

Lecture Notes
in Business Information Processing 133

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Dietmar Winkler
Stefan Biffl
Johannes Bergsmann (Eds.)

Software Quality

Increasing Value in Software
and Systems Development

5th International Conference, SWQD 2013
Vienna, Austria, January 15-17, 2013
Proceedings

13

Volume Editors

Dietmar Winkler
Vienna University of Technology
Institute of Software Technology
and Interactive Systems
Vienna, Austria
E-mail: dietmar.winkler@tuwien.ac.at

Stefan Biffl
Vienna University of Technology
Institute of Software Technology
and Interactive Systems
Vienna, Austria
E-mail: stefan.biffl@tuwien.ac.at

Johannes Bergsmann
Software Quality Lab GmbH
Linz, Austria
E-mail: johannes.bergsmann@software-quality-lab.at

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-642-35701-5 e-ISBN 978-3-642-35702-2
DOI 10.1007/978-3-642-35702-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012954060

ACM Computing Classification (1998): D.2, K.6

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Message from the General Chair

The Software Quality Days (SWQD) conference and tools fair started in 2009
and has grown to one of the biggest conferences on software quality in Europe
within a strong community. The program of the SWQD conference is designed
to encompass a stimulating mixture of practical presentations and new research
topics in scientific presentations as well as tutorials and an exhibition area for
tool vendors and other organizations in the area of software quality.

This professional symposium and conference offers a range of comprehensive
and valuable opportunities for advanced professional training, new ideas, and
networking with a series of keynote speeches, professional lectures, exhibits, and
tutorials.

The SWQD conference is suitable for anyone with an interest in software
quality, such as test managers, software testers, software process and quality
managers, product managers, project managers, software architects, software de-
signers, user interface designers, software developers, IT managers, development
managers, application managers, and others with similar roles.

January 2013 Johannes Bergsmann

Message from the Scientific Program Chair

The 5th Software Quality Days (SWQD) Conference and Tools Fair brought
together researchers and practitioners from business, industry, and academia
working on quality assurance and quality management for software engineering
and information technology. The SWQD conference is one of the largest software
quality conferences in Europe.

Over the past years a growing number of scientific contributions were submit-
ted to the SWQD symposium. Starting in 2012 the SWQD symposium included a
dedicated scientific track published in scientific proceedings. For the second year
we received an overall number of 18 high-quality submissions from researchers
across Europe which were each peer-reviewed by three or more reviewers. Out of
these submissions, the editors selected seven contributions as full papers, yielding
an acceptance rate of 39%. Authors of the best papers will be invited to sub-
mit extended versions of their papers to a special section in the Software Quality
journal. Further, six short papers, which represent promising research directions,
were accepted to spark discussions between researchers and practitioners at the
conference.

Main topics from academia and industry focused on systems and software
quality management methods, improvements of software development methods
and processes, latest trends in software quality, and testing and software quality
assurance.

This book is structured according to the sessions of the scientific track fol-
lowing the guiding conference topic “Increasing Value in Software and Systems
Development”:

• Risk Management
• Software and Systems Testing
• Test Processes
• Model-Based Development
• Process Improvement and Measurement

January 2013 Stefan Biffl

Organization

SWQD 2013 was organized by the Software Quality Lab GmbH and the Vienna
University of Technology, Institute of Software Technology and Interactive Sys-
tems, and the Christian Doppler Laboratory “Software Engineering Integration
for Flexible Automation Systems.”

Organizing Committee

General Chair

Johannes Bergsmann Software Quality Labs GmbH

Scientific Chair

Stefan Biffl Vienna University of Technology

Proceedings Chair

Dietmar Winkler Vienna University of Technology

Organizing and Publicity Chair

Petra Bergsmann Software Quality Labs GmbH

Program Committee

SWQD 2013 established an international committee of well-known experts in
software quality and process improvement to peer-review the scientific submis-
sions.

Maria Teresa Baldassarre University of Bari, Italy
Armin Beer University of Applied Sciences, Vienna,

Austria
Ruth Breu University of Innsbruck, Austria
Deepak Dhungana Siemens Corporate Technology Research,

Austria
Schahram Dustdar Vienna University of Technology, Austria
Frank Elberzhager Fraunhofer IESE, Germany
Michael Felderer University of Innsbruck, Austria
Gordon Fraser Saarland University, Germany
Christian Frühwirth Aalto University, Finland

X Organization

Marcela Genero University of Castilla-La Mancha, Spain
Harald Gruber Johannes Kepler Universität Linz, Austria
Paul Grünbacher Johannes Kepler University Linz, Austria
Volker Gruhn Universität Duisburg-Essen, Germany
Jens Heidrich Fraunhofer IESE, Germany
Slinger Jansen Utrecht University, The Netherlands
Petri Kettunen University of Helsinki, Finland
Mahvish Khurum Blekinge Institute of Technology, Sweden
Eda Marchetti ISTI-CNR Pisa, Italy
Juergen Münch University of Helsinki, Finland
Simona Nica Graz University of Technology, Austria
Markku Oivo University of Oulu, Finland
Mauro Pezzè University of Milan Bicocca/Lugano,

Italy/Switzerland
Dietmar Pfahl Pika Research Inc., Canada
Rick Rabiser Johannes Kepler University, Austria
Rudolf Ramler Software Competence Center Hagenberg

GmbH, Austria
Andreas Rausch Technische Universität Clausthal, Germany
Barbara Russo Free University of Bolzano/Bozen, Italy
Klaus Schmid University of Hildesheim, Germany
Wikan Sunindyo Vienna University of Technology, Austria
Rini van Solingen Delft University of Technology,

The Netherlands
Stefan Wagner University of Stuttgart, Germany
Dietmar Winkler Vienna University of Technology, Austria

Additional Reviewers

Asim Abdulkhaleq
Michael Deynet
Jaap Kabbedijk
Ravi Khadka

Table of Contents

Keynotes

Software Quality: From Requirements to Architecture 1
Manfred Broy

The Consortium for IT Software Quality (CISQ) . 3
Richard Mark Soley and Bill Curtis

Risk Management

Experiences and Challenges of Introducing Risk-Based Testing in an
Industrial Project . 10

Michael Felderer and Rudolf Ramler

Project Progress and Risk Monitoring in Automation Systems
Engineering . 30

Wikan Sunindyo, Thomas Moser, Dietmar Winkler, and
Richard Mordinyi

Software and Systems Testing

WebMate: Generating Test Cases for Web 2.0 . 55
Valentin Dallmeier, Martin Burger, Tobias Orth, and Andreas Zeller

Testing Web Services in the Cloud . 70
Harry M. Sneed

Model-Based Strategies for Reducing the Complexity of Statistically
Generated Test Suites . 89

Winfried Dulz

Hazard Analysis for Technical Systems . 104
Mario Gleirscher

Test Processes

Using Defect Taxonomies to Improve the Maturity of the System Test
Process: Results from an Industrial Case Study . 125

Michael Felderer and Armin Beer

XII Organization

Model-Based Development

A Transformation of Business Process Models into Software-Executable
Models Using MDA . 147

Nuno Santos, Francisco J. Duarte, Ricardo J. Machado, and
João M. Fernandes

Aligning Domain-Related Models for Creating Context for Software
Product Design . 168

Nuno Ferreira, Nuno Santos, Ricardo J. Machado, and
Dragan Gašević

Process Improvement and Measurement

Mapping CMMI and RUP Process Frameworks for the Context of
Elaborating Software Project Proposals . 191

Paula Monteiro, Ricardo J. Machado, Rick Kazman, Ana Lima,
Cláudia Simões, and Pedro Ribeiro

Development and Evaluation of Systems Engineering Strategies:
An Assessment-Based Approach . 215

Fritz Stallinger, Reinhold Plösch, Robert Neumann,
Stefan Horn, and Jan Vollmar

Improving Completeness of Measurement Systems for Monitoring
Software Development Workflows . 230

Miroslaw Staron, Wilhelm Meding, and Micael Caiman

Exploiting Natural Language Definitions and (Legacy) Data
for Facilitating Agreement Processes . 244

Christophe Debruyne and Cristian Vasquez

Author Index . 259

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 1–2, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Software Quality: From Requirements to Architecture

Manfred Broy

Institut für Informatik, Technische Universität München, Germany
broy@in.tum.de

Extended Abstract

Software systems today are an existential part of technical systems, processes, and
infrastructure. They are the backbone of assistance, communication, and information
systems. Their reliable operation and long-term evolution of their technology is of
outstanding importance for industry and society.

Against this background attention should be paid to the question of the quality of
software systems. However, the concept of quality of software is very versatile. This
has its foundation in the particularities of software. Software is a less tangible than
other products of the engineering disciplines. It is highly abstract in its development,
usually describes complex behavior and in its long-term operation and development it
is subject to its own laws. In many applications software is tightly integrated into
products and processes and determines their quality to a large extent.

However, software quality is a multi-faceted notion.
Against this background, it is far from obvious what quality of a software system is

accurate for its specific purpose. In consequence, it is necessary to develop a
differentiated concept of software quality. Such a sophisticated concept of software
quality can be captured, for example, in so-called quality models that allow structured
and detailed views onto the quality of software systems. In such models, quality
criteria for software systems are defined and the comprehensive concept of software
quality is broken down into a number of specific aspects and features. Outstanding
examples of such aspects of software quality are functional adequacy, usability,
reliability, functional safety, information security, performance, maintainability and
many more.

Just as the concept of quality as such, each of these terms addresses complex
concepts by itself. To get a more objective understanding of these concepts, there are
several approaches. One possibility is a further breakdown each of the quality aspects
into even finer sub-features. A second approach is to define a couple of metrics that
make the quality and quality characteristics measureable. Measures and metrics
follow the idea of making quality comparable. A third approach is the concretization
of quality concepts by operational measures, where we relate the quality aspects to
consequences in handling the software. For instance, we might measure
maintainability by the overhead in maintaining software in a particular usage and
evolution scenario.

2 M. Broy

All these approaches lead to specific forms and instances of quality models. The
reactions of operational aspects based on the idea that quality is less a matter of
judgment, but rather a question of the expense necessary in the usage, operation,
evolution, and marketing of a software system.

However, there is another problem. There is not an independent isolated concept of
evaluating software quality. Software quality is always related to the usage context of
a software system. Hence for a software system there are always two aspects of
quality, the quality of the software system as it is and the required quality. Strictly
speaking, it does not make sense to consider these two different aspects separately
and independently. In short, a reasonable quality assessment must always be in
relation to specific software quality requirements.

This shows that comprehensive, highly differentiated models of software quality
requirements have to be considered. In other words, good quality models support
structuring of the specific quality requirements in terms of guidelines and serve as
guidelines for capturing quality-related requirements.

A second milestone for software systems is their architecture. Architecture refers to
the structure of a system from different perspectives. Classically, architecture
addresses the decomposition of systems into subsystems often referred to as modules
or components. These subsystems cooperate to provide the desired functionality of a
software system.

Quality requirements have to address two levels. First, there is a quality concept of
the software system as it is defined in the interfaces of a behaving system as a whole.
This concerns in particular the suitability of the functionality and usability of the
interface. We speak of “quality in use”. Much of the other quality items manifest
itself closely in the architecture. As an example, software reliability is of course a
notion of the overall system concerns, and coupled to the availability of the required
functionality, but to ensure that quality is a result of an adequate design of the
architecture. That is, the reliability of the components and the question of how the
components are matched to potential problems of either the context of the software
system, such as special features of the execution platform or operating environment or
of issues and problem inside the architecture of the software system.

Against this background, the Technical University of Munich worked out an
approach to a comprehensive quality model as a guideline for structuring the
requirements and how to use the quality model for creating the design of the
architecture and to support the evaluation of its quality. The consistency and
appropriateness of the quality model manifests itself in the question to what extent it
provides the option to relate requirements, functional specification, and architecture to
support traceability, validation, and verification of quality properties.

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 3–9, 2013.
© Springer-Verlag Berlin Heidelberg 2013

The Consortium for IT Software Quality (CISQ)

Richard Mark Soley1 and Bill Curtis2

1 Object Management Group
soley@omg.org

2 Consortium for IT Software Quality
curtis@acm.org

Abstract. Standards and guidelines are the backbone to support efficient and
effective projects in software engineering with respect to quality aspects. The
Consortium for IT Software Quality (CISQ) represents a consortium of end-
user and vendor organizations working together under the Object Management
Group (OMG) process to produce standards for measuring and reporting
software quality independently of the process used to produce that software.
This paper introduces to CISQ and presents the main contributions to software
quality for end-users and vendors.

Keywords: Standardization, software quality metrics, CISQ.

1 Introduction

CISQ exists to address a significant challenge: the lack of visibility IT executives
have into the structural quality and risk of their critical business applications. A fun-
damental assumption underlying CISQ is that global standards for measuring the
attributes of software, especially at the source code level, are fundamental to meeting
this challenge. The IT industry needs standard measures to support the use of quality
attributes in benchmarking and controlling software acquisition. Currently software
measures are too often manual, expensive, and based on inconsistent or even subjec-
tive definitions. In order to improve the discipline of application development CISQ
has set four initial objectives presented in Table 1.

Table 1. CISQ Rationales

1 Raise international awareness of the critical challenge of structural quality in
business-critical IT software

2 Define standard, automatable measures for evaluating the non-functional,
structural quality of IT software

3 Promote global acceptance of the standard in acquiring IT software
4 Develop an infrastructure of authorized assessors and products using the

standard

4 R.M. Soley and B. Curtis

2 CISQ Mission

CISQ bases its mission, strategies, and tactics on the following premises:

• IT application quality is a critical business issue as more business processes are
committed to software

• The current quality of IT application software exposes the business to unaccepta-
ble levels of risk and loss

• Businesses do not have governance structures sufficient to manage the risks to
which poor quality application software exposes them

• Customers and providers of IT application software do not have a common basis
for describing and managing the quality of delivered application software

• Business and government and their providers need a common voice to drive atten-
tion to and improvements in IT application software

CISQ will pursue the following measureable goals:

• 75% of the Global 1000 have an IT application software quality governance struc-
ture that involves the business

• 75% of Global 1000 use a common IT application software structural quality stan-
dard in contractual agreements with their suppliers/outsourcers

• 50% of the Global 1000 have established baselines and business value proposi-
tions for IT application software structural quality

3 Work Products

To pursue its second objective, i.e., developing standard, automatable measures and
anti-patterns for evaluating IT software quality, CISQ has formed technical working
groups for each of the high priority software attributes decided by the membership.
CISQ technical working groups have defined standard quality measures and software
anti-patterns characterizing the software attributes of highest priority to CISQ mem-
bers. Software anti-patterns represent vulnerabilities, weaknesses, and violations of
good coding and architectural practice related to these high priority attributes. These
working groups will produce four products described in Table 2 that will be submit-
ted to the Object Management Group (OMG) standards process.

Based on the content of CISQ products, we anticipate that their final form will be
of repositories of measures and anti-patterns that are maintained under configuration
management. These measures and anti-patterns will be associated with rules and
guidelines for adapting them to different languages, platforms, technologies, and
uses. CISQ will also develop rules and guidelines for aggregated measures from the
component to the application level.

 The Consortium for IT Software Quality (CISQ) 5

Table 2. CISQ Work Products

Product Description Availability
Software
measures

Standard definitions at the source code level with
tailoring guidelines for application to different
languages and technologies

Repository

Software
anti-patterns

Anti-patterns defined to a level that can be recog-
nized in source code

Repository

Scoring rules Rules for aggregating software measures from the
component to the application level and other guide-
lines as necessary for manipulating measures of
software attributes

Document

Usage guide-
lines

Methods for adopting and using software attribute
measures and anti-patterns in developing, acquir-
ing, or benchmarking applications

Document

4 CISQ-Related Standards

The most relevant existing standard is ISO/IEC 9126, now being replaced by the
ISO/IEC 25000 series, which describes a model of software quality attributes
(ISO/IEC 25010). OMG supports several standards that CISQ will use to accelerate
the development of standard measures of software attributes. These include the
Knowledge Discovery Meta-Model which describes the elements resulting from a
parse that provide the countable elements for quality metrics and the Structured Me-
trics Meta-model that provides a standard format for representing metrics. OMG is
currently working on a standard for representing anti-patterns, vulnerabilities, weak-
nesses, and violations of good coding practice. CISQ will support the development
and evolution of these standards.

5 Developing Standard Quality Characteristic Measures

CISQ conducted three Executive Forums – in Frankfurt, Germany in Fall 2009, in
Arlington, VA Fall 2009, and in Bangalore, India June, 2010. The quality issues
raised by the executives in attendance grouped into four categories; 1) specific quality
attributes to be defined as quality measures in the CISQ standard, 2) primary uses for
these quality measures, 3) support required for using quality measures effectively, and
4) methods for integrating quality measures into life cycle and acquisition processes.

Participants wanted to prioritize the focus on application software, but did not want
to artificially exclude system or embedded software. They prioritized five initial
target measures for CISQ which are summarized in Table 3. Primary uses for the
measures emerging from these groups included controlling internal development,
managing the quality of externally supplied software, estimating maintenance
effort/costs, managing application portfolios, and assessing business disruption risk.

6 R.M. Soley and B. Curtis

Table 3. CISQ Automatable Measures

Measure Description
Functional Size Develop a definition for automating Function Points

Maintainability
Measure factors affecting maintenance cost, effort, and
duration

Reliability
Measure factors affecting availability and recoverability of
operations

Performance Measure factors affecting responsiveness to users

Security
Measure factors affecting vulnerability and leverage existing
work in the assurance community

Several Technical Workgroups were formed to address these five areas of mea-

surement. Work groups launched their activities in onsite meetings held during the
first quarter of 2010. Meetings were held by bi-yearly through Fall 2011 and the
completed measurement standards for the four quality characteristics (excluding
Functional Size) were published on the CISQ website in September 2012.

The objective of the Functional Sizing workgroup was to create a definition of
Function Points that is as close to IFPUG counting rules as possible, while resolving
the issues necessary to enable fully automated counting at the source code level. This
group has completed it work and the standard for automated Function Points is cur-
rently undergoing OMG’s process for becoming a supported specification. Possible
future objectives will be to define functional measures for areas where current defini-
tions may be weak such as Web interfaces or heavily algorithmic software.

The workgroups creating automatable definitions for the Quality Characteristics of
Reliability, Performance Efficiency, Security, and Maintainability have recently com-
pleted their work. In September 2012 CISQ published the standards for these meas-
ures in the Member’s Area of the CISQ Website (www.it-cisq.org). Membership in
CISQ is free since it is now sponsored by vendors who intend to implement the CISQ
standards. The following paragraphs describe each of the four Quality Characteristics
measures and some examples of the measurable elements included in each.

Reliability: According to ISO/IEC 25010, Reliability concerns “the degree to which a
system or component performs its required functions under stated conditions for a
specified period of time.” This definition is consistent with ISO/IEC/IEEE 24765-
2010 which provides a common vocabulary for software and systems engineering.
Assessing reliability requires checks of at least the following software engineering
best practices and technical attributes whose violations will be measured:

Architecture Practices
− Multi-layer design compliance
− Software manages data integrity and consistency

Coding Practices
− Error & exception handling
− Protecting state in multi-threaded environments

 The Consortium for IT Software Quality (CISQ) 7

− Safe use of inheritance and polymorphism
− Patterns that lead to unexpected behaviors
− Resource bounds management
− Managing allocated resources
− Timeouts
− Built-in remote addresses
− Complex code

Performance Efficiency: According to ISO/IEC 25010, Performance Efficiency con-
cerns “the performance relative to the amount of resources used under stated condi-
tions for a specified period of time.” Assessing Performance Efficiency requires
checking at least the following software engineering best practices and technical
attributes whose violations will be measured:

Architecture Practices
− Appropriate interactions with expensive and/or remote resources
− Data access performance and data management
− Memory, network and disk space management
− Centralized handling of client requests
− Use of middle tier components versus stored procedures or database functions

Coding Practices
− Compliance with Object-Oriented best practices
− Compliance with SQL best practices
− Expensive computations in loops
− Static connections versus connection pools
− Compliance with garbage collection best practices

Security: According to ISO/IEC 25010, Security concerns “the degree of protection
of information and data so that unauthorized persons or systems cannot read or modi-
fy them and authorized persons or systems are not denied access to them.” This defi-
nition is consistent with ISO/IEC 12207-2008 Systems and Software Engineering—
Software Lifecycle Processes. Assessing Security requires at least checking the fol-
lowing software engineering best practices and technical attributes whose violations
will be measured:

Architecture Practices
− Multi-layer design compliance
− Input Validation
− SQL Injection
− Cross-Site Scripting
− Failure to use vetted libraries or frameworks

Coding Practices
− Error & Exception handling
− Use of hard-coded credentials

8 R.M. Soley and B. Curtis

− Buffer overflows
− Broken or risky cryptographic algorithms
− Improper validation of array index
− Missing initialization
− References to released resources
− Improper locking
− Uncontrolled format string

Maintainability: According to ISO/IEC 25010, Maintainability concerns “the degree
to which the product can be modified.” This definition is consistent with
ISO/IEC/IEEE 24765-2010 which provides a common vocabulary for software and
systems engineering. Assessing maintainability requires checking the following
software engineering best practices and technical attributes whose violations will be
measured:

Architecture Practices
− Strict hierarchy of calling between architectural layers
− Excessive horizontal layers

Coding Practices
− Compliance with Object-Oriented best practices
− Unstructured code
− Duplicated code
− Tightly coupled modules
− Controlled level of dynamic coding
− Cyclomatic complexity
− Over-parameterization of methods
− Encapsulated data access
− Commented out instructions
− Hard coding of literals
− Excessive component size

6 Summary

Standards for software quality will benefit end-users (by providing a consistent, relia-
ble measure of quality for software both packaged and bespoke, and allowing pur-
chasers to make better-informed decisions) as well as software vendors (by providing
a way to improve software and prove to purchasers the quality of that product in a
consistent fashion). Software integrators and other development organizations get a
way to differentiate by proving product quality in a visible fashion. CISQ addresses
these needs with well-defined, clearly focused, neutrally-developed international
standards for software quality focused on the software artifacts rather than the process
used to produce them. This important distinction allows differentiation of product
without regard to implementation process.

 The Consortium for IT Software Quality (CISQ) 9

It might be thought that this approach would obviate the need to measure and re-
port software production process quality (à la the Software Engineering Institute’s
CMMI). Nothing could be further from the truth—software quality and software
process quality go hand-in-hand, which is why the CISQ effort was launched by the
Object Management Group and Software Engineering Institute together. The best
products will exhibit both high software process maturity and high artifact quality.

Most importantly, the CISQ process is open, neutral and international. Systems in-
tegrators, offshore development organizations, software vendors and myriad software
users participate in the production and test of these standards, and there is always
room for participation by other interested parties.

References

1. OMG: Object Management Group, Inc. - Website, http://www.omg.org
2. CISQ: Consortium for IT Software Quality – Website, http://it-cisq.org

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 10–29, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Experiences and Challenges of Introducing Risk-Based
Testing in an Industrial Project

Michael Felderer1 and Rudolf Ramler2

1 Institute of Computer Science University of Innsbruck, Austria
michael.felderer@uibk.ac.at

2 Software Competence Center Hagenberg, Austria
rudolf.ramler@scch.at

Abstract. Risk-based testing has a high potential to improve the software test
process as it helps to optimize the allocation of resources and provides decision
support for the management. But for many organizations the integration of risk-
based testing into an existing test process is a challenging task. In this paper we
present a generic risk-based testing methodology and a procedure how it can be
introduced in a test process. Based on this procedure we derive four stages of
risk-based test integration, i.e., initial risk-based testing, risk-based test
reporting, risk-based test planning, and optimization of risk-based testing. We
then discuss how this procedure could be applied based on an industrial project
and identify several challenges and lessons learned in introducing risk-based
testing.

Keywords: software testing, risk-based testing, test management, system
testing.

1 Introduction

In many application domains, system testing has to be done under severe pressure due
to limited resources and time constraints with the consequence that only a subset of
all relevant test cases can be executed. In this context, risk-based testing approaches
that include risks to manage all phases of the test process are more and more
considered to improve testing. The appropriate application of risk-based testing may
have several benefits. Risk-based testing optimizes the allocation of resources
(budget, time, persons), is a means for mitigating risks, helps to early identify critical
areas, and provides decision support for the management. For many organizations the
most challenging task to realize the benefits of risk-based testing is the initial
integration of risk-based testing into an existing test process as there is so far no clear
methodological support for it.

In this paper we therefore present an approach for the stepwise integration of risk-
based testing into an existing system test process and apply it to an industrial project.
The procedure for introducing risk-based testing is based on a generic risk-based
testing methodology that is aligned with the standard test process as defined by the
International Standard Testing Qualifications Board (ISTQB) [1]. The procedure

Experiences and Challenges of Introducing Risk-Based Testing in an Industrial Project 11

itself consists of seven steps, i.e., (1) analysis and planning of the integration, (2)
identification of risk items, (3) assessment procedure for risks, (4) design and
execution of test cases based on risks, (5) consideration of risks in test reports, (6)
consideration of risks for test planning, and (7) continuous evaluation and
improvement of risk-based testing. To adapt this procedure to the needs of
organizations, we distinguish four stages of risk-based test integration depending on
the number of implemented steps. The first stage ‘initial risk-based testing’
implements steps (1) to (4), the second stage ‘risk-based test reporting’ additionally
implements step (5), the third stage ‘risk-based test planning’ additionally implements
step (6), and finally the fourth stage ‘optimization of risk-based testing’ additionally
implements step (7). Based on an industrial project, we then discuss how the initial
stage of risk-based testing could be introduced and identify several challenges and
lessons learned from this integration.

In sum, this paper contributes to the integration of risk-based testing into
implemented standard test processes in several ways. First, we provide a procedure
for introducing risk-based testing which defines clear steps and is aligned with
standard test processes. From this procedure we then derive four stages of risk-based
test integration, tailoring the integration to the needs of specific development
organizations. Finally, we show how the risk-based test integration could be
performed in an industrial project and draw conclusions.

The remainder of this document is structured as follows. In the next section we
present a standard-aligned risk-based testing methodology. In Section 3 we explain a
procedure how the risk-based testing methodology can be introduced into an existing
standard test process and derive stages of risk-based test integration. In Section 4 we
apply this procedure to an industrial project, and in Section 5 we present related work.
Finally, in Section 6 we summarize the challenges of introducing risk-based testing,
draw conclusions and present future work.

2 Risk-Based Testing Methodology

Risk-based testing is a type of software testing that considers risks of the software
product as the guiding factor to solve decision problems in the design, selection and
prioritization of test cases [2]. A risk is the chance of injury, damage or loss and
typically determined by the probability of its occurrence and its impact. The standard
risk model also applied in our methodology is based on the two factors probability
(P), determining the likelihood that a failure assigned to a risk occurs, and impact (I),
determining the cost of a failure if it occurs in operation.

Mathematically, the risk (coefficient) R of an arbitrary risk item a can be
determined based on the probability P and the impact I in the following way: ܴሺܽሻ ൌ ܲሺܽሻ ל ሺܽሻܫ

The binary operator ל that connects P and I is typically the multiplication of two
numbers or the cross product of two numbers or arbitrary characters (but not restricted
to these operations).

12 M. Felderer and R. Ramler

Risk-based testing can be considered in all steps of a system test process. Our risk-
based testing methodology extends the risk-based test process defined by Felderer et
al. [3] and is based on the standard test process as defined by the ISTQB. It contains
the phases test planning and control, test analysis and design, test implementation
and execution, test evaluation and reporting, and test closure activities. Test planning
is the activity of establishing or updating a test plan. A test plan is a document
describing the scope, approach, resources, and schedule of intended test activities. In
test control, the actual progress is compared against the plan which often results in
concrete measures. During the test analysis and design phase the general testing
objectives defined in the test plan are transformed into tangible test conditions and
test cases. Test implementation contains remaining tasks like preparing test harnesses
and test data, or writing automated test scripts which are necessary to enable the
execution of the implementation-level test cases. The tests are then executed and all
relevant details of the execution are recorded in a test log. During the test evaluation
and reporting phase, the exit criteria are evaluated and the logged test results are
summarized in a test report. During the test closure phase, data is collected from
completed activities to consolidate experience, test ware, facts, and numbers.

Our generic risk-based test process additionally considers the phases risk
identification and risk assessment. The generic risk-based test process is shown in
Fig. 1 and consists of the phases Risk Identification, Test Planning and Control, Risk
Assessment, Test Analysis and Design, Evaluation and Reporting, and Test Closure
Activities.

In the Risk Identification phase risk items are identified and a list of risk items
covering the whole system under test is compiled. Risk items are elements to which
tests are assigned and for which the risk is calculated. Therefore risk items need to be
concrete to enable risk calculation and the assignment of tests. The risk identification
is typically performed by the project manager and the test manager.

In the Test Planning and Control phase the test plan is defined and controlling,
which is an ongoing activity in parallel to the other activities in the of software testing
process, is initiated. The test plan contains test prioritization criteria, test methods,
exit criteria and the test effort under consideration of risk aspects. Although our
approach is independent of a concrete test plan, we assume that a given test plan
contains a basic risk classification scheme [3]. The test planning is typically
performed by a test manager.

In the Risk Assessment phase the risk coefficient is calculated and classified for
each risk item based on probability and impact factors. To distribute and improve the
estimation of the factors P and I, they can be refined by sub-characteristics which are
then determined by predefined metrics as proposed in software quality models like
Factor-Criteria-Metrics [4] or ISO 25000 [5]. The probability typically considers
technical criteria of a product such as complexity or the maturity of used
technologies, and the impact considers business criteria such as monetary loss,
reputation or importance of a feature in general. For instance, in a concrete industrial
project the probability criteria complexity, visibility and third-party software, and the
impact criteria importance, availability, and usage were considered. Based on the risk
coefficient, a risk level is assigned to each risk item defining a risk classification for

Experiences and Challenges of Introducing Risk-Based Testing in an Industrial Project 13

all risk items. A concrete risk assessment procedure based on this model is explained
in [3]. The risk assessment can be performed by various stakeholders possessing the
know-how needed to estimate business or technical factors, e.g., the importance of
feature can be estimated by a product manager and the maturity of a technology by a
software architect.

Fig. 1. Generic Risk-Based Test Process

14 M. Felderer and R. Ramler

In the Test Analysis and Design phase a concrete test schedule is defined based on
the test plan and the risk classification. The test schedule contains a list of test cases
that has been designed under consideration of risk aspects defined in the test plan, the
risk classification and the given resources. The test analysis and design is typically
performed by testers and test managers.

In the Test Implementation and Execution phase the test schedule is executed. The
execution of the test cases is determined by their risk-based priority and the resource
limitations. As a result of the test execution, a test log is created. The test
implementation and execution is typically performed by testers.

In the Test Evaluation and Reporting phase the test log data is evaluated and a test
report is created to support decisions of the test or project management. The report
emphasizes an estimation of the mitigated risks and the residual risks. The test
evaluation and reporting is typically performed by a test manager.

In the Test Closure Activities phase experiences from the actual test project are
evaluated, e.g., the severity of the observed failures is related to the risk assessment
procedure, to improve risk-based testing. The test closure is a very important activity
to steadily adapt risk-based testing according to the experiences of the test
organization. The test closure activities are typically led by a test manager.

3 Introducing Risk-Based Testing

The risk-based testing methodology presented before shows the full integration of
risk-based testing into the standard test process. In industry, risk-based testing is often
limited to test prioritization and its full potential to improve software quality and the
test process by mitigating risks, estimating residual risks and optimizing test resource
allocation is not exploited. A main reason for the limitation of risk-based testing to
test prioritization is the fact that testing methodologies do not provide instructions for
the stepwise implementation of risk-based testing. If an organization intends to
evaluate and improve its test process based on Test Maturity Model integration
(TMMi) [6] identifying and controlling product risks - which can be ensured by
integrating risk-based testing into the test process - is necessary to reach TMMi level
2: managed.

In this section we define the steps how risk-based testing can be introduced into a
test process following our risk-based testing methodology. Based on these instructions
we indicate stages fostering the introduction of risk-based testing. As we define
several stages of risk-based test integration, our approach is more concrete concerning
the integration of product risk management than TMMi where this integration is
considered on several maturity levels in so called specific goals and specific practices
(SP), e.g., on TMMi level 2 (SP perform a generic product risk assessment, SP define
product risk categories and parameters, SP identify product risks, SP analyzes product
risks, SP monitor product risks, SP identify and prioritize test cases), TMMi level 3
(SP perform product risk assessment [in context of a master test plan], SP identify
non-functional product risks, SP analyze non-functional product risks, SP identify and
prioritize non-functional test cases), and TMMi level 4 (SP revise the product risks as

Experiences and Challenges of Introducing Risk-Based Testing in an Industrial Project 15

appropriate). But TMMi does not provide concrete steps for risk-based test
integration. In this respect, our approach substantiates the practices specified in
TMMi and defines a concrete workflow for risk-based test integration.

The seven steps for introducing risk-based testing based on the test process
presented in the previous section are shown in Fig. 2. These steps are (1) Analysis and
Planning of the Integration, (2) Identification of Risk Items, (3) Assessment Procedure
for Risks, (4) Design and Execution of Test Cases based on Risks, (5) Consideration
of Risks in Test Reports, (6) Consideration of Risks for Test Planning, and (7)
Continuous Evaluation and Improvement of Risk-Based Testing. Step 3 contains the
three sub-steps (3.1) Definition of Business Criteria, (3.2) Definition of Technical
Criteria, and (3.3) Definition of a Risk Assessment Procedure. In the following
paragraphs we explain these steps in more detail.

Fig. 2. Steps for Introducing Risk-Based Testing into Risk-Based Testing Methodology

Step 1: Analysis and Planning of the Integration

Step 2: Identification of Risk Items

Step 3: Assessment Procedure for Risks

Step 4: Design and Execution of Test Cases based on Risks

Step 5: Consideration of Risks in Test Reports

Step 6: Consideration of Risks for Test Planning

Step 7: Continuous Evaluation and Improvement of Risk-Based Testing

Step 3.1: Definition of Business Criteria

Step 3.2: Definition of Technical Criteria

Step 3.3: Definition of a Risk Assessment Procedure

16 M. Felderer and R. Ramler

Step 1: Analysis and Planning of the Integration

Before implementing risk-based testing in a test process, it has to be evaluated
whether the integration of risk-based testing in a test process is feasible and
beneficial. For instance, if one detects an inhomogeneous distribution of faults in
projects, risk-based testing may be a measure to detect faults more effectively and
more efficiently. But if the estimated resources for conventional risk-neutral testing
are smaller than for performing a risk assessment, the integration of risk-based testing
does not make sense. Additionally, in this step the overall integration of risk-based
testing has to be planned, e.g., by creating a time plan and providing the resources
needed for the integration.

Step 2: Identification of Risk Items

In this step the risk items, i.e., the elements to which risk values are assigned, have to
be identified. The risk items are traceable to test cases which enables the
interpretation of the test results under consideration of risk aspects. Risk items can be
development artifacts, e.g., requirements or components but also different types of
risks such as product, project, strategic or external risks. According to practical
experiences [7], the maximum number of risk items should be limited. This step is the
prerequisite for any type of risk-based testing.

Step 3: Assessment Procedure for Risks

In our approach the calculation of risk values is based on the combination of business
criteria and technical criteria. Business criteria mainly determine the impact of a risk,
and technical criteria mainly determine the probability of a risk. Thus, this step
contains the following three sub-steps.

Step 3.1: Definition of Business Criteria

Business criteria are related to customers-needs or business value. They are
typically determined manually by customers, product managers, project
managers or test managers.

Step 3.2: Definition of Technical Criteria

Technical criteria are related to development artifacts. They are typically
determined by software architects, developers or test managers. If technical
criteria are based on formal artifacts like source code, they can even be
determined automatically.

Step 3.3: Definition of a Risk Assessment Procedure

The risk assessment procedure defines how the criteria are determined and
combined to calculate a risk coefficient. The criteria are calculated based on
metrics for which a scale and an assessment procedure have to be defined. The
value can for instance be a real number between 0 and 1, an integer between 0
and 9 possibly measured on a Likert scale or the values low/medium/high. The
assessment can for instance be performed automatically, e.g., based on a static

Experiences and Challenges of Introducing Risk-Based Testing in an Industrial Project 17

analysis tool but also manually based on forms, individual interviews or
workshops. For the manual assessment, guidelines how to determine values
may be useful to guarantee that the risk coefficients are estimated in a realistic
way. For instance, there may be a guideline on how the importance of a feature
is scored to guarantee that the customer does not assign the value “high” to the
importance of each feature. Additionally, it has to be defined how to combine
the criteria values to an overall risk value. For instance, weights for the
different criteria may be considered to calculate the risk values as the weighted
mean value of the criteria values.

Step 4: Design and Execution of Test Cases based on Risks

In this step, test cases are designed and executed under consideration of risks. The test
design and execution is not based on an elaborated risk-based test plan but only
considers risk for roughly deciding whether and how many test cases are designed and
executed for a risk item.

Step 5: Consideration of Risks in Test Reports

In this step, risks are considered in test reports. Such risk-based test reports provide
additional information for decision makers like project or test managers [8]. Risk-
based test reports such as risk burn-down charts or traffic light reports visualize test
results and risks in a combined way. An additional estimation of residual risks based
on the available project data like risk and defect data is valuable to control the release
quality [9].

Step 6: Consideration of Risks for Test Planning

In this step, risks are considered to define an elaborated risk-based test plan. The risk-
based test plan is based on a risk classification. For each risk category in the risk
classification specific test design techniques, exit criteria or test automation degrees
that take the risk level into account are defined. Differing from step 3, the test cases
are systematically not informally designed and executed based on the risk-based test
plan defined as part of the overall test plan.

Step 7: Continuous Evaluation and Improvement of Risk-Based Testing

As risk-based testing is very specific for a domain and a test organization, the
implemented risk-based test methodology has to be evaluated and improved after a
test cycle or a test project has to be finished. For instance, if one observes that several
failures of severity critical occur in tests of risk items with a low risk value, the risk
assessment procedure or the test plan may not be optimal.

According to inhomogeneous distribution of faults in software [7] and the fact that
failures have different consequences if occurring in different parts of a software
product, already the application of the steps 1 to 4 may significantly improve the test
process. Based on this initial level of risk-based test integration, three other stages
with growing maturity of risk-based test integration can be defined by incrementally
adding Steps 5, 6 and 7. The resulting four stages of risk-based test integration, i.e.,

18 M. Felderer and R. Ramler

(1) Initial Risk-Based Testing, (2) Risk-Based Test Reporting, (3) Risk-Based Test
Planning, and (4) Optimization of Risk-Based Testing are shown in Fig. 3 and
explained in the following paragraphs.

(1) Initial Risk-Based Testing. This stage comprises the basic integration of risk-
based testing into a standard test process. It contains the analysis and planning
of the integration, the identification of risk items, a risk assessment procedure,
and the design and execution of test cases based on risks (Steps 1, 2, 3 and 4 of
procedure for introducing risk-based testing). On this level, the risk values
assigned to risk items are used informally, i.e., not based on a formal risk-
based test plan, to control the design and execution of test cases. The assigned
risk values can for instance be used to distribute resources for test design or to
prioritize test cases for test execution.

Fig. 3. Stages of Risk-Based Test Integration

(2) Risk-Based Test Reporting. This stage is based on stage (1) and additionally
considers risks for test reporting (Step 5 of procedure for introducing risk-
based testing). Risk-based test reporting is valuable to control the test and
release quality.

(3) Risk-Based Test Planning. This stage is based on stage (2) and additionally
considers risks for test planning (Step 6 of procedure for introducing risk-
based testing). On this level, the test plan formally takes risks into account,
e.g., for selecting appropriate test design techniques or exit criteria. Thus, at
this stage risk-based test activities of the lower stages are formalized.

(4) Optimization of Risk-Based Testing. This stage is based on stage (3) and
optimizes risk-based testing by continuous evaluation and improvement (Step
7 of procedure for risk-based testing).

(1) Initial Risk-Based
Testing

Steps 1, 2, 3, 4

(2) Risk-Based Test
Reporting

(1) + Step 5

(3) Risk-Based Test
Planning

(2) + Step 6

(4) Optimization of
Risk-Based Testing

(3) + Step 7

Experiences and Challenges of Introducing Risk-Based Testing in an Industrial Project 19

4 Discussion in Context of an Industrial Application

In order to realize the benefits of risk-based testing in a real-world setting, the applied
testing approach has to be brought into alignment with the risk-based test process. For
every step outlined in the previous section, testing has to be adopted to provide the
necessary prerequisites. In this section we illustrate the practical challenges involved
in introducing the initial stage of risk-based testing by describing the context of an
industrial project for which a risk-based testing approach has been considered.

The project has been concerned with the development of a Web-based application
part of a large information system, which was developed by the same team of about
ten people over the last years. The project had a duration of about one year and was
structured in two iterations, each divided in a development and a stabilization phase.
An iteration is characterized by a defined set of features, which is implemented
throughout the development phase in a number consecutive sprints. Once the
implementation has been completed, the feature-freeze milestone marks the transition
to the stabilization phase. Although testing has been an important activity throughout
all phases of the project, system testing and fixing of the detected issues is central in
the stabilization phase. At the end of the iteration, the application containing the new
features is released and handed over to a separate service and maintenance
organization.

System testing in the stabilization phase is an important and valuable yet also a
resource-intensive and time-consuming activity. Therefore, a risk-based testing
approach has been considered to improve testing efficiency and effectiveness. To
determine the suitability of the project for risk-based testing, a retrospective analysis
of the first project iteration has been conducted. In the following the key issues in
introducing risk-based testing are explored.

4.1 Distribution of Faults

An essential prerequisite for risk-based testing is the inhomogeneous distribution of
faults over the different severity classes and the various parts of the system. In the
stabilization phase of the first iteration, a total of 53 faults have been detected by
testing, which were rated as high severity (9 faults), medium severity (27 faults) and
low severity faults (17).

Fig. 4 shows the distribution of these faults to the application’s implementation in
terms of about 200 source code files. Faults involve one or several files (the
maximum max = 29 files, the average avg = 5 files with a standard deviation s = 6.5).

The faults showed a typical Pareto distribution with the majority of the faults
concentrating in a small fraction of the files [10]. Considering all files of the
application, 80 % of the associations between faults and files were found in 19 % of
the files (marked by a dashed vertical line in Fig. 4). The most critical file was
associated to 24 different faults. However, while in total 41 % of the files were found
to be faulty, more than half of them (59 %) did not contain any fault. Furthermore,
only 11.6 % of all files were associated to high severity faults.

20 M. Felderer and R. R

Fig. 4. D

This distribution clearly
approach if the testing effo
especially when these faults

4.2 Identification of Ri

One of the first steps in ri
such as functional compon
technical criteria values as
considerations were relat
application.

─ Functional viewpoint
criteria relevant for se
observable functionali
and the associated W
total about 40 Web p
graphical layout and
emphasizes the impor
specified use cases a
client side of the appl
code files. Howeve
implementation of the
directly associated to
cases or Web pages.

─ Architectural viewpo
client side and server
more accurately. An a
and components may

Ramler

Distribution of Faults to Implementation Files

y indicates that testing may benefit from a risk-ba
rt can be directed to those files that have associated fau
s also have a high severity rating.

sk Items

isk-based testing involves the identification of risk ite
nents or features that can be associated to business
well as test cases. In the described project, different r

ted to different viewpoints on how to structure

: The user requirements as well as the derived accepta
etting priorities in testing were based on the applicatio
ities. They were structured according to the main use ca

Web pages that provide the corresponding functionality
pages were distinguished. The detailed specification of
d the navigation structure included in the requireme
rtance of the usage related aspects of this viewpoint. T
and Web pages correspond to the implementation of
lication, which encompasses about two third of the sou
er, a considerable part of the files concerns
e backend (server side of the application), which cannot
the application’s functional structure expressed by the

int: The application’s architecture distinguishes betw
r side components and reflects the implementation det
approximate relationship between observable functiona
be established at least for the client side components. S

ased
ults,

ems
and
risk
the

ance
on’s
ases
. In
the

ents
The
the

urce
the

t be
use

ween
tails
ality
Still,

Experiences and Challenges of Introducing Risk-Based Testing in an Industrial Project 21

however, the architecture recognizes several shared components and libraries –
also for the client side – that cannot be directly linked to the functionality due to
the numerous potential dependencies between these components. Furthermore,
this viewpoint introduces external dependencies to related parts of the overall
system.

─ Development viewpoint: Several different technologies have been applied for
the implementation of the Web-based application, which were assumed to be
associated with different risk levels due to various reasons such as degree of
technological expertise, available tool support or quality assurance measures
applied throughout development. The applied technologies evident in the source
code files include JavaScript (45 % of all files), Java (29 %), Java Server Pages
(19 %), Cascading Style Sheets (2 %) as well as various others (5 %). Closely
linked to the different technologies are non-functional aspects such as
compatibility or security as related issues are often dependent on the applied
technology. Many of these non-functional aspects are particular critical for
Web-based applications and bear a considerable additional risk.

The relevant artifacts in focus of the different viewpoints are illustrated in Fig. 5.
While the Functional View is concerned with the user requirements, the Architectural
View provides information about the hierarchical decomposition of the application
into components. The link between the functional and the architectural view is
maintained by the implements relation between use cases in the specified
requirements and client side UI components constituting Web pages tangible for the
user. From the architectural viewpoint, the information provided by the Development
View can be considered a subset that, nevertheless, includes additional aspects, i.e.,
information about the components’ properties.

Fig. 5. Different Viewpoints on the Application Under Test

Accept.
Criteria

Req. Spec.
Application

Client Server

Comp C1

Comp Cn

Comp C2
Comp Cx

Library C1

Comp S1

Comp Sn

Comp S2
Comp S1.2

Library S1

Comp S1.1

Functional View Architectural View Development View

Use Case 1

Use Caes 2

Use Case 3

22 M. Felderer and R. Ramler

A reconciliation of the different viewpoints showed that there is no single structure
of the application that can completely capture all risk aspects. For the studied project,
the most comprehensive structure is provided by the architectural viewpoint and is
derived from the application’s component model. The risk aspects indicated by the
other viewpoints should be related to the components and may be maintained as
additional properties used in calibrating the risk model. However, it still remains an
open question how the mostly vague relationships can be formalized into a complete
and consistent model.

4.3 Exploration of Business Criteria

Once the architectural components have been defined as risk items, the associated
risks can be assessed. Assessing business criteria is strongly associated to an
estimation of the business value of the application’s functionality.

As previously indicated, however, in the studied project a direct link between the
functionality and the application’s components can only be established for the client
side. The server side components constitute the backend of the application and, thus,
build the basis for any observable functionality provided by the application. Neither
their business value nor the associated business criteria can be reliably estimated. An
initial approximation of the impact based on business criteria may be derived from the
weighted average of the acceptance criteria associated to the client side components.

In the studied project, the specified acceptance criteria contained a non-
conformance classification based on the business value of the application’s
functionality. This classification was therefore proposed as relevant source for
determining related business criteria. The classification schema defined three
principal classes denoted as high (critical), mid (major) and low (minor) to which the
application’s functionality was mapped. However, the actual mapping simply
classified the main usage scenarios of the base functions as critical and all other
scenarios as major. Anything related to layout was classified as minor. As a
consequence, the homogeneous classification of major parts for the application’s
functionality (more than 75 %) showed to be inadequate for deriving a well
discriminated risk profile. Nevertheless, a more elaborate classification was not
provided by the project due to the lack of an established assessment approach in the
organization.

4.4 Exploration of Technical Criteria

Usually a wide range of potential influence factors are available for the assessment of
technical criteria, which may be identified by analyzing the project’s history. Since
our study was based on the first development iteration, no data from previous versions
of the application was available. Hence, in order to acquire an approximation of the
involved technical criteria, we decided to tab into the experience of involved
architects and developers by conducting structured interviews once the feature-freeze
milestone had been achieved. The main focus of the interviews was to gain
insights about which components part of application’s architecture were considered

Experiences and Challenges of Introducing Risk-Based Testing in an Industrial Project 23

fault-prone. The participants were asked (1) to rate the risk that the different
components may contain faults as either high, medium, or low and (2) to explain how
they came to their ratings in order to understand possible risk factors specific for the
studied project. Six people involved in the development of the application as
architects or developers participated in the interviews.

Although the interviews were conducted in an informal way and mainly subjective
opinions of the interview participants were collected, the accumulated results
provided insights about 36 different architectural components: 8 received ratings that
indicated an above medium risk of being fault-prone. Furthermore, 14 components
were considered of low risk. The ratings for these high and low risk components were
consistent across the interview participants. The main reasons mentioned for high risk
ratings were high complexity of the control structure, lack of test tool support for
some of the applied technologies, as well as frequently changing and poorly
documented external interfaces.

Deriving a risk estimation from interviews were involved several challenges.

─ First, since factors determining technical criteria still had to be explored, the
rating conducted in the interviews was mainly driven by the discussion of
possible influence factors and their potential impact. Thus, the risk ratings were
most often subjective estimates and the interview participants felt not confident
to express these estimates on a more fine-grained scale other than high, medium
or low.

─ Second, the application’s architecture is composed by a hierarchical component
structure. Thus, since the identified components were associated to different
levels in this component structure, the resulting hierarchical dependencies had to
be considered in the component rating. The rating of a higher order component
depended on its specific properties as well as on the rating of its
subcomponents. In many cases the interview participants explained the risks by
“zooming into” the components, sometimes even until the file level. However,
the low degree of formality of the architectural specification did not allow a
more formal rating approach.

─ Third, the interviews were conducted with key members of the project who were
closely involved in development and who had detailed knowledge as well as a
good overview of the whole application. As a consequence, the availability of
these key people was limited and scheduling interviews was a challenge in
itself. More time consuming estimation techniques that would include several
interview cycles or group discussions to consolidate disagreements in ratings
had to be omitted due to time constraints.

4.5 Risk Assessment

The overall risk is determined by the combination of business criteria and technical
criteria. In our case, however, the initial exploration of potential criteria did not
provide a consistent basis for a structured risk assessment. In particular, the first
estimates of the business criteria were not considered an adequate input for such an

24 M. Felderer and R. Ramler

assessment due to the lack of data concerning server side components and the mostly
homogeneous rating of the client side components.

To investigate the applicability of the results achieved from exploring the technical
criteria, the provided estimates were compared to the actual defects identified with the
applied conventional testing approach. The actual defect counts per component were
retrieved from the retrospective analysis of the first iteration. Fig. 6 shows the
resultant confusion matrix for the estimated risk classes.

The estimations achieved an overall accuracy of 52.8 %. Nevertheless, the classes
high and low are of particular importance, as for components in these classes a
corresponding high or low testing effort may be recommended. The estimations
concerning the class high showed a precision of 87.5 % and a recall of 46.7 %. The
precision was achieved as almost all components estimated to have a high risk of
being fault-prone actually contained faults; several even contained high severity
faults. However, the low recall indicates that the estimation missed several of the
critical components. While in the estimation only 8 components were considered of
high risk, actually 15 components fall into this class. The number of misclassification
has to be considered as critical for the class low, which showed a precision of 57.1 %
and a recall of 66.7 %. Two components estimated to have a low risk of being faulty
were actually found to have a high number of faults. Both even contained a high
severity fault.

Fig. 6. Confusion Matrix for the Estimated Risk Classes

In general, these results confirmed that a risk-based testing approach can be
applied in the studied project. However, the outcome of the initial risk assessment
based on informal estimates is not sufficient to proceed with the next steps in
introducing risk-based testing. Therefore, further effort has to be invested in identify a
consistent set of relevant risk criteria that can be assembled to a reliable risk model
for calculating the associated risk values.

high medium low

high 7 6 2 15

medium 1 4 4 9

low 0 4 8 12

8 14 14 36

ac
tu

al

estimated

Experiences and Challenges of Introducing Risk-Based Testing in an Industrial Project 25

5 Related Work

The importance of risk management for software engineering [11] has been addressed
in several risk management approaches tailored to software engineering processes.
For instance, Karolak [12] proposes a risk management process for software
engineering that contains the activities risk identification, risk strategy, risk
assessment, risk mitigation, and risk prediction. Risk-based testing is a test-based
approach to risk management. In the literature, several risk-based testing approaches
have been proposed.

Amland [13] defines a risk-based testing approach that is based on Karolak's risk
management process comprising the following steps and the corresponding risk
management activities: planning (risk identification and risk strategy), identification
of risk indicators (part of risk assessment), identification of the cost of a failure (part
of risk assessment), identification of critical elements (part of risk assessment), test
execution (risk mitigation), and estimation of completion (risk reporting and risk
prediction). Differing from our methodology the approach is not aligned with the
standard test process.

Bach [14] presents a pragmatic approach to risk-based testing grounded on a
heuristic software risk analysis. Bach distinguishes inside-out risk analysis starting
with details about a situation and identifying associated risk, and outside-in risk
analysis starting with a set of potential risks and matching them to the details of the
situation. In our approach we generalize and integrate the concepts of Bach by
introducing generic risk items and risk assessment.

Redmill provides a thorough discussion of risk-based testing [15] as well as a
proposal for practical application suggesting a single factor risk assessment, either for
probability of for impact, or a two-factor risk assessment, in which probability and
impact are combined [16]. The application of the resulting risk classification in the
test process, e.g., for test planning, design, execution or reporting, is beyond the scope
of the approach.

Stallbaum and Metzger [17] introduce a model-driven risk-based system testing
approach that is based on the Factor-Criteria-Metrics model [4]. The focus of their
approach is the annotation of risk assessment data in UML-based models, however,
without a standard-aligned risk-based testing methodology and without an approach
for its introduction in existing test processes.

Risk-based testing is an essential component in a value-based testing strategy [18].
In their work on value-based software testing, Li et al. [19, 20] introduce a method
that integrates business importance, quality risk and testing cost to determine testing
priorities at the level of features for test panning and controlling. In contrast to our
approach, an alternative way for risk assessment is used: The relative business
importance is determined via a requirements prioritization approach based on expert
judgment of positive/negative impact of the presence/absence of features [21]. The
quality risk is based on quantitative and qualitative risk factors derived from past
projects and experience. Weights for quality risks are defined using the Analytical
Hierarchy Process (AHP) method [22] from multi-criteria decision-making. Together
with the developers, the test manager estimates the relative risk for each feature and,

26 M. Felderer and R. Ramler

finally, calculates the risk probability values that are set in relation to testing costs.
Thus, on the one hand, this method goes beyond our approach as the underlying
value-based perspective integrates the potential benefits of testing with the costs of
testing. On the other hand, the proposed integration into the software testing process
considers mainly test planning and controlling as target activities.

A further risk-based testing approach that is similar to ours is the Practical Risk-
Based Testing Approach (PRIMSA) [7]. It distinguishes business and technical risks
determined by weighted criteria to calculate the overall risk of risk items.
Additionally, PRISMA defines a process consisting of concrete activities, i.e.,
initiating, planning, kick-off meeting, extended risk identification, individual
preparation, processing individual scores, consensus meeting, and define
differentiated risk-based testing approach. The activities are defined in a very
concrete way with detailed instructions. Thus, the PRISMA approach is highly
specific and not as adaptable as our approach. Furthermore, PRISMA does also not
define stages of risk-based test integration. Differing from our approach, all other
mentioned risk-based testing approaches including PRISMA do not provide a
systematic in-depth discussion of the challenges of introducing the approach.

We base our work on the standard testing process according to the definition of the
ISTQB [1]. In Spillner et al. [23] as well as Black [24] risk-based testing is integrated
into the standard test process. The focus of this integration is, however, on risk
assessment and no process or guidelines for improving the test process by a stepwise
integration of risk-based testing is offered such as in our approach.

Maturity models like CMMI [25] or SPICE [26] have successfully been applied to
assess and improve software development processes in general. In the meanwhile,
also special maturity models for test processes are available like Test SPICE [27],
Test Process Improvement (TPI Next) [28, 29] or Test Maturitiy Model integration
(TMMi) [6]. Test approaches for process improvement propose different structural
concepts such as areas, processes, process groups and stages. Risk-based testing or at
least specific steps of the risk-based testing approach proposed in this paper can be
mapped to areas or processes. However, Test SPICE, TPI/TPI Next and TMMi do not
consider stages of risk-based testing itself such as our approach.

6 Conclusion and Future Work

In this paper we presented experiences and challenges of introducing risk-based
testing in an industrial project. We first explained a generic risk-based testing
methodology and a procedure how it can be introduced incrementally in a test
process. We then showed how this procedure could be applied in an industrial project.
Numerous challenges and lessons learned in introducing risk-based testing on the
initial stage have been identified:

─ A consolidation of perspectives on the system under test (e.g., functional
viewpoints, architectural viewpoints, development viewpoints etc.) is required
in order to identify an appropriate set of risk items. However, none of the
different viewpoints may be sufficient to completely cover all relevant risk

Experiences and Challenges of Introducing Risk-Based Testing in an Industrial Project 27

items, calling for a combination or integration that relates the various properties
of the different viewpoints into a complete model.

─ If not explicitly developed in the requirements engineering phase, many projects
will not have a clear understanding about the business value of the system’s
functionality. Thus, these projects can neither provide accurate values for
individual functions nor are they able to thoroughly estimate the associated
business criteria.

─ When a more technical structure of the system (e.g., components of the system
architecture) is maintained as basis for the risk items, it is often hard to
consistently map the value of system functions and the associated business
criteria to the risk items. The mapping is made difficult in particular due to
items with many dependencies leading to high risk exposure (e.g., shared
components).

─ Technical structures (e.g., component structures) are often hierarchically
organized and the involved people understand and discuss the overall system in
terms of these hierarchies. However, hierarchical dependencies introduce a
further level of complexity in calculating and associating risk values to risk
items. When derived from informal models described with UML, the resultant
structures may often be incomplete and inconsistent.

─ From a technical perspective, a wide range of potential influence factors can be
easily identified, for example, size and complexity of components, dependencies
between components and to external entities, coverage by static and dynamic
quality assurance measures, and applied development technologies. Many of
them can even be supported by automated collection of related metric values. In
previous studies on defect prediction [30] it has been found that selecting
adequate sources for extracting metric values is essential to produce useful
results. Furthermore, usually only a subset of the large number of available
metric values is sufficient to develop an operable risk model. However,
selecting a suitable subset of the potentially large amount of available metrics
that best represents the criteria is an open question.

─ Ideally, metric values can be collected from a project’s development history
spanning several iterations. New projects lacking such a historic track record
may derive a representative data basis from related parallel or previous projects.
Otherwise, estimation approaches leveraging the experience of the involved
project members have to be applied.

─ Risk estimations involving several project members require a structured and
well-defined approach to provide objective and reliable results. Without prior
experience of the involved participants, it may still require several iterations to
converge to a common perception of the procedures and a calibrated risk model.
However, it has to be noted that the overall effort can be quite high, especially
when several key members of a project should be involved in the risk
assessment. Their limited availability may impose serious restrictions
concerning the possible risk estimation and consolidation approaches. Matters
get even worse when such estimates need to be conducted frequently throughout
the lifecycle of a project.

28 M. Felderer and R. Ramler

In this paper we have introduced four stages of risk-based test integration, i.e.,
initial risk-based testing, risk-based test reporting, risk-based test planning, and
optimization of risk-based testing. But in the industrial application we have only
discussed challenges for risk-based test integration at the initial stage. In future, we
will also introduce the other stages in industrial projects and present appropriate
challenges and lessons learned. To provide better support for initial integration of
risk-based testing we plan several measures. First, we will perform a detailed cost-
benefit analysis to improve the step analysis and planning of the risk-based test
integration. Then, we plan to conduct and compile a survey on risk-based testing in
industry to provide a comprehensive collection of best practices and techniques
supporting practitioners in identifying risk items and assessing risks. Finally, we will
consider data mining techniques to construct prediction models used for risk
estimation from a large set of metric values that considers non-obvious
interdependencies between a large set of metric values. Thereby, the necessary
training data values are derived from the project’s development history.

Acknowledgments. This work has been supported by the project QE LaB – Living
Models for Open Systems (www.qe-lab.at) funded by the Austrian Federal Ministry
of Economics (Bundesministerium für Wirtschaft und Arbeit) as well as the
competence network Softnet Austria (www.soft-net.at) funded by the Austrian
Federal Ministry of Economics (Bundesministerium für Wirtschaft und Arbeit), the
province of Styria, the Steirische Wirtschaftsförderungsgesellschaft mbH (SFG), and
the city of Vienna’s Center for Innovation and Technology (ZIT).

References

1. ISTQB: Standard glossary of terms used in software testing. Version 2.1 (2010)
2. Gerrard, P., Thompson, N.: Risk Based E-Business Testing. Artech House. Inc., Norwood

(2002)
3. Felderer, M., Haisjackl, C., Breu, R., Motz, J.: Integrating Manual and Automatic Risk

Assessment for Risk-Based Testing. Software Quality Days, 159–180 (2012)
4. Cavano, J.P., McCall, J.A.: A framework for the measurement of software quality. ACM

SIGMETRICS Performance Evaluation Review 7(3-4), 133–139 (1978)
5. ISO: ISO/IEC 25000 Software and system engineering-Software product Quality

Requirements and Evaluation (SQuaRE)-Guide to SQuaRE. International Organization for
Standarization (2005)

6. van Veenendaal, E., Goslin, A., Olsen, K., O’Hara, F., Miller, M., Thompson, G., Wells,
B.: Test Maturity Model integration (TMMi) Version 1.0, TMMi Foundation (2008)

7. van Veenendaal, E.: The PRISMA Approach, Uitgeverij Tutein Nolthenius (2012)
8. Ramler, R., Kopetzky, T., Platz, W.: Value-Based Coverage Measurement in

Requirements-Based Testing: Lessons Learned from an Approach Implemented in the
TOSCA Testsuite. In: 38th Euromicro Conference on Software Engineering and Advanced
Applications, SEAA 2012 (2012)

9. Cangussu, J.W., Karcich, R.M., Mathur, A.P., DeCarlo, R.A.: Software release control
using defect based quality estimation. In: 15th International Symposium on Software
Reliability Engineering (2004)

Experiences and Challenges of Introducing Risk-Based Testing in an Industrial Project 29

10. Fenton, N.E., Ohlsson, N.: Quantitative analysis of faults and failures in a complex
software system. IEEE Transactions on Software Engineering 26(8), 797–814 (2000)

11. Pfleeger, S.L.: Risky business: what we have yet to learn about risk management. Journal
of Systems and Software 53(3), 265–273 (2000)

12. Karolak, D.W., Karolak, N.: Software Engineering Risk Management: A Just-in-Time
Approach. Wiley-IEEE Computer Society Press (1995)

13. Amland, S.: Risk-based testing: Risk analysis fundamentals and metrics for software
testing including a financial application case study. Journal of Systems and Software
53(3), 287–295 (2000)

14. Bach, J.: Heuristic risk-based testing. Software Testing and Quality Engineering
Magazine 11, 99 (1999)

15. Redmill, F.: Exploring risk-based testing and its implications. Softw. Test. Verif.
Reliab. 14(1), 3–15 (2004)

16. Redmill, F.: Theory and practice of risk-based testing: Research Articles. Softw. Test.
Verif. Reliab. 15(1), 3–20 (2005)

17. Stallbaum, H., Metzger, A.: Employing Requirements Metrics for Automating Early Risk
Assessment. In: Workshop on Measuring ss, pp. 1–12 (2007)

18. Ramler, R., Biffl, S., Grünbacher, P.: Value-based Management of Software Testing. In:
Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P. (eds.) Value-Based
Software Engineering, pp. 225–244. Springer (2006)

19. Li, Q., Li, M., Yang, Y., Wang, Q., Tan, T., Boehm, B., Hu, C.: Bridge the Gap between
Software Test Process and Business Value: A Case Study. In: Wang, Q., Garousi, V.,
Madachy, R., Pfahl, D. (eds.) ICSP 2009. LNCS, vol. 5543, pp. 212–223. Springer,
Heidelberg (2009)

20. Li, Q., Yang, Y., Li, M., Wang, Q., Boehm, B., Hu, C.: Improving Software Testing
Process: Feature Prioritization to Make Winners of Success-critical Stakeholders. J. Softw.
Maint. Evol. Res. Pract. (2010)

21. Wiegers, K.E.: First things first: Prioritizing requirements. Software Development 7(10),
24–30 (1999)

22. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill (1980)
23. Spillner, A., Rossner, T., Winter, M., Linz, T.: Software Testing Practice: Test

Management: A Study Guide for the Certified Tester Exam ISTQB Advanced Level,
Rocky Nook (2007)

24. Black, R.: Advanced Software Testing. Guide to the ISTQB Advanced Certification as an
Advanced Test Manager, vol. 2. Rocky Nook (2009)

25. Ahern, D., Clouse, A., Turner, R.: CMMI distilled: a practical introduction to integrated
process improvement. Addison-Wesley Professional (2008)

26. Dorling, A.: SPICE: Software process improvement and capability determination.
Software Quality Journal 2(4), 209–224 (1993)

27. Steiner, M., Blaschke, M., Philipp, M., Schweigert, T.: Make Test Process Assessment
Similar to Software Process Assessment–the Test SPICE Approach. Journal of Software:
Evolution and Process 24(5), 471–480 (2012)

28. Koomen, T., Pol, M.: Test process improvement: a practical step-by-step guide to
structured testing. Addison-Wesley Professional (1999)

29. Koomen, T., van der Aalst, L., Broekman, B., Vroon, M.: TMap Next, For Result-driven
Testing. UTN Publishers (2006)

30. Ramler, R., Larndorfer, S., Natschläger, T.: What Software Repositories Should Be Mined
for Defect Predictors? In: 35th Euromicro Conference on Software Engineering and
Advanced Applications, SEAA 2009 (2009)

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 30–54, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Project Progress and Risk Monitoring
in Automation Systems Engineering

Wikan Sunindyo, Thomas Moser, Dietmar Winkler, and Richard Mordinyi

Christian Doppler Laboratory “Software Integration for Flexible Automation Systems”
Vienna University of Technology

Vienna, Austria
{Wikan.Sunindyo,Thomas.Moser,Dietmar.Winkler,

Richard.Mordinyi}@tuwien.ac.at

Abstract. Current Automation Systems Engineering (ASE) projects consist of
heterogeneous engineering workflows for managing processes that are executed
in different engineering fields, e.g., mechanical, electrical, or software engineer-
ing. Project managers and engineers typically create and use their own specific
engineering workflows for managing objects across the borders of heterogene-
ous engineering fields, such as development artifacts, change requests or
signals. Major challenges in the context of addressing risk awareness for engi-
neering workflow validation are the unawareness regarding risks of other
project stakeholders and limited scalability of risk estimation approaches. In
this paper, we propose the Engineering Service Bus (EngSB) framework for
flexible and efficient object change management processes and risk-aware en-
gineering workflow validation. The object change management here means the
management of signal changes in an industry showcase. The workflow valida-
tion involves the activity to validate the real-world engineering project data
with the designed workflow. Based on real-world engineering project data from
a hydro power plant systems integrator we propose the definition of risk factors
on project management and engineering levels to increase risk awareness. First
results of the industry case study show that the inclusion of risk factors can en-
hance the overall engineering project quality, thus enabling risk mitigation in
ASE projects.

Keywords: Automation Systems Engineering, Project Progress Monitoring,
Risk Monitoring.

1 Introduction

Automation Systems Engineering (ASE) project management typically involves hete-
rogeneous engineering fields, e.g., mechanical, electrical, or software engineering,
which should work together to reach common goals such as delivering high quality
automation systems using an efficient and effective automation systems development
process [30]. However, engineers from different engineering fields typically use their
own tools and data models for performing specific tasks within their specific engi-
neering fields. The heterogeneity of data models hinders efficient project progress

 Project Progress and Risk Monitoring in Automation Systems Engineering 31

monitoring and risk management. Hence project managers need an integrated view
coping with the semantic heterogeneities of the different involved heterogeneous
engineering fields.

For communicating, disseminating, and managing objects, e.g., development arti-
facts, change requests or objects used for common engineering activities such as sig-
nals, across the borders of different engineering fields, engineers typically create and
use their own specific engineering workflows [2][3] with limited interaction capabili-
ties between the different fields. An engineering workflow (usually the part of more
generic company-wide engineering processes) has its main focus on observation and
monitoring of a set of individual engineering steps (within one discipline), while
business processes usually provide a comprehensive view on the entire project. The
goal of using engineering workflows is to support engineers and project managers
with suitable information on the implementation and enactment of processes running
in the system. Unlike typical business workflows, engineering workflows not neces-
sarily are connected directly to customers [31]. Examples for typical engineering
workflows are Integrated Product Development (IPD).

