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About this Series

Whereas software engineering has been a growing area in the field of computer

science for many years, systems engineering has its roots in traditional engineering.

On the one hand, we still see many challenges in both disciplines. On the other

hand, we can observe a trend to build systems that combine software, microelec-

tronic components, and mechanical parts. The integration of information systems

and embedded systems leads to so-called cyber-physical systems.

Software and systems engineering comprise many aspects and views. From a

technical standpoint, they are concerned with individual techniques, methods, and

tools, as well as with integrated development processes, architectural issues, quality

management and improvement, and certification. In addition, they are also

concerned with organizational, business, and human views. Software and systems

engineering treat development activities as steps in a continuous evolution over

time and space.

Software and systems are developed by humans, so the effects of applying

techniques, methods, and tools cannot be determined independent of context. A

thorough understanding of their effects in different organizational and technical

contexts is essential if these effects are to be predictable and repeatable under

varying conditions. Such process-product effects are best determined empirically.

Empirical engineering develops the basic methodology for conducting empirical

studies, and uses it to advance the understanding for the effects of various engi-

neering approaches.

The series presents engineering-style methods and techniques that foster the

development of systems that are reliable in every aspect. All the books in the series

emphasize the quick delivery of state-of-the-art results and empirical proof from

academic research to industrial practitioners and students. Their presentation style

is designed to enable the reader to quickly grasp both the essentials of a methodol-

ogy and how to apply it successfully.
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Scientists build to learn; Engineers learn
to build.

Frederick P. Brooks
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Foreword by Prof. Dr. Dieter Rombach

Software Engineering is concerned with the development of large and complex

software-intensive systems and services in an economical and timely manner by

following engineering principles and applying best practice methods, techniques,

and tools. Software is entering domains it never belonged to in the past and must

face challenges it never had to confront before. High demands on software-

intensive systems and increasing competitiveness within the software business

have triggered a push towards systematic software engineering approaches, includ-

ing techniques for managing software projects.

Applied research institutions such as the Fraunhofer Institute for Experimental

Software Engineering (IESE) support software organizations in transferring into

daily practice innovative, empirically proven software engineering solutions that

are driven by their specific needs.

This book is the result of a successful collaboration between the process man-

agement division of Fraunhofer IESE and many software companies in the field of

software engineering technology transfer. The book introduces an innovative soft-

ware management technology called CoBRA, which has been deployed in a

number of software companies.

Fraunhofer IESE developed the Cost Estimation, Benchmarking, and Risk

Assessment method (CoBRA) driven by industrial needs with respect to managing

software project resources. In addressing project management objectives, CoBRA

goes far beyond simply predicting the development effort. It supports project

decision-makers in negotiating the project scope, managing project risks,

benchmarking productivity, and directing improvement activities. At the same

time, it meets typical constraints encountered in software engineering contexts

where other estimation methods typically fail. The method requires neither large

amounts of project measurement data nor extensive involvement of human experts.

While many leading software engineering researchers and practitioners agree on the

need for a systematic approach for combining quantitative data with human judg-

ment, CoBRA is actually doing it.

What makes this book special is that it is driven by industrial practice and aimed

at industrial practice. The book introduces the principles of the CoBRA method
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followed by the basic procedures for applying the method. The methodological

concepts are illustrated by a number of practical examples, and the use of the

method is exemplified by several case studies from various software organizations.

For any software organization that does not want to leave the success of its

software projects to chance, this book should serve as a standard handbook.

Kaiserslautern, Germany Prof. Dr. Hans Dieter Rombach

Executive Director

Fraunhofer Institute for Experimental Software Engineering

x Foreword by Prof. Dr. Dieter Rombach



Foreword by Dr. Koichi Matsuda

Recently, we experienced the so-called 2007 Problem in Japan. Within a short

period of time, the Japanese industry, including the software companies, lost a

complete generation of highly skilled senior professionals. Born during the time of

the baby boom, they now turned 60 and left their jobs to retire. The Software

Engineering Center (SEC) was asked to undertake activities to prevent a negative

impact of the “2007 Problem” on the software industry. One such undertaking was

skill and technology transfer between age groups. Still, in many software engineer-

ing areas, professional expertise is rather hard to grasp and to share. Software

project effort estimation is one such area. The success of estimation is heavily

dependent on human expertise, which is hidden in the experts’ minds and is difficult

to grasp. This book is unique in that it provides a practical solution to this problem.

Today, software processes benefit greatly from advanced methodological and

tool support. Many process areas that used to rely heavily on human knowledge and

skills are now largely independent of it. However, the area of project estimation is

still largely dependent on experienced engineers. The CoBRA method presented in

this book is unique in that it systematically acquires expertise hidden in the minds

of human experts and transforms it into explicit knowledge that is easier to share

between people and projects.

In Japan, the term KKD is often used in the context of software development.

The first “K” stands for Keiken (experience), the second “K” stands for Kan
(intuition), and “D” stands for Dokyo (courage). CoBRA improves the courage
element by combining quantitative project data with the experience and intuition of
human experts. In CoBRA, project estimation intuition is enhanced by a systematic,

yet comprehensible, methodology for acquiring and documenting the qualitative

knowledge of experienced engineers and by integrating it with quantitative data. In

this sense, CoBRA introduces a scientific basis to the KKD paradigm.
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I am convinced that the software industry, not only in Japan, can greatly benefit

from using the CoBRA method for managing the greatest organizational asset,

which is knowledge. This book explains the CoBRA method and shows how to use

it to achieve and maintain software project excellence.

Tokyo, Japan Dr. Koichi Matsuda

Director, Software Engineering Center

Information-technology Promotion Agency

xii Foreword by Dr. Koichi Matsuda



Quotes from Industry

The CoBRA method is a way of integrating the “Art” and the “Science” of software

estimation, which is usually believed to be a “Black Art.” The CoBRA method demystifies

the Black Art of software estimation.

–Yasushi Ishigai

Research Director at Research Center for Information Technology

Mitsubishi Research Institute, Inc., Japan

We had not been able to imagine building our own software estimation models until we

encountered the CoBRA method. As far as combining project data and expert judgment for

the purpose of software effort estimation is concerned, we can definitely say that there are

no other methods that are comparable to CoBRA.

–Morihiko Shinoda, Deputy Department Manager

–Yutaka Masaoka, Senior Engineer

Government, Public Sector Systems Division

Hitachi Solutions, Ltd, Japan

We used the CoBRA method for early-stage estimation of system integration projects. We

were very satisfied with CoBRA because we could easily model relevant cost drivers that

are specific to our own context as well as base development productivity. From limited use

in one group, we have now expanded its use to department-wide activities.

–Yasushi Aizaki

Manager at Systems Development Division

NTT Data Sekisui Systems, Japan

I am convinced that the CoBRA method has a high potential of resolving “acquisition

issues” related to the accountability of software costs in IT business, which enduringly

persist on the side of IT customers. That’s because the models are very simple and easy to

build and can be understood even by non-IT professionals.

–Hiroshi Iwakiri

General Manager

Information Systems Business Unit

Mitsubishi Electric Corporation
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Preface

What This Book Is About?

In this book, we present a method for estimating the effort required to successfully

complete a software development project. The method is called Cost Estimation,

Benchmarking, and Risk Assessment—CoBRA for short—and combines human

judgment and measurement data in order to systematically create a custom-specific

effort estimation model.

The book provides a comprehensive specification of processes for developing

the CoBRA effort model and for applying the model in a number of different project

management scenarios. For each of these processes, we describe detailed activities

that need to be performed as well as associated techniques. We illustrate the

presented concepts with a number of examples and graphical illustrations. More-

over, we provide a series of practical guidelines on how to apply these processes,

based on industrial experiences regarding project effort estimation in general, and

on using the CoBRA method in particular.

Furthermore the book reports several real-world cases where the CoBRA

method was applied in various industrial contexts in order to illustrate the practical

usage of the method. The cases represent different estimation contexts in terms of

software project environment, estimation objectives, and estimation constraints.

Objectives of This Book

The main objective of this book is to present the Cost Estimation, Benchmarking,

and Risk Assessment Method (CoBRA) in a way that allows for applying it

successfully in practical situations. Consequently, the key goals we are aiming at

with this book include:

• Complete and comprehensible specification of all relevant CoBRA processes

such as developing and applying the effort estimation model. This includes the
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description of process activities, their inputs and outputs, the personnel involved,

and the theories and techniques employed.

• Comprehensive explanation of the presented concepts through practical

examples, graphical illustrations, and guidelines from practice.

• Illustration of real-world CoBRA usage through exemplary application cases

from various industrial contexts.

After reading this book a reader should understand the principles of the CoBRA

method, know the basic CoBRA processes, and be able to adapt and use the method

in a specific context.

To Whom This Book Is Addressed

Software Practitioners

We addressed this book to all software practitioners who deal with planning and

managing software development projects as part of their daily work. This group

includes primarily—but is not limited to—project managers and project estimators.

In order to facilitate understanding and practical application of the concepts

presented in the book, we illustrate them with a number of practical examples

and guidelines. In particular, the book is addressed to those software practitioners

who would need an alternative to expensive estimation based on expert judgment,

yet who do not have sufficient measurement data to employ analytical effort

estimation.

Students

The book is also addressed to students of software engineering and of associated

courses. In order to support in-depth study of the concepts presented in the book, we

include descriptions of associated theoretical foundations and refer to appropriate

further readings.

Key Terminology Used in This Book

In this book, we use several basic terms that in other literature and in practice are

often used interchangeably, although they do have different meanings. In order not

to confuse the reader, we would like to start by clarifying the most important terms

we will use throughout the text. For a more comprehensive dictionary of the

employed terms, please refer to the Glossary at the end of the book.

xvi Preface



Cost Versus Effort

Although principally and intuitively different, the terms “cost” and “effort” are

usually used as synonyms in the software project management area. Webster’s

dictionary defines cost as “the amount or equivalent paid or charged for something”

and effort as “conscious exertion of power” or “the total work done to achieve a

particular end.” In the software engineering domain, cost is defined in a monetary

sense, and with respect to a software development project, it refers to the partial or

total monetary cost of providing (creating) a certain product or service. Effort, on

the other hand, refers to manpower spent on performing activities aimed at

providing a certain product or service. In consequence, project cost includes, but

is not limited to, project effort. In practice, cost includes such elements as fixed

infrastructure and administrative costs. Moreover, depending on the project context

(e.g., currency or cost of manpower unit), project costs may differ even if the

project effort is the same.

In software engineering literature and practice, “cost” is often used as a synonym

for “effort.” One way to notice the difference is to look at units used. Cost in a

monetary sense is typically measured in terms of certain currencies (e.g., $, €, ¥,
etc.), whereas cost in an effort sense is typically measured as manpower (e.g.,

person-hours, person-days, person-months, etc.).

In this book, we focus on estimating software development effort, and we

consistently differentiate between cost and effort.

Estimation Versus Prediction Versus Planning

In software engineering, effort estimation, prediction, and planning are related to

each other; yet, they have different meanings, i.e., they refer to different project

management activities. Actually, the dictionary definitions perfectly reflect the

differences between these three processes:

• Estimation: “the act of judging tentatively or approximately the value, worth, or

significance of something”

• Prediction: “the act of declaring or indicating in advance; especially foretelling

on the basis of observation, experience, or scientific reason”

• Planning: “the act or process of making or carrying out plans; specifically the

establishment of goals, policies, and procedures for a social or economic unit”

Adam Trendowicz
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Part I

Predictable Software Development

Failing to plan is planning to fail.
Alan Lakein

Software effort estimation is a key element of software project planning and

management. Yet, in industrial practice, the important role of effort estimation is

often underestimated and/or misunderstood. The first part of this book introduces

software effort estimation and motivates the CoBRA method within the landscape

of multiplier effort estimation methods offered by the software engineering com-

munity. In particular:

• Chapter 1 sketches typical challenges of software development projects and

explains the essential role of effort estimation in managing successful software

projects.

• Chapter 2 addresses the question of “what is a good estimate?,” which is

essential for estimation. The chapter uncovers the simplistic view on the good-

ness of estimation held by the research community and provides practice-

oriented criteria for good estimates.

• Chapter 3 introduces the hybrid estimation method called CoBRA, which

represents an alternative to estimation methods based strictly either on expert

judgment or analysis of quantitative project data. The chapter summarizes the

most important benefits of the CoBRA method.



Why Software Effort Estimation? 1

1.1 Software Is Getting Complex

Software is everywhere. Most of today’s goods and services are realized, at least in

part, either by means of or with the help of software systems. Our dependency on

software is increasing continuously. On the one hand, progress in the domains

where software has traditionally been playing a key role entails increasing pressure

upon software to progress. On the other hand, in domains that were traditionally

reserved for hardware, software has become the major driving force of the overall

progress in the meanwhile. For example, it is said that 60–90 % of all advances in

the automotive domain nowadays are due to software systems. Some products and

services that would have traditionally been realized through “hardware” solutions

are now realized through software systems. Other products and services are only

possible through software systems and could not have been realized by other means.

One way or another, the size and complexity of software systems in various

domains are increasing rapidly.

The increasing complexity of software systems entails a fundamental shift in

their cost, time-to-market, functionality, and quality requirements. Software is

required to support a wide variety of domains, must be ever faster, must be more

intelligent, must be more dependable, require fewer hardware resources, must be

ever easier to maintain, etc. The wish list is typically quite long and ends with “the

software must cost less and get on the market before our competition even think

about something similar.”

1.2 Software Development Is Getting Complex

In addition to rigid requirements on software functionality, quality, cost, and time to

market, there are a number of external constraints that make software development

a very complex task. Let us just name a few of the most important ones.
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Development Technologies and Paradigms Change Rapidly Software devel-

opment teams must strive to achieve software development objectives by exploiting

the impressive advances in continuously changing—and thus often immature—

technologies and development paradigms. In fact, mastering rapidly changing

technologies and processes is often considered as the most important challenge

differentiating software development from other domains. Without counting the

minor changes in methods and tools, over the past 50 years, the software industry

has roughly gone through at least four generations of programming languages and

three major development paradigms.

Development Distribution Increases Together with the increased variety of

software products, technologies, and processes, development distribution is grow-

ing constantly. Development is shifting from single contractors to distributed

projects, where teams are scattered across multiple companies, time zones, cultures,

and continents. The global trend towards software outsourcing has led to software

companies needing a reliable basis for making make-or-buy decisions or for

verifying the development schedule and cost offered by contractors if they decide

to buy parts of a software product.

Software Development Is still Largely a Human-Intensive Process More-

over, software development is a human-based activity with extreme uncertainties

from the outset. Rober Glass (2002) recapitulated this fact by saying “Eighty
percent of software work is intellectual. A fair amount of it is creative. Little of it
is clerical.” As such, software development depends on the capabilities of the

developers on the one hand and on the capabilities of the customers and other

involved parties on the other hand.

Software Products Have an Abstract Character Yet, probably none of the

aforementioned aspects have as large an impact on the difficulty of software

production as the abstract character of software products. This is the “softness” of

software products that make software engineering different from other, “classical,”

engineering domains. To create software, developers start with customer

requirements and go through a sequence of transformations during which all

involved parties create, share, and revise a number of abstract models of various,

usually increasing, complexities. In addition, individual project tasks in a transfor-

mation sequence are usually highly interdependent. The intangible and volatile

character of software products—especially requirements—makes them difficult

to measure and control. This contributes to software development being a mixture

of science and art.
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1.3 Project Management Is a Key Success Factor

The complex and multidependent character of software development makes

managing software projects a challenging task. In today’s competitive software

development market, an organization’s survival and growth require effective means

for managing software projects. A software project should, like any other project,

be considered in terms of a business case. It should therefore lay out the reason(s)

for the investment, the expected benefits of the initiative, the costs expected to make

it happen, an analysis of risks, and the future options that will be created. A software

project also requires, as one of its key success factors, effective management.

Effective project management requires considering numerous issues. It must

focus on areas that are critical for financial success, on the effective use of

resources, on an analysis of market potential and opportunities for innovation, on

the development of a learning environment, etc.

1.4 Effort Estimation Is the Basis for Effective
Project Management

Software project management is a key project success factor, and as aptly pointed

out by Barry Boehm (1981), “Poor management can increase software costs more
rapidly than any other factor.” A number of bad practices may contribute to poor

project management, which in consequence will lead to failed projects. One of the

most common aspects of poor project management, which typically results in a

project crisis, is poor effort estimation. For example, Glass (2002) points out poor

effort estimation as one of the two most common causes of runaway projects,

besides unstable requirements. Rosencrance (2007), in her survey of more than

1,000 IT professionals, reports that two out of the three most important causes of IT

project failure are perceived to be related to poor effort estimation, in particular

insufficient resource planning and unrealistic project deadlines.

Effective project management requires reliable effort and schedule estimation

support. On the one hand, project managers need a reliable basis for developing

realistic project effort, schedule, and cost plans. On the other hand, as project

management is to a large extent a political game, they need a reliable and convinc-

ing basis for negotiating project conditions with project owners and/or customers.

In the latter scenario, simple estimates that “feel” good are definitely insufficient to

justify realistic project plans against the demands and expectations of other project

stakeholders.

Yet, independent of these findings, many software organizations are still

proposing unrealistic software costs, work within tight schedules, and finish their

projects behind schedule and budget, or do not complete them at all.
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Further Reading

• E. Yourdon, Death March, 2nd Edition, Prentice Hall, November 2003.

This book is one of the software engineering and project management

classics, which, although technologically not quite up to date, discusses timeless

traps in software project management. The author discusses the reasons why

software projects what he calls “death march” projects, that is, projects that are

sentenced to fail from the very beginning because of their unrealistic setup.

Typical symptoms of a death march project are: schedule, budget, and staff are

about half of what would be necessary, the planned product scope is unrealistic,

and people are working 14 h a day, 6 or 7 days a week. The author suggests a

number of useful solutions to avoid and, if this is not an option, to rescue death

march projects. The example aspects the author discusses as worth considering

include project politics and negotiations, team management, process manage-

ment, project scheduling and time management, and application of tools and

technologies.

• S. McConnell, Software Project Survival Guide, 1st Edition, Microsoft Press,

October 1997.

This book provides a set of guidelines on how to successfully perform

software projects. For each major stage of software development, the author

refers to the most common weaknesses that software projects typically face, and

he discusses ways of addressing them in order to successfully go through the

project. The book focuses on the level-2 key process areas defined within SEI’s

Capability Maturity Model, such as requirements management, project planning,

project tracking and oversight, quality assurance, and change control.

• T. DeMarco and T. Lister, Peopleware: Productive Projects and Teams,
2nd Edition, Dorset House Publishing Company, Inc., February 1999.

This book is another software engineering and project management classic.

Although technologically not quite up to date, it discusses timeless human

aspects of software engineering. The authors address human factors as key

determinants of a software product’s quality and, ultimately, of a software

project’s success. Example aspects the authors discuss include the role of

outstanding individuals and teamwork in software development project.

Although the authors do not give any ready-made recipe for creating a great

team, as a counterexample, they point to a number of ways bad project managers

prevent a team from becoming great or that can even destroy a team that

is already great.

• F. P. Brooks, The Mythical Man-Month: Essays on Software Engineering,
Anniversary Edition, 2nd Edition, Addison-Wesley Professional, August 1995.

This book is another software engineering and project management classic,

which although technologically not quite up to date, discusses timeless human

aspects of software engineering. Fred Brooks makes a simple conjecture that
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an intellectual job, such as software development, is completely different from

physical labor jobs, such as traditional manufacturing—although both jobs may

be human-intensive. Using this assumption, the author discusses in a number of

short essays people- and team-related aspects of a software development project.

He explains why the simple arithmetic of completing the same job twice as fast

with twice as many people does not work in the software engineering. The book

discusses many important issues of managing human resources, such as work

environment, team building, and organizational learning. Finally, the author

outlines important pitfalls of managing software projects and development

teams and suggests a number of interesting solutions to these pitfalls.

• J. E. Tomayko and O. Hazzan, Human Aspects of Software Development,
Charles River Media Inc., 2004.

The authors devote their book to software engineering as a human-intensive

activity. They discuss a number of social and cognitive aspects of software

engineering such as teamwork, customer–developer relationships, and learning

processes in software development. In particular, they look at individual soft-

ware development and project management processes, both heavyweight and

agile ones, from the human-resource perspective. In doing so, they consider

different groups of software stakeholders, such as developers and customers, and

interactions within as well as between these groups. The book also addresses

human-related aspects of a software product, such as the abstract character of

software and different perceptions of various software products. Finally, the

book discusses learning issues in software engineering.

• S. Berkun, Making Things Happen: Mastering Project Management, Revised
Edition, O’Reilly Media, March 2008.

This book is a collection of essays, each of which addresses selected aspects

of project management—its challenges, example solutions, and practical

guidelines. The essays are organized around three major project aspects: plans,

skills, and management. With respect to plans, the author shows how to lay out

best plans and what the reasons of failed plans are. The part devoted to skills

discusses the basic abilities of a project manager, such as writing good project

and product specifications. In this part, the author also covers soft management

skills such as e-mail and meeting etiquette. Finally, regarding the management

aspect, Bercun addresses leadership issues such as trust, power, prioritizing,

sanity checks, and project politics. For each discussed aspect, the author

considers key success criteria, associated challenges, and best-practice solutions.

Moreover, he illustrates the presented issues with a number of real-life

examples.
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What Is a Good Estimate? 2

The basic question of software effort estimation is “What is a good estimate?”

Traditionally, effort estimation has been used for planning and tracking overall

resources, such as manpower, required for completing a project. With this objective

in mind, over the years, researchers have been pursuing an elusive target of getting a

100 % accurate estimate in terms of exact number of person-hours required for

completing a software project. Effort estimation methods that grew upon this goal

focus on providing exact point estimates.

Yet, software practitioners nowadays need effort estimation as comprehensive

decision support for a number of project management activities. They have noticed

that even the most accurate estimates are worthless if they cannot be reasonably

justified to the project sponsor and the customers or if they do not provide

guidelines on what to do if the project is not going to meet the estimates. From

this perspective, one of the critical characteristics of good estimates is the additional

information they provide to support project decision making. On the one hand,

project decision makers need to identify project areas that are responsible for

increased development effort in order to have a transparent and convincing basis

for renegotiating the project resources and/or scope with the project sponsor. On the

other hand, they need an indication of the effort-related development processes that

can potentially be affected in order to gain the greatest improvement in develop-

ment productivity at the lowest overhead—the concept of “low-hanging fruits.”

Summarizing, a good estimate is one that supports a project manager in success-

ful project management and successful project completion. A good estimation

method is thus an estimation method that provides such support, without violating

other project objectives such as project management overhead.
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Further Reading

• S. McConnell, Software Estimation: Demystifying the Black Art, Microsoft

Press, Redmond, MA, USA, 2006.

In the first chapter of his book, McConnell presents his view on what

constitutes a “good estimate.” He starts with two basic aspects (1) distinguishing

between estimates, plans, and bids and (2) accounting for estimation uncertainty

and considering estimates in probabilistic terms. Next, he takes a critical look at

the common definitions of a good estimate dominated by the estimation accuracy

perspective. He brings up the extent to which estimates support project manage-

ment activities and project success as a key determinant of a good estimate. He

concludes his discussion with a concise definition of what constitutes a good

estimate.
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Why the CoBRA Method? 3

A number of effort estimation methods have been proposed in recent decades. Still,

no “silver-bullet” method has been proposed so far. Each and every estimation

method has its strengths and limitations, and its goodness largely depends on the

context in which it is applied.

In most of the cases, a method represents one of the two extreme estimation

strategies: expert-based and data-driven. The first group bases effort predictions on

the judgment of human experts, whereas the latter group uses only measurement

data to derive effort predictions. In the light of a lack of consensus on which

expert-based or data-driven approaches are “better,” Jørgensen and Boehm

(2009) propose the hybrid methods, which combine the strengths of both strategies

while avoiding their weaknesses. The most important consequence of this finding is

that a combination of estimation approaches can substantially improve the accuracy

of estimates. The two most important strategies for implementing this idea are

(1) combining multiple estimation paradigms, such as expert-based and data-driven

methods, into a hybrid method and (2) combining multiple estimates provided

by independent estimation methods, preferably representing different estimation

paradigms. Although it allows for validating alternative estimates against each

other, the combination of multiple methods requires much project overhead for

applying multiple methods and combining their outputs. From this perspective, we

should consider using multiple estimation methods only when the corresponding

benefit justifies its high costs. For example, if estimation quality is very critical,

there is no single estimation method that meets all our estimation objectives.

However, the typical situations where resources for estimation are limited, hybrid

methods offer the best cost–benefit trade-off. They combine multiple information

sources and estimation paradigms at reasonable cost, within a single estimation

procedure.

Paradoxically, very few hybrid methods have been proposed over the years—

among them the Cost Estimation, Benchmarking, and Risk Assessment method

(CoBRA). Throughout numerous industrial applications, CoBRA has proven

to be an effective and efficient solution for software project effort estimation.

The particular strengths of the method include:
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• High estimation accuracy: The CoBRA method has proven in a number

of industrial applications that it provides highly accurate estimations, with

estimation error ranging from 9 to 14 %.

• Minimal data requirements: The CoBRA method requires only information on

size and effort from about ten already completed (“historical”) projects. Even

though these data are not available at the time of estimation, they can typically

be easily elicited postmortem. Actual project effort is typically documented,

and software size can be measured based on the project outcomes such as

requirements specification or software code.

• Reusable cost model: The CoBRA effort model can be reused, completely or in

parts across similar projects.

• Organizational learning: The CoBRA method provides a systematic process for

eliciting knowledge hidden in the experts’ minds and in measurement data and

for documenting it within a transparent and intuitive effort model.

• Comprehensive project management support: The CoBRA method supports

a number of project management activities such as estimation, project scope

negotiations, risk analysis, benchmarking, and process improvement.

• Organizational growth: The CoBRA method provides a systematic and intuitive

approach for analyzing factors that influence the performance of software

development processes and project effort. In that sense, it supports the under-

standing of development processes and helps to identify important improvement

potentials.

• Building up of a measurement system: The CoBRA method helps to find those

factors that have the greatest impact of the performance of software development

processes. These factors are potential subjects for measurement and quantitative

project control. In that sense, CoBRA supports focusing measurement activities

on the most relevant aspects and limiting overhead spent on collecting,

analyzing, and maintaining unnecessary measurements.

Further Reading

• L.C. Briand and I. Wieczorek, “Resource Modeling in Software Engineering,”

in J.J. Marciniak (ed.) Encyclopedia of Software Engineering, 2nd Edition.
Wiley, 2002.

The authors present a comprehensive discussion of the most common effort

estimation methods. First, they classify existing estimation methods and discuss

the basic characteristics of each class. Next, they present the basic principles

of the most commonly used effort estimation methods. Finally, the authors

define a framework for evaluating estimation methods and use it to subjectively

compare selected estimation methods.
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Part II

The CoBRA Method

The best forecasting approach is one that takes advan-
tage of the strengths of both [quantitative and judg-
mental] forecasting approaches.

N. R. Sanders and L. P. Ritzman

The CoBRA method, to which this book is devoted, applies systematic procedures

for combining judgmental and analytical strategies to software project effort esti-

mation. This second part of the book describes in detail all the procedures that are

necessary to understand the method and apply it in practice. In particular:

• Chapter 4 introduces the basic terminology used within the CoBRA method and

provides an overview of the main components of the method.

• Chapter 5 describes the detailed process of developing a CoBRA effort estima-

tion model. For each process step, we describe its objective, inputs, elementary

activities, resources, tools, and outcomes.

• Chapter 6 describes the detailed process of applying the CoBRA effort model for

the purpose of software project effort estimation. Moreover, the chapter presents

typical scenarios of applying the CoBRA model for different estimation

purposes.



Principles of the CoBRA Method 4

The Cost Estimation, Benchmarking, and Risk Assessment (CoBRA) method com-

bines multiple prediction approaches in that it aggregates techniques representing

expert-based and data-driven estimation paradigms, within one hybrid estimation

method. This chapter introduces the basic idea and terminology of the CoBRA

method. Moreover, this chapter specifies the basic roles considered in the

CoBRA method and the essential conceptual elements of the method.

4.1 Terminology

Briand et al. (1998) proposed CoBRA as a hybrid method that combines data-driven

and expert-based paradigms for effort estimation. The core idea of CoBRA is to

model software development effort as consisting of two elements: nominal effort

and effort overhead.

Nominal effort (EffortNom) is the engineering and management effort spent on

developing a software product of a certain size in the context of a nominal project.

A nominal project is a hypothetical “ideal” project in a certain environment of an

organization (or business unit). It is a project that runs under optimal conditions,

that is, a project where all environmental characteristics having an impact on

project effort are at their “best” levels (“perfect”) from the start of the project.

Note that “best” refers to realistic levels that are possible in a certain context, not to

the best imaginable levels. For instance, the project objectives are well defined and

understood by all staff members and the customer, and all key people in the project

have appropriate skills to successfully conduct the project.

Effort overhead (EO) is the additional effort spent on overcoming imperfections

of a real project environment, such as insufficient skills of the project team. Effort

overhead refers to a nonproductive project effort spent in addition to the nominal

effort. In CoBRA, effort overhead is quantified as the percentage of additional

effort compared to the nominal one. For example, if a project’s EO ¼ 50 %, this

would mean that the project actually requires 150 % of the nominal effort, that is,

50 % more than it would require if it was a nominal project.
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Nominal productivity (PNom) refers to development productivity under optimal

project conditions, that is, the productivity of a nominal project where all effort

factors have their best levels. In general, productivity refers (IEEE-1045 1993) to

the ratio between a project’s output and input. In the concrete case of software

projects, development productivity is computed as the ratio between the size of

delivered software products and the effort consumed to develop these products (4.1).

Productivity ¼ Size

Effort
(4.1)

In real software projects, actual development productivity (PAct) is decreased by

nonproductive effort spent on overcoming the imperfect character of the project.

For example, a certain effort must be expended to train the development team. The

factor by which productivity is decreased depends on the specific characteristics of

an individual project. The difference between nominal and actual productivity

(productivity loss) is proportional to the portion of additional nonproductive effort.

In CoBRA, the additional nonproductive effort is accounted for through the effort

overhead. In general, the higher the effort overhead, the higher the actual project

effort and the lower the actual development productivity.

4.2 Components of an Effort Model

CoBRA implements the idea of nominal project effort and effort overhead through

two basic components of an effort model (Fig. 4.1): the effort overhead model and

the productivity model.

The effort overhead model (or causal effort model) produces an estimate of the

project effort overhead. The effort overhead model consists of factors affecting

the project effort within a certain context (so-called effort factors or effort drivers).
The causal model is obtained through expert knowledge acquisition (e.g., involving

experienced project managers). An example is presented in Fig. 4.2. The arrows

indicate direct relationships. “þ” indicates a positive relationship, and “�”

indicates a negative relationship. One arrow pointing to another indicates an

interaction effect. For example, an interaction exists between “disciplined

requirements management” and “requirements volatility.” In this case, a decreased

level of disciplined requirements management magnifies the negative influence of

volatile requirements on project effort; that is, it causes an increase of development

effort. In CoBRA, we refer to effort factors directly linked to effort as direct effort
factors and to effort factors linked to direct factors as indirect effort factors. In the

aforementioned example, “requirements volatility” is a direct effort factor, whereas

“disciplined requirements management” is an indirect effort factor.

The qualitative information concerning a factor’s influence on effort is quantified

by assigning so-called effort multipliers to each factor directly influencing effort. For
a given effort factor, its effort multipliers refer to the percentage of effort overhead
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that this factor introduces above that of nominal effort. The value of an effort

multiplier depends on the factor’s value and is elicited through expert judgment.

The multipliers for the effort factors are modeled as distributions to capture the

uncertainty inherent in expert opinion. Triangular distributions can be used to

reflect the experts’ opinion about each effort factor’s impact on cost by giving

three values: minimum, most likely, and maximum value of a multiplier.

In CoBRA, effort factors directly influencing effort are assumed to be orthogonal

to each other. Based on this assumption, the total effort overhead (“EO” in the basic

effort equation in Fig. 4.1) can be computed as the sum of the effort overhead

(effort multipliers) associated with all effort factors directly influencing effort.

Effort overhead (EO) represents the percentage increase of effort in a real project
relative to a nominal project and is expressed as the percentage portion of a nominal

project’s effort: EO � EffortNom, where 0 � EO � 1. Consequently, the actual

effort of a real project, EffortAct, is equal to the effort of a nominal project EffortNom
plus the effort overhead EO. We can express this mathematically as

EffortAct ¼ EffortNom þ EO� EffortNomð Þ (4.2)

Fig. 4.1 Components of the effort estimation with the CoBRA method

4.2 Components of an Effort Model 17



which is equivalent to

EffortAct ¼ EffortNom � 1þ EOð Þ (4.3)

Simply speaking, (4.2) and (4.3) reflect basic mathematics, according to which

increasing a certain value by x % corresponds to multiplying this value by

(100 % þ x %).

The productivity model is the second base element of the CoBRA effort model.

The productivity model uses data from past similar projects for identifying

a relationship between effort overhead and actual project effort and for determining

the productivity of a hypothetical nominal project—nominal productivity. We

illustrate the idea of CoBRA’s productivity model in Fig. 4.3.

The actual development productivities of multiple software projects are

represented by gray dots around the Actual Productivity regression line. In

CoBRA, nominal development productivity is assumed to be constant across

projects in the same context and is used as a baseline for estimating new projects.

Therefore, we can theoretically determine nominal productivity using the actual

development productivity and actual effort overhead of any project. We need to

merely increase the project’s actual development productivity by the factor

represented by its actual effort overhead (4.4).

PAct ¼ PNom

1þ EOð Þ (4.4)

In real software projects, computing nominal productivity using project-specific

actual productivity and effort overhead will lead to nominal productivity that varies

across projects. This phenomenon is represented in Fig. 4.3 by the diamond-shaped

Fig. 4.2 Example of effort overhead model
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dots spread around the Nominal Productivity regression line. This happens because
the effort overhead computed using CoBRA’s effort overhead model does not

account for the true project’s effort overhead. The main causes of this deviation

are (1) modeling error, in that an imperfect effort overhead model does not correctly

and completely cover all true causal effort dependencies, and (2) measurement

error in the project data used for computing nominal productivity.

In order to determine baseline productivity for estimating future projects,

CoBRA synthesizes project-specific nominal productivities computed across mul-

tiple historical projects for which actual development productivity and effort

overhead are already known. Traditionally, this is accomplished using the linear

regression model f: Size � (1 þ EO) ! Effort. The model represents the basic

idea of the CoBRA method that nominal effort is linearly dependent on size and

that actual nonlinearity is caused by environmental influencing characteristics

represented by effort factors. The slope of the regression line in the model

approximates the inverse hypothetical nominal development productivity and is

used in CoBRA as a baseline for estimating new projects.

Note that the nominal productivity regression line represents a simple bivariate

relationship that does not require a large data set. This is important, as it explains

why CoBRA does not have demanding data requirements, as opposed to data-

driven estimation techniques. In order to build up such a regression model, data

from merely about ten historical projects are needed.

The effort estimate for a new project is then determined by its size, its effort

overhead, and the baseline nominal productivity determined from historical projects.

The project’s effort overhead is determined based on its actual characteristics. Since

not all of them are known at the time of estimation, which is typically at the very

beginning of the development process, value distributions instead of exact values are

given to cover their uncertainty. Running a Monte Carlo simulation, sampling is

Fig. 4.3 Nominal productivity versus actual productivity
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performed from each of the distributions, and each sampled value is added to obtain

an effort overhead estimate. This is repeated many times, resulting in a distribution of

effort overhead and ultimately, after considering nominal productivity and software

size, in the distribution of effort (Fig. 4.1).

Further Reading

• L.C. Briand, K. El Emam, and F. Bomarius (1998), “COBRA: a hybrid method

for software cost estimation, benchmarking, and risk assessment,” Proceedings
of the 20th International Conference on Software Engineering, pp. 390–399.
IEEE Computer Society Press, 1998.

This is the very first publication on the CoBRA method. It presents the basic

principles of CoBRA and reports its application in a software development

company.
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Model Development and Validation 5

The CoBRA method represents a model-based approach to software effort estima-

tion. In this approach, before we can predict the effort for a new project, we need to

first build an effort estimation model. In general, the effort model reflects past

experiences regarding effort relationships in similar situations, that is, within

projects of a similar kind. Preconditions of reliable estimates are that (1) the

estimation model considers all relevant factors influencing the project effort and

(2) the estimated project corresponds to the situation represented by the model. In a

typical data-driven approach, the effort model arises from the analysis of measure-

ment data from multiple projects. The CoBRA effort model captures believed and

actual causal effort dependencies observed in the past in a certain organization’s

context. Believed dependencies are represented by expert judgments, whereas

actual dependencies are represented by measurement data collected in already

completed software projects.

In this chapter, we present the detailed step-by-step procedure of developing and

initially validating a CoBRA effort estimation model. For each step, we specify the

inputs, outputs, and resources needed to complete it. Moreover, we describe the

analysis and modeling techniques employed in each step and discuss alternative

implementations of the step if multiple options are possible. Finally, we share the

experiences we gained using the CoBRA method and give a number of tips on

implementing the model development process in industrial practice.

5.1 Process Overview

5.1.1 Model Development Steps

Developing a CoBRA effort estimation model consists of several steps. Figure 5.1

provides an overview of the overall process of building and enhancing a CoBRA

effort model.

In the subsequent sections, we describe in detail the elements of each step

including its inputs, outputs, activities, involved roles, and relevant constraints to

A. Trendowicz, Software Cost Estimation, Benchmarking, and Risk Assessment,
The Fraunhofer IESE Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-30764-5_5, # Springer-Verlag Berlin Heidelberg 2013
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Fig. 5.1 Overview of the CoBRA model development and validation process
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consider. The model development process includes the initial validation of the

effort model. In the last two steps, the model’s performance is validated using

historical project data.

After these steps, an analyst may decide to improve the model and revalidate it.

In this sense, the development of the CoBRA effort model might be (and from our

practical experience should be) an iterative process. Inspired by agile software

development, we recommend developing the CoBRA effort model in a series of

small increments. In each increment, only a very limited part of the model is

changed, with changes including additions, deletions, and modifications of basic

model elements. In particular, we recommend developing the CoBRA model in two

stages:

• Incremental construction: We start with a very small model consisting of just a

few of the most relevant effort factors directly influencing project effort. In the

subsequent iterations, we can gradually extend the model by adding new factors

and indirect influences. We should keep the extent of model changes small in

order to control the effects of changes on the model’s performance. As we

perform subsequent iterations and the CoBRA model grows larger, we should

shift the focus from extending to revising the model while keeping its size and

complexity at a constant level.

• Iterative revision: After a few initial iterations dominated by model additions,

we should consider revising the model instead of extending it furthermore. In

practice, the “20/80” rule applies to the CoBRAmodels in that modeling 20 % of

the most relevant effort factors in the model usually suffices to account for 80 %

of the effects with respect to project effort. In other words, with 20 % of the most

relevant effort factors in the CoBRA model, we are able to reliably estimate new

projects. Investing further effort into extending the CoBRAmodel does typically

not pay off in increased model performance; conversely, the model’s perfor-

mance decreases as we add new elements. The major reason is that the larger the

model, the less comprehensible it is and the more misleading effects it may

represent.

Tip

" Develop the CoBRA effort model in an iterative manner. Validate the model

obtained at the end of each iteration by using historical project data, and improve

the model in the next iteration if its performance does not meet predefined

acceptance criteria.

5.1.2 Roles in the CoBRA Method

Employing the CoBRAmethod requires involving personnel with different kinds of

expertise depending on whether the method is introduced into an organization for

the first time or has already been used. Table 5.1 presents three general roles
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Table 5.1 Roles in the CoBRA method

Role Description and responsibilities

Analyst Description: A person knowledgeable in the CoBRA method and with experience in

building and using CoBRAmodels. The main job of the analyst is to provide expertise

and experience regarding the CoBRA method. The analyst is typically involved in

creating all CoBRA models within an organization and is responsible for transferring

knowledge to other involved personnel appropriate to the character of their

involvement, with personnel comprising the role of estimator and domain expert.

In large organizations, the analyst is typically a dedicated role that is responsible

for all project estimation methods, processes, and models. In small organizations, the

role of the analyst may be combined with other responsibilities such as project

management or process measurement and improvement. Yet, there should be one

person responsible for the CoBRA activities within a certain context, such as a

business unit or application domain.

The analyst will typically be a member of the project management office (PMO)

group, the software engineering process group (SEPG), or the measurement group. The

analyst may also be a person external to the organization in which CoBRA is applied.

In that case, the analyst plays the role of a consultant and transfers CoBRA knowledge

to a person who will later on take over the role of analyst within the organization.

Major responsibilities of the analyst role include:

• Training estimators and domain experts in the CoBRA method,

• Building and maintaining organization-wide CoBRA models,

• Adapting organization-level CoBRA models to the specific estimation context,

objectives, and capabilities of individual projects,

• Coaching estimators in using the CoBRA models and interpreting the outcomes of

estimation,

• Maintaining the CoBRA method and associated estimation processes.

Estimator Description: A person who uses CoBRA models for estimating project effort.

Typical users of CoBRA are project managers who collect inputs to the model,

estimate effort, and interpret the results of the estimation for the purpose of planning

and managing a project. In practice, the role of the estimator is typically played by

the project manager.

Major responsibilities of the estimator include:

• Applying the CoBRA models for the purpose of project effort estimation,

• Optionally, the estimator may build and tune a project-specific effort estimation

model. The estimator should, however, communicate with the analyst in order to

keep the analyst informed about the CoBRA activities within the organization.

Domain

expert

Description: A person with significant project experience within the context where a

CoBRA model is to be built. Project experience should comprise knowledge of

project-specific and cross-project effort dependencies, in particular (1) factors that

have a relevant impact on variations in development productivity and project effort,

(2) the impact of these factors on project effort, (3) potential interdependencies

between these factors, and (4) the values of these factors in at least part of the

historical projects used for developing the CoBRA models. As for typical positions

in an organization, the role of domain expert comprises project managers and

quality engineers.

Major responsibilities of the domain expert comprises:

• Providing expertise for building the CoBRA model (factors influencing software

effort and their interactions).

• Providing historical project data for quantifying the CoBRA model (impact of

effort factors on project effort, values of effort factors in historical projects, if not

already measured in the organization’s project data repository).

• Supporting the project manager in acquiring data for estimating a new project, in

particular software size and values of effort factors.
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distinguished within the CoBRA method. Each role is briefly described and major

responsibilities that the role is associated within CoBRA are listed.

5.2 Step 1: Preparation and Planning

In order to end up with beneficial results, we need to set up an environment for

successfully applying the CoBRA method. Table 5.2 summarizes the most impor-

tant elements of this step. We provide a detailed description of each activity in the

following subsections.

In the following subsections, we present the major activities that comprise the

“preparation and planning” step of the CoBRA model development process.

Table 5.2 CoBRA model development process: preparation and planning

Step 1: Preparation and planning

Objective The objective of this step is to determine the scope of the CoBRA application, identify

potential constraints concerning the method’s application, prepare an appropriate

infrastructure, and plan the method’s application.

Personnel • Analyst: The analyst is responsible for preparing and planning the CoBRA model

development process. If CoBRA is applied in an organization for the first time, two

analysts will be typically involved in preparation and planning: an external and an

internal analyst. The external analyst is responsible for planning, and the internal

analyst assists the external analyst in that he/she provides organization-specific

information necessary for planning the CoBRA modeling. This information includes

the specification of estimation context and goals. Moreover, the internal analyst is

responsible for preparing the infrastructure necessary for successfully performing

the CoBRA model development process.

• Domain experts: The involvement of the domain experts in this step is reduced to

informing the analyst of their availability for the appropriate activities within the

CoBRA model development process. The analyst must consider these constraints

when planning resources and scheduling model development activities that require

the involvement of domain experts.

Inputs • Documented relevant context characteristics and assumptions.

• Context-specific estimation objectives.

• CoBRA learning materials: tutorials (for different target groups), examples of

CoBRA inputs and outputs.

• Typical scenarios of project effort estimation, that is, scenarios for estimating project

effort and using estimation outcomes.

Activities 1. Introducing CoBRA to involved stakeholders.

2. Preparing CoBRA instruments.

3. Planning CoBRA model development.

Tools • Tools for documenting estimation scope, constraints, and objectives. Example tools

include standard office software packages such as MS Word, MS Excel, or MS

PowerPoint.

• Tools for planning CoBRA model development. Example tools include dedicated

time and resource planning tools such as MS Project. Since planning the CoBRA

model development is relatively simple, it can also be supported by more general

tools supporting basic sequencing and calculation activities, such as MS Excel.

Outputs • CoBRA model development plan, including work activities, resources assignment,

and time schedule.
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5.2.1 Introducing CoBRA to Involved Stakeholders

Effective use of the CoBRA method requires that all involved stakeholders possess

appropriate knowledge of the method. The objective of this activity is to provide

training to different groups of stakeholders depending on their role in the CoBRA

model development process. This training for the purpose of developing a CoBRA

estimation model should cover the following aspects:

• Analysts need in-depth knowledge of the theoretical and practical aspects of the

CoBRA method. An appropriate training process consists of two parts: a theoret-

ical and a practical one. In the theoretical part, the candidate for analyst

participates in a comprehensible tutorial, which presents the theoretical

fundamentals of the CoBRA method including the detailed CoBRA activities,

the techniques employed, and the underlying rationales. In the second part, the

future analyst is coached by an experienced analyst through the CoBRA activities

in an exemplary method application. The application should preferably be a pilot

usage of the CoBRA method within the very organization in which the person is

going to assume the role of the analyst. Appropriate training can be acquired from

external analysts proficient in the theory and practice of the CoBRA method.

• Domain experts need only a basic understanding of the CoBRA method and its

purposes. Most of all they need to understand their role in developing the effort

model, what inputs they should provide, and how they should provide these

inputs. The objective of the training for domain experts is therefore to get them

accustomed to the method and motivate them to provide proper inputs for the

CoBRA modeling. In particular, we should make clear what information the

experts should provide and ensure, for example, through practical exercises, that

the experts consistently understand what inputs they are required to provide.

• Estimators need a basic understanding of the CoBRA method’s principles and

in-depth knowledge about applying the CoBRA model for the purpose of project

effort estimation. The objective of the training for estimators is to present the

CoBRA effort model and how to apply it for different project management

purposes. The training should also include an introduction to software tools

supporting effort estimation with the CoBRA model.

5.2.2 Preparing CoBRA Instruments

As with any other technology, the users’ acceptance of the CoBRAmethod depends

to a large extent on the level of tool support the method offers. Appropriate software

tools do not only increase the efficiency of the method’s usage but also its

effectiveness by preventing errors in error-prone human activities and facilitating

validation analyses. The objective of this activity is to select appropriate tools for

supporting the further steps of the CoBRA model development.

Based on the information we gathered on context-specific constraints and

objectives, we may adjust the standard CoBRA processes and associated

instruments. For example, we may want to support expert judgment with
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knowledge learned from additional project measurement data, if such data are

available. For this purpose, we may need to set up appropriate data analysis

techniques and tools first. Moreover, we may want to reuse the outputs of earlier

CoBRA applications, such as effort models, experiences, and guidelines. This

requires preparing reusable artifacts so that they can be easily used for creating a

new effort model. Finally, we should consider translating the CoBRA instruments

into the native language of the organization in which we apply the method.

5.2.3 Planning CoBRA Model Development

Finally, we have to plan the detailed work activities of the CoBRA model develop-

ment. Planning includes defining and scheduling the individual work activities of

the CoBRA process, assigning the necessary resources, and communicating the

plan to the involved parties. We should keep in mind the limited availability of

experienced personnel, who are typically overloaded with everyday project

activities. Therefore, we should plan CoBRA activities that require involving

domain experts as soon as possible and synchronize the plan with the affected

experts.

Last but not least, planning CoBRA model development also includes ensuring

that the necessary infrastructure, such as meeting and working spaces, office

hardware facilities, and software tools, is available.

Basic inputs to the planning are the CoBRAmodeling process as described in the

next sections as well as context-specific objectives and constraints identified during

the previous activities of the preparation and planning step. For the purpose of

planning, we can use basic planning approaches known from the project manage-

ment area. Consider the Project Management Body of Knowledge Guide (PMI

2007) as an example reference.

Please note that if CoBRA model development is to be run by an external analyst

in a foreign country, then we should consider that potential communication over-

head may be needed for overcoming potential language and cultural differences.

Tip

" If CoBRA model development is going to be performed by an external analyst in a

foreign country, then we should consider potential communication overhead

related to language and cultural differences between the analyst and other per-

sonnel involved in the CoBRA estimation.

Example 5.1 illustrates the coarse plan for CoBRA model development. It is

based on the typical course of actual modeling activities we observed across

multiple CoBRA applications in various software development organizations.
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Example 5.1. Simple Plan for CoBRA Model Development

In this example, we present a coarse plan for developing a CoBRA model. The

plan is based on the experiences we gained developing CoBRA models in

several different software organizations.

Let us first define a fictive environment for developing a CoBRA effort

estimation model. We take a software organization that develops management

and information software systems using Java and C/C++. Software development

involves both creating new products and enhancing existing ones. The software

organization has defined two major estimation objectives for applying the

CoBRA method: estimating project effort and analyzing resource-related project

risks. The resources available for developing an appropriate CoBRA model

include:

• An external analyst and an internal assistant

• Four domain experts

• Fifteen historical projects for which measurement data are available for

software size, for project effort, and for about 10–15 additional aspects of

software project environment.

The CoBRA model development process is led by an external analyst with a

lot of experience in the CoBRA method. The analyst is assisted by a person from

the software organization who is learning CoBRA in order to take over the role

of analyst in future applications of CoBRA in this organization.

Table 5.3 summarizes the approximate efforts that are typically required for

performing the major activities of CoBRA model development. The information

in the table is based on experiences we gained while applying the CoBRAmethod

in various contexts. We distinguish between the first and subsequent (next)

iterations of CoBRA model development, as they usually require different

amounts of effort. In several cases, in particular for subsequent modeling

iterations, we approximate the range of effort required by modeling activities. In

these cases, effort 6¼ 0 for the analyst and the domain expert refers to the situation

where a certain activity needs to be performed by the analyst and requires the

involvement of domain experts. Otherwise effort ¼ 0. Specifically, in subsequent

iterations of model development, some steps do not need to be performed if model

validation has not indicated activity-specific deficits of the model. For instance, if

validation has not indicated any issues concerning project measurement data or if

the indicated issue can be resolved by the analyst, then domain experts do not have

to be involved in the “data validation and preprocessing” step.

Regarding the optional step “defining size measure,” we assume for the first

iteration that the software organization has already a defined size measure and

that the analyst needs to merely prove whether it is appropriate for the effort

estimation with CoBRA. An example aspect that the analyst checks here is

whether the size measure considers all relevant products of the software pro-

cesses for which effort is to be estimated using the developed CoBRA model.

Additionally, the analyst may check—possibly together with the organization’s
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measurement team—whether the size measure is well defined and appropriately

quantifies relevant software products. If the software organization does not have a

defined size measure, then “defining size measure” step would require signifi-

cantly more effort. Yet, our experiences indicate that this is a rather rare situation.

The efforts we present in this example represent a typical case of CoBRA

model development. However, it should not be adopted uncritically when

planning a specific CoBRA application. We should always consider context-

specific objectives and constraints. ■

5.3 Step 2: Defining Size Measure

This step is optional and should be performed if valid and consistent measurement

data for considered historical projects are not available.

Software size is the major determinant of software project effort. Effectively

measuring software size is thus a key element of successful effort estimation. Failed

Table 5.3 CoBRA model development: example efforts in person-days

Model development step

Effort: first iteration Effort: next iterations

Analyst

Domain

expert Analyst

Domain

expert

Preparation and planning

(Sect. 5.2)

1.5 0.1 1.0 0.1

1. Defining size measure

(Sect. 5.3)

1.0 – 0–1.0 –

2. Collecting project

measurement data (Sect. 5.4)

0.5 – 0–0.5 –

3. Data validation and

preprocessing (Sect. 5.5)

1.0 0–0.5 0–1.0 0–0.5

4. Identifying and defining

relevant effort factors

(Sect. 5.6)

1.0 0.5 0.5 0–0.5

5. Identifying relevant factor

interactions (Sect. 5.7)

1.0 0.25 0–0.5 0–0.25

6. Quantifying selected relevant

effort factors (Sect. 5.8)

1.0 0.5 0–0.5 0–0.5

7. Collecting and validating

historical factor data (Sect. 5.9)

1.0 0.1 1.0 0.1

8. Collecting and validating effort

multiplier data (Sect. 5.10)

1.0 0.15 1.0 0.15

9. Building the effort model

(Sect. 5.11)

0.5 – 0.25 –

10. Validating the effort model

(Sect. 5.12)

0.5 – 0.25 –

11. Analyzing results of model

validation (Sect. 5.13)

1.0 0.5 1.0 0.5

Total effort [PD] 11 2.1–2.6 5–8.5 0.95–2.6
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software sizing is often the main contributor of failed effort estimates and,

in consequence, failed projects. Measuring software size is a challenging task,

and not all software organizations do it properly, if they even measure size at all.

The CoBRA method requires size data from about 10 (or more) historical projects

completed in the context for which we are building an effort estimation model. If

such data are missing or we know they are inconsistently measured—for example,

using different size measures—we can collect software size using artifacts deliv-

ered by the considered historical projects. What we need to do is to:

1. Decide on the artifacts we want to measure

2. Define an appropriate size measure

3. Apply the defined measure to the identified artifacts to collect software size data

Table 5.4 summarizes the most important elements of this step. We provide a

detailed description of each activity in the following subsections.

In the following subsections, we present the major activities comprising the

“defining size measure” step of the CoBRA model development process.

5.3.1 Identify Measureable Project Deliverables

The purpose of measuring software size in the software effort estimation context is to

obtain an indicator of the gross volume of the work required to complete a software

project. Since the objective of a project is to deliver a set of software artifacts, the

common way of quantifying a project’s volume is to measure the size of its

Table 5.4 CoBRA model development process: defining size measure

Step 2: <Optional> Defining size measure

Objective The objective of this step is to define the size measure in order to consistently measure

the size of historical projects as input to building the CoBRA effort estimation model.

This step is optional and should be considered if no valid size measure is defined in the

estimation context and/or no consistent size measurements are available for the

historical projects, on which the effort estimation model is to be developed and

validated.

Personnel • Analyst: The analyst reviews the measurement data collected for the historical

projects considered within the scope of the CoBRA effort estimation. He checks

whether valid and consistently measured size and effort data exist.

Inputs • Measurement data from about ten historical projects.

• The organization’s project repository: software artifacts delivered in the considered

historical projects.

Activities 1. Identify measureable project deliverables.

2. Define software size measure.

3. Apply size measure.

Tools • Tool supporting the documentation and communication of the definition of the

software size measure. Example tools include standard office packages such as MS

Word.

• Software measurement tool for collecting software size according to the size

measure defined in this step.

Outputs • Software size measure.
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deliverables. Yet, measuring the size of all software artifacts a project delivers would

be too expensive—if not unfeasible at all. Therefore, a typical approach is to measure

the size of those software artifacts that best indicate the volume of work in a project.

When adapting a particular size measure, we need to ensure that its associated

software artifacts are (1) proper indicators of the total size of all project deliverables

and (2) available in the same form and volume throughout historical projects. For

example, if we decide to measure the size of a software use case specification, we

need to ensure that use cases available for a historical project consistently cover the

same part of the software system—at best the complete software—and that they

describe the software system at the same level of detail and using the same

modeling notation. Otherwise, even for the same software system, the size

measurements will differ dependent on the completeness and precision of its use

case specifications.

Tip

" For each project artifact that could potentially be the basis for size measurement,

check (1) the consistency of the notation used to model this artifact across the

available project data, (2) the consistency of the portion of the software system

that is modeled by this artifact across the available project data, and (3) the level

of detail at which this artifact models a software system across the available

project data.

5.3.2 Define Software Size Measure

A number of methods for measuring software size have been proposed over the

years. Yet, none of them seem to be the “silver bullet” that solves all problems and

serves all purposes. Please refer to Laird and Brennan (2006) or to Jones (2007) for

example reviews of software size measures, including their major strengths and

weaknesses.

Depending on the particular situation at hand, we should typically use different

size measures. Example criteria already mentioned above are (1) the extent to

which the size measure indicates the size of all project outcomes and (2) the

availability and consistency of given artifacts to which the size measure is applied.

A number of different measure validity criteria have been defined in the software

engineering context. Considering them is beyond the scope of this book. Please

refer to Meneely et al. (2010) for a comprehensive review. For the sake of

simplicity, let us conclude that a size measure should be useful for our particular

purposes—here effort estimation—and be relatively easy to collect.

Tip

" When defining the size measure, make sure that it is useful for the purpose of effort

estimation and that it is relatively easy to collect.
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5.3.3 Apply Size Measure

Finally, we collect project size data by applying the defined size measure on the

deliverables we identified for the historical projects considered. We store the

collected size measurement in the organization’s project data repository for further

reuse. Note that the use of software size data is not limited to effort estimates.

Quantitative software project and product management uses software size for a

wide spectrum of applications. For example, software size is widely employed to

normalize other software products’ characteristics, such as software defects in

defect density measurement.

5.4 Step 3: Collecting Project Measurement Data

The measurement of project data is an important source of knowledge for the

CoBRA model development. The CoBRA method requires size and effort mea-

surement to base the coarse effort estimation model on. Domain experts typically

provide the remaining input information to the CoBRA modeling. However, we

may use any other quantitative information that is available from historical projects

to support the domain experts or to validate the judgments they provide.

The objective of this step is to collect measurement data from the historical

projects considered. On the one hand, we must collect the size and effort

measurements CoBRA requires. On the other hand, we may look for any other

measurement data that might be useful for the purpose of building the CoBRA

effort model. Example additional data may include quantitative information on the

project’s environmental factors. We can analyze these data in order to identify

potentially relevant factors influencing project effort.

Table 5.5 summarizes the most important elements of this step. We provide a

detailed description of each activity in the following subsections.

In the following subsections, we present the major activities comprising the

“collecting project measurement data” step of the CoBRA model development

process.

5.4.1 Collect Size and Effort Data

In this activity, we collect mandatory measurement data regarding software size

and project effort for the historical projects upon which we will build the CoBRA

effort estimation model. Note that even if the size and effort data we can find in the

organization’s data repository are incomplete, we can usually easily elicit them

postmortem—based on the artifacts delivered by the historical projects. We can get

project effort from project management documentation, and we can measure the

size of the deliverables the project created.
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5.4.2 <Optional> Collect Additional Project Measurement Data

Besides size and effort data, we should look through the organization’s measure-

ment repository and documentation of historical projects for potentially useful

information regarding project environmental characteristics. Especially interesting

are factors that may explain variances in development productivity across the

historical projects considered. Therefore, before searching for additional project

data, we should compute the actual productivity of each historical project by simply

dividing the size of its project deliverables by the project effort—using the mea-

surement size and effort we collected. While analyzing available project informa-

tion, we should focus on those elements of the project environment that change as

the development productivity changes. Later on, we may verify the potential impact

of these factors on project effort either through formal analysis or through consul-

tation with domain experts.

5.5 Step 4: Data Validation and Preprocessing

Before we can use measurement data for creating CoBRA effort estimation model,

we first need to ensure that (1) the data are valid and (2) they are in the right form.

Data validity refers to the general correctness of the data, whereas data form refers

to the structure of the measurement data. The objective of this step is to validate the

Table 5.5 CoBRA model development process: collecting project measurement data

Step 3: Collect project measurement data

Objective The objective of this step is to collect available measurement data for the historical

projects considered, at least 10. Besides the mandatory size and effort data, we should

look for any other measurement data that might be useful for developing the CoBRA

effort estimation model. Example additional measurements comprise project

environmental characteristics that may potentially influence project effort, that is,

potential effort factors.

Personnel • Analyst: The analyst looks through the organization’s project repository for

measurement data and documentation of the historical projects considered in the

CoBRA model development. If the analyst is not responsible for measurement or is

external to the organization, then the responsible measurement specialist from the

organization should support the analyst.

Inputs • The organization’s project repository, comprising project characteristics, project

deliverables, and project measurement data.

Activities 1. Collect software size and project effort data.

2. <Optional>Collect additional project measurement data.

Tools • Tools supporting the storage and reuse of the organization’s project assets, such as

project deliverables and project measurement data.

Outputs • Software size and project effort data for the historical projects considered in CoBRA

effort modeling.

• <Optional> Additional measurement data available for the historical projects

considered, for example, environmental project characteristics.

5.5 Step 4: Data Validation and Preprocessing 33



correctness of the collected measurement data and preprocess them so that they can

be accepted by the analysis techniques and tools used during the CoBRA develop-

ment process.

Tip

" Before using measurement data for the purpose of building an effort estimation

model, ensure that the data are valid and have a consistent format that is accept-

able by the employed analysis techniques and support tools.

Table 5.6 summarizes the most important elements of this step. We provide a

detailed description of each activity in the following subsections.

In the following subsections, we present the major activities comprising the

“data validation and preprocessing” step of the CoBRA model development

process.

5.5.1 Preprocess Measurement Data

Data preprocessing consists of transforming measurement data into a consistent

format that is acceptable by the analysis techniques and tools used during the

CoBRA development process. Common data preprocessing activities useful in

the context of effort modeling and estimation include formatting, integrating,

cleaning, and transformation.

Data Formatting
Data formatting refers to simple adjustments of the data format. The purpose of this

adjustment is to ensure that data are accepted and properly interpreted by particular

Table 5.6 CoBRA model development process: data validation and preprocessing

Step 4: Data validation and preprocessing

Objective The objective of this step is to validate and prepare the measurement project data for

the purpose of building the CoBRA effort estimation model.

Personnel • Analyst: The analyst performs data validation and preparation. If the analyst is not

responsible for measurement or is external to the organization, then the responsible

measurement specialist from the organization should support the analyst.

Inputs • Measurement data from historical projects considered in the CoBRA model

development.

Activities 1. Preprocess measurement data.

2. Validate measurement data.

Tools • Data analysis and visualization tools.

• Specialized data preprocessing tools such as data imputation to cope with missing

project data.

Outputs • Valid project measurement data prepared for building the CoBRA effort estimation

model.
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analysis tools. Typical formatting activities cover aspects such as changing repre-

sentation format, capitalization, concatenation and splitting, and character cleanup.

Changing Representation Format
This preprocessing activity refers to changing the data format. For example, project

duration might be measured in terms of project start and end date. Duration can then

simply be computed by calculating the time span between start and end date. Yet,

dates can be given using different notations, such as European (day-month-year) or

US (month-day-year). Inconsistent formats are a common issue in a global develop-

ment project where projects or parts of a large project are realized in different locations

worldwide. Feeding an analysis and effort modeling tool with unpreprocessed data

may lead to invalid results.

Capitalization
This preprocessing activity refers to changing the case of data strings. Although it

may seem unimportant from the human analyst’s perspective, inconsistent capitali-

zation of strings in the project measurement data may lead to serious errors while

applying automatic analysis tools. Data analysis tools are case sensitive when

working with nominal or ordinal data. This means that strings that differ only

with respect to their capitalization and which convey the same information will

be interpreted as different by analysis tools. For example, let us consider project

measurement data that provide total project effort and specify the exact range of the

life cycle phases this effort encompasses, by giving the first and the last phase.

A typical analysis tool will distinguish between “requirements-testing” and

“Requirements-Testing” as two different ranges of project phases, although they

refer to exactly the same part of the development life cycle.

Concatenation and Splitting
This preprocessing activity refers to joining multiple data fields into one or splitting

complex data field into several ones. For example, project measurement data may

include a field that stores a list of programming languages used in the project. This

may lead to fine-granular data that may be useless for the purpose of effort

modeling and estimation. For instance, the data for two projects might be “Java,

C++” and “Java, C++, C”. An analysis tool will consider these two projects as

different, although in the latter case only a few lines of software code out of several

thousand might have been implemented using “C.” From the perspective of impact

on development effort, considering these two projects as similar would, however,

be more appropriate. In this case, we may want to split the programming language

field into “primary” and “secondary” and set up thresholds on the minimal portion

of the software that must be implemented using a given programming language in

order to consider it as primary or secondary.

Character Cleanup
This preprocessing activity refers to removing extraneous characters that are not

accepted by automatic analysis tools. Example characters include currency symbols
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such as dollar ($), euro (€), or yen (¥), which may not be interpreted as non-numeric

by certain analysis tools. In order to ensure that data fields representing monetary

cost are treated as numeric fields, we should remove currency symbols. Note that

before doing so, we need to ensure that all values refer to the same currency. If not,

we need to first convert all measurements into a common unit—in this case into a

common currency.

Data Integration
Data integration refers to adjusting data extracted from multiple data sources. In

such cases, the data must be merged, redundancies must be removed, and value

conflicts must be resolved. Typical preprocessing activities related to integrating

project measurement data include merging data, removing data redundancies, and

removing data conflicts.

Merging Data
This preprocessing activity refers to matching up equivalent attributes covered by

different data sources and merging them into one data set. To help solve this

problem, some databases carry metadata, which are data about the data. By using

and comparing these metadata, attributes can be matched up and errors in integra-

tion can be avoided. The problem is more complex if adequate attributes have

different names or inadequate attributes have similar names and attributes are not

clearly described. In order to deal with such issues, the support of data maintainers

is usually required. They should provide the definitions and the meaning of the

measured attributes.

Removing Data Redundancies
This preprocessing activity refers to removing data fields that refer to the same

measurement aspect. In such cases, redundant measurement data do not provide

any useful information but increase the complexity of the data analysis. Note that

some analysis techniques explicitly require measurement data to be free from

collinearities and will provide invalid results if data do not fulfill this prerequisite.

Removing Data Conflicts
This preprocessing activity refers to dealing with conflicts that result from merging

data of different representation, scaling, or encoding. For instance, one source of

project data provides project effort measured in person-months, whereas the other

source provides it in person-days. Merging these two data sets would result in a

scale conflict and in inconsistent data. Such an inconsistency will falsify the results

of effort modeling; in this particular example, projects where effort was measured

in person-months would apparently have very high development productivity

relative to projects where effort was measured in person-days. In general, we can

cope with conflicting data by transforming them into a consistent representation.

We will discuss common data transformation approaches later in this section. Yet,

not all data conflicts are so easy to remove. Let us consider another example

concerning merging project effort data. A much less obvious and difficult-to-detect
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problem with merged project data we observed in practice is the inconsistent scope

of effort measurement. For example, project effort measured in one business unit

comprises requirements, design, and coding phases, whereas effort measured for

the same type of project in another business unit comprises design, coding, and

testing phases. In addition to being quite difficult to detect, this inconsistency is also

very difficult to handle, particularly when the distribution of effort per phase—

absolute or percentage—is not known.

Data Cleaning
Data cleaning provides methods for coping with three common problems of real-world

data sets. The first problem is that data may be incomplete, meaning that a considerable

number of values are missing. To solve this problem, we have to look at means of how

to best approximate the missing data. The second problem deals with errors in data

values or so-called noisy data. In order to remove these errors, several smoothing

methods are available. The third problem deals with data inconsistencies, which occur

mostly when data are merged from different sources. Typical data cleaning activities

include handling missing data and data smoothing (i.e., handling noisy data).

Handling Missing Data
This preprocessing activity refers to dealing with incomplete data. Missing data are

the most common and most difficult problem to cope with. In the real world,

collected data almost never are complete. Certain values might be missing for

several reasons, most of all because they were never recorded. Other common

reasons are the following:

• Data collection equipment malfunction.

• Data were inconsistent with other recorded data and thus were deleted.

• Data were not entered due to a misunderstanding.

• Certain data were not considered to be important at the time of data collection.

Nevertheless, many data analysis algorithms require a complete set of data to

run. To solve this problem, all tuples with missing values can obviously be simply

ignored. This method is, however, not very efficient though, because large amounts

of valuable data (information) might be thrown away.

There are numerous alternative strategies for handling missing data (Schafer

1997). The most popular approaches include:

• Manually fill in missing values. In this approach, domain experts fill in missing

project data based on their knowledge of particular projects. In CoBRA, data

acquisition based on human judgment is actually part of the method. For

example, domain experts usually provide project data for most of the effort

factors because they were first considered during the building of the CoBRA

effort model and thus were never measured before. The procedure of manual

imputation of missing project data might be tedious and unfeasible for larger

data sets. Yet, this does not apply to CoBRA, which only involves about ten

historical projects. We merely need only to ensure that when the CoBRA effort
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estimation model has been built, the project data for all effort factors the model

comprises are systematically and completely collected for future projects.

