appropriate algo-
rithm based on upper confidence bounds has been proposed. This algorithm implic-
itly trades off exploration and exploitation. It calculates upper confidence bounds
pi,j on the probability of image x; ; being relevant, and selects the image with the
largest upper confidence bound. Hence, an image is selected (a) if its true proba-
bility of being relevant is indeed large, or (b) if the estimates for this probability
are rather unreliable and the resulting confidence interval is large. Case (a) gives an
exploitative choice, while case (b) improves the estimates of the probabilities and
thus is explorative. In [[1] it is shown that the proposed algorithm performs almost
as well as if the ideal target image r would have been known in advance: in the n

iterations the number of presented relevant images is only O (\/ dn log(kn)) less
than if # were known in advance.

4.2 Selecting a Relevant Image from a Database

Here we assume a given image database &. The formal search protocol considered
in this section is the following:

e The user has an ideal target image ¢ in mind.
e Ineachiterationi=1,2,...:
— The search engine selects an image x; € & and presents it to the user.
— The user’s feedback is y; = +1 with probability x; - ¢ (the image is relevant
to the user), or y; = 0 otherwise.

Again the goal of the search engine is to maximize the number of relevant images,
> vi. We argue that the algorithm of [[1]] from the previous section can be adapted
to work also for the protocol with a given database. The obvious reduction is to set
k =|2]| and give all images from the database to the algorithm. This poses some
computational problems and an efficient implementation is needed, but the search
performance will degrade at most logarithmically with the size of the database. A
rigorous analysis of a variant of this approach has recently be given in in [6].

4.3 Discussion

In this section we have presented a theoretical approach to the filtering problem with
binary feedback. The next step will be an empirical evaluation of this approach on
realistic data. Since the performance of approaches like the algorithm in [1]] depends
rather strongly on the number of features, such approaches are indeed much more
suitable for filtering a large set of data than for individual search queries considered
in Section [3l For individual search queries the amount of information gained by
binary feedback seems to be too small for finding good images in few iterations.

5 Conclusion

Two models for the user behavior of content-based image retrieval with relevance
feedback are proposed in the this work and the implications of these models are
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studied. The models can be applied not only to CBIR but also to other informa-
tion retrieval tasks in general. They require very different mechanisms to trade off
exploration and exploitation. Our experimental results show that the performances
of our proposed weighted clustering, random sampling, approximate binary search
algorithms for the models are promising.

Acknowledgments. The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
n° 216529.

References

1. Auer, P.: Using Confidence Bounds for Exploitation-Exploration Trade-offs. Journal of
Machine Learning Research 3, 397422 (2002)

2. Leung, A.P., Auer, P.: An Efficient Search Algorithm for Content-Based Image Retrieval
with User Feedback. In: 1st Int. Workshop on Video Mining (VM 2008) in association
with IEEE International Conference on Data Mining, ICDM 2008 (2008)

3. Chang, E., Tong, S., Goh, K., Chang, C.: Support Vector Machine Concept-Dependent
Active Learning for Image Retrieval. IEEE Transactions on Multimedia (2005)

4. Chen, Y., Zhou, X.S., Huang, T.S.: One-class SVM for learning in image retrieval. In:
Proc. ICIP (1), pp. 34-37 (2001)

5. Crucianu, M., Ferecatu, M., Boujemaa, N.: Relevance feedback for image retrieval: a
short survey. State of the Art in Audiovisual Content-Based Retrieval. Information Uni-
versal Access and Interaction, Including Datamodels and Languages, report of the DE-
LOS2 European Network of Excellence, FP6, 20 (2004)

6. Dani, V., Hayes, T.P., Kakade, S.M.: Stochastic Linear Optimization under Bandit Feed-
back. In: Proc. 21st Ann. Conf. on Learning Theory, pp. 355-366 (2008)

7. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of
the new age. ACM Comput. Surv. (2008)

8. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL
Visual Object Classes Challenge 2007 Results (2007),
http://www.pascal-network.org/challenges/VOC/voc2007/
workshop

9. Fournier, J., Cord, M.: Long-term similarity learning in content-based image retrieval.
In: Proc. ICIP (1), pp. 441-444 (2002)

10. Gosselin, P.-H., Cord, M., Philipp-Foliguet, S.: Active learning methods for Interactive
Image Retrieval. IEEE Transactions on Image Processing (2008)