In addition, current approaches for managing engineering workflows still do not sa-
tisfactorily address risk awareness during process analysis. This leads to analysis re-
sults which are hard to justify from a business management perspective, e.g., risks
arising from the fact that the costs of changes are typically higher if performed at a
later stage of an engineering process [29]. Current solutions only provide limited capa-
bilities to analyze and present change management process data across disciplines.

With focus on raising the risk awareness of object change management workflows,
the key questions for project management and engineers are (a) how changes can be
handled more efficiently and (b) how relevant change requests can be passed to the
involved engineers. Thus, there exists the need for flexible and comprehensive engi-
neering process support across disciplines to enable collaboration and interaction
between disciplines, tools, and data models. In the context of addressing risk aware-
ness for engineering workflow validation, i.e. getting an comprehensive project over-
view at anytime of the project and independent of the involved engineering tools, the
major challenges are (a) different stakeholders of ASE projects, who need to be able
to identify and mitigate risks efficiently, and (b) different stakeholders of ASE
projects, who need to classify their specific risk factors based on their requirements.

This paper presents the Engineering Service Bus (EngSB) framework – a middle-
ware platform for supporting collaboration across disciplines and domain borders –
which bridges the gap between heterogeneous disciplines by providing semantic inte-
gration of data models [3, 5, 22] based on the technical integration of domain-specific
tools [4]. The integrated view on heterogeneous engineering environments enables the
implementation of a flexible and efficient object change management process and
demonstrates the ability for risk-aware engineering workflow validation based on
real-world engineering project data from a hydro power plant systems integrator. In
addition, we propose the definition of risk factors on project management and engi-
neering levels to increase risk awareness on both levels. First empirical [28] results
show that the ability of capturing and analyzing data from different data sources
across various engineering fields enables comprehensive observation and monitoring

32 W. Sunindyo et al.

of the engineering process and risk factors, which can enhance the overall engineering
project quality and enables risk mitigation in ASE. The findings on the results have
been discussed with the industry experts to enhance the validity of the results and the
analysis approach.

In this work, the EngSB framework can be seen as a kind of Integrated Product
Development (IPD) approach, as it also tries to provide a systematic approach to
product development which increases customer satisfaction through a timely collabo-
ration of necessary disciplines throughout the development life-cycle [23].

The remainder of this paper is structured as follows: Section 2 presents related
works on Automation Systems Engineering (ASE), the Engineering Service Bus
(EngSB) Approach, the Engineering Cockpit prototype, and on risk management.
Section 3 identifies the research issues, while section 4 presents the use case. Section
5 describes the solution approach. Section 6 presents the evaluation results, which are
discussed in section 7 with regard to the research issues. Finally, section 8 concludes
and identifies future work.

2 Related Work

This section summarizes background information on Automation Systems Engineer-
ing, the Engineering Service Bus (EngSB), the Engineering Cockpit (EngCo) proto-
type, and on risk management.

2.1 Automation Systems Engineering

Automation systems, e.g., complex industrial automation plants for manufacturing,
steel mills, or power plants include a set of heterogeneous engineering environments,
e.g., mechanical, electrical, and software engineering disciplines who should collabo-
rate and interact for successfully completing ASE projects [3]. The project in our case
is an automation systems engineering project which involves heterogeneous stake-
holders from different engineering domains to collaborate and achieve a particular
goal. Expert knowledge is embodied in domain-specific standards, terminologies,
people, processes, methods, models, and tools [21][20]. Nevertheless, individual dis-
ciplines including discipline specific tools and data models are isolated and/or with
limited support for interaction and collaboration [4]. Thus, a major challenge is to
synchronize specification data and plans from a wide range of engineering aspects in
the overall engineering process, e.g., physical plant design, mechanical and electrical
engineering artifacts, and process and project planning [34].

Fig. 1 illustrates a basic engineering process, observed at in a hydro power plant as
our industry partner, including five phases in sequential order: initial, drawing started,
customer approval, factory tests, and customer commissioning. Note that these phases
(i.e., project states) correspond to the individual states of engineering objects. A more
detailed view on the sequential steps, e.g., during the phase “drawing started”, showed
that engineers follow their own (isolated) engineering processes within their assigned
discipline or domain. In addition, engineers from individual disciplines work in paral-
lel on similar engineering objects from different perspectives [34]. Thus, they have to

 Project Progress and Risk Monitoring in Automation Systems Engineering 33

synchronize and exchange data to keep the engineering project consistent. Note that
similar processes apply for all engineering phases. The risk elements in these proc-
esses are hidden in each step and can be categorized into domain specific risks, col-
laboration risks, and project management risks.

Changes from disciplines have to be passed to related engineers who might be af-
fected by those changes. For instance changing a sensor from hardware perspective
might have an impact on electrical engineers (how to connect the sensor) and to the
software engineer (how to control and analyze sensor data). Observations in industry
projects showed a less frequent and informal synchronization process, executed by
experts manually. Because of a high effort of human experts, who are familiar with at
least two engineering disciplines, this synchronization process is executed less fre-
quently and, thus, include a high risk regarding the consistency of engineering objects
and the impact of changes. The high effort of the human experts are often needed
in resolving changes in the engineering project, however their availabilities are
somehow limited.

Electrical Engineering

Software Engineering

Mechanical EngineeringChange

Change

Change Synchronization
Change & Conflict Resolution

Synchronized Data Models

Risk

Risk

Risk

(a) Domain Specific Risks

Risk

Initial Drawing
Started

Customer
Approval

Factory
Test

Customer
Commissioning

(c) Project Management
Risks

Observed sequential Engineering Process

Synchronization of various Disciplines

Risk Risk Risk Risk

(b) Collaboration
Risk

Fig. 1. Management and Engineering Risks from Process Perspective [34]

Based on our observation we found a set of risks in the ASE which can have a ma-
jor impact on the individual engineers and on the project: (a) Domain specific risks
focus on individual and isolated disciplines, where engineers apply well-established
risk management approaches, e.g., RiskIt [17] for the software engineering domain.
As individual disciplines can apply appropriate countermeasures which have effects
on these disciplines, related disciplines might be affected by these measures; (b) Col-
laboration risks focus on the need for frequent synchronization of individual artifacts
and engineering objects coming from different disciplines. Because of a high manual
effort for synchronization (if not automated) the frequency of data exchange is quite
low; e.g., once per month. If done less frequently the number of changes might be
very high leading to additional risks with respect to related disciplines in case of
changes; (c) project management risks focus on project monitoring and control chal-
lenges, which usually depend on the capability to capture and analyze project data and

34 W. Sunindyo et al.

draw appropriate solutions. Because of a lack of synchronization and limited access to
comprehensive data additional risks arise, even if the data are available very late in
the project. Thus, late changes, e.g., during the factory test or during the commission-
ing phase at the customers’ site, result in inefficient, error-prone and risky engineer-
ing processes [29].

To overcome risks on (1) management level, i.e., enabling project observation and
control across disciplines and domain borders and (2) on engineering level, i.e., sup-
porting efficient change management and frequent synchronization across disciplines,
the Engineering Service Bus [4] supports interaction of related stakeholder within a
heterogeneous engineering environments with respect to improving (i) engineering
processes and change management, (ii) quality assurance activities, and (iii) risk
management in the ASE domain.

2.2 Engineering Service Bus

Current developers of software systems use a wide range of tools from software ven-
dors, open source communities, and in-house developers. Getting these tools to work
together to support a development process in an engineering environment remains
challenging as there is a wide variety of standards these tools follow [15]. Any
integration approach has to address the levels of technical heterogeneity, i.e., how to
connect systems that use different platforms, protocols, etc., so they can exchange
messages [7][12][25]; and semantic heterogeneity, i.e., how to translate the content of
the messages between systems that use different local terminologies for common
concepts in their domain of discourse, so these systems can understand each other and
conduct a meaningful conversation [1][9][24][11][21]. Particularly in ASE, integra-
tion of engineering systems is a challenge as typically a broad range of engineering
tools from different vendors are used to solve specific problems [26].

Biffl and Schatten proposed a platform called Engineering Service Bus (EngSB),
which integrates not only different tools and systems but also different steps in the
software development lifecycle [5][4]. The platform aims at integrating software en-
gineering disciplines e.g., mechanical, electrical or software engineering, rather than
individual services [7]. The EngSB consists of the following main components: (1)
engineering discipline specific tools to be integrated, and (2) so called connectors
which enable communication between the bus and the specific engineering tool which
consist of a technical specific and a technical neutral interface. The technical specific
interface is implemented within the engineering tool while the technical neutral inter-
face (i.e. tool domain) represents a standardization of connectors of a specific engi-
neering tool type. This seems possible since different tools, developed to solve the
same problem have, more or less, similar interfaces. For example, the source code
management (SCM) tools Subversion and CVS both provide similar functionality,
which allows describing these tools as instances of the SCM tool domain. This con-
cept allows the EngSB to interact with a tool domain without knowing which specific
tool instances are actually present. Note that tool domains do not implement tool in-
stances but provide the abstract description of events and services, which have to
be provided by concrete connectors of tool instances to the EngSB. This implies
that the EngSB not only facilitates data integration but more importantly functional

 Project Progress and Risk Monitoring in Automation Systems Engineering 35

integration as well (3) the Engineering Database [22] and the Engineering Knowledge
Base [20] which enable versioning of common data used and an automated transfor-
mation of common concepts represented differently in the various engineering tools.
(4) project relevant added-value applications like the Engineering Cockpit [19] for
efficient project monitoring or the Engineering Object Editor [18] for quality assured
integration of data sources. (5) a workflow engine executing engineering processes
which describe a configurable sequence of process steps satisfying project integration
requirements. The workflow engine is an engine which generates event logs based on
designed workflow and its relevant rules for further analysis. The engine is responsi-
ble for the correct management of the workflow relevant rules and events while
the configuration of it makes use of the modeled concepts of tool instances and tool
domains in the Engineering Knowledge Base.

2.3 Engineering Cockpit

The Engineering Cockpit (EngCo) is a social-network-style collaboration platform for
automation system engineering project managers and engineers, applying technical
[4] and semantic integration [6, 16, 29] approaches for bridging gaps between hetero-
geneous ASE project data sources as foundation for comprehensive project monitor-
ing and management, which was first introduced in [19]. It builds on semantic web
technology, the Engineering Knowledge Base (EKB) and semantic integration
framework [20], to explicitly link the data model elements of several heterogeneous
ASE project data sources based on their data semantic definitions.

The EngCo is generic framework for project reporting across tool and domain
boundaries, and shows the prototypic implementation to demonstrate how to calculate
a set of metrics for project managers and engineers, e.g., number of signals and their
project phase. In [19] a general EngCo concept has been described and discussed by
taking into account concrete evaluation data from industry. The feasibility of the
EngCo prototype was evaluated by performing a set of project-specific queries across
engineering discipline boundaries for information on current and historic project ac-
tivities based on real-world ASE project data from our industry partner in the hydro
power plant engineering domain.

Major results were that EngCo (a) enables the definition of project-specific queries
across engineering discipline boundaries and therefore minimizes the effort for near-
time analysis of the project progress, (b) automatically shows the current view on
project progress as soon as the engineering groups send their local changes to plan-
ning data to the common data basis, and (c) enables early risk detection and analysis,
e.g., an unexpectedly large number of changes to engineering objects late in the
project.

2.4 Risk Management

A risk is a random event that may possibly occur and, if it would occur, it would have
a negative impact on the goals of the organization. A risk is composed of three ele-
ments, namely the scenario, its probability of occurrence, and the size of its impact if

36 W. Sunindyo et al.

it would occur (either a fixed value or a distribution) [32]. Webster’s dictionary1 de-
fines “risk” as “the possibility of loss or injury”. In risk management’s fundamental
concept, this definition can be translated into risk exposure or “risk impact” or “risk
factor”.

Risk exposure is defined by the relationship of RE = P(UO) * L(UO) where RE is
the risk exposure, P(UO) is the probability of an unsatisfactory outcome and L(UO) is
the loss of the parties affected if the outcome is unsatisfactory.

Risk management is defined as the identification, assessment, and prioritization of
risks followed by coordinated and economical application of resources to minimize,
monitor, and control the probability and/or impact of unfortunate events or to maxim-
ize the realization of opportunities [13]. Boehm [6] classified risk management into
two primary steps, namely risk assessment and risk control. The first step, risk as-
sessment, involves risk identification, risk analysis, and risk prioritization. The second
step, risk control, involves risk-management planning, risk resolution, and risk moni-
toring. Recent works on general risk management, for example by Ropponen and
Lyytinen [27].

This risk management classification helps to specify a deeper step in risk mitiga-
tion for automated software engineering. Risk mitigation/risk reduction itself is de-
fined as a systematic reduction in the extent of exposure to a risk and/or the likelihood
of its occurrence. Vose [32] classified risk management options into several groups,
namely (a) acceptance, i.e. nothing is done to control the risk, (b) increase, i.e. reduce
the level of protection and allocate the resources to manage other risks in order to
achieve a superior overall risk efficiency, (c) get more information, i.e. acquiring
more information to decrease the level of uncertainty, (d) avoidance, i.e. changing a
method of operation, a project plan, an investment strategy, etc., so that the identified
risk is no longer relevant, (e) reduction (mitigation), involves a range of techniques,
which may be used together, to reduce the probability of the risk, its impact or both,
(f) contingency planning, devised to optimize the response to risks if they occur, (g)
risk reserve, to add some reserve (buffer) to cover the risk should it occur, (h) insur-
ance, insure for risks that have an impact outside our comfort zone to an insurance
company, and (i) risk transfer, which involves manipulating the problem so that the
risk is transferred from one party to another.

Risk management and business process management play an important role in the
current economy. The continuous improvement of economic aspects of a company’s
business processes is the foundation to stay competitive. It is not surprising that Gart-
ner [10] puts business process improvement as the top priority in its CIO report. Ja-
koubi and Tjoa [16] define risk aware business process management as the integration
of a risk perspective into business process management. They propose a set of exten-
sion required for the business process and risk management domain in order to con-
sider risks in business processes in an integrated way.

Becker et al [2] proposed a strategy called SIQinU (Strategy for understanding and
Improving Quality in Use) to improve the quality of the products in an organization.
This strategy allows the recognition of quality problems in use through evaluation and
proposes product improvements by understanding and applying changes on product

1 http://www.merriam-webster.com

 Project Progress and Risk Monitoring in Automation Systems Engineering 37

attributes. There are two steps to improve the quality of products, namely (a) under-
standing the quality of current product version, and (b) making appropriate changes to
increase the quality of new version of improvement actions were needed. This work
supports our effort to design and implement a framework for involving risk factors in
the automation systems. This involvement of risk factors increases the automation
systems quality by (a) increasing the risk-awareness of project managers and engi-
neering team, (b) avoiding possible risk in the systems, e.g., potential losses of the
systems, and (c) designing the mitigation plan for the systems, if risks happen.

3 Research Issues

Current engineering process analysis in ASE typically does not take into considera-
tion risk factors. This makes the systems less robust against certain classes of risks
and/or systems changes. By including risk factors, such as incomplete or incorrect
engineering object changes on an engineering level or over-budgeting or delays in the
schedule on a project management level, into the engineering process analysis, it is
expected that the main systems stakeholders (i.e., project managers and engineers in
the context of this paper) will be more aware of urgent risks in the system.

The involvement of risk factors in ASE itself can be classified into stakeholders
coming from different levels and which interact directly with the system. In this work,
we identified and classified two types of users, namely project managers and engi-
neers. Each type of user may have different kinds of risk factors according to their
requirements and goals. Furthermore, typically both project managers and engineers
are only focusing on the risks from their specific environment without being aware
about the risks of the overall business system.

From this situation, we derive two major research issues regarding the involvement
of risk factors in the ASE process to improve the efficiency and effectiveness of engi-
neering process analysis.

RI-1: How to identify and mitigate risks by using engineering workflows in ASE
projects. Current approaches for identifying risks and increasing risk-awareness have
been successfully researched and applied for business entities in the business process
management, e.g., the RiskIt approach [17]. In this research issue, we want to elabo-
rate whether these concepts, e.g., risk identification and mitigation in risk manage-
ment workshops, can also be applied to an engineering context such as ASE, and
furthermore want to identify any differences or limitations of this application domain.

Based on the observed engineering processes and the need for interaction, collabora-
tion, and synchronization of engineering artifacts across disciplines, we identified the
EngSB framework as major platform for supporting efficient and effective risk mitiga-
tion. In this context, the main question is how to measure and analyze engineering
processes with respect to change management processes and project monitoring and
control (project observation). In this paper we focus on the analysis of process events and
data with respect to identifying the number of changes based on individual change types.

RI-2: How to classify the risk factors based on different types of stakeholders.
The sources of changes in the automation systems can be from internal or external
stakeholders. Both types of stakeholders have different kinds of risk factors which

38 W. Sunindyo et al.

depend on the focus of typical tasks and requirements originating from both types of
stakeholders. In this paper, we want to elaborate on the focus of risk factors from
these stakeholder types in order to increase the risk awareness and provide sugges-
tions on the mitigation actions necessary to take when the risks occur. We collect the
data of changes in the automation systems and analyze the amount of changes caused
by internal/external stakeholders in different project phases.

4 Use Case

This section presents a multi-disciplinary engineering use case– based on an industry
case study – from an industrial partner developing, creating, and maintaining hydro
power plants, and demonstrates a typical process related to the management of signal
changes during the life cycle of the power plant. Depending on the size of the com-
missioned power plant there are about 40 to 80 thousand signals to be managed and
administrated in different tools of different engineering disciplines. Signals consist of
structured key value pairs created by different hardware components and represent
one of the base artifacts in the course of developing power plants. Signals include
process interfaces (e.g., wiring and piping), electrical signals (e.g., voltage levels),
and software I/O variables. Today’s integrated tool suites often consist of a pre-
defined set of tools and a homogeneous common data model, which work well in their
narrow scope but do not easily extend to other tools in the project outside the tool's
scope. Therefore, system integrators in multi-disciplinary engineering projects want to
be able to conduct automated change management across all tools that contribute
project-level data elements regardless of the origin of the tool and data model.

The current life cycle of a power plant is divided into several phases, each of them
reflecting the progress in building the system and the states of the signals. Highly
simplified, the following steps are retrieved from the experiences of the industrial
partner: (1) First of all engineers start with the requirement & specification phase. In
this phase the required data is gathered, such as signals for turbines and generators. It
results in the number of sensors, signals and types of sensors. (2) From this data the
typology of the system can be created. The output of this step is a number of I/O cards
and a network typology. (3) In the next step the circuit diagram is designed. It pro-
duces the allocation plan for mechanical resources. (4) Finally the hardware design is
finished to be assembled. (5) After this step the Programmable Logic Controller
(PLC) software is created to map hardware pin to software pin addresses. (6) Finally
the system can be rolled out. In overall these phases are mapped on one of the follow-
ing signal status: Initial (1), Drawing Started (2, 3), Approved (4) Factory Test
Completed (5) and Commissioned (6). These 6 states are generally applicable in the
automation systems engineering.

At least there are two different types of stakeholders of the system who are respon-
sible for changes in the power plant system, namely external and internal stakehold-
ers. The external stakeholders, e.g., the customers or the business managers may
introduce new requirements or new rules/regulations that affect to the signal changes.
The internal stakeholders, e.g., the internal engineers or the project managers also
have their own requirements to change the signals in the systems. The previously
described process refers to a perfect scenario, whereas in general 25% of all signals

 Project Progress and Risk Monitoring in Automation Systems Engineering 39

change due to changing customer requirements at any point in the life cycle of the
development of the power plant. However, the later signals are changed, the more
effort has to be invested in coordination with other disciplines and thus the more costs
are created. Project managers would welcome monitoring tools allowing them to
identify risks in the different phases of development. The combination of data sources
from different disciplines may provide information about e.g., customer behavior due
to the number of change request per project phase, difficult and complex areas in
construction due to high number of explicit and implicit changes. A specific type of
risk may be related to the source of changes. For example if there are more than 5%
of changes from external stakeholders, it triggers an alarm to revise the budget. Hence
the project manager should measure the sources of the signals change and calculate
the percentage of overall change for risk mitigation.

Fig. 2. Workflow Model for Signal Change Management

Fig. 2 presents a basic change management process, a signal check-in workflow. It
shows a BPMN notation of signal change management workflow which consists of
checkin, signal comparison and termination activities. After checking in, a signal will
be compared to decide the next action, whether the signal is updated (signal status or
signal content), accepted, or deleted. The notification of action will be reported to the
project manager.

40 W. Sunindyo et al.

The process refers to the fact that collaboration between heterogeneous disciplines
and tools requires common concepts for mapping individual models and activities and
that system integrators have to synchronize engineering data from those tools.

Signal as a common concept link information across different engineering discip-
lines. Consequently, management of signals face important challenges like: (a) make
signal handling consistent, (b) integrate signals from heterogeneous data models/tools,
and (c) manage versions of signal changes across engineering disciplines. The check
in workflow supports handling of such challenges by tracking changes on signals and
notifying particular engineers.

Note that changes are defined within modified signal lists derived from individual
engineering tools to be synchronized with the current overall signal list. Thus, change
management refers to the merging process of signal lists provided by engineering
tools with signal data known to the Engineering Service Bus. In addition to un-
changed signal, changes can include (a) new signals, (b) removed signals, and (c)
modified signals regarding its content or status. Signal changes result in a notification
of involved stakeholders based on the project environment, e.g., involved stakehold-
ers, related roles, and engineering process phase.

5 Solution Approach

This section presents the solution approach for project progress and risk monitoring in
automation systems engineering. The project progress monitoring is part of project
management processes [14] which can be classified into five sub-processes as shown
in Fig. 3., namely initiating, planning, executing, controlling, and closing processes.

Risk monitoring [14] is the process of keeping track of the identified risks, of mon-
itoring of residual risks and of identifying new risks, of ensuring the execution of risk
plans, and of evaluating their effectiveness in risk-reduction. Risk monitoring collects
risk metrics that are associated with contingency plans. Risk monitoring is an ongoing
process for the life of the project. Risks change as new risks develop, anticipated risks
disappear, or the project is getting more mature.

Fig. 3. Links Among Process Groups in a Phase [14]

 Project Progress and Risk Monitoring in Automation Systems Engineering 41

5.1 Risk Factors Analysis

The scope of the risk factor analysis framework is to support multidisciplinary engi-
neering teams that add, update and delete signals as well as project managers to
support monitoring and decision making process. Each discipline has specific
engineering models and tools. These engineering models work well for the specific
discipline or expert, but are not well designed for interdisciplinary cooperation. The
goal of this framework is to support risk factor analysis across different types of
stakeholders, e.g., engineers and project managers, and to fulfill different require-
ments of different types of stakeholders.

The target audiences of this risk factor analysis framework are two types of stake-
holders, namely engineers and project managers. Engineers, e.g., mechanical engi-
neers, electrical engineers, or software engineers, want to effectively and efficiently
analyze risk factors of their engineering process in signal change management, e.g.,
incorrectness or incompleteness of signals in the change process. However, often
problems of integrity appear due to heterogeneous data models and formats used in
those different engineering fields. Incorrect signals refer to e.g., mutually contradict-
ing values or values outside specific thresholds. Incomplete signals refer to missing
values or values with partly missing information (e.g., 3 digits representation of a
complete information, whereas the third digit is not set).

Knowledge beneficiaries, such as project managers, want to monitor, control and
improve engineering processes such that the processes do not violate risk factors like
over budgeting or late project deliveries. This intention is often complicated by the
required high effort for performing cross-domain risk factors analyses, e.g., to know
which parties should be responsible for over budgeting or project delays.

The major precondition for using the risk factor analysis framework is a working
communication link between the engineering tools to be integrated, such as Engineer-
ing Service Bus [4], Enterprise Service Bus [7], or point-to-point integration.

Fig. 4. Risk Factor Analysis Framework

Fig. 4 shows the framework for risk factor analysis which consists of two types of
stakeholders, namely engineers and project managers. Engineers give inputs in the

42 W. Sunindyo et al.

form of event log data which are based on their own development environments. The
configuration of the event log is set up by project managers.

This event log is useful for further risk factors analysis in the next layer, which is
distributed into two parts, namely the engineers’ part and the project managers’ part.
Engineers are more concerned about the correctness and completeness of the signal
changes between different engineering fields, and consider the incorrectness and in-
completeness of the changed signals as risk factors between the engineers. In contrast,
project managers are more concerned about budget and project schedule, such that the
risk factors for the project managers are related to over budgeting and project delays.
The results of this risk factor analysis are presented in the engineering cockpit to
show the risks that should be mitigated by each type of stakeholder.

5.2 Risk Factors Classification

This section further classifies risk factors based on different stakeholder types. The
types of risks classified here are related to the data of specific projects and specific
level which may be defined beforehand. The risk analysis can be based on the phases
(e.g., timeline of the project) or on the related tools (e.g., EPlan2, logi.DOC3). Source
of changes in the project could be an option for risk analysis, e.g., 5% of changes may
originate from external partners, if the number of changes exceeds 5 %, then a new
contract needs to be negotiated and thus the budget is affected. Any change by a
project-related tool is considered as an internal change, while any change using the
Engineering Object Editor (EOE4) [18] is considered as external change. The EOE is
an Excel Add-on to support efficient quality assurance activities for contributions
from external project partners.

Risk analysis could also be done to analyze project values based on the experience
of different stakeholders, e.g., to analyze the data of multiple comparable projects or
to analyze the number of changes per component. Other types of risk analyses can be
based on the number of internal changes per user, or the occurrence of signal changes
in late project phases.

From the discussion with our industry partner, we classified a set of risk factors,
which often lead to a high effort for analysis and rework during development, com-
missioning, and deployment. Besides, modifications (e.g., change of a sensor) are
critical issues during maintenance because changed sensor attributes at the mechani-
cal site may have an impact on electrical requirements (e.g., wiring) and software
requirements (e.g., modified value ranges as data input).

Based on the three important risk groups, i.e., (a) Domain Specific Risks, (b) Col-
laboration Risks, and (c) Project Management Risks (see Section 2.1), we focus on
collaboration risks and project management risks as they are the most critical aspects
in ASE projects to (1) enable efficient collaboration between disciplines and (2) ena-
ble a comprehensive view on the project from project management perspective. Thus,
we identified a set of risk factors based on (i) the number of signals as project
progress indicator, (ii) the number of changes, and (iii) the periods of engineering
object changes (i.e., signals). Fig. 5 illustrates the context of the investigated risks.

2 EPlan Electric: http://www.eplan.de
3 Logi.DOC: http://www.logicals.com
4 http://cdl.ifs.tuwien.ac.at/files/CDL-Flex_ASB_UC31_EOE_en.pdf

 Project Progress and Risk Monitoring in Automation Systems Engineering 43

Project Progress Overview. The project progress overview presents the overall num-
ber of the signals grouped by engineering phase over time. It illustrates the fluctuation
of the number of signals available in a certain phase based on operations applied to (a
subset of) signals. If signals are added, it means that the number of signals in a certain
phase is increasing. If some signals are deleted, it means that the number of signals in
certain phase is decreasing. Updates include two different types of changes: (a) mod-
ifications of signal content (non-status updates) and (b) status updates (i.e., upgrading
individual signals or groups of signals to the next sequential engineering phase). Sig-
nal status updates do not have any impact on the numbers of signals; if a signal has
been modified (content change) its status is reset to initial. Based on this setting, we
can observe how the signal change operations affect the number of signals available
in certain phases, and how the signal updates change signals from an initial phase to a
commissioned/final phase. In a healthy project, we could expect a continuous increase
of the number of signals (i.e., added signals) and increasing signal status information
(i.e., the signals are passing individual phases) over time. On the opposite a decreas-
ing number of signals and the reset of signals from advanced states to initial might
indicate risks.

Impact of Stakeholders. Changes might be initiated from different sources, e.g., by
the internal engineers and the project managers or externally by the customer. A high
number of external changes (even late in the project) might lead to high risks; a high
number of internal changes (especially removed and updated signals) might indicate
issues in the engineering process of a related discipline. Thus the source of change is
an important measure for risk identification. We identify the sources of signal changes
to analyze the potential risks, e.g., what’s the most frequent signal changes source?
What’s the trend of signal changes across different types of stakeholders? Or how
signal changes can be displayed over time?

Fig. 5. Risk Factors Classification

44 W. Sunindyo et al.

Impact on Project Phases. Projects can be divided into several phases, namely initial,
drawing started, approved, factory test completed, and commissioned (see Section 2.1
for details). Risks arise if signals are changed very often, especially late in the engi-
neering project, e.g., a sensor has to be changed during the commissioning phase.
Thus the related signals have to be changes as well. In addition, related disciplines
might be affected by this change as well. Modification of signals results in resetting
the signal state to initial (i.e., the starting phase) and all other phases have to be
processed again. Thus, signals assigned to a project phase might be an indicator for
risk assessment. As risk, we identify the number of signal changes for each phase
across the period of time. From this analysis, we can observe the fluctuation of signal
changes across time, depending on the project phase. Some signals can be changed
from a phase to next phase, and it is expected that at the end of a project all signals
will be in the final phase (commissioned).

Impact of Signals Operations. Operations on signals increase (add new signals) or
decrease (deletion of signals) the number of signals available in the project. Signal
updates will not change the number of signals but either the signal content or the as-
signment to a project phase. The update operation itself can be divided further into
updates of a signal status or updates without signal status changes, i.e. signal content
updates. In this type of risk factor analysis, we observe the relationship between the
types of signal change operations over time. The results of this analysis can be used to
measure possible risks that could happen during signal changes, e.g., the number of
deletion should always less than or equal to the number of available signals.

6 Results

This section presents the empirical results of the risk factor analysis based on the data
from our industrial partner in the area of hydro power plant engineering. The analysis
was performed by the authors, but the results have been discussed with the industry
experts, so the findings are not only made by the authors. Special emphasis is put on
monitoring project progress overview, changes from different type of stakeholders,
changes in different project phases, and changes in different signals operation.

6.1 Project Progress Overview

The first analysis shows the overall number of signals grouped by phase per commit
which is done weekly. Note that we focus on one snapshot per week for analysis pur-
poses. Thus several commits could have been executed during the previous week. The
result illustrates the project progress overview, where we can see the progress of
numbers of signal changes across project phases. The number of signals is increasing
when new signals are added, and is decreasing when old signals are deleted. Updating
the content of signals will not change the number of changes. Updates of the signal
status will move signals to the next phase, illustrated by the colors given in Fig. 6.
Fig. 6 presents the number of signals per week and project phase based on different
operations on signals, namely add, update, and delete.

The results showed an overall number of 3000 signals (after week 44) when the
project is completed and strong variations of the number of signals along the project

 Project Progress and Risk Monitoring in Automation Systems Engineering 45

course, e.g., a large number of removed signals in week 19 and a smaller number of
removed signals in week 25 and 30 A more detailed investigation showed reconstruc-
tion activities during project reviews.

Project Progress Overview

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Week

S

ig
n

al
s

Initial Drawing Started Approved Factory Test Completed Commissioned

Fig. 6. Project Progress Overview

The number of signals is increasing from week 1 to 7, and then the signals are up-
graded to the next phase (drawing started). From week 9 to 12, new signals are added
and then upgraded to the next phase (drawing started) in week 13. From week 14 to
18, new signals are introduced and then deleted in week 19. From week 19 to 21, new
signals are added and then upgraded to the next phase in week 22. Some new signals
are added in week 23 and upgraded to the drawing started phase in week 24, and then
deleted in week 25. From week 25 to 28, new signals are introduced, upgraded to the
next phase in week 29, and deleted in week 30. From week 30 to 32, new signals are
introduced and upgraded to the next phase (drawing started) in week 33. Some new
signals are still added, until week 35, and then upgraded to the phase approved in
week 36. The signals are changed to the phase factory test completed in week 40, and
in week 44 all signals available are upgraded to the phase commissioned. Note that –
starting from week 36, a high share of signals passed all sequential phases to the final
phase commissioning completed.

Nevertheless it is notable that in week 19 a very high number of signals (about
80%) have been removed. A more detailed investigation of the results showed that the
engineers used templates of components and also reused components from other
projects without adjusting them to the current project. Thus, these components have
been removed during a project review. A smaller but similar effect happens in week
25 and week 29. Thus this analysis supports project managers and engineers in better

46 W. Sunindyo et al.

assessing the current project state over time. The project state refers to the state of
individual signals per project phase, i.e., initial, drawing started, customer approval,
factory tests, and customer commissioning (see Section 2.1 for details).

Number of Signal Changes by Stakeholder

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Week

C

h
an

g
es

 /
 S

ta
ke

h
o

ld
er

Internal Stakeholder External Stakeholder

Fig. 7. Number of Signal Changes by Stakeholders

6.2 Number of Signal Changes by Stakeholder Group

The second analysis focuses on the impact of changes by different stakeholders, i.e.,
internal (engineers and project managers) and external stakeholders (customer). Sig-
nal changes originate from external stakeholders, if the customers ask for signal
changes based on their requirements. Signal changes are coming from internal stake-
holders, if engineers add new signals, update signals, or delete signals used in the
project. Signal changes between both stakeholder groups become transparent during
synchronization processes and are communicated to related stakeholders by applying
an Engineering Ticket, e.g., a notification E-Mail.

Fig. 7 illustrates the bar graph of the number of signal changes by stakeholder.
Most of the changes were introduced by the engineering company and their engineers,
typically add, update, and signal changes. Infrequent changes were introduced by the
customer e.g., caused by reviewing processes or status meetings. The external stake-
holder passes signal changes to the project during a certain period, for example in
week 13, week 24, week 29, and week 36, while the other regular changes originate
from internal stakeholders. A more detailed investigation of the external changes
showed that typical changes focuses on signal description changes rather than on
critical changes by the customer. Nevertheless, it is notable that in week 36 - very late
in the project – a high number of external changes happens. As late changes make

 Project Progress and Risk Monitoring in Automation Systems Engineering 47

Number of Signal Changes Related to Project Phases

0

500

1000

1500

2000

2500

3000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Week

C

h
an

g
e

/
P

h
as

es

Initial Drawing Started Approved Factory Test Completed Commissioned

Fig. 8. Number of Signal Changes Related to Project Phases

projects more critical, error-prone and risky, this analysis results supports project
managers in better negotiating changes with the customer.

6.3 Number of Signal Changes Related to Project Phases

The impact of signal changes on the project state is another critical issue, as all signal
changes (i.e., content changes) require a reset to the initial state and all phas-
es/reviews (i.e. signal status upgrades) have to be repeated. As this process requires
some effort and might delay the project, these analysis results help project managers
in better understanding possible delays of the project.

Fig. 8 illustrates the bar graph of the number of signal changes related to the
project phases. Most of the signal changes are done during the initial phases, while
some are also done during drawing started, approved, and factory test completed. At
the end of our observation (week 44), all signals are upgraded to the final phase
(commissioned). It is notable that until week 35 almost all signals and changes are in a
very early stage, i.e., in the initial and the drawing started phase. This indicates that
the requirements are not well-defined and/or the customer (see Section 6.2) initiated a
set of changes. In week 36 we observed a high number of external changes and also
the approval by the customer. This indicates that these minor changes were imple-
mented and approved within a very short time interval, i.e., one week. As the project
proceeds, short iterations and interaction with the customer could be observed, i.e.,
adding a small set of new signals by the engineering company and signal status up-
dates in week 40 of about 2600 signals. Finally a similar effect could be observed in
weeks 41-44, in which the project has been completed.

48 W. Sunindyo et al.

Operations on Signals (without status update)

0

500

1000

1500

2000

2500

3000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Week

S

ig
n

al
s

/
O

p
er

at
io

n

Signals Added Signals Updated Signals Removed

Fig. 9. Operations on Signals (without status update)

6.4 Operations on Signals

Another interesting aspect focuses on the impact of operations, i.e., the amount of
operations applied to the signals (i.e., signals added, signals updated, and signals re-
moved). Two different types of operations are introduced, i.e., content updates of
signals and signal status updates. Content updates do not change the status/phase of
signals and focus on changing the content of signals, e.g., range of devices, device
description, tool names, hardware addresses, and path used. Status updates refer to the
upgrade of signal stati/phases from one phase to the next phase. All signal content
changes result in a reset of the signal status to initial.

Fig. 9 illustrates the stack-bar chart of the number of signals grouped by operations
(i.e., add, delete, and update content). Similar to the previous analysis results, we
observed added signals along the project duration until the very end of the project, i.e.
in week 43. In addition we observed two other issues: (a) a relatively low number of
signal content updates, mainly between week 10 to 13 (early in the project) and in
week 24. An explanation for this process could be that engineers applied templates
and reused components from previous projects; in addition they modified them ac-
cording to new project requirements. Anyway, as the amount of changes is rather
high, a large number of components and signals has been removed in week 19, 25 and
30. After this clarification and cleanup steps the new (and correct) signal have been
introduced. There are only few changes on the already available signals.

 Project Progress and Risk Monitoring in Automation Systems Engineering 49

Operations on Signals (with status update)

0

500

1000

1500

2000

2500

3000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Week

S

ig
n

al
s

/
O

p
er

at
io

n

Signals Updated

Fig. 10. Operations on Signals (with status update)

Finally the last evaluation focuses on the impact of signal status updates (see Fig.
10 for details). It is notable that signal status updates are typically executed periodi-
cally, e.g., once a month during project progress meetings. Fig. 10 shows that the
number of signal status updates is increasing in the project, especially during week 24
to week 44. In general, signal status updates are performed monthly.

7 Discussion

This section summarizes the major findings of our risk-based approach for ASE
projects based on the initial evaluation of real-world industry data derived from a
large-scale engineering company in the hydro power plant domain. We identified
three different risk groups: (a) Domain specific risks, (b) Collaboration risks, and (c)
Project management risks.

While domain specific risks are typically addressed by domain specific tools and
methods, e.g., RiskIt method in software engineering [17], we observed strong limita-
tions regarding risk assessment in the ASE domain focusing on heterogeneous engi-
neering environments. Collaboration risks typically focus on the synchronization of
data models, engineering objects (e.g., signals) and engineering artifacts where engi-
neering propagate changes – the most critical engineering process in ASE projects,
especially if various stakeholders from various disciplines are involved – to related
engineers in other disciplines. In addition we observed strong limitations on a com-
prehensive view on the overall engineering project from the project management
perspective (Project Management Risks).

50 W. Sunindyo et al.

RI 1: How to identify and assess risks by using engineering workflows in ASE
projects? We identified the change management workflow in heterogeneous envi-
ronments as one of the most critical engineering processes in ASE projects. Changes,
even late in the project, can have a major impact on the project progress and success,
even in a heterogeneous environment. Thus frequent synchronization of engineering
artifacts is essential for successful collaboration and to enable a consistent project
data for all related engineers. Tools like Flowdock5 provide monitoring capabilities of
a set of heterogeneous tools by presenting propagated events. However, it does not
facilitate semantical correlation between them. Standard Enterprise Service Bus
frameworks [7] enable a technically clean integration between heterogeneous tools,
but require high manual effort for the configuration of the platform and for describing
the transformation rules needed to exchange messages between heterogeneous servic-
es. Once again, semantically described correlations between various message struc-
tures is not given beforehand and thus does not support easy management of common
engineering concepts/objects. The Engineering Service Bus [4] provides a middle-
ware platform that enables technical integration of heterogeneous tools and semantic
integration of data models coming from different sources [3]. Based on technical and
semantic integration, project managers and engineers are able to synchronize data
across disciplines more effective and efficient. Frequent synchronization enables a
consistent data base for all related stakeholders, i.e., individual engineers can start
working on an agreed set of engineering data across disciplines. In addition, metrics
on the project progress, i.e., the number of signals already implemented engineering
objects, become measurable, an important benefit for project managers for project
monitoring and control. In addition the amount and impact of changes of engineering
objects become observable. The numbers of changes per engineering object and (b)
the initiator of the related changes enable project managers (a) to better understand
and control the project progress and (b) to address upcoming risks in ASE projects.

The number of engineering objects (signals) is an important indicator regarding the
identification of the project progress with respect to individual project risks. Fig. 5
presented the number of signals per week and project phase in our initial evaluation
study. One might assume an increasing number of engineering objects over time.
Nevertheless the results showed a rapid decrease of the number of signals between
week 18 and week 19. The main reason was that previously engineers reused large
components from previous projects (some copy / paste approach). In week 18, an in-
depth review takes place where it has been decided that the currently used solution
approach was not appropriate. Thus, almost all parts of the components have been
removed. Similar effects appear between week 21/22 and week 29/30. An analysis at
the customer site identified some critical changes in a few components which have
been fixed, i.e., exchanged by more appropriate components. Typically the analysis,
illustrated in Fig. 5 highlighted the risk of reusing components to a large extent to
reduce effort and cost. Using wrong components will result in high rework effort.
Thus, it is required to plan component reuse strategies, i.e., how to apply components,
subsystems, or systems from successful past projects, appropriately. In common

5 https://flowdock.com/

 Project Progress and Risk Monitoring in Automation Systems Engineering 51

industry practice individual components are copied to the new project which can raise
a set of issues and risks. This data shows the materialization of a risk, i.e., the risk of
reusing components that are inappropriate and thus, eventually, have to be replaced.
The risk identification means that the diagram indicated the risk that there are compo-
nents being reused that might or might not be appropriate. The product line approach
might be a candidate solution for effective and efficient reuse of components, subsys-
tems, and systems [8].

RI 2: How to classify Risk Factors based on Different Types of Stakeholders?
Based on observations at our industry partner and results from previous analysis re-
sults [29] we identified a set of metrics as promising candidate metrics for project risk
assessment.

An overview on the Project Progress has already been applied to demonstrate the
application of risk assessment, based on the number of engineering objects (i.e.,
signals) in the engineering database. The concept of the Engineering Cockpit [19]
provides a comprehensive view on engineering data from heterogeneous sources.
More details on individual components and signals can support project, quality, and
risk management. Instable and the frequent changing number of available signals is an
indicator for reusing components (copy/paste) approach or some unclear requirements
which require high rework effort by engineers and experts.

The Impact of Changes from various Stakeholders (e.g., internal engineers or ex-
ternal stakeholder, i.e., the customer) is another important aspect in change manage-
ment processes and can result in high risks (even if external changes happen frequent-
ly). The distinction between internal and external stakeholders is easier to discuss
because both parties have different intention and perspectives on managing the signal
changes, while the types of engineers have similar goals even though they work in
different fields. Because each type of stakeholder can introduce modification to the
signal status, especially the external stakeholders who could drop a lot of signals in
short time that could lead to the change of requirements in the engineer side. Hence
the signal changes should be communicated among related stakeholders.

Fig. 7 presented the number of changes per stakeholder group. The results showed
that the external stakeholders introduce changes every two months at the beginning
and monthly at the end of the project. These analysis results help project-managers in
better discussing the changes with the customer. In our initial evaluation the duration
between external changes seems to be appropriate. It is notable that the last pile of
changes takes effect in week 36, 2 months before project completion.

Impact on Project Phases. Signal changes, especially signal updates result in a reset
of the current project phase based on a rather sequential engineering process. Thus an
important information and consequence of changes is an analysis on the impact of
changes per phase (see Fig. 8). It is notable that until week 35 almost all signals are in
the state “initial” or “drawing started”, early phases in the ASE project. After apply-
ing the last pile of customer changes (i.e., in week 36) the signal status develop to the
project finalization time rapidly, e.g., more than one signal status update per week.
Note that the evaluation focuses on snapshots (once a week) for analysis purposes.

52 W. Sunindyo et al.

Impact of Signal Operation. Finally, it is important to have an idea on the share and
type of signal changes, i.e., added signals newly introduced to the system, modified
(updated) signals, and – the most critical aspect – removed signals. As discussed be-
fore, three main risks apply, (a) in week 19 where almost 80% of signals have been
removed; (b) in week 25; and (c) in week 30. Main reason for this large amount of
deleted signals was the reuse of components and templates which have to be im-
proved for future projects.

8 Conclusion and FutureWork

Engineers from different engineering fields, as occurring typically in large-scale Au-
tomation Systems Engineering (ASE) projects, rely on their own tools and data mod-
els to perform their specific tasks of their specific engineering fields. Furthermore,
these engineers typically create and use their own specific engineering workflows for
communicating, disseminating, and managing objects across the borders of different
engineering fields. Thus, there is a need for flexible and comprehensive engineering
process support across disciplines to allow risk-aware collaboration and interaction
between disciplines, tools, and data models. With this focus on raising the risk aware-
ness of object change management workflows, the key questions for project manage-
ment and engineers are (a) how changes can be handled more efficient and (b) how
relevant change requests can be passed to involved engineers.

This paper presented the Engineering Service Bus (EngSB) framework to provide
(a) an efficient change management process and (b) integrated views on heterogene-
ous engineering environments to better analyze and highlight upcoming risks. Based
on real-world engineering project data from a hydro power plant systems integrator,
the proposed approach is evaluated and discussed.

First results of the industry case study showed that – based on the change manage-
ment workflow – the consideration of risk factors can enhance the overall engineering
project quality and enables risk mitigation in ASE projects. Based on change man-
agement data, we identified four main risk factors context of the initial evaluation: (a)
Overall number of signal data in the engineering base; (b) the impact of changes from
different stakeholder groups, i.e., internal and external stakeholders; (c) Impact of
Changes with respect to signal status within a defined engineering process; and (d)
impact of different operations on engineering objects (i.e., add, update, delete, and
status updates). The analysis results showed that these initially defined metrics are
reasonable for assessing the current ASE project from engineers and management
perspective.

Nevertheless, the presentation of data and analysis results is essential for individual
stakeholders by providing individual views on the project, e.g., focus on a compre-
hensive view on the project from project management perspective or focus on indi-
vidual disciplines from the perspective of individual engineers. In [19] we observed
the engineering cockpit, a promising solution to present captured data from the
change management process to related engineers and the project managers.

Future Work will include three different directions: (a) more detailed investigation
of new risk factors and the development / extension of the identified metrics to enable

 Project Progress and Risk Monitoring in Automation Systems Engineering 53

a better understanding of ASE projects, also in other ASE domains than hydro power
plant engineering (b) additional evaluations and case studies including new engineer-
ing workflows to verify and validate the presented approach with respect to applica-
bility and scalability; and (c) more detailed investigation on the current need of
engineers, managers, and related stakeholders to learn more about ASE projects and
the need for measurement, data collection, analysis and presentation with respect to
develop an engineering cockpit for better supporting ASE projects.

Acknowledgement. This work has been supported by the Christian Doppler For-
schungsgesellschaft and the BMWFJ, Austria

References

1. Aldred, L., van der Aalst, W., Dumas, M., Hofstede, A.T.: Understanding the challenges in
getting together: The semantics of decoupling in middleware. BPM Center Report BPM-
06-19, BPMcenter. org

2. Becker, P., Lew, P., Olsina, L.: Strategy to improve quality for software applications: a
process view. In: International Conference on on Software and Systems Process (ICSSP
2011), pp. 129–138. ACM, Waikiki (2011)

3. Biffl, S., Sunindyo, W., Moser, T.: Bridging Semantic Gaps Between Stakeholders in the
Production Automation Domain with Ontology Areas. In: Proceedings of 21st SEKE,
USA, pp. 233–239 (2009)

4. Biffl, S., Schatten, A., Zoitl, A.: Integration of heterogeneous engineering environments
for the automation systems lifecycle. In: 2009 7th IEEE International Conference on In-
dustrial Informatics, pp. 576–581. IEEE (2009)

5. Biffl, S., Schatten, A.: A Platform for Service-Oriented Integration of Software Engineer-
ing Environments. In: Proceedings of SoMeT 2009, pp. 75–92. IOS Press (2009)

6. Boehm, B.W.: Software Risk Management: Principles and Practices. IEEE Software 8(1),
32–41 (1991)

7. Chappel, D.A.: Enterprise Service Bus. O’Reilly Media (2004)
8. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns. Addison-

Wesley (2007)
9. Doan, A.H., Noy, N.F., Halevy, A.Y.: Introduction to the special issue on semantic inte-

gration. ACM Sigmod Record 33, 11–13 (2004)
10. Gartner Inc.: Gartner EXP Worldwide Survey of More than 1.500 CIOs Shows IT Spend-

ing to Be Flat (2009), http://www.gartner.com/it/page.jsp?id=855612
11. Hohpe, G.: 06291 Workshop Report: Conversation Patterns. In: Leymann, F., et al. (eds.)

The Role of Business Processes in Service Oriented Architectures. Internationales Begeg-
nungs-und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2006)

12. Hohpe, G., Woolf, B.: Enterprise integration patterns: Designing, building, and deploying
messaging solutions. Addison-Wesley Longman Publishing Co. Inc., Boston (2003)

13. Hubbard, D.: The Failure of Risk Management: Why It’s Broken and How to Fix It. John
Wiley & Sons (2009)

14. IEEE: IEEE Guide–Adoption of the Project Management Institute (PMI(R)) Standard A Guide
to the Project Management Body of Knowledge (PMBOK(R) Guide), 4th edn. (2011)

15. IEEE: IEEE Recommended Practice for CASE Tool Interconnection - Characterization of
Interconnections. IEEE Std 1175.2-2006, pp. 1–45 (2007)

54 W. Sunindyo et al.

16. Jakoubi, S., Tjoa, S.: A reference model for risk-aware business process management. In:
Fourth International Conference on Risks and Security of Internet and Systems (CRiSIS
2009), pp. 82–89 (2009)

17. Kontio, J.: Risk Management in Software Development: a technology overview and the
RiskIt method. In: 21st ICSE Conference, pp. 679–680 (1999)

18. Mordinyi, R., Pacha, A., Biffl, S.: Quality Assurance for Data from Low-Tech Participants
in Distributed Automation Engineering Environments. In: Mammeri, Z. (ed.) Proceeding
of the 16th IEEE International Conference on Emerging Technologies and Factory Auto-
mation, pp. 1–4 (2011)

19. Moser, T., Mordinyi, R., Winkler, D., Biffl, S.: Engineering project management using the
Engineering Cockpit: A collaboration platform for project managers and engineers. In:
Proceedings of INDIN 2011, pp. 579–584 (2011)

20. Moser, T., Biffl, S., Sunindyo, W., Winkler, D.: Integrating Production Automation Expert
Knowledge Across Engineering Domains. International Journal of Distributed Systems and
Technologies (IJDST), Special Issue on Emerging Trends and Challenges in Large-Scale
Networking and Distributed Systems 2(3), 88–103 (2011)

21. Moser, T., Mordinyi, R., Mikula, A., Biffl, S.: Making Expert Knowledge Explicit to Faci-
litate Tool Support for Integrating Complex Information Systems in the ATM Domain. In:
International Conference on Complex, Intelligent and Software Intensive Systems, CISIS
2009, pp. 90–97. IEEE Computer Society, Fukuoka (2009)

22. Moser, T., Waltersdorfer, F., Winkler, D., Biffl, S.: Version Management and Conflict De-
tection across Tools in a (Software+) Engineering Environment. In: Proceedings of the
Software Quality Days 2011, pp. 1–4 (2011)

23. Nellore, R., Balachandra, R.: Factors influencing success in integrated product development
(IPD) projects. IEEE Transactions on Engineering Management 48(2), 164–174 (2001)

24. Noy, N.F., Doan, A., Halevy, A.Y.: Semantic Integration. AI Mag. 26, 7–10 (2005)
25. Rademakers, T., Dirksen, J.: Open-source ESBs in action. Manning Pub. (2008)
26. Rangan, R.M., Rohde, S.M., Peak, R., Chadha, B.: Streamlining Product Lifecycle

Processes: A Survey of Product Lifecycle Management Implementations, Directions, and
Challenges. Journal of Computing and Information Science in Engineering 5, 227–237
(2005); ST-Streamlining Product Lifecycle Proce

27. Ropponen, J., Lyytinen, K.: Components of Software Development Risk: How to Address
Them? A Project Manager Survey. IEEE Trans. Soft. Eng. 26(2), 98–111 (2000)

28. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empir. Software Eng. 14, 131–164 (2009)

29. Sadiq, S., Orlowska, M., Sadiq, W., Foulger, C.: Data flow and validation in workflow
modelling. In: 15th Australasian Database Conference (2004)

30. Schafer, W., Wehrheim, H.: The Challenges of Building Advanced Mechatronic Systems.
In: Future of Software Engineering (FOSE 2007), pp. 72–84. IEEE Computer Society,
Washington, DC (2007)

31. Sunindyo, W.D., Moser, T., Winkler, D., Mordinyi, R., Biffl, S.: Workflow Validation Frame-
work in Distributed Engineering Environments. In: Meersman, R., Dillon, T., Herrero, P. (eds.)
OTM 2011 Workshops. LNCS, vol. 7046, pp. 236–245. Springer, Heidelberg (2011)

32. Vose, D.: Risk Analysis - A Quantitative Study. John Wiley & Sons, Ltd. (2008)
33. Winkler, D., Moser, T., Mordinyi, R., Sunindyo, W., Biffl, S.: Engineering Object Change

Management Process Observation in Distributed Automation Systems Projects. In: Pro-
ceedings of EuroSPI 2011, pp. 1–12 (2011)

34. Winkler, D., Biffl, S.: Improving Quality Assurance in Automation Systems Development
Projects. In: Quality Assurance and Management, pp. 20–40. Intec Publishing (2012)

WebMate: Generating Test Cases for Web 2.0

Valentin Dallmeier, Martin Burger, Tobias Orth, and Andreas Zeller

Saarland University, Computer Science Department, Saarbrücken, Germany
{dallmeier,mburger,orth,zeller}@st.cs.uni-saarland.de

http://www.st.cs.uni-saarland.de/

Abstract. Web applications are everywhere—well tested web applica-
tions however are in short supply. The mixture of JavaScript, HTML and
CSS in a variety of different browsers makes it virtually impossible to ap-
ply static analysis techniques. In this setting, systematic testing becomes
a real challenge. We present a technique to automatically generate tests
for Web 2.0 applications. Our approach systematically explores and tests
all distinct functions of a web application. Our prototype implementation
WEBMATE handles interfaces as complex as Facebook and is able to
cover up to 7 times as much code as existing tools. The only requirements
to use WEBMATE are the address of the application and, if necessary,
user name and password.

Keywords: test case generation, automate testing, Web 2.0, web
applications.

1 Introduction

In the software industry there is a strong trend towards replacing classic desktop
applications with web applications—programs that are accessed via a browser
and are typically run on a central server. Web applications are popular because
they are easy to use and easy to maintain. The user only needs a browser, and
the developer only has to maintain a single installation of the application. As
a result, the cost of running a web application is relatively low compared to
classic applications. On the other hand, quality assurance for web applications
is difficult.

The user interface of a web application typically consists of JavaScript, HTML
and CSS. This technology mix is notoriously difficult to debug. For instance,
JavaScript is a dynamically typed language which makes static code analysis
difficult. Therefore, existing techniques that can statically determine type errors
cannot be applied. Another reason why debugging web applications is hard is
that—despite existing standards—there are subtle implementation differences
across browsers. As a result, code that works in one browser may not work in
other browsers. Overall, testing web applications requires a lot of manual effort.
As software release cycles are getting shorter and shorter, implementing effective
quality assurance is difficult and therefore often ignored. As a consequence, users
are faced with bad software that sometimes only fails to work correctly, but

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 55–69, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

56 V. Dallmeier et al.

sometimes also inadvertently leaks private data as witnessed by recent security
breaches of popular web pages.

One way to alleviate this problem is to use automated quality assurance. As
illustrated above, due to the complexity of the technology mix we cannot use
static analysis or approaches like symbolic verification. Hence, the only technique
that remains is testing. The technique of choice to verify that a web application
is correct is system testing, which is able to check functional and non-functional
requirements. However, manually creating and maintaining such tests again re-
quires a lot of effort.

In the last years, we have seen a number of tremendously successful approaches
that automatically generate tests. The majority of these techniques are being
developed for individual programming languages, such as Java. In this paper,
we investigate how existing approaches to test case generation can be applied in
the context of Web 2.0 applications. Our work makes the following contributions:

1. We identify and discuss the main challenges when generating test cases for
Web 2.0 applications (Sections 2 and 3).

2. We present WEBMATE, a tool that systematically explores web applications
(Section 4). WEBMATE works fully automatically—it will only need creden-
tials if parts of the web application are protected by a login.

3. We evaluate the effectiveness of WEBMATE and compare its performance to
existing crawlers1 (Section 5). While exploring the application, WEBMATE
learns a usage model that describes all different functions of the web appli-
cation. In one instance, our prototype is able to achieve up to 40% code
coverage.

4. We present an application where WEBMATE generates test cases to auto-
matically test the compatibility of a web application in different browsers
(Section 6).

We discuss related work in Section 7 and close the paper with concluding remarks
and future work in Section 8.

2 Background: Test Case Generation

Automatic test case generation derives test cases from the program’s code, its
behavior, or other artifacts like a formal specification. The majority of these ap-
proaches generates tests for individual components of a program, such as meth-
ods or classes—so-called unit tests. On the other hand, system tests check the
whole program at once by generating inputs for the user interface.

Existing approaches differ mainly in the concrete test generation approach
and the resulting requirements:

1 A crawler is a tool that systematically visits all pages of a web site and a web
application, respectively.

WebMate: Generating Test Cases for Web 2.0 57

– Randomized testing uses simple randomized algorithms to generate tests
based on structural properties of the program. The work by Ciupa et al. [5]
implements random testing for EIFFEL programs and uses invariants speci-
fied in the code to validate the test result.

– Constraint-based testing uses symbolic execution to simulate the execu-
tion of the program with symbolic values. From these executions, the tech-
niques derive formulas that describe conditions on the program’s input such
that specific code regions are being exercised. With the help of a constraint
solver, these formulas are solved to find valid input values. The scalability
of these approaches is usually limited by the constraint solver. New ap-
proaches try to leverage this problem by combining concrete and symbolic
execution [11].

– Search-based testing uses machine learning algorithms to efficiently nav-
igate the search space for test inputs. The advantage of using genetic algo-
rithms over constraint-based approaches is their ability to achieve maximum
code coverage also for system tests, for example when generating inputs for
user interfaces [9].

– Model-based testing requires a model that specifies the expected behavior
of the program. The model is then used to derive test cases that cover as
much of the specification as possible. One instance of such a tool is SPEC-
EXPLORER from Microsoft. It allows to generate tests from specifications
written in SPEC# [2] in order to verify that the code complies to the model.

With the exception of model-based testing, all of the above approaches cannot
verify the correctness of the test outputs. An authority that decides whether a
given test output is correct is called a test oracle. The lack of proper oracles for
testing purposes is usually referred to as the oracle problem. This problem is one
of the biggest challenges for automatic test case generation. Many approaches
therefore only look for runtime exceptions when executing generated tests and
disregard the program output.

Another issue for unit test generation is that many generated tests use test
inputs that would never occur in reality. To circumvent this problem, we can
generate tests on the system level rather than on the unit level; on the system
level, inputs are no longer under the control of the program and therefore the
program should be able to handle any input without raising an exception.

In the past few years, test case generation has made significant advances.
Modern search-based approaches are able to achieve high coverage quickly by
generating tests on the unit level [8] as well as on the GUI level [9].

3 Generating Tests for Web 2.0 Applications

In the scope of this work, we define the term web application to denote a program
that requires a browser to be accessed by the user, and that is executed on a
central server or, alternatively, in the cloud. Hence, web applications consist of
two parts: a client-side part and a server-side part: on the client side, the web

58 V. Dallmeier et al.

application uses HTML, CSS and JavaScript to implement the user interface; on
the server side, a wide variety of different programming languages and techniques
is used. Thus, while the technology mix on the client side is fixed, there is a large
number of different platforms and languages on the server side.

Can we transfer existing test generation approaches to web applications? Due
to the technology mix and the distributed nature of web applications, generating
tests on the unit level is difficult. Since unit test case generation is typically very
close to the code, it has to be re-implemented for every language and platform
on the server side. This causes a considerable effort which in turn makes the
approach difficult to implement for a large number of applications. To alleviate
this problem, we can restrict the test generation to system tests for an interface
that consists of HTML, CSS and JavaScript. Our approach analyses only those
parts of the application that are executed in the browser (black-box approach).
Starting from the application’s landing page, our approach systematically anal-
yses all elements of the user interface on the current web page and continues
exploration until no new elements and new web pages, respectively, are found.

This approach has the advantage that it avoids the heterogeneity on the server
side. However, it also comes with a number of new challenges:

Recognize the user interface. In order to generate system tests, we need to
identify all elements of the user interface. In traditional web applications,
this only includes buttons, links and forms. However, in modern Web 2.0
applications, arbitrary elements can be associated with a JavaScript snippet
that will be executed, for instance, when the user clicks on the element. With
JavaScript, these so-called handlers can be added dynamically, which makes
identifying user interface elements difficult

Distinguish similar states of the user interface. In order to generate test
cases efficiently, we have to be able to identify similar application states. Oth-
erwise, thousands of tests would be generated for one and the same function.
Rather than generating tests for the whole data-set of the application (for
instance, a social graph in a database), we would like to generate tests for all
functions. In traditional web applications, it is possible to distinguish appli-
cation states based on the URL of the browser only. In Web 2.0 applications,
however, this is no longer possible since many JavaScript handlers change
the state of the page in the background; thus, without modifying the URL.

Hidden state. To generate tests, we only use those parts of the application
state that are visible to the browser. Since virtually all web applications also
store information at the server, parts of the application state may change at
any point in time. For example, in an email application, a new email may
pop up at any time. Such state changes often also change the state of the
user interface and the testing tool has to be able to cope with these changes.

Since the test case generation is restricted to those parts of the state that are
visible to the browser, it may be unable to reach all of the web application’s
functions. On the other hand, this approach has the advantage that it does
not require access to the code that runs on the server and is therefore easily
applicable to a large number of projects.

WebMate: Generating Test Cases for Web 2.0 59

BrowserSeleniumWebmate
Virtual Machine

URL
Open Doc

Close

File Edit View

Find and Replace
…

…

Usage Model

Fig. 1. WEBMATE employs Selenium to remote control the browser and learns a usage
model that captures all possible ways to interact with the application. For security
reasons, Selenium and the browser are sand-boxed in a virtual machine.

4 WebMate: A Test Case Generator for Web 2.0
Applications

WEBMATE is a prototype that implements the above approach to generate test
cases for web applications. The main parts of WEBMATE are depicted in Fig-
ure 1: WEBMATE uses Selenium [6] to remote control the browser and extract
the state of the user interface. In this setting, the state of the user interface
comprises all elements that can be used to interact with the application. Using
these techniques, WEBMATE is able to generate tests in two steps:

1. Exploration. In the first step, WEBMATE systematically tests all elements
of the user interface in all different states of the application and derives a
so-called usage model. This model captures the logical order of all possible
ways to interact with the application. In essence, the usage model is a finite
state automaton where states map to different states of the user interface and
transitions between states are triggered by interacting with the application.
Exploration ends as soon as WEBMATE is unable to find new states and
all user interface elements have been explored. Figure 2 shows a pseudocode
representation of the exploration algorithm. The main part of the procedure

60 V. Dallmeier et al.

is a while-loop that continues until all elements of the user interface are
explored.

2. Testing. In the next step, WEBMATE generates tests depending on what
exactly the user of WEBMATE wants to test. For instance, WEBMATE is
able to generate tests that systematically cover all states and interactions of
the usage model learned in the exploration phase. For example, the cross-
browser application described in Section 6 requires to visit all states of the
usage model. To generate a test that exercises a target state t, WEBMATE
uses the dijkstra algorithm to find a shortest path from start to t in the usage
model. Each edge on this path represents an invocation of a user interface
element. The generated test replays all these invocations following the order
given by the path.

Require: Start URL of Application (startURL)
Require: Form inputs (inputs)
Ensure: Usage Model (V, E)
1: procedure explore(startURL, inputs)
2: V = {start}
3: E = {}
4: s = start
5: e = getElementToExplore(s, V, E);
6: while e ! = null do
7: i = getInputs(e, inputs);
8: t = testElement(e, s, i);
9: if t �∈ V then

10: V = V ∪ t
11: end if
12: E = E ∪ (s, t, e, i)
13: s = t
14: e = getElementToExplore(s, V, E);
15: end while
16: return(V, E)
17: end procedure

Fig. 2. Pseudocode algorithm for exploring a web application. In lines 5 and 14, method
getElementToExplore uses the dijkstra algorithm to find the closest unexplored ui ele-
ment. Method testElement executes the element and applies state abstraction to extract
the new state of the application.

Since mouse clicks (and other movements like hovering) are the dominant way
to interact with a web application, WEBMATE is able to trigger almost all user
interface elements on its own. A problem, however, occurs with forms: in order
to submit a form, all of its input fields must contain valid values. WEBMATE
employs a set of heuristics to guess the range of values for an input field. Still,
these heuristics fail as soon as a form requires complex input such as a pair of
user name and passwords. For these cases, WEBMATE provides a way to specify
input data for individual forms.

WebMate: Generating Test Cases for Web 2.0 61

WEBMATE implements the following solutions for the challenges described in
Section 3:

Recognize the user interface. WEBMATE recognizes all statically specified
elements of the user interface by analyzing the HTML source code of the
application. Dynamically added JavaScript handlers are also supported if
they are added using one of the popular JavaScript libraries JQUERY or
PROTOTYPE. If a web application uses other means to dynamically attach
event handlers, WEBMATE will be unable to identify these elements as part
of the user interface and therefore cannot include them in the analysis.2

Distinguish similar states of the user interface. To identify similar states
of the user interface, WEBMATE uses an abstraction over all elements in
the user interface. This abstraction characterizes the state of the application
based on what functions are currently available to the user. Since WEBMATE
is a testing tool, this abstraction makes sure that two pages with the same
functionality are mapped to the same state and WEBMATE will visit each
state only once. As any abstraction, this method also leads to a loss of
information. In some cases, WEBMATE is therefore unable to explore all
functions of the application.

Hidden state. The server-side part of the state is invisible to WEBMATE. If
the state on the server changes, some states in the usage model may no
longer be available to WEBMATE and the user interface would become non-
deterministic from WEBMATE’s point of view. As this problem is unavoid-
able, WEBMATE will tolerate these issues when exploring the application
and will report errors when generating tests in the test phase.

In essence, WEBMATE is a tool to systematically explore all ways to interact with
a web application and thus covers as much of the application as possible. Hence,
WEBMATE basically generates executions. When combined with generic oracles
such as cross-browser compatibility checks (see Section 6 below), WEBMATE is
able to fully automatically detect errors in web applications.

5 Evaluation: How Does WEBMATE Improve Test
Coverage?

To evaluate WEBMATE’s effectiveness when analyzing Web 2.0 applications, we
compare the coverage achieved by WEBMATE to that achieved by a traditional
crawler for a set of subjects. From the point of view of the test case generator,
we would like to achieve as much coverage as possible to test all parts of the
program.

WEBMATE provides a first implementation of solutions to the challenges for
Web 2.0 test case generation as described in Section 3. Since WEBMATE is still
2 In JavaScript, there is no official, uniformly way to retrieve a dynamically attached

event handler. However, all major JavaScript libraries offer their own way to retrieve
attached handlers. Therefore, for the time being, WEBMATE has to specifically
support each library.

62 V. Dallmeier et al.

Table 1. Subjects for the experimental evaluation. Project size is determined as the
sum of the lines in all classes that are loaded at runtime.

Name Homepage Domain Project Size
(lines of code)

DMS dmsnew1.sourceforge.net document management 13,513
HippoCMS www.onehippo.com content management 65,692
iTracker www.itracker.org document management 15,086
JTrac www.jtrac.info task management 6,940
ScrumIt scrum-it-demo.bsgroupti.ch project management 1,448

an academic prototype, we cannot expect it to achieve full coverage (i.e., 100%).
It is also difficult to measure how much coverage the tool could possibly achieve.
Since WEBMATE generates tests on the system level, the tests can only reach
those parts of the code that are reachable via the user interface. In this setting,
full coverage would only be possible if all parts of the program are actually
reachable by the user interface, which is hardly feasible for most applications.
Hence, in this evaluation, we focus on the relative improvement of the coverage
and not on absolute values.

5.1 Experimental Setup

For this experiment we use five open-source subjects. Table 1 lists the names
and project sizes for all subjects. We chose our subjects to cover a variety of
project sizes and domains. Our subjects range from small projects (1,448 lines
of code) to fully blown web applications (65,692 lines of code). To facilitate our
setup, we restrict the evaluation to subjects implemented in Java.

For our experiments we chose SCRAPY (http://scrapy.org) as a represen-
tative for traditional crawlers. SCRAPY is a popular tool that extracts data from
web sites and is also used to provide load tests for web applications. In contrast
to other crawlers, SCRAPY also allows to specify credentials. Since all our test
programs require a login, this is a crucial feature to provide meaningful results
in our evaluation.