• Use a global constant to fill in missing values. In this approach, we use a global

“dummy” constant to encode missing values. Example constants may be

“unknown” or “missing” for string parameters or numerical value forms outside

the range the parameter is measured on (e.g., “�9” for a positive integer

parameter). This method is very simple and allows using analysis methods that

would be unable to cope with missing data points. Yet, it does not solve the

problem of missing information.

• Estimate missing values based on the known values of a considered attribute. In
this approach, the distribution of known values about the considered project

attribute is used to estimate the missing values for this attribute. A simple

instantiation of this idea is to fill in missing values using the statistical mean

for known values on this attribute.

• Estimate missing values based on known values of other attributes. This is a

promising and hence very popular strategy inwhich unknownvalues for one attribute

are estimated based on known values for other attributes in the data set. Estimates can

be based either on inference models, such as the Bayesian formula, decision trees, or

correlation models. This is done by constructing a model of the attribute and its

relationship to other attributes, that is, estimation models in which the attribute with

the missing value is considered as a dependent variable while attributes with known

values are considered as independent variables. By constructing a model of the

attribute, we can typically approximate any missing values efficiently.

Please refer to Strike et al. (2001), Van Hulse and Khoshgoftaar (2008), and

Khoshgoftaar and Van Hulse (2008) for a detailed review and comparison of

techniques for handling missing data in the context of software engineering and

project estimation. The latter two studies additionally investigate the impact of data

quality on the performance of data imputation techniques.

Handling Data Noise
This preprocessing activity refers to handling noisy data, that is, data with random

error or variance in a measured variable. Common sources of data noise are faulty

data collection instruments or data entry problems. The common approach for

removing data noise is called smoothing. Example smoothing techniques include

clustering and human inspection. Clustering divides data into groups of similar data

(clusters) and removes data points that do not fall into any group. In the human

inspection technique, human experts review data and decide about modifying,

retaining, or removing noisy data.

Handling Data Outliers
Data outliers are a special case of noisy data. The term outlier refers to data points

that fall outside the main body of data. Outliers may have a significant impact on the

estimation results provided by prediction methods. In the context of data-driven

effort estimation, the effectiveness of effort estimation can be significantly

improved by resolving data outliers. Handling data outliers consists of two steps:
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detecting outliers and resolving outliers. In the context of CoBRA, we consider data

outliers in two places.

The first place where we should consider data outliers is when we analyze size and

effort data from historical projects in order to detect projects that are outliers with

respect to the development productivity. Yet, we do not resolve these outliers before

applying CoBRA for building an effort estimation model. In fact, it is the objective of

CoBRA modeling to resolve these outliers. More precisely, the objective of the

CoBRA effort model is to explain the variance of productivity across historical

projects, that is, model effort factors that cause development productivity to vary.

The second place where we should consider outliers is when we analyze inputs

to the CoBRA model development provided by multiple domain experts. At this

point, we are interested in judgments that are different from the opinion of the

majority of the experts. We resolve potential outlier judgments by investigating the

rationale behind them. Our experience shows that the majority is not always right.

Moreover, it is also not a rule that more experienced expert are right. We will

discuss these issues in more detail in Sects. 5.9 and 5.7.

Tip

" Always investigate outliers carefully because they may contain valuable informa-

tion. Before considering the possible elimination of outliers from the project data,

try to understand why they appeared and whether they may be correct and other

data may be wrong.

There are a number of ways we can detect outliers. The simplest one is visual

analysis of graphical data representation, for example, in the form of a histogram.

Examples of more formal techniques for detecting outliers include:

• Box plot analysis: In this approach, we draw a box plot and look for the data

points that fall outside the main body of data determined by a middle point and

acceptable deviation from it. Typically, these are represented by (1) data mean

and standard deviation or (2) data median and quartiles. For example, data points

that are outside the range of �2 standard deviations (or even �1.5 SDs) are

commonly considered as outliers.

• Statistical testing: In this approach, we use formal statistical tests to identify data

points outside the main body of data. Similar to the box plot approach, statistical

tests are often based on the criterion of “distance from the mean.” For example,

the Grubbs test statistic calculates the ratio of the largest absolute deviation from

the data mean to the data standard deviation.

• Distance analysis: This approach is based on the same principle as the box plot

analysis, namely, measuring a range of data points from the main body of data.

This approach uses formal distance measures such as Mahalanobis distance,

which calculates how far a given point is from the center of the complete data

set. The advantage of distance-based outlier analysis is that it considers multi-

variate outliers, that is, data that are outliers for more than one attribute.
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Tip

" Use an appropriate method for detecting data outliers. Remember that some

methods are designed to detect the presence of a single outlier, while others

detect the presence of multiple outliers. Moreover, some methods can consider

only one attribute at a time, while others can detect data points that are outliers

only when multiple attributes are considered.

Data Transformation
Data transformation refers to data conversions that adapt characteristics to input

requirements of a certain analysis method. This includes such transformations as

data normalization, data discretization, scale augmentation, unit conversion, aggre-

gation, generalization, and attribute construction.

Data Normalization
This preprocessing activity refers to scaling attribute values to fall within a

specified range, for example [0, 1]. During the CoBRA model development,

normalization has rather little usage. We may use it for anonymizing project data,

such as development productivity, before communicating it across the software

organization. We should consider it if we do not want CoBRA to be a tool for

assessing personnel.

Data Discretization
This preprocessing activity refers to transforming continuous-scale data into

discrete-scale data. We can use discretization for reducing the continuous or

multiple-value discrete scale of an effort factor comprised of project data into the

simple 4-point approximately interval scale used by the CoBRA method, where

0 refers to the worst-case value (extreme project) and 3 refers to the best-case value

(nominal project).

The most common approaches for discretizing data are to consider expert
opinion or the distribution of the data values in the repository. In the expert opinion
method, an expert would be asked to subjectively determine what range of values

should be considered worst, what best, and what as discrete values between worst

and best. This approach is very useful when an organization already uses a similar

kind of mapping in their day-to-day operation.

Distribution-based approaches reduce the continuous scale by dividing its range

into a set of intervals, which represent values on a discrete scale. Interval labels can

then be used to replace actual data values. There are several strategies for dividing

the range of continuous variables into discrete intervals. Simple examples of

discretization approaches are based on binning or clustering.

In binning, attribute values are sorted and then divided into bins, which make

up the neighborhood of the data points inside. Bins may be equi-width (distance),
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equi-depth (frequency), or just arbitrary, depending on the application. Equi-width

partitioning divides the range into N intervals of equal size, meaning that if A and B
are the lowest and highest values of the attribute, the width of the intervals will be

W ¼ (B – A)/N. Equi-depth partitioning divides the range into N intervals, each

containing approximately the same number of data points. Arbitrary partitioning

divides the data range into intervals of different size and frequency, for instance,

depending on the expert’s decision.

After partitioning, all points are smoothed by means of binning:

• Means:We replace all individual data points inside a binwith the bin’smean value.

• Medians: We replace all individual data points inside a bin with the bin’s median

value.

• Boundaries: We first identify the boundaries of a bin (the range of values it

contains) and then replace each data point inside the bin with the value of the

closest bin’s boundary.

In the end, all bins are againmerged, resulting in a discrete data set. The intensity of

the smoothing depends mostly not on the smoothing operation but on the width of the

bins. In general, the larger the width, the greater the effect of the smoothing will be.

Example 5.2. Discretization Through Binning

Let us consider the following set of data: 2, 4, 5, 6, 9, 10, 12, 16, 17, 19, 23, 26,

27, 28, 31, 33, 35. Table 5.7 illustrates the results of discretizing this data set by

means of equi-depth bins and smoothing using bin means and boundaries.

After merging the bins again, the resulting discretized data sets are as follows:

• Original set: 2, 4, 5, 6, 9, 10, 12, 16, 17, 19, 23, 26, 27, 28, 31, 33, 35

• Set smoothed by means: 6, 6, 6, 6, 6, 6, 16, 16, 16, 16, 26, 26, 26, 26,

33, 33, 33

• Set smoothed by boundaries: 2, 2, 2, 2, 10, 10, 12, 19, 19, 19, 23, 28, 28, 28,

31, 31, 35

As we can see, smoothing by bin neighbors preserves more variance in the

data than smoothing by bin means. ■

Scale Augmentation
This preprocessing activity refers to the transformation between textual data and

numerical data. For example, in CoBRA, we code ordinal levels of effort factors;

Table 5.7 Example discretization through equi-depth bins

Bins Partition into equi-depth bins Smoothing by means Smoothing by boundaries

Bin 1 2, 4, 5, 6, 9, 10 6, 6, 6, 6, 6, 6 2, 2, 2, 2, 10, 10

Bin 2 12, 16, 17, 19 16, 16, 16, 16 12, 19, 19, 19

Bin 3 23, 26, 27, 28 26, 26, 26, 26 23, 28, 28, 28

Bin 4 31, 33, 35 33, 33, 33 31, 31, 35
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however, they are textually defined using numerical values {0, 1, 2, 3}. We may

also want to code other project data such as context information in order to

anonymize their meaning.

Unit Conversion
This preprocessing activity refers to the transformation between measurement

units. A typical example from effort estimation might be converting project effort

data into consistent units. For example, after merging several sources of project

data, we may obtain a mixture of effort units such as person-hours, person-days, and

person-months. We need to convert these data into a consistent unit in order to

avoid an invalid effort model. A critical issue when converting between different

units may be the determination of the proper conversion coefficient. In case of

trivial conversions such as between LOC and kLOC, the conversion ratio is

obvious—in this case, LOC ¼ 1,000 � kLOC. Yet, in case of project effort,

conversion rates might not be so obvious anymore because it differs from organi-

zation to organization.

Aggregation and Generalization
These preprocessing activities refer to moving up in the concept hierarchy on

numeric, respectively nominal attributes. In the context of effort estimation, this

issue refers to changing the granularity level of the prediction model. We may, for

example, estimate complete project effort instead of effort per project phase. In this

case, we need to sum up phase-wise project efforts. An example of a quite common

problem when synthesizing effort data into a higher granularity level is that some of

the detailed effort data are missing. For example, we cannot easily compute total

project effort because effort for some development phases is not available. In this

case, we need to approximate the missing effort data. A simple way of

accomplishing this is to use projects where complete phase-wise effort is available

and compute the percentage effort distribution per project phase. We may then use

this information to extrapolate phases where effort data are missing based upon the

phases for which effort has been measured.

Attribute Construction
This preprocessing activity refers to replacing or adding new attributes inferred by

existing attributes. A basic example of this operation in the context of CoBRA is the

construction of the development productivity attribute based upon software size and

development effort attributes. We compute productivity because it is much easier

and more practical to identify potentially relevant effort factors by analyzing

development productivity than by analyzing project effort. In CoBRA, we assume

software size to be the major determinant of development effort, and we are

interested in other project characteristics that make effort differ for projects of the

same size, meaning the characteristics that make development productivity vary.
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Example 5.3. Data Preprocessing

In this example, we illustrate some common deficits of project data and exem-

plary preprocessing steps to handle these deficits. Let us consider project data as

presented in Table 5.8.

Basic deficits of these data include:

• Primary OS: The field uses inconsistent coding for the same value. “Windows

2000” is coded using different strings. Moreover, for project P1, a special

Asian character is used which might cause interpretation problems for analy-

sis tools that cannot handle Asian coding. Finally, several operating systems

are given as primary OS for projects P6 and P7. In case of P7, we propose

looking at the project objectives to see whether both operating systems were,

in fact, considered as equally important targets. If not, we propose extending

the project data table by adding a project attribute “Secondary OS” and

including the less important target OS in this field. In the case of P6, we

propose investigating how much different, from the perspective of project

effort, the development of software for the three versions of Windows OS

named in the measurement data is. If there is no significant difference, we

propose generalizing this measurement to the MSWindows operating system,

excluding versions and coding it with a “Windows” string.

Preprocessing: We use the consistent string “Win2000” for generalizing and

consistent coding of all inputs referring to the Windows 2000 operating

systems. Moreover, we create an additional project attribute in the data set

for storing information on the operating system.

• Size [kLOC]: The use of periods and commas in the software size

measurements for projects P2 and P3 may potentially be wrong. Since the

effort consumed by these two projects is almost identical, we can suspect that

the size of a product of these projects will not differ by any order of

magnitude. If we compute development productivity for the remaining

projects using kLOC size, we would get an approximate range of productivity

of between 4 and 6 kLOC per person-month. This would suggest that 15,000

Table 5.8 Example deficits of project data

Project Size (kLOC) Size (FPA) Effort [PM] Primary OS

P1 – 1,275 PM ¼ 21 Windows 系

P2 15,000 192 3 Win-2000

P3 15.000 180 3 Windows2000

P4 87 – PD ¼ 2,280 Windows 2000

P5 73 930 MM ¼ 13 Win2000

P6 38 460 16 2000, NT, 98

P7 – 360 5 Win/Solaris

P8 8 – 2 Win2000

P9 – 1,670 30 Windows-2000

P10 141 1,745 34 MsWindows 2000
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is the correct measurement and 15.000 results from the erroneous use of the

period instead of the comma. In the first case, productivity would be 5, which

would correspond to the range of productivity for the remaining projects,

rather than 15.000, for which productivity would be 0.005.

Preprocessing: We exchange commas for periods in the kLOC size measure-

ment for project P3.

• Size [kLOC]: Size measurements are missing for projects P1, P7, and P9. If

we want to build an estimation model based on LOC size, we need to handle

the incomplete measurements on this attribute. One option would be to look

for project deliverables and measure their size. In our example, size is

additionally measured using Function Point Analysis (FPA). If FPA size is

available for the project where LOC size is missing, we may want to convert

FPA size into LOC size using backfiring. For this purpose, we can use the

backfiring coefficients published in the related literature, such as Jones

(2007), or use our internal project data to compute an appropriate coefficient.

Preprocessing: Since for several historical projects in our example project data

set both size in LOC and size in FPA are available, we can compute our

context-specific backfiring conversion rate. The LOC per FPA rate computed

on projects for which both LOC and FPA measures are available ranges

between 78 and 83 LOC/FPA. In order to compute missing LOC data from

available FPA measurements, we use the rate 81, which is close to the value of

80. Jones (2007) gives for third-generation languages and IFPUG FPA.1

• Size[FPA]: Size measurements are missing for projects P04 and P08. If we

want to build an estimation model based on function point size, we need to

handle the incomplete measurements on this attribute. One option would be to

look for project deliverables, such as requirements specification or design,

and count software functional size. Another possibility is to use backfiring for

converting LOC size data available for these two projects into PFA counts.

Preprocessing: We use the same backfiring rate as in the previous

preprocessing activity for approximating missing LOC data.

• Effort: The effort fields for projects P1, P4, and P5 contain non-numerical

data (strings). Moreover, effort for project P4 is given in person-days, which

is inconsistent with the other projects, for which effort is measured in person-

months (man-months).

Preprocessing: We remove string data and retain only numerical information

on project effort. Moreover, we convert the effort unit for project P4 from

person-days (PD) into person-months (PM). For this purpose, we use the

conversion rate of 152 PD/PM defined within the context of the historical

projects considered.

1 Refer to the website of Software Productivity Research, Inc. (http://www.spr.com/programming-

languages-table.html) for the current backfiring rates.
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• Productivity: We derive a development productivity attribute such as

Prod ¼ LOC/Effort. We will use this attribute to identify potential project

outliers and investigate the causes of their extreme productivity values.

After applying basic preprocessing operations, we obtain data as presented in

Table 5.9.

A visual analysis of the software development production rate, represented by

the scatter plot in Fig. 5.2, shows two phenomena. First, illustrated by the dashed

line, is the slight diseconomies-of-scale effect shown by the projects, in that their

effort grows disproportionally (nonlinearly) relative to the size of the delivered

software. The diseconomies-of-scale effect is often observed in software devel-

opment projects. It is caused by increased project communication and coordina-

tion overhead as project and team size increase and is displayed as a decrease in

development productivity as the project size increases.

Table 5.9 Example deficits of project data

Project kLOC FPA LOC/FPA Effort Prod Primary OS Secondary OS

P1 103 1,275 – 21 4.9 Win2000 –

P2 15 192 78 3 5.0 Win2000 –

P3 15 180 83 3 5.0 Win2000 –

P4 87 1,074 – 15 5.8 Win2000 –

P5 73 930 78 13 5.6 Win2000 WinNT, Win98

P6 38 460 83 16 2.4 Win2000 Solaris

P7 29 360 – 5 5.8 Win2000 –

P8 8 99 – 2 2.7 Win2000 –

P9 135 1,670 – 30 4.5 Win2000 –

P10 141 1,745 81 34 4.1 Win2000 –

Fig. 5.2 Production rate represented by a scatter plot of software size and project effort
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The second phenomenon we are actually interested in is project P6, which

seems to cost more effort than would be suggested by the distribution of effort in

other historical projects. In order to verify our observation regarding outlier

project P6, we analyze the development productivity of the historical projects

considered using a box plot analysis. An appropriate box plot presented in

Fig. 5.3 shows project P6 having, in fact, extremely low productivity relative

to other historical projects from the same context.

In the next preprocessing steps, we should investigate the potential causes of

the outlier productivity in project P6. First, we need to ensure that the project

data that generated these outliers are correct. Next, we should search for project

characteristics that make P6 different from other historical projects. These

characteristics will then be first candidates for the effort factors we should

include in the CoBRA effort estimation model. ■

5.5.2 Validate Measurement Data

Even the most comprehensive project data will not be worth much if they are

incorrect, leading to an incorrect effort estimation model and wrong project

decisions. An example of incorrect data we often observed in software industry

refers to counting software requirements. Software organizations count the number

of functional requirements, nonfunctional requirements, and the total count of

requirements. Now, although functional and nonfunctional requirements should

sum up to the total count of requirements, this is often not the case.

Before we go into more detail regarding data validation, please note that data

validation should be performed in combination with data preprocessing, as

discussed in the previous section. On the one hand, seemingly invalid data often

require simple preparation, such as formatting or unit conversion, to make it

correct. On the other hand, some data look good at first glance, but already after

preprocessing, it becomes clear that they are invalid and require much work to

correct—for example, measurement processes need to be modified and measure-

ment data re-collected.

Tip

" Combine data preprocessing and validation activities. Simple data preparation

may remove what seems to be invalid data or reveal that what seems to be correct

data is actually invalid.

Fig. 5.3 Distribution of development productivity
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At this point, let us also make a clear distinction between valid data and the data

that represent true (valid) causal effort dependencies for the considered historical

projects. Although we would gladly ensure that project data reflect true causal effort

relationships, this is, in practice, quite difficult, if not impossible. The theory of

statistics and causal modeling shows that covering true causal relationships would

require collecting infinite amounts of data on a potentially infinite number of

factors, which may influence project effort. Clearly, we cannot ensure such data.

What we can ensure is the basic correctness and consistency of the data we already

have or may obtain at reasonable cost. We can accomplish this objective in two

ways:

• Directly, by analyzing the measurement data. In this case, we analyze the data

independent of other project measurements on the one hand. On the other hand,

we analyze the project data with respect to potential relationships to other project

measurements. For example, let us consider the number of hazardous

requirements (#HR). On the one hand, we can look at the distribution of #HR

across historical projects for potential outliers and check if invalid data are

responsible for this. On the other hand, we can perform a simple cross-check

of #HR against the total number of requirements. If #HR exceeds the total count

of requirements, which we have observed in practice, there is obviously some-

thing wrong with the data, and they need to be corrected.

• Indirectly, by evaluating the measurement processes applied for collecting the

data. In this case, we analyze the definitions and measurement procedures

employed to collect the project data that we suspect, for example, following a

visual analysis of their distribution, to be invalid. For example, in case of the

number of hazardous requirements (#HR) measure, we can look at the definition

of hazardous requirements and the definition of requirements, in general. It may

occur, for instance, that the former is defined on a different level of abstraction

(detail) than the latter. If hazardous requirements comprise what would generally

be considered as sub-requirements, then #HR can be greater than the total

number of all requirements—using such measures for the purpose of effort

estimation may lead to misleading conclusions and wrong project decisions.

One important aspect to consider is the consistency of the measurement proce-

dure and the resulting data with appropriate measure definitions. For example, we

might be interested in the size of software in terms of effective lines of source code.

From the perspective of development effort, we are not interested in any elements

of software code, such as generated code, that require minimal or no development

effort. Yet, the associated measurement procedure might not implement this defini-

tion or be inconsistently performed across various development projects. In the first

case, we will think that we are considering apples, when in fact we will be

considering oranges when estimating project effort. In the latter case, we would

compare apples with oranges while we are thinking we were considering apples—

or even worse, while thinking we were considering something altogether different,

like plums.
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Another important aspect to prove while validating project data is that consis-

tency with the defined scope of the CoBRA application should be considered.

A common issue we have observed in industrial contexts is that the total project

effort collected for multiple projects encompasses the distinct activities of the

development process. For example, the project effort for one project comprises

requirements specification and systems testing, while for another project, these

phases are not considered within the total effort data. It is good when the data

repository includes effort per phase or at least information on which phases are

covered by the total project effort. Yet, in many cases, a single number for total

project effort is given, which encompasses very different project activities, without

any information on what these phases are and what part of the effort they contribute

to. In such a case, effort data are practically useless.

Tip

" Verify that the effort data comprises the same project activities. Make sure that

they cover the same range of activities (e.g., the same development phases) and

the same type of activities (engineering, management, administrative).

5.6 Step 5: Identifying and Defining Relevant Effort Factors

Software development effort depends on a number of factors. The size of software

deliverables is the major effort factor, but it is not the only one. The rate with which

we are able to deliver project outputs (known as development productivity) depends

on a number of factors. Example factors include product characteristics (other than

size), capabilities of the project team, project environment and organization, and

external constraints. In essence, we are interested in knowing what factors make

project effort differ even though we deliver outputs of the same size. In other words,

we are interested in factors that cause development productivity to vary across

different projects even though their general context is similar.

Selecting relevant effort factors is one of the keys to successful effort estimation.

A typical threat during this step is the selection of a large number of irrelevant or

even misleading effort factors while omitting relevant ones. And estimation accu-

racy is not the only success criterion here. The high costs of collecting, analyzing,

and maintaining unnecessary project information may demotivate any effort esti-

mation initiative. In fact, effort estimation overhead has already killed a number of

effort estimation initiatives in the software industry.

The objective of this step is to identify and define a minimal set of the most

relevant effort factors, that is, factors having the greatest impact on software

development effort in a particular context, “minimal” meaning sufficient to achieve

our estimation objectives and small enough not to exceed our cost constraints. Since
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size is the major factor contributing to project effort, we exclude it from consider-

ation and focus on other effort factors, that is, factors which cause variations in

development productivity.

In the CoBRA method, the selection of the most relevant effort factors is

traditionally based on the judgment of multiple domain experts. Yet, it can and

should be supported by an analysis of available project measurement data. We

recommend using group consensus techniques for identifying the most relevant

effort factors. Although we can perform the selection procedure off-line, for

example, in the form of an e-mail survey, we should prefer face-to-face sessions

with the domain experts. An exception might be the case when domain experts have

already been involved in the building of the CoBRA model and very familiar with

it. An advantage of a group session is that the analyst and the domain experts can

immediately identify and clarify any issues and misunderstandings as they occur.

We suggest using a Delphi-like2 procedure for selecting the most relevant effort

factors. Table 5.10 summarizes the most important activities of this step. We

provide a detailed description of each activity in the following subsections.

Table 5.10 CoBRA model development process: identifying relevant effort factors

Step 5: Identifying relevant effort factors

Objective The objective of this step is to identify a set of the most relevant effort factors to be

considered in the CoBRA effort estimation model.

Personnel • Analyst: The analyst leads a group discussion session during which the domain

experts identify the most relevant effort factors. The analyst may prepare an example

list of effort factors and present it to the involved domain experts in order to clarify to

them the concept of effort factor and the session objectives. Moreover, the analyst

computes and analyzes development productivity for the historical projects

considered. The analyst presents these results to the domain experts in order to

stimulate them in searching for the most relevant factors causing productivity

variations. If additional project data are available, the analyst investigates the data

using analytical techniques for the purpose of identifying potentially relevant effort

factors. Finally, the analyst synthesizes the outcomes of the effort factor

identification activities, presents these results to the domain experts, and iterates the

whole step (or its parts) if necessary.

• Domain experts: The domain experts identify potentially relevant effort factors, rate

their relevancy, and decide on the subset of effort factors to be added to the CoBRA

effort estimation model. If the selected effort factors represent complex concepts, the

domain experts decompose them into effort variables, representing the most relevant

aspect of the effort factor.

Inputs • Questionnaire for specifying, defining, and rating relevant effort factors.

• <Optional> List of example effort factors, preferably effort factors that are

typically used in contexts considered while building the CoBRA effort model (refer

to Appendix 13 for an example reference list of effort factors).

(continued)

2 Delphi is a group consensus technique proposed by Boehm (1981). Wideband Delphi is the most

recent refinement of Delphi. Wideband Delphi and its variants are widely used in many domains

for achieving group consensus.
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In the following subsections, we present the major activities comprising the

“identifying and defining relevant effort factors” step of the CoBRA model devel-

opment process.

5.6.1 Identify Potential Effort Factors

The objective of this activity is to identify project characteristics that are believed to

have a significant impact on development productivity in projects within the

selected context. The CoBRA method uses two principal approaches for

accomplishing this activity: judgmental and analytical. We can combine these

two approaches in order to moderate their weaknesses and utilize their strengths

and thus optimize the effectiveness of the factor identification step.

Judgmental Approach: Group Consensus Session
The judgmental approach for selecting the most relevant effort factors is the default

approach used within CoBRA. In this approach, multiple domain experts identify

potentially relevant effort factors during a brainstorming session. The analyst

organizes and moderates a group discussion session during which the domain

experts specify those effort factors they perceive as relevant based on their individ-

ual project experiences.

Table 5.10 (continued)

Step 5: Identifying relevant effort factors

Activities 1. Identify potentially relevant effort factors.

2. Rate the relevancy of the identified effort factors.

3. Analyze rating consistency.

4. Synthesize multiple ratings.

5. Decide on a set of most relevant effort factors.

6. Decompose complex effort factors.

Tools • Statistical tools for analyzing the consistency of the judgments provided by the

domain experts and (optionally) of the results of the analytical identification of

relevant effort factors. Example tools may comprise statistical software packages

that support computing Kendall’s coefficient of concordance. Alternatively, simple

calculation tools, such as MS Excel, can be used to implement the computation of

Kendall’s coefficient of concordance.

• <Optional> Software tools that implement analytical techniques for identifying

from measurement data those factors that had the greatest impact on development

productivity in historical projects. These techniques and tools may include simple

multivariate regression analysis, factor weighting and selection tools, and advanced

causal analysis tools.

• Software tools for visualizing, documenting, and communicating the results of effort

factor selection. Basic tools include elements of standard office packages such as MS

Excel, MS Word, and MS PowerPoint.

Outputs • A list of the relevant effort factors with associated definitions and relevancy ratings.

• Selection of the most relevant effort factors to be added to the CoBRA effort model.

• <Optional> A list of variables defined for complex effort factors.

• <Optional> Results of the analytical identification of relevant effort factors

(procedure and outcomes of the analysis of available project measurement data).
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Threats of Group Discussion

Group discussion sessions are a common technique for eliciting an

organization’s knowledge and obtaining expert consensus on certain aspects.

Group sessions are also commonly regarded as leading to less biased

outcomes compared to the judgment of individual human experts. Yet,

group consensus techniques are not free from biases. Typical biases of

group discussion include:

• Wishful thinking: This effect refers to the tendency of humans to make

estimates according to what might please the receiver of the estimates

(e.g., the customer) or even themselves (overoptimism regarding one’s own

performance) instead of basing such estimates on evidence or rationality.

• Group think: This effect is close to wishful thinking and refers to the

situation where people with stronger personalities dominate the

deliberations and some group members might be influenced by others.

For example, senior and management project members typically have

much influence on the young technical staff.

• Polarization: This effect is close to the group-think effect and refers to the
situation where a majority of a group creates the behavior of the whole

group. For example, groups in which members are prone to making risky

judgments become more prone to making such judgments, while groups

with a majority of members who are averse to making risky judgments

become more risk averse.

• Anchoring: This effect (also known as focalism) refers to the common

human tendency to rely too heavily on one aspect or piece of information

when making estimates. As a result, estimates are biased towards a specific

aspect without accounting for other important elements influencing the

estimated value.

• Risk shift: This effect refers to the tendency of people in a group, where

individual responsibility is diminished, to adopt riskier courses of action

than they would take on a personal basis. This effect typically leads to

unrealistic underestimations.

In the context of a group consensus session, the role of the analyst as the

session moderator is essential for avoiding group discussion bias and for

obtaining reliable effort factor identification results.

In support of this activity, the analyst can prepare a reference list of example

effort factors and present it to the domain experts in order to explain the idea of an

effort factor and its proper definition. However, we should be very careful in

presenting particular effort factors because they may bias later judgments of the

domain experts.
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As an additional stimulus, the analyst may present to the domain experts the

distribution of development productivity—defined as software size divided by

project effort—for historical projects and ask them to identify factors that caused

the observed productivity variances. For example, if we consider the productivity

data illustrated in Fig. 5.4, the analyst may ask the domain experts first what made

project P14 and P13 extremely productive and then what made projects P01 and

P02 extremely unproductive.

The effort factors identified by the domain experts may, especially at the

beginning of the brainstorming session, be quite abstract and actually refer to a

composition of multiple less abstract factors. For example, the domain experts may

point out team skills as an important effort factor. In this case, the analyst should

clarify whether the domain experts have any specific skills of any specific team

member in mind? If so, relevant sub-factors of the “Team skills” factor should be

defined. Example relevant sub-factors may include the work coordination skills of

project manager and the technical skills of the software analyst.

Tip

" Effort factors may be quite abstract and represent a composition of less abstract

concepts. Stimulate the domain experts to exactly define each effort factor they

name and ensure that they are aware of the composite nature of specific factors. In

case of composite factors, encourage them to decide on the most relevant aspects

of the factor and to define these.

Summarizing, the major activities of judgmental effort factor identification are:

1. Schedule an effort factor identification session and invite domain experts.

2. Prepare a template for documenting the effort factors identified during the

brainstorming session.

3. Prepare a reference list of example effort factors.

4. Analyze the historical project data and prepare the distribution of development

productivity, defined as software size divided by project effort.

5. Run the brainstorming session, during which the involved domain experts shall

identify, define, and discuss the potentially relevant effort factors.

The brainstorming session should end with a list of relevant effort factors and

associated concise definitions. In this respect, the analyst should ensure that:

Fig. 5.4 Example distribution of development productivity

52 5 Model Development and Validation



• Composite effort factors include a clear definition of all relevant sub-aspects.

• All domain experts agree on the effort factor definitions.

• All domain experts understand the same concept for each defined effort factor.

Violating these requirements may result in inconsistent perception of the effort

factors among the domain experts and lead to invalid results of the factor rating

activity; by rating the same factors, the experts will actually consider different

aspects of the software project.

Tip

" Ensure that all domain experts agree with respect to the concept defined by each

effort factor identified during the brainstorming session.

Analytical Approach: Analysis of Project Measurement Data
The analytical approach for selecting the most relevant effort factors is optional

within CoBRA because it requires the availability of sufficient project measurement

data and expertise in certain data analysis techniques—each of which is not always

available in software industry contexts.

Simply speaking, in this approach we employ an analytical technique to search

for significant relationships between a project’s development productivity (depen-

dent variable) and multiple project characteristics (independent variables).

The analytical approach for selecting the most relevant effort factors has several

significant advantages over the judgmental approach. First of all, it is objective in

that it extracts knowledge represented by quantitative measurement data—unlike

the judgmental approach, in which the assessments of human experts are biased by

their individual experiences and preferences. The analytical approach will, for

example, not omit any relevant knowledge if it is actually present in the data and

can be extracted by specific analysis techniques, unlike the human experts who often

omit (consciously or unconsciously) relevant information. Furthermore, the analyti-

cal approach typically costs much less than that laborious process of a systematic

group consensus procedure with human experts. Using the analytical approach

merely requires applying an appropriate analysis tool to the measurement data and

interpreting the outcome of the analysis provided by the tool. Finally, even though

human experts are to be provided with measurement data to base their judgment on,

analytical approaches are much more effective (and efficient) in extracting knowl-

edge from measurement data—especially from large, multidimensional data sets

whose analysis is beyond the cognitive capabilities of human experts.

Depending on the capabilities of a particular analysis technique, the project

measurement data on its input need to accomplish different prerequisites, and it

provides different kinds of information on its output.

• Simple visual analysis of the measurement data does not impose any particular

constraints on the data. It is, however, typically limited to the identification of

project characteristics directly influencing development productivity. It is rather
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infeasible to determine other useful information from simply looking at the data.

Even identifying characteristics directly influencing productivity might be quite

difficult for a larger amount of data, that is, a larger number of historical projects

and their measured characteristics.

• Statistical methods, such as multivariate regression analysis, impose a number of

constraints on the input data. For example, they require mutual independency of

the independent variables (project characteristics). In return, they provide an

indication of the most relevant project characteristics that have a direct impact

on productivity and the strengths of the impact. For example, stepwise regres-

sion selects only those independent variables that provide a significant explana-

tion for the variance of the dependent variable and assigns each selected

independent variable a regression coefficient that quantifies the variable’s con-

tribution to the variance of the dependent variable.

• Machine learning methods, such as feature weighting (Wettschereck et al.

1997), impose fewer constraints on input data than statistical analysis and

provide similar outputs (relevant project characteristics having a direct impact

on development productivity and the strengths of the impact).

• Causal modeling methods represent the most advanced approach (Spirtes et al.

2001). The constraints they impose on the input data depend on the particular

modeling technique. On the output, they provide a mode of causal dependencies

between dependent and independent variables, including mutual interactions

between independent variables and estimates for the strengths of the identified

causal relationships. There are several free and commercial software packages3

that support causal discovery. Most of them, however, focus on discovering the

structure of a causal model from the data, that is, on discovering relevant causal

interactions between the considered variables, in our case between development

productivity and project characteristics. Only a subset of software packages

supports the quantification of the discovered causal effect by estimating condi-

tional probabilities4 for the variables in the causal model. Yet, for identifying the

most relevant effort factors, the causal model structure will perfectly suffice for

this purpose.

A detailed discussion of particular analysis techniques is beyond the scope of

this book. Readers interested in applying analytical methods for the purpose of

3We do not provide a list of existing software packages supporting causal discovery because they

change over the time. As causal modeling has been gaining more and more interest, new software

tools are created and existing ones are enhanced by new functionalities. You may easily find

appropriate software packages on the Internet using “causal discovery,” “learning/discovering

causal models,” or similar keywords.
4 For each variable in a causal model, the probability distribution of its values is computed given

the values of variables that have a direct causal influence on this variable.
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identifying relevant effort factors may refer to the related literature provided at the

end of this chapter in the “Further Reading” section.

Example 5.4. Analytical Identification of Relevant Effort Factors

Data Set
Let us assume the project data used in Fig. 5.4. However, we were able to obtain

measurement data on seven project characteristics:

• Team Size: Peak size of the software development team. This attribute is

measured on an absolute scale and ranges between one and infinity.

• Dom-Skills: The level of the project team’s knowledge and skills with regard

to the software application domain. This attribute is measured on a Likert-

like5 approximately interval scale and ranges between 1 and 5, where one

refers to a team in which all or most of the members are new to the application

domain and five refers to a team in which all or a majority of the members are

experts in the application domain.

• PM-Skills: The level of the project manager’s knowledge and experience with

regard to project management. This attribute is measured on a Likert-like

approximately interval scale and ranges between 1 and 5, where one refers to

a project manager who is inexperienced and has never managed a project and

five refers to a project manager who is very experienced and has managed a

number of high-priority projects.

• Q-Reqs: The extent of quality requirements specified with regard to a soft-

ware product. This attribute is measured on a Likert-like approximately

interval scale and ranges between 1 and 5, where one refers to strict

requirements regarding software quality and five refers to low-quality

requirements.

• Reuse-Lev: The extent of software reuse. This attribute is measured on a

Likert-like approximately interval scale and ranges between 1 and 5, where

one refers to less than 10 % reuse and five refers to more than 70 % reuse.

• Prog-Cplx: The level of software code complexity. This attribute is measured

on a Likert-like approximately interval scale and ranges between 1 and 5,

where one refers to incomprehensive code with literally no discernible struc-

ture and five refers to simple non-procedural code.

5 A Likert scale is considered as an approximately interval scale on which the distance between

subsequent values is assumed to be equal. This assumption allows for applying upon Likert-scale

measurement mathematical operations that are admitted for interval scales, yet meaningless for

ordinal scales. The classical Likert scale contains an odd number of levels where the middle level

refers to the neutral value of the measured aspect—neutral in the sense that it is neither positive nor

negative. In the example presented here—similar to the typical usage of the CoBRA method—we

use an approximately interval scale that does not include any clear “neutral” value. The values

typically range between best (nominal) case and worst (extreme) case.
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Table 5.11 provides historical project data sorted with respect to development

productivity. The approximately interval character of the Likert-like scale we

use allows us to use analysis techniques applicable for interval-scale data—

which would not be applicable if we used ordinal scales.

Figure 5.5 presents a scatter plot of the projects’ size and effort. As we can

see, some projects are outliers with respect to their productivity. The question

the project analysis should answer is which of the project characteristics

comprised by measurement data are potential causes of the observed productiv-

ity deviations?

Table 5.11 Example project data

Project Prod Team Size Dom-Skills PM-Skills Q-Reqs Reuse-Lev Prog-Cplx

P01 7.9 3 2 5 5 1 3

P02 12.3 10 3 3 5 1 2

P03 14.2 4 4 3 5 2 3

P04 14.4 6 4 4 5 2 4

P05 14.4 1 5 4 4 1 2

P06 14.5 4 4 4 5 1 2

P07 14.6 4 4 4 3 1 3

P08 14.7 5 4 4 5 1 3

P09 14.8 12 4 4 5 3 2

P10 15.0 4 3 5 5 2 3

P11 15.1 9 3 4 5 2 2

P12 15.3 1 5 5 5 2 3

P13 37.3 1 5 5 4 3 2

P14 50.7 1 5 5 5 5 4

Fig. 5.5 Distribution of development productivity
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Visual Analysis
Let us first analyze the data visually and then apply several formal techniques for

identifying which of the project characteristics has the greatest impact on

productivity according to the available measurement data.

Visual analysis requires neither any particular data preprocessing nor setting

method parameters. During the data investigation, we are interested in project

outliers with respect to development productivity and characteristics on which

these project differ from other, non-outlier, projects. We can easily notice that

for the main body of projects (P03–P12), productivity ranges between 14 and 15.

Outlying projects include P01 with extremely low productivity, P02 with some-

how lower productivity, and P13–P14 with extremely high productivity. Now

we look for project characteristics on which these productivity outliers differ

from the main body of projects.

The only clear candidate is Reuse-Lev. This attribute seems to determine the

high productivity of project P14, which is the only project that gained the highest

score (5). The second most productive project P13 obtained a score of 3 which is

the same as project P09. Both P13 and P09 are similar on other attributes; the

slightly higher scores of P13 on Dom-Skills and PM-Skillsmay explain its higher

productivity relative to P09.

On the lower end of productivity, the outlier projects P01 and P02 obtained

the worst scores on Reuse-Lev. Yet, since the more productive projects P05–P08

obtained the same score, Reuse-Lev is not the only determinant of development

productivity. A closer look at the project for which Reuse-Lev ¼ 1 reveals the

Dom-Skills attribute as the one that seems to be correlated with the productivity

of these projects.

Summarizing, product reuse level (Ruse-Lev) and team domain skills (Dom-
Skills) seem to be relevant effort factors in our example. We must, however, note

that even for such a small data set with quite clear trends, identifying relevant

effort factors is quite difficult. For larger data sets, visual analysis will not be

feasible. Therefore, we need analytical methods that do this job for us.

Multivariate Regression
The first analytical method we use is multivariate regression. For the purpose of

analysis, we use the MS Excel application from the Microsoft Office package.

Since regression analysis does not handle categorical data, we need to ensure

that the project data meet this constraint and preprocess it, if necessary. In our

case, none of the project attributes are categorical, so we apply regression

analysis on it without extra preprocessing. In the regression analysis, we set

development productivity (Prod) as an independent variable and measure six

project characteristics as independent variables. In addition, we force regression

to set intercept to zero (we assume that for the lowest values of the independent

variables, productivity is equal to zero). Table 5.12 presents the basic outcomes

of the regression analysis.

As we can see, three project characteristics have been assigned positive

regression coefficients: Reuse-Lev, Dom-Skills, and PM-Skills. Yet, regression
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analysis found only the reuse level (Reuse-Lev) as a statistically significant

contribution to the variance on development productivity (p ¼ 0.002). We

may then say that as the reuse level definitely shows an impact on development

productivity, domain and project management skills might be the next

candidates, although the regression analysis did not indicate them as clear

determinants of development productivity.

Feature Weighting with Relief
The next analytical method we try is feature weighting analysis. Feature

weighting is commonly used in the context of case-based reasoning, which

uses a weighted distance function to generate predictions from known instances.

The objective of feature weighting is to find optimal attribute weights that lead to

the best predictions. In our example, we use a technique called Relief6 (Robnik-

Sikonja and Kononenko 2003) because it copes with common deficits of soft-

ware engineering data such as missing measurements, data collinearities, and

mixed scales. Moreover, Relief provides an intuitive output, namely, factor

weights that represent a percentage contribution of the factors to the variance

of the dependent variable.

For the purpose of analysis, we use Weka7 (Hall et al. 2009), an open source

machine learning package. Before using the tool, we need to convert the data

into one of the file formats acceptable to Weka. We set all project attributes to a

cardinal scale. On the one hand, we would like to be consistent with regression

analysis. On the other hand, interpreting Likert-like approximately interval

scales as categorical would not be right because in that case, all five values

would be considered as equally dissimilar, which is not true. For example, we

can definitely say that value 1 is closer to value 2 than to value 3. If we

interpreted these values as categories, 1 would be equally dissimilar to 2 and

3. We set the number of the nearest neighbors parameter to K ¼ 1 (typical for

very small data sets) and left other parameters with their default values proposed

Table 5.12 Results of multivariate regression analysis

Project characteristic

Regression

coefficient

Statistical

significance p

Size of software development team (Team Size) –0.63 0.328

Knowledge and skills on application domain (Dom-Skills) 2.03 0.272

Project management knowledge and experience (PM-Skills) 0.91 0.713

Extent of software quality requirements (Q-Reqs) –0.78 0.773

Extent of software reuse (Reuse-Lev) 7.73 0.002

Program code complexity (Prog-Cplx) –0.72 0.782

6More precisely, we use the version of the Relief technique called RReliefF, which copes with

both categorical and cardinal data.
7 http://www.cs.waikato.ac.nz/ml/weka/
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by Weka. Table 5.13 presents the results of the weighting. Attributes with

weights equal to or lower than zero are interpreted as irrelevant.

The outcomes of feature weighting are largely consistent with previous

analyses. Similar to visual analysis and regression analysis, Relief identified

the reuse level (Reuse-Lev) as the most relevant and project manager skills as the

second most relevant determinant of development productivity. Unlike regres-

sion analysis, which identified domain skills (Dom-Skills) as the next most

relevant effort factor, Relief pointed out program complexity (Prog-Cplx).

Causal Modeling with Tetrad
The last analytical method we try in this example is causal discovery. We use the

PC algorithm implemented in the free causal discovery software package called

Tetrad IV8 (Scheines et al. 1998). Again, we set all project characteristics to a

cardinal scale and formatted the data to a file format acceptable to Tetrad tool.

For the PC algorithm, we used the default setting of Tetrad.

The analysis found reuse level (Reuse-Lev) and domain skills (Dom-Skills) to
have a relevant causal influence on development productivity. No other

relationships were found.

Summary
Table 5.14 presents an overview of the example effort factor identification using

different analytical approaches. We use ranks to indicate the relative importance

of the effort factors pointed out by the respective analysis technique. Ranks in

Table 5.13 Results of relief feature weighting

Project characteristic Weight

Size of software development team (Team Size) �0.087

Knowledge and skills on application domain (Dom-Skills) �0.079

Project management knowledge and experience (PM-Skills) 0.083

Extent of software quality requirements (Q-Reqs) �0.080

Extent of software reuse (Reuse-Lev) 0.316

Program code complexity (Prog-Cplx) 0.037

Table 5.14 Summary of analytical identification of relevant effort factors

Project

characteristics

Visual

analysis

Multivariate

regression

Feature

weighting

Causal

discovery Summary

Team Size – – – –

Dom-Skills (2) (2) 1 2

PM-Skills (3) (3) 2 – 3

Q-Reqs – – –

Reuse-Lev 1 1 1 1 1

Prog-Cplx – – 3 – 4

8 http://www.phil.cmu.edu/projects/tetrad/
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brackets refer to uncertain results; for example, when using regression analysis,

the effort factors were not statistically significant, although regression assigned

them the second and third largest coefficients. The summary column illustrates

the example decisions regarding the sequence of considering candidate effort

factors.

Concluding, we can say that a number of different analytical techniques exist

that can support domain experts in identifying relevant effort factors. As we saw

in this example, different methods provide largely consistent results when

applied to relatively simple measurement data. Yet, when selecting a particular

technique, we need to consider the characteristics of the project data and the

capabilities of the potential analysis technique. ■

The analytical approach for identifying relevant effort factors has several signif-

icant weaknesses. First, it cannot identify effort factors that, although being rele-

vant, are not included in the measurement data from historical projects. Second,

even though a certain project characteristic contributes to increased project effort

(decreased development productivity), it will not be considered as relevant as long

as it does not introduce any variance in the measured productivity. For example,

requirements volatility is commonly considered as an important factor reducing

development productivity. Yet, if for all measured historical projects requirements

volatility has been measured as “high,” it will be ignored in any kind of analysis

because it is not possible to observe no variance on requirements volatility related

to variance on development productivity—simply because there is no variance on

requirements volatility.

In order to overcome the weaknesses of the analytical approach and exploit its

strengths, we suggest using it in combination with the judgmental approach, for

example, by supplementing expert judgment with analytical factor identification

based on available project measurement data.

Combined Approach: Synthesizing Judgmental
and Analytical Approaches
This approach represents an alternative way of performing the group consensus

session—alternative to an exclusively judgmental approach. In this approach, the

judgment of domain experts is compared to the results of analytical factor selection,

and then, this comparison is presented to the domain experts, who discuss the

potential reasons of the observed discrepancies. At the end, the domain experts

agree on the synthesis of judgmental and analytical factor selection and decide

which effort factors are relevant and should be included in the CoBRA model.

As an alternative to a group consensus session, we may consider an analytical

way of combining the outcomes of effort factor selection by means of expert

judgment and by means of data analysis. Before deciding on an analytical synthesis

of expert- and data-based factor selection, we should consider the benefits and

drawbacks of this approach. One significant drawback is that we need to master the

appropriate theory used for the synthesis. An advantage is that we can avoid
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judgmental biases by applying a systematic synthesis process based on clear

decision criteria for selecting or rejecting particular effort factors. Moreover, we

can avoid additional involvement of the domain experts, whose availability is

typically very limited. A more detailed discussion of particular theories and

techniques that can be employed for synthesizing the outcomes of alternative factor

selection approaches is beyond the scope of this book. Let us only mention that one

possible approach involves applying the methods of Multicriterial Decision Analy-

sis (MCDA). For example, we have applied this approach for identifying relevant

effort factors in the context of an analogy-based and data-driven effort estimation

method (Trendowicz et al. 2008a/b).

5.6.2 Rate Relevancy of Identified Effort Factors

The objective of this activity is to rate the relevancy of the initially identified effort

factors from the perspective of their usefulness for the CoBRA effort model. The

outcomes of the rating will support the selection of a subset of the most relevant

factors, which will then be included in the CoBRA model. In a typical case, a

judgmental approach is employed in which domain experts assess the relevancy of

the relevant effort they initially identified during the group consensus session.

Alternatively, an analytical approach can be used in which an analyst checks the

measurement data for the relevant factors (if such data are available) with respect to

the impact of the factors on project effort. Finally, similar to the factor identification

step, judgmental and analytical approaches can be combined to determine the

relevancy of effort factors.

Judgmental Approach: Group Consensus Session
In the judgmental approach, the domain experts rate the relevancy of the effort

factors in the group session during which these factors were identified. At the end of

the session, the analyst presents the consolidated results of the effort factor identi-

fication and introduces the rating procedure and the questionnaire to the domain

experts. The experts rate each factor individually and return their ratings to the

analyst before leaving the session. Optionally, the domain experts may perform the

factor rating off-line and submit their individual ratings to an analyst, for example,

via e-mail.

In the simplest case, each expert rank-orders the identified factors with respect to

their relative impact on development productivity. In this case, a candidate effort

factor can be simply put on paper cards—one effort factor per card—and given to

the experts to sort the cards in order of the relevancy of the factors on the cards.

Another approach is to rate the relevancy of the candidate effort factors with

respect to several aspects. Example aspects may include the factor’s impact,

measurability, and controllability, where:

• Impact represents the strength of a given factor’s influence on development

productivity and project effort.
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• Measurability represents the difficulty (overhead) of collecting factor-related

project data. This includes the ease of defining a quantitative measure and

collecting corresponding quantitative data. From the perspective of project

management overhead, effort factors included in the effort model should be

measurable at reasonable cost.

• Controllability represents the extent to which a software organization can

influence/control the factor’s value. For example, a customer’s characteristics

are usually hard to control. From the perspective of improving development

productivity and managing software project risks, project managers must be able

to control factors included in the effort model, that is, they must be able to affect

their values in order to improve the project’s productivity and mitigate

associated project risks. On the other hand, from the perspective of negotiating

software project costs, a project manager might want to include customer-related

effort factors in order to investigate their impact on project effort and thus get the

basis for negotiations with a customer.

Figure 5.6 illustrates the three-dimensional space of factor relevancy represented

by the aforementioned three aspects. The analyst asks the domain expert to assess

Fig. 5.6 Three-dimensional view on the relevancy of an effort factor
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each effort factor with respect to each aspect, for example, using a simple 5-point

Likert scale as illustrated in Fig. 5.6. In the end, the analyst and the domain experts

may agree on including in the CoBRA model only those effort factors that were

assessed as at least “high” on each impact, measurability, and controllability aspect

(represented by the “acceptance space” in Fig. 5.6).

In both cases, rank ordering or rating effort factors, the analyst should keep the

number of candidate factors relatively small in order to allow the domain experts to

comprehend them all while assessing the factors’ relevancy. Rating or ranking a

large number of factors is rather difficult for human experts. Therefore, we recom-

mend considering up to 15 effort factors. However, if the factor identification

session resulted in a larger number of factors and the analyst would like to let the

domain experts rate them all, he should divide the factors into groups and let the

domain experts assess the relevancy of the factors within each group individually.

Factors can be grouped according to the project aspects they concern, such as

process-, product-, and personnel-related factors.

Note that even though the domain experts have determined the decomposition of

complex effort factors into sub-factors (so-called effort variables) before, rating is

performed for effort factors. The domain experts may decide on a specific decom-

position of effort factors after selecting the most relevant effort factors (“decom-

pose complex effort factors” activity).

Tip

" Although factors could represent the composition of less abstract concepts (so-

called variables or sub-factors), ranking is done on abstract factors representing

n-dimensional concepts. However, decomposition has already been performed (at

least gross), and the domain experts are aware of the composite nature of specific

factors.

Analytical Approach: Analysis of Project Measurement Data
The assessment of an effort factor’s relevancy can be supported through the analysis

of project measurement data, if appropriate data are available. Yet, analytical

techniques focus on the “impact” aspect of a factor’s relevancy, that is, on the

strength of the influence a given effort factor has on effort. Other aspects, such as a

factor’s measurability or controllability, need to be judged by human experts. In the

analytical approach, we employ explorative data analysis techniques in order to

determine the strength of the relationship between one or more effort factors

(independent variables) and effort (dependent variable). In case of one effort factor,

we refer to univariate data analysis, while for multiple effort factors, we refer to

multivariate data analysis. Since, in practice, software size is actually the effort

factor with the greatest impact on effort, we typically exclude it from the analysis by

shifting it to the side of the dependent variable and investigate the relationship

between the effort factor and development productivity (computed as effort divided

by size).
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Example analysis techniques include many of the techniques we already pro-

posed in Sect. 5.6.1 for the purpose of analytical selection of candidate effort factors.

Example theories we can consider include statistics, machine learning, or causal

modeling. Similar to identifying candidate effort factors, we look at the numerical

coefficients that an analysis technique assigns to each effort factor in order to

quantify its impact on productivity. These coefficients may include regression

coefficients, feature weights, or strength of causal relationships. Yet, in each of

these cases, the principal concept is much the same: Each factor is assigned a

numerical value that represents the strength of the factor’s contribution to the

variance in development productivity. Please refer to Example 5.4 for an illustration

of popular analytical techniques that may be used for the purpose of rating the

relevancy of potential effort factors using available project measurement data.

The credibility of the analysis result depends to a large extent on the amount and

quality of the data. Since software engineering data are typically sparse and often

inconsistent, we recommend interpreting the results of such a data analysis with

great care. At best, the data should be confronted with the judgment of human

experts, who ultimately decide on the impact of effort factors.

5.6.3 Analyze Rating Consistency

The objective of this activity is to check for consistency between the factor

relevancy assessments provided by multiple domain experts and—optionally—

the analysis of the project measurement data. Potential inconsistencies should

then be discussed with the domain experts during a group meeting. Usually, such

a discussion can take place at the beginning of the factor quantification group

session (Step 7 of the model development process discussed in Sect. 5.8). In case

of many significant inconsistencies, the analyst may consider holding a separate

group session for this purpose.

Consistency Between Experts’ Ratings
Domain experts often vary with respect to their individual ratings for the same

effort factors. CoBRA offers several possibilities to deal with inter-rater disagree-

ment. The overall consistency check consists of testing Kendall’s coefficient of

concordance for the experts’ agreement (Sheskin 2011). In case of significant

disagreement, the analyst may analyze the distribution of the ratings and clarify

potentially outlying ratings in a group discussion with the domain experts. One

possible source of inconsistent ratings might be the different experiences of the

involved domain experts. Example 5.5 illustrates how to check consistency

between relevancy ratings, which three independent experts provided for 12 effort

factors they had initially identified in a brainstorming session. Kendall’s coefficient

of concordance among all three experts was equal to w ¼ 0.33, meaning little

agreement. Yet, after excluding the ratings of the least experienced expert, it

increased to w ¼ 1.00, meaning perfect agreement.
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Consistency Between Judgmental and Analytical Ratings
The ratings of the effort factors’ importance judged by the domain experts and those

returned by data analysis differ with respect to their scale. Moreover, the concept of a

factor’s relevancy is typically interpreted differently by human experts and by data

analysis techniques. Experts perceive a factor’s relevancy from the perspective of its

usefulness for effective effort estimation. In consequence, they may consider a

number of different aspects of a factor’s relevancy, such as its impact on effort, its

measurability, or its controllability. Data analysis, on the other hand, typically

represents a very narrow view on a factor’s relevancy in that it considers solely the

extent to which changes on the factor’s values contribute to changes in development

productivity. Therefore, judgmental and analytical assessments of factor relevancy

cannot be compared directly. In CoBRA, we recommend comparing the results of

analytical and judgmental factor relevancy assessment on the level of factor

rankings. In this approach, we rank-order effort factors using (1) the results of a

data analysis and (2) expert judgments with respect to the factor’s impact on effort

and investigate to which extent these two rank orders are consistent. For this purpose,

we can compute Spearman’s rank correlation coefficient (Sheskin 2011) and look

how close it is to 1, which means perfect agreement between the two rank orders. In

case of significant inconsistencies, the analyst should first prove the reliability of the

data analysis. If the data analysis proves to be correct, then the analyst should discuss

the discovered inconsistencies with the domain experts. It might have simply hap-

pened that the measurement data covered different experiences than the experts. In

this case, we can treat the expert judgment and the data analysis as complementary

sources for the relevancy assessments of the effort factors and should combine them

during a group discussion with the domain experts.

In practice, effort factors identified by human experts may differ, at least

partially, from factors covered by measurement data (and thus considered by the

analytical approach). Usually, only some of the effort factors are shared by both

approaches. In this situation, comparing rank orders between the two partially

exclusive sets of factors might not be so straightforward. In such a case, we suggest

checking consistency between the judgmental and the analytical factor relevancy in

two steps:

1. Compare factor sets. Analyze how many effort factors were considered by both

the judgmental and the analytical approach, meaning how many of the factors

initially identified by the domain experts were also covered by the available

measurement data, and thus considered in the analytical approach. Additionally,

one may check how many factors were considered by both approaches as being

of any relevancy, that is, as being different from completely irrelevant. In

Example 5.5, the domain experts brainstormed 12 effort factors as potentially

relevant, whereas the analytical approach selected 3 out of 6 factors covered by

the measurement data as having a nonzero impact on development productivity.

Yet, only 3 factors are shared by the factor sets considered by both the experts (3

out of 12 brainstormed factors) and the data analysis (3 out of 6 factors covered

by the available project measurement data).
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2. Compare factor ratings/rankings. Analyze the absolute and relative position of

the effort factors shared by the alternative rating approaches in the rank order

provided by each individual approach. Absolute position refers to the position of
factors in individual rank orders, provided independently by the experts and the

analytical approach. If we were to rank the effort factors considered in Example

5.5 according to the experts’ ratings and the analytical weights, the three effort

factors shared by both approaches would be highly ranked in both the expert-

based and the analysis-based rank orders. In particular, the three factors would

obtain ranks {1, 2, 2} among the 12 factors considered in the judgmental

approach and ranks {2, 3, 4} among the six factors considered in the analytical

approach. Relative position refers to the position of the shared factors in the

rank-order sequence relative to one another. Continuing our simple example, if

the three shared factors were ranked relative to each other’s relevancy within

each judgment-based and analysis-based ranking, then the relative ranks

(positions in the sequence) would be {1, 2, 2} and {1, 2, 3} for the judgmental

and the analytical approach, respectively. From both the absolute and the

relative rank perspectives, the human experts are highly consistent concerning

the relevancy of three effort factors considered by both approaches. Yet, this

might not be the case for all factors considered by the domain experts if they

were covered by appropriate measurement data and their relevancy was assessed

using the analytical approach.

Example 5.5. Analyzing Consistency of Factor Relevancy Ratings

Let us illustrate the process of checking consistency between effort factor

relevancy judged by human experts and the acquired from available project

measurement data using a data analysis technique.

Judgmental Approach
In this example, the expert-based selection of relevant productivity factors

involved three domain experts with different roles and experience (Table 5.15)

and proceeded in two steps.

The first step consisted of a group meeting, during which the domain experts

identified an initial set of factors through a brainstorming session. The initial set

of 12 factors was then grouped into project-, process-, personnel-, and product-

related factors. The first four groups refer to the characteristics of the respective

entities (software project, development process, products, and stakeholders).

In the second step, the experts were asked to rate the effort factors using the

5-point Likert scale as illustrated in Fig. 5.6, yet only with respect to a factor’s

Table 5.15 Characteristics of involved domain experts

Characteristic Expert 1 Expert 2 Expert 3

Position/role Project manager Developer Quality manager

Experience [#working years] 8 5 9

Experience [#performed projects] 30 15 40
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impact on development productivity. The five levels of a factor’s impact were

defined as follows: 1—very low, 2—low, 3—neither nor, 4—high, 5—very

high. Table 5.16 summarizes the outcomes of the experts’ ratings of the factors

they had previously identified during the brainstorming session. The underlined

factors are those for which project measurement data had been collected for

already completed projects (we assume the data from Example 5.4, Table 5.11).

Checking Consistency Between Expert Judgments
In order to check the overall consistency of the ratings provided by the experts,

we compute Kendall’s coefficient of concordance. There is little agreement

among all three experts (Kendall’s w ¼ 0.33). Yet, we can observe a certain

inconsistency between Expert 2 and the remaining two experts. We can look for

potential reasons of this inconsistency in the experts’ characteristics provided in

Table 5.15. In fact, Expert 2 differs from the remaining two experts on two

aspects. First, he represents a technical role (developer), whereas the other two

experts rather represent managerial and controlling roles. Second, Expert 2 has

relatively little experience compared to the other two experts. We can check our

hypothesis by temporarily excluding Expert 2 and analyzing the agreement

between the relevancy ratings of Expert 1 and Expert 3. Indeed, these experts

almost perfectly agree with respect to their ratings of relevancy for the 12 effort

factors (Kendall’s w ¼ 1.00). Concluding, we should consider the results of the

consistency analysis before synthesizing the relevancy ratings provided by

multiple domain experts. We may first consider discussing in a group the exact

rationale behind the inconsistent ratings. In our example, it may, for instance,

appear that the developer has very important experiences that led him to other

ratings than the project manager and the quality manager. In light of these

Table 5.16 Results of judgmental factor selection and rating

Id Effort Factor Expert 1 Expert 2 Expert 3

Project

PROJ.1 Clarity of project team roles and responsibilities 3 1 3

PROJ.2 Development schedule constraints 4 2 3

PROJ.3 Geographic separation of development locations 2 3 2

Personnel

PERS.1 Communication and team work skills 4 2 4

PERS.2 Knowledge and skills on application domain 3 3 3

PERS.3 Project management knowledge and experience 5 4 4

Process

PROC.1 Disciplined requirements management 4 4 5

PROC.2 Customer participation 3 1 3

PROC.3 Quality of testing 1 1 2

Product

PROD.1 Requirements volatility 5 4 5

PROD.2 Product criticality 1 3 1

PROD.3 Program code complexity 4 5 4
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experiences, the latter two experts may revise their relevancy ratings. If, how-

ever, the developer had no reasonable support for his ratings, we can exclude

them from further consideration and use the ratings of the project manager and

those of the quality manager for synthesizing the final ratings of the effort

factors’ relevancy (see Example 5.6).

Analytical Approach
Regarding the analytical approach for rating the relevancy of the most important

effort factors, let us reuse the results from Example 5.4. Let us assume that the

available project measurement data consist of 14 already completed projects. For

each, data on six characteristics have been collected: Team size, Domain skills of
development team, Project manager’s skills, Level of software quality
requirements, Extent of software reuse, and Software code complexity. As

already noted, three of these factors (marked by underlining) were also consid-

ered by the domain experts as being relevant effort factors.

Let us also assume that to rate the relevancy of these potential effort factors,

we employed the feature weighting technique called Relief as described in

Example 5.4. We decided on this technique because it can be efficiently applied

to large data sets (due to its polynomial computation complexity) and because it

copes with common deficits of software engineering data, such as missing

measurements, data collinearities, and mixed scales. Moreover, Relief is easy

to use because it is supported by an open source data mining tool called Weka

and provides intuitive outputs (factor weights that represent a percentage contri-

bution of the factors to the variance in development productivity). Table 5.17

summarizes the results of the Relief weighting and the corresponding ranks for

the six effort factors covered by the available project measurement data.

Checking Consistency Between Judgmental and Analytical Approach
In order to check consistency between the effort factors selected as relevant by

the judgmental and the analytical approach, we consider two aspects: considered

factors sets and assigned factor ratings.

With respect to the similarity between the effort factors considered by the

domain experts and those selected by the data analysis, the experts identified a

lot more factors than the analytical approach. The domain experts identified

12 potentially relevant effort factors, whereas the data analysis considered six

project characteristics included in the available project data repository. Yet, this

is not an unusual situation in the context of sparse project measurement data.

Table 5.17 Results of Relief feature weighting

Project characteristic Weight Rank

Size of software development team (Team Size) �0.087 4

Knowledge and skills in application domain (Dom-Skills) �0.079 4

Project management knowledge and experience (PM-Skills) 0.083 2

Extent of software quality requirements (Q-Reqs) �0.080 4

Extent of software reuse (Reuse-Lev) 0.316 1

Program code complexity (Prog-Cplx) 0.037 3
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In our example, the measurement data repository comprises merely six project

characteristics, which could be considered as potential factors influencing a

project’s productivity and effort. In such a case, the advantage of the judgmental

factor selection approach is that specific experiences of individual human

experts comprise a lot more potential effort factors.

With respect to the factor ratings, we look at the relevancy ratings assigned to

the factor shared by both the judgmental and the analytical approaches. These

are three effort factors: “PERS.2. Knowledge and skills in application domain”,
“PERS.3. Project management knowledge and experience”, and “PROD.3.
Program code complexity”. Since comparing the expert ratings on the Likert

scale against the ratio-scale weights assigned by the analytical approach is

difficult, we would compare the rank order of the three shared factors within

both the judgmental and the analytical approach. Table 5.18 illustrates the

absolute and relative ranks of the three factors.

Concerning the absolute ranks, it is hard to say anything conclusive. We can

merely say that the shared effort factors are placed at the top of the rank order

determined by the experts’ ratings. We cannot draw such a conclusion for the rank

order based on analytical weights because there are simply too few factors in total

considered in the analytical approach. Concerning the relative ranks, we can say

that the domain experts and the data analysis have consistent preferences among

the three shared factors. The most relevant factor is “Project management knowl-
edge and experience” (PERS.3), followed by the “Program code complexity”
(PROD.3) and “Knowledge and skills in application domain” (PERS.2).

In the next step, the factor relevancy ratings should be combined and

presented to the domain experts in order to let them decide about the final set

of factors for inclusion in the CoBRA effort model. ■

5.6.4 Synthesize Multiple Ratings

The objective of this activity is to combine the relevancy ratings acquired from

different sources and through different methods in order to select the most relevant

effort factors. After the domain experts have assessed the relevancy of the candidate

effort factors and inconsistent assessments have been clarified, the analyst

synthesizes the results in order to come up with an aggregated ranking of the

factors’ relevancy. Finally, the analyst prepares the results of the aggregation for

presentation and discussion with the domain experts during the next group meeting.

Table 5.18 Absolute and relative ranking of shared effort factors

Effort factor

Absolute ranks Relative ranks

Expert 1 Expert 2 Expert 3 Relief Expert 1 Expert 2 Expert 3 Relief

PERS.2 3 3 3 4 3 2 2 3

PERS.3 1 2 2 2 1 2 1 1

PROD.3 2 1 2 3 2 1 1 2
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Synthesizing Judgment-Based Ratings
The CoBRA method uses two simple approaches for aggregating factor relevancy

assessments, depending on the form of the assessment. We propose approaches to

factors’ relevancy assessment using rankings and ratings.

Aggregating Ranking-Based Factor Relevancy Assessments
If the domain experts ranked the candidate effort factors, then the simple method9

proposed by Borda (1781) can be used for aggregating k rankings provided by

k experts. In this method, each factor is assigned a vector of k scores, where the ith
score corresponds to a position of the factor in the ranking of the ith domain expert.

Each score represents a point count such that the first factor in the ranking gets the

largest number of points and each subsequent factor in the rank order obtains

smaller number of points, proportionally to its position in the rank order. Table 5.19

illustrates two different variants of Borda’s approach for scoring the outcomes of

ranking n elements with n ranks (in our case n effort factors).

For the purpose of aggregating the results of the expert-based ranking of effort

factors, we propose using the modified version of Borda’s method to handle missing

ranks10 and rank ties in the following way:

• Missing ranks: For a set of n effort factors, m factors are assigned ranks, where

m < n. In this situation, the effort factor with the highest rank obtains a score of
n or 1 dependent on the scoring variant (see Table 5.19). Each subsequent effort

factor in the rank obtains a smaller score, according to the selected scoring

variant. The last effort factor in the rank order obtains a score of m–n–1 or 1/m,
respectively. Unranked factors are then assigned a score of 0 in both scoring

variants. Such an approach makes two assumptions: (1) that the top-ranked

factors are equally important to both groups of experts, who ranked all n and

Table 5.19 Variants of

Borda’s approach for

scoring ranking results

Ranking

(n ranks)

Score

(n—rank + 1) Score (rank/n)

1st n 1/1

2nd n–1 1/2

3rd n–2 1/3

. . . . . . . . .

nth 1 1/n

9 Borda’s approach is commonly used for aggregating the results of voting.
10We recommend a ranking subset of the initially selected effort factors in case the set is very

large. Rating or ranking large sets of effort factors might be difficult for human experts due to their

limited cognition capabilities for considering multiple factors at once. In case of rating large sets of

effort factorism, the experts may be first asked to select a small subset of the factors they perceive

as most relevant and then to rate or rank only this subset of factors. After completing the rating

procedure, factors that did not obtain any rating are removed from the set, and the aggregation is

performed on the remaining factors.
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who ranked m factors, and (2) that factors with missing ranks are equally

completely unimportant to the experts who left them unranked.