11. He, X., King, O., Ma, W., Li, M., Zhang, H.: Learning a semantic space from user’s
relevance feedback for image retrieval. IEEE Trans. Circuits Syst. Video Techn., 3948
(2003)

12. Jing, F, Li, M., Zhang, H., Zhang, B.: A unified framework for image retrieval using
keyword and visual features. IEEE Transactions on Image Processing, 979-989 (2005)

13. Karp, R.M., Kleinberg, R.: Noisy binary search and its applications. In: SODA 2007:
Proc. 18th Symp. on Discrete Algorithms, pp. 881-890 (2007)

14. Koskela, M., Laaksonen, J.: Using Long-Term Learning to Improve Efficiency of
Content-Based Image Retrieval. In: Proc. PRIS, pp. 72-79 (2003)

15. Koskela, M., Laaksonen, J., Oja, E.: Inter-Query Relevance Learning in PicSOM for
Content-Based Image Retrieval. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds.)
ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, Springer, Heidelberg (2003)


http://www.pascal-network.org/challenges/VOC/voc2007/workshop
http://www.pascal-network.org/challenges/VOC/voc2007/workshop

Relevance Feedback Models for Content-Based Image Retrieval 79

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Tao, D., Tang, X., Li, X., Wu, X.: Asymmetric Bagging and Random Subspace for Sup-
port Vector Machines-Based Relevance Feedback in Image Retrieval. IEEE Transactions
on Pattern Analysis and Machine Intelligence 28(7), 1088—-1099 (2006)

Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information re-
trieval: State of the art and challenges. TOMCCAP, 1-19 (2006)

Linenthal, J., Qi, X.: An Effective Noise-Resilient Long-Term Semantic Learning Ap-
proach to Content-Based Image Retrieval. In: IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP 2008), Las Vegas, Nevada, USA, March
30-April 4 (2008)

Tao, D., Li, X., Maybank, S.J.: Negative Samples Analysis in Relevance Feedback. IEEE
Trans. Knowl. Data Eng. 19(4), 568-580 (2007)

Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Information and
Computation, 212-216 (1994)

Pelc, A.: Searching games with errors—fifty years of coping with liars. Theoretical Com-
puter Science, 71-109 (2002)

Tao, D., Tang, X.: Nonparametric Discriminant Analysis in Relevance Feedback for
Content-based Image Retrieval. In: IEEE International Conference on Pattern Recog-
nition (ICPR), pp. 1013-1016 (2004)

Rocchio, J.: Relevance Feedback in Information Retrieval. In: Salton: The SMART Re-
trieval System: Experiments in Automatic Document Processing, ch. 14, pp. 313-323.
Prentice-Hall, Englewood Cliffs (1971)

Rui, Y., Huang, T.S.: Optimizing Learning in Image Retrieval. In: Proc. CVPR,
pp- 1236-1236 (2000)

Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-Based Im-
age Retrieval at the End of the Early Years. IEEE Trans. Pattern Anal. Mach. Intell.,
1349-1380 (2000)

Tong, S., Chang, E.Y.: Support vector machine active learning for image retrieval. In:
Proc. ACM Multimedia, pp. 107-118 (2001)

Veltkamp, R.C., Tanase, M.: Content-based Image Retrieval Systems: a Survey. State-
of-the-Art in Content-Based Image and Video Retrieval, 97-124 (1999)

Wacht, M., Shan, J., Qi, X.: A Short-Term and Long-Term Learning Approach for
Content-Based Image Retrieval. In: Proc. of IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP 2006), Toulouse, France, May 14-19,
pp. 389-392 (2006)

Zhang, C., Chen, T.: An active learning framework for content-based information re-
trieval. IEEE Transactions on Multimedia, 260-268 (2002)

Zhou, X.S., Huang, T.S.: Unifying Keywords and Visual Contents in Image Retrieval.
In: IEEE MultiMedia, pp. 23-33 (2002)



Biological Inspired Methods for Media
Classification and Retrieval
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Summary. Automatic image clustering and classification is a critical and
vibrant research topic in the computer vision community over the last couple
of decades. However, the performance of the automatic image clustering and
classification tools have been hindered by the commonly referred problem
of “Semantic Gap”, which is defined as the gap between low-level features
that can be extracted from the media and the high-level semantic concepts
humans are able to perceive from media content. Addressing this problem,
recent developments in biologically inspired techniques for media retrieval is
presented in this chapter.