To compare the coverage achieved by WEBMATE and SCRAPY, we measure
the amount of lines covered. To get line coverage, we use Cobertura [14] to
instrument each subject before it is executed. At runtime, the instrumented
program logs all executed lines and calculates coverage at the end of the program
run.

Both SCRAPY and WEBMATE get as inputs the landing page of each subject
and credentials for a user account. To evaluate a single subject, we first run
SCRAPY to collect coverage, reset the database of the subject to the state before
SCRAPY was run, and then run WEBMATE to again collect coverage. Both
crawlers are configured to only analyse pages that are part of the application.

dmsnew1.sourceforge.net
www.onehippo.com
www.itracker.org
www.jtrac.info
scrum-it-demo.bsgroupti.ch
http://scrapy.org

WebMate: Generating Test Cases for Web 2.0 63

Table 2. Results of the experimental evaluation. WEBMATE achieves up to seven
times better coverage than SCRAPY.

Coverage (percent)

Name WEBMATE SCRAPY

DMS 19.3 10.8
HippoCMS 42.0 11.1
iTracker 33.2 7.2
JTrac 28.6 18.6
ScrumIt 38.5 5.5

5.2 Results

Table 2 lists the results of our experiments. Each line shows the coverage achieved
by WEBMATE and SCRAPY for one subject. For all the subjects in this experi-
ment, WEBMATE is able to achieve a higher coverage than SCRAPY. Thus, we
can conclude that WEBMATE is more effective when generating tests for Web 2.0
applications than SCRAPY. The approach implemented in WEBMATE can sig-
nificantly increase the coverage of generated tests: For ScrumIt, WEBMATE is
able to achieve seven times as much coverage as SCRAPY. For HippoCMS and
iTracker, coverage is still four times as high. Both applications make heavy use
of JavaScript and dynamic HTML, which is why SCRAPY fails to achieve good
coverage values.

Absolutely speaking, WEBMATE achieves between twenty (DMS) and forty
(HippoCMS) percent coverage. For an automated testing tool these values are
acceptable, but they are still not good enough for the tool to be of practical
value. When analyzing the results of this experiment, we had several insights
that lead to new ideas how to further improve WEBMATE. Some of these ideas
are discussed in Section 8.

5.3 Threats to Validity

As any experimental study, the results of our experiments are subject to threats
to validity. When discussing those threats, we distinguish between threats to
internal, external and construct validity:

Threats to external validity concern our ability to transfer our results to
other programs. As our study only includes five subjects, we cannot claim
that the results generalize to arbitrary applications. In our experiments, the
degree of coverage achieved by WEBMATE differs strongly between subjects,
so we cannot make any predictions as to how WEBMATE would perform for
other applications. Nevertheless, our results show that modern web appli-
cations need new approaches to test case generation in order to achieve
acceptable coverage values.

64 V. Dallmeier et al.

Threats to internal validity concern the validity of the connections between
independent and dependent variables in our setting. Since the selection
process for the subjects in this study was not randomized, our sample is
not independent. The authors of this study may have unintentionally pre-
ferred applications that make uncharacteristically strong use of JavaScript
and hence are difficult for SCRAPY to analyze. However, in order to succeed
in the web today, a web application has to provide a good user experience
and therefore has to make heavy use of dynamic techniques. On the long run
we expect the vast majority of web applications to employ a high degree of
dynamic techniques.

Threats to construct validity concern the adequacy of our measures for cap-
turing dependent variables. In our setting, the only dependent variable is
coverage which is measured as the set of lines executed when running the
program. The number of executed lines is directly connected to the control
flow of the program and is the industry standard of measuring coverage. To
measure this value, we use an open-source tool that is used by many other
projects and hence can be expected to provide correct results. Overall it is
safe to say that our measures for capturing dependent variables are adequate.

6 Application: Cross-Browser Compatibility

Besides generating tests, a testing tool needs to generate oracles (see Section 2)
in order to classify the outcome of each test. The oracle decides if the behavior
of the program is correct or not. For semantic tests, oracles typically check the
correctness of return values, for example “If there are three items in the shopping
cart, the total sum is the sum of the individual prices for all three items.” Without
further information it is not possible to generate such oracles automatically.
However, there is a number of problems for which automatic oracles can be
generated. In this section, we present an application of WEBMATE where it is
possible to provide such an automated oracle.

For the success of a web application it is vital that the application works
correctly in all major browsers. A web application is said to be cross-browser
compatible if it is rendered identically and works correctly in all browsers. In
practice, maintaining cross-browser compatibility is a real challenge. In total,
there are five major browser vendors; for almost all browsers, there is more than
one version available and some browsers are provided for different platforms.
The distribution of market shares in Table 3 shows that for many browsers more
than one version is actively used. As a consequence, in order to support 95%
of the customers, the developers of a web application have to test 22 different
browsers. These tests are necessary because different browsers (and also different
versions of the same browser) behave differently despite the fact that there are
existing standards for the most important technologies. For quality assurance,
this has serious consequences: For instance, to test a small web application with
just 10 pages, a tester would have to manually compare 220 pages. Moreover,
to avoid regression errors, these tests would have to be carried out after each
change to the application.

WebMate: Generating Test Cases for Web 2.0 65

Table 3. Market shares of the major browsers first quarter 2012 [13]

Version Market share [%] Total [%]

IE 8.0 27.02 27.02
IE 9.0 12.82 39.84
Chrome 16.0 9.88 49.72
IE 6.0 7.38 57.10
Chrome 17.0 6.18 63.28
Firefox 9.0 5.54 68.82
IE 7.0 4.73 73.55
Firefox 10 4.43 77.98
Safari 5.1 3.37 81.35
Firefox 3.6 3.22 84.57
Firefox 8.0 2.82 87.40
Opera 11.x 1.45 88.85
Firefox 11 1.19 90.04
Safari 5.0 1.08 91.12
Firefox 4.0 0.64 91.76
Firefox 6.0 0.63 92.39
Firefox 7.0 0.56 92.95
Firefox 3.0 0.55 93.50
Firefox 5.0 0.51 94.02
Firefox 3.5 0.48 94.50
Chrome 14.0 0.47 94.97
Chrome 15.0 0.39 95.36

By using WEBMATE, we are able to fully automate these tests as follows. In
practice, developers of web applications normally use a fixed browser to run tests
while implementing the application. Hence, for this so-called reference browser,
the application can be expected to work correctly. WEBMATE uses the reference
browser to check the rendering of all test browsers (those browsers for which
cross-browser compatibility is to be tested). If an element is rendered by a test
browser at a different position than in the reference browser, WEBMATE will re-
port this problem to the user. Besides the challenges for test generation described
in Section 3, there are a number of additional problems when implementing an
automated cross-browser compatibility oracle:

Recognize layout problems. To detect layout problems, WEBMATE has to
compare positions and sizes for each element on the web page. A simple
comparison of screen shots is insufficient as dynamic content such as ads may
cause large visual differences even though all relevant elements are rendered
the same. Also, in practice it is often tolerable for elements to be a few
pixels off, but a screen shot based comparison would not tolerate such minor
deviations.

Browser specific code. To avoid incompatibilities between browsers, some
web applications deploy different code based on which browser is used. Since

66 V. Dallmeier et al.

WebMate
identifies affected

elements

WebMate
visualizes

differences

WebMate
gives a
detailed

diagnosis

Fig. 3. Example of a diagnosis produced by WEBMATE. In Internet Explorer 8, the
checkout button is missing. WEBMATE identifies the missing element and visualizes
the problem using screen shots.

the state abstraction of WEBMATE is based on identifying elements of the
user interface, it may happen that WEBMATE inadvertently considers the
same page in different browsers to be different pages. In these cases, WEB-
MATE is unable to match pages across browsers and therefore cannot provide
a cross-browser test.

Besides layout problems, WEBMATE is also able to recognize cases where func-
tions are present in the reference browser, but are missing in one or more test
browsers. WEBMATE compares the usage model (Section 4) of the reference
browser with those extracted for the test browsers. For example, if a test browser
does not display the button to remove an article from a shopping cart in a web
shop, the user will be unable to remove accidentally added items and therefore
will likely choose another web shop. For the maintainer of the web shop, this

WebMate: Generating Test Cases for Web 2.0 67

problem is only visible in the number of aborted transactions, which could also
have a variety of other causes and is difficult to investigate. For the success of
a web application, it can be vital to detect such missing functionalities in a
test browser. To support developers in finding such errors, WEBMATE gener-
ates a report that visualizes all deviations found in the cross-browser analysis
(Figure 3).

7 Related Work

The related work for this paper can be grouped into general approaches to test
case generation and testing of web applications. A summary of the most impor-
tant generic test case generation approaches was already given in Section 2.

The VeriWeb project by Benedikt et al. [3] is one of the first approaches to test
dynamic web applications. In contrast to WEBMATE, VeriWeb does not use state
abstraction and is therefore unable to systematically explore a web application.
VeriWeb uses fixed time limits to restrict analysis time, whereas WEBMATE
automatically finishes the exploration as soon as all states and interactions are
explored.

Mesbah et al. [12] present CRAWLJAX, a tool for analysing web applications
implemented with AJAX. Similar to WEBMATE, Crawljax also extracts a finite
state automaton that describes different states of the application. However, in
contrast to WEBMATE, Crawljax does not use state abstraction but employs tree
comparison algorithms to identify user interface elements that were changed
by AJAX operations. Since the recursion depth for this algorithm is limited,
Crawljax is also not able to detect when all states and interactions are explored.
Also, Crawljax requires the user to manually identify all active elements of the
user interface, whereas WEBMATE is able to automatically identify them and
can thus be used for arbitrary applications without further configuration.

In the area of cross-browser testing, Choudhary et al. [4] present their tool
named Webdiff. In contrast to WEBMATE, Webdiff applies a screen-shot based
comparison approach which has a number of problems in the presence of dynamic
elements such as ads (see above). Also, Webdiff is not able to systematically
explore a web application, which is one of the key features of WEBMATE.

Artzi et al. present APOLLO [1], a tool that analyses both the client-side and
the server-side parts of a web application. APOLLO employs symbolic execu-
tion [10] and user inputs to systematically generate tests that reach previously
uncovered code. Currently, APOLLO is only implemented for PHP and cannot
be applied to other projects.

In earlier work on WEBMATE [7], we present initial ideas and an early evalu-
ation. This paper extends our previous work with a discussion of general issues
for test case generation in modern web applications. In the current paper, we
study the effectiveness of specialized test case generation techniques compared
to traditional crawlers.

68 V. Dallmeier et al.

8 Conclusions and Future Work

The technical complexity of modern web applications poses completely new chal-
lenges for automated test case generation. On the other hand, systematic quality
assurance is even more important to guarantee dependable and secure systems.
In this work, we identify the most important challenges when generating tests
for modern web applications and discuss possible solutions. Our prototype WEB-
MATE implements several of these solutions. In a controlled experiment, we in-
vestigate the effectiveness of the solutions built into WEBMATE in terms of the
coverage achieved on a set of test subjects. Compared to traditional crawlers,
WEBMATE is able to achieve up to seven times as much coverage and is therefore
much more effective in generating tests.

Despite the promising results of our evaluation, the quality of the tests gen-
erated by WEBMATE is still not good enough to be useful in practice. In the
future, we will investigate the following ideas to further improve the effectiveness
of WEBMATE:

Server-side code analysis. The work of Artzi on APOLLO [1] shows that test
case generation can benefit from analyzing server-side code. We plan to use
code instrumentation on the server to provide feedback that allows WEB-
MATE to specifically generate tests for uncovered areas of the program.

Test data provisioning. To improve the generation of input data for forms,
we plan to use search-based testing techniques such as genetic algorithms.
As a source of information, we would also like to use the content of the web
site, which often already specifies valid values for input fields.

More information about WEBMATE can be found at

http://www.st.cs.uni-saarland.de/webmate/

References

[1] Artzi, S., et al.: A framework for automated testing of javascript web applications.
In: ICSE, pp. 571–580 (2011)

[2] Barnett, M., et al.: The Spec# programming system: Challenges and directions,
pp. 144–152 (2008), doi: http://dx.doi.org/10.1007/978-3-540-69149-5_16

[3] Benedikt, M., Freire, J., Godefroid, P.: Veriweb: Automatically testing dynamic
web sites. In: Proceedings of 11th International World Wide Web Conference,
WWW 2002 (2002)

[4] Choudhary, S.R., Versee, H., Orso, A.: WEBDIFF: Automated identification of
cross-browser issues in web applications. In: ICSM, pp. 1–10 (2010)

[5] Ciupa, I., et al.: Experimental assessment of random testing for object-oriented
software. In: ISSTA 2007: Proceedings of the 2007 International Symposium
on Software Testing and Analysis, pp. 84–94. ACM Press, London (2007), doi:
http://doi.acm.org/10.1145/1273463.1273476, ISBN: 978-1-59593-734-6

[6] Google Code. Selenium, http://code.google.com/p/selenium/
[7] Dallmeier, V., et al.: Webmate: A tool for testing web 2.0 applications. In: JsTools

(To appear, 2012)

http://www.st.cs.uni-saarland.de/webmate/
http://dx.doi.org/10.1007/978-3-540-69149-5_16
http://doi.acm.org/10.1145/1273463.1273476
http://code.google.com/p/selenium/

WebMate: Generating Test Cases for Web 2.0 69

[8] Fraser, G., Zeller, A.: Generating parameterized unit tests. In: Proceedings of the
2011 International Symposium on Software Testing and Analysis, ISSTA 2011, pp.
364–374. ACM Press, Toronto (2011),
http://doi.acm.org/10.1145/2001420.2001464, doi:10.1145/2001420.2001464,
ISBN: 978-1-4503-0562-4

[9] Gross, F., Fraser, G., Zeller, A.: Search-Based System Testing: High Coverage, No
False Alarms. In: ISSTA (To appear, 2012)

[10] King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976), doi: http://doi.acm.org/10.1145/360248.360252, ISSN: 0001-0782

[11] Majumdar, R., Sen, K.: Hybrid Concolic Testing. In: ICSE 2007: Proceedings of
the 29th International Conference on Software Engineering, pp. 416–426. IEEE
Computer Society, Washington, DC (2007),
doi: http://dx.doi.org/10.1109/ICSE.2007.41, ISBN: 0-7695-2828-7

[12] Mesbah, A., van Deursen, A.: Invariant-based automatic testing of AJAX user in-
terfaces. In: ICSE 2009: Proceedings of the 2009 IEEE 31st International Confer-
ence on Software Engineering, pp. 210–220. IEEE Computer Society, Washington,
DC (2009), doi: http://dx.doi.org/10.1109/ICSE.2009.5070522, ISBN: 978-1-
4244-3453-4

[13] NetMarketShare: Desktop browser version market share
[14] Sourceforge. Cobertura, http://sourceforge.net

http://doi.acm.org/10.1145/2001420.2001464
http://doi.acm.org/10.1145/360248.360252
http://dx.doi.org/10.1109/ICSE.2007.41
http://dx.doi.org/10.1109/ICSE.2009.5070522
http://sourceforge.net

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 70–88, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Testing Web Services in the Cloud

Harry M. Sneed

ANECON GmbH, Vienna, Austria
Fachhochschule Hagenberg, Upper Austria

 Harry.Sneed@T-Online.de

Abstract. This paper describes a tool supported process to test web services
offered in the cloud against a service level agreement. After defining the goals
of cloud service testing and reviewing previous approaches to testing web
services, it goes on to define the particular problem of testing publically offered
cloud services. The test is not directed at locating errors, but to evaluating the
suitability of the service for a given application. To this end the requirements of
the application, both functional und non-functional, have to be laid down in a
service level agreement. The testing agent must extract the test criteria from
that document to create a set of test cases. These requirement-based test cases
are then matched to the cloud service interface definition to generate service
test scripts. From the preconditions specified in the test script representative
service requests are generated to be forwarded to the service under test in
asynchronous modus. The responses from the service are collected in an output
buffer to later be validated against the service post-conditions. Deviations
between the expected and the actual results are reported. In the end a metric-
based evaluation report is prepared to assist the user in deciding whether to use
the service are not.

Keywords: Cloud Computing, Web Services, Service Testing, SLAs, WSDL,
Interface-based Testing, Test specification, Test data generation, test result
validation, Cloud Service Evaluation.

1 Introduction

Many enterprises are planning to modernize their IT landscape and would like to take
advantage of cloud services – according to a recent survey by Forrester it is now
about 45% - if only they knew that they could rely on those services. It is a problem
of trust [1]. Cloud services are offered at many different levels of granularity. Some
are elementary business or technical functions for computing specific results, others
are complete business applications. The scope of the web services offered is
extremely wide. With the help of the UDDI registration of a service together with the
posted web service interface definition, it is possible to infer what the service
proposes to do but there is no way to know if the service really does that or how it
does it. The only way to find out is by testing it [2].

The testing of web services in the cloud is anything but easy. The user, who wants
to try it, must have the proper testing environment, trained personnel and automated

 Testing Web Services in the Cloud 71

test tools which allow the services to be tested quickly and effectively. The tools, now
available on the market or from the open source community, require skills and
knowledge to use them. Since few users have the knowledge and skills required to
really test web services, they keep postponing their decision to deploy them. In doing
so, they are losing a tremendous business opportunity. They have to go living with
their old legacy applications and sustaining a staff of old legacy developers, while the
new business process models remain an unfulfilled dream and the cloud computing
providers remain sitting on their promising new services. There is a deadlock
situation.

Many IT users would be more than willing to accept external help in testing out the
perspective services, if only they could know what they get for their money. Like all
customers of a service they want to know what a service entails and what they have to
pay for it. If they have no trust in the cloud then they must at least be able to trust those
who test it. They expect from the cloud testers documented, concrete evidence that the
selected services are really reliable and usable, and that they fulfill their requirements.
Besides they want to know what it will cost to provide that evidence. Then they must
have the possibility of comparing offers. If the costs are too high, they may decide to
test the services themselves or to go on without them. In no case is it advisable to
employ foreign cloud services without having first tested them. For this reason, unlike
agile testing which is done on a time and material basis, cloud service testing must be
offered on a fixed price basis. The user should get a complete breakdown of the test
results down to the lowest level with a price tag for each result. As such the user can
then decide which of the test results he would like to have. There should be enough for
him to determine if the service offered is suitable for his purposes.

The only way to provide such fixed price test services is with test automation. The
testing process has to be automated to a high degree. Not only the testing itself but,
also the test preparation and the subsequent test evaluation have to be automated. This
is the motivation for this paper which handles the following issues:

• Goals and means of web service testing
• Existing tools for testing web services
• An automated process for testing web services

o Specifying the service test cases
o Generating service test scripts
o Editing and compiling service test scripts
o Generating web service requests
o Executing the service test
o Validating web service responses
o Evaluating web services

• Experience in testing web services with WebsTest

2 Goals and Means of Web Service Testing

To understand the purpose of a web service testing tool, one has to first understand
the purpose of web services. Web services are ready make, pretested off the shelf

72 H.M. Sneed

software components which are accessed via the internet. In contrast to the earlier
subroutines, class libraries and standard products, which had to be purchased by the
user and physically built into his local environment, web services do not have to be
physically available. They only have to be accessible via the web which means
physically they would be anywhere in cyberspace. The user does not need to possess
them; he only needs to use them on demand. To access them he has to go thru a web
service interface made available by the service provider.

Building software means putting together thousands of atomic, elementary
functions. A significant portion of those functions, according to Capers Jones well
over 80% [3] can be reused in many different applications. In fact, they most could be
reused in applications throughout the world. There is no rational reason for writing
one’s own version of these functions when they are available everywhere to everyone.
The task of software development has taken on a different nature. Instead of
conceiving and coding his own elementary functions or methods, today’s developer
should be concerned with how to put together the proper ready-made functions to
serve his functions. A service-oriented architecture is intended to present the
developers of individual software applications with a wide range of ready-made
services to use within their applications. Not only will this result in a significant
reduction of code volume. It also reduces the effort and time required to get to a
working solution. The best method of increasing software productivity is to reduce the
amount of software that has to be produced. A really agile project is one in which a
minimum amount of code is newly written and in which a maximum amount is
reused. That is the surest way to deliver working software on time and in budget. The
problem of software development shifts from developing software to integrating and
testing it. The question that comes up is where to find the appropriate service and how
to confirm that it is suitable for the task at hand.

To find the proper service developers must know where to look, i.e. in what UDDI
directories and how to filter out those services which come closest to their
requirements. Genetic search algorithms can be helpful in this respect. The second
question as to the suitability of the services has to be answered by testing. Only by
testing the service can users be sure that a selected service serves their purpose. Since
developers have many other things to do, this is something that can be delegated to
others, who are specialists in this field. They need a broker to find and test web
services for them. That should be the role of the tester. Rather than working after the
developer to discover faults in his product, the tester should be working before the
developer to provide him with the building blocks he needs to make his work.

This switch in roles is best illustrated by a service-oriented architecture. Before the
first application project is started, the architecture should be in place with enough
ready-made services available to significantly reduce the development effort. At first
this may only be 40 to 50 %, but later it should be at least 80%. These services
provided should of course be pre-tested and proven to comply with the demands
placed on them. The users, i.e. the application developers should know beforehand
whether they can rely on the services [4].

The role of the testers is changing here from a reactive to a pre-active one. The
required services have to be tested before they are used. That requires new skills on

 Testing Web Services in the Cloud 73

the part of the tester and put new demands on the tools he uses. Web service testing is
a new form of unit testing performed by specialists who test for all potential usages of
a service instead of just testing it for one single purpose as is often done by
developers in testing the modules or classes they are writing. The ultimate purpose of
web service testing is to confirm that selected web services can be used without risk
in pending application projects [5].

Web services in the cloud, like other software modules, require a test driver to be
tested independently of their clients. It is possible to create a client, e.g. a BPEL
Process or a Java script application to invoke the services, thus testing them indirectly
via their client, but it is more efficient and more effective to test a service directly
from a driver. The test driver gives the tester more control over the test object. He can
determine what test data goes in and he can more easily check the results that come
out. If an error occurs he can be sure that the error is in the service and not in
the client. When testing thru a client, the tester cannot control the interaction between
the client and the service, and should an error occur, he cannot be sure of whether the
error is in the client, in the service or in the interaction between the two.

A web service testing tool serves the same purpose for services as JUnit or NUnit
do for objects. It gives the tester control over the test object and allows him to observe
its behavior by simulating the environment in which the object is operating. The
difference is that the testing of objects is a white-box test, i.e. the tester has insight
into the code and can derive his test cases from the structure of the code. He can also
trace the flow of control as well as the data flow within the code. With web services
that is not possible. The tester will most likely never see the source code of the service
he is testing. It belongs to the person or the organization offering the service. If it
happens to be an open source service, he may get access to it, but it is not his job to
know how the service functions internally and it is better if he does not know. His job
is to determine if the service satisfies the requirements of the application he
represents. Therefore, the service test is by definition a black-box test. The test of a
web service is aimed at validating the results of the service and at assuring that the
performance criteria laid down in the service level agreement are met [6].

Every test is a test against something. That something is referred to as the test
oracle. In a unit test the developer tests the module or the object under test against a
module or object specification. In an integration test the integration tester tests the
interaction of several modules or objects against the interface specifications. In a
system test, the system tester tests the system as a whole against the requirement
specification. In the unit test, the test cases are derived from the code. In the
integration test, the test cases are taken from the interface definition. In the system
test, the test cases are extracted from the requirements. The test of a web service is
similar to an integration test. It is a test against the web service interface definition,
but also a test against the service level agreement. The service level agreement
supplements the interface definition by the requirements of the application under
development, in particular the non-functional requirements such as time constraints,
precision of results and transaction loads. In is the task of a tester to determine

74 H.M. Sneed

a) if the service under consideration fulfills the requirements of the potential
user, and

b) if the service under consideration satisfies the constraints defined in the
service level agreement

The goal of a web service test is, as opposed to conventional testing, not to uncover
errors to be corrected in the service, but to determine whether the service can be used
or not. If a service is too faulty, too fragile or too slow it should be discarded and
another service used in its place. It is the task of the tester to find this out for the
developers who do not themselves have the time to deal with testing the suitability of
potential services for their application. They rely on the tester to answer this question
for them.

The purpose of a web service testing tool is to support the tester in this endeavor. It
should enable him to set up and conduct the test of any web service with a minimum
of effort while gathering a maximum of information for determining the suitability of
the service. It should use both the web service interface definition and the service
level agreement as a basis for generating the requests and for validating the
correctness of the service responses. It should also measure the performance of the
service and determine if the non-functional requirements are met. Finally, it should
execute the test fully automatically in batch mode, even without the presence of the
tester. The test should be as automated as possible to allow the tester to achieve his
goal of evaluating a given service within a short time and at a low cost and still be
able to judge the suitability of the service.

The time needed to evaluate a web service depends on the size of that service and
the width of its interface, but it should never take more than a couple of days. The
users and developers are working more and more in agile projects which require them
to solve problems rapidly. They have no time to wait weeks on an answer if the
service they desire to use is suitable or not. They need to know within a few days or
maybe even within hours if they can rely on a given service or not. That means testers
must react immediately.

Besides being fast and inexpensive the web service test must also present the test
results in a compact graphical form which is easy to understand by developers and
users. Within minutes it should be possible for them to interpret the results and to
decide whether the service meets their requirements. The presentation of test metrics
is yet another demand on web service testing. Not only should it be fully automated
and easy to use, it should also provide the test results in a compact, easily
interpretable format.

The demands placed on a web service testing tool can be summarized as follows:

• it should support the test in specifying service test cases
• it should automatically generate web requests from the web service interface

definition
• it should automatically invoke the web service independently of the client
• it should automatically validate web responses against the web service

specification
• it should automatically evaluate the web service according to the service level

agreement.

 Testing Web Services in the Cloud 75

3 Existing Tools for Testing Web Services

Web Services have been around for quite awhile so there is no lack of tools for testing
them. Any search through the Internet will come up with hundreds. The question is
whether they really suit to the goals outlined above. In a survey from the year 2007
made by researchers at Kings College in London, the authors refer to the gap between
what is needed for evaluating web services and what is offered on the commercial
market. They point to such tools as ParaSoft , SOATest, SOAPSmar, HP’s Service
Test and Oracle’s Application Testing Suite as being representative of what is offered
on the commercial market. The authors claim that “even although these tools do help
to reduce the manual labor required for test case generation and reporting, they do not
come close to automating the testing process. In all of the tools mentioned there is a
facility for generating SOAP requests for each test case, but it is up to the tester to
specify the test cases and fill in the test data. In some tools even the verification of the
test results has to be performed manually. From the provided functionality of all tools,
one can assume that automation is far from the desired level” [7].

Such was the state of service testing tools in 2007. Since then four years have
passed and the situation has improved. Not only have the existing tools become better,
but there are more of them to choose from, especially in the open source community.
Representative of these newer tools is ASTRAR from Tsai and his associates.
ASTRAR supports a form of n-version testing where multiple web services with
similar business logic are tested together in the same test suite. Although the main
goal of this cluster testing approach is to test multiple services at one time to reduce
the cost of testing, it also achieves the purpose of establishing a test base line. The
tool can be applied both to the testing of single services – unit testing – as well as to
the testing of service sequences – integration testing [8].

Another tool of this type is SOA-Cleaner. It reads the web service interface
definition (WSDL) and automatically generates a graphical user interface for
composing requests to be sent to the service in a native and intuitive way. The input
arguments, HTTP headers, URLs, attachments, etc., are edited though the generated
GUI. The tool can be used to emulate a complete business process by defining
sequences of service calls in a BPEL notation. The responses returned from the web
services are verified by defining assertions, or by using them as an input to
subsequent services. SOA-Cleaner is a MicroSoft based product implemented with
.Net. It is therefore compliant with MicroSoft WCF without losing its high level of
interoperability with Java-based service frameworks [9].

SOAPUI is yet another web service testing tool offered on the open source market.
It does not require the user to write anything. Every step is supported by darg and
drop techniques. The form editor creates a form from the user web service interface
definition which allows him to select values to be used as input arguments. The tool
has a hierarchical menu which steers the tester through the test from one request to the
other, displaying the responses to him as they come and allowing him to change the
sequence of the test at any time. Furthermore, the tester is allowed to enter assertions
during the test, so that the test scenario can be altered on the fly at run time [10].

76 H.M. Sneed

WebInject is another freeware tool for automated testing of web services. It can be
used to test individual system components with HTTP interfaces as well as to create a
suite of HTTP level automated functional, acceptance and regression tests. The test
harness allows the tester to start a number of test cases at one time and to collect the
results in report files for which the tool offers a real-time display of the web service
responses. In addition, WebInject can be used for monitoring service performance.

As a test framework, Webinject can be used optionally as a standalone test engine
or it can be bound together with other test frameworks or applications to be used as an
extended test service. For this purpose it has an API interface which allows it to be
called dynamically to dispatch web requests. The loading and defining of test cases is
made via an XML-WSDL like interface. The test cases are stored in XML files. From
there they are passed to the Webinject engine for executing the service under test via
the current WSDL interface. This way, the internal implementation is hidden from the
non-technical user while the technical user has the possibility of customizing the open
architecture to his specific testing needs. The test results are generated in HTML for
viewing and in XML for interpretation by user specific display tools. The reported
results include the pass/fail status, error messages and response times [11].

In their survey of web service testing tools from 2007, Bozkurt and Harman also
mention the original version of the first WebsTest tool – WSDLTest - which was
reported on by Sneed and Huang in the Wiley Journal of Software Maintenance and
Evolution in that year. They cite that the tool is capable of generating random service
requests from the WSDL schemas and of validating the service responses against the
post conditions formulated in a test script. To formulate those conditions, the tester
must be familiar with the service under test [12]. The tool set described in this paper
is the result of the evolution of that original prototype product.

4 An Automated Process for Testing Web Services

The two main purposes of a Web Service Testing Tool are 1) to find out whether a
web service can be trusted and 2) to see if it is suitable for the purpose of the user as
stated in the service level agreement. All other functions are subordinate to these two,
the generation and editing of test scripts, the generation of test requests, the execution
of the service under test, the validation of the service responses and the evaluation of
the service test results. All of these sub functions contribute to the goals of gaining
trust and assessing the suitability of the service in question.

To test any piece of software, test cases are required which represent productive
use. Since the testers have no access to the source code, the test cases have to be taken
either out of their heads or out of the web service description. This description may
include a specification and/or a service level agreement. In any case it will include an
interface definition – WSDL – and one or more data schemas. It is up to the tester to
collect these documents and to analyze them.

The next step after defining the test cases is to generate data which can be used to
test the cases. This has to be real data with numbers, codes and alphabetical strings
embedded in a formal XML syntax; so it can be interpreted by the web service. Since

 Testing Web Services in the Cloud 77

the number of data combinations is practically unlimited, there has to be some kind of
artificial limit imposed, which means the data combinations selected should be
representative of the possible data combinations. This requires a combination of
controlled data assignment and random data generation. Here it is recommended to
use boundary analysis and equivalence classes.

With the web service requests generated, it should be possible to execute the target
service by sending off messages to its internet address. For that the service request has
to be packed into a transmission envelope, i.e. a SOAP protocol, for transmission.
When an answer comes back, that response has to be unpacked and made available.
Packing, sending, receiving and unpacking internet messages are the functions of a
web service test driver.

It is not enough to confirm that the web service under test functions, and that it
returns some response. The responses must also be validated to ensure that they
contain the proper return values. The proper return values are those output data values
specified in the post conditions of that particular request. That means the responses
have to be matched to the requests and they have to be compared with the expected
responses. This again implies that the expected results are defined and can be
automatically verified.

The ultimate task of a web service tester is to assess the suitability of a particular
web service. He has to judge whether the service is adequate for the task at hand or
not. For this decision he needs information on the performance, the functionality, the
reliability and the security of the service in question. The testing tool should provide
this information in form of reports and graphics which can be easily interpreted by the
tester. This requires an extra post processing component.

In summarizing, there are five principle sub functions to be carried out by a web
service testing tool. These are:

• to aid the tester in specifying service test cases
• to generate representative web service requests
• to execute the target service with valid messages
• to validate the correctness of the returned responses
• to provide information for evaluating the tested services.

Thus, the WebsTest automated test process consists of seven well defined and tool
supported steps.

• Step 1 is to extract a table of test cases from the service level agreement
• Step 2 is to generate a text script from the test case table and the web service

interface schema
• Step 3 is to edit and compile the test script
• Step 4 is to generate the web service requests
• Step 5 is to execute the service test
• Step 6 is to validate the web service responses
• Step 7 is to evaluate the web service

78 H.M. Sneed

4.1 Specifying Service Test Cases

The first step in the WebsTest automated test process is to analyze the service level
agreement text and to extract logical test cases from it. A web service can be specified
through a requirements document and/or a service level agreement. If both are
available, both should be analyzed. If only one is available then at least that should be
analyzed. If none are available, it is questionable whether the web service should be
used at all.

Both types of documents are texts written in a natural language. To be analyzed
the text should be in a certain format. There should be key words or tags to identify
the function and quality attributes. For instance, a function may be identified by the
keyword “Function:” followed by a function name and a statement of what that
function does. A quality attribute should also be identified by a keyword such as
“Response Time” followed by a number denoting the time in milliseconds. Both
functions and quality attributes can be conditional or non conditional. Conditions are
recognizable by the predicates they use, words like “if”, “when”, “should”, “in so far
as” etc.

Attribute Description
 Label: processCustomerOrder
 Requirements: FREQ-01, FREQ-02, FREQ-03.
 Rules: BR-01, BR-02, BR-03, BR-04, BR-05, BR-06.
 Functions: FUNC-01, FUNC-02, FUNC-03, FUNC-04.
 Inputs: INPUT-01, INPUT-02, INPUT-03, INPUT-04.
 Outputs: OUTPUT-01, OUTPUT-02, OUTPUT-03, OUTPUT-04.
 Objects: BO-01, BO-02, BO-05, BO-06, BO-07, BO-09, BO-11, BO-13.
 Trigger: Menu_Selection
 Actor: Customer
 Frequency: Continuous
 ResponseTime 3 Sec

 PreConditions:
Ordered article must be on stock.
Customer must be authorized to purchase articles.
Customer must be credible.

 PostConditions:

Article amount is reduced by the order and
Dispatch order exits for each fulfilled order item and
Billing item exits for each fulfilled order item
Or back order exits for not fulfilled order item.
A supply order item exits if the article amount falls below the

minimum order amount required.

 MainPath:

1) GetArticleTypes Customer requests article types.
 Service returns a list of article types.
2) ArticleQuery Customer selects an article type.
 Service returns a list of articles and prices.
3) CustomerOrder Customer orders an article.
 Service checks customer credit.
 Service checks if article on stock.
 Service checks if amount on stock is sufficient.
 If not sufficient, service creates a back order.
 If sufficient, service subtracts amount ordered from amount on

stock, creates a dispatch order item and creates a billing item .
 If amount on stock falls below the minimum amount, the

service creates a resupply order.

 Testing Web Services in the Cloud 79

The text parsing tool will identify the functions and the quality criteria to be
fulfilled and will create one or more test cases for each of them. If a function is
conditional, there will be a test case for each outcome of the decision. If a function is
compound, i.e. it contains several sub clauses connected by “and” or “or”, the text
analyzer will generate a test case for each one of them. There will also be a test case
generated for each state specified. Thus in the end, there should be one test case for
every specified action, state and condition. From the following business rule a test
case will be generated to confirm that a back order exists for the current article whose
amount on stock is less than the amount ordered.

BR-04: If the article amount on stock is less than the amount ordered, a back order should be
created and the customer informed that delivery will be delayed.

PreCondition: Article.Amount < Order.Amount;
PostCondition: BackOrder.ArticleNo = Article.ArticleNo &
 CustomerMessage = “Delivery delayed”;

Besides containing the business rules, the business objects and the use cases, the
service specification should contain the service interface definition. Here the
functions are identified together with their input and output interfaces as depicted
below. It is not mandatory but useful to use the same parameter names as are used in
the WSDL interface schema. In this way the test data can be matched to the test case
table making it possible to generate a more complete test script. If the service
specification is done properly it is possible to automate all of the subsequent test steps
and to test the service within one working day.

FUNC-02: QueryAvailableProducts.

INPUT-02: QueryAvailableProducts2Request.

The article query request should contain:

CustNo = “009999”.

 # ArtType = “BOOK”.

OUTPUT-02: QueryAvailableProducts2Response.

The article query response should contain:

item[1].

ResponseArtNo[1] = “004711”.

ResponseArtType[1] = “BOOK”.

ResponseArtName[1] = “My sex life” .

ResponseArtPrice[1] = “40.50”.

The test cases are stored in an Excel table, where they can be viewed and edited by
the tester when he is preparing the test. Among the entities identified in the test case
table are the functions and objects to be tested. By displaying the structure of the
WSDL next to the test case table the tool enables the tester to match the functions and

80 H.M. Sneed

objects specified in the SLA with the operations and parameters defined in the
WSDL. This association is very important to bridging the gap between the logical
view of the service as depicted in the SLA and the physical view of the service as
depicted in the WSDL [13].

Generated Test Case Table

TestCase Operation Parameter Type Ind Value
Orders02 GetTypes GetTypes1Request Parameter ?
 GetTypes item Return 1 MAGA
 GetTypes item Return 2 NEWS
 GetTypes item Return 3 BOOK
 QueryAvail CustNo Parameter 009999
 QueryAvail ArtType Parameter BOOK
 QueryAvail Item Return 1 Struc
 QueryAvail ResponseArtNo Return 1 4711
 QueryAvail ResponseArtType Return 1 BOOK
 QueryAvail ResponseArtName Return 1 MeinKampf
 QueryAvail ResponseArtPrice Return 1 40.50

4.2 Generating Service Test Scripts

The second step in the WebsTest automated test process is to generate a test script
from a union of the test case table with the service interface definition. This is
actually a merge operation. Each test case in the test case table refers to one or more
operations in the web service. The tool takes one test case at a time and merges it with
those operations and objects it refers to in the WSDL schema. Since any one test case
may contain one or more operations, the requirement statement being tested is
included as a comment to the test case. The tester may delete them but they are there
to remind him what he should test. They also provide a link from the test to the
requirements document, something which is very important when it comes to
maintenance and tracing test cases to change requests. In the evaluation phase the test
cases taken from the specification will be compared with those actually tested to
measure the degree of test coverage. Since there is no code to measure, testers can
only measure test coverage in respect to the tested requirements, the tested operations
and the tested data parameters.

For any one service there can be any number of tests. A test here is equal to a test
scenario. A test scenario is a sequence of test cases. The test cases are given in the test
script. They are denoted by a if testcase = (..........) statement and marked by a
comment line.

if (testcase = "WareHouseOrders_002");
// Test Customer Order with an invalid article number

A test case is a sequence of one or more requests, each followed by a response. Each
request invokes an operation with a set of one or more parameters. The parameters
may be elementary or complex data types. Complex data types are defined as objects.
A request or response may contain any number of objects.

 Testing Web Services in the Cloud 81

if (operation = "BuySomething");
 if (request = "BuySomething4Request");
 if (object = "AnOrder");

If a test case applies to only a single operation then the test case will have only have
one request. Normally, a test case will refer to a chain of related operations. In that
case, the test case will have as many requests as there are operations to invoke. Often
the tester will want to repeat the chain of operations several times to test them with
different data combinations. For this the initial test case will be duplicated with
different parameter values for each additional test of the selected operations. In this
way the test cases make up a test loop.

4.3 Editing and Compiling Service Test Scripts

The third step in the WebsTest automated test process is to compile a test from the
test script. The generated test script is already compilable but the data may not be
complete. Normally the tester will want to vary that data, which he can do by editing
the script. The script language offers the tester the possibility of specifying different
combinations of data for the service requests and with which he can specify the
expected contents of the service responses. The data inputs are specified as
preconditions – assert inp, the data outputs as post conditions – assert out.

assert inp.OrderArtAmount = "5";
assert out.ResponseArtName = "Newsweek";

The script language contains assertion statements for boundary analysis – the range-
statement - as well as for defining representative values of equivalence classes – the
set statement. It also allows for computations, concatenations and alterations. The
assertions can be both data assignments as well as data checks. If the tester is
specifying a request the assertion statements are data assignments in which the target
data names have the prefix inp. If he is specifying a response, the statements are data
checks whereby the result names have the prefix out.

The test script language is structured in accordance with the hierarchy of web
service definitions. At the top level the service is defined. There is a separate test
script for each service. One can say that the test script corresponds to a test scenario.
Within the service the test cases are inserted. A test case may trigger one or more
operations in a sequence of related operations, similar to a use case or a transaction.
Each of the invoked operations has a request and a response. The request contains the
input parameters for that particular operation or method. The response contains the
expected return values. Request and Responses contain assertion statements which
generate or validate data values. The contents of a request are generated. The content
of a response are validated. A sample test script obtaining the day of the week is given
below.

82 H.M. Sneed

service: IWareHouseWebServiceservice;
 if (testcase = "WareHouseOrders_001");
// First Request to Frontend to order Articles
 if (operation = "GetTypes");
 if (request = "GetTypes1Request");
 assert inp.GetTypes1Request_DummyParam = "?";
 endRequest ;
 if (response = "GetTypes1Response");
 assert out.$ResponseTime < "1000";
 if (object = "return" occurs = "2");
 assert out.item[1] = old.item[1];
 assert out.item[2] = old.item[2];
 endObject;
 endResponse ;
 endOperation;
 if (operation = "QueryAvailableProducts");
 if (request = "QueryAvailableProducts2Request");
 assert inp.CustNo = "009999";
 assert inp.ArtType = "BOOK";
 endRequest ;
 if (response = "QueryAvailableProducts2Response");
 assert out.$ResponseTime < "1000";
 if (object = "return" occurs = "1");
 if (object = "item[1]");
 assert out.ResponseArtNo = "4711";
 assert out.ResponseArtType = "BOOK";
 assert out.ResponseArtName = "MeinKampf";
 assert out.ResponseArtPrice = "40.50";
 endObject;

As seen in this script, the tester can also specify the minimum response time for each
request. Should it take longer, an exception will be reported.

4.4 Generating Web Service Requests

The fourth step in the WebsTest automated test process is to generate a service
request. When compiling the test script a table of test data objects is created. These
objects are identified by test case, request or response name and by a qualified data
name. The elementary data items are qualified by the data structures to which they
belong. The request generator merges these data objects with a framework request
structure taken from the WSDL schema. Thus the interface structure is supplemented
by the physical test data contained in the test script. The result is an executable
request.

For every operation specified at least one request is generated. A chain of requests
makes up a test case. There will be n test cases generated for each service with n

 Testing Web Services in the Cloud 83

requests per test case. Thus, the same request will be repeated many times, as many
times as there are test cases. Each request will have another combination of data
values to ensure that all representative request states are covered. The data generation
is aimed at generating various combinations of requests with varying data states. The
goal is to achieve the highest possible test coverage with the lowest possible number
of test cases. This is the essence of value driven testing.

4.5 Executing the Service Test

The fifth step in the WebsTest automated test process is to execute the service test.
Once the test request has been generated, the target service can be executed. The user
needs only to select the test he wants to run. He may also select specific test cases.
The possible test cases are displayed on the screen for selection.

The test driver processes the selected test requests sequentially from beginning to
end. Each individual request is taken and packed into a standard SOAP envelope to be
sent out to the target service. The service specific attributes of the envelope are taken
from the service WSDL definition. The envelope is then dispatched to the operation
specified therein by placing it in the output message queue.

Parallel to the dispatching of requests, the test driver is also receiving responses
from requests it has already sent. To that end, it is continually polling its input
message queue. Messages that come back from the server are unpacked, i.e. extracted
from the SOAP envelope and placed in a response file for validation.

In this manner the service execution can be repeated many times, as many times as
the tester desires. The number of tests is a parameter to the tool which can be set by
the tester. The default is one. Should an error occur in executing a request, the test
will continue with the next request. If, however, two requests in sequence return an
error response, the test will be interrupted since there is obviously a problem with the
service.

4.6 Validating Web Service Responses

The sixth step in the WebsTest automated test process is to validate the service
responses. Upon return the web service responses are stored by the test driver in a log
file for further processing. This further processing is the function of response
validation. Here the contents of the responses, i.e. the returned values are compared
with the values specified in the service script. Those that do not match are reported as
discrepancies. The discrepancy report is the result of the validation process.

The validation process is started by the tester after each service test. In the first step
the script for that service is read in and a table of valid output values and value ranges
created. Then the returned responses for the last test are sorted by the response-id.
The response-id should correspond to the request-id. Based on the response-id the
return responses are matched to the requests specified in the assertion script. The
return values are then matched b name to the post assertions for that request.

Values can be compared with a specific value - a number, a code or a string, they
can be compared with a set of values to check if they are a member of that set, they

84 H.M. Sneed

can be compared with the result of an arithmetic operation, or they can be checked to
see if they are equal, less or greater than another value. The comparisons always
apply to the selected response or to the previous version of that response. For the sake
of that comparison all previous responses are kept. This way, it is possible to compare
the response of the current test with the response of the last test.

Response Validation Report

+--+

| WSDL Response Validation Report

| Tester: IWareHouseWebService Date: 11.07.12

| TestName: WSDL-Response TestCase: 001 System: Orders

+-------------------------------------+--------------------------------+

| Non-Matching Params | Non-Matching Values

+-------------------------------------+--------------------------------+

| Resp-Id: GetTypes1Response_001 |

| Ist: $ResponseTime | 24131

| Soll:Asserted_Value | <1000

+--------------------------------------+-------------------------------+

| Resp-Id: GetTypes1Response_001_return|

| Ist: item[1] | MAGI

| Soll:item[1] | =MAGA

| Ist: item[2] | BUCH

| Soll:item[2] | =BOOK

+-------------------------------------+--------------------------------+

An assertion violation occurs, when an actual return value does not match to the

asserted return value or values. In this case a deviation is logged in the discrepancy
report, where also statistics are kept on the relation of deviations recorded to the
number of return values checked. The proportion of correct responses to all responses
is also reported there. It is then up to the tester to verify the reported discrepancies and
to produce the necessary problem reports for the error tracking system.

4.7 Evaluating Web Services

The ultimate goal of a web service test is to evaluate the suitability of that service for
the user. The user wants to know if he can trust the service and it is the job of the
tester to provide an answer to that question. In this respect the tester is fulfilling the
role of a rating agency. He is rating the service in the name of the prospective user.

There are a number of ways to rate a service:

• by functionality
• by reliability
• by efficiency
• by security
• by performance [14].

 Testing Web Services in the Cloud 85

4.7.1 Rating Service Functionality
To rate a service by functionality the tester must compare the operations offered by
the service with the functions required by the user. The tool can help by extracting the
functions contained in the service level agreement with those defined in the service
interface. There is an extra component in WebsTest for making this comparison. It
reports which functions specified in the SLA are missing in the WSDL. The rating
metric is

 operations_defined
 Functionality = ————————
 functions_specified

4.7.2 Rating Service Reliability
To rate the reliability of a service, first each operation defined has to have been tested.
This is the functional test coverage. WebsTest record every operation tested and gives
the relation of all operations defined

 operations_tested
coverage = ————————

 operations_defined

This in itself is not enough. Also the error rate has to be considered

 invalid_return_values
 error rate = —————————
 return_values_checked

 return_values_checked
 * —————————
 all_return_values

 correct_responses

 * ———————
 all_responses

The error rate needs to be adjusted by the test coverage to give the final reliability
rate.

 reliability = error_rate * test_coverage

4.7.3 Rating Service Efficiency
To rate the efficiency of the web service two response time metrics have to be
considered:

• maximum response time and
• median response time

86 H.M. Sneed

Each are measured by WebsTest and both are to be compared with the required values
in the service level agreement:

 specified_maximum_time
 maximum_efficiency_rate = ———————————
 actual_maximum_time

 specified_median_time
 median_efficiency_rate = ——————————
 actual_median_time

4.7.4 Rating Service Security
To rate security test cases must be devised to gain unauthorized access to the service,
i.e. they either violate the authentication and authorization checks or they circumvent
them. In addition to that, there should be some test cases running over corrupted data
to the service. There should be enough such test cases to warrant making assumptions
about the security of the service, i.e. at least as many as there are operations defined.
It is expected that the service will reject them. If not, this is considered a security
violation.

The measure for rating security is
 security_threats_rejected
 security_rating = ———————————
 security_threats_tested

4.7.5 Rating Service Conformity
The rating of conformity is a byproduct of the WSDL static analyzer. It checks the
WSDL code against a set of standard rules for compliance. Every interface rule
violation is recorded as a major, medium or minor deficiency. The major deficiencies
are weighted by 2, the medium by 1 and the minor by 0,5. The conformance rating is
calculated as the

 weighted_deficiency_count
 Confomity = ———————————
 number of WSDL statements

The result is the degree to which the web service interfaces conforms to the interface
rules. Since the testers will normally not have access to the web service source they
can rate such internal qualities as conformance solely on the basis of the interface
description.

4.7.6 Rating Overall Service Quality
To rate the service as a whole the tool WebsTest offers a function which aggregates
the individual ratings and computes for the tester an aggregate rating. The individual
ratings are adjusted by the weights assigned to them by the tester. It is then up to the
tester to present the compound rating report produced by the tool to the user for
deciding on the suitability of the service.

 Testing Web Services in the Cloud 87

There will be many services whose rating is so low, i.e. below 75%, that they can
be immediately eliminated. A few services may attain a rating well over 90%. These
are the services which come closest to fulfilling the requirements of the user. In
between will be services which fulfill 75-90% of the user requirements. They can be
considered for use if there are no better alternatives, but the user may have to wrap
them to compensate for their deficiencies. In the end the user may decide to employ
no foreign service at all but to develop a service of his own.

5 Experience in Testing Web Services with WebsTest

The wide spread use of cloud services in industrial applications is yet to come. IT
users are still somewhat cautious to take this step away from developing everything
themselves to using ready-made services from the cloud. So the experience gained in
testing such services with Webstest is limited to research projects. Several smaller
services such as calendar and currency conversion services have been tested, however
the largest service tested so far is an order entry system containing seven operations,
three for ordering articles, one for dispatching, one for billing, one for resupplying
and one for handling back orders. The three ordering operations were implemented in
Java, the four backend operations in COBOL. This application was also intended to
prove the feasibility of wrapping legacy COBOL programs. These programs had
previously been implemented to run in batch mode on an IBM mainframe. After
wrapping them in a WSDL shell they could be run anywhere, even on a PC work
station. The Java components were developed on an Eclipse workbench for execution
under MS-Windows. So for this test the Java and COBOL server components were
bound together behind a common server interface on an Apache server.

The WebsTest tool set itself runs under a Windows-XT operating system with a
Delphi user interface. It was used by students of Software Engineering at the
University of Regensburg to test the order entry service. Some 122 test cases were
extracted automatically from the service level agreement in English language. Of
these half were eliminated as being either redundant or irrelevant. In the end only 59
test cases remained. These were merged with the WSDL interface definition to
generate 59 requests. The greatest effort was spent in editing and compiling the test
scripts. This required an average of seven hours to prepare the test. The test itself
could be conducted within 1,5 hours. All 59 requests could be dispatched and their
results captured. The response validation report revealed 11 errors in the 59 requests
that had gone unnoticed before, errors such as to the creation of duplicate resupply
orders and the selection of the cheapest supplier. Also uncovered were simple
arithmetic errors in calculating the amount due. On top of that it was discovered that
many requests, in particular the backend requests, required more time than the 2000
milliseconds specified. This was mainly due to the wrapping.

6 Conclusion and Projection

Testing cloud services will present a new challenge to software testers, one which will
change their current way of working. Testers now run after the developers, testing
their software to make sure that most errors are found before the software is released.

88 H.M. Sneed

As such, it is important to maintain a close relationship to the developers. The sooner
the errors are found the better. The main job of the testers today is to find errors
before the users do. This can be referred to as reactive testing.

With cloud computing this will change. Rather than being the lackeys of the
developers, testers on the user side will become the judges of the developers. The test
of the potential services will be made before the development is begun. The task is to
find out what services are best suitable for the planned application. So the goal of
testing services is not to find errors in them but to judge their quality. The user must
know if he can rely on the services selected. For that tools are needed which can make
a quick and through test. WebsTest is intended to be such a tool. It automatically
extracts test cases from the service level agreement or service requirements and
combines them with the data taken from the service interface definition to generate
artificial requests. It then submits the test requests and checks the corresponding
responses against the assertions specified by the tester. At the end it summarizes the
test metrics and presents the tester with an assessment of the service quality. All of
this can be done in a minimum of time with a minimum of effort.

Of course there are still many improvements to be made, but WebsTest sets a
benchmark for other commercial testing tools to consider. It is certain there will be
many other tools of this type in the near future, as the use of cloud services comes to
be a common practice in constructing IT applications.

References

1. Yau, S., Ho, G.: Software Engineering meets Services and Cloud Computing. IEEE
Computer Magazine, 47 (October 2011)

2. Sinivasan, S., Getov, V.: Navigating the Cloud Computing Landscape – Technologies,
Services and Adopters. IEEE Computer Magazine, 22 (March 2011)

3. Jones, C.: Software Engineering Best Practices. McGraw-Hill, New York (2010)
4. Baresi, L., Di Nitto, E.: Test and Analysis of Web Services. Springer Pub., Berlin (2007)
5. Shull, F.: A brave new World of Testing – an Interview with Google’s James Whittaker.

IEEE Software Magazine, 4 (March 2012)
6. Sneed, H.: Certification of Web Services. In: Workshop on Service-oriented Architecture

Maintenance-SOAM, CSMR 2008, Athens, p. 336 (2008)
7. Bozkurt, M., Harman, M., Hassoun, Y.: Testing Web Services – A Survey. Softw. Test.

Verif. Reliab., 1–7 (2007), doi:10.1002/000
8. Tsai, W.T., Zhou, X., Chen, Y., Bai, X.: On Testing and Evaluating service-oriented

Software. IEEE Computer Magazine, 40 (August 2008)
9. http://Supersareware.com/info/SOA-Cleaner (2010)

10. Riungu-Kalliosaari, L., Taipale, O., Smolander, K.: Testing in the Cloud – Exploring the
Practice. IEEE Software Magazine, 46 (March 2012)

11. World Wide Web Consortium 2, http://WWW.Webinject.org
12. Sneed, H., Huang, S.: The Design and Use of WSDLTest – a Tool for testing web services.

Journal of Software Maintenance and Evolution 19(5), 297 (2007)
13. Sneed, H.: Bridging the Concept to Implementation Gap in Software Testing. In: 8th Int.

Conference on Software Quality (QSIC 2008), Oxford (2008)
14. Sneed, H.: Measuring Web Service Interfaces. In: IEEE Proc. of Workshop on Website

Evolution – WSE 2010, Timesvar, Ro., p. 41 (2010)

Model-Based Strategies for Reducing the

Complexity of Statistically Generated Test
Suites

Winfried Dulz

FAU University of Erlangen-Nuremberg,
Department of Computer Science, Erlangen, Germany

dulz@cs.fau.de

http://www7.informatik.uni-erlangen.de/~dulz/

Abstract. The main purpose of this paper is to show how model-based
techniques are used to efficiently control the generation of less complex
test suites. By directed adjusting specific probability values in the usage
profile of a Markov chain usage model it is relatively easy to generate
abstract test suites for different user classes and test purposes in an auto-
mated approach. A stepwise refinement process for hierarchical Markov
chain usage models and choosing appropriate test generation, respec-
tively selection strategies can reduce the complexity of the resulting test
suite significantly. By using proper tools, like the TestUS Testplayer even
less experienced test engineers will be able to efficiently generate abstract
test cases and to graphically assess quality characteristics of different test
suites.

Keywords: model-based testing, Markov chain usage model, statistical
test suite generation, test suite assessment.

1 Introduction

Implementing a software system usually consists of many different phases. Start-
ing from requirements definition the development process is divided into a
number of design, specification, programming and testing steps. Each software
engineering step is guided by an appropriate method and generally supported
by a dedicated tool.

1.1 Model-Based Test Case Generation

An approach, where the test cases are generated in parts or completely from
a model is called Model-based Testing. Model-driven testing techniques [1], [2]
make use of models of either the SUT (system under test) or the expected usage
of the users of the SUT. In general, a distinction is made between

– System specifications, which model the functional behavior of the SUT and
– Usage models that model the usage behavior of the future users of the system.

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 89–103, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

90 W. Dulz

Test cases, which are generated from a system specification [3] are often used in
the so-called component or unit test. Usage models are mostly applied for the
generation of test cases for the system or acceptance test. The widespread V-
Model [4] clarifies this relation by distinguishing between the development and
the test of a system.

1.2 Statistical Test Case Generation

Because exhaustive testing of real systems is infeasible in practice an appropriate
set of test cases is derived for accomplishing a given test goal. With the help of
statistical usage models, so-called Markov chains [5], [6], individual test cases or
complete test suites are automatically derived by simple push button operations.
Markov chains are graphical models and represent

– usage states for modeling the user behavior during the interaction with the
system, as well as

– state transitions to specify the reaction of the system on a user’s interaction.

Usually there are many alternatives to reach possible successor states from a
given usage state. The probability that a particular action can be executed is
called transition probability between the usage states. By adjusting the opera-
tional profile [7], i.e. the probability values of the usage distribution it is very
easy to specify varying usage behavior for different user classes. In this way,
the test engineer can automatically create distinct test cases for different system
users. Test cases are derived by traversing the Markov chain between two spe-
cific start and end states by considering the probabilities of the selected usage
profile. How to derive the usage distribution for a Markov chain usage model in
a more systematic way is discussed in [5], [8], [9], [10] and [11].

1.3 Automatic Test Case Generation

The TestUS1 TestPlayer c© is a versatile tool for the automatic generation of test
cases and enables the user-friendly analysis, evaluation and visualization of the
resulting test suites [12].

Using the TestPlayer the test engineer will assess the quality of the generated
test cases on the basis of graphical representations at an early stage and even
before the actual test suite execution. The TestPlayer reveals in an convenient
way the basic characteristics of the generated test suite, such as the mean and
maximum length of the test cases in a test suite, the accordance between the
usage profile of the Markov chain and the usage frequencies of the generated
test suite, the coverage of all usage states, respectively transitions after having
executed the test suite.

The concept of the TestPlayer is very general and independent of specific ap-
plication domains. In this way, test models are created that can be used in any
domain. Our expertise and experience from various national and international

1 http://www.testus.eu/

http://www.testus.eu/

Reducing the Complexity of Statistically Generated Test Suites 91

projects show that statistical usage models based on Markov chains are very
well suited for the testing of applications in different domains, such as Informa-
tion and communication technology, Medical technology, Automotive, as well as
Automation technology.

To our knowledge only two further tools are available that support statistical
usage testing at the moment. JUMBL2 [13] developed at SQRL (Software Qual-
ity Research Laboratory, University of Knoxville Tennessee) and MaTeLo [14]
licensed from ALL4TEC3. Because both tools lack in the graphical assistance
for analyzing and comparing different generation strategies for statistical usage
testing the versatile TestPlayer was developed in cooperation with the TestUS
company. Using the TestPlayer, it is easy to perform a tool-driven assessment of
intra and inter test suite characteristics. It is also possible to decide very fast,
which and how many test cases are needed to reach a given test objective [12].
Another technique, which focuses on optimizing the number of test cases that
are generated from a given usage model is discussed in [15].

In the next sections we take a closer look on the underlying test case generation
processes. By applying a concrete usage model that was published in [16] we
demonstrate how to perform typical tasks in the test case generation, analyzing
and selection process. We will also discuss different measures that allows us to
evaluate the test suite selection process, when we have to decide, which test cases
are the best choice in order to fulfill a certain test criteria.

2 TestPlayer - A Tool for Automatic Test Case
Generation

At the beginning of the test generation process a concrete usage model must be
provided. For this purpose we decided to edit and visualize the model diagrams
by means of the yED graph editor from yWorks4.

Fig. 1 shows the visualization of a Markov chain usage model that was dis-
cussed by Poore and Trammell [16] and which will serve as a running example.
Start and end states of the hierarchical NAS usage model have labels S1 and
S17, respectively. Labels ei and pi that are attached to the edges represent
events and the associated probabilities for the state transition. There also exist
two hierarchical states Mode-1 and Mode-2 that contain inner states S4 to S9,
respectively S5 to S16 that allow to generate test cases of lower complexity as
discussed in section 3.

The TestPlayer can be executed in any modern web browser via a graphical
user interface that provides HTML55 and AJAX6 web technologies. Specific
elements of the graphical user interface enable a comfortable and user-friendly
control of different tasks when statistical usage testing is performed.

2 http://sqrl.eecs.utk.edu/esp/jumbl.html
3 http://www.all4tec.net/
4 http://www.yworks.com/
5 http://www.w3schools.com/html5/77
6 http://www.w3schools.com/ajax/

http://sqrl.eecs.utk.edu/esp/jumbl.html
http://www.all4tec.net/
http://www.yworks.com/
http://www.w3schools.com/html5/77
http://www.w3schools.com/ajax/

92 W. Dulz

Fig. 1. The NAS [16] Markov chain usage model

Reducing the Complexity of Statistically Generated Test Suites 93

2.1 Global Definitions for the Test Case Generation

In the global section, all essential definitions for the automatic generation of test
cases using the TestUS TestPlayer can be specified (Fig. 2). These include

– Model: file name of the usage model
– Number of test cases: target number of test cases that have to be pro-

vided
– Model start state: name of the start state of the usage model
– Model end state: name of the final state of the usage model
– Profile usage: declaration, whether a statistical usage profile (clicked) or

a uniform distribution (unclicked) will be employed for the generation algo-
rithm of the test cases

– Profile file name: file name of the statistical usage profile if the button
has been clicked before.

Fig. 2. TestPlayer User Interface

2.2 Automatic Generation of Test Cases

If a complete usage model is given test cases can be generated and sorted by
using predefined sorting strategies:

94 W. Dulz

– unsorted: individuell test cases are generated either from a selected usage
profile or randomly from a uniform distribution; the output order of the test
case list is unsorted

– frequency: the output list is sorted by the relative frequency of the test
cases, i.e. common test cases appear first, seldom test cases appear at the
end of the list

– length: the output list is sorted by the length of the test cases, i.e. shorter
test cases appear first, longer test cases appear at the end of the list

– multiplicative probabilities: the output list is sorted by the occurrence
probability of the test cases, i.e. test cases with a higher probability appear
first, test cases with a small probability appear at the end of the list

– additive probabilities: the output list is sorted by the additive proba-
bilities of all test steps, i.e. test cases with a higher total probability appear
first, test cases with a small total probability appear at the end of the list

– complexity: the output list is sorted by the complexity of the test cases,
which is the product of the test case length and its additive probabilities.

In this way test suites, which have quite different properties are created auto-
matically. The following facts will help to understand better the specific charac-
teristics of the resulting test cases, respectively test suites:

– The desired maximum number of test cases is provided by Number of test

cases. Nevertheless, in certain situations less test cases may be generated
as specified. This situation occurs if

• the graph of the usage model does not contain loops and only a limited
number of possible paths between the start and end states exist, or

• the graph of the usage model contains edges and loops that have very
small transition probabilities. For that reason the generation algorithm is
producing only paths, which have a relative large occurrence probability,
respectively total sum probability. Very seldom paths are found only after
having adjusted Number of test cases, i.e. this number is big enough
that due to the statistical law of big numbers also very seldom test cases
are generated.

– If the sorting strategies complexity, length or multiplicative

probabilities are selected the TestPlayer will generate test suites that
cover the nodes or transitions of the usage model by a larger num-
ber of shorter test cases with a smaller complexity. In addition, strategy
complexity is minimizing the total test suite complexity, compared to the
other strategies.

– By choosing sorting strategies unsorted or multiplicative

probabilities the TestPlayer will generate test suites that cover the
nodes or transitions of the usage model by a smaller number of longer test
cases and that result in a greater total test suite complexity.

How to assess the resulting test suites is discussed in section 3 and summarized
in Table 1.

Reducing the Complexity of Statistically Generated Test Suites 95

2.3 Textual Output of Test Suite Metrics

After having automatically generated the test cases, a first analysis of the test
suite is recommended. For this purpose the TestPlayer produces two files in the
selected test suite directories:

– testsuite name.tsm: the test suite repository that contains all details in a
binary representation format to be retrieved later for further explorations

– statistics.txt: relevant analysis results for the generated test suite in a
human readable textual representation format.

Among others, the following information is contained in the statistics file:

– Number of relevant nodes/transitions : number of usage states/transitions,
i.e. nodes/edges in the usage model that may be visited at least once during
the test.

– Source entropy of the profile: measure of uncertainty of the usage model.
The larger the entropy for a given usage model the more uncertain is the
forecast, which path is chosen when the test cases are generated [17]. Small
values of the entropy reduce the possible number of paths while traversing
the usage model.

– Number of unique test cases in the test suite: number of distinct test cases.
In the normal case this number should be equal to the provided Number of

test cases but it may be smaller under certain circumstances, as discussed
in the previous subsection.

– Mean length of a test case for the profile: mean number of single test steps
a test case is composed of with respect to a given usage model.

– Mean length of a test case in the test suite: mean number of single test steps
a test case is composed of with respect to a generated test suite. The more
accurate the compliance of both numbers for the usage model and the test
suite is, the better is the approximation of the predicted usage behavior
during the test suite execution.

– Kullback/Leibler divergence between MCUM and test suite: this metric is
comparing the probability distribution of the usage model and the frequen-
cies of the generated test suite [17]. The closer this number is to the value
0, the more accurate is the approximation.

– Number of test cases needed to cover all nodes / transitions : number of
necessary test cases to visit all usage states/transitions (nodes/edges of the
usage model) at least once during the test execution.

2.4 Graphical Output of Test Suite Metrics

After having generated a test suite specific metrics are used visualize the quality
of the test suite graphically. Again, we apply the NAS example [16] for discussing
some details:

– SSP: comparison of the steady state probabilities of the usage model and the
relative frequencies of the corresponding states in the generated test suite.

96 W. Dulz

Fig. 3. Steady state probabilities vs. relative frequencies

Fig. 3 shows that states S2, respectively S11 have probabilities 0.0998, respec-
tively 0.2662 for the usage model and 0.1018, respectively 0.2631 for the relative
frequencies inside a test suite that consists of 100 test cases. The concrete num-
bers are contained in the file SSP.txt, which is provided by the TestPlayer for
textual documentations. Because we didn’t use hierarchical states Mode-1 and
Mode-2 for generating higher level test cases both states have probability val-
ues of zero. It should also be mentioned that the steady state results are in
accordance with the values that are published in Table 4 of [16].

If no usage profile is provided by the test engineer a uniform distribution is
automatically calculated during the test generation procedure. As a result the
SSP diagram (Fig. 4) and the corresponding file SSP.txt show different values
for usage states S2, respectively S11 in a test suite consisting of 100 test cases.
Again, the results for the long run steady state probabilities are in accordance
with the values that are published in Table 3 of [16].

– SSV: comparison of the mean number of test cases needed to visit a certain
usage state once in the usage model and during the test execution.

– KL: visualization of the Kullback/Leibler divergence [17] and the mean
weighted deviation [12] between the usage model and the test suite.

– SSP.N, SSV.N, KL.N: corresponding values for test suites that cover all nodes
of the usage model.

– SSP.T, SSV.T, KL.T: corresponding values for test suites that covers all
transitions of the usage model.

Reducing the Complexity of Statistically Generated Test Suites 97

Fig. 4. Steady state probabilities vs. relative frequencies (uniform case)

Fig. 5. Kullback/Leibler divergence for a test suite of 100 test cases

98 W. Dulz

In the upper diagram of Fig. 5, the KL divergence for the test suite 100 sort c p

that contains 100 test cases starts fairly high with a value of 22.5488. As further
seen, these values decrease very fast to 0.7812, respectively 0.0747 after having
considered the first 11, respectively 22 test cases. Thereafter, the curve remains
flat and reaches the final value 0.1129 after having considered all 100 test cases.
The concrete numbers are contained in the file KL 100 0.txt, which is provided
by the TestPlayer for textual documentations.

Fig. 6. Last test case for strategy single test case

Reducing the Complexity of Statistically Generated Test Suites 99

The lower diagram of Fig. 5 shows a zoom of the first 25 test cases. After the
interpretation of these figures a test engineer may conclude that 22 test cases
are sufficient for testing the SUT.

2.5 Graphical Visualization of Test Cases

The TestPlayer offers a variety of ways to visualize individual test cases, groups
of test cases or a complete test suite. The Highlighting strategy determines
whether test cases are labeled as a group (accumulated) or if each test case
(single test case) is labeled individually. This means in detail

– single test case: labels of nodes and edges are carried out for all test
cases independently and individually.