• Rank ties: There exist effort factors Fi and Fj such that i 6¼ j and rank (Fi) ¼
rank (Fj). A simple way of determining scores for tie ranks is to compute the

scores as if there were no ties in the ranking and then distribute the weights

equally for each tied rank, that is, sum the weights across the tied ranks, divide

by the number of tied ranks, and assign the resulting average weight equally to

each rank. Let us illustrate this idea on a simple example. Let us assume that we

have n ¼ 4 factors F1 to F4 ranked as {1, 2, 2, 3}. First, we compute the scores

as if the four factors were not tied in the ranking, that is, as if the rank order were

{1, 2, 3, 4}. For this purpose, we use a scoring variant in which the highest

ranked factor obtains a score equal to n. The resulting “untied” scores would be

{4, 3, 2, 1}. Yet, in order to compute the scores for the tied factors F2 and F3, we
would sum their untied scores and divide by 2. The resulting score for the tied

factors would then be (3 + 2)/2 ¼ 2.5. The final scoring of the four effort factors

would then be {4, 2.5, 2.5, 1}.

After scoring the effort factors, the aggregated score is computed for each factor

by summing up the scores it has been assigned based on the rankings of multiple

experts. The summary score represents the consensus among the experts. The

factors with highest score should be considered as the most relevant ones.

Optionally, one may want to differentiate the impact of an individual expert’s

assessments on the final result, for example, in order to give preference to the

assessment of the more experienced experts. This can be simply achieved by

computing the weighted sum over the scores, where higher weights are assigned

to the scores of the preferred experts. Please note that in order to preserve the

scoring scale, the weights assigned to the experts should be between 0 and 1 and

sum up to 1 across all experts.

Aggregating Rating-Based Factor Relevancy Assessments
If the domain experts rated the effort factors using a Likert scale (possible onmultiple

aspects) or using another approximately interval or interval scale, then a simple

statistical median can be used to aggregate the ratings across multiple experts. In this

approach, for each candidate effort factor, a median is computed for the ratings

provided by multiple domain experts. If the experts rated the factors with respect to

different aspects, such as impact, measurability, and controllability, themedian of the

ratings is computed individually for each aspect. Depending on the estimation

purpose, different aspects of relevancy may have different degrees of importance.

For example, for the purpose of simply estimating effort, aspects such as controlla-

bility of factor values will not be important because we would not be interested in

changing its values to affect the estimated effort. Yet, for the purpose of risk

mitigation and productivity improvement, the controllability aspect would be impor-

tant because we would like to change the factors with the greatest negative impact on

effort in order to improve development productivity and reduce project risk.
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Synthesizing Judgmental and Analytical Ratings:
Combined Ratings Approach
Factor relevancy assessments provided by analytical and judgmental approaches

cannot be aggregated directly because they represent different concepts of rele-

vancy. In the judgmental approach, relevancy refers to the usefulness of an effort

factor for a particular effort estimation purpose and can refer to the factor’s impact

on effort, its measurability, or the controllability of the factor’s values. In the

analytical approach, relevancy typically refers to the extent to which a factor’s

variance “explains” a variance in development productivity. A simple indirect

approach for aggregating judgmental and analytical relevancy assessments involves

rankings and contains the following steps:

1. Aggregate the relevancy assessments provided by the experts and rank-order the

effort factor with respect to the aggregated expert ratings.

2. Rank-order the effort factors using the outcomes of the analytical factor rele-

vancy assessment.

3. Combine the rankings from steps 1 and 2 using Borda’s method presented above in

the “Synthesizing Judgment-Based Ratings” paragraph for aggregating expert-

based factor rankings. Yet, in order not to penalize the rating method that consid-

ered fewer effort factors (typically this is the analytical approach), we set the

highest score to the cardinality of the overall set of ranked factors, meaning factors

that were assigned a relevancy rating within at least one judgmental or analytical

approach. In order to favor one rating approach over the other during aggregation,

they can be assigned numerical weights. In order to preserve the scoring scale, the

weights should be between 0 and 1 and sum up to 1. These weights are then used to

multiply the Borda’s scores assigned to the factors based on the ranks. For

example, the analyst may want to prefer the results of the analytical factor

relevancy assessment because the analysis was based on high-quality data,

whereas the judgmental assessments involved few domain experts with little

experience. After scoring the rated effort factors using their ranks, the total

score for each factor is computed through simple sum or weighed sum. The effort

factors with the highest total scores are the candidates for inclusion in the CoBRA

model. The results of the synthesized assessment of the factors’ relevancy are to

be discussed in a group meeting with the domain experts, who will decide which

effort factors will ultimately be included in the CoBRA model (see Sect. 5.6.5).

Borda’s Scoring: Avoiding Penalty on Analytical Ratings

In the traditional Borda’s voting method adjusted for missing ranks, the

highest score is set to the cardinality of the ranked candidates (m) instead of

to the cardinality of all candidates in the voting pool (n). This way, the

method penalizes ratings of voters who have not ranked all candidates in

the pool (in order to motivate voters to rank all candidates in the pool).

In the context of the CoBRA method, such an approach would in most

cases unjustly penalize the results of the analytical approach, which typically
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considers fewer effort factors than the domain experts due to the limited

availability of project measurement data. The number of effort factors rated

by the analytical approach concerning their relevancy is always limited by the

scarcity of available project measurement data. In contrast, the domain

experts may consider any number of potential effort factors, so that the

resulting relevancy rating is, in practice, limited only by the effort the domain

experts can afford to spend on rating the factors they initially proposed. As a

result, a factor ranking provided by analyzing the measurement data would

almost always be disfavored to a factor ranking provided by domain experts.

In order to avoid this effect in CoBRA, the highest score is always set to the

cardinality of the complete set of ranked factors (where each factor has been

ranked by at least one voter, that is, a domain expert or a data analysis

technique).

An advanced approach for combining multiple assessments of factor relevancy

where each assessment makes a different contribution to the final assessment includes

using Multicriteria Decision Analysis (MCDA) methods. However, a detailed speci-

fication of such approach is beyond the scope of this book. Please refer to Trendowicz

et al. (2008a/b) for an example application of an MCDA method for the aggregating

results of different approaches to assessing factor relevancy.

Example 5.6. Synthesizing Multiple Factor Ratings

In order to illustrate the synthesizing of multiple ratings of factor relevancy, we

will continue our previous example (Example 5.5). In the first step, we will

aggregate the outcomes of the judgmental approach, meaning the relevancy

ratings provided by the multiple human experts. In the next step, we will

synthesize the aggregated outcome of the judgmental factor relevancy assess-

ment with the outcome of the analytical approach.

Synthesizing Judgment-Based Ratings
We aggregated the expert-based assessments of factor relevancy using Borda’s

approach. Table 5.20 summarizes the results of the aggregation. The aggregation

procedure consists of the following steps:

• Determine factors’ rank order: For each expert, we use Likert-scale ratings of

a factor’s relevancy to determine the factors’ rank order.

• Determine individual scores: For each factor, we employ Borda’s method for

deriving numerical scores from the ranks determined for each expert.

• Determine aggregated score: For each factor, we compute the total score using

the weighted sum. We assigned weights to experts to reflect discrepancies in

their expertise, thus potential discrepancies in the relevancy ratings they

provided. We assigned the developer (Expert 2) the lowest weight (0.1) and

the two managers (Expert 1 and Expert 3) high, yet slightly different, weights

(0.4 and 0.5) reflecting the different levels of their experience.
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Table 5.20 summarizes the total scores across the considered effort factors

and determines the final factor ranking, which we use next for synthesizing

the judgmental and the analytical assessments of factor relevancy. We marked

the top three effort factors using bold font. According to the domain experts, the

three most relevant effort factors are “PROD.1. Requirements volatility,”
“PROC.1. Disciplined requirements management,” and “PERS.3. Project man-
agement knowledge and experience.” Using a weighted average directly upon

the Likert-scale relevancy ratings leads to exactly the same rank order of the

considered effort factors.

Synthesizing Judgmental and Analytical Ratings
In order to synthesize the judgmental and the analytical assessments of factor

relevancy, we employed Borda’s method on (1) the rank order of the effort

factors assessed by the analytical approach and (2) the rank order of the effort

factors assessed by the domain experts. Table 5.21 presents the results of the

aggregation. In order to determine the highest score, we consider the complete

set of 15 effort factors considered by both domain experts (12 factors) and data

analysis (6 factors), where three factors are shared by both sets. Next, we exclude

from the consideration the two factors that were not assigned any rank; these are

the three factors that were covered by the project measurement but were neither

considered by the domain experts nor assigned a weight > 0 by the Relief

feature weighting approach (meaning no impact on development productivity

and effort). As a result, the aggregation of the relevancy assessments considers

13 effort factors.

We assumed that the judgmental and the analytical assessments are equally

reliable and assigned them equal weights (0.5). In consequence, the analytical

approach introduced one effort factor (Reuse level) into the synthesized top-

Table 5.20 Synthesizing judgmental factor’s relevancy ratings

Effort

factor

Expert 1 (0.4) Expert 2 (0.1) Expert 3 (0.5) Borda’s

weighted score

Final

rankRank Score Rank Score Rank Score

PROJ.1 3 5.0 5 2.0 3 5.5 5.0 8

PROJ.2 2 8.5 4 4.5 3 5.5 6.6 6

PROJ.3 4 3.0 3 7.0 4 2.5 3.2 9

PERS.1 2 8.5 4 4.5 2 9.0 8.4 5

PERS.2 3 5.0 3 7.0 3 5.5 5.5 7

PERS.3 1 11.5 2 10.0 2 9.0 10.1 3

PROC.1 2 8.5 2 10.0 1 11.5 10.2 2

PROC.2 3 5.0 5 2.0 3 5.5 5.0 8

PROC.3 5 1.5 5 2.0 4 2.5 2.1 10

PROD.1 1 11.5 2 10 1 11.5 11.4 1

PROD.2 5 1.5 3 7.0 5 1.0 1.8 11

PROD.3 2 8.5 1 12.0 2 9.0 9.1 4
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ranked effort factor in addition to the three factors that were already top-ranked

by the domain experts: “PROD.1. Requirements volatility,” “PROC.1. Disci-
plined requirements management,” and “PERS.3. Project management knowl-
edge and experience.”

Trendowicz et al. (2008a/b) compared judgmental, analytical, and combined

approaches in order to select the most relevant effort factors in the context of

Toshiba Information Systems (Japan) Corporation. The authors apply the

multicriteria decision analysis (MCDA) approach for synthesizing the outcomes

of judgmental and analytical factor rating and for deciding on the final set of

effort factors to use for effort estimation purposes. Finally, alternative sets of

effort factors obtained with different approaches were compared with respect to

the estimation accuracy they provide when applied within the same effort

estimation method. ■

5.6.5 Decide on a Set of Most Relevant Effort Factors

The objective of this activity is to select the most relevant effort factors to be

considered in the CoBRA effort model. Usually, this activity is accomplished in a

group discussion session. During the meeting, the analyst presents to the involved

domain experts the aggregated results of the factor relevancy assessment (obtained

using either a judgmental, analytical, or combined approach as discussed in previ-

ous sections). The analyst may additionally propose a preselection of the most

relevant effort factors. In case of single factor ranking, the analyst may propose

qualifying a certain number of the top-ranked factors. In the case of factor ratings

Table 5.21 Synthesizing judgmental and analytical factor relevancy ratings

Effort

factor

Judgmental (0.5) Analytical (0.5) Borda’s

weighted score

Final

rankRank Score Rank Score

PROJ.1 8 5.5 – 0.0 2.8 8

PROJ.2 6 8.0 – 0.0 4.0 6

PROJ.3 9 4.0 – 0.0 2.0 9

PERS.1 5 9.0 – 0.0 4.5 5

PERS.2 7 7.0 – 0.0 3.5 7

PERS.3 3 11.0 2 12.0 11.5 1

PROC.1 2 12.0 – 0.0 6.0 4

PROC.2 8 5.5 – 0.0 2.8 8

PROC.3 10 3.0 – 0.0 1.5 10

PROD.1 1 13.0 – 0.0 6.5 3

PROD.2 11 2.0 – 0.0 1.0 11

PROD.3 4 10.0 3 11.0 10.5 2

Reus-Lev – 0.0 1 13.0 6.5 3
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on a Likert scale, the analyst may propose a certain rating threshold above which

effort factors are qualified. If factor ratings encompass multiple aspects of a factor’s

relevancy, an individual threshold can be set for each aspect depending on the

importance of that particular aspect from the viewpoint of the estimation purpose.

Figure 5.6 in Sect. 5.6.2 presents an example threshold for three aspects of a factor’s

relevancy: factor’s impact on effort, factor’s measurability, and controllability of

factor’s values. In this example, the analyst sets equal thresholds for all three

aspects. These thresholds determine the “acceptance space” in the three-

dimensional area of a factor’s relevancy. In order to be accepted for inclusion in

the CoBRA model, an effort factor must be rated as “high” or “very high” on all

three aspects. Yet, if, for example, some dimensions are not so important for a

specific estimation purpose, less rigid threshold should be established.

Next, the analyst and the domain experts discuss the presented results and agree

on the final subset of candidate effort factors to be included in the CoBRA effort

model. In the iterative CoBRA model, it is recommended adding a limited number

of factors in a single model development iteration. Our industrial experiences show

that the best practice is to start an initial CoBRA model with up to seven effort

factors and then revise it iteratively, with each iteration focusing on modifying—

adding, deleting, or modifying—up to three factors. We chose the number seven for

the initial set of effort factors as it is traditionally acknowledged as the limitation on

a human’s cognitive capability for comprehending distinct elements, in this case

effort factors. In practice, we observed that depending on the complexity of the

concepts represented by the effort factors, selecting 5 to 10 effort factors for the

initial CoBRA model works fine. As far as model revisions are concerned, each

model’s refinement iteration should concentrate on small modifications so that the

effects of the change can be easily traced and understood.

5.6.6 Decompose Complex Effort Factors

In practice, while deciding on a candidate and on the most relevant effort factors,

the domain experts tend to operate with fairly abstract concepts. At this stage, the

analyst should typically allow considering abstract effort factors, as it is easier for

domain experts to comprehend and rate the relevancy of a few abstract effort

factors. Yet, after selection of the most relevant factors, the analyst needs to tackle

the issue that the selected effort factors actually represent complex concepts, which

are difficult to operationalize. Therefore, the analyst should ensure that the experts

decompose such factors into variables that specify the most relevant aspects for each

complex factor. For example (Fig. 5.7), the domain experts may select the “Key
Project Team Capabilities” factor, which refers to the skills of the project team.

Yet, from among many possible team skills, only few may actually be relevant for

the purpose of effort estimation. In this case, the experts should decide which skills

exactly should be considered.
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5.7 Step 6: Identifying Relevant Factor Interactions

In a CoBRA model, we distinguish between direct and indirect effort factors.

Moreover, direct effort factors are assumed to be independent of each other. The

practical consequence of this assumption is that the total effort overhead is the sum

of the effort overheads (effort multipliers) associated with the effort factors directly

influencing effort.

The objectives of this step are (1) to identify potential interactions among effort

factors selected in the previous step, (2) to model the most relevant factor

interactions through indirect effort factors, and (3) to ensure that the remaining

direct effort factors are orthogonal to each other.

Table 5.22 summarizes the most important elements of this step. We provide a

detailed description of each activity in the following subsections.

In the following subsections, we present the major activities comprising the

“identifying relevant factor interactions” step of the CoBRA model development

process.

5.7.1 <Optional> Analyze Existing Project Data

Traditionally, identification of relevant factor interactions takes place during a

group meeting in which the domain experts and the analyst discuss potential

interactions among already identified effort factors and decide on the most relevant

interactions to be modeled in the CoBRA effort overhead model. Optionally, the

analyst may—prior to the meeting—analyze available historical project data with

respect to potential dependencies. The analyst may then use the results of the

analysis during the meeting as alternative source of information—an alternative

to the judgment of the involved domain experts.

Fig. 5.7 Example of effort overhead model with complex effort factor
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The investigated historical project data may include project measurement data

collected and validated in Step 3 and Step 4 of the CoBRA modeling process and

historical factor data collected in previous modeling iterations (Step 8). In order to

identify dependencies among the factors encompassed by the available measure-

ment data, the analyst can use one or more analysis techniques. In the simplest case,

the analyst can investigate the dependencies between pairs of measured factors

using basic correlation analysis. A more sophisticated investigation of the

dependencies between more than two factors at a time will, for example, involve

causal analysis.

Table 5.22 CoBRA model development process: identifying relevant factor interactions

Step 6: Identifying relevant factor interactions

Objective The objective of this step is to identify and model the most relevant interactions

between the factors influencing project effort.

Personnel • Analyst: The analyst leads a group discussion session, during which the domain

experts identify potential interactions between the selected most relevant effort

factors. The analyst may support the domain experts with the results of the factor

dependency analysis performed on available historical project data. For this purpose,

the analyst investigates the data using analytical techniques and presents the results

of the analysis to the domain experts, who discuss them from the perspective of their

experiences and judgment. Finally, the analyst synthesizes the outcomes of the effort

factor identification activities, presents these results to the domain experts, and

iterates the whole step (or its parts), if necessary, in order to come up with set of the

most relevant factor interactions. The analyst models these interactions in terms of

indirect effort factors.

• Domain experts: The domain experts identify and discuss the potential interactions

between the most relevant effort factors they identified in the previous step. Finally,

they decide on which factor interactions are most important and thus should be

considered in the CoBRA model. In this step, the experts may add new effort

factors—not considered so far—if they have a relevant indirect or direct impact on

project effort.

Inputs • Selection of the most relevant effort factors to be added in the CoBRA effort model.

• <Optional> A list of variables defined for the complex effort factors.

• <Optional> Project measurement data.

• <Optional> Historical factor data collected in the previous model development

iterations.

Activities 1. <Optional> Analyze existing historical project data.

2. Identify potential factor interactions.

3. Decide on the most relevant factor interactions.

4. Ensure independency of direct effort factors.

Tools • Software tools for visualizing, documenting, and communicating the results of the

identified factor interactions. Basic tools include elements of standard office

packages such as MS Excel, MS Word, and MS PowerPoint.

• <Optional> Software tools that support the analysis of measurement data for the

purpose of identifying dependencies between effort factors. These techniques and

tools may include simple correlation and covariance analysis tools as well as

advanced causal analysis tools.

Outputs Qualitative effort overhead model, meaning the structure of the causal effort model:

• Modified set of the most relevant direct effort factors.

• Set of the most relevant indirect effort factors and their relationships to the

direct factors.
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A detailed discussion of particular analysis techniques and their usage is beyond

the scope of this book. Please refer to the literature on multivariate data analysis and

on inferring causal dependencies from data.

5.7.2 Identify Potential Factor Interactions

The main part of the factor interaction identification step takes place during a group

meeting with the domain experts. At the start of the meeting, the analyst presents to

the domain experts the effort overhead model developed so far; this includes the

effort overhead model developed in previous modeling iterations and the direct

effort factors selected in Step 5 of the current modeling iteration. Next, the analyst

motivates the domain experts to identify and discuss potential interactions among

the effort factors considered in the model. At that point, the domain experts may

add new effort factors to the effort overhead model if they agree that some relevant

factors (direct or indirect ones) are missing in the model. The domain experts

should define each newly added effort factor and decompose it into variables if

necessary. The analyst should ensure that only very few changes are made to the

effort factors already considered in the model. If the domain experts decide that a

major revision of the effort factors is necessary, the analyst should suggest repeat-

ing Step 5 (Sect. 5.6) of the model development process.

The analyst may support the identification of potential factor interactions by

providing the results of the data analysis. On the one hand, the analyst may present

factor dependencies indicated by the analysis of the historical project data to initiate

discussion among the domain experts. On the other hand, the analyst may compare

the factor interactions identified by the domain experts against the factor

dependencies indicated by the data analysis. The commonalities and discrepancies

between these two sources of information can then be discussed with the experts.

Possible Versus Allowed Factor Interactions
In CoBRA, two basic types of indirect causal effort effects are considered. They

represent explicit and implicit dependency between effort factors, respectively.

Figure 5.8 illustrates these two types of interactions.

Fig. 5.8 Indirect causal effort effect considered in CoBRA
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Explicit dependency (Fig. 5.8a): The value of a factor directly contributing to

project effort overhead (F1) depends on one or more other factors (F2 and F3),
which thereby indirectly contribute to project effort overhead. In CoBRA, this

dependency embodies the situation in which an effort factor (F1) represents a

complex concept, encompassing multiple aspects. In this situation, such a complex

factor is decomposed into multiple sub-factors (so-called effort variables), each of

which represents one aspect of the factor. In Fig. 5.8a, factor F1 would be

associated with two effort variables F2 and F3, and the effort overhead of F1
would be the sum of the effort overhead on F2 and F3 (F2 and F3 are assumed to be

independent of each other). For example, in Figs. 5.10 and 5.11, the effort factor

(F1) “Project team capabilities,” which directly influences effort, is associated with
two sub-factors, which represent particular team capabilities having relevant impact

on project effort (F2 and F3): “Domain experience” and “Platform experience.”
Implicit dependency (Fig. 5.8b, c): The impact of a factor directly influencing

effort is influenced by another, indirect, factor. In other words, the magnitude of the

direct factor’s contribution to the total effort overhead depends on the value of

another (indirect) effort factor. In principle, one or more indirect factors may be

considered in the CoBRA effort overhead model. However, expanding the number

of the indirect factors considered entails exponential growth in the complexity and

costs of eliciting effort multipliers for individual direct effort factors and in

computing total effort overhead data. According to our experience, the practical

benefit from considering more than one implicit dependency is very limited.

Therefore, in practice, we strongly recommend restriction to a single indirect factor

for each direct effort factor. Figure 5.10 illustrates two examples of implicit

dependency. In the first example, the impact of “Customer participation” on the

project effort is influenced by the “Customer skills.” This reflects the practical

situation in which a skilled customer may boost project performance by providing

appropriate project input at the appropriate time; in contrast, the involvement of an

unskilled customer may significantly hinder project progress. In the second exam-

ple, the impact of “Tool usage” on the project effort is influenced by “Tool
experience.” This represents a common observation from the practice “a fool

with a tool is still a fool.” In other words, the extent to which a tool can be

effectively used within the project and boost its performance depends on the extent

to which its intended users actually know it and can effectively use it.

Difference Between Explicit and Implicit Factor Dependency

In practice, an implicit relationship in the CoBRA effort overhead model

represents an explicit dependency with a latent confounding factor. For
example, in Fig. 5.8, cases (b) and (c) correspond to case (a) when F1 is

such an unknown factor. In situations (b) and (c), we would say that the

impact of F2 on effort depends on the values of F3 (case b) or that the impact

of F3 on effort depends on the values of F2 (case c). For example, let us

consider the direct effort factor “F2. Customer Participation” factor in

Fig. 5.9. The impact of this factor on project effort depends on the indirect
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factor “F3. Customer Skills.” Behind this indirect dependency exists a latent

effort factor, which we can model explicitly by adding a composed factor

“F1. Customer Contribution.” This composed factor represents a project

situation in which contribution of the customer to the project (in terms of

added value) depends on two aspects: the extent to which the customer

participates in the project whenever such participation is needed and the

level of the required customer’s skills. The explicit model deliberately does

not specify the type of impact of F2 and F3 on F1, because the impact of the

customer’s participation (F2) on his overall contribution to the project (F1)
depends on whether the customer has appropriate skills (F3) or not. This
relationship should be represented by an appropriate effort overhead compu-

tation formula defined for F1.

In principle, explicit and implicit dependencies can be combined in that a direct

effort factor is decomposed into variables and, at the same time, interacts with

indirect effort factors. In practice, however, not all possible combinations of factor

interactions are beneficial. Modeling complex dependencies increase the costs of

developing, applying, and maintaining CoBRA models without proportionally

increasing estimation performance. On the contrary, modeling complex factor

interactions usually contributes to decreased estimation performance of CoBRA

models. Therefore, complex factor interactions are not considered in CoBRAmodels.

Figure 5.10 illustrates the different types of factor interactions in CoBRA.

Case 1 is allowed in CoBRA because the effort variables associated with a direct

effort factor without any associated indirect factors can be modeled as direct effort

factors. Since, in CoBRA, the impact of a composite direct effort factor is the sum

of its impacts across its variables, the variables can actually be modeled as effort

factors directly influencing effort. Figure 5.11 illustrates this equivalence.

Case 2 is allowed in CoBRA because decomposing a direct effort factor with an

associated indirect factor into effort variables corresponds to associating the

Fig. 5.9 Explicitly modeling a latent effort factors in an implicit dependency
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indirect factor with each variable the direct factor is decomposed into. Figure 5.12

illustrates this equivalence.

The impact of a direct factor on effort is the sum of its impacts across the

variables into which the factor is decomposed. The effort overhead introduced by

each variable is a conditional effort overhead depending on the indirect factor.

Consequently, the total effort overhead introduced by the composed direct effort

factor corresponds to the sum of conditional effort overheads of the associated

variables (given the indirect factor, which interacts with each component variable).

Fig. 5.11 Equivalence of direct effort factor with indirect factor and variables

Fig. 5.10 Factor interactions allowed and not allowed in CoBRA
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Case 3 is conditionally allowed in CoBRA because in certain conditions it may

lead to a substantial increase in the model’s complexity, which in practice increases

modeling costs and does not result in increased model performance; on the con-

trary, it often leads to a decrease of the goodness of the estimates. The condition for

decomposing an indirect effort factor is consistent scaling of the variables resulting

from such decomposition. The reason is the complexity of computing the effort

overhead with which the composite factor contributes to the overall effort overhead.

Specifically:

• Decomposing an indirect factor is allowed if all effort variables associated

with such a factor are quantified using the same measurement scale. In this

case, the values of the associated effort variables can be easily summed up.

Furthermore, if a factor’s variables are measured on the same scale, the

conditional effort multiplier of the direct effort factor (“Customer Participa-
tion”) can be considered given the summary value of the associated indirect

effort factor (“Customer Skills”).
• Decomposing an indirect factor is not allowed if all effort variables associated

with such a factor are quantified using different measurement scales. In such a

case, the associated effort variables must not be simply summed up. Further-

more, if a factor’s variables are measured on different scales, computing the

effort multiplier of the direct effort (“Customer Participation”) factor would
require considering its conditional effort multiplier given each variable one by

one (given “Customer’s Domain Experience” and given “Customer’s Communi-
cation Skills”). This would correspond to a situation in which the direct effort

factor interacts with two indirect effort factors, which is not allowed in CoBRA.

Figure 5.13 illustrates this situation.

5.7.3 Decide on the Most Relevant Factor Interactions

After identifying and discussing potential factor interactions, the domain experts

decide on the final set of indirect effort factors to be considered in the model.

Since modeling each factor interaction increases the complexity of the model and

Fig. 5.12 Equivalence of direct effort factor with variables
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the costs of collecting effort multiplier data, the analyst should ensure that only

very few most relevant indirect effort factors are considered in the effort over-

head model.

Tip

" Ensure that only a very limited number of the most relevant indirect factors are

considered in the CoBRA effort overhead model. In practice, considering indirect

factors of little or no relevancy significantly increases the cost of developing and

maintaining CoBRA models without any relevant increase in the model’s predictive

performance.

For example, if all experts immediately agree on the high relevancy of a certain

indirect effort factor, the analyst can include it in the model. If, however, a certain

indirect factor invokes many discussions and is the subject of significant disagree-

ment among the domain experts, the analyst should avoid including this factor in

the model. In practice, modeling irrelevant indirect factors significantly increases

the cost of developing and maintaining the CoBRA model but does not provide

proportional benefits in terms of increased predictive performance of the model.

A good practice is to start with an initial CoBRAmodel that does not contain any

factor interactions (a so-called naive causal model). If, after validating the model,

the experts are still convinced that modeling a particular factor interaction will

improve estimation performance, the model should be modified appropriately

during the next modeling iterations. There are two potential benefits of such a

strategy:

• It may happen that a model without factor interactions will suffice to meet the

estimation goals. In such a case, the estimation goals are achieved while the costs

of modeling unnecessary model elements are saved.

• An initial naive effort overhead model can serve as a baseline for subsequent

model refinements, including the modeling of factor interactions. In this case,

after introducing factor interaction, in a subsequent modeling iteration, the

analyst and the experts have the chance to see the difference in the model’s

estimation performance before and after the interaction was introduced.

Fig. 5.13 Equivalence of indirect effort factor with variables
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5.7.4 Ensure Independency of Direct Effort Factors

Finally, the analyst should ensure that all direct effort factors are de facto indepen-

dent of each other. For this purpose, the analyst and the domain experts together go

through the definitions of the direct effort factors and prove that a factor does not

address the same aspects of the project environment. If appropriate project mea-

surement data for the considered effort facts are available, the analyst may analyze

it with respect to potential correlations prior to the meeting with the domain experts.

The analyst ends the group discussion session by presenting and confirming the

structure of the effort overhead model, that is, direct effort factors, indirect effort

factor, factor variables, and interactions between direct and indirect effort factors.

5.8 Step 7: Quantifying Selected Relevant Effort Factors

In the CoBRA method, effort estimation is developed using the data from already

completed projects. For each already completed project, project effort, software

size, and the values of all effort factors considered in the effort overhead model

need to be provided. In addition, the impact of each factor on effort—the so-called

effort multiplier—is quantified as a function of the effort factor’s values—in the

simplest case, the effort overhead associated with the worst-case factor’s value is

specified.

The objective of this step is to define appropriate measures for each effort factor

that is considered in the effort overhead model. In practice, quantifying an effort

factor consists mainly of defining an appropriate measurement scale, which will be

used for collecting the factor’s project data (Step 8) and effort multipliers (Step 9).

This step is optional and there is no need to define metrics for factors that are

already covered by existing measurement processes. For the remaining factors, the

experts provide the metric definitions. Ratio- and interval-scale metrics are pre-

ferred. Since measurement data for those factors must be collected from the experts,

the granularity of the defined scale depends on how much confidence the experts

have regarding the project data.

The definition of measures is a critical element of the CoBRA process. Depen-

dent on the consistent understanding of the defined scales, the experts will later give

consistent effort multiplier and project data. Therefore, it is recommended defining

each value on the scale in such a way that all experts will relate the value to the

same project situation. The more quantitative the value description, the less room

for subjectivity and the fewer deviations in the experts’ answers during later data

collection steps.

Table 5.23 summarizes the most important elements of this step. We provide a

detailed description of each activity in the following subsections.

In the following subsections, we present the major activities comprising the

“quantifying selected relevant effort factors” step of the CoBRA model develop-

ment process.
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5.8.1 Decide on Measurement Scale

Based on the definition of the effort factors considered in the CoBRA effort

overhead model and the available measurement data, the analyst selects the most

appropriate measurement scales for quantifying the factors. This initial selection

regarding the measurement scales will then be next used as a starting point during a

group session with the domain experts to define measurement scale for each

considered effort factor.

In general, effort factors in CoBRA can be quantified using any measurement

scale (Table 5.24). Yet, in practice, not all measurement scales are reasonable or

useful. Example issues include:

• Collecting factor project data. In practice, measurement data for effort factors

are rarely available. Therefore, they need to be quantified by the domain experts,

and the domain experts need to provide historical project data for effort factor.

In order to increase reliability and limit the effort required for defining effort

factor scales, an approximately interval scale with approximately equidistant

values is typically considered. The benefit is that the domain experts must

consider only a very limited number of possible values when providing histori-

cal project data in Step 8 of the CoBRA model development process (Sect. 5.9.

Step 8: Collecting and Validating Historical Factor Data). Low granularity of the

measurement scale supports consistent measurements when data are acquired

Table 5.23 CoBRA model development process: quantifying selected relevant effort factors

Step 7: Quantifying selected relevant effort factors

Objective The objective of this step is to quantify the effort factors selected for inclusion in the

CoBRA effort model. Factor quantification refers to defining measures for each

selected factor. These measures will be used later to collect project data (for already

completed and new projects) and effort multiplier data for each effort factor in the

CoBRA model.

Personnel • Analyst: The analyst leads a group discussion session during which the domain

experts define measures for the effort factors considered in the effort overhead

model. The analyst may prepare and propose to the domain experts example

measures. The analyst documents the outcomes of the session.

• Domain experts: The domain experts decide on the measures used for quantifying

the effort factors and support the analyst with their expertise when defining the

measures.

Inputs • Selection of the most relevant effort factors to be added in the CoBRA effort model

• <Optional> A list of variables defined for the complex effort factors

Activities 1. Decide on measurement scale.

2. Define factor measures.

Tools • Software tools for visualizing, documenting, and communicating the results of the

quantification of the selected relevant effort factors. Basic tools include elements of

standard office packages such as MS Excel, MS Word, and MS PowerPoint.

Outputs • Measures for effort factors considered in the effort overhead model.

• <Optionally> Measures for effort variables defined for complex effort factors in the

effort overhead model.
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from multiple human experts. In principle, the more measurement values can be

selected, the higher the probability of disagreement among multiple experts with

respect to the value of the same factor in the same project. Therefore, the use of

ratio-scale measures should be limited to cases where corresponding historical

project data are already available or can be easily collected in an automatic and

objective way.

• Collecting factor effort multiplier data. The usefulness of nominal- and ordinal-

scale effort factors is limited due to the relatively high effort needed to collect

effort multiplier data in Step 10 of the CoBRA model development process

Table 5.24 CoBRA model development process: effort factor measurement scales

Scale Definition Usage in CoBRA

Nominal Numbers or symbols are assigned

to represent class memberships.

Thus, the scale consists of

different classes, and no ordering

among these classes exists.

Allowed operations: ¼, <>.

Nominal-scale measures are typically used to

quantify context factors. If we identify a factor

influencing project effort and the factor is of a

nominal nature, we should consider it as a context

factor. Typical nominal-scale context factors

include application domain, development type,

software life cycle model, and programming

language.

Ordinal Used for rank orderings. The size

of the interval between different

ranks cannot be determined.

Allowed operations: ¼, <>,

<, >.

Ordinal-scale measures are not used in the

CoBRA method for quantifying effort factors.

One reason is the inherent subjectivity of ordinal

scales and the undefined distance between

subsequent values on the scale. Moreover, using

ordinal-scale measures would require collecting

effort multipliers for each value on the scale.

Instead, an approximately interval scale should be

defined in that each value on the “ordinal” scale is

defined in such a way that the distance between

subsequent values remains approximately equal.

Interval Intervals between any two

consecutive integers represent

equal amounts of measured

attribute. Thus, the order is

preserved as well as differences

so that we can understand the size

of the jump from one class to

another. Allowed operations: ¼,

<>, <,>,+, –.

Interval-scale measures are usually used for

quantifying effort factors in CoBRA. Actually, n-

point approximately interval-scale measures are

defined in that the domain experts define each of

the n possible values so that the distance between

subsequent values remains equal. The experts

typically define each level by describing a

corresponding project situation.

Ratio Interval scale with an absolute

zero point that represents a total

lack of the measured attribute.

The scale must start at zero and

increase at equal intervals known

as units. All arithmetic operations

can be meaningfully applied: ¼,

<>, <, >, +, –, *,/.

Ratio-scale measures are rather rarely used for

quantifying effort factors. A typical case of using

such measures includes a situation in which

historical project data for the effort factor has

already been collected using a ratio-scale

measure. Still, in this situation, the domain experts

must decide on the worst-case factor value that is

realistic in the effort estimation context. This

worst-case threshold is needed for specifying the

factor’s effort multiplier data.
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(Sect. 5.10. Step 9: Collecting and Validating Effort Multiplier Data). In such a

case, effort multipliers for each value on the measurement scale need to be

specified by one or more human experts. In case of at least interval-scale measures,

it is typically sufficient for a given effort factor to specify its worst-case value and

the functional dependency between the factor’s value and the effort multiplier. In

CoBRA, we typically use interval-scale measures and assume linear dependency

between a factor’s value and the value of its effort multiplier. Moreover, the basic

assumption in the CoBRA method is that an effort factor does not introduce any

additional effort (effort multiplier ¼ 0) in its best-case value. Given these

assumptions and worst-case effort multipliers, we can easily compute the effort

multipliers for the other factor values (between best and worst case).

Granularity of Approximately Interval Scale

The granularity of the interval—or approximately interval—scale used for

quantifying effort factors in CoBRA has certain consequences with respect to

the cost of defining the measure and the feasibility of collecting credible data

to build the CoBRA model on. The three major aspects to consider when

deciding on the number of levels on the measurement scale include:

• Defining the measure. The first aspect is definition of the measure itself.

The more the levels on the measurement scale, the more expensive the

definition of such a scale, because the domain experts must define each

level on the scale.

• Collecting project data. With respect to collecting historical project data,

the granularity of the measurement scale has an influence on the credibility

of the historical project data collected retrospectively by means of expert

judgment. Typically, human experts are capable of recalling the gross

values of an effort factor in an already completed project. The more time

has passed since project completion, the more uncertain the expert

judgments will be. In consequence, the experts are better able to provide

historical project data on a gross scale rather than on a detailed scale. If we

do, for example, quantify an effort factor using a 15-point scale, the

experts might have problems in recalling if the factor’s value in a project

that was completed a few years ago was 13 or 14. Yet, if we reduce the

scale to 3 levels—each level corresponding to 5 levels of the detailed

15-point scale—then the experts can judge with high confidence that the

factor has the value 3.

• Collecting effort multiplier data. If the experts decide about the nonlinear
dependency between an effort factor quantified on an interval scale and

this factor’s effort multiplier, they must define an effort multiplier for each

possible value of the factor (except for the best-case value, for which the

effort multiplier is assumed to be equal to zero percent). The more levels

on the factor’s measurement scale, the more effort the experts have to

spend on specifying effort multiplier data.
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In the end, practical experiences with the CoBRA method show that the

risks related to using high-granularity measures for quantifying effort factors

compensate for the potential benefits in the form of increased precision of

effort estimates. Therefore, we recommend using 4- or 5-point interval scales.

Tip

" Use a 4-point approximately interval scale for quantifying effort factors for which

ratio-scale measurement data neither exist nor can be automatically collected.

In fact, there are two types of approximately interval scales we may consider in

CoBRA: non-Likert and Likert scale.

Default 4-Point Approximately Interval Scale
Industrial experiences have shown that a 4-point approximately interval scale is the

best trade-off between precision of input data for effort estimation and acceptable

effort required to collect these data. The default measurement scale in CoBRA goes

from level “0,” which represents the best case and goes through levels “1” and “2”

to level “3,” which represents the worst case. The domain experts define each level

by characterizing the specific project situation a given level represents.

Often, experts refer to a ratio-scale measure when defining the interval scale

levels. Let us consider the example effort factor “requirements volatility,” which

represents the extent of changes to requirements after their freeze. The experts may

quantify this factor using a 4-grade approximately interval scale in that they define

each value on the interval scale in terms of the range of percentage changes to

requirements after the requirements freeze. For example, in Table 5.25, a factor’s

value of “0” may be defined as 0–10 % changed requirements, a value of “1” as

11–20 % changes, a value of “2” as 21–30 % changes, and a value of “3” as

31–40 % changes.

Alternative 5-Point Likert Scale
As alternative to a 4-point interval scale, a so-called Likert scale can be employed

for quantifying effort factors. A Likert scale is a type of psychometric scale

frequently used in psychology questionnaires. It was developed by and named

after organizational psychologist Rensis Likert (1932), who proposed quantification

Table 5.25 Example 4-point approximately interval scale

Extent of changes to software requirements during the development life cycle, after requirements

freeze

0 1 2 3

0–10 % requirements changed

(best case; nominal situation)
1–20 %

requirements

changed

21–30 %

requirements

changed

31–40 % requirements changed

(worst case; extreme situation)
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through conceptual levels. The general advantage of this scale is that levels on the

scale can be assumed to be equidistant, which means that a Likert scale can be

treated in practice as being approximately interval. In a Likert scale, an expert is

presented a questionnaire with one or more phrases. Each phrase represents a

certain thesis or question and comes with a number of answers, each of which is

associated with a numeric score. Answers and scores are values (levels) on the

measurement scale. The answers in the scale are approximately equally spaced

conceptually; thus, associated scores represent an approximately interval scale. It is

a characteristic of a Likert scale that it consists of an odd number of levels, where

the middle level represents a “neutral” answer. The neutral answer represents that

the measured concept has neither a good nor a bad value. Since a Likert scale

requires an odd number of levels, we recommend using a 5-point Likert scale.

Table 5.26 presents an example quantification of the “requirements volatility”

effort factor using a Likert scale. The standard scoring schema used within the

Likert scale used integer numbers beginning from “1,” where this value may refer to

the best- or to the worst-case value. In order to use a Likert scale for computing the

parameters of the CoBRA estimation model, the scoring should begin from the

worst-case value, to which the score “0” is assigned.

Specialist literature defines several standard Likert scales that can be used as

templates and adapted for quantifying different concepts.

The advantage of a Likert scale over the CoBRA default 4-point approximately

interval scale is that it does not require defining a specific project situation for each

measurement level. It is sufficient to define the main phrase and select appropriate

answers defined on one of the standard Likert scales. The disadvantage of the Likert

scale is its high subjectivity. Answers to standard Likert-scale questions may

depend a lot on their interpretation by a specific domain expert. This is not the

case in a 4-point approximately interval scale, where each level is precisely defined

in a group meeting involving all experts. We recommend using Likert scales for

quantifying factors only when it is not possible to define 4-point approximately

interval scales, for example, because no domain experts are available for defining

factor measurement scales since their availability is very limited (insufficient for a

detailed definition of scales of all factor measures).

5.8.2 Define Factor Measures

After deciding on the appropriate measurement scale to quantify the effort factors

considered in the CoBRA model, the analyst and the domain experts define exact

measurement scales for each effort factor.

Table 5.26 Example Likert scale

After freezing software requirements, they change during the development life cycle

1 2 3 4 5

Never (best case;
nominal situation)

Sometimes Average (neutral case) Often Very often (worst case;
extreme situation)
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Typically, the domain experts define measures for the effort factors during a

group meeting moderated by the analyst. The analyst starts the meeting by

presenting the proposed measurement scales to the domain experts. The experts

discuss the proposed measurement scales with respect to their appropriateness for

quantifying the associated effort factors and from the perspective of the feasibility

of defining these scales during the session. Next, the domain experts define the

measures for the effort factors considered in the CoBRA effort overhead model:

• 4-Point approximately interval scale: An effort factor is assigned four measure-

ment levels between 0 and 3, where 0 refers to the best-case and 3 to the worst-

case level. The best case refers to a nominal project situation in which the factor

has a nominal value and does not introduce any additional project effort. The

worst case refers to an extreme project situation in which the factor introduces

the maximal effort overhead possible in the CoBRA estimation context. For each

value on the factor’s measurement scale, the domain experts describe a project

situation that corresponds to this value. The analyst moderates the discussion

among the experts and ensures that (1) each level is unambiguously defined so

that all involved domain experts associate the same project situation with a given

level and (2) the distance between any two subsequent factor values is

(conceptually) approximately equal.

• 5-Point Likert scale: An effort factor is assigned a 5-point Likert scale. The

domain experts define a phrase that characterizes or asks for a certain project

situation and select an appropriate set of standard Likert-scale answers. The

analyst ensures that (1) the phrase is unambiguous and that all involved domain

experts associate with it the same project situation and (2) a correct set of

answers is selected. Finally, the analyst associates the scores 0–4 with Likert-

scale answers, where 0 and 4 refer to the values of the best- and worst-case

factor, respectively.

• Other scales: If the experts decide to quantify some effort factors using mea-

surement scales other than an interval one, they specify these scales appropri-

ately. For nominal scales, the experts need to characterize each nominal value.

For ratio scales, experts define the measurement unit and the best- and worst-

case thresholds.

5.9 Step 8: Collecting and Validating Historical Factor Data

In the CoBRA method, an effort model for the estimation of future software project

is developed based upon actual information from already completed similar

projects—so-called historical projects. The historical project data used for devel-

oping the CoBRA model include software size, project effort, and effort factors

considered in the CoBRA effort overhead model. Size and effort are collected and

validated in Step 3 and Step 4 of the model development process (Sect. 5.4. Step 3:

Collecting Project Measurement Data and Sect. 5.5. Step 4: Data Validation and

Preprocessing).
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The objective of this step is to collect historical project data regarding effort

factors considered in the effort overhead model. If measurement data for some

effort factors have already been collected or can be automatically collected based

on existing project artifacts, then we use these measurement data. Yet, typically

effort factors considered in the CoBRA model have neither been the subject of

measurement nor can they be easily collected in an automatic manner. In this case,

historical factor data must be acquired from domain experts who are familiar with

the historical projects used for developing the CoBRA model. In this section, we

focus on acquiring factor data from domain experts.

Table 5.27 summarizes the most important elements of this step. We provide a

detailed description of each activity in the following subsections.

In the following subsections, we present the major activities comprising the

“collecting and validating historical factor data” step of the CoBRA model devel-

opment process.

Table 5.27 CoBRA model development process: collecting and validating historical factor data

Step 8: Collecting and validating historical factor data

Objective The objective of this step is to collect historical project data regarding the effort factors

considered in the effort overhead model.

Personnel • Analyst: The analyst prepares data collection and validation tools based upon the

quantified effort overhead model, in particular, the considered effort factors and the

associated measures. After preparing the tools, the analyst acquires historical factor

data from domain experts familiar with the historical projects considered for

developing the CoBRA effort model. If the CoBRA method and the modeling

process are new to the domain experts, the analyst acquires the factor data in a face-

to-face interview with each domain expert individually. If the domain experts are

already experienced with the factor data acquisition procedure, the analyst can

provide the experts with an appropriate questionnaire and ask them to deliver the

factor data by means of an off-line survey, for example, via e-mail. Finally, the

analyst checks the collected historical factor data for potential threats and, if any are

found, clarifies them with the appropriate experts Optionally, prior to the judgment-

based factor data acquisition, the analyst may look through already available

historical project measurement data to see whether they can be used for determining

the values of the modeled effort factors. In addition, the analyst may investigate

whether useful measurement data can be easily measured retrospectively across the

considered historical projects. If appropriate historical project data are available or

can be collected in retrospect, the analyst can use these instead of the expert

judgments or in addition to the expert judgments (in order to validate the expert

judgments against the project data as discussed it in Sect. 5.9.3: Validate Historical

Project Data).

• Domain experts: The domain experts provide the effort factor data for the historical

projects they are familiar with, at best because they were involved in managing these

projects.

Inputs • Quantified effort overhead model, in particular effort factors (direct and indirect),

effort variables (if any are defined), and measures specified for factors and variables.

• <Optional> Available measurement data from the historical projects used for

developing the CoBRA effort model.

• <Optional> Artifacts from the considered historical projects that can be easily

measured to acquire needed factor data.

(continued)
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5.9.1 Prepare Data Collection and Validation Tools

The analyst prepares instruments for collecting and validating historical factor data.

For the purpose of data collection, CoBRA uses a questionnaire that consists of two

sections:

• General information. This section asks for a unique identifier of the historical

project for which factor data are being collected and the domain expert who

provides the data. Moreover, this section collects basic characteristics of the

domain expert, such as position in the historical project or domain experience,

which can be used as context information while analyzing the acquired factor

data.

• Factor data. This section provides a definition andmeasurement scale for the effort

factors considered in the effort overhead model and asks for the value of each

factor. For the interval-scale factors, the questionnaire specifies the value on the

scale; factor data are provided by simply checking the appropriate value. In order to

account for judgment uncertainty, each factor’s value can be associated with a

confidence field. In this case, the experts can check more than one factor’s value

and specify the percentage confidence for each selected value; for a single factor,

the confidence percentages across all selected values must sum up to 100 %.

The factor data collection can be prepared manually by the analyst in electronic

or paper form. It could also be generated automatically by an appropriate CoBRA

tool based upon the quantified effort overhead model.

5.9.2 Collect Historical Factor Data

The analyst acquires historical factor data from the domain experts using the data

collection questionnaire prepared in the previous activity. It is important that the

expert providing the project data knows the project. In order to increase the validity

of the expert assessment, more than one domain expert should (if feasible) provide

data for the same project. In this case, each expert should provide data indepen-

dently of the other experts.

Table 5.27 (continued)

Step 8: Collecting and validating historical factor data

Activities 1. Prepare data collection and validation tools.

2. Collect historical factor data.

3. Validate historical factor data.

Tools • Software tools for preparing data collection instruments. In the simplest case, MS

Word or MS Excel to create data collection questionnaires. In advanced cases, a

dedicated CoBRA tool, which automatically generates data collection forms based

upon the quantified effort overhead model modeled in the tool.

• Basic data analysis and visualization tools such as MS Excel or specialized statistical

analysis tools such as R, SPSS/PASW, or Statistica.

Outputs • Historical project data for effort factors considered in the CoBRA effort

overhead model.
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Depending on the familiarity of the involved domain experts with the factor data

acquisition procedure, the analyst decides between two alternative ways of

collecting the data:

• Interviews: If the factor data acquisition procedure is new to the domain experts,

it is highly recommended that the domain experts provide the data individually

in a face-to-face interview with the analyst. During a personal interview, the

experts still have an opportunity to clarify potential doubts with respect to the

definition and/or quantification of effort factors.

• Survey: If the domain experts are already familiar with the factor data acquisition

procedure, for example, because it is already a subsequent model development

iteration they are involved in, the analystmay collect factor data off-line in an e-mail

or Web-based survey. In this case, the domain experts fill in data acquisition forms

off-line and send them back to the analyst. The advantage of this approach to factor

data collection is its relatively low cost, compared to time-consuming interviews.

The quality of the factor data is influenced by two facts: The expert judgments

may be biased by the subjective perception and preferences of a particular expert, or

a domain expert might not be able to exactly recall the project in order to provide

precise information with respect to a certain effort factor. In order to address these

issues, CoBRA proposes:

• Collecting redundant factor data: For a given factor and historical project

acquire data from more than one domain expert. This will later allow analyzing

consistency of multiple judgments, clarify underlying reasons, and coming up

with consensus value.

• Collect uncertainty assessments: In order to account for the uncertainty of expert
judgment, the analyst may allow the domain experts to deliver multiple values

for a certain factor, where each value is associated with a percentage confidence

by the expert. Note that the confidence percentages across the provided factor’s

values should sum up to 100 %. For example (Table 5.28), for an effort factor

measured on the 4-point interval scale, an expert may select more than one value

and assign it with a percentage confidence level quantifying how certain the

expert is of this factor’s value.

Table 5.28 Example element of factor data collection questionnaire

Effort Factor: requirements volatility

Question: Please assess the percentage of software requirements that changed after requirements

freeze, during the development life cycle. If you are not certain of one value, please select multiple

values; please specify how confident you are of each selected value (note that the confidences must

sum up to 100 %)

Factor’s measurement scale Expert’s assessment Confidence

0–10 % of requirements changed ❑ <0> best case ___%

11–20 % of requirements changed ❑ <1> ___%

21–30 % of requirements changed ❑ <2> ___%

31–40 % of requirements changes ❑ <3> worst case ___%
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In addition to the factor data, the analyst should acquire the basic characteristics

of the domain experts, such as domain experience and position in the historical

project for which the expert provided the factor data. This additional information

may later on help to explain potential inconsistencies in the factor data; for

example, the level of involvement in the particular project and the understanding

of its application domain may influence the assessment of a particular expert.

5.9.3 Validate Historical Project Data

After collecting the historical factor data, typically from multiple domain experts,

the analyst first integrates the data and investigates it completeness. The analyst

ensures that for each effort factor considered in the CoBRA effort overhead model,

data from all historical projects used for developing the effort model have been

provided by at least one domain expert. Moreover, the analyst checks the typo-

graphical correctness of the data, that is, if the data are free from typing errors.

Next, the analyst investigates the factor data concerning potential incon-

sistencies. There are two ways of checking the consistency of the project data

provided by the experts:

• Against project data: The project data provided by the domain experts are compared

to existing measurement data (if available). Even thoughmeasurement data exist for

a certain effort factor, it is recommended eliciting corresponding data from the

domain experts. A common experience is that there is a significant discrepancy

between existingmeasurement data and the data provided by the domain experts. On

the one hand, domain experts tend to provide inaccurate data for historical projects—

especially if they were completed a long time ago. On the other hand, the measure-

ment and data collection processes may be invalid, resulting in invalid data—in this

case, the experts may prevent the uncritical acceptance of existing measurement

data. Potential inconsistencies can then be discussed with the experts in order to

identify the sources of inconsistency and come up with reliable project data.

• Between domain experts: In cases where more than one domain expert provided

data for the same project, the data can be compared against each other. Potential

inconsistencies can then be discussed with the respective experts in order to

identify the source of inconsistency and come up with reliable project data.

According to our experience, the most common source of data inconsistency is

incoherent interpretation of a factor’s definition.

5.10 Step 9: Collecting and Validating Effort Multiplier Data

In CoBRA, the domain experts quantify the impact of an effort factor on effort by

specifying so-called effort multipliers. The objective of this step is to acquire effort

multipliers from one or more domain experts.

An effort multiplier is assigned to each effort factor directly influencing effort. It

refers to the percentage increase of effort that this particular effort factor introduces

independently of other direct effort factors, potentially given the associated indirect

factors.
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Table 5.29 summarizes the most important elements of this step. We provide a

detailed description of each activity in the following subsections.

In the following subsections, we present the major activities comprising the

“collecting and validating effort multiplier data” step of the CoBRA model devel-

opment process.

5.10.1 Prepare Multiplier Data Collection and Validation Tools

The analyst prepares the data collection, storage, and validation instruments. Since

effort multiplier data in CoBRA are acquired from one or more domain experts, the

analyst must prepare an appropriate data collection questionnaire. This questionnaire

will later be used to document the assessed effort multipliers, either during interviews

or in an off-line survey. The effort multiplier questionnaire contains two blocks:

• General information. This section asks for basic information on the domain

expert who provides the multiplier data. In addition to the unique identifier of

the expert, one may ask for basic characteristics that may have an impact on the

Table 5.29 CoBRA model development process: collecting and validating effort multiplier data

Step 9: Collecting and validating effort multiplier data

Objective The objective of this step is to collect valid effort multiplier data.

Personnel • Analyst: The analyst prepares effort multiplier collection and validation tools based

upon the quantified effort overhead model, in particular the considered effort factors

and their associated measures. After preparing the tools, the analyst acquires the

effort multiplier data for the direct effort factors from the domain experts. If the

CoBRA method and the modeling process are new for the domain experts, the

analyst acquires factor data in a face-to-face interview with each domain expert

individually. If the domain experts are already experienced with the factor data

acquisition procedure, the analyst can provide the experts with an appropriate

questionnaire and ask them to deliver the effort multiplier data by means of an off-

line survey, for example, via e-mail. Finally, the analyst checks the collected effort

multiplier data for potential threats and, if any are found, clarifies them with the

appropriate experts.

• Domain experts: Domain experts provide effort multiplier data based on their

personal experiences in the domain addressed by the developed CoBRA model.

Inputs • Quantified effort overhead model, in particular effort factors (direct and indirect),

effort variables (if any are defined), and measures specified for factors and variables.

Activities 1. Prepare multiplier data collection and validation tools.

2. Collect effort multiplier data.

3. Validate effort multiplier data.

Tools • Software tools for preparing data collection instruments. In the simplest case, MS

Word or MS Excel to create data collection questionnaires. In advanced case a

dedicated CoBRA tool, which automatically generates multiplier data collection

forms based upon the quantified effort overhead model modeled in the tool.

• Basic data analysis and visualization tools such as MS Excel or specialized statistical

analysis tools such as R, SPSS/PASW, or Statistica.

Outputs • Effort multipliers for direct effort factors considered in the CoBRA effort

overhead model.
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expert’s assessments. Example characteristics include the expert’s position in

the organization, the domain in which the expert is most experienced, and the

expert’s seniority. This information can be used while validating the data to

explain potential inconsistencies between the assessments of multiple experts.

• Multiplier data. This section asks for the effort multipliers associated with the

direct effort factors considered in the effort overhead model. In principle, the

domain experts are asked to specify the percentage of additional effort

introduced by each direct factor under the condition that all other direct effort

factors have their best-case values, meaning they do not introduce any additional

effort. For a given direct effort factor, the exact effort multiplier query depends

on several aspects: (1) uncertainty of expert assessment, (2) factor’s measure-

ment scale, (3) existence of associated indirect factors, and (4) factor’s decom-

position into variables. We will discuss these issues in the next paragraphs.

Uncertainty Considerations
In order to account for the uncertainty of human judgment, the domain experts are

asked to provide three values of the effort multipliers for each direct effort factor:

• Min: Minimal believed percentage of additional effort introduced by the effort factor

• Max:Maximal believed percentage of additional effort introduced by the effort factor

• ML: Most likely believed percentage of additional effort introduced by the effort

factor

While building a CoBRAmodel, the three effort multiplier values are interpreted

as a triangular or beta-Pert probability distribution of the effort multipliers.

Figure 5.14 illustrates an example result of acquiring three values of an effort

multiplier, which are then interpreted as a triangular distribution. The example

Fig. 5.14 Example triangular distribution of effort multipliers
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assumes that the effort factor is measured on a 4-point interval scale and that the

effort multiplier is linearly dependent on the factor’s value. In this case, the domain

experts solely need to provide the effort multipliers (Min, Max, and ML) for the

worst-case factor’s value. Under the assumption that the effort multiplier for

the best-case (nominal) factor’s value is equal to zero, one may easily compute the

triangular distributions of the effort multiplier for the intermediate factor’s values.

Scale Considerations
Depending on the factor’s measurement scale, the domain experts must provide

different numbers of multipliers.

Nominal Scale
The use of nominal-scale factors in CoBRA is limited to context factors. Because of

their inability to build an order, nominal-scale effort factors are not used in CoBRA.

Ordinal Scale
Although theoretically feasible, ordinal-scale factors are not used in CoBRA

because of the undefined distance between subsequent values on the ordinal mea-

surement scale. Instead, approximately interval or interval scales are used for which

an equal distance between subsequent values on the scale is assumed.

Interval Scale
For interval-scale effort factors, an equal distance between the subsequent factor’s

values is assumed. Depending on the assumed functional form of the dependency

between the factor’s values and its effort multipliers, one or more effort multipliers

need to be specified:

• Linear dependency: Only one effort multiplier for the worst-case factor’s value

must be specified. Effort multipliers for the remaining factor values can be easily

computed based on the assumption that in the best case, when a factor has its

nominal value, it does not introduce any effort overhead—that is, its multiplier is

equal to zero (EO ¼ 0 %). Effort overhead values between best- and worst-case

values form a line. Refer to Sect. 5.11.1 for details on computing effort overhead.

• Nonlinear dependency: Effort multipliers for all of a factor’s values, except for

the best case, must be specified. In such a case, the functional dependency

between a factor’s value and its effort multipliers takes the form of a piecewise

linear, monotonic curve.

Figure 5.15 illustrates both functional forms for an interval-scale effort factor.

Ratio Scale
Ratio scales are similar to interval scales, but in practice, corresponding historical

measurement data need to be available for the fact. If not, the domain experts are

typically not capable of recalling the historical project data for factors defined on a

continuous scale. If a ratio scale is justified, it is sufficient to collect the worst-case

multiplier and compute the intermediate multipliers based upon:
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• The assumption that in the best case, when the effort factor has its nominal value,

it does not introduce any effort overhead, meaning its effort multiplier is equal to

zero (EO ¼ 0 %).

• The functional dependency between the factor’s value and the effort overhead it

introduces. In principle, any monotonic function can be employed. Yet, one must

take into account that the functional form is defined by the domain experts, who

might find it difficult to consider functions other than linear. The analyst may

support the selection of the appropriate function dependency by analyzing

whether there is a sufficient amount of historical data on the factor’s value and

the associated effort overhead. Yet, in practice, such amounts of data would

require multiple CoBRA applications and thus will be available rather rarely.

Fig. 5.15 Effort multiplier curves for an interval-scale effort factor

Fig. 5.16 Effort multiplier curves for interval-scale effort factor
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Figure 5.16 illustrates an example of a nonlinear and a linear functional depen-

dency between a factor’s value and its effort multiplier for a ratio-scale effort factor.

Factor Interaction Considerations
In CoBRA, the impact of a direct effort factor on effort is quantified in terms of the

percentage of additional effort the factor introduces given the best-case (nominal)

value of other direct factors considered in the effort overhead model. The exact effort

multipliers and the way of their acquisition depend on the potential interactions of the

direct effort factor. As discussed in Sect. 5.7.2, not all possible types of factor

interaction are reasonable and thus allowed in CoBRA. In the following paragraphs,

we consider effort multipliers of a direct effort factor in the context of three types of

factor interactions. In doing so, we consider interval-scale effort factors and linear

dependency between a factor’s value and its effort multipliers, as these are most

commonly used in practice. The basic principles we present are also applicable to

ratio-scale factors and nonlinear effort multipliers. Yet, as these are complex and

rarely used in practice, we will not consider them in this book.

We will illustrate each discussed situation with a figure that presents an example

of an appropriate effort overhead model, a corresponding effort multiplier data

collection questionnaire, and the outcome effort multiplier data. In the first step, the

analyst uses the effort overhead model to prepare the data collection instrument,

which is a questionnaire. In the questionnaire, the analyst asks for the minimal, the

maximal, and the most likely effort overhead introduced by direct effort factor

given the value of the associated indirect effort factor. In the second step, the

analyst uses the questionnaire for acquiring the multiplier data from the domain

experts. Based on the assumption of linear dependency between a factor’s values

and its effort multipliers, the factor’s multiplier data can be modeled as three lines.

Finally, effort multiplier data are stored in the effort overhead model.

Direct Impact
If a direct effort factor is neither associated with effort variables nor with indirect

effort factors, it is sufficient to collect the effort multiplier for the worst-case

(extreme) factor value. Figure 5.17 illustrates this situation for the example of the

effort factor “Requirements Volatility.” In the first step, the analyst uses the effort

overhead model for preparing the data collection instrument, which is a question-

naire. In the questionnaire, the analyst asks for the maximal, the minimal, and the

most likely effort overhead (EO) the factor introduces in its worst-case value

(F1 ¼ 3), that is, when more than 30 % of the requirements change in the develop-

ment lifecycle after the requirements freeze.

In the second step, the questionnaire is used for collecting the threemultiplier values.

Based on the assumption of linear dependency between the factor’s values and the effort

multipliers, the factor’smultiplier data can bemodeled as three lines. Finally, in the third

step, the effort multiplier data are stored in the effort overhead model.

Indirect Impact
In CoBRA, only one-way interactions are allowed, that is, one direct effort factor

can be associated with at most one indirect effort factor. This is a practical
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limitation which originates from the observation we made across multiple

applications of the CoBRA method. Our experience shows that modeling multiple

indirect factors increases the cost of developing, applying, and maintaining CoBRA

models. Yet, it does not result in an appropriate increase in the estimation perfor-

mance—on the contrary, confused by complex factor interactions, the domain

experts provide inconsistent information on other factors, and on factor and multi-

plier data, which results in decreased estimation performance.

If a direct effort factor is associated with an indirect effort factor, the effort

overhead of the direct factor depends on the values of the indirect factor. Assuming

linear influence of the indirect factor and the direct factor’s overhead, only two

boundary values of indirect effort factors need to be considered: nominal (best case)

and extreme (worst case).

Depending on what particular direct effort we are considering, conditional effort

multipliers for either the extreme or the nominal value of the direct effort must be

collected. In CoBRA, we refer to these cases as indirect impact with influence on
extreme case and indirect impact with influence on nominal case, respectively.

Indirect impact with influence on extreme case refers to a situation where

conditional effort multipliers are collected for the worst-case (extreme) value of

the direct effort factor given:

• The best-case (nominal) value of the associated indirect factor

• The worst-case (extreme) value of the associated indirect factor

Fig. 5.17 Effort multipliers for a direct effort factor with no interactions
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Figure 5.18 illustrates such a situation on an example effort overhead model

where the direct effort factor “F1. Requirements Volatility” interacts with the

indirect effort factor “F2. Disciplined Requirements Management.” This simple

effort overhead model can be interpreted such that the negative impact of volatile

requirements on project effort depends on the level of disciplined requirements

management. The more intensive and systematic disciplined requirements manage-

ment is, the less negative impact do volatile requirements have on project effort. As

we can see, considering the impact of disciplined requirements management when

requirements do not change does not make much sense because the resulting effort

multiplier would be zero anyway.

Indirect impact with influence on nominal case refers to a situation where condi-

tional effort multipliers are collected for the best-case (nominal) value of the direct

effort factor given the worst-case (extreme) value of the associated indirect factor. In

this case, no effort multiplier for the nominal value of the direct effort factor given the

best-case (nominal) value of the indirect factor needs to be collected because it is per

default equal to 0 %. Additionally, however, the unconditional effort multipliers for

the worst-case (extreme) value of the direct factor must be collected.

Figure 5.19 illustrates such a situation on an example effort overhead model

where the direct effort factor “F1. Customer Participation” interacts with the

indirect effort factor “F2. Adequacy of Customer’s Inputs.” This simple effort

Fig. 5.18 Effort multipliers: indirect impact with influence in extreme case
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overhead model can be interpreted such that the positive impact of a customer

participating in software development depends on the adequacy of the information

the customer provides. The more adequate the information the customer provides to

the development, the more benefit is gained from the customer’s involvement in the

development. As we can see, considering the impact of information adequacy in

case when customer does not participate in the development—thus does not provide

any information—does not make sense. In such a case, the worst-case effort

overhead introduced by F1 will not depend on F2.
Conditional multipliers collected for the nominal case of a direct factor are then

used as input for computing the factor’s unconditional multipliers for the nominal

case; unconditional effort multipliers for the factor’s extreme case are collected

using a questionnaire. The two unconditional effort multipliers—computed for the

nominal case and collected for the extreme case—then serve as input for building

the CoBRA model.

Composite Direct Impact
If a direct effort factor is decomposed into multiple effort variables, the effort

multiplier data for each effort variable must be collected. The factor’s multipliers

Fig. 5.19 Effort multipliers: indirect impact with influence in nominal case
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do not have to be collected because they can be simply computed as the sum of the

effort multipliers on its variables. Refer to Sect. 5.11.1 where we present details on

computing the actual effort overhead for historical projects.

Figure 5.20 illustrates this situation on a simple effort overhead model in which

the direct effort factor “F3. Key Team Capabilities” is decomposed into two effort

variables “V3.1. Domain Experience” and “V3.2. Platform Experience.” This

simple effort overhead model can be interpreted such that the two most relevant

capabilities of software development team that have an impact on project effort are

domain and platform experience.

In this example, the analyst collects the effort multipliers for each variable, given

its worst-case (extreme) value. The worst-case effort multiplier of the direct effort

factor F3 is then assumed to be the sum of the multipliers on V3.1 and V3.2.

Composite Indirect Impact
The CoBRA method allows for composite indirect factors under the condition that

all effort variables that consist of composite factors are quantified using the same

measurement scale; thus these values can be added. If there exist composite indirect

factors, the analyst collects conditional effort multipliers for the direct effort factor

Fig. 5.20 Effort multipliers: composite direct impact
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analog to the case of indirect impact (non-composite indirect factor). However, now

the nominal or extreme case of the indirect factor refers to the nominal or,

respectively, the extreme case of all associated effort variables.

Depending on whether the composite indirect factor influences the nominal or

the extreme case, the analyst collects conditional effort multipliers:

• Indirect impact with influence on nominal case: Conditional effort multipliers are

collected for the best-case (nominal) value of the direct effort factor given the

worst-case (extreme) value of all effort variables the indirect factor is composed of.

• Indirect impact with influence on extreme case: Conditional effort multipliers

are collected for the worst-case (extreme) value of the direct effort factor given:

– The best-case (nominal) value of all effort variables the indirect factor is

composed of

– The worst-case (extreme) value of all effort variables the indirect factor is

composed of

Fig. 5.21 Effort multipliers: composite indirect impact
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Figure 5.21 shows an example that illustrates indirect impact with influence on

extreme case. In the example, the impact of the direct effort factor “F1. Project
Distribution Level” on project effort is influenced by the indirect factor “F2. Team
Capabilities,” which is composed of two variables “V2.1. Domain Experience” and
“V2.2. Communication Skills.” This simple effort overhead model can be

interpreted such that the negative impact of the large number of geographically

distributed project teams on the project’s effort depends on the capabilities of the

members of the distributed development team. In particular, the negative effect of

team distribution on project effort can be alleviated if team members can efficiently

and effectively communicate with each other and coordinate their work. Two

particular team capabilities contribute to efficient and effective communication:

very high domain experience and excellent communication skills.