The problem of Image clustering and classification has been the subject of
active research across the world during the last decade. This is mainly due to
the exponential growth of digital pictures and the need for fully automatic
annotation and retrieval systems is ever increasing. The goal of image cluster-
ing is to group images such that the intra cluster similarity is increased while
the inter cluster similarity is decreased. Thus, the aim is to generate classes
providing a concise summarization and visualization of the image content.
Clustering is the first step for image classification and subsequent labeling
of semantic concepts. The optimization of the classes generated is currently
studied in three main research avenues [Fog94] : genetic algorithms (GA),
evolution strategies and evolutionary programming. GA stresses on chro-
mosomal operators, while evolution strategies emphasize behavioral changes
at the level of the individual. On the other hand evolutionary program-
ming stresses behavioral change at the level of the species for natural evolu-
tion. However, the optimization solutions generated by classical evolutionary
computation algorithms are far-away from the optimal solutions expected.
Therefore, research in imitating human cognition or more precisely biological
organisms have been increasingly studied for optimizing image clustering and
classification problem.

Recent developments in applied and heuristic optimisation have been
strongly influenced and inspired by natural and biological systems. Biolog-
ically inspired optimisation techniques are partially based on observations
of the sociobiologist E.O.Wilson. In particular to his statement [Wil75]:

W. Lin et al. (Eds.): Multimedia Analysis, Processing & Communications, SCI 346, pp. 81
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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“In theory at least, individual members of the school can profit from dis-
coveries and previous experience of all other members of the school during
the search for food. The advantage can become decisive, outweighing the dis-
advantages of competition for food, whenever, the resource is unpredictably
distributed in patches.”

Some of the algorithms that are inspired based on such observations having
ties to artificial life: A—1life are Ant Colony Optimisation (ACO) introduced
by Dorigo et al. in [DG96], Particle Swarm Optimisation (PSO) introduced by
Kennedy and Eberhart in 1995 [EK95] and Artificial Immune system based
optimisation introduced by Dasgupta in [Das99]. The rest of the chapter is
organized as follows. In Section [ the study of Ant Colony Optimization for
image clustering is presented followed by the study of Particle Swarm Opti-
mization for image classification in Section [2] Before concluding the chapter
in Section [3], a brief discussion on application of clustering and classification
algorithms for media retrieval is presented.

1 Ant Colony Optimisation

Some recent studies have pointed out that, the self-organisation of neurons
into brain-like structures, and the self-organisation of ants into a swarm are
similar in many respects. Ants present a very good natural metaphor for
evolutionary computation. With their small size and small number of neurons,
they are not capable of dealing with complex tasks individually. The ant
colony, on the other hand, can be seen as an “intelligent entity” for its great
level of self-organisation and the complexity of the tasks it performs. Their
colony system inspired many researchers in the field of Computer Science to
develop new solutions for optimisation and artificial intelligence problems.

The ACO metaheuristic is a particular metaheuristic inspired by the be-
haviour of real ants [DG97]. A key feature of ACO is derived form the ability
of real ant colonies to find the shortest or optimal paths between food sources
and their nest.

1.1 Behaviour of Real Ants

A main means of communication between ants is the use of chemical agents
and receptors. The most important of such chemical agents is the pheromone.
Pheromones are molecules secreted by glands on the ant’s body. Once de-
posited on the ground, they evaporate at a known rate. Like neurons, ants
use pheromone to communicate. The release of a molecule of pheromone by
a single ant influences the behaviour of the other ants in the colony.

When one ant traces a pheromone trail to a food source, that trail will
be used by other ants reinforcing the pheromone trail each time. Such auto-
catalytic process will continue until a trail from the ant colony to the food
source is established. (see Fig. [I]).
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Fig. 1. Ants moving in the pheromone trails

In laboratories, several studies have explored how pheromones are used
by ants. Deneubourg et al. [DAGP90] used a double bridge connecting a
nest of ants and a food source to study pheromone trail laying and following
behaviour in controlled experimental conditions. They ran a number of exper-
iments in which they varied the ratio between the length of the two branches
of the bridge (see Fig. [2)). In this experiment, at the start the ants were left
free to move between the nest and the food source and the percentage of ants
that chose one or the other of the two branches was observed over time. The
outcome was that, although in the initial phase random oscillations could
occur, in most experiments all the ants ended up using the shorter branch. In
fact, ants do not pursue creation of a trail with the shorter distance from nest
to food source. Their goal is rather to bring food to the nest. However, the
pheromone trails they create are highly optimised. This collective trail-laying
and trail-following behaviour is the inspiring metaphor for ACO.