– accumulated: usage states (nodes) that are already labeled in the previous
test cases keep their labels; in addition new labels are added for those nodes
that appear for the first time in a test case.

– Node labels are modifications in shape and color and have the meaning that
a usage state is visited during the test case. In this way, test cases change
successive usage models on and on, until finally all nodes except the start
and end states are labeled, provided that a sufficient number of test cases is
selected or the coverage strategy node coverage was chosen.

– State transitions (edges) also have labels that can be changed. Edge labels
are individually markings for each test case and contain the event and the
frequency that counts how often the individual edges are traversed during
the test case.

In Fig. 6 the last test case for covering all nodes in the NAS usage model is
highlighted by using the highlighting strategy single test case.

3 Hierarchical Usage Models

The application of hierarchical usage states enables the modeling and test case
generation for arbitrary complex software systems. By using progressive refine-
ment steps for top-down design processes or stepwise coarsening for a bottom-up
design approach usage models for generating less complex test suites are devel-
oped. We demonstrate the principle approach by defining two hierarchical usage
states in the NAS usage model (see Fig. 1):

– Mode-1 consisting of atomic usage states S4, S6, S7, S8 and S9

– Mode-2 consisting of atomic usage states S5, S10, S11, S12, S13, S14, S15 and
S16.

Atomic usage states in this context are elementary, not further decomposable
states. If one ore both of the two hierarchical usage states Mode-1 and Mode-1
are closed, all internal atomic states are no longer visible and should not be
considered during the test suite generation.

100 W. Dulz

Fig. 7. Highlighted test case after pruning inner states of usage state Mode-2

After pruning inner states the TestPlayer will generate test suites that consist
of less complex test cases. The result of closing and pruning hierarchical usage
state Mode-2 is shown in Fig. 7, where the last test case for covering all states
is displayed by applying the highlighting strategy single test case.

Table 1 compares the complexity of test suites that are generated by the
different generation strategies introduced in section 2.3. Each test suite consists
of a subset out of 100 test cases that covers all transitions of one of the four
underlying usage models:

– NAS : complete, unchanged usage model published in [16]

– NAS pruned (Mode-1): reduced usage model, where all inner states of the
hierarchical usage state Mode-1 have been pruned

– NAS pruned (Mode-2): reduced usage model, where all inner states of the
hierarchical usage state Mode-2 have been pruned

– NAS pruned (Mode-1 and Mode-2): reduced usage model, where all inner
states of the hierarchical usage states Mode-1 and Mode-2 have been pruned

Each entry in Table 1 is a pair of (number of test cases/complexity of the test
suite). Each row in the table contains the results for a specific generation strategy,
e.g. Complexity that is chosen for the test case generation procedure.

The entries in the first row for sorting strategy Complexity show that no
other strategy will produce a test suite with a lower value for the complexity.

Reducing the Complexity of Statistically Generated Test Suites 101

Table 1. Complexity of test suites that cover all transitions

NAS NAS pruned NAS pruned NAS pruned
(Mode-1) (Mode-2) (Mode-1 and

Mode-2)

Complexity 10/1039 11/879 4/126 3/43

Length 11/1129 12/1100 4/126 3/43

Mult. Prob. 13/2317 11/970 4/126 3/43

Frequency 8/8941 5/3506 4/126 3/86

Add. Prob. 3/15915 2/11559 1/7774 1/1343

Unsorted 6/8835 4/8029 4/790 3/624

On the other hand sorting strategy Additive Probabilities generates test
suites with the smallest number of test cases, which have a very high complexity
value.

If the test engineer is interested in extensively testing of hierarchical usage
stateMode-1 the test focus of test suite NAS pruned (Mode-2) provides sufficient
insight in the SUT and the complexity of the resulting test cases is significantly
lower compared to NAS.

Another technique to focus only on specific parts of a given usage model is
based on the probability profile, which is discussed in the next section. For that
reason the probabilities in the profile are changed in order to visit only those
states of special interest.

4 Test Focusing by Means of Adapted Usage Profiles

Of particular importance for the validation of the SUT are customized usage
profiles that focus the test execution on selected usage states, respectively sets
of usage states. This can be done either by

– avoiding a transition (Si, Sj) that is starting in usage state Si and ending
in usage state Sj by setting the corresponding probability value p(Si, Sj) to
zero, i.e. p(Si, Sj) = 0 or by

– forcing a transition (Si, Sj) by setting the corresponding probability value
p(Si, Sj) to one, i.e. p(Si, Sj) = 1.

The result is an adopted usage profile that will serve for the test case generation
process. A test case that has to be performed by all means during the test exe-
cution due to special security requirements is often referred to as the happy path.
The implementation of a happy path can easily be achieved with the concept of
adapted usage profiles as well.

An adopted usage profile for the NAS usage model (Fig. 1) that focuses on
the hierarchical usage state Mode-1 is is given by the following set of modi-
fied probability values: p(S2, S3)=0, p(S5, S10)=0, p(S5, S11)=1, p(S11, S5)=0,
p(S11, S10)=0, p(S11, S12)=0, p(S11, S13)=0, p(S11, S14)=0, p(S11, S15)=0 and
p(S11, S16)=1.

102 W. Dulz

The test suite for covering all transitions by using the sorting strategy
Complexity consists of 3 test cases and has the complexity value 190 compared
to 126 of the NAS pruned (Mode-2) of Table 1.

Note that the inner usage states S5, S11 and S16 of the hierarchical usage
state Mode-2 cannot be avoided, because they are a part of the path to reach
the final state S17. This is the reason why the complexity is higher than in the
case of pruning inner states of Mode-2.

5 Main Findings and Final Remarks

In this paper we discussed different techniques for reducing the complexity of
automatically generated test cases by using the versatile TestPlayer c© tool for
the generation, analysis and evaluation of abstract test suites.

A small running example published in [16] was used to explain the major
steps of our approach. Using the TestPlayer, it is easy to perform a tool-driven
assessment of intra and inter test suite characteristics. It is also possible to
decide very fast, which and how many test cases are needed to reach a given test
objective. The main findings of our paper are the following:

– Model-based techniques that provide and use graphical representations of
usage models yield in a good acceptance also for unexperienced test engi-
neers.

By using a graphical user interface it is very easy to set the test focus on
specific regions that shall be tested. Based on diagrams that visualize test
suite characterists, e.g. deviation of steady state probabilities and usage fre-
quencies the decision, which test suite should be chosen is more easily done
then only by analyzing columns of numbers.

If the resulting test cases are displayed in a clear, highlighted format test
engineers and customers can better understand certain test steps that will
influence the outcome of the test.

– The application of hierarchical usage states supports the clarity of bigger
real-life applications and the resulting usage models at one side. On the
other side, directed focusing on the interesting parts of the usage model by
closing of hierarchical states and pruning the inner states, as discussed in
section 3, will result in more manageable test suites of lower complexity.

– Adopted probability profiles support the selective generation of special test
cases that are necessary to test specific parts of the SUT. Sometimes a con-
crete happy path has to be executed during the test due to special security
or other non-functional requirements.

Based on adopted probability profiles different user groups that interact with
the SUT can be distinguished by different test suites that result from dif-
ferent adopted probability profiles. How to systematically derive an adopted
profile is published in [11].

– The complexity of a test suite is a main criteria for comparing and selecting
different test suites, as shown in section 3.

Reducing the Complexity of Statistically Generated Test Suites 103

When no other selection criteria will overrule the decision the test suite with
the smallest number of test cases and the lowest complexity shall be chosen.

– Based on graphical representations it is more easy to find a good criteria
for stopping the test execution. The Kullback/Leibler divergence (Fig. 5) dis-
cussed in subsection 2.5 will help the test engineer to determine the best value
for selecting an optimal subset of the test cases during the test execution.

References

1. El-Far, I.K., Whittaker, J.A.: Model-based Software Testing. In: Marciniak, J.J.
(ed.) Encyclopedia on Software Engineering. Wiley (2001)

2. Legeard, B., Utting, M.: Practical Model-Based Testing. Elsevier (2007)
3. Rosaria, S., Robinson, H.: Applying models in your testing process. Information

and Software Technology 42, 815–824 (2000)
4. Tian, J.: Software Quality Engineering. John Wiley&Sons (2005)
5. Whittaker, J.A., Poore, J.H.: Markov Analysis of Software Specifications. ACM

Transactions on Software Engineering and Methodology 2(1), 93–106 (1993)
6. Walton, G.H., Poore, J.H., Trammell, C.J.: Statistical Testing of Software Based

on a Usage Model. Software - Practice and Experience 25(1), 97–108 (1995)
7. Musa, J.D.: The operational profile. NATO ASI Series F, Computer and System

Sciences 154, 333–344 (1996)
8. Walton, G., Poore, J.: Generating transition probabilities to support model-based

software testing. Software Practice and Experience 30(10), 1095–1106 (2000)
9. Poore, J., Walton, G., Whittaker, J.: A constraint-based approach to the repre-

sentation of software usage models. Information & Software Technology 42(12),
825–833 (2000)

10. Takagi, T., Furukawa, Z.: Constructing a Usage Model for Statistical Testing with
Source Code Generation Methods. In: Proceedings of the 11th Asia-Pacific Software
Engineering Conference, APSEC 2004 (2004)

11. Dulz, W., Holpp, S., German, R.: A Polyhedron Approach to Calculate Probability
Distributions for Markov Chain Usage Models. Electronic Notes in Theoretical
Computer Science 264(3), 19–35 (2010)

12. Dulz, W.: A Comfortable Test Player for Analyzing Statistical Usage Testing
Strategies. In: ICSE Workshop on Automation of Software Test (AST 2011), Hon-
olulu, Hawaii (2011)

13. Prowell, S.J.: Jumbl: A tool for model-based statistical testing. In: HICSS, p. 337
(2003)

14. Dulz, W., Zhen, F.: MaTeLo - Statistical Usage Testing by Annotated Sequence
Diagrams, Markov Chains and TTCN-3. In: IEEE International Conference on
Quality Software (QSIC 2003), pp. 336–342 (2003)

15. Barade, S., Srivastava, P.R., Jose, N., Ghosh, D.: Optimized Test Sequence Gen-
eration from Usage Models using Ant Colony Optimization. International Journal
of Software Engineering & Applications (IJSEA) 1(2), 14–28 (2010)

16. Poore, J.H., Trammell, C.J.: Application of statistical science to testing and eval-
uating software intensive systems. In: Statistics, Testing, and Defense Acquisition.
National Academy Press, Washington, D.C. (1998)

17. Prowell, S.: Computations for Markov Chain Usage Models. Technical report, Soft-
ware Engineering Institute, Carnegie-Mellon University, Pittsburgh, USA, UT-CS-
03-505 (2000)

Hazard Analysis for Technical Systems

Mario Gleirscher

Institut für Informatik, Technische Universität München, Germany
Mario.Gleirscher@TUM.de

Abstract. Hazard analysis is an indispensable task during the specifi-
cation and development of safety-critical, technical systems, particularly,
their software-intensive control parts. There is a lack of methods support-
ing an effective and integrated way to carry through such analyses for
these systems in the context of software quality assurance. Crucial issues
are to properly (i) encode safety-relevant domain knowledge, (ii) identify
and assess all relevant hazards as well as (iii) preprocess this information
and make it easily accessible for adjacent safety and systems engineering
activities. This work contributes a framework for qualitative modelling
and hazard analysis. The approach is exemplified by the investigation of
a commercial road vehicle in its operational context.

Keywords: Safety risks, hazard analysis, system modelling, safety en-
gineering, requirements specification, interdisciplinary control design.

1 Safety of Technical Systems

Modern plants, machines or vehicles are equipped with a high proportion of soft-
ware mastering complex control problems to ultimately provide sophisticated
usage functions. As such functions strongly affect the physical environment,
safety—the degree of freedom from hazards —is a critical quality attribute of
these systems. The more necessary the human or societal needs are they have
to fulfill, the higher are the user expectations on vendor responsibility or war-
ranty. Moreover, their vendors face the pressure of competition in safety innova-
tions [45]. This is mirrored by national laws, standards such as, e.g., EN 61508
or ISO 26262, EU directives or guidelines of the vendors themselves.

Safety Engineers’ Tasks and Problems. Following the mentioned circumstances,
a systems engineering process includes requirements engineering (RE) for proper
specification of the system’s interface and functionality, architecture design (AD)
for technically mature planning of realisation, and interdisciplinary realisation
and integration (RI). During RE, a safety engineer has to gain understanding of
candidate hazards [22] and to perform safety-oriented validation of the specifica-
tion. She identifies and characterises hazards using various sources of information
such as, e.g., insurance models, human error classifications [47], injury sever-
ity scorings, accident databases1, driving situation registers, the international

1 E.g., at the AOPA Air Safety Institute: www.aopa.org/asf/accident_data or the
Institut für Unfallanalysen: http://unfallforensik.maindev.de.

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 104–124, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.aopa.org/asf/accident_data
http://unfallforensik.maindev.de

Hazard Analysis for Technical Systems 105

nuclear event scale [56], expert discussions. By consulting design documents dur-
ing AD, she has to relate possible weaknesses or faults to hazards at the system
interface. This enables her to recommend measures to avoid or mitigate relevant
hazards, their causative weaknesses or other causal factors. To properly finish
RI, she needs to prepare information for safety-oriented verification or testing.
Her responsibility is to assure that the software-intensive control mechanisms at
the heart of a technical system are safe because they do exactly what is needed
to reliably avoid or mitigate relevant hazards.

State of the Art. Safety analysis aims at understanding the relationship between
software, electronic or mechanical hardware faults and their impact in terms of
hazardous system failures. Safety is inherently interdisciplinary and as such a
core systems engineering issue. But the relationship between system safety goals
and component safety and reliability requirements is often not formally captured.
This makes it difficult to relate software, electronic or mechanical component
weaknesses to hazards at the system level. The system is mainly modelled as
a glass-box to tie defects and their propagation to its edificial structure and
to support detailed design for reliability. This detracts from the investigation
of system behaviour before and after critical events and the consideration of
weaknesses to be temporally distant or even external causal factors.

Hazard knowledge has hardly ever2 been systematically transferred to inter-
disciplinary, qualitative behavioural system models describing interaction be-
tween the system and its environment. [45] already pointed out this issue in
accident analysis and interdisciplinary risk management. Available approaches
(as surveyed in Section 7) do not consider such models already used in projects
applying model-based RE [53]. They are suitable to be checked for correctness,
completeness and consistency w.r.t. the tasks of safety engineering. Commer-
cial reliability and safety tools3 also still lack support for this kind of models.
While misoperation of the environment or misbehaviour of users are improp-
erly analysed [46] or even neglected, the development of fault-tolerant (i.e.,
fail-operational or fail-silent) functions is well supported. These and further
problems are considered relevant by [6,38]. For safety as a critical software qual-
ity attribute, we might then ask:

How can the judgement of a software’s safety be significantly improved?

To address this cumulative problem, the work at hand takes a human-centric
qualitative perspective of the whole physical system to be analysed. The frame-
work and a procedure (Figure 1) suggested for this are described in Section 2,
demonstrated and discussed in Section 3. An overview of related work is given
in Section 4. Section 5 provides concluding remarks and hints further work.

2 The author interviewed nine experienced safety practitioners to conclude this.
3 E.g., Isograph FaultTree+/Hazop+ (www.isograph-software.com), APIS IQ-
FMEA (www.apis.de), ReliaSoft Xfmea (www.reliasoft.de), medini analyze
(www.ikv.de).

www.isograph-software.com
www.apis.de
www.reliasoft.de
www.ikv.de

106 M. Gleirscher

2 A Framework for Hazard Modelling and Analysis

The framework comprises a model of both, the system’s and the environment’s
functionality, suited for alignment with RE and testing. This requires the con-
sideration of two primary artefacts : A specification S and a realisation W .

2.1 Safety-Oriented System Modelling

Concepts. S is described in two complements: A qualitative behaviour (or black-
box) model M of the world consisting of the system MI to be controlled and
the operational environment ME as this system’s context, and a set of property
assertions Sp for M. M takes the role of an operational functional specification
[11] which a realisation W encompassing the system I and the environment E
has to be aligned with.M results from the parallel composition ME ||MI of these
two components. For hazard analysis, M abstracts from the boundary between
the control software and its sensors and actuators to the boundary between I
and E [43]. This machine boundary is described by interface phenomena [30] In
M∗, where ∗ ∈ {I, E}, three functional aspects are separated:

– Usage functionality f∗use (also called nominal functionality),
– defective functionality f∗fail (for explicit modelling of defects, e.g., failures),

and
– safety functionality f∗save as an enhancement of f∗use to avoid or mitigate f∗fail.

Each aspect can consist of hierarchically composed functional fragments. A func-
tion of MI resp. a tactic of ME is a merger of matching fragments of all three
aspects of MI resp. ME . Sp takes the role of a descriptive functional specifi-
cation of, e.g., safety goals. The setting of Sp and M is suited to apply formal
methodology as described in [2]. A local situation σ of M is any coherent and
distinguished class of value tuples over M’s interface phenomena. σ0 denotes an
initial situation.

Semantics. A behaviour is an observable execution trace of a system [34].W |= S
resp. W �|= S (spoken “W satisfies resp. violates S”) means that all behaviours
in W are allowed resp. some are prohibited by S. The behaviours allowed by S
equal the cutting set of possible behaviours of M and Sp. Here, the satisfaction
relation |= corresponds to the subset relation ⊆ on behaviours.

2.2 Step 1: Specify the Usage Functionality f∗use

Under the assumption that a proper initial, informal set of goals or requirements
R is available from RE and that the current step achieves or maintains fIuse||fEuse |=
Sp, set up Sp and f∗use by adopting or redoing the following RE tasks:

1.1 Transform the informal function definitions Rf into use cases (UC) accord-
ing to, e.g., [15] and the set of informal property assertions Rp into Sp

according to, e.g., [21].

Hazard Analysis for Technical Systems 107

Declarative and Procedural Hazard Knowledge

Requirements
and Domain
Knowledge R

Realised World
W = I || E

Property
Assertions Rp

Scenarios
(Behaviours)

Mishaps, Hazards
and Causal Factors

(Weaknesses)

Step 4:
Classify and

Assess
Hazards

Step 1:
Specify f*use

Step 2:
Model f*fail

Step 3:
Identify

Candidate
Hazards

Step 6:
Construct

f*save

Artefact

Task

Legend:

Function
Definitions Rf

Validation Trace

Artefact Flow

Step 5:
Specify Safety

Goals

Conformance Trace

Requirements Specification and Defect Model S

Formal Property
Assertions Sp

Modelled World
M = MI || ME

Step 1 + 2:
Informal Manual

Conformance

Safe Requirements Specification S‘
Formal Property

Assertions S‘p
Modelled World
M‘ = M‘I || M‘E

Step 5 + 6:
Requirements Validation

Step 6

Verification &
Testing

Operations (1.4)

Mishaps (3.2)
Candidate Hazards (3.3)

Hazardous Actions (4.1)
Relevant Hazards (4.3)

Goal Assertions (5.3)

Safety Measures

Fig. 1. A procedure in six steps for using the framework

1.2 To capture possibilities of interaction, determine the machine boundary and
its interface phenomena from the preliminary system interface concept.

1.3 Transform the UCs into a multi-level hierarchy of usage functions [10] by
extracting and arranging their independent, concurrent and common parts.

1.4 Identify modes of operation and operations of I and E at all non-leaf levels.
1.5 Model the interaction of I and E via usage functions in fIuse and environment

tactics in fEuse. For each leaf function of the hierarchy, identify actions, their
repetition and order by the help of modes.

2.3 Taxonomy and Representation of Safety-Related Defects

Taxonomy. A defect is an observable and unacceptable lack of behavioural con-
formance between two artefacts, for example, S �= S′4, MI �|= S ′

p or W �|= M′.
Behaviours deviating from fIuse or Sp represent currently unacceptable5 executions
or suppressions of actions or operations and allow to explicitly differentiate be-
tween their allowed and forbidden performance. I distinguish defects

4 x′ denotes that the intended level of safety has been achieved for the artefact x.
5 Unwanted, unintended or unexpected, but not yet validated w.r.t. safety.

108 M. Gleirscher

1. by their observation or measurement:

(a) Concerning the reproducibility or recurrence of an observation a sys-
tematic defect (reproducible stimuli and mode) differs from a semi-
systematic (reproducible stimuli but unknown mode) or a random (un-
known stimuli and mode) one.

(b) A defect can be operational, i.e., observed at runtime, or modelled, de-
pending on whether the observation has been made in W or M.

(c) The observation of a defect can be internal (i.e., I does not conform
to MI or Sp, or MI �|= Sp) or external (i.e., E does not conform to
ME or Sp, or ME �|= Sp). I speak of a failure if an internal defect is
observed in MI or via black-box analysis of I and of a weakness (also
fault or error) if it is observed via glass-box analysis of a previously
known architectural design of I.

2. by their effect-to-cause multiplicity: One has to identify groups of common
cause defects as well as defects caused by multiple factors.

3. by their origin in the system life cycle: Defects can originate from

(a) specification, i.e., wrong conception of the control problem,
(b) design, i.e., improper choice of architectural or technical means,
(c) realisation, i.e., erroneous implementation and integration, or
(d) operation, i.e., damage or wear out after inapproperiate use or lack of

maintenance and repair.

Representation of Defects by f∗fail. The mentioned kinds of defects are expressible
by M and Sp, for example, hazardous specification defects as a lack of confor-
mance M �= M′ or M �|= S ′

p. By using mode transition systems6 for M, I encode
such defects as nondeterministic or probabilistic, defective transitions (i.e., er-
roneous, inconsistent or ill-timed guard or trigger conditions or effects) as well
as failure modes and faulty states. By using temporal logic interface assertions
in Sp, I encode more subtle interface defects like misperception of responsibility:
Violable assumptions of I about E may lead to a justification of defects fIfail as an
acceptable addition to fIuse. These assumptions may turn out to be too strong or
the system’s guarantees too weak. This style of specification [9] relates external
to internal defects.

Two kinds of specification defects (3.a) getting tangible when applying the
mentioned techniques for M and Sp are those of wrong type abstraction and
disregarded physical phenomena. Thereafter, MI could be defective in terms of
violable assumptions about

– the type and interpretation of monitored phenomena or of dependencies of
physical quantities to be effectively controlled (independence assumptions
violable by E may disclose invalid function signatures in MI),

– single observations of monitored events (domain maintenance assumptions
violable by E may disclose invalid function ranges in MI) or, in general,

6 A hierarchical, concurrent, probabilistic state machine model built on Markov chains
and qualitative abstraction of physical interface phenomena.

Hazard Analysis for Technical Systems 109

– histories of event observations (trace conformance assumptions violable by
E may disclose invalid function behaviour in MI).

These classes of violable assumptions have to be made explicit in S ′
p.

2.4 Step 2: Model the Defective Functionality f∗fail

Provided the concepts from Section 2.3, set up f∗fail using three strategies:

2.1 Use incompleteness in a) f∗use and introduce indeterminacy to derive explicit
hypotheses about possible defects, cf. [7, 18, 44], b) f∗use combined with f∗fail
for guessing implicit defects. This incompleteness is understood as implicit
assumptions on monitored interface phenomena.

2.2 Add physically relevant side effects of f∗use as part of f
∗
fail.

2.3 Apply reliability and failure analysis techniques to the architectural design
of I to answer the questions: How do weaknesses identified in I cause fail-
ures? Which are the minimal cut sequences, i.e., the shortest sequences of
weaknesses to occurr resulting in a failure?7 Qualitatively abstract from this
knowledge to identify failure transitions and modes in fIfail. This confirms and
improves the guesses about fIfail in steps 2.1 and 2.2.

2.5 Hazards, Their Identification and Classification

Hazard Conception and Modelling. Early reliability engineering perceived a haz-
ard as a conditional failure rate, i.e., as a risk solely induced by system fail-
ure [55]. The broader concept of hazard as discussed in [22] combines a hazardous
element with an initiating mechanism8 to threaten a target. The risk consists in
a potential negative outcome from this mechanism’s performance, i.e., a mishap
for the target.

In M, the hazardous element as a part of I and the target as a part of E are
connected to interface phenomena, I and E share with each other. The initiating
mechanism corresponds to actions of I and E . A mishap or harming event for
E is a condition μ on these phenomena reachable by performing these actions.
A hazard—understood as a set of hazardous states or interaction events—is a
condition χ constraining [45] these phenomena. This way, χ declares hazardous
performance, i.e., execution or suppression of these actions following a local
situation σ and potentially leading to μ. χ, σ and f∗fail as possible deviations
from f∗use or Sp can be combined to investigate potential progression towards μ.

Candidate Hazard Identification. In M, the identification of potential threats to
safety can be accomplished by taking two complementary viewpoints :
The (H)azard Viewpoint : Which hazards are possible? How does I endanger E?
Which actions could be performed in an unsafe manner?

7 Techniques for these two questions are out of scope of this article.
8 Concerning S , hazards can be related to nominal or defective behaviours.

110 M. Gleirscher

Dormant Failures
not derived from
Failure Analysis

Identified
Candidate (H)azards

Explicit (F)ailures
derived from

Reliability and Failure Analysis

(2) (1)

(3)
(4)

(2) (1)semi-systematic or random

systematic

Fig. 2. H vs. F: Hazard analysis determines (4), safety engineering builds on this

Table 1. Combinations (⊕) of f∗use with f∗fail or f
∗
save for hazard analysis: Nominal (CN),

explicitly defective (CD), with safety functions (CS); I . . . agent interaction

I
Component /
Agent

Functional
Aspect

CN CD CS

1 2 3 4 5 6 7 8 9 10 11

||
MI = fIuse ⊕ . . .

fIfail × × × × × × ×
fIsave × × × ×

ME = fEuse ⊕ . . .
fEfail × × × × × × ×
fEsave × × × ×

The Reliability and (F)ailure Viewpoint : Which failures are possible? How could
I violate S? Which actions could be performed in an unexpected manner?
Beyond the taxonomy for F in Section 2.3, [45] has already stated demand and
a proposal for a taxonomy to characterise typical hazard sources.

Hazard Classification. As the title suggests, I will pay more attention to H, but
both viewpoints are needed to address the following problems (Figure 2):

(1) Which explicit failures (w.r.t. S and derived in F) are hazards?
(2) Which hazards are dormant failures (w.r.t. S and not derived in F)?
(3) Which hazards are no failures (w.r.t. S) at all?
(4) Which hazards are relevant to be treated by S ′ and, thus, W ′?

There are eleven9 combinations (⊕) of ME ||MI , f∗use and f∗fail (Table 1). The
combinations 1–4 help answer the above questions to classify hazards :

1. Nominal behaviours at both sides, i.e., fEuse||fIuse |= Sp

2. Machine failures, i.e., fEuse||(fIuse ⊕ fIfail) �|= Sp

9 I do not regard all of the 16 possible combinations based on f∗use as I consider f
∗
save as

meaningful only if M already contains f∗fail.

Hazard Analysis for Technical Systems 111

3. Defects of the environment, i.e., (fEuse ⊕ fEfail)||fIuse �|= Sp

4. Defects of both agents, i.e., (fEuse ⊕ fEfail)||(fIuse ⊕ fIfail) �|= Sp

Explicit failures (1) violate guarantees in S. The difference between (2) and (3)
stems from the fact that dormant failures are defined as violations of implicit
assumptions in S. The relevant hazards (4) represent safety validity defects (sys-
tematic, originating from specification or design) and safety integrity defects
(semi-systematic or random, any origin) w.r.t. an S ′ to be derived (Figure 2).

2.6 Step 3: Identify Candidate Hazards

For all operations o (step 1.4) descending top-down the hierarchy (step 1.3):

3.1 Determine whether o is physically relevant, i.e., whether physical interface
phenomena from steps 1.2 and 2.2 are affected.

3.2 Identify conditions of harming events10 μ based on o’s interface phenom-
ena, e.g., areas which could get contaminated or where objects collide, get
sounded, glared or shot ; places where objects could get clamped, sheared,
scraped or cut ; surfaces where objects could get burned, vibrated, electri-
cally shocked or dissolved. Combine mishap guidewords such as, e.g., “too
fast, close, hot, much, many” [5, 49], to derive μ from o.

3.3 Derive candidate hazards χ̃ which indicate hazardous executions or sup-
pressions of o and separate hazardous from safe performance. Use hazard
guidewords such as, e.g., “unattended, unintended, unexpected, unwanted
or denied start, stop or change of o.” χ̃ uses o as predicate on modes, actions
and interface phenomena missing, being active or combined in an unforeseen
manner. A default χ̃ would be “Hazardous performance of o.”

3.4 Define situations σ by clustering conditions on M’s interface phenomena.

2.7 Quantitative Hazard Assessment

Risks are usually quantified by severity and probability values. To derive safety
goals, standards like, e.g., DIN 19250 [5] characterise a hazard χ by

a. the severity S of χ’s potential, harming events or consequences μ,
b. the probability W or H of χ’s occurrence without the measures of f∗save,
c. the exposure A of E ’s vulnerable assets to χ (part of W in ISO 26262), and
d. the detectability D and controllability C in E or I in case of χ’s occurrence

(here, modelled as f∗save and aggregated as G).

To estimate S using M, the assertion for a harming event μ can be manually
assessed by accident analysts (Section 1). For W, the probability of χ can be
calculated (cf. [23]) from the probabilistic model underlying M without f∗save.
To extract A, the environment parts of μ or χ have to assessed based on ME
regarding all phenomena consituting σ. For G, the probability has to be calcu-
lated from the probabilistic model underlying M with f∗save, particularly fEsave.
Thresholds and tables to act on these parameters are discussed in, e.g., [5].

10 An event condition is a behavioural property, e.g., a condition of a failure event
circumscribes unwanted deviations from f∗use or Sp, a condition of a harming event
circumscribes behaviours including physical harms of humans or the environment.

112 M. Gleirscher

2.8 Step 4: Refine, Classify and Assess Hazards

How and when is a candidate hazard χ̃ possible in f∗use? Which defects in f∗fail
can be causal factors? Investigate hazards and their relationship to defects and
nominal operation of W . For all combinations c ∈ {1..4} (steps 1 and 2, Table
1), harming events μ (step 3.2) and local situations σ (step 3.4):

4.1 Consider behaviours b exhibiting μ (Figure 2, H). For each b, determine
the actions and modes of the leaf usage functions or environment tactics
involved in executing or suppressing the operations o related to μ. Identify
regions of b where χ̃ holds. Derive refined (H)azards χ and classify them
based on the taxonomy in Section 2.3 and according to Figure 2 by refining
χ̃ for each region, where b
– makes explicit use of f∗fail or f

I
fail (step 2.1a), and put it into the set (1)

of known hazardous defects or (F)ailures.
– violates implicit assumptions in S, i.e., b has been guessed as implicit

defect hypothesis (step 2.1b), and put it into the set (2) of dormant
hazardous defects or (F)ailures.

– neither violates implicit assumptions nor guarantees in S, and put it into
the set (3) of hazardous nominal behaviours, i.e., potential specification
defects such as misperception of responsibility.

4.2 To quantify and determine relevant hazards (4), assess all χs w.r.t. the
parameters and thresholds mentioned in Section 2.7.

2.9 Step 5: Specify Safety Goals in S′
p

Transform the set (4) into a specification S ′
p of unaccepted behaviours :

5.1 Derive a safety goal assertion γ̃ by negation of μ or transforming χ, cf. [21].
5.2 Assign γ̃ to the usage functions of MI and environment tactics of ME

which are related to o as identified in step 4.1.
5.3 Enhance γ by the risk at which it is allowed to be violated. This corresponds

to specifying integrity classes (IC)—i.e., SIL, ASIL, DAL, AK, Cat or PL—
for functions and tactics as well as their modes and transitions.

2.10 Hazard Mitigation or Avoidance

The more that has to be done to identify relevant unknown (combinations 1–4)
and untreated (combinations 5–11) hazards χ, the stronger it can be stated that
S is safe (S = S ′). A non-empty set (4) means, that S is not safe (S �= S ′) and
not valid (M �|= S ′

p). Hence, if there are relevant hazards, MI or ME

– is not safe enough, i.e., too severe systematic defects, or
– shows unacceptable safety integrity, i.e., too many or too early random

defects.

Strategies for hazard mitigation deal with the question of howW can be equipped
to detect hazards and take over the control to avoid or mitigate mishaps.
Concerning fIsave, this results in the introduction of

Hazard Analysis for Technical Systems 113

1. fail-safe transitions such as fail-operational or fail-silent transitions in case
an internal weakness is detected (corresponds to set (1) ∩ (4) in Figure 2),

2. passive or preventive transitions independent of whether an internal weak-
ness is detected or not (corresponds to set ((2) ∪ (3)) ∩ (4) in Figure 2).

The implementation of such transitions in I depends on the defect type and
usually amounts to the state observation or runtime diagnosis of

1. weaknesses appearing in I for the achievement of fault-tolerance or
2. hazardous situations occurring in E for passive/preventive functions in f

′I
save.

Concerning f
′E
save, external measures usually consist of training, guidance, warning

signs and signals or technical protection mechanisms like in f
′I
save.

2.11 Step 6: Design the Safety Functionality f∗save
Develop S ′ to reduce hazards, to assess and to mitigate hazardous weaknesses.
Starting from the results on f∗fail and having safety goals in S ′

p, construct valid and

reliable safety functions in f
′I
save or properly assign responsibilities by assuming

f
′E
save on top of f

′∗
use. The ICs from step 5 are assigned to the superpositions of the

linked fragments to be implemented. The enhancement of Sp and M towards
S ′, where M′ |= S ′

p, should represent sufficient evidence to declare S = S ′ as
safe for inclusion into further design activities.

3 Application to Commercial Road Vehicle Safety

The procedure of Figure 1 as explained in Sections 2.2–2.11 is now exemplified.

3.1 Demonstration

I interpret I to be a commercial road vehicle (“truck” for short) and E the part
of the world including the driver, a truck is usually performing in.

Step 1. (1.1) The driving missions of a truck11 and possible tactics of its driver
are provided as use cases, e.g., #27 use truck (Table 2), #5 park at steep hill
(Table 3), #10 use brakes (Table 4). Some of the formal assertions for Sp could
be derived from the preconditions, the minimal or success guarantees of the
UCs. However, I do not need them for the current example. (1.2) Consider the
simplified entities area, I and other objects (oo) located in area. As physical
phenomena, consider two vectors for speed, vI and voo, and two for position,
posI and posoo. (1.3) Figure 3 shows the MI part of the function hierarchy
of a truck. The tactics in ME are constructed similarly from the UCs but are
not focused in this example. (1.4) The upper levels of the hierarchy help identify
complex operations observable at the interface of a truck by co-executing its
functions and the environment’s tactics, e.g., it can be moved or driven, loaded or
unloaded. Let move be operations of both, fIuse.Drive/Move and fEuse.ooMove. (1.5) For

example, Figure 4a shows the nominal specification of the function fIuse.StopBrake.
11 The data used in this example is an abstract from a larger case study focusing the

drive chain of a truck and performed in collaboration with a partner from industry.

114 M. Gleirscher

Table 2. Use case #27 “Use truck”

UC #27 Use truck (usage goal #27, fEMissions||fITruck)
Scope I; level: primary task in f∗use; primary actor: E
Preconditions Enough fuel, battery on, etc.

Minimal Guarantees Neither the trucker, his goods, nor the environment will be
harmed.

Success Guarantees The trucker accomplishes his mission by using the truck.

Trigger The trucker activates the vehicle by applying the key.

Description
(list of interaction
descriptions)

1. The trucker activates the vehicle by applying the key.
2. She performs, e.g., UC #5,10 to accomplish her missions.
3. The vehicle reacts properly to her commands.
4. The trucker deactivates the vehicle.

Table 3. Use case #5 “Park at steep hill”

UC #5 Park at steep hill (usage goal #5, fEuse.Park||fIuse.Drive/Move)

Scope I; level: primary task in f∗use; primary actor: E
Preconditions The truck is driving near a free and proper parking lot.

Minimal Guarantees

Success Guarantees The truck is parked in a parking lot at a steep hill compatible
to the current mission goal.

Trigger The trucker stops in front of a parking lot at a steep hill.

Description
(list of interaction
descriptions)

1. The trucker stops in front of a parking lot at a steep hill.
2. She uses gas pedal, steering wheel, clutch, gears, brakes
(UC#10) and rear mirrors to place the truck into the lot.

Step 2. (2.1, 2.2) Figure 4b shows failure possibilities as fragment fIfail.StopBrake.
(2.3) For sake of brevity, I assume that failure analysis confirms the aspect fIfail.

Step 3. I look for risks steming from truck operations from step 1.4. (3.1) move
is physically relevant because it affects vI and posI . (3.2) A mishap or harming
event for move is a collision defined as a combination of too small distances and
too high relative velocities and, thus, represented by an approximating condition

μ3 ≡ |vI − voo| ≥ vok ∧ |posI − posoo| ≤ maxx∈{oo,I}{diameterx} (1)

(3.3) The candidate hazard as a condition χ̃ for hazardous performance of move
would be tied to situations, such as, e.g., move triggered or altered without fore-
seen user operation (Table 5). For example, χ̃7 ≡ “Unattended start of move-
ment” formalised in terms of the hazard assertion

χ̃7 ≡ ¬(move ∨ userOperation) U move (2)

(3.4) From UC #5 we know a relevant local situation σ ≡ “The truck is standing
in a steep parking lot and the stop brake is activated.” σ should be formalised by

Hazard Analysis for Technical Systems 115

Table 4. Use case #10 “Use brakes” always included by UC#5

UC #10 Use brakes (usage goal #10, fEMissions||fIuse.Accelerate/Brake)
Scope I; level: primary task in f∗use; primary actor: E
Preconditions None.

Minimal Guarantees The truck is slowing down.

Success Guarantees The truck is properly slowing down or coming to a stable halt.

Trigger The trucker actuates the brake pedal.

Description
(list of interaction
descriptions)

1. The trucker actuates the brake pedal.
2. The truck decreases its speed accordingly.
3. Optional: When the truck comes to a halt, the trucker de-
cides to activate the stop brake.

Table 5. Hazard assessment after DIN 19250 as adopted by EN 61508 and ISO 26262

Step 1 Step 3 Step 4 Step 5

o μ χ̃ Short Description of Hazard S A G W IC

move 3 7 Unattended driveaway or start of movement 2 2 1 1 ASIL D
move 3 8 Unattended leaving of lane or change of direction 2 2 1 1 ASIL D

parameters like, e.g., constitution of the road surface (temperature, ice, water)
or the environment (wind, gravity, nearby objects, road down-grade and route
section), physical or control state of vehicle (load, age/maintenance).

Step 4. (4.1) Assertion 2 is refined by move ≡ vI �= 0 and userOperation ≡
¬idle. ¬idle is determined by ME and contains, e.g., gasPedal = pressed and
∃x.(•gearLever = x) → gearLever �= x. I consider move without f∗save (page 110)
and derive refined hazards, i.e., possibilities of how and when move is performable
in a hazardous manner (Figure 5). The decomposition of the usage function
containing move into actions at the leaf level of the function hierarchy shows
that, e.g., the mode active and the action brake of fIuse.StopBrake are physically
relevant, because in this mode, this action is responsible to maintain vI = 0 or
to contribute to the operation park. Automated analysis offers a trace b where
the failure transition suppressBrake of fIfail.StopBrake (Figure 4) contributes to χ̃7

and potentially to mishap μ3, e.g., because of gravity in σ and no input from
the driver is needed to reach move. This analysis leads to the assertion

χ7.1 ≡ (¬move ∧mode(fIStopBrake) = active) U move (3)

where χ7.1 → χ̃7. As this failure, identified and confirmed in step 2.3, contributes
to χ̃7, χ7.1 ∈ (1) (Figure 2). (4.2) Whether χ7.1 is in set (4) (Figure 2) can be
determined by automated probabilistic reasoning to estimate the hazard char-
acteristics as mentioned in Section 2.7. As I do not provide automation for this
preliminary example, let us assume, χ7.1 ∈ (4). Finally, Table 5 shows the results
for χ̃7.

116 M. Gleirscher

Driver
Assistance

Stabilise

f^ i.Truck

Steer

Suspension

f^ i_use.
Drive/Move

Activate / Deact.
Vehicle

ABSLoad up /
unload

Accelerate /
Brake

f^ i_use

Brake Acceleratef^ i_use.
StopBrake

f^ i_fail f^ i_save

f^ i_fail.
StopBrake

f^ i_save.
StopBrake

Adjust
Transmission

f^ i_fail. UDA f^ i_save. SDA

Act/Deact
Engine

Act/Deact
Engine

Use with
Comfort

Use Clutch

Use trailer

Improve
circumspection

Indicate
direction

Stir

«in clud e» «in clud e»
«in clud e»

«fl ow»

«in clud e»

Fig. 3. Excerpt of a truck function hierarchy representing MI

(a)

ac tiv e

ina ctiv e

act ivate

idl e

de activa te
bra ke
[ve hicle .load < x]
/ve hicle .spee d -=
h(vehicl e.spe ed,
veh icle. load)

(b)

ac tiv e

un stable Brake [ve hicle .load >= x]
/ve hicle .spee d += f(veh icle.speed ,
veh icle. load, vehi cle.d irecti on) suppressBrake

Fig. 4. The usage function fIuse.StopBrake (a) and possible defects fIfail.StopBrake (b)

Starting up

Sta ble / cons tant

Slowing

Ha lted

ha lt

park

tau

tau

mo ve

tau

tau

mo ve

tau

tau

mo ve

tau

tau

Fig. 5. The usage function fIuse.Drive/Move

Hazard Analysis for Technical Systems 117

(a)

ac tiv e

«n on-E/E/PE»
saveBra ke
/ve hicle .spee d -=
h(vehicl e.spe ed,
veh icle. load (b)

act ive

inactive

act ivate

idl e

de activa te

un stable Brake [ve hicle .load >= x]
/ve hicle .spee d += f(veh icle.speed ,
veh icle. load, vehi cle.d irecti on)

«n on-E/E/PE»
saveBra ke
/ve hicle .spee d -=
h(vehicl e.spe ed,
veh icle. load

suppressBrake

bra ke
[ve hicle .load < x]
/ve hicle .spee d -=
h(vehicl e.spe ed,
veh icle. load)

Fig. 6. The safety fragment fIsave.StopBrake (a) and the overall function fIStopBrake (b)

Step 5. (5.1) The safety goal for the truck as already embedded into UC #27
asserts “not to harm any persons, goods or the environment” is broken down.
This implies ¬μ3 ≡ “no collision”. More specifically, this goal is broken down
and constrained by hazards like, e.g., χ̃7:

γ̃7 ≡ �(¬move → (¬move U (userOperation ∧ ¬move))) (4)

(5.2) γ̃7 is assigned to fIDrive/Move. (5.3) From the list of relevant hazards like χ7.1

(step 4.2), safety requirements for fIStopBrake have been derived by assigning the
high integrity class ASIL D according to ISO 26262.

γ7 ≡ �Pr≥99.99%(¬move → (¬move U (userOperation ∧ ¬move))) (5)

Step 6. I assume that reliability or failure analyses, e.g., [50], provide charac-
teristics of the physical action suppressBrake. To realise ASIL D for fIStopBrake,
it has to be designed to mitigate or avoid the hazards χ7.1 → χ̃7. The fail-safe
transition in fIsave.StopBrake (Figure 6a) could incorporate a fail-silent mechanism
suited to quickly mask potential suppressBrake transitions. This results in a
safer—i.e., ASIL D compatible—version of fIStopBrake (Figure 6b).

3.2 Discussion

General Notes. The example is small and simple but should give enough insight
to the presented framework’s capabilities. It allows a-posteriori or empirical
modelling of known hazards, as done in some accident analysis approaches [27],
as well as a-priori, predictive or constructive modelling of W to elicit candidate
hazards from guessing potential mishaps. However, the problem of improper
abstractions causes too many safety goals and usage functions to be considered.
The set-up of M in steps 1 and 2 has to be done careful. Moreover, the problem
of overlooked or wrongly assessed candidate hazards still exists. The method only
incorporates heuristics to elicit potential mishaps from the knowledge of physical
truck or environment operations and parameters encoded in M. An incomplete
or improper model may not provide access to relevant hazards.

118 M. Gleirscher

Environment E Technical System I
Sensors

Actuators

Human-
Machine-

Interface &
Communication

Information
Processing
Subsystem

Humans

Other
Systems

Mechanical
Subsystem

Interaction

Mishap

Weakness

Accident or Risk Analysis Weakness or Reliability Analysis

Nominal
Behaviour

or
Failure

Hazard

FTA, RCA, ARP SSA
PRA, FME(C)A, ETA, LOPA

ECF, AcciMap, CRIOP, ICPS
STAMP

HAZOP/PAAG, ARP FHA, HAZID
… just indicates an
example situation

Fig. 7. Approaches to hazard analysis for system safety assessment

Detectability of hazardous, operational Defects. As long as S �= S ′, the remaining
lack of observability and safety knowledge during verification and testing entails
threats to validity in the framework, i.e., a defect

a. stays undetected : MI is unknowingly defective and I conforms to it. Thus,
I unknowingly differs from M′

I .
b. is a false positive: MI is unknowingly defective but I unknowingly conforms

to M′
I . Tests based on the current MI do not unfold this.

c. is certainly detected : I is knowingly defective because it neither conforms
to MI nor, unknowingly, to M′

I .

Raising the Limits of Safety-oriented Verification or Testing. Safety-oriented
verification confirms the hypotheses represented by S and intentionally imposed
on W , by checking or testing W . Verification and testing shall provide sufficient
evidence for W |= S. S ′, which compensates f∗fail, increases the level of trust into
W and strengthens the argument for declaring W = W ′.

Verification and testing often require W for validation of M and for definition
of test stop and coverage criteria. So, test execution and monitoring or similar
dynamic abstractions will produce essential feedback to facilitate this task.

4 Related Work

Early ideas for this paper have been published in [24]. The way of modelling
as chosen in Section 3 has been investigated in a former case study [25]. This
section discusses related approaches w.r.t. the fields of contribution, i.e., (i) de-
fect modelling, (ii) causation reasoning, and (iii) engineering guidance. Figure 7
lists approaches to hazard analysis for system safety assessment [22] according
to their direction towards effects or causal factors of hazards.

Hazard Analysis for Technical Systems 119

Defect Classification and Representation (i). Because of their variety of percep-
tion, defects are categorised along technology and task specific, non-standard
criteria. [29] classifies defects to compare system testing approaches. General
defect classifications [3, 14] are rare, vague or difficult to use in practice [54].
Defect models are purpose specific, ranging from abstractions for fault-tolerance
or reliability analysis [19, 50] to sophisticated mutation or fault-injection tech-
niques for programme diagnosis or bug localisation [18, 28, 57]. Defect models
based on foreseen architectural designs are vital to many reliability and hazard
analysis techniques. However, [7, 8] and [44] discuss defect modelling by trans-
forming nominal functional specifications. The taxonomy presented in Section
2.3 coheres with this and [36,37,39] and claims to be effective for hazard analysis.

Top-Down from Hazard to Weakness (ii). This direction can be carried out
using deductive techniques like, e.g., static or dynamic fault tree (FTA) [19]
or root cause (RCA) [35] analysis. [13, 40, 42] focus on reliability analysis of
safety functions based on electronic control. Their tool HiP-HOPS [41] allows
automated FTA via synthesis of fault trees based on fault-to-failure propagation
through a design model. [4] shows how early safety analysis based on models of
embedded control software fosters efficient safety-oriented redesign. Their defect
model is based on the dataflow architecture of the system.

[16, 17] sketch computer-supported verification based on a state machine
model12 extended with fault variables and ports for each software component.
The faulty state machine undergoes reachability checks for hazard assertions to
generate fault trees for FTA. Their concept reduces overapproximation, i.e., too
pessimistic fault trees, but is restricted to software and electronic hardware. It
is formally elaborate but lacks methodical guidance.

Bottom-Up from Weakness to Hazard (ii). This direction can be addressed by in-
ductive methods like, e.g., failure mode, effect and criticality analysis (FMECA)
[26,52,59], event tree analysis (ETA) after DIN 25419 or, similarly, layer of pro-
tection analysis (LOPA). Hazard and operability analysis (HAZOP or PAAG)
according to IEC 61882 [5] takes particular account of controllability by humans.
There are elaborate approaches like probabilistic risk assessment (PRA) [33] or
informal, early-stage methods like hazard identification (HAZID) or preliminary
hazard lists [22].

[39] identifies hazard types capturing ways of physical component interaction
and applies SysML—a standard notation for system modelling—to HAZOP.
[60] describes hazard analysis on data flow models of automotive embedded
control software. [48] discusses automated abstraction of programme code to
perform such analyses. [50] proposes inductive diagnosis by constraint solving
to automatically predict the propagation of local component faults (i.e., value
and time deviations of effect quantities) through a model of the physical system.
[44] combines interface behaviour with FMECA, but does not consider hazard
analysis in an interdisciplinary way.

12 IBM Rational Statemate http://www.ibm.com.

http://www.ibm.com

120 M. Gleirscher

Between Hazard and Mishap (ii). To understand mishaps and their risks, meth-
ods like, e.g., events and causal factors (ECF) [12] or AcciMap [45, 51] consider
causal factors of all, environment, user and system. This includes system oper-
ations or use cases (e.g., driving missions and situations), operational incidents
or damage scenarios (e.g., car accidents) as well as the physical system interface.
Event chains between mishaps and hazards are chronologically traced forward
or backward. Some methods use detailed physical models, some are specific to
a domain. For example, crisis intervention in offshore production (CRIOP) [31]
assesses the interface between human operators and technical systems within off-
shore control rooms to uncover obstacles for accident response. The international
classification for patient safety (ICPS) [58] identifies potential clinical incidents
to properly establish patient safety concepts in processes of health-care systems.

Inspired by [45], system-theoretic accident model and processes (STAMP) [36]
perceives safety as a control problem in a socio-technical system, i.e., a collab-
oration of humans and technical systems. Accidents and hazards are explained
by a non-linear model of causation, where interactions within this collaboration
violate safety constraints and lead to unsafe states. STAMP classifies human
errors, identifies inadequate control beyond system failures and derives required
constraints. Instead of just preventing failures and technical root causes, these
constraints shall be enforced by the collaboration. [20] applies system dynam-
ics, i.e., qualitative cause analysis, to STAMP. [49] extends it using HAZOP-like
guidewords to identify inadequate actions of humans and organisations.

While these approaches discuss system safety in a wider organisational and
societal context, the work at hand focuses on preparing a precise theoretic basis
for the development of engineering tools.

Safety Engineering Guidance and Standards (iii). Beyond these techniques, [32]
investigates the concept of safety cases, their development, maintenance and
reuse, based on a tree structure of arguments built on evidence using single
techniques or measures to finally confirm safety goals. The author shows how
FMECA can be embedded into his method but does not consider behavioural
system models directly to make arguments more precise and reusable, as op-
posed to [1, 36]. [1] applies formal methodology in train control development
by modelling the rail environment to precisely understand the control problem.
The author derives model refinements to fulfill formalised safety requirements.
However, defect modelling and hazard analysis have not been focused.

Hazard analysis is a vital early step recommended by general or domain-
specific safety standards, e.g., IEC 65108 for general mechatronics, ISO 26262
for automotive control, EN 50128 for train control or DoD MIL-STD-882D [22]
for technical systems. They consider the whole safety process for the regarded
kinds of systems to avoid unwanted relationships between system safety goals and
subsystem or component requirements. IEC 65108 speaks of preliminary hazard
and risk analysis (PHA). The SAE aircraft recommended practices (ARP) 4754
and 4761 advise the steps of functional hazard assessment (FHA) based on a
function list regarding failures and crew actions, followed by preliminary and
final system safety/reliability assessment (SSA), which among FTA requires a

Hazard Analysis for Technical Systems 121

mixture of techniques. Standards and their terminology are intentionally general,
solely providing some references to applicable methods.

5 Summary and Conclusion

The work at hand contributes a framework and procedure for hazard modelling
and analysis. It uses formal methodology for behavioural modelling of the world
under consideration, particularly, the interface between the system and its en-
vironment in terms of a specification S. The qualitative abstraction applied in
S makes it possible to treat the system in an interdisciplinary way, largely in-
dependent from technology. The framework supports the capture of candidate
hazards and relates this knowledge to the task of defect modelling. A defect
model classifies and encodes consequences or effects of technology-specific weak-
nesses to understand how they are related to hazards. Reliability and failure
analysis based on a glass-box model of the system justifies the defect model.
Like [36], the procedure shall elucidate cases where hazards have been caused
by past events or long-term deviations from safe behaviour of both, the system
and its environment. S enables the assessment of hazards that arise from the
co-existence of usage functions and their unknown but unwanted interactions.
To understand intentional or unconscious misbehaviour of the user or the rest
of the environment, hazard analysis benefits from S including a defect model.
Precise and justified knowledge of all these classes of defects leverages the instal-
lation of measures to avoid or mitigate hazards. This includes the development
of passive (e.g., airbag) or active (e.g., crash avoidance) safety functions.

By applying the framework, a transition to the use of prevalent system models
can be made much more easily to achieve (i) a proper encoding of domain, risk
and defect knowledge, (ii) a comprehensive assessment of hazards based on that
and (iii) profound and justified results to effectively carry through subsequent
safety and systems engineering tasks. As important next steps, I envisage the
detailed choice of modelling concepts, the corresponding adoption of reasoning
algorithms such as, e.g., [23], and tool support for both of these. Among this, a
more detailed case study of the presented example will be elaborated.

Acknowledgements. I specially thank professor Manfred Broy for his inspiring
and helpful feedback. Sincere thanks go to several of my colleagues at his chair
for the many stimulating discussions about this topic or its context as well as to
the interviewed project partners and safety professionals from industry providing
valuable insight into their daily challenges.

References

1. Abrial, J.-R.: Train Systems. In: Butler, M., Jones, C.B., Romanovsky, A., Troubit-
syna, E. (eds.) Fault-Tolerant Systems. LNCS, vol. 4157, pp. 1–36. Springer, Hei-
delberg (2006)

122 M. Gleirscher

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (May 2008)

3. Beizer, B.: Software Testing Techniques, 2nd edn. Thomson (1990)

4. Biehl, M., DeJiu, C., Törngren, M.: Integrating safety analysis into the model-
based development tool chain of automotive embedded systems. In: LCTES 2010,
Stockholm, Sweden (April 2010)

5. Börcsök, J.: Funktionale Sicherheit: Grundzüge sicherheitstechnischer Systeme, 3rd
edn. VDE-Verlag (May 2011)

6. Braun, P., Phillips, J., Schätz, B., Wagner, S.: Model-based safety cases for
software-intensive systems. Position paper (2008)

7. Breitling, M.: Modellierung und Beschreibung von Soll/Ist-Abweichungen. In:
Spies, K., Schätz, B. (eds.) FBT, pp. 35–44. Herbert Utz Verlag (1999)

8. Breitling, M.: Formale Fehlermodellierung für verteilte reaktive Systeme. Disser-
tation, Technische Universität München (2001)

9. Broy, M.: A functional rephrasing of the assumption/commitment specification
style. Formal Methods in System Design 13(1), 87–119 (1998)

10. Broy, M.: Service-oriented Systems Engineering: Specification and Design of Ser-
vices and Layered Architectures – The Janus Approach. In: Broy, M. (ed.) Engi-
neering Theories of Software Intensive Systems, pp. 47–81. Springer (2005)

11. Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement. Springer (2001)

12. Buys, J., Clark, J.: Events and Causal Factors (ECF) Analysis. Technical Research
and Analysis Center, SCIENTECH Inc. (1995)

13. Chen, D., Johansson, R., Lönn, H., Papadopoulos, Y., Sandberg, A., Törner, F.,
Törngren, M.: Modelling Support for Design of Safety-Critical Automotive Embed-
ded Systems. In: Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS,
vol. 5219, pp. 72–85. Springer, Heidelberg (2008)

14. Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moebus, D., Ray, B., Wong,
M.: Orthogonal defect classification – a concept for in-process measurements. IEEE
Transactions on Software Engineering 18(11), 943–956 (1992)

15. Cockburn, A.: Writing Effective Use Cases. Crystal Series for Software Develop-
ment. Addison-Wesley Longman, Amsterdam (2000)

16. Damm, W., Peikenkamp, T.: Model-based safety analysis. Presentation Slides. Lec-
ture series for “Model-based Development” at HU Berlin (July 2004)

17. Damm, W., Pnueli, A., Ruah, S.: Herbrand Automata for Hardware Verification.
In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 67–83.
Springer, Heidelberg (1998)

18. Das, S., Banerjee, A., Dasgupta, P.: Early analysis of critical faults: An approach
to test generation from formal specifications. IEEE Trans. on CAD of Integrated
Circuits and Systems 31(3), 447–451 (2012)

19. Dugan, J., Bavuso, S., Boyd, M.: Dynamic fault-tree models for fault-tolerant com-
puter systems. IEEE Transactions on Reliability 41(3), 363–377 (1992)

20. Dulac, N.: A Framework for Dynamic Safety and Risk Management Modeling in
Complex Engineering Systems. PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA (2007)

21. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE 1999, pp. 411–420 (1999),
http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml

22. Ericson, C.A.: Hazard Analysis Techniques for System Safety. John Wiley and
Sons, Hoboken (2005)

http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml

Hazard Analysis for Technical Systems 123

23. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated Verification
Techniques for Probabilistic Systems. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011)

24. Gleirscher, M.: Hazard-based Selection of Test Cases. In: Proc. 6th ICSE Workshop
on Automation of Software Test, AST 2011 (May 2011)

25. Gleirscher, M.: Ein Kaffeevollautomat – Fallstudie für modellbasierte Spezifikation
zur Vorlesung “Requirements Engineering” im Sommersemester 2011. Technical
Report I-125, Technische Universität München (May 2012) (in German)

26. Goddard, P.L.: Software FMEA Techniques. In: Proc. Ann. Reliability and Main-
tainability Symposium (RAMS), pp. 118–123. IEEE (2000)

27. Hopkins, A.: Lessons from Longford: The Esso Gas Plant Explosion. CCH, Sydney
(2000)

28. Howden, W.: Weak mutation testing and completeness of test sets. IEEE Transac-
tions on Software Engineering (4), 371–379 (1982)

29. Illes, T., Paech, B.: An analysis of use case based testing approaches based on a
defect taxonomy. Software Engineering Techniques: Design for Quality, 211–222
(2007)

30. Jackson, M.: Problem Frames: Analysing & Structuring Software Development
Problems. Addison-Wesley (2001)

31. Johnsen, S.O., Bjørkli, C., Steiro, T., Fartum, H., Haukenes, H., Ramberg, J.,
Skriver, J.: CRIOP: A scenario method for Crisis Intervention and Operability
analysis. Technical Report A4312, SINTEF, Trondheim, Norway (March 2011)

32. Kelly, T.P.: Arguing Safety – A Systematic Approach to Safety Case Management.
PhD thesis, University of York, Dept. of Computer Science (1998)

33. Kumamoto, H., Henley, E.J.: Probabilistic risk assessment and management for
engineers and scientists, 2nd edn. John Wiley and Sons, New York (2000)

34. Lamport, L.: Specifying Systems. Addison Wesley (2002)
35. Leszak, M., Perry, D., Stoll, D.: A case study in root cause defect analysis. In:

Proc. International Conference on Software Engineering (ICSE), pp. 428–437. IEEE
(2000)

36. Leveson, N.: A new accident model for engineering safer systems. Safety Sci-
ence 42(4), 237–270 (2004)

37. Leveson, N.G.: Engineering a Safer World: Systems Thinking Applied to Safety.
Engineering Systems. MIT Press (January 2012)

38. McDermid, J.: Software Safety: Where’s the Evidence?. In: Australian Workshop
on Industrial Experience with Safety Critical Systems and Software (2001)

39. Mehrpouyan, H.: Model-based hazard analysis of undesirable environmental and
components interaction. Master’s thesis, Linköpings universitet (2011)

40. Papadopoulos, Y., Maruhn, M.: Model-based synthesis of fault trees from matlab-
simulink models. In: International Conference on Dependable Systems and Net-
works (DSN), pp. 77–82 (2001)

41. Papadopoulos, Y., McDermid, J.A.: Hierarchically Performed Hazard Origin and
Propagation Studies. In: Felici, M., Kanoun, K., Pasquini, A. (eds.) SAFECOMP
1999. LNCS, vol. 1698, pp. 139–152. Springer, Heidelberg (1999)

42. Papadopoulos, Y., McDermid, J.A., Sasse, R., Heiner, G.: Analysis and synthesis of
the behaviour of complex programmable electronic systems in conditions of failure.
Reliability Engineering and System Safety 71(3), 229–247 (2001)

43. Parnas, D., Madey, J.: Functional Documentation for Computer Systems. Science
of Computer Programming 25, 41–61 (1995)

44. Pister, M.: Integration formaler Fehlereinflussanalyse in die Funktionsentwicklung
bei der Automobilindustrie. Dissertation, Technische Universität München (2008)

124 M. Gleirscher

45. Rasmussen, J.: Risk management in a dynamic society: a modelling problem. Safety
Science 27(23), 183–213 (1997)

46. Rasmussen, J.: The concept of human error: Is it useful for the design of safe
systems? Safety Science Monitor 3 (Special Edition), 1–3 (1999)

47. Shappell, S., Wiegmann, D.: The human factors analysis and classification system
– HFACS. Technical Report DOT/FAA/AM-00/7, Office of Aviation Medicine,
Civil Aeromedical Institute, Oklahoma City, OK (2000)

48. Snooke, N., Price, C.: Model-driven Automated Software FMEA. In: Ann. Proc.
Reliability and Maintainability Symp. (RAMS), pp. 1–6. IEEE (2011)

49. Stringfellow, M.V.: Accident Analysis And Hazard Analysis For Human And Or-
ganizational Factors. PhD thesis, Massachusetts Institute of Technology (2010)

50. Struss, P., Fraracci, A.: FMEA of a Braking System – A Kingdom for a Qualitative
Valve Model. In: 25th Intl. Workshop on Qualitative Reasoning, Barcelona, Spain
(2011)

51. Svedung, I., Rasmussen, J.: Graphic representation of accident scenarios: Mapping
system structure and the causation of accidents. Safety Science 40, 397–417 (2002)

52. Tietjen, T., Müller, D.H.: FMEA Praxis: Das Komplettpaket für Training und
Anwendung, 3rd edn. Hanser (2011)

53. Van Lamsweerde, A.: Requirements Engineering: From System Goals to UMLMod-
els to Software Specifications. Wiley (2009)

54. Wagner, S.: Defect classification and defect types revisited. In: Proc. Workshop on
Defects in Large Software Systems (DEFECTS 2008), pp. 39–40. ACM, New York
(2008)

55. Watson, G.S., Leadbetter, M.R.: Hazard analysis. I. Biometrika 51(1-2), 175 (1964)
56. Wikipedia. Internationale Bewertungsskala für nukleare Ereignisse — Wikipedia,

Die freie Enzyklopädie (June 27, 2012)
57. Winter, S., Winter, S., Sârbu, C., Suri, N., Murphy, B.: The impact of fault models

on software robustness evaluations. In: Taylor, R.N., Gall, H., Medvidovic, N. (eds.)
ICSE, pp. 51–60. ACM Press, New York (2011)

58. World Health Organization (WHO). International Classification for Patient Safety
(ICPS) (June 27, 2012),
http://www.who.int/patientsafety/implementation/taxonomy

59. Wu, B.-G., Tang, R.-Z.: Study on Software FMEA Techniques. Mechanical & Elec-
trical Engineering Magazine 21(3) (March 2004)

60. Zhang, H., Li, W., Chen, W.: Model-based hazard analysis method on automotive
programmable electronic system. In: 3rd Intl. Conf. on Biomedical Engineering and
Informatics, BMEI (2010)

http://www.who.int/patientsafety/implementation/taxonomy

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 125–146, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Using Defect Taxonomies to Improve the Maturity
of the System Test Process: Results from an Industrial

Case Study

Michael Felderer1 and Armin Beer2

1 Institute of Computer Science University of Innsbruck, Austria
michael.felderer@uibk.ac.at

2 Beer Test Consulting, Baden, Austria
info@arminbeer.at

Abstract. Defect taxonomies collect and organize the domain knowledge and
project experience of experts and are a valuable instrument of system testing for
several reasons. They provide systematic backup for the design of tests, support
decisions for the allocation of testing resources and are a suitable basis for
measuring the product and test quality. In this paper, we propose a method of
system testing based on defect taxonomies and investigate how these can
systematically improve the efficiency and effectiveness, i.e. the maturity of
requirements-based testing. The method is evaluated via an industrial case study
based on two projects from a public health insurance institution by comparing
one project with defect taxonomy-supported testing and one without. Empirical
data confirm that system testing supported by defect taxonomies (1) reduces the
number of test cases, and (2) increases of the number of identified failures per
test case.

Keywords: System testing, test management, test design, defect taxonomy,
case study research.

1 Introduction

Systematic defect management based on bug tracking systems like Bugzilla [1] is
well established and successfully used in many software organizations. Defect
management weights the classification of failures observed during the execution of
tests according to their severity and is the basis for the implementation of effective
defect taxonomies.

A defect taxonomy is a system of (hierarchical) categories designed to be a useful
aid for reproducibly classifying faults and failures [2]. Such a classification is
concerned with removing the subjectivity of the classifier and creating distinct
categories with the goal to better control the number of defects reaching the customer
[3]. Defect taxonomies provide information about the distribution of faults and
failures in a project and are valuable for learning about the kinds of errors being made
in the development process. Thus, defect taxonomies can be applied to control the

126 M. Felderer and A. Beer

design of tests and quality of releases to keep testing manageable although time and
resources in projects are limited.

In practice, most defect taxonomies are only used for the a-posteriori allocation of
testing resources to prioritize failures for debugging purposes. But the full potential of
these taxonomies to control the overall test process and to improve its maturity is not
exploited. This is especially the case when testing the user requirements of a system,
as system-level defect taxonomies improve the design of requirements-based tests, the
tracing of defects to requirements and the control of the relevant defect management.
Prioritized requirements, defect categories and failures enable system testing to be
improved by using defect taxonomies. We therefore consider priority values assigned
to requirements and severity values assigned to defect categories and failures.

In the organization where the case study was performed, the standardized test
process of the International Software Testing Qualifications Board (ISTQB) [2] is
mandatory for all projects. While the introduction of this process has its benefits in
promoting systematic testing, we also observed some of its weaknesses as regards the
consideration of defect data:

─ The experience documented in defect management systems is not used for testing.
─ System test cases are designed without taking specific defect types into account.
─ The manual assignment of severity levels to failures stored in a defect management

system is often unreliable.

In this paper, we propose a novel process of system testing with defect taxonomies
and investigate how this process can systematically improve the maturity compared to
the standard ISTQB test process. According to the ISTQB, the maturity of a test
process is defined by its efficiency validating the testing resources used to perform a
particular function and its effectiveness judging the effect of the test process on the
application [2]. The presented work is conducted in the context of an industrial case
study based on two projects from a public health insurance institution where we study
and interpret the following two research questions to indicate an improvement of the
ISTQB test process maturity by the integration of defect taxonomy-supported testing.
(1) We study the reduction of the number of system test cases to improve the
efficiency of system testing. (2) We study the increase of the number of identified
failures per test case to improve the effectiveness of system testing supported by
defect taxonomies.

Our contribution defines and empirically evaluates how to improve system testing
by systematically using traceable and prioritized defect taxonomies where defect
categories with assigned severity values are linked to prioritized requirements and
failures. Bach [4] highlights the important role of requirements prioritization for
system testing. In our approach the requirements prioritization is refined by assigning
requirements to defect categories which enables more specific test design techniques
to be applied. Our results are relevant for practice and research. On the one hand, we
derive advice that can be applied by test designers and managers in industrial projects.
On the other hand, we empirically evaluate the role of defect taxonomies for system
testing via an industrial case study and raise further research questions.

 Using Defect Taxonomies to Improve the Maturity of the System Test Process 127

In our case study, we adopt the Beizer taxonomy defined by Boris Beizer in his
book on software testing techniques [5]. This taxonomy offers a comprehensive
means of hierarchically classifying defects. The classification is generic, well
established in system testing and has been adopted by other authors, e.g. Black [6].
Based on the statistics of various software projects, the Beizer taxonomy subdivides
the causes of defects in the major categories of requirements, features and
functionality, structure, data, implementation and coding, integration, system and
software architecture, testing, and unspecified. Although we use this taxonomy as a
starting point to define our product-specific defect taxonomy, this approach is not
bound to a specific classification schema, and other defect taxonomies (see Section 2
for an overview) can also be applied. Even Beizer states that it is more important to
adopt any taxonomy and use it as a statistical framework on which to base the testing
strategy than to adopt the ‘right’ taxonomy [5].