In this example, the analyst collects conditional effort multipliers for the extreme

case of F1 (project work is performed by more than five geographically distributed
teams) given:

• The nominal case of V2.1 and V2.2 (development team members possess high
domain knowledge and excellent communication skills)

• The extreme case of V2.1 and V2.2 (development team members neither know
the domain nor possess interpersonal communication skills)

5.10.2 Collect Effort Multiplier Data

For each direct effort factor, its effort multiplier is acquired individually from each

domain expert involved in the CoBRA modeling. In order to account for the

inherent uncertainty of expert judgment, for each factor, three percentage values

are provided: minimal (Min), maximal (Max), and most likely (ML).

Depending on the familiarity of the involved domain experts with the procedure

of collecting the effort multiplier data, the analyst decides between two alternative

ways of data acquisition:

• Interviews: If the procedure of collecting the effort multiplier data is new to the

domain experts, it is highly recommended that the domain experts provide the

data individually in a face-to-face interview with the analyst. During these

personal interviews, the experts still have an opportunity to clarify potential

doubts with respect to the definition and/or quantification of the effort factors.

• Survey: If the domain experts are already familiar with the procedure of collecting

the effort multiplier data, for example, because it is already a subsequent model

development iteration they are involved in, the analyst may collect effort multi-

plier data off-line in an e-mail or Web-based survey. In this case, the domain

experts fill in effort multiplier data acquisition forms off-line and send them back

to the analyst. The advantage of this approach to effort multiplier data collection is

its relatively low cost compared to time-consuming interviews.

We recommend considering face-to-face interview sessions whenever the

CoBRA modeling process is new to the involved experts; off-line questionnaires

can be used otherwise.
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Tip

" While acquiring effort multiplier data, prefer face-to-face interviews with domain

experts wherever it is feasible. Collect effort multipliers in an off-line survey only

when the domain experts are very familiar with the data acquisition procedure.

5.10.3 <Optional> Validate Effort Multiplier Data

The purpose of the consistency check is to identify any potentially invalid factor

impact quantification provided by the experts. Two methods are proposed for

identifying potential data inconsistencies: internal consistency check and external

consistency check.

Internal Consistency Check
The internal consistency check focuses on investigating the extent to which the

domain experts agreed with respect to the impact of the same effort factors on

effort. For each direct effort factor, the analyst compares the values of the effort

multipliers (Min, Max, and ML) that different experts provided. The purpose of the

analysis is to identify potential outlier values. Minimal, maximal, and most likely

values are analyzed individually. Quantifications lying far from the main body of

data should be discussed during a group meeting with the domain experts. Note that

outlier effort multipliers are, in principle, allowed because they may cover different

experiences. They do, however, require justification.

In general, any known outlier analysis technique can be applied; please refer to

the appendix for a brief overview of several approaches to detecting data outliers. In

CoBRA, we propose using the Mahalanobis distance (Mahalanobis 1936) and box

plot analysis. In this approach, the Mahalanobis distance of each judgment (in this

case the single effort multiplier value) to other judgments is computed.

Figure 5.22 illustrates an example outlier analysis of effort multiplier data

provided by five domain experts. In addition to the percentage multipliers, the

domain experience of the experts has been measured in terms of number of years

working in the domain. A simple visual analysis of the triangular distributions

constructed upon the multiplier data already shows that Expert 3 differs noticeably

in his judgment from the other experts. In particular, Expert 3 seems to be an outlier

with respect to the most likely effort multiplier (ML) and the judgment uncertainty

reflected by the range of estimated multipliers, where Range ¼ Max�Min.
A formal analysis of the Mahalanobis distance confirms the informal

observations. Expert 3 differs from the other experts with respect to the maximal

and the most likely effort multipliers. Moreover, the expert is distinguished by the

large uncertainty of this multiplier assessment, which is reflected by the large

distance between the minimal and maximal effort multiplies.

In order to identify the potential causes of outlier judgments, the analyst may

investigate the values of the Mahalanobis distance of the judgments to the quanti-

tative characteristics of experts who provided particular judgments. Continuing the

example in Fig. 5.22, we can check the association between the domain experience
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of experts and the Mahalanobis distance of their judgments. Figure 5.23 illustrates

the results of such an analysis.

We used a simple statistical correlation to check if there is any relationship

between the experience of an expert and the extent to which the expert’s judgments

differ from those of other experts. The results of the analysis suggest that the level

Fig. 5.22 Using Mahalanobis distance for identifying outlier expert judgments

Fig. 5.23 Correlating experts’ judgments to experts’ experience
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of agreement among the experts may have something to do with their individual

experience. In such a case, the analyst should look closer at the characteristics of the

outlier expert and consider two possible responses:

• Accept outlier inputs: If the experiences of an outlier domain expert correspond to

the estimation context of the developed CoBRAmodel, the outlier inputs should be

considered within the modeling process. In this case, the outlier expert may simply

have gained experiences in other situations than the remaining experts. In this sense,

the outlier data are a valuable source of information complementing the experiences

of the majority. It may be that the outlier data represent a rare and exceptional

project situation,whichmayhowever recur in the future. In this case, excluding such

data from consideration would expose the developed CoBRA model to the risk of

poor performance when applied in such an exceptional project situation.

• Exclude outlier data: If the experiences of an outlier domain expert represent a

project situation that is rather unlikely to recur in the future project in which

developed CoBRA model will be used, the data should be excluded from further

consideration. In an extreme case, if the expertise of the outlier expert does not

fit the considered estimation context or is not credible because of low work

experience of the expert, the analyst may decide to exclude the expert from the

model development process.

External Consistency Check
The external consistency check involves comparing the effort multipliers provided

by the domain experts to other indicators of the factors’ impact on effort. Two

possible indicators of the factors’ impact on effort include (Fig. 5.24) experts’

ratings of the factors’ importance and statistical association of the factors with

development productivity.

A factors’ importance ratings refer to the ratings that domain experts assigned to

the candidate effort factors in Step 5 of the model development process when

selecting the most relevant effort factors to consider in the effort overhead model

(Sect. 5.6.2: Rate Relevancy of Identified Effort Factors).

A factors’ association with development productivity refers to the strength of the
statistical association between the effort factors and development productivity

obtained by analyzing the historical factor data collected in Step 8 of the model

development process (Sect. 5.9. Step 8: Collecting and Validating Historical Factor

Data). In order to quantify a factor’s impact on effort, the analyst can employ one or

more multivariate analysis techniques proposed within statistics and data mining

theories upon the historical project data. Effort factors represent then independent

variables, and development productivity (computed as software size divided by

project effort) represents the dependent variable.

Because effort multipliers, impact ratings, and association strength differ with

respect to the measurement scale and to the concept they represent, they cannot be

compared directly. In order to check the consistency between these various

indicators of a factor’s impact on effort, the analyst can use one of the statistical

measures of association (Sheskin 2011) to test the overall agreement between the

impact of various factors using their raw impact quantifications. The analyst must
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ensure that the used measure of association is appropriate for the measurement

scales represented by the analyzed data. For example, the association between the

interval-scale ratings and the ratio-scale effort multipliers can be tested using the

Pearson coefficient of correlation (Sheskin 2011).

Alternatively, the analyst may rank-order the effort factors using alternative

impact quantifications and then check the consistency of the resulting rankings.

Additionally, the analyst may use a simple rank correlation coefficient known from

statistics to test overall agreement between factor rankings.

5.11 Step 10: Building the Effort Model

In CoBRA, the effort of a new project is estimated using two inputs: (1) the baseline

nominal development productivity observed across already completed projects

from the same context and (2) the new project’s effort overhead computed on the

basis of the specific characteristics of the project. The baseline nominal productivity

is a part of the CoBRA model and is determined during the model development

Fig. 5.24 Checking the external consistency of effort multiplier data
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process, whereas the new project’s effort overhead is determined when the CoBRA

model is applied.

The objective of this step is to determine the baseline nominal productivity of the

already completed projects considered in the model development process.

Table 5.30 summarizes the most important elements of this step. We provide a

detailed description of each activity in the following subsections.

In the following subsections, we present the major activities comprising the

“building the effort model” step of the CoBRA model development process.

5.11.1 Compute Actual Effort Multipliers for Historical Projects

In this activity, the analyst calculates—using an appropriate software tool—the

actual effort multipliers for the historical projects considered in the CoBRA model

Table 5.30 CoBRA model development process: building the effort model

Step 10: Building effort model

Objective The objective of this step is to determine the baseline nominal productivity of the

already completed projects considered in the model development process.

Personnel • Analyst: The analyst synthesizes the data collected throughout previous steps of the

model development process. In particular, the analyst uses the quantified effort

overhead model and the factor data for each historical project considered and

computes the project’s effort overhead. Using the total project overhead and the

project’s actual size and effort data, the analyst determines the nominal productivity

for each historical project. Finally, the analyst synthesizes the nominal productivities

across all considered historical projects and computes the baseline nominal

productivity, which will then be used for estimating new projects.

• Domain experts: The domain experts are not involved in this step of the CoBRA

model development process.

Inputs • Quantified effort overhead model, in particular effort factors (direct and indirect),

effort variables (if any are defined), and measures specified for factors and variables.

• Historical factor data.

• Effort multiplier data.

• <Optional> Factor importance ratings provided by the domain expert while

selecting the most relevant effort factors in Step 5 of the model development process

(Sect. 5.6.2: Rate Relevancy of Identified Effort Factors).

Activities 1. Compute actual effort multipliers for historical projects.

2. Simulate effort overhead distributions for historical projects.

3. Determine nominal productivity baseline.

Tools • Software tools for preparing data collection instruments. In the simplest case, MS

Word or MS Excel to create data collection questionnaires. In advanced cases, a

dedicated CoBRA tool, which automatically generates multiplier data collection

forms based upon the quantified effort overhead model modeled in the tool.

• <Optional> Multivariate data analysis tools for quantifying the relationship

between project development productivity (dependent variable) and effort factors

(independent variables). Two groups of tools to consider include statistical analysis

tools such as R, SPSS/PASW, or Statistica and data mining tools such as Weka,

KNIME or the data mining modules of the SPSS/PASW and Statistica packages.

Outputs • CoBRA effort estimation model: effort overhead model and baseline nominal

development productivity.
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development process. Using the generic effort multiplier data provided by the

domain experts (Step 9) and the project-specific historical factor data (Step 8),

the project-specific actual effort multiplier for each effort factor directly influencing

effort is calculated. In other words, a factor-specific contribution to the total effort

overhead in a specific project is computed.

For the sake of simplicity, we assume a typical case of a CoBRA application, in

which (1) the effort factors and variables are measured on a 4-point interval scale

and (2) a factor’s effort overhead (EO) is linearly dependent on this factor’s value

(Fig. 5.25).

Basic Idea
The idea of computing the actual effort multipliers is to apply the actual factor’s

value in a specific project to the effort overhead function defined for this very

factor. In order to explain the basic effort overhead computations in CoBRA, we

assume a typical case of linear dependency between a factor’s value and its effort

overhead. For each effort factor, the exact dependency (linear function) has been

specified by the domain experts in Step 9 of the CoBRA model development

process through two boundary values of effort overhead: for the nominal (best-

case) and for the extreme (worst-case) factor’s value. Figure 5.25 illustrates such

simple dependency.

The effort overhead associated with an effort factor is computed using simple

linear dependency (5.1)

EOðFÞ ¼ aFþ EONom ; (5.1)

where a is the slope of the linear relationship between the factor’s effort overhead

EO and the factor’s value F. The slope of the effort overhead curve can be easily

computed (5.2) using the factor’s nominal and extreme effort multipliers (EONom)

and EOExt).

a ¼ EOExt � EONom

FExt
(5.2)

Fig. 5.25 Effort multiplier curve
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The intercept EONom represents the minimal value of the factor’s effort overhead

EO(F) in the best case, where the factor F has its nominal value (FNom); if the

impact of the direct effort factor F is not influenced by an indirect effort factor, then

EONom ¼ 0%. EOExt represents the maximum value of the factor’s effort overhead

in the worst case, where the factor has its extreme value (FExt). The value of EOExt

has been provided by the domain experts in Step 9 of the model development

process (Sect. 5.10. Step 9: Collecting and Validating Effort Multiplier Data).

Exact calculations depend on whether the effort factor is a stand-alone factor or a

factor to which an indirect factor or effort variables are associated. The following

paragraphs present three basic cases of computing project-specific effort multipliers

for an effort factor directly influencing effort. For each direct effort factor, three

values of the effort multiplier are computed: minimal, maximal, and most likely

effort overhead introduced by the factor in a specific project, given the factor’s

value in this very project.

Single Direct Impact
In this case, we consider a single stand-alone direct effort factor F1, meaning the

factor with which neither effort variables not indirect effort factors are associated.

In other words, neither the impact of F1 on effort is a composition of impacts of

multiple effort variables nor is the impact of F1 influenced by the value of an

indirect effort factor. Figure 5.26 illustrates the corresponding effort overhead

model, the multiplier data collection questionnaire, and the factor’s effort multiplier

(effort overhead) curves.

For the sake of simplicity, in the following paragraphs, we do not individually

consider minimal, maximal, and most likely effort overhead. Instead, we simply

refer to effort overhead (EO). Yet, all the considerations we present apply to

Fig. 5.26 Calculating effort multipliers: simple direct impact
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minimal, maximal, and most likely effort overhead (EOMin, EOMax, and EOML,

respectively). For example, we refer to EO in the mathematical formulas we define

for calculating a project-specific factor’s effort overhead. In order to use these

formulas for computing the appropriate minimal, maximal, and most likely effort

overheads, one must simply instantiate the generic identifier “EO” with “EOMin”,

“EOMax”, or “EOML”, respectively.

The actual effort overhead introduced by the effort factor F1 in a particular

project depends on the value of F1 in the project and is computed in two steps.

Step 1: Construct the effort overhead curve for the direct effort factor. In this step,
we construct effort overhead curve based upon the boundary effort multipliers acquired

for F1 in Step 9 of the CoBRA model development process (Sect. 5.10. Step 9:

Collecting and Validating Effort Multiplier Data). The two boundary values include:

• Extreme-case multiplier: The effort overhead introduced by F1 given its worst-

case factor’s value (F1Ext). This effort overhead (EOExt) has been acquired in

Step 9 of the CoBRA model development, typically from the domain experts.

• Nominal-case multipliers: The effort overhead introduced by F1 given its best-

case factor’s value (F1Nom). According to the principles of the CoBRA method,

the best-case effort overhead (EONom) of any single direct effort factor is, per

default, equal to zero, meaning that in the nominal case, an effort factor does not

introduce any effort overhead.

Step 2: Compute the effort multiplier of the direct factor given its actual value.
Based on the effort overhead curve constructed in the previous step and on the

actual value of F1 in a particular project, we compute the actual effort overhead the

factor introduces. Equation (5.3) provides the generic formula for computing the

effort multiplier for a particular value x of direct effort factor F1 (for F1 ¼ x).

EO F1 ¼ xð Þ ¼ x � EO F1Extð Þ � EO F1Nomð Þ
F1Ext

(5.3)

Example 5.7 illustrates how to compute the intermediate effort multipliers of a

stand-alone direct effort factor for an example “Requirements Volatility” factor.

Example 5.7. Computing Effort Overhead for Direct Impact

Let us consider a simple example of computing project-specific effort

multipliers for direct impact, meaning for a direct effort factor without any

interactions.

Figure 5.27 presents a very simple effort overhead model consisting of only

one direct effort factor F1 defined as “Requirements Volatility.” The factor

represents the extent to which software requirements change during the devel-

opment life cycle. It is measured in terms of the percentage of requirements that

changed after being “frozen” at the end of the requirements specification phase.

For the purpose of our example, let us consider the effort multiplier data

provided for F1 by only one domain expert. The effort multiplier data consist of

the minimal, maximal, and most likely effort overhead introduced by F1 in the
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extreme (worst) case. An expert has assessed the respective extreme effort

overhead values as 30 %, 100 %, and 50 %. Figure 5.28 illustrates the procedure

of computing the project-specific effort multiplier associated with F1 given the

value of F1 ¼ 2 in the project.

Computing project-specific effort multipliers consists of two steps:

• Step 1: Construct the effort overhead curve for the direct effort factor.We use

the effort multiplier data acquired from the domain experts to construct the

Fig. 5.27 Example: effort overhead model with direct impact

Fig. 5.28 Example: computing effort multipliers for direct impact
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effort overhead function. In doing so, we assume linear dependency between

the values of F1 and its effort overhead. Moreover, we follow the basic

assumption of CoBRA in that for the nominal case of the effort factor F1,
we presume the factor’s effort overhead to be equal to 0 %—formally written

as EO(F1 ¼ 0) ¼ 0 %.

• Step 2: Compute the effort multiplier of a direct factor given its actual value.
We compute the actual effort overhead of F1 in a specific project based on the
linear function constructed in the previous step for the factor and on the

factor’s actual value in the project (in our case F1 ¼ 2). For this purpose, we

employ a simple formula (5.3) for the minimal, maximal, and most likely

effort overhead, respectively.

After performing simple calculations, we obtain the actual effort

multipliers for F1 equal to 20, 33, and 67 %. This means that in the project

in which F1 ¼ 2, the factor will increase project effort minimally by 20 %,

maximally by 67 %, and most likely by 33 %. ■

Composite Direct Impact
If a direct effort factor F1 is composed of n effort variables V1.1, . . . V1.n, we
compute the factor’s actual effort overhead as the sum of the actual overheads on

the variables, based on their actual values (5.4). To do so, we make use of the

additive property of the CoBRA effort overhead, according to which (1) the effort

overhead of a composite effort factor is the sum of the effort overheads on the

variables it is composed of and (2) total effort overhead is the sum of the effort

factors directly influencing effort.

EOðF1Þ ¼
Xn
i¼1

EOðV1:iÞ: (5.4)

In fact, based on the additive character of a CoBRA model and the assumption

regarding the mutual independence of direct effort factors and effort variables, we can

represent the variables of a composite effort factor as effort factors directly influencing

effort. Figure 5.29 illustrates the correspondence between a composite effort factor

and a set of effort factors for two situations: (a) stand-alone composite effort factor and

(b) composite effort factor to which an indirect effort factor is associated.

For the purpose of computing effort multipliers, we treat effort variables as if

they were direct effort factors and apply procedures analog to those for direct

factors:

• Composite factor without indirect influences (Fig. 5.29a): If a composite direct

effort factor F1 is not associated with any indirect factor, we compute the

project-specific effort multipliers for each ith effort variable V1.i using the

generic variable’s multiplier provided by the domain experts for the variable’s

worst-case value and the variable’s value in the project.
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• Composite factor associated with an indirect factor (Fig. 5.29b): If a composite

direct effort factor F1 interacts with an indirect factor F2, we treat each ith
variable of the direct factor F1 variable as a direct effort factor. Each such factor
interacts with the indirect factor F2. We compute the project-specific conditional

effort multipliers for each ith effort variable V1.i given the value of F2. In the

following two paragraphs, we discuss how to compute the effort multipliers for

the case of indirect impact.

Indirect Impact with Influence on Extreme Case
In this paragraph and the next two, we consider the interaction between a direct

effort factor F1 and an indirect effort factor F2. This interaction refers to a situation
where the impact of F1 on project effort (meaning the effort multiplier of F1)
depends on the value of F2. We denote this conditional effort overhead as EO(F1|
F2) and read it as the effort overhead of factor F1 given the value of factor F2. In
this paragraph, we consider factor interaction in which the extreme (worst-case)

effort multiplier of F1 depends on the value of F2; the nominal (best-case) effort

multiplier of the direct factor F1 does not depend on the indirect factor and is, per

default, assumed to be equal to 0 %.

Figure 5.30 illustrates the corresponding effort overhead model, the effort

multiplier data collection questionnaire, and the factor’s effort multiplier (effort

overhead) curves. For the sake of simplicity, in the following paragraphs, we do not

individually consider minimal, maximal, and most likely effort overhead. Instead,

we simply refer to effort overhead (EO). Yet, all the consideration we present

applies to minimal, maximal, and most likely effort overhead (EOMin, EOMax, and

EOML, respectively). For example, we refer to EO in the mathematical formulas we

define for calculating a project-specific factor’s effort overhead. In order to use

these formulas for computing the appropriate minimal, maximal, and most likely

effort overheads, one must simple instantiate the generic identifier “EO” with

“EOMin”, “EOMax”, or “EOML”, respectively.

Computing the actual effort overhead introduced by the direct effort factor F1 in
a particular project, given its actual value, the actual value of the associated indirect

factor F2 proceeds in three steps.

Fig. 5.29 Equivalence of composite direct effort factors
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Step 1: Construct a conditional effort overhead curve for the extreme case of the
direct effort factor. In this step, we use the conditional effort multipliers acquired in

Step 9 of the CoBRA model development process to construct a conditional effort

overhead curve for the extreme case of the direct effort factor F1.
Step 2: Compute the extreme multiplier of direct effort factor given the actual value

of the indirect factor. In the next step, we consider the actual project value of the

indirect effort factor F2 in order to compute the unconditional extreme (worst-case)

effort multiplier for the direct factor F1. For this purpose, we use the effort overhead
curves for the extreme case of the direct factor given the value of the indirect factor.We

denote this conditional effort overhead of F1 given the value of F2 as EO (F1Ext|F2).
We compute the extreme multiplier of F1 given a particular value x of F2 using

the two parameters of the EO (F1Ext|F2) curve: its slope and its intercept. The slope
of the curve can be determined using the generic equation (5.5).

EOðF1ExtjF2ExtÞ � EOðF1ExtjF2NomÞ
F2Ext

(5.5)

Fig. 5.30 Calculating effort multipliers: direct effort factor with indirect impact on extreme case
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The intercept of the linear function EO (F1Ext|F2) is equal to EO (F1Ext|F2Nom),
which is already available because it has been directly collected in Step 9 of the

CoBRA development process.

Having the slope and intercept of the EO (F1Ext|F2) curve, the extreme multi-

plier of F1 given F2 ¼ x can be simply computed by multiplying the slope by x and
adding the intercept.

EO F1ExtjF2 ¼ xð Þ ¼ EO F1ExtjF2Extð Þ � EO F1ExtjF2Nomð Þ
F2Ext

� x
� �

þ EO F1ExtjF2Nomð Þ (5.6)

Step 3: Compute the effort multiplier of a direct factor given its actual value.
After considering the actual value of the indirect factor (F2 ¼ x), we can construct

the curve for the unconditional effort overhead of the direct factor F1. The curve is
defined by two boundary values of the direct factor F1: the extreme effort

multipliers we have just computed and the nominal effort multipliers, which are

assumed to be equal to 0 %.

The effort multiplier value for a particular value y of the direct factor F1, given
the value x of F2 can then be computed analog to computing simple direct impact

(5.7).

EO F1 ¼ yjF2 ¼ xð Þ ¼ EO F1ExtjF2 ¼ xð Þ � EO F1NomjF2 ¼ xð Þ
F1Ext

� y (5.7)

Example 5.8 illustrates how to compute the intermediate conditional effort

multipliers of a direct effort factor “Requirements Volatility” interacting with an

indirect factor “Disciplined Requirements Management.”

Example 5.8. Computing Effort Multiplier for Indirect Impact on Extreme Case

Let us consider a simple example of computing project-specific effort

multipliers for indirect impact on an extreme case, meaning for a direct effort

factor whose impact on effort in an extreme case is influenced by an indirect

effort factor.

Figure 5.31 presents a very simple effort overhead model consisting of only

two effort factors. The direct effort factor “F1. Requirements Volatility”
interacts with the indirect effort factor “F2. Disciplined Requirements Manage-
ment.” This interaction can be interpreted in the following way: “The impact of

volatile requirements on project effort depends on (is influenced by) the extent of

disciplined requirements management.”

The “Requirements Volatility” factor is specified and measured in terms of

the percentage of requirements that changed after being “frozen” at the end of

the requirements specification phase of software development. The “Disciplined
Requirements Management” factor is specified and measured in terms of the
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frequency of disciplined requirements management activities during software

development.

For the purpose of our example, let us consider the effort multiplier data provided

for F1 by only one domain expert. The effort multiplier data for F1 consist of the

minimal, maximal, and most likely effort overhead introduced by F1 in the extreme

case given the nominal and the extreme case of F2. An expert assessed the

respective conditional effort overhead values as <10 %, 50 %, and 30 % > and

<30 %, 100 %, and 50 %>. Figure 5.32 illustrates the procedure of computing the

actual effort multiplier of F1 given F2 using factor data from an example software

project. Let us assume the following project-specific factor values: F1 ¼ 2 and

F2 ¼ 1. Computing the actual effort multiplier consists of three steps.

Step 1: Construct the conditional effort overhead curve for the extreme case
of the direct effort factor. We use the conditional effort multiplier data acquired

from a domain expert to construct the effort overhead curve for the extreme case

of F1 given two boundary values of F2: nominal (F2Nom) and extreme (F2Ext). In
this case, we assume linear dependency between the extreme effort overhead of

F1 and the values of F2.
Step 2: Compute the extreme multiplier of the direct effort factor given the

actual value of the indirect factor. We determine the actual extreme-case effort

overhead of F1 based on the conditional effort overhead function constructed in

the previous step and on the actual value of the indirect effort factor F2 ¼ 1. For
this purpose, we employ formula (5.6) for calculating the minimal, maximal, and

most likely effort overhead of F1 in its extreme case given F2 ¼ 2. Based on the
calculated extreme effort multipliers, we construct the unconditional effort

overhead function for F1, using the CoBRA’s assumption that in the nominal

case (F1 ¼ 0), the factor’s effort overhead is equal to 0 %.

Step 3: Compute the effort multiplier of the direct factor given its actual
value.We compute the actual effort overhead of F1 based on the linear function

Fig. 5.31 Example: effort overhead model with indirect impact on an extreme case
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constructed in the previous step and on the actual project data for F1 ¼ 2. For
this purpose, we employ a simple formula (5.7) for the minimal, maximal, and

most likely effort overhead, respectively.

After performing simple calculations, we obtain the actual effort multipliers

for F1 equal to 51 %, 11x %, and 24 %. This means that in a project in which

F1 ¼ 2 and F2 ¼ 1, F1 will contribute to an increase in project effort of

minimally 11 %, maximally 51 %, and most likely 24 %. ■

Fig. 5.32 Example: computing the effort multiplier for indirect impact on the extreme case

5.11 Step 10: Building the Effort Model 121



Indirect Impact with Influence on Nominal Case
In this paragraph, we consider the interaction between a direct effort factor F1 and

an indirect effort factor F2, in which the nominal (best-case) effort multiplier of F1
depends on the value of F2; the extreme (worst-case) effort multiplier of the direct

factor F1 does not depend on the indirect factor and has been directly collected in

Step 9 of the CoBRA model development process. Figure 5.33 illustrates the

corresponding effort overhead model, the effort multiplier data collection question-

naire, and the factor’s effort multiplier (effort overhead) curves.

Fig. 5.33 Calculating effort multipliers: direct effort factor with indirect impact on the nominal

case
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For the sake of simplicity, in the following paragraphs, we do not individually

consider the minimal, maximal, and most likely effort overhead, respectively.

Instead, we simply refer to effort overhead (EO). Yet, all the consideration we

present applies to minimal, maximal, and most likely effort overhead (EOMin,

EOMax, and EOML, respectively). For example, we refer to EO in the mathematical

formulas we define for calculating the project-specific factor’s effort overhead. In

order to use these formulas for computing the appropriate minimal, maximal, and

most likely effort overheads, one must simply instantiate the generic identifier

“EO” with “EOMin”, “EOMax”, or “EOML”, respectively.

Computing the actual effort multiplier for the direct effort factor F1 given the

value of F2 proceeds in four steps.

Step 1: Construct the conditional effort overhead curve for the nominal case of the
direct effort factor given the extreme value of the indirect effort factor. In this step, we
use the conditional effort multiplier data acquired from the domain experts for

constructing the nominal effort overhead curve ofF1 given the values of the associated
indirect effort F2. The curve is based on two points: (1) the acquired conditional

nominal effort multiplier of F1 given the extreme value of F2 and (2) the default

value (0 %) of the nominal effort multiplier of F2 given the nominal value of F2.
Step 2: Compute the nominal multiplier of the direct effort factor given the

actual value of the indirect effort factor. First, we consider the actual project value
of the indirect effort factor in order to compute the unconditional nominal (best-

case) effort overhead for the direct factor. For this purpose, we use the effort

overhead curves for the nominal direct factor given the value of the indirect factor,

which we denote as EO(F1Nom|F2).
The nominal multiplier of F1 given a particular value x of F2 is computed using

simple linear dependency (5.8).

EO F1NomjF2 ¼ xð Þ ¼ x � EO F1NomjF2Extð Þ � EOðF1NomjF2NomÞ
F2Ext

(5.8)

Step 3: Construct the unconditional effort overhead curve for the direct effort
factor. After considering the actual value of the indirect factor (F2 ¼ x), we can

construct the curve for the unconditional effort overhead of the direct factor F1. The
curve is defined by two boundary values of the direct factor F1: on the nominal

effort multipliers computed in the previous step and on the unconditional extreme

effort multipliers, which were collected directly in Step 9 of the CoBRA model

development process.

Step 4: Compute the actual effort overhead for the direct effort factor given its
actual value. Finally, we compute the actual effort multiplier value for a particular

value y of the direct factor F1. For this purpose, we use the slope and the intercept of
the unconditional effort overhead curve for F1 determined in the previous step. The

first component of the appropriate sum (5.9) represents the slope and the second

component the intercept.
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EOðF1¼ yjF2¼ xÞ ¼ EOðF1ExtÞ �EOðF1NomjF2¼ xÞ
F1Ext

� y
� �

þEOðF1NomjF2¼ xÞ (5.9)

Example 5.8 illustrates how to compute the intermediate conditional effort

multipliers of a direct effort factor “Customer Participation” interacting with an

indirect factor “Adequacy of Customer’s Inputs.”

Example 5.9. Computing Effort Multipliers for Indirect Impact on the Nominal Case

Let us consider a simple example of computing the actual effort multipliers for

indirect impact on the extreme case, meaning for a direct effort factor whose

impact on effort in the nominal case is influenced by an indirect effort factor.

Figure 5.34 presents a very simple effort overhead model consisting of only

two effort factors. The direct effort factor “F1. Customer Participation” interacts
with the indirect effort factor “F2. Adequacy of Customer’s Inputs.” This inter-
action can be interpreted in the following way: “The impact of customer partici-

pation in the software development project on its effort depends on (is influenced

by) the adequacy of the inputs the customer provides to the project.”

The “Customer Participation” factor is specified and measured in terms of the

portion of relevant software project activities the customer participates in. The

“Adequacy of Customer’s Inputs” factor is specified and measured in terms of

the perceived adequacy of the inputs to the project the customer provides while

participating in relevant project activities.

For the purpose of our example, let us consider the effort multiplier data

provided for F1 by only one domain expert. The effort multiplier data for F1
consist of the minimal, maximal, and most likely effort overhead introduced by

F1 in two cases: (1) the nominal case given the extreme case of the interacting

factor F2 and (2) the extreme case. Note that in the extreme case of F1,

Fig. 5.34 Example: effort overhead model with indirect impact on the nominal case
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considering F2 does not make sense; if the customer does not participate in the

project, this does not provide any inputs, so considering the adequacy of the

inputs makes no sense. An expert assessed the respective conditional effort

overhead values as <40 %, 80 %, and 60 % > and <40 %, 100 %, and

70 %>. Figure 5.35 illustrates the procedure of computing the actual effort

multiplier of F1 given F2, using example factor data from one software project.

We take F1 ¼ 2 and F2 ¼ 1.
Computing the actual effort multiplier consists of four steps.

Fig. 5.35 Example: computing the effort multiplier for indirect impact on the nominal case
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Step 1: Construct the conditional effort overhead curve for the nominal case
of the direct effort factor given the extreme value of the indirect effort factor.We

use the conditional effort multiplier data acquired from the domain experts to

construct the effort overhead curve for the nominal case of F1 given the extreme

value of F2. Notice that for the nominal value of F2, the effort multiplier of F1 is
per default 0 %.

Step 2: Compute the nominal multiplier of the direct effort factor given the
actual value of the indirect effort factor. We determine the actual nominal-case

effort overhead of F1 based on the conditional effort overhead curve constructed
in the previous step and on the actual value of the indirect effort factor F2
(F2 ¼ 1). For this purpose, we employ formula (5.8) for calculating the minimal,

maximal, and most likely effort overhead of F1 in its nominal case given F2 ¼ 2.
Step 3: Construct the unconditional effort overhead curve for the direct effort

factor.We construct the unconditional effort overhead curve for F1 based on the
nominal effort multipliers calculated in the previous step and the extreme effort

multipliers that were acquired directly from the domain experts.

Step 4: Compute the actual effort overhead for the direct effort factor given
its actual value. We compute the actual effort overhead of F1 based on the

unconditional effort overhead curve constructed in the previous step and on the

actual project data for F1 (F1 ¼ 2). For this purpose, we employ a formula (5.9)

for the minimal, maximal, and most likely effort overhead, respectively.

After performing simple calculations, we obtain the actual effort multipliers

for F1 equal to 31 %, 76 %, and 53 %. This means that in the project in which

F1 ¼ 2 and F2 ¼ 1, F1 will increase project effort minimally by 31 %, maxi-

mally by 76 %, and most likely by 53 %. ■

Composite Indirect Impact
The CoBRA method allows indirect effort factors to be composed of multiple

effort variables under the condition that all variables are measured on the same

scale—thus can be summed up.

If an indirect effort factor F2 is composed of n variables V2.1 to V2.n, we
compute the effort multiplier of the associated direct effort factor using the same

equations as in the case of a simple (non-composite) indirect factor. Figure 5.36

illustrates the idea.

While computing the conditional effort multipliers of the associated direct effort

factor F1, we simply consider F2 in terms of its variables:

• The nominal and the extreme cases of F2 refer to the nominal and extreme cases

of all its n variables, respectively.

• The value of F2 is simply the sum of the corresponding values of its variables

(5.10).

F2 ¼
Xn
i¼1

V2:n (5.10)
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An example consequence is that the nominal and the extreme values of a

composite indirect effort factor are assumed to be the sum of the nominal and

extreme values of its variables. Using the traditional 4-point interval scale, the

nominal factor’s valuewould then be equal to 0 (n times the value “0” on n variables)
and the extreme value would be 3n (n times the extreme value “3” on n variables).

5.11.2 Simulating Effort Overhead Distributions for Historical
Projects

In this step, the analyst applies a simulation technique upon the actual effort

overheads computed in the previous activity. The purpose of this step is to come

up with a distribution of total effort overhead for each historical project considered

in the CoBRA model development process.

In a single simulation run, two types of sampling take place for each direct effort

factor (or variable in case of composite factors) considered in the effort overhead

model (Fig. 5.37):

1. Select domain expert. This sampling is performed in cases where multiple

domain experts have provided their assessments of minimal, maximal, and

most likely effort overhead (conditional or unconditional effort multipliers). In

a single simulation run, one domain expert is randomly sampled from among the

experts who provided the effort overhead data for the effort factor. Typically, all

experts associated to a given factor are equally likely of being chosen. Yet,

another likelihood distribution can be considered; for example, the sampling

procedure may prefer more experienced domain experts.

2. Sample effort overhead. In this sampling, a simulation procedure picks a crisp

value from the triangular (or beta-PERT) distribution of the effort overhead

constructed upon the minimal, maximal, and most likely multiplier values

provided by the domain experts. The sampling procedure follows the Monte

Carlo (MC) simulation technique. Klaes et al. (2008) suggest using the

Performance-Optimized Latin Hypercube (LHRO) realization of the Monte

Carlo simulation as the most appropriate technique because for the same sam-

pling accuracy the LHRO proved to be more efficient, in terms of runtime, than

classical MC.

In each simulation run, the effort overhead values sampled for all effort factors

directly influencing effort (unconditionally and conditionally) are summed up into the

Fig. 5.36 Calculating effort multipliers: composite indirect impact

5.11 Step 10: Building the Effort Model 127



Fig. 5.37 Simulating a project’s effort overhead

128 5 Model Development and Validation



total effort overhead value. The result of multiple simulation runs (e.g., 10,000 runs)

is a relative frequency distribution of total overhead. The relative frequency

distribution approximates the probability distribution of total overhead.

5.11.3 Determining Nominal Productivity Baseline

In this activity, the analyst determines nominal productivity, which will be used as

baseline productivity for estimating future software projects. Using the simulation

approach described in the previous section, the analyst first computes the distribu-

tion of the actual effort overhead for each historical project considered in the

CoBRA model development process. Next, using the actual values of effort over-

head (EO), software size (Size), and project effort (Effort) for all historical projects,
the analyst determines the baseline nominal productivity (PNom) for estimating

future projects. Figure 5.38 illustrates the basic idea of determining the baseline

nominal productivity.

In a perfect case, nominal productivity across the historical projects should be

constant. This means that the CoBRA model should account for the complete effort

overhead for each historical project. In reality, however, this is not the case and

Fig. 5.38 Determining baseline nominal productivity
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there is still some variance in nominal productivity left across historical projects. In

principle, the cause is the imperfection of the effort overhead model and the data

used for developing the CoBRA model.

Imperfect Character of the CoBRA Effort Model

Like any model, the CoBRA effort models have an imperfect character. And

this is good, because the purpose of the CoBRA model is to reflect, in a

simplified form, those project effort dependencies that are necessary for

reliable effort estimation. The CoBRA model does not aim at representing

true and complete project effort dependencies. On the one hand, this would

probably not be feasible because such true dependencies are not known. On

the other hand, this would not be economically reasonable because modeling

many, complex effort dependencies would cost too much. The objective of

the CoBRA modeling is to obtain a useful model, that is, a model that

provides reliable effort estimates at minimal expense for modeling, applica-

tion, and maintenance. One of the consequences of the imperfect character of

the CoBRA models is that the nominal productivity computed across projects

using a CoBRA model varies to some extent. In the context of CoBRA, there

are two major sources of model imperfection: model incompleteness and

model inaccuracy.

Model incompleteness refers to effort factors and interactions that

although having an impact on project effort are not considered in the

model. On the one hand, it is simply not feasible to identify all such factors

and interactions. On the other hand, it is economically not reasonable to even

try to model all effort factors because the large cost of building and

maintaining a complex effort model does not pay off with appropriately

improved estimates. In practice, acceptably good models can be developed

using a limited number of the most relevant effort factors; considering further

factors leads to increased modeling cost without appropriate gains in the

model’s performance.

Model inaccuracy refers to measurement effort and modeling error. On the

one hand, not all effort factors and their interactions that are considered in the

effort overhead model are correct, that is, correspond to true effort effects in a

development project. On the other hand, input data are burdened by measure-

ment effort and judgmental biases.

Typically, for each historical project, the analyst selects the most likely effort

overhead (EO) from the probability distribution of EO. Yet, depending on the risk

one would like to accept with respect to exceeding the estimated project effort, one

may also use an EO other than most likely. For example, in order to get more

conservative estimates, the analyst may take an EO higher than the most likely one.

This will result in lower nominal productivity and lead to higher effort estimates.

130 5 Model Development and Validation



Point Nominal Productivity
The basic approach in the CoBRA method is to determine a crisp-value baseline

nominal productivity. For this purpose, the analyst may use either the regression or

the median approach.

The regression approach looks at the regression line f: Size x EO ! Effort that
best fits the actual data observed across historical projects (Fig. 5.39). In CoBRA,

the line’s intercept is assumed to be equal to zero. The inverse of the regression

line’s slope is then adapted as baseline nominal productivity. Since simple ordinary

least square regression is susceptible to data outliers, we recommend using a robust

regression analysis for this purpose.

The median approach first computes the nominal productivities for each histori-

cal project using the selected point value of the effort overhead (EO) and the actual

project effort and size using the transformed basic CoBRA equation (5.11).

PNom ¼ Size � EO
Effort

(5.11)

Next, the statistical median of the nominal productivities is taken as the baseline

for estimating future projects. By taking the median (instead of, for instance, the

mean), one avoids bias towards outlier nominal productivities, if such occur among

Fig. 5.39 Regression approach for determining baseline nominal productivity

Fig. 5.40 Median approach for determining baseline nominal productivity
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historical projects. Figure 5.40 illustrates the median approach for the historical

projects from Fig. 5.39.

In case of outlier nominal productivities, we should ideally first investigate the

reasons for these outlier nominal productivities and correct or remove them before

computing the baseline nominal productivity. Yet, taking the simple median typi-

cally works in practice. If the final CoBRA model did not meet the estimation

objectives, an analysis of the distribution of the nominal productivities across

historical projects would be one of the first means to find potential sources of the

model’s unsatisfactory performance. Refer to Sect. 5.13 for more details on

analyzing the results of the performance of a CoBRA model.

Distribution of Nominal Productivity: Bootstrapping
Approach
Computing the crisp value of the baseline nominal productivity—using a regression

or median approach—has the drawback that information about the estimation

uncertainty caused by the imperfection of the estimation model is lost. This may

result in a probability distribution for the predicted project characteristics that is too

narrow and, consequently, overconfident regarding the provided estimate.

In order to account for the model’s uncertainty, CoBRA proposes an advanced

approach to determining the baseline nominal productivity, in which a distribution

of the nominal productivity across historical projects is created using a Bootstrap

Fig. 5.41 Determining baseline nominal productivity using Bootstrapping
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technique. This approach helps to account for the uncertainty of the CoBRA model

manifested by the variance in nominal productivity across historical projects.

Bootstrap sampling (Efron and Tibshirani 1994) is performed upon the nominal

productivities of historical projects in order to come up with a distribution of the

relative frequency (Fig. 5.41). This distribution is taken as an approximation of the

probability distribution of nominal productivity across historical projects, where the

distribution’s width reflects the uncertainty of the effort overhead model. This

distribution is then the basis for estimating future projects. When used in various

industrial contexts, the bootstrapped baseline nominal productivity has proved to

lead to more realistic estimates (Klaes et al. 2011).

5.12 Step 11: Validating the Effort Model

After developing a new CoBRA model, we need to decide whether it is likely to

provide reliable estimates and can thus be released for estimating future software

projects or whether we should refine the model in the next development iteration. In

other words, we should check whether the model meets our estimation objectives

and find out potential improvements if it does not. In practice, new CoBRA models

typically require at least two to three iterations before they are sufficiently mature

for estimating future projects. For example, in terms of estimation accuracy, our

industrial experiences show that initial CoBRA models usually achieve a mean

magnitude of relative error MRE of 30–50 %. In very few cases, the estimation

error of an initial CoBRA model is larger. Yet, in all cases, performing two to three

additional modeling iterations quickly improves the model and reduces its estima-

tion error to MRE of 5–15 %.

The objective of this step is to evaluate the performance of the CoBRA model

created in the previous steps of the model development process, using actual project

data from already completed historical projects. In particular, the objective of such

an initial validation is to show that the developed CoBRA model (1) meets the basic

assumptions of the CoBRA method and (2) is capable of providing accurate and

precise estimates of project effort.

If the CoBRA model meets the estimation objectives, we can finish the develop-

ment process and release the model for estimating future projects. Otherwise, we

must continue with Step 12 of the development process, in which we analyze the

validation results in detail and identify potential causes of the poor performance of

the model. Based on the results of the analysis, we refine the model in additional

iterations throughout the model development process.

Table 5.31 summarizes the most important elements of this step. We provide a

detailed description of each activity in the following subsections.

In the following subsections, we present the major activities comprising the

“validating the effort model” step of the CoBRA model development process.
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5.12.1 Perform Cross-Validation

In this activity, the analyst builds and applies the CoBRA model using historical

project data and collects information on the model’s performance. In order to

avoid validating the model on the same project data upon which it was developed,

we validate it in a so-called cross-validation experiment. In general, a round of

cross-validation starts with partitioning the sample project data into two comple-

mentary subsets: training set and testing set. Next, the projects in the training set

are used to build the CoBRA model using Step 10 of the CoBRA model develop-

ment process (Sect. 5.11). Finally, the model is applied upon projects from the

testing set and its performance is evaluated. Cross-validation consists of multiple

runs in which different training and testing sets are used. For example, in tenfold

cross-validation, the sample set of project data is divided into ten parts, and in

each validation, round model is built using the combined nine parts and validated

on the tenth remaining part.

Table 5.31 CoBRA model development process: validating effort model

Step 11: Validating the effort model

Objective The objective of this step is to evaluate the CoBRA model created in the previous steps

of model development process, using actual project data from already completed

historical projects. In particular, validation aims at showing that the developed CoBRA

model meets the basic assumptions of the CoBRA method and is capable of providing

accurate and precise estimates of project effort.

Personnel • Analyst: The analyst prepares the historical project data and the tools necessary for

validating the CoBRA model. Next, the analyst runs a cross-validation experiment,

in which he builds and applies multiple CoBRA models using different subsets of

historical project data. Finally, the analyst collects the outcomes of the validation

and prepares them for analysis in the next (final) step of the CoBRA model

development process.

• Domain experts: The domain experts are not involved in this step of the CoBRA

model development process.

Inputs • Quantified effort overhead model, in particular effort factors (direct and indirect),

effort variables (if any are defined), and measures specified for factors and variables.

• Effort multiplier data.

• Historical project data including effort factor data, software size, and project effort.

Activities 1. Perform cross-validation.

2. Validate explanatory power.

3. Validate predictive power.

Tools • Software tools for implementing the CoBRA model: MS Excel or dedicated tools

such as CoBRIX.

• Software tools for collecting and preparing the outcomes of the model validation

data. Typically, MS Excel suffices for this purpose.

• Basic data analysis and visualization tools such as MS Excel or specialized statistical

analysis tools such as R, SPSS/PASW, or Statistica.

Outputs Results of effort model validation when applied upon historical projects, in particular:

• Projects’ actual effort overhead,

• Projects’ nominal productivity,

• Project effort estimation error (accuracy, precision, and bias).
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In the context of software engineering, in particular in effort estimation, very

scarce project data are available. Therefore, CoBRA proposes using the leave-one-

out (or Jacknife) version of cross-validation. Figure 5.42 illustrates this cross-

validation schema for n historical projects. In one validation cycle, exactly one

project is left for testing the model, and the remaining n�1 projects are used for

building the model; consequently validation consists of n rounds.

On the output of each cross-validation cycle, the analyst collects information on

the particular performance aspects of the CoBRA effort models. In the following

subsections, we discuss specific model validation aspects grouped into two

categories: explanatory power and predictive power.

5.12.2 Validate Explanatory Power

The explanatory power of the CoBRA model refers to its capability to capture the

relationship between development productivity and effort overhead. This criterion

is evaluated by investigating the extent to which the CoBRA model meets two basic

assumptions of the CoBRA method:

• Linear relationship between project size and nominal development effort,

• Inverse (nonlinear) relationship between effort overhead and actual develop-

ment productivity.

Relationship Between Software Size and Project Effort
The basic assumption of the CoBRAmethod is that the effort of a nominal project is

linearly dependent on its size. In real projects, actual development productivity (a)

varies across projects and (b) changes depending on software size. The CoBRA

model is supposed to account for both these phenomena so that nominal productiv-

ity across projects is constant. We can check the ability of a CoBRA model to

explain sources of unstable development productivity by investigating two aspects:

(a) the functional dependency between software size and project effort and (b) the

functional dependency between development productivity and software size.

Fig. 5.42 Leave-one-out cross-validation of a CoBRA model
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Functional Dependency Between Software Size and Project Effort
We investigate the relationship between software size and project effort. In partic-

ular, we look at the spread and linear fit of the project data around the function

f: Size � EO ! Effort. For that purpose, we investigate the coefficient of determi-

nation (R2) of the regression line built on Size � EO and Effort data for the

historical projects available. Moreover, we can compare this tot R2 of the actual

productivity line g: Size ! Effort in order to test how much of the original

productivity variance is explained by the CoBRA effort overhead model.

Figure 5.43 illustrates the explanatory power of the CoBRA model in terms of

software development productivity curve. The large variance in actual development

productivity manifested by the widely spread points of actual development produc-

tivity (g: Size ! Effort) is explained by the CoBRA model through the project-

specific effort overhead (f: Size � EO ! Effort).
In addition to checking the linear fit, we can use a less stringent correlation

coefficient for checking the relationship between software size and project effort. In

this approach, we may consider determining either Pearson’s correlation coeffi-

cient or Spearman’s rank correlation coefficient.

Functional Dependency Between Development Productivity
and Software Size
We now investigate the relationship between development productivity and soft-

ware size. In particular, we look at the spread and direction of the project data

around the function f: Size ! Nominal Productivity. In order to evaluate these

aspects, we can basically look at the correlation between software size and a

project’s nominal productivity. We test if there is a significant correlation between

size and productivity as well as what the sign of the relationship is. If there is a

negative relationship, we conclude that there is a diseconomies of scale effect;

otherwise there is an economies of scale effect. In both cases, the model still does

not account for project environment aspects responsible for a disproportionate

(nonlinear) increase in effort along with an increase in software size.

Fig. 5.43 Validating the relationship between software size and project effort
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Inverse Relationship Between Effort Overhead and Actual Productivity
The basic CoBRA assumption regarding the linear functional form of the

size–effort dependency implies an inverse, nonlinear (1/x) relationship between

actual productivity and effort overhead (Fig. 5.44). During the validation of the

model, however, we use a less stringent criterion, namely, we assume that the

model is valid if there is a significant inverse association between effort overhead

and actual productivity. In order to check this assumption, we basically analyze the

rank correlation between effort overhead and development productivity across

historical projects. If there is a significant negative association between a project’s

actual effort overhead and its productivity, we can say that the CoBRA model

captures, at least partially, the variation in productivity across projects.

Tip

" While validating the CoBRA effort model on historical project data, look for

unintuitive effects with respect to the development productivity and effort over-

head of projects that were assigned by the CoBRA model.

Actual Impact of Effort Factors on Project Effort
An additional approach for validating the explanatory power of a CoBRA model is

to check to what extent the effort factors considered in the model actually contribute

to the total project effort in each historical project considered in the model devel-

opment process. In particular, we perform such an analysis if we suspect that the

CoBRA effort overhead model considers irrelevant effort factors while missing

relevant ones.

For this purpose, for each historical project, we run a sensitivity analysis, in

which the actual effort overhead introduced by each effort factor is computed using

the effort multipliers provided by the experts and the actual factor data in the

project. Next, we can synthesize the sensitivity analysis results for all historical

projects in order to rank the effort factors. The greater the impact of an effort factor

on project effort across historical projects, the higher the rank this factor obtains.

Finally, we can compare the ranking of the factors to their importance ranking

Fig. 5.44 Validating the relationship between project effort overhead and productivity
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assigned by the domain experts when they selected the most relevant effort factors

in Step 5 of the CoBRA model development process (Sect. 5.6.2).

Figure 5.45 illustrates an example situation when factor ranking based upon a

sensitivity analysis does not comply with the ranking determined by the domain

experts. The major discrepancy is that the domain experts seem to underestimate

the impact of volatile requirements on project effort.

Large discrepancies between the impact of actual and assessed factors on project

effort should then be investigated in the subsequent step of model development

where the results of model validation are analyzed in more detail and appropriate

model improvements are identified.

5.12.3 Validate Predictive Power

The predictive power of the CoBRA model basically refers to its capability of

providing effort estimates that are close to the actual project effort. We evaluate its

predictive power by computing common measures of prediction error for each

cross-validation run. For n historical projects, leave-one-out cross-validation

delivers nmeasures of prediction error. We can then analyze these data with respect

to three basic aspects of prediction error: accuracy, precision, and bias.

Estimation Accuracy
Estimation accuracy refers to the nearness of an estimate to the true value, that is, a

highly accurate prediction method will provide estimates very close to the actual,

known values. In order to quantify the summary accuracy of the estimation method,

we use the measure of relative error (RE) ormagnitude of relative error (MRE). For
each historical project, RE measures the difference between predicted effort

(EffortEst) and actual effort (EffortAct) relative to the actual one (5.12).

RE ¼ EffortEst � EffortAct
EffortAct

(5.12)

The MRE measures the magnitude of difference ignoring its sign of RE, that is,
ignoring whether the relative error is positive (CoBRA overestimated) or negative

(CoBRA underestimated). In other words, MRE ¼ |RE|.

Fig. 5.45 Validating the actual impact of effort factors on project effort
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In addition to the project-specific accuracy, we can compute the aggregated

measure of accuracy by calculating the mean or median value across the MRE
measures obtained throughout n historical projects.

Estimation Bias
Estimation bias refers to a systematic (constant) error in estimates and is deter-

mined as the difference between the average of estimates and the actual, true value.

In order to quantify estimation bias, we use the Prediction at Level m (Pred.m)
measure. The Pred.m measures the percentage of estimates that are within m % of

the actual value (5.13). Commonly, the value of m ¼ 25 % is taken. We use

Pred.25 in order to evaluate the ability of an estimation method to consistently

estimate within 25 % of error.

Pred:m ¼ k

m
(5.13)

where k is the number of projects for which MRE�25 %.

Estimation Precision
Estimation precision refers to the degree to which several estimates are very close

to each other. It is an indicator of the scatter in the estimates. The lesser the scatter,

the higher the precision. In order to quantify estimation precision, we can use the

standard deviation (SD) measure. Standard deviation is a common statistical

measure of data spread. In the context of software engineering, where the variance

of a data sample is not stable,11 Foss et al. (2003) proposed using the measure of

relative standard deviation (RSD) (5.14) instead of basic SD. RSD computes the

standard deviation of estimates relative to project size (SizeAct).

RSD ¼ 1

n� 1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

EffortAct � EffortEst
SizeAct

� �2

vuut (5.14)

5.13 Step 12: Analyzing the Results of Model Validation

The deficits of the CoBRA model, either with respect to the basic assumptions of

the CoBRA method or the estimation objectives, which are identified during the

model’s validation upon historical projects should be analyzed in detail. The

purpose of this analysis is to identify the sources of the model’s deficits and

determine potential model improvements.

11 So-called heteroscedastic data sample.
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The objective of this step is to analyze the results of the model validation and to

identify the sources of the identified deficits of the CoBRA model as well as

appropriate improvement potentials.

Table 5.32 summarizes the most important elements of this step. We provide a

detailed description of each activity in the following subsections.

In the following subsections, we present the major activities comprising the

“analyzing the results of model validation” step of the CoBRA application.

5.13.1 Analyze Explanatory Power

In this activity, the analyst takes a closer look at the results of the model validation

with respect to its explanatory power. The objective of this activity is to identify

deficits of the CoBRA model and identify appropriate model improvement

potentials. For this purpose, the analyst investigates two aspects of the historical

Table 5.32 CoBRA model development process: analyzing the results of model validation

Step 12: Analyzing the results of model validation

Objective The objective of this step is to analyze the results of the model validation and to

identify the sources of the identified deficits of the CoBRA model as well as

appropriate improvement potentials.

Personnel • Analyst: The analyst investigates in detail the results of the model validation step and

all data collected during the model development process in order to identify potential

sources of the model’s deficits. The analyst packages the outcomes of the analysis

and discusses them with the domain experts during a group meeting. In this meeting,

the domain experts discuss the potential causes of the observed poor performance of

the CoBRA model and identify potential model improvements.

• Domain experts: The domain experts review the results of the model validation and

analysis performed by the analyst in order to identify potential causes of poor

performance of the model and to propose appropriate improvements to the model.

Inputs • Historical project measurement data, in particular software size, project effort, and

any other historical measurement data regarding the projects’ characteristics.

• Quantified CoBRA effort overhead model.

• Results of the effort model validation when applied upon historical projects, in

particular actual effort overhead, nominal productivity, and effort estimation error

(accuracy, precision, and bias) of the projects.

Activities 1. Analyze explanatory power.

2. Analyze predictive power.

3. Package results of analysis.

4. Discuss results and identify improvement potentials.

Tools • Software tools for storing and preparing the outcomes of the model validation data.

Typically, MS Excel suffices for this purpose.

• Basic data analysis and visualization tools such as MS Excel or specialized statistical

analysis tools such as R, SPSS/PASW, or Statistica.

• Basic tools for documenting and presenting analysis results. Typically, MS

PowerPoint suffices for this purpose.

Outputs • Documented results of the analysis and group discussion.

• List of potential improvements to the CoBRA model.
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projects upon which the model has been applied: development productivity (actual

and nominal) and effort overhead.

Analyze the Relationship Between Software Size and Project Effort
Regarding the development productivity of the historical software projects, we

compare their actual productivity to their nominal productivity, that is, their produc-

tivity after considering the actual project effort overhead provided by the CoBRA

model. By comparing actual and nominal productivity, we investigate the ability of

the CoBRA model to explain the variance of actual productivity. In particular, we

look at the spread of the productivity values and the functional form of their trend.

With respect to the spread of the productivity values, we investigate two issues:

• Overall variance of productivity values, in particular how large the spread of

actual productivity is and whether it decreases on nominal productivity, that is,

after considering the projects’ effort overhead

• Data patterns recurring in both actual and nominal productivity data, in partic-

ular outlier projects or groups of projects that are present in the actual produc-

tivity data and do not disappear after considering the projects’ effort overhead in

the nominal productivity data

With respect to the functional form of the projects’ productivity trend lines, we

expect a linear functional form.

Issues that one should pay attention to and clarify include situations where for

two or more projects, the productivity and effort overhead data contradict the basic

assumptions of the CoBRA model and are simply counterintuitive. Typical

situations include:

• Projects that fall outside of the major (expected linear) trend. In particular, we

should focus on projects whose effort is negatively related to the size of the

delivered software. For example, for two projects A and B, project A may have

consumed significantly more effort than project B, although it delivered a

significantly smaller software product than B.

• Projects that consumed a significantly different amount of effort for developing

software of approximately equal size.

• Projects that consumed approximately the same amount of effort for developing

software of significantly different size.

Figure 5.46 illustrates these issues on example historical project data. In this

case, the CoBRA model is able to explain the variance in actual development

productivity for the majority of the software projects. The spread of project points

around the trend line decreases when the projects’ effort overhead is considered.

Yet, the model is still not able to explain the extremely low productivity of a group

of three projects. After considering effort overhead, these projects remain outliers

with respect to productivity. In this situation, the basic question to ask would be,

“what characteristics make these projects differ from other projects with respect to

development productivity?”
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Inverse Relationship Between Effort Overhead and Actual
Productivity
Regarding the effort overhead that the CoBRA model provides for each historical

project, we investigate the negative inverse relationship between effort overhead

and actual development productivity. In particular, we look at the spread of the

project data and the functional form of their trend.

With respect to the spread of the project data, we first check if a project’s effort

overhead and its actual productivity create any clear trend. Then we can check what

kind of trend this is. We expect a significant negative dependency between a

project’s effort overhead and its actual development productivity. The rationale

behind this expectation is that the higher effort overhead in the project, the more

effort it costs to develop software products of the same size and, thus, the lower the

project’s development productivity.

In order to analytically check the strength of the relationship, we can look at the

coefficient of rank correlation computed in the model validation step. In the best

case, the actual development productivity should be nonlinearly (inverse) depen-

dent on the effort overhead. With this relationship in mind, we look for patterns in

Fig. 5.46 Analyzing productivity outliers
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the historical project data that may indicate potential deficits of the CoBRA model.

Issues that one should pay attention to and clarify include situations where for two

or more projects, the productivity and effort overhead data contradict the basic

assumptions of the CoBRA model and are simply counterintuitive. Typical

situations include:

• Projects for which productivity and effort overhead are positively correlated. For

example, for two projects A and B, although the productivity of A is significantly

greater than the productivity of B, the CoBRA model assigned A significantly

greater effort overhead than B—which would suggest that the productivity of

A should actually be significantly lower than that of B.
• Projects that, although assigned approximately equal effort overhead, are

characterized by significant differences in development productivity.

• Projects that, although characterized by approximately equal development pro-

ductivity, were assigned significantly different effort overheads.

Figure 5.47 illustrates some example project data in which two issues require

clarification. The first issue is that the CoBRA model assigned significantly different

effort overheads to two projects of equal productivity; we would expect that the

project with the lower productivity would be assigned higher effort overhead.

The second issue relates to the pair of projects of different productivity for which

the CoBRA model assigned higher effort overhead to the project with higher devel-

opment productivity than to the project of lower productivity; we would expect

converse assignment. These two issues would, in conjunction with another analysis,

require clarification and appropriate improvement of the CoBRAmodel or input data.

Analyze the Actual Impact of Effort Factors on Project Effort
Finally, we can take a closer look at the results of the sensitivity analysis of the

actual impact each effort factor considered in the CoBRA model has on the project

effort across historical projects. As already mentioned in the validation step, the

results of the sensitivity analysis can be compared to the relative factor importance

perceived by the domain experts involved in the historical projects considered.

Potential discrepancies in an actual factor’s importance assessed by the experts

and obtained through a sensitivity analysis might indicate deficits of the effort

Fig. 5.47 Analyzing effort overhead
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overhead model. In particular, this could mean that some effort factors should have

been assigned different effort multipliers in order to account for their actual impact

on project effort. For example, Fig. 5.48 illustrates a situation in which the domain

experts seemed to underestimate the importance of the “Requirements Volatility”
effort factor. They ranked it as the fourth most important effort factor, while

according to the sensitivity analysis, it is the second most important effort factor

in the context of the considered historical projects. If “Requirements Volatility”
was, in fact, the second most important effort factor whose relative impact on effort

is significantly larger than that of subsequently ranked effort factors, the domain

experts would need to appropriately revise the effort multipliers they assigned to the

effort factors.

In addition, we may ask the experts who were involved in the considered

historical projects to prioritize the effort factors in retrospect with respect to their

impact on effort in each specific project and then compare this prioritization to the

result of the project-specific sensitivity analysis. For example, if the model predicts

that “Requirements Volatility” is the most important factor influencing project cost,

then we would expect that the project manager(s) would, in retrospect, also agree

that this factor was the most important one. The same argument applies to the least

important factor. To generalize this idea, the ranking of factors produced by the

model should exhibit high agreement with the ranking that would be produced by

the project manager in retrospect.

In practice, sensitivity analysis often helps to explain the causes of unintuitive

effects observed in other analyses of the effort model’s explanatory power. For

instance, it may help to explain why the CoBRA model assigned higher effort

overhead to one project than to another, although the latter actually had higher

development productivity.

In case of inconsistencies in a factor’s impact on project effort, model improve-

ment activities should focus on revising the effort multipliers assigned to the effort

factors and the historical project data. Moreover, we may review the effort overhead

model to see whether it contains irrelevant elements while missing relevant ones.

By elements we mean not only effort factors but also effort variables and factor

interactions.

Fig. 5.48 Validating the actual impact of effort factors on project effort
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Tip

" If the model’s sensitivity analysis showed unexpected impacts of an effort factor on

project effort, revise the effort multipliers and the historical project data. Sensitivity

analysis uses both effort multipliers and project data for determining a project’s

actual effort overhead.

5.13.2 Analyze Predictive Power

In this activity, the analyst takes a closer look at the error in the estimates the

CoBRA model delivered when applied for the historical projects. In particular, the

distribution of absolute and relative estimation error is investigated in conjunction

with the projects’ actual development productivity and effort overhead.

Similar to the analysis of the explanatory power, we look for unexpected effects

manifested by recurring outliers and trends in both estimation error and project

data. For example, Fig. 5.49 illustrates a situation where outlier projects with very

low actual development productivity remained outliers with respect to estimation

error—these were the highly underestimated projects.

In this example, the CoBRA model was clearly not able to account for the

project characteristics that were responsible for the extremely low productivity of

the three outlier projects. In the cross-validation runs, the baseline nominal produc-

tivity for each outlier project was based upon the median nominal productivity of

Fig. 5.49 Validating the actual impact of effort factors on project effort
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the remaining highly productive projects. This led to a situation in which the outlier

projects were estimated using high baseline productivity, yet their effort overhead

was not as large as it should be concerning their low actual productivity. In

consequence, the estimated effort was much lower than the effort actually con-

sumed. There might be a number of causes for this situation. One potential reason

might be a missing effort factor that distinguishes the outlier projects from others.

Another might be invalid project effort or size data. For example, the effort

measurements for the outlier projects may have omitted important project activities

that were considered when measuring the effort of the remaining projects. In fact,

our industrial experiences show that the inconsistent scope of size and/or effort

measurement is often the major cause of failed estimates.

5.13.3 Package Results of Analysis

In this activity, the analyst synthesizes the results of the analysis and prepares a

presentation for the domain experts involved in the CoBRA model development

process. The presentation should show, in a clear and concise way, the relevant

outcomes of the model validation, their analysis, and their interpretation. In the

presentation, the analyst should focus on the effects that indicate potential deficits

of the CoBRA model and associated data and that require discussion with the

domain experts.

5.13.4 Discuss Results and Identify Improvement Potentials

The analyst sets up a group meeting with the domain experts in order to discuss the

results of the model validation and analysis. The analyst starts the meeting with a

presentation of the most relevant findings regarding the performance of the CoBRA

model when applied to historical projects. The analyst focuses on issues that

indicate deficits of the CoBRA model and which should thus be resolved—either

by appropriate justification or by proposing appropriate model improvements.

Further Reading

• P.D. Allison, Missing Data, Quantitative Applications in the Social Sciences.

p. 136. Thousand Oaks: Sage Publications, 2002.

This book provides a nontechnical explanation of the standard methods for

missing data. Besides simple approaches such as list-wise or case-wise deletion,

the book describes some advanced techniques for handling missing data such as

maximum likelihood and multiple imputation. The practical value of the book is

increased by numerous examples and practical tips.
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• A. Trendowicz and J. M€unch, “Factors Influencing Software Development

Productivity—State-of-the-Art and Industrial Experiences,” Advances in
Computers, pp. 185–241. Elsevier, 2009.

This article provides a comprehensive overview of the factors influencing

development productivity and effort. The authors based their survey on a review

of related literature and on numerous experiences gained in the software indus-

try. On the one hand, the authors discuss effort drivers that seem to be univer-

sally applicable across various project environments; on the other hand, they

provide factors that seem to apply only within particular project situations.

• D. Wettschereck, D.W. Aha, and T. Mohri, “A Review and Empirical Evaluation

of Feature Weighting Methods for a Class of Lazy Learning Algorithms,”

Artificial Intelligence Review, vol. 11, no. 1-5, pp. 273–314. February 1997.

This paper provides a comprehensive review of feature weighting techniques

developed in the machine learning domain. Feature weighting techniques can be

employed in CoBRA for identifying the most relevant effort factors using

available project measurement data. In particular, feature weighting techniques

can be used to quantify the impact of the measured project characteristics on

development productivity.

• N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical
Approach. Revised, 2nd ed. Boston, MA, USA: PWS Publishing Co., 1998.

This book provides the fundamentals of software measurement. In particular,

in Chapter 2, the authors explain measurement scales with their associated

limitations. The principles of measurement this book presents might be useful

when developing CoBRA effort models, in particular (1) when collecting and

validating project measurement data and (2) when quantifying the effort over-

head model and acquiring corresponding expert knowledge.
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Model Application 6

After developing a new or modifying an existing CoBRA effort model, we can

directly use it for estimating the effort of individual software projects. Applying the

CoBRA model for estimation involves several simple activities.

In this chapter we describe the activities an estimator performs to predict the

effort of a software project using the CoBRA model. These activities are common

estimation activities that do not depend on any particular purpose of estimation.

6.1 Process Overview

Once developed and accepted, the CoBRA model is used at the project level for

estimating individual software projects. Figure 6.1 illustrates the steps involved in

applying CoBRA models.

In the first two steps (Steps 1 and 2), the estimation context and the goals within

the specific project are determined. Depending on whether the project situation

belongs to the range of situations the model was intended for, we can adjust the

model or the project situation appropriately in Step 3 of the process (before using

the model for estimating the project in Step 4). After project completion, in the last

two steps of the estimation cycle (Steps 5 and 6), the performance of the CoBRA

model is evaluated based upon the goodness of the estimates it provided for the

project. Potential deficits and their possible reasons are packaged and reported,

together with information about the project-specific estimation context. Feedback

collected on multiple software projects creates a basis for revising the CoBRA

model.