1.2 Ant System Algorithm

The Ant System approach (AS) was the first attempt to use the natural
metaphor of ants to solve a hard combinatorial problem as the traveling sales-
man problem. The importance of the original AS [DC99] resides mainly in be-
ing the prototype of a number of ant algorithms which collectively implement
the ACO paradigm. An ant is a simple computational agent, which iteratively
constructs a solution for the instance to solve. Partial problem solutions are
seen as states. At the core of the AS algorithm lies a loop, where at each iter-
ation ¢, each ant moves from a state i to another one j, corresponding to the
more complete partial solution. For ant k, the probability pﬁ ;(t) of moving from
state i to state j depends on the combination of two values:

e the attractiveness 7;; of the move, as computed by some heuristic
indicating the desirability of the move;

e the pheromone level 7; ; indicating how proficient it has been in the past
to make that particular move;
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Fig. 2. Double bridge experiment. (a) Ants start exploring the double bridge. (b)
Eventually most of the ants choose the shortest path.

The probability of moving from state ¢ to state j is given by following
formula, where « and ( are heuristicaly estimated parameters (0<c«, 5<1):

pk (t) _ (Ti’j (t))a'(ni,j)ﬁ (1)
" EkGallowed(Ti7k)a‘(ni7k)6
This formula means that the probability of moving ant k depends on both
the amount of pheromone 7 on that edge and the distance 7 from ¢ to j.
The parameters o and 8 control the relevance of pheromone and distance in
the probabilistic decision. Note that not all edges leaving from i to the next
neighbour are allowed.

After each iteration of the algorithm, i.e., when all ants have completed a
solution, the pheromone level 7; ;(t) in the trails is updated by the formula:

Tij(t) = p-Tij(t — 1) + A7 g, (2)

where 0<p<1, is another parameter called evaporation coefficient and 7; ;
(t — 1) is the previous pheromone concentration. Ar; ; represents the sum
of the pheromone contributions of all ants that used move (4, j) to construct
their solution:

ATZ'J‘ = Z AT’L'kjj' (3)
k=1
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In @), m is the number of ants and ATi]fj is the amount of pheromone laid
on edge (4, ) by ant k. ATi’fj can be computed as

Q@ t k uses edge(i, j)
A k o — L aZf an g ) 4
i {Olc , otherwise ’ )

where @ is a parameter that specifies the amount of pheromones ant k has
to distribute through its trail, and Ly is the tour length of ant k. The AS
algorithm simply iterates a main loop where m ants construct in parallel their
solutions, thereafter updating the pheromone levels according to the quality
of their solutions. The original AS algorithm has been further improved with
additional strategies. This leads to several other techniques including Ant-
Q [DG96], Ant Colony System (ACS) [DC99] and MAX-MIN Ant System
[SHO6G]. Each one of these techniques has been adapted and used in specific
domains as economics, data mining and networking.

1.3 Clustering of Images Using Ant Colony Optimisation

Clustering of images according to meaningful classes requires analysis of low-
level image attributes including particular combinations of colour, texture
or shape descriptors. Image clustering algorithms typically consider several
features, or dimensions, of the data in an attempt to learn as much as pos-
sible about the object similarities. However, a critical problem is that dif-
ferent low-level image descriptors and similarity measures are not designed
to be combined naturally and straightforwardly in a meaningful way. More-
over, particular features are often irrelevant for clustering of specific image
classes. Thus, they may lead to counterproductive effects negatively affecting
the clustering results. For that reason, it is important to learn associations
between complex combinations of low-level features and semantic concepts
by conveniently weighting the discriminative power of each low-level feature
descriptor.

ACO and its pheromone-driven learning mechanism is used to optimise
the performance of feature selection in a clustering process. The proposed
algorithm overcomes the limitation originated in the assumption that all the
clusters in a dataset can be estimated using the same set of features and by
assigning weights to features according to the local correlations of the data
along each dimension.