This paper is structured as follows. In the next section we give an overview of
related work. We then present our defect taxonomy-supported test process in Section
3, and the design and results of our case study in Section 4. Finally, in Section 5 we
conclude and present future work.

2 Related Work

Our approach is related to previous work on defect taxonomies in general, the
application of defect taxonomies to software testing, and empirical studies in these
fields.

Taxonomies are applied in several software engineering domains, e.g. for
identifying risks in risk management [7], for quality specifications in requirements
engineering [8], in inspection [9], or as defect taxonomies in software [10].

Several generic and application-specific defect taxonomies with various objectives
have been listed by Vijayaraghavan and Kaner [10]. The most influential generic
defect taxonomies in the software testing literature have been defined by Beizer [5],
as applied in this paper, and Kaner [11]. The defect taxonomy proposed by Kaner
distinguishes defects related to the user interface, error handling, boundaries,
calculation, race conditions, load conditions, hardware, version control, and testing.
The IEEE Standard 1044-1993 on test classification provides a classification scheme
of anomalies [12]. It defines an anomaly as any condition that deviates from
expectations based on requirements specifications, design documents, user
documents, standards, etc. or from someone’s perceptions or experience. McDonald
[3] organizes his defect taxonomy around the stages of a defect, i.e. occurrence stage,
contributing cause(s) stage, change stage, detection stage, and mitigation stage.

Additionally, there are various application-specific defect taxonomies, e.g. for
component-based applications [13], safety critical systems [14], web services [15], or
web applications [16].

The purpose of software testing is not just to detect failures but also to increase
trust in a software product by demonstrating the absence of pre-specified defects. The
latter is the main motivation for defect-based testing [17], which identifies those

128 M. Felderer and A. Beer

defects that cannot be present in software on the basis that if they were present the test
execution would have been different. Defect taxonomies as applied in our approach
are the basis for defect-based testing supporting the systematic definition of test
strategies.

Although many defect distribution statistics are based on defect taxonomies, for
instance in Beizer [5], there are relatively few empirical studies of their properties.
Marchetto et al. [16] investigate exclusiveness, ambiguity, classifiability, distribution,
specifity, and stability of web-defect taxonomies based on several hundred bugs from
68 web applications. The results are used to define a defect taxonomy for web
applications in an iterative way.

Vallespir et al. [18] define a framework to evaluate and compare different defect
taxonomies based on a meta taxonomy including attributes, structure type and
properties. The comparison in their paper considers several taxonomies, including
those of Beizer and Kaner. The orthogonal defect classification (ODC) scheme [19]
defining attributes for the classification of failures is also introduced in the framework
of Vallespir et al. [18]. ODC can be used for fault detection in static analysis [20] and
for inspection [9]. The reliability of ODC has been investigated in several
publications [21,22,23]. The approaches of Marchetto and Vallespir are orthogonal to
our own and can be used to define a suitable taxonomy to adapt our approach to a
specific domain.

Besides defect distribution statistics based on defect taxonomies [5], other
publications such as Fenton and Ohlsson [21], Basili et al. [25] or Andersson and
Runeson [26] empirically investigate the distribution of defects and failures in
systems. These publications found evidence that a small number of modules contain
most of the defects and confirm the presence of similar defect densities in similar
testing and operational phases in broadly similar environments. However, the role of
defect taxonomies in comparable projects or environments with respect to the
distribution of defects and the application of defect taxonomies to testing has been
investigated only to some extent.

Marchetto et al. [16] have defined a web-defect taxonomy based on several web
applications and use it to perform taxonomy-based testing of a web application: First,
specific defect categories are selected. Then, at least one usage scenario is defined for
each selected categories. Finally, for each scenario a test case is defined and executed.
For a sample address book web application Marchetto et al. indicate a reduction of
test cases compared to use case-based testing. Compared to Marchetto et al., our
defect taxonomy-based testing approach additionally considers traceability between
requirements and defect categories, and weighting (priority of requirements, severity
of defect categories severity of defects). This supports more accurate methods for test
design and release quality assessment. Furthermore, our approach is empirically
evaluated via an industrial case study.

3 Defect Taxonomy-Supported Testing

In this section we define our defect taxonomy supported testing approach and its
integration into the ISTQB test process.

 Using Defect Taxonomies to Improve the Maturity of the System Test Process 129

3.1 Basic Concepts

In this section, we discuss the main concepts underlying the case study. For this
purpose, we give an overview of the main artifacts and their relationships within the
context of the case study. The artifacts for system testing with defect taxonomies and
their relationships are shown in Figure 1.

Fig. 1. Basic Artefacts and their relationship

A Defect Taxonomy consists of a tree of Hierarchy Elements. Its leaves are formed
by Defect Category (DC) elements. Each defect category has a severity (SDC) which
defines the degree of impact that a defect in that category has on the development or
operation of the system. In our approach, the defect categories are defined on the
basis of the categories in the Beizer taxonomy and the potential faults of the system.
Table 1 shows an example for a defect taxonomy.

A Requirement defines a functional capability of the system. A requirement has a
priority (PR) defining its level of business importance, which may be high, normal, or
low. A requirement can be assigned to defect categories such that failures occurring
when testing a specific requirement fall into one of the assigned defect categories.
Each requirement is assigned Use Cases that define its behavior and are the main
source for the design of test cases. The test case design may additionally be refined by
graphical user interface (GUI) descriptions attached to use cases.

Defect Taxonomy

Test Strategy

+priority

Requirement

Use Case

Test Pattern

Hierarchy Element

Test Case

+severity

Failure

+severity

Defect Category

Test Technique

Test Strength

0..*

1..*

1..*

1..*

1..*
high

1

1
low

1

1
1

1..*

1..*1..*

10..*

0..*

0..*

0..*

1

medium

1

1

0..*

0..*

1..*

1..*

1
1..*

1

130 M. Felderer and A. Beer

Failures, i.e. malfunctions identified during the testing of requirements, are
assigned to defect categories. Each failure also has a severity (SF) reflecting its
potential impact. The possible values for the severity of defect categories and failures
follow Bugzilla [1], and may be blocker, critical, major, normal, minor, or trivial.
Therefore the value blocker means that the software version cannot be tested or used,
critical a very limited testing is possible, major, the usage is still very limited, normal
the damage of a failure is not significant, minor or trivial are for instance minor
layout deficiencies. Defects of the severity blocker or critical imply a high risk for the
project.

A Test Strategy consists of several Test Pattern elements. Each test pattern defines
a Test Technique like use case-based testing, syntax testing or state transition testing,
is assigned to a defect category, and linked to several requirements which are tested
based on the test pattern. Additionally, a test pattern is linked to a set of Test Case
elements which are designed with the pattern’s test technique. Therefore, a test
pattern defines a scheme to determine the test design technique to apply for a specific
requirement whose observed failures are in a specific defect category. Each test
technique has assigned three Test Strengths low, normal, and high, respectively (see
Table 2 for examples). The test strength [27] refines the test technique, e.g. by
coverage criteria or test methods and is determined by the priority of a requirement
and the severity of defect categories or failures. Test cases are then derived from
requirements and use cases according to the test strategy with varying test strengths.
The test strategy may be part of a test plan (not further considered in this paper) that
additionally contains for instance the resource allocation and the schedule. Each test
design technique has its own focus in detecting specific defects. The test coverage of
a domain depends on the test design technique and test strength used. We call our
system testing approach that extends the ISTQB test process and utilizes defect
taxonomies for requirements testing defect taxonomy-supported testing (DTST).

Each unit of analysis in this paper refers to a project for testing a web application
in the domain of public health insurance. A web application tested by our method
uses a web browser as a client to display the GUI and a server for data management
and program control. The architecture is service oriented, and various applications
support the different business processes. The services communicate via an
Enterprise Service Bus (ESB) running on a flexible infrastructure (virtualization).
The users have role-specific access to the various applications. External internet
services are connected through a portal of the central IT department. For these types
of applications, the highest priority is not assigned to freedom from errors such as
in embedded systems but to an optimal number of test cases supported by the use of
defect taxonomies.

The requirements and the attached use cases are defined by domain experts and
analysts. The defect taxonomy and test strategy are defined by a test manager. The
requirements tests are systematically designed and executed by testers based on the
test patterns. Note that the requirements and defect taxonomy are defined by different
persons, and are consequently also prioritized independently of each other.

 Using Defect Taxonomies to Improve the Maturity of the System Test Process 131

The relationships between defect categories, failures and requirements have been
defined and maintained by a test manager who analyzed the defect entries in the
defect management tool (Bugzilla in our case) with the aim of creating and optimizing
the product-specific defect taxonomy.

3.2 Test Process

In the organization where the case study was implemented, the ISTQB test [2] was
already in place. The ISTQB test process shown in Figure 2 consists of the steps (1)
test planning and control, (2) test analysis and design, (3) test implementation and
execution, (4) test evaluation and reporting, and (5) test closure activities.

Fig. 2. ISTQB Test Process

In the subsequent paragraphs we explain the particular steps of the ISTQB test
process following the ISTQB standard glossary of terms used in software testing [2].

(1) Test Planning and Control. Test planning is the activity of establishing or
updating a test plan. A test plan is a document describing the scope, approach,
resources, and schedule of intended test activities. It identifies, amongst others, the
features to be tested, the test design techniques, and exit criteria to be used and the
rationale of their choice. In the analytical ISTQB test process, test planning occurs at
the beginning. Ideally, it proceeds in parallel with overall project planning. Templates
for test plans and their content are specific to the domain or to the architecture of a
product. For example, a test plan for a business-oriented web application contains test
design techniques and exit criteria, which may not be relevant for embedded systems
in the automotive domain and vice versa. Once the test plan has been established, test

(1) Test Planning and Control

(2) Test Analysis and Design

(3) Test Implementation and Execution

(4) Test Evaluation and Reporting

(5) Test Closure Activities

132 M. Felderer and A. Beer

control begins. Test control is an ongoing activity (which is not reflected in the
abstract process representation of Figure 2). In test control, the actual progress is
compared against the plan which often results in concrete measures.

(2) Test Analysis and Design. During the test analysis and design phase the general
testing objectives defined in the test plan are transformed into tangible test conditions
and test cases. Based on a test design specification which contains test design
techniques and coverage criteria, high-level test cases with logical operators and
without concrete data are derived. In case of system testing common coverage criteria
are for example 100% coverage of requirements or use case branches. The high-level
test cases are then refined to low-level test cases with actual values.

(3) Test Implementation and Execution. Test implementation contains remaining
tasks like preparing test harnesses and test data or writing automated test scripts
which are necessary to enable the execution of the implementation-level test cases.
The tests are then executed and all relevant details of the execution are recorded in a
test log. The detected failures are entered in a defect management tool.

(4) Test Evaluation and Reporting. During the test evaluation and reporting phase
the exit criteria are evaluated and the logged test results are summarized in a test
report.

(5) Test Closure Activities. During the test closure phase, data is collected from
completed activities to consolidate experience, testware, facts, and numbers.

Our defect taxonomy-supported testing approach is integrated into the ISTQB test
process. Figure 3 shows the steps of our defect taxonomy-supported testing approach,
their input and output, and their integration into the ISTQB test process. The main
difference between the standard ISTQB process and DTST is that defect
categorization is not only used in the test evaluation phase (ISTQB), but throughout
the whole test process (DTST). For example, in test case design based on the severity
of a potential defect and the priority of the requirement stronger or lighter test
techniques are used. This saves time and effort compared to the goal of creating a test
case pool with 100% coverage of use case branches. In the phase evaluation and
reporting the arguments for a release advice of the test management are recognized by
the other stakeholders, because the outstanding product risks are assessed taking also
a long-term impact of an error into account.

The steps 1 to 4 (Analysis and Prioritization of Requirements, Creation of a Defect
Taxonomy, Linkage of Requirements and Defect Categories, Definition and
Assignment of Test Patterns) (see Figure 3) are integrated into the ISTQB process
step (1) Test Planning and Control. The ISTQB steps (2) Test Analysis and Design
and (3) Test Implementation and Execution take the DTST specific guidelines of the
test strategy into account, but the procedures of (2) and (3) are not changed. However,
ISTQB step (4) Test Evaluation and Reporting has to be adapted to the procedure of
DTST step 5 (Analysis of Failures after a Test Cycle). ISTQB step (5) Test Closure
Activities will be performed according the ISTQB standard. In the following
paragraphs we explain the steps 1 to 5 of our defect taxonomy-supported testing
approach in more detail.

 Using Defect Taxonomies to Improve the Maturity of the System Test Process 133

Fig. 3. Defect Taxonomy-Supported Test Process and Integration in ISTQB Test Process

Step 1: Analysis and Prioritization of Requirements
The analysts create the requirements in cooperation with the domain experts. A
priority (high, normal, low) is then assigned to the requirements taking the impact of
malfunctioning into account. Thus a high priority is assigned if a potential failure has
a great impact, e.g. erroneous credit transfer. The attribute normal is assigned to
requirements taking the usability of the application in the implementation of a user
task into account. For example, low priority is assigned to ‘nice-to-have’ features.
After a review by the stakeholders, the requirements are ready for analysis of the use
cases.

Step 2: Creation of a Defect Taxonomy
When the analysis of the first iteration is completed, a defect taxonomy is created by
test managers on the basis of the Beizer taxonomy [5], because of its suitability for
black-box-testing and user-oriented systems. The taxonomy has three levels of
abstraction, starting with selected high-level defect categories from the top-level
categories of Beizer, i.e. (1) requirements (2) features and functionality, (4) data, (6)
integration, and (9) unclassified defects. The Beizer categories (3) structural defects,
(5) implementation and coding, (7) system, software architecture, and (8) test
definition and execution are not relevant for system testing in our context. The

Step 1: Analysis and Prioritization of Requirements
Input: Requirements

Output: Requirements with Priority

Step 2: Creation of a Defect Taxonomy
Output: Defect Categories with Severity

Step 3: Linkage of Requirements and Defect Categories
Input: Requirements with priority

Output: Requirements with assigned Defect Categories

Step 4: Definition and Assignment of Test Patterns
Input: Requirements, Use Cases and Defect Categories

Output: Test Patterns assigned to Defect Categories

Step 5: Analysis of Failures after a Test Cycle
Input: Test Cases, Failures

Output: Failures with Severity

Integration into ISTQB Test Process

(4) Test Evaluation and
Reporting

(1) Test Planning and Control

(2) Test Analysis and Design
(3) Test Implementation and

Execution

(5) Test Closure Activities

134 M. Felderer and A. Beer

high-level categories are mapped to product specific categories which are then further
refined to concrete low-level defect categories (DC) with an assigned identifier and
severity. The severity can be of type blocker, critical, major, normal or trivial. For
instance, in the defect taxonomy of Table 1, the Beizer category “incorrect/incomplete
feature/functionality” is mapped to the product specific defect category ”Incorrect
handling of syntactic and semantic constraints of processes and GUI” with assigned
low-level defect categories F1 to F9 each having a concrete severity value. When a
defect taxonomy is created, first the relevant high-level defect categories of Beizer are
entered in Column 1. Then the mapped high-level defect categories specific to the
product, i.e. web applications with a GUI in our respect, are entered in Column 2. The
product specific defect categories DC with their description and severity are added in
Columns 3 to 5. These defect categories partition the original defect categories of
Beizer to a specific domain and technology. The example defect taxonomy of Table 1
considers a specific domain (case management in public health insurance) and
technology (web application) and was adjusted iteratively in the course of interpreting
the new defects in the defect management system. For each defect category a test
pattern defining test design techniques for the test strengths low, normal and high is
created (see Table 2 for an example).

Table 1. Defect Taxonomy of Project A

Step 3: Linkage of Requirements and Defect Categories
Still in the test planning phase, the tester annotates the list of requirements with the
defect categories taking the project experience of experts into account. For example,
in the project A of the case study (see Section 4.2 for more details) the requirement
“Identification of a client by the case manager” has the priority value high and is

Defect Category of Beizer Product-Specific Category DC Description of DC Severity

1xxx . . Requirements R1 Client not identified correctly critical

11xx . . Requirements incorrect R2
Goals and measures of case manager are not processed
correctly

normal

16xx . . Requirement changes R3 Update and termination of case incorrect normal

12xx . . Logic GUI-layout

13xx . . Completeness Syntactic specifications of input fields

Error massages

2xxx . . Functionality as
implemented

F1 Client not identified correctly critical

21xx . . Correctness
22xx . . Completeness, features

F2
Goals and measures of case manager, e.g. case
termination, are not processed correctly

normal

F3 Check of termination of case not correct critical

F4
Erroneous identification of client: Wrong / missing error
messages

normal

F5 Wrong / missing error message: Save-button etc. critical

F6
GUI behaviour; Wrong / missing error message: status,
domain limitations

major

F7 Display of incorrect data on screen/report normal

F8
Incorrect behaviour of GUI: disable/ enable of controls
navigation; default values

normal

F9 Display of syntactic incorrect data, minor errors in Layout minor

4xxx . Data D1 Incorrect access / update of client information, states etc. normal

42xx . . Data access and
handling

D2 Erroneous save of critical data critical

62xx . . External interfaces and
timing

Interface to external
components

I1
Data are incorrect or incomplete because of error in service
call

normal

623x . . . I/O timing or
throughput

I2
Data of clients are not available because partner
application is not available

critical

9xxx . . Unclassified bugs U1 e.g.sporadic failures during performance testing normal

R4 major

Unsuitability of the system
taking the organizational
processes and procedures into
account.

Incorrect handling of the
syntactic or semantic
constraints of GUI.

Incorrect handling of the
syntactic or semantic
constraints of processes and
GUI.

 Using Defect Taxonomies to Improve the Maturity of the System Test Process 135

linked to category F1 which has critical severity. Other requirements describe
properties of the user interface and are linked to F5 with severity value critical or F6
with severity value major, for example.

Step 4: Definition and Assignment of Test Patterns
Black-box tests are derived from requirements in two steps. First, high-level test cases
defining the test objective and test condition are created, followed by the
implementation of low-level test cases. Test analysis and best design practices are
used to create effective test cases. The challenge here is to find a balance between the
number of test cases and the depth of testing or test strength [14]. The test strength
refines the testing technique of the test pattern, e.g. by coverage criteria or test
methods and is determined by the priority of requirements and the severity of defect
categories or failures. The test design techniques to be applied for the design of test
cases depend on the object to be modeled. For the purpose of the recommendation of
test design methods taking its own focus in finding specific types of defects into
account. De Grood [27] defines the usefulness of some practical test design
techniques. He points out that defects found with one technique are not necessarily
found by another technique. In our approach we go a step further. The specific defect
detection capability of each test technique is related to the defect categories of the
product specific taxonomy. The generated test cases are goal-oriented in respect to
detect specific categories of defects with a coverage taking the severity of an expected
failure into account. In Table 2 the test design techniques used in project A are listed.

Table 2. Test Design Techniques for Various Defect Categories and Test Strengths

Id
Test Design
Technique

Defect
Categories

Test Strength 1
(low)

Test Strength 2
(normal)

Test Strength 3
(high)

S1
Use case-based
testing; process
cycle tests

R1, R2, R3,
F1,F2, F3

Main paths Branch coverage Loop coverage

S3
State transition
testing

I1, I2, F7, F8, F9 State coverage
State transition
coverage

Path coverage

D1
CRUD (Create,
Read, Update and
Delete)

D1, D2 Data cycle tests Data cycle tests

D3
EP: Equivalence
partitioning

F3, F5, F6 EP valid EP valid+invalid EP valid+invalid

D4
BVA: Boundary
value analysis

F3, F5, F6 BVA valid BVA valid+invalid
BVA r values at
boundaries

D6
CE: Cause-effect
graphing

F2, F3, F4 CE CE

D8 Syntax testing R4, F6 Syntax valid
Syntax valid +
invalid

Syntax valid +
invalid

D10 Condition testing F3
Simple condition
coverage

modif ied
condition/decision
coverage

modif ied
condition/decision
coverage

H1
HT: Heuristic
(experience-
based) testing

U1
Experience-
based criteria

Experience-
based criteria

Experience-
based criteria

H7
Load/performance
testing

U1
Experience-
based criteria

Experience-
based criteria

Experience-
based criteria

H8 Stress testing U1
Experience-
based criteria

Experience-
based criteria

Experience-
based criteria

H:Heuristic
and fault
oriented
methods

D: Data
oriented

S: Sequence
oriented

136 M. Felderer and A. Beer

For example, the test pattern state transition testing with Id S3 has three test
strengths, i.e. (low) state coverage, (normal) state transition coverage, and (high) path
coverage. The defect category F9 of Table 1 is assigned to the test pattern state
transition testing which is applied to design tests for all requirements linked to DC F9.

Test design techniques allow the variation of the test strength based on the risk of a
failure. Due to a positive correlation between the priority of the requirements and the
severity of the defect categories the test strength can be determined in a very specific
and goal oriented way as shown in Table 3.

Table 3. Determination of the Test Strength

PR SDC, SF Test strength

high blocker, critical, major 3

normal blocker, critical 3

normal major, normal, minor, trivial 2

low minor, trivial 1

The assignment of the test strength 1,2 or 3 to the combination of PR and SDC/SF
is similar to various standards in safety-critical systems like IEC 61508 [28], where a
specific test technique is defined as recommended, highly recommended or
mandatory depending on the safety integrity level (SIL).

For example, the requirement “An insurant should be identified and his profile
displayed on the GUI” has the priority high. The requirement is related to use cases
(see Figure 1) specified as activity diagram with a main path and alternative paths.
The defect categories R1 (severity critical), F1 (severity critical), and the defect
categories I1 (severity normal), I2 (severity critical) have to be taken into account.
The recommended test techniques are S1 (use case-based testing) with test strength 3
(loop coverage which is in our respect defined as passing each loop zero, exactly one
and more than one time) and S3 (state transition testing) with test strength 2 (state
transition coverage). The number of test cases is calculated from the number of
branches and loops specified in the activity diagram and the transitions of the message
sequence chart of the external interface.

After a test design technique has been selected for a specific severity of a defect
category (SDC) and priority of a requirement (PR) based on test pattern and the test
strength determination (see Table 2 and Table 3), tests for this requirement are
systematically designed by testers on the basis of the requirements specification and
the assigned use cases.

With the test pattern concept we manage to relate the specific defect detection
capability of each testing technique as pointed out by de Grood [27] to defect
categories and to optimize the coverage level and therefore also the number of test
cases by varying the test strength which takes the requirement’s priority and the
defect category’s severity into account. Besides the testing techniques of de Grood
[27], also the characterization schema of Vegas and Basili [29] and the experience of
previous projects have been considered for the definition and assignment of test
patterns.

 Using Defect Taxonomies to Improve the Maturity of the System Test Process 137

Step 5: Analysis of Failures after a Test Cycle

After the execution of a system test, the test exit criteria have to be evaluated by the
test management. To check the quality of the system and the test progress not only the
ratio of the passed test cases to the overall number of executed test cases but also
the defects and their severity (stored in a defect management tool) have to be
considered. If the test management then decides that the quality of a release is low
and that an additional iteration to integrate hotfixes and perform specific testing is
needed, arguments to convince the project management that additional resources and
time are essential have to be collected. In this situation, the test management has to
evaluate the failures in the defect management system, linked to the test cases and the
prioritized requirements, taking the severity and the defect categories into account. To
prevent a defect becoming a risk for the quality of the system, the following issues
have to be resolved: (1) assignment of competent members of the development team
to analyze the defect, (2) selection of the defects to be corrected in the next version,
and (3) adaptation of iteration and release plans.

Experience gained during the system test of several releases and data from the
defect management tool Bugzilla are used to improve the defect taxonomy. If defect
taxonomies are applied in projects using the same technology, for example, a service-
oriented architecture reuse and organization-wide deployment are to be
recommended.

As soon as defect taxonomy supported testing has been introduced in an
organization by providing a description of the procedure, respective templates, and
training for the testers, the effort for applying the method in a concrete project is due
to our experience marginal. We therefore focus on the benefits of the method itself,
and do not further consider return on investment calculations in this paper.

4 Case Study

The case study design follows the guidelines of case study research in software
engineering according to Runeson and Höst [30]. In this section, therefore, we present
the research questions, the case and subject selection as well as the data collection,
analysis and validity procedures, and the results.

4.1 Research Questions

In this paper the following research questions are investigated to identify whether
defect taxonomy supported testing improves test design compared to the standard
ISTQB test process.

(RQ1) Defect taxonomy-supported testing reduces the number of system test

cases.

(RQ2) Defect taxonomy-supported testing increases the number of identified
system failures per system test case.

138 M. Felderer and A. Beer

4.2 Case and Subjects Selection

We collected and analyzed data from two web-based health-insurance projects. The
units of analysis were selected from a series of similar projects in the organization.
All of them are using the same iterative development process and guidelines, a
common GUI-style guide, a defined analysis procedure and a test process, which are
mandatory for all projects in the organization. In both projects, the company’s
employees, provide the domain knowledge and external personnel the know-how
about the applied technologies, software engineering methods and tools.

Project A is an application developed for case managers of the public health
insurance institution. It supports the tasks of the employees of the public health
insurance institution in caring for handicapped people and managing these cases.
Project B, an application for mastering client data with interfaces to other applications
via an ESB, is similar to project A, and has the same complexity. For instance, the
address of residence of insurants between one insurance company and the data,
administered by the main association of the national social security institutions are
mapped and synchronized automatically.

In the first product, subsequently called project A, the defect taxonomy supported
testing approach based on the ISTQB test process was applied. In the second one,
project B, the ISTQB test process was already in place, but no defect taxonomy
guided test case design was used. Table 4 gives an overview of both projects
comparing the characteristics area, staff, duration, number of iterations, size, ratio of
system testing, and test process. Both projects have similar characteristics mainly
differing in the application of defect taxonomy-supported testing in project A.

Table 4. Overview of the Studied Projects

 Project A Project B

Area Application for case managers
Administration of clients of the
public health insurance
institution.

Staff About 7 Up to 10

Duration
9 month development, now
under maintenance

9 month development, now
under maintenance

Number of iterations 4 3

SIZE: NOR + NUC 41+14 28+20

Ratio of system
testing

27% of overall project effort 28% of overall project effort

Test Process
ISTQB process + defect
taxonomy-supported testing

Manual regression testing

ISTQB process

Manual regression testing

 Using Defect Taxonomies to Improve the Maturity of the System Test Process 139

In both projects the number of requirements (NOR) plus the number of use cases
(NUC) are used to estimate the system size (SIZE) which is 55 in project A and 48 in
project B.

4.3 Data Collection Procedure

In this section we focus on the collection of data in the framework of iterative
software development in a public health insurance institution. Referring to Runeson
and Höst [30] we consider data collection techniques of three degrees.

─ First degree (direct methods) means that the researcher is in direct contact with the
stakeholders and collects data in real time.

─ Second degree (indirect methods) means that the researcher directly collects raw
data without actually interacting with the subjects during the data collection.

─ Third degree means that independent analysis of work artifacts where already
available or compiled data is used.

The data were collected following the steps of defect taxonomy-supported testing (see
Section 3.2):

Step 1: The requirements were retrieved from the repositories of projects A and B
and stored in an Excel table. The analysts defined the requirements in the tool
Enterprise Architect. The priority of requirements was assigned in cooperation with
domain experts taking the business value and the impact of a failure into account.

Step 2: The defect taxonomies were created in Excel. Before the testers started to
design test cases for project A, they were trained to apply defect taxonomy-supported
testing. The general guideline for all projects was that test cases have to be designed
on the basis of the use case descriptions with 100% branch coverage. In project A
however the testers were advised to reduce the coverage of test cases taking priority
of requirements and defect categories into account.

Step 3 and 4: To each requirement in the exported Excel table, a defect category was
assigned. Then all test cases were implemented in the test management tool
SiTEMPPO [31]. The test case pool was interpreted by the test management to
validate the correct application of DTST and to give feedback in regular test team
meetings.

Step 5: The correct analysis of failures after a system test was crucial, because
stakeholders expect information about release quality and outstanding risks. In project
A, defect entries (defect identifier, severity and short description) of the defect
management system were exported into a csv file using specific queries of Bugzilla.
Finally, the defect entries are assigned to the defect categories via the traceable test
case identifiers and requirements.

The central test management group responsible for the application of best practices in
software testing to all projects of the organization integrated the methodology into the
framework of an improvement project. Qualitative data were additionally collected by
interviewing project managers, testers with good domain knowledge and testing

140 M. Felderer and A. Beer

skills, and analysts. To analyze the effectiveness of the improvement measure, the
stakeholders, i.e. analysts, testers, test managers, and project managers were
interviewed. Test cases were reviewed with respect to their test strength and test
technique used. During and after system testing, the defect entries of Bugzilla were
analyzed and linked to the defect categories of the product. Issues such as, efficiency
of the test cases, quality of a release and severity and impact of a defect were
discussed with project management, system testers, analysts and development staff.
As a result a smart decision about the allocation of resources to solve open issues and
to plan the next versions and deployments of the software could be made.

Indirect methods were used to collect data taking the regular reports of the project
manager created for the organization’s steering board, minutes of regular project
meetings, thematic queries to the test management and the defect tracking tool into
account.

For third degree methods the test management collected archival data having
access to the repositories of the studied projects. The main sources were documents of
the project management for example project and test plans, controlling data,
milestones and defect reporting metrics.

Only defect data on integration/system level were taken into account. The approach
guarantees traceability from the requirements to the test cases and the defect entries,
which is a precondition for an objective assessment of the product quality on the
system level.

4.4 Analysis Procedure

To answer the two research questions we measure the system size (SIZE), i.e. the sum
of the number of requirements (NOR) and use cases (NUC), the number of test cases
(NOT), and the number of failures (NOF) in project A and B. To decide whether the
number of test cases decreases by the application of DTST in an ISTQB test process
(RQ1), we compare the ratio NOT/SIZE of projects A and B, i.e. the number of test
cases of projects A and B relative to their project size. To decide whether the number
of identified system failures per system test case increases by the application of DTST
in an ISTQB test process (RQ2), we compare the ratio NOF/NOT of projects A and
B, i.e. the number of failures of projects A and B divided by their number of test
cases. NOF/NOT is an established measure for test effectiveness [32] measuring the
effect of the test cases on the system under test. The reduction of the number of test
cases by the application of defect taxonomy-supported testing in RQ1 is additionally
shown by comparing the number of test cases per module with DTST to the estimated
number of test cases with standard ISTQB in project A. To show the significance of
the test case reduction in project A compared to the estimation, a paired two-sample t-
test [33] is applied.

4.5 Validity Procedure

In this section we present the applied measures to guarantee validity of our results.
Referring to Runeson and Höst [30] we discuss threats to the construct validity,

 Using Defect Taxonomies to Improve the Maturity of the System Test Process 141

internal validity, external validity, and reliability of the case study along with
countermeasures taken to reduce the threats.

Construct Validity. This type of validity reflects to what extent the studied
operational measures represent what is investigated according to the research
questions. To answer the research questions, where the number of test cases and the
ratio of failures per test case of two projects have to be compared, we selected the
projects A and B which have similar characteristics. The projects A and B are both in
the public health insurance domain and were performed by the same development and
test organization which has standardized guidelines for all its projects. Additionally,
as the project overview in Section 4.2 shows, they have similar duration, number of
iterations, size, and ratio of system testing. Finally, both projects are based on the
ISTQB test process, only differing in the application of defect taxonomy-supported
testing in project A. Although the number of requirements of project A (41) and
project B (28) differ significantly (see Table 5), the results are comparable. First,
NOT is normalized by SIZE, i.e. the sum of the number of requirements and use
cases, and therefore independent of NOR. Second, the distribution of failures per top-
level defect category is independent of the number of requirements which has
therefore no side effect on the ratio NOF/NOT. The source of data was the defect
management tool and the test management tool including all test reports of projects A
and B. Data quality has been assured and maintained throughout the study, e.g.
starting with a selection of the projects and iterated consistency, correctness and
completeness checks of the data. The descriptions of failures of severity blocker or
critical and the change requests tracked in the defect management tool were
additionally reviewed by the test management aligned with domain experts and
analysts during and after system testing. To better understand the exact nature of the
failures and to perform their assignment to defect categories, the test cases, test plans
and change control board protocols were also analyzed. Additionally, we have
informally collected feedback concerning defect taxonomy-supported testing from
testers and test managers involved in projects A and B to validate the results.

Internal Validity. This type of validity is of concern when causal relations are
examined where one factor affects another factor and the influence of additional
factors is not considered. We investigate a causal relation between the application of
defect taxonomy-supported testing (DTST) in an ISTQB system test process, and both
the number of system test cases (NOT) and the number of failures (NOF). The
obtained dependency between DTST and NOT might have been influenced by several
additional factors. Such factors are the test budget, the experience of the involved test
designers, the used technologies, or the quality of the initial defect categorization,
requirements definition and the code quality [34]. As the same test and development
organization was involved in both projects A and B, and because of the fact that the
projects where selected according to their duration, number of iterations, size, the
code quality, ratio of system testing, technological space and the applied test process
in order to be comparable (see Section 4.2), the presumable influence of the
mentioned additional factors is small. Additionally, the data for answering RQ2 is
triangulated as NOT, NOF, and SIZE of projects A and B but also the estimated NOT
in project A and the qualitative feedback of testers are considered.

142 M. Felderer and A. Beer

External Validity. This type of validity is concerned with to what extent it is possible
to generalize the findings. Our case study has been performed in the domain of public
health insurance based on the defect taxonomy of Beizer and the standardized ISTQB
test process. As our defect taxonomy-supported testing approach is independent of a
specific domain and defect taxonomy, we expect similar results in other contexts
where an ISTQB-based test process is established but have to show this as future
work.

Reliability. The reliability is concerned with to what extent the data and the analysis
are dependent on the specific researchers. Our defect taxonomy-supported testing
approach is well-defined, and the data collection, analysis, and validity procedures are
completely documented. Additionally, the underlying data is available in Bugzilla and
a test management tool.

4.6 Results

Table 5 shows the basic and derived metrics of project A and project B to answer the
research questions RQ1 and RQ2.

Table 5. Metrics for Project A and Project B

Metrics Project A Project B

NOR 41 28

NUC 14 20

SIZE (NUC+NOR) 55 48

NOT 148 170

NOF 169 114

NOT/SIZE 2.69 3.54

NOF/NOT 1.14 0.67

The system size (SIZE) determined by the sum of the number of requirements

(NOR) and use cases (NUC) is 55 in project A and 48 in project B. The number of
tests (NOT) is 148 in project A and 170 in project B. For both projects, the number of
test cases has been extracted from the test management tool SiTEMPPO. The test
cases in project A have been defined with DTST as defined in Section 3.2. In project
B the test cases have been defined with the ISTQB based test design procedure
established in the institution where the case study has been conducted, i.e. suitable
standard test design techniques for use cases and requirements were selected, and
applied to reach 100% coverage. For instance, if a use case is defined by an activity
diagram, branch coverage as recommended by the ISTQB has been applied. The
number of failures (NOF) is 169 in project A and 114 in project B. For both projects,
the number of failures has been extracted from the defect management tool Bugzilla.

(RQ1). The number of test cases related to the project size is smaller for project A
than for project B, as NOT/SIZE is 2.69 in project A but 3.54 in project A (see Table

 Using Defect Taxonomies to Improve the Maturity of the System Test Process 143

5). This fact indicates that defect taxonomy-supported test design reduces the number
of system test cases and therefore also the resources needed for implementing
executing and evaluating them which helps to increases the efficiency of the ISTQB
test process.

The reduction of the number of test cases by the application of DTST in an ISTQB
test process is confirmed by comparing the actual and estimated number of test cases
in project A. Table 6 shows the estimated number of tests without considering defect
taxonomy-supported testing in the ISTQB test process (NOT Estimated) and the
actual number of tests with defect taxonomy-supported testing (NOT DTST) for each
module of project A. NOT Estimated is determined by estimating the number of test
cases in project A with the same procedure as applied in project B, i.e. selecting
suitable standard test design techniques for use cases and defining test cases to reach
100% coverage according to the respective test design techniques.

Table 6. Number of Test Cases in Project A

Module NOT Estimated NOT DTST Reduction
GUI 32 29 9%
M1 9 8 11%
M2 58 41 29%
M3 43 34 21%
M4 14 13 7%
M5 26 23 12%
Total 182 148 19%

As the column Reduction, i.e. the percentage reduction of test cases from NOT

Estimated to NOT DTST, in Table 6 indicates, NOT is absolutely reduced for each
module and the average reduction is 19%. The test case reduction by defect
taxonomy-supported test design in project A is even significant as a paired two-
sample t-test based on the data of Table 6 shows (T=2.209, df=5, p=0.039).

(RQ2). Table 5 shows that the test effectiveness measure NOF/NOT, i.e. the average
number of failures found by a test case. NOF/NOT is greater for project A (1.14)
where DTST has been applied than for project B (0.67) where DTST has not been
applied. Thus, each test case designed with DTST is more effective than without
DTST. The reduced number of test cases and the greater test effectiveness indicates
that the application of defect taxonomies as indicated in this paper improves system
test design in the ISTQB test process as the defined tests are more goal-oriented. The
generated test case set is more focused on the detection of defects and avoids
redundant test cases.

These quantitative results of our case study are validated qualitatively by feedback
of the testers which emphasized that defect taxonomy-supported testing helps them to
improve their test cases to find more defects of severity major, critical or blocker.
Differing from project A, we observed that in project B hot fixes and unplanned
releases were needed to remove failures of type major, critical or blocker which

144 M. Felderer and A. Beer

confirms the statement of the testers. The reduction of test cases and the availability
of a stable defect classification and its impact on budgeting and resource allocation
caused additional discussion amongst the stakeholders in project A. For instance, the
effort for test design and execution was reduced as the number of test cases decreased
compared to the originally estimated number of test cases covering 100% of the use
case branches in project A. The testers accepted the reduction of test cases and their
feedback confirmed that DTST guarantees quality of the product and allows realistic
statements about the release quality although the number of test cases is reduced. Also
the feedback of the test management confirms more precise statements about the
quality of a release in our approach. The test management emphasizes that the
severity value of a failure is more realistic and as a consequence the number of
unplanned releases was reduced and the test management process went more
smoothly.

5 Conclusion and Future Work

In this paper, we presented a method of system testing based on defect taxonomies
and investigated via an industrial case study how it can improve the maturity, i.e.
efficiency and effectiveness of the ISTQB test process. We defined a relevant defect
taxonomy-supported test process considering traceability between prioritized
requirements, defect categories, and failures. We then studied two research questions
based on the data of two representative projects of a public health insurance
institution with the following results. Defect taxonomy-supported testing (1) reduces
the number of system test cases and (2) increases the number of identified failures per
test case.

Thus, enhancing the ISTQB test process by defect taxonomy-supported testing has
several benefits. The design and execution of system tests is goal-oriented increasing
the efficiency and effectiveness of the test process. The number of unplanned releases
and hot fixes can be reduced significantly during maintenance. The effort required for
defining and maintaining the defect taxonomies is manageable.

The results have been applied to improve design of system tests and statements on
release quality. This approach is already being successfully applied to the system
testing of applications in the health insurance domain. So far, it has only been applied
to system testing based on the defect taxonomy of Beizer and the standardized ISTQB
test process. But as the Beizer taxonomy can also be adapted to the integration and
unit levels, this approach can be extended to manage testing on these levels. Also the
underlying ISTQB test process does not restrict the applicability of defect taxonomy-
supported testing in practice, as most industrial test processes can be subsumed under
the generic ISTQB test process.

In future, we investigate the role of defect taxonomies in our approach in more
detail. On the one hand we empirically investigate how our approach scales for
different defect taxonomies such as the Kaner or IEEE taxonomies. On the other hand
we study the evolution of taxonomies in the maintenance phase and its consequences
for regression testing. We also intend to integrate defect taxonomies into system risk

 Using Defect Taxonomies to Improve the Maturity of the System Test Process 145

assessment in order to define a risk-based testing approach and to compare it to other
system test prioritization approaches. Furthermore, we investigate the value
contribution of defect taxonomy-supported testing, e.g. reduced release planning
uncertainty, and its relationship to value-based software testing approaches [35]. In
this respect, we also perform a detailed return on investment study of defect
taxonomy-supported testing based on the ongoing application in several projects.

Acknowledgments. This work has been supported by the project QE LaB – Living
Models for Open Systems (FFG 822740).

References

1. Serrano, N., Ciordia, I.: Bugzilla, ITracker, and other bug trackers. IEEE Software 22(2),
11–13 (2005)

2. ISTQB: Standard glossary of terms used in software testing. Version 2.1 (2010)
3. McDonald, R., Musson, R., Smith, R.: The practical guide to defect prevention -

techniques to meet the demand for more reliable software. Microsoft Press (2008)
4. Bach, J.: Risk and Requirements-Based Testing. IEEE Computer 32(6), 113–114 (1999)
5. Beizer, B.: Software testing techniques. Thomson Computer Press (1990)
6. Black, R.: Advanced Software Testing. Guide to the ISTQB Advanced Certification as an

Advanced Test Analyst, vol. 1. Rocky Nook (2008)
7. Carr, M.J., Konda, S.L., Monarch, I., Ulrich, F.C., Walker, C.F.: Taxonomy-based risk

identification, Software Engineering Institute, Carnegie-Mellon University, Pittsburgh
(1993)

8. ISO/IEC: ISO/IEC 9126-1:2001 Software engineering - Product quality - Part 1: Quality
model (2001)

9. Kelly, D., Shepard, T.: A case study in the use of defect classification in inspections. In:
Proceedings of the 2001 Conference of the Centre for Advanced Studies on Collaborative
Research (2001)

10. Vijayaraghavan, G., Kaner, C.: Bug taxonomies: Use them to generate better tests. STAR
EAST (2003)

11. Kaner, C., Falk, J., Nguyen, H.Q.: Testing computer software. Van Nostrand Reinhold
(1993)

12. IEEE: IEEE Std 1044-1993: IEEE Standard Classification for Software Anomalies (1993)
13. Mariani, L.: A fault taxonomy for component-based software. Electronic Notes in

Theoretical Computer Science 82(6), 55–65 (2003)
14. Beer, A., Peischl, B.: Testing of Safety-Critical Systems – a Structural Approach to Test

Case Design. In: Safety-Critical Systems Symposium, SSS 2011 (2011)
15. Looker, N., Munro, M., Xu, J.: Simulating errors in web services. International Journal of

Simulation Systems, Science & Technology 5, 29–37 (2004)
16. Marchetto, A., Ricca, F., Tonella, P.: An empirical validation of a web fault taxonomy and

its usage for web testing. Journal of Web Engineering 8(4), 316–345 (2009)
17. Morell, L.J.: A theory of fault-based testing. IEEE Transactions on Software Engineering,

844–857 (1990)
18. Vallespir, D., Grazioli, F., Herbert, J.: A framework to evaluate defect taxonomies. In:

Argentine Congress on Computer Science (2009)

146 M. Felderer and A. Beer

19. Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K.,
Wong, M.Y.: Orthogonal defect classification-a concept for in-process measurements.
IEEE Transactions on Software Engineering 18(11), 943–956 (1992)

20. Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J.M.: On the value of static
analysis for fault detection in software. IEEE Transactions on Software Engineering, 240–
286 (2006)

21. El Emam, K., Wieczorek, I.: The repeatability of code defect classifications. IEEE (1998)
22. Henningsson, K., Wohlin, C.: Assuring fault classification agreement-an empirical

evaluation. IEEE (2004)
23. Falessi, D., Cantone, G.: Exploring feasibility of software defects orthogonal

classification. Software and Data Technologies, 136–152 (2008)
24. Fenton, N.E., Ohlsson, N.: Quantitative analysis of faults and failures in a complex

software system. IEEE Transactions on Software Engineering 26(8), 797–814 (2000)
25. Basili, V., Briand, L.C., Melo, W.L.: A validation of object-oriented design metrics as

quality indicators. IEEE Transactions on Software Engineering 22(10), 751–761 (1996)
26. Andersson, C., Runeson, P.: A replicated quantitative analysis of fault distributions in

complex software systems. IEEE Transactions on Software Engineering, 273–286 (2007)
27. de Grood, D.J.: TestGoal – Result-Driven Testing. Springer (2008)
28. IEC: S+ IEC 61508 Commented version (2010)
29. Vegas, S., Basili, V.: A characterisation schema for software testing techniques. Empirical

Software Engineering 10(4), 437–466 (2005)
30. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empirical Software Engineering 14(2), 131–164 (2009)
31. Atos: SiTEMPPO, http://at.atos.net/de-at/solutions/sitemppo/

(accessed: June 10, 2012)
32. Spillner, A., Rossner, T., Winter, M., Linz, T.: Software Testing Practice: Test

Management. Rocky Nook (2007)
33. Argyrous, G.: Statistics for research: with a guide to SPSS. Sage (2011)
34. Ramler, R., Klammer, C., Natschläger, T.: The Usual Suspects: A Case Study on

Delivered Defects per Developer. In: ESEM 2010 (2010)
35. Ramler, R., Biffl, S., Grünbacher, P.: Value-Based Management of Software Testing. In:

Value-Based Software Engineering, pp. 225–244 (2006)

A Transformation of Business Process Models
into Software-Executable Models Using MDA�

Nuno Santos1, Francisco J. Duarte2,
Ricardo J. Machado2, and João M. Fernandes2

1 CCG - Centro de Computação Gráfica, Guimarães, Portugal
2 Centro Algoritmi – Universidade do Minho, Braga/Guimarães, Portugal

Abstract. Traditional software development projects for process-orien-
ted organizations are time consuming and do not always guarantee the
fulfillment of the functional requirements of the client organization, and
thus the quality of the resulting software product. To reduce the time
spent for developing software and improve its quality, we adopt the inclu-
sion of automation in some parts of the software development process.
Thus, in this paper, we propose a model transformation approach to
derive an executable model for the business processes of a given orga-
nization. We execute a mapping between processes (described with a
business process execution language) and software components. We also
propose a supporting software architecture based on an Enterprise Ser-
vice Bus and on Java Business Integration, and we use an already defined
methodology to execute the model transformation project.

Keywords: business process, JBI, model-driven architecture, MDA,
enterprise service bus, ESB.

1 Introduction

Business Process Management (BPM) [1] is a discipline followed by organizations
where business processes are required to exist, either by quality norms or by
internal directives. Additionally, to cope with the requirements of the business
processes, the software development process must properly support them [2,3].

In every organization, it is desirable to reduce the time and the cost to imple-
ment business processes in software systems. An aggravating factor during the
development of software to support business processes is the diversity of applica-
tions used in a real-world business context, which causes integration problems.

We base our approach on the Model-Driven Architecture (MDA) [4] initia-
tive from the OMG. We use two types of models: a Platform-Independent Model
(PIM), representing the business process, and a Platform-Specific Model (PSM),
allowing the PIM to be executed in software. With our business process-based

� This work is financed by Fundos FEDER through Programa Operacional Fatores de
Competitividade – COMPETE e por Fundos Nacionais através da FCT – Fundação
para a Ciência e Tecnologia no âmbito do Projeto: FCOMP-01-0124-FEDER-022674.

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 147–167, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

148 N. Santos et al.

approach, the complexity to implement in software the functional requirements
derived from business processes is reduced because, among others, of the au-
tomation used in model transformations.

The effort to improve the quality of the resulting software product results
in a better fulfillment of the functional requirements expressed in the busi-
ness processes because of the diminishing gaps between business process models
and software that our approach facilitates. In projects that adopt model-driven
techniques, the model transformations are crucial for the overall success of the
project, because they allow moving features from abstract models into software-
executable ones, without loosing quality.

We use an Enterprise Service Bus (ESB), the Apache ServiceMix1, for the PSM
implementation. Typically, software solutions based on ESBs are loose-coupled,
use reliable messaging mechanisms, and integrate different software technologies.

In this paper, we present a model-driven transformation approach for imple-
menting business process models into software. The considered approach reduces
the complexity to implement the business models into software, thus improving
the overall quality of the information system. Our transformation approach is
part of the Business Implementation Methodology (BIM) [5], which adopts refer-
ence models of business processes to provide business best practices to the client
organization. However, it is important to note that the approach is sufficiently
generic to be adopted in different methodological contexts.

In section 2, we present the state of art, namely the phases and states of the
BIM, the MDA based model transformations, and the Apache ServiceMix ESB.
In section 3, we propose a quantitative method to select the most appropriate
language for modeling the business processes of a software development orga-
nization, including explicitly considering the specific staffing environment of a
project. Section 3 also describes a case study, executed at Bosch Car Multimedia
Portugal. Section 4 presents the business process model transformations, accord-
ing to the MDA principles. We claim the adequateness of this approach to move
from a business process model into a software-executable model, following BIM.
First, we establish a correlation between the four states that business process
models pass through in BIM, and the states of the PIM and the PSM defined in
MDA. A business process model at the PIM level, ready to be transformed into
software, is then established. The transformation process is completed by map-
ping platform-independent elements of the business process model into platform-
specific ones. The resulting business process model at the PSM level is presented
in section 5. In section 6, the conclusions of the work and proposals for future
work are discussed.

2 Model-Driven Implementation of Business Processes

2.1 BIM

BIM is a methodology specially targeted for implementing in software the busi-
ness processes of a given organization. This methodology proposes the use of
1 http://servicemix.apache.org

http://servicemix.apache.org

Transformation of BPMs into Software-Executable Models 149

best practices in the business domains and allows the customization of a business
process according to the specific needs of the organization. It also promotes the
building of a software solution with components of different technologies. BIM is
composed of four phases (Fig. 1): the ‘Selection’ of the adequate generic business
processes; the ‘Definition’ of the business processes to use; the ‘Concretization’
of the business processes into the software system; and the ‘Implementation’ in
software of the various elements that compose the process.

Selection Definition Concretization Implementation

Fig. 1. The four phases of the BIM ([5])

For each phase, BIM describes a corresponding state of the process frame-
work (PF) (Fig. 2). The PF is an artifact of the BIM methodology representing
the business processes at different implementation phases. Once the necessary
requirements to complete each phase are fulfilled, a new state is assigned to the
PF. The state of the PF is mainly defined by the state of the business process
model. The four states defined in the methodology are ‘Generic’, ‘Instantiated’,
‘Runnable’ and ‘Software Implemented’.

Generic

Runnable

Instantiated

Software-Implemented

Fig. 2. The Process Framework states in BIM ([5])

The bi-directional state transformations from ’Runnable’ and
’Software-Implemented’ are possible by having latent runnable business pro-
cesses moved into a software-implemented state and vice versa.

2.2 Model-Driven Architecture

In an MDA-guided project, after modeling the business processes, one can ob-
tain a software-executable business process model; this is basically a transforma-
tion from a PIM into a PSM. For these kinds of transformations, the commonly
accepted standard is OMG MOF Query/View/Transformation (MOF QVT) lan-
guage [6]. It allows the creation of relations between models based in transfor-
mation rules. A transformation of PIM business processes, modeled by UML 2
Activity Diagrams, into a PSM in BPEL, through Regular Expression Language
(REL) is demonstrated in [7]. The same kind of transformation is described in [8],
using the ATLAS Transformation Language (ATL) [9]. A similar transformation
is described using the Object Constraint Language (OCL) rules in [10].

150 N. Santos et al.

Another kind of approach is proposed in [11], which begins by designing a
CIM business process model in EPC, then continues by transforming the CIM
business process model into a platform-independent one in BPMN, and finally
obtains the platform-specific business process model in BPEL. Another approach
is presented in [12], which describes a transformation of a CIM modeled in BPMN
into a PIM modeled in UML, using either use case or class diagrams.

One of the characteristics of an MDA project is the clear separation between
the specification of the system functionalities and the description of how the
platform resources are used. An MDA project suggests the following:

– both the environment and the requirements of the system are specified (CIM);
– the system is specified independently from the platform that supports it

(PIM);
– the platform is specified;
– a platform is chosen for the system;
– the specification of the system is transformed into specifications containing

details of a specific platform (PSM).

The PSM is obtained from the transformation process that takes the PIM as
the input. The transformation of the PIM into the PSM is accomplished by
combining the PIM with specific details of the platform (Fig. 3).

Fig. 3. Transformation from PIM into PSM [13]

Model marking (represented by the activities inside the circle of Fig. 4) is an
approach, proposed by OMG for model transformations, that is performed by
indicating the PIM elements that are transformed into PSM elements. In the
mapping task, relationships between the PIM elements and the PSM one are
established. For example, one can create a mapping that relates classes in the
model with Java classes. Mappings must comply with the characteristics of both
the business models and the programming language.

A PIM element can be related to several PSM elements, and, similarly, a PSM
element can be related to several PIM elements. Once a mapping is defined, the
execution of the transformation results in code generation.

Transformation of BPMs into Software-Executable Models 151

Fig. 4. Model transformation in MDA [13]

2.3 Apache ServiceMix

After model transformations, the resulting PSM model is a software-executable
solution. This solution may require the integration with other applications. The
integration can be achieved by using hubs or brokers as a middleware between ap-
plications. There are some commonly used approaches for enterprise application
integration, like the Spring framework [14]. Spring provides a supporting software
platform to facilitate the development and execution of business processes by us-
ing, among other capabilities, the inversion of control software pattern. Spring
can support all the three common layers of a distributed application: user inter-
face, business rules and entities, and the persistence of data. Integration can also
be achieved by using ESB-based software frameworks, which allow developing
distributed software in a loose-coupled manner. ESBs suggest the usage of a bus,
instead of several brokers. Normally, ESBs contain normalized message routers
to extract orchestrations from the different software components and place them
in a central repository. Orchestrations can be edited without changing the dif-
ferent software components. ESB also include some others handy features, like
reliable message buses to guarantee message exchange, or clustering to allow scal-
ability. The core functionalities of an ESB are defined in [15] as being location
transparency, transport protocol conversion, message transformation, message
routing, message enhancement, security, monitoring, and management. A set of
usage patterns for ESBs is presented in [16].

In this work, we use the Apache ServiceMix 4, which is a widely accepted,
open source and open standards based ESB solution. ServiceMix may bring
benefits to software development projects, like low cost and high quality of the
resulting product. It is based on OSGi technology [17] and includes support to the
Java Business Integration (JBI) specification [18]. JBI defines a framework for
integrating applications, based in added components that interoperate through
a method of normalized message exchanges. This method is based in the WSDL
2.0 specification of Message Exchange Patterns (MEPs) [19]. JBI defines two
types of components: Service Engines (SEs) and Binding Components (BCs).
SEs provide business and processing logic, for instance for processing data or to

152 N. Santos et al.

implementing business rules. BCs provide communication between the ESB and
its exterior, working as a bridge between input and output data.

During compilation time, in order to deploy a component into ServiceMix, a
Service Unit (SU), which provides component instantiation to the ESB, is used.
Each SE or BC instantiation requires a SU that has the instantiated component
definition. A SU can be executed in the ESB, if Service Assemblies (SAs) are
used. A SA is a collection of one or more SUs. JBI components are unable to
interpret SUs, unless SUs are packaged inside a SA.

3 Selection of a Business Process Language

To assure the quality of the software resulting from a business processes imple-
mentation project, it is advisable to select a business process language compat-
ible with the organization where processes will run. To achieve that purpose,
we include in this section a comparison between five business process modeling
languages: BPMN [20], BPEL [21], XPDL [22], YAWL [23], and Coloured Petri
Nets (CPNs) [24].

Several languages are reviewed in [25], namely by describing their technolog-
ical characteristics and their strengths and weaknesses. Twelve business process
languages are compared in [26], according to a representation model proposed
in [27], to establish differences to their representational capabilities in the infor-
mation system domain. The most common approach to compare the modeling
capabilities of the business process languages is the set of workflow patterns de-
fined in [28], which shows if the representation of a business process workflow is
directly supported by the language.

The process of selecting a business process language should not be restricted
to the comparison of the workflow patterns. An organization should not just be
concerned with technological issues. Thus, based in [29], we propose that the
selection process should be enlarged, being based on the three strategies of the
triangle shown in Fig. 5: information systems, organizational, business.

The triangle relates the business strategy with the information system (IS)
strategy and the organizational strategy. The selection process for the adopted
business process language took into account the information systems strategic
triangle. Since IS strategy is related to the definition of the implementation
of the business processes in the IS solution, we base our comparison analysis
on the workflows that each language supports. Regarding the organizational
strategy, we base the comparison on the preferences of the development team.
In what concerns the business strategy, our comparison takes into account a set
of important aspects related with the alignment of the business process and the
business strategy.

3.1 Information Systems Strategy

To compare the business process modeling languages by their added-value in the
design and execution of the business processes, a study was performed based

Transformation of BPMs into Software-Executable Models 153

Fig. 5. The information systems strategic triangle (adapted from [29])

in the language functionality, using the workflow patterns defined in [28]. The
results of this comparison are described in Table 1. The table derives from a
collection of previous comparisons, which can be seen in [30,23,31,32]. If the
language supports directly the pattern, it is represented in the table by a “+”. If
it is supported indirectly, it is represented by a “0”. Finally, if it is not supported
at all, it is represented by a “-”. The workflow patterns descriptions are not
detailed in this paper.

Table 1. Workflow Patterns based Comparison

Nr. Workflow Patterns BPML BPEL XPDL YAWL CPN
1 Sequence + + + + +
2 Parallel split + + + + +
3 Syncronization + + + + +
4 Exclusive choice + + + + +
5 Simple merge + + + + +
6 Multi-choice - + + + +
7 Syncronizing merge - + + + -
8 Multi-merge 0 - - + +
9 Discriminator - - + + -
10 Arbitrary cycles - - + + +
11 Implicit termination + + + - -
12 Multiple instance without syncronization + + + + +
13 Multiple instances with a priori design time knowledge + + - + +
14 Multiple instances with a priori runtime knowledge - - - + -
15 Multiple instances without a priori runtime knowledge - - - + -
16 Deferred choice + + - + +
17 Interleaved parallel routing - 0 - + +
18 Milestone - - - + +
19 Cancel activity + + - + 0
20 Cancel case + + - + -

3.2 Organizational Strategy

The need for this comparison lies in the fact that the organization’s software
development team members will be the users of the chosen business process
language. It is then necessary to conclude which business process language is the
best identified with the profile and skills of its users.

154 N. Santos et al.

Surveys were performed at Bosch Car Multimedia Portugal to assess the tech-
nological skills of the development team, concerning the business process im-
plementation. The aim was to establish a language comparison which can be
considered as the most subjective part of our work. In our case, we have based
the structure of the survey on a collection of key characteristics of the business
process language. We have questioned the development team on their confi-
dence on the following characteristics: workflow modeling, graph-based mod-
eling, XML, Petri nets, pi-calculus, business process modeling languages and
notations, service-oriented architecture (SOA), web services, protocols, brokers,
ESBs, and threading. Additionally, the team was questioned about BPM issues.
This complementary study was helpful to characterize the team regarding its
knowledge on the business process to be implemented. Thus, the survey has
included questions related to the knowledge and confidence of the team on:

– business processes, activities, key performance indicators, and strategic goals;
– BPM-based tools (e.g., BPM systems, EAI, ERP, CRM);
– business quality management (Total Quality Management, Six Sigma, Bal-

anced ScoreCards);

The answers were given with a level of knowledge about the presented standards,
valued from a minimum knowledge of 1 and ending with a maximum of 5. The
presented values are relative results obtained by each of the languages in each
of the surveys, resulting then the addition of all the surveys classification for
each language. The results of the surveys are represented in Table 2 and allow to
represent the confidence of the user on using each language (for instance, survey
#1 is 76% confident on using BPML, 76% on using BPEL, etc.).

Table 2. Results of the conducted surveys

Survey BPML BPEL XPDL YAWL CPN
#1 0.76 0.76 0.76 0.65 0.84
#2 0.70 0.80 0.79 0.94 0.99
#3 0.64 0.74 0.79 0.83 0.78
#4 0.59 0.60 0.79 0.57 0.59
#5 0.62 0.72 0.79 0.70 0.76
#6 0.67 0.88 0.87 0.90 0.95
#7 0.15 0.38 0.35 0.34 0.30
#8 0.34 0.53 0.59 0.49 0.48
#9 0.78 0.79 0.92 0.69 0.75

Total 5.26 6.20 6.65 6.11 6.43

3.3 Business Strategy

The last comparison relates to the specific aspects of the business environment,
in this case referring to the software development industry. Some of these aspects
were suggested by [33] as a basis for language supporting tools comparison. Other

Transformation of BPMs into Software-Executable Models 155

aspects are generally relevant concepts for using a language in a business pro-
cess implementation projects (e.g., language maturity and implementation costs)
with the goal of determining the added-value in using one of these languages in
the organization. In Table 3 it is represented a set of characteristics, namely:
language maturity, usability, existing language implementation tools, online tu-
torials available, if the language is translatable to another one, the language
learning effort, transformability in object-oriented code, implementation costs,
portability, interoperability, security, efficiency and data management, and the
integration of the language in a ERP (e.g., SAP). In Table 3, for each language a
set of business aspects was graded in a scale from 1 to 5. The value for each busi-
ness aspect was given based on technical specifications and discussion forums.
The classification was totally based on our subjective judgement after analyzing
the information for each language.

Table 3. Relevant Business Aspects Considered for Comparison

Nr Business Aspects BPML BPEL XPDL YAWL CPN
1 Maturity 4 4 4 3 5
2 Usability 4 4 4 3 3
3 Existing Tools 4 5 3 2 5
4 Online Tutorials 5 5 3 3 5
5 Translatability 5 5 3 4 4
6 Learning Effort 4 4 4 3 3
7 Transformation to OO-code 2 5 3 2 2
8 Implementation costs 5 5 3 5 4
9 Portability 3 5 3 5 5
10 Interoperability 5 5 4 5 3
11 Security 5 5 3 5 3
12 Efficiency 4 5 2 5 5
13 Data Management 4 4 5 4 5
14 Integration in ERP SAP 5 5 3 4 3

After the comparisons of the three dimensions of the information system
strategic triangle, the final results were collected in Table 4, where it shows
the ordered level of suitability obtained by the languages, and the final result of
each language is an overall value of all the executed comparisons.

The language with the best overall result was BPEL, because it was considered
the most adequate in the business strategy and also with good classifications in
information systems and organization strategies. For the #1 ranking of BPEL
should be kept in mind the good result obtained for the particular software
development team answering the survey. With different software development
teams, the order of business strategies may vary.

156 N. Santos et al.

Table 4. Final Comparison of the Business Process Languages

Strategy BPML BPEL XPDL YAWL CPN
Information System 4 2 5 1 2
Organization 5 3 1 4 2
Business 2 1 5 4 3
Final 4 1 4 3 2

4 Transformation of Business Process Models

4.1 Correlation between BIM States and MDA Models

During a BIM-based business implementation project, it is possible to establish
a correlation between the four states of BIM and the states of the PIM and the
PSM models. The main characteristics of a business process model that is in the
‘Generic’, ‘Instantiated’ or ‘Runnable’ state are similar to the characteristics of a
PIM, because the PF in these states do not include any reference to any platform.
During the first three BIM phases (‘Selection’, ‘Definition’ and ‘Concretisation’),
it is not yet decided if the process will be software-executed or not. In fact,
BIM suggests that, at the end of the ‘Concretisation’ phase, a process should
be defined to be software implemented in the next phase of the methodology.
However, it is also advisable to consider other alternatives, and at least one of the
business processes may not require any software implementation. The ‘Software-
implemented’ state corresponds to the PSM, since the process is executed using
software, so it must obey specifications of the technological platform.

4.2 Business Process Model at the PIM Level

The third phase of BIM, ‘Concretisation’, defines a set of requirements the PF
must respond in order to conclude that phase. The state of the PF at the end of
the ‘Concretisation’ phase assures that the modeled PIM is ready to be trans-
formed into a PSM. To reach that final state, we first adopt a business process
reference model, as proposed in the ’Selection’ phase. The use of process ref-
erence models in organizations assures adequately modeled business process,
responding this way to concerns about business improvement and the quality of
the resulting software system.

To exemplify the transformations across the BIM phases, we adopted a busi-
ness process at the lowest representation level contained in UBK-RM (Un-
ternehmensbereich Kraftfahrzeugausrüstung - Reference Model). UBK-RM is
a reference model of the automotive divisions of the Bosch Group. One of the
several second-level business processes that are part of the supply-chain process
is chosen for the example. This second level process is decomposed hierarchically
into some third-level business processes, before the representation at a more de-
tailed level containing activities. We choose the product stock quantities record
business process to exemplify our transformation technique due to its simplicity.

Transformation of BPMs into Software-Executable Models 157

Fig. 6. The runnable Process Framework in BPEL

UBK-RM describes this process with the task that updates the product quanti-
ties in stock.

In the ‘Definition’ phase of BIM, the client describes his/her requirements
for this process that has to update the stock of the new product and the stock
of the consumed materials for the production of the new product. Thus, the
business process has two activities. In the ‘Concretisation’ phase, the business
process model is designed to fit in the information system of the organization.
In this particular case, the business process inserts data into an ERP and into a
Database Management System (DBMS). The business process was modeled in
BPEL, as represented in Fig. 6.

The platform-independent business process illustrated in Fig 6 already em-
bodies the characteristics described in BIM to allow their transformation into
a PSM. In our modeled business process, the data received from the client is
sent to two components of the information system in a parallel flow: to the ERP
system and to the DBMS. The BPEL representation of the business process
requires a corresponding WSDL code (Fig. 7) in order to execute correctly.

For this kind of approach, the relevant parts from the WSDL code are the data
referring to the service (“lancQuantService”), the port (“LancQuantPort”), the
port type (“LancQuant”), the operations (“process”), the input elements (“Lanc-
QuantRequest”), and the output elements (“LancQuantResponse”).

158 N. Santos et al.

Fig. 7. WSDL representation of the business process

Fig. 8. WSDL representation of the invoked services

The model is completed with the WSDL files of the invoked services, namely
the data insertion in the ERP system and in the DBMS (Fig. 8).

4.3 Description of the Platform

One of the required elements for a model transformation is the description of the
platform. To define the required functionalities of the platform, BIM proposes
the use of Orchestrated Business Objects (OBOs) [5]. For our business process,
four OBOs are identified:

– the client component, which gives the command to initiate the process through
its invocation;

– the BPEL component, with the process orchestration role, which defines the
sequence of service invocations;

– the ERP component, which interfaces with the ERP to execute transactions;
– the DBMS component, which executes the record of the stock quantities.

Based on the ServiceMix JBI-based behavior, three BCs and three SEs are
needed to execute the considered business process (Fig. 9). The need for the
BCs is justified in order to have connections to the ERP system, to the DBMS,
and the request from and the response to the client.

An adequate BC is one that allows the use of Web Services, because the char-
acteristics of the SOAP protocol are more appropriate to send requests to and
receive responses from a client. Regarding the connections to the ERP system
and the DBMS, the implementation choice is based on the nonexistence of a
SE with ERP functions and providing Java Database Connectivity (JDBC) [34].
For the latter two, the execution of the Web Service is made through SEs, a

Transformation of BPMs into Software-Executable Models 159

Fig. 9. Platform components to execute the process

“SAP SE” and a “DB SE”. It is also required a BPEL execution engine SE. For
that, we use the Apache Orchestration Director Engine (ODE) to execute the
process workflow and to orchestrate the services. Apache ODE can be used as a
SE inside ServiceMix.

4.4 PIM-to-PSM Mapping

In this subsection, we present the required mappings to achieve the PSM in the
case study presented in the previous section. We show a set of simple transfor-
mation mappings, which can be implemented using a transformation language
(e.g., MOF QVT or ATL) or a general-purpose language (e.g., Java or XSLT).
For the composition of the transformation mappings, we use elements from the
BPEL and the WSDL, the identified OBOs, and the typical JBI-based behavior
of the ESB.

In what concerns the required transformations, the WSDL file that composes
the PIM is the most used for the transformation, because in the BPEL file only
few elements are marked for being transformed. In the BPEL file, the invoked
activities, the imported namespaces, and the WSDL files are the elements to
be transformed. Regarding the WSDL file, the elements to be transformed are
the namespaces, portType, services, and ports. These elements, both from the
BPEL and the WSDL files, derive the elements required by the JBI-based model,
i.e., they are mapped into elements related to BCs, SEs, BPEL engine (Apache
ODE), POJO classes, Java and BPEL and WSDL files.

The invoked BPEL activities expect the response of a service to a request.
Therefore, the ESB component that provides this characteristic is the Service
Engine. The namespaces, as well as the service data from the WSDL code -
portType, service and port -, correspond to the identification data of the created
SUs. The PIM-to-PSM mapping is accomplished by relating (SAP) invocations
with the “SAP SE” OBO, and “BD” invocations with “BD SE” OBO. For better
understanding, the relations are shown and described in Table 5, where each
element of the PIM, related with the BPEL and the WSDL files, gives origin to
at least one PSM element. In this architecture, PSM elements are a set of JBI-
based ESB files (e.g., Java, XML, BPEL, WSDL). The marking of the elements
is made from the relationships identified in the mapping (Fig. 10). Its purpose
is to assist in the transformation task.