Re-estimating Project Effort In practice, estimators will repeat the first

four steps of the model application process in order to re-estimate project effort

as the project proceeds. Project estimates obtained in very early stages of

software development, when relatively little is known about the project scope

and environment, are typically burdened by high uncertainty. Therefore, it is a

A. Trendowicz, Software Cost Estimation, Benchmarking, and Risk Assessment,
The Fraunhofer IESE Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-30764-5_6, # Springer-Verlag Berlin Heidelberg 2013
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good practice to repeat the estimation project on a regular basis in order to take

advantage of current project information and for project tracking and

controlling purposes. As the software project proceeds, more actual information

is available. Figure 6.1 illustrates the idea of re-estimating a project during its

lifetime and packaging the experiences gained during re-estimation cycles at

project finish.

Re-estimating the project using updated information allows for reducing the

uncertainty of the estimates and revising the initial estimates, which were based

upon incomplete information or upon conditions that have changed along the

course of the project. Figure 6.2 illustrates this effect using the so-called “cone of

uncertainty” (Boehm 1981; McConnell 2006), which is nothing else but a repre-

sentation of the decreasing uncertainty of estimates across a software development

project.

In addition, we may consider using different size measures at different stages of

software development depending on their availability. For example, using common

lines of code (LOC) as a measure is in practice limited by the availability of the

software code, which is available relatively late during software development.

Using LOC in early stages of a software project forces us to estimate the size of

the software in terms of LOC and then base our effort estimates on these size

estimates. The danger of such an approach is that effort estimates based on

size estimates are burdened with a large error, which is the product of two errors:

size estimation error and effort estimation effort. In CoBRA, using different size

Fig. 6.1 Applying CoBRA models
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measures for estimating project effort at different stages of the development

life cycle would require constructing multiple CoBRA effort models, where the

productivity models would be based upon different size measures and the effort

overhead model would remain the same (see basic components of the CoBRA effort

model in Sect. 4.2, Fig. 4.1).

6.2 Characterize Project Context

The objective of this step is to characterize an individual project in order to choose

an appropriate CoBRA model for estimating the project. For this purpose, we

determine the project environment characteristics that determine the applicability

of the CoBRA models defined at the organizational level in a specific project. To do

so, we should focus on those characteristics of the project environment that were

considered when developing the CoBRA models at the organizational level.

If more than one CoBRA model has already been developed within an organi-

zation, we may use one that has been created for the context similar to a context of

the estimated project. In case of small dissimilarities, minor adjustments of the

chosen model and its application process might be necessary. If a CoBRA model

that fits the context of the estimated project is not available, then developing a new

model should be considered. If developing a new model is not feasible—due to time

constraints or lack of necessary inputs to model development—then using an

alternative estimation method should be considered.

Fig. 6.2 Cone of estimation uncertainty
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Tip

" When using a CoBRA model for estimating an individual project, analyze the

characteristics of the project and make sure that they do not differ from the

context and assumptions for which the employed CoBRA model has been

developed.

In fact, in this and in the next step of the model application process, we

characterize a project’s estimation context in order to select and apply an appropri-

ate CoBRA estimation model—or identify potential discrepancies between a

project-specific situation and the range of project situations for which a given

CoBRA model was designed. Typical context characteristics considered here

include application domain (embedded vs. information systems), development

type (new development vs. enhancement), or development life cycle (waterfall

vs. iterative).

Table 6.1 summarizes the most important elements of this step. We provide a

detailed description of each activity in the subsequent paragraphs.

6.2.1 Determine Relevant Context Characteristics

In this activity, the estimator assesses the characteristics of the project environment

that are relevant for choosing the CoBRA model that will (1) be feasible to apply in

the project and (2) provide reliable project estimates. The estimator obtains a list of

the relevant characteristics from the analyst who is responsible for managing the

CoBRA model within the organization. The list includes known and assumed

Table 6.1 CoBRA model application process: characterize project context

Step 4.1: Characterize project context

Objective The objective of this step is to characterize an individual project in order to choose an

appropriate CoBRA model for estimating the project.

Personnel • Estimator: The estimator provides relevant project characteristics to the analyst who

will use them together with the estimation objectives to select an appropriate

CoBRA model for estimating the software project.

• Analyst: The analyst specifies relevant project characteristics that need to be

measured for the project that is to be estimated using an appropriate CoBRA model.

Relevant project characteristics include context factors and assumptions considered

at the organizational level when developing organization-wide CoBRA models.

Inputs • Context characteristics considered when developing CoBRA models at the

organizational level.

• Assumptions made when developing CoBRA models at the organizational level.

Activities 1. Determine relevant context characteristics.

2. Determine relevant assumptions.

3. Determine additional project constraints.

Tools • Basic tools for documenting relevant project context characteristics and

assumptions. Example tools include MS Word or MS Excel.

Outputs • List of relevant project context characteristics and assumptions.
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context factors that were considered at the organizational level for specifying the

scope of the applicability of the developed CoBRA models.

Examples of typical context factors considered at the organizational level

include “application domain” and “development type.” For instance, if at the

organizational level, a CoBRA model has been developed for new development

projects in the embedded software domain, the estimator should assess the “devel-

opment type” and “application domain” of the project for which the CoBRA model

is to be selected and applied.

With respect to assumptions made at the organizational level, the estimator

should verify if these assumptions hold within the specific project. For example,

a typical assumption on the organizational level is that the estimation for a project

is based on the data that are reliable and close to the actual project characteristics.

It may, however, happen that due to low experience of the project staff or poor

measurement processes, the inputs for the estimation are of poor quality, leading to

poor estimates. In this case, noticing project-specific circumstances will be crucial

for explaining the reasons of potentially failed estimates. Instead of looking for

deficits in the CoBRA model, we should simply ensure proper data collection and

validation processes in the subsequent projects.

6.2.2 Determine Relevant Assumptions

For those project characteristics that are relevant for choosing an appropriate

CoBRA model but that are not known at the time of the project characterization,

the estimator must make the necessary assumptions. In such a case, the estimator

must assess certain project characteristics using the best of his knowledge and

experiences.

6.2.3 Determine Additional Project Constraints

Finally, the estimator should consider and document any project-specific

characteristics that were not taken into account explicitly during the development

of the CoBRA models on the organizational level but which may influence the

feasibility or performance of a CoBRA model used in the project. For example,

the estimator may notice that there might be some difficulties in reliably measuring

software size, which may have an impact on the goodness of the estimates. This

issue should be documented as a potential issue to be considered when analyzing

the goodness of the estimate at project completion.

6.3 Define Goals of Project Effort Estimation

The objective of this step is to specify the effort estimation goals defined in

a particular software development project.
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Defining estimation goals allows not only for selecting the most appropriate

CoBRAmodel but also for identifying potential deviations between project-specific

estimation objectives and organizational-level objectives for which the chosen

CoBRA model was developed. Based on the identified differences, appropriate

tailoring of the CoBRA model and/or estimation process can be performed within

the project.

Table 6.2 summarizes the most important elements of this step. We provide

a detailed description of each activity in the subsequent paragraphs.

6.3.1 Define Project-Specific Goals of Effort Estimation

In this activity, the estimator specifies the effort estimation goals he aims to achieve

in the project and provides them to the analyst, who chooses the most appropriate

CoBRA model to use in this particular project. If no CoBRA model is available that

perfectly matches the project-specific estimation goals, the analyst looks for the

most appropriate model and evaluates the discrepancy. The analyst then considers

a potential adaptation of the CoBRA model in order to meet the project-specific

effort estimation goals. For example, the best available CoBRA model showed an

average estimation error of 20 % in the past, but the project requires 10 % error at

most. In this case, the estimator must adjust the existing model in order to ensure

that the stringent project-specific goal is met. Another example might be that

the existing model focused on estimating project effort and the new project requires

the model to support justifying and negotiating the project scope with the customer.

In this case, the existing model would most likely focus on the internal,

organization-related effort factors such as the capabilities of the development

team or the quality of the selected development processes. Meeting the project

Table 6.2 CoBRA model application process: define goals of project effort estimation

Step 4.2: Define goals of project effort estimation

Objective The objective of this step is to specify the effort estimation goals defined

in a particular software development project.

Personnel • Estimator: The estimator specifies the project needs with respect to effort

estimation and discusses them with the analyst in order to choose the most

appropriate CoBRA model and, later on, tailor the model and the estimation

process, if necessary.

• Analyst: The analyst supports the estimator in specifying the project-specific

goals of the effort estimation. In particular, the analyst provides a list of the

estimation goals considered when the CoBRA models were developed at the

organizational level.

Inputs • Estimation goals considered at the organizational level.

Activities 1. Define project-specific goals of effort estimation.

Tools • Basic tools for documenting project estimation goals. Example tools include

MS Word or MS Excel.

Outputs • List of the project-specific goals of effort estimation.
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objective would, however, require that the model considers the impact of customer-

related effort factors on project cost. Showing this impact explicitly would form the

basis for justifying and negotiating the project budget and scope with the customer.

For instance, considering customer involvement in the project as a relevant effort

factor may be used as an argument for either more customer involvement in the

project or (if this is not possible) an increase in the project budget to compensate for

the insufficient involvement of the customer in the project.

If there is no CoBRA model that would meet all project-specific effort estima-

tion objectives, and if the available models would require major modifications, the

analyst must suggest using another method for estimating project effort. Alterna-

tively, another estimation method can be used in addition to CoBRA; the project

estimates will then result from combining the outcomes of both estimation methods.

The estimator may moderate the goal-related constraints on the CoBRA model

and prioritize the project-specific effort estimation goals. In this case, the analyst

may choose the CoBRA model that meets the most critical goals or the majority of

the project goals. For example, the estimator may use the method of Triage in that

he tells what effort estimation goals “must,” which “should,” and which “can” be

fulfilled by the selected CoBRA model based on its past performance.

6.4 Choose Estimation Model and Plan Estimation

The objective of this step is to select an appropriate CoBRA estimation model and

to plan the project estimation procedure. The form of both the estimation model and

the estimation procedure depends on the project-specific situation, that is, on its

estimation context and objectives. The CoBRA model chosen for estimating the

project should, if possible, closely correspond to the project’s estimation context in

terms of its environmental characteristics and its effort estimation goals. Otherwise,

the model will be very likely to provide unreliable effort estimates. Estimation
procedure here refers to the part of the overall project that deals with estimating

project effort and using the outcomes of estimation. Planning estimation procedure

refers to planning and scheduling the estimation activities and to assigning

corresponding responsibilities and required infrastructure.

Table 6.3 summarizes the most important elements of this step. We provide a

detailed description of each activity in the subsequent paragraphs.

6.4.1 Select Appropriate CoBRA Model

In this activity, the estimator characterizes the context of a particular project for the

analyst who then selects the CoBRA model that is most appropriate for estimating

the project. In order to ensure reliable estimations, the project should be within the

range of project situations for which the CoBRA model was developed at the

organizational level. On the one hand, the analyst should ensure that the estimation

context for which the CoBRA model was developed and the project context fit with
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respect to environmental characteristics, constraints, and estimation goals. On the

other hand, the analyst and the estimator should check whether the estimated

project is similar to one or more of the historical projects used for developing the

CoBRA model under consideration. The more similar the estimated project is to the

historical projects, the more likely the CoBRA model is to provide reliable

estimates for the project.

In case there is no CoBRA model that perfectly suits the project’s specific

situation, the analyst should check the following possibilities:

• Adjust project’s context. If the project manager and the project owner agree, the

project environment and the estimation objectives may be modified to fit the

available CoBRA model.

• Adjust CoBRA estimation model. If the scope of the potentially required changes
to the CoBRA model is not too large, the analyst may locally—meaning within

the project—adjust the available CoBRA to fit it to the project’s estimation

context and objectives.

Table 6.3 CoBRA model application process: choose estimation model and plan estimation

Step 4.3: Choose estimation model and plan estimation

Objective The objective of this step is to select an appropriate CoBRA estimation model and to

plan the project estimation.

Personnel • Estimator: The estimator identifies the relevant characteristics of the project and its

estimation goals to the analyst, who looks for a CoBRA effort estimation model

that is the most appropriate one for estimating this particular project. The estimator

plans the estimation in conjunction with the project manager who is responsible for

overall project planning and management. Note that typically the project manager

also plays the role of the estimator.

• Analyst: The analyst chooses the most appropriate CoBRA model for estimating

the project, taking into account the estimation context specified by the estimator.

The analyst may optionally locally adjust (within the project) the CoBRA model if

it does not comply with the project’s estimation context. Finally, the analyst should

also be involved in planning the effort estimation by specifying the estimation

activities required for achieving the project’s estimation goals, capabilities, and

constraints.

Inputs • Project contexts.

• Project effort estimation goals.

• Existing CoBRA effort estimation models.

Activities 1. Select appropriate CoBRA model.

2. <Optional> Adjust project’s estimation context.

3. <Optional> Adjust estimation model.

4. Plan effort estimation.

Tools • <Optional> Tool for implementing the adjusted CoBRA model.

• Tool for planning effort estimation. Typically, this will be the tool used for

planning and managing the entire software project.

Outputs • CoBRA effort estimation model.

• <Optional> List of adjustments to CoBRA model and their rationales.

• <Optional> List of adjustments to project’s estimation context.

• Estimation plan.
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• Select alternative estimation method. If neither adjusting the project’s context

nor adjusting the available CoBRA model is feasible or likely to ensure reliable

project effort predictions, then an alternative estimation method should be

considered. In this case, the analyst and the estimator choose (after approval

by the project owners and managers) and propose the most suitable method and

appropriately plan project estimation.

6.4.2 Adjust Project Estimation Context

If none of the available CoBRAmodel fits the project-specific context, we can try to

adjust the project environment so that it is closer to the range of project situations

(estimation context) covered by one of the available CoBRA models. Such an

adjustment requires the approval of the project owner and the project manager.

For example, poor measurement processes—thus poor inputs to estimation—are a

common source of poor estimates. If we expect that the measurement procedures

used within a particular project will probably not provide us with reliable data for

estimation, we may plan alternative ways of obtaining appropriate data or improv-

ing the measurement processes beforehand.

6.4.3 Adjust Estimation Model

If adjusting the project environment is not possible or insufficient for ensuring

reliable project estimates using a particular CoBRA model, we may consider

adjusting the model.

Using the information regarding project context and estimation objectives

provided by the estimator, the analyst looks for a CoBRA model that best fits the

project situation. After selecting a candidate CoBRA model, we investigate to

which extent the project-specific situation differs from the range of situations

covered by the “best suitable” CoBRA model. If the discrepancies are not large

and can be resolved by small changes to the CoBRA model, the analyst can modify

the model appropriately. If the discrepancy between the estimation context of the

best suitable CoBRA model and that of the specific project is large and would

require major adjustments to the model, the analyst and the estimator should

consider employing alternative effort estimation method for that specific project.

Adjusting CoBRA Model Within Specific Project.

The prerequisite for adjusting the CoBRA model within an individual project

is that the required adjustments are limited—thus acceptable within the scope

of the individual project.

A CoBRA model that has been adjusted within a project should not be

automatically used for estimating other models but should be reported to the

organizational level. If similar projects are likely to recur in the future, it
(continued)

6.4 Choose Estimation Model and Plan Estimation 157



would make sense to create a suitable CoBRA model. If, however, the project

is exceptional and it is rather unlikely to be repeated in the future, it will

probably not be worth developing a dedicated CoBRA model. On the one

hand, it would be difficult to develop a model based on a single historical

project. On the other hand, the effort invested in building such a CoBRA

model will probably never be returned because the specific project will not

recur in the future. Already when approved on the organizational level, an

adjusted model can be released for estimating other projects. Ignoring these

rules will in practice lead to an uncontrolled increase of locally modified

models, which would increase the cost of their use and maintenance.

6.4.4 Plan Effort Estimation

Planning effort estimation consists of planning the activities, resources, and infra-

structure necessary for estimating project effort with the chosen CoBRA model. In

terms of planning, planning the effort estimation does not differ from planning any

other project activity. In fact, the estimation plan should be aligned with the project

activities and be integrated into the project plan. Presenting detailed aspects of

project planning goes beyond the scope of this book. Please refer to the related

literature, such as PMI (2007), for details regarding the planning of projects.

6.5 Estimate Project Effort

The objective of this step is to obtain project estimates using the chosen CoBRA

model and actual project data.

Table 6.4 summarizes the most important elements of this step. We provide a

detailed description of each activity in the subsequent paragraphs.

6.5.1 Collect Required Project Data

In this activity, the estimator collects the project data required on the input of the

CoBRA effort model. This includes the size of the software and the effort factors

considered in the effort model. The data format should comply that defined in the

effort model. For instance, the project data should be collected according to the

measurement scales defined in the effort model.

If the estimator knows the project, he may provide the project data by himself;

otherwise, he should acquire the data from the experts who were involved in the

project and know it well. Typically, the project manager, who usually plays the role

of the estimator, will provide all inputs to effort estimation. If some inputs are not

known at the time of the estimation, the data should be estimated using available

158 6 Model Application



project information. A typical situation where some effort factors might not be

already known is estimation in very early phases of software development, when

generally little is known about the project. In such cases, the expected or assumed

values of certain project characteristics can be used to generate initial project

estimates. In the later project stages, when more is known about the project, the

actual project characteristics can be used to revise the initial estimates, meaning

effort can be re-estimated.

After collecting the project data, the analyst analyzes it with regard to complete-

ness and consistency. In case of any deficits, the estimator should refer to the data

provided for clarification. Finally, the estimator prepares the data in order to enter it

into the CoBRA model. Depending on the particular tool implementing the model,

the input data may require reformatting.

6.5.2 Run Estimation

In this activity, the estimator enters the actual project into the CoBRA model and

runs the estimation. Based upon the quantified effort overhead model and the actual

project data, (1) actual distributions of effort multipliers for all direct effort factors

are computed and (2) a Monte Carlo simulation is executed to determine the

distribution of the project’s overall effort overhead. Using the simulated project

effort overhead and the baseline nominal productivity from the CoBRA model, the

distribution of the project’s estimated effort is computed. Please refer to Sects.

5.11.1 and 5.11.2 for more details regarding these computations.

Table 6.4 CoBRA model application process: estimate project effort

Step 4.4: Estimate project effort

Objective The objective of this step is to obtain project estimates using the chosen CoBRA

model and actual project data.

Personnel • Estimator: The estimator collects actual project data and feeds them to the chosen

CoBRA model. The estimator interprets the outcomes of the estimation and runs

additional analyses, if necessary.

• Analyst (optional): Involvement of the analyst in the estimation step is optional.

The analyst may support the estimator in using the CoBRA model and interpreting

its output, in particular when the estimator is not experienced yet in using the

CoBRA method for estimating project effort.

Inputs • CoBRA effort model.

Activities 1. Collect required project data.

2. Run estimation.

3. Interpret estimation outcomes.

Tools • Basic tools for collecting, storing, validating, and preprocessing actual project data.

• Tool supporting estimation with the CoBRA method. Example tools include

implementations in MS Excel or dedicated CoBRA tools such as CoBRIX.

Outputs • Intermediate project data (collected during project’s lifetime).

• Actual project data (collected at project finish).

• Outcomes of project effort estimation.

• Interpretation of project estimation outcomes.
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Since a CoBRA estimation is computationally intensive—especially due to the

Monte Carlo simulation—it should be supported by an automatic tool. If necessary

for achieving particular estimation goals, the estimator may run additional analyses.

For example, the project risk assessment goal requires running a sensitivity analysis

(see Sect. 7.2). At the time of the writing of this book, two software tools supporting

the CoBRA method were available:

• A standalone software package called CoBRIX,1 offered in multiple languages

by the Fraunhofer Institute for Experimental Software Engineering (FhG/IESE)

• A tool,2 based on MS Excel offered in Japanese by the Information-technology

Promotion Agency Software Engineering Center (IPA/SEC). In addition, IPA/

SEC offers a web-based CoBRA tool with a predefined set of effort factors

6.5.3 Interpret Estimation Outcomes

Finally, the estimator interprets the outcomes of the estimation and provides them

to the project manager. Since, in practice, the project manager typically plays the

role of the estimator, the latter activity will usually not be necessary.

6.6 Analyze Estimation Performance

This activity is performed at the end of the project, and its objective is to evaluate

the performance of the CoBRA model by comparing the estimates it provided

during the project to the actual project outcomes at its finish. In particular, errors

in the effort estimates are considered. Furthermore, we identify the potential

sources of the identified performance deficits and propose appropriate

improvements. These improvements may refer to the CoBRA estimation model

and/or to the project environment in which the model has been used. For instance,

poor measurement processes—thus poor input data for estimation—may turn out to

be the reason for failed estimates. In this case, we should focus our improvement

actions on the measurement processes rather than on the CoBRA model.

Note that in this step, the estimation performance of the CoBRA model within a

specific project is evaluated. After reporting the model’s performance and the

project data to the organizational level, the model’s performance in the project

will be evaluated in the context of other projects the model has been applied in.

In general, this activity is performed by the estimator. Yet, the analyst may

support the estimator if he is not yet sufficiently experienced in CoBRA. The

analyst may completely take over this step if the estimator’s constraints do not

1 http://www.cobrix.org/cobrix/index.html
2 http://sec.ipa.go.jp/tool/cobra/ (in Japanese; in order to enter the page, a free-of-charge sign in on
the IPA/SEC website is required)
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allow him to perform this activity, for example, because he is the project manager

and is committed to project management activities.

Table 6.5 summarizes the most important elements of this step. We provide a

detailed description of each activity in the subsequent paragraphs.

6.6.1 Analyze Predictive Performance

Predictive performance refers to the accuracy of the effort estimates, meaning the

nearness of the estimated project effort to the actual effort reported at project finish. In

order to quantify the summary accuracy of the estimation method, we use the relative
error (RE) measure. For each historical project, RE measures the difference between

predicted effort (EffortEst) and actual effort (EffortAct) relative to actual effort (6.1).

RE ¼ EffortEst � EffortAct
EffortAct

(6.1)

If the estimation error is greater than an acceptable level specified in the

project estimation objectives, we should investigate the potential reasons for this.

One potential source of low predictive performance might be inappropriateness of

the CoBRA model. The model may, for instance, miss effort factors that were

actually important determinants of effort in the estimated project. Another potential

source of poor estimates might be poor inputs to estimation. For instance, poor

measurement processes might have provided unreliable size or factor measurements

to the effort model, leading to inaccurate effort estimates.

Table 6.5 CoBRA model application process: analyze estimation performance

Step 4.5: Analyze estimation performance

Objective The objective of this step is to evaluate the performance of the CoBRA model by

comparing the estimates it provided during the project to the actual project

outcomes at its finish.

Personnel • Estimator: The estimator collects the actual project data at project finish and

compares it to the estimates the CoBRA model provided during the project.

• Analyst (optional): Involvement of the analyst in this step is optional. On the

one hand, the analyst may support the estimator in analyzing the estimation

performance analyses, especially when the estimator is not yet sufficiently

experienced in using the CoBRA method. On the other hand, the estimator may

delegate the analysis of the estimation performance directly to the analyst, in

particular if the role of the estimator is played by a project manager whose time

constraints do not allow for analyzing estimation performance.

Inputs • Actual project data (collected at project completion).

• Outcomes of project effort estimation.

Activities 1. Analyze predictive performance.

2. Analyze explanatory power.

Tools • Basic data analysis and visualization tools such as MS Excel or specialized

statistical analysis tools such as R, SPSS/PASW, or Statistica.

Outputs • Results of estimation performance evaluation.
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Failed Estimation Versus Failed Project.

Poor performance of the estimation method is a typical but not the only cause

of failed project estimates. The discrepancy between the estimates and the

actual performance may be due to a failed project. In such a situation, the

CoBRA method would actually have correctly estimated the project if it had

run under usual conditions, i.e., conditions that are represented by the CoBRA

model.

Recall that a CoBRA model is developed and validated on successful

historical projects. It would not make much sense to take failed projects as a

reference for the future. The common definition of a successful project in the

software community refers to completing a project within budget and time and

delivering a software product with the expected functionality and quality. The

minimal definition of a successful project may refer to a project that delivered

the expected software product without creating substantial financial loss.

Yet, if some exceptional project conditions cause a project to fail and

(among the other “losses”) does not meet its estimate effort, the estimation

method cannot be blamed for this. By exceptional conditions, we mean

project-internal and -external events that are difficult to foresee upfront.

An internal event might be a wrong decision or a chain of wrong decisions

made by the project manager. An external event might be unexpected signifi-

cant fluctuation within the project team due to structural changes in the whole

organization. In the case of a failed project being the cause of “failed”

estimates, the causes of the failed project should be documented as potential

risks to project success. These risks should then be considered for planning

contingency reserves in future projects, not, however, for modifying the

estimation method in order to account for project failure.

6.6.2 Analyze Explanatory Power

The analysis of the explanatory power focuses on the ability of the CoBRA model

to indicate and explain effort-related project risks. In particular, the actual impact of

the effort factors considered in the CoBRA model on project effort is considered

here. CoBRA proposes analyzing the explanatory power of the effort model

through a feedback session with the project team. During such a session, the project

team members assess which aspects of the project environment have the greatest

influence on the productivity of their work activities—thus on the effort required to

successfully complete these tasks. The estimator compares this feedback against the

effort multipliers the CoBRA model actually assigned to the effort factors consid-

ered in the effort overhead model. On the one hand, it may occur that the CoBRA

model underestimated the impact of some effort factors on project effort while

overestimating the impact of other factors. On the other hand, the experts’ feedback

may reveal that the CoBRA model has missed some relevant effort factors while

considering irrelevant ones.
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6.7 Package and Communicate Estimation Results

The objective of this step is to synthesize the outputs of the project estimation and

the analysis of the estimates that are relevant for improving the CoBRA estimation

model and the effort estimation processes within the organization. After packaging

the results of the project estimation, the estimator communicates them to the

organizational level, where the analyst analyzes them together with the estimation

feedback from other software projects.

Table 6.6 summarizes the most important elements of this step. We provide a

detailed description of each activity in the subsequent paragraphs.

Table 6.6 CoBRA model application process: package and communicate estimation results

Step 4.6: Package and communicate estimation results

Objective The objective of this step is to synthesize the outputs of the project estimation

and the analysis of the estimates that are relevant for improving the CoBRA

estimation model and the effort estimation processes within the organization.

Personnel • Estimator: Estimator synthesizes outcomes of estimation and reports them

to analyst at the organization level.

• Analyst (optional): The analyst may optionally support the estimator in

synthesizing the relevant outcomes of the estimation and in preparing them

for reporting.

Inputs • List of relevant project context characteristics and assumptions.

• List of the project-specific goals of the effort estimation.

• <Optional> List of adjustments to project’s context.

• CoBRA effort estimation model used in the project.

• <Optional> List of project-specific adjustments to the CoBRA model and

their rationale.

• Estimation plan.

• Actual project data (collected at project completion).

• Outcomes of project effort estimation.

• Interpretation of project estimation outcomes.

• Results of estimation performance evaluation.

• <Optional> Guidelines for packaging and reporting the estimation outcomes.

Activities 1. Synthesize estimation results and prepare them for reporting.

2. Communicate packaged results to organizational level.

Tools • Basic tools for documenting project data and the outcomes of the project

estimation. Example tools include MS Word or MS Excel.

Outputs Packaged outcomes of project estimation that are relevant for improving the

CoBRA model and the estimation process:

• Project context factors relevant for effort estimation, for example, those that

were used for choosing an appropriate CoBRA model,

• Project-specific goals of effort estimation,

• Any additional project capabilities and constraints considered during effort

estimation,

• The CoBRA effort model chosen for estimating the project,

• Project-specific changes made to the estimation context, the estimation goals,

the CoBRA model, or the estimation process—together with their rationale,

• Actual project data collected at project finish, including software size and the

effort factors considered in the CoBRA model used for estimation,

• Project estimates, including the project effort and effort overhead introduced

by each direct effort factor considered in the employed CoBRA model,

• Indicators of the predictive and explanatory power of the CoBRA model,

identified deficits and their potential causes.
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6.7.1 Synthesize Estimation Results and Prepare
Them for Reporting

In this activity, the estimator reviews the outcomes of the estimation and

synthesizes those that are most relevant for improving the CoBRA model and the

estimation processes within the organization.

The analyst may optionally provide the estimator with an exact specification of

the content and format of the project estimation outcomes that should be reported

to the organizational level. Typically, project estimation outcomes reported to

the organizational level should include:

• Project context factors relevant for effort estimation, for example, those

that were used for choosing an appropriate CoBRA model,

• Project-specific goals of the effort estimation,

• Any additional project capabilities and constraints considered during the effort

estimation,

• The CoBRA effort model chosen for estimating the project,

• Project-specific changes made to the estimation context, the estimation goals,

the CoBRA model, or the estimation process—together with their rationale,

• Actual project data collected at project finish, including software size and the

effort factors considered in the CoBRA model used for estimation,

• Project estimates, including the project effort and effort overhead introduced

by each direct effort factor considered in the employed CoBRA model,

• Indicators of the predictive and explanatory power of the CoBRA model,

identified deficits and their potential causes.

6.7.2 Communicate Packaged Results to Organizational Level

In this activity, the estimator conveys the packaged results of the project estimation

to the organizational level, where the data is used for maintaining the organization’s

effort estimation processes and the CoBRA effort models.

Further Reading

• V. R. Basili, G. Caldiera, and H. D. Rombach, “The Experience Factory,” J.J.

Marciniak (ed.), Encyclopedia of Software Engineering, vol. 1, pp. 469–476.
John Wiley & Sons, 1994.

This chapter of the Encyclopedia of Software Engineering presents the con-

cept of the Experience Factory (EF). The authors specify a universal framework

for capitalizing and reusing the outcomes of the software development life cycle,

including experiences and products. The publication discusses the Quality
Improvement Paradigm (QIP) as one fundamental methodology used within

the EF. The QIP represents a universal cycle of continuous improvement,
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which is also adapted for organizing the overall process of adjusting, applying,

and maintaining CoBRA models within a software organization.

• V. R. Basili, M. Lindvall, M. Regardie, C. Seaman, J. Heidrich, J. Munch, H.D.

Rombach, A. Trendowicz (2010), “Linking Software Development and Business

Strategy Through Measurement,” IEEE Computer, vol. 43, no. 4, pp. 57–65.
April 2010.

This article presents a systematic approach for specifying quantitative goals in

the context of software engineering. The authors present the GQM+Strategies®

method, which extends the well-known Goal-Question-Metric (GQM) para-

digm. The GQM approach provides means for defining measurement objectives,

refining those objectives down to specifications of measures to be collected, and

then analyzing and interpreting the resulting measurement data with respect to

the original goals. GQM goals are defined in terms of purpose, focus, object of

study, viewpoint, and context. GQM+Strategies® supports aligning and

quantifying goals at various levels of a software organization. For example, in

the context of effort estimation, the particular effort estimation objectives must

be aligned to an organization’s business objectives so that the achievement of the

estimation objectives clearly contributes to the achievement of the business

objectives.
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Usage Scenarios of a CoBRA Model 7

The CoBRA method has been designed to provide a project decision maker with

comprehensive support regarding estimating, controlling, and managing project

effort. The CoBRA model can be used for a number of software estimation

purposes.

In this chapter, we present several typical scenarios of using the CoBRA model

for different purposes. For each scenario we explain, using an intuitive example,

how to interpret appropriately the outcomes of applying the CoBRA model.

7.1 Effort Estimation

7.1.1 Most Likely Effort

Traditionally, the objective of effort estimation has been to evaluate the most likely

effort required to successfully complete a project with certain characteristics. The

simplest way to obtain an estimate of the most likely project effort is to take the

mean value from the distribution of effort provided as output by the CoBRA model

(Fig. 7.1).

The CoBRA model consists of a quantified effort overhead model and a baseline
nominal productivity determined using a set of historical projects. After feeding

the effort overhead with actual factor data from the project, it returns a distribution

of the project’s effort overhead (distribution of relative frequency obtained through
Monte Carlo simulation). Since usually not all project characteristics are known at

the time of effort estimation, some of them may be estimated first and updated later,

when project re-estimation is performed.

Effort overhead distribution and baseline nominal productivity are inputs to the

basic CoBRA equation (7.1), which we use to estimate the effort required to deliver

software products of a particular size.

A. Trendowicz, Software Cost Estimation, Benchmarking, and Risk Assessment,
The Fraunhofer IESE Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-30764-5_7, # Springer-Verlag Berlin Heidelberg 2013
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EffortAct ¼ Size

ProductivityNom
� EOAct þ 1ð Þ (7.1)

Let us consider the example distribution of estimated effort in Fig. 7.2. We

adapt the mean value over the distribution as the estimate of the most likely project

effort. The field under the distribution curve to the left of the mean point represents

the probability of project effort being lower than the mean, whereas the field under

the curve to the right of the mean represents the probability of project effort

being larger than the mean. The latter probability is especially interesting from

the point of view of project risk management because, in practice, it represents

the probability of exceeding the estimated effort.

Fig. 7.1 Estimating the most likely effort in CoBRA

Fig. 7.2 Example distribution of estimated project effort
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7.1.2 Effort at a Given Risk Level

In practice, we should avoid estimating project effort by simply taking the mean

value over the estimated effort distribution. Instead, we should consider the risk1 we

are willing to take and estimate the effort for a specific probability of exceeding the

estimated effort.

Let us consider a simple example. Figure 7.3 illustrates an inverse cumulative

distribution of estimated project effort. We use this form of distribution because

it is easier to interpret visually.

The most likely mean effort of 450 units means in practice that there is a 50 %

chance of exceeding it. If we want to decrease the probability (risk) of running over

the planned project budget, we must plan more. If we want to decrease the chance

of exceeding the planned budget down to 20 %, we must plan 540 units of effort.

In other words, in order to decrease the risk of exceeding the most likely estimate

down to 0.2, one has to plan 20 % more effort.

7.2 Risk Management

The CoBRA method supports project risk management with respect to two aspects:

(1) it handles the inherent uncertainty of software prediction and (2) it supports

the identification of the potential sources of the most critical project risks related

to development productivity and effort.

Fig. 7.3 Example cumulative distribution of effort overhead

1 In risk-driven estimation with CoBRA, we use the term risk as a synonym for probability. In the

risk management domain, risk is defined as the composition of two elements: the probability of an

event and the size of (negative) effects of the event.
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Managing Estimation Uncertainty Considering uncertainty is an important

element of managing risk while planning a software project. Although uncertainty

is inherent to the prediction of software effort, estimation methods typically do not

handle it properly, if at all. The objective of uncertainty management is to explicitly

identify and consider the uncertainty of the input information on which the

estimates are based as well as the uncertainty of the estimate itself. Identifying

and understanding the sources of estimation uncertainty allows software managers

to better handle prediction-related project risks and improve project budgeting and

planning processes.

CoBRA supports the handling of estimation uncertainty with several mechanisms.

First, the impact of each identified effort factor on effort is quantified using the

three values representing a triangular probability distribution. Second, the actual

value of each effort factor can be quantified by several values with an associated

probability of occurrence. Finally, both the impact and the value of each effort factor

can (and should) be quantified by multiple domain experts. Such uncertain input data

are subject to a simulation algorithm that provides a probability distribution of

estimated effort as its output.

Managing Project Risks The objective of risk management is to determine

whether special actions are necessary to reduce effort-related risks in the project.

CoBRA supports this objective in two ways:

1. It supports finding out how risky, with respect to effort, the project is going to be.

This step consists of setting up a risk baseline of acceptable risk and assessing

the risk with respect to this predefined baseline.

2. If the identified level of risk is already unacceptable, then CoBRA supports

deciding on actions that should be undertaken to mitigate the risk.

7.2.1 Defining a Baseline for Risk Assessment

In order to perform a risk assessment, we have to build a baseline against which to

evaluate individual software projects. We build such a baseline using data from

a set of projects, each considered successful according to the organization’s under-

standing of business success. The notion of a successful project may, for instance, at

least encompass that the project was completed and did not create substantial

financial loss. In cases where no additional project data is available, the same

projects that were used for developing the CoBRA effort model can be utilized

for setting up a risk baseline.

In CoBRA, we typically define a risk baseline as the median or the mean effort

overhead upon the sample of successful historical projects. We explain this

approach on an example presented in Fig. 7.4. The threshold T1 represents the
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median over the effort overheads of a set of historical projects, where for each

historical project, the mean effort overhead over the distribution is considered.

We may say that T1 represents a “typical” project. This implies that 50 % of the

projects will have a mean effort overhead value greater than T1 and 50 % will have

a mean value up to T1.
An alternative formulation is to consider the probability of having an effort

overhead exceeding the “majority” of projects. For a given sample of historical

projects, we can additionally set up a threshold T2 as the upper quartile upon the

mean effort overheads of the historical projects. We may say that T2 represents the
“majority” of the projects. The upper quartile has 75 % of the projects below it and

25 % of the projects above it.

A comparison of a project’s actual mean effort overhead against a baseline tells

us how risky the project is. There are a number of different ways in which this can

be done. In the following paragraphs, we present several approaches, starting from

the simplest and progressing to the more complex ones.

7.2.2 Assessing Project Risk Level

The objective of project risk assessment is to evaluate how risky a project is. There

are several strategies proposed in CoBRA for assessing the risk level of the software

development of a project: based on effort overhead thresholds, based on an accept-

able risk probability level, and based on an acceptable risk exposure level.

Risk Assessment Based on Effort Overhead Thresholds
The first approach is based on determining effort overhead thresholds for a project.

The thresholds delimit effort overhead intervals, which are judged more or less

risky. Consequently, these intervals can be regarded as risk levels. We explained

Fig. 7.4 Simple risk assessment using mean effort overhead
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the idea of setting up risk thresholds in the previous paragraph and illustrated it in

Fig. 7.4. Using this information, we can determine the risk level for the project.

The risk level for a project is defined as the interval into which its mean effort

overhead falls with the mean effort overhead being calculated from the relative

frequency distribution produced by the CoBRA model in a Monte Carlo simulation.

Figure 7.4 illustrates two example thresholds T1 and T2. Based on these thresholds

and on the project’s mean effort overhead (EO), we can assess the risk of the project
relative to already completed successful projects. We do this in the following way:

• If EO < T1, the project falls into the group of low-risk projects.

• If T1 � EO � T2, the project falls into the group of moderate-risk projects.

• If EO > T2, the project’s falls into the group of high-risk projects.

Since the mean effort overhead of the example project in Fig. 7.4 falls between

T1 and T2, it would be regarded as being of moderate risk. After the risk probability

level for the project is determined, the preventive/corrective actions associated with

that risk level are performed.

In CoBRA, we would typically set up the effort overhead thresholds T1 and T2
based upon the 50th and 75th percentiles,2 respectively, from a sample of successful

historical projects. In this case, half of the considered historical projects would have

a mean effort overhead lower than T1 (the 50th percentile), and 75 % of the

historical projects would have an effort overhead that is lower than T2 (the 75th

percentile).3 For reasons of convenience, we refer to these thresholds as

representing the “typical” projects and the “majority” of the projects, respectively.

These two thresholds define three risk levels: low, moderate, and high risk.

In general, we may define any reasonable number n of thresholds as percentiles
upon the distribution of mean effort overhead of successful historical projects.

A reasonable number would be between 1 and 5. When n thresholds are selected,

then n þ 1 risk levels have to be managed in the sense that for each risk level,

specific actions have to be specified. In practice, the number and percentile values

of the thresholds should be determined by experienced project managers in con-

junction with quality assurance staff. The thresholds should be updated regularly as

new and different types of projects are completed and as experience is gained in

their use. A specific set of actions should be associated with each interval, except

for the lowest one. The higher the risk probability level, the more consequential and

costly these actions are likely to be due to the higher number and greater complexity

of the software development processes that need to be addressed.

Figure 7.5 shows the two example thresholds derived from a sample of past

projects and the curves of the cumulative effort overhead distribution for three

2 The 25th, 50th, and 75th percentiles are referred to as lower, middle, and upper quartile. The

middle quartile represents the median.
3 These percentages may seem high, but it should be remembered that nominal projects never

occur in practice and would consume very low and, at any rate, unrealistic effort, hence the large

effort overhead percentages.
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hypothetical projects. For this example, the mean value of the effort overhead for

Project C falls into the high-risk projects. Moreover, it has a probability of about 0.7

of exceeding T2, that is, the effort overhead of the majority of the projects. Project A,
on the other hand, is located in the low-risk class of projects and has a probability of

merely 0.15 of exceeding T1, which is the effort overhead of typical projects.

Finally, Project B can be considered as a moderate-risk project compared to the

already completed projects upon which the risk baseline (using thresholds) is based.

Risk Assessment Based on Acceptable Risk Probability
The aforementioned simple, threshold-based approach is appealing because of its

simplicity. However, it does not take into account the probability of the project’s

overhead falling into a different risk level. For example, if the mean effort overhead

for a project falls in between T1 and T2—as Project B in Fig. 7.5—the project may

still have a high probability of having an effort overhead exceeding T2. Using the

simple approach in our example, we would have designated Project B as having

moderate risk, when in fact it still has a high probability (~0.35) of falling into the

class of highly risky projects, as illustrated in Fig. 7.6. This means that the project

manager performs the risk reduction actions for a moderate-risk project, whereas

she/he should rather consider performing the risk reduction actions for a high-risk

project.

To address this shortcoming, we must first define the concept of Acceptable Risk
Probability Level (ARP). To continue from the example above, the acceptable risk

probability answers the question of “how high does the probability of the effort

overhead exceeding the ‘majority’ threshold have to be before we consider the

project at high risk (instead of moderate risk)?” Therefore, we define acceptable

risk probability as the maximum risk that the organization is willing to tolerate

without taking actions to manage and reduce it.

Fig. 7.5 Example risk assessment based on risk threshold
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One way to specify acceptable risk is to set up a probability value that indicates

the probability above which actions should be triggered. Continuing our example,

in Fig. 7.7 we selected the value of ARP ¼ 0.2 as the acceptable risk probability

value for both the typical (T1) and the majority (T2) thresholds.
For the project for which risk assessment is to be performed, we run the effort

overhead estimation model and generate the cumulative probability curve, like

the curves for projects A, B, and C in Fig. 7.7. In order to determine the risk level

for a given project, we follow the effort overhead curve from left to right until we

Fig. 7.6 Threat of threshold-based risk assessment

Fig. 7.7 Example of risk assessment based on acceptable risk level
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reach the intersection with the acceptable risk probability value that was chosen

(bold dashed line at probability level 0.2 in Fig. 7.7). This intersection falls into one

of the risk levels, and this is the risk level assigned to the project. In the example

illustrated in Fig. 7.7, we show the cumulative effort overhead probability functions

for three hypothetical projects, each of them belonging to one of the three risk levels

defined by the two thresholds and the acceptable risk probability value. It can be

seen that Project A has a probability of less than 0.2 of having an effort overhead

equal to or exceeding that of the “typical” and “majority” thresholds. Therefore, it is

considered as being of low risk. On the other hand, Project B and Project C have a

probability greater than 0.2 of exceeding the effort overhead for the typical projects

and the majority of projects. Therefore, they are considered to be of high risk.

Note that the value of the acceptable risk level should again be determined by the

most experienced project managers in conjunction with the quality assurance staff.

It will be revised as more experience with the use of the model for risk assessment is

gained. It should be remembered that acceptable risk is a business decision and

should reflect the objectives and strategies of the organization as a whole.

Risk Assessment Based on Acceptable Risk Exposure
In the example presented in Fig. 7.7, the acceptable risk probability value was fixed

as a common value across all risk levels and independent of potential “loss” in

terms of effort overhead, meaning additional effort that needs to be spent in the

project. This would mean that we are willing to accept higher exposure4 to risk for

the project with larger effort overhead. In order to maintain acceptable exposure to

risk at the same level, we would define the acceptable risk probability value for

high-risk projects (with large effort overhead) to be lower than the acceptable risk

probability value for low-risk projects (with small effort overhead).

To address this issue, we will define acceptable risk in terms of Acceptable Risk
Exposure (ARE) as opposed to a simple acceptable risk probability in terms of a

fixed likelihood of exceeding a certain effort overhead value. Acceptable risk

exposure is defined (7.2) as the product of acceptable risk probability (ARP) and

effort overhead threshold (EOT)

ARE ¼ ARP � EOT (7.2)

Please note that in order to explicitly distinguish between simple risk probability

and the product of risk probability and potential loss, we introduce the term “risk

exposure.” Yet, in project risk management terminology, risk as such is defined as

the product of an event’s probability and potential loss (in contrast to simple event

probability).

4We define risk exposure as the product of the probability of an undesired event and the potential

loss if this event occurs. In our case, the undesired event is a project exceeding a certain effort

overhead, and potential loss is the effort overhead.
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Risk Versus Risk Probability Versus Risk Exposure.

In risk management, there are many different definitions of risk, which often

leads to confusion. In the context of software projectmanagement, risk is defined

as the product of an undesired event and the potential loss if the event occurs:

Risk (undesired event) ¼ Probability (event occurring) � Expected loss
(after event)

In order to explicitly differentiate between the simple probability of an

undesired event and risk, we introduced two terms: risk probability and risk

exposure. However, risk exposure actually corresponds to what is commonly

referred to as risk.

In the ARE formula (7.2), acceptable risk probability (ARP) represents the

probability of an undesired event and the effort overhead threshold (EOT)

represents the potential loss.

Let us illustrate the idea of risk exposure using the example we have been

considering to explain previous risk assessment approaches earlier in this section.

In Fig. 7.8, the acceptable risk exposure level for the threshold T1 ¼ 45 % and the

acceptable risk probability level 0.2 is equal to 0.2 � 45 %, which is approximately

ARE1 ¼ 9 %. Acceptable risk exposure for the threshold T2 ¼ 57 % and the 0.2

probability is equal to ARE2 ¼ 11.4 %. As we can see, the maximum acceptable

risk exposure level is not constant across levels. Counterintuitively, for obviously

high-risk projects (with large effort overhead) we are allowing greater risk exposure

than for moderate-risk projects (moderate effort overhead) at the moderate-risk

level before triggering risk management actions.

We may address this issue by setting acceptable risk exposure to be maintained

constant across all risk classes determined by the effort overhead threshold (in our

case three risk classes determined by the thresholds T1 and T2). Next, we would use
a constant risk exposure level for recomputing the initially set acceptable risk

probability level. Let us assume that we want to set risk exposure to the level of

moderate-risk projects, ARE1 ¼ 9 %. The acceptable risk level for high-risk

projects should then be set to ARP1 ¼ ARE1/T2 ¼ 0.16 instead of 0.2, as it remains

for the class of moderate-risk projects determined by threshold T1. After modifying

the acceptable risk probability level for T2, the risk exposure for both T1 and T2 will
be the same and equal to ARE1 ¼ ARE2 ¼ 9 %.

To determine the risk level using this approach,we follow the effort overhead curve

just as in the approach based on acceptable risk level. We check in which risk interval

(class) the curve crosses the acceptable risk probability or exposure level. Since these

levels may differ across risk intervals, it is possible that the effort overhead curve

intersects the risk probability or exposure levels in two or more different intervals. In

such a case, we should classify the project into the highest risk class.

Figure 7.8 presents the analysis of a project’s risk based on risk exposure for the

three example projects: A, B, and C. If we consider the threshold-specific acceptable
risk exposure levels ARE1 and ARE2, Project A will be classified as moderate risk,
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whereas Project B and Project C will be classified as high risk. Now, if we take

ARE1 as the baseline acceptable risk exposure for all project risk classes, the

acceptable risk probability level will be equal to ARP2 ¼ 0.16 for high-risk projects
and remain at the initial level ARP1 ¼ 0.2 for moderate-risk projects. With respect

to the threshold-specific acceptable risk levels ARP1 and ARP2, Project A would

remain a low-risk project, whereas Project B and Project C would remain high-risk

projects.

Note that the value of the acceptable risk level should again be determined by the

most experienced project managers in conjunction with the quality assurance staff.

This value will be revised to reflect experiences gained as well as changes in the

business objectives and environment of the software organization applying the

CoBRA method.

7.2.3 Risk Reduction

Once we have determined the risk level by applying one of the methods presented

above, we may wish to identify those factors that have the strongest association

with effort overhead in order to reduce risk. This information can be obtained

through a so-called sensitivity analysis. This is an analysis of the actual contribution

of the considered effort drivers to the effort overhead of a specific project. Figure 7.9

shows an example output of a sensitivity analysis. The contribution of the five most

relevant effort drivers to the effort overhead for a specific project can then be used

to drive risk reduction activities. For each of these factors, specific preventive and

Fig. 7.8 Example of risk assessment based on acceptable risk exposure level
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corrective actions can be suggested in order to reduce risk. For this particular

project, the “Key Team Capabilities” and “Requirements Volatility” factors have

the strongest impact on project effort and would be the first targets of risk reduction

activities. We may, for example, pay extra attention during project preparation to

the capabilities of the project team and ensure that at least the key team members

have necessary expertise and experience. In particular, we should consider the

aspect of “Domain Experience,” as the sensitivity analysis indicated the

corresponding effort variable as being responsible for the greatest portion of effort

overhead associated with the “Key Team Capabilities” effort factor.
Summarizing, we can say that in order to systematize the process of risk

assessment and reduction outlined above, a set of guidelines for managing risks

should be developed. These guidelines should consist of actions intended to reduce

the impact of the identified effort drivers on each risk level. They should include

typical types of responses to project risk (PMI 2007, Ch. 11) such as avoiding,

transferring, mitigating, and accepting risk. Figure 7.10 presents the general steps

of a simple effort-driven risk management approach.

Fig. 7.9 Example output of a CoBRA sensitivity analysis

Fig. 7.10 Simple risk management process
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Avoid Risk
Avoiding risk refers to actions the project manager should attempt to perform in

order to entirely eliminate the negative impact of a certain effort factor on project

effort.

Mitigate Risk
Mitigating risk refers to actions the project manager should attempt to perform in

order to reduce the probability and/or magnitude of the negative impact of a certain

effort factor on project effort.

Avoidance and mitigation strategies use similar actions for addressing risk. In

the context of effort estimation, risk avoidance would focus more on actions before

project starts (thus offering a greater chance of entirely eliminating risk), whereas

risk mitigation would focus on actions during the project. Typical actions include

adjustments of the organization’s processes or context characteristics. Globally,

preventive actions are typically based on the impact of a certain effort factor over

multiple projects. Recurrence of a certain factor with a negative impact on devel-

opment effort may call for preventive actions to avoid it in the future. In this case,

preventive actions focus on improving processes and environmental characteristics

on the organizational level (organization-wide). Global changes make sense only

when a specific process or context characteristic has been observed to consistently

have a negative impact on project performance over all projects, independent of

other project aspects. Locally, preventive actions are based on the expected nega-

tive impact of certain effort factors in the context of a specific project. Local actions

typically make sense when a certain effort factor has a negative impact on project

effort only in specific project conditions, for example, in conjunction with certain

values of other effort factors.

Example 7.1 Mitigating Project Risk Through Local Preventive Actions.

Let us consider an example in which the project manager mitigates the risk of

exceeding the acceptable project budget. The project manager mitigates this risk

by improving those project characteristics the CoBRA estimation indicated as

having the greatest negative impact on project effort.

The task of the project manager is to plan a new project so that it can be

successfully completed within an acceptable effort budget of 1,000 person-days.
The acceptable risk level was set at Probability ¼ 0.2 of exceeding the accept-

able effort limit. The CoBRA effort estimation model used in the project

considers five effort factors, of which two are indirect factors and one is a

composite factor. Figure 7.11 shows the effort overhead model of the CoBRA

model used for estimating a new software project.

At the start of the project, the project manager assesses the values of the effort

factors using their definitions and quantifications specified in the CoBRA model.

Table 7.1 summarizes the definitions of the effort factors and their measured

(assessed) levels for the new project.
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Fig. 7.11 Example: effort overhead model

Table 7.1 Example: effort factor data for estimated project

Effort factor Definition Value

Key team capabilities The extent to which the software development team

possesses the skills and experiences necessary for the

successful and efficient completion of the project (i.e.,

delivering software products of required functionality and

quality within specified budget and time).

–

Domain experience The extent of the project team’s familiarity and

comprehension of the target domain in which the developed

software system is to be applied.

3

Platform experience The extent of the project team’s familiarity and

comprehension of the platform for which the developed

software system is intended.

1

Communication
capabilities

The ability of the project team to communicate easily and

clearly within the team (with other team members).

1

Requirements volatility The extent to which the requirements are expected to change

over time, after the requirements freeze.

2

Disciplined

requirements

management

The extent to which requirements are explicitly defined,

tracked, and traced. This also includes the extent to which

changes to requirements after their freeze are systematically

managed (e.g., supported by the use of change management

methods and tools).

0

Customer involvement The extent to which the user/customer is involved in the

project, providing necessary/useful information, reviewing

requirements documents, performing some of the analyses

themselves, and taking part in acceptance testing.

1

Importance of software

reliability

The amount of attention that needs to be given to minimizing

failures and ensuring that any failures will not result in

safety, economic, security, and/or environmental damage,

achieved through actions such as formal validation and

testing, fault tolerant design, and formal specifications.

1
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Next, the project manager applies CoBRA model upon the data to obtain

project estimates. Figure 7.12 presents the distribution of the initially estimated

project effort. An analysis of the distribution indicates high risk (Probability
¼ 0.80) of exceeding the acceptable project budget.

Mitigating the risk would require that the project manager either increases the

project budget or the project’s performance by improving those project

characteristics that contribute to increased project effort. In order to stay within

the acceptable probability (0.2) of exceeding the project budget, the budget

would have to be increased to 1,394 person-days, which is almost 40 % more

than the acceptable 1,000 person-days. Since increasing the project budget is not

acceptable, the project manager has to mitigate the risk by increasing the

project’s performance.

In order to increase project performance and decrease its effort, the project

manager looks at those project characteristics that contribute the most to

increased project effort. For this purpose, the project manager runs a sensitivity

analysis upon the CoBRA estimates and checks which of the effort factors

considered in CoBRAmodel contribute the most to the project’s effort overhead.

Since increasing the project budget is not possible, the project manager needs

to identify the most promising improvement potentials with respect to the factors

contributing to increased project effort. For this purpose, the project manager

runs a sensitivity analysis upon the project data in order to check which effort

factors considered in the CoBRA model actually have the greatest negative

impact on the project effort. Figure 7.13 illustrates the results of the sensitivity

analysis.

The results of the sensitivity analysis clearly indicate the dominant role of the

project team’s capabilities for successful project performance. From among the

Fig. 7.12 Example: distribution of initial effort estimate

7.2 Risk Management 181



considered detailed capabilities, domain experience and platform experience

have the greatest impact on project effort. These factors are first candidates for

improvement; not only because they have the greatest impact on effort but also

because the next most influential factors (“Requirements Volatility” and “Cus-
tomer Involvement”) depend on the customer and thus are rather difficult to

improve.

The project manager decides to address this high project risk by first improv-

ing the domain experience of the key members of the project team. He achieves

this objective by involving the domain experts in the key positions in the project

and by providing domain training to the remaining team members. With the help

of these means, the domain experience of the team improves dramatically from

the worst level (factor value ¼ 3) to the best level (factor value ¼ 0). After

improving the team’s domain experience, the risk of exceeding the project

budget deceases to Probability ¼ 0.42. Still, this is more than acceptable level

of 0.2. Figure 7.14 illustrates this improvement.

Fig. 7.14 Example: estimated effort after improving domain experience

Fig. 7.13 Example: sensitivity analysis
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If the project manager wants to keep the acceptable risk threshold, the project

budget would need to be increased to 1,091 units, which is about 10 % over the

acceptable project budget of 1,000 person-days. This is still an unacceptable

solution. Therefore, the project manager decides to increase the project’s perfor-

mance by improving another project aspect represented by an effort factor in the

CoBRA model. The project manager notices that the domain experts who are

involved in the project to improve the domain experience of the team also have

high platform experience. The only thing needed to increase the entire team’s

platform experience to the best level is appropriate training for the remaining

team members. The project manager decides to include training in the project

preparation phases. This way the level of the “Platform Experience” effort factor
improves from 1 to 0.

As a result of improving both the “Domain Experience” and “Platform
Experience” effort factors in the project, the risk of exceeding the acceptable

project budget of 100 person-hours drops to Probability ¼ 0.22 (Fig. 7.15). The
actual risk level is just a little higher than the acceptable risk threshold of 0.2. In

practice, the project could already be accepted. Although the project manager

wants to meet the acceptable risk threshold by increasing the project budget, this

would require increasing the budget by less than 1 % to 1,008 person-days. In

practice, such an increase would probably also be acceptable.

Summarizing, it can be seen that the CoBRA method supports the project

manager not only in identifying potential project risk but also helps him to

reduce this risk by identifying the most important sources of risk and, related

to that, the most promising means of risk mitigation. In practice, besides looking

at the results of the sensitivity analysis, a project manager can simply play with

the values of the effort factors he thinks he may improve and look at the

outcomes of the estimation. In this trial and error way, the project manager

can come up with a set of effort factor values that are necessary to meet the

project’s risk requirements. The discrepancy between expected and necessary

Fig. 7.15 Example: estimated effort after improving domain and platform experience
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factor values will then serve as a basis for the project planning and preparation

activities. In our example, the project manager must staff the key project

positions with experts in the application domain and in the platform and provide

appropriate training to the remaining members of the project team prior to the

start of the project. ■

Finally, a trivial, but often necessary, strategy to avoid or at least mitigate risk is

to increase the project budget by a so-called contingency reserve to account for all

negative impacts of relevant effort factors. In an extreme case, if the estimated

project effort is not acceptable and the effort factors cannot be affected to decrease

the effort, the project can be canceled, either before or after its start (preferably

before).

Transfer Risk
Transferring risk refers to actions that aim at shifting some or all of the negative

impact of a certain effort factor outside the project or the organization. In the

context of CoBRA effort estimation, one possible action would be to shift respon-

sibility for improving customer-specific factors to the customer. For example, if

customer involvement in the project is a critical effort factor, the customer should

bear the consequences of his insufficient involvement in terms of increased project

effort. Another possibility of transferring risk is to outsource risky project activities

to a third-party organization. For example, if quality of testing is a critical effort

factor and if the organization does not have sufficient expertise in testing, the

testing activity can be entrusted to an independent company (this approach is

known as independent verification and validation, IV&V). In this case, the IV&V

organization takes over the risk of the testing activity, including the risk of keeping

within the testing budget.

Accept Risk
Accepting risk refers to a situation where none of the aforementioned three

strategies can be used and accepting the risk “as is” is the only possibility left.

7.3 Project Scope Negotiation

Experiences we gained in industrial contexts indicate that customer involvement in

software development is one of the factors that contribute significantly to overall

development effort. Yet since software organizations typically have limited ability

to affect this aspect, it is quite difficult to reduce the impact of this effort factor on

project effort through internal improvement activities only. In practice, software

project managers often face the situation where much of the project success

depends on factors that are largely dependent on external parties. In this case,
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traditional risk mitigation and process improvement activities might not be effec-

tive because we have limited ability to influence the characteristics of an external

entity involved in the project. At that point, we may consider two ways to prevent a

project running into troubles:

• Improvement of internal processes (we discuss this aspect in Sect. 7.5). In

this approach, we look for internal processes that may moderate the negative

impact of the external party’s characteristics on the project. In an effort

model, this would be represented by interacting factors. Negative impact of

insufficient customer involvement in the project may potentially be made less

severe by improving the communication capabilities of the development

team.

• Negotiate project scope. In this approach, we focus on those effort factors that

refer to characteristics of external parties such as customers or external

product/service providers. If one or more of these effort factors happen to be

the source of large effort overhead, we can use this fact as an argument while

negotiating the project conditions. For example, a software development

company may require customer involvement in the project if finishing the

project within the effort fixed by the customer largely depends on such

involvement.

7.4 Project Benchmarking

The objective of project benchmarking in CoBRA is to compare software projects

with respect to effort-related risks. In essence, in order to benchmark projects, we

may use one of the risk analysis methods we presented for analyzing effort-driven

project risks (Sect. 7.2). As a baseline for performing the benchmark, we take the

risk thresholds we defined as percentiles upon the mean effort overhead of already

completed successful projects. After setting up the thresholds, we can take one of

the following benchmarking approaches:

1. Based on effort overhead thresholds: Comparing risk levels with respect to the

mean effort overheads of benchmarked projects (Fig. 7.5).

2. Based on acceptable risk probability: Comparing risk levels with respect to the

acceptable risk level assigned by an expert, for example, a quality engineer or

project manager who is experienced in risk management (Fig. 7.7).

3. Based on acceptable risk exposure: Comparing risk levels with respect to risk

exposure levels assigned by an expert (Fig. 7.8).

Figure 7.16 presents an example that illustrates the differences in the aforemen-

tioned three benchmarking strategies.

As we can see, depending on the risk assessment approach, projects may be

assigned to different risk classes. Table 7.2 summarizes the classification of the

three example projects with respect to the different risk assessment approaches.
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7.5 Process and Productivity Improvement

In principle, the goal of CoBRA modeling is to identify the most relevant

effort dependencies. In other words, we look for project characteristics and

their interactions that have the greatest impact on software development productiv-

ity5 and effort. Running a sensitivity analysis on the effort model quantified for a

specific project allows identifying those effort factors that actually have the greatest

impact on the productivity and effort of this very specific project. In the short-term

perspective, this information can be used locally, within the project, to avoid or

mitigate project risks. When collected over multiple projects, this information can,

in the long-term perspective, be used to drive process improvement activities. In

this approach, we first identify processes that are indicated by effort factors that

Table 7.2 Example benchmark with respect to project risk

Risk assessment approach Risk class

Project A Project B Project C

Mean effort overhead Low Moderate High

Acceptable risk probability Low High High

Acceptable risk exposure Moderate High High

Fig. 7.16 Comparison of various benchmarking strategies

5 In practice, CoBRA can also be applied to model the effort of service-oriented software projects.

In contrast to product development (product-oriented) projects, we would then refer to service

efficiency instead of development productivity.
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contributed the most to effort overhead across multiple projects. Next, we improve

these processes in order to avoid large effort overheads in future projects.

Example 7.2 Effort-Driven Software Process Improvement.

Let us consider the example CoBRA effort overhead model in Fig. 7.17 and

synthesized the results of the sensitivity analysis over themultiple historical projects

in Fig. 7.18. We can see, for example, that the “Key Team Capabilities” make a

consistent, significant contribution to the project costs. The sensitivity analysis

indicates that, on average, 125 % of the project overhead is spent on overcoming

the insufficient capabilities of keymembers of the project team. In order to decrease

this additional effort and improve development productivity, an improvement of the

organization’s processes related to team capabilities is required.

In order to focus improvement actions, a detailed analysis of which team

member and which capabilities exactly contribute most is required. In our

example, definition of the factor provides first indication of the improvement

area. Three specific key capabilities are considered here, of which the “Domain
Experience” and “Platform Experience” factors have the greatest impact on

effort. Next, the roles and activities in which these two capabilities are affecting

Fig. 7.18 Example results of a CoBRA sensitivity analysis

Fig. 7.17 Example CoBRA effort causal model
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development productivity the most should be identified, and related processes

should be analyzed for possible improvements.

The second most influential factor is “Requirements Volatility.” Here, the

project manager may look for processes that are a potential source of volatile

requirements and undertake appropriate improvement steps. Knowing, for

example, that requirements specification is performed in a chaotic manner, the

process group may decide about introducing systematic requirements specifica-

tion processes. At the project level, the project manager can pay extra attention

to this process and request extra provisions in the contract that the client commit

to this process.

The project manager may, however, have little or no direct control over the

sources of volatile requirements to reduce related effort overhead. In such a case,

the effort overhead model suggests another solution. The manager may focus on

improving “Disciplined Requirements Management,” which alleviates the nega-
tive impact of volatile requirements on project effort. In principle, even though

the effort model does not explicitly identify any useful factor interactions, the

project manager can still identify indirect processes that moderate the negative

impact of direct factors on project effort. ■

Further Reading

• A Guide to the Project Management Body of Knowledge—PMBOK Guide, 4th
Edition. Project Management Institute, Inc., 2008.

PMBOK presents synthesized best-practice knowledge regarding project

management. In particular, Chap. 11 of PMBOK summarizes basic approaches

for managing project risks. The presented approaches may be used as a starting

point for creating guidelines for managing effort-driven risks identified using the

CoBRA method.
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Part III

Industrial Applications

Example is the school of mankind, and they will learn
at no other.

Edmund Burke

The use of the CoBRA method is not limited to any particular software develop-

ment environment. The method can, in principle, be applied in any software

development context in which the minimal prerequisites of using the CoBRA

method are fulfilled. The CoBRA model development and application processes

can be adjusted to a certain extent depending on the capabilities of the specific

software development organization in which CoBRA is applied.

In this part of the book, we present example applications of the CoBRA method

in real-world industrial contexts. We illustrate the example implementations of the

CoBRA method in the context of five organizations with different profiles, namely:

• Chapter 8 presents the application of the CoBRA method at software design &
management AG (sd&m), Germany.

• Chapter 9 presents the application of the CoBRA method at Allette Systems Pty.
Ltd, Australia.

• Chapter 10 presents the application of the CoBRA method at Oki Electric, Ltd,
Japan.

• Chapter 11 presents the application of the CoBRA method at Siemens Informa-
tion Systems, Ltd, India.

• Chapter 12 presents the application of the CoBRA method at Japan Manned
Space Systems Corporation (JAMSS), Japan.

All chapters are structured in the same way and provide the following informa-

tion: basis characteristics of estimation context, goals of effort estimation, context-

specific adaptions of the CoBRA model development process, benefits and costs of

applying the CoBRA method.

Please note that due to confidentiality reasons, some results of the CoBRA

application are presented in an anonymized form or have been completely

excluded.



Software Design and Management,
Germany 8

This chapter summarizes the application of the CoBRA method in the context of

software design & management AG, Germany (sd&m). In the sd&m case, we

considered multiple indirect influences on project effort, which resulted in a

relatively complex effort overhead model. In the subsequent industrial applications,

we walked away from modeling multiple indirect influences on project effort. We

observed that modeling complex indirect influences typically costs much effort and

brings little benefit in terms of improved estimates.

The sd&m case is worth studying to learn an alternative implementation of the

general CoBRAmodeling process we present in this book. The reader can also learn

potential issues of building a CoBRA model in practice and how to deal with such

issues. Finally, one can analyze the use of the CoBRA method in the domain of

management and information systems.

8.1 Context Characteristics

In 1997, the CoBRA method was applied in a midsize German software develop-

ment company, software design & management AG (sd&m), currently Capgemini
Deutschland Holding GmbH.1 Table 8.1 summarizes the basic characteristics of the

context of sd&m in which we applied CoBRA. The technology transfer was led by

two external CoBRA experts (analysts).

In the next two paragraphs, we take a closer look at two aspects of the sd&m

context that were particularly important for using CoBRA, namely, the available

measurement data and the domain experts.

1 In 2011, sd&m AG changed its name to Capgemini Deutschland Holding GmbH.

A. Trendowicz, Software Cost Estimation, Benchmarking, and Risk Assessment,
The Fraunhofer IESE Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-30764-5_8, # Springer-Verlag Berlin Heidelberg 2013
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8.1.1 Measurement Data

Available project data included size and effort measurements collected for nine

already completed projects. Size was measured in terms of non-commented lines of

source code (LOC), excluding code produced by code generators. Project effort was

measured in person-hours (PH). Figure 8.1 illustrates the distribution of actual

development productivity across the initially considered projects. We normalized

the productivity values because of confidentiality reasons.

After validating the available project measurement data in more detail, the

analysts excluded four projects from further study. The reasons were incomplete

size and/or effort measurements and inconsistent project context. For instance,

some of the projects were maintenance projects, for which a large part of the

measured code had been generated automatically. Since it was difficult to deter-

mine what part of the measured software size corresponds to manually developed

code and which to generated code, the analysts decided to exclude these projects

from consideration. Other projects used a second programming language for which

size measurements were missing. Therefore, it was decided to exclude these

projects, too. At the end, only six historical projects were used as a basis for

building and validating the CoBRA effort estimation model.

8.1.2 Domain Experts

Initially, 11 sd&m project managers, representing different levels of experience,

were involved in the CoBRA application.

Table 8.1 sd&m: characteristics of the CoBRA application context

Context factor Value

Organization Software design and management AG, Germany

Maturity Unknown (no formal certificate available)

Domain Management information systems (MIS)

Development type New development

Life cycle model Waterfall

Programming language C/C++

Fig. 8.1 sd&m: initial project measurement data
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During the selection of the most relevant factors influencing software develop-

ment effort, the analysts observed significant disagreement among the domain

experts with respect to the relative importance of the considered effort factors.

The ranks individual experts assigned to the same effort factors deviated from the

central tendency—measured by means of the statistical median—proportionally to

the experience of the involved experts. Therefore, the analysts decided to exclude

from the study the four least experienced experts. The remaining seven domain

experts provided the input for the CoBRA modeling.