1.4 Data Model

For the sake of completeness, some general terms and notations that will be
used throughout the paper are defined next. Let F be the vector containing
m visual low-level features:

F:(F17 F27 sy Fm)7 (5)
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where the [** component F;, 1 < [ < m, is a column vector belonging to
feature space §. Therefore, each feature set F lies on the m—fold cartesian
product § = §, X §, X §5... X §m. Let’s further assume that each feature
space §1, 1 <1 < m, is endowed with a similarity function D;. In ideal
case D represents a metric. However, in many cases the similarity function
D; is not a metric in the mathematical sense. The problem at hand is how
to define a suitable similarity function for §;. The solution to this problem
is not straightforward since the feature spaces {§};", can possess different
dimensions and topologies. Due to the complex natures of the visual descrip-
tors, they usually possess non-linear behaviours and their direct combination
may easily become meaningless. To harmonise the various natures of visual
descriptors representing in the same semantic concepts, a simple solution to
the problem can be obtained by linear combination of multiple visual feature
spaces.

That is, given m valid similarity distances { D;}]”, between the correspond-
ing m component feature vectors F and 1~7‘, we define a weighted similarity
measure between F and F as

Da(Faf‘) :ZalDl(Flaﬁl)v (6)
=1

where the feature weights {a}]”, are non-negative and sum to 1. We refer
to the vector of weights o = (a1, ag, ..., @) as a feature weighting. Observe
that obviously (§, D) represents a metric space, if D; is also metric for all [.

1.5 Clustering in High-Dimensional Spaces

Suppose that we are given set of n images {z;}", represented by feature

vectors {F;}" ; and we are interested in partitioning them into & disjoint
clusters {m,}X_,. Given a partitioning {m,}*_, | for each partition 7, , we
write the corresponding generalised centroid as

Cu = (C(u,1)5 C(u,2) 5 > Cuym) ) (7)

where, 1 <1 <m, and c(,,;) € §1 . As an empirical average, the generalised
centroid may be thought of as being the closest in metric D% to all images
in the cluster m,.

Subspace clustering is defined as feature selection procedure that assigns
(local) weights to features according to the local correlations of data along
each dimension. Motivated by (), we measure the distortion of each individ-
ual cluster m,, 1 <u <k, as

Z D*(F, cy). (8)

TETy,
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The quality of the entire partitioning {m,}*_, is defined as the combined
distortion of all k clusters:

k
> > DY(F,cu). (9)

u=1zEm,

We would like to find k disjoint clusters 77,75, ..., 7}, such that the following
is minimised:

{7ru} = arg{ min Z Z D (F,cy), (10)

"“1u lax€Emy,

where oy, = (Q(u,1), Q(u,2)5 -+ a(u’m)) is a local feature weighting for all clus-
ters {m, }r_,.

It’s important to note that different feature weightings «, lead to the
different similarities D, hence, the minimisation problem (0] is known to
be NP-hard. Now we can turn to the crucial question of how to select the
“best” feature weighting. To solve this hard combinatorial problem, a novel
approach to image clustering based on ACO meta-heuristic is introduced.

1.6 Subspace Clustering Using Ants

In our proposal, The ACO model plays its part in assigning both images and
feature weights to a cluster and each ant is giving its own clustering solution
[PI09]. The proposed algorithm is outlined next:

Step 1: Initialisation

The whole process starts by choosing the number of clusters & and the
number of ants S . Each ant A , 1 < A < S, initialises a random cen-
troid ¢, and sets the feature weights equally to 1/m for each centroid ¢, .
The pheromone level 7; ,) for each ant A is set to 1. To ensure the mini-
mum comparability, it is required that the similarity distances of all images
in all considered features spaces are normalised to the same range using
conventional Min-Max Normalisation.

Step 2: Clustering
In this step, each ant assigns each image z;, represented by feature vectors
{Fi}i_,, to the cluster m,, 1 < u < k, with the probability P ,) obtained

from:
T(i,u) M (5,u)

Pl = . (11)
Dt T i)
In (D), 71(;,u) is obtained from the following formula:
@ (12)

Gw) = pa, (Fi,cu)’
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As the pheromone level 7(; ., is initially set to 1, it does not have any effect
on the probability at the beginning. The constant @ is heuristicaly estimated
to balance the value of n and 7.