160 N. Santos et al.

Table 5. Relations of the PIM to PSM Mapping

PIM Elements PSM Elements
WSDL - Elements from the Request type Entry parameters of the POJO class of the

SU (CXF SEs)
WSDL - Service name (“LancQuantSer-
vice”, “SapService” e “BdService”)

Name of the Web Service in the Java file
belonging to the SU (CXF SEs)
targetService of the SU (CXF BCs)
Name of the service of the respective part-
nerLink in the SU (BPEL SE “ODE”)

WSDL - Port type of the service (“Lanc-
Quant”, “Sap” e “Bd”)

targetInterface of the SU (CXF BCs)

WSDL - Port name of the service (“Lanc-
QuantPort”, “SapPort” e “BdPort”)

targetEndpoint of the SU (CXF BCs)

Port name of the service of the respective
partnerLink in the SU (BPEL SE “ODE”)

BPEL - namespaces of the imported ser-
vices

namespaces in the xbean.xml files and tar-
getNamespace in the JAVA file of the SU
(CXF SEs)
namespaces of the WSDL files which are
PartnerLinks in the BPEL file

BPEL - Imported WSDL files wsdl of the SU (CXF BC), generated by
the CXF SE

BPEL - “input” variable and WSDL - Re-
quest element

Entry parameters of the client Web Service

“input” element from the Request of the
WSDL
“input” variable of the BPEL

BPEL - Invoke activity “SAP” BPEL invoke activity “SAP SE”
BPEL - WSDL file which is “Sap” Partner-
Link

Generated WSDL file from the CXF SE

BPEL - Invoke activity “BD” BPEL invoke activity “BD SE”
BPEL - WSDL file which is “Bd” Partner-
Link

Generated WSDL file from the CXF SE

BPEL - “output” variable and WSDL - Re-
sponse element

Return parameters of the client Web Ser-
vice
“output” element from the Response of the
WSDL
“output” variable of the BPEL

Transformation of BPMs into Software-Executable Models 161

Fig. 10. Representation of the marked PIM elements to be transformed

5 Software-Executable Models at PSM Level

This section presents the technological implementation in the ServiceMix ESB
of the model mapping described in the Section 4. We now detail the component
deployment to assure that the ESB executes correctly.

5.1 Service Engines

The first step is to define SUs that, after being deployed into ServiceMix, are
responsible for creating SEs. The choosen SE type is Apache CXF [35]. It is
worthwhile to mention that this choice is related with the absence of a SE directly
supporting the ERP functions. Our choice to overcome the absence is to use an
interface based on Web Services as a solution. The behavior of the SU is described
in a file, called ’xbean.xml’, generated from a Maven2 specific archetype for
ServiceMix. The definition of the SU as a SE component is made in the first
line of the file, where the namespace is defined (xmlns:cxfse=...), while the rest
2 http://maven.apache.org

http://maven.apache.org

162 N. Santos et al.

Fig. 11. Excerpts of the CXF SE (SAP and DB) SU code

of the file contents describe the necessary elements for the body of the SU. The
content of the file is straightforward because it just indicates the location of the
Plain Old Java Object (POJO) [36] class relevant for the Service Engine.

In our example, the POJO class ’SapService’ (Fig. 11) is exposed via Web
Service by the CXF SE.

The SU also contains a Java file, in this case ’SapService.java’, which is the
Web Service executed by the CXF SE. The ’SapService.java’ file uses the SAP
Java Connector (JCo) [37] to be able to execute the insertion and the reception
of data between the CXF-exposed Web Service and the ERP SAP, obeying
correctly to the requirements of a connection to an ERP.

After building the project with Maven 2, the Java class ’SapService’ will create
a new WSDL file, in our case renamed to ’SapArtifacts’ (just to facilitate a
simple use by the Eclipse BPEL Design tool). The ’SapArtifacts’ WSDL file will
be the one who will be invoked in the future by the BPEL PSM file (presented
in Fig. 13). Inside that BPEL file, the chosen namespace will be the same as
provided by the mapping.

Similarly to the implementation of the interface to the ERP recurring to a
CXF SE with a Web Services, the definition of the SU containing the interface
to the DB is accomplished in the same manner. The main difference of this
SU to the ERP SU is just the definition of the POJO class, which will refer
now to the ’BdService’ class, the Web Service exposed by the CXF SE. The
file ’BdService.java’ will contain the code for the JDBC connection, and thus
allowing the communication with the database. Also, in this case the WSDL file
is generated by a Maven 2 build.

5.2 Binding Components

The configuration of a SU, originating a BC, is similar to the one originating
an SE (see Section 5.1). The type of component is defined in the first line of
the file ’xbean.xml’ (xmlns:cfxbc=...). In this case, the component is a CXF
BC, which communicates with the CXF SE, sending and receiving values from
a Web Service. The element data that defines the BC must be filled in with the
data from the PIMs BPEL and WSDL files, according to Table 5. This correct
identification of the component endpoints required by the ESB is then the basis

Transformation of BPMs into Software-Executable Models 163

Fig. 12. Excerpts of the CXF BC (Client, ERP, and DB) SU code

for a proper data routing inside the ESB. In Fig. 12 excerpts of the SU code for
the client and the ERP BCs are presented.

Now that the transformation is completed, we present the implemented PSM.
Fig. 13 shows the PSM representation in BPEL. In terms of visual notation, it
does not suffer modifications related with the PIM represented in Fig. 6, due to
the fact that the mapping ’SAP” to ’SAP SE’ and ’BD’ to ’BD SE’ does not
require any addition or removal of BPEL activities. An excerpt of the BPEL
code containing the transformations suggested in Table 5 is also presented in
Fig. 13.

The BPEL business process, to be interpreted by ODE, requires a XML file
that describes the connections to the process ’PartnerLinks’ so the process can
be executable after deployment. In opposition to what happens with the other
SUs, in which the ’xbean.xml’ file defines its execution, the behavior of ODE is
configured by a ’deploy.xml’ file. After being correctly defined, the ODE SU is
ready to be implemented in the framework. When all SUs are created, they are
ready to be packaged in a SA and deployed into the ESB. Each SUs must be
compiled and each one originates a compiled file. The definition of the SUs that
are part of an SA is described in a ’pom.xml’ file. The POM file, generated by
a Maven 2 archetype, contains the general information of the project, like its
name and location, as well as the identification of the components which will be
used in the ESB. After being deployed into ServiceMix, the SUs contained in the

164 N. Santos et al.

Fig. 13. Platform-specific business process in BPEL

Fig. 14. PSM Final Model in ServiceMix according to JBI

SA will be used as JBI components. Depending of each ’xbean.xml’ file, each
SU originates either a SE or a BC. ServiceMix ESB is capable of identifying,
by using the ’xbean.xml’ files, what kind of component is defined in the SU. So,
after their deployment, ODE SU becomes ODE SE, CXFSE SU becomes CXF
SE and CXFBC SU becomes CXF BC.

The whole PSM, correctly deployed in ServiceMix, is presented in Fig. 14.

Transformation of BPMs into Software-Executable Models 165

6 Conclusions and Future Work

In this paper we showed a set of techniques to use the OMG Model Driven Ar-
chitecture approach in order to map business process descriptions into software
systems. We proposed a mapping between the MDA platform-independent and
platform-specific models, and business process models expressed by BPEL. The
MDA Service Engines and Binding Components data are effectively obtained
from the model transformation.

BPEL is directly executable in software, and can be used during all phases of
a software development process for process-oriented organizations. These char-
acteristics can reduce the time to implement a project, as well as the value that
an organization receives from using BPEL due to the reduction of functional
requirements misunderstandings and losses occurring during normal software
development projects. We used a case study to better clarify these perceptions.

We also proposed an holistic technique to properly choose a business process
modeling language supporting technology, business, and information systems
strategies of an organization. As a result from our work, we defined also a map-
ping of the business process model states in order to define a correct passage
from the third to the last phase of BIM.

The implementation of business process models recurring to ESBs software
architectures provides an easy and sound composition of business process that
require applications external to the ESB, in a standardized way.

A limitation of BPEL is that it only allows designing fully automatic business
processes, i.e., business processes where all activity is executed in the computing
domain. In many organizations, most of the business processes - eventually some
core business processes - are not fully automatic, requiring human intervention
to proceed with its flow of activities. BPEL4People [38], yet with little tool sup-
port, allows the addition of the representation of human tasks in BPEL process
providing a basis to further develop the proposed techniques, now also interfacing
humans. Additionally, we intend to further use the technique to choose an ade-
quate business process modeling language in different organizations and project
contexts in order to have a broader quantitative evaluation of the adequateness of
each business process modeling language to the current organizations developing
software.

References

1. Smith, H., Fingar, P.: Business Process Management – The Third Wave. Meghan-
Kiffer Press (2002)

2. Fernandes, J., Duarte, F.: A reference framework for process-oriented software
development organizations. Software and Systems Modeling 4(1), 94–105 (2005),
doi:10.1007/s10270-004-0063-0

3. Fernandes, J.M., Duarte, F.J.: Using RUP for Process-Oriented Organisations.
In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 348–362.
Springer, Heidelberg (2004)

4. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture
– Practice and Promise. Addison-Wesley (2003)

166 N. Santos et al.

5. Duarte, F.J., Machado, R.J., Fernandes, J.M.: BIM: A Methodology to Transform
Business Processes into Software Systems. In: Biffl, S., Winkler, D., Bergsmann, J.
(eds.) SWQD 2012. LNBIP, vol. 94, pp. 39–58. Springer, Heidelberg (2012)

6. OMG, Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
version 1.1. OMG Document Number, formal/2011-01-01 (2011)

7. Zhao, W., Hauser, R., Battacharya, K., Bryant, B., Cao, F.: Compiling business
processes: untangling unstructured loops in irreducible flow graphs. International
Journal on Web and Grid Services 2(1), 68–91 (2006),
doi:10.1504/IJWGS.2006.008880

8. Bezivin, J., Hammoudi, S., Lopes, D., Jouault, F.: Applying MDA approach to B2B
applications: a road map. In: Workshop on Model Driven Development (WMDD
2004), within the 18th European Conference on Object-Oriented Programming,
ECOOP 2004 (2004)

9. Bezivin, J., Dupe, G., Jouault, F., Pitette, G., Rougui, J.: First experiments with
the ATL model transformation language: Transforming XSLT into XQuery. In: 2nd
OOPSLA Workshop on Generative Techniques in the Context of Model Driven
Architecture (2003)

10. Koehler, J., Hauser, R., Sendall, S., Wahler, M.: Declarative techniques for model-
driven business process integration. IBM Systems Journal 44(1), 47–65 (2005)

11. Lezoche, M., Missikoff, M., Tininini, L.: Business process evolution: a rule-based
approach. In: 9th Workshop on Business Process Modeling, Development and Sup-
port, BPMDS 2008 (2008)

12. Rungworawut, W., Senivongse, T.: Using ontology search in the design of class dia-
gram from business process model. In: Proc. International Conference on Computer
Science (ICCS 2006), Vienna, Austria, pp. 165–170 (2006)

13. MDA Guide Version 1.0.1, OMG Std.
14. Johnson, R., Hoeller, J., Arendsen, A., Risberg, T., Sampaleanu, C.: Professional

Java Development using the Spring Framework. John Wiley & Sons (2005)
15. Rademakers, T., Dirksen, J.: Open-Source ESBs in Action. Manning (2008)
16. Schmidt, M.-T., Hutchison, B., Lambros, P., Phippen, R.: The enterprise service

bus: making service-oriented architecture real. IBM Systems Journal 44(4), 781–
797 (2005), doi:10.1147/sj.444.0781

17. Alliance, T.O.: OSGi Service Platform Core Specification 4.2, The OSGi Alliance
Std. 4, Rev. 4.2 (June 2009), http://www.osgi.org

18. Ten-Hove, R., Walker, P.: Java Business Integration (JBI) 1.0, Final release, Tech-
nical report, JSR 208 (2005)

19. Web Service Description Language (WSDL), W3C Std.,
http://www.w3.org/TR/wsdl

20. OMG, Business Process Modeling Notation (BPMN) 1.2, Object Management
Group Std. OMG Document Number: formal/2009-01-03, Rev. 1.2 (January 2009),
http://www.omg.org/spec/BPMN/1.2

21. Juric, M., Mathew, B., Sarang, P.: Business Process Execution Language for Web
Services, 2nd edn. Packt Publishing (2006)

22. Shapiro, R.: XPDL 2.0: Integrating process interchange and BPMN. In: Workflow
Handbook, pp. 183–194 (2006)

23. van der Aalst, W., ter Hofstede, A.: YAWL: yet another workflow language. Infor-
mation Systems 30(4), 245–275 (2005), doi:10.1016/j.is.2004.02.002

24. Jensen, K., Kristensen, L.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer (2009)

http://www.osgi.org
http://www.w3.org/TR/wsdl
http://www.omg.org/spec/BPMN/1.2

Transformation of BPMs into Software-Executable Models 167

25. Ko, R., Lee, S., Lee, E.: Business process management (BPM) standards: a survey.
Business Process Management Journal 15(5), 744–791 (2009),
doi:10.1108/14637150910987937

26. Recker, J., Indulska, M., Rosemann, M., Green, P.: Business process modeling -
a comparative analysis. Journal of the Association of Information Systems 10(4)
(2009)

27. Wand, Y., Weber, R.: An ontological model of an information system. IEEE Trans-
action on Software Engineering 16(11), 1282–1292 (1990), doi:10.1109/32.60316

28. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. QUT Technical report, FIT-TR-2002-02 (2002)

29. Pearlson, K., Saunders, C.: Managing and Using Information Systems, 4th edn.
Wiley Publishing (2009)

30. van der Aalst, W., Dumas, M., ter Hofstede, A., Wohed, P.: Pattern-based analysis
of BPML (and WSCI). QUT Technical report, FIT-TR-2002-05 (2002)

31. van der Aalst, W.: Patterns and XPDL: A critical evaluation of the XML process
definition language. QUT Technical report FIT-TR-2003-06 (2003)

32. Mendling, J., Moser, M., Neumann, G.: Transformation of yEPC business process
models to YAWL. In: ACM Symposium on Applied Computing (SAC 2006), pp.
1262–1266. ACM (2006), doi:10.1145/1141277.1141572

33. Helkiö, P., Seppälä, A., Syd, O.: Evaluation of Intalio BPM tool. Special Course
in Information System Integration (2006)

34. van Haecke, B.: JDBC: Java Database Connectivity. John Wiley & Sons (1997)
35. A. CXF, Apache CXF: An open-source services framework (2012),

http://cxf.apache.org
36. Fowler, M., Parsons, R., MacKenzie, J.: Pojo, an acronym for: Plain old java object

(2000), http://www.martinfowler.com/bliki/POJO.html
37. Schuessler, T.: Developing applications with the SAP Java Connector (JCo). Ara-

Soft, vol. 1 (2002), http://ARAsoft.de/
38. Kloppmann, M., Koenig, D., Leymann, F., Pfau, G., Rickayzen, A., von Riegen, C.,

Schmidt, P., Trickovic, I.: WS-BPEL extension for people – BPEL4people, Joint
white paper, IBM and SAP (2005)

http://cxf.apache.org
http://www.martinfowler.com/bliki/POJO.html
http://ARAsoft.de/

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 168–190, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Aligning Domain-Related Models for Creating Context
for Software Product Design*

Nuno Ferreira1, Nuno Santos2, Ricardo J. Machado3, and Dragan Gašević4

1 I2S Informática, Sistemas e Serviços S.A., Porto, Portugal
nuno.ferreira@i2s.pt

2 CCG - Centro de Computação Gráfica, Campus de Azurém, Guimarães, Portugal
nuno.santos@ccg.pt

3 Centro ALGORITMI, Escola de Engenharia, Universidade do Minho, Guimarães, Portugal
rmac@dsi.uminho.pt

4 School of Computing and Information Systems, Athabasca University, Canada
dgasevic@acm.org

Abstract. A typical software product is developed so that it can fulfill the
specific needs (problem that needs to be solved) within a given business do-
main, based on a proper product design context. Although, assuring an align-
ment between the technological developments with the business domain is a
demanding task. With the purpose of clarifying the relations between the mod-
els that support the business and the software representations, we present in this
paper a V-Model based approach to align the business domain requirements
with the context for product design. This V-Model encompasses the models that
support the initial definition of the project goals, expressed through organiza-
tional configurations, and the analysis and design of models that result in a
process-level perspective of the system’s logical architecture. Our approach
adopts a process-level perspective with the intent to create context for product-
level requirement elicitation. We present a case study as a demonstration and
assessment of the applicability of our approach. Since the case study is extreme-
ly complex, we illustrate how to use the ARID method to evaluate the obtained
process-level architecture.

Keywords: Software Engineering, Requirements Engineering, Model Alignment,
Logical Architectures.

1 Introduction

One of the top concerns of information technologies (IT) managers for almost thirty
years relates to software and the business domain alignment [1]. The importance of
aligning the software with domain specific needs for the purpose of attaining synergies
and visible success is a long-running problem with no visible or deterministic solution.

* This work is financed by project ISOFIN (QREN 2010/013837), Fundos FEDER through

Programa Operacional Fatores de Competitividade – COMPETE and Fundos Nacionais
though FCT – Fundação para a Ciência e Tecnologia (FCOMP-01-0124-FEDER-022674).

 Aligning Domain-Related Models for Creating Context for Software Product Design 169

There are many questions concerning this subject, going from how to align several
strategic components of an organization with the necessary maturity or how specific
domain needs and software that supports the domain are aligned with each other. The
perspective on domain specific needs with software alignment has changed along the
years. Initially, alignment meant relating specific domain needs with supporting soft-
ware plans. Later, the concept evolved to include business and software strategies,
business needs and information system priorities. This created the need for aligning
business models (as a rationale for how the organizations create, deliver and capture
value for a given business) with the underlying information system (people and soft-
ware solutions) that is designed to support part or whole of the business model.

One of the possible representations of a software solution is its logical architecture,
resulting from a process of transforming business-level and technological-level (of
any given domain) decisions and requirements into a representation (model). A model
can be seen as a simplified view of reality, and possesses five key characteristics:
abstraction, understandability, accuracy, predictiveness, and inexpensiveness [2]. This
representation is fundamental and mandatory to analyze and validate a system but is
not enough for achieving a full transformation of the requirements into a model able
to implement stakeholders’ decisions. It is necessary to promote an alignment be-
tween the logical architecture and other supporting models, like organizational confi-
gurations, products, processes, or behaviors.

An organization is about people. Stakeholders are responsible for the decision-
making processes that influence the organization’s strategy at any given level under
analysis [3]. At the same time, the stakeholders also influence the organization’s
software architecture and systems. Aligning domain specific needs with the way that
software solutions are organized is a task that must be accounted for and whose re-
sults are not easily, or at all, measurable.

Our approach is based on the premise that there is no clearly defined context for
eliciting product requirements within a given specific domain. As an example for a
situation where there is no clearly defined context, we present the ISOFIN project [4].
This project is executed in a consortium comprising eight entities (private companies,
public research centers and universities), making the requirements elicitation and the
definition of a development roadmap difficult to agree. The initial request for the
project requirements resulted in mixed and confusing sets of misaligned information.
Even when a requirement found a consensus in the consortium, all the stakeholders
did not easily understand the intended behavior or its definition. Our proposal of
adopting a process-level perspective was agreed on and, based on the knowledge that
each consortium member had of the intended project results, the major processes were
elicited and a first approach to a logical (process-level) architecture was made. After
execution of the process-level perspective, it was possible to gather a set of informa-
tion that the consortium is sustainably using to evolve to the traditional (product-
level) development scenario. Elicited requirements in a process-level perspective
describe the processes in a higher level of abstraction, making them understandable
by the consortium key decision-taking members (business stakeholders). At the same
time, by defining the major activities, their relations and flows, the definitions and
intended behavior of the system, expressed in the architecture that results from the
process-level 4SRS method, describe the system to the consortium key technological
developers (technological stakeholders).

170 N. Ferreira et al.

Our approach results in a “Vee” Model-based adaptation (V Model) [5], which
suggests a roadmap for product design based on domain specific needs. The model
requires the identification of those domain specific needs and then, by successive
models derivation, it is possible to transit from a domain level perspective to a soft-
ware (IT) level perspective and at the same time, aligns the requirements with the
derived models, reducing the gap between business and technological stakeholders.

This paper is structured as follows: section 2 presents the related work associated
with our work; section 3 presents our V-Model representation to promote domain and
software; section 4 includes a case study and details the pertinence of using the cho-
sen presented models for creating context to product design. It also explains how to
proceed from one model to another and includes discussions, comparison with the
related work and an assessment overview of the presented approach and its validation
through ARID; section 6 presents our conclusions and future work.

2 Related Work

A typical software development project is coordinated so that the resulting product
properly aligns with the domain-specific (business) model intended by the leading
stakeholders. As an economical plan for the organization or for a given project, the
business model contributes for eliciting the requirements by providing the product’s
required needs in terms of definitions and objectives. By “product” we mean
applications that must be computationally supported. In situations where
organizations focused on software development are not capable of properly eliciting
requirements for the software product, due to insufficient stakeholder inputs or some
uncertainty in defining a proper business model, a process-level requirements
elicitation is an alternative approach. The process-level requirements assure that
organization’s business needs are fulfilled. However, it is absolutely necessary to
assure that product-level (software-related) requirements are perfectly aligned with
process-level requirements, and hence, are aligned with the organization’s domain-
specific requirements. In this section, we chose to refer to other author’s work related
to ours in the diverse topics that integrate our approach: business and IT alignment,
governance, alignment of requirements with system specifications, the process-level
perspective, process architectures and the models that can be used to describe
requirements and help build the context for product elicitation.

An approach that enacts the alignment between domain-specific needs and soft-
ware solutions, is the goal oriented approach GQM+Strategies (Goal/Question/Metric
+ Strategies) [6]. The GQM+Strategies approach uses measurement to link goals and
strategies on all organizational levels. This approach explicitly links goals at different
levels, from business objectives to project operations, which is critical to strategic
measurement. Applying GQM+Strategies makes easier to identify goal relationships
and conflicts and facilitates communication for organizational segments. Another
goal-oriented approach is the Balanced Scorecard (BSC) [7]. BSC links strategic ob-
jectives and measures through a scorecard in four perspectives: financial, customer,
internal business processes, and learning and growth. It is a tool for defining strategic
goals from multiple perspectives beyond a purely financial focus.

 Aligning Domain-Related Models for Creating Context for Software Product Design 171

Another approach, COBIT [8], is a framework for governing and managing enter-
prise IT. It provides a comprehensive framework that assists enterprises in achieving
their objectives for the governance and management of enterprise IT. It is based on
five key principles: (1) meeting stakeholder needs; (2) covering the enterprise end-to-
end; (3) applying a single, integrated framework; (4) enabling a holistic approach; and
(5) separating governance from management. These five principles enable the enter-
prise to build an effective governance and management framework that optimizes
information and technology investment and use for the benefit of stakeholders.

In order to represent the intended aligned system specification we use models. It is
recognized in software engineering that a complete system architecture cannot be
represented using a single perspective or model [9, 10]. Using multiple viewpoints,
like logical diagrams, sequence diagrams or other artifacts, contributes to a better
representation of the system and, as a consequence, to a better understanding of the
system. Some architecture views can be seen in the works of Clements et al. [11],
Hofmeister et al. [12] and Krutchen [10]. Krutchen's work refers that the description
of the architecture can be represented into four views: logical, development, process
and physical. The fifth view is represented by selected use cases or scenarios. Zou and
Pavlovski [13] add another extra view, the control case view, that complements the
use case view to complete requirements across the collective system lifecycle views.

Since the term process has different meanings depending on the context, in our
process-level approach we acknowledge that (1) real-world activities of a software
production process are the context for the problem under analysis and, (2) in relation
to a software model context [14], a software process is composed of a set of activities
related to software development, maintenance, project management and quality assur-
ance. For scope definition of our work, and according to the previously exposed ac-
knowledgments, we characterize the process-level perspective by (1) being related to
real world activities, including business, and when related to software (2) those activi-
ties encompass the typical software development lifecycle. Typically, product-level
approaches promote the functional decomposition of systems models. Our approach is
characterized by using refinement (as one kind of functional decomposition) and inte-
gration of system models. Activities and their interface in a process can be structured
or arranged in a process architecture [15].

The process architecture represents a fundamental organization of service devel-
opment, service creation, and service distribution in the relevant enterprise context
[16]. Designing a software architecture provides a more accurate definition of the
requirements. There are several approaches to supporting the proper design of
software architectures, like FAST [17], FORM [18] or KobrA [19]. These all relate
to the product-level perspective. In a process-level perspective, Tropos [20] is
a methodology that uses notions of actor, goal and (actor) dependency as a foundation
to model early and late requirements, architectural and detailed design. Machado et al.
present the 4SRS (Four-Step-Rule-Set) method for architecture design based on re-
quirements. 4SRS is usually used in a product-level perspective [21], but it also sup-
ports a process-level perspective [22, 23]. The result of the application of the 4SRS
method is a logical architecture. Logical architectures can be faced as a view of a

172 N. Ferreira et al.

system composed by a set of problem-specific abstractions supporting functional
requirements [10].

The defined and derived models suggested by our approach, used alone and un-
aligned with each other, are of a lesser use to organizations and stakeholders. Our
approach begins in a domain-specific perspective, by defining the organizational con-
figurations that represent major interactions, at a very high-level, in the chosen do-
main, and ends with a technological view of the system. From one perspective to the
other, alignment must be assured. The alignment we refer to relates to domain-
specific and software alignment [24], and in our case, where the domain-specific
needs must be instantiated into the creation of context for proper product design.

A possible point of failure in achieving the intended alignment relates to the lack of
representativeness of the necessary requirements for expressing domain-specific
needs. According to Campbell et al. [3], the activities that support the necessary in-
formation for creating context for requirements elicitation are not explicitly defined or
even promoted. Also, existing approaches to designing software architecture do not
support any specific technique for requirements elicitation in a process-level perspec-
tive; rather, they use the information delivered by an adopted elicitation technique.
Typical (product-oriented) elicitation techniques may not be able to properly identify
the necessary requirements within a given context creating an opportunity for our
approach to define the process that support the derivation of models with the purpose
of creating context for product design. With the case study described in this paper we
demonstrate that firstly adopting a process-level perspective allows for better under-
standing of the project scope and then support the creation of context for the elicita-
tion of requirements of the product to be developed.

3 An Approach to Domain and Software Models Alignment

In this section, we present our approach, based on successive and specific models
generation. As models, we use Organizational Configurations (OC) [25], A-Type and
B-Type Sequence Diagrams [26], use cases and process-level logical architecture
diagrams. All these models are briefly described in this section and properly exempli-
fied in the case study section of this paper, where more detail is given on how to de-
rive a model from the previous models.

Traditional development processes can be referenced using the Royce’s waterfall
model [27] that includes five typical phases in its lifetime: Analysis, Design, Imple-
mentation, Test and Deployment. Defining a simplified macro-process for supporting
the requirement elicitation in a process-level approach must take into account the
waterfall model lifecycle for a project. We frame our proposed V-Model approach in
the Analysis phase of the lifecycle model, as depicted in Fig. 1.This simplified devel-
opment macro-process based on the waterfall model uses the V-Model generated
artifacts for eliciting requirements that, in a process-level approach, are used as input
for the traditional 4SRS usage (product level) [21]. The product-level 4SRS promotes
the transition from the Analysis to the Design phase.

 Aligning Domain-Related Models for Creating Context for Software Product Design 173

Fig. 1. Framing the V-Model representation in the development macro-process

The OC model is a high-level representation of the activities (interactions) that ex-
ist between the business-level entities of a given domain. Fig. 2 shows an example of
the aspect of an OC, with two activity types, each with a role and two interactions.

The set of interactions are based on domain-specific requirements (such as busi-
ness) and, in conjunction with the entities and the stakeholders, are represented with
the intention of describing a feasible scenario that fulfills a domain-specific business
vision. In what concerns OCs characterization for the purpose of our work, each con-
figuration must contain information on the performed activities (economical [22] or
non-economical [28]), the several professional profiles (actors and skills) that partici-
pate in the activity execution and also the exchange of information or artifacts. There
must be defined as much OCs as the ones required to express all the major interac-
tions defined by the business stakeholders that relate to the intended system.

Fig. 2. Organizational Configuration

Our approach uses a UML stereotyped sequence diagram representation to de-
scribe interactions in early analysis phase of system development. These diagrams are
presented in this paper as A-Type Sequence Diagrams. Another stereotyped sequence
diagram, called B-Type Sequence Diagrams, allows for deriving process sequences
represented by the sequence flows between the logical parts depicted in the logical
architecture. One must assure that a process’ sequences modeled in B-Type Sequence
Diagrams depict the same flows as the ones modeled in A-Type Sequence Diagrams,
as well as being in conformity with the interactions between architectural elements
(AEs) depicted in the logical architecture associations. An AE is a representation of
the pieces from which the final logical architecture can be built. This term is used to
distinguish those artifacts from the components, objects or modules used in other con-
texts, like in the UML structure diagrams. An example of A-Type and B-Type Se-
quence Diagrams can be found in Fig. 3.

174 N. Ferreira et al.

Fig. 3. A- and B-Type Sequence Diagrams

The generated models and the alignment between the domain specific needs and
the context for product design can be represented by a V-Model as seen on Fig. 5. The
V-Model representation [5] provides a balanced process representation and, simulta-
neously, ensures that each step is verified before moving to the next. In this V-Model,
the models that assemble it are generated based on the rationale and in the informa-
tion existing in previously defined models, i.e., A-Type diagrams are based on OCs,
use cases are based on A-Type diagrams, the logical architecture is based on the use
case model, and B-Type diagrams comply with the logical architecture.

A-Type Sequence Diagrams can be gathered and afterwards used as an elicitation
technique for modeling the use cases. It can be counterintuitive to consider that use
case diagrams can be refinements of sequence diagrams. It is possible if we take into
consideration that the scenarios expressed in the A-Type Sequence Diagrams are built
using the use-case candidates in the form of activities that will be executed and must
be computationally supported by the system to be implemented. These activities in
form of use cases are placed in the A-Type Sequence Diagram and associated with the
corresponding actors and other used cases. These use cases are later arranged in use
case diagrams after redundancy is eliminated and proper naming is given. The flow
expressed by the sequences creates the rationale for discovering the necessary use
cases to complete the process.

Use cases are modeled and textually described and used as input for the 4SRS.
The execution of the 4SRS [23] results in a logical architecture with a direct relation
between the process-level use cases assured by the method’s execution. Due to that,
the logical architecture is derived, in a process- or in a product-level perspective, us-
ing the use case information to create AEs and their associations, in a properly aligned
approach. The product level perspective is described in [21] and the process-level
perspective in [22, 23]. The process-level perspective imposes a different rationale to
the method’s execution. It is not our intention to describe the 4SRS method applica-
tion. That is thoroughly done in the literature [21-23] and we use it as described in
those works. For the sake of understandability, we only present a brief paragraph of
the method’s structure and application.

 Aligning Domain-Related Models for Creating Context for Software Product Design 175

re
pr

es
en

te
d

by

re
p

re
se

nt

cd

{AE2.1.c}
Generated
AE

T
IBS Analysis
Pre-Start
Decision

Browse the IBS and SBS
Catalogs searching
already existing IBS and
SBS information with the
intent of analyzing if the
current business need
isn't already fullfilled and if
the ISOFIN Platform
infrastructure supports the
new implementation. …

{AE2.1.c}

{AE1.11.i}
{AE2.2.c}
{AE2.5.c}
{AE2.5.i}

T
Access
Remote
Catalogs

Allows browsing the
available catalogs in the
ISOFIN Platform (ISOFIN
Application, IBS, and
SBS). The user (Business
User or the IBS Business
Analyst) is allowed to
search for information
regarding the desired
artifact and to select
artifacts to use on his
purposes. ...

{P2.2} IBS
Analysis
Decisions

{AE1.11.d1}
{AE1.11.d2}
{AE2.1.d}

{AE2.3.1.i}
{AE2.3.2.i}
{AE2.10.i}
{AE2.11.i}
{AE3.3.i}
{AE3.7.1.i}

{AE2.1.d}
Generated
AE

T

ISOFIN
Functionalities
Requirements
List

Set of functional and non-
functional requirements
needed to fulfill identified
business needs, intended
system functionalities and
all the constraints that
may restrict design and
implementation.

{AE2.1.d} T

ISOFIN
Functionalities
Requirements
List

{P2.1} IBS
Requirements

{AE2.1.c}

{AE2.1.i} F

{U2.1.}

4i
 -

D
ir

ec
t

A
ss

o
ci

at
io

ns

4i
i -

 U
C

A

ss
o

ci
at

io
ns

Step 4 - architectural
element association

Step 3 -
packaging &
aggregation

Step 2 - architectural element elimination

2v - architectural
element

2i
 -

us
e

ca
se

cl

as
si

fi
ca

tio
n

2i
i -

 lo
ca

l
el

im
in

at
io

n

2i
ii

- a
rc

hi
te

ct
ur

al

el
em

en
t

na
m

in
g

2i
v

- a
rc

hi
te

ct
ur

al

el
em

en
t

d
es

cr
ip

tio
n

2v
i -

 g
lo

ba
l

el
im

in
at

io
n

2v
ii

-
ar

ch
ite

ct
ur

al

el
em

en
t

re
na

m
in

g

2v
iii

 -
ar

ch
ite

ct
ur

al

el
em

en
t

sp
ec

if
ic

at
io

n

Step 1 -architectural
element creation

Fig. 4. Tabular Transformation of the 4SRS Method

The 4SRS method is organized in four steps to transform use cases into architec-
ture elements: Step 1 (architectural element creation) creates automatically three
kinds of AEs for each use case: an i-type (interface), c-type (control) and d-type (da-
ta); Step 2 (architectural element elimination) removes redundancy automatically
create architectural elements, redundancy in the requirements passed by the use cases,
and promotes the discovery of hidden requirements; Step 3 (architectural element
packaging & aggregation) semantically groups architectural elements in packages and
also allows to represent aggregations (of, for instance, existing legacy systems); and
Step 4 (architectural element association) whose goal is to represent associations be-
tween the remaining architectural elements.

According with the previously described, the 4SRS method takes use cases repre-
sentations (and corresponding textual descriptions) as input and (by recurring to tabu-
lar transformations) creates a logical architectural representation of the system. We
present a subset of the tabular transformations in Fig. 4. These tabular transformations
are supported by a spreadsheet and each column has its own meaning and rules. Some
of the steps have micro-steps; some micro-steps can be completely automatized. Ta-
bular transformations assure traceability between the derived logical architecture dia-
gram and the initial use case representations. At the same time it makes possible to
adjust the results of the transformation to changing requirements. Tabular transforma-
tions are thoroughly described in [23, 29].

As suggested by the V-Model represented in Fig. 5, the models placed on the left
hand side of the path representation are properly aligned with the models placed on
the right side, i.e., B-Type Sequence Diagrams are aligned with A-Type Sequence
Diagrams, and the logical architecture is aligned with the use case model. Alignment
between the use case model and the logical architecture is assured by the correct ap-
plication of the 4SRS method. The resulting sets of transformations along our
V-Model path provide artifacts properly aligned with the organization’s business
needs (which are formalized through Organization Configurations).

176 N. Ferreira et al.

Fig. 5. V-Model Adaption for Domain and Software Alignment

The V-Model representation promotes the alignment between the models on the
problem domain and the models on the solution domain. The presented models are
created in succession, by manipulating the information that results from one to make
decisions on how to create the other. In the descending side of the V-Model (left side
of the V), models created in succession represent the refinement of requirements and
the creation of system specifications. In the ascending side (right side of the V), mod-
els represent the integration of the discovered logical parts and their involvement in a
cross-side oriented validating effort.

To assess the V-Model approach, we present a process regarding our real case
study, the ISOFIN project, as an example. The process under analysis, called “Create
IBS”, deals with the creation of a new Interconnected Business Service (IBS). The
inter-organizational relations required to create a new IBS are described under a new
OC. The definition of activities and actors required to create a new IBS are described
in an A-Type Sequence Diagram. This diagram provides detail on required functional-
ities in order to create an IBS, formally modeled in use cases. Use cases are used as
input for a transformation method and the process-level logical architecture is de-
rived. A B-Type Sequence Diagram allows for validation of the logical architecture
required to create an IBS and also validates the requirement expressed in the corres-
ponding A-Type Sequence Diagram. After the generation of these models, we assure
that the “Create IBS” process is aligned with the stakeholder’s needs.

4 Case Study: The ISOFIN Project

We assess the applicability of the proposed approach with a case study that resulted
from the process-level requirements elicitation in a real industrial case: the ISOFIN

 Aligning Domain-Related Models for Creating Context for Software Product Design 177

project (Interoperability in Financial Software) [4]. This project aims to deliver a set
of coordinating services in a centralized infrastructure, enacting the coordination of
independent services relying on separate infrastructures. The resulting ISOFIN
platform, allows for the semantic and application interoperability between enrolled
financial institutions (Banks, Insurance Companies and others), as depicted in Fig. 6.

The ISOFIN project encompasses eight institutions, ranging from universities, re-
search centers and private software development companies for the bank and
insurance domains. The stakeholders of this group had different backgrounds and
expectations regarding the project outcome. These differences resulted in the lack of
definitions for the requirements that the project’s applications would support and even
to a proper definition of a business model that the organizations that participate in the
project would pursue.

If there is no agreed or even a defined business model, it is not possible to define
the context for the requirements elicitation of the products (applications) to be devel-
oped. There is, however, communality in the speech of the stakeholders. They all
contain hints on the kind of activities that the intended products would have to sup-
port – that is, they got beforehand an idea of the processes that the ISOFIN platform
applications were required to computationally support.

The authors of this paper proposed a process-level approach to tackle the problem
of not having a defined context for product design and researched on the models that
the stakeholders agreed on to support the knowledge they had of the process-level
requirements – Organizational Configurations, A-Type Sequence Diagrams and Use
Cases. After executing the 4SRS method, properly adjusted to handle the
process-level perspective we were able to deliver a process-level logical architecture
representation of the processes that are intended to be computationally supported by
the applications to be developed. This approach created the context for product de-
sign, since the authors were able to identify the primary constructors that would sup-
port the processes. B-Type Sequence Diagrams appeared seamlessly in the process.
They represented the scenarios depicted in the A-Type Sequence Diagrams and also
contributed to the validation of the process-level logical architecture diagram. These
two aspects will be detailed later.

The primary constructors that were identified correspond to the two main service
types that the global ISOFIN architecture relies on: Interconnected Business Service
(IBS) and Supplier Business Service (SBS). IBSs concern a set of functionalities that
are exposed from the ISOFIN core platform to ISOFIN Customers. An IBS intercon-
nects one or more SBSs and/or IBSs exposing functionalities that relate directly to
business needs. SBSs are a set of functionalities that are exposed from the ISOFIN
Suppliers production infrastructure. Fig. 6 encompasses the primary constructors re-
lated to the execution of the platform (IBS, SBS and the ISOFIN Platform) available
in the logical representations of the system: in the bottom layer there are SBSs that
connect to IBSs in the ISOFIN Platform layer and the later are connected to ISOFIN
Customers.

There are other constructors that were identified by using the V-Model approach
and that support the operations for the execution of the ISOFIN Platform. These other
constructors are, for instance, Editors, Code Generators, Subscriptions Management

178 N. Ferreira et al.

Systems, and Security Management Systems. These constructors support the creation
and the operation of the primary constructors (IBS, SBS and ISOFIN Platform). The
process-level architecture, later presented, depicts their interactions, major elements
and organization.

By adopting the process-level perspective we were able to create a system’s repre-
sentation that supports the elicitation of the process-level requirements from the
stakeholders. This approach also allowed creating the context for product design by
representing the processes that must be supported by the applications to be developed.
The next sections detail the V-Model process and exemplify the construction of the
adopted models in real case study situations.

Fig. 6. Desirable Interoperability in ISOFIN

4.1 Alignment between Organizational Configurations and Interactions

In a process-level approach, in opposition to the product-level approach, the characte-
rization of the intended system gives a different perspective on the organizational
relations and interactions. When defining a specific domain context, we consider that
interactions between actors and processes constitute an important issue to be dealt.
This section focuses on characterizing those interactions by using three different le-
vels of abstraction, as depicted in Fig. 7: OCs represents the first level; different types
of Stereotyped UML Sequence Diagrams, presented as A-Type and B-Type Diagrams
(later described) represent the other two.

Today’s business is based on inter-organizational relations [25], having an impact
on an organization’s business and software strategy [30]. We model a set of OCs to
describe inter-organizational relations as a starting point to the definition of the do-
main-specific context. An OC models a possible inter-organizational relation, at a
very high-level of abstraction and not considering lower-level processes and/or actors
involved in the relation. For better deriving the domain-specific context, it is advisa-
ble to model as many OCs as required to describe, at least, the main relations as de-
picted by the stakeholders’ domain-specific needs.

We present an example of an OC, for the purpose of assessing our approach, which
has been characterized and applied in our case study (the ISOFIN project). Firstly, it

 Aligning Domain-Related Models for Creating Context for Software Product Design 179

is necessary to define the types of activities performed in the domain-specific context.
By analyzing the types of activities, the execution of an IBS within a domain activity
regards #A activities, while the creation of a new IBS regards #B activities:

(1) #A Activities – Financial Domain Business Activities: these are the delivered do-
main business activities regarding the financial institutions.

(2) #B Activities – ISOFIN Platform Services Integration: these are the activities that
relate to the integration of supplier services.

Fig. 7. Organizational Configurations and Interactions Alignment

In order to characterize an organization, it is required to relate a set of roles to the per-
formed activity type. Finally, the interactions between organizations are specified. In
Fig. 8, it is possible to depict the required relations between organizations in order to
create an IBS and providing it to ISOFIN Customers. The professional profiles and the
exchange of information between organizations are not relevant in this paper, so only
brief and simple examples are presented and only the types of activities are described.

ISOFIN Customer ISOFIN Platform

Business Requirements#A #B

Provide IBS
Subscribe Platform

Fig. 8. Organizational Configuration Example

In an early analysis phase, we need to define the relations between activities and
actors, defined through interactions in our approach. Interactions are used during the
more detailed design phase where the precise inter-process communication must be
set up according to formal protocols [31]. An interaction can be displayed in a UML
sequence diagram.

Traditional sequence diagrams involve system objects in the interaction. Since
modeling structural elements of the system is beyond the scope of the user require-
ments, Machado et al. propose the usage of a stereotyped version of UML sequence
diagrams that only includes actors and use cases to validate the elicited requirements
at the analysis phase of system development [26]. We create A-Type Sequence Dia-
grams, as shown in Fig. 9. In the example, we present some of the activities and actors
required to create a new IBS. A-Type Sequence Diagrams also models the message
exchange among the external actors and use cases (later depicted in Fig. 13).

180 N. Ferreira et al.

In Fig. 9 we depict sequential flows of process-level use cases that refer to the re-
quired activities for creating an IBS. These activities are executed within #B activi-
ties, after receiving domain-specific requirements from ISOFIN Customers and before
delivering IBS (interactions depicted in the OC of Fig. 8).

The usage of A-Type Sequence Diagrams is required to gather and formalize the
main stakeholder’s intentions, which provide an orchestration and a sequence of some
proposed activities. A-Type sequence diagrams realize the roles presented within an
OC and instantiates them into activities. A-Type Sequence diagrams allow a pure func-
tional representation of behavioral interaction with the environment and are appropri-
ate to illustrate workflow user requirements [26]. They also provide information for
defining and modeling use cases at a process-level perspective and frame the activities
execution in time. Modeled diagrams must encompass all processes and actors.

Fig. 9. A-Type Sequence Diagram

One of the purposes of creating a software logical architecture is to support the sys-
tem's functional requirements [10]. It must be assured that the derived logical architec-
ture is aligned with the domain-specific needs. On the one hand, the execution of a
software architecture design method (e.g., 4SRS) provides an alignment of the logical
architecture with user requirements (presented in section 4.3). On the other hand, it is
necessary to validate if the behavior of the logical architecture is as expected. So, in a
later stage, after deriving a logical architecture, to analyze the sequential process flow of
AEs (as shown in Fig. 10), we adopt different stereotype of UML sequence diagrams,
where AEs (presented in the logical architecture), actors and packages (if justifiable)
interactions are modeled. In Fig. 10, we present the same activities concerning creating
an IBS but in a lower level of abstraction, closer to product design. B-Type Sequence
Diagrams differ from the traditional ones, since they model the exchange of information
between actors and logical AEs, thus they are still modeled at the system level.

Sequence flows between AEs are only possible if such a path is allowed within the
logical architecture. B-Type Sequence Diagrams are used to validate the derived logi-
cal architecture, through the detection of missing architecture elements and/or asso-
ciations to execute a given process within the derived logical architecture.

 Aligning Domain-Related Models for Creating Context for Software Product Design 181

B-Type Sequence Diagrams can also be used to validate sequences in the previous-
ly modeled A-Type Sequence Diagrams, since the sequence flows between use cases
must comply with the related sequence flows between AEs in B-Type diagrams. This
validation is considered essential in our V-Model process. There must be modeled as
many A-Type sequence diagrams as necessary to fully represent the business context
detail. B-Type sequence diagrams must be modeled to match corresponding business
requirements given in A-Type sequence diagrams and there must be enough B-Type
sequence diagrams to ensure that all AEs of the logical architecture are used.

Fig. 10. B-Type Sequence Diagram

4.2 An UML Metamodel Extension for A-Type and B-Type Sequence
Diagrams

The usage of A-Type and B-Type sequence diagrams in our approach is perfectly har-
monized with UML sequence diagram’s original semantics, as described in the UML
Superstructure [31]. We present in the left side of Fig. 11 some of the classes of the
UML metamodel regarding sequence diagrams (in the Interactions context of the
UML Superstructure). As A-Type and B-Type sequence diagrams differ from typical
sequence diagrams in the participants of the interactions, the usage of these diagrams
regards the Lifeline class. A lifeline represents an individual participant in the Interac-
tion. The Lifeline notation description presented in the UML Superstructure details
that the lifeline is described by its <connectable-element-name> and <class_name>,
where <class_name> is the type referenced by the represented ConnectableElement,
and its symbol consists in a “head” followed by a vertical line (straight or dashed). A
ConnectableElement (from InternalStructures) is an abstract metaclass representing a
set of instances that play roles of a classifier. The Lifeline “head” has a shape that is
based on the classifier for the part that this lifeline represents.

The participants in the interactions in A-Type sequence diagrams are use cases and
in B-Type sequence diagrams are architectural elements. Regarding A-Type sequence

182 N. Ferreira et al.

diagrams, the UML Superstructure clearly defines a class for use cases. However,
regarding B-Type sequence diagrams, architectural elements are not considered in any
class of the UML metamodel and, despite some similarities in semantics, are different
from UML components. Such situation leads to the necessity of defining a stereotype
«Architectural Element» for the NamedElement class (depicted in the right side of Fig.
11). AEs refer to the pieces from which the final logical architecture can be built and
currently relate to generated artifacts and not to their connections or containers. The
nature of architectural elements varies according to the type of system under study
and the context where it is applied.

Like the ConnectableElement class, UseCase class is also generalized by Name-
dElement class. The information regarding abstract syntax, concrete syntax, well-
formedness and semantics [32] of UseCase class and the context in which we defined
the stereotype «Architecture Element» does not express any condition that restricts
them of being able to act as a ConnectableElement.

Fig. 11. The Proposed Extension to the UML Metamodel for Representing A-Type and B-Type
Sequence Diagrams [29]

4.3 Derivation of Process-Oriented Logical Architectures

In this section, we present the process-level logical architecture derived using the
4SRS method. The process-level application of the 4SRS method used in this example
is detailed in [23], and so detailing it is not in the scope of this work, being, as such,
treated like a black box in the V-Model description as represented in Fig. 12. The
method takes use cases as input, since they reflect elicited requirements and functio-
nalities. Use cases are derived from A-Type Sequence Diagrams and from the OCs.

Gathering A-Type Sequence Diagrams can be used as an elicitation technique for
modeling use cases, after eliminating redundancy and give a proper name to the use
cases used in the sequences. All use cases defined in the A-Type Sequence Diagrams
must be modeled and textually described in the use case model in order to be used in
the 4SRS method.

 Aligning Domain-Related Models for Creating Context for Software Product Design 183

Fig. 12. Derivation of Process-Oriented Logical Architectures

The use case model specifies the required usages of the ISOFIN Platform. In Fig.
13, we present a subset of such usages, regarding the development of functionalities
to be accessed by ISOFIN Customers. These use cases intent to capture the require-
ments of the system that where initially expressed through OCs in the business pers-
pective and later represented using A-Type sequence diagrams.

Use cases, in the process-level perspective, portray the activities (processes) ex-
ecuted by persons or machines in the scope of the system, instead of the characteristics
(requirements) of the intended products to be developed. It is essential for use case
modeling to include textual descriptions that contain information regarding the process
execution, preconditions and actions, as well as their relations and dependencies.

The 4SRS method execution results in a logical architecture diagram, presented in
Fig. 14. This logical architecture diagram represents the architectural elements, from
which the constructors can be retrieved, their associations and packaging. The archi-
tectural elements derive from the use case model by the execution of the 4SRS
method. In this representation, there are packages that represent, for example, sub-
scription activities in {P6} ISOFIN Platform Subscriptions Management, and the SBS
and IBS development in {P1.} SBS Development and {P2} IBS Development respec-
tively. Inside both {P1} and {P2} it can be found the requirements activities, the anal-
ysis decisions and the generators for the major constructors (IBS and SBS). It is also
possible to observe that each SBS (in {P1.4} SBS) and IBS (in {P2.4} IBS) result from
activities able to generate their code. This process-level logical architecture shows
how activities are arranged so the major constructors are made available to ISOFIN
Customers within the intended IT solution.

Fig. 13. Subset of the Use Case Model from the ISOFIN Project

184 N. Ferreira et al.

Fig. 14. ISOFIN Process-level Logical Architecture

Fig. 14 depicts the process-level logical architecture for the ISOFIN project and
contains nearly eighty architectural elements. This figure is intentionally not zoomed
in (and thus not readable), just to show the complexity of the ISOFIN project that
has justified the adoption of process-level techniques to support the elicitation efforts.
A proper zoom of the architecture can be found in Fig. 15, detailing some of its
constructors.

4.4 V-Model Considerations and Comparison with Related Work

For creating a context for IT product design, the V-Model presented in this paper
encompasses a set of artifacts through successive derivation. Our approach is different
from existing ones [17-19], since we use a process-level perspective. Not only do we
manage to create the context for product design, but we also manage to align it with
the elicited domain-specific needs.

Our stereotyped usage of sequence diagrams adds more representativeness value to
the specific model than, for instance, the presented in Krutchen's 4+1 perspective
[10]. This kind of representation also enables testing sequences of system actions that
are meaningful at the software architecture level [33]. Additionally, the use of this
kind of stereotyped sequence diagrams at the first stage of analysis phase (user

 Aligning Domain-Related Models for Creating Context for Software Product Design 185

Fig. 15. Subset of the ISOFIN Process-level Logical Architecture

requirements modeling and validation) provides a friendlier perspective to most stake-
holders, easing them to establish a direct correspondence between what they initially
stated as functional requirements and what the model already describes.

In the ISOFIN project the usage of A-Type Sequence Diagrams also contributed to
creating a standard representation for the scenarios that are intended to be supported.
The B-Type Sequence Diagrams that derived from the A-Type Sequence Diagrams
allowed designers to validate the logical architecture against the given scenarios and
at the same time represent the process flow depicted in the architectural elements.

Regarding alignment approaches that use set of models (like GQM+Strategies [6],
Balanced Scorecards [7] or COBIT [8]), all relate to aligning the domain-specific
concerns with software solutions. As far as the authors of this paper are concerned,
none of the previous approaches encompasses processes for deriving a logical repre-
sentation of the intended system processes with the purpose of creating context for
eliciting product-level requirements. Those approaches have a broader specification
concerning risk analysis, auditing, measurement, or best practices in the overall
alignment strategy.

4.5 Assessment of the V-Model

Having a structured method makes the analysis repeatable and at the same time helps
ensuring that the same set of validation questions are placed in early development stag-
es. With the purpose of assuring the attained logical architecture representation is
tenable, we chose to validate it and the underlying V-Model, using the Active Re-
views for Intermediate Designs (ARID) method [34].

Our concerns relate to discovering errors as soon as possible, inconsistencies in the
logical architecture or even inadequacies with the elicited requirements, expressed
through the A-Type Sequence Diagrams (scenario requirements) and use case models
(specific process-level requirements).

186 N. Ferreira et al.

The ARID method is a combination of Architecture Tradeoff Analysis Method
(ATAM) with Active Design Review (ADR). ATAM is a refined and improved ver-
sion of Software Architecture Analysis Method (SAAM) that helps reviewing archi-
tectural decisions having the focus on the quality attributes requirements and their
alignment and satisfaction degree of specific quality goals. The ADR method targets
incomplete (under development) architectures, performing evaluations on sections of
the global architecture. Those features made ARID our method of choice regarding
the evaluation of the in-progress ISOFIN logical architecture.

The focus of this section is not to present the ARID adaptation to our V-Model,
which will be addressed in a future publication. Instead, we present a simplified dia-
gram that encompasses major ARID representations required to align with our
V-Model models, as seen on Fig. 16.

Fig. 16. ARID and the V-Model Intertwining

We present our adapted ARID specific models like Project Charter, Materials and
Issues. ARID requires that a project context is defined, containing information regard-
ing the identification of the design reviewers. We have represented such information
using the Project Charter box as used in project management [35] terminology. The
Materials box represents the supporting documentation, like presentation that needs to
be done to stakeholders, seed scenarios and meeting agenda. Issues relates to a check-
list that includes but is not limited to notes concerning the presentation, the presented
logical architecture, newly created scenarios and validation scenarios. The issues
representation is used to identify flaws in the logical architecture diagram and there-
fore promoting a new iteration of the 4SRS method.

ARID was used in the ISOFIN project to assess the process-level logical diagram
as a result of the V-Model approach. The Project Charter was created with the initial
requirements the project, the stakeholders, the teams, budget, timings, intended con-
text and others, that influence directly or indirectly the project’s execution. Having

 Aligning Domain-Related Models for Creating Context for Software Product Design 187

this in mind, it is possible to represent the Organizational Configurations (high-level
interactions in the domain of analysis). The intended context described in the Project
Charter gives hints on the domain interactions and the stakeholders are able to pro-
vide more information about the roles and activity types that must be supported.

The Materials model stores information regarding the created Organizational Con-
figurations, A-Type Sequence Diagrams, Use Case models and the derived Logical
Architecture. This information is useful for presenting the project, the rationale that
sustained the creation of the used models and the scenarios that are used as basis for
the requirements elicitation.

Using the information of the Materials model a presentation is made to the stake-
holders with the intention of assuring that all the initial requirements are met, in the
form of scenarios. A scenario is represented by an A-Type Sequence Diagram and, for
each, is discussed and presented the path that must be followed in the Logical Archi-
tecture diagram to accomplish that given scenario. This path is represented using B-
Type Sequence Diagrams. Any problem with the path (architectural elements missing,
associations not possible to accomplish, bad routes, etc.) are stored in the Issues mod-
el and a new iteration of the 4SRS method is executed. This iteration can be promoted
by changing the initial scenarios (A-Type Sequence Diagrams) or the initial require-
ments (use cases).

5 Conclusions and Outlook

In this paper, we have presented a process-level approach to creating context for
product design based on successive derivation of models in a V-Model representation.
We use A-Type sequence diagrams as a bridge from domain-specific needs to the first
system requirements representation, B-Type sequence diagrams are used as validation
for A-Type sequence diagrams and the logical architecture diagram. The used models
represent the system in its behavior, structure and expected functionalities.

The approach assures that validation tasks are performed continuously along the
modeling process. It allows for validating: (i) the final software solution according to
the initial expressed requirements; (ii) the B-Type sequence diagrams according to A-
Type sequence diagrams; (iii) the logical diagram by traversing it with B-Type se-
quence diagrams.

Due to the use of a process-level perspective instead of the typical product-level
perspective, our approach might be considered to delay the delivery of usable results
to technological teams. Although, we are formalizing a model called process-level
architecture that is the basis for the domain-specific and software alignment, assuring
the existence of one effective return on the investment put into action during that so-
called delay, decreasing, namely, the probability of project failure or the need for
post-deployment product rework. These advantages were well appreciated by the
designers and developers that used the process-level logical architecture artifacts in
their work. Also, they were presented with the rationale that was made, in terms of
processes that must be supported by the applications they developed.

The presented approach compels the designers and developers to provide a set of
models that allow the requirements to be sustainably specified. Also, using multiple

188 N. Ferreira et al.

viewpoints, like logical diagrams, sequence diagrams or other artifacts, contributes to
a better representation and understanding of the system. Each created model in the
V-Model takes knowledge from the previously created model as input. Since they are
created in succession, the time required to derive a given model, for the same degree
of representativeness, is smaller than the previous one. For example, A-Type Se-
quence Diagrams take as input information from the OC model. This means that the
context for building A-Type Sequence Diagrams is created by the OC model.

In the left-side of the process, the OC model represents processes at a very
high-level. The refinement of requirements lowers the abstraction level. In similar
context to the one presented in our case study (not having a defined context for prod-
uct design), this approach is capable of starting with very high-level models and end
with low-level information. Also, deriving the models allows uncovering require-
ments that weren’t initially elicited.

As recommended by the ARID method, the V-Model is able to conduct reviews
regarding architectural decisions, namely on the quality attributes requirements and
their alignment and satisfaction degree of specific quality goals that are imposed to
the created scenarios (A-Type Sequence Diagrams). These quality attributes reviews
were not explicitly done in the ISOFIN project. Instead, those requirements were
imbued in design decisions related to the logical architecture.

Unfortunately, our approach could not be compared with other approaches within
the same case study. It was also not possible to add a fresh team on the project just to
perform other approach for comparison reasons.

It is a common fact that domain-specific needs, namely business needs, are a fast
changing concern that must be tackled. Process-level architectures must be in a way
that potentially changing domain-specific needs are local in the architecture represen-
tation. Our proposed V-Model process encompasses the derivation of a logical archi-
tecture representation that is aligned with domain-specific needs and any change
made to those domain-specific needs is reflected in the logical architectural model
through successive derivation of the supporting models (OCs, A- and B-Type Se-
quence Diagrams, and Use cases). In addition, traceability between those models is
built-in by construction, and intrinsically integrated in our V-Model process.

As future work, we plan to study the derivation of the current process-level archi-
tecture into product-level models, maintaining business alignment.

Acknowledgments. This work has been supported by project ISOFIN (QREN
2010/013837).

References

1. Luftman, J., Ben-Zvi, T.: Key issues for IT executives 2010: judicious IT investments con-
tinue post-recession. MIS Quarterly Executive 9, 263–273 (2010)

2. Selic, B.: The pragmatics of model-driven development. IEEE Software 25, 19–25 (2003)
3. Campbell, B., Kay, R., Avison, D.: Strategic alignment: a practitioner’s perspective. Jour-

nal of Enterprise Information Management 18, 653–664 (2005)
4. ISOFIN Research Project, http://isofincloud.i2s.pt

 Aligning Domain-Related Models for Creating Context for Software Product Design 189

5. Haskins, C., Forsberg, K.: Systems Engineering Handbook: A Guide for System Life
Cycle Processes and Activities; INCOSE-TP-2003-002-03.2. 1. INCOSE (2011)

6. Basili, V.R., Lindvall, M., Regardie, M., Seaman, C., Heidrich, J., Munch, J., Rombach,
D., Trendowicz, A.: Linking Software Development and Business Strategy Through Mea-
surement. Computer 43, 57–65 (2010)

7. Kaplan, R.S., Norton, D.P.: The balanced scorecard–measures that drive performance.
Harvard Business Review 70, 71–79 (1992)

8. Information Technology Governance Institute (ITGI): COBIT v5 - A Business Framework
for the Governance and Management of Enterprise IT. ISACA (2012)

9. Sungwon, K., Yoonseok, C.: Designing logical architectures of software systems. In: Sixth
International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, 2005 and First ACIS International Workshop on Self-
Assembling Wireless Networks. SNPD/SAWN 2005, pp. 330–337 (2005)

10. Kruchten, P.: The 4+1 View Model of Architecture. IEEE Softw. 12, 42–50 (1995)
11. Clements, P., Garlan, D., Little, R., Nord, R., Stafford, J.: Documenting software architec-

tures: views and beyond, pp. 740–741. IEEE (2003)
12. Hofmeister, C., Nord, R., Soni, D.: Applied software architecture. Addison-Wesley Profes-

sional (2000)
13. Zou, J., Pavlovski, C.J.: Modeling Architectural Non Functional Requirements: From Use

Case to Control Case. e-Business Engineering. In: IEEE International Conference on
ICEBE 2006, pp. 315–322 (2006)

14. Conradi, R., Jaccheri, M.L.: Process Modelling Languages. In: Derniame, J.-C., Kaba,
B.A., Wastell, D. (eds.) Software Process. LNCS, vol. 1500, p. 27. Springer, Heidelberg
(1999)

15. Browning, T.R., Eppinger, S.D.: Modeling impacts of process architecture on cost and
schedule risk in product development. IEEE Trans. on Engineering Management 49, 428–
442 (2002)

16. Winter, R., Fischer, R.: Essential Layers, Artifacts, and Dependencies of Enterprise Archi-
tecture. In: 10th IEEE International Enterprise Distributed Object Computing Conference
Workshops (EDOCW), p. 30 (2006)

17. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering: A Family-Based Software
Development Process. Addison-Wesley Professional (1999)

18. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-oriented reuse
method with domain-specific reference architectures. Annals of Sw. Engineering (1998)

19. Bayer, J., Muthig, D., Göpfert, B.: The library system product line. A KobrA case study.
Fraunhofer IESE (2001)

20. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems
engineering: the Tropos project. Information Systems (2002)

21. Machado, R.J., Fernandes, J.M., Monteiro, P., Rodrigues, H.: Refinement of Software Ar-
chitectures by Recursive Model Transformations. In: Münch, J., Vierimaa, M. (eds.)
PROFES 2006. LNCS, vol. 4034, pp. 422–428. Springer, Heidelberg (2006)

22. Machado, R.J., Fernandes, J.M.: Heterogeneous Information Systems Integration: Organi-
zations and Methodologies. In: Oivo, M., Komi-Sirviö, S. (eds.) PROFES 2002. LNCS,
vol. 2559, pp. 629–643. Springer, Heidelberg (2002)

23. Ferreira, N., Santos, N., Soares, P., Machado, R.J., Gasevic, D.: Transition from Process-to
Product-level Perspective for Business Software. In: 6th International Conference on Re-
search and Practical Issues of Enterprise Information Systems (CONFENIS 2012), Ghent,
Belgium (accepted for publication, 2012)

24. Campbell, B.: Alignment: Resolving ambiguity within bounded choices (2005)

190 N. Ferreira et al.

25. Evan, W.M.: Toward a theory of inter-organizational relations. Management Science, 217–
230 (1965)

26. Machado, R., Lassen, K., Oliveira, S., Couto, M., Pinto, P.: Requirements Validation: Ex-
ecution of UML Models with CPN Tools. International Journal on Software Tools for
Technology Transfer (STTT) 9, 353–369 (2007)

27. Ruparelia, N.B.: Software Development Lifecycle Models. SIGSOFT Softw. Eng.
Notes 35, 8–13 (2010)

28. Bensaou, M., Venkatraman, N.: Interorganizational relationships and information technol-
ogy: A conceptual synthesis and a research framework. European Journal of Information
Systems 5, 84–91 (1993)

29. Machado, R.J., Fernandes, J.M., Monteiro, P., Rodrigues, H.: Transformation of UML
Models for Service-Oriented Software Architectures. In: Proceedings of the 12th IEEE In-
ternational Conference and Workshops on Engineering of Computer-Based Systems, pp.
173–182. IEEE Computer Society (2005)

30. Barrett, S., Konsynski, B.: Inter-Organization Information Sharing Systems. MIS Quarter-
ly 6, 93–105 (1982)

31. Open Management Group (OMG), http://www.omg.org/spec/UML/2.4.1/
32. Atkinson, C., Kuhne, T.: Model-Driven Development: A Metamodeling Foundation. IEEE

Softw. 20, 36–41 (2003)
33. Bertolino, A., Inverardi, P., Muccini, H.: An explorative journey from architectural tests

definition down to code tests execution. In: Proceedings of the 23rd International Confe-
rence on Software Engineering, pp. 211–220. IEEE Computer Society, Toronto (2001)

34. Clements, P.C.: Active Reviews for Intermediate Designs, Technical Note CMU/SEI-
2000-TN-009 (2000)

35. Project Management Institute: A Guide to the Project Management Body of Knowledge
(PMBOK® Guide) (2008)

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 191–214, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Mapping CMMI and RUP Process Frameworks for the
Context of Elaborating Software Project Proposals*

Paula Monteiro1, Ricardo J. Machado2,4, Rick Kazman3, Ana Lima1,
Cláudia Simões4, and Pedro Ribeiro2,4

1 CCG-Centro de Computação Gráfica,
Guimarães, Portugal

2 Centro ALGORITMI, Escola de Engenharia,
Universidade do Minho,

Guimarães, Portugal
3 University of Hawaii,

Honolulu, USA
4 Departamento de Sistemas de Informação,

Universidade do Minho,
Guimarães, Portugal

Abstract. To improve quality, organizations are widely using Software Process
Improvement (SPI) models and in particular CMMI. Nevertheless, Small and
Medium Enterprises (SMEs) are reluctant in adopting CMMI since the
complexity and size of the framework discourage its adoption. RUP is
presented as a disciplined approach for assigning tasks and responsibilities
within a software organization, with the aim of ensuring the production of
software meeting the users’ needs and in strict compliance with a predictable
timetable and budget. CMMI and RUP can be used together since CMMI
defines “what to do” and RUP defines “how to do”. In this paper, we present
the mappings between the CMMI Maturity Levels 2 and 3 process areas and the
RUP activities, tasks, artifacts and roles. Our main contribution relates to the
alignment of CMMI and RUP when adopted in the preliminary stage of every
project: the elaboration of the project proposal. This paper also presents the
assessment of the effectiveness of RUP support to the elaboration of the project
proposals.

Keywords: RUP, CMMI ML 2 and ML3, RUP Roles, Project Proposal.

1 Introduction

The organizational world is ruled by reference models that influence and mold any
organization, whichever its activity, size or organizational culture. Regarding

* This work has been supported by FEDER through Programa Operacional Fatores de

Competitividade – COMPETE and by Fundos Nacionais through FCT – Fundação para a
Ciência e Tecnologia in the scope of the project: FCOMP-01-0124-FEDER-022674.

192 P. Monteiro et al.

software development organizations one must refer to reference models such as
CMMI, SPICE (ISO/IEC 15504:1998), ISO/IEC 9000, RUP, PMBOK, BABOK,
PSP, ISO/IEC 9126, SWEBOK [1-3], amongst many others. Although these reference
models act in many different perspectives and sub-fields, their main purpose is to
enhance the quality of the developed software according to the final users’ needs [4].
Software is used on an everyday basis by organizations, supporting organizational
processes and, consequently, helping them become more flexible and able to change.
Software is ubiquitous and might be regarded as an organization’s DNA.

Using reference models to assess software quality is nowadays not only a
minimum requirement for an organization’s survival [5] but also a business strategy
[6]. The present work is focused on two reference models for software development
processes: RUP [6] and CMMI [7, 8]. RUP and CMMI are used for different
purposes, the first being focused on the necessary activity flow and responsibilities,
and the later determining the maturity of the process in use. RUP is a generic and
configurable software development process framework that recommends activities in
order to convert the user’s needs into software by attributing responsibilities and
guidelines to the development team [2, 6, 9]. CMMI is a framework that provides
principles and practices in order to achieve a certain maturity level for the software
development process, improving these processes [7, 8, 10, 11] and, therefore,
enhancing software quality [11]. RUP and CMMI have a common goal: improving
software quality and increase customer satisfaction. They can be used together:
with CMMI we understand what we have to do; with RUP we realize how we have
to do.