8.2 Estimation Objectives

The general objective of the CoBRA application at the sd&m was to build an

explicit context-specific model for reliably estimating the effort of future projects.

In particular, the achievement of the following objectives was to be supported by

the CoBRA method:

• Project effort estimation: Provide less experienced project managers with com-

prehensive support for making reliable and repeatable estimates.

• Project control: Provide project managers with comprehensive support for

tracing projects against the estimates in order to detect potential deviations

early and to identify the causes of observed deviations.

• Project risk management: Support project managers in assessing and reducing

(mitigating) project risks at the start of a project.

• Justifying and negotiating project costs: Provide project managers with reliable

information for justifying and negotiating planned software cost and its scope in

terms of its functional and nonfunctional characteristics.

• Productivity baselining and benchmark: Provide project decision makers with a

baseline development productivity and a reliable means for benchmarking

projects with respect to development productivity, including support for

identifying potential sources of productivity variance.

• Reduction of software management overhead: Relieve seasoned human experts

(e.g., experienced project managers) of the burden of being involved too fre-

quently in effort estimations.

• Process improvement: Support software process improvement. In the long

perspective, factors identified as having a significant negative impact on devel-

opment productivity across past projects should be used to focus improvement

activities on appropriate development processes.

Moreover, introducing the CoBRA method was expected to launch the estab-

lishment of a goal-oriented measurement for the purpose of effort and productivity

management. Collecting measurement data could then, in the future, be used to gain

higher confidence in effort predictions since subjective data based on expert

judgment was excluded. In particular, the following objectives ware defined:
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• Identify the most relevant factors influencing development productivity and effort

• Provide precise, suitable, and unambiguous definitions for all factors identified

• Define measurement scales for the factors in order to collect past project data and

quantify each factor’s impact on productivity and effort

• Set up a measurement repository and collect project data

8.3 Model Development

Transferring the CoBRA method to the context of sd&m consisted of a pilot applica-

tion of the method where an effort model was built and validated using the available

project data. The general CoBRA process was adjusted to the specific characteristics

of the application context summarized in Sect. 8.1. Figure 8.2 illustrates the major

steps of the CoBRA modeling process used in the context of sd&m.

8.3.1 Step 1: Preparation and Planning

In the first step, the external analysts provided a detailed CoBRAmethod tutorial to the

internal analysts, that is, the company representatives who were to be responsible for

maintaining the CoBRA method and models within the whole organization. Next, the

analysts determined the objectives of the study and characterized the context of the

CoBRA application. The context referred to the part of the sd&m organization for

which the CoBRA model was to be created and used for estimating software develop-

ment projects. Finally, the analysts planned the individual activities of the CoBRA

effort modeling. In addition, the analysts created a reference list of typical factors

influencing software development effort. They based this list on the analysis of domain

literature, such as the factors used in the COCOMOmodel (Boehm et al. 2000).

8.3.2 Step 2: Identifying and Defining Relevant Effort Factors

In this step, the first brainstorming group session with 11 sd&m domain experts

took place. During the session, the domain experts reviewed the reference list of

potential productivity factors and analyzed each factor to see whether they under-

stood it consistently and whether it was relevant in the context of their organization,

that is, within the specified scope of the CoBRA application. During the meeting,

the domain experts could remove, modify (redefine), add, or decompose/join effort

factors depending on whether they were deemed relevant, complete, and well

defined. At the end of the brainstorming session, the analysts asked each domain

expert to rank the factors—beginning from the most relevant one—they had defined

within each category: product, process, project, and personnel.

After the brainstorming session, the analysts first analyzed the ranking results

with respect to their consistency across multiple domain experts. For this purpose,

they used two measures:
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• Kendall’s coefficient of concordance. The analysts employed this measure for

investigating the level of agreement among the rankings provided by all experts.

• Ranking error. The analysts computed ranking error as the deviation of an

individual rank from the average rank across all experts. They used this measure

to investigate whether the deviation of individual domain experts was related to

their experience.

The investigation of the factor rankings showed significant agreement among the

domain experts. Kendall’s coefficient of concordance was equal to 0.38 and

Fig. 8.2 sd&m: CoBRA model development procedure
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significant with an alpha level 0.1. At the same time, the analysts observed a

significant negative correlation between the deviation of individual ranks and the

experience of the domain experts. Spearman’s correlation between expert’s experi-

ence and ranking error was equal to�0.48 and significant with an alpha level of 0.1.

This negative correlation indicated that as project management experience—and

thus estimation experience—increases, ranking error decreases. Therefore,

the analysts decided to remove the rankings of the least experienced experts and

to revise the ranking statistics. They then observed increased ranking agreement

in terms of Kendall’s concordance, which went up to 0.54.

Finally, the analysts used the integrated ranking results to preselect the

12 highest-ranked effort factors.

8.3.3 Step 3: Identifying Relevant Factor Interactions

This step involved a second group meeting, which the analysts started by presenting

the results of the ranking analysis to the domain experts. The subsequent group

discussion revealed that some of the inconsistencies in factors’ ranks were caused

by an inconsistent understanding of the factors’ definitions. The definitions of the

factors were thus refined so that they were precisely formulated (using appropriate

wording) and consistently understood by the involved domain experts. Finally, based

on the results of the ranking and the group discussion, the experts decided about the

final set of twelve factors and seven variables to be considered in the effort model.

Table 8.2 presents the final list of factors selected based upon the ranking

provided by the most experienced experts. In addition, factors that represented

complex (multidimensional) concepts were split into their component aspects, so-

called variables. For example, the factor “Team capabilities” was split into the

specific capabilities of particular team members, such as “Familiarity with appli-
cation domain”, “Familiarity with application domain”, or “Team communication
skills.”

Next, the analysts asked the domain experts to identify potential dependencies

between selected effort factors and specify how each factor affects project effort.

Potential impacts included:

• Positive impact: Increase of the effort factor’s value contributes to increased

development effort.

• Negative impact: Increase of the effort factor’s value contributes to decreased

development effort.

Based on the identified most relevant effort factors and their interactions, the

analysts created an initial effort overhead model. Figure 8.3 illustrates the structure

of the final causal dependencies between the identified factors.
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Table 8.2 sd&m: the most relevant effort factors

Effort factor Factor definition

Understanding and consistency of business

objectives for the project and product

The extent to which the project and product

objectives are clearly defined and the customer(s)

and the project team are consistent in their

understanding of these objectives, meaning there are

no conflicts in their interpretation of the objectives.

Number of user departments involved The number of different departments (business

units) on the customer side that are involved in the

development project.

Development schedule constraints The extent to which a reasonable project schedule is

compressed without changing any of the stated

requirements.

Meeting reliability requirements The amount of extra attention beyond what is

stipulated in the organization’s common practices

that is necessary to meet the reliability requirements

for the developed software system. The higher the

reliability requirements, the more extra attention is

needed to meet these requirements.

Key project team capabilities The knowledge of key people on the project team

about the application domain for the project, the

process and documentation standards and common

practices to be used on the project, the development

platform and environment, and dealing with people.

• Knowledge of application domain Familiarity with and comprehension of the

application domain.

• Knowledge of application platform Familiarity with and comprehension of the platform

to be used, where platform refers to aspects such as

programming languages, operating system, and

database management systems.

• Knowledge of software system

architecture

Familiarity with the type of system architecture

used. Example architecture types include

client–server and Internet Java applications.

• Knowledge of development environment Familiarity with and comprehension of the software

development environment. Example elements of the

development environment include compiler, code

generator, and CASE tools.

• Communication skills The ability to communicate easily and clearly with

the customer. This factor includes such aspects as

interviewing skills or skills in other information

gathering techniques, verbal communication skills,

and ability to lead people.

• Knowledge of software development

processes and techniques

The knowledge and experience of the software

development process and techniques to be used

during the project. Example processes and

techniques include functional and/or object

modeling techniques and cost/benefits analysis.

• Knowledge of documentation standards The knowledge and experience of the

documentation standards to be used during the

project. Example knowledge includes modeling

notations or structure and content of requirements

documents.

(continued)
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8.3.4 Step 4: Collecting Project Measurement Data

In this step, the analysts investigated the availability of project measurement data

for the factors included in the effort overhead model. If such data were found, the

analysts could adopt the scale defined by the corresponding measure for quantifying

the associated effort factor and use the available historical project measurement

data for building the effort model. Unfortunately, they could not find any historical

project measurement data for the factors considered in the effort overhead model. In

consequence, they had to define measures for all factors from scratch (Step 5) and

collect project data for the considered historical projects using expert judgment

(Step 6).

Table 8.2 (continued)

Effort factor Factor definition

Meeting performance requirements The amount of extra attention beyond what is

stipulated in the organization’s common practices

that is necessary to meet the performance

requirements for the developed software system.

Software system performance includes such aspects

as response time, execution time, and memory

usage.

Meeting usability requirements The amount of extra attention beyond what is

stipulated in the organization’s common practices

that is necessary to meet the usability requirements

for the developed software system. Usability is

understood as the ease with which users can

understand, learn, and operate the software.

Customer participation The extent to which the users efficiently and

promptly perform some of the development

activities themselves, providing information,

reviewing project documents, and taking part in

acceptance testing.

Customer competence The level of adequacy and the quality of the

information provided by the customer during the

project, for example, during interviews, when given

questionnaires by the project staff, when presented

with a “system walk-through,” and/or when asked to

provide feedback on a prototype.

Mixed project teams The extent to which customers are actively involved

in the project as members of a mixed project team.

Requirements volatility The extent to which the agreed upon requirements

are expected to change over time during the project.

Disciplined requirements management The extent to which disciplined requirements

management activities are performed in the project,

that is, whether requirements are explicitly defined,

tracked, and traced to design, code, and validation

testing.
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8.3.5 Step 5: Quantifying Selected Relevant Effort Factors

In order to quantitatively measure all the factors, a measurable scale needed to be

defined for each effort factor. This step did not typically concern factors for which

measurement data were already available. Yet, in the context of sd&m, none of the

factors considered in the causal effort model had been subject to measurement.

Therefore, the analysts needed to define scales for all selected effort factors.

They defined factor scales together with the domain experts at the end of the second

group meeting. For the sake of simplicity, each factor was quantified using a 4-point

approximately ratio scale. For each level, the analysts and the domain experts used

the judgment of the involved experts to define an unambiguous specification in

order to ensure consistency of the data collected later on (Step 6).

8.3.6 Step 6: Collecting Multiplier and Historical Project Data

Based on the final effort overhead model and the scales defined for the factors

included in the model, the analysts collected the input data for building the CoBRA

effort model:

• Multiplier data: The domain experts provided the effort overhead for each

individual factor.

Fig. 8.3 sd&m: final causal effort model
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• Project data: The domain experts judged the value of each effort factor for six

already completed projects considered in the study. Moreover, as software size

and project effort data were not available, the analysts needed to collect them

retroactively. Software size was collected by measuring the software code

delivered by the considered projects. Project effort was acquired from the

domain experts together with effort factor data.

The analysts collected both effort multiplier and effort factor data during

interviews with individual domain experts.

8.3.7 Step 7: Building Effort Model

In this step, the analysts combined the quantified effort overhead model, the

multiplier data, and the past project data within a CoBRA simulation tool. Using

the tool, they computed nominal productivities across historical projects as a basis

for estimating new projects. Because the nominal productivities obtained for the

historical projects still varied, the analysts decided to use the median value as input

for estimating future projects.

8.3.8 Step 8: Validating Effort Model

In the final step, the analysts validated the effort model by applying it to the data

from successful past sd&m projects. They used the model for each past project in

order to estimate its effort. The obtained distribution of the estimated effort was

compared to the project’s actual effort value. The model provided estimates with

an average estimation error of less than 10 %.

8.3.9 Step 9: Analyzing Results of Model Validation

sd&m was satisfied with the predictive performance of the CoBRA effort model

when applied to the six already completed projects. Therefore, there was no need

for detailed analysis of the model validation results and for additional iterations

to refine the model.

8.4 Benefits and Costs

The major output of the pilot application of the CoBRA method was an estimation

model for predicting future development projects. Its application on the data from

already completed projects provided valuable information for the purpose of

managing development productivity and effort. The average nominal productivity
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computed across historical projects was proposed as an initial baseline for

controlling the productivity of future development projects.

As an additional result from the investigations general, process improvements

with respect to effort reduction—and productivity improvement—were suggested.

The results from the risk analysis of the available past projects indicated some

factors2 that made a substantial contribution to total effort overhead. For instance,

the sensitivity analysis showed that “requirements were not well understood by

all parties (developers and customers) at the beginning of the project.” In terms of

the example sd&m project, low understandability of the requirements led to a 22 %

effort overhead and, consequently, approximately five additional man-months in

terms of project duration. The outputs of the risk analysis formed the basis

for increasing development productivity through improved management of the

factors identified as having the most significant negative impact.

Summarizing, the pilot application of the CoBRA method has shown its signifi-

cant contribution to the achievement of the organization’s objectives. Already

during the validation of the pilot effort model, CoBRA provided the following

benefits:

• Project effort estimation: The application of the CoBRA method provided a

reliable basis for accurate software effort estimation.

• Project control: Project managers, especially those with relatively little experi-

ence, gained comprehensive support for planning and tracing projects against the

plan.

• Project risk management: The transparent, context-specific effort overhead

model provided information on the most critical threats to project success.

Information on factors having the largest impact on productivity and effort

allowed for reducing project risks early in the development process and, in the

long-term perspective, focused improvement activities on appropriate process

areas.

• Justifying and negotiating project costs: Explicit information on customer-

dependent factors influencing development effort formed the basis for

negotiating with the customer about the planned software cost and scope.

• Productivity baselining and benchmark: CoBRA provided the project managers

with a reliable basis for benchmarking projects with respect to development

productivity. In particular, the unified measure of nominal productivity and

project-specific effort overhead measures allowed for meaningful comparisons

between different projects.

• Reduction of software management overhead: The project managers obtained an

effort model that is easy to use for estimating multiple projects. This allowed for

reducing estimation overhead compared to tedious estimation based on expert

judgment.

2 Due to confidentiality reasons, we are not allowed to name all these factors.
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• Process improvement: The identified deficiencies of defined size and effort

metrics allowed for improving the corresponding measurement processes. More-

over, effort factors that showed to have a significant impact on development

productivity and effort over multiple projects indicated processes that should be

included in long-term process improvement initiatives.

Table 8.3 summarizes the approximate costs of developing the CoBRA model at

sd&m. Note that the future cost of the initial model’s application and maintenance

would only be a fraction of the cost needed for developing the initial model. The

two factors that contributed to the relatively high costs of building an initial CoBRA

model were (1) learning the CoBRA method and (2) building a completely new

model from scratch.

Further Reading

• L. C. Briand, K. El Emam, and F. Bomarius, “COBRA: a hybrid method for

software cost estimation, benchmarking, and risk assessment,” in Proceedings of
the 20th International Conference on Software Engineering, pp. 390–399. 1998.

This conference paper briefly describes the very first version of the CoBRA

method and reports on its application at sd&m. The reader might be interested in

additional details of the sd&m case, including how particular modeling and

validation activities were implemented, and in the experiences gained. Yet, the

technical details about the CoBRA method presented in this paper should not be

considered because the method presented in the paper differs from its improved

version specified in this book.

Table 8.3 sd&m:

approximate costs of

introducing the CoBRA

method

Cost aspect Cost

Involved personnel 14 persons:

• 2 external analysts

• 1 internal analyst

• 11 domain experts

Total duration 8 months

Effort per sd&m team member 16 person-hours

Total effort 3 person-months
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Allette Systems, Australia 9

This chapter summarizes the CoBRA application in the context of Allette Systems

Pty. Ltd., Australia (Allette). In the context of Allette, we developed a very simple

effort model. Based on the experiences from the previous applications and the small

size of the Allette company, we aimed at building a simple effort model. In

particular, we avoided modeling indirect influences on effort.

The Allette case is worth studying in order to learn an alternative implementa-

tion of the general CoBRA modeling process presented in this book. The reader can

also learn potential issues of building a CoBRA model in practice and how to deal

with such issues. Finally, one can analyze the use of the CoBRA method in the

domain of web applications.

9.1 Context Characteristics

In 2002, the CoBRA method was applied in a small (~20 employees) Australian

software company, Allette Systems Pty. Ltd. Table 9.1 summarizes the basic

characteristics of the context of Allette in which CoBRA was applied. The technol-

ogy transfer was led by two external CoBRA experts (analysts).

Table 9.1 Allette: characteristics of the CoBRA application context

Context factor Value

Organization Allette Systems Pty. Ltd., Australia

Maturity Unknown (no certificate available)

Domain Web applications (i.e., web application, web service, and web interface

projects)

Development type New development, redevelopment, enhancement

Life cycle model Not specified

Programming

language

Java

A. Trendowicz, Software Cost Estimation, Benchmarking, and Risk Assessment,
The Fraunhofer IESE Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-30764-5_9, # Springer-Verlag Berlin Heidelberg 2013
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In the next two paragraphs, we take a closer look at two aspects of the Allette

context that were particularly important for using CoBRA, namely, the available

measurement data and the domain experts.

9.1.1 Measurement Data

Available measurement data was collected from 14 projects completed between

1998 and 2002. All considered projects were web application projects and were

similar with respect to functionality, target platform, and complexity. They

encompassed financial/trading, business-to-business, and intranet applications.

They included new development, redevelopment, and enhancement projects.

There were no size data available at the time of the CoBRA application. Project

effort, measured in terms of person-hours (PH), had been collected at Allette for all

projects on a daily basis and stored in a time-tracking repository. Yet, Allette had

not collected software size data across their projects.

Initially, 119 already completed web projects were identified. The number of

considered projects was reduced after Allette limited the scope of the CoBRA

estimation to a particular type, namely, web application, web interface, and web

service. Table 9.2 provides a definition of these application types taken from

Ruhe (2001).

For these application areas, 14 already completed projects were identified. For

these projects, the Web Objects size measure was defined to collect software size

data. Two projects were excluded from further consideration because documenta-

tion required to measure Web Objects was not available. At the end, 12 already

completed projects were used to develop the CoBRA effort estimation model. Nine

Table 9.2 Allette: application types considered in the study

Application

type Definition

Web

application

A web-based application provides full user functionality of a software application

and broad and remote access through a web browser. They are implemented by

HTML-based forms, embedded scripts, and dynamically generated HTML pages

for entry and display of data and servers for performing the application’s

processing. The web is used as a standard interface in which to wrap an

independent application (JAVA applet).

Web interface Web interfaces to existing applications extending existing applications through the

addition of a web interface. They provide remote and broad access to an existing

application with the same or similar functionality. Web interfaces are usually

implemented using HTML-based forms, embedded scripts, and dynamically

generated HTML pages that communicate with the existing application.

Web service Web services provide intelligent web-based interapplication communication that

is independent of both the programming language and the protocol. Web service

components can be recombined by other companies to meet the needs of their own

software applications or business processes.
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projects were new developments, one was an enhancement, and two were redevel-

opment projects. Table 9.3 provides the basic statistics for the final 12 projects

considered in the Allette context.

Figure 9.1 illustrates the distribution of the actual development productivity

across the initially considered projects. We normalized the productivity values

because of confidentiality reasons.

9.1.2 Domain Experts

At Allette Systems, only five project managers were available who had working

experience in the area of web development. Their experience in this area ranged

from 2 years to several years.

9.2 Estimation Objectives

The general objective of the CoBRA application at Allette was to move from ad hoc

subjective estimates based on human judgment in favor of systematic method based

on quantitative project data. In particular, the achievement of the following

objectives was to be supported by the CoBRA method:

• Project planning: Provide less experienced project managers with a systematic,

context-specific method for estimating development effort at the beginning of a

new project.

• Change management: Provide project managers with efficient support for

replanning a software project in case of change in the project scope (at Allette,

tasks often needed to be added later on in the project, which resulted in overruns

of the initial project budget).

Table 9.3 Allette: characteristics of the available measurement data

Measure Min Max Mean Std. dev.

Effort [person-hours] 267 2,504 883 710

Size [Web objects] 67 792 284 227

Max team size [persons] 2 6 3 1.5

Fig. 9.1 Allette: initial project measurement data
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• Project risk management and process improvement: Provide project managers

with comprehensive support for investigating the potential sources of a project’s

deviations from the estimates for the purpose of project risk management (short-

term perspective) and process improvement (long-term perspective).

• Reduction of project management overhead: Provide project managers with an

estimation method that is neither complex nor requires too much project time

while being applied.

9.3 Model Development

Similar to other industrial cases, transferring the CoBRA method in the context of

Allette consisted of a pilot application of the method where the effort model was

built and validated using the available context-specific project data. The general

CoBRA process was adjusted to the specific characteristics of the application

context summarized in Sect. 9.1. Figure 9.2 illustrates the major steps of the

CoBRA modeling process used in the context of Allette. In the next paragraphs,

we briefly describe the content of each step.

9.3.1 Step 1: Preparation and Planning

The transfer of the CoBRA method to Allette Systems began with the study setup

phase. In that phase, the CoBRA method was first presented in detail to company

representatives who, in the future, will be responsible for transferring the knowl-

edge within the whole organization.

Next, the availability of the resources required for the pilot application of the

CoBRA method was clarified with representatives of Allette. This included identi-

fication of the quantity and type of the measurement data collected from already

completed projects (so-called historical data), which could be used as input for

building the initial effort model. During the initial analysis of existing historical

project data, very small projects for which project effort was less than 50 person-

hours were excluded because they are easy to manage and estimate. One hundred

nineteen projects remained for which effort was greater than 50 PH. Moreover, the

availability of the domain experts who could provide input for effort modeling

wherever measurement data were missing was identified. Multiple experts are

typically required because they can provide the most valuable—that is, reliable

and consistent—input for effort modeling. In the Allette context, five project

managers who were experienced in the selected context were supposed to partici-

pate. Their experience in the area of web development ranged from 2 to several

years.

Next, the detailed scope of the CoBRA pilot application was specified. For that

purpose, the initially filtered 119 historical projects were now analyzed with respect

to their exact type using a questionnaire designed together with the involved Allette

project managers. Example project characteristics considered included web-based
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Fig. 9.2 Allette: CoBRA model development procedure
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application, web interface, web service, static website, dynamic website, integra-

tion project, design project, conversion project, and database management. Those

characteristics were then used to perform a brief interview session where the project

managers selected similar historical projects. Based on the results of the survey, the

scope of pilot effort modeling was determined—it included 14 web application,

web service, and web interface projects.

Based on the information regarding the context and the available resources, an

initial plan for the CoBRA pilot application (activities and schedule) was developed.

9.3.2 Step 2: Defining Size Measure

The CoBRA method requires a size measure as one of the main inputs for develop-

ing an effort model; software size is a key driver of project effort. Although no

specific size metric is required, it needs to be consistently measured across the

historical projects considered to build the CoBRA effort model. Since in the context

of Allette, no specific size metric had been either defined or measured across

historical projects, an appropriate metric needed to be defined. In order to assure

early applicability of the CoBRA model, the Web Objects size metric defined by

Reifer (2000) was adapted to the context of Allette.

Web Objects

Web Objects belong to a larger group of so-called functional size metrics that

quantify the functionality of the software to be delivered and thus can be

applied already during the requirements specification phase. The most popu-

lar functional metrics are Function Points (FP), such as IFPUG FP

(ISO20926, 2009), COSMIC FP (ISO19761, 2003), NESMA FP (24570,

2005), FiSMA FP (ISO29881, 2008), and MARK II FP (ISO20968, 2002).

Introduced by Reifer (2000), the Web Objects software sizing method

extends the well-known Function Point Analysis (ISO-20926 2009) in that, in

addition to the five elements already considered in FPA, it counts four

elements that are specific for web applications: multimedia files, web build-

ing blocks, scripts, and links. Web Objects are measured upon user

requirements and web page designs. The counting procedure is analogical

to FPA and comprises counting instances of the nine elements and weighting

them according to their complexity. Total size is computed as the weighted

sum of all individual counts.

9.3.3 Step 3: Identifying and Defining Relevant Effort Factors

Since there was hardly any reference list available that provided typical factors

influencing software development productivity and effort in the context of web

development, the factors needed to be elicited from scratch through personal
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interviews with five of the involved domain experts. As input, the experts received

high-level definitions of predefined factor classes they should consider while

determining particular factors. These classes included product-, personnel-,

project-, and process-related factors. The domain experts were provided with

detailed definitions of the factor groups by e-mail 3 days before the factor identifi-

cation interview session in order to have enough time for preparation.

During the interviews, the purpose of the interview was first explained to the

experts. Next, the experts were asked open questions to identify and describe

context-specific factors influencing development productivity and effort for each

of the four predefined factor groups. In order to avoid bias in the answers given by

the experts, we did not provide them with any reference list of effort factors.

Instead, we asked the experts to report factors based on their individual knowledge

and experience.

Each interview was performed by two CoBRA experts (analysts), one

interviewing a domain expert and one carefully recording the interview outputs.

The interviews took between 25 and 50 min. One interview took 50 min because the

interviewee had not prepared beforehand. The remaining interviews took between

25 and 35 min. As a result, the analysts identified 35 potential effort factors that

were specific to web development at Allette.

At the end of the group meeting, the analysts asked each domain expert to rank

the factors initially identified. In particular, they asked the experts to rank the

factors within each of the four factor groups independently, beginning from the

most relevant factor.

After that, the analysts analyzed the ranking results with respect to their consis-

tency—that is, the agreement between the ranks provided by the individual

experts—and integrated them in order to select a subset of the most relevant

productivity factors.

9.3.4 Step 4: Identifying Relevant Factor Interactions

Already during the first interview session, the analysts asked the domain experts to

initially identify the most relevant dependencies between the effort factors they had

identified so far. These dependencies were going to be the input for discussing the

final effort overhead model during the subsequent group meeting (Step 5).

9.3.5 Step 5/6: Building Qualitative Effort Overhead Model &
Quantifying the Model

At Allette, building the qualitative effort overhead model and quantifying the

model (Steps 5 and 6) were actually performed during one group meeting. The

reason for merging the two steps was that no factor interactions were modeled. As a

consequence, it was rather easy to build a qualitative causal effort model and

quantify it during a single group meeting.
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In general, modeling interactions among effort factors—that is, indirect

influences on effort—increases the complexity of the model and requires ensuring

a common understanding among the experts regarding such interaction. Therefore,

we recommend considering only the most relevant interactions that are expected to

contribute to significant improvement of the model’s performance.1

In the Allette case, the analysts documented and analyzed the dependencies

between the effort factors identified by the experts during the factor identification

interviews. In particular, they were interested in how to avoid modeling indirect

influences in the effort overhead model. Ultimately, the analysts needed to resolve

three factor dependencies that were reported by more than two domain experts:

• “Novelty of Requirements” $ “Novelty of Technology”: In the discussion with

the experts, it was found that the dependency was caused by the misinterpreta-

tion of the factor definitions. A clear distinction between new functional

requirements and new requirements in terms of technological novelty needed

to be made.

• “Quality Project Management” $ “Team Communication Skills”: Communi-

cation skills have a positive influence on project management in the sense that

good communication skills facilitate project management. Therefore, the defini-

tion of the “Communications Skills” factor was limited to the developers only,

instead of the whole project team.

• “Customer Participation” $ “Requirements Volatility”: The domain experts

considered the degree of customer participation during the project as having an

influence on requirements volatility. In order to make the two factors orthogonal

to each other, the definition of “Customer Participation” was changed to “Cus-
tomer Input and Motivation,” which focuses especially on the participation of

the customer at the beginning of the project. “Requirements volatility,” on the

other hand, is a factor that becomes important later on in the project.

In order to achieve maximum independence between the effort factors, the

identified dependencies were removed by adjusting the appropriate factor definitions.

During the group meeting, the analysts first presented the results of the ranking

aggregation and the changes in the factor definitions to the experts, who then

discussed the proposed changes. Finally, the experts accepted the nine independent

factors suggested by the analysts. Table 9.4 list the factors accepted for inclusion in

the effort overhead model.

Figure 9.3 presents the qualitative causal effort model, which was constructed

based upon the assumption that the nine selected factors have only direct impact on

effort.

1 The experiences we gained across several applications of the CoBRA method indicate that the

additional effort required for modeling all factor interactions proposed by the domain experts

typically does not pay off with any significant improvement in the predictive performance of the

CoBRA effort model.

210 9 Allette Systems, Australia



9.3.6 Step 7: Collecting Effort Multiplier Data

Based on the specified effort overhead model and the scales defined for the

considered factors, effort multiplier data were collected during individual

interviews with the domain experts. The interviews were performed by two

analysts, one who interviewed a domain expert and one who observed the inter-

view and documented the interview outcomes. At the beginning of each interview,

Table 9.4 Allette: the most relevant factor influencing development productivity

Effort factor Factor definition

Novelty of requirements The extent of new functionality required for the current project

compared to past well-known projects, ranging from novel

project of a type never attempted before to conversion or

functional repetition of a well-known software product.

Novelty of technology The extent of new technology and tools required for use in the

current project, for example, new databases, languages, and

“strategic technologies” such as XML and JAVA.

Requirements volatility The extent to which requirements are expected to change over

time, to be unclear, incomplete, or inconsistent. Requirements

may be internal or external.

Customer input and motivation The extent to which the customer is willing to cooperate and

his understanding of the project as well as his motivation to

provide input for the project in terms of clear requirements.

For example, the customer may provide ideas about the web

design or the functionality provided by the web application.

Quality of specification and

documentation methods

The extent to which documentation is facilitated and the

specification is clear for all the developers and kept up-to-date.

Team communication skills The communication capabilities of the project team members.

Capability is meant to be the ability to communicate properly,

efficiently, and sufficiently within the team, as well as the

ability to adequately communicate with the customer on the

phone, via e-mail, or personally.

Developers’ technical

capabilities

The analysis, design, and programming capabilities of the

developers. Capability is meant to be the general ability to

work efficiently and thoroughly. For example, efficient and

thorough work excludes such work approaches as

experimenting.

Quality of project management The extent of efficiently managing resources, tasks,

milestones, and project delivery dates, and the level of quality

in organizing the project, including the extent of agreement on

project goals, methods, schedules, or the clarity of project team

roles and responsibilities.

Importance of software

maintenance

The extent to which code is required to be easily maintainable

from a developer’s as well as a customer’s point of view. The

code needs to be easy to understand, modify, extend, and

maintain by the customer. From the developer’s or Allette’s

point of view, it is the extent to which code will be reused for

developing software in the current or future projects.
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the interviewing analyst introduced to the interviewed expert the concepts of an

effort overhead model and of an effort multiplier. Afterwards, each expert was

asked to estimate the minimal, maximal, and most likely values of the effort

multipliers for each considered factor given its worst case—that is, the case

when it has the largest negative impact on effort. The duration of the interviews

varied between 30 and 90 min.

9.3.7 Step 8: Validating Effort Multiplier Data

Unlike in the sd&m case discussed in Sect. 8.3, in the Allette case no systematic

outlier analysis was performed to exclude exceptional effort multiplier data.

Instead, the analysts computed simple standard deviations on the minimal, maxi-

mal, and most likely effort overheads provided by the experts to assess the magni-

tude of the experts’ disagreement and to identify boundary values of effort

overhead. The results of the analysis were then presented to the experts and

discussed in a group meeting. During the meeting, the domain experts presented

the collected multipliers and discussed inconsistencies between individual

estimates. The analysts started the meeting with an explanation of the idea of an

effort multiplier. Next, for each factor, the analysts gave its definition and the

specification of its worst case. The factors for which the estimated multipliers

were characterized by the largest inconsistency (in terms of statistical variance)

were discussed first because they seemed to be most difficult to estimate. A person

whose multipliers were most different from the others was chosen to start the

discussion. The expert provided his understanding of the factor and justified the

multiplier values he had estimated.

The group meeting lasted for 2 h and was perceived by both the analysts and the

domain experts as a very valuable step of the CoBRA model development.

Fig. 9.3 Allette: final causal effort model
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9.3.8 Step 9: Aggregating Effort Multiplier Data

In the CoBRA method, effort multipliers provided for a single factor by multiple

domain experts are typically aggregated by means of simulation. For each factor,

multiplier data provided by a randomly selected expert is used in a single simulation

run. Throughout multiple simulation runs, each expert has the same probability of

being sampled. In the Allette case, a median measure of central tendency was

employed instead.2 For each factor, the effort multiplier data was computed as the

median across the values provided by multiple experts. In principle, weights could

have been further used while computing the median in order to take into account the

different degrees of experience of the experts. However, this was not necessary in

the Allette case because the experts were characterized by very similar experience.

9.3.9 Step 10: Collecting and Validating Historical Project Data

In this phase, 14 already completed web projects were considered for collecting

project data upon which to base the CoBRA model. The actual project data were

collected for 12 projects. The project data encompassed software size, project

effort, and the effort factors included in the CoBRA effort overhead model.

Before the start of the data collection process, the projects were scanned for

available documents and files that could potentially support the acquisition of the

required project data. For two projects, neither documents about the developed

software application nor the delivered software product itself was available. More-

over, the personal memory of neither the project managers nor the developers was

sufficient to provide reliable project data. Therefore, the two projects were excluded

from further consideration. Of the remaining projects, nine were new development,

two were redevelopment, and one was an enhancement one.

The past project data on the effort factors were provided by the project manager

of each of the considered projects. In case of uncertainty regarding an effort factor,

the project manager could give two answers that seemed most likely. Later on, the

average of these two answers was used as the final value.

For the purpose of collecting the effort data, the timesheet system of Allette was

used to determine the actual effort spent in each project. In order to ensure the

validity and completeness of the data, one of the analysts (CoBRA experts) was

involved throughout the whole data collection process. The size of the software

produced in the considered projects was measured by the analyst alone.

Figure 9.4 illustrates the size and effort data3 for the 12 projects considered for

creating CoBRA effort estimation model.

2 The median is more robust against data outliers than simple measures, such as the mean

(average).
3 For confidentiality reasons, we do not specify exact values on the size and effort axes in the

figure.
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A few interesting observations were made by looking at the project size and

effort data:

• Most of the considered projects are relatively small in terms of Web Objects.

Three projects (P01, P07, and P08) are large ones and one (P11) is extremely

large (an outlier).

• Three projects of almost the same size (P02, P06, and P10) are characterized by

almost the same development effort.

• Three projects of different size (P01, P07, and P08) are characterized by almost

the same development effort.

In practice, we would expect that the CoBRA effort overhead model will explain

the causes of the observed productivity variances and that the effort overhead model

delivered for each project will account for the project’s productivity deviation

caused by its particular characteristics.

9.3.10 Step 11: Building Effort Model

In this step, the quantified causal effort model, the multiplier data, and the past project

data were integrated using simulation in order to obtain a final effort model. In the

Allette case, unlike typical cases, software size was modeled as an uncertain variable

represented by a triangular distribution. This decision was made because (1) Web

Object counting is a subjective way of measuring software size, (2) the CoBRA

expert who counted the Web Objects at Allette had no counting experience, and (3)

the applied Web Objects metric was tailored to the Allette context and, as such, had

not been empirically validated before. For this reason, an uncertainty level of 5 %was

Fig. 9.4 Allette: software size and effort data
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used. The most likely value of size was the actual counted number of Web Objects,

where the minimum and the maximum values of the size were calculated as 95% and

105 % of the actual counted number values, respectively.

9.3.11 Step 12: Validating Effort Model

In the final step, the analysts validated the effort model by applying it to the data

from the 12 already completed web development projects. The model was run for

each past project, and the obtained distribution of the estimated effort was com-

pared to the project’s actual effort.

There was no need for improving the model because the initial model already

provided acceptable estimates; that is, estimation error did not exceed 20 %.

9.3.12 Step 13: Analyzing Results of Model Validation

The analysis of the estimated project effort revealed several projects for which

prediction error exceeded 25 %. A closer look at those projects revealed that they

differed from the main body of the projects considered in the following terms:

• Old project (29 % overestimation): The project was actually the oldest one

considered (finished in 1998). Due to the lack of project documentation, the

collected data was based solely on the project manager’s memory. Moreover, the

developed application had been enhanced and redeveloped since its first version.

In addition, it was not possible to identify which parts of the current version of

the application had been developed in the initial project because the initial web

application was not accessible anymore.

• Borderline project (35 % underestimation): The project was by definition a

borderline one because it was actually a software application with only a small

web interface. Although it fulfilled both the definition of a traditional software

application and the definition of a web application, it was decided to consider it

because it was compliant with the defined context characteristics. Moreover, the

technologies used in the development process of this project were different than

those used for the other 11 projects.

• Enhancement project (32 % overestimation): The project differed from the

remaining 11 projects in that it was the only enhancement project.

Despite these outcomes of the analysis, no formal model improvement iteration

was performed. The analysts and the domain experts decided to simply exclude

from the model two of the outlying projects, namely, the borderline and the

enhancement project. This resulted in a reduced estimation error of 14 %.

9.3.13 Step 14: Packaging Experiences

In the final phase, the analysts documented the experiences from the CoBRA model

development and identified the model’s weaknesses in order to guide its future
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improvements and to support the development of new CoBRA models in other

contexts within Allette, for example, for other application types.

9.4 Benefits and Costs

The pilot application of the CoBRA method showed its significant contribution to

the achievement of the estimation objectives specified by Allette. In particular, the

following benefits were achieved:

• Improved estimation accuracy: Compared to the subjective estimation based on

human judgment applied before (37 % error), the application of the CoBRA

method reduced estimation error by about half (14 %).

• Support for change and process improvement: The method supported the man-

agement of project changes since it was easy to apply throughout the whole

software development lifecycle, starting at early stages such as requirements

specification. The method supported the investigation of context-specific sources

of effort and productivity deviations by providing a transparent and intuitive

model of causal dependencies between the most relevant factors influencing

development productivity and effort. For example, it was observed that for

three projects that delivered software of almost the same size but required

significantly different amount of effort (projects P02, P06, and P10 in Fig. 9.4),

“Requirements Volatility” and “Quality of Project Management” were identified
as the most relevant factors influencing effort. On the other hand, three other

projects required similar effort, but the software they delivered differs signifi-

cantly with respect to size (projects P01, P06, and P08 in Fig. 9.4). In this case,

the most relevant factors influencing effort were again “Requirements Volatil-
ity,” “Quality of Project Management,” as well as “Novelty of Requirements” and
“Novelty of Technology.”

• Support for knowledge management: The method supported the organization’s

knowledge management by providing means for explicit modeling (in the form

of a quantitative causal model) expert knowledge for future reuse.

• Reduced cost of project planning: The method reduced the cost of project

planning and management. On the one hand, it delivered a comprehensible,

reliable effort estimation model based on the combination of human expertise

and measurement data. On the other hand, it provided a reusable effort estima-

tion model and relieved the domain experts of expensive judgment-based esti-

mation, which needed to be repeated each time project estimates were required.

• Building up measurement practices: In addition, the process of early size

measurement was initiated by introducing the Web Objects metric. The original

metric defined by Reifer (2000) was adjusted to the context of Allette, and a

counting manual was developed (including detailed instructions and counting

examples).
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After the completion of the study, a survey on the acceptance4 of the CoBRA

method was performed among the involved Allette domain experts. The survey

results showed the high appropriateness of CoBRA in the context of Allette. The

method was perceived as highly useful (81 %) and easy to use (86 %). Moreover,

the experts predicted a high level of usage for the method in the future (91 %).

Achieving these long-term benefits required certain initial investments at

Allette, mainly to learn the CoBRA method and to develop the CoBRA effort

model. Table 9.5 summarizes the costs of the pilot application of the CoBRA model

and of the building of the initial effort model.

Further Reading

• M. Ruhe, R. Jeffery, and I. Wieczorek, “Cost estimation for web applications,”

in Proceedings of the 25th International Conference on Software Engineering,
3–10 May 2003, pp. 285–294

This conference paper provides a brief overview of the CoBRA application at

Allette Systems. In addition to what we presented in this book, the paper presents

the results of the multiplier analysis (Step 8). Moreover, the authors compare the

predictive power of the CoBRA method to two alternative approaches: expert

judgment and simple statistical regression.

• M. Ruhe, R. Jeffery, and I. Wieczorek, “Using Web Objects for Estimating

Software Development Effort for Web Applications,” in Proceedings of the 9th
International Symposium on Software Metrics, 2003, pp. 30–37

This conference paper investigates the use of alternative software sizing

methods for the purpose of project effort estimation in the context of Allette

Table 9.5 Allette: approximate costs of introducing the CoBRA method

Cost aspect Cost

Involved personnel 8 persons:

• 2 external analysts

• 1 internal analyst

• 5 domain experts

Total duration 6 months:

• Setup phase (preparation, context characterization, identification of

relevant effort factors, definition of required metrics, etc.): 8 weeks

• Development of causal effort model: 2 weeks

• Data collection and preparation: 9.5 weeks

• Effort model development and validation: 5 weeks

Total effort 2.7 person-months

4 The survey was performed using the Technology Acceptance Method (TAM) defined by Davis

(1989).

Further Reading 217



Systems. The authors compare the predictive performance of ordinary least

squares regression when applied with two alternative software sizing methods,

Web Objects and Function Points, to estimation based on expert judgment.

• M. Ruhe, The Accurate and Early Effort Estimation of Web Applications, Master

Thesis, University of Kaiserslautern, Kaiserslautern, Germany, August 2002.

Supervisors: I. Wieczorek, D. Rombach, and R. Jeffery.

This master thesis documents the detailed process of the application of

CoBRA at Allette Systems. For each model development step, the author

provides an in-depth insight into the analyses she performed and the results

she obtained. Moreover, the appendices list the tools used for developing the

CoBRA model and the outcomes of the individual modeling steps.
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Oki Electric, Japan 10

This chapter summarizes the CoBRA application in the context of Oki Electric

Industry, Ltd., Japan (Oki). In this chapter, we will show how to adapt the baseline

CoBRA model development process to the needs and constraints of a particular

organization in the management and information systems domain. Moreover, we

report on experience regarding the development of the CoBRA model throughout

multiple refinement iterations. In particular, we show how to analyze the perfor-

mance of the CoBRA model, where to look for potential causes of observed deficits

of the model and how to appropriately improve the model.

10.1 Context Characteristics

In 2005/2006, the CoBRA method was applied in the context of the medium-size

software development branch of Oki Electric Industry Co. Ltd., Japan (Oki), an

international provider of software systems. Table 10.1 summarizes the detailed

characteristics of the case study context. The technology transfer was led by two

external CoBRA experts (analysts) supported by an Oki analyst who was supposed

to learn the CoBRA method.

Table 10.1 Oki: characteristics of the CoBRA application context

Context factor Value

Organization Oki Electric Industry Co. Ltd., Japan

Maturity ISO 9000

Domain Management information systems

Development type New development, enhancement

Life cycle model Waterfall

Programming language Java, C++

A. Trendowicz, Software Cost Estimation, Benchmarking, and Risk Assessment,
The Fraunhofer IESE Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-30764-5_10, # Springer-Verlag Berlin Heidelberg 2013
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10.1.1 Measurement Data

For the purpose of size measurement, we adapted the lines of code (LOC) size

metric already defined at Oki as the number of newly developed lines of code

excluding comments. Effort comprised total development effort in person-hours.

The data on size and effort from 16 already completed projects in a specified

context were available for the purposes of the CoBRA model development. In

addition to size and effort, 30 further characteristics of the software development

environment concerning projects, products, processes, and resources were measured.

The data set we initially acquired suffered from minor incompleteness—2.7 % of the

overall measurement data were missing. The actual development productivity was

computed according to the classical definition of production rate, that is, size of

product divided by the effort required to produce it (IEEE-1045 1993). Figure 10.1

illustrates the distribution of the development productivity across the 16 already

completed projects initially considered (we normalized productivity data due to

confidentiality reasons).

The validation of the initial project data performed across several model devel-

opment iterations revealed several inconsistencies. Project P16, an outlier with

respect to productivity, was actually recognized as deviating from the context of

the study. The project was excluded from the data in the second iteration of the

model development. Figure 10.2 illustrates the distribution of development produc-

tivity across the already completed projects after excluding the outlier project P16.

In the subsequent model development iterations, a few more issues regarding the

project measurement data were revealed. The effort data covered inconsistent

project scope, that is, various phases of the development life cycle. This

Fig. 10.1 Oki: initial project measurement data

Fig. 10.2 Oki: project measurement data after exclusion of outlier project P16
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inconsistency was resolved by adjusting the effort so that a consistent project scope

was covered for all projects considered in the study. Finally, the size metric initially

defined at Oki was found not to cover all significant aspects of the software volume.

This problem was solved by updating the definition of the existing size metric and

adjusting (re-collecting) the historical project data. Figure 10.3 illustrates the

distribution of development productivity of the project data, re-including outlier

project P16, after all these validation and preprocessing steps.

10.1.2 Domain Experts

Initially, there were 12 domain experts involved in the model development:

9 project managers, a quality engineer, a business planner, and a group leader.

Their overall professional experiences ranged between 15 and 33 years, whereas

experience in the current role ranged between 1 and 20 years. During the

subsequent model refinement steps, the number of involved experts was reduced

down to eight.

10.2 Estimation Objectives

Oki expected the introduction of the CoBRA method to contribute to the following

objectives of the organization:

Fig. 10.3 Oki: initial versus final project effort and size data
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• Project effort estimation: Provide less experienced project managers with com-

prehensive support for making reliable and repeatable estimates at the beginning

of a new project.

• Project control: Provide project managers with comprehensive support for

tracing projects against the estimates in order to detect potential deviations

early and to identify the causes of observed deviations.

• Project risk management: Support project managers in assessing and reducing

(mitigating) project risks at the start of a project.

• Justifying and negotiating project costs: Provide project managers with reliable

information for justifying and negotiating planned software cost and scope in

terms of functional and nonfunctional characteristics.

• Process improvement: Provide project managers with comprehensive support for

investigating the potential sources of a project’s deviations from the estimates

for the purpose of project process improvement.

• Build up goal-oriented measurement program: Improve existing measurement

processes for the purpose of managing software project effort and development

productivity.

• Reduction of software management overhead: Relieve seasoned human experts,

such as experienced project managers, from the burden of being involved too

frequently in effort estimations.

10.3 Model Development

In the Oki case, the CoBRA effort estimation model was developed in five

iterations. Figure 10.4 illustrates the major phases of the CoBRA model develop-

ment at Oki. Table 10.2 presents an overview of the model development iterations

and the major refinement activities performed in each iteration.

10.3.1 Iteration 1: Initial Modeling

I1. Step 1: Preparation and Planning
The transfer of the CoBRA method to Oki started with a 1-day tutorial where the

external analysts provided the detailed theoretical background for the CoBRA

method to the Oki personnel, in particular to the analyst who was going to take

over the responsibility for transferring the CoBRA expertise internally; addition-

ally, several Oki effort estimators participated in the tutorial. The practical part of

the technology transfer consisted of the pilot application of CoBRA at Oki follow-

ing the introductory part.

The actual method application started with a kick-off meeting. During the

meeting, the external analysts and the Oki analyst determined the scope of the

CoBRA application and the detailed objectives of the effort estimation. Moreover,

they identified relevant characteristics of the context in which CoBRA was to be

applied. These characteristics served to determine the available sources of
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Fig. 10.4 Oki: CoBRA model development procedure
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information that were needed for creating the CoBRA effort model. These sources

included both project measurement data and the knowledge of human experts.

Finally, with the help of the estimators, the Oki analyst identified those effort

estimation processes that were already implemented in the selected context.

Based on the acquired information on the existing capabilities and constraints,

the analysts created a detailed plan of the CoBRA application at Oki. This included

scheduling tasks and involved personnel within the time and effort limitations

provided by Oki as well as preparing the necessary tools, such as tools for data

analysis, causal effort modeling, and effort model implementation and validation.

I1. Step 2: Defining Size Measure
There was no need to define a size measure at Oki. The already existing measure of

software size was adopted, which was effective lines of software source code

(eLOC)—measured as lines of code without empty lines and comments.

I1. Step 3: Collecting Project Measurement Data
In this phase, the analysts identified and collected the measurement data available

from already completed projects considered in the study. In the first iteration

project, data on effort, size, and 30 other project characteristics were collected for

16 projects that had already been completed within the context selected for the

CoBRA application.

I1. Step 4: Data Validation and Preprocessing
In this step, the analysts analyzed the historical project measurement data collected

in the previous step (Step 3) with respect to consistency and prepared the data for

Table 10.2 Oki: characteristics of the CoBRA application context

Iteration Refinement activities

Estimation

error

Number of

factors

I1 Initial development: Building a first CoBRA model. 107 % 12

I2 First refinement: Excluding productivity outlier project P16,

which did not originate from the specified CoBRA

application context (platform development project).

32 % 12

I3 Second refinement: Normalizing effort data to cover a

consistent project scope (the same development phases)

across the historical projects considered.

23 % 17

I4 Third refinement: Modifying the effort overhead model:

factors were added, removed, and modified (definition).

Historical project data and multiplier data were updated

(recollected).

23 % 17

I5 Fourth refinement: Updating size metric to include the size of

software GUI elements and batches.

14 % 17

I6 Postmortem refinement: Reducing the effort overhead model

(factors removed) based on the analysis of the project data

(both those measured and those acquired from the domain

experts).

13 % 7
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use in the CoBRA model development. The analysis of the input data in the first

modeling iteration revealed several issues that needed to be considered during the

development of the CoBRA model. The investigation of the software production

line illustrated in Fig. 10.3 indicated several projects that lay outside the main body

of data. The outlier projects included project #16 and the group of projects #11 to

#14. The analysts stored the productivity variances observed across the historical

projects as input for driving the effort overhead modeling activities; the major

objective of later modeling was to explain these variances through an appropriate

effort overhead model.

I1. Step 5: Preliminary Factor Identification
Due to the significant time limitations on performing on-site meetings and

interviews as well as due to the cultural and language barrier, the project was

burdened with relatively high risks. In order to mitigate them while building an

initial effort model (in the first iteration), the analysts decided to perform a

preliminary survey among the Oki experts to obtain an initial definition of relevant

factors influencing development effort in the Oki context, their rankings, and

potential dependencies. The results of the survey allowed the analysts to prepare

appropriately for the face-to-face meetings and interviews performed in the

subsequent steps and iterations of the CoBRA model development.

I1. Step 6: Identifying and Defining Relevant Effort Factors
The objective of this phase was to identify the factors with the most significant

impact on development effort. For this purpose, the analysts used the expertise of

the involved domain experts and the analysis of the available historical project

measurement data—if appropriate, data were available. In this step, the analysts

organized a group meeting during which the invited domain experts provided their

expertise regarding the most relevant factors influencing development effort in the

Oki context. The analysts facilitated discussions during the meeting by presenting

the results of the analysis of the available project measurement data they had

performed before the meeting.

In the first part of the meeting, the analysts asked the involved domain experts to

perform a brainstorming session in which they reviewed the initial list of factors

provided in Step 5 and discussed their individual experiences regarding relevant

factors influencing development effort. At this stage, factors could be removed,

modified (redefined), and added, depending on whether they were deemed relevant,

complete, and well defined.

Since the brainstorming session ended with a total number of factors that was too

high to be used for building a reasonable model under the given time constraints,

the analysts had to reduce the set of factors to be considered in the further modeling

steps. They needed to confine the list of factors to those that were considered to

have the highest impact on effort while disregarding the others. They achieved this

by asking the experts to rank all factors according to their relative impact on effort.

The analysts grouped the identified effort factors into four categories—personnel,
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product, process, and project factors—and asked the domain experts to rank the

individual factors in each category independently.

After the group meeting, the analysts integrated the rank orders provided by the

individual domain experts for each of the predefined four categories in order to

identify the most important factors in each category. It was important at this stage

that the ranking was the result of a consensus between all managers interviewed in

order to take into account the variety of experiences available at Oki. The outcomes

of this analysis, including preselection of top-ranked factors, served as the input for

building the effort overhead model (Step 7).

I1. Step 7: Building Effort Overhead Model
In this phase, a group meeting took place, with two objectives: (1) reviewing the

results of the factor ranking and selecting the most relevant effort factors, and (2)

identifying potential factor dependencies and building the structure of an effort

overhead model.

In the first part of the meeting, the experts reviewed the results of the factor

ranking and, based on those results, chose the most significant effort factors. A

simplistic approach in that situation would be to choose a certain number of top-

ranked factors from each category. Yet, it could occur that in reality, the experts

would prefer factors from one category over the others. Therefore, the experts were

asked to decide how many top-ranked factors from each separate category should

be included in the effort model.

During the meeting, some experts suggested that the “importance of software

reliability” factor might not be relevant and thus could possibly be excluded from

the causal model. Yet, this change was not implemented because the majority of the

experts voted against excluding this factor from the model.

In the second part of the meeting, the experts were asked to identify the causal

relationships between the effort factors. This included identification of the direct

influences of the effort factors on effort overhead as well as (if relevant) indirect

relationships (i.e., some factor may weaken or strengthen the direct influence of

another factor on effort overhead). From the meeting results, a causal effort model

was built, i.e., a model of the causal relationships between effort factors and effort

overhead.

I1. Step 8: Quantifying Effort Overhead Model
After building the qualitative causal model, two issues had to be tackled: (1) many

of the factors selected represented complex concepts that needed to be split into

their component aspects, and (2) the factors and variables included in the causal

model had to be quantified. The aforementioned issues were addressed during the

third group meeting.

In the first part of the meeting, for those factors that represent complex

(n-dimensional) concepts, these component aspects were identified and defined

precisely. Each complex factor was decomposed into its component aspects called

variables. The domain experts decomposed several effort factors identified in the

previous step into specific aspects. For example, the “Level of experience and
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knowledge” factor was decomposed into the two most relevant aspects, namely,

“Application domain experience” and “Platform experience.”
Next, quantification of the refined causal model took place. In order to quantita-

tively measure all variables, a measurable scale had to be defined for each factor

and variable. As none of the identified factors and variables had been measured

yet at Oki, quantitative scales for all of them had to be defined. For those factors,

a 4-point approximately ratio scale was defined. Each level on the 4-grade scale was

precisely defined so that the experts would have a consistent understanding and

could provide consistent project data. Table 10.3 provides the definitions of the

effort factors included in the final effort model at Oki.

I1. Step 9: Collecting Multiplier and Historical Project Data
The purpose of this step was to collect effort multiplier and historical project data

for the modeled effort factors. Effort multipliers quantify the impact of the effort

factors considered in the effort overhead model on effort. Historical project data
quantify the actual values of the effort factors in each already completed project

considered in the Oki context. In case of complex factors, only the data for a

factor’s composite variables needed to be collected.

The analysts collected multiplier and project data during individual interviews

with the domain experts. In practice, the data for each effort multiplier should be

provided by all involved experts, whereas the project data for each historical project

should be provided by at least two experts who are familiar with the project. This

allows identifying inconsistencies between related information provided by differ-

ent experts and, in turn, allows preventing potentially invalid input to the CoBRA

modeling. Due to the time constraints and limited availability of appropriate

domain experts, the analysts could collect such “redundant” information only for

effort multipliers.

Effort Multipliers During multiplier data collection, the analysts asked the

interviewed experts to relate to their real project experiences, that is, to consider

all projects they had participated in or select up-front one representative project and

stick to it during the whole interview as a point of reference. For each effort factor

(or variable), the experts were asked to quantitatively assess the percentage impact

the factor had or would have on effort in the respective reference projects, assuming

it had the worst-case value.

During the interviews, the domain experts indicated that it was very difficult to

imagine the effects each factor may cause in isolation from all others when

collecting multiplier data, which is absolutely necessary for getting the effort

overhead values for each effort factor.

For each effort factor, the analysts collected multiplier data from 12 experts. The

analysis of the experts’ judgment revealed that three experts provided multipliers

that differed significantly from those of the other experts. In practice, such

inconsistencies are normal because they reflect individual experiences of the

experts, gained in numerous projects. We cannot expect that different experts

have experienced all possible project situations, and thus they are not always able
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to provide accurate multipliers for all effort factors. One way to deal with outlier

multiplier data in the CoBRA method is to remove them from further analysis,

especially if the outlier data are provided by the least experienced domain experts.

Yet, before excluding outlier data, we should first clarify the potential causes of the

differences in the data, and we should make sure that excluding the data is justified

and leads to the improved model quality. In the Oki case, the analysts decided to

retain all multiplier data because the differences in the experts’ experience were not

significant and because they wanted to include the whole range of experiences

represented by all domain experts in the CoBRA model.

Historical Project Data Due to the time constraints of the Oki study, only one

expert provided effort factor data for each historical project considered in the study.

As a consequence, the analysts could not mitigate the risk of invalid project data by

comparing information acquired from multiple experts. Doubts regarding the valid-

ity of the project data provided by a single expert were additionally supported by a

contradiction observed between the project measurement data on software size and

the expert evaluations of the “Software complexity” effort factor. In particular,

compared to the very large project #16, the experts considered several much smaller

projects as having equal or even higher complexity. In principle, such a situation

may occur in reality, but it is very unlikely for the projects considered in the Oki

context. First, the definition of the “Software complexity” factor actually included

the aspect of the volume of the software delivered as output of the project. Second,

the difference in measured size between project #16 and the other projects was very

large.

I1. Step 10: Building Effort Model
In this step, the analysts combined the quantified effort overhead model, the

multiplier data, and the past project data within a CoBRA simulation tool. Using

the tool, they computed the nominal productivities across the historical projects as a

basis for estimating new projects. Because the nominal productivities obtained for

the historical projects still varied, the analysts decided to use the median value as

input for estimating future projects.

I1. Step 11: Validating Effort Model
In order to initially validate the predictive performance of the CoBRA model

created in the first iteration, the analysts applied it to the historical projects using

a leave-one-out strategy. In this strategy, the effort of each historical project is

estimated using the actual data of this project and the median nominal productivity

computed across the remaining historical projects. Afterwards, the analysts com-

pared the estimated effort to the actual effort documented for the project and

quantified estimation error by means of magnitude of relative error (MRE). Oki

used the mean magnitude of relative estimation error (MMRE) as a criterion for

accepting or rejecting the CoBRA model.

The initial CoBRA model presented MMRE ¼ 107 %, which was an unaccept-

ably low predictive performance for Oki. Therefore, they decided to perform a
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model refinement iteration with the objective of improving its predictive perfor-

mance, meaning reducing its estimation error.

I1. Step 12: Analyzing Results of Model Validation
An analysis of the distribution of estimation error across individual historical

projects revealed several projects that had extremely large estimation error as

compared to other projects. These were project #16 and the group of projects #11

to 14#. The analysts discovered that these were the same projects that were outlying

with respect to development productivity. The first conclusion drawn was that the

CoBRA model is not able to explain productivity variance among the projects

considered in the selected estimation context. The analysts considered several

potential reasons for this poor performance of the model. On the one hand, the

effort overhead model might have missed relevant effort factors that are responsible

for the observed variances in the projects’ development productivities while con-

sidering irrelevant and misleading factors. On the other hand, the multiplier and

project data the domain experts provided for the model might have differed from

the actual values (Fig. 10.5).

The analysts presented the results of the first model development iteration during

a feedback session with the Oki staff involved in the study. After the meeting, Oki

decided to go through an additional model refinement iteration with the objective of

improving its predictive performance. The analysts and the domain experts took

observations from the model validation and analysis step as the entry point for

improving the model in the refinement iteration. The Oki domain experts

committed to investigating internally (off-line) the historical projects considered

Fig. 10.5 Oki: estimation error of the initial CoBRA model (first iteration)
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in the study and the data they had provided in order to find potential reasons for the

poor performance of the model. In particular, they were to look closer at the outlier

project #16 and the group of projects #11 to #14.

10.3.2 Iteration 2: Model Refinement

I2. Step 1: Preparation and Planning
During the preparation for the refinement iteration, both the external analysts and

the Oki experts individually investigated the outcomes of the initial model devel-

opment. In particular, they looked for possible reasons for the poor performance of

the model and for appropriate improvement potentials. The results of the internal

analysis and potential model improvements were discussed during a group meeting.

At the end of the meeting, the analysts and the domain experts decided on the exact

refinement that would be the subject of this iteration.

Model Refinements

Based on the internal discussions, the Oki experts decided to exclude project

#16 from the input project data, which was an outlier with respect to devel-

opment productivity. This project had a significant impact on the unaccept-

able predictive performance of the CoBRA effort model created in the initial

iteration. The project differed from other considered projects in that it was

(1) a very large project and (2) a redevelopment project, while the other

projects were either new development or enhancement projects.

The domain experts and the analysts decided that this would be the only

refinement introduced in this iteration and that the effort overhead model

developed in the previous iteration would be used in the refinement iteration

without any changes. As a consequence, the CoBRA model development

Steps 5–8, that is, the steps in which effort overhead model is developed,

could be skipped in this iteration.

Finally, the analysts planned the activities of the refinement iteration in cooper-

ation with the Oki coordinators. As input for the planning, the analysts took the

objectives and constraints of the refinement iteration, the results of the first itera-

tion, and the experiences they had gained in the previous iterations concerning the

resources that are actually needed for performing particular activities. Planning

consisted of specifying the exact model refinements, identifying existing informa-

tion sources, and planning the iteration steps within available time, budget, and

personnel resources.

I2. Step 2: Defining Size Measure
In this iteration, the analysts used the size measure they already employed in the

first iteration (I1) without changes.
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I2. Step 3: Collecting Project Measurement Data
In this step, the analysts removed the data for the historical project #16 from the

project data set used for developing and validating the CoBRA model.

I2. Step 4: Data Validation and Preprocessing
In this step, the analysts scrutinized the historical project data that remained after

excluding outlier project #16. In particular, they looked at the project’s develop-

ment productivity computed as the size of the delivered software divided by the

effort consumed. The analysis revealed a lot more significant relationships between

size and effort, meaning less variance between projects with respect to their

productivity. Yet, the outlier group of projects #11 to #14 remained an issue to

address.

I2. Step 5: Preliminary Factor Identification
The analysts introduced this step in the first modeling iteration in which the initial

CoBRA model was to be developed from scratch. The purpose of this step was to

reduce the time required for the group meeting during which the domain experts

defined an initial list of relevant effort factors. In the Oki context, there was a high

risk of exceeding the available time due to expected additional overhead required to

overcome culture and language differences. In order to mitigate this risk and to

meet the time constraints specified by Oki, the analysts performed an off-line

survey in which the domain experts could individually identify the effort factors

they perceived as relevant in the considered estimation context. Having an initial

list of relevant effort factors already defined allowed for reducing the time required

for performing the factor identification and definition meeting (Step 6 in the

CoBRA model development process).

Yet, this step can typically be excluded in subsequent modeling (refinement)

iterations because the previous iteration already delivers a set of the effort factors

included into the effort overhead model.

I2. Step 6: Identifying and Defining Relevant Effort Factors
The domain experts did not introduce any changes to the set of effort factors

identified in the first iteration. Consequently, there was also no need to repeat the

factor ranking.

I2. Step 7: Building Effort Overhead Model
The domain experts did not introduce any changes to the effort overhead model.

This refinement iteration simply took over the initial set of effort factors and their

iterations, which had already been defined in the first iteration.

I2. Step 8: Quantifying Effort Overhead Model
Domain experts did also not change quantification of the effort factors in the effort

overhead model. This refinement iteration used factor quantifications that were

already defined in the first iteration.
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I2. Step 9: Collecting Multiplier and Historical Project Data
There was no need to collect effort multiplier data in this refinement iteration

because (1) the effort overhead model was not changed and (2) the multiplier

data collected in the previous iteration were considered as valid.

I2. Step 10: Building Effort Model
In this step, the analysts combined the quantified effort overhead model, the

multiplier data, and the past project data within a CoBRA simulation tool. Using

the tool, they computed the nominal productivities across the historical projects as a

basis for estimating new projects. Because the nominal productivities obtained for

the historical projects still varied, the analysts decided to use median value as basis

for estimating future projects—this time excluding project #16.

I2. Step 11: Validating Effort Model
Finally, the analysts validated the predictive performance of the refined model on

the set of historical projects they had considered in this iteration. The model showed

a significantly reduced average estimation error of 32 % compared to the 107 % of

the initial model developed in the first iteration. Moreover, the nominal productivity

computed using the CoBRA model across the historical projects was less dependent

on software size only. The reduced estimation error and the lower dependency on

size indicated that the model was now better able to account for variances in

development productivity in the historical projects.

I2. Step 12: Analyzing Results of Model Validation
An analysis of the estimation error for the individual projects and their actual

development productivity data indicated that the group of projects #11 to #14

clearly differed from the other projects. Again, these were the same projects that

were outlying with respect to development productivity, confirming the observation

that the CoBRA model is not able to account for their productivity variance

(Fig. 10.6).

After a closer look at the detailed project data, in particular the effort spent per

individual development phase, the analysts discovered that the total project effort

reported for different historical projects actually included different development

phases. Such an inconsistency typically challenges the validity of any effort esti-

mation model based on project size and effort measurement data. Therefore, the

analysts recommended to Oki that the project data should be corrected and the

CoBRA model should be rebuilt upon it, before releasing the model for estimating

future projects.

The analysts presented these results to the Oki experts in a feedback session.

After the meeting, Oki decided to perform a refinement iteration through the model

with the objective of correcting the historical project data and further improving the

model’s predictive performance. The Oki domain experts committed to

investigating the historical projects considered in the study internally (off-line)

and check how to resolve the issue of inconsistent effort measurements.
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10.3.3 Iteration 3: Model Refinement

I3. Step 1: Preparation and Planning
In the preparation for the refinement iteration, both the external analysts and the Oki

experts individually investigated the outcomes of the model validation in the

second iteration. In particular, the Oki experts looked for possible solutions to

correct the historical project effort data. The results of the internal analysis and

potential model improvements were discussed during a group meeting. At the end

of the meeting, the analysts and the domain experts decided on the exact refinement

that was to be the subject of this iteration.

Model Refinements

Following an internal analysis of the historical project effort data, the Oki

experts came to the conclusion that the total effort of the different projects

did, in fact, include distinct development phases. According to Oki’s data

collection process, effort data was collected correctly for each development

phase. Yet, for some projects, the effort spent on requirements specification

and/or system testing was not available and, therefore, was not included in the

total effort data. A typical cause of missing effort measurement was that the

affected development phase had been performed outside Oki. One example

situation was when requirements were specified by customers and utilized by

Oki “as-is.” Another situation was when certain testing activities were

performed by the customers. In these cases, the effort for the externally

(continued)

Fig. 10.6 Oki: estimation error of the refined CoBRA model (second iteration)
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performed phases was not known to Oki and thus not accounted for in the

project data repository.

The domain experts and the analysts decided that this refinement iteration

should focus on correcting the project effort data so that it included a

consistent scope of the software development activities—in this case, the

same set of project development phases. The domain experts and the analysts

decided that this would be the only refinement introduced in this iteration and

that the effort overhead model developed in the previous iteration would be

used in the refinement iteration without any changes. As a consequence, the

CoBRA model development Steps 5–8, that is, the steps in which the effort

overhead model is developed, could be skipped in this iteration.

Based upon the refinement actions proposed for this iteration, the analysts in

cooperation with the Oki coordinators planned the activities of the refinement

iteration. As input for the planning, the analysts took the objectives and constraints

of the refinement iteration, the results of the first iteration, and the experiences they

had gained in the previous iterations concerning the resources actually needed for

performing particular activities. Planning consisted of specifying the exact model

refinements, identifying existing information sources, and planning the iteration

steps with the available time, budget, and personnel resources.

I3. Step 2: Defining Size Measure
In this iteration, the analysts used the size measure they already employed in the

first iteration (I1) without changes.

I3. Step 3: Collecting Project Measurement Data
The objective of this phase was to find a way of correcting the effort data for the 15

historical projects considered in the study so that it encompassed a consistent range

of development phases. In principle, the Oki experts considered two ways of

achieving this objective:

1. Approximate missing effort measurements: In this case, the effort data of the

missing development phases would be approximated using the information on

phase-wise effort distribution observed in the projects where all phases were

performed by Oki and corresponding effort data was available. In other words,

the missing historical effort data would be approximated using a simple method

of proportions. This option would require that at least some historical projects at

Oki included all development phases and that corresponding effort data were

available.

2. Reduce scope of effort measurement: In this case, the “total” project effort would
only include those development phases for which effort was consistently

measured throughout all historical projects considered in the study. In this

option, the effort estimation model would be based upon the effort data for
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a certain excerpt from the complete development life cycle; thus it would

account only for a subset of the development activities. In consequence, the

model would allow for estimating the corresponding part of total project effort.

The remaining part would need to be approximated, for example, using the

method of proportions.

3. Reduce set of historical projects: In this case, the set of historical projects would
be reduced to those projects for which the effort data covers all development

phases. In this option, there was a risk that too few historical projects would

remain to build a reliable effort estimation model (CoBRA requires about ten

projects).