Step 3: Computation of weights
For each centroid ¢, , and for each feature Fj, new feature weights are
computed as follows:

e~ B-Di(F.c.)

A(y,l) = m )
\/2521 e—2R-D.(F.c.)

where D;(F,c,) represents the average distance from the centroid c, to all
images assigned to the cluster m, along dimension [. That is:

(13)

Di(F,c.) = 1‘ S Di(Fi,cu), (14)

‘71'“ T;EMTy

where |m,| is the cardinality of set 7, and D; is similarity measure in corre-
sponding feature space § . We empirically determine the value of R in our
experiments with synthetic data.

In (I3)), we use exponential function for feature weighting, in order to make
the weights more sensitive to changes in D;(F,c,). Even in the first itera-
tion, each ant sets different feature weights due to the random initialisation
of the centroid. To facilitate the interpretation of weight values, we require
that »°, () = 1 Yu , by properly adjusting the normalisation factor of the
weighting scheme.

Step 4: Computation of Centroid

For each image z; , 1 < i < n , new generalised centroids are computed
according to clustering of images [Mac67]. Each ant repeats steps 2, 3 and 4
until the optimisation problem ([I0) is solved.

Step 5: Pheromone update

A widely adopted definition of optimal clustering is a partitioning that
the intra cluster similarity is minimised while the inter cluster similarity is
maximised [DB79]. In addition, subspace clustering must limit the scope of
the criterion function so as to consider different subspaces for each differ-
ent cluster. Following above definition, we define the average within-cluster
distortion and the average between-cluster distortion, respectively, as

m n

m
Za (u,l)" Dl F Cu) ZZDZ (i,1)5 € ul))_FA(aU)‘
=1

=1 i=1
(15)

After all ants have done their clustering, the assigned pheromone to each
solution is incremented. In order to find optimal feature weightings, the
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pheromone value is updated according to the quality of the solution. For
updating the pheromone to each clustering the following formula is used:

S
T(i,u) (t) =P T(i,u) (t - 1) + Z AT(I?,u) (t)v (16)
A=1

where p is the pheromone trail evaporation coefficient 0 < p < 1 which
causes vanishing of the pheromone over the iterations. 7(; ,,)(t — 1) represents
the pheromone value from previous iteration. AT(? ) (t) is a new amount of
pheromone calculated from all S ants that assign image x; to cluster m,. This
approach of marking solutions by pheromone levels is carried out according

to A% () if x; belongs to cluster m
Arf o (8) = { nraca, o4 i belong ! (17)

0 , otherwise

Intuitively, we would like to minimise I"*(c,,) and to maximise A4 (o, ), that
is we like coherent clusters that are well-separated from each other. In other
words, more successful ant will put higher amount of pheromone and influence
probability of clustering particular image by other ants. After each solution
is marked by the pheromone, each ant will start clustering process with new
probability of assigning images to clusters. Whole process stops when all ants
choose the same clustering solution.

It is important to note, that the proposed algorithm doesn’t assign images
to clusters based on simply similarity distances between centroids and images.
Indeed, the pheromone value carrying the criterion information from the rest
of the ants is another important factor. This means that even if image is
closest to the centroid of a cluster, it might be assigned to different cluster
according to pheromone feedback from the other ants. This change will affect
new setting of feature weights for particular ant; hence, it will enable to
explore a new solution. In other words, the number of ants S does not implies
that the algorithm operates with only S possible solutions.

1.7 Experimental Evaluation

In this section, the proposed technique is comprehensively evaluated using
real-world image datasets. First dataset was obtained from The Corel Image
database and includes 600 images divided to 6 categories, each consist of
100 images. Second dataset was obtained from the Caltech Image dataset
and consist of 3550 images divided to 40 semantic categories. Third dataset
consist of 500 images taken from Flickr which are segmented into regions
and manually annotated. In order to investigate the clustering performance
of the developed method under varying problem complexity, the supported
semantic concepts were divided into two subsets containing 5 and 10 concepts.
Representative samples of images for each dataset are depicted in Fig. Bl
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Caltech Flickr

Fig. 3. Several representative images from each database

On each dataset, we compare our subspace clustering approach based on
ACO (denoted by SC-ACO) with subspace clustering optimised by GA (de-
noted by SC-GA), and PROCLUS, and K-Means with global feature selection
(denoted by GFS-K-Means), and K-Means with featu