The main purpose of this work is to discuss if RUP for small projects [12] is
enough to elaborate project proposals in a CMMI ML2 (Maturity Level 2)
organization. Usually, one project proposal is a response to a client request. However,
it could be also required by an internal purpose of the company [13-16]. The project
proposal document should be composed by the plan of action, the reasons for each
action, the timeline to perform the project, the methodology that will be used and the
budget required to perform (execute) the project. The ultimate goal of each project
proposal is to describe and explain a detailed description of the actions and activities
needed to solve a given problem (the problem that motivates the client to ask for a
certain project).

We will start by presenting the mapping of CMMI ML2 and ML3 (Maturity Level
3) process areas (PAs) into RUP tasks, activities and roles. Since we are concerned
with the elaboration of project proposals, we will focus mainly on the RUP Inception
phase and the CMMI REQM (Requirements Management) and PP (Project Planning)
process areas. The usefulness of CMMI-RUP mapping will be illustrated in two
different case studies, where we interpret the obtained results in terms of the teams’
performance to elaborate project proposals.

 Mapping CMMI and RUP Process Frameworks 193

2 Related Work

CMMI was created in 2002 [7, 8, 10, 11] and enables an organization to coordinate its
efforts in order to continuously improve development processes. CMMI evolved
from CMM which was created in 1991 by the Software Engineering Institute (SEI)
[7, 8, 10, 11], and is more engineering-focused. Although CMMI provides technical
guidelines to achieve a certain level of process development quality, it cannot
determine how to attain such a level [2]. CMMI-DEV v1.3 [8] was released in
November 2010 and encloses generic goals and practices as well as specific goals and
practices for each CMMI process areas.

An appraisal at ML2 guarantees that the organization’s processes are performed
and managed according to the plan [5]. Although ML2 contains engineering process
areas [11], the engineering approach is only considered relevant at ML3 by several
companies; due to the “level 2 syndrome” [17], they tend to skip ML2 and directly
implement ML3, which is considered a dangerous practice and was never reported as
viable. In Portugal, there are six ML2 organizations, nine ML3 and only one ML5
organization [18], which represents 0,3% of the CMMI appraised organizations.

RUP is a framework developed by Rational Software for software development
that includes activities, artifacts, roles and responsibilities and the best practices
recognized for software projects. RUP enables the development team to accomplish
an iterative transformation of the user’s requirements into software that suits the
stakeholder’s needs [2, 6, 9]. RUP also provides guidelines for “what”, “who” and
“when” [2], avoiding an ad-hoc approach [6] that is usually time consuming and
costly [5]. RUP can be represented in a bi-dimensional plan where time and process
dynamics are shown on the horizontal axis (presenting phases, iterations and
milestones) and the vertical axis is static and corresponds to activities, paths and roles
[6]. This phased division reduces the risk and enhances the overall management of the
project [3].

Inception refers to the beginning of the project and has an estimated cost of 10%
[6]. Its aim is to establish the scope and context of the project, identify stakeholders
and success criteria, estimate the cost and risks and describe the main use cases in a
consensual manner [6], for one or more iterations [2]. By the end of this stage, one
should be able to decide upon the viability of the project. The case studies considered
in this paper are framed within the efforts of RUP Inception phase.

There are some drawbacks related to the RUP framework, such as the partial
absence of issues related to human resources management, communication
management and contract management [2]. In addition, the team may get lost in
details and excessive documentation when it is not able to determine valuable artifacts
for its project [6].

The use of RUP in small projects [12] began in 2006 (Table 1). It is possible to
conclude that 36 mandatory artifacts (optional artifacts excluded) were reduced to 18
when it comes to small projects. This will be retaken further on for the CMMI-RUP
mapping analysis.

194 P. Monteiro et al.

Table 1. Trimming RUP for mall Projects at Inception Phase [12, 19]

CMMI and RUP intersect each other in regards to software quality and hence
customer satisfaction. In addition, both models have been constantly updated so they
do not become obsolete [6] and prevent an ad-hoc and chaotic software development
environment [11]. While created by independent entities, they both counted with the
participation of experts from the software industry and government [11]. There are
many reasons why organizations should use these two frameworks: increased quality,
productivity, customer and partners satisfaction; lower costs and time consumed; and
better team communication [2, 5, 11]. CMMI-DEV may be used to evaluate an
organization’s maturity whether it uses or not RUP as a process model. Usually, the
CMMI evaluation is managed by a technical report called SCAMPI (Standard CMMI

 Mapping CMMI and RUP Process Frameworks 195

Appraisal Method for Process Improvement) [7, 8, 10, 11] that may only be
performed by SEI authorized appraisers. There have been defined three classes for the
SCAMPI appraisals; this allows the evaluation to have different goals, Class A being
the only appraisal methodology that offers a rating and covers the 40 requirements of
the evaluation procedure [7, 8, 10, 11].

Since its origins, some process areas of CMMI are supported by RUP tasks,
namely REQM, PP. These two process areas are the ones that require most effort
during Inception [6]. Our study is mainly based on PP and REQM process areas of the
CMMI ML2. Thus, our study will allow the determination of the RUP practices that
support these two process areas.

3 General CMMI-RUP Mapping for ML2 and ML3

As a first step to the main goal, we have performed an extension to the mapping
described in [20-22] that relates “CMMI-DEV v1.2 ML2” and “RUP for large
projects”. We have extended the mapping to cover CMMI ML3. We had to map
CMMI ML3 specific practices and subpractices into RUP activities or tasks and
CMMI ML3 work products into RUP artifacts. This effort will also improve a
previous work that maps the “CMMI-SE/SW v1.02” and the "Rational Unified
Process 2000.02.10" [23] (these are older versions of CMMI and RUP). [23] presents
a mapping between all CMMI PAs and RUP workflows, where only the mapping for
one subpractice of each PA is detailed. The SPs and subpractices of CMMI-SE/SW
v1.02 are quite different from the CMMI-DEV v1.2. RUP has also evolved and in the
latest version, there are new artifacts, tasks and activities that better implement CMMI
subpractices. For these reasons, [23] is quite dated and almost irrelevant for the results
we are presenting in our manuscript.

It is important to clarify that one PA is composed by one or more specific goals
(SGs); one SG is divided in one or more specific practices (SP); and one SP is divided
in one or more subpractices. To implement one PA, we have to fully cover all the
process area SPs, which means that we have to fully cover all the subpractices that
compose the SPs.

When performing the initial CMMI-RUP gap analysis, we had to consider different
coverage levels:

─ High coverage (H): CMMI fully implemented with RUP elements, which means
that there are no substantial weaknesses;

─ Medium-High coverage (MH): CMMI nearly fully implemented with RUP
elements, although some weaknesses can be identified;

─ Medium coverage (M): CMMI mostly implemented with RUP elements, however
additional effort is needed to fully implement this process area using RUP;

─ Low coverage (L): CMMI is not directly supported using RUP elements, or there is
a minimal RUP support;

─ Not covered (N): CMMI is not covered by any RUP elements.

196 P. Monteiro et al.

Table 2 presents the results of CMMI-RUP gap analysis for ML2 and ML3. Two
tasks are needed to perform this gap analysis: (1) to identify all the RUP activities,
tasks and artifacts needed to perform each one of the SPs, subpractices and work
products for each process area; (2) to identify the RUP roles assigned to each RUP
activities, tasks and artifacts of each process area. All process areas of CMMI ML2
are totally or, at least, partially covered by RUP. In the case of ML3, process areas
belonging to the process management and support categories are not covered by RUP.

Table 2. CMMI-RUP Gap Analysis for ML2 and ML3

Table 3 and 4 present the CMMI-RUP mapping for ML2 originally performed by
IBM [20-22]. Table 5 and 6 present our extension for ML3 (except for the
Requirements Development process area, that was also analyzed by IBM). In the
tables, we present the CMMI specific practices and the RUP artifacts, activities for
each process area. For some CMMI process areas, we will next comment the results
obtained from the coverage analysis.

The main purpose of the Technical Solution process area is to “design, develop,
and implement solutions to requirements. Solutions, designs, and implementations
encompass products, product components, and product-related lifecycle processes
either singly or in combination as appropriate”. This process area is divided into
three SGs: select product component solutions (see SP1.1 and SP1.2 in Table 5),
develop the design (see SP2.1 to SP2.4 in Table 5), and implement the product design
(see SP3.1 and SP3.2 in Table 5). The RUP coverage for this process area is only

 Mapping CMMI and RUP Process Frameworks 197

Table 3. CMMI-RUP ML2 Mappings (IBM [21-23]) – part I

Medium because RUP does not give guidance on the selection of alternative
solutions, as well on how to perform analyses to decide if it is better make, buy, or
reuse components. RUP elements that partially implement this process area are
presented in Table 5.

The Verification process area has the purpose to “ensure that selected work
products meet their specified requirements”. This process area is divided in three
SGs: prepare for verification, perform peer reviews, and verify selected work
products. This process area is mostly compliant with RUP, since almost all the
subpractices are covered. The subpractices not covered by RUP are “store the data for
future reference and analysis” and “protect the data to ensure that peer review data
are not used inappropriately”. RUP does not have any mechanism to allow the
storage of the reviews or a mechanism to ensure the security of the peer reviews data.
To use RUP as a guideline to implement the Verification process area we must extend
RUP in order to cover those gaps. Table 6 presents the RUP elements that will cover
the remaining Verification subpractices.

198 P. Monteiro et al.

Table 4. CMMI-RUP ML2 Mappings (IBM [21-23]) – part I

The main purpose of the Integrated Project Management process area is to
“establish and manage the project and the involvement of the relevant stakeholders
according to an integrated and defined process that is tailored from the
organization’s set of standard processes”. This process area is divided in two SGs:
use the project’s defined process and coordinate and collaborate with relevant

 Mapping CMMI and RUP Process Frameworks 199

Table 5. CMMI-RUP ML3 Mappings – part I

stakeholders. To fulfill the IPM coverage by RUP we need extensions to support the
integration of plans and managing the dependencies between them. Additionally,
RUP does not support the majority of SP1.6 which requires the gathering of
information for process assets. In Table 6 we can see the existent RUP elements that
partially cover the IPM subpractices.

The main purpose of the Risk Management process area is to “identify potential
problems before they occur so that risk-handling activities can be planned and
invoked as needed across the life of the product or project to mitigate adverse impacts
on achieving objectives“. This process area is divided in three SGs: prepare for risk
management, identify and analyze risks, and mitigate risks. RUP covers almost all the
Risk Management SPs. The main gap found in this process area is related with the
definition of parameters to allow the risk analysis and categorization (SP1.2).

200 P. Monteiro et al.

Table 6. CMMI-RUP ML3 Mappings – part II

The main purpose of the Organizational Process Definition process area is “to
establish and maintain a usable set of organizational process assets and work
environment standards“. There is any RUP element that fully implements this process
area. RUP gives only general topics under the concept of implementing a
process in an organization. In RUP, a “concept” addresses
more general topics than guidelines and span across work
products, tasks, or activities.

The main purpose of the Organizational Process Focus process area is to “plan,
implement, and deploy organizational process improvements based on a thorough
understanding of the current strengths and weaknesses of the organization’s
processes and process assets”. RUP tasks are targeted to project processes. This
process area is concerned with organization processes. RUP does not support this
process area.

The main purpose of the Organizational Training process area is to “develop the
skills and knowledge of people so they can perform their roles effectively and
efficiently”. The organizational training issues are out of the RUP’s scope. The RUP

 Mapping CMMI and RUP Process Frameworks 201

task acquire staff refers in one of its steps the project staff training. This is the
closest to organizational training issues that we can find in RUP.

The main purpose of the Decision Analysis and Resolution process area is “to
analyze possible decisions using a formal evaluation process that evaluates identified
alternatives against established criteria”. RUP scope does not cover the main issues
of this process area.

4 RUP Reduced Model Roles

The described CMMI-RUP mappings are useful to understand what to expect in terms
of CMMI coverage when adopting RUP as our development process framework. In
terms of execution, it is important to additionally perceive who must be in charge to
comply with each CMMI general goal, and to perform each CMMI specific practice.
Here, we have considered the RUP Reduced Model presented in [24] as a first step
towards the attribution of responsibilities in terms of CMMI implementation
supported by RUP.

Table 7 summarizes the eight RUP Reduced Model roles (project manager,
integrator, project reviewer, process engineer, implementer,
system administrator, test manager and system tester). The
remaining 29 roles are not discarded; their responsibilities are mapped into one of
the eight Reduced Model roles. For instance, the project manager inherits the
responsibilities of: business-process analyst, change control
manager, deployment manager, requirements specifier, review
coordinator, test analyst, system analyst, business designer
and use case specifier. The complete analysis, justification, and implications
of the Reduced Model responsibilities’ accumulation can be found in [24].

Table 7. Roles Considered in RUP Reduced Model

202 P. Monteiro et al.

Table 8. Reduced Model Roles for ML2 and ML3 Process Areas

 Mapping CMMI and RUP Process Frameworks 203

In Table 8, the grey cells represent the Reduced Model roles and the white cells
represent the additional responsibilities that each Reduced Model role inherits [24-
26]. To state which role or responsibilities are required to achieve a given process
area we mark in Table 8 the corresponding column with an “x”.

As an example, to implement the Requirements Management process area we need
the project manager role when it assumes its own responsibilities and,
simultaneously, the responsibilities of the change control manager, test
analyst, requirements specifier and system analyst role. The
project reviewer role is also needed, but, in this case, when it only assumes the
responsibilities of the management reviewer and the requirements
reviewer role. The other Reduced Model roles are not needed to support the
execution of the Requirements Management process area using RUP.

In what regards the Product Integration process area, as an example, the role
responsible for implementing the artifact iteration plan is the project
manager and the role responsible for the task plan system integration is
the integrator. A similar effort was performed for all the artifacts, tasks and
activities compliant with this process area.

The Validation process area is quite demanding, since it involves several roles,
either by puting into pratice only their own direct responsibilities (such as the
system administrator and the system tester), or by requiring the
accumulation of several roles (such as the project manager and the process
engineer roles, that, besides their own responsibilities, must perform the
responsibilities of some other roles under their supervision).

Some process areas involve one single role, such as the project manager
(performing its own responsibilities) that is capable of implementing completely the
Risk Management process area.

5 Detailing CMMI-RUP Mappings for PP and REQM

Since our main goal is to understand what kind of support can we expect from RUP to
elaborate project proposals in a CMMI-compliant perspective, it is extremely
important to detail the previous analysis for both the Project Planning and
Requirements Management process areas at the subpractices level.

Table 9 presents the detailed CMMI-RUP for the Project Planning process area.
The table contains the required RUP tasks or activities to support each Project
Planning subpractice. Artifacts were replaced by tasks of which they are output.

Project Planning process area has a good support from RUP (MH coverage); with a
few recommendations and actions we can completely cover this process area using
RUP tasks and activities.

We can highlight the subpractice SP1.4.1 (that can be nearly implemented with the
RUP task plan phases and iterations) and the subpractice SP1.4.2 (that
can be practically implemented with the RUP task schedule and assign
work). However, these two subpractices do not cover the estimation process.
Therefore, to achieve a high coverage, an estimation process should be added to RUP.

204 P. Monteiro et al.

Subpractices SP2.3.1 could also be better supported if we upgrade the RUP task
write configuration management (CM) plan with the capability of
including privacy and security requirements the RUP artifact configuration
management plan.

Subpractices SP2.4.3 could be better supported if we upgrade the RUP task
select and acquire tools with the capability of identifying the facilities,
equipment, and component requirements for all project activities.

Subpractice SP2.5.3 is not covered by RUP, since there are no RUP tasks or
activities that impose the selection of mechanisms to provide the project needed
knowledge and skills.

Subpractice SP2.6.1 requires the identification of the stakeholders’ involvement in
all phases of the project lifecycle. RUP task develop vision only suggests a
general identification of the stakeholders, independently of the phases that justify
their involvement.

With the RUP task define project organization and staffing, we
achieve only a medium coverage for the subpractice SP3.3.1 because the negotiating
commitments are not enclosed. Subpractice SP3.3.2 presents low coverage because
the recording commitments demanded by CMMI are not guaranteed by RUP. A high
coverage could be achieved if these recording commitments are added to the task.

We have considered two different contexts for the elaboration of project proposals:
(1) the context where the team is completely focused to comply with CMMI
recommendations, which means the team needs to perform all the subpractices
referred in table 9; (2) the context where the team is being constricted to time or cost
bounds, which means the team may not be able to perform all the subpractices
referred in table 9. Teams framed in the context #2 should only get focused in what
we have called P1 priority subpractices. Teams framed in the context #1 should
perform both P1 and P2 priority subpractices (see the last column of table 9). P2
(lower priority) subpractices may also be skipped, either by the lack of information or
of metrics to be completely covered in the project proposal phase. P1 (higher priority)
subpractices are considered mandatory by us in all project proposals elaboration.

Even taking into account that some Requirements Management subpractices are
not needed for the elaboration of project proposals, the adoption of RUP does not
fully cover this process area. Additional actions must be performed to fully cover this
process area.

Table 10 presents our detailed CMMI-RUP mapping for the Requirements
Management process area. Subpractices marked with P2 should be considered of
lower priority when the elaboration of project proposals is performed with insufficient
time or cost limits, and subpractices marked with should be considered mandatory in
any context. Next, we will analyze some situations where coverage is not satisfactory
and present some recommendations and actions to completely cover this process area
using RUP tasks and activities.

Subpractice SP1.1.1 demands to establish criteria for distinguishing appropriate
requirements providers. With the tasks develop requirements management
plan and develop vision, we can implement the majority of this subpractice

 Mapping CMMI and RUP Process Frameworks 205

Table 9. Detailed CMMI-RUP Mapping for the Project Planning PA

206 P. Monteiro et al.

Table 10. Detailed CMMI-RUP Mapping for the Requirements Management PA

since RUP does have a detailed process to determine how we select the stakeholders.
However, to fully implement SP1.1.1 we need to include the criteria to select the
appropriate stakeholders in the RUP artifact requirements management
plan (output of the RUP task develop requirements management plan).

Subpractice SP1.5.2 presents low coverage because RUP does not consider in the
review process any indication to investigate the source of requirements
inconsistencies and the reason why they occurred. The inclusion of this indication in
the review process will fully cover this subpractice.

6 Case Studies

Two case studies were developed to assess the usefulness of the CMMI-RUP
mapping to support the execution of both the Project Planning and Requirements
Management subpractices in the context of elaborating project proposals. The first
case study was performed at an educational environment. The second case study was
performed in an industrial setting.

 Mapping CMMI and RUP Process Frameworks 207

The first case study involved 88 students enrolled in the course 8603N3 Software
Processes and Methodologies (SPM) from the second year of the undergraduate
degree in Information Systems and Technology in University of Minho (the first
University to offer in Portugal DEng, MSc and PhD degrees in Computing). Students
were divided in 19 development software teams, each one receiving a sequential
identification number (Team 1, Team 2 ... Team 19).

The software project to be developed was requested by a real customer that
provided all the information about the organization and interacted directly with the
teams. The main goal of the teams was to elaborate a project proposal to solve the
customer’s problem, by producing one report. The report should address the following
issues: the main features of the technical software solution and the cost and duration
of the project. Control team 15 was randomly chosen to not follow the RUP
guidelines (this team is referred as "control team"). The other teams are referred in
this paper as "regular teams".

The assessment of the teams’ performance adopted the following 7 steps: (1) A
survey with 31 questions was developed based on REQM and PP subpractices; (2)
The developed survey was assessed by 2 experts in SCAMPI model. The resulting
suggestions were incorporated into the final version of the survey; (3) Survey was
answered by each element of the 19 teams; (4) Each team element was characterized
by mean of an online survey to collect information about age, sex, RUP role
performed. The survey response was 100%; (5) The RUP work products generated by
each team were assessed in terms of their existence. This has allowed the validation of
the data obtained from step 3 by each one of the project managers; (6) Direct
observation of the teams’ work (during their regular meetings) to perceive their
difficulties and doubts; (7) Analysis of the teams’ academic performance based on the
marks given by the SPM course instructors.

Table 11 shows the results obtained after the assessment. For each team, we
present the coverage level observed for each subpractice, the corresponding average
for each SP of REQM and PP process areas and the PA average. The coverage level
was converted into numeric values: high coverage (H) corresponds to 100%; medium-
high coverage (MH) corresponds to 75%; medium coverage (M) corresponds to 50%;
low coverage (L) corresponds to 25%, and no coverage (N) corresponds to 0%. We
have adopted a weighted average to calculate the coverage of each SP and PA. The
subpractices weight was based in the level of priority: higher priority (P1)
subpractices correspond to a weight of 1 and lower priority subpractices correspond to
a weight of 0,5 (P2_weight=P1_weight/2). The SP weight was defined as the sum of
its subpractices weight.

In general, teams implemented mainly the P1 subpractices. However, some teams
have implemented also some P2 subpractices. In what considers the PP process area,
we can observe similar results across the teams: averages with P1 and P2 subpractices
are between 37,50% and 44,85%, and averages with only P1 subpractices are between
44,44% and 56,48%. Taking into account the results of the control team, we can
conclude that PP process area was reasonably performed by the students. However,
the results for the REQM process area were quite weak, which means that the teams

208 P. Monteiro et al.

Table 11. Case study 1: Project Planning and Requirements Management Assessment

 Mapping CMMI and RUP Process Frameworks 209

were more focused on the planning of the project rather than on the elicitation and
description of the requirements for the demanded solution. This is also a quite
frequent behavior observed in the industrial practitioners (case study 2 confirms this).
The teams have focused their work mainly on the elaboration of the Product
Breakdown Structure (PBS) and the Work Breakdown Structure (WBS).

For the REQM process area averages with P1 and P2 subpractices are between
10,71% and 29,76%, and averages with only P1 subpractices are between 12,50% and
37,50%. These results are quite disappointing from the perspective of the quality of
the teams work. By using the surveys we concluded that the teams have neglected
essential RUP tasks needed to ensure the complete coverage of the required
subpractices to the elaboration of project proposals. With the direct observation we
could perceive a quite different set of activities performed by each regular team that
may justify the obtained results for the REQM process area, by the considerable RUP
tailoring effort that each team had to perform. The control team performed two of the
four P1 subpractices and two P2 subpractices. The results of the regular teams and the
control team are quite similar. Even not using RUP the control team performed
the elicitation and description of the requirements similarly to the other teams. These
similarities demonstrate the pertinence to explicitly inform practitioners about two
different levels of priorities for REQM subpractices to help them better decide what
subpractices to perform even in strongly constricted contexts for the elaboration of
project proposals.

In the second case study, we have evaluated eight real project proposals elaborated
by the consulting team of the EPMQ Laboratory at the CCG/ZGDV Institute. The
CCG/ZGDV Institute is the frontend of the University of Minho for elaborating
projects for the ICT local industry. In the CCG/ZGDV Institute, the EPMQ
Laboratory is responsible for the software engineering and information systems
domain. The EPMQ Laboratory is permanently enrolled in around a dozen of ICT
projects.

The ICT projects considered for the second case study were divided in three types
of funding source: IST European projects; QREN National projects (big projects with
the local industry supported by the Portuguese Economics Ministry); and Vale IDT
projects (small projects with the local industry supported by the Portuguese
Economics Ministry). Table 12 presents the funding source of each project considered
in this case study.

The evaluation was performed by a survey with a set of questions directly related
with the CMMI REQM and PP subpractices. The survey was applied to the project
manager of each project proposal. Table 13 presents the results of the projects
assessment.

In what considers the PP process area, we can observe similar results across the
projects: averages with P1 and P2 subpractices are between 11,94% and 68,41%, and
averages with only P1 subpractices are between 14,29% and 83,04%.

The elaboration of project proposals for IST European calls is more exhaustive and
demanding than for other calls. Those projects are usually more complex, have longer
duration, higher number of partners and are usually focused in a mix of applied
research and technology transfer. Therefore, the average of PP process area for those
projects is much higher than the QREN national projects and the Vale IDT projects.

210 P. Monteiro et al.

Table 12. Case study 2: Projects Characterization

In what concerns the REQM process area, we can observe a decrease of effort
when compared with the PP process area. Across the 8 projects we have obtained
averages for P1 and P2 subpractices between 0% and 14,29%, and averages with only
P1 subpractices between 0% and 37,50%. As said before, the industrial practitioners
are also more focused on the planning of the project rather than on the elicitation and
description of the requirements; so, the results for the REQM process area were also
quite weak like in the case study 1. Like in the PP subpractices, the results for the
REQM process area shows that the IST European projects have a better result, since
in these projects a proper definition of the project scope is fundamental to get a
successful project.

When comparing the results of case study 1 and case study 2 , we can conclude
that the performance of case study 2 is better in both the calculated averages, P1 and
P1+P2 subpractices (see Figure 1). Since the project planning tasks are directly
related with the budget to be approved, it is completely understandable why in real
projects the subpractices of the PP process area are better performed than in academic
environment. It is also possible to admit that academic projects performed by students
is not a perfect emulating environment to motive a detailed project planning, at least
when elaborating project proposals.

When we analyze to the REQM process area, we obtain two different situations:
(1) case study 1 performed better in P1+P2 subpractices; (2) case study 2 performed
P1 only subpractices. We believe that in constricted contexts of the elaboration of
project proposals, industrial practitioners are more effective in selecting and
performing higher priority subpractices, since they know that the elicitation and the
description of requirements have to be reworked when the project is approved.
Therefore, they perform the minimum requirements-related tasks required to elaborate
a project proposal. In opposition, students in academic projects are more motivated to
perform less priority REQM tasks since they know that every additional effort will be
counted positively for their academic assessment. Students do not make choices with
exactly the same criteria as industrial practitioners.

 Mapping CMMI and RUP Process Frameworks 211

Table 13. Case study 2: Project Planning and Requirements Management Assessment

212 P. Monteiro et al.

Fig. 1. Case Study 1 and Case Study 2 Performance Analysis

7 Conclusions

CMMI is an approach used to assess the maturity of software development process.
RUP provides guidelines for activities, artifacts, roles and responsibilities. However,
both intersect in regards to software quality and hence customer satisfaction. A review
of the literature shows that RUP does not provide full coverage of CMMI PP and
REQM process areas.

When we are elaborating project proposals, we are executing a set of tasks and/or
activities that are framed within to the REQM and PP process areas. We have
identified the subpractices of REQM and PP process areas that help in the elaboration
of project proposals. We have assessed several teams that adopt RUP (both in
educational and in industrial settings) when elaborating project proposals. The
assessment was based on the adoption of the CMMI-RUP mapping (mainly in what
regards the REQM and PP subpractices) that has been thoroughly described and
justified in this paper. The comparison of the results obtained for the two case studies
allowed us to conclude that practitioners adjust their PP effort taking into account the
kind of project and that REQM tasks are generally neglected in the context of
elaborating project proposals.

As future work, we will extend this mapping to the remaining process areas of
CMMI ML2 and ML3 process areas, since we will focus next our work in the project
development phase. We will also change the educational case study: students will be
organized in big teams to emulate a real software house.

References

1. Niazi, M., Wilson, D., Zowghi, D.: Critical success factors for software process
improvement implementation: An empirical study. SPIP 11, 193–211 (2006)

2. Manzoni, L.V., Price, R.T.: Identifying extensions required by RUP to comply with CMM
levels 2 and 3. IEEE TSE 29, 181–192 (2003)

 Mapping CMMI and RUP Process Frameworks 213

3. Marchewka, J.T.: Information technology project management. John Wiley and Sons
(2009)

4. Chen, C.-Y., Chong, P.P.: Software engineering education: A study on conducting
collaborative senior project development. Journal of Systems and Software 84, 479–491
(2011)

5. Carvallo, J.P., Franch, X., Quer, C.: Supporting CMMI Level 2 SAM PA with Non-
technical Features Catalogues. SPIP 13, 171–182 (2008)

6. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley (2003)
7. CMMI Product Team: CMMI for Development version 1.2, CMU/SEI-2006-TR-008,

ESC-TR-2006-008 (2006)
8. CMMI Product Team: CMMI for Development version 1.3, CMU/SEI-2010-TR-033,

ESC-TR-2010-033 (2010)
9. IBM, Rational Unified Process: Best practices for software development teams,

http://www.ibm.com/developerworks/rational/library/content/
03July/1000/1251/1251_bestpractices_TP026B.pdf (accessed August 30,
2012)

10. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI(R): Guidelines for Process Integration and
Product Improvement, 2nd edn. The SEI Series in Software Engineering. Addison-Wesley
Professional (2006)

11. Ahern, D.M., Clouse, A., Turner, R.: CMMI Distilled: A Practical introduction to
Integrated Process Improvement. Addison-Wesley (2004)

12. IBM, RUP for small projects, version 7.1,
http://www.wthreex.com/rup/smallprojects/ (accessed August 30, 2012)

13. What Is a Project Proposal?,
http://www.wisegeek.com/what-is-a-project-proposal.html,
(accessed August 30, 2012)

14. Nebiu, B.: Project Proposal Writing,
http://documents.rec.org/publications/ProposalWriting.pdf
(accessed August 30, 2012)

15. Procter, R., Rouncefield, M., Poschen, M., Lin, Y., Voss, A.: Agile Project Management:
A Case Study of a Virtual Research Environment Development Project. In: CSCW,
vol. 20, pp. 197–225 (2011)

16. Kurbel, K.E.: Developing Information Systems: The Making of Information Systems, pp.
155–234. Springer, Heidelberg (2008)

17. Monteiro, P., Machado, R.J., Kazman, R.: Inception of Software Validation and
Verification Practices within CMMI Level 2. In: ICSEA 2009, pp. 536–541. IEEE (2009)

18. SEI, Published Appraisal Results,
http://www.sei.cmu.edu/cmmi/casestudies/profiles/pdfs/
upload/2010MarCMMI.pdf (accessed August 30, 2012)

19. IBM, RUP for Large Projects, version 7.1
20. Uttangi, R.V., Rizwan, R.S.A.A.: Fast track to CMMI implementation: Integrating the

CMMI and RUP process frameworks,
http://www.ibm.com/developerworks/rational/library/oct07/
uttangi_rizwan/index.html (accessed August 30, 2012)

21. Grundmann, M.: A CMMI Maturity Level 2 assessment of RUP,
http://www.ibm.com/developerworks/rational/library/dec05/
grundmann/ (accessed August 30, 2012)

214 P. Monteiro et al.

22. IBM, IBM Rational Unified Process with CMMI Compliance Support, Version 7.5.0.1,
http://www.ibm.com/developerworks/rational/downloads/07/
rup_cmmi_v1/ (accessed August 30, 2012)

23. Gallagher, B., Brownsword, L.: The Rational Unified Process and the Capability Maturity
Model – Integrated Systems/Software Engineering,
http://www.sei.cmu.edu/library/assets/rup.pdf
(accessed August 30, 2012)

24. Monteiro, P., Borges, P., Machado, R.J., Ribeiro, P.: A Reduced Set of RUP Roles to
Small Software Development Teams. In: ICSSP 2012, pp. 190–199. IEEE Computer
Society Press (2012)

25. Borges, P., Monteiro, P., Machado, R.J.: Mapping RUP Roles to Small Software
Development Teams. In: Biffl, S., Winkler, D., Bergsmann, J. (eds.) SWQD 2012. LNBIP,
vol. 94, pp. 59–70. Springer, Heidelberg (2012)

26. Borges, P., Monteiro, P., Machado, R.J.: Tailoring RUP to Small Software Development
Teams. In: SEAA 2012, pp. 306–309 (2012)

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 215–229, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Development and Evaluation of Systems Engineering
Strategies: An Assessment-Based Approach

Fritz Stallinger1, Reinhold Plösch2, Robert Neumann1,
Stefan Horn3, and Jan Vollmar3

1 Software Competence Center Hagenberg, Process & Quality Engineering, Hagenberg, Austria
{fritz.stallinger,robert.neumann}@scch.at

2 Kepler University Linz, Business Informatics - Software Engineering, Linz, Austria
reinhold.ploesch@jku.at

3 Siemens AG, Corporate Technology, Erlangen, Germany
{stefan.horn,jan.vollmar}@siemens.com

Abstract. Linking process improvement with the business and strategic goals of
an organization is a key prerequisite for enabling such process improvement
initiatives to generate appropriate value for the organization. However, process
improvement methods themselves typically do not deal in detail with the provi-
sion of guidance for the derivation of business focused process improvements.
Therefore, we provide a best practice-based approach for developing and eva-
luating systems engineering strategies, based on a conceptual framework for de-
fining and representing such engineering strategies. The resulting engineering
strategies are aligned with corporate strategies and business goals. Strategy ob-
jects as a core element of our approach can be associated with the process areas
and processes of existing process improvement frameworks. The presented ap-
proach thus allows that any process improvement action can consequently
be systematically aligned with the strategy objects of the developed systems
engineering strategies and thus with the business and strategic goals of the
enterprise.

Keywords: Systems engineering, industrial engineering, engineering strategy,
functional strategy, strategy development, strategy evaluation, process im-
provement, CMMI.

1 Introduction, Background, and Overview

Linking process improvement initiatives with the business and strategic goals of an
enterprise is regarded a key success factor for process improvement and a prerequisite
for enabling such improvement initiatives to generate value for the organization. A lot
of research and development work has been performed on elaborating and validating
best practice models for system lifecycle as well as software lifecycle activities (e.g.
[1], [2], [3], [4]) and on methods for guiding process improvement. This ranges from
the provision of guidance for single improvement actions (e.g. [5], [6]) to the provi-
sion of frameworks for the management of overall improvement programs (e.g. [7],
[8]).

216 F. Stallinger et al.

All these frameworks and methods generally assume the existence of business and
strategic goals at organizational or enterprise level and stress the importance of align-
ing any process improvements with these goals. Nevertheless, they generally provide
little and typically only generic guidance on how to actually define the implementa-
tion details of and evaluate, prioritize, and select process improvements.

Within this context, this paper presents the results of investigations on engineering
strategies for the industrial solutions business as a specialization of systems engineer-
ing. Engineering strategies describe how ‘Engineering’ as a functional area of an
organization will support the achievement of the organization’s business goals. Other
functional areas include for example marketing, human resources, or customer ser-
vice. The industrial solutions business is concerned with the provision of highly
customer-specific and complex systems like power plants, airports, rail systems,
chemical plants, or substantial parts of such systems.

The main goals of this work are to understand the role of engineering strategies in
the overall strategy development and implementation framework of an enterprise, to
identify the conceptual framework and key elements for describing engineering strat-
egies, to identify best practice examples for engineering strategies in systems
engineering, to provide a model and method to assess and, if necessary, improve the
quality of an engineering strategy in a systematic and efficient way, and to validate
and identify the alignment of the developed engineering strategy model against a
selected process improvement framework.

The paper builds on work on developing software engineering strategies [9] and
extends this work from the software engineering domain to the systems engineering
domain using industrial engineering or the industrial solutions business as an exam-
ple. The major enhancements refer to an extension of the underlying meta-model for
strategy representation by grouping dimensions for strategy objects and the widening
of the scope of strategy definition from software engineering to industrial and systems
engineering, respectively. This results in the revision and extension of the number and
type of strategy objects to consider and the provision of an assessment-based method
for engineering strategy evaluation and improvement.

The remainder of the paper is structured as follows: section 2 elaborates the role of
engineering strategies in the overall strategy development context of an organization
and introduces the basic elements and the conceptual framework for strategy defini-
tion; section 3 presents typical strategy objects relevant for the industrial solutions
business domain; section 4 presents and discusses the development and assessment
process for engineering strategies; section 5 maps the identified strategy objects to the
process areas of CMMI [4] and discusses support through the presented approach for
process improvement; section 6 provides the status on application and validation of
the proposed approach; section 7, finally, summarizes and concludes the paper.

2 Conceptual Framework for Defining Engineering Strategies

Understanding strategy development at systems engineering level from an
overall strategy development point of view is quite similar to understanding software

 Development and Evaluation of Systems Engineering Strategies 217

engineering strategy development. We first relate engineering strategies to the overall
strategy development efforts within an enterprise. Fig. 1 illustrates the overall strategy
development process of an organization. Engineering strategies are developed within
the ‘Development of functional strategies’ process step. Detailed explanations on the
steps of this process are provided in [10] and [11]. According to [11], a distinction can
be made between the corporate strategy, various division strategies, and various func-
tional strategies which can be characterized as follows (cf. [9]):

• Corporate Strategy: The central issue on this level is to determine which market
segments should be addressed with which resources. This has to be understood
against the background of the core tasks of a company – resource allocation, diver-
sification decisions, and the coordination of the more or less independent divisions.

• Division Strategy: The division strategy refines the corporate strategy. The major
questions to be addressed by the division strategy are how to develop a long-term
unique selling proposition compared to the market competitors and how to develop
a unique product or service. For generating competitive advantages a division has
to take its capabilities and resources as well as customer needs and market struc-
tures into consideration.

• Functional Strategy: Functional strategies define the principles for the functional
areas of a division in accordance with the division strategy and, therefore, refine
the division strategy in the distinct functional areas. Examples of such functional
areas whose principles can be defined by means of functional strategies are market-
ing, finance, human resources, software or systems engineering, etc.

Fig. 1. Overall strategy development process (adapted from [11])

Functional strategies can be developed independently from each other, but must all
adhere to the division strategy and, therefore, also to the corporate strategy. On the
corporate and on the division level the emphasis is on the effectiveness (doing the
right things) of the corporation or division, while the functional strategies have their

218 F. Stallinger et al.

focus on the efficiency (doing the things right) of the respective functional areas.
The distinction between the different levels of strategies ensures the translation of
business goals from the corporate level down to the functional level.

The implied structure of different kinds of strategies on the corporation and divi-
sion level might not be applicable for all companies but depends on the companies’
size and organizational structure. Especially in smaller companies there might be no
distinction between corporate strategies and division strategies.

The corporate and division strategy is one part of the context relevant for the de-
velopment of functional strategies. Furthermore, other aspects have to be considered
like the market of the organization, human resources, or budgets. It is important to
notice that the impact of these aspects changes over time and situation; the resulting
relevant driving forces typically also determine the focus of the engineering strategy
and thus the emphasis with respect to content.

In a next step one has to understand the structure of functional engineering strate-
gies. In our model a functional strategy consists of strategic goals, strategy objects,
and strategic statements. In extension to [9] we allow, that strategy objects can be
prioritized and grouped. Fig. 2 depicts the conceptual framework for the description
of functional strategies also showing the relations between these elements.

Strategic
Goal

Strategy
Object

refined by

contributes to

1+
1+

Strategic

1+

1
described by

Grouping
Dimension

grouped by
3

*

Priority Strategy
Key Area

Strategy
Target Group

Statement

Fig. 2. Functional strategy description - conceptual framework

A strategic goal describes a desired state in the future and specifies a framework
for actions on a strategic level. The strategic goals formulated in the functional strate-
gy are refinements of strategic goals on the corporate and divisional level mapped on
the respective functional area. Table 1 shows the attributes used to describe strategic
goals and provides an example description from a real-world project.

 Development and Evaluation of Systems Engineering Strategies 219

Table 1. Example description of a strategic goal (adapted from [9])

ID: G-SALE

Priority: A

Strategic Goal: Selected software products have to be sellable separately, i.e.
without selling the underlying hardware product.

Explanation of strategic
goal:

The selected software products must meet conditions, so that they
can be sold independently of other products (hardware and soft-
ware) on the automation market.

Description how to reach
the strategic goal:

This is achieved by appropriate abstraction of the runtime envi-
ronment, isolation and independence from other products, exten-
sive tests, appropriate actions for the protection of intellectual
property, documentation and consulting and support offers.

Description how to
measure the realization
of the strategic goal:

Guideline for achieving this goal is that by the end of the first quar-
ter of 2011 product X is sellable alone and independently of other
products.

The verbalization of strategic goals should be based on knowledge from a detailed

analysis of the organization. A strategic goal of a functional strategy must not violate
or determine corporate or division goals or visions. Strategic goals are refined by and
linked to strategy objects. These links help to identify affected strategic goals or strat-
egy objects when changing either of them.

A strategy object refines one or more strategic goals and groups strategic state-
ments targeting one common topic or theme. As the strategy objects and the strategic
statements are targeted towards the functional strategic goals it is also assured that the
divisional and corporate goals are not violated. Examples of strategy objects that are
typically refined during the strategy development process include architecture man-
agement, quality management, requirements management, standards management,
etc. Table 2 shows the attributes used for describing strategy objects and provides an
example of a description of a strategy object from a real-world project.

Table 2. Example description of a strategy object (adapted from [9])

ID: O-WORK

Name: Work Organization

Definition: Work Organization is the systematic arrangement of effective and effi-
cient software development and project execution.

Set of strategic
statements:

1 A - In the areas of Firmware (incl. Technology), Human-Machine-
Interface and Tools the following developer teams have to be formed:
OEM development, product development, and maintenance

2 B - Each software developer is member of one of these teams. For
capacity reasons a developer may temporarily join another team, but
the number of these developers should be kept low.

A strategic statement provides specific instructions for supporting the associated

strategy object within the organization and is described by a consecutive number,
priority, and the actual statement.

220 F. Stallinger et al.

The grouping of strategy objects facilitates understanding strategy objects on a
more abstract level. Additionally, the assessment or development process for engi-
neering strategies (cf. section 4) benefits from additional abstractions, as assessment
or development can be carried out in a focused way. We structure strategy objects
simultaneously along three dimensions:

• Strategy Key Areas: The key areas used are People, Process, Products and Servic-
es, and Methods and Tools. We identified these key areas to be important from
several functional strategy development projects. Each strategy object is assigned
to one or more of these key areas, but a leading key area is marked.

• Strategy Target Group: A strategy target group denotes the typical business func-
tion or role responsible for a strategy object. Strategy target groups have to be de-
noted organization-specific, but generally comprise e.g. Product Management,
Product Development, Project Execution, Organization/Resources, Sales, or other.

• Priority: This grouping dimension considers priorities. Strategy objects are
grouped by priorities along the ordinal scale Priority A, Priority B, Priority C, with
Priority A denoting the highest priority.

These grouping dimensions can be used in different scenarios of a strategy assessment
project, e.g. to easily cross-check to what extent the strategy objects that fall into a
specific category are considered in actual strategies or to focus the assessment to
strategy objects within a specific group.

3 An Industrial Engineering Strategy Objects Reference Model

This section provides the results of the identification and definition of strategy objects
that can be considered generally relevant for the industrial engineering. As a starting
point, strategy objects identified in the software engineering domain (cf. [9]) were
evaluated and adapted for their use in the industrial solutions business. Additional
strategy objects were identified by research and investigation in the industrial engi-
neering and industrial solutions business domain and validated by discussions with
and review through industrial and academic experts from the industrial engineering
domain. These additionally identified strategy objects for the industrial engineering
domain are Claim Management, Product Life Cycle Management, Competence Man-
agement, Tool and Data Integration, Reuse Management, Solutions Building, Suppli-
er Management, and Value Chain Management (cf. Table 3).

A strategy object in the context of an engineering strategy, i.e. in the context of a
functional strategy, can be understood as a subject area that needs to be dealt with on
a strategic level. Our intention here is to identify and describe to the widest generic
coverage the typical strategy objects for industrial engineering. Nevertheless, in the
course of a strategy development process additional strategy objects might be identi-
fied, triggered by characteristics of the organization, domain, market, or concrete
specialization of systems engineering.

 Development and Evaluation of Systems Engineering Strategies 221

Table 3 provides an overview on the identified set of typical and possible strategy
objects for the industrial engineering. On this general and abstract level it is not poss-
ible to distinguish more and less important or related strategy objects. Therefore, the
strategy objects are ordered alphabetically – ascending by their unique ID. Moreover,
the generic assignment of the strategy object to the strategy key areas ‘People’ (P),
‘Engineering Processes’ (EP), ‘Engineering Methodology’ (EM), ‘Solution Structure,
Solution Modules’ (SS,SM) and ‘Engineering Tools Support’ (ETS) is provided with a
black square denoting a major assignment (i.e. the leading key area) and a grey square
indicating a subordinate assignment.

Table 3. Strategy objects for industrial engineering

Strategy Object P EP EM SS,SM ETS

O-ARCH: Architecture Management     
O-CHAN: Change Management    
O-CLAI: Claim Management   
O-COMP: Component Management     
O-CONF: Configuration Management    
O-COPA: Competence Management   
O-CYCL: Product Life Cycle Management   
O-DOCU: Document Management   
O-DOMA: Domain Engineering    
O-INNO: Innovations Management    
O-INTE: Tool and Data Integration    
O-METH: Methods Management    
O-PROC: Process Management  
O-PROD: Product Management     
O-PROM: Project Management   
O-QUAL: Quality Management   
O-REQM: Requirements Management     
O-REUS: Reuse Management     
O-RSKM: Risk Management    
O-SOLB: Solutions Building    
O-STND: Standards Management  
O-SUPL: Supplier Management   
O-TEST: Test Management     
O-TOOL: Tools Management   
O-VALU: Value Chain Management   
O-WORK: Work Organization   

Table 4 provides a sample description for the strategy object Product Management.

For each strategy object we try to give a definition that – of course – has to be adapted
to the context of a specific organization. The definition should show what kind of
topics and issues should be addressed within the strategy object. Besides the defini-
tion we provide a selection of typical topics dealt with in ‘real-word’ engineering
strategies. Last but not least, some examples of strategic statements are given, ex-
tracted from annual business and similar reports.

222 F. Stallinger et al.

Table 4. Description of strategy object ‚Product Management’

ID: O-PROD
Name: Product Management
Definition Product Management in the context of industrial solutions is the development

of product ideas, the definition of product requirements, their commercial cal-
culation and the assignment of engineering development efforts over the whole
life span. Product Management covers demand-driven as well as supply-side
product development.

Typical
Topics

• Elicitation and documentation of product requirements
• Integration of product development and solutions development – manage-

ment of synergies, reuse of product or solutions innovations.
• Interplay of sales and distribution (product management) and engineering

concerning the products
• Responsibilities for product management in the context of the solution

processes.
• Methods and tools for domain engineering (product line engineering).

Examples of
Strategic
Statements

• „In product development ABB uses standardized Life Cycle Assessment
procedures, a handbook for environmentally aware design, a check-list to
identify potential sustainability risks, and a list of prohibited and restricted
substances to ensure the company’s sustainability objectives are embedded
into product development.“ [12]

• „Establish a Product Matrix and Implementation Plan for modifications to
Siemens THRI and TLRI Generators in the UK.“ [13]

4 Developing and Assessing Engineering Strategies

The aim of this section is to outline a methodology for the systematic assessment of
existing engineering strategies. The general approach is to conduct a strategy devel-
opment process with an assessment emphasis. As the assessment method simulates
parts of a strategy development process, consequently it is inevitable to have the man-
agement responsible for strategy development in a division or company at hand. The
result of this assessment is a qualitative report that indicates:

• the general maturity of the engineering strategy, taking into account – among oth-
ers – the form of the engineering strategy, the structuredness of the strategic de-
scriptions, and the appropriateness for the respective business

• those strategy objects that should be considered in the engineering strategy
• the completeness and maturity of strategic statements for each important strategy

object
• those strategy objects where strategic statements exist but the coverage of the given

strategy object’s topics is too low
• gaps in the engineering strategy, i.e. those strategy objects where no strategic

statements exist but that are of importance for the company or division.

The strategy assessment method is described in more detail in subsection 4.3 below.
As the assessment process is related to the strategy development process, we first
present the typical strategy development process and an approach to prioritize strategy
objects.

 Development and Evaluation of Systems Engineering Strategies 223

4.1 Developing Engineering Strategies

The strategy development process for engineering strategies is embedded in a more
global process. When developing an engineering strategy the organization's business
strategy and general conditions must be taken into account. The results of the strategy
development process lead to different strategic actions. The impact of these actions on
the development process, on the quality, on the work organization, etc. is monitored
and analyzed to identify needed changes, which then again must be considered in
engineering strategy development and refinement.

The detailed strategy development process is shown in Fig. 3. It is systematically
structured into the development of strategic goals and strategy objects. Strategic goals
and objects are chosen and defined in cooperation of external consultants with the
responsible management of the organization (cf. Fig. 3, ‘External Experts’ and ‘Cus-
tomers’, respectively). It has to be ensured that the strategic goals adhere to and do
not violate the more general divisional or corporate goals. For strategic goals and
statements a prioritization has to be performed. The strategy itself must state how it is
developed further. The management then formally enacts the strategy.

The ideal detailed engineering strategy development process is typically performed
in a sequential order. Feedback is gathered and adjustments can be made at certain
points of the development process – especially for the intermediate products (Strategy
Structure, First Strategy Concept and Second Strategy Concept). The process of find-
ing strategic goals and defining strategy objects is interactive. External experts should
make suggestions, which then are refined and finalized in workshops together with
the management (cf. Fig. 3, activity ‘Strategy Tuning’). We consider this external
view important to achieve a comprehensive view on the engineering strategy.

Determination of

General Goals

Determination of

Strategic Goals

Determination of
Strategy Objects

Strategy

Structure

Description of

Strategy Objects

Strategy Review
by Management

Strategy

Tuning

First Strategy

Concept

 Second

Strategy Concept
(Reviewed)

Strategy Review

by Staff

Strategy

Tuning

Binding (Final)

Strategy

Customers and

External Experts

Customers

External Experts

Fig. 3. Detailed process of engineering strategy development

224 F. Stallinger et al.

4.2 Prioritizing Strategy Objects

One major step during the strategy development process is to select the appropriate
strategy objects (cf. Fig. 3, activity ‘Determination of Strategy Objects’). From a me-
thodic point of view the selection of strategy objects should be driven by the impor-
tance and by the urgency of the respective strategy object [11].

According to [11], all strategy objects should be placed in a portfolio with the two
axes importance (for the success of the company) and urgency (see Fig. 4). This al-
lows us to identify a standard procedure for dealing with the different strategy objects
depending on their position in the portfolio.

I

II III

IV

low

low

high

high

U
rg

en
cy

Importance for success of company

Delegation

Mark as
irrelevant

Early-warning
system

Crisis
Management

Strategy
Objects

Fig. 4. Portfolio of strategy objects

• Strategy objects in quadrant (I), i.e. with low importance and low urgency, typical-
ly are not relevant for strategic decisions, as they are considered to be neither
urgent nor important for the success of the company. Possibly, an early warning
system can be established that monitors relevant aspects of strategy objects in order
to assure that changes to the urgency or to the importance are not ignored.

• Strategy objects in quadrant (II), i.e. with low importance and high urgency, poten-
tially should not be included in the list of strategy objects to be considered but
should be dealt with by a single person or a small group outside the strategy devel-
opment team.

• Strategy objects in quadrant (III), i.e. with high importance and high urgency, are
topics that should have been dealt with in the past. Obviously they were not ad-
dressed properly in a prior strategy development process. These topics are to be in-
cluded as strategy objects but probably need more efficient and direct treatment by
the general management.

 Development and Evaluation of Systems Engineering Strategies 225

• Strategy objects in quadrant (IV), i.e. with high importance and low urgency, are
optimal candidates for strategy objects as they are important and not yet so urgent
that they cannot be dealt with properly in the course of the strategy development
process.

The assignment of strategy objects to the different quadrants cannot be deducted sys-
tematically or automatically according to some meta-criteria, but is a creative task that
has to be carried out during a strategy workshop. Besides intensive discussions simple
voting mechanisms can be used to determine the importance and urgency of each
strategy object.

4.3 Assessing Engineering Strategies

The method for assessing engineering strategies consists of four main activities that
are described in detail in a structured way using the elements purpose, involved roles,
output, and tasks. In this section – for reasons of space – we only provide an overview
on these assessment steps.

• Engineering Strategy Assessment – Kickoff: The purpose of this activity is to find
out which strategy objects are relevant for the company or division and which in-
formation sources can be used by the assessment team. The management repre-
sentatives responsible for strategy development have to attend this meeting. – The
major output of this activity is the list of strategy objects that are considered to be
important in the engineering strategy of the company/division. The second major
output is a list of documents where engineering strategy related statements can be
found. In cases where no written engineering strategy is available, interview-
partners have to be nominated that can provide the information to the evaluators.

• Evaluation of Strategy Objects: The purpose of this activity is to assign existing
strategic statements to the selected strategy objects, to assess the maturity of each
strategy object and to identify gaps in the engineering strategy. This activity is car-
ried out by the external experts based on the data provided and does not involve the
management of the company/division under investigation. Optionally, the inter-
view partners selected in the previous activity have to be consulted. – The output
of this activity is an assessment document that describes the selected strategy ob-
jects and shows the assignment of strategic statements to them. Additionally, each
selected strategy object is assessed. For this purpose the number and contents of
the strategic statements are set into relation to the definition of the strategy object.

• Consolidation of the Evaluation of Strategy Objects: The purpose of this activity is
to adjust the assignments of strategic statements as well as the assessment of the
strategy objects with the management responsible for the development of engineer-
ing strategies. – The output is a revised assignment of strategic statements to strat-
egy objects.

• Finalization and Presentation of Assessment Results: The purpose of this activity is
to finalize the assessment document and to present the results of the assessment to
the management. – The output comprises a presentation that summarizes the as-
sessment results, a document with the assigned strategic statements to strategy ob-
jects, including overall recommendations.

226 F. Stallinger et al.

5 Relationship of Strategy Objects to Process Improvement

In section 3 we identified a number of candidate strategy objects that can be used for
the development of functional engineering strategies. On the one hand, the question
arises whether the identified strategy objects satisfactorily cover relevant organiza-
tional processes and are in this sense ‘valid’. On the other hand, for use of the devel-
oped engineering strategies in process improvement a mapping or traceable links of
the processes and process areas to the strategy objects is desirable.

To answer or support both issues we performed a mapping of the identified strate-
gy objects to the process areas of CMMI [4] as a major process improvement and
maturity model for the development of products and services. Latest versions of the
model aim at a wide coverage of engineering disciplines. CMMI is widely and suc-
cessfully applied. It can be assumed that the process areas described within CMMI
cover a wide range of organizational processes.

Table 5 presents the summary of the results of the performed mapping. A strategy
object maps to a process area if it addresses issues or topics of that process area. The
mapping is quantified by an N-P-L-F-scale as defined in [3], i.e. 0% – 15% (N, not
mapped), 16% – 51% (P, partially mapped), 52% – 85% (L, largely mapped), and

Table 5. Coverage of CMMI Process Areas by strategy objects

ID Description Coverage Strategy Objects
CAR Causal Analysis and Resolution P O-QUAL
CM Configuration Management F O-CONF
DAR Decision Analysis and Resolution P O-ARCH, O-COMP, O-INNO
IPM Integrated Project Management F O-PROM, O-WORK
MA Measurement and Analysis P O-QUAL, O-PROC
OID Organizational Innovation and Deployment F O-INNO, O-VALU
OPD Organizational Process Definition F O-PROC, O-WORK
OPF Organizational Process Focus F O-PROC, O-VALU
OPP Organizational Process Performance F O-PROC, O-QUAL
OT Organizational Training F O-COPA, O-PROM, O-WORK
PI Product Integration L O-COMP, O-QUAL, O-TEST
PMC Project Monitoring and Control F O-PROM
PP Project Planning F O-PROM
PPQA Process and Product Quality Assurance L O-QUAL
QPM Quantitative Project Management P O-QUAL, O-PROC
RD Requirements Development L O-COMP, O-PROD, O-DOMA
REQM Requirements Management F O-REQM, O-CHAN
RSKM Risk Management F O-RSKM
SAM Supplier Agreement Management F O-SUPL
TS Technical Solution L O-ARCH, O-COMP, O-DOMA
VAL Validation L O-QUAL
VER Verification F O-QUAL, O-TEST

 Development and Evaluation of Systems Engineering Strategies 227

86% – 100% (F, fully mapped). The detailed underlying mapping study additionally
identifies which topics of CMMI are covered by the strategy objects. The topics of
CMMI process areas that were not covered were identified and their importance for
the completeness analysis was judged in order to suggest additional strategy objects. -
All in all, it can be concluded that the CMMI process areas are well addressed by the
presented strategy objects.

Additionally, the analysis showed that a series of topics, which are covered by
strategy objects, are beyond the scope of or not extensively covered by CMMI and
therefore, the following strategy objects are not fully reflected in Table 5: Claim
Management (O-CLAIM), Product Life Cycle Management (O-CYCL), Document
Management (O-DOCU), Domain Management (O-DOMA), Tool and Data Integra-
tion (O-INTE), Methods Management (O-METH), Product Management (O-PROD),
Standards Management (O-STND), and Tools Management (O-TOOL).

6 Validation and Experience

The starting set of strategy objects taken over from the software engineering domain
has been applied in a series of more than eight software engineering strategy devel-
opment projects by the institution of the second author, including at organizations
with more than 100 developers.

The strategy objects added or changed in the course of the adaptation and exten-
sion of the approach to the industrial engineering domain have been validated through
discussion with and reviews by experts from the industrial engineering domain. The
respective feedback has been incorporated into the version of the strategy objects
reference model as presented in section 3.

Some good practices from our experience in developing software engineering
strategies are:

• Suggestions for strategic goals and objects should be made by external experts.
They are refined and finalized in a workshop together with the management.

• Consultants also suggest and verbalize strategic statements with consideration of
the organization and the organization's domain and goals. They must be prioritized
and finalized in a workshop together with the management.

• Workshops should be organized into blocks of four hours each, typically scheduled
for four to five appointments.

• Documents should be editorially edited by consultants.
• Strategy development should be accompanied by consultants, especially during

workshops.

Overall, the approach represents a structured means that helps focusing on strategic
goals. As the strategy objects are linked to the strategic goals, the strategic statements
are automatically targeted towards the goals of the organization. The approach further
helps in the identification and closure of gaps of existing engineering strategies
in a focused manner and supports the identification and removal of contradictions
within existing strategies as well as the systematic documentation of strategies.

228 F. Stallinger et al.

The discovery of those topics, where the organization has to improve, forms the basis
for the identification of improvement potentials and functions as a driver for business
focused process improvement.

7 Summary and Conclusions

Based on experience in applying strategy development in software engineering and
through additional investigation into the industrial engineering domain and discussion
with and review through domain experts, we defined a meta-model for describing
functional engineering strategies and identified a set of strategy objects for industrial
engineering that are typically of interest for organizations. Using this underlying
model we outlined an assessment-based approach for developing such engineering
strategies.

For purposes of further validation of the proposed strategy objects and in order to
support process improvement by providing traceable links to functional engineering
strategies that are derived from business and organizational goals, we mapped the
process areas of CMMI to the identified strategy objects. The result shows that most
process areas are connected with and their topics thus covered by the strategy objects
of our approach. Based on these results, process improvements can be systematically
aligned with the strategic specifications. This provides the possibility to systematical-
ly cross-check, whether process improvements are aligned with strategic decisions
and goals. The presented mapping defines in detail which process areas (i.e. im-
provements of a process area) have to be aligned with which parts of the engineering
strategy.

From experience in applying the strategy development process and the conceptual
framework in software development organizations we can draw the conclusion, that
the proposed structure helps focusing on the strategic goals. Further, as the strategy
objects are linked to the strategic goals, the strategic statements are automatically
targeted towards the goals of the organization. Additionally, the mapping of the
CMMI process areas to strategy objects allows aligning identified process improve-
ments to the strategy objects and - by means of the link of the strategy objects to the
strategic goals - to the business and strategic goals of the organization.

Acknowledgments. The work extending the approach for developing and evaluating
engineering strategies from the software engineering to the industrial engineering
domain has been performed within the SISB project (Systematic Improvement of the
Solutions Business) carried out in cooperation between Siemens AG Corporate Tech-
nology, Johannes Kepler University Linz, and the Process and Quality Engineering
Group of the Software Competence Center Hagenberg. The project aimed at the de-
velopment of concepts and methods for exploiting the improvement potentials of
engineering organizations and for increasing engineering maturity in general.

 Development and Evaluation of Systems Engineering Strategies 229

References

1. ISO/IEC 15288:2008. Systems and software engineering - System life cycle processes. In-
ternational Standards Organization (2008)

2. ISO/IEC 12207:2008. Systems and software engineering - Software life cycle processes.
International Standards Organization (2008)

3. ISO/IEC 15504:2003: Information Technology - Process Assessment. International Stan-
dards Organization (2003)

4. CMMI for development, version 1.2. Technical Report CMU/SEI-2006-TR-008, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2006)

5. Shewhart, W.A.: Economic control of quality of manufactured product. D.Van Nostrand
Company, New York (1931)

6. Dion, R.: Process improvement and the corporate balance sheet. IEEE Software 10(4), 28–
35 (1993)

7. McFeeley, B.: IDEAL: A user’s guide for software process improvement. Handbook
CMU/SEI-96-HB-001, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA (1996)

8. ISO/IEC 15504-7:1998: Information Technology - Software Process Assessment – Part 7:
Guide for use in process improvement. International Standards Organization (1998)

9. Plösch, R., Pomberger, G., Stallinger, F.: Software Engineering Strategies: Aligning Soft-
ware Process Improvement with Strategic Goals. In: O’Connor, R.V., Rout, T., McCaf-
fery, F., Dorling, A. (eds.) SPICE 2011. CCIS, vol. 155, pp. 221–226. Springer, Heidel-
berg (2011)

10. Simon, H., von der Gathen, A.: Das große Handbuch der Strategieinstrumente – Alle
Werkzeuge für eine erfolgreiche Unternehmensführung. Campus, Frankfurt/Main (2002)
(in German)

11. Venzin, M., Rasner, C., Mahnke, V.: Der Strategieprozess – Praxishandbuch zur Umset-
zung im Unternehmen. Campus, Frankfurt/Main (2003) (in German)

12. ABB Annual Report 2006 – Sustainability review – Power and productivity for a better
world, ABB (2006)

13. Siemens: Fit For The Future update Strategic Goals, Siemens PG (January 2007)

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 230–243, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Improving Completeness of Measurement Systems
for Monitoring Software Development Workflows

Miroslaw Staron1, Wilhelm Meding2, and Micael Caiman2

1 Department of Computer Science and Engineering
University of Gothenburg

miroslaw.staron@ituniv.se
2 Ericsson SW Research and SW Metrics Team

Ericsson AB
{wilhelm.meding,micael.caiman}@ericsson.com

Abstract. Monitoring and controlling of software projects executed according
to Lean or Agile software development requires, in principle, continuous mea-
surement and use of indicators to monitor development areas and/or identify
problem areas. Indicators are specific kind of measures with associated analysis
models and decision criteria (ISO/IEC 15939). Indicating/highlighting problems
in processes, is often used in Lean SW development and despite obvious bene-
fits there are also dangers with improper use of indicators – using inadequate
indicators can mislead the stakeholders towards sub-optimizations/erroneous
decisions. In this paper we present a method for assessing completeness of in-
formation provided by measurement systems (i.e. both measures and indica-
tors). The method is a variation of value stream mapping modeling with an
application in a software development organization in the telecom domain. We
also show the use of this method at one of the units of Ericsson where it was
applied to provide stakeholders with an early warning system about upcoming
problems with software quality.

1 Introduction

Software development organizations like Ericsson rely, among others, on measures
and indicators for controlling, monitoring and managing products and projects. Indi-
cators and measures are usually used in measurement systems [1, 2] which are dedi-
cated to support stakeholders in achieving their operational goals [3-5]. The fact that
measurement systems are built for a specific stakeholder, who usually is a team-, line-
project- or product- manager, is well-grounded in practice as it is the stakeholder who
has the mandate to act/react upon the specific status of the indicator or measure. Ded-
icated to one stakeholder, single indicators usually monitor a small number of entities
and a limited number of their attributes (e.g. product performance in field, test
progress). It is caused by the fact that stakeholders usually manage one entity, i.e. an
organization, a product or a project.

Although these two aspects of indicators (being dedicated for one stakeholder and
monitoring small number of entities) made them into an effective operative tool for

 Improving Completeness of Measurement Systems 231

stakeholders, but they also pose certain risks. One of the risks is the fact that indica-
tors for single stakeholders can lead to sub-optimizations of the whole system since
each stakeholder monitors only part/-s of process/es – e.g. optimizing efficiency of
the development part of Lean software development program and “forgetting” to
monitor test progress, which may lead to decreased efficiency of the complete pro-
gram or deteriorated quality of the products. To illustrate this, let us consider an ex-
ample of an indicator for monitoring the quality of software product – an indicator
that shows the number of defects discovered during in-house testing of a telecom
product (also presented in [6]). If the number of defects discovered is too high then
the indicator warns about problems with quality. When the number of defects de-
creases the indicator shows that the quality of the product is good enough. However,
for the whole product development project this indicator might lead to sub-
optimizations since the number of defects depends among other factors on the test
progress. Developing two indicators – one for controlling quality and one for control-
ling test progress – provides a more complete picture of the situation. Furthermore we
can reason that decreasing of the pace of testing (decreased test progress) is a warning
signal of potentially coming problems with quality – as it could also be the case that it
is the delays in integration that might cause big-bang integration problems and thus
decrease of quality.

As shown in the example, the quality indicator certainly helps the organization to
decrease the number of known defects, but it might cause the organization to miss
problems with test progress. In this paper we present a method for assessing whether
the indicators developed for monitoring projects and the developed product show a
complete view, i.e. provide the stakeholders with the possibility to monitor all (rele-
vant to the stakeholder/-s) activities in the workflow.

Our method is based on combining models of software development processes to-
gether with a number of models of measurement systems according to ISO/IEC 15939
[7]. The method was evaluated as part of an action research project at a software de-
velopment organization at Ericsson with a few hundred engineers in close cooperation
with a number of stakeholders who work with the process, e.g. designers, team lead-
ers, product managers, a measurement program leader. By interviews with these
stakeholders we elicited the de-facto development process and visualize it using as-
sembly stations, similar to the Value Stream Mapping modeling [8]. By linking the
software development process models with measurement system models (presented in
[9]) we could analyze how complete information provided by measurement systems
was w.r.t. the measured process and its underlying product. By analyzing time-frame
of the modeled process and empirical dependencies between parts of the process (and
thus between the indicators linked to these parts) we reasoned about how each indica-
tor warned the stakeholders who managed/monitored subsequent parts of the process,
about potential problems.

The action research was conducted in three research projects at one of the units of
Ericsson, for creating early warning systems for one of the software development
programs. As part of those research projects the method was used in software product
development, which is shown in the paper. Based on using our method, several mea-
surement systems were redesigned to increase the completeness of information to the
level satisfactory for the stakeholders.

232 M. Staron, W. Meding, and M. Caiman

The remaining of the paper is structured as follows: section 2 presents the most re-
levant related work in the area. Section 3 describes the theoretical background for
measuring completeness of the measurement systems. Section 4 presents the research
design, which we followed and section 5 presents the method for assessing complete-
ness. Section 6 summarizes the results from the evaluation of the method – its use at
one of the large product development units at Ericsson.

2 Related Work

Value Stream Mapping [10] models are commonly used in Lean Development in
other domains to model processes and link them to such concepts as customer value
or cost. The as-is workflow modeling can be done using Value Stream Map-
ping/Modeling and complemented with the other parts of our method – information
needs and indicators – thus creating a powerful tool for analyzing efficiency, com-
pleteness, cost and predictiveness of software development processes.

Modeling of measurement systems has already been proposed by Kitchenham et al.
[11, 12] where the authors provide a method for combining metrics of different kinds
using a graphical notation. Another example of using models when designing soft-
ware metrics is provided by a recent work of Monperrus et al. [13] where the authors
propose a modeling notation for modeling metrics. Although the approach is interest-
ing and model-driven (in the sense that it provides possibilities to “model metrics and
to define metrics for models” [13]), the approach does not cover the most important
aspect of our work – linking metrics and process models.

Completeness of information is often a part of the overall information quality and
its evaluation. The basis for our research is one of available frameworks for assessing
information quality – AIMQ [14]. The framework contains both the attributes of in-
formation quality, methods for measuring it and has been successfully applied in in-
dustry in the area of data warehousing. In our research we have taken the method one
step further and developed a method for automatic and run-time checking of informa-
tion quality in a narrowed field: measurement systems [15]. In this work we present a
method for assessing how complete the information products are; this is a part of
requirements for having high-quality metrics. There exist several alternative (to
AIMQ) frameworks for assessing information quality, which we also investigated, for
example Kahn et al. [16], Mayer and Willshire [17], Goodhue [18], Serrano et al.
[19]. The completeness of information is present in all of them in different forms. The
AIMQ framework was chosen as it was previously used in our research on informa-
tion quality – where the information completeness is a part of.

Caballero et al [20] developed a data quality information model based on the
ISO/IEC 15939 information model. Caballero et al.’s research aims to standardize the
nomenclature in data information quality and provide an XML schema for generating
data quality measurement plans. In the contrast with Caballero et al.’s research for
measurement plans, our approach is dedicated for measurement systems, is based on a
different platform (MS Excel), a narrower domain (measurement systems) and takes
the information quality one step further – runtime, automatic assessment of a subset
of information quality. Generation of a schema-like textual specification is possible in

 Improving Completeness of Measurement Systems 233

our method as it is based on the existing framework [2] which allows automatic gen-
eration of specifications of metrics (including information quality).

Burkhard et al. [21] found that although the indicators are presented visually,
people are surrounded by overwhelming information and miss the big picture. This
“bigger picture” in the context of monitoring of software product development means
that the stakeholders need to monitor entities that they formally do not manage. For
example project managers monitor projects but also need to understand how the
“product has it”, for example what the quality of the developed product is. For stake-
holders responsible for parts of product development that means that they need to
understand what the situation “upstream” is – i.e. whether there are any potential
problems that might affect their work after a period of time.

3 Combining Measurement Systems with Workflow Modelling

The research presented in this paper addresses the industrial needs for efficient
adoption of measurement standards like ISO 15939 [22], which describes how
measurement processes should be executed in software and system development or-
ganizations. The notion of completeness of information is adopted from the AIMQ
framework [14].

3.1 Measurement Systems and ISO 15939

The current measurement processes in software engineering are prescribed by
ISO/IEC 15939:2007 standard, which is a normative specification for the processes
used to define, collect, and analyze quantitative data in software projects or organiza-
tions. The central role in the standard is played by the information product which is a
set of one or more indicators with their associated interpretations that address the
information need [23]. The information need is an insight necessary for a stakeholder
to manage objectives, goals, risks, and problems observed in the measured objects
[23]. These measured objects can be entities like projects, organizations, software
products, etc. characterized by a set of attributes. We use the following definitions
from ISO/IEC 15939:2007 [22]:

• Indicator – measure that provides an estimate or evaluation of specified attributes
derived from a model with respect to defined information needs.

• Information need – An insight necessary to manage objectives, goals, risks and
problems

• Stakeholder - An individual or organization that sponsors measurements and pro-
vides data or is a user of the measurement results. In the case of the studied organi-
zation at Ericsson, the stakeholder is a person who has the mandate and ability to
act upon the value of the indicator.

The view on measures presented in ISO/IEC 15939 is consistent with other engineer-
ing disciplines, the standard states that it is based on ISO/IEC 15288:2007 (Software
and Systems engineering - Measurement Processes) [24], ISO/IEC 14598-1:1999
(Information technology - Software product evaluation) [25], ISO/IEC 9126-x [26],

234 M. Staron, W. Meding, and M. Caiman

ISO/IEC 25000 series of standards, or International vocabulary of basic and general
terms in metrology (VIM) [22].

One of the key factors for every measurement system is that it has to satisfy an in-
formation need of a stakeholder – i.e. there is a person/organization who/which is
dependent on the information that the measurement system provides. Typical stake-
holders are project managers, organization managers, architects, product managers,
customer representatives, and similar [27-30]. The indicator is intended to provide
information along with interpretation, which implies the existence of an analysis
model that eases the interpretation. The analysis model is a set of decision criteria
used when assessing the value of an indicator – e.g. describing at which value of the
indicator we e.g. set a red flag signaling problems in the measured object. The derived
measures (based on the definition of the derived quantity) and base measures (based
on the definition of the base quantity) are used to provide the information for calculat-
ing the value of the indicator.

3.2 Workflow Modeling

We model workflows based on process models used in software development
projects. The method places the stakeholder downstream and all related activities
upstream. By doing this:

• we optimize the number of activities/states that have to be described,
• we optimize the number of metrics and indicators used,
• we organize the dependencies of listed activities
• we quantify listed activities time wise

Act 1 Act 3

Information need 1

Information need 2

Act 4 Act 5 Act 6 Act 7

As-is workflow

Act 1 Act 2 Act 3 Act 4 Act 5 Act 6 Act 7

Process model

Act 2

Stakeholder 1

Act 2 Automated activity (e.g. build)

Act 3 Manual activity (e.g. implementation)

Legend:

,
Monitoring of activity is of interest for stakeholder

Stakeholder 2

Fig. 1. Process modeling and information needs of stakeholders

 Improving Completeness of Measurement Systems 235

Figure 1 outlines how a process model, a workflow model and stakeholders’ informa-
tion needs relate to each other. The process model at the top of the figure denotes the
prescribed software development process used in the project with activities which
should be followed. The as-is workflow describes how the process is instantiated in
the particular project, which means that it includes activities that are fully automated
and includes actual lengths of activities. Each stakeholder in the project (Stakeholder
1 and Stakeholder 2) have distinct roles, distinct information needs and therefore they
have distinct needs to monitor different activities.

3.3 Completeness

The AIMQ framework defines completeness of information as information possessing
the necessary values [14]. The definition in the AIMQ framework is rather general
although its roots are in the ontological definition of information quality presented by
Wand and Wang [31] who use the notion of data deficiency to explain different quali-
ty attributes. The deficiencies addressed by information completeness are related to
incomplete representation of the real-world entities with metrics. This means that in
the context of the study presented in this paper the completeness of a measurement
system is the possibility to monitor all activities in a process (workflow).

As an example let us consider a toy workflow presented in Figure 2 with three ac-
tivities in release planning – i.e. Requirements elicitation, Requirements prioritization
and Product release planning. The stakeholder for that workflow is the release manag-
er who is responsible for releasing the product with the right features and the right
quality. That particular stakeholder is interested in two of the three activities – de-
noted with a tick under the activities.

As-is workflow

Indicators

Requirements
elicitation

Requirements
prioritization

Product release
planning

Requirements
base size

prio 1
requirements

Development
readiness

Week 0 Week 2 Week 3

Release
manager

Fig. 2. Mapping workflow elements to indicators

Each of these three activities is linked to one indicator – Requirements base size, #
(number of) priority 1 requirements and Development readiness with the status of the
indicators - green, yellow and red respectively. If the stakeholder considers the
workflow model to be complete, then the measurement system with the three indicators
provides the stakeholder with the complete “picture” of the workflow. The “picture” is
complete since the indicators are defined according to ISO/IEC 15939 and the standard

236 M. Staron, W. Meding, and M. Caiman

requires proper construction of metrics. This proper construction means that such prop-
erties of metrics/indicators as the empirical mapping criterion (defined by Fenton and
Pfleeger [32]) are fulfilled.

4 Research Context and Method

In this section we describe the organization where the need for this new method was
identified, implemented and verified. We also briefly present the action research
project which we followed in this study.

4.1 Organizational Context

The organization and the project within Ericsson, which we worked closely with,
develops large products for the mobile telephony network. The size of the organiza-
tion is several hundred engineers and the size of the projects can be up to a few hun-
dreds1. Projects are more and more often executed according to the principles of Agile
software development and Lean production system referred to as Streamline devel-
opment (SD) within Ericsson [33]. In this environment various disciplines are respon-
sible for larger parts of the process compared to traditional processes: design teams
(cross-functional teams responsible for complete analysis, design, implementation,
and testing of particular features of the product), network verification and integration
testing, etc.

The organization uses a number of measurement systems for controlling the software
development project (per project) described above, a number of measurement systems
to control the quality of products in field (per product) and a measurement system for
monitoring the status of the organization at the top level. All measurement systems are
developed using the in-house methods described in [1, 2], with the particular stress on
models for design and deployment of measurement systems presented in [4, 9].

The needs of the organization have evolved from metric calculations and presenta-
tions (ca. 5 years before the writing of this paper) to assure quality of measures (see
[15]) towards measurement systems which provide stakeholders with information
about how much in advance they can be warned about problems (predictive informa-
tion) and how complete the information provided by their measurement systems is.
These needs have been addressed by the action research projects conducted in the
organization, since the 2006.

4.2 Research Method – Action Research

We followed the principles of action research in our research project [34, 35]. Action
research is characterized by the fact that research is embedded in normal activities
performed by an organization or an individual. In our case our actions were embedded
in the operations of one of the units of Ericsson with several ongoing large projects2.

1 Due to the confidentiality agreement we are not allowed to provide the exact numbers here.
2 Due to the confidentiality agreement with Ericsson we are not able to provide the exact num-

bers of the organization, its products or the geographical location.

 Improving Completeness of Measurement Systems 237

Action research is usually conducted in so-called cycles, which are often
characterized as:

• Action planning: recognizing the nature of the problem in its natural environment.
In our case we needed to investigate the changed reality of using Lean/Streamline
in software development, in order to understand, if, and to what extent, the pre-
vious approaches and statistical methods (e.g. [36, 37]) apply. We used the know-
ledge from our previous research projects and the dialog with practitioners to find
potential limitations and understand them. The result of the action planning was the
choice of Domain Specific Modeling as technology to implement our method on a
mid-size software development program where the models were to be used. Close
cooperation with the quality manager resulted in précising the requirements for the
method – e.g. ease of use, accuracy.

• Execution: acting upon the identified problem and improving the practices. In our
case we needed to develop new methods alongside with the practitioners based on
the new reality of Lean/Streamline development. The result of action execution
was the new modeling method (based on [4, 9]) developed in a close cooperation
with stakeholders in a series of interviews and workshops.

• Evaluation: evaluating the action in the real setting. In our case we introduced the
method into a mid-size software project at Ericsson and calculated information
completeness.

Each of the cycles results in improvements of the current practice and each of them is
intended to provide the basis for further improvements. In this short paper we only
focus on the final result and its evaluation at Ericsson.

5 Complete Measurement Systems

The method presented in this paper is mostly suitable for assessing the completeness
of measurement systems for monitoring workflows, since we use temporal dependen-
cies and process-wise dependencies between activities of a process.

In short, the main principles of our method are: (i) to create a process model of the
existing workflow, (ii) link appropriate and necessary measures to activities in this
process, (iii) link the time scale to the process and calculate the completeness of in-
formation provided by the measurement systems. The method results in

a. time frame for how long in advance the indicators warn about problems, and
b. percent of completeness of measurement systems w.r.t. monitoring of activities

We present the three parts of our method together with an illustrative example.

Step 1: Develop de-facto process descriptions of the workflow. This measurement
system should address the following information need – what do you need to know in
order to warn the stakeholder in the subsequent phase about coming problems?
Therefore the model should contain all activities that are relevant for this information
need. The description should be in form of a model, for example a model presented in
Figure 3(which is UML-like). The model should show the de-facto ways of working
in the workflow and should be at the abstraction level of activities, not tasks. The flow

238 M. Staron, W. Meding, and M. Caiman

depends on the stakeholder, and the process description covers only the aspects that
are important from the perspective of the information need of the stakeholder. This
means that the workflows are not prescriptive (as process models) but descriptive.

Fig. 3. Process model – an example

The figure shows two activities in an example process description – design soft-
ware component and implement software component. This is how the stakeholders
describe their contribution to the overall company product development, although
there might be a number of smaller tasks which are part of these activities.

Step 2: Design measurement systems and link them to activities in the workflow.
After describing the process the measurement system for monitoring the workflow is
designed. This measurement system should address the following information need –
what do you need to know in order to warn the stakeholder in the subsequent phase
about coming problems? We propose to use a method developed in one of our pre-
vious research projects, which uses the ISO/IEC 15939 information model as the basis
for the specification of measurement system [1, 7]. An example of this link between
process model and metrics specification is presented in Figure 4.

Fig. 4. Measures linked to process elements

 Improving Completeness of Measurement Systems 239

The figure shows the design of the measurement system for monitoring the
workflow for this process. The measurement system monitors one of the two activities
through three measures – number of requirements planned and number of require-
ments included in the design. It also contains one indicator – design process progress.
The reason for having just this indicator is that the indicator warns the stakeholders
downstream about the status of this activity and about the potentially coming
problems.

Step 3: Add a timeline for the workflow and assess how much time each stakehold-
er (e.g. a team leader) has to prevent the problem that he/she is warned about. When
the measurement system is designed in the model, a timeline is added to show the
time frame between activities in the process. The resulting model shows how predic-
tive the measurement system is. It shows that the early warning in the first available
measure can warn about potential problems later on in the process. By adding the
timeline we can reason about how far away into the future we can have an impact.

5.1 Completeness

In order to perform the assessment of how complete the measurement system is we
propose the following formula:

activities with measures or indicators in this context means that we count also activ-
ities which have only measures (i.e. base or derived measures). This is dictated by the
fact that sometimes it is not possible to set static decision criteria (in the analysis
model) to develop an indicator, but a derived or base measure still holds an important
information about the status of the measured activity. The measurement system which
provides measures or indicators for all activities in the monitored process is 100%
complete. That number of indicators is given by the number of activities defined by
the Info Need of the stakeholder that is downstream. That is why the number of ac-
tivities and related measures vary given the stakeholder.

In the example presented in in this paper the information is 50% complete as only
one of the two activities is monitored – Develop software component.

6 Evaluation: Use of the Method at Ericsson

We have evaluated our method in two projects at Ericsson. Table 1 summarizes the
results from the evaluation in three projects. The last column contains the feedback
from the stakeholder, whether the completeness of information is enough for their
purposes or not (i.e. information needs).

240 M. Staron, W. Meding, and M. Caiman

Table 1. Results from using our method the studied organization

Project # measures Completeness Stakeholder’s view

A 11 56% N/A

B 28 60% The number of measures and indicators
satisfies the stakeholder’s information needs

C 28 60% The number of measures and indicators
satisfies the stakeholder’s information needs

The table shows that in practice the completeness of the information provided by
measurement systems was about 60%. The reason for this 60% was the fact that the
other activities were fully automated and there was no need of monitoring them sepa-
rately (furthermore, the stakeholder also claimed to have an everyday update of the
status of these activities in other ways). Their outcome was monitored as part of other
activities. The 60% completeness means that if a problem appears in ca. 40% of activ-
ities in the monitored workflow, the measures cannot show that until the problem
reaches an activity which is monitored. However, the stakeholders deemed this as a
satisfactory level.

7 Conclusions

In this paper we presented and industrially evaluated a method for monitoring
workflows in Lean-like software development based on combining as-is process
models, ISO/IEC 15939-based measurement systems and information quality. Since
metrics are important in industry to support decisions and to allow for objective moni-
toring and control, by monitoring workflows we take it one step further – we can
monitor the status of product under development and provide stakeholders with the
information on the status of projects in objective way. By providing completeness as
information to the stakeholders, we add information/knowledge to overall metrics
picture equal to the importance of information quality.

One of the shortcomings of measurement systems used in industry previously was
the lack of overall picture that combined activities, metrics and indicators in a single
view. The lack of such a picture made it difficult to assess how complete a measure-
ment system is from the perspective of an information need of a stakeholder. Thanks
to the method presented in this paper we address this shortcoming by identifying the
key activities from a vast number of activities ongoing in a software development
project. The key activities are linked to those few metrics and indicators needed to
fully ascertain the completeness of the information need by the stakeholder.

Another shortcoming of methods used previously was that the measurement
systems were static in the sense that they presented reactive information to the stake-
holders. By including timeline in the workflow model our method enables the mea-
surements systems to be both reactive and proactive. The proactive means to foretell
what might happen in the workflow if no actions are taken by the stakeholder.

 Improving Completeness of Measurement Systems 241

The success of this method was mainly due to the fact that it is based on the
ISO/IEC 15939 standard and that it lies on the fundaments of UML-like modeling. It
can be used to both small and large projects as it was evaluated at Ericsson. As the
presented method is based on a small number of steps it has shown itself to be effec-
tive for a number of projects in the organization. In particular it has led to improve-
ments of the quality of measurement systems and the elevated awareness of the
limitations of the measures provided by the measurement systems. The method can be
used for all different stakeholder roles, and at the same time it is limited to the as-is
and relevant-only process description.

Acknowledgements. The authors would like to thank Ericsson and Software Archi-
tecture Quality Center for the support of this study. The authors would also like to
express gratitude to the stakeholders who took part in the evaluation of the presented
method.

References

[1] Staron, M., Meding, W., Karlsson, G., Nilsson, C.: Developing measurement systems: an
industrial case study. Journal of Software Maintenance and Evolution: Research and
Practice (2010)

[2] Staron, M., Meding, W., Nilsson, C.: A Framework for Developing Measurement Sys-
tems and Its Industrial Evaluation. Information and Software Technology 51, 721–737
(2008)

[3] McGarry, J.: Practical software measurement: objective information for decision makers.
Addison-Wesley, Boston (2002)

[4] Meding, W., Staron, M.: The Role of Design and Implementation Models in Establishing
Mature Measurement Programs. Presented at the Nordic Workshop on Model Driven En-
gineering, Tampere, Finland (2009)

[5] van Solingen, R., Berghout, E.: The Goal/Question/Metric Method. A Practical Guide for
Quality Improvement of Software Development. McGraw-Hill, London (1999)

[6] Staron, M., Meding, W.: Defect Inflow Prediction in Large Software Projects. e-
Informatica Software Engineering Journal 4, 1–23 (2010)

[7] International Standard Organization and International Electrotechnical Commission,
ISO/IEC 15939 Software engineering – Software measurement process, International
Standard Organization/International Electrotechnical Commission, Geneva (2007)

[8] Brockers, A., Differding, C., Threin, G.: The role of software process modeling in plan-
ning industrial measurement programs. In: The 3rd International Software Metrics Sym-
posium, pp. 31–40 (1996)

[9] Staron, M., Meding, W.: Using Models to Develop Measurement Systems: A Method and
Its Industrial Use, Presented at the Software Process and Product Measurement, Amster-
dam, NL (2009)

[10] Dolcemascolo, D.: Improving the extended value stream: lean for the entire supply chain.
Productivity Press, New York (2006)

[11] Kitchenham, B., Hughes, R.T., Linkman, S.C.: Modeling Software Measurement Data.
IEEE Transactions on Software Engineering 27, 788–804 (2001)

[12] Lawler, J., Kitchenham, B.: Measurement modeling technology. IEEE Software 20, 68–
75 (2003)

242 M. Staron, W. Meding, and M. Caiman

[13] Monperrus, M., Jézéquel, J.-M., Champeau, J., Hoeltzener, B.: A Model-Driven Mea-
surement Approach. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MoDELS 2008. LNCS, vol. 5301, pp. 505–519. Springer, Heidelberg (2008)

[14] Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y.: AIMQ: a methodology for informa-
tion quality assessment. Information & Management 40, 133–146 (2002)

[15] Staron, M., Meding, W.: Ensuring Reliability of Information Provided by Measurement
Systems. In: Abran, A., Braungarten, R., Dumke, R.R., Cuadrado-Gallego, J.J., Brune-
kreef, J. (eds.) IWSM 2009. LNCS, vol. 5891, pp. 1–16. Springer, Heidelberg (2009)

[16] Kahn, B.K., Strong, D.M., Wang, R.Y.: Information Quality Benchmarks: Product and
Service Performance. Communications of the ACM 45, 184–192 (2002)

[17] Mayer, D.M., Willshire, M.J.: A Data Quality Engineering Framework. In: International
Conference on Information Quality, pp. 1–8 (1997)

[18] Goodhue, D.L., Thompson, R.L.: Task-technology fit and individual performance. MIS
Quarterly 19, 213–237 (1995)

[19] Serrano, M., Calero, C., Trujillo, J., Luján-Mora, S., Piattini, M.: Empirical Validation of
Metrics for Conceptual Models of Data Warehouses. In: Persson, A., Stirna, J. (eds.)
CAiSE 2004. LNCS, vol. 3084, pp. 506–520. Springer, Heidelberg (2004)

[20] Caballero, I., Verbo, E., Calero, C., Piattini, M.: A Data Quality Measurement Informa-
tion Model Based on ISO/IEC 15939 (2007),
http://mitiq.mit.edu/iciq/PDF/

[21] Burkhard, R., Spescha, G., Meier, M.: “A-ha!”: How to Visualize Strategies with Com-
plementary Visualizations. In: Conference on Visualising and Presenting Indicator Sys-
tems (2005)

[22] International Bureau of Weights and Measures, International vocabulary of basic and
general terms in metrology = Vocabulaire international des termes fondamentaux et
généraux de métrologie, 2nd edn. International Organization for Standardization, Genève
(1993)

[23] International Standard Organization and International Electrotechnical Commission,
Software engineering – Software measurement process, ISO/IEC, Geneva (2002)

[24] International Standard Organization, Systems engineering – System life cycle processes
15288:2002 (2002)

[25] International Standard Organization, Information technology – Software product evalua-
tion 14598-1:1999 (1999)

[26] International Standard Organization and International Electrotechnical Commission,
ISO/IEC 9126 - Software engineering – Product quality Part: 1 Quality model, Interna-
tional Standard Organization/International Electrotechnical Commission, Geneva (2001)

[27] Umarji, M., Emurian, H.: Acceptance Issues in Metrics Program Implementation, p. 20
(2005)

[28] Gopal, A., Mukhopadhyay, T., Krishnan, M.S.: The impact of institutional forces on
software metrics programs. IEEE Transactions on Software Engineering 31, 679–694
(2005)

[29] Umarji, M., Emurian, H.: Acceptance issues in metrics program implementation, p. 10
(2005)

[30] Kilpi, T.: Implementing a Software Metrics Program at Nokia. IEEE Software 18, 72–77
(2001)

[31] Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations.
Commun. ACM 39, 86–95 (1996)

[32] Fenton, N.E., Pfleeger, S.L.: Software metrics: a rigorous and practical approach, 2nd
edn. International Thomson Computer Press, London (1996)

 Improving Completeness of Measurement Systems 243

[33] Tomaszewski, P., Berander, P., Damm, L.-O.: From Traditional to Streamline Develop-
ment - Opportunities and Challenges. Software Process Improvement and Practice 2007,
1–20 (2007)

[34] Baskerville, R.L., Wood-Harper, A.T.: A Critical Perspective on Action Research as a
Method for Information Systems Research. Journal of Information Technology 1996,
235–246 (1996)

[35] Susman, G.I., Evered, R.D.: An Assessment of the Scientific Merits of Action Research.
Administrative Science Quarterly 1978, 582–603 (1978)

[36] Fenton, N., Krause, P., Neil, M.: Software measurement: uncertainty and causal model-
ing. IEEE Software 19, 116–122 (2002)

[37] Fenton, N.E., Neil, M.: Software metrics: successes, failures and new directions. Journal
of Systems and Software 47, 149–157 (1999)

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 244–258, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Exploiting Natural Language Definitions and (Legacy)
Data for Facilitating Agreement Processes

Christophe Debruyne and Cristian Vasquez

Semantics Technology and Applications Research Lab (STARLab),
Vrije Universiteit Brussel,

Pleinlaan 2, B-1050 Brussels, Belgium
{chrdebru,cvasquez}@vub.ac.be

Abstract. In IT, ontologies to enable semantic interoperability is only of the
branches in which agreement between a heterogeneous group of stakeholders
are of vital importance. As agreements are the result of interactions, appropriate
methods should take into account the natural language used by the community.
In this paper, we extend a method for reaching a consensus on a conceptualiza-
tion within a community of stakeholders, exploiting the natural language com-
munication between the stakeholders. We describe how agreements on informal
and formal descriptions are complementary and interplay. To this end, we in-
troduce, describe and motivate the nature of some of the agreements and the
two distinct levels of commitment. We furthermore show how these commit-
ments can be exploited to steer the agreement processes. Concepts introduced in
this paper have been implemented in a tool for collaborative ontology engineer-
ing, called GOSPL, which can be also adopted for other purposes, e.g., the
construction a lexicon for larger software projects.

Keywords: Hybrid Ontologies, Collaborative Ontology Engineering.

1 Introduction

In this paper, we extend a method for reaching a consensus on a description of the
world – or an approximation thereof - within a community of stakeholders. This me-
thod exploits the natural language communication between the stakeholders. Even
though the method adopted is intended for ontology engineering; aimed at producing
application-independent descriptions of the world for semantic interoperability be-
tween autonomously developed information systems, the ideas presented here are easi-
ly extrapolated to other domain in which modeling (and the agreements leading those
models) are critical for a successful project. [16] observed communication and com-
prehension problems within projects with groups whose members had different (IT)
backgrounds. It is this problem that we wish to address in this paper. The better the
understanding within (and even across) communities, the more likely that the (ontolo-
gy) project will be successful. Thus methods will need to take into account the social
processes and means used by the community to reach those agreements. Since the most
advanced means of communication between humans is natural language, it will be
beneficial to exploit this natural language communication in the agreement processes.

 Exploiting Natural Language Definitions and (Legacy) Data 245

Starting from an existing framework for collaborative ontology engineering that
takes into account both formal and informal descriptions of concepts, which we will
describe later on, we ask ourselves the following questions: 1) what is the nature of
the meaning agreements (esp. across communities), 2) are there different levels of
committing to these models and can these be exploited for driving agreement
processes.

The paper is thus organized as follows: starting from a brief introduction to ontolo-
gies, ontology engineering and related work, we move to the method in Section 3.
Section 3 starts with a description from the hybrid ontology engineering framework
and method we adopted in this paper, which is based on earlier work. In Section 3, we
also describe how the nature of agreements across communities and propose to make
a distinction between two types of ontological commitment: at community level, and
at the level of a specific application. Ensuring proper business – or proper semantic
interoperation – will be the motivation of this separation. We furthermore explain
how the commitments can be used to drive the social interaction within the communi-
ty that will lead to agreements. Section 4 presents the tools implementing these ideas
and we conclude this paper in Section 5.

2 Related Work

An ontology is commonly defined as a formal, explicit specification of a shared con-
ceptualization and ontology engineering is a set of tasks related to the development of
ontologies for a particular domain. The semantics of an ontology stem not from the
ontology language in which the ontology is implemented1, but from the agreements of
a community of stakeholders with a particular goal. Those agreements are achieved
by interactions within the community leading the ontology to better approximate the
domain over time.

We stated what ontologies are. The problem, however, is not what ontologies are,
but how they become community-grounded resources of semantics, and at the same
time how they are made operationally relevant and sustainable over longer periods of
time. Quite a few surveys on the state of the art on ontology engineering methods
exist [7,16,17]. Some collaborative methods provide tool support such as HCOME
[9], DILIGENT [20] and Business Semantics Management2 [2]. There even exists
collaborative ontology engineering platforms, such as, Collaborative Protégé [18],
that are not tailored to one specific method. Concerning methods, we noticed a be-
tween providing means for supporting social processes (in ontology engineering) and
a special linguistic resource to aid these processes [4]. This gap was addressed in [3],
which provided a framework for hybrid ontology engineering. Then, a method and
tool were developed on top of this method, called GOSPL [4], which stands for
Grounding Ontologies with Social Processes and Natural Language.

1 Although some constructs can be reserved a special meaning used for inference, e.g., the

relation denoting subsumption.
2 http://www.collibra.com/products-and-solutions/products/
 business-semantics-glossary

246 C. Debruyne and C. Vasquez

3 Method

In conceptual modeling, the natural language aspect helps us to keep a close com-
munication link between the distinct stakeholders and the systems and/or business
specifications. This has already been shown before in database design methods and
techniques such as NIAM [21], which allows users to model their world by means of
fact-types3 expressed in natural language. In this section, we explain how we adopted
fact-orientation for ontology engineering and use distinct levels of “precision” for
describing concepts, informal and formal, with the formal level also being grounded
in natural language This hybrid aspect is useful since we need informal descriptions
to support high level reasoning among humans (i.e. discussions) and at the same
time, formal descriptions to be used by machines.

3.1 A Framework and Method for Hybrid Ontology Engineering

Whenever two or more autonomously developed information systems need to intero-
perate, agreements over the concepts implicitly shared by those systems are made
explicit, allowing the mapping of the conceptual schemas onto an ontology. Agree-
ment processes thus co-exist at an organizational level and across organizations. The
construction of an ontology can be supported by the same natural language fact-
oriented modeling techniques. In fact, a framework for fact-oriented ontology
engineering was proposed in [12] that adopted NIAM. This method was extended to
include a special linguistic resource, called a glossary, to support the social processes
in ontology engineering [3]. The social processes result in changes in the ontology
and have been parameterized with the community, thus resulting in a well-defined
hybrid aspect on ontologies. A Hybrid Ontology Description [3] contains:

● A lexon base ߉, i.e. a finite set of lexons. A lexon is a binary fact-type that can be
read in two directions: ݐଵ playing the role of ݎଵ on ݐଶ and ݐଶ playing the role of ݎଶ
on ݐଵ in some community referred to by ߛ א ,ଵݐ where ,߁ ଶݐ א ܶ are term-labels
and ݎଵ, ଶݎ א ܴ are role-labels. Communities are used to disambiguate agreements.
An example of a lexon is <Ticket Community, Ticket, has, of, Price>.

● A glossary ܩ, a finite set of functions mapping lexon or terms in lexons to natural
language descriptions. For instance, the Ticket Community can agree to articulate
the term Price with the gloss “The sum or amount of money or its equivalent for
which anything is bought, sold, or offered for sale.” The functions ݃ଵ and ݃ଶ map
respectively community-term pairs and lexons to glosses.

● ܿ݅: ߁ ൈ ܶ ՜ a partial function mapping pairs of community-identifiers and ܥ
terms to unique elements of ܥ, a finite set of concepts.

● A finite set of ontological commitments ܭ describing how one individual applica-
tion commits to a selection of the lexon base, the use of this selection (con-
straints) and the mapping of application symbols to that selection. The elements
of ܭ will be described in the next section.

3 A fact-type is the generalization of facts, a collection of objects linked by a predicate. “[Per-

son] knows [Person]” would be an example of a fact-type, and “[Christophe] knows [Cris-
tian]” would be a fact in this example.

 Exp

In [4], a collaborative met
called GOSPL. Fig. 1 depi
mantic interoperability req
Those terms need to be inf
of lexons) can be added. In
needs to be articulated. Th
munity can then commit to
tion symbols with a constra
can interact to agree on the
tant here is that the comm
means of the informal desc
in avoiding misunderstandi
likely to occur.

Important in GOSPL is
processes within a commu
changes will contribute the
diately change the ontology
the proposed changes. Onl
ontology. As the social pro
tional dimension to traceabi

3.2 The Nature of Agre

Communities can agree tha
cept as well as terms in lex
respectively (at lexon-level
munities that a particular la
same concept. Every comm
the community would be di
to the same concept and th
pairs ሺߛଵ, ,ଵሻݐ ሺߛଶ, ଶሻݐ א ߁ ൈ
tween communities ߛଵ and
function ݃ଵ maps every com
ties ߛଵ, ଶߛ א and terms ߁

loiting Natural Language Definitions and (Legacy) Data

thod on top of aforementioned framework was describ
icts the processes in GOSPL. Communities define the

quirements, out of which a set of key terms is identifi
formally described before the formal description (in ter
n order for a lexon to be entered, at least one of the ter
e terms and roles in lexons can be constrained. The co

o the hybrid ontology by annotating an individual appli
ained subset of the lexons. At the same time, communi
equivalence of glosses and the synonymy of terms. Imp

munity first needs to “align” their thoughts and ideas
criptions before formally describing the concepts. This a
ings and changes on the formal descriptions are then l

Fig. 1. The GOSPL method

 that each “phase” corresponds with a number of so
unity. These social processes are there to discuss whet
e community in achieving their goal. Rather than imm
y and discuss the change, the community needs to appr
y when changes are accepted, they are carried out on
ocesses are described and stored, we have added an ad
ility; the discussion and decisions made by the commun

eements

at glosses used to describe terms can refer to the same c
xons, gloss-equivalence (at gloss-level ீܳܧ) and synony
l ؠ஼). The elements in ܥ contain the agreements of co
abel refers – for all the members of a community – to
munity-term pair refers to at most one concept, otherw
ivided. Communities can agree that their terms could re

hose agreements are captured. Given two community-teൈ ܶ, ܿ݅ሺߛଵ, ଵሻݐ ஼ؠ ܿ݅ሺߛଶ, ଶ refer to the same concept. Tݐ ଵ andݐ ଶ that their termsߛ ଶሻ denotes the agreementݐ
mmunity-term pair to at most one gloss. Given commuݐଵ, ଶݐ א ܶ, we say that two term-glosses ݃ଵሺߛଵ, ଵሻݐ

247

bed,
se-

fied.
rms
rms
om-
ica-
ities
por-
 by
aids
less

cial
ther
me-
rove

the
ddi-

nity.

con-
ymy
om-
the

wise
efer
erm
be-

The
uni-
and

248 C. Debruyne and C. Vasquez

݃ଵሺߛଶ, ீܳܧ ଶሻ are gloss-equivalentݐ if the two communities agree that the described
terms refer to the same abstract concept. A hybrid ontology is glossary-consistent if
for every two pairs ሺߛଵ, ,ଶߛଵሻ,ሺݐ ଶሻݐ א ߁ ൈ ,ଵߛ൫݃ଵሺீܳܧ:ܶ ,ଵሻݐ ݃ଵሺߛଶ, ଶሻ൯ݐ ՜ܿ݅ሺߛଵ, ଵሻݐ ஼ؠ ܿ݅ሺߛଶ, .ଶሻ. The converse does not necessarily holdݐ

Note that when the two communities agree that the glosses used to describe their
terms are gloss-equivalent, that this does not automatically imply that ܿ݅ሺߛଵ, ଵሻݐ ஼ؠ ܿ݅ሺߛଶ, ଶሻ is asserted. We motivate the reason to have both agreementsݐ
established separately as follows: Gloss-equivalences are on the level of the glossary
whereas ؠ஼ resides on the formal descriptions of the concepts (i.e. the lexons). To
assert ؠ஼ , the term must appear in a lexon. Communities can start gradually building
their glossary before formally describing their concepts. However, nothing should
prevent the community for having agreements on the “sameness” of descriptions
across or within their own community. Another reason is validation of the equiva-
lences. The glossary-consistency principle will pinpoint the descriptions used for
terms that are ீܳܧ, but whose terms in those communities are not ؠ஼ The glossary-
consistency principle does not become a property that needs to hold or else the ontol-
ogy project fail, instead it becomes a tool to drive the community in establishing ؠ஼ ,
double checking whether the gloss-equivalence was not misleading and both terms
really do refer to the same concept.

This is particularly handy as the validity of the natural language descriptions and
the equivalence of two such descriptions are relative to the communities partaking in
these discussions. If glosses have been ill defined, yet agreed upon, the second
agreement while the terms are formally described are more than welcome and the
community will be able to rectify the mistakes.

Important to note is that assertions of gloss-equivalences and synonymy are only
symmetric, reflexive and transitive within one agreement process. This measure is
taken to avoid unwanted synonymy and gloss-equivalences to be propagated across
communities. If communities ܣ, ,ܣݐ A all get together and agree that their termsܥ and ܤ ,ܣare synonymous, the following assertions are added: ܿ݅ሺ ܥݐ and ܤݐ ሻܣݐ ஼ؠ ܿ݅ሺܤ, ,ܤሻ, ܿ݅ሺܤݐ ሻܤݐ ஼ؠ ܿ݅ሺܥ, ,ܣሻ and ܿ݅ሺܥݐ ሻܣݐ ஼ؠ ܿ݅ሺܥ, ,ሻ. Howeverܥݐ
if community ܥ and ܦ afterwards agree that ܿ݅ሺܥ, ሻܥݐ ஼ؠ ܿ݅ሺܦ, ሻ, then this doesܦݐ
not imply that ܿ݅ሺܣ, ሻܣݐ ஼ؠ ܿ݅ሺܦ, ,ܤሻ or ܿ݅ሺܦݐ ሻܤݐ ஼ؠ ܿ݅ሺܦ, ሻ. The agreements onܦݐ
synonymy can be followed will be followed by the other communities, allowing them
to start interactions to state the terms are indeed synonymous. The same holds for
gloss-equivalences.

3.3 Community- and Application Commitments

In GOSPL, a finite set of ontological commitments ܭ contain descriptions on how
individual applications commit to a selection of the lexon base (with constraints and
mappings). We feel, however, the need to make a distinction between two types of
commitments: community-commitments and application-commitments. The first is an
engagement of the community members to commit to the lexons and constraints
agreed upon by the community. The latter is a selection of lexons that are constrained

 Exploiting Natural Language Definitions and (Legacy) Data 249

(according to how the application uses these lexons) and a set of mappings from ap-
plication symbols to terms and roles in that selection.

The introduction of a community commitment is motivated by the need for proper
semantic interoperation between information systems. Depending on the goal of the
ontology, instances shared across different autonomous information systems need to
some degree to be compared for equivalence. One example is joining information
about an instance across heterogeneous sources. In order to achieve this, the members
of the community have to agree upon a series of attributes that uniquely, and totally
identify the concepts they share. In other words, the conceptual reference structures4.
By sharing the same reference structures, the information systems are able to interpret
information describing instances and find the corresponding instance in their data
store (of that of a third system). Application commitments refer to community com-
mitments and can contain additional lexons and constraints. For instance, lexons
needed to annotate application specific symbols (e.g., artificial IDs, often found in
relational databases) to ensure that instances of concepts are properly aligned (e.g., a
proper annotation of the foreign keys in a join-table). Both community- and applica-
tion commitments also store information about the agreements across communities.

The application-commitment language we have adopted is Ω-RIDL [19], and ex-
tended to include references to community commitments. Take for example the ER-
diagram for a fictitious database storing information about artists and works of art in
Fig. 2. The corresponding application commitment is shown in Fig. 2. Notice the
reference to the “Cultural Domain” community, which will include all lexons and
constraints currently agreed upon by that community. This particular commitment
furthermore includes some application specific knowledge to annotate the artificial
IDs. The commitment describes how these IDs uniquely and totally identify instances
of artists and works of art. Furthermore the terms “Artist” and “Work Of Art” inside
the application’s lexons are declared to be synonymous with that of the community.
The lexons of the community ‘Cultural Domain’ g in this example were assumed to
include:

<g, Art Movement, with, of, Name> <g, Gender, with, of, Code>

<g, Artist, with, of, Art Movement> <g, Artist, having, of, Name>

<g, Artist, born in, of birth of, Year> EACH Name IS LEXICAL.

<g, Work Of Art, with, of, Title> EACH Code IS LEXICAL.

<g, Work Of Art, made in, of, Year> EACH Year IS LEXICAL.

<g, Artist, with, of, Gender> EACH Title IS LEXICAL.

<g, Artist, contributed to, with contributor, Work Of Art>

The lexical constraints limit instances of concepts denoted by a term to “things”

that can be printed on a screen.

4 Similar to identifications schemes in databases.

250 C. Debruyne and C. Vasquez

BEGIN SELECTION
 # Selection of the community.
['Cultural Domain']
 # Application specific lexons
 <'MyOrganization', Artist, with, of, AID>
 <'MyOrganization', Work Of Art, with, of, WID>
END SELECTION
BEGIN CONSTRAINTS
 # Declaration of synonyms
 LINK('Cultural Domain', Artist, 'MyOrganization', Artist).
 LINK('Cultural Domain', Work Of Art, 'MyOrganization', Work Of Art).
 # List application specific constraints
 EACH Artist with AT MOST 1 AID. #(1)
 EACH Artist with AT LEAST 1 AID. #(2)
 EACH AID of AT MOST 1 Artist. #(3)
 EACH Work Of Art with AT MOST 1 WID. #(4)
 EACH Work Of Art with AT LEAST 1 WID. #(5)
 EACH WID of AT MOST 1 Work Of Art. #(6)
END CONSTRAINTS
BEGIN MAPPINGS
 # Mapping of application symbols, in this case from Table X Field
 # -> Term role Term (role Term)+, a path of lexons
 MAP 'Artist'.'name' ON Name of Artist.
 MAP 'Artist'.'birthyear' ON Year of birth of Artist.
 MAP 'Artist'.'id' ON AID of Artist.
 MAP 'piece'.'name' ON Title of Work Of Art.
 MAP 'piece'.'year' ON Year of Work Of Art.
 MAP 'piece'.'id' ON WID of Work Of Art.
 MAP 'artistpiece'.'a_id' ON AID of Artist contributed to Work Of Art.
 MAP 'artistpiece'.'p_id' ON WID of Work Of Art with contributor Artist.
END MAPPINGS

Fig. 2. Example ER diagram and corresponding Ω-RIDL application-commitment

3.4 Exploiting Application Commitments

The application commitments – next to describing how the application symbols are
related to the shared lexons – are useful for practical things such as: 1) the publishing
of data in other formalisms and 2) the validation of one applications’ data with respect
to the concepts and constraints agreed upon by the community.

The GOSPL hybrid ontology engineering aims to facilitate the engineering of on-
tologies and the reduction of a knowledge engineer’s involvement in the processes,
diminishing the effort spent by experts. The framework aims to be ontology language
agnostic. The grounding in natural language and restricting the knowledge building
blocks to fact-types instead of making a distinction between classes and properties (or
entities and relations) and having those fact-types expressed in natural languages
leverages the modeling task. Hybrid ontologies are easily transformed into other

 Exploiting Natural Language Definitions and (Legacy) Data 251

formalisms and can be used in conjunction with those other formalisms currently used
within semantic technologies. For instance, the ontologies are transformed into the
Web Ontology Language (OWL 2 [8]) and used with the R2RML language [1] to
offer a virtual SPARQL [13] endpoint over the mapped relational data, or generate
RDF [10] dumps, or offer a Linked Data5 interface.

Not only can hybrid ontologies by transformed to other formalisms, the application
commitments also aid the transformation of data locked in closed information sys-
tems. [19] even described how mappings can be used to generate SQL queries for
relational databases. Another implementation of Ω-RIDL - provided by Collibra
NV/SA6 - allow also the annotation of XML. No matter the formalism, a link with the
hybrid ontologies is kept. This link allows exploiting the annotation to see to what
extent the individual application comply with the constraints agreed upon by the
community as well as those that are application specific. Transforming each con-
straint into a query does this.

The application mappings are changed according to each closer approximation of
the observed world by the communities. As the hybrid ontology grows, so will the
data unlocked by means of these commitments. In GOSPL, the constraints that are
currently proposed in the community commitment can be tested against the data in-
side the closed information systems in the same way that the constraints inside a
commitment can be tested.

Also the hybrid ontologies and the additional lexons and constraints in application
commitments are examined with a reasoner. This is particularly important for applica-
tion commitments, as the annotations – being the responsibility of the representatives
of that particular application – are human and thus inconsistencies could arise.

3.5 Queries as Concept Definitions

Lexons in a community commitment (or even an application commitment) can be
used to query information by means of sentences created by concatenating lexons. We
created a fact-oriented query language for RDF - called R-RIDL. For this, we adopted
the fact-oriented query language RIDL [11]. RIDL, which stands for Reference and
IDea Language, was a formal syntactic support for information and process analysis,
semantic specification, constraint definition and a query/update language at a concep-
tual level in the early eighties. The RIDL language manipulated, defined and re-
stricted information structures and flows described using the NIAM method (re-
stricted to binary relations). RIDL was one of the first query languages to access the
data via the conceptualization, which resulted from a natural language discourse be-
tween the users (of an information system). Because of its groundings in natural lan-
guage, it was easier for users to retrieve information out of the system. A guide and
description of the RIDL grammar are described in [6].

RIDL is a Controlled Natural Languages (CLN), which are less expressive subsets
of natural language whose grammars and lexicons have been restricted, making it less

5 http://www.linkeddata.org/
6 http://www.collibra.com/

252 C. Debruyne and C. Vasquez

complex and ambiguous [15]. CLNs make information retrieval and ontology engi-
neering tasks easier on the user by hiding some of the complexity (e.g., learning stan-
dards such as XML, RDF and OWL) [15]. RIDL also inspired Ω-RIDL. Using a
concatenation of lexons, sentences can be constructed to describe those application
symbols.

Statements entered by the user are parsed following a grammar based on the origi-
nal RIDL language; the part concerned with information retrieval and refined to cope
with Hybrid Ontology Descriptions7. Below, we will give two examples of queries in
R-RIDL with their equivalent expression in SPARQL. For the queries in SPARQL,
the OWL translation of the community commitment is assumed to be available
somewhere8. We omit the namespaces for the SPARQL queries for simplicity’s sake.
We assume the prefix of the OWL implementation of the community commitment to
be myOnto0. Using the same example as the previous section:

● Return the artists that are not male

R-RIDL: LIST Artist NOT with Gender with Code = ‘M’

SPARQL: SELECT DISTINCT ?a WHERE { ?a a myOnto0:Artist.
 OPTIONAL { ?g myOnto0:Gender_of_Artist ?a.
 ?g myOnto0:Gender_with_Code ?c. }
 FILTER(?c != "M" || !bound(?c)) }

In this example we wish to list all the artists not having a gender with code `M'. This in-
cludes the artists whose gender was not explicitly stated. For the equivalent SPARQL
query, we thus need to specify that gender is optional. This is done with the OPTIONAL
clause, which will leave the variables unbound if no such information is available. But
merely testing the whether variable ?c doesn't equal `M' does not suffice. As apart from
bound, all functions and operators that operate on RDF will produce a type error if any
arguments are unbound. Thus the result of a Boolean test can be true, false or error. Testing
whether ?c != `M' will thus result in an error and the result will thus not taken into
account for this query. We therefore need to test whether the variable doesn't equal `M' or
the variable is unbound.

● Return all the names:

R-RIDL: LIST Name.

SPARQL: SELECT DISTINCT ?n WHERE {
 {?a myOnto0:Artist_having_Name ?n.} UNION
 {?a myOnto0:Art_Movement_with_Name ?n.}}

7 Details of R-RIDL can be found on
 http://starlab.vub.ac.be/website/node/756/edit
8 For this example, the OWL translation can be found on
 http://starlab.vub.ac.be/staff/chrdebru/GOSPL_ATOMIZER/
 art.owl

 Exploiting Natural Language Definitions and (Legacy) Data 253

In R-RIDL, if we want to have the set of all names, we merely need to use that term label.
This is not possible in SPARQL as lexical attributes result in object properties with their
ranges being instances of rdfs:Literal. To achieve the same effect, i) one needs to look
up all the lexons in which that term plays a role, ii) find the corresponding data properties
and iii) construct the SPARQL query using the UNION operator for each of those data
properties.

There are two types of statement: LIST and FOR-LIST. The LIST statement returns a
set of instances, which can be regarded as a set of unary tuples. The FOR-LIST state-
ment allows the user to create queries returning a set of tuples of arity n>1.

R-RIDL transforms parts of the lexon-paths in these queries into SPARQL queries,
and then applies relation algebra to construct the result set. The drawback of this ap-
proach is that queries in R-RIDL are indeed slower than in SPARQL, but the added
value is an understandable - and at certain points more expressive - query language
for RDF fitting an ontology engineering method.. Where SPARQL is suitable for
building services, R-RIDL allows for language-grounded exploration of data.

GOSPL allows agreements to be made at two levels: at description level and at the
level of the formalism (i.e., lexons). Even though the method supports both high level
reasoning by humans with the natural language descriptions and low level reasoning
by machines with the formal part, the ontology engineering processes can benefit
from the hybrid nature of R-RIDL; the queries looking like natural language sen-
tences become concept definitions. The definition/query can be defined, as the results
can be explored, examined and discussed by the community. Those definitions cor-
respond with the subtype definitions of ORM, in which subtypes of concepts are de-
fined in terms of the roles of lexons played by its super-types. For instance:

• EACH Female Artist IS IN LIST Artist with Gender with Code = ‘F’, Or

• EACH Female Artist is a Artist with Gender with Code = ‘F’

4 Tool and Demonstration

The following principles have been included in a tool called GOSPL [5,4]. Fig. 3
depicts a screenshot of the GOSPL prototype, and shows some lexons and constraints
currently residing in the “Venue Community”, which aimed to describe the venues in
which cultural events take place. The tabs in this figure direct the user to:

• Ontology. The lexons and constraints currently agreed upon by the community.

This is actually the community-commitment
• Glossary. The natural language descriptions for terms and lexon currently agreed

upon by the community. This page also displays the current gloss-equivalences
and to what extent the hybrid ontology is glossary-consistent.

254 C. Debruyne and C. Vasquez

• Discussions. The social processes as discussions to evolve the hybrid ontology,
as well as the semantic interoperability requirements.

• Members. Community management. We choose not to assigned roles denoting a
hierarchy; instead we choose to treat all members equal. This simplifies teaching
the method.

• Commitment. The list of application-commitments. Such commitments can exist
without the platform knowing about its existence. However, for the system to be
able to query data or test constraints proposed by the community, the systems
needs to keep track of applications whose application symbols are annotated. Us-
ers are able to manage application commitments expressed in Ω-RIDL and
SPARQL-endpoints, with the latter preferably providing triples using predicates
from the OWL implementation of the hybrid ontology.

• OWL/RDFS. The OWL implementation of the hybrid ontology
• Activity. A log of this particular community

Fig. 4 depicts a simple “scenario” with the tool. After logging in, users a presented a
list of communities (A), users can take a look in each community – for instance the
Venue community in (B) and the discussions of that community (C). The image in (B)
corresponds with the screenshot in Fig. 3. Depending whether the user is a member of
a community, the user has access to a number of social processes he can start within
that community. In (D), we show how a discussion to add a gloss is started. The dis-
cussion presented in (E) stems from the experiment we will describe later on. Once a
term is articulated, lexons can be built around this term (F) and constraints on the
created lexons (G). After a while, the community has obtained a closer approximation
of their domain and can start creating/updating their application-commitments (H).
These commitments can be (users are not obliged) registered to the platform, which
can then be used to test statements made in a discussion, e.g., by looking for counter-
examples (H). When users are not part of a community, the interactions they can start
only involves general requests (e.g., request an edit, or request to become a member),
they have no access to requests on the glossary or lexon base. If that user is part of
another community, he can trigger processes to discuss the “sameness” of glosses or
terms.

Information on synonymy and gloss-equivalences are shown on a separate page (a
community-term page), accessible by - for instance - clicking on one of the terms of
the accepted lexons. The GOSPL tool supports a community in applying the method
for ontology engineering, but its purpose is indeed not to replace other means of inte-
raction that can be more effective when possible (e.g., face-to-face meetings when
community members are near, or even teleconferences). The outcome of these inte-
ractions outside of the tool, however, needs to be properly written down when con-
cluding a discussion.

 Exp

Fig. 3. Scre

Fig. 4. Di

In the previous section
engineering framework cou
Given a commitment and t
community-commitments th

(A)

BEGIN SELECTION
['Cultural Domain']
 <'MyOrganization', Artist, with, of, AID>
 <'MyOrganization', Work Of Art, with, of, WID>
END SELECTION
BEGIN CONSTRAINTS
 LINK('Cultural Domain', Artist, 'MyOrganization', Artist).
 LINK('Cultural Domain', Work Of Art, 'MyOrganization',
Work Of Art).
 EACH Artist with AT MOST 1 AID. #(1)
 EACH Artist with AT LEAST 1 AID. #(2)
 EACH AID of AT MOST 1 Artist. #(3)
 EACH Work Of Art with AT MOST 1 WID. #(4)
 EACH Work Of Art with AT LEAST 1 WID. #(5)
 EACH WID of AT MOST 1 Work Of Art. #(6)
END CONSTRAINTS
BEGIN MAPPINGS
 MAP 'Artist'.'name' ON Name of Artist.
 MAP 'Artist'.'birthyear' ON Year of birth of Artist.
 MAP 'Artist'.'id' ON AID of Artist.
 MAP 'piece'.'name' ON Title of Work Of Art.
 MAP 'piece'.'year' ON Year of Work Of Art.
 MAP 'piece'.'id' ON WID of Work Of Art.
 MAP 'artistpiece'.'a_id' ON AID of Artist contributed to
Work Of Art.
 MAP 'artistpiece'.'p_id' ON WID of Work Of Art with
contributor Artist.
END MAPPINGS

...

(H)

loiting Natural Language Definitions and (Legacy) Data

eenshot lexons and constraints in a community

fferent social processes supported by the tool

, we described how the lexons in the hybrid ontolo
uld be used to create controlled natural language quer
the SPARQL end-point, the first tells the client to wh
his application is committing two and the latter where

(B) (C)

(D)

(F)
(G)

......

(H)

255

ogy-
ries.
hich

the

(E)

256 C. Debruyne and C. Vasquez

data is available. Application-commitments can be used to generate mapping files, e.g.
with R2RML, but details this will be reported elsewhere. In short, the Ω-RIDL annota-
tions are analyzed to construct the appropriate mappings, taking one special case into
account: whether join-tables in the relational database are represented by a lexon in the
hybrid ontology, or as a term. Whether the mapping is generated, or done manually,
R-RIDL is able to return results when data is annotated with the hybrid ontology.

GOSPL provides the knowledge management platform for managing and creating
the ontologies for a Linked Data project in Brussels. One of the use cases is the publi-
cation of information related to cultural events taking place in Brussels. To this end,
we conducted an experiment with 41 volunteers, each divided in subgroups of 3 to 4
people. Each group was asked to come up with an application in the domain of cultur-
al events and then to create a hybrid ontology to enable semantic interoperability be-
tween their systems and one provided by the use case partners. This experiment lasted
7-8 weeks, and several communities were created. The groups had a natural tendency
towards separating concerns, creating communities that complemented each other.
For instance, the creation of a “Ticket” community for a general description of tickets,
conditions and prices. We analyzed the interactions involving terms in a community
with the following criteria: (1) The term had to be non-lexical, meaning that instances
of this concept cannot be printed on a screen, only it’s lexical attributes can. (2) The
term was the subject of at least 4 interactions (not including gloss-equivalences and
synonyms, thus focusing on the formal and informal descriptions around this term).
(3) The term took part in at least one lexon.

We took into account terms with a fair amount of activity. This is due to the fact
that the communities employed terms only relevant to their application, and therefore
only inspired discussions within that group. These discussions are not interesting as
the community tended to agree on what has been decided for their application.

We then analyzed how much of these terms changed in terms of their formal de-
scription if a gloss was immediately provided. With these criteria, we identified 49
terms. Of these 49 terms, 38 started with the natural language description as described
by the GOSPL method. Of these 38 terms, 11 of them had changes in their formal
description (29%). And of the remaining 11 terms that did not start with the informal
description, 5 of them changes in their formal description (45%).

The reason we left out lexicals is that they often play in an attributive role. Lexons
are supposed to be entered when at least one of the terms is informally described. At
the start, the key-terms are often described first. And when the second term concerns
a lexical in an attributive role, the community tends to agree on the meaning of this
attribute based on the label of that term. If we were to take lexicals into account, we
again observe that terms that did not start with an informal description are more likely
to change its formal description: 18 terms out of 46 that started with a gloss and 6
terms out of 12 that did not start with a gloss.

5 Conclusions

In any project in which agreements within a heterogeneous community of stakehold-
ers are vital, the natural language aspects in communicating knowledge and aligning
ideas are key for success. In this paper, we described – in the context of ontology
engineering - how agreements within and across communities are facilitated by

 Exploiting Natural Language Definitions and (Legacy) Data 257

natural language descriptions. The ideas presented in this paper are easily extrapo-
lated to other domain, e.g., large software projects, in which the construction of a
lexicon for use between developers, users, and other stakeholders will be used
throughout the project.

We introduced the notions of community- and application commitments. The first
captures the agreements by one community necessary to achieve the community’s
goals, the latter to ensure proper interoperation by one application. Application com-
mitments even provide additional information if the owners of that application wishes
to. This layered approach is also easily applicable in different domain, where the
community commitment will contain fact-types and business rules that should always
hold and application-commitments contain additional fact-types and rules for specific
application (e.g., the rules to which an instance of a concept must comply with in
different stages of that entities lifecycle management). We described the nature of
agreements; the “sameness” of term-labels or glosses is considered an equivalence
relation only within the communities participating in one agreement process.

We furthermore described how these application commitments aid the ontology
engineering processes in guiding the interactions within the community. Hypotheses
are transformed into queries that returning instances that do not support the hypothe-
sis. The application commitments that co-evolve with the community commitments,
allow 1) to publish information in those applications as structured data on the web and
2) users to also explore already annotated data and examine any other annotation on
these instances (not necessarily with knowledge from the community). The latter is
done by means of R-RIDL, a fact-oriented query language on top of RDF. R-RIDL is
a controlled natural language using the natural language fact-types agreed upon by the
community. Expressions in R-RIDL allow describing how instances are classified by
means of a query, much like subtype-definitions used in ORM.

We implemented these concepts in a tool for hybrid ontology engineering, called
GOSPL, and conducted an experiment. One problem we encountered was a tendency
by the communities to forget describing the lexical terms with a natural language
description. However, it is important – for some concepts – to agree on how some
lexical entities should be represented (in terms of format, encoding, etc.). The tool
should thus be altered in such a way that communities are still encouraged to describe
all of the term in an informal way, even when they’re “merely” lexical attributes. The
prototype was developed with respect to the method. Some freedom, however, was
granted to the users; e.g., terms did not have to be articulated for lexons to be created
around it. In a next experiment, we will impose this constraint and examine the users’
reactions on this change. At the same time, we will investigate how we should put
emphasis on this issue while teaching the method to the participants.

Acknowledgements. This work was partially funded by the Brussels Institute for
Research and Innovation through the Open Semantic Cloud for Brussels Project.

References

1. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language. W3C
Working Draft (May 29, 2012), http://www.w3.org/TR/r2rml/

2. De Leenheer, P., Christiaens, S., Meersman, R.: Business semantics management: A case
study for competency-centric HRM. Computers in Industry 61(8), 760–775 (2010)

258 C. Debruyne and C. Vasquez

3. Debruyne, C., Meersman, R.: Semantic Interoperation of Information Systems by Evolving
Ontologies through Formalized Social Processes. In: Eder, J., Bielikova, M., Tjoa, A.M.
(eds.) ADBIS 2011. LNCS, vol. 6909, pp. 444–459. Springer, Heidelberg (2011)

4. Debruyne, C., Meersman, R.: GOSPL: A Method and Tool for Fact-Oriented Hybrid On-
tology Engineering. In: Morzy, T., Härder, T., Wrembel, R. (eds.) ADBIS 2012. LNCS,
vol. 7503, pp. 153–166. Springer, Heidelberg (2012)

5. Debruyne, C., Reul, Q., Meersman, R.: GOSPL: Grounding Ontologies with Social
Processes and Natural Language. In: Latifi, S. (ed.) ITNG 2010, pp. 1255–1256. IEEE
Computer Society (2012)

6. De Troyer, O., Meersman, R., Ponsaert, F.: RIDL user guide. Research report (available
from the authors). Int. Centre for Information Analysis Services, Control Data (1983)

7. Gómez-Pérez, A., Fernández-López, M., Corcho, Ó.: Ontological Engineering with exam-
ples from the areas of Knowledge Management. In: e-Commerce and the Semantic Web.
Springer-Verlag New York, Inc., Secaucus (2003) ISBN: 1852335513

8. Hitzler, P., Krotzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 Web On-
tology Primer. W3C Recommendation (October 27, 2009),
http://www.w3.org/TR/owl2-primer/

9. Kotis, K., Vouros, A.: Human-centered ontology engineering: The hcome methodology.
Knowledge Information Systems 10(1), 109–131 (2006)

10. Manola, F., Miller, E.: RDF Primer. W3C Recommendation (February 10, 2004),
http://www.w3.org/TR/rdf-primer/

11. Meersman, R.: The RIDL conceptual language. Research report (available from the au-
thors). Int. Centre for Information Analysis Services, Control Data (1982)

12. Meersman, R.: The use of lexicons and other computer-linguistic tools in semantics, de-
sign and cooperation of database systems. In: Zhang, Y., Rusinkiewicz, M., Kambayashi,
Y. (eds.) The Proceedings of the Second Int. Symposium on Cooperative Database Sys-
tems for Advanced Applications (CODAS 1999), pp. 1–14. Springer (1999)

13. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recom-
mendation (January 15, 2008), http://www.w3.org/TR/rdf-sparql-query/

14. Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau, T., Auer, S., Sequeda, J., Ez-
zat, A.: A survey of current approaches for mapping of relational databases to RDF (2009),
http://www.w3.org/2005/Incubator/rdb2rdf/
RDB2RDF_SurveyReport.pdf

15. Schwitter, R.: A Controlled Natural Language Layer for the Semantic Web. In: Zhang, S.,
Jarvis, R.A. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 425–434. Springer, Heidelberg
(2005)

16. Simperl, E.P.B., Tempich, C.: Ontology Engineering: A Reality Check. In: Meersman, R.,
Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 836–854. Springer, Heidelberg (2006)

17. Siorpaes, K., Simperl, E.: Human intelligence in the process of semantic content creation.
World Wide Web 13(1-2), 33–59 (2010)

18. Tudorache, T., Noy, N., Tu, S., Musen, M.: Supporting Collaborative Ontology Develop-
ment in Protégé. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.,
Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 17–32. Springer, Heidelberg
(2008)

19. Verheyden, P., De Bo, J., Meersman, R.: Semantically Unlocking Database Content
Through Ontology-Based Mediation. In: Bussler, C.J., Tannen, V., Fundulaki, I. (eds.)
SWDB 2004. LNCS, vol. 3372, pp. 109–126. Springer, Heidelberg (2005)

20. Vrandecic, D., Pinto, H.S., Sure, Y., Tempich, C.: The DILIGENT knowledge processes.
Journal of Knowledge Management 9(5), 85–96 (2005)

21. Wintraecken, J.: The NIAM Information Analysis Method, Theory and Practice. Kluwer
Academic Publishers (1990)

Author Index

Beer, Armin 125
Broy, Manfred 1
Burger, Martin 55

Caiman, Micael 230
Curtis, Bill 3

Dallmeier, Valentin 55
Debruyne, Christophe 244
Duarte, Francisco J. 147
Dulz, Winfried 89

Felderer, Michael 10, 125
Fernandes, João M. 147
Ferreira, Nuno 168

Gašević, Dragan 168
Gleirscher, Mario 104

Horn, Stefan 215

Kazman, Rick 191

Lima, Ana 191

Machado, Ricardo J. 147, 168, 191
Meding, Wilhelm 230

Monteiro, Paula 191
Mordinyi, Richard 30
Moser, Thomas 30

Neumann, Robert 215

Orth, Tobias 55

Plösch, Reinhold 215

Ramler, Rudolf 10
Ribeiro, Pedro 191

Santos, Nuno 147, 168
Simões, Cláudia 191
Sneed, Harry M. 70
Soley, Richard Mark 3
Stallinger, Fritz 215
Staron, Miroslaw 230
Sunindyo, Wikan 30

Vasquez, Cristian 244
Vollmar, Jan 215

Winkler, Dietmar 30

Zeller, Andreas 55

	Title

	Message from the General Chair
	Organization
	Table of Contents
	Keynotes

	Software Quality: From Requirements to Architecture
	The Consortium for IT Software Quality (CISQ)
	Introduction
	CISQ Mission
	Work Products
	CISQ-Related Standards
	Developing Standard Quality Characteristic Measures
	Summary
	References

	Risk Management

	Experiences and Challenges of Introducing Risk-Based
Testing in an Industrial Project
	Introduction
	Risk-Based Testing Methodology
	Introducing Risk-Based Testing
	Discussion in Context of an Industrial Application
	Distribution of Faults
	Identification of Ri sk Items
	Exploration of Business Criteria
	Exploration of Technical Criteria
	Risk Assessment

	Related Work
	Conclusion and Future Work
	References

	Project Progress and Risk Monitoring
in Automation Systems Engineering
	Introduction
	Related Work
	Automation Systems Engineering
	Engineering Service Bus
	Engineering Cockpit
	Risk Management

	Research Issues
	Use Case
	Solution Approach
	Risk Factors Analysis
	Risk Factors Classification

	Results
	Project Progress Overview
	Number of Signal Changes by Stakeholder Group
	Number of Signal Changes Related to Project Phases
	Operations on Signals

	Discussion
	Conclusion and FutureWork
	References

	Software and Systems Testing

	WebMate: Generating Test Cases for Web 2.0
	Introduction
	Background: Test Case Generation
	Generating Tests for Web 2.0 Applications
	WebMate: A Test Case Generator for Web 2.0 Applications
	Evaluation: How Does
	Improve Test Coverage?
	Experimental Setup
	Results
	Threats to Validity

	Application: Cross-Browser Compatibility
	Related Work
	Conclusions and Future Work
	References

	Testing Web Services in the Cloud
	Introduction
	Goals and Means of Web Service Testing
	Existing Tools for Testing Web Services
	An Automated Process for Testing Web Services
	Specifying Service Test Cases
	Generating Service Test Scripts
	Editing and Compiling Service Test Scripts
	Generating Web Service Requests
	Executing the Service Test
	Validating Web Service Responses
	Evaluating Web Services

	Experience in Testing Web Services with WebsTest
	Conclusion and Projection
	References

	Model-Based Strategies for Reducing the
Complexity of Statistically Generated Test Suites
	Introduction
	Model-Based Test Case Generation
	Statistical Test Case Generation
	Automatic Test Case Generation

	TestPlayer - A Tool for Automatic Test Case
Generation
	Global Definitions for the Test Case Generation
	Automatic Generation of Test Cases
	Textual Output of Test Suite Metrics
	Graphical Output of Test Suite Metrics
	Graphical Visualization of Test Cases

	Hierarchical Usage Models
	Test Focusing by Means of Adapted Usage Profiles
	Main Findings and Final Remarks
	References

	Hazard Analysis for Technical Systems
	Safety of Technical Systems
	A Framework for Hazard Modelling and Analysis
	Safety-Oriented System Modelling
	Step 1: Specify the Usage Functionality f *
use
	Taxonomy and Representation of Safety-Related Defects
	Step 2: Model the Defective Functionality f*fail
	Hazards, Their Identification and Classification
	Step 3: Identify Candidate Hazards
	Quantitative Hazard Assessment
	Step 4: Refine, Classify and Assess Hazards

	Step 5: Specify Safety Goals in S
p
	Hazard Mitigation or Avoidance
	Step 6: Design the Safety Functionality

	Application to Commercial Road Vehicle Safety
	Demonstration
	Discussion

	Related Work
	Summary and Conclusion
	References

	Test Processes

	Using Defect Taxonomies to Improve the Maturity of the System Test Process: Results from an Industrial
Case Study
	Introduction
	Related Work
	Defect Taxonomy-Supported Testing
	Basic Concepts
	Test Process

	Case Study
	Research Questions
	Case and Subjects Selection
	Data Collection Procedure
	Analysis Procedure
	Validity Procedure
	Results

	Conclusion and Future Work
	References

	Model-Based Development

	A Transformation of Business Process Models
into Software-Executable Models Using MDA
	Introduction
	Model-Driven Implementation of Business Processes
	BIM
	Model-Driven Architecture
	Apache ServiceMix

	Selection of a Business Process Language
	Information Systems Strategy
	Organizational Strategy
	Business Strategy

	Transformation of Business Process Models
	Correlation between BIM States and MDA Models
	Business Process Model at the PIM Level
	Description of the Platform
	PIM-to-PSM Mapping

	Software-Executable Models at PSM Level
	Service Engines
	Binding Components

	Conclusions and Future Work
	References

	Aligning Domain-Related Models for Creating Context
for Software Product Design
	Introduction
	Related Work
	An Approach to Domain and Software Models Alignment
	Case Study: The ISOFIN Project
	Alignment between Organizational Configurations and Interactions
	An UML Metamodel Extension for A-Type and B-Type Sequence Diagrams

	Derivation of Process-Oriented Logical Architectures
	V-Model Considerations and Comparison with Related Work
	Assessment of the V-Model

	Conclusions and Outlook
	References

	Process Improvement and Measurement

	Mapping CMMI and RUP Process Frameworks for the
Context of Elaborating Software Project Proposals
	Introduction
	Related Work
	General CMMI-RUP Mapping for ML2 and ML3
	RUP Reduced Model Roles
	Detailing CMMI-RUP Mappings for PP and REQM
	Case Studies
	Conclusions
	References

	Development and Evaluation of Systems EngineeringStrategies: An Assessment-Based Approach
	Introduction, Background, and Overview
	Conceptual Framework for Defining Engineering Strategies
	An Industrial Engineering Strategy Objects Reference Model
	Developing and Assessing Engineering Strategies
	Developing Engineering Strategies
	Prioritizing Strategy Objects
	Assessing Engineering Strategies

	Relationship of Strategy Objects to Process Improvement
	Validation and Experience
	Summary and Conclusions
	References

	Improving Completeness of Measurement Systems
for Monitoring Software Development Workflows
	Introduction
	Related Work
	Combining Measurement Systems with Workflow Modelling
	Measurement Systems and ISO 15939
	Workflow Modeling
	Completeness

	Research Context and Method
	Organizational Context
	Research Method – Action Research

	Complete Measurement Systems
	Completeness

	Evaluation: Use of the Method at Ericsson
	Conclusions
	References

	Exploiting Natural Language Definitions and (Legacy)
Data for Facilitating Agreement Processes
	Introduction
	Related Work
	Method
	A Framework and Method for Hybrid Ontology Engineering
	The Nature of Agre eements
	Community- and Application Commitments
	Exploiting Application Commitments
	Queries as Concept Definitions

	Tool and Demonstration
	Conclusions
	References

	Author Index