4. Estimate effort per phase: In this case, separate effort estimation models would

be created for each development phase using only those historical projects for

which the effort of the appropriate phase was available. This option would lead

to relatively large costs for developing multiple estimation models. Moreover,

there would be a risk that for certain development phases, too few historical

projects would report actual effort data for building a reliable effort estimation

model (CoBRA requires about ten projects).

After some deliberation, the Oki experts decided to go with the first option,

approximating missing effort data based on the phase-wise effort data of other

projects and the knowledge of the experts who had been involved in particular

projects.

I3. Step 4: Data Validation and Preprocessing
An analysis of the historical project data, including the modified effort entries, did

not reveal further issues. The updated data revealed an improved (higher) correla-

tion between size and effort. However, although projects #11 to #14 were not

outliers anymore, they still formed a visually outstanding cloud of data. If they

would continue to stand out with respect to estimation error after the validation, the

next potential refinement iteration should probably concentrate on explaining what

distinguished these projects from the others.

I3. Step 5: Preliminary Factor Identification
This step could be excluded in this iteration because the previous iteration had

already delivered an input set of the effort factors included in the effort overhead

model.

I3. Step 6: Identifying and Defining Relevant Effort Factors
The domain experts did not change the set of effort factors identified in the previous

iteration. Consequently, there was also no need to repeat the ranking of the effort

factors.

I3. Step 7: Building Effort Overhead Model
The domain experts did not introduce any changes to the effort overhead model.

This refinement iteration simply took over the initial set of effort factors and their

iterations, which were already defined in the first iteration.
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I3. Step 8: Quantifying Effort Overhead Model
The domain experts did not change the quantification of the effort factors in the

effort overhead model either. This refinement iteration used factor quantifications

that had already been defined in the first iteration.

I3. Step 9: Collecting Multiplier and Historical Project Data
There was no need to collect effort multiplier data in this refinement iteration

because (1) the effort overhead model was not changed and (2) the multiplier

data collected in the previous iteration were considered as valid.

I3. Step 10: Building Effort Model
In this step, the analysts combined the quantified effort overhead model, the

multiplier data, and the past project data within a CoBRA simulation tool. Using

the tool, they computed the nominal productivities across the historical projects as a

basis for estimating new projects. Because the nominal productivities obtained for

the historical projects still varied, the analysts decided to use the median value

across the 15 historical projects considered in this iteration as a basis for estimating

future projects.

I3. Step 11: Validating Effort Model
An analysis of the predictive performance of the refined model showed further

improvement. The average estimation error on the 15 historical projects was

reduced down to 23 %. The improvement observed in the model’s performance

indicated that the ambiguous data collection processes identified in the previous

iteration had a significant impact on the quality of the estimation model. Yet,

several issues, such as the group of outstanding projects #11 to #14, remained

unresolved.

I3. Step 12: Analyzing Results of Model Validation
An analysis of the estimation error for individual projects and their actual develop-

ment productivity data indicated that the group of projects #11 to #14 still differed

from the other projects. Another issue that needed clarification was the highly

underestimated projects #05 and #15 (Fig. 10.7).

A closer look at the historical project data revealed two major issues. First, an

analysis of the project data for the effort factors incorporated into the effort

overhead model indicated several cases where the domain experts provided signifi-

cantly inconsistent assessments—although they provided data for the same effort

factor in the same already completed project. Second, after a closer look at the

measured project characteristics, the analysts discovered that projects #11 to #14

had actually been partly developed in C, while the other projects had been devel-

oped completely in Java. Since the current model did not include a cost factor that

deals with the programming language, the analysts considered the appropriate

enhancement of the effort overhead model as one of the possible improvement

potentials for the next model refinement iteration. Based on the analysis of the

236 10 Oki Electric, Japan



model’s performance and the improvement potentials discovered, Oki decided to

run an additional refinement iteration on the CoBRA effort estimation model.

10.3.4 Iteration 4: Model Refinement

I4. Step 1: Preparation and Planning
In the preparation for the refinement iteration, both the external analysts and the Oki

experts individually investigated the outcomes of the initial model development. In

particular, they looked for possible reasons for the poor performance of the model

and for appropriate improvement potentials. The results of the internal analysis and

the potential model improvements were discussed during a group meeting.

After the internal discussions, the domain experts and the Oki analysts

concluded that the effort overhead model was missing several important cost

factors that make project #16 and projects #11 to #14 productivity outliers com-

pared to other projects. According to the Oki experts, this includes “Support from
project-external technical people” and makes projects #11 to #14 different from all

other projects considered in the study. “Use of a second programming language,”
identified during the analysis of the measurement data as potentially distinguishing

projects #11 to #14 from other projects, was actually not considered as a crucial

effort factor. As far as project #16 is concerned, the experts admitted that its context

differs significantly from the other projects considered. As already noticed, in the

first iteration, project #16 was a redevelopment project building a whole software

platform, whereas all other projects were newly developed projects or software

enhancement projects based on that very platform. Therefore, the experts confirmed

Fig. 10.7 Oki: estimation error of the refined CoBRA model (third iteration)
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once again the exclusion of this project from the historical data set. Yet, they

decided to additionally include several new cost factors in the model that cope

with some characteristics of the now excluded project #16 with the intention of

distinguishing between new development and enhancement projects in the future.

At the end of the meeting, the analysts and the domain experts decided on the

exact refinement that was to be the subject of this iteration.

Model Refinements

The refinements of the CoBRA model in the fourth iteration focused on

improving the effort overhead model. First, the domain experts were to revise

the effort factors and their interactions in the current effort overhead model.

Second, in order to prevent inconsistencies in the expert evaluation, the

analysts decided to collect past project data from multiple domain experts.

Moreover, the analysts and the Oki experts decided to invest extra effort into

a detailed specification of the identified effort factors, including their defini-

tion and quantification, so that all involved domain experts would have a

consistent understanding of the effort factors considered.

Finally, the analysts planned the activities of the refinement iteration in cooper-

ation with the Oki coordinators. As input for the planning, the analysts took the

objectives and constraints of the refinement iteration, the results of the first itera-

tion, and the experiences they had gained in the previous iterations concerning

resources actually needed for performing particular activities. Planning consisted of

specifying the exact model refinements, identifying existing information sources,

and planning the iteration steps with the available time, budget, and personnel

resources.

I4. Step 2: Defining Size Measure
In this iteration, the analysts used the size measure they had already employed in the

first iteration (I1) without changes.

I4. Step 3: Collecting Project Measurement Data
In this iteration, there was also no need to (re-)collect any historical project

measurement data—meaning software size and development effort data.

I4. Step 4: Data Validation and Preprocessing
Since the project measurement data did not change in this iteration, there was also

no need to repeat the validation and preprocessing step.

I4. Step 5: Preliminary Factor Identification
This step could be excluded in this iteration because the previous iteration had

already delivered an input set of the effort factors included in the effort overhead

model.
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I4. Step 6: Identifying and Defining Relevant Effort Factors
In this iteration, the analysts and the domain experts performed a joint meeting

during which the experts revised the effort overhead model created during previous

iterations. The domain experts removed or modified (redefined) effort factors that

were already included in the effort overhead model, and added several new factors

to the model.

Motivated by the outlier project #16, which was a major redevelopment project,

the domain experts introduced the “Degree of product enhancement” factor to the

model. They wanted the effort model to distinguish between new development and

enhancement projects in the future. This way, the experts wanted to ensure that both

types of projects were estimated equally well using the same CoBRA model.

Interestingly, although analysis of the project data indicated the use of a second

programming language as a potential reason for the poor performance of the model

for the selected projects, the domain experts did not decide to modify the model to

account for this issue. Instead, they decided that in this case, a more important

factor was the involvement of a technology support team external to the project. In

order to reflect this aspect, the experts added the “Support by project-external
technical experts” factor to the effort overhead model.

Moreover, after some deliberation regarding the relevance of the “Importance of
software reliability” factor, the domain experts decided to retain it in the model.

Figure 10.8 presents the improved causal model as the result of the expert meeting.

The underlined factors (or the underlined parts of factor’s names) are those that

were added to the initial model.

Finally, the analysts asked the domain experts to decompose those effort factors

into appropriate variables that represented complex concepts. For example, the

experts redefined existing variables associated to the “Level of experience and
knowledge” factor and added one more variable to it.

Since the domain experts introduced changes to the effort factors by directly

modifying the effort overhead model, there was no need to repeat the ranking

procedure as they had done in the initial modeling iteration. The experts simply

included in the model those effort factors they considered as the most relevant ones

and removed the irrelevant factors. Table 10.3 summarizes the effort factors defined

in this iteration, which were actually the final set of factors defined at Oki.

I4. Step 7: Building Effort Overhead Model
This step took place at the end of a group meeting during which the domain experts

revised the effort factors in the effort overhead model (Step 6). The analysts asked

the experts to revise the interactions between the effort factors they incorporated

into in the effort overhead model. Figure 10.8 presents the effort overhead model

created in this iteration. The model elements marked with underlined font are those

that changed in this iteration; the remaining elements resulted from previous

iterations—mainly the first iteration where the initial CoBRA model was created.

This model is actually the final model created jointly with the Oki domain experts.
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I4. Step 8: Quantifying Effort Overhead Model
In this step, the domain expert and the analysts defined the quantitative scales for

the effort factors included in the effort overhead model. During a joint meeting, the

domain experts revised the scales of all effort factors.

In order to ensure the same understanding of the subjective scales defined to

quantify each factor, the analysts and the domain experts invested extra effort into

giving a detailed definition of the project situation related to a specific factor value

and also deliberated the scales in a group discussion involving all experts.

Fig. 10.8 Oki: final effort overhead model (the underlined elements were defined in the fourth

iteration)
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Table 10.3 Oki: the most relevant factors influencing development productivity

Effort factor Factor definition

Personnel-related factors These factors encompass the characteristics of the

personnel involved in the software development.

Level of experience and knowledge The experience and knowledge of people in the project

team regarding the application domain of the project, the

process and documentation standards and common

practices (which are not documented in the process, but

usually applied), the development platform, and the

environment at the start of the project.

• Application domain experience

and knowledge

The experience and knowledge of the people in the project

team regarding the customer’s business and system

characteristics at the start of the project.

• Platform experience and

knowledge

The experience and knowledge of people in the project

team regarding the development platform and/or

framework (OS, hardware, middleware, programming

language) at the start of the project.

• Project development standards

experience and knowledge

The experience and knowledge of people in the project

team regarding the process and documentation standards

and common practices (which are not documented in the

process, but usually applied) at the start of the project.

Project manager’s experience

and skills

The level of experience and skills of the project manager of

the team in managing a project (ranging from having

implemented many priority projects to never having

managed a project before) at the start of the project.

Support by project-external

technical experts

The level of support provided by technical experts (e.g., for

a common framework) external to the project during the

lifetime of the project.

Product-related factors These factors encompass the characteristics of the artifacts

delivered during software development, commonly referred

to as software development products.

Importance of software reliability The amount of attention given to minimizing failures and

ensuring that any failures will not result in safety,

economic, security, and/or environmental damage,

achieved through actions such as validation and testing,

fault-tolerant design, and formal specifications.

• Importance of software accuracy The extent to which accuracy of the functionality is strictly

required to avoid the social effects a failure may cause

(economic damage, financial loss, or inconvenience).

• Importance of system

recoverability

The capability of the software product to reestablish

a specified level of performance and recover the data

directly affected in case of a failure and the capability of

being replaced by an alternative procedure resuming its

functionality.

Requirements controllability The extent to which the requirements are controllable over

the project’s lifetime (includes tendency of different

customers).

• Difficulty of requirements

elicitation

The number of stakeholders (e.g., customers, departments)

involved in requirements elicitation and how easily

agreement can be reached with regard to the defined

requirements.

(continued)
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I4. Step 9: Collecting Multiplier and Historical Project Data
In this step, the analysts acquired the multiplier data for all effort factors in the

effort overhead model. In order to prevent inconsistencies in the expert evaluation,

the analysts decided to collect past project data from multiple experts, at least from

three. Since all domain experts already knew the data acquisition procedure, they

could provide their assessments in an off-line survey. This allowed for reducing the

effort required from the domain experts, compared to performing individual data

acquisition interviews with all experts—as was the case in the first iteration. The

effort saved could then be invested into acquiring the same project data from more

Table 10.3 (continued)

Effort factor Factor definition

• Requirements stability The extent to which customers change their mind about the

requirements during the project’s lifetime after the

definition of the initial requirements (defined at the

beginning of the project).

Software product complexity The extent to which some aspects of the software product

(e.g., interface, architecture, database, algorithms, or

relation to other systems) are expected to be complex or

relatively large.

Feasibility of software performance The feasibility of implementing the performance required

(e.g., execution time, download time).

Degree of product enhancement The degree to which the created software product is based

on parts of an already existing software system that has to

be understood and must be included in testing.

Evidence of technologies and

products adopted

The amount of evidence that is provided for the industrial

application of technologies and products adopted in the

project (e.g., OS, middleware, or protocols).

Process-related factors These factors encompass the characteristics of software

development processes.

Disciplined requirements

management

The extent of disciplined requirements management—

whether requirements are explicitly defined, tracked, and

traced to design, code, and validation testing.

Customer participation The extent of user/customer participation—whether the

users are providing information, reviewing requirements

documents, performing some of the analyses themselves,

and taking part in acceptance testing.

Project-related factors These factors encompass the characteristics of a software

development project, such as project organization and

constraints.

Clarity of project team roles and

responsibilities

The extent to which project team roles and related project

responsibilities are clearly defined and well-understood

(and committed to) by the team members.

Development schedule constraints The extent to which the planned project schedule is

reasonable to attain a system that meets all of the

requirements. The extent to which the schedule is shortened

assuming that the optimal one is 100 %.
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than one domain expert. Later on, this allowed analyzing potential inconsistencies

between the data provided by multiple domain experts and increasing the reliability

of the data.

In fact, the acquired project data showed significant inconsistencies. In several

cases, the experts gave extremely different evaluations of the same factor in the

same project. The problem was solved by a joint experts’ meeting where the

involved experts discussed the data inconsistencies and came up with a common

factor rating. Interestingly, even though all experts participated and contributed to

the detailed definition of the scales for each factor, there were still inconsistencies

in interpreting the scales and related project situations.

I4. Step 10: Building Effort Model
In this step, the analysts combined the quantified effort overhead model, the

multiplier data, and the past project data within a CoBRA simulation tool. Using

the tool, they computed the nominal productivities across the historical projects as a

basis for estimating new projects. Because the nominal productivities obtained for

the historical projects still varied, the analysts decided to use the median value

across the 15 historical projects considered in this iteration as a basis for estimating

future projects.

I4. Step 11: Validating Effort Model
The model validation showed a slight improvement in estimation accuracy. The

average estimation error could be reduced down to 23 %. However, the variance of

estimation error across the historical projects could not be reduced much. For

example (Fig. 10.9), a few projects were underestimated to a rather large degree.

Fig. 10.9 Oki: estimation error of the refined CoBRA model (fourth iteration)
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I4. Step 12: Analyzing Results of Model Validation
A deeper analysis of the past project characteristics revealed that the outlying

projects had a very large number of GUI (graphical user interface) elements and

batches implemented.

After discussing this issue with the domain experts, it turned out that the

currently used size metric reflected only code directly implemented by software

developers and did not include other elements of software size, such as the code

generated for the GUI and batches. The experts agreed that—from the perspective

of effort estimation—even if some parts of the software are generated, they still

contribute to the overall project effort. For example, such parts of the software at

least require effort for designing and testing. Considering this fact, the analysts and

the estimators decided to modify the current size measure by counting automati-

cally generated code for GUI and batch elements.

Based on these observations, the Oki expert decided on performing another

refinement iteration, in which they revised the software size measurement in

order to address generated code.

10.3.5 Iteration 5: Model Refinement

I5. Step 1: Preparation and Planning
In the preparation for this refinement iteration, both the external analysts and the

Oki experts individually investigated the outcomes of the initial model develop-

ment. In particular, they looked for possible reasons for the poor performance of the

model and for appropriate improvement potentials.

Model Refinements

The refinements of the CoBRA model in the fifth iteration focused on

improving the software size measurement data for the historical projects

considered in the study. The domain experts considered how to improve the

corresponding measurement process in order to account for automatically

generated software code. After adjusting the corresponding measurement

process, they were to revise the project data for the 15 already completed

projects upon which the CoBRA model was built.

The domain experts and the analysts decided that this would be the only

refinement introduced in this iteration and that the effort overhead model

developed in the previous iteration would be used in the refinement iteration

without any changes. As a consequence, the CoBRA model development

Steps 5–8, that is, the steps in which the effort overhead model is developed,

could be skipped in this iteration.

Finally, the analysts planned the activities of the refinement iteration in cooperation

with the Oki coordinators. As input for the planning, the analysts took the objectives

and constraints of the refinement iteration, the results of the first iteration, and the
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experiences they had gained in the previous iterations concerning resources actually

needed for performing particular activities. Planning consisted of specifying the exact

model refinements, identifying existing information sources, and planning the itera-

tion steps with the available time, budget, and personnel resources.

I5. Step 2: Defining Size Measure
In the previous iteration (I4), a detailed analysis of the project measurement data

showed that the collected size data did not include generated code for elements of

graphical user interface (GUI) and for batches. After some discussions and analysis,

the Oki estimators and the domain experts decided that those parts of the software

make an important contribution to project effort and, therefore, need to be included

in the size measure. After that, the Oki size measurement process was refined

appropriately to consider generated code, and the existing measurement data was

updated according to this process.

I5. Step 3: Collecting Project Measurement Data
After modifying the size measure for the project data used for building the CoBRA

model, the domain experts revised the size measurement data for the 15 historical

projects considered in the CoBRA application at Oki accordingly.

I5. Step 4: Data Validation and Preprocessing
The validation of the revised historical project data did not indicate any other

critical issues that would have required an additional refinement iteration.

I5. Step 5: Preliminary Factor Identification
This step could be excluded in this iteration because the previous iteration had

already delivered an input set of the effort factors included in the effort overhead

model.

I5. Step 6: Identifying and Defining Relevant Effort Factors
The domain experts did not change the set of effort factors identified in the previous

iteration. Consequently, there was also no need to repeat the ranking of the effort

factors.

I5. Step 7: Building Effort Overhead Model
The domain experts did not introduce any changes to the effort overhead model.

This refinement iteration simply took the initial set of effort factors and their

iterations, which had already been defined in the first iteration. Figure 10.8 presents

the final structure of the causal effort model built in the context of the pilot

application of CoBRA at Oki.

I5. Step 8: Quantifying Effort Overhead Model
The domain experts also did not change the quantification of the effort factors in the

effort overhead model. This refinement iteration used the factor quantifications that

had already been defined in the first iteration.
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I5. Step 9: Collecting Multiplier and Historical Project Data
There was no need to collect effort multiplier data in this refinement iteration

because (1) the effort overhead model was not changed and (2) the multiplier

data collected in the previous iteration were considered as valid.

I5. Step 10: Building Effort Model
In this step, the analysts combined the quantified effort overhead model, the

multiplier data, and the past project data within a CoBRA simulation tool. Using

the tool, they computed the nominal productivities across the historical projects as a

basis for estimating new projects. Because the nominal productivities obtained for

the historical projects still varied, the analysts decided to use the median value

across the 15 historical projects considered in this iteration as a basis for estimating

future projects.

I5. Step 11/12: Validating Effort Model and Analyzing Results of Model
Validation
The validation results showed a significant improvement in the model’s predictive

power. Compared to the previous iteration, the average estimation error was

reduced from 23 % down to 14 %. Moreover, the estimation error was relatively

stable across the historical projects, as illustrated in Fig. 10.10. This allowed

concluding that the CoBRA estimation model explained the productivity variances

across the considered types of projects well and that it is very likely that it will

estimate future projects within the observed estimation error margin.

Yet, there was still room for improvement. On the one hand, the model still did

not fully explain the productivity variance across the considered historical

projects, which resulted in considerable estimation error (>5 %). On the other

hand, the resulting CoBRA model was relatively large and complex, containing a

number of effort factors and their interactions. Maintaining such a model—and the

Fig. 10.10 Oki: estimation error of the refined CoBRA model (fifth iteration)
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associated measurement data—might involve substantial cost. The question that

was left open was whether all the effort factors included in the CoBRA model

really had a relevant impact on variance in development productivity and were

thus necessary for accurately estimating project effort. Since reducing the costs of

effort estimation was among the objectives of the CoBRA application at Oki, the

company was to investigate the possibilities of simplifying the CoBRA model

while refining it in the future.

In order to leave some guidelines regarding potential directions for further model

improvements, the analysts decided to attempt to reduce the model based solely

upon the quantitative analysis of the project data collected during the Oki study.

This was the subject of a postmortem model refinement, which will be described

briefly in the next section.

10.3.6 Iteration 6: Postmortem Refinement

In this iteration, the analysts performed a simple quantitative analysis of the

historical project data collected during the pilot application of the CoBRA method

at Oki. The objective of the analysis was to investigate the effort factors

incorporated in the final CoBRA model created at Oki with respect to their

contribution to the productivity variances observed across the historical projects

used for creating the model.

Problem
One of the estimation objectives defined at Oki was reduction of the project

overhead imposed by effort estimation. In general, the CoBRA method proved to

significantly reduce the cost of effort estimation compared to estimation based on

human judgment. Once developed, an effort model can be simply reused multiple

times within a project—across development phases—and across various projects.

Yet, since the Oki model contained a large number of effort factors, the suspicion

arose that not all of them might be relevant. If this was true, potentially irrelevant

effort factors would contribute to increased costs for collecting related project data

and maintaining the effort model without appropriate payoff in terms of increased

performance of the model.

Idea
In order to check the relevancy of the effort factors incorporated in the Oki effort

model, the analysts investigated the project data collected after the model’s last

refinement iteration (I5). They considered the historical project data obtained

through measurement and those acquired from the domain experts. The purpose

of the analysis was to determine which of the considered factors actually had the

greatest impact on the variance of development productivity observed across the

already completed software projects considered at Oki. The analysts wanted to
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employ the RReliefF1 factor weighting technique (Robnik-Sikonja and Kononenko

2003) on the project data delivered by the domain experts to identify those effort

factors that RReliefF indicates as having a significant impact on the variance of

development productivity. Next, they wanted to remove from the CoBRA model all

effort factors that were not chosen by RReliefF and validate the predictive power of

the reduced model using Oki’s historical project data.

Solution
The analysts used the implementation of RReliefF in the Weka tool (Hall et al.

2009). They set the number of nearest neighbors to k ¼ 2 and used the default

settings for the remaining parameters required by the tool. On the output, RReliefF

provided a set of numerical weights assigned to each of the considered effort

factors. Table 10.4 presents the weights provided by RReliefF. Factors that were

Table 10.4 Oki: analytical weighting of effort factors’ impact on development productivity

Effort factor Factor weight Inclusion

Personnel-related factors

Level of experience and knowledge – �
• Application domain experience and knowledge 0.0994 √
• Platform experience and knowledge 0.1567 √
• Project development standards experience and knowledge �0.0836 �

Project manager’s experience and skills 0 �
Support by project-external technical experts �0.0332 �
Product-related factors

Importance of software reliability – �
• Importance of software accuracy �0.0697 �
• Importance of system recoverability 0.1008 √

Requirements controllability – �
• Difficulty of requirements elicitation 0.0978 √
• Requirements stability 0.0865 √

Software product complexity 0.1997 √
Feasibility of software performance �0.0516 �
Degree of product enhancement 0.0814 √
Evidence of technologies and products adopted 0 �
Process-related factors

Disciplined requirements management 0 �
Customer participation 0 �
Project-related factors

Clarity of project team roles and responsibilities 0 �
Development schedule constraints 0 �

1 In Sect. 5.6.1. (Example 5.4.), we illustrate how to use the RReliefF technique for the purpose of

quantifying the importance of potential effort factors covered by historical project measurement

data.

248 10 Oki Electric, Japan



assigned weights greater than zero are considered to have an impact on the variance

of development productivity.

The analysts decided to reduce the CoBRA effort model to these factors, that is,

remove from the model all factors that were assigned a weight that was lower than

or equal to zero. Figure 10.11 illustrates the reduction of the CoBRA model created

at Oki. The effort factors that were removed from the model are marked in gray.

The underlined factors are those modified in the fourth model refinement iteration

(Fig. 10.8).

Fig. 10.11 Oki: reduced effort overhead model (removed elements marked in gray)
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Benefit
During the validation, the reduced model showed more or less unchanged predic-

tive performance compared to the full model. In fact, the average estimation error

dropped from 14 % for the full model down to 12 % for the reduced model.

Figure 10.2 illustrates the exact distribution of the relative estimation error

among the 15 historical projects considered in the Oki study on which the analysts

validated the full and the reduced CoBRA models (Fig. 10.12).

The validation result shows that not all effort factors considered by the Oki

CoBRA model are necessary to explain the productivity variance of the historical

projects considered and to effectively estimate these projects.

Action
The results of the analytical reduction of the CoBRA model created during the Oki

pilot study suggest that the model may contain irrelevant effort factors. Such factors

contribute to increased costs for maintaining the effort model and the associated

project data without any payoff in the model’s performance and the achievement of

estimation objectives. This analytical model reduction indicates the direction the

Oki analysts and the domain experts should take when adjusting the CoBRA model

internally. In particular, they should consider whether all effort factors are relevant

for projects in the selected estimation context. It may occur, for example, that the

domain experts considered these effort factors in the model that, although not

relevant in the sample of the 15 historical projects, are actually relevant for the

selected context and thus are needed to effectively estimate future projects. This

issue should be considered when refining the CoBRA model at Oki.

Fig. 10.12 Oki: estimation error of the analytically refined CoBRA model (sixth iteration)
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10.4 Benefits and Costs

The pilot application of the CoBRA method showed its significant contribution to

the achievement of the estimation objectives specified by Oki. During each iteration

of the CoBRA model improvement, the weaknesses of the estimation model were

discussed with respect to data validity and consistency as well as cost factors of the

causal model. The related data collection processes were improved, and the model

was enhanced accordingly. The causal model obtained at the end reflected the main

factors that influence costs and productivity for the company according to the

experts involved. Moreover, the sensitivity analysis allowed Oki to exclusively

focus risk management and process activities on selected factors with the greatest

influence on productivity.

Figures 10.13 and 10.14 graphically summarize the improvement of the CoBRA

model’s predictive performance achieved through the refinement iterations in the

context of Oki. Figure 10.13 shows the mean magnitude of estimation error,

whereas Fig. 10.14 shows the percentage of the historical projects for which

estimation error was lower than or equal to 25 %.

Summarizing, the pilot application of the CoBRA method at Oki provided the

following benefits:

• Project effort estimation: The pilot CoBRA model provided accurate and repeat-

able estimates. The average error of estimates was 14 %, with 93 % of the

estimates being below 25 %. Moreover, the postmortem analysis of the effort

model indicated further improvement potentials in terms of estimation error.

• Project control: The project managers, especially those relatively inexperienced,

got comprehensive support for planning and tracing projects against the plan.

• Project risk management: The transparent, context-specific effort overhead model

provided information on the most critical threats to project success. Information

Fig. 10.13 Oki: mean magnitude of estimation error across modeling iterations
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on the factors with the largest impact on productivity and effort allowed for

reducing project risks early in the development process and, in the long-term

perspective, focused improvement activities on appropriate process areas.

• Justifying and negotiating project costs: Explicit information on customer-

dependent factors influencing development effort created the basis for

negotiating the planned software cost and scope with the customer.

• Process improvement: The identified deficiencies of the defined size and effort

metrics allowed for improving the corresponding measurement processes. More-

over, effort factors that showed to have a significant impact on development

productivity and effort over multiple projects indicated processes that should be

included in long-term process improvement initiatives.

• Buildup of goal-oriented measurement program: The identification of the most

relevant factors influencing development productivity provided the basis for

building a goal-oriented measurement system for the purpose of managing

software project effort and development productivity. Effort factors that were

not measured and that needed to be judged by human experts during the CoBRA

model development could then be included in the measurement program to gain

a quantitative basis for estimates in the future.

• Reduction of software management overhead: Finally, the reusable CoBRAmodel

allowed for reducing estimation overhead in the future, compared to the estimation

based on expert judgment applied so far. Moreover, as shown by the postmortem

analysis of the CoBRA model (Iteration I6), the model can be potentially reduced

without loss of its predictive performance. This would allow to further decrease the

overall costs of effort estimation by reducing the overhead required to maintain the

CoBRA model and the associated measurement data.

Table 10.5 summarizes the cost of the pilot application of the CoBRA model and

of building an initial effort model.

Fig. 10.14 Oki: prediction at level 25 % across modeling iterations
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Further Reading

• A. Trendowicz, J. Heidrich, J. M€unch, Y. Ishigai, K. Yokoyama, and N. Kikuchi,

“Development of a hybrid cost estimation model in an iterative manner,”

Proceedings of the 28th international Conference on Software Engineering,
pp. 331–340. 2006.

This paper briefly describes the CoBRA pilot application in the context of the

Oki company described in this chapter. Yet, in addition to this chapter, the article

reports the results of a comparison between CoBRA and simple data-driven

effort estimation with ordinary least squares regression (OLS). Compared to

CoBRA, OLS method, which is popular in the software industry, showed lower

predictive performance in terms of estimation error. Moreover, OLS did not

contribute to the achievement of the other estimation objectives, such as manag-

ing project risks or justifying estimates. Finally, the paper reports several lessons

learned during the pilot application of CoBRA at Oki.

• A. Trendowicz, J. Heidrich, J. M€unch, Y. Ishigai, K. Yokoyama, N. Kikuchi,

“Development of a Hybrid Cost Estimation Model in an Iterative Manner,” (in

Japanese), Software Engineering Center Journal, no. 7. September 2006, Tokyo,

Japan, ISSN 1349–8622.

This paper reports on the pilot application of the CoBRA method at the Oki

company in Japan. The content of this paper is approximately the same as that of

the publication “Development of a hybrid cost estimation model in an iterative

manner” we cited above.

Table 10.5 Oki:

approximate costs

of introducing the

CoBRA method

Cost aspect Cost

Involved personnel 15 persons:

• 2 external analysts

• 1 internal analyst

• 12 domain experts (reduced down to 8)

Total duration 4 months

Effort per Oki team

member

26 person-hours

Total effort 3.5 person-months
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Siemens Information Systems, India 11

This chapter summarizes the CoBRA application in the context of Siemens Infor-

mation Systems, Ltd, India (SISL). In this chapter, we will present how to adapt the

baseline CoBRA model development process to the needs and constraints of a

particular organization in the embedded software systems domain. Moreover, we

report on experience regarding the development of the CoBRA model throughout

multiple refinement iterations. In particular, we will show how to analyze the

performance of the CoBRA model, where to look for potential causes of observed

deficits of the model, and how to appropriately improve the model. Finally, the

SISL context shows how important the appropriateness and quality of the data used

for estimation are for the successful estimation. We will provide examples of

common deficits of measurement data and simple ways to identify and solve

these deficits. In particular, we demonstrate how to define an appropriate size

measurement approach for enhancement projects.

11.1 Context Characteristics

In 2008, the CoBRA method was applied in the context of the large-size software

development organization Siemens Information Systems Ltd, India (SISL), a soft-

ware development branch of a large international provider of software systems.

Table 11.1 summarizes the detailed characteristics of the case study context. The

technology transfer was led by one external CoBRA expert (analyst).

11.1.1 Measurement Data

For the purpose of size measurement, the size measure already defined at SISL was

adopted. Software size was measured on software source code and used “Enhance-

ment lines of code” (LOCEnh) as presented in (11.1), where LOCAdd, LOCMod, and

LOCDel refer to added, modified, and deleted lines of code, respectively.

A. Trendowicz, Software Cost Estimation, Benchmarking, and Risk Assessment,
The Fraunhofer IESE Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-30764-5_11, # Springer-Verlag Berlin Heidelberg 2013
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LOCEnh ¼ LOCAdd þ LOCMod þ LOCDel (11.1)

Project effort was measured in person-hours. Yet, similar to the Oki case (Chap.

10), in the context of SISL, the project effort for historical projects also included

different project activities. In the SISL case, the reported project effort not only

included different project phases but, for some cases, also included project man-

agement activities, while in other case, it did not. In order to address this issue and

come up with consistent effort data for estimation purposes, the analysts decided to

limit the scope effort measurements to engineering effort until integration testing.

In other words, the historical project effort data used for the CoBRA model

development included only engineering activities and covered the development

phases from requirements specification via design, coding, and unit testing to

integration testing. The effort measurements did not include project management

activities such as configuration management.

The size and effort data for 13 already completed projects in a selected CoBRA

modeling context were available. In addition to size and effort, the available project

measurement data covered 62 additional attributes of the software development

environment, including characteristics of the project, products, processes, and

resources.

The actual development productivity was computed according to the classical

definition of production rate defined in the IEEE-1045 (1993), that is, size of

product divided by the effort required to produce it. Figure 11.1 presents the

distribution of development productivity across those projects. We normalized

the data for confidentiality reasons.

Table 11.1 SISL: characteristics of the CoBRA application context

Context factor Value

Organization Siemens Information Systems, Ltd (SISL), India

Maturity Certified at level 3 of the CMMI (v.1.1) model

Domain Embedded software systems, medical systems

Development type Enhancement

Life cycle model Waterfall

Programming language C++

Fig. 11.1 SISL: initial project measurement data
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The initial project data set suffered from major incompleteness. In total, 18.2 %

of the project data entries were missing. Moreover, throughout the model develop-

ment iterations, the analysts and the domain experts identified and eliminated

several inconsistencies in the project data. Some of the identified data deficits

reduced the data set by excluding from the study either complete project

characteristics or complete projects. Finally, after the third iteration, the historical

data set considered in the study incorporated 10 historical projects for which 15

characteristics were measured. Table 11.2 summarizes the changes to the SISL

historical project data made during the course of CoBRA model development

iterations.

11.1.2 Domain Experts

CoBRA modeling at SISL involved three project managers with 10, 9, and 3 years

of domain experience, respectively.

11.1.3 Additional Constraints

During the pilot application of the CoBRA method at SISL, two particular

constraints needed to be considered:

• Time resources: Only a limited number of model development iterations and

analyses within each iteration could be performed due to the fixed study

schedule.

• Business objectives: The focus on achievement of the organization’s objectives

partially collided with the research objectives. Exclusion of experts was not

possible, as the domain experts should get familiar with the CoBRA process

(technology transfer objective). Moreover, as the process improvement and

organizational learning objectives were the focus, we decided on informal inte-

gration of the results of the analytical and expert-based causal effort modeling.

11.2 Estimation Objectives

SISL expected the introduction of the CoBRAmethod to contribute to the following

objectives of the organization:

• Accurate project resource planning: Effort estimation should provide accurate

predictions of the effort required to complete software development project.

Table 11.2 SISL: characteristics of the CoBRA application context

Measure Initial data set After iteration 1 Final data set

Number of projects available 13 11 10

Number of measures collected 62 15 15

Total ratio of missing data [%] 18.2 % 16.4 % 15.3 %
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• Effective project risk management: Effort estimation should support project

managers in identifying, analyzing, and managing potential project risks, that

is, threats to successful project completion.

• Effective productivity improvement: Effort estimation should support project

decision makers in selecting effective means to improve development

productivity.

• Effective process improvement: Effort estimation should support the identifica-

tion of process areas that potentially need improvement from the project man-

agement perspective.

11.3 Model Development

In order to minimize the overhead required for developing an effort model, incre-

mental model development was applied in the SISL context. Figure 11.2 illustrates

the procedure of the model development, which represents an adaptation based on

the CoBRA modeling process described in Chap. 5.

In each development iteration, only a limited number of elements (factors and

factor dependencies) that contributed to an improvement of the model’s perfor-

mance were changed (added, removed, or modified) in the causal effort model.

Table 11.3 summarizes the model development iterations and the major refinement

activities performed in each iteration. In Sects. 11.3.1–11.3.4, we briefly describe

the content of the model development steps in each refinement iteration.

11.3.1 Iteration 1: Initial Modeling

I1. Step 1: Preparation and Planning
The transfer of the CoBRA method started with a 2-day tutorial where the external

analysts provided the detailed theoretical background for the CoBRA method to

one SISL internal analyst. Next, the internal analyst conveyed the theoretical

CoBRA background to the SISL personnel who would later be involved in the

pilot application of the CoBRA method at SISL. They included members of the

corporate technology excellence team responsible for estimation technologies and

project estimators—mainly project managers.

The pilot application started with a joint kick-off meeting where the external and

internal analysts defined the detailed objectives of effort estimation at SISL.

Moreover, they determined the organization’s scope of the CoBRA application

and specified the characteristics of the context in which CoBRA was to be applied.

In particular, the analysts identified the available information sources—that is,

measurement data and domain experts—and current estimation practices. The

context information served as the input for the detailed planning of the CoBRA

model development and validation. Planning included scheduling work activities

and meetings with the involved SISL personnel (especially domain experts),

collecting information regarding sources of available measurement data, and
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Fig. 11.2 SISL: CoBRA model development procedure
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preparing the necessary tools. Initially, the analysts agreed on and planned for

developing the CoBRA model in two increments.

I1. Step 2: Defining Size Measure
There was initially no need to define size measure at SISL. The analysts adopted the

size measure already defined at SISL. It measured enhancement lines of software

Table 11.3 SISL: overview of the CoBRA model development iterations

Iteration Refinement activities

Estimation

error

Number of

factors

I1 Initial development: Building the first CoBRA model 65 % 5

I2 First refinement: This refinement iteration included two

major adjustments:

1) Effort overhead model was extended:

• Added one new factor directly influencing effort

• Added one factor indirectly influencing effort through

two direct effort factors

• Modified definition of one existing effort factor

• Updated model quantification including re-collection

of project data and effort multipliers

56 % 7

I3 Second refinement: This refinement iteration included two

major adjustments:

1) Software size measure was adjusted:

• Reused lines of code (LOCRus) were included as an

additional component in the “Enhancement lines of

code” (LOCEnh) size measure used at SISL in order

to account for the software code reused without any

modifications.

• All components comprising the LOCEnh size measure

were assigned numerical weights to distinguish their

different contributions to the total software size from the

viewpoint of development effort. Weights were based

on an analysis of the measurement data and on a

Function Point Analysis for software enhancement

projects.

2) Historical project data were reduced and updated:

• Inconsistency in software size measurements was

corrected, and historical project data were re-collected

appropriately.

• In case of one historical project, the sources of the

inconsistency could not be identified. Since the project

data could not be corrected, the project was excluded

from the study.

26 % 7

I4 Postmortem refinement: Based on an analysis of the available

project data—measured and acquired from the domain

experts—potentially irrelevant effort factors and factor

dependencies were removed from the effort overhead model.

24 % 4
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source code and was defined as the sum of added, removed, and modified lines of

software source code (11.4).

LOCEnh ¼ LOCAdd þ LOCMod þ LOCDel (11.2)

I1. Step 3: Collecting Project Measurement Data
In this phase, the SISL analysts identified and collected the available measurement

data for already completed projects within the context considered in the study

together with the appropriate project managers. In the first iteration, project data

on 62 project characteristics for 13 already completed projects were collected.

I1. Step 4: Data Validation and Preprocessing
Data Validation The measurement data collected from already completed projects

initially required extensive preprocessing. Typical problems were a high rate of

missing data and inconsistency of the collected measurements.

During initial data preprocessing, the analysts resolved the identified

inconsistencies by consulting the managers of the considered projects. Moreover,

the analysts compared the measurement data provided by individual project

managers to the data extracted from the organization-wide central measurement

database. As a result, they identified two outlier projects that differed significantly

from the remaining 11 projects considered initially. These projects actually fell

beyond the specified scope of the CoBRA application and as such were excluded

from further consideration.

Data Preprocessing Next, the analysts looked closely at the 62 characteristics

measured for the remaining 11 projects. Their objective was to prepare the data

for automatic analysis. The analysts wanted to apply analytical techniques for

identifying relevant factors influencing development productivity—meaning

factors that should be considered in the CoBRA effort overhead model.

First, the analysts excluded all project characteristics that somehow related to

software size or project effort and thus were obviously correlated to development

productivity. For the remaining data, the analysts detected a few significant

inconsistencies. For instance, they observed in the project data sheet inconsistent

usage of empty cells—either “0” or “n/a”—for coding a zero value, a missing value,

and “not applicable” for certain measures. Since these three values are semantically

very different, analyzing such data may lead to wrong conclusions. This issue was

resolved by revising the measurement data and consistently coding the respective

measurements.

Another inconsistency was that the number of hazardous requirements was

greater than the total number of requirements. The analysts resolved the

inconsistencies they detected after consultation with the managers of the affected

projects. For example, the inconsistency between the number of hazardous

requirements and the total number of requirements was caused by different levels
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of detail of the associated measurement processes. Unlike the total requirements

count, the hazardous requirements were considered on the level of sub-

requirements. As a consequence, more than one hazardous sub-requirement could

be counted for a single requirement.

An additional issue was the amount of useful information conveyed by the

measurement data. On the one hand, for many project characteristics in the measure-

ment data set, only a few data entries were actually provided. On the other hand,

many characteristics had the same value over all considered historical projects. In

both these cases, the available information was insufficient to draw reliable

conclusions about the impact of a given characteristic on the productivity variance

observed across the historical projects. Therefore, the analysts decided to exclude

from the analysis those project characteristics that either had the same value for the

historical projects considered or had more than 70 % of the data entries missing.

The analysts prepared the remaining measurement data for automatic analysis.

For example, they converted the data format so that it was acceptable for particular

analysis tools, and they removed special characters that might be misinterpreted by

these tools. After preprocessing, the final data set consisted of 11 projects, for which

15 characteristics were measured with 16.4 % missing data.

I1. Step 5: Identifying and Defining Relevant Effort Factors
In this step, the analysts and the domain experts performed the first brainstorm-

ing session during which the involved domain experts identified those factors

that, according to their experience, have a significant impact on development

productivity in the considered context. Next, the analysts asked the domain

experts to individually rate each identified effort factor with respect to three

criteria:

• Impact: The strength of influence a given factor has on development productivity

and effort (in the SISL context, we referred to this aspect as importance).
• Measurability: The difficulty (overhead) of collecting factor-related project data.

This includes the ease of defining a quantitative measure and collecting the

respective quantitative data.

• Controllability: The extent to which a software organization can influence/

control the factor’s value. For example, internal characteristics of an external

customer organization are typically hard to control.

To assign values to each criterion, the domain experts used a 4-point approxi-

mately ratio scale, where rate 1 referred to the criterion’s best value (e.g., the

highest measurability) and rate 4 to the criterion’s worst value. The analysts

synthesized the rating outcomes and presented them to the domain experts during

the next group meeting. During this meeting, the domain experts discussed the

discrepancies between their individual ratings. However, only minor differences

were identified. Afterwards, the analysts aggregated the ratings of the individual

experts for each criterion using a simple arithmetic mean. Finally, the most relevant

productivity factors were selected based on the aggregated impact and the measur-

ability ratings. At that time, the controllability criterion was excluded as having

262 11 Siemens Information Systems, India



minor importance for the purpose of effort estimation. Yet, it was to be considered

later on when applying the effort estimation model for negotiating project costs

with external parties.

Based on the discussions, the domain experts decided to include five effort factors

in the initial CoBRA model: Programming language skills, Domain Experience,
Requirements volatility, Hazardous requirements, and Multisite development.

I1. Step 6: Identifying Relevant Factor Interactions
During the second group meeting, after selecting the most relevant effort factors,

the analysts asked the domain experts to identify potential interactions between the

effort factors included in the effort overhead. The analysts explicitly stressed the

need to focus only on those factor interactions that may have a significant influence

on each factor’s impact on effort. After a joint discussion, the domain experts

decided that there were no significant interactions between the effort factors

considered in the effort overhead model (Fig. 11.3).

I1. Step 7: Quantifying Selected Relevant Effort Factors
The qualitative effort overhead model was then quantified in the next group

meeting. During the meeting, the analysts asked the domain experts to define

quantitative scales for those effort factors in the effort overhead model for which

no measurement data were available yet. Since none of the considered effort factors

had already been measured, the experts quantified all of them. The experts were

asked to quantify each effort factor using a 4-grade approximately ratio scale,

where 0 corresponded to the best-case and 3 to the worst-case value of the factor.

For each value, the experts defined an unambiguous description of the project

situation this value represented. Since the domain experts were supposed to provide

the project data for respective factors, it was crucial that each expert interpreted the

defined factor’s values in exactly the same way.

Fig. 11.3 SISL: initial effort overhead model

11.3 Model Development 263



I1. Step 8: Collecting Historical Project and Multiplier Data
After quantifying the effort factors included in the model, the analysts performed an

interview session with all involved domain experts in order to acquire the project

and effort multiplier data for all five effort factors in the effort overhead model.

Project data: First, the analysts asked each domain expert to provide the effort factor

data for these projects that were known to the expert—for example, because the expert

was directly involved in these projects. The involved domain experts were able to

provide historical factor data for all 11 projects considered in the CoBRA modeling

process. For some projects, more than one domain expert could provide factor data. This

allowed comparing the experts’ judgments and detecting potential inconsistencies.

Effort multipliers: Next, each expert was asked to quantify the impact of each

factor on effort in terms of the percentage increase in effort caused by the factor,

given it had its worst-case value and all other factors had their best-case values. In

order to cover the experts’ uncertainty, the analysts asked the domain experts to

provide three multiplier values for each effort factor: the minimal (min), maximal

(max), and most likely (ML) percentage increase in effort caused by the factor.

I1. Step 9: Validating Historical Project and Multiplier Data
After collecting the historical project and multiplier data, the analysts investigated

the data with regard to potential inconsistencies.

Project data: The analysts used two strategies for validating the consistency of

the provided historical project data:

• Consistency against measurement data: The analysts looked through the avail-

able measurement data to find project characteristics that were related to the

effort factors quantified by the domain experts. If the analysts found

corresponding measurement data, they compared them to the expert judgments.

• Consistency between experts: The analysts looked at the effort data that were

provided by more than one expert and compared them to each other.

Effort multipliers: The analysts used two strategies for validating the consis-

tency of the provided effort multiplier data:

• Consistency between experts: In order to identify potential inconsistencies, the

analysts looked at the corresponding multipliers provided by different experts.

• Consistency between factor ratings: The percentage impact on effort was com-

pared to the initial factors’ ratings on the impact criterion given by the experts in

the “Identifying and Defining Relevant Effort Factors” step (Step 5). An example

inconsistency was that a given expert rated several effort factors as having

clearly different levels of importance, but then the expert assigned very similar

effort multipliers to these factors, which would suggest that they actually had a

similar importance.

The analysts discussed and clarified the inconsistencies they detected with the

corresponding domain experts. Based on these discussions, they made appropriate

adjustments to the data.
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I1. Step 10: Building Effort Model
In this step, the analysts combined the quantified effort overhead model, the

multiplier data, and the past project data within a CoBRA simulation tool. Using

the tool, they computed the nominal productivities across the historical projects as a

basis for estimating new projects. Because the nominal productivities obtained for

the historical projects still varied, the analysts decided to use the median value

across the 11 historical projects considered in this iteration as a basis for estimating

future projects.

I1. Step 11: Validating Effort Model
For the purpose of validation, the developed effort model was run on the available

past project data. The performance of the initial effort model was not satisfactory.

When validated on the historical projects, the model provided highly unstable

estimates with an average error of 65 %. The planned second model development

iteration aimed to improve the model’s performance.

I1. Step 12: Analyzing Results of Model Validation
Before the model improvement iteration could start, the analysts needed to find the

potential causes of the model’s poor performance. The analysts investigated several

issues.

Effort factors: In the first iteration, the domain experts had decided to include

an effort factor “Hazardous requirements” although it was not the highest ranked

one. In the validation phase, the analysts wanted to evaluate the impact of this

very factor on the estimation performance of the CoBRA effort model. For this

purpose, they excluded this factor from the model and validated it again on the

historical project data. After excluding this effort factors, the model’s perfor-

mance was only slightly worse than the performance of the complete model

including the factor. This result suggested that the considered effort factor did

not have much impact on the performance of the CoBRA model and could

potentially be excluded from the model.

Development productivity: The analysts looked at the model’s ability to explain

the variance of the actual development productivity across the considered historical

projects. On the one hand, they checked how well the CoBRA model met the

assumption of linear dependency between project effort and size (so-called produc-

tion function). On the other hand, they looked at the distribution of nominal

productivity provided by the model and compared it to the actual development

productivity. The analysts noticed that the CoBRA model did not contribute to

improve the linearity of the production function.

Effort overhead: Finally, the analysts looked at how the effort overhead related

to the actual development productivity. According to the assumption of the CoBRA

model, productivity should decrease with increasing effort overhead, in a nonlinear

manner. Yet, the CoBRA model obtained after the first iteration did not show any

clear trend between the effort overhead delivered by the model and the actual

development productivity across the historical projects considered.

11.3 Model Development 265



The analysts presented the results of this analysis during a joint feedback

session. During this session, the analysts and the domain experts discussed possible

causes of the model’s poor performance. In the end, the analysts and the domain

experts came up with a list of two issues and corresponding improvements that

should potentially be the subject of the next model refinement iteration. Table 11.4

summarizes the identified issues and the proposed improvement actions. The

analysts and the domain experts agreed to address both issues in the next modeling

iteration.

11.3.2 Iteration 2: Model Refinement

I2. Step 1: Preparation and Planning
During the preparation for the second iteration, both the SISL domain experts and

the internal analysts individually investigated the outcomes of the initial model

development iteration. They looked for possible reasons of the model’s poor

performance, in addition to those already discussed during the feedback session

at the closure of the first modeling iteration. In particular, they investigated size and

effort measurement for the historical projects considered in the study. Based on the

outcomes of the feedback session in the first iteration and internal SISL

investigations, the analysts and the domain experts decided on the exact model

refinements.

Model Refinements

Based on the analysis of the model’s performance and on discussions with the

domain experts, the analysts decided that the second iteration should focus on

revising the effort overhead model.

Finally, the external and internal analysts planned the activities of the refinement

iteration. As input for the planning, the analysts took the objectives and constraints

of the refinement iteration, the results of the first iteration, and the experiences they

had gained in the previous iterations concerning the resources actually needed for

performing particular activities. Planning consisted of specifying the exact model

Table 11.4 SISL: improvement potentials after iteration I1

Issue Improvement action I2

Current measurement data indicated much

lower development productivity for project

P07 than expected by the domain expert who

knew the project.

The measurement data for historical project

P07 needed to be revised.

�

The domain experts realized that some of the

relevant effort factors may be missing in the

model.

Potentially missing effort factors that might

explain the remaining productivity variance

across the historical projects needed to be

considered and added to the model.

√
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refinements, identifying existing information sources, and planning the iteration

steps with the available time, budget, and personnel resources.

I2. Step 2: Defining Size Measure
In this iteration, the analysts used the size measure they had already employed in the

first iteration (I1) without changes.

I2. Step 3: Collecting Project Measurement Data
In this step, the SISL domain experts and internal analysts reviewed the measure-

ment data of the 11 historical projects considered in the study. The data from the

first modeling iteration were taken without changes.

I2. Step 4: Data Validation and Preprocessing
The investigation of the project measurement data confirmed the results of the

previous iteration in that project P07 was an outlier with respect to development

productivity. In addition, the productivity of two more projects differed signifi-

cantly from the other projects. The observed discrepancies in the projects’ devel-

opment productivity were to be addressed during the revision of the effort overhead

model; the domain experts were to think about factors that made the productivity of

these three projects differ from that of the others.

I2. Step 5: Identifying and Defining Relevant Effort Factors
The objective of this step was to revise the effort overhead model with respect to the

most important factors influencing development productivity. In particular, the

investigation focused on those factors that were responsible for the productivity

variance across the 11 historical projects considered in the study.

In the second iteration, the analysts used analytical methods to support the

domain experts in identifying the most relevant effort factors. The analysts

employed factor selection techniques on whatever measurement data were avail-

able in order to identify those project characteristics that contribute most to the

observed variance in productivity. Development productivity was defined

according to IEEE-1045 (1993) as software size divided by development effort.

Specifically, they used factor weighting technique called RReliefF1 which was

proposed by Robnik and Kononenko (2003) and implemented in the Weka2 soft-

ware tool (Hall et al. 2009). Factor weighting identified seven measured project

characteristics that had a nonzero contribution to the variance in actual develop-

ment productivity across the historical projects.

1 In Sect. 5.6.1 (Example 5.4), we illustrate how to use the RReliefF technique for the purpose

of quantifying the importance of potential effort factors covered by historical project measure-

ment data.
2 In the Weka implementation of the RReliefF technique, the analysts used the following settings:

Attribute Selection Mode ¼ “Cross-validation,” numNeighbours ¼ 2. All other settings were

used with their default values.
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In addition, the analysts integrated the rating of the factors’ importance provided

by the domain experts in the first modeling iteration with the analytical weights

delivered by RReliefF. For this purpose, they computed an average weight over the

normalized values of importance rates and weights. The combined results indicated

“Personnel turnover” as having the greatest impact on productivity variance. Other

important factors were “Platform experience” and “Programming language expe-
rience,” with the latter factor already considered in the CoBRA model as “Pro-
gramming language skills.”

Finally, the analysts presented the results of the analytical factor selection to the

domain experts during a group session where the experts discussed these results.

The main objective of this session was to refine the model so that it explained the

variance in development productivity across the considered historical projects

better. In particular, the distribution of nominal productivity showed two outlier

projects. Project P05 was characterized by very high and project P08 by very low

nominal productivity relative to the remaining projects. Therefore, the analysts

asked the domain experts to look at the current model and at the distribution of

development productivity across the considered historical projects and to think

about how the model could be improved in order to better account for the observed

productivity deviations.

After some discussion, the domain experts concluded that the model was missing

two factors that, according to their project experience, have a significant impact on

development productivity, namely, “Platform experience” and “Number of key
persons.” After some deliberation, the group decided to add the “Platform experi-
ence” to the model as an effort factor directly contributing to project effort overhead

and “number of key persons” as an indirect effort factor. According to the experts,

the impact of the team’s “Domain experience” and “Platform experience” depends
on the “Number of key persons” in the team. Consequently, the new factor “Number
of key persons” was added to the model as indirectly influencing project effort

through the “Domain experience” and “Platform experience” factors.
Moreover, the definition of the Domain experience factor was refined, after it

was revealed that it had been interpreted inconsistently by the involved domain

experts. The revised factor was renamed to “Domain/product experience.”
Finally, the experts decided to retain the “Hazardous requirements” factor in the

model although the model’s validation in the previous iteration (I1) has shown a

rather insignificant impact of the factor on the project effort. The experts’ motiva-

tion was that although the factor might seem to have little impact on the effort of the

considered historical projects, it principally had a significant impact on the effort of

other projects they had worked in, but which were not considered in the develop-

ment of the CoBRA model.

Table 11.5 summarizes effort factors defined in this iteration, which were

actually the final set of factors defined at SISL.

I2. Step 6: Identifying Relevant Factor Interactions
The domain experts decided to add the “Number of key persons” factor as an

indirect one. It has an indirect influence on two other factors, meaning two indirect
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influences were added to the effort overhead model. Figure 11.4 illustrates the effort

overhead model after the second modeling iteration.

I2. Step 7: Quantifying Selected Relevant Effort Factors
The objective of this step was to revise the quantitative measurement scales defined

for the effort factors according to the most recent changes in the effort overhead

model. During a group meeting, the domain experts defined quantitative scales for

the newly added effort factors and revised the scales for the modified factors.

Table 11.5 SISL: the most relevant factors influencing development productivity

Effort factor Factor definition

Programming

language skills

Team experience regarding the programming language employed in the

projects at the beginning of the development life cycle, that is, at the

beginning of a project.

Domain/product

experience

Experience in the project domain of the people who are expected to have

such experience. In the context of SISL, the domain referred to medical

applications and medical information systems.

Requirements

volatility

Percentage of requirements that were changed after requirements freeze.

The percentage of changes is considered in terms of the required rework

effort rather than in terms of functional software size.

Multisite

development

Number of separate development sites involved in a software

development project.

Hazardous

requirements

Percentage of hazardous requirements—relative to the total number of

requirements – defined in a software development project.

Platform experience Team experience regarding the application platform at the beginning of a

project.

Number of key people Number of people in a project whose experience and involvement are

crucial for the success of a project.

Fig. 11.4 SISL: effort overhead model (underlined elements were defined in the second iteration)
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I2. Step 8: Collecting Historical Project and Multiplier Data
In this step, the analysts collected the effort factor data for the historical projects

and the effort multipliers for the recently revised effort overhead model. Because

the domain experts were already familiar with the data collection procedure, it

could be performed off-line. Instead of interview sessions, the domain experts

provided the data through an e-mail survey in which they filled out an appropriate

questionnaire prepared by the analysts.

I2. Step 9: Validating Historical Project and Multiplier Data
In this step, the analysts applied an analytical factor weighting technique

(RReliefF) on the factor data provided by the domain experts for the 11 historical

projects. Next, they compared the importance of the factors indicated by weights to

the importance ratings provided by the domain experts in the first iteration (Step 5).

In this way, the analysts wanted to compare the importance of effort factors

provided by the experts indirectly through the project data to the factor’s impor-

tance they had rated directly in the first iteration.

This analysis revealed several inconsistencies where the analytically computed

importance of a factor (weight) differed from the importance rated by the domain

experts. The analysts presented these findings to the domain experts during a joint

meeting. After some discussions about the data analysis, the domain experts

decided not to revise the historical project data they had provided.

I2. Step 10: Building Effort Model
In this step, the analysts combined the quantified effort overhead model, the

multiplier data, and the past project data within a CoBRA simulation tool. Using

the tool, they computed the nominal productivities across the historical projects as a

basis for estimating new projects. Because the nominal productivities obtained for

the historical projects still varied, the analysts decided to use the median value

across the 11 historical projects considered in this iteration as a basis for estimating

future projects.

I2. Step 11: Validating Effort Model
The analysts validated the revised CoBRA model on the historical project data.

Overall estimation accuracy improved in the sense that the average estimation error

was reduced to 55 %. Yet, estimation accuracy still varied a lot across the historical

projects. In particular, a few projects were extremely under- or overestimated.

Moreover, only 8 % of the estimates had an estimation error of 25 % or less.

Since these results were not acceptable, SISL decided to perform an additional

iteration to revise the CoBRA effort model.

I2. Step 12: Analyzing Results of Model Validation
A detailed analysis of the model’s validation results indicated several issues:

Development productivity: After the second iteration, the CoBRA model met

the assumption regarding linear dependency between project effort and size
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better. However, it still did not satisfactorily explain the variance in develop-

ment productivity. Several projects, including project P07, were outliers with

respect to their nominal productivity computed by the CoBRA model. One of

the consequences was that CoBRA was not able to estimate these projects

properly.

Effort overhead: The analysts investigated the effort overhead of those projects

that stood out with respect to their nominal productivity. They found that the effort

overhead the current CoBRA model provided for these projects was inadequate for

their actual productivity. Contrary to expectation, development productivity was

hardly related to the projects’ effort overhead. For example, three highly productive

historical projects should have had much lower effort overhead than the CoBRA

model actually assigned to them. And vice versa, an outlier project with low

productivity should have had much higher effort overhead than the CoBRA

model actually assigned to it.

The analysts identified several potential causes of the poor performance of the

CoBRA model. On the one hand, the CoBRA effort overhead model might have

been lacking some relevant effort factors that would have accounted for the

missing effort overhead of the project with extremely low productivity. On the

other hand, the currently considered effort factors seemed to allocate too much

effort overhead to the projects with extremely high productivity. According to the

analysts, one possible source of the latter effect could be that the effort overhead

assigned by the domain experts to those effort factors that had their worst-case

values in the three extremely productive projects was much higher than it actually

was. One reason for that could be the low granularity of the applied 4-point

approximately ratio scale. In order to understand this effect, let us consider a

simple example. Let us define the worst-case value on the scale (3) for the “Ratio
of hazardous requirements” effort factor as 25 % of the total requirements being

hazardous. If two projects have a ratio of hazardous requirements equal to 25 %

and 50 %, respectively, then they shall both be assigned the value 3 and the same

amount of effort overhead, although in reality, the second project should be

assigned much higher effort overhead because its ratio of hazardous requirements

is twice as high as that the first project.

Moreover, the analysts indicated a potential inconsistency in project size and

effort data as a likely source of the model’s poor performance. For example, an

analysis of the available project measurement data indicated reused lines of code as

making a significant contribution to the variance in development productivity. This

was, however, not used as part of the currently defined “Enhancement LOC” size

measure. The analysts and the domain experts agreed that the amount of reused

software source code should be considered while estimating project effort. The

analysts suggested two alternative ways of including this aspect in the CoBRA

effort model:

1. Adding it as an effort factor to the effort overhead model

2. Integrating it into the existing size measure for enhanced software code

11.3 Model Development 271



Integrating reused LOC into the existing Enhancement LOC measure was

preferred because other project control activities that use this size measure could

automatically benefit from its update.

The analysts presented the results of the analysis to the domain experts during a

joint feedback session. After some discussions, they came up with a list of several

issues and corresponding improvement potentials. Table 11.6 summarizes them

briefly. In the end, the analysts and the domain experts decided that in the next

iteration, the current effort overhead model and project the size measures should be

revised.

Table 11.6 SISL: improvement potentials after iteration I2

Issue Improvement action I3

Some of the relevant effort factors might be missing in

the effort overhead model. For example, an analysis of

the project measurement data identified several project

characteristics that have a significant impact on

develop-ment productivity and that were not

considered in the effort model.

Revise effort overhead model. Check

if the model covers all factors that

have a significant impact on

productivity variance across the

historical projects considered.

�

Current measurement data indicated much lower

development productivity for project P07 than

expected by the domain expert who knew the project.

Revise the size and effort

measurement data for historical

project P07.

√

Reused source code is not considered in the current

size measure, although it is a widely acknowledged

fact that it also contributes to the project’s engineering

effort. Moreover, application of the analytical factor

selection technique on the available project

measurement data confirmed that the reused lines of

code had a significant contribution to the variance in

development productivity across the historical projects

considered.

Consider reused lines of code in

the enhancement LOC measure.

Modify the current size measure and

re-collect the historical project data

accordingly.

√

Information on the amount of reused source code is

missing for most of the historical projects. Calculating

the number of reused lines of code using other

measurement data returned incorrect values.

For example, the formula “Reused ¼
Delivered�Added�Modified” returned negative values.

Review the historical project data

regarding the size of the source code

and check consistency.

√

The “Enhancement LOC” size measure is considered

for determining testing effort, although the delivered

lines of code should be considered. Enhancement

activities on software code do not matter for testing

effort because testing is always done on the delivered

code – independent of how many LOC have been

added, deleted, removed, or reused.

Consider delivered LOC instead

of enhancement LOC for the

estimation of testing effort.

�

The low granularity of the 4-point measurement scale

used might potentially cause large variation in effort

overhead, especially around the worst-case values.

Consider using more levels of

the measurement scale or using

a ratio scale for the effort factors.

�
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11.3.3 Iteration 3: Model Refinement

I3. Step 1: Preparation and Planning
The third iteration started with a brief preparation and planning of the activities and

resources needed for implementing the refinements of the CoBRA model selected

after the second iteration.

Model Refinements

Based on the analysis of the CoBRA model’s performance after the second

iteration and on the discussions with the domain experts, the analysts decided

to address two particular issues in the third refinement iteration. It was

decided that since reused source code contributes to overall project effort, it

should be included in the size measure used for the purpose of effort estima-

tion. After modifying the size measure, the historical project data should be

updated accordingly. However, the direct measurements of the reused lines of

code were not available for all historical projects considered in the study.

Therefore, before updating the enhancement LOC data, the reused LOC

measurement needed to be completed and validated first.

The domain experts decided that these should be the major model

refinements realized in the third iteration. However, they decided to addition-

ally review the effort overhead model and its quantification.

In addition to the refinement objectives, the analysts based their plans on the

constraints of the refinement iteration, the results of the first iteration, and the

experiences they had gained in the previous iterations concerning the resources

actually needed for performing particular activities. Planning consisted of

specifying the exact model refinements, identifying existing information sources,

and planning the iteration steps with the available time, budget, and personnel

resources.

I3. Step 2: Defining Size Measure
According to the decision regarding the most critical model refinements, the

internal (SISL) and external analysts modified the Enhancement LOC software

size measure used at SISL for the purpose of project effort estimation. The analysts

based the modified definition of the size measure on the observation that adding,

removing, modifying, and reusing the same amount of software code typically

require different amounts of effort. Consequently, the analysts agreed that the

outcomes of code enhancement—Added LOC, Modified LOC, Deleted LOC, and

Reused LOC—should contribute differently to the overall value of the “Enhance-

ment LOC” measure. Consequently, the measure should be defined as the weighted

sum of these four elements instead of as a simple non-weighted sum as defined

before.
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In order to determine the appropriate weights for added, modified, deleted, and

reused LOC, the analysts integrated the analysis of the measurement data and the

expert judgments. This approach was actually similar to weighing the importance of

potential effort factors the analysts had applied for selecting the most relevant effort

factors in iteration I2 (Step 5). First, the analysts represented software size as a

simple causal model. The idea was similar to the effort overhead model; only in this

case, composite Enhancement LOC represented the causal effect (analogue to the

effort overhead) and the four elements Added LOC, Modified LOC, Deleted LOC,
and Reused LOC represented the influencing factors (analogue to the effort factors).

Figure 11.5 illustrates this idea.

The objective of the weighting analysis was to determine the strength of the

impact each size factor has on the total size. In the integrated approach, the experts

first applied an analytical factor weighting technique on the available measurement

data and then integrated the weighting results with the judgments of the SISL

domain experts.

In order to apply an analytical factor weighting technique, the analysts needed

measurement data concerning the four size factors (independent variables) and the

composite “Enhancement LOC” measure (dependent variable). However, the

“Enhancement LOC” was not known for the historical projects considered at

SISL. In order to solve this issue, the analysts took advantage of the fact that the

“Enhancement LOC” is actually an element in a causal chain between the four

software size factors and the “Development effort3,” as presented in Fig. 11.5. They

used project effort as a proxy for the unknown “Enhancement LOC” measure and

computed the numerical weights reflecting the strength of the impact the size

factors had on effort. Next, they used these weights for approximating the strength

of the impact the size factors had on “Enhancement LOC.”

For the purpose of the analytical factor weighting, the analysts used the same

RReliefF technique they had used in Step 5 of iteration I2 for identifying the most

important effort factors. The analysts excluded from the analysis one historical

Fig. 11.5 SISL: software size model

3 In terms of causal modeling theory, “Enhancement LOC” was a latent causal mediator between

size factors (Added LOC, Modified LOC, Deleted LOC, and Reused LOC) and “Development

effort.”
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project, P08, for which the reused lines of code measurements (Reused LOC size

factor) were missing and could not be acquired in retrospect. They then applied the

RReliefF algorithm on the remaining set of ten historical projects.

The absolute numerical weights RReliefF assigned to individual size factors

needed to be interpreted from the perspective of the relative development effort

they required. The analysts considered developing new software as a baseline. As a

consequence, adding new code from scratch corresponded to 100 % effort and

should thus be assigned a baseline weight equal to 1. Relative to the newly added

code, modifying, deleting, and reusing existing code required less effort and should

thus be assigned weights lower than 1. Based on these assumptions, the analysts

normalized the absolute weight RReliefF assigned to the “added LOC” factor to 1

and proportionally recomputed the absolute weights RReliefF assigned to the

“Modified LOC,” “Deleted LOC,” and “Reused LOC” factors. The resulting

relative weights were wAdd ¼ 1.0, wMod ¼ 0.2, wDel ¼ 0.0, and wRus ¼ 0.0,
where the value 0.0 should be interpreted as marginal influence rather than simply

no influence at all.

The results of the analytical factor weighting indicated a certain trend but could

not be used “as is” for defining the enhancement LOC measure. First, the results

were based only upon ten historical projects and thus were not representative of the

entire context considered in the CoBRA study. Moreover, they differed from the

judgment of the involved domain experts and from the common experiences

reported in the related literature, such as Dekkers (2004). The major difference

concerned the contribution of deleted LOC and reused LOC. Both the domain

experts and the related literature suggested that deleting and reusing existing

software code contribute to overall development effort—though not extensively.

Using these experiences, the analysts decided to use the following set of weights:

wAdd ¼ 1.0, wMod ¼ 0.25, wDel ¼ 0.1, and wRus ¼ 0.1. The analysts further used

these weights for defining the new software size measure for the purpose of

estimating the effort of the enhancement projects (11.3).

LOCEnh ¼ LOCAdd þ 0:25 LOCMod þ 0:1 LOCDel þ 0:1 LOCRus (11.3)

I3. Step 3: Collecting Project Measurement Data
In this step, the analysts and the domain experts collected historical project data

according to the changes they had made to the definition of the “enhancement

LOC” size measure. In order to derive “Enhancement LOC” measurements, they

first needed to collect data regarding added, modified, deleted, and reused LOC.

Yet, the reused LOC had not been measured directly for all historical projects

considered in the study. As a solution, the analysts decided to derive the reused

LOC (11.4) using the available data on total LOC delivered (LOCTot), newly added

LOC (LOCAdd), and LOC modified in the project (LOCMod).

LOCRus ¼ LOCTot � LOCAdd � LOCMod (11.4)
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I3. Step 4: Data Validation and Preprocessing
While collecting the historical project data, the analysts obtained a negative value

for LOCRus for one of the projects. Since it was not possible to clarify the source of

this inconsistency and thus to correct it, the analysts and the domain experts decided

jointly to exclude this project from the study. The software size data for the

remaining ten historical projects were accepted for developing and validating the

CoBRA effort model.

I3. Step 5: Identifying and Defining Relevant Effort Factors
In this step, the analysts integrated the analysis of project measurement data and the

judgments of the domain experts for identifying the most relevant effort factors. For

this purpose, the analysts used the same analogue approach as in iteration I2. First,

they applied the factor weighting technique (RReliefF) on the historical measure-

ment data in order to identify those project characteristics that contribute most to

the variance in development productivity observed across the historical projects

considered. Next, they discussed the outcome of the analysis with the domain

experts during a joint meeting.

The analytical approach showed that the number of different platform versions

supported by the software system was factor that had a significant impact on

development productivity. Moreover, the “Platform experience” and “Program-
ming language skills” factors selected by the experts were reconfirmed as important

effort factors by the analysis of the measurement project data. After discussing the

results of the data analysis, the domain experts decided to use the effort factors

included in the effort overhead from iteration I2 without any changes.

I3. Step 6: Identifying Relevant Factor Interactions
The domain experts decided not to introduce any changes to the existing causal

effort model.

I3. Step 7: Quantifying Selected Relevant Effort Factors
The domain experts did not change the quantification of the effort factors in the

effort overhead model. This refinement iteration adopted the factor quantifications

from the previous iteration.

I3. Step 8: Collecting Historical Project and Multiplier Data
There was no need to collect project and multiplier data in this refinement iteration

because (1) the effort overhead model was not changed and (2) the project and

multiplier data collected in the previous iteration were considered as valid.

I3. Step 9: Validating Historical Project and Multiplier Data
There was no need for validating the historical project data and the multiplier data

because they did not change in this iteration and had already been validated in the

previous iteration.

276 11 Siemens Information Systems, India



I3. Step 10: Building Effort Model
In this step, the analysts combined the quantified effort overhead model, the

multiplier data, and the past project data within a CoBRA simulation tool. Using

the tool, they computed the nominal productivities across the historical projects as a

basis for estimating new projects. Because the nominal productivities obtained for

the historical projects still varied, the analysts decided to use the median value

across the 11 historical projects considered in this iteration as a basis for estimating

future projects.

I3. Step 11: Validating Effort Model
The validation results showed a high impact of the updated size measurement data

on the model’s predictive performance. The average estimation error decreased by

more than half to 25 %. Moreover, the variation in estimation error across the

historical projects also decreased, with 60 % of the estimates having an estimation

error of 25 % or less.

I3. Step 12: Analyzing Results of Model Validation
A thorough investigation of the model’s validation results showed several issues:

Development productivity: After the third iteration, the CoBRA model met the

assumption regarding the linear dependency between project effort and size much

better. However, it still did not satisfactorily explain the variance on development

productivity. In particular, one project was an outlier with respect to its nominal

productivity computed by the CoBRA model. One of the consequences was that

CoBRA was not able to estimate this project properly. This project was also an

outlier with respect to its actual productivity; it was a project with extremely low

productivity. This suggested that the CoBRA model was not able to account for the

productivity loss of this very project. This, in turn, indicated that the effort factors

that were responsible for the productivity loss in the outlier project had either

not been properly considered in the effort overhead model or had not been consid-

ered at all.

Effort overhead: The analysts investigated the effort overhead of the few

projects that still differed regarding their nominal productivity. They found that

the effort overhead the current CoBRA model provided for these projects was

inadequate for their actual productivity. On the one hand, some projects were

allocated much less effort overhead than implied by their low actual development

productivity. On the other hand, a few projects seemed to be assigned larger effort

overhead than indicated by their development productivity.

The analysts and the domain experts discussed the outcomes of the analysis in a

joint feedback session. As a result, they came up with a list of two major issues and

corresponding improvement potentials that needed to be addressed by future model

refinements. Table 11.7 briefly summarizes the identified issues and the suggested

refinements. The analysts agreed that revising the effort overhead model from the

perspective of the productivity outlier projects would have first priority.

11.3 Model Development 277



However, due to the limited availability of the domain experts, SISL decided not

to continue model refinements and improve the model internally at a later time

using the knowledge gained during the pilot modeling. The analysts proposed

running an additional refinement iteration based solely on the quantitative analysis

of the project data collected in the previous modeling iteration—including the

historical measurement data and the data acquired from domain experts. On the

one hand, the analysts were interested in identifying potentially irrelevant effort

factors and interactions that should (could) be removed from the model without

decreasing its predictive performance. On the other hand, they wanted to identify

effort factors and interactions that were potentially relevant and thus should be

added to the model in order to improve its predictive performance, in particular for

the outlier projects.

11.3.4 Iteration 4: Analytical Refinement

I4. Step 1: Preparation and Planning
The fourth iteration differed from the previous iterations in that it did not involve

the domain experts. In this iteration, the analyst revised the effort overhead model

based solely on an analysis of the available project data.

Model Refinements

Based on the discussions during the joint feedback session at the end of

iteration 3, the analysts decided to revise the effort overhead model based

solely on an analysis of the available project data. In particular, the analysis

focused on identifying effort factors and interactions that (1) are incorporated

in the effort overhead model but are potentially irrelevant and thus should be

Table 11.7 SISL: improvement potentials after iteration I3

Issue Improvement action I4

The CoBRA model does

not explain the

productivity loss of a

project with extremely

low productivity.

Revise current effort overhead model with respect to its ability to

account for the productivity loss of the outlier projects. The

revisions should particularly focus on (1) identifying and removing

any unnecessary/misleading effort factors from the model,

(2) revising the appropriateness of the effort multipliers assigned to

effort factors in the model, and (3) identifying and adding to the

model any missing effort factors that have a significant impact on

development productivity.

√

The modification of the

Enhancement LOC size

measure proposed in this

iteration has an initial

character.

The new enhancement LOC size measure needs to be validated by

SISL in different scenarios and revised appropriately. Revisions

should particularly concern the weights assigned to individual

components of the Enhancement LOC measure, that is, Added

LOC, Modified LOC, Deleted LOC, and Reused LOC.

�
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removed from the model, and (2) are not incorporated in the effort overhead

model but are potentially relevant and should be added to the model.

Since this iteration focused on a quantitative data analysis and did not

involve the domain experts, all the activities that typically involve the domain

experts could be skipped in this iteration.

The analysts planned this iteration solely from the perspective of investigating

quantitative project data. As no domain experts were involved in this iteration, the

analysts did not have to plan any joint activities with the domain experts such as

group meetings or interviews. As input for the planning, the analysts took the

objectives and constraints of the refinement iteration and the experiences they

had gained in the previous iterations concerning the analysis of the quantitative

data.

I4. Step 2: Defining Size Measure
In this iteration, the analysts used the enhancement LOC measure defined in the

iteration I3.

I4. Step 3: Collecting Project Measurement Data
In this iteration, the analysts used the project measurement data collected and

modified throughout the previous iterations.

I4. Step 4: Data Validation and Preprocessing
The analysis of the complete project data did not reveal any further serious

problems other than issues that had already been discovered and addressed in the

previous iterations.

I4. Step 5: Identifying and Defining Relevant Effort Factors
In order to identify potentially relevant and irrelevant effort factors, the analysts

applied the same analytical factor weighting to the measurement data and the effort

factor data provided by the domain experts for the already completed—historical—

projects considered in the pilot CoBRA application at SISL. The analysts used the

same factor weighting technique (RReliefF) they had already used in Step 5 of

iteration I2 and iteration I3. The objective of the analysis was to investigate the

measured project characteristics and effort factors already incorporated into the

CoBRA effort model with respect to their contribution to the variance in develop-

ment productivity across the historical projects considered.

Analysis of measurement data: The analysis of the project measurement returned

results analogue to those obtained in Step 5 of the previous iteration (iteration I3). It

indicated that the number of different platform versions supported by the software

system was a factor that had a significant impact on development productivity.

Moreover, the “Platform experience” and “Programming language skills” factors
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selected by the experts were reconfirmed as important effort factors by the analysis

of measurement project data.

Analysis of expert data: The analysis of the effort factor data provided by the

domain experts indicated that some of the effort factors included in the effort

overhead model do not contribute to the variance in development productivity

across the historical projects considered. Particular effort factors included “Haz-
ardous requirements,” “Requirements volatility,” and “Number of key people.” The
analysts decided to exclude them from the model and validate how this would

influence the model’s predictive performance.

I4. Step 6: Identifying Relevant Factor Interactions
After excluding the “Number of key people” factor, there were no indirect

influences left in the model. The analysts decided to model all remaining effort

factors as directly influencing effort and to refrain from modeling indirect impacts

on effort. Figure 11.6 presents the reduced effort overhead model. The elements

marked in gray were excluded based on the analysis of effort factor data provided

by the domain experts.

I4. Step 7: Quantifying Selected Relevant Effort Factors
For the effort factors remaining in the effort overhead model, the analysts used the

quantifications that had already been defined in the previous modeling iterations.

I4. Step 8: Collecting Historical Project and Multiplier Data
The analysts used the historical project and multiplier data that had already been

collected in the previous iterations. They merely removed from the data repository

those data associated with the effort factors and interactions that they had removed

from the effort overhead model.

Fig. 11.6 SISL: reduced effort overhead model
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I4. Step 9: Validating Historical Project and Multiplier Data
There was no need for validating the historical project data and the multiplier data

used in this iteration because they had already been validated in the previous

iterations.

I4. Step 10: Building Effort Model
In this step, the analysts combined the reduced effort overhead model and its

associated project and multiplier data within a CoBRA simulation tool. Using the

tool, they computed the nominal productivities across the historical projects as a

basis for estimating new projects. They used the median value of nominal produc-

tivity across the ten historical projects considered in this iteration as a basis for

estimating future projects.

I4. Step 11: Validating Effort Model
The analysts validated the reduced CoBRA effort model using the data from the ten

historical projects considered in the CoBRA pilot application at SISL. The model

showed slight improvement of the predictive performance. The average estimation

error decreased to 24 % with unchanged variance of estimates across individual

projects.

I4. Step 12: Analyzing Results of Model Validation
Detailed analysis of the model’s performance showed that the model suffered from

similar deficits as the unreduced model in iteration I3. In particular, the model did

not account for the extremely low productivity of an outlier project. The most likely

reason was that although the analysts had removed irrelevant factors from the

model, they had not added any factors that could potentially explain the extremely

low productivity of this project. Based on these observations, the analysts came up

with a list of several issues and corresponding improvement potentials that should

be addressed in future revisions of the CoBRA model created during the four

iterations of the pilot study. Table 11.8 summarizes them briefly.

Table 11.8 SISL: improvement potentials after iteration I4

Issue Improvement action Future

The CoBRA model does

not explain productivity

loss of a project with

extremely low

productivity.

Revise the current effort overhead model with respect to its

ability to account for the productivity loss of outlier projects.

The revisions should particularly focus on (1) identifying and

removing any unnecessary/misleading effort factors from the

model, (2) revising the appropriateness of the effort multipliers

assigned to the effort factors in the model, and (3) identifying

and adding to the model any missing effort factors that have a

significant impact on development productivity.

√

The modification of the

Enhancement LOC size

measure proposed in this

iteration has an initial

character.

The new enhancement LOC size measure needs to be validated

by SISL in different scenarios and revised appropriately.

Revisions should particularly concern the weights assigned to

individual components of the “Enhancement LOC”, that is,

Added LOC, Modified LOC, Deleted LOC, and Reused LOC.

√
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11.3.5 Benefits and Costs

The pilot application of the CoBRA method has shown its significant contribution

to the achievement of the objectives specified by SISL. During each iteration of the

CoBRA model development, the analysts and the domain experts discussed the

weaknesses of the estimation model as well as their potential causes and solutions.

Identified improvement potentials concerned both the elements of the effort over-

head model and the data upon which the effort model was developed. Throughout a

series of group meetings, the analysts and the domain experts at SISL could learn

about the most relevant factors influencing software development effort, which

were at the same time the most relevant factors influencing development produc-

tivity. Moreover, they could improve selected measurement processes related to

effort estimation, which in turn had a positive impact on other management

activities that used the same measurement data.

Figures 11.7 and 11.8 graphically summarize the improvement of the CoBRA

model’s predictive performance achieved through the various refinement iterations

in the context of SISL. Figure 11.7 shows the mean magnitude of estimation error,

whereas Fig. 11.8 shows the percentage of the historical projects for which estima-

tion error was lower than or equal to 25 %.

Summarizing, the pilot application of the CoBRA method at SISL provided the

following benefits:

• Accurate project resource planning: The obtained effort model enabled the

project managers to make reliable (accurate) and repeatable project estimates.

Fig. 11.7 SISL: mean magnitude of estimation error across modeling iterations
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• Effective project risk management: The transparent and context-specific struc-

ture of the model indicating the most relevant factors influencing development

productivity supported the project managers in analyzing potential project risks

and created a basis for effectively negotiating project costs and scope with the

involved stakeholders.

• Effective productivity improvement: The effort factors that consistently showed

to have a negative impact on development productivity indicated areas of the

organization that required improvement in order to avoid productivity losses in

the future.

• Effective process improvement: The effort factors that consistently showed to have
the greatest impact on increased project effort—due to productivity loss—

indicated processes that need to be improved first in order to increase development

productivity and reduce project effort. Moreover, the analysts identified several

improvement potentials regarding the organization’s measurement processes. On

the one hand, inconsistencies in the project measurement data considered during

effort modeling indicated several important improvement potentials. On the other

hand, the most relevant effort factors provided a basis for building goal-oriented

measurement system for the purpose of managing software project effort and

development productivity. In the study, the project data for these factors needed to

be acquired from human experts. Due to the inherent subjectivity and uncertainty

of human judgment, this might have been the source of additional errors in the

model. Including these factors into the measurement program would allow for

gaining a quantitative basis for future estimates.

Moreover, the concise and reusable effort model supported SISL by reducing the

overhead for effort prediction—compared to predictions based on expert

Fig. 11.8 SISL: prediction at level 25 % across modeling iterations
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judgment—and by reducing the overhead needed for collecting measurement data

for the purpose of estimation.

The delivered effort estimation model was a first step toward formalizing and

integrating the effort estimation procedures at SISL. The model can (and should) be

expanded to encompass more effort factors and more projects. The knowledge and

experiences gained during this study should be used to maintain and refine the

model as well as to build and optimize models for other project contexts, meaning

other domains, development types, technologies, etc.

Table 11.9 summarizes the cost of the pilot application of the CoBRA model and

of building an initial effort model.

Table 11.9 SISL: approximate costs of introducing the CoBRA method

Cost aspect Cost

Involved personnel Eight persons:

• One external analyst

• Four internal analysts

• Three domain experts

Total duration 3 weeks

Effort per involved person Domain experts: 28 h per expert (group meetings and interviews)

CoBRA users (per team member):

• 16 h of CoBRA tutorial

• 37 h of direct support and coordination of CoBRA model

development

• 120 h of data collection and preparation

Total effort Approximate total effort:

• Domain experts: 84 person-hours

• Learning, support, and coordination: 148 person-hours

• Data collection and preparation: 240 person-hours
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Japan Manned Space Systems, Japan 12

This chapter summarizes the CoBRA application in the context of Japan Manned

Space Systems Corporation, Japan (JAMSS). In this chapter, we will show how to

adapt the baseline CoBRA model development process to the specific context of

independent verification and validation (IV&V), which is different from the kind of

software development to which CoBRA is typically applied. We will demostrate

how to create CoBRA models for different IV&V objectives and how to address

typical constraints of the IV&V context.

12.1 Context Characteristics

The CoBRA method was applied in the context of Japan Manned Space Systems

(JAMSS), a company that performs independent verification and validation (IV&V)

of space software systems.

Independent verification and validation can be defined as a process where

software work products generated by a development team are verified and validated

by a completely independent organizational entity. Independence is considered in

terms of technical, managerial, and financial independence (IEEE-1012 2005).

At the time of the study JAMSS had been mainly supporting the functions of the

Japan Aerospace Exploration Agency (JAXA) for over 10 years, in particular:

• Functions related to safety and product assurance of space systems such as the

International Space Station (ISS), and

• Set up of initial operations and stationary operations of the ISS’s Japanese

Experiment Module (JEM).

The CoBRA method was applied at JAMSS in the context of the independent

verification and validation of safety- and mission-critical software systems

(Table 12.1).

A. Trendowicz, Software Cost Estimation, Benchmarking, and Risk Assessment,
The Fraunhofer IESE Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-30764-5_12, # Springer-Verlag Berlin Heidelberg 2013
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12.1.1 Constraints

The typical constraint of IV&V, as compared to classical in-house verification and

validation (V&V), is limited information on the processed artifacts. On the one

hand, there is limited knowledge about the software development environment; on

the other hand, IV&V has to handle various types of mission-critical systems. This

variety does not allow for collecting a lot of historical project data. Moreover, the

involvement of three quite different groups of stakeholders (customer-,

development-, and IV&V-entity) in the software development process contributes

to frequent and unpredictable requirements changes. In such a context, managing an

IV&V project’s resources is critical and difficult at the same time.

Unlike typical CoBRA applications, the pilot effort model for JAMSS was not

developed on site. The JAMSS representative who was to coordinate the applica-

tion and learn the method (internal analyst) visited the external analysts. In addi-

tion, the internal analyst was responsible for communication with the domain

experts at JAMMS who operated in their native language (Japanese). The JAMSS

analyst performed all necessary data acquisition and feedback meetings with the

domain experts via telephone and email.

12.1.2 Scope

The CoBRA application at JAMSS focused on IV&V of the software requirements

specification documents using a document review technique. The document review

process starts with a risk analysis to identify a software system’s operational risks.

Software requirements are then reviewed in more detail based on their operational

risks with respect to one or more review objectives. In principle, the six review

objectives defined by Kohtake et al. (2008) were considered as listed in Table 12.2.

Since the review process varied depending on its objective, JAMSS decided to

build an individual CoBRA model for each objective. In summary, the context of

the CoBRAmodeling was limited to a review of the requirements specification with

a single objective.

Table 12.1 JAMSS: characteristics of the CoBRA application context

Context factor Value

Organization Japan Manned Space Systems Corporation, Japan

Maturity ISO-9002, ISO-9001, ISO-14001

Domain Embedded safety-critical software systems (space systems)

Development type Independent verification and validation (IV&V) of software systems

Life cycle model This characteristic does not apply to IV&V

Programming language This characteristic does not apply to IV&V
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12.1.3 Measurement Data

A survey about current estimation practices at JAMSS revealed that, in total,

measurement data from around ten already completed projects had been collected

within the past 10 years. Due to the strong uniqueness of the considered projects,

the data suffered from large variability. Moreover, around 20 % of the data entries

were missing. The IV&V effort was measured in person-hours and had been

collected for five already completed projects. Yet, since some of the IV&V

objectives were not addressed in each of the five projects, the quantitative data

available for CoBRA modeling varied between three and five historical projects.

Table 12.2 summarizes for each IV&V objective considered in the study the

number of projects that could be used for building a CoBRA model. Size was

measured in terms of pages of software requirements for objectives O1 to O5 and, in

addition, the pages of the system1 specification for objective O6.

12.1.4 Domain Experts

There were three domain experts involved in the studywho provided their knowledge

as input for building the CoBRA effort model. Project effort estimation—The project

managers gained a systematic approach for making reliable and repeatable estimates

at the beginning of a new IV&V project.

• Project risk management: The project managers obtained explicit information for

analyzing and managing major risks jeopardizing project success, in particular

information regarding the factors that have a significant negative impact on IV&V

efficiency.

• Justifying and negotiating project costs: The project managers gained a reliable

basis for justifying planned IV&V costs to the project stakeholders and for

making informed decisions about accepting a particular IV&V project.

• Process improvement: The project managers obtained insights into those areas of

the IV&V processes that have the greatest impact on increasing the costs of

IV&V. In particular, the project managers learned which factors have the

greatest negative impact on the efficiency of IV&V activities in a considered

Table 12.2 JAMSS:

IV&V objectives and

corresponding project data

ID Objective #Projects

O1 Risk analysis 5

O2 State transition completeness and consistency 5

O3 Design completeness for exceptional behavior 5

O4 Timing correctness and consistency 4

O5 Interface correctness and consistency 3

O6 Traceability 5

1 Systems refers to composition of software and hardware
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estimation context. These factors indicated process areas that are responsible for

major efficiency loss and thus should be the main target of improvement

activities.

Moreover, the analysts and the domain experts at JAMSS benefited from the

qualitative experiences gained during the pilot application of the CoBRA method.

The most important lessons learned included:

• Effort estimation scope: Depending on the specific objective of IV&V, different

IV&V activities are required and different personnel is involved. Consequently,

different factors might influence IV&V effort for different objectives. Therefore,

the scope of effort estimation, meaning the context for which an effort model is

built and applied, should be limited to a single IV&V objective. Since different

IV&V objectives involved quite independent sets of activities, the total effort of

an IV&V project aimed at attaining multiple objectives can be estimated as the

sum of the efforts estimated individually for each objective.

• Size and complexity of review: The complexity of a document under review

should be considered as an effort factor in addition to simple size measures, such

as the number of document pages.

• Effort factors: A very important aspect of effort modeling is to consider effort factors

other than simply size, although this is typically the major determinant of project

effort. The JAMSS analyst and the domain experts experienced that a single factor

maymultiply effort by as much as ten times. For example, if e software supplier does

not perform risk assessment, the effort that an IV&V company must spend on

independent risk analysismay increase by up to 20 times. Such an effect is impossible

to investigate based only on historical size and effort data which are usually used in

software industry as the only basis formanaging development productivity and effort.

Table 12.6 summarizes the costs of the pilot application of the CoBRA model

and of building an initial effort model.

Table 12.3 summarizes the expertise and experience of the domain experts

involved in the CoBRA pilot application at JAMSS.

12.2 Estimation Objectives

Besides traditional estimation objectives, such as precise planning and tracking software

resources, JAMSS required the CoBRAmethod to support project decision-making. In

summary, the CoBRA method was expected to contribute to the following objectives:

Table 12.3 JAMSS: characteristics of involved domain experts

Expert Expertise

Domain experience

[#years]

Estimation experience

[#years]

E1 Safety reviews 7 8

E2 Product quality and safety assurance 8 9

E3 Safety assurance in operation 4 6
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• Project effort estimation: The effort estimation should support the project

managers with a systematic approach for making reliable and repeatable

estimates at the beginning of a new IV&V project.

• Project risk management: The effort estimation should support the project

managers in the explicit identification of major risk jeopardizing project success,

in particular factors that have a significant negative impact on IV&V efficiency.

• Justifying and negotiating project costs: The effort estimation should provide the

project managers with a reliable basis for justifying planned IV&V costs to the

project stakeholders and for making informed decisions about accepting a

particular IV&V project.

• Process improvement: The effort estimation should support the project managers

in performing a comprehensive investigation of those areas of the IV&V pro-

cesses that have the greatest impact on increasing the costs of IV&V.

12.3 Model Development

Six CoBRA models were built in parallel at JAMSS—one model for each require-

ment review objective. Each model was developed following the same process

summarized in this section. The resulting models were very simple and fairly

similar to each other. Each model included just a few effort factors and many

factors were shared by multiple models. At JAMSS, all CoBRA models were

developed in a single iteration, meaning the modeling process finished after a

model had been validated.

In the JAMSS case, direct meetings and interview sessions involved only one

domain expert who played, at the same time, the role of an internal analyst. Besides

learning the CoBRA method, she coordinated the study at the JAMSS site and

communicated with the other domain experts involved in the pilot CoBRA at

JAMSS. She communicated with the domain experts on site in their native language

(Japanese) using telephone and email. She also translated all documents exchanged

between the analyst and the domain experts (Fig. 12.1).

12.3.1 Step 1: Preparation and Planning

The transfer of the CoBRA method started with a 2-day tutorial where the detailed

theoretical background for the CoBRA method was provided to the internal analyst

of JAMSS.

The pilot application started with a kick-off meeting where the internal and

external analysts defined the detailed objectives of effort estimation at JAMSS.

Moreover, they determined the context of the CoBRA application at JAMSS and

specified its characteristics. These included existing estimation processes and

available information sources, particularly measurement data and domain experts.

This context information was the input for the detailed planning of the CoBRA

model development and validation. Planning included scheduling tasks and
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Fig. 12.1 JAMSS: CoBRA model development procedure
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communication with the involved experts, collecting information regarding the

sources of available measurement data, and preparing the necessary tools.

12.3.2 Step 2: Defining Size Measure

The purpose of the pilot CoBRA application at JAMSS was to estimate the effort

required for reviewing—for different objectives—software and system requirements

specifications. For the purpose of size measurement, the analysts agreed on the use of

simple numbers of pages of the requirement documents under review.

12.3.3 Step 3: Collecting Project Measurement Data

After defining the size measure, the analysts collected size and effort measurement

data from the five already completed IV&V project considered in the study. For this

purpose, the internal analyst contacted the personnel responsible for data collection

at JAMSS.

12.3.4 Step 4: Data Validation and Preprocessing

The analysts checked the historical project data for potential threats such as invalid

or missing data entries. The analysis did not discover any serious issues.

12.3.5 Step 5: Identifying and Defining Relevant Effort Factors

In this step, the internal analyst interviewed the domain experts at JAMSS regarding

the most relevant factors influencing the efficiency of reviewing software or system

requirements. Next, the analyst consolidated the factors identified by the domain

experts and prepared a questionnaire for rating effort factors with respect to their

impact on review efficiency, their measurability, and their controllability. The domain

experts were then asked to rate the effort factors off-line using the questionnaire.

The analysts checked the factor ratings for potential inconsistencies. Next, they

used the impact and measurability ratings to select the most relevant factors, that is,

those factors that have the greatest impact on review efficiency and are easy to

measure at the same time. Table 12.4 summarizes the most relevant effort factors

identified at JAMSS.

12.3.6 Step 6: Identifying Relevant Factor Interactions

The analysts presented the factor ranking results to the domain experts and asked

them to review them with respect to the appropriateness of the selected factors as

well as existence of potential factor dependencies. The domain experts decided to

neither change the selected factors nor include any factor interactions. The
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analysts used the most relevant factors for building six effort overhead models,

one model for each IV&V objective considered in the study. Figure 12.2

illustrates these models.

12.3.7 Step 7: Quantifying Selected Relevant Effort Factors

The domain experts were then asked to quantify the effort overhead models, that is,

define quantitative measurement scales for the incorporated effort factors. This step

was accomplished throughout a series of “acquisition-and-feedback” cycles. In

each cycle, the internal analyst first acquired the required information from the

domain experts via telephone or email and then discussed the outcomes with the

external analysts. If any issues or questions arose, the internal expert clarified them

with the domain experts and got back to the external analysts.

Before quantifying the effort factors, the domain experts were asked to review

them to make sure that none of the factors represented a complex concept and, thus,

needed to be split into component aspects before quantification. The experts found

no effort factor that would need such decomposition. Next, the domain experts

quantified the effort factors using a 4-point approximately ratio measurement scale.

Each measurement was precisely defined in order to ensure that subsequent values

were equidistant and that all involved experts consistently understood them and

could provide consistent project data for them.

Table 12.4 JAMSS: the most relevant factors influencing development productivity

Effort factor Factor definition Objectives

Domain experience The level of domain experience of the IV&V team O1–O3

Requirements

volatility

The extent of requirements volatility allowed within an initial

contract

O2–O4,

O6

Novelty of IV&V

technique

The level of novelty of the applied IV&V technique for the

IV&V team

O3

Interface complexity The number of the system’s interfaces to other (sub)systems O4, O6

Time pressure The extent of time pressure in the last IV&V phase O5

Risk assessment by

supplier

The level of risk assessment that was done by a supplier or

customer

O1

IV&V for risk

analysis

The extent to which the fault tree analysis (FTA) was done by

the IV&V company

O1

Timing consistency

evaluation

The timing consistency objective included in IV&V O5

FPGA review

performed

The extent to which a field programmable gate array (FPGA)

review was performed

O5

New personnel The extent to which the personnel involved in IV&V was new

and inexperienced

O1
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12.3.8 Step 8: Collecting Historical Project and Multiplier Data

In this step, the analysts prepared questionnaires for collecting the data required for

implementing and validating the CoBRA effort model. One questionnaire regarded

the effort factor data for the five already completed (historical) project considered in

the study. The second questionnaire regarded the effort overhead introduced by each

effort factor assuming its worst-case value. The analysts used these questionnaires in

an off-line survey in which the domain experts provided the required data.

Fig. 12.2 JAMSS: Final effort overhead models
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12.3.9 Step 9: Validating Historical Project and Multiplier Data

The analysts checked if effort factor and multiplier data provided by the domain

experts for potential validity threats. However, they did not discover any data

validity issues.

12.3.10 Step 10: Building Effort Model

In this step, the analysts combined the quantified effort overhead model, the

multiplier data, and the past project data within a CoBRA simulation tool. Using

the tool, they computed the nominal productivities for reviews across the historical

IV&V projects as a basis for estimating new reviews. Because the nominal

productivities obtained for the historical projects still varied, the analysts decided

to use the median value across the considered historical projects as a basis for

estimating future projects. Depending on the particular effort model and the review

objective it addressed, the number of historical projects considered varied between

three and five (Table 12.2).

12.3.11 Step 11: Validating Effort Model

In order to initially validate the model, the analysts applied it to the available

historical IV&V projects. They used the model to estimate the review effort and

then compared it to the actual effort observed in the project. The difference between

the estimated and the actual value—the estimation error—was a first indication of

the model’s predictive performance. The analysts compared the predictive perfor-

mance of the initial CoBRA model to two approaches: (1) expert judgment, which

had been used at JAMSS until then, and (2) a simple regression-based model, in

which effort is estimated using simply size and effort data from already completed

projects. The CoBRA model proved to perform better than both expert judgment

and regression. Hybrid estimation with CoBRA allowed JAMSS to increase esti-

mation accuracy by 40 %, on average—compared to the expert judgment they had

used until then. Table 12.5 summarizes the prediction error of the six CoBRA

models created for the review objectives considered in the study.

Table 12.5 JAMSS: results of effort model validation

Effort

model Review objective

#Effort

factors

Estimation

error

1 O1. Risk analysis 4 18.2 %

2 O2. State transition completeness and consistency 2 25.4 %

3 O3. Design completeness for exceptional behavior 3 22.4 %

4 O4. Timing correctness and consistency 2 24.1 %

5 O5. Interface correctness and consistency 3 39.6 %

6 O6. Traceability 2 24.5 %
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12.4 Benefits and Costs

Besides improving predictive performance, the CoBRA model provided several

other benefits compared to the simple expert judgment JAMSS had been using

before. The transparent and context-specific effort models supported the IV&V

practitioners in achieving a number of project and process management objectives:

• Project effort estimation: The project managers gained a systematic approach for

making reliable and repeatable estimates at the beginning of a new IV&V project.

• Project risk management: The project managers obtained explicit information for

analyzing and managing major risks jeopardizing project success, in particular

information regarding the factors that have a significant negative impact on IV&V

efficiency.

• Justifying and negotiating project costs: The project managers gained a reliable

basis for justifying planned IV&V costs to the project stakeholders and for

making informed decisions about accepting a particular IV&V project.

• Process improvement: The project managers obtained insights into those areas of

the IV&V processes that have the greatest impact on increasing the costs of IV&V.

In particular, the project managers learned which factors have the greatest nega-

tive impact on the efficiency of IV&V activities in a considered estimation

context. These factors indicated process areas that are responsible for major

efficiency loss and thus should be the main target of improvement activities.

Moreover, the analysts and the domain experts at JAMSS benefited from the

qualitative experiences gained during the pilot application of the CoBRA method.

The most important lessons learned included:

• Effort estimation scope: Depending on the specific objective of IV&V, different

IV&V activities are required and different personnel is involved. Consequently,

different factors might influence IV&V effort for different objectives. Therefore,

the scope of effort estimation, meaning the context for which an effort model is

built and applied, should be limited to a single IV&V objective. Since different

IV&V objectives involved quite independent sets of activities, the total effort of

an IV&V project aimed at attaining multiple objectives can be estimated as the

sum of the efforts estimated individually for each objective.

• Size and complexity of review: The complexity of a document under review

should be considered as an effort factor in addition to simple size measures, such

as the number of document pages.

• Effort factors: A very important aspect of effort modeling is to consider effort

factors other than simply size, although this is typically the major determinant of

project effort. The JAMSS analyst and the domain experts experienced that a

single factor may multiply effort by as much as ten times. For example, if

e software supplier does not perform risk assessment, the effort that an IV&V

company must spend on independent risk analysis may increase by up to

12.4 Benefits and Costs 295



20 times. Such an effect is impossible to investigate based only on historical size

and effort data which are usually used in software industry as the only basis for

managing development productivity and effort.

Table 12.6 summarizes the costs of the pilot application of the CoBRA model

and of building an initial effort model.

Further Reading

• H. Nakao, A. Trendowicz, J. M€unch, “Estimating Effort of an Independent

Verification and Validation in the Context of Mission-Critical Software

Systems—A Case Study.” Proceedings of the 20th International Conference
on Software Engineering and Knowledge Engineering, Redwood City, San

Francisco Bay, USA, 1–3 July 2008, pp. 167–172.

This paper reports on the pilot application of the CoBRA method at JAMSS

described in this chapter. Yet, the authors do not focus on a detailed description

of the CoBRA modeling process. Instead, they concentrate on an empirical

comparison of the predictive performance of three alternative effort estimation

strategies: expert-based, data-driven, and hybrid. For this purpose, the authors

compare the estimation accuracy and precision of three methods that represent

these strategies: expert judgment, ordinary least-squared regression, and

CoBRA. A statistical analysis showed that in case of both estimation accuracy

and precision, CoBRA outperforms the other two methods.

Table 12.6 JAMSS: approximate costs of introducing the CoBRA method

Cost aspect Cost

Involved

personnel

5 persons:

• 1 CoBRA external analyst

• 1 CoBRA internal analyst at JAMSS

• 3 domain experts

Total duration 1 month

Total effort 30 person-hours

• Domain experts: 4 h per person for CoBRA model development meeting and

interviews. In total, 12 person-hours

• Internal analysts: 16 h for learning the CoBRA method (2-day tutorial); 2 h for

supporting the external analyst and coordinating the pilot study. In total, 18

person-hours
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Appendix: Example List of Relevant
Effort Factors

This chapter lists aspects of software project environments that proved to have the

greatest impact on software development effort in industrial contexts. These factors

can be used as a point of reference when identifying the most relevant context and

effort factors during the development of a CoBRA effort model. On the one hand,

the analyst may use selected factors to explain the idea of effort and context factors

and the difference between them. On the other hand, the analyst may present the

domain experts involved in the CoBRA model development process with an

example set of effort factors to initiate a group discussion during which the experts

are supposed to identify organization-specific effort factors.

Context Factors Versus Effort Factors

In the context of effort estimation, the term “effort factor” refers to product-, process-,

or personnel-related characteristics that have an impact on the development effort.

In practice, software size is the most important determinant of development effort

and, as such, is always considered. Effort factors refer to the remaining aspects of

software project environment, which cause the development effort per unit of soft-

ware size to differ across projects. In other words, effort factors are factors that make

development productivity differ across projects. In the CoBRAmethod, effort factors

are defined as factors contributing to the increase of development effort relative to

“nominal effort” and are modeled in the effort overhead model.

In practice, it is difficult to build a reliable effort model that would be applicable

across a variety of environments. Therefore, usually only a limited number of effort

factors are considered within a model; the rest is kept constant and described as the

context in which the model is applicable. For example, building an effort model that

would be applicable for both enterprise and embedded software systems would

require covering a large variety of effort factors that play a significant role in both of

these domains. In practice, it would be a very complex and expensive task to

develop, use, and maintain a model that encompasses a wide variety of contexts.

Alternatively, we may build simpler models independently, each for a specific

domain. In that case, the factor “application domain” would be constant for each

model and would determine the context of the model’s applicability. We would

refer to factors that describe a modeling context as context factors. On the other

A. Trendowicz, Software Cost Estimation, Benchmarking, and Risk Assessment,
The Fraunhofer IESE Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-30764-5, # Springer-Verlag Berlin Heidelberg 2013
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hand, factors that are included in the model in order to explain productivity variance

within a certain context will be called effort factors. In practice, context factors

determine effort factors; that is, depending on a specific context, different effort

factors would have a different impact on development productivity and effort.

Context Factors

Table A.1 lists the context factors that are most commonly considered in the

software industry for the purpose of modeling software development effort.

Effort Factors

For the purpose of systematically identifying of potential effort factors, we propose

considering four facets of software project environments:

• The product facet covers the characteristics of software products being devel-

oped throughout all development phases. These factors refer to products such as

software code, requirements, documentation, etc., and their characteristics, such

as complexity, size, volatility, etc.

• The personnel facet reflects the characteristics of the personnel involved in the

software development project. These factors usually consider the experience and

capabilities of project stakeholders such as development team members (such as

analysts, designers, programmers, and project managers), software users,

customers, maintainers, subcontractors, etc.

• The project facet refers to various qualities of project management and organi-

zation, development constraints, working conditions, or staff turnover.

• The process facet refers to the characteristics of the software processes as well as
the methods, tools, and technologies applied during a software development

project. They include, for instance, the effectiveness of quality assurance, testing

quality, quality of analysis and documentation methods, tool quality and usage,

quality of process management, or the extent of customer participation.

Table A.2 provides example effort factors and sub-factors that are most com-

monly considered in industrial contexts.

Table A.1 Common context factors

Context factor Definition

Application domain The domain in which the software is to be applied. Example domains

include embedded software systems, management information systems, and

web (Internet) applications.

Development type Type of development. Example development types include new

development, enhancement, and maintenance.

Programming

language

Programming language(s) used to develop software, e.g., Java, C/C++,

Fortran, etc.

Software life cycle

model

The model of the software life cycle phases, e.g., waterfall, iterative,

incremental, etc.
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Table A.2 Common effort factors

Effort factor Definition

Team capabilities and

experience

The extent to which the software development team possesses the

skills and experiences necessary for the successful and efficient

completion of the project (i.e., delivering software products of

required functionality and quality within specified cost and time).

• Programming language

experience

The project team’s experience with the programming language(s)

and technologies/tools (e.g., the development environment).

• Application experience

and familiarity

The experience of the project team working with a similar type of

software systems (i.e., providing similar functionality and

operating in similar environments).

• Domain experience The extent of the project team’s familiarity and comprehension of

the target domain in which the developed software system is to be

applied.

• Platform experience The extent of the project team’s familiarity and comprehension of

the platform for which the developed software system is intended.

• Communication

capabilities

The ability of the project team to communicate easily and clearly

within the team (with other team members).

• Project manager

knowledge and

experience

The ability of the project manager to efficiently manage resources,

tasks, milestones, and project delivery dates as well as his or her

ability to organize the project, including managing project goals,

methods, schedules, or the clarity of the project team roles and

responsibilities. The level of practical experience in managing

similar software projects.

Software complexity The complexity of the developed software system.

• Database size and

complexity

The complexity of the database structure and the database

operations. This may, for example, range from simple, such as

arrays and basic database queries, to complex, such as distributed

data coordination, triggers, and search optimization.

• Architecture complexity The complexity of the software architecture used.

• Complexity of interface

to other systems

The complexity of the software interfaces, including user interface

and interfaces to other software systems. This may, for example,

range from simple, such as device reads and writes, to complex,

such as routines for masking, communication line handling, and

operations at the physical I/O level.

Tool usage and quality/

effectiveness

The extent to which automated tools are going to be used for the

project and the quality/effectiveness of these tools, ranging from

basic editors and debuggers to integrated case tools.

• CASE tools The extent to which CASE tools are going to be used for the

project and the quality/effectiveness of these tools.

• Testing tools The extent to which testing tools are going to be used for the

project and the quality/effectiveness of these tools.

Project constraints Additional constraints affecting the projects’ feasibility.

• Schedule pressure The extent to which the planned project schedule is reasonable to

attain a system that meets all of the stated requirements.

• Distributed/Multisite

development

The level of distribution of the project team (developers and users/

customers). Whether the project will be performed on one site or

whether different geographically distributed sites will be involved,

and if so, how distributed (e.g., nationally or internationally).

(continued)
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Table A.2 (continued)

Effort factor Definition

Software reuse The extent and quality of reuse in the project.

• Reuse level The extent to which existing software artifacts are reused in the

project.

• Quality of reused assets The quality of the artifacts reused in the project, in particular their

documentation level and reliability. Moreover, the extent to which

reused assets conform to the particular quality requirements

defined in the project.

Requirements characteristics The characteristics of the requirements specified in the project.

• Requirements volatility The extent to which the requirements are expected to change over

time, after the requirements freeze.

• Requirements novelty The extent to which requirement are new to the development team

(i.e., requirements refer to functional and nonfunctional software

characteristics that have never been faced by the development

team before).

Required software quality The extent to which the software is expected to meet certain

nonfunctional (quality) requirements.

• Required software

reliability

The amount of attention that needs to be given to minimizing

failures and ensuring that any failures will not result in safety,

economic, security, and/or environmental damage, achieved

through actions such as formal validation and testing, fault-

tolerant design, and formal specifications.

• Required software

maintainability

The extent to which the software is expected to be easy to

understand and modify, achieved through actions such as

information hiding, modularity in design, completeness and

traceability of life cycle documentation, and the recording of

design rationale.

Team size The number of stakeholders (users, customers, developers,

maintainers, etc.) directly involved in the project.

Stuff turnover Personnel continuity on the project, i.e., the extent of turnover for

the duration of the project.

Method usage The extent to which certain systematic software engineering

methods are implemented during the software development.

• Reviews and inspections The extent to which peer review and inspection methods are

implemented during the software development—whether

inspections are planned, documented, supported, and consistently

performed.

• Testing The extent to which testing methods are implemented during the

software development—whether testing activities are planned,

documented, supported, and consistently performed; which tests

(unit, integration, acceptance) and which particular techniques

(e.g., regression testing, statistical usage testing, etc.) are

implemented.

• Requirements

management

The level of disciplined requirements management, e.g., the extent

to which requirements are explicitly defined, tracked, and traced to

design, code, and validation testing. This also includes the extent

to which changes to requirements after their freeze are

systematically managed (e.g., supported by the use of change

management methods and tools).

(continued)
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Further Reading

• A. Trendowicz and J. Münch, “Factors Influencing Software Development

Productivity—State-of-the-Art and Industrial Experiences,” Advances in
Computers, pp. 185–241. Elsevier, 2009.

This article provides a comprehensive overview of the factors influencing

development productivity and effort. The authors based their survey on a review

of related literature and on numerous experiences gained in the software indus-

try. On the one hand, the authors discuss effort drivers that seem to be univer-

sally applicable across various project environments; on the other hand, they

provide factors that seem to apply only within particular project situations.

• ISBSG, Estimating, Benchmarking Research Suite Release 11. International
Software Benchmarking Standards Group, 2009. Refer to http://www.isbsg.

org/ for the most recent releases of the ISBSG benchmark repository.

The International Software Benchmarking Standards Group (ISBSG)

maintains a benchmark data repository of software development projects.

Release 11 of the repository contains data on over 5,000 development and

enhancement software projects. The repository covers a number of project

aspects that proved, over the years, to have a significant influence on software

development productivity and project effort. These project characteristics can be

used within the CoBRA method for selecting relevant context and effort factors.

Table A.2 (continued)

Effort factor Definition

Team motivation and

commitment

The extent to which the members of the software development

team are motivated and committed to performing their tasks and

cooperating with the other project stakeholders (e.g., other

developers, users, etc.).

Customer involvement The extent to which the user/customer is involved in the project

providing necessary/useful information, reviewing requirements

documents, performing some of the analyses themselves, and

taking part in acceptance testing.

Appendix: Example List of Relevant Effort Factors 301



Glossary

Accuracy Estimation accuracy refers to the nearness of an estimate to the true

value, i.e., a highly accurate prediction method will provide estimates very close

to the actual, known values. In the context of software effort estimation, the

Relative Error (RE) or Magnitude of Relative Error (MRE) measures proposed

by Conte et al. (1986) are commonly used to measure estimation accuracy. They

measure the difference between actual and estimated effort relative to the actual

effort. See also precision, bias, actual, and estimate.
Actual Actual (outcome) refers to true outcome of a certain project activity or

project condition (characteristic) observed after the activity or condition has

already taken place. In the context of effort estimation, actual is typically used to

refer to the actual value of effort required to successfully complete a certain

work activity or to the actual value of the productivity of this activity. See also

Estimate, Effort, and Productivity.
Best Case See Nominal Case.
Bias Estimation bias refers to a systematic (constant) error in estimates and is

determined as the difference between the average of the estimates and the actual,

true value. In the context of software effort estimation, the Prediction at Level m
(Pred.m) measure proposed by Conte et al. (1986) is commonly used to measure

estimation bias. Pred.m measures the percentage of estimates that are within

m % of the actual value. In other words, Pred.m measures the percentage of

estimates for which the magnitude of relative error (accuracy) is lower than or

equal to m. See also accuracy and precision.
Causal Effort Model In CoBRA, the causal effort model (also referred to as effort

overhead model) models the factors influencing software project effort and the

interactions among these factors, and quantifies the impact of these factors on

effort. See also Effort Factor and Effort Overhead.
Constraint of Estimation Estimation constraint refers to limitations regarding an

organization’s capability of applying an estimation method. In the context of the

CoBRA method, estimation constraints refer to organizational limitations with

respect to building, maintaining, and using CoBRA models. A very important

constraint that concerns literally every estimation method is the capability of an

organization to provide proper information as a basis for the estimates. In

practice, this constraint has two facets: availability of appropriate project mea-

surement data and availability of human expertise in terms of human experts’

A. Trendowicz, Software Cost Estimation, Benchmarking, and Risk Assessment,
The Fraunhofer IESE Series on Software and Systems Engineering,
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knowledge. Estimation constraints are closely related to the goals and purposes

of estimation. An example relationship between estimation purposes,

constraints, and objectives might be as follows. Let us consider an organization

that possesses a large base of historical project data, has a limited budget for

estimating projects, and wants to use CoBRA estimation for the purpose of

managing project risks. Corresponding estimation goals could be that the esti-

mation method (1) does not require much involvement of human experts, (2) is

based on an analysis of quantitative data, and (3) provides estimates in the form

of probability distributions. See also Goal of Estimation and Purpose of
Estimation.

Context Factor Context factors refer to the characteristics of a software develop-

ment project, which determine the feasibility of the CoBRA method and

the shape of the CoBRA model. On the one hand, context factors refer to the

constraints and capabilities of the software organization with respect to the

requirements of the CoBRA method. Example requirements include the avail-

ability of certain measurement data and domain experts for the purpose of

constructing the effort model. On the other hand, context factors describe the

environment within which the project effort effects are expected to remain

constant. Examples of common context factors are application domain (for

example, embedded software or web applications), programming language, or

development type (for example, new development, maintenance, or enhance-

ment). See also Effort Factor and Effort Driver.
Context of Estimation Estimation context refers to the characteristics of a soft-

ware development project, so-called context factors, which determine the feasi-

bility of the CoBRA method and the shape of the CoBRA model. On the one

hand, context factors refer to the constraints and capabilities of the software

organization with respect to the requirements of the CoBRA method. Example

requirements include the availability of certain measurement data and domain

experts for the purpose of constructing the effort model. On the other hand,

context factors describe the environment within which the project effort effects

are expected to remain constant. The objective of the CoBRA method is to

model these effects. For example, if we consider the application domain as a

context factor, then certain effort dependencies will be common within one

domain whereas they will vary across domains. See also Goals of Estimation.
Cost In the software engineering domain, cost is defined in a monetary sense. With

respect to a software development project, it refers to the partial or total

monetary cost of providing (creating) a certain product or service. In the

software engineering literature and practice, “cost” is often used as a synonym

for “effort”. Yet, effort only refers to manpower spent on performing activities

aimed at providing a certain product or service. As a consequence, project cost

includes, but is not limited to, project effort. In practice, cost includes such

elements as fixed infrastructure and administrative costs. Moreover, dependent

on the project context (e.g., currency or cost of manpower unit), project cost may

differ despite the same project effort. One way to notice the difference is to look
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at the units used. Cost in a monetary sense is typically measured in terms of a

certain currency (e.g., $, €, ¥, etc.), whereas cost in an effort sense is typically

measured as manpower (e.g., person-hours, person-days, person-months, etc.).

See also Effort.
Effort In the context of software development, effort refers to manpower spent on

performing activities aimed at providing a certain product or service. Effort

results from a combination of the total supply of persons for completing a certain

activity and the time they spend on this activity. It is typically measured as an

equivalent of the time spent by one person on completing the work activity.

Common units of effort measurement are person-hour (ph), person-day (pd), or

person-month (pm). See also Cost.
Effort Driver See Effort Factor
Effort Factor Effort factors, also referred to as Effort Drivers, refer to aspects of a

software development project that influence project effort. Effort factors include

project, product, and personnel aspects of a software development project. Effort

factors represent those aspects of the project environment that are assumed to

change across software projects within a specific context. For example, the

domain experience of the developers is an effort factor that varies across

projects. See also Context Factor.
Effort Overhead Effort overhead is the additional effort spent on overcoming the

imperfections of a real project environment, such as insufficient skills of the

project team. Effort overhead refers to non-productive project effort spent in

addition to the nominal effort. See also Effort Multiplier and Causal Effort
Model.

Effort Overhead Model The effort overhead model (or causal effort model)
produces an estimate of the project effort overhead. The effort overhead model

consists of factors affecting the project effort within a certain context (so-called

effort factors or effort drivers). The causal model is obtained through expert

knowledge acquisition, for example by involving experienced project managers.

See also Causal Effort Model and Effort Factor.
Effort Model Effort model refers to a model that captures effort dependencies

within a particular context. Typical usage of an effort model includes specifying

and explaining project effort, predicting project effort, and improving projects

with respect to consumed effort. In CoBRA, an effort model consists of the

Effort Overhead Model and the Productivity Model.
Effort Multiplier Effort multiplier refers to the qualitative impacts of an effort

factor directly influencing project effort (direct effort factor) on project effort. In

other words, an effort multiplier is associated with a direct effort factor and

quantified the magnitude of the factor’s contribution to the overall effort over-

head. For a given direct effort factor, its effort multipliers refer to the percentage

of effort overhead above that of a nominal effort this factor introduces. The value

of an effort multiplier depends on the factor’s value and is elicited through

expert judgment. The multipliers for the effort factors are modeled as

distributions to capture the uncertainty inherent in expert opinion. Triangular
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distributions can be used to reflect the experts’ opinion about each effort factor’s

impact on cost by giving three values: minimum, most likely, and maximum

value of a multiplier. See also Effort Overhead.
Estimation In principle, estimation is defined as “the act of judging tentatively or

approximately the value, worth, or significance of something”. Yet, in the

context of planning and managing software development, the term estimation

is used in the sense of forecasting and refers to the process of making statements

about future events and conditions – events and conditions whose actual

outcomes have not yet been observed. In the context of software project man-

agement, the terms estimation, prediction, and forecasting are used interchange-

ably. See also Prediction.
Estimate In the context of software effort estimation, estimate (or effort estimate)

refers to the approximate, predicted value of certain project characteristics. In

the context of effort, estimate typically refers to effort estimate and means the

prediction of effort required for successfully completing a certain future project

activity (activity that has not yet been performed). See also Actual.
Explanatory Power Explanatory power of the CoBRA model refers to its capa-

bility to capture the relationship between development productivity and effort

overhead. More generally, explanatory power refers to the form and amount of

information an estimation method provides in addition to simple effort numbers.

Typically, additional pieces of information associated with effort estimates are

the probability of extending these estimates and the means for reducing effort.

Extreme Case Extreme case (also referred to as Worst Case) refers to the worst

project circumstance or state possible in a given context. In the CoBRA method

extreme case is typically used in reference to effort factors and means the worst

value of a factor in a given context. It is important to note that worst case in

CoBRA does not mean “the worst” in general but “the worst” possible in a given

context. For example, let us consider the tool support aspect. In general, the

worst case would refer to a situation where none of the project activities is

supported by appropriate tools. Yet, in practice, such a situation is hard to find

and the worst case would rather refer to tool support for some basic project

activities. See Nominal Case for comparison.

Goal of Estimation Estimation goal refers to the expected performance of the

CoBRA method in terms of the goodness of the estimates and the additional

information it provides. A typical example of an estimation goal is estimation

accuracy. Estimation goals are usually derivatives of the estimation purposes. In

other words, the purpose for which CoBRA is going to be used determines, at

least partially, the objectives the method should accomplish. For example, using

the method for the purpose of risk assessment requires that besides simple effort

estimates, the method provides associated information to support assessing and

reducing effort-related project risks. Estimation goals are derivatives (at least

partially) of estimation constraints and estimation purposes. See also Predictive
Power and Explanatory Power, Purposes of Estimation, and Constraints of
Estimation.
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Historical Data Historical data refer to project data collected from historical

projects. The data encompass project environmental characteristics such as

product-, process-, resource-, and project-related characteristics. In particular,

historical project data encompass data on software size, project effort, and effort

factors considered in an effort model. Historical project data can be collected via

measurement or expert judgment. See also Historical Project.
Historical Project A historical project is a project that has been successfully

performed in the past and has already been completed. In CoBRA, successfully

completed projects are used as a basis for building and initially validating the

effort estimation model. The criteria for project success principally depend on

the respective organization and may differ across organizations; yet, they should

be consisted for the historical projects considered within one organization when

building the CoBRA effort model. Examples of traditionally considered criteria

of project success include completing a project within budget and time, and

delivering a software product with the expected functionality and quality. See

also Historical Project and Successful Project.
Informative Power Informative power refers to the form, the amount, and the

quality of the information an estimation method provides in addition to simple

effort numbers. Typical additional information associated with effort estimates

includes the probability of extending these estimates and the means for reducing

effort. In the context of the CoBRA method, informative power can be

interpreted as generalization of the explanatory power objective, which refers

to the ability of a CoBRA effort model to explain the dependency between effort

overhead and development productivity. See Explanatory Power and Predictive
Power for comparison.

Nominal Case Nominal case (also referred to as Best Case) refers to the best

project circumstance or state possible in a given context. In the CoBRA method,

the nominal case is typically used in reference to an effort factor and means the

best value of the factor in a given context. It is important to note that best case in

CoBRA does not mean “the best” in general but “the best” possible in a given

context. For example, let us consider the tool support aspect. In general, the best

case would refer to a situation where all project activities are supported by

appropriate tools. Yet, in practice, such a situation is hard to find and best case

would rather refer to tool support for majority of the project activities or for all of

the most relevant project activities. See Extreme Case for comparison.

Nominal Effort Nominal effort is the engineering and management effort spent on

developing a software product of a certain size in the context of a nominal

project. A nominal project is a hypothetical “ideal” project in a certain environ-

ment of an organization (or business unit). It is a project that runs under optimal

conditions, that is, a project where all environmental characteristics having an

impact on project effort are at “the best” levels (“perfect”) at the start of the

project. Note that “the best” refers to realistic levels that are possible in a certain

context; not to the best imaginable levels. For instance, the project objectives are

well defined and understood by all staff members and the customer and all key
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people in the project have the appropriate skills to successfully conduct the

project. See also Actual Effort for comparison.

Nominal Productivity In CoBRA, nominal productivity refers to development

productivity under optimal project conditions, that is, the productivity of a

nominal project where all effort factors have their best levels. In general,

productivity refers (IEEE-1045 1993) to the ratio between a project’s output

and input. In the concrete case of software projects, development productivity is

computed as the ratio between the size of the delivered software products and the

effort consumed to develop these products. In real software projects, actual
development productivity is decreased by non-productive effort spent on

overcoming the imperfect character of the project. For example, a certain effort

must be expended to train the development team. The factor by which produc-

tivity is decreased depends on the specific characteristics of an individual

project. The difference between nominal and actual productivity (productivity
loss) is proportional to the portion of additional non-productive effort, and in

CoBRA it is accounted for through the effort overhead. In general, the higher the

effort overhead, the higher the actual project effort and the lower the actual

development productivity. See also Nominal Project and Nominal Effort.
Nominal Project A nominal project is a hypothetical “ideal” project in a certain

environment of an organization (or business unit). It is a project that runs under

optimal conditions, that is, a project where all environmental characteristics

having the impact on project effort are at “the best” levels (“perfect”) at the start

of the project. Note that “the best” refers to realistic levels that are possible in a

certain context; not to the best imaginable levels. For instance, the project

objectives are well defined and understood by all staff members and the cus-

tomer and all key people in the project have the appropriate skills to successfully

conduct the project. See also Nominal Case, Nominal Productivity, and Nominal
Effort.

Planning In general, planning refers to “the act or process of making or carrying

out plans; specifically: the establishment of goals, policies, and procedures for a

social or economic unit”. In the context of software development, planning

refers to planning a software project and includes identifying and scheduling

the project activities, assigning the necessary resources and infrastructure, etc. In

practice, planning is wrongly interchanged with estimation, in particular with

effort estimation. Yet, effort estimation is only a part of planning and refers to

forecasting the manpower required for successfully completing certain project

activities. In this sense, the outcomes of estimation are inputs to planning. See

also Estimation for comparison.

Precision Estimation precision refers to the degree to which several estimates are

very close to each other. It is an indicator of the scatter in the estimates. The less

the scatter, the higher the precision. In order to measure estimation precision, we

can apply the well-known statistical measure of standard deviation (SD) upon
multiple estimates. See also Accuracy and Bias for comparison.

Prediction In principle, prediction refers to “the act of declaring or indicating in

advance; especially: foretelling on the basis of observation, experience, or
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scientific reason”. In the context of software effort estimation, prediction is used

interchangeably with estimation and refers to forecasting the outcome of a

project activity that has not yet taken place; in particular to forecasting effort

required for successfully completing a certain project activity. See also Estima-
tion, Effort, and Estimate.

Predictive Power Predictive power refers to the capability of the CoBRA model

to provide effort estimates close to the actual (true) effort. In the context of

software effort prediction, predictive power is typically considered in terms of

estimation accuracy, precision and, bias. For quantifying each of these three

aspects, a number of measures have been proposed.

Productivity Baseline Baseline productivity refers to the “average” nominal

productivity of a historical project. Baseline productivity is determined using

the productivity model and is used for building the estimation model (meaning,

it is a part of the effort estimation model). See also Productivity Model and
Estimation Model.

Productivity Model The productivity model is the second base element of the

CoBRA effort model (besides the causal effort model). The productivity model

uses data from past similar projects for identifying a relationship between effort

overhead and actual project effort, and for determining the baseline productivity

of the nominal project. Note that this is a simple bivariate relationship that does

not require a large data set. This is important, as it explains why CoBRA does not

have demanding data requirements, as opposed to data-driven estimation

techniques. In order to build up such a regression model, data from merely

about 10 historical projects are needed. See also Nominal Project, Nominal
Productivity, Effort Overhead Model, and Effort Model.

Purpose of Estimation Estimation purpose refers to what we want to use CoBRA

effort estimation model for, that is, to the project scenario in which we want to

use estimation. Example purposes of effort estimation include obtaining a point

estimate of project effort, identifying effort distribution across project phases,

identifying effort-related project risks, or identifying productivity-related pro-

cess improvement potentials. See also Goals of Estimation for comparison.

Successful Project The CoBRA method often refers to a successful project. For

example, while collecting historical project data for building the effort estima-

tion model, we should consider only successful projects. It would not make

much sense to take failed projects as a reference for the future. The usual

definition of a successful project in the software community refers to a project

that was completed within budget and time and to a software product delivered

with the expected functionality and quality. A minimal definition of a successful

project may refer to a project that delivered the expected software product

without creating substantial financial loss. See also Historical Project.
Worst Case See Extreme Case.
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Index

A

Application example

Allette (Australia), 203–217

Capgemini (see SD&M (Germany))

JAMSS (Japan), 285–296

Oki (Japan), 219–253

B

Benchmarking. See Model application

scenarios

C

Causal effort model. See Effort,
overhead model

CoBRA. See Cost estimation, benchmarking,

and risk assessment (CoBRA)

Context of effort estimation

assumptions, 153

constraints, 153

determining, 152

Cost. See Effort
Cost estimation, benchmarking, and risk

assessment (CoBRA)

method

benefits, 11–13

roles and responsibilities (see Roles
in CoBRA)

model

application process, 185–188

imperfect character, 130

inaccuracy, 130

incompleteness, 130

Cross validation

jacknifing, 135

n-fold, 134

testing set, 134

training set, 134

Cross validation_leave-one-out, 135

D

Data cleaning

missing values (see Handling missing data)

noise, 38

outliers, 38

smoothing, 37

Data formatting

capitalization, 35

changing representation, 35

character clean up, 35

concatenation and splitting, 35

Data integration

merging, 36

removing conflicts, 36

removing redundancies, 36

Data preprocessing

data cleaning (see Data cleaning)
data formatting (see Data formatting)

data integration (see Data integration)
data transformation (see Data

transformation)

Data transformation

aggregation, 42

attribute construction, 42

binning, 40

discretization, 40

generalization, 42

normalization, 40

scale augmentation, 41

unit conversion, 42

Data validation

consistency of measurement procedure, 47

consistency of measurement scope, 48

direct, 47

indirect, 47

Delphi, 49

Diseconomies of scale, 45

Distribution

beta-Pert, 97

triangular, 97
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E

Effort, xvii

estimation, 5

model

application (see Model application)

development (see Model development)

incremental construction, 22

iterative revision, 22

nominal, 15

overhead, 15

overhead model, 16

variable, 76

identification, 76

Effort factors

controllability, 62

decomposition (see Effort, variable)
defining, 48–49

direct, 16

effort multiplier, 95–96 (see also Effort

multiplier)

factor data (see Factor data)
historical data (see Historical project data)
identification, 49

analytical appraoch, 53

causal modeling methods, 54

causal modeling methods, Tetrad, 59

combined approach, 60–61

judgmental approach, 49

machine learning methods, 54

machine learning methods, feature

weighting, 58–59

machine learning methods, relief, 58–59

multicriterial decision support, 61

statistical methods, regression, 57

stratistical methods, 54

visual analysis, 53

impact, 61

importance

analytical appraoch, 63–64

Borda’s method, 70–72

judgmental approach, 61

multicriterial decision support, 72–73

ranking, 70–72

rating, 61

indirect, 16

interactions, 77

explicit dependency, 79

identification (see Factor interactions
identification)

implicit dependency, 80

measurability, 61

measurement scale, 85–86

measurement scale types (seeMeasurement

scale)

quantification, 85

Effort multiple, conditional

extreme case, 101, 105

nominal case, 102–103, 105

Effort multiplier, 16–18

actual value, 111–112 (see also Effort

multiplier, computing actual value)

collecting data, 106

interview, 106

survey, 106

collection, 96

computing actual value, 111–127

basic equation, 112–113

composite direct impact, 116

composite indirect impact, 126–127

indirect impact on extreme case, 1117

indirect impact on nominal case,

122–123

simple direct impact, 113–114

conditional

composite, 104

simple impact, 101

data outliers, 107–110

direct impact (see Effort multiplier,

unconditional)

functional form

linear, 98

non-linear, 98

indirect impact (see Effort multiplier,

conditional)

interaction handling, 100

maximal, 97

measurement scale

interval, 98

nominal, 98

ordinal, 98

ratio, 98–99

minimal, 97

most likely, 97

questionnaire, 96

uncertainty handling, 97

unconditional

composite, 103–104

simple impact, 100

validating data, 107

validating external consistency, 109–110

validating internal consistency, 107

Estimate

good estimate, 9

most likely, 167–168

uncertainty, 170

Estimation, xvii

model-based, 21

performance

accuracy, 138–139

bias, 139
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explanatory power, 135, 162

informative power, 11

precision, 139

predictive power, 138, 161

risk-driven, 169

strategy

data-driven, 11

expert-based, 11

hybrid, 11

Explanatory power. See Estimation,

performance

F

Factor data

collection, 92–94

confidence, 94

tools, 92

validation, 92

Factor interactions identification, 77

analytical approach, 77

G

Group consensus session, 49

Group consensus session, threats

anchoring, 51

polarization, 51

risk shift, 51

wishful thinking, 51

H

Handling missing data

estimate using other factors, 38

estimate using the same factor, 38

global-constant, 38

manual, 37

Historical project data

collecting, 33

form, 33

preprocessing, 33–34

project environemental charateristics, 33

size and effort, 32

validation, 33–34, 46 (see also Data

validation)

validity, 33–34

I

Informative power. See Estimation,

performance

International Software Benchmarking

Standards Group (ISBSG), 301

M

Mahalanobis distance

effort multiplier, 107

outlier analysis, 39

MCDA. See Multicriteria decision analysis

(MCDA)

Measurement scale

approximately interval, 86

interval, 87

likert, 89

nominal, 87

ordinal, 87

ratio, 87

Missing data. See Handling missing data

Model adjustment, 154

project-specific, 154

Model application

industrial example (see Application
example)

process (see Model application process)

Model application process

analyzing estimation performance,

160–162

choosing estimation model, 155–158

estimating effort, 158–160

overview, 149

packaging and reporting, 164

planning estimation, 155–158

specifying estimation context, 155

specifying estimation goals, 154–155

Model application scenarios

assessing risk level, 169

baseline for risk assessment, 170–171

effort estimation, 167–169

process improvement, 185–188

productivity improvement, 185–188

risk management, 169–184

scope negotiation, 184–185

Model development

factor interactions, identifying, 84–85

process (see Model development

process)

project measurement data, validating,

95–110

Model development process

defining size measure, 29–32

effort factors

defining, 48–77
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identifying, 48–77

quantifying, 85–91

effort model

building, 110–132

validating, 132–139

effort multiplier data

collecting, 95–110

validating, 95–10

factor data

collecting, 91–95

validating, 91–95

overview, 21–25

preparation and planning, 25–29

project measurement data

collecting, 32–33

preprocessing, 33–48

Multicriteria decision analysis (MCDA), 61, 73

N

Nominal productivity

deterrmining, 129–132

distribution estimate, 132

estimating

bootstrapping, 132

median, 131

regression, 131

point estimate, 131

O

Outlier analysis

box plots, 39

distance measures, 39

effort multiplier data, 107–110

statistical tests, 39

P

Planning, xvii

Planning effort estimation, 28

example plan, 28

Prediction, xvii

Predictive power. See Estimation, performance

Productivity

actual, 16

baseline, 19, 167

definition, 15

loss, 16

model, 18

nominal, 15–19 (see also Nominal

productivity)

Project management, 5

Project risk

assessment (see Risk assessment)

management (see Risk management)

R

Re-estimation, 149–150

Relative error (RE), 161

Relief, 58

Risk assessment

acceptable risk exposure (ARE), 175

based on acceptable risk level, 173

based on risk exposure level, 175

based on risk thresholds, 171

risk level, 171

Risk management

avoiding risk, 179

defining risk baseline, 170

mitigating risk, 179

reducing risk, 177

simple process, 178

Roles in CoBRA, 22

analyst, 24

domain expert, 24

estimator, 24

RReliefF. See Relief

S

sd&m (Germany), 191–202

Siemens IS (India), 255–284

Simulation, 127–129

Latin Hypercube, 127

Monte Carlo, 127

sampling domain expert, 127

sampling effort overhead, 127

Size of software

defining size measure, 29, 31

lines of code (LOC), 150

measurable project deliverables, 30

measuring software, 31

T

Testing set. See Cross validation
Training set. See Cross validation
Triage, 155

W

Wide-band Delphi. See Delphi
